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Abstract 

Background:  Oral squamous cell carcinoma (OSCC) is the most frequent cancer of the head 

and neck and is a major cause of worldwide morbidity and mortality. Saliva is recognised as a 

non-invasive source of biomarkers that can be used for the detection of oral diseases such as 

oral cancer. One specific source is salivary extracellular vesicles (EVs). MicroRNA (miRNA) are 

small non-coding RNA that regulate cellular processes in tumorigenesis and their detection in 

OSCC-derived EVs represents a source of biomarkers that could be utilised in a diagnostic test. 

However, saliva is challenging to work with (due to viscosity) and isolation of salivary EVs 

would need to be higher throughput for a diagnostic test to be realised.  

Hypothesis: The miRNA cargo of salivary EV can be used as a biomarker signature to develop 

a diagnostic test for OSCC. 

Methods: Salivary EV isolation was compared for three techniques; serial centrifugation, size 

exclusion chromatography and Dynabead immunocapture. Characterization of EVs was 

carried out by Transmission electron microscopy (TEM), Nanoparticle Tracking Analysis (NTA), 

Exoview and western blotting. EVs were purified from the saliva of OSCC patients and healthy 

controls by Dynabead immunocapture. Small RNA sequencing was conducted on a discovery 

cohort (OSCC n=5 and healthy controls n=3) to identify the EV miRNA cargo and differential 

expression analysis was used to identify up- or down-regulated miRNA. Validation of NGS was 

done by qRT-PCR on a cohort of n = 14 cancer patients and n = 7 healthy controls. 

Results: Dynabead immunocapture was found to be the most appropriate method for 

isolation of salivary EVs and gave the best yield of intact EVs when processing ≥ 2 ml fresh 

saliva. Salivary EVs were positive for CD9, CD63, CD81 and TSG101 by western blotting. Small 

RNA sequencing identified 17 miRNA were up-regulated in OSCC patient EVs compared to 

healthy controls. qRT-PCR analysis of four of the up-regulated miRNA (miR-21-5p, miR-29a-

3p, miR-92a-3p and miR-181a-5p) revealed no significant difference between OSCC samples 

and healthy controls.  

Conclusion: The miRNA cargo of salivary EV is a promising biomarker signature for OSCC 

diagnosis. However, further work is required to accurately quantify individual miRNA in the 

absence of suitable endogenous controls. 



 
 

V 
 

List of Contents 
 

Acknowledgements .................................................................................................................. II 

Presentations ........................................................................................................................... III 

Abstract ................................................................................................................................... IV 

List of Contents ......................................................................................................................... V 

List of Tables ........................................................................................................................... VII 

List of Figures ........................................................................................................................... XI 

Abbreviations ......................................................................................................................... XII 

Chapter one .............................................................................................................................. 1 

1. Introduction .......................................................................................................................... 2 

1.1 Head and Neck cancer ................................................................................................ 2 

1.1.1 Epidemiology and risk factors of oral cancer ....................................................... 2 

1.1.2 Development of oral squamous cells carcinoma (OSCC) ..................................... 3 

1.1.3 Features of oral squamous cell carcinoma .......................................................... 4 

1.1.4 Tumour microenvironment in oral squamous cell carcinoma ............................. 5 

1.1.4.1 Oral epithelium ............................................................................................. 6 

1.1.4.2 Immune cells ................................................................................................. 6 

1.1.4.3 Fibroblasts .................................................................................................... 8 

1.1.4.4 Endothelial cells ............................................................................................ 8 

1.1.4.5 Extracellular matrix ....................................................................................... 9 

1.2 Extracellular vesicles ................................................................................................. 10 

1.2.1 Discovering EVs .................................................................................................. 10 

1.2.2 Type and nomenclature of EVs .......................................................................... 11 

1.2.3 Biogenesis and characterization of EVs ............................................................. 12 

1.2.3.1 Exosomes .................................................................................................... 12 

1.2.3.2 Microvesicles .............................................................................................. 13 

1.2.3.3 Apoptotic bodies ........................................................................................ 14 

1.2.3.4 Other types of EVs ...................................................................................... 14 



 
 

VI 
 

1.2.4 Composition of Extracellular vesicles ................................................................ 15 

1.2.4.1 Nucleic acid cargo ....................................................................................... 15 

2.4.1.2 DNA content of EVs .................................................................................... 17 

1.2.4.2 Proteins cargo ............................................................................................. 18 

1.2.5 Uptake of EVs by recipient cells (cell-cell communication) ............................... 20 

1.2.5.1 Clathrin-dependent endocytosis .................................................................... 20 

1.2.5.2 Clatherin-independent pathways ................................................................... 21 

1.2.6 EV Effects on Tumour Microenvironment ......................................................... 23 

1.2.6.1  Endorsing cell proliferation and apoptosis resistance ............................... 23 

1.2.6.2 Supporting Angiogenesis ............................................................................ 24 

1.2.6.3 Immune suppression .................................................................................. 25 

1.2.6.4 Involvement in Cancer Cell Invasion and Metastasis .................................. 25 

1.2.7 The role of EVs in oral squamous cell carcinoma .............................................. 27 

1.2.9 Using saliva as a liquid biopsy ............................................................................ 29 

1.2.10 Salivary EVs as a source of biomarkers ............................................................ 30 

1.2.10.1 The relationship between salivary EVs and systemic Diseases ................. 31 

1.2.10.2 Use of Salivary EVs as a source of biomarkers in head and neck cancer .. 32 

1.3 Hypothesis and project aims .................................................................................... 35 

1.3.1 Hypothesis ......................................................................................................... 35 

1.3.2 Project aims ....................................................................................................... 35 

Chapter two ............................................................................................................................ 36 

2. Materials and methods ...................................................................................................... 37 

2 .1 Materials .................................................................................................................. 37 

2.2 Methods ................................................................................................................... 37 

2.2.1 Saliva samples .................................................................................................... 37 

2.2.1.1 Saliva collection .......................................................................................... 37 

2.2.1.2 Saliva processing ......................................................................................... 37 

2.2.2 EV isolation methods ......................................................................................... 37 

2.2.2.1  Isolation of EVs by ultracentrifugation (UC) .............................................. 37 

2.2.2.2 Isolation of EVs by Size Exclusion Chromatography (SEC) .......................... 38 

2.2.2.3 Isolation of EVs by Dynabead immunocapture ........................................... 39 



 
 

VII 
 

2.2.4 Salivary EV characterisation methods ............................................................... 41 

2.2.4.1 Nanoparticle Tracking Analysis (NTA) ......................................................... 41 

2.2.4.3 Characterization of salivary EVs by Transmission Electron microscopy ..... 42 

2.2.5 Protein methods ................................................................................................ 43 

2.2.5.1 Bicinchoninic acid assay (BCA) .................................................................... 43 

2.2.5.2 SDS-PAGE ........................................................................................................ 43 

2.2.5.3 Western blotting ......................................................................................... 44 

2.2.6 RNA, DNA and protein extraction ...................................................................... 46 

2.2.6.1 Sample preparation .................................................................................... 46 

2.2.6.2 Genomic DNA purification .............................................................................. 46 

2.2.6.3 RNA purification ......................................................................................... 46 

2.2.6.4 Protein purification ..................................................................................... 47 

2.2.7 Measurement of RNA concentration ................................................................. 47 

2.2.8 Small RNA sequencing ....................................................................................... 47 

2.2.8.1 Library preparation and sequencing ........................................................... 48 

2.2.8.2 Bioinformatics analysis ............................................................................... 48 

2.2.9 Quantitative real-time PCR (qPCR) .................................................................... 48 

2.2.9.1 Complementary DNA (cDNA) synthesis ...................................................... 48 

Table 2.7 TaqMan primer/probes used for PCR. .................................................................... 50 

2.2.9.2 TaqMan qPCR reaction ............................................................................... 50 

2.2.9.3 Data analysis ............................................................................................... 50 

Chapter Three ......................................................................................................................... 51 

3.  Isolation of salivary EVs by differential centrifugation and size exclusion chromatography

 ................................................................................................................................................ 52 

3.1 Introduction .............................................................................................................. 52 

3.2 Aim and objectives ................................................................................................... 54 

3.3. Results ..................................................................................................................... 54 

3.3.1 Enrichment of salivary EVs by differential centrifugation ................................. 54 

3.3.2 Enrichment of salivary EVs by size exclusion chromatography ......................... 56 

3.3.2.1 Elution profile ............................................................................................. 56 



 
 

VIII 
 

3.3.4 The yield of salivary EVs after purification by SEC and ultracentrifugation ....... 58 

3.3.5 Characterization of salivary EVs by TEM ............................................................ 60 

3.3.6 Detection of salivary EV tetraspanin profile ...................................................... 61 

3.3.7 Validation of salivary EV tetraspanin profile by western blotting ..................... 63 

3.4 Discussion ................................................................................................................. 65 

3.4.1 Differential centrifugation ................................................................................. 65 

3.4.2 SEC ..................................................................................................................... 66 

3.4.3 Characterization of salivary EVs ......................................................................... 68 

3.4.4 Conclusion ......................................................................................................... 70 

Chapter four ........................................................................................................................... 71 

Chapter 4. Isolation of salivary EVs by Dynabead immunocapture ........................................ 72 

4.1 Introduction .............................................................................................................. 72 

4.2 Aims and objectives .................................................................................................. 74 

4.3 Results ...................................................................................................................... 74 

4.3.1 Compare isolation of Salivary EVs by SEC and Dynabead immunocapture ....... 74 

4.3.2 Optimization of Dynabead immuno-capture isolation method ........................ 76 

4.3.2.1 Evaluating the efficiency of Dynabead immunocapture ............................. 76 

4.3.2.2 Assessing the input volume of saliva for Dynabead immunocapture ......... 78 

4.3.2.3 Visualisation of Dynabead-EV complexes by TEM ...................................... 80 

4.3.2.4 Effect of storage time on captured salivary EVs ......................................... 82 

4.3.2.5 Effect of storage of saliva on capture of EVs .............................................. 83 

4.4 Discussion ................................................................................................................. 84 

4.4.1 Dynabead EV isolation is more efficient than SEC ............................................. 84 

4.4.2 Saliva input volume and storage conditions affect EV yield and integrity ......... 85 

4.4.3 Conclusion ......................................................................................................... 87 

Chapter Five ........................................................................................................................... 88 

5. Characterisation of OSCC patient salivary EV miRNA cargo ............................................... 89 

5.1 Introduction .............................................................................................................. 89 

5.2 Aims and objectives .................................................................................................. 91 

5.3 Results ...................................................................................................................... 91 



 
 

IX 
 

5.3.1 Study participants .............................................................................................. 91 

5.3.2 Transcriptomic analysis of clinical samples ....................................................... 93 

5.3.2.1 EV-RNA isolation and Bioanalyzer analysis ................................................. 93 

5.3.2.2 Small RNA sequencing of salivary EV cargo ................................................ 98 

5.3.2.3 Validation of upregulated miRNAs by qRT-PCR ........................................ 104 

5.4. Discussion .............................................................................................................. 106 

5.4.1 Integrity and quantity of RNA in salivary EVs .................................................. 106 

5.4.2 Salivary EV miRNA biomarker profiles ................................................................. 106 

5.4.2.1 MiR-92a-3p ............................................................................................... 109 

5.4.2.2 MiR-21-5p ................................................................................................. 109 

5.4.2.3 MiR-181a-5p ............................................................................................. 110 

5.4.2.4 MiR-16-5p ................................................................................................. 111 

5.4.2.5 MiR-22-3p ................................................................................................. 111 

5.4.2.6 MiR-29a-3p ............................................................................................... 112 

5.4.2.7 MiR-23a-3p ............................................................................................... 113 

5.4.2.8 MiR-1290 .................................................................................................. 114 

5.4.2.9 MiR-1246 .................................................................................................. 114 

5.4.2.10 MiR-186-5p ............................................................................................. 115 

5.4.2.11 MiR-320a-3p ........................................................................................... 116 

5.3 Clustering ................................................................................................................ 116 

5.4 Validation  by RT-QPCR ........................................................................................... 117 

5.5 Conclusion .............................................................................................................. 119 

6. Final discussion ................................................................................................................. 121 

6.1 The challenges of using saliva in EV biomarker studies .......................................... 121 

6.2 Technical challenges of working with extracellular vesicles ................................... 123 

6.3 Can small RNA in salivary EVs be used as a biomarker signature for oral cancer? . 128 

6.4. Limitations, future work and conclusion ............................................................... 131 

6.4.1 Limitations ....................................................................................................... 131 

6.4.2 Future work ..................................................................................................... 132 

6.4.3 Conclusion ....................................................................................................... 132 

10. References ...................................................................................................................... 134 



 
 

X 
 

List of Tables 

Table 2. 1 ZetaView setting used for measurement of small particles. .................................. 41 

Table 2. 2 Reagents for two 1.0 mm, 12% polyacrylamide resolving gels and stacking gels .. 44 

Table 2. 3 Details of all primary antibodies used in western blotting experiments. .............. 45 

Table 2. 4 Details of HRP conjugated secondary antibodies used in western blot. ................ 46 

Table 2. 5 Composition of RT Reaction Mix. ........................................................................... 49 

Table 2. 6 Conditions used for reverse transcription reaction ............................................... 49 

Table 2.7 Taqman primer/probes used for PCR. .................................................................... 50 

Table 2. 8 Real time qPCR TaqMan master mix components. ................................................ 50 

Table 5. 1 Clinical details of OSCC patients and healthy controls. .......................................... 92 

Table 5. 2 EV RNA concentration determined by Bioanalyzer. .............................................. 97 

Table 5. 3 Significantly upregulated miRNAs in OSCC salivary EVs.. ..................................... 100 

Table 5. 4 MiRNA that were upregulated in OSCC patients in previous studies. ................. 108 

 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

XI 
 

List of Figures 

Figure 1. 1 Risk factors and anatomical locations of head and neck cancers. .......................... 3 

Figure 1. 2 OSCC progression. .................................................................................................. 4 

Figure 1. 3 Oral carcinogenesis. ................................................................................................ 5 

Figure 1. 4 The microenvironment of the tumour. ................................................................. 10 

Figure 1. 5 Types of extracellular vesicle and their biogenesis; ............................................. 15 

Figure 1. 6 The structure and content of vesicles. ................................................................. 20 

Figure 1. 7 Uptake of extracellular vesicles; ........................................................................... 23 

Figure 1. 8 The function of EVs in the tumour microenvironment. ........................................ 26 

Figure 1. 9 EV in biological fluids. ........................................................................................... 29 

Figure 1. 10 Salivary EVs derived from OSCC cells. ................................................................. 34 

Figure 2. 1 Schematic outlining salivary EV isolation by ultracentrifugation. ........................ 38 

Figure 2. 2 Schematic outlining salivary EV isolation by size exclusion chromatography. ..... 39 

Figure 2. 3 Schematic outlining salivary EV isolation by Dynabead immunocapture. ............ 40 

Figure 3. 1 Isolation of salivary EVs by ultracentrifugation. ................................................... 55 

Figure 3. 2 Sec elution profile…………………………………………………………………………………………….57 

Figure 3. 3 The yield of SEC purified particles before and after UC. ....................................... 59 

Figure 3. 4 Visualisation of salivary EVs by TEM. .................................................................... 60 

Figure 3. 5 ExoView analysis. .................................................................................................. 62 

Figure 3. 6 Salivary EV protein markers. ................................................................................. 64 

Figure 4. 1 Dynabead immunocapture procedure. ................................................................ 73 

Figure 4. 2 Comparison of Dynabead isolation and SEC. ........................................................ 75 

Figure 4. 3 Assessing the efficiency of Dyanbead immunocapture. ....................................... 77 

Figure 4. 4 Optimum volume of saliva for Dynabead isolation. ............................................. 79 

Figure 4. 5 Imaging of Dynabead-EV complexes by TEM. ....................................................... 81 

Figure 4. 6 Effect of storage time on captured salivary EVs. .................................................. 82 

Figure 4. 7 Storage of saliva prior to immunocapture of salivary EV. .................................... 83 

Figure 5. 1 Bioanalyzer traces of salivary EV-RNA. ................................................................. 96 

Figure 5. 2 Relative abundance of miRNA in salivary EVs from OSCC cancer patients. .......... 99 

Figure 5. 3 Principal component analysis of EV miRNA abundance. .................................... 101 

Figure 5. 4 Colour scale representation of the differentially expressed EV miRNAs ............ 103 



 
 

XII 
 

Figure 5. 5 Validation of small RNA sequencing by qRT-PCR. ............................................... 105 

Figure 6. 1 Diagram of the EV isolation techniques used in this study and their outcomes. 127 

Figure 6. 2 Salivary EVs as a source of miRNA biomarkers for OSCC diagnosis. ................... 130 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

XIII 
 

Abbreviations 

AKT Protein kinase B 
AMI  Myocardial Infarction 
CAFs Cancer-associated fibroblasts 
CD Tetraspanins 
CDE Clatherin- independent pathways 
CDKN2A Cyclin-dependent kinase inhibitor 2a 
cDNA Complemtray  Deoxyribonucleic acid 
CME Clathrin-mediated endocytosis 
CSF Crebro-spinal fluids 
CXCL Chemokine Ligand 
DC Differential centrifuge 
DNA  DNA Deoxyribonucleic acid 
dNTP  Deoxynucleotide triphosphate 
ECM Extracellular matrix 
ECs Endothelial cells 
EFEMP1 Fibulin-like extracellular matrix protein 1                  
EGF Epidermal growth factor 
EGFR Epidermal  growth  factor  receptor 
EPC Endothelial progenitor cells 
EPHB2 Ephrin type B receptor 2                                                                   
ESCRT Endosomal sorting complexes required for transport               
EVs Extracellular vesicles 
ExRNAs Exosomes RNA 
FGF Fibroblast growth factors 
FNDC1 Fibronectin type III domain-containing protein 1     
gDNA Genomic DNA 
GPI  Glycosylphosphatidylinositol 
GrB Granzyme B 
GW4869 Neutral sphingomyelinase (N-SMase) 
H/R Hyperoxia/reperfusion 
HEK293 cell line Human embryonic kidney 293 
HIF-1α Hypoxia-induced factor-1α 
hnRNPA2B1 Heterogeneous ribonuclear protein                                               
HNSCC Head and neck squamous cell carcinoma 
HOTAIR HOX transcript antisense RNA                                                          
HPV Human papillomavirus 
HSC70 Heat-shock proteins 
HUVECs Human umbilical vein endothelial cells 



 
 

XIV 
 

IBD Inflammatory bowel disease 
IBP5/IBP7 Insulin-like growth factor binding proteins 5/7        
IFN- β  Interferon beta 
IL Interleukin 1 α/β 
ILVs Intraluminal vesicles 
ISEV International Society for Extracellular Vesicles 
MHC class Major histocompatibility complex 
MiRNA Small single-stranded non-coding RNA molecule 
MISEV2018 Minimal information for studies of extracellular vesicles 2018 
MMP Matrix metalloproteases 
mRNA Messenger ribonucleic acid 
MV Microvesicle 
MVBs Multivesicular bodies 
MVP  Major vault protein 
ncRNA  Non-coding RNA 
NECs Normal endothelial cells 
NK Natural killer cells 
NKG2D  Natural Killer Group 2D 
nMase-2 Neutral sphingomyelinase-2 
NOS Endothelial nitric oxide synthase 
NOTCH1 Notch homolog 1 
NTA Nano-particles analysis 
OLP Oral lichen planus 
OSCC Squamous cell carcinoma 
PBS  Phosphate buffered saline 
PCR  Polymerase chain reaction 
PD Parkinson's disease 
PDCD4 Programmed cell death 4 
PDGFD Platelet derived growth factor D 
PFGF Plasmid DNA encoding fibroblast growth factor-2 
PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase             
PI3K  Phosphatidylinositol-3-kinase 
PSMA7 Proteasome subunit alpha type 7 
PTEN The phosphatase and tensin homologue 
PTEN Phosphatase and tensin homologue 
qPCR Quantitative polymerase chain reaction 
RAB Ras-associated binding protein RAB proteins 
Rb Retinoblastoma 
RISC   RNA-induced silencing complex 
RNA Ribonucleic acid 
rRNA  Ribosomal ribonucleic acids 



 
 

XV 
 

SDS  Sodium dodecyl sulfate 
SEC Size exclusion chromatography 
SERPINE1 Serpin peptidase inhibitor type 1 
SEVs Salivary Extracellular vesicles  
SLE Sjögren-Larsson Syndrome 
SNARE Soluble N ethylmaleimide-sensitive attachment protein receptor 
SS Sjogren's syndrome 
STAT3 Signal transducer and activator of transcription 3  
STC2 Stanniocalcin 2 
TBST  Tris-buffered saline supplemented with 0.1% (v/v) Tween-20  
TEM Transmission electron microscopic 
TGF-β Transforming growth factor beta 
TME Tumor microenvironment 
TNF-α Tumour necrosis factor alpha 
TP53 Tumor protein 
TPS Tissue polypeptide antigen 
tRNA  Transfer RNA 
TSG101 Tumor susceptibility gene 101 
UB  UB Unbound 
UC Ultracentrifugation 
UF  Ultrafiltration  
UPA Urokinase plasminogen activator 
VPF Vascular permeability factor 
VRNA Vault RNA 
WB Western blot 
YBX-1 Y-Box Binding Protein 1 
α-amylase Alpha amylase 
α-synOligs α-Synuclein 



 
 

1 
 

 

 

 

 

 

                       

 

                       Chapter one 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

2 
 

1. Introduction 
 
1.1 Head and Neck cancer 

Head and neck cancer (HNC) was the world's seventh most common cancer in 2018 

(Bray et al., 2018). About 12,238 new cases were diagnosed and 4,077 people died from the 

disease in the UK in 2018 (Cancer Research UK, 2018). It encompasses diverse and aggressive 

groups of malignancies (Bray et al., 2018; Ferlay et al., 2019; Ferlay et al., 2020). HNC occurs 

at different anatomical sites, including the oral cavity, oropharynx, hypopharynx, 

nasopharynx, and larynx (Ferlay et al., 2010) (Figure 1.1). Since the early 1990s, the incidence 

of HNC in the United Kingdom has grown by 33% (Cancer Research UK, 2020). Globally, HNC 

accounts for around 2% of cancer-related mortalities every year (Economopoulou and Psyrri, 

2017). 

 
1.1.1 Epidemiology and risk factors of oral cancer  

Oral cancer is a frequent kind of HNC with a global incidence of 400,000 per year (Cai 

et al., 2019). More than 90% of all HNC cases are classified as oral cancer, which affects the 

oral cavity (Perdomo et al., 2016). It comprises tumours of the lips, tongue, floor of the mouth, 

cheeks, sinuses, hard and soft palate, and throat (Johnson et al., 2020). It is commonly 

referred to as oral squamous cell carcinoma (OSCC) because squamous cells account for 90% 

of malignancies in the oral cavity (Montero and Patel, 2015). OSCC is most common among 

men in their fifties and sixties, with tobacco, alcohol, and betel quid use all being associated 

with an elevated risk (Petti, 2009) (Figure 1.1). The human papillomavirus (HPV), which also 

causes cervical cancer, has been related to an increased risk of oropharyngeal squamous cell 

carcinoma (OPSCC)(Thomsen and Kjær, 2019) and is the subject of a vaccination program in 

the United Kingdom (Waller and Wardle, 2008). Despite a range of well-developed therapies 

such as surgery, radiation, and chemotherapy, OSCC has a low overall survival rate (about 50-

60%) due to late diagnosis for most patients (Blatt et al., 2017). 
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Figure 1. 1 Anatomical locations and risk factors of head and neck cancers. The diagram depicts 
common locations of head and neck cancers, which include the lips, hard palate, floor of mouth, 
tongue, retromolar trigone, nasopharynx, oropharynx, soft palate, and posterior pharyngeal wall, as 
well as the nasopharynx, oropharynx. In addition, the graphic depicts the HNSCC risk factors, adapted 
from Johnson et al.(2020). 

 
1.1.2 Development of oral squamous cells carcinoma (OSCC) 

Development of OSCC is regarded as a multistep process requiring the accumulation 

of multiple genetic alterations. When normal oral mucosal keratinocytes are constantly 

subjected to carcinogenic risk factors, genetic instability occurs ( Fukuda et al., 2012; Rivera, 

2015), including mutations of TP53, Notch homolog 1 (NOTCH1), cyclin-dependent kinase 

inhibitor 2a (CDKN2A), epidermal growth factor receptor (EGFR), Cyclin D1, signal transducer 

and activator of transcription 3 (STAT3), retinoblastoma (Rb), and Wnt/-catenin pathway 

components, among others (Curry et al., 2014) (Figure 1.2). Oral carcinogenesis is most likely 

initiated by the transformation of a small number of normal keratinocytes (Rivera, 2015). This 

transformation can be expressed via cytogenetic changes and epi-genetic processes that 

modify the progression of  the  cell  cycle,  DNA  repair  mechanisms,  cell  differentiation  and  

apoptosis,  which  may  be  caused by random mutation, by exposure to a variety  of  biological  

factors,  carcinogens  or  errors in the DNA repair process (Feller et al., 2013), resulting in 

susceptible to malignant neoplastic alterations (Feller et al., 2013). As a result, selection 
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forces on the oral mucosa microenvironment may work on the diverse clonal population, 

permitting development of those cells with advantages in adaptation, proliferation and 

survival over their normal counterparts (Rivera, 2015). 

  

 
 
Figure 1. 2 OSCC progression.  The diagram depicts changes in oral keratinocytes and the development 
of OSCC. Bio-Render was utilized to create this modified diagram from (Rivera, 2015). 
 
1.1.3 Features of oral squamous cell carcinoma 

Oral cancer can manifest itself in a variety of ways, just like any other tumour, and can 

occur in any region of the mouth, tongue, or lips. Oral cancer might manifest itself as a 

painless mouth ulcer that does not heal, or as a tumour with uneven edges that are stiff to 

the touch (Morfit, 1956). A white or red spot in the mouth might potentially be cancerous. 

These areas result in the formation of a premalignant lesion or dysplasia, which is classified 

as a developmental defect or an epithelial growth and differentiation aberration. They might 

be the earliest sign of an approaching malignancy; the most prevalent oral premalignant 

lesions are leucoplakia and erythroplakia. Leucoplakia is a disorder characterised by the 

formation of one or more white patches inside the mouth and differs from other causes of 

white spots, such as thrush or lichen planus, in that it can progress to oral cancer (Reibel, 

2003). Erythroplakia is a red patch or cluster of red spots that appears on the mucous 

membrane lining the mouth for no known reason (Reibel, 2003). OSCC has many reactive 
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epithelial alterations such as hyperplasia, hyperkeratosis, and acanthosis that can be seen 

under the microscope. Increase in nuclear size, hyperchromatism, pleomorphism, aberrant 

mitotic figures, or enhanced mitosis are various combinations and degrees of atypia seen in 

epithelial dysplasia. When changes occur in the basal or parabasal keratinocytes, they are 

referred to as mild dysplasia; when changes occur in the intermediate layer they are referred 

to as moderate dysplasia and when abnormalities extend to the surface layer they are 

referred to as severe dysplasia. When there is total atypia (from the base to the surface), the 

phrase carcinoma in situ is used (Figure 1.3). (Neville et al., 2009).  

    
Figure 1. 3 Oral carcinogenesis. The diagram depicts normal oral mucosa, which consist of stratified 
epithelium and a basal cell layer that connects epithelial cells to connective vascular tissue. 
Furthermore, the diagram demonstrates that cells at the lowest layers undergo morphological 
changes in shape and size, which can extend throughout the full thickness of the epithelium. Biorender 
was used to create this image, which is adapted from (Reyes et al., 2020). 

 
1.1.4 Tumour microenvironment in oral squamous cell carcinoma 

The tumour microenvironment (TME) is the environment around a tumour, including 

the surrounding cancer-associated fibroblasts, macrophages, neutrophils, regulatory T cells, 

pericytes, natural killer cells and blood vessels, all of these cells embedded in altered the 

extracellular matrix (ECM) and signalling molecules, all of which can differ according to the 

type, stage, and location of the cancer (Alfarouk et al., 2011; Joyce and Fearon, 2015). The 

tumour and surrounding microenvironment are closely related and they interact constantly 

(Figure 1.4). 
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Recently, cancer research has focused on the TME as a complex and dynamic entity of 

cells that promotes the development of tumours by activating cell growth/migration and 

invasion (Wang et al., 2014b).  The oral mucosa is composed of many types of cells. Each one 

plays a distinctive role that is essential to the function of the entire organ, which can be 

corrupted during carcinogenesis (Collins and Dawes, 1987). There are many reasons why 

cancer cells recruit healthy cells and these reasons change as cancer progresses (Wang et al., 

2014a). Some examples are discussed below. 

 
1.1.4.1 Oral epithelium  

Oral epithelium is a stratified squamous epithelium that consists in various layers: 

basal, spinous, granular and corneal layers for the keratinized area; basal, spinous, 

intermediate and superficial layers in the non-keratinized areas. Which  direct contact with 

an underlying, dense connective tissue (lamina propria) containing minor salivary glands, 

structural fiber, blood vessels, fibroblasts along with other cell types (Collins et al., 1987). 

Normal oral epithelial cells are which oral cancer will arise, the majority of them have too 

short a life span (14-24 days) to accumulate the necessary genetic changes to develop into a 

tumour (Squier et al., 2001). An epithelial layer is constantly being replaced with cells dividing 

and becoming progressively more differentiated as they rise up the epithelial layers and 

acting as a source of vital agents for the rapidly proliferating cancer cells (Icard et al., 2014), 

which is characterised by the uncontrolled proliferation of cells, migration and eventual 

invasion through the epithelial basement membrane. In addition, the progression of cancer 

largely depends on the interactions between cancer cells and the tumour microenvironment 

(TME).  

 

1.1.4.2 Immune cells 

The spread of OSCC is associated with immune cell infiltration, for instance, 

lymphocytes, macrophages, neutrophils, and natural killer (NK) cells, which cause 

inflammation (Choi et al., 2017). T lymphocytes are found in the microenvironment's edges 

and in lymph nodes (Pereira et al., 2015). A study considered the importance of the total 

number of tumour-infiltrating lymphocytes as a diagnostic indicator for head and neck 

squamous cell carcinoma (HNSCC) patients, including both CD8+ cytotoxic T cells and CD4+ 
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helper T cells, which were examined and connected with clinicopathologic aspects of HNSCC 

patients (Peltanova et al., 2019). Furthermore, CD4+ helper T cells play a role in helping CD8+ 

T lymphocytes and enhance the anticancer impact. However, due to their 

immunosuppressive properties and the ability to impede the activities of cytotoxic CD8+ T 

cells, they are also efficient in facilitating tumour growth (Ostroumov et al., 2018). In 2008, 

Bose et al. found that patients with OSCC had lower levels of the T-cell cytotoxic molecules 

perforin and granzyme B than the control group, which correlates with lower T-cell killing of 

tumour cells (Bose et al., 2008). 

In HNSCC, macrophage infiltration is a key contributor to inflammation and it is linked 

to a poor prognosis. Tumour associated macrophages (TAMs) are classified as 

proinflammatory (M1) or immune suppressive (M2) cells (Kumar et al., 2019). They may 

produce a wide range of molecules, including growth factors, cytokines, proteases, and 

chemokines, to aid in angiogenesis, metastasis, and invasion, as well as immunosuppression 

(Kumar et al., 2019). For example, in comparison to healthy controls, M2 macrophages 

expressing TGF-β and IL-10 were shown to be more prevalent in OSCC (Mori et al., 2011; 

Peltanova et al., 2019). They also secreted growth factors including VEGF, PDGF, TGF-β,  which 

can increase angiogenesis in squamous cell carcinomas of the oesophagus, according to other 

research (Marcus et al., 2004). 

Natural killer (NK) cells are essential in cancer cell identification and killing (Choi et al., 

2017). The presence of NK cells in HNSCC patients was linked to a better prognosis (Agarwal 

et al., 2016; Wagner et al., 2016). However, it was also demonstrated that there were 

considerably fewer demethylated copies of NKp46 found in the controls blood of those with 

head and neck cancer than in control blood, which indicated that there were fewer NK cells 

overall in those cases (Accomando et al., 2012). 

Tumour-associated neutrophils (TANs) are characterised by elevated production of 

angiogenesis and invasion-promoting proteins VEGF, MMP-9 and CXCR4, as well as the 

absence of IFN- γ (Jablonska et al., 2010). Neutrophil infiltration was also linked to a higher 

tumour stage, recurrence, and lymph node metastases (Wang et al., 2014a). Trellakis et al., 

(2011) looked at how neutrophils interact with oral cancer cells. They discovered that oral 

cancer-conditioned media decreased neutrophil apoptosis, enhanced neutrophil chemotaxis, 

and stimulated neutrophil MMP-9 and CCL4 production (Trellakis et al., 2011). 
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1.1.4.3 Fibroblasts 

Fibroblasts are the most predominant cell type in the TME, and they produce the 

majority of extracellular components, such as extracellular matrix (ECM) and soluble factors 

(Choi et al., 2017). A switch from quiescent fibroblasts to cancer-associated fibroblasts (CAFs) 

is driven by the epithelial cells producing protein factors such as transforming growth factor 

beta (TGF-β), tumour necrosis factor alpha (TNF-α) and  interleukin (IL)-1 α/β (Choi et al., 

2017). A higher number of CAFs inside the main tumour has been linked to a poorer prognosis 

in HNSCC patients, and the interaction of CAFs with cancer cells has been proposed as the 

major mechanism promoting tumour growth. They are extremely effective at promoting 

carcinogenesis, tumour development, and metastasis (Knops et al., 2020). 

Recent research discovered several proteins that were secreted differently in CAF-

conditioned media than in normal fibroblasts, which include EGF-containing platelet-derived 

growth factor D (PDGFD), fibulin-like extracellular matrix protein 1 (EFEMP1), and insulin-like 

growth factor binding proteins 5/7 (IBP5/IBP7), which might be necessary to maintain the 

cancer stem cell phenotype in HNSCC (Álvarez-Teijeiro et al., 2018). Furthermore, as 

compared to normal fibroblasts, HNSCC-derived CAFs exhibit higher amounts of TGF- β 

(Rosenthal et al., 2004), HGF (Knowles et al., 2009), and MMPs (Johansson et al., 2012). 

Takahashi et al. (2015) discovered that CAFs inhibited T cell proliferation, encouraged 

T cell death, and rapidly converted PBMCs into regulatory T cell as compared to normal 

fibroblasts, showing that HNSCC-derived CAFs play an important role in immunosuppression. 

CAFs have greater amounts of IL-6, TGFB1, CXCL8, VEGFA, and TNF than normal fibroblasts, 

according to their findings (Takahashi et al., 2015). In addition, multiple studies have 

demonstrated that OSCC cells release IL-1, which causes CAFs to produce TGF and HGF, 

enhancing cancer cell invasion in vitro (Hasina et al., 1999; Hwang et al., 2012). 

 

1.1.4.4 Endothelial cells 

Blood vessels are the main source of tumour nutrients and oxygen and remove waste 

enabling survival and proliferation (Fitzgerald et al., 2018). Tumour endothelial cells have 

distinct phenotypic and functional features as compared to normal endothelial cells in terms 

of metabolism, genetics, and transcriptomic profile (Dudley, 2012). Furthermore, tumour 

endothelial cells play diverse functional roles, and they are important for inducing tumour 

angiogenesis (Dudley, 2012). Hypoxia-induced factor-1α (HIF-1α) is the main factor that 
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initiates sprouting (Matsuda et al., 2010). They also have high levels of proangiogenic factors, 

including epidermal growth factor (EGF) and platelet-derived growth factor (Tonini et al., 

2003; Lamalice et al., 2007). 

Endothelial cells have been associated with tumour metastasis in several studies, by 

allowing invasive cancer cells to translocate into blood vessel lumens via intravasation. This 

process is a critical step in cancer metastasis (van Zijl et al., 2011). A study in oral cancer 

revealed that endothelial cells produced proteins that contributed to a distinct aspect of 

metastasis, such as interleukin 6 (IL6), which generates a chemotactic gradient allowing 

cancer cells to travel towards arteries (Kim et al., 2017). 

The tumour-associated endothelium has been discovered to act as an immunological 

barrier to T-cells, reducing the efficacy of immunotherapies (Georganaki et al., 2018). 

Endothelin B receptor overexpression has been discovered in tumour-associated endothelial 

cells, which reduces T-cell adhesion and tumour targeting when activated by Endothelin-1 

(Georganaki et al., 2018). In a study of oral cancer patients, the release of VEGF caused 

endothelial cells to downregulate the CD8+ T-cell cytotoxic mediators perforin and granzyme 

B, which might provide tumours with a survival advantage by reducing the T cells' capacity to 

kill tumour cells (Mulligan et al., 2010). 

 

1.1.4.5 Extracellular matrix  

The extracellular matrix (ECM) is a network of macromolecules that exists outside cells 

and includes glycoproteins, fibrous structural proteins and growth factors, which generate a 

structure that gives physical and biochemical support to other surrounding cells (Peltanova 

et al., 2019). ECM is commonly unregulated and disordered in cancer, which directly 

promotes malignant cell transformation (Provenzano et al., 2006; Levental et al., 2009). This 

occurs when cancer cells develop large numbers of matrix metalloproteinases, which are 

capable of degrading basement membrane ECM proteins ( Suzuki et al., 1997; Tallant et al., 

2010). Harada et al. (1994) discovered that the decreased expression of essential ECM 

proteins such as vitronectin, laminin, and collagen type IV, as well as the increased production 

of tenascin and fibronectin, were associated with the invasive nature of primary OSCC 

tumours (Harada et al., 1994). 
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Figure 1. 4 The microenvironment of the tumour. The cancer cells are surrounded by an abundant 
stroma that aggregates during tumorigenesis; it involves cells such as fibroblasts, endothelial cells of 
blood vessels and different categories of immune cells such as macrophages, lymphocytes, and 
neutrophils. Created using BioRender and adapted and modified from (Ho et al., 2020).  

 

1.2 Extracellular vesicles  

It has been discovered that the "mutual dialogue" among cells in the TME mediates 

tumour growth, invasion, and metastatic capacity. Extracellular vesicles (EVs) play a crucial 

part in this process by transporting chemicals and information among cells in the TME. EVs 

were first viewed as garbage dumpsters, but were later described as  signal boxes capable of 

redirecting the purpose of a recipient cell, which drew the attention of numerous researchers 

(Xie et al., 2019). 

1.2.1 Discovering EVs 

EVs were first observed in different contexts without realizing that they actually 

represent a universal form of intercellular communication. They were originally detected in 

normal plasma as platelet-derived particles before being termed "platelet dust" (Chargaff 

and West, 1946; Wolf, 1967). The release of plasma membrane vesicles, the discovery of 
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biological vesicles in seminal fluid, as well as the release of virus-like particles in mammalian 

cultured cells are all described in publications from the 1970s and 1980s (Benz Jr and Moses 

, 1974; De Broe et al., 1975; Dalton, 1975). 

Two groups conducted ultrastructural analyses of transferrin trafficking in 

reticulocytes in 1983. The researchers discovered that tagged transferrin is taken up by 

recipient cells via receptor-mediated endocytosis. MVBs or multivesicular endosomes are 

formed during the production of late endosomes of intraluminal vesicles. MVB were found, 

unexpectedly, to have the capacity to fuse with plasma cell surfaces and discharge into the 

extracellular space, rather than fusing with lysosomes to break down intralumenal vesicles 

(ILVs) and their cargo (Harding et al., 1983; Pan and Johnstone, 1983). 

In the late 1960s, the existence of vesicles around cells in mammalian tissues or fluids 

was first recognised (Wolf, 1967; Anderson, 1969). However, research published in the late 

1990s suggested that EVs may be used for intercellular communication, particularly in 

immunological responses and cancer (Raposo et al., 1996a; Wolfers et al., 2001; Reibel, 2003). 

In 1987, Johnstone et al. identified exosomes as the vesicles produced by MVB. The first 

investigation into the functional features of exosomes in intercellular communication was 

published in 1996. According to Raposo and colleagues, MHC class II-carrying vesicles in B 

lymphoblastic cells could elicit antigen-specific MHC class II restricted T-cell activation 

(Raposo et al., 1996a). Following that, several investigations discovered functional 

significance in tumour and immune biology. Later studies revealed that EVs carried multiple 

RNA species which could be transferred between cells and impact gene expression in the 

recipient cell (Ratajczak et al., 2006a; Valadi et al., 2007c). A few years later, it was shown that 

most cancer cells produced EVs in greater quantities than normal cells (Taylor and Gercel-

Taylor, 2008; Logozzi et al., 2009). 

 

1.2.2 Type and nomenclature of EVs 

In addition to releasing vesicles through the endocytic pathway (exosomes), cells can 

also shed vesicles directly from their surface (microvesicles). Vesicles can be released by 

apoptotic cells (Kim et al., 2003). The nomenclature of EVs is complex; some researchers 

named EVs depending on their cellular or tissue origin. For instance, vesicles originating from 

cardiomyocytes are called cardiosomes (Chaturvedi et al., 2015); protostomes are released 
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from prostate cells (Vlaeminck-Guillem, 2018), EVs with immunogenic properties are named 

as tolerosomes (Minciacchi et al., 2015). Other studies have used terminologies depending 

on the physical characteristics of EVs including size and density together with the biological 

composition CD81/CD63, Annexin A5-stained EVs, or they named them according to the 

conditions of the cell origin; for example, hypoxic EVs, podocyte EVs, apoptotic bodies, 

instead of terms such as microvesicles and exosomes (Théry et al., 2018b). 

Recently, the International Society for Extracellular Vesicles (ISEV) has supported the 

study of EV nomenclature (Gould and Raposo, 2013). Exosomes have a diameter of (~30–150) 

nm while microvesicles have a diameter of (~100–1000) nm, according to the literature. 

Because of their overlapping sizes and densities, exosomes and microvesicles, together with 

other smaller vesicle types, cannot be distinguished experimentally. As a result, rather than 

using the terms exosomes or microvesicles, the majority of ISEV members prefer to refer to 

vesicles in an experimental environment as EVs (Raposo et al., 1996a; Gould and Raposo, 

2013; Théry et al., 2018c). 

 

1.2.3 Biogenesis and characterization of EVs 

EV biogenesis research is critical for understanding how a cell creates vesicles. EVs are 

typically characterised as lipid bilayer-enclosed packets of biomolecules liberated into their 

neighbouring environment by many types of cells. The term EV is a generic name that 

encompasses particles such as exosomes, microvesicles, and apoptotic bodies (Doyle and 

Wang, 2019). 

 

1.2.3.1 Exosomes 

Exosomes are the smallest EVs of the three main subgroups, with dimensions ranging 

from 30 to 150 nm. They are produced as a result of the intraluminal budding of the 

endosomal compartment, resulting in intraluminal vesicles (ILVs) contained in multivesicular 

bodies. The formation of ILVs signals marks the start of the exosome biogenesis route. The 

endosomal sorting complexes required for transport (ESCRT) machinery, which is composed 

of a series of protein complexes such  (ESCRT-0, -I, -II, and -III), is the primary mechanism of 

ILV synthesis (Schuh and Audhya, 2014). 
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However, lipid rafts and tetraspanin microdomains can also govern ILV invagination 

and exosome secretion in an ESCRT-independent way (Garcia et al., 2015; Van Niel et al., 

2018; Zhang et al., 2019b). When multivesicular bodies merge with the plasma membrane of 

the original cell, ILVs are discharged into the extracellular milieu as exosomes. Alternatively, 

these components are trafficked to lysosomes for degradation (Zhang et al., 2019b). (Figure 

1.5) 

Several ways for their release have been proposed, including Rab GTPases (Rab27, 

Rab11/35), tetraspanins, and the SNARE (solubleN-ethylmaleimide-sensitive attachment 

protein receptor) complex (Kowal et al., 2014). Exosomes exhibit an artefactual cup shaped 

or biconcave morphology by transmission electron microscopy (Zhang et al., 2019b). 

Typically, the density of exosomes ranges from 1.13 g/mL up to 1.19 g/ml on sucrose 

gradients. Exosomes are sedimented using high-speed centrifugation at 100,000 x g (Théry et 

al., 2006).  

Exomeres, a novel particle type found recently, vary in size from 30 to 50 nm and have 

been shown to contaminate exosome preparations (Zhang et al., 2019b) (Figure 1.6). 

 

1.2.3.2 Microvesicles 

Microvesicles, which vary in size from 100 to 1000 nm, are a much more diverse vesicle 

population formed by outward budding of the plasma membrane, which is why they are also 

known as shedding vesicles or ectosomes (Cocucci et al., 2009) and microparticles (El 

Andaloussi et al., 2013). Many enzymes, as well as mitochondrial or calcium signalling, may 

be involved in outward budding in response to stimuli. Cytoskeleton remodelling and changes 

in phospholipid symmetry occur during the budding process. These mechanisms can vary 

greatly amongst cell types (Curtis et al., 2013; Larson et al., 2014). Modifying membrane 

asymmetry in this way stimulates the transfer of amino phospholipids, particularly 

phosphatidylserine, to the plasma membrane's outer layer. Microvesicle generation appears 

to be restricted to the membrane's lipid-rich microdomains, such as lipid rafts and caveolae 

domains ( Del Conde et al., 2005; Morel et al., 2009). Interestingly, alterations in the plasma 

membrane have been observed to be independent of asymmetry loss in multiple 

investigations. The ESCRT pathway or tetraspanin microdomains are involved in these 

activities (Pieterse and van der Vlag, 2014; Kalra et al., 2016).  
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Multiple complicated pathways are certainly implicated, according to the limited 

research that has, to date, investigated the biological processes of microvesicle synthesis. 

Depending on the initial stimulus, these include Rho associated kinase I and II and myosin 

light chain, nuclear factor-B or p38 mitogen-activated protein kinase, tumour necrosis factor-

related apoptosis-inducing ligand (Dignat-George and Boulanger, 2011). 

The density of microvesicles is unknown (Castellana et al., 2009); they sediment at 

lower speeds, usually at 10,000 x g (Heijnen et al., 1999). By using transmission electron 

microscopy, one can determine that the appearance of microvesicles is heterogeneous in size 

and morphology (Heijnen et al., 1999; Antonyak et al., 2011).  

 

1.2.3.3 Apoptotic bodies 

Apoptotic bodies are EVs formed by caspase-mediated cleavage and subsequent 

activation of Rho-associated kinase I during the last stages of apoptosis (El Andaloussi et al., 

2013; Kalra et al., 2016). They differ from exosomes and microvesicles in that they have an 

externalised phosphatidylserine and a permeable membrane, and their diameters range from 

50 nm up to 5000 nm (Wickman et al., 2012). According to several investigations, apoptotic 

bodies include a wide range of biological elements, including histones, DNA, Annexin V, 

membrane/cytosolic components and cellular organelles (Fadeel and Orrenius, 2005). Little 

is understood regarding their molecular composition, yet only a few recent studies have 

attempted to characterise them proteomically. Under electron microscopy, the appearance 

of these vesicles is diverse (Théry et al., 2001; Hristov et al., 2004).  

 
1.2.3.4 Other types of EVs 

Apoptotic cells produce very large EVs and neurons, and other cells may create 

micron-sized EVs. When formed by tumour cells, these particles are known as large 

oncosomes and can measure up to 20 microns in diameter. They have a functioning 

cytoskeleton and energy sources (mitochondria), and they might be motile, capable of 

migrating (Trams et al., 1981; Morello et al., 2013). 

When neurons in the model organism C. elegans were treated with a dye, it was seen 

that the dye was sequestered inside a section of the cell and then liberated in a huge EV 

termed the exopher, which shares similarities with large oncosomes except they are 

produced by non-cancerous cells (Meehan et al., 2016).  
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Figure 1. 5 Types of extracellular vesicle and their biogenesis; Exosomes, microvesicles, and apoptotic 
bodies are illustrated in this diagram, as well as the biogenesis of exosomes, which are generated as 
ILVs by budding into early endosomes and MVBs. The destination of MVBs can be either fusion with 
lysosomes or fusion with the plasma membrane, as shown in the diagram above. In the form of 
apoptotic bodies and microvesicles, some bud straight from the plasma membrane. Biorender was 
used to make this image, which was adapted from (Kowal et al., 2014). 

 
1.2.4 Composition of Extracellular vesicles 

During the biogenesis of EVs, proteins and nucleic acids are captured in the 

invaginating membrane and sorted into these vesicles (Théry et al., 2002; Johnstone, 2006). 

Thus, EVs are predominantly made up of lipids, proteins, and nucleic acids, which are all 

functional when transported into recipient cells; these can be in close proximity to the donor 

cell or at distant regions in the body via biofluids (Zomer et al., 2016). 

 

1.2.4.1 Nucleic acid cargo 

EVs are thought to include a substantial amount of nucleic acid; including ribosomal 

and transfer RNA, messenger RNA, long noncoding RNA, picoRNA, vaultRNA, microRNA, and 

Y-RNA (Riazifar et al., 2017). Exosome RNA (ExRNA) cargo may be able to influence the target 
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cell processes in a variety of ways, including transcriptional and epigenetic post-

transcriptional regulation (Riazifar et al., 2017).  

ExRNA has been utilised in studies as a more sensitive and specific biomarker that 

better reflects cell dynamics than DNA (Chiabotto et al., 2019). However, because of their 

variability, the insufficient description of their many targets and activities, and their stability 

in diverse bodily fluids, there are still several limits to the use of exRNA as biomarkers 

(Chiabotto et al., 2019). 

One study used opposing series of centrifugation procedures to isolate the various 

types of vesicles by size to detect the alterations in the RNA profiles of the subclasses. The 

presence of large quantities of ribosomal RNA in apoptotic bodies was verified, but exosomes 

had only modest amounts and microvesicles had essentially no rRNA  (Crescitelli et al., 2013), 

which hinted at a selective packing mechanism. 

 

1.2.4.1.1 MicoRNAs (miRNAs)  

MicroRNAs (miRNAs) are endogenous, small non coding RNA (20–21nt) in length and   

One class of frequently detected exRNA is mature miRNA (sometimes referred to as exomiRs) 

(Yáñez-Mó et al., 2015). MiRNAs are transcript from  intron segment of gene by transcriptase 

enzyme to pri-miRNAs Pri-miRNA are often several kilobases long and form stem loop/hairpin 

structures by folding to match base pairs along the strand , which are subsequently cleaved 

into pre-miRNAs by drosh, Primary processing is carried out by Drosha and other proteins 

cleaving at the base of the structures, producing the 60-70 nucleotide pre-miRNA (Burke et 

al.,, 2014). Exportin- 5 helps transport pre-miRNA out to the cytoplasm through nuclear pores 

where it is further processed. Pre-miRNA undergoes further cleavage by Dicer proteins before 

the 21-25 nt double strand is anchored into and Argonaute protein complexes and the strands 

are separated (Yi et al., 2003). MiRNAs typically bind to the 3ʹ UTRs of target mRNAs, resulting 

in mRNA degradation and/or translational repression. MiRNAs may function as 

either oncogenes or tumor suppressors under certain conditions including amplification or 

deletion of miRNA genes, abnormal transcriptional control of miRNAs, dysregulated 

epigenetic changes and defects in the miRNA biogenesis machinery (Peng et al., 2016). 

MiRNAs are involved in the control of gene expression after transcription and are commonly 

dysregulated in the pathogenesis of numerous diseases, including cancer (Kosaka et al., 2013). 

The packaging of nucleic acids into vesicles would require a distinctive mechanism (Bhome et 
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al., 2018). For example, it has been revealed that RNA-binding proteins such as ribonuclear 

protein, hnRNPA2B1, might identify a sequence motif and might be accountable for sorting 

miRNAs into vesicles once sumoylated (Villarroya-Beltri et al., 2013). Y-Box Binding Protein 1 

(YBX-1) and major vault protein (MVP) have also been implicated in packaging miRNA into 

exosomes (Lin et al., 2019; Teng et al., 2017). Furthermore, a link between MVB and RISC has 

been described raising the possibility that these proteins are involved in exosomal miRNA 

sorting (Gibbings et al., 2009). Using the neutral sphingomyelinase-2 (nMase-2) inhibitor 

(GW4869), Kosaka and colleagues were the first to confirm that ceramide altered the content 

of exosomal miRNA (Kosaka et al., 2010). 

  It has been postulated that RNA that is intended for vesicles and released from the 

cell has a signalling pattern; this hypothesis has been verified for miRNA cargo. The 

researchers employed microarray analysis to recognise miRNAs increased in vesicles (rather 

than the entire cell) and compared sequence alignments to detect genetic markers (Bhome 

et al., 2018).  

Koppers-Lalic et al. (2014) investigated the function of non-template terminal 

nucleotide additions at the 3ʹ end in exomiR sorting in B cells. According to RNA sequencing, 

ExomiRs were considerably more likely to be uridinylated at their 3ʹ end, while cellular 

miRNAs were more likely to be adenylated. The results were matched in exosomes from 

healthy urine, indicating that this process is not confined to B cells (Koppers-Lalic et al., 2014).  

 
2.4.1.2 DNA content of EVs 

In several investigations, double-stranded genomic DNA (gDNA) has been found in 

various forms of EVs (Thakur et al., 2014). It is possible that various EV types package distinct 

portions of DNA. EVs can transport oncogene amplifications, mitochondrial DNA (mtDNA), 

and single-stranded DNA (Guescini et al., 2010; Balaj et al., 2011; Thakur et al., 2014; Kahlert 

et al., 2014). MtDNA migration may occur via EVs, and so EVs may constitute an alternate 

pathway for mutated mtDNA to infiltrate other cells, favouring the spread of different 

diseases (Guescini et al., 2010). Tumour-EVs include DNA that indicates the tumour’s genetic 

status, such as c-Myc gene amplification (Balaj et al., 2011). In EVs, DNA varying in length from 

100 base pairs (bp) to 2.5 kilobase pairs (kB) can be found in EVs (Thakur et al., 2014).  EV-

carried DNA could be used to identify mutations in primary tumour cells and hence could be 
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a translational biomarker. However, the physiological relevance of the DNA cargo in EVs is 

unclear at this time (Thakur et al., 2014). 

1.2.4.2 Protein cargo 

As ESCRT proteins govern exosomal production and MVB transport, these proteins 

and their accessory proteins (Alix, TSG101, HSP90 and heat-shock proteins HSC70) are 

predicted to be present in exosomes regardless of the cell type from which they originate 

(Doyle and Wang, 2019). As a result, this group of proteins is frequently referred to as 

exosomal marker proteins. Membrane proteins that create microdomains in the plasma 

membrane or endosomes are commonly found on EVs (Hemler, 2003). Tetraspanins are a 

class of more than 30 proteins with four transmembrane domains that are necessary for ILV 

synthesis and subsequent EV release (Van Niel et al., 2011). In B cell exosomes, tetraspanins 

such as CD63, CD82, CD81, and CD9 have been described; they may be enriched > 100-fold 

compared to the transferrin receptor, which may be considered a marker for both the plasma 

membrane and early endosomes in this cell type (Escola et al., 1998). Tetraspanins have been 

found in EVs obtained from a variety of sources and can be regarded as common EV markers 

(Andreu and Yáñez-Mó, 2014; Jankovičová et al., 2020). 

Some proteins, such as sumoylated heterogeneous nuclear ribonuclear protein A2B1 

(Villarroya-Beltri et al., 2013), annexin a2, and YBX1, have been proposed to have a function 

in RNA packing (Shurtleff et al., 2016). However, the significance of these and other elements 

in defining EV content remains to be fully elucidated. Protein cargos delivered by EVs act as 

regulators in recipient cells, triggering impacts on cell shape, downstream signalling 

pathways, or other cancer features (Jabalee et al., 2018).  

Due to a variety of loaded components, the function and destination of EVs vary. As a 

result, there are many regulatory systems for loading protein into EVs. Modifications at the 

plasma membrane start the production of all vesicles. Lipid rafts may have a role in the 

organisation of those areas, as well as the membrane proteins that reside in them. Stomatin, 

Lyn, GM1, and flotillin-1 are connected to lipid raft domains and have been found in vesicles 

(de Gassart et al., 2003). The same finding demonstrated that Lyn in vesicles is controlled after 

sorting via caspase-3. The fact that post-translational modification happens in vesicles, which 

are associated with many different kinds of protein, is convincing evidence for the existence 
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of a purposeful sorting process. It has been proposed, for example, that whole rafts are 

incorporated into vesicles containing their attached proteins (de Gassart et al., 2003). 

Cells use ubiquitination to transport proteins to breakdown pathways, usually by 

packing them into lysosome-associated vesicles with the aid of the ESCRT complexes (Zhang 

et al., 2019b). Additional research has revealed that the ubiquitin-dependent pathway is used 

to degrade receptors in immature dendritic cells. Following cell activation, the ubiquitin-

independent technique is used, and the cells release vesicles carrying the MHC-II complex, 

which has the ability to communicate with T cells (Buschow et al., 2009). 

Phosphorylation is involved in selecting proteins that are destined for vesicles. The 

Tau protein in Alzheimer disease is abnormally phosphorylated; it is added to the vesicles, 

allowing it to disseminate (Saman et al., 2012). This suggests that there are other components 

to the system, most likely proteins that bind specifically to the improperly phosphorylated 

Tau protein and guide it into place inside the EVs. 

The common EV markers CD81 and CD63 have been co-localized on membranes with 

N linked glycans; crucial for the association of CD81 with vesicles (Liang et al., 2014). The 

concept that glycans designate distinct membrane areas where EVs form is consistent with 

prior studies on lipid rafts. Proteins are subsequently glycosylated or otherwise changed to 

target these domains; they are either integrated into or connected to the membrane before 

inward curvature. (Liang et al., 2014) 
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Figure 1. 6 The structure and content of vesicles. The vesicles consist of a phospholipid bilayer and 
contain proteins, nucleic acids, and lipids. The diagram was created using BioRender as adapted and 
modified by Fujita et al. (2015). 

 

1.2.5 Uptake of EVs by recipient cells (cell-cell communication) 

Several well-established processes exist for internalising materials from extracellular 

locations via a cell's plasma membrane. Surprisingly, nearly all of these appear to be used in 

the widespread uptake of EVs (Mulcahy et al., 2014). Clathrin-dependent endocytosis as well 

as clathrin-independent mechanisms which include caveolin-mediated uptake and lipid raft-

mediated internalisation, macropinocytosis, and phagocytosis are examples of EV uptake 

techniques (Figure 1.7) (Mulcahy et al., 2014). 

 

1.2.5.1 Clathrin-dependent endocytosis 

Clathrin-dependent endocytosis is dependent on the formation of clathrin-coated 

vesicles, which requires the involvement of a number of transmembrane receptors and their 

ligands (Kirchhausen, 2000). Clathrin is a protein that takes the form of a triskelion with three 

heavy chains and three light chains. These chains join to create a coated pit, which deforms 

the membrane, causing this to collapse into a vesicular bud, mature, and pinch off. The next 

intracellular vesicle is uncoated by clathrin; it subsequently merges with the endosome, 
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where it discharges its contents (Royle, 2006). It has been shown that reducing dynamin2 

(Vallee et al., 1993) or blocking this process with chlorpromazine (Escrevente et al., 2011) 

limits EV uptake. 

 

1.2.5.2 Clatherin-independent pathways 

Caveolae are microscopic cave-like invaginations in the plasma membrane that can be 

absorbed into the cell (Doherty and McMahon, 2009). Caveolin-1 is a necessary protein; it is 

required for the formation of caveolae and may be seen clustered within membrane 

invaginations (Doherty and McMahon, 2009).  Caveolae are glycolipid raft subdomains of the 

plasma membrane that are high in cholesterol, sphingolipids, and caveolins. Caveolin 

oligomerization (assisted by caveolin oligomerization domains) contributes to the formation 

of caveolin-rich rafts in the cell membrane (Smart et al., 1999). In one experiment (Nanbo et 

al., 2013), silencing this protein was shown to reduce EV absorption, whereas in another, it 

was found to promote EV uptake (Svensson et al., 2013). The causes of this conflict remain 

unknown; although it has been suggested that this system has some flexibility, it has also been 

suggested that caveolin-1 silencing produces changes in the membrane composition, perhaps 

lowering its rigidity, which makes EV uptake more efficient in some cells.  

Macropinocytosis is another endocytic mechanism, but it is somewhat distinct. The 

membrane protrudes from the cell surface in huge characteristic protrusions; it can encircle 

a region of extracellular environment that is later internalised by fusing with another 

protrusion or directly fusing with the plasma membrane (Swanson, 2008). 

Researchers blocked Na+/H+ exchange or used small molecule antagonists of the rac-related 

C3 botulinum toxin substrate (rac-1) to disrupt this pathway, which both reduced EV uptake 

by microglia (Fitzner et al., 2011). In other studies, however, some inhibitors have had no 

effect on EV uptake (Feng et al., 2010; Christianson et al., 2013; Nanbo et al., 2013). 

Phagocytosis is a form of endocytosis that occurs when macrophages internalise large 

items such as bacteria. Studies using EVs produced from leukaemia cells have shown that they 

could only be internalised by macrophages and not by other cells, indicating that phagocytosis 

is involved (Feng et al., 2010). Additional studies, employing PI3K inhibitors to limit 

phagocytosis and EVs dyed with the pH sensitive dye pHrodo, that might be found within 
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acidic phagosomes, confirm a phagocytic function in EV absorption (Feng et al., 2010; 

Montecalvo et al., 2012). 

Lipid rafts are microdomains on the cell surface that have modified phospholipid 

composition and are abundant in receptor proteins and sphingolipids such as sphingomyelin. 

They represent another alternative uptake strategy. Exosomal ligands that bind to specific 

receptors on the cellular plasma membrane, as well as the presence of cholesterol- and 

sphingolipid-rich microdomains on the cell membrane, are both essential for raft-mediated 

endocytosis (Calder and Yaqoob, 2007). As previously proven, clathrin-independent 

endocytosis is significantly reliant on cholesterol, which is abundant in lipid rafts. These rafts 

can also be present in caveolin-1 invaginations or in planar sections of the cellular membranes 

designated by flotillins, a protein family that mediates endocytosis without the need for 

clathrin or caveolin (Glebov et al., 2006; Otto and Nichols, 2011). 

Many investigations have been carried out to guarantee that lipid rafts are blocked in 

EV uptake. In one of these experiments, EV uptake in dendritic cells was reduced when EV-

producing cells were pre-treated using fumonisin B1 and N-butyldeoxynojirimycin 

hydrochloride, both of which reduce glycosphingolipid composition in the plasma membrane 

by blocking its creation (Wang et al., 1991; Platt et al., 1994; Izquierdo-Useros et al., 2009). 

This demonstrates that EV sphingolipids play an important role in binding and endocytosis, 

most likely through cholesterol-rich microdomains in dendritic cells (Izquierdo-Useros et al., 

2009). 

It is also feasible that EVs are adsorbed through direct fusion with the plasma 

membrane due to the fluid characteristics of the plasma membrane. In an aquatic 

environment, direct fusion of two lipid bilayers may occur easily, and this way may be seen 

via fluorescent lipid dequenching. Investigations with this technology have demonstrated that 

some EV uptake can occur through this pathway (Parolini et al., 2009). 

Moreover, several studies have suggested that tetraspanins, which are prevalent on 

the EV surface, have a role in EV internalisation. As tetraspanins are ubiquitous and play 

important roles in adhesion, it is probable that EV absorption happens via comparable routes 

(Rana et al., 2012). Antibodies against the tetraspanins CD81 or CD9 on recipient cells have 

been shown to decrease EV uptake by dendritic cells (Morelli et al., 2004).    
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Figure 1. 7 Uptake of extracellular vesicles; The diagram depicts clathrin-dependent endocytosis as 
well as clathrin-independent pathways such as caveolin-mediated uptake, micropinocytosis, lipid raft-
mediated internalisation and phagocytosis. BioRender was used to create this, which was derived and 
modified from (Mulcahy et al., 2014). 

 

1.2.6 EV effects on tumour microenvironment  

It has been demonstrated that tumour-derived EVs facilitate intercellular 

communication, hence promoting tumour development and metastasis in both local and 

distant environments (Becker et al., 2016). They promote tumour formation by modulating a 

variety of important biological activities such as proliferation, angiogenesis, immune 

reprogramming, as well as activating stromal cells (Ratajczak et al., 2006a; Becker et al., 2016; 

Kalluri and LeBleu, 2020). 

 
1.2.6.1  Endorsing cell proliferation and apoptosis resistance 

Normal cells can be recruited into the tumorigenic process by EVs secreted by cancer 

cells, which facilitate their phenotypic transition and so contribute to tumour development 

by increasing proliferative signalling (Xavier et al., 2020). EVs can help cancer cells resist 
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apoptosis (O’Neill et al., 2019). In melanoma, for example, platelet-derived growth factor 

receptor beta (PDGFR-β) transfer was facilitated by EVs produced by melanoma (recipient) 

cells, allowing them to bypass the MAPK pathway on BRAF-mutated (donor) cells, resulting in 

cell growth and apoptosis suppression (Xavier et al., 2020).     

Several studies have confirmed the significance of miRNAs found in EV cargo on cancer 

cell growth and death. For instance, EVs which are released from an oesophageal cell line 

transmit miR-93-5p to neighbouring cancer cells, altering phosphatase and tensin homolog 

(PTEN) expression and its downstream proteins, cyclin D1 and p21and thereby enhancing 

recipient cell proliferation (Liu et al., 2018). Long non-coding RNAs (lncRNA) contained in 

cancer-derived EVs have been found to influence cancer cell growth and apoptosis. This has 

been reported in a variety of tumour cell types, including gastric, colon, and oesophageal 

cancer (Guo et al., 2017; Zhang et al., 2018). 

1.2.6.2 Supporting Angiogenesis 

Tumour development and metastasis need the production of de novo vasculature, and 

EVs play an important role in this process. Tumour-derived EVs can promote angiogenesis by 

allowing cancer cells to communicate with endothelial cells. Tumour-derived exosomes have 

also been found to impact angiogenesis upregulation (Ludwig et al., 2018). 

EVs generated by glioma cells have been shown in several studies to influence 

angiogenesis by transferring pro-angiogenic factors such as lncRNA CCAT2 and lncRNA 

POU3F3 (Lang et al., 2017), miR-21 (Sun et al., 2017), or CXCR4 receptor (Giusti et al., 2016), 

which resulting in an increase in VEGF on recipient endothelial cells. VEGF was also discovered 

in the cargo of EVs and was found to have a role in angiogenesis activation (Sun et al., 2017; 

Giusti et al., 2016; Lang et al., 2017). 

Furthermore, investigations have revealed that cancer cell-derived EVs transport 

VEGF and IL-6, two powerful pro-angiogenic factors, as well as other compounds capable of 

stimulating endothelial cell invasion and organising into tubule-like structures (Kosaka et al., 

2013). 

A recent study discovered that miR-130a delivered into human umbilical vein 

endothelial cells (HUVECs) by exosomes from gastric cancer cells encouraged angiogenesis 



 
 

25 
 

and tumour growth in vivo and in vitro by targeting c-MYB; thus, miR-130a packaged in cancer 

cell exosomes serves as an angiogenesis driver (Yang et al., 2018). 

 

1.2.6.3 Immune suppression 

Most tumour cells produce antigens that the immune system can recognise. On the 

other hand, tumour cells produce vesicles that have the power to suppress immune 

responses. As a result, exosomes perform a variety of immune suppressive activities, 

including the induction of apoptosis in activated T lymphocytes via the production of death 

ligands FasL (Andreola et al., 2002) and the factor-related apoptosis-inducing ligand TRAIL 

(Taylor and Gercel-Taylor, 2005); dendritic cell differentiation from monocytes is impaired 

(Clayton and Mason, 2009), as well as the inhibition of cytotoxic responses mediated by NK 

cells (Clayton et al., 2007). 

T-cells were repressed by EVs generated by breast cancer cells according to research 

conducted by providing TGF- β straight to these immune cells (Rong et al., 2016). Another 

study found that tumour-derived exosomes can impede NK cell development by releasing the 

immunosuppressive cytokine transforming growth factor- (TGF- β) (Szczepanski et al., 2011). 

EV regulation of B-lymphocytes has already been described, despite the fact that it is mostly 

unexplored. The transformation of naïve B cells into TGF-producing regulatory B cells was 

encouraged by EVs produced by oesophageal cancer cells, leading to immunological 

suppressor effects on T-cell proliferation (Li et al., 2015). 

 

1.2.6.4 Involvement in Cancer Cell Invasion and Metastasis 

Most cancer cells must be able to pass through the weakened extracellular matrix, 

necessitating a dramatic reorganisation of the cytoskeleton (Shimoda and Khokha, 2013; 

Wang et al., 2014a). Both tumours and neighbouring normal cells have indeed been 

discovered to release vesicles that contain large amounts of proteolytic enzymes, which are 

involved in the degradation of cell-matrix bonds and cell-cell bonds (Shimoda and Khokha, 

2013). 

Interestingly, vesicles from distinctive tumour types bear integrins which target EVs to 

certain tissues and trigger signalling pathways inducing pre-metastatic niche formation 

(Hoshino et al., 2013). EVs generated by renal cancer cell lines have been shown to reduce 
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the cell adhesion molecule (EpCAM) in a p-Akt dependent way, encouraging malignancy by 

boosting cell mobility (Jiang et al., 2014). Further research has revealed that blocking any 

vesicle formed by deactivating the protein RAB27B inhibited the development of metastatic 

characteristics (Ostenfeld et al., 2014a). 

In addition, function of miRNAs cargo has been investigated in vitro. One example is 

the discovery of miR-205-5p or miR-423-5p in EVs secreted by cholangiocarcinoma or gastric 

cancer cells (Kitdumrongthum et al., 2018; Yang et al., 2018). A further study showed that 

exosomes with low levels of CD9 and high levels of CD151 in prostate cancer can drive the 

migration and invasion of non-cancerous prostate cells, causing metastases (Brzozowski et 

al., 2018; Bray et al., 2018; Thakur et al., 2022). As a result, the great majority of experimental 

research confirms that EVs play an important role in encouraging cancer characteristic 

attributes at various phases of cancer development (Fang et al., 2018).  

 

 

Figure 1. 8 The function of EVs in the tumour microenvironment. The diagram displays different cell 
types' components with the function of vesicles included in the tumour microenvironment. The image 
is adapted from Ciardiello et al. (2016) and created by Biorender. 
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1.2.7 The role of EVs in oral squamous cell carcinoma 

EVs have been implicated in cancer progression in OSCC and have been shown to 

promote cancer growth, proliferation, spread and invasion of tumour. For example, the 

nuclear factor kappa-light chain-enhancer of activated B cells (NF-B) pathway in monocytes 

has been found to be stimulated by OSCC-derived EVs, resulting in a cytokine-rich 

environment that promotes tumour growth (Momen-Heravi and Bala, 2018b). 

In addition, recent research has demonstrated that tumour cells have increased Snail 

and Vimentin protein expression by miRNA-21-enriched in exosomes while decreasing E-

cadherin levels, indicating that OSCC might form a niche for distant transfer (Wang et al., 

2014b; Li et al., 2016a). Previous research has revealed that EVs generated from OSCC cells 

carry exosomal proteins such as Sonic Hedgehog (Shh), 6-phosphofructo-2-kinase / fructose-

2,6 biphosphatase (PFKFB3) which is angiogenic proteins, activating the relevant model 

mechanism to provoke endothelial proliferation or tubule formation (Gu et al., 2017; 

Huaitong et al., 2017). Also, it has been demonstrated that exosomes from the plasma of 

patients with head and neck squamous cell carcinoma (HNSCC) display PD-L1 on their surface, 

which interacts with the PD-1 receptor on immune cells, inhibiting T-cell function and so 

promoting tumour growth (Theodoraki et al., 2018; Thakur et al., 2022).  

A study showed that exosomal miRNA-200C-3p and miRNA-1246 can be transported 

to primary OSCC cells where they target chromodomain helicase DNA 9/Werner and 

DENN/MADD Domain Containing 2D (DENND2D) increasing tumour cell proliferation, 

metastasis, and invasion (Kawakubo-Yasukochi et al., 2018). 

Furthermore, OSCC cell migration and invasion were increased by exosomes generated by 

hypoxic OSCC cells in an HIF-1 and HIF-2 dependent manner (Li et al., 2016a). 

Additionally, EVs derived from OSCC had an effect on tumour angiogenesis via the 

ephrin type B receptor 2 (EPHB2), both in vitro and in animal models (Sato et al., 2019). 

Furthermore, angiogenesis was boosted by HNSCC-released vesicles containing interleukin-6 

(IL-6) and IL-10, as well as IL-6-dependent inflammatory activation (Moskovitz et al., 2018; 

Chen et al., 2020a). 

 

1.2.8 EVs in biological fluids  

Once discharged from cells, EVs may enter body fluids; thereby EVs can be purified 

from several biological fluids such as plasma (Caby et al., 2005), nasal fluid (Lässer et al., 
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2011b), cerebrospinal fluid (Street et al., 2012; Marzesco et al., 2005), breast milk (Lässer et 

al., 2011b), urine (Pisitkun et al., 2004), sperm (Sullivan et al., 2005), bronchial lavage fluid 

(Asef et al., 2018), and other fluids including saliva (Gonzalez-Begne et al., 2009; Ogawa et al., 

2011; Sun et al., 2016a). (Figure 1.9) 

Salivary EVs were discovered by Gonzalez et al. (2009) during in vitro culture of 

salivary gland epithelial cells. in addition , epithelial cell markers can be detected on saliva-

derived EVs and it is likely that these cells are the source of the EVs found in saliva. Suggesting 

that saliva-derived EVs are mainly from granulocyte and epithelial cells origin (Kapsogeorgou 

et al., 2005).  

Saliva is a combination of secretions that come from three pairs of major salivary 

glands (submandibular, sublingual and parotid glands) and numerous minor glands spread 

across the oral mucosa, combined with gingival crevicular fluid, which all affect the 

composition of saliva (Lamy and Mau, 2012). Saliva performs a lubricative role, such as 

wetting food, allowing the instigation of swallowing and protecting the mucosal surfaces of 

the oral cavity from drying (de Almeida et al., 2008). It consists of 99% water and proteins 

such as enzymes (α-amylase, lingual lipase, and lyzosomes), cell debris, microorganisms, and 

cytokines. It also contains other important substances, including antibodies, electrolytes, and 

mucus (Sun et al., 2016a). Many of these components enter saliva via blood, either by active 

transport, passive diffusion, or extracellular ultrafiltration. As a result, saliva may be viewed 

as a mirror of the body's physiological activity in many circumstances (Lima et al., 2010). 
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Figure 1. 9 EV in biological fluids. The diagram depicts several sources of EV that may be obtained 
from biological fluids such as saliva, blood (plasma), urine, CSF, and breast milk. Adapted from (Ciferri 
et al., 2021) and created by Biorender.  

 

1.2.9 Using saliva as a liquid biopsy 

Over the last decade, saliva has been viewed as an attractive bodily fluid for molecular 

diagnostics. It could be a possible alternative to blood and/or tissue analyses because it 

contains biological information that is relevant to systemic as well as local diseases. It contains 

molecules such as RNA, DNA and proteins and it has many different advantages over other 

bodily fluids like blood (Gai et al., 2018). For example, saliva is easy to obtain by a non- 

invasive collection method. Consequently, it does not cause discomfort to the patient when 

repeated collections are required. The collection is also usually economical (Cheng et al., 

2019). Saliva has a lower concentration of analytes than blood and so there have been 

concerns about its use for diagnostic purposes (Miller, 1994). However, this is no longer a 

constraint due to the improvement of very sensitive molecular tools and nanotechnology 

(Javaid et al., 2016). 

Salivary levels of particular proteins are elevated in OSCC patients. For example,CD44 

(a cell surface glycoprotein involved in cell-to-cell contact), Cyfra 21-1 (a cytokeratin 19 
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fragment), Cancer antigen 125 (CA-125) and tissue polypeptide antigen (TPS), for example, 

have been proposed as oral cancer biomarkers (Franzmann et al., 2005; Nagler et al., 2006). 

OSCC-associated saliva RNAs had an 81 percent prediction accuracy rate, indicating their 

potential as biomarkers for oral cancer diagnosis. Furthermore, Park et al. (2009) found that 

miR-200a and miR-125a levels were increased in OSCC patients compared to healthy controls, 

indicating that miRNAs in saliva might be used to identify oral cancer (Park et al., 2009a). In 

addition, miR-31 was shown to be significantly higher in saliva from patients with oral 

carcinoma at all clinical stages, including very small tumours, according to Liu et al. (2012), 

who employed it as a clinical biomarker of OSCC in oral lesions, saliva, and plasma. Salivary 

miR-31 was shown to be more prevalent than plasma miR-31, which suggests that salivary 

miR-31 might be utilised to make a more accurate diagnosis of oral cancer. Furthermore, after 

oral cancer excision, salivary miR-31 levels were substantially lower, indicating that the bulk 

of the up-regulated salivary miR-31 was sourced from tumour tissues (Liu et al., 2012). 

Salivary proteomics is also a useful method for detecting systemic disorders like 

Sjogren's syndrome (SS). A panel of potential SS salivary biomarkers was recently explored. 

SS was discovered to have a substantial impact on twenty-eight proteins (Baldini et al., 2011). 

The salivary proteomic profile of type 2 diabetes patients showed that 52 proteins were 

differentially increased in the saliva of diabetics compared to controls, as well as greater levels 

of several diabetes-related inflammatory indicators (Border et al., 2012). According to 

previous research, 65 of the 487 detected proteins in saliva showed increased amounts in 

type 2 diabetes patients compared to healthy people (Rao et al., 2009). As a result, saliva 

protein profiling might be proove to be a useful tool for diagnosing and monitoring disorders. 

 

1.2.10 Salivary EVs as a source of biomarkers 

As mentioned previously saliva contains a high concentration of EVs, which are 

enriched in RNAs and proteins. So, proteomic and transcriptomic analysis of EVs constitutes 

an emerging and promising avenue for the discovery of biomarkers for systemic and oral 

diseases (Chiabotto et al., 2019).  EVs have been shown to enhance their cargo stability and 

as a result, they can increase the bioavailability of bioactive chemicals. The EV lipid bilayer 

membrane that envelops bioactive cargo can survive the activity of digestive enzymes in 
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bodily fluids, protecting their contents from breakdown until they reach their destination 

(Boukouris and Mathivanan, 2015).  

 

1.2.10.1 The relationship between salivary EVs and systemic Diseases   

Salivary EVs have drawn substantial attention as a potential source of systemic disease 

and cancer biomarkers, and as a means of observing body health (Becker et al., 2016). The 

role of salivary EVs for diagnosis is mainly based on two macromolecular substances; RNAs 

and proteins as biomarkers of cancer (Al-Tarawneh et al., 2011).  

EVs were shown to pass through epithelial barriers such as the blood–brain barrier, 

demonstrating that they may have a role in transferring RNAs from the blood into saliva (Kim 

et al., 2003). They were also discovered to have a significant key role in the pathogenesis of 

neurodegenerative disorders, for example, Alzheimer's disease, a disease that has an 

assembly of pathophysiological and medical correlations with traumatic brain injury (Cheng 

et al., 2019). 

  Lau et al. (2012) created a model for analysing a systemic ailment using a non-invasive 

method.  The pancreatic cancer cell line Panc02 was embedded into the pancreas and the 

reduction of disease-specific salivary biomarkers, by suppressing the biogenesis and 

formation of tumour-derived exosomes, demonstrated that they have an essential role in the 

development of salivary tumour-specific biomarkers (Principe et al., 2013). Despite the fact, 

however, that it is known that saliva contains gingival crevicular fluid, a serum transudate, 

there was not a clear rationalization for this (Lamster and Ahlo, 2007; Principe et al., 2013). 

Machida et al. (2016) found that miR-4644 and miR-1246 contained in salivary EVs were 

hypothetical biomarkers of cancer in the pancreatobiliary tract (Machida et al., 2016). 

Numerous proteomics studies of salivary EVs have shown different disease profiles. 

CD24 peptides are greatly expressed in a range of different diseases, such as hepatitis B and 

SS in saliva and plasma (Zheng et al., 2014). Furthermore, Zheng et al. (2017) found that 

salivary EVs produced from patients with inflammatory bowel disease  contain high levels of 

proteasome subunit alpha type 7 (PSMA7)(Zheng et al., 2017). In addition, Cao et al. (2019) 

discovered Synuclein in salivary EVs, which might be used as a diagnostic biomarker for 

Parkinson's disease (PD), where the levels of -synOlig, -synOlig/-synTotal in salivary EVs are 

greater in PD than in controls (Cao et al., 2019). Nik Mohamed Kamal et al. (2020) discovered 



 
 

32 
 

that miR-28-5p, and miR-5571-5p were considerably increased in salivary EVs from patients 

with periodontitis compared to healthy individuals, indicating that they might be potential 

biomarkers (Nik Mohamed Kamal et al., 2020). 

Saliva-derived EV from patients with oesophageal squamous cell carcinoma were 

strongly abundant with two short RNAs (tRNA-GlyGCC-5 and sRESE), which might be useful as 

biomarkers for diagnosis and prognosis, as well as for prediction of adjuvant therapy benefits 

(Li et al., 2022). EV-associated miRNAs have been found in the saliva of patients with ovarian 

(Gallo et al., 2012) and lung cancer (Sun et al., 2018). 

 

1.2.10.2 Use of Salivary EVs as a source of biomarkers in head and neck cancer   

The salivary EV is a useful biomarker for OSCC (Fuller et al., 2015; Dionne et al., 2015), 

and it has attracted the most interest of researchers in many studies (Valadi et al., 2007c; El 

Krief et al., 2011; Andaloussi et al., 2013; Wong, 2015; Lötvall et al., 2014; Wang et al., 2020). 

A study has demonstrated that increased circulating vesicles in cancer patients are associated 

with poor diagnosis (Kim et al., 2003). The majority of these circulating vesicles appear not to 

originate from cancer cells but to be derived from activated platelets or megakaryocytic cells 

(Flaumenhaft et al., 2009)  and macrophages, lymphocytes, and erythrocytes (Rak, 2013).  

Zlotogorski-Hurvitz et al. (2016) showed that saliva from oral cancer patients had a much 

greater concentration of EVs than healthy persons. Furthermore, the same study found that 

OSCC patients' salivary EVs had a higher CD63 abundance but less CD9 and CD81, which might 

be utilised for oral cancer detection (Zlotogorski-Hurvitz et al., 2016). 

Salivary EVs derived from patients with HNSCC are larger (ranging from 20 to 400 nm 

in diameter) than healthy controls (Sharma et al., 2011). They exist in aggregates or more 

extended agglomerates. This effect was most notable in cases with advanced stages of HNSCC 

(Sharma et al., 2011).  

Fontana et al., (2021) confirmed that protein cargo of salivary EVs define a functional 

signature through quantitative proteome using the SWATH MS (Sequential Window 

Acquisition of all Theoretical Mass Spectra method), resulting in quantitative information for 

365 proteins differentially characterised by the EVs of analysed clinical conditions, thus having 

potential value as novel predictor biomarkers for OSCC (Fontana et al., 2021). 
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Furthermore, certain subsets of miRNAs are detected in salivary EVs from individuals 

with oral squamous cell carcinoma. MiR-517b-3p and miR-302b-3p were exclusively found in 

vesicles from OSCC patients, whilst miR-512-3p and miR-412-3p were up-regulated in EVs 

from OSCC patients. All four miRNAs have the potential to be employed as biomarkers (Gai et 

al., 2018). 

After extracting EVs from conditioned media from four HNSCC cell lines and oral 

epithelial control cells, Langevin et al. (2017) employed miRNA-sequencing to fully define 

their miRNA cargo and compare transcripts with salivary EVs in different patients. They 

observed that numerous candidate miRNAs, including miR-486-5p, miR-486-3p, and miR-10b-

5p, were over-expressed in the EVs of a subset of head and neck carcinomas in saliva and 

tissue as compared to cancer-free controls (Langevin et al., 2017). 

When researchers discovered that expression of miR-24-3p was substantially higher 

in the salivary EVs of OSCC patients compared to healthy people, they established the 

potential of exosome miRNA cargo as a future investigative biomarker. They also discovered 

that miR-24-3p levels in OSCC neoplastic tissues were greater, indicating that cancer cells 

generate circulating miR-24-3p. They also discovered that overexpressing miR-24-3p boosted 

OSCC cell growth, showing that salivary EV miR-24-3p may be used to detect OSCC (He et al., 

2020). 

Wang et al. (2020) isolated EVs from HPV-associated oropharyngeal cancer (HPV-OPC) 

and discovered that HPV 16 DNA is packaged in salivary EVs in 80% of HPV16-positive 

tissues/biopsies. This result was obtained after previous studies failed to detect human 

papilloma viral (HPV) DNA in whole saliva and did not show adequate clinical performance 

(Wang et al., 2020). 

Thus, suggesting that cancer-specific proteins, miRNAs and precise antigens in salivary 

EVs might be useful biomarkers for the detection of premalignant lesions and early-stage 

cancer (Principe et al., 2013).  
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Figure 1. 10 Salivary EVs derived from OSCC cells. The diagram illustrates the release of EV from oral 
cancer tissue and adapted from (Nonaka and Wong, 2017b). 
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1.3 Hypothesis and project aims 

1.3.1 Hypothesis  

The miRNA cargo of salivary EV can be used as a biomarker signature to develop a diagnostic 

test for OSCC. 

 

1.3.2 Project aims 

§ Given the complex nature of saliva (viscosity and highly abundant soluble factors), the 

first aim is to determine a suitable technique for isolation of EVs from saliva for 

downstream analysis. Common EV isolation methods, such as ultracentrifugation, size 

exclusion chromatography and Dynabead immunocapture will be compared to 

determine their suitability. This decision will be based on the purity of the isolated EVs 

and also the potential to apply the isolation technique to a large number of patient 

samples as part of a diagnostic test.  

§ EVs will be characterised according to the MISEV 2018 guidelines by a variety of 

techniques including nanoparticle tracking analysis, western blotting, transmission 

electron microscopy and Exoview tetraspanin profiling.  

§ The impact of the starting volume of saliva and storage of saliva on EV isolation will be 

assessed.  

§ Salivary EVs will be isolated for a cohort of patients with OSCC and healthy controls. 

EV RNA will be extracted and miRNA cargo analysed by small RNA sequencing. 

§ Differential expression analysis will be conducted to identify up- and down-regulated 

miRNA. Validation of small RNA sequencing data will be conducted by qRT-PCR. 
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2. Materials and methods  

2 .1 Materials  

All laboratory chemicals and reagents were purchased from Merck, UK (previously 

known as Sigma-Aldrich) and molecular biology reagents were ordered from Thermo Fisher 

Scientific, UK unless stated otherwise. 

 

2.2 Methods  

2.2.1 Saliva samples 

2.2.1.1 Saliva collection 

Passive drool saliva samples were collected from healthy volunteers (in accordance 

with University of Sheffield ethics application 003166) or from patients visiting Sheffield 

Teaching Hospitals Trust (in accordance with NHS ethics application IRAS: 264332/STH: 

20945) by asking them to spit into a sterile 50 ml centrifuge tube. Samples were collected 

between 8 - 10.30 am. Donors were asked to refrain from eating or drinking anything for at 

least one-hour prior to the collection of saliva.  

 
2.2.1.2 Saliva processing 

Saliva was diluted with an equal volume of sterile phosphate buffered saline (PBS) and 

endogenous protease activity was quenched by the addition of a cOmplete Mini EDTA FREE 

protease inhibitor tablet (Roche, Germany). Diluted saliva was clarified by centrifugation at 

3,000 x g for 30 min to pelleted large debris, dead cells and bacteria, followed by 12,000 x g 

for 45 min. A differential centrifugation methodology was adapted from the protocol 

previously described by Théry et al. (2006) (Figure 2.1). Where concentrated saliva was 

required, clarified saliva was reduced to ~0.5 ml by centrifugation at 6,000 x g in a Vivaspin 

20 (100 kDa MWCO) centrifugal concentrator (GE Healthcare Life Sciences, Sweden). 

 
2.2.2 EV isolation methods  

2.2.2.1  Isolation of EVs by ultracentrifugation (UC) 

Clarified saliva was centrifuged (Optima TLX- Ultracentrifuge) at 100,000 x g for 1 hour 

at 4°C. Pellets were washed with PBS and recentrifuged at 100,000 x g for 1 hour. The 

supernatant was discarded and the pellet resuspended dependent on downstream 
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application. Resuspended pellets were transferred to a fresh tube and placed on ice until 

needed or stored at -20°C. 

 

          
 
Figure 2. 1 Schematic outlining salivary EV isolation by ultracentrifugation. Saliva was clarified by 
centrifugation at 3,000 x g, 30 mins and 12,000 x g, 45 mins. The supernatant was centrifuged at 
100,000 x g for 1 hour at 4°C. The pellets were collected and resuspended in appropriate buffer for 
further analysis.  
 
 
2.2.2.2 Isolation of EVs by Size Exclusion Chromatography (SEC)  

14 ml of Sepharose CL-2B slurry (GE Healthcare Life Sciences, Sweden) was added to 

each Econo-Pac chromatography column (Biorad, US) and left to settle by gravity. Using 

forceps, a filter disc was added to the top of the stacked Sepharose resin taking care to 

prevent the formation of bubbles beneath the filter. The plastic column stopper was removed 

to allow the ethanol to run out of the column and leave behind 10 ml of Sepharose resin. The 

stacked Sepharose was washed with 30 ml PBS containing 0.03% (v/v) of Tween-20 (PBST) to 

remove any ethanol remnants. ~0.5 ml concentrated saliva (Section 2.2.1.2) was loaded onto 

the prepared SEC column. As soon at the sample had completely entered the resin, the 

column was topped up with PBST  and twenty 0.5 ml fractions were collected in 1.5 ml 

microfuge tubes (Figure 2.2).  
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Where necessary, individual or multiple combined SEC fractions were centrifuged at 

100,000 x g for 1 hour at 4°C. The supernatant was then removed, and pelleted vesicles were 

resuspended in PBS or protein lysis buffer depending on downstream analysis. 1 ml of Protein 

lysis buffer was made by adding 100 μl of 10x Radio-Immunoprecipitation Assay (RIPA) buffer 

(Merck Millipore, Massachusetts, USA), 143 μl of 7x protease inhibitor solution, (prepared by 

dissolving 1 tablet of protease inhibitor in 1.5 ml of distilled water) (Roche, Burgess Hill, UK), 

and 0.2 μl of universal nuclease (PierceTM Universal Nuclease for Cell Lysis, Thermo Scientific 

TM, UK), to 757 μl of dH2O.     

   

 

 
 
Figure 2. 2 Schematic outlining salivary EV isolation by size exclusion chromatography.  Clarified 
saliva was concentrated to 0.5 ml and fractionated on a 10 ml Sepharose column. Twenty 0.5 ml 
fractions were collected from the column. 

 
 
2.2.2.3 Isolation of EVs by Dynabead immunocapture  

Dynabeads pre-conjugated with anti-human CD63, CD9, and CD81 antibodies were 

purchased from Invitrogen (Catalogue numbers: 10606D, 10614D and 10616D). Dynabeads 

were vortexed for 30 seconds to ensure even suspension. 100 µl of CD63 Dynabeads (1 × 107 

beads/ml), 40 μl CD9 (1.3 × 108 beads/ml) and 40 μl CD81 Dynabeads (1.3 × 108 beads/ml) 

were pipetted into a 2 ml U-bottom microfuge tube. The tetraspanin bead mix was then 
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washed with 320 µl of Isolation Buffer (PBS with 0.1% (w/v) bovine serum albumin (BSA) 

filtered through a 0.2 μm filter) and placed on a DynaMag-2 magnet for 1 min. The 

supernatant was discarded and the beads were ready for sample loading. ~500 µl of 

concentrated saliva (Section 2.2.1.2) was added to the tube containing the washed 

tetraspanin bead mix and incubated  overnight (18-22 hours) at 4°C with gentle tilting and 

rotation (Figure 2.3). 

After incubation, the tubes were briefly centrifuged for a few seconds to collect the 

samples at the bottom of the tube, and then placed on the magnetic rack for 1 min. The 

supernatant containing unbound EVs and other particles was removed and stored in a 

microfuge tube at  -20°C. The remaining bead-EV complexes in the tubes were washed with 

500 μl Isolation Buffer, followed by 2 more washes with 500 μl PBS and resuspended in either 

protein or RNA lysis buffer for downstream isolating and analysis.  

 

 
 
Figure 2. 3 Schematic outlining salivary EV isolation by Dynabead immunocapture. Diagram 
illustrating the steps to isolate EVs from 500µl of concentrated saliva using Dynabeads coated with 
anti-CD81, anti-CD9 and anti-CD63 antibodies.  
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2.2.4 Salivary EV characterisation methods  

2.2.4.1 Nanoparticle Tracking Analysis (NTA)  

NTA was performed by using a ZetaView instrument, which was calibrated using 100 

nm polystyrene calibration particles (Metrix Gmbh, Germany) diluted at 1:250,000 in Milli-Q 

water. Samples were diluted in Milli-Q water to bring them within optimal concentration 

parameters (1:20 – 1:200). The data was analysed using the software that was supplied with 

the ZetaView instrument. To run samples, 3 ml of sample was injected into the instrument, 

followed by acquisition by the instrument and automatic analysis to remove any outliers. Each 

sample was run 3 times and video was captured for 60 s each time (Table 2.1). Settings were 

kept constant within each experiment and between experiments. Particle size and 

concentration values for technical and biological replicates were averaged.  

                               

                              
                           Table 2. 1 ZetaView setting used for measurement of small particles. 

Parameter Setting for particles (~100nm) 

Sensitivity 85 

Shutter 70 

Min brightness 25 pixels 

Max area(size) 500 pixels 

Min area (size) 20 pixels 

Framerate 30 frames per second(fps) 

Tracelength 15 

Video quality Medium 

Positions 11 Positions 
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2.2.4.2 Characterization of salivary EVs by ExoView  

EVs were enriched by SEC, pelleted by UC (section 2.2.2.2) and resuspended in 50 μl 

PBS. After that they were diluted 1 in 4 using proprietary incubation solution. 35 μl of diluted 

sample was then pipetted directly onto a tetraspanin array chip. The chip was incubated in a 

humidified environment at room temperature, in the dark, overnight. The chip was washed 

three times for 5 min using proprietary washing solution at room temperature. Secondary 

antibody, conjugated to a fluorophore, was added and the chip and incubated for 1 hour at 

room temperature. The chip was washed three times for 5 min using proprietary washing 

solution at room temperature and was allowed to dry before being loaded into a metal 

cassette. The cassette was placed in the ExoView R100. High resolution imaging was then 

carried out to detect label-free and fluorescent particles bound to the chip. Images were 

gathered using proprietary software. ExoView analysis was conducted by Dr Alex Shephard 

(NanoView Biosciences) as part of an instrument demonstration. 

 
 
2.2.4.3 Characterization of salivary EVs by Transmission Electron microscopy  

2.2.4.3.1 Transmission electron microscopy of EVs in suspension 

Five microlitres of EV suspension (section 2.2.2.2) was absorbed on air glow-

discharged carbon-coated copper-palladium grids for 1 min and stained with 0.75% (w/v) 

uranyl formate. Imaging was performed on a Philips CM100 TEM, operating at 100 kV, using 

a Gatan MultiScan 794 1K x 1K CCD camera (Gatan, Pleasanton, CA, USA). Preparation and 

imaging of TEM grids was performed by Dr Svet Tzokov at the Electron Microscopy Facility, 

The University of Sheffield. 

 

2.2.4.3.2 Transmission electron microscopy of resin embedded EV-Dynabead complexes 

Washed Dynabead-EV complexes (section 2.2.2.3) were resuspended in 20 μl of 

Hanks’ Balanced Salt Solution (HBSS), transferred to a microfuge tube and pre-fixed with 2% 

(w/v) glutaraldehyde in 100 mM phosphate buffer (pH 7.4) at room temperature for at least 

2 h, followed by post-fixation with 2% (w/v) osmium tetroxide in 100 mM phosphate buffer 

(pH 7.4). The fixed samples were subjected to several washes in distilled water to remove 

excess phosphate ions prior to dehydration through a series of ethanol concentrations (30%, 

50%, 70%, 90%, v/v) for 15 min each, followed with 100% (v/v) ethanol for 30 min with 3 
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changes of solution, and finally in propylene oxide for 15 min with 2 changes of solution. 

Quetol 812 epoxy resin (Nissin EM) was infiltrated by mixing propylene oxide and the resin, 

as 2:1, 1:1, 1:2 ratios, and samples were left for 1 h in each solution and in 100% resin 

overnight. The sample embedding was completed the following day by placing in fresh resin 

for 1 h with polymerisation. The embedded samples were trimmed to have a block face of 1-

2 mm in diameter and were sectioned into 100 nm ultra-thin slices with a Leica EM UC6 

ultramicrotome (Leica). Each section was carefully collected onto a grid and left to dry before 

being stained with 2% (w/v) uranyl acetate in distilled water for 15 min and washed twice 

with distilled water. The stained grids were imaged on the Tecnai T12 Spirit TEM at 80 kV. 

Resin-embedded samples were processed and imaged by Mr Chris Hill at the Electron 

Microscopy Facility, The University of Sheffield. 

 
2.2.5 Protein methods 

2.2.5.1 Bicinchoninic acid assay (BCA)  

Protein concentrations were determined using the Pierce BCA protein assay kit 

(catalogue number 23225, Thermo Fisher Scientific, UK), according to the following protocol. 

Standards of known concentrations of bovine serum albumin (BSA) were prepared in the 

same buffer as the samples to be assayed ranging from 0 to 1 mg/ml. All samples were tested 

in triplicate with 10 μl of sample or standard added to a 96-well plate. 200 μl of the working 

reagent A and B solutions combined in a 50:1 ratio added to each well, the plate covered and 

incubated for 30 min at 37°C. Following incubation, the absorbance was measured at 560 nm 

using a spectrophotometer plate reader TECAN (Magellan V7.2 software, Infinite M200). The 

absorbance values were plotted against the known concentrations of the standards and a 

polynomial equation used to determine the concentration of samples.  

2.2.5.2 SDS-PAGE  

Samples (20 μl) were mixed with 5μl 5x loading buffer, heated at 95°C for 5 minutes 

using a heat block (Techne) and briefly centrifuged. SDS-PAGE gels mixtures were made 

according to table 2.2. Once the resolving gel was poured, isopropanol was used as overlay 

whilst the stacking gel was assembled. After the resolving gel had polymerized isopropanol 

was poured off and rinsed away with water. 
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The stacking gel was poured on top of the set resolving gel and a sample comb was 

inserted before allowing the gel to polymerize for 10 minutes. The comb was then removed 

and each well washed out with copious amounts of distilled water to remove any 

unpolymerized gel. Gels were then placed in BIO-RAD tanks filled with 1x Tris glycine running 

buffer (192 mM glycine, 0.1% SDS, 25 mM Tris Base pH 8.3).  

Table 2. 2 Reagents for two 1.0 mm, 12% polyacrylamide resolving gels and stacking gels 

Stacking Resolving 

40% polyacrylamide (ml) 0.975 40% polyacrylamide (ml) 3 

1M Tris (pH6,8) (ml) 2.1 1.5 M Tris (pH8.8) (ml) 2.5 

10% Ammonium persulfate (µl) 100 10% Ammonium persulfate (µl) 350 

TEMED (µl) 17 TEMED (µL) 5 

H2O (ml) 4.725 H2O (ml) 4.3 

 
Samples were loaded alongside 5 μl prestained proteins standard (Precision plus proteins 

standard Bio-Rad) and proteins were separated at 150 volts for 70 minutes.  

 

2.2.5.3 Western blotting 

Proteins separated by SDS-PAGE were transferred using a mini format TURBO transfer 

kit, (Bio-Rad). The SDS-PAGE gel was placed on top of the membrane in the correct orientation 

in the cassette. This was covered with filter paper, taking care to remove all air bubbles using 

a blotting roller and the cassette closed. Proteins was transferred at 25 V for 7-minute. The 

transfer sandwich was disassembled and the membrane was blocked in 5% (w/v) skimmed 

milk prepared of 2.5g powder was weighted out and dissolved in 1x Tris buffered saline 

supplemented with 0.1% (v/v) Tween-20 (TBST), for 1 hour on a rocking shaker at room 

temperature.  

Primary antibodies were diluted in blocking buffer (Table 2.3) and incubated with the 

membrane on a rocking shaker at 4°C overnight. Following incubation with primary antibody 

the membrane was washed three times with TBST for 10 minutes, secondary antibodies were 

diluted in blocking buffer (Table 2.4) and incubated with the membrane on a rocking shaker 

for one hour at room temperature. The membrane was washed three times for 10 minutes in 
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TBST and then the membrane was transferred to a small plastic box containing Westar 

supernova (CYNAGEN Srl, Italy). The membrane was wrapped in cling film and placed in an x-

ray cassette for exposure to x-ray film (Thermo scientific, USA) and developed with an 

automated processor (Xograph Compact X4). Where necessary, nitrocellulose membranes 

were stripped of antibody complexes by incubating the membrane in  Restore TM western 

blot stripping buffer (Thermo Fisher Scientific) for 10 min at room temperature on a shaker, 

followed by three washes (10 min each) with 1× TBST. The stripped membrane was then ready 

for blocking and antibody incubation. 

 

Table 2. 3 Details of all primary antibodies used in western blotting experiments. 

              Target 
 

Clone Dilution Manufacturer and 
catalogue number 

Expected 

weight (kDa) 

Anti-CD63 antibody 

(Rabbit) 

 

EPR5702 1:1000 Abcam, ab134045 30-60 

Anti-CD9 antibody 

(Rabbit) 

EPR2949 1:2000 Abcam, ab92726 24-27 

Anti-CD81 antibody 

(Mouse) 

5A6 1:200 Santa Cruz, Sc-23962 22-26 

      Anti-TSG101 antibody 

(Mouse) 

EPR713618 1:500 Abcam, ab125011 44 

Anti-Alpha-amylase  

(Rabbit) 

 

EPR19605 1:5000 Abcam, ab201450 50-60 

Anti-Apolipoprotein AI            

(Rabbit) 

EPSISR27 1:1000 Abcam, ab151710 30 

Anti-Apolipoproteins B 

(Rabbit) 

EPR2914 1:1000 Abcam, ab139401 250 

Anti- MVP antibody 

(Rabbit) 

EPR13227(B) 1:2000 Abcam, ab175239 100 
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Table 2. 4 Details of HRP conjugated secondary antibodies used in western blot experiments. 

Antibody Dilution  
 

Catalogue number and supplier 

Anti-mouse   1:3000        7076S - Cell Signalling (New England Biosciences) 

Anti-rabbit   1:3000        7074S - Cell Signalling (New England Biosciences)  

 
 
2.2.6 RNA, DNA and protein extraction  

2.2.6.1 Sample preparation 

The RNA/DNA/Protein Purification Plus Kit (Norgen, UK, Cat; 47700) was used to 

isolate nucleic acids and protein from the same sample. Washed EVs bound to Dynabeads as 

described (section 2.2.2.3.2) were resuspended in 300 µl SKP buffer and vortexed. The lysate 

was placed on a magnet for 1 min, the supernatant transferred to a fresh RNAse free tube 

and then stored at -80°C until the protocol was completed.  

 

2.2.6.2 Genomic DNA purification  

Genomic DNA (gDNA) was purified by adding 300 µL lysate to a gDNA purification 

column and centrifuging at 5,200 x g for 1 minute. All of the flowthrough was retained for 

RNA purification (section 2.2.6.3). 500 μL wash solution A was added to the gDNA column, 

which was centrifuged at 3,500 x g for 1 minute. The wash step was repeated again and the 

flowthrough discarded. The column was centrifuged at 14,000 x g for 2 minutes in order to 

thoroughly dry the resin. 

gDNA was eluted into a fresh 1.7 mL elution tube provided with the kit. 100 μL elution 

buffer F was added to the column and incubated at room temperature for 2 minutes. The 

column was centrifuged for 2 minutes at 200 x g followed by 1 minute at 14,000 x g. The 

purified DNA sample was stored at -20°C. 

 

2.2.6.3 RNA purification 

The 300 µl retained flowthrough (section 2.2.6.2) was combined with 180 µl 100% 

Ethanol mixed by vortexing, applied to an RNA/Protein Purification Column and centrifuged 

for 2 minutes at 3,500 x g. The flowthrough was retained for Protein Purification (section 
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2.2.6.4). RNA was washed by applying 400 μL wash solution A to the column and centrifuged 

at 3,500 x g for 2 minutes. The flowthrough was discarded and then the column was treated 

with 100 µl DNase solution for 15 minutes at 25°C as per the manufacturer’s instructions. The 

column was washed two more times with 400 µl wash solution A and centrifuged at 3,500 x 

g for 1 minute. After the third wash, the flowthrough was discarded and the column 

centrifuged at 14,000 x g for 2 minutes to dry the resin. The RNA was eluted into a fresh tube 

by adding 50 µl Elution Solution A and centrifugation at 200 x g for 2 minutes, followed by 

14,000 x g for 1 minute. The RNA was stored at -80°C. 

 
2.2.6.4 Protein purification  

The 480 µl retained flowthrough (section 2.2.6.3) was diluted with an equal volume of 

molecular biology grade water and 40 µl Binding Buffer A was added. This was applied to the 

same column previously used for RNA purification and centrifuged at 5,200 x g for 2 minutes. 

The flowthrough was discarded and the column was washed with 500 µl Wash Solution C and 

centrifuged at 5,200 x g for 2 minutes. Protein was eluted into a tube that contained 9.3 µl 

Protein Neutralizer by adding 100 µl Elution Buffer C to the column and centrifugation at 

5,200 x g for 2 minutes. The protein was stored at -20°C. 

2.2.7 Measurement of RNA concentration 

RNA concentration was determined by Agilent 2100 Bioanalyzer (Agilent 

Technologies) with an RNA 6000 Pico kit (Agilent Technologies) by Dr Paul Heath (SiTraN, The 

University of Sheffield) following the manufacturer’s instructions. Briefly, 9 μl of gel-dye mix 

composed of filtered gel and dye (65:1) was added into the Pico chip and the plunger 

depressed for 60 s. After 9 μl conditioning solution, 5 μl of marker, and 1μl ladder were added, 

1 μl of ladder and extracted EV total RNA were added in appropriate wells on the RNA chip. 

RNA concentrations were then calculated according to the electropherogram profiles.  

2.2.8 Small RNA sequencing 

RNA was extracted from salivary EV samples (section 2.2.6) and quantified by 

Bioanalyzer (section 2.2.7).  
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2.2.8.1 Library preparation and sequencing 

An input of 3 ng RNA (or a maximum 3 µl volume where this wasn’t possible) was used 

for the creation of sequencing libraries using the Real Seq-AC miRNA Library Kit for Illumina 

sequencing. Library quality was determined by Qubit 2.0 fluorometer (coupled with a High 

Sensitivity dsDNA kit) and Agilent 2200 Tape station System. 

Pooled libraries were loaded onto the HiSeq 2500 using the cBOT system and HiSeq 

Rapid Duo CBOT sample loading kit. Paired end reads (2x 50bp) were generated using HiSeq 

PE Rapid Cluster Kit v2 and HiSeq Rapid SBS Kit v2 (200 cycles), with the instrument in Rapid 

Mode. Data was exported in FASTQ format for subsequent bioinformatics analysis. Library 

preparation and sequencing were performed by Mr Timothy Wright (Sheffield Children’s NHS 

Foundation Trust). 

 

2.2.8.2 Bioinformatics analysis 

The raw sequencing reads from small-RNA sequencing were processed using the 

nfcore (Ewels et al., 2020) smrnaseq workflow. This involves generating QC of raw sequencing 

reads using FASTQC, adapter trimming with TrimGalore and alignment to mature miRNA using 

Bowtie1 (Langmead et al., 2009). Raw counts from mature miRNA were imported into DESeq2 

for normalisation and differential expression analysis (Love et al., 2014). Other small-RNA 

species were analysed using the nfcore rnaseq pipeline, which aligns samples to a reference 

genome using STAR (Magoč and Salzberg, 2011), and produces gene-based counts using 

salmon (Patro et al., 2017). DESeq2 was used again for differential expression. Bioinformatics 

analysis was performed by Dr Mark Dunning (Bioinformatics Core Director, The University of 

Sheffield). 

 

2.2.9 Quantitative real-time PCR (qPCR) 

2.2.9.1 Complementary DNA (cDNA) synthesis 

RNA samples were transcribed to the complementary DNA (cDNA) using the reverse 

transcription kit (Thermo Fisher Scientific, Cat number; 4366596). The reactions were set up 

on ice following the manufacturer’s instructions. All RNA experiments were carried out using 

RNase-free microfuge tubes and filtered pipette tips. Extra care was paid not to introduce 

RNase and other contaminants during sample handling.  1 ng of EV total RNA was used as a 
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template per reaction. The reverse transcription was performed on an Applied Biosystems 

2720 Thermal Cycler (Table 2.8), cDNA was stored at -20°C and used within 4 weeks. 

The RT reaction with single-stranded small RNA was prepared by mixing 7 µL of RT 

reaction mix, which was prepared as described in (Table 2.5), with 5 µL (containing 1 ng) of 

total RNA in a reaction tube. 3 µL of 5X RT Primer (Thermo Fisher Scientific) was added to 

each reaction tube and sealed and  placed into a thermal cycler, then incubated using 

standard cycling as described in (Table 2.6).  

 

 

Table 2. 5 Composition of RT Reaction Mix. 

 

 
 

 

 

 

 

 

 

 
 

Table 2. 6 Conditions used for reverse transcription reaction 

Step Temperature  Time 

Reverse transcription 16 C 

42 C 

30 minutes 

30 minutes 

Stop reaction 85 C 5 minutes 

Hold 4 C Hold 

 
 
 
 
 
 

Component Component Volume (1 reaction) 

100mM dNTPs (with dTTP) 0.15 μL 

MultiScribeTM Reverse 

Transcriptase, 50 U/μL 

1.00 μL 

10x Reverse Transcription 

Buffer 

1.50 μL 

RNase Inhibitor, 20 U/μL 0.19 μL 

Nuclease-free Water 4.16 μL 

Total RT Reaction Mix volume 7.00 μL 
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Table 2.7 TaqMan primer/probes used for PCR. 

 
 

 

 

 

2.2.9.2 TaqMan qPCR reaction 

The reaction mix for miRNA qPCR was composed of 5 µl 2X qPCR Bio Probe mastermix, 

0.5 µl Taqman probe (Thermo Fisher Scientific), 0.5 μl cDNA synthesised with the 

corresponding microRNA RT primer (Table 2.7), and 4 μl nuclease free water H2O in each 

sample (Table 2.8). All qPCR reactions were assembled on ice and handled with RNase-free 

equipment according to the manufacturer’s instructions. Each reaction was assayed in 

triplicate to minimise variation due to pipetting errors. In a Rotor- Gene Q 2plex real-time PCR 

cycler (QIAGEN), a two-step run was conducted and programmed as follows: 10 min at 95 °C 

for initial denaturation, 15 s at 95 °C for denaturing and 60 s at 60 °C for annealing and 

extension for 40 cycles.  

 

                                          Table 2. 8 Real time qPCR TaqMan master mix components. 

Real time qPCR master mix Volume (total volume 10 μl) 

Taqman probe 0.5 μl 

cDNA 0.5 μl 

Nuclease free water 4 μl 

2X qPCR Bio Probe master mix (Applied 

Biosystems, Cat; PB20.25-05, Thermo 

Fisher Scientific) 

5 μl 
 

 

 

2.2.9.3 Data analysis 

Data was reported as mean Ct values ± standard deviation (mean ± STDV).  Student’s 

t-test was utilised to verify the statistical significance of findings as indicated in individual 

figure legends. A p-value of less than 0.05 was considered significant. 

Target Assay ID 
miR-29a-3p 002112 

miR-92a-3p 000431 

miR-181a-5p 000480 

miR-21-5p 000397 
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3.  Isolation of salivary EVs by differential centrifugation and size 

exclusion chromatography  

3.1 Introduction 

Salivary EV cargo is altered in diseases such as cancer, leading to a considerable 

amount of research focused on EV related biomarker identification (Bebelman et al., 2018). 

Several approaches have been used for the isolation of EVs from biological fluids, such as 

differential centrifugation, size exclusion chromatography (SEC), density gradient 

centrifugation, precipitation, and immune-affinity capture. Due to the heterogeneous nature 

of EVs, there is no universally agreed isolation strategy (Théry et al., 2006; Webber and 

Clayton, 2013; Dominkuš et al., 2018; Dong et al., 2020; Stam et al., 2021). 

Saliva is one of the most challenging bodily fluids to work with due to its variable 

nature (e.g., viscosity) and endogenous contamination. Saliva does not only contain EVs but 

it also holds cell and food debris, bacterial cells, highly abundant soluble proteins (e.g. α-

amylase), protein aggregates, and lipoproteins (Ferguson, 1968; van Stegeren et al., 2006; 

Deutsch et al., 2008). Standardised approaches must be used to reduce variability and diurnal 

fluctuations when examining saliva composition for disease biomarker identification. As 

emphasized by the minimal information from studies of EVs 2018 (MISEV2018) (Théry et al., 

2018a) and other position papers from the International Society for EVs (ISEV) (Lener et al., 

2015; Mateescu et al., 2017a; Russell et al., 2019), isolation/enrichment of EVs is one of the 

most important and difficult prerequisites prior to any subsequent analyses.  

Salivary α-amylase is a highly abundant digestive enzyme found in the oral cavity 

(Scannapieco et al., 1993), which catalyzes the hydrolysis of starch into maltose and dextrin 

(Butterworth et al,. 2011). The elimination of α-amylase and other soluble proteins during EV 

isolation might help with downstream proteomic analysis of salivary EV cargo (van Stegeren 

et al., 2006; Sun et al., 2016b). In addition, the lipoprotein particles composed of low-density 

and high-density lipoproteins (LDL and HDL, respectively) are often co-purified with EVs 

(Mänttäri et al., 2001). These particles can interfere with particle counts and downstream 

biomarker analysis. While HDL particles are ~10 nm in diameter and appreciably smaller than 

EVs, their density overlaps with that of EVs (1.13 –1.19 g/ml) (Vickers et al., 2011). HDLs have 

been proven to transport RNAs so contamination of EVs with these particles may result in 

biased findings (Vickers and Remaley, 2012).  As a result, separating salivary EVs from soluble 
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proteins and non-EV lipid particles is vital for developing biomarker discovery and validation 

methodologies. 

Differential centrifugation and ultracentrifugation are two of the most extensively 

utilised techniques for isolating EVs (Raposo et al., 1996b; Théry et al., 2006; Gardiner et al., 

2016b). Differential centrifugation utilises increasing sedimentation speeds. Large particles 

(e.g. apoptotic bodies and cell debris) are pelleted at low speeds, whereas small particles (e.g. 

exosomes) are typically pelleted at high speeds (Théry et al., 2006). SEC is another 

advancement that is utilised for the separation and enrichment of EVs, and there has been a 

considerable growth in SEC applications from 2010 to 2020 (Liangsupree et al., 2021). SEC has 

the advantage of not requiring specialised equipment such as an ultracentrifuge. This 

technique operates by passing samples through a chromatography column that includes a 

resin such as Sepharose. The EVs pass around the Sepharose beads and elute in the first 

several fractions before the passage of the soluble components such as proteins, which take 

a tortuous route through the beads and elute in the later fractions (Shah et al., 2013; Coumans 

et al., 2017a). Many studies have demonstrated that SEC as part of a combined methodology 

improves EV purity from different biological fluids (Böing et al., 2014; Yu et al., 2018). In 2020, 

60% of EV isolations by SEC were performed in combination with other isolation methods 

(Stam et al., 2021).  

The latest MISEV2018 guidelines define the recommended steps for EV 

characterisation. Quantification and characterization of enriched EVs after isolation is one of 

the most challenging aspects in EV research. Nanoparticle tracking analysis is commonly used 

to determine the size and concentration of the sub-micrometre particles in suspension by 

tracking their Brownian motion with a dark field microscope (Filipe et al., 2010; Szatanek et 

al., 2017; Stam et al., 2021). 

Other characterization methods often applied to EVs are focused on detecting EV-

specific markers and non-EV markers using bulk immunoassays such as western blots and/or 

enzyme-linked immunosorbent assays (ELISAs) (Coumans et al., 2017b). EVs are also 

commonly characterized by electron microscopy (EM) methods such as transmission electron 

microscopy (TEM), scanning EM or cryo-EM that are able to reveal EV morphology; however, 

they can also indicate EV size, concentration and purity (Chuo et al., 2018). 



 
 

54 
 

3.2 Aim and objectives  

Given the complex nature of saliva (viscosity and highly abundant soluble factors), the main 

aim of this chapter was to determine a suitable technique for isolation of EVs from saliva for 

downstream analysis. To meet this aim, the following objectives were addressed: 

• Determining if differential centrifugation is a suitable technique for the enrichment of 

salivary EVs. 

• Deciding whether SEC is a suitable technique for the enrichment of salivary EVs.  

• Determining whether SEC is sufficient to isolate salivary EVs with minimal 

contamination from soluble proteins and other nanoparticles.  

• Characterising the particles isolated by SEC, NTA, western blotting, Exo-View analysis 

and transmission of electron microscopy. 

 

3.3. Results 

3.3.1 Enrichment of salivary EVs by differential centrifugation  

The first EV isolation technique tested in our study was differential centrifugation due 

to the fact that it is the most commonly used methodology amongst the EV research 

community (Raposo et al., 1996a; Théry et al., 2006; Witwer et al., 2013a). We utilised the 

protocol developed by (Thery et al., 2006). Passive drool samples were collected from healthy 

volunteers under standardised conditions (Section 2.2.1.1). The saliva was first diluted with 

an equal volume of sterile PBS to reduce viscosity and then it was clarified (debris and bacteria 

were removed) by centrifugation at 3,000 x g for 30 mins and 12,000 x g for 45 mins. Small 

particles were then pelleted by ultra-centrifugation at 100,000 x g for 1 hour. The pellet was 

washed with PBS and then recentrifuged at 100,000 x g for 1 hour. This produced a 

viscous/sticky pellet that was difficult to resuspend. The pellet adhered to the plastic pipette 

tip and to the wall of the tube (Figure 3.1A and B). Nanoparticle tracking analysis (NTA) of the 

resuspended pellet detected the presence of 1.14 x 1010 particles/ml (Figure 3.1C), which 

measured on average 270 nm diameter (Figure 3.1D).  
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Figure 3.1 Isolation by ultracentrifugation. A) Pelleted material obtained by ultracentrifugation of 
saliva. B) Resuspension of pellet revealed it to be viscous/sticky. C) The concentration of particles in 
each sample was measured by NTA. D) The mean diameter of particles per sample was assessed by 
NTA.  Graphed data are averaged triplicate technical repeats ± SD for each biological sample. 
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3.3.2 Enrichment of salivary EVs by size exclusion chromatography  
 

The viscous/sticky nature of the pellet produced by ultracentrifugation made us 

question the suitability of this technique for enrichment of salivary EVs. Therefore, we 

compared it to the efficacy of SEC. 

 

3.3.2.1 Elution profile 

Previous work in the Hunt lab has found that SEC is a suitable technique to separate 

EVs from soluble protein in complex mixtures, ready for downstream characterisation 

(Peacock et al., 2018).  Here, SEC was used to fractionate concentrated saliva samples and the 

elution profile was carefully examined.  NTA revealed that particles were eluted in fractions 

5-10 (Figure 3.2A). The particles in each fraction were on average ~150 nm diameter (Figure 

3.2C). Protein quantification revealed that soluble proteins were eluted from the column in 

fractions 11-20 (Figure 3.2A). 

We next used western blotting to confirm the identity of particles detected in SEC 

fractions.  EV markers (CD81, TSG101) were present in fractions 5 to 12 (Figure 3.2B). As 

lipoprotein particles are frequently reported to be co-purified with EVs, we blotted for ApoAI 

and ApoB, which are present in HDL and LDL particles, respectively. ApoAI was detected in 

fractions 6-10 (Figure 3.2B), but we could not detect ApoB in any fraction (not shown). Vault 

particle proteins, such as major vault protein (MVP), are frequently identified in EV 

preparations from diverse bodily fluids, including saliva (Gonzalez-Begne et al., 2009). 

Ongoing work in our lab is currently exploring if vault particles are common contaminants of 

EV preparations. Therefore, we blotted for MVP, which is the major structural protein of 

vaults. MVP was detected in fractions 5-8 (Figure 3.2B), suggesting that EVs, lipoprotein 

particles and MVP/vault particles co-elute in overlapping SEC fractions. The presence of α-

amylase (a highly abundant, soluble salivary protein) was detected in fractions 11-20 (Figure 

3.2B), which mirrored the elution of soluble protein from the column (Figure 3.2A). 
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Figure 3. 2 SEC elution profile. A) Twenty 0.5 ml SEC fractions were collected. Samples were subjected 
to BCA and NTA to measure soluble protein and particle concentration, respectively. Data was 
expressed as percentage of the total detected. B) Western blotting to detect EV markers (CD81 and 
TSG101), α-amylase, lipoprotein ApoAI, and MVP in SEC fractions. Blots are representative of three 
independent repeats. C) The mean diameter of particles in EV rich fractions was measured by NTA. 
Graphed data is averaged from n=3 biological repeats ± SD. The western blot image is representative 
of three biological repeats. 
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3.3.4 The yield of salivary EVs after purification by SEC and ultracentrifugation 

Although SEC was able to separate EVs from abundant soluble protein, it resulted in 

EVs/particles being eluted across multiple fractions. Here we applied 0.5 ml concentrated 

saliva to each SEC column, which resulted in seven 0.5 ml fractions that were positive for EV 

markers by western blot (Figure 3.2B).  We therefore aimed to assess the yield of EVs that 

had been purified by SEC and then pelleted by UC  to re-concentrate them. Fractions that 

were EV rich but that contained low amounts of soluble proteins (fractions 5-10) were 

combined and a small aliquot was taken for NTA. The remaining volume was ultracentrifuged 

to pellet EVs, which were then resuspended in PBS ready for NTA.  

NTA was performed to determine the total number of particles (Figure 3.3A-C) before 

and after UC. The average number of particles before UC was 5.3 x108, whereas the number 

of particles after UC was 3.0 x108, which represented a significant decrease in particle number 

(p= 0.044). We used this data to calculate the percentage yield after UC, which was 58% on 

average (Figure 3.3D). NTA revealed that the mean diameter of particles before and after UC 

was around ~150 nm and that it was not significantly different (p= 0.171) (Figure 3.3C).   
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Figure 3. 3 The yield of SEC purified particles before and after UC.  A) Visualization of particles on the 
NTA live view screen with white arrows indicating particles. B) The number of particles in combined 
SEC fractions before and after UC. Data is the average n=3 ± SD. C) Mean diameter of particles was 
measured by NTA. Data is the average n=3 ± SD.  D) Recovery of particles after UC.  Data expressed as 
percentage yield for individual samples. Pairwise comparisons were conducted by Student’s t-test 
ns=not significant, *= p<0.05. 
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3.3.5 Characterization of salivary EVs by TEM 

We detected the presence of EV sized nanoparticles and EV protein markers (as well 

as markers related to contaminating nanoparticles) in our SEC preparations. We next sought 

to visually confirm the presence of EVs in pelleted SEC fractions by TEM, which confirmed the 

presence of numerous particles bearing the artefactual cup-shaped morphology that is typical 

of EVs (Figure 3.4).  

               

 
 

Figure 3. 4 Visualisation of salivary EVs by TEM.  A,B) Representative transmission electron 
microscopy images of salivary EVs isolated by SEC and pelleted by UC. Artefactual cup-shaped 
structures (indicated by arrows) were clearly visible. Scale bars reflect 200 nm.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 



 
 

61 
 

3.3.6 Detection of salivary EV tetraspanin profile  

Having confirmed the presence of salivary EVs in our preparations by TEM, our next 

objective was to determine the tetraspanin profile of EVs isolated by combined SEC and UC. 

We previously detected the CD81 tetraspanin marker by western blotting (Figure 3.2B). As 

part of an on-site ExoView instrument demonstration, we were able to expand the 

tetraspanin profiling of our samples. Salivary EV samples were diluted and pipetted directly 

onto a tetraspanin array chip before incubation overnight at room temperature (section 

2.2.4.2). EVs were captured by antibodies targeting CD9, CD63, and CD81 that were 

immobilised on the array produced by the manufacturers of the ExoView platform (Nanoview 

Biosciences).   

After hybridisation, arrays were washed and incubated with a 3-colour fluorescent 

cocktail of antibodies against CD63, CD81 and CD9. Labelled arrays were then scanned using 

the ExoView R100 platform to produce high resolution fluorescent images (Figure 3.5). Red 

spots are vesicles that are positive for CD63; blue Spots are vesicles that are positive for CD9 

and green Spots are vesicles that are positive for CD81. Other colours are vesicles that express 

various combinations of the fluorescent signals and represent co-localisation of markers.   

Image data was converted to numerical data to exhibit the abundance of tetraspanin markers 

(Figure.3.5B,D). As expected, CD63-captured EVs stain strongly with the CD63 fluorescent 

antibody (red). A small proportion of CD63-captured EVs are also positive for CD9. CD9-

captured EVs are highly labelled with the CD9 fluorescent antibody (blue). A large proportion 

of CD9-captured EVs are also CD63 positive.  Very few EVs were captured by the immobilised 

CD81 antibody and there was little staining of EVs with the CD81 fluorescent antibody (green) 

across all spots on the chip. Negligible numbers of EVs were bound to the negative control 

mouse IgG spots (Figure 3.5A/C). In summary, Exoview analysis revealed that salivary EVs 

were abundant with CD63 and CD9 protein, but unexpectedly appeared to be mostly CD81 

negative. 
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Figure 3. 5 ExoView analysis.  A, C) The samples were incubated on tetraspanin array chips coated 
with anti-CD63, anti-CD9, anti-CD81 capture antibodies and a mouse IgG negative control. Captured 
EVs were labelled with 3-colour fluorescent cocktail of antibodies against CD63 (red), CD9 (blue) 
and CD81 (green) and were scanned using the ExoView R100 reader and the Exo-Scan acquisition 
software. B, D) Numerical data showing the number of fluorescent EVs bound to tetraspanin capture 
spots. Data is shown for two independent biological repeats. Graphs represent the average of the 
technical triplicate capture spots on each array, with error bars indicating standard deviation. 
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3.3.7 Validation of salivary EV tetraspanin profile by western blotting 

We next sought to validate the data obtained by ExoView analysis by western blotting 

in a larger panel of samples. EVs were isolated by combined SEC and UC before solubilisation 

in protein lysis buffer and lysates were analysed using antibodies against CD63, CD81, CD9 

and additional EV marker, TSG101. A variable expression of tetraspanins CD9 and CD63 was 

noted across the six different biological samples whereas expression of CD81 was detectable 

in all the samples. TSG101 was detected in the majority of samples (Figure 3.6A). 

Though salivary EVs were isolated from the same volume of saliva, which was 

collected under standardised conditions, there appeared to be variability in the expression of 

protein markers among the different samples. We then further examined the samples to 

attempt to explain these differences. We conducted NTA on the combined SEC fractions prior 

to UC and also quantified the amount of protein in the resulting lysates by BCA.  

NTA data revealed that the particle concentration in each sample appeared to 

correlate with the detection of markers by western blot. For example, sample 2 had the 

highest particle concentration and it was the only sample in which all protein markers were 

detected (Figure 3.6A/B). The size of the EVs isolated after UC, was ~150 nm; which is 

compatible with the previous experiments (Figure 3.6C). The two samples with the highest 

particle concertation (samples 2 and 3), also had the highest amount of protein (Figure 3.6D).  
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Figure 3. 6 Salivary EV protein markers. A) EV pellets were resuspended in RIPA buffer containing 
protease inhibitors to solubilise EV protein. 20 μl of each sample was separated by SDS-PAGE and 
transferred to a nitrocellulose membrane for subsequent western blot analysis. B) Particle 
concentration and C) size in each sample was measured by NTA. The data had averaged values of 3 
technical repeats per biological sample and the error bars indicated standard deviation. D) The 
amount of protein (µg) analysed by western blotting for each sample was measured by BCA.  
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3.4 Discussion 

Saliva is a viscous complex biofluid, due to high concentrations of glycoproteins 

including mucins that are secreted by the sublingual, submandibular and palatal glands 

(Ljungberg et al., 2007), which needs to be considered during the EV isolation process. In 

addition, some studies stated that saliva might differ depending on the sampling time and 

location in the mouth of collection (Bhattarai et al., 2018). Therefore, in this study, passive 

drool samples were collected at a set time (early morning) from volunteers who consented to 

refrain from eating or drinking for at least one hour before collection.  

 

3.4.1 Differential centrifugation  

Although differential centrifugation has been used in many studies to isolate EVs from 

a variety of biological fluids and cell culture media (Théry et al., 2006; Linares et al., 2015), 

this approach co-precipitates proteins, lipoproteins, and other contaminants (Yuana et al., 

2014). In addition, the viscosity of biofluids can affect the sedimentation of particles by UC ( 

Momen-Heravi et al., 2012; Gardiner et al., 2016a). Our study has shown that UC of saliva 

produces a sticky pellet that adheres to the plastic pipette tip and the wall of the tube, making 

it difficult to resuspend. This finding is consistent with another study in which isolated EVs 

from saliva were found to be extremely sticky by UC (Zlotogorski-Hurvitz et al., 2015). In 

addition, NTA of resuspended pellets detected large particles with an average diameter of 

270 nm, suggesting particle aggregation. This finding is documented by several studies, where 

EVs were isolated from diverse biofluids, reporting that UC resulted in clumping of EVs and 

aggregates, which can often be observed in EV preparations ( Witwer et al., 2013a; Böing et 

al., 2014; Yuana et al., 2015; Linares et al., 2015; Konoshenko et al., 2018). Other studies have 

proved that membranes of exosome particles may adhere to certain ultra-centrifugation 

tubes, such as Beckman ultra-clear tubes. In addition, the size and number of EVs within 

aggregates are very variable (Théry et al., 2006; Issman et al., 2013; Erdbrügger et al., 2014; 

Linares et al., 2015). Momen-Heravi et al. (2012) confirmed that the size of EVs/particles in 

more viscous biofluids may increase significantly after UC (Momen-Heravi et al., 2012). Hence, 

it was concluded that UC was not a suitable method for EV preparation in our study and so 

we decided to evaluate SEC as an alternative method to overcome the issues of UC. 
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3.4.2 SEC 

We investigated the possibility that SEC could enrich EVs from healthy saliva, in 

quantities sufficient for downstream analysis. We also wanted to determine if we could 

separate EVs from major impurities including highly abundant proteins such as α-amylase, 

MVP, and lipoproteins (ApoAI/ApoB). We used a hybrid isolation method that incorporated 

SEC with UC, which builds on previous studies that used these protocols (in isolation) for EV 

purification (Théry et al., 2006; Böing et al., 2014; Onódi et al., 2018; Yu et al., 2018). The 

chromatographic technique separates particles/molecules based on their size while 

conserving the integrity and biological activity of the molecules being separated (Wang et al., 

2010), including EVs (Gámez-Valero et al., 2016).  

Our data shows that particles are detectable in SEC fractions 5–10, whilst EV markers 

were detected in fractions 5-12. Soluble proteins were eluted in fractions 11 and above. The 

findings from the current study were consistent with several other published findings where 

SEC was used. Gámez-Valero et al., (2016) described the application of 10 ml Sepharose CL-

2B columns for the efficient isolation of EVs from small volumes of plasma, demonstrating 

that low levels of protein become detectable from fraction 15 onwards, whereas vesicles 

were mainly present in fraction 5-14. Moreover, the study by Karimi et al. (2018) 

demonstrated by NTA that most particles which were purified from plasma by Sepharose CL-

2B columns were present in fractions 8–12, while the bulk of the plasma proteins were 

present in fractions 11 onward. Vesicle markers peaked in fractions 7–11 (Karimi et al., 

2018a). When compared to our data, the difference in elution profile could be attributed to 

column height and diameter, or to sample input amount, all of which can be optimised to 

improve the separation of vesicles from contaminating factors (Gaspar et al., 2020b).  

One of the obstacles to salivary EV preparation is the interference of α-amylase in the 

identification and characterization of salivary EV proteins (Amado et al., 2014). For this 

reason, many studies related to salivary EVs, attempt to exclude α-amylase from EV 

preparations. (Deutsch et al., 2008; Gallo et al., 2012; Punyani and Sathawane, 2013; Sun et 

al., 2016a; Han et al., 2018). By encapsulating and adhering globules with membrane 

structures and viscous proteins, α-amylase may obstruct the extraction and separation of EVs, 

hence decreasing the yield of EV extraction. Thus, removing α-amylase and other viscous 

proteins from saliva before extracting EVs should aid downstream proteome analysis of 

salivary EVs and help with potential cancer biomarker profiling (Sun et al., 2016). Deutsch et 
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al. (2008) used affinity adsorption and an Amylase activity assay to confirm removal of α-

amylase from saliva prior to proteomic analysis. In our study, we confirmed the separation of 

salivary EVs from α-amylase by SEC. 

Lipids in saliva are mostly glandular in origin (Karjalainen et al., 1997), which means 

they pass directly from plasma to saliva ( Slomiany et al., 1985; Mänttäri et al., 2001; AL-Rawi 

and Atiyah, 2008). There are two main types of cholesterol in saliva: high-density lipoprotein 

(HDL) and low-density lipoprotein (LDL). ApoB is the primary protein component of low-

density lipoprotein (LDL). ApoAI is the primary protein component of high-density lipoprotein 

(HDL) (Feingold and Grunfeld, 2015). Excluding lipoproteins from EV preparations is critical as 

they have also been shown to be associated with RNA (Vickers et al., 2011; Yuana et al., 2014), 

which could confound RNA sequencing studies. Moreover, lipoproteins may account for 

particle number overestimation as NTA does not distinguish between EVs and similarly sized 

structures (Théry et al., 2018a; Karimi et al., 2018; Ramirez et al., 2018; Gaspar et al., 2020a). 

We found that ApoAI co-purified with EVs in fraction 6-10. The finding was compatible with 

that of Gaspar et al. (2020), where  EV- derived plasma were isolated by SEC, which showed 

the presence of ApoAI in fractions 7–10 (Gaspar et al., 2020a), indicating that the separation 

of EVs and lipoproteins by SEC was unsuccessful. This finding was also comparable with those 

of many previous studies which showed that SEC alone is unable to completely separate EVs 

from lipoprotein particles (Sódar et al., 2016; Simonsen, 2017; Karimi et al., 2018a; Gaspar et 

al., 2020b).  Stranska et al. (2018) confirmed that SEC-derived EVs from human plasma have 

also been shown to be contaminated with albumin and lipoproteins (Stranska et al., 2018). 

Furthermore, Neuberger et al. (2021) confirmed the presence of ApoAI in EV-rich fractions 

from plasma, indicating lipoprotein co-isolation (Neuberger et al., 2021). ApoB was not 

detected in any fraction in our study, which may be due to the fact that the levels of ApoB in 

saliva are lower than those of ApoA when compared with plasma ( Karjalainen et al., 1997; 

Hirtz et al., 2016;).  

Although MVP (and other vault components) have been reported as EV cargo multiple 

times in the literature, vault particles were first found to be non-vesicular contaminants in 

2019 (Jeppesen et al., 2019). They had also previously been shown to contaminate 

intracellular vesicle preparations (Kedersha and Rome, 1986). However, it has been claimed 

that MVP is involved in facilitating the transport of RNA into exosomes (Teng et al., 2017; 

Statello et al., 2018). The size of these barrel-shaped particles (73 x 41 nm) is similar to that 
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of EVs and the vault components have been detected in a variety of bodily fluids and tissues 

( Admyre et al., 2007;Skogberg et al., 2013; Pienimaeki-Roemer et al., 2015), including saliva 

(Gonzalez-Begne et al., 2009). However, there have been no reports of active export or 

release of these particles, so the mechanism of how and why these particles are released by 

cells into the extracellular environment remains unknown. In our study, we have 

demonstrated that MVP is found in the EV-rich SEC fractions 5–8. Our data suggests that 

MVP/vault particles co-eluted with EVs, likely due to their similarity in size. A previous study 

identified MVP in EV fractions of plasma isolated by UC/Optiprep Density Gradient (Arab et 

al., 2019). Hence, researchers should be aware of the possibility of contaminants such as vault 

particles when enriching EVs. 

 

3.4.3 Characterization of salivary EVs  

NTA was performed to measure the particle size and concentration in each SEC 

fraction. The elution profile data and the peak elution were similar to those of the 

commercially available SEC columns, which also eluted the highest number of particles in 

fraction 8 (www.izon.com). The median diameter of particles in SEC fractions was 150 nm, 

which is consistent with studies, isolating small particles that range between 50-150 nm from 

saliva by SEC (Ogawa et al., 2008; Sharma et al., 2010; Sharma et al., 2011; Zlotogorski-Hurvitz 

et al., 2016; Iwai et al., 2016;; Ogawa et al., 2016; Han et al., 2020).  

Particles that were spread across multiple SEC fractions were concentrated by 

ultracentrifugation, which resulted in a 58% yield. Other studies have displayed that further 

purification leads to increased purity of EVs but it also decreases their quantity (Livshits et al., 

2015Wei et al., 2020). In addition, the size of particles was compared before and after UC as 

some studies have reported that the size of particles could be affected by this isolation 

technique (van der Pol, Edwin, 2012). However, the size of EVs remained unaltered at ~150 

nm after UC.  This finding was consistent with that of studies that demonstrated significant 

separation efficiency of small EVs from plasma with greater purity by using the SEC followed 

by UC (Wei et al., 2020; Alameldin et al., 2021).  The identity of particles isolated by SEC was 

confirmed by TEM, which revealed numerous structures typical of extracellular vesicles.  This 

finding conforms to previous reports of salivary EVs from healthy patients, which 

demonstrated by TEM that EVs isolated by SEC were cup-shaped and had intact membrane 
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structures and were of diverse sizes, indicating that the preparation contained a 

heterogeneous population of EVs (Ogawa et al., 2008; Palanisamy et al., 2010; He et al., 2020; 

Han et al., 2020). 

Exoview analysis of SEC purified EVs showed that the majority of EVs were CD63-

positive with another population of CD9/CD63-positive EVs; very few CD81-positive EVs were 

detected. Comfort et al. (2021) confirmed the co-expression of the three tetraspanins CD81, 

CD9, and CD63 by Exoview in EVs derived from healthy saliva (Comfort et al., 2021), 

suggesting that the discrepancy in our data is likely due to experimental error. We aimed to 

further validate our data by western blotting and added an additional EV marker, TSG101. 

The detection of CD63 and CD9 was variable amongst 6 different biological samples. However, 

CD81 and TSG101 were consistently detected. Variability of EV marker expression has been 

shown in many studies (Kowal et al., 2016; Newman et al., 2021) but it has also been 

suggested that  CD63 is a highly reliable EV marker; CD9 and TSG101 are often found at 

varying levels and are often not detected in EV samples (Kadota et al., 2018). The western 

blot findings of my study are similar to previously published studies in which all EVs markers 

(CD63, CD81, and CD9) were detected in salivary EVs (Zlotogorski-Hurvitz et al., 2015; Iwai et 

al., 2016; Sun et al., 2018; Yu et al., 2019; Nik Mohamed Kamal et al., 2020; Conzelmann et 

al., 2020; Li et al., 2021; Han et al., 2021; Comfort et al., 2021). The reason for the discrepancy 

of CD81 abundance between Exoview/western blot analysis remains to be elucidated.  

Due to the variability in CD63 and CD9 expression between the different samples, we 

attempted to retrospectively correlate the EV concentration in the sample before UC and the 

amount of protein used for the western blot. NTA data showed that samples 2 and 3 had a 

higher particle concentration than that of others. This was also compatible with BCA data 

which showed that these samples had the highest protein concentration. This suggests that 

the detection of CD63 and CD9 is dependent on the particle/protein yield of the sample 

whereas CD81 and TSG101 are more readily detected in less abundant samples. The study 

conducted by Wei et al. (2020) revealed that the pellets isolated from plasma by the 

combined SEC/UC method had the minimum total protein content compared to that of SEC 

alone and/or UC alone. By applying western blotting, they showed that not all EV markers 

were detected at the same level in the fractions separated by the combination method under 

the premise of the same protein quantity; however, they revealed the successful EV recovery 

by a combined SEC and UC isolation procedure (Wei et al., 2020). 



 
 

70 
 

3.4.4 Conclusion 

Taking together, although SEC appeared suitable for isolating salivary EVs, the 

technique is time consuming and low-throughput, which constitutes a problem when dealing 

with many clinical samples. The current study also provides evidence  that EV preparations 

using the SEC technique may be frequently contaminated with lipoproteins and MVP/vault 

particles. Without further characterisation and investigation, they could be classified as EV-

associated molecules, identified by the MISEV2018 guidelines as one of the main challenges 

that EV research encounters.  
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Chapter 4. Isolation of salivary EVs by Dynabead immunocapture  
 
4.1 Introduction 

After realising the limitations of size-based separation techniques and 

ultracentrifugation (Chapter 3), we needed an improved method that could consistently 

generate pure and intact EVs to provide reproducibility for biomarker studies. Recently, 

several alternative methods have been introduced and utilised for the isolation and 

purification of EVs. We investigated commercially available Dynabeads that capture EVs by 

immunoaffinity to particular surface markers (such as tetraspanins), which should minimise 

contamination of EVs with particles that have similar size/density characteristics (Oksvold et 

al., 2015; Cocozza et al., 2020).  

Dynabeads are superparamagnetic polystyrene beads that are coated with a primary 

monoclonal antibody specific for a variety of antigens including CD63, CD9, and CD81, which 

are present on salivary EVs according to western blot data (Chapter 3). Captured EVs can be 

eluted from the beads or lysed directly for subsequent analysis (Figure 4.1). Dynabeads are 

known for their sensitivity, reproducibility and stability (Wang et al., 2013). Another 

advantage is that the magnetic handling allows you to "see" your sample due to the light 

brown colour of the beads. When the sample tube is placed on the magnet, the bead-bound 

EVs are pulled to the side of the tube, allowing for easy separation and purification (Théry et 

al.,2006). 

EV isolation by immunocapture has been developed to improve EV enrichment 

efficiency and make the isolation process faster and less complex (Oksvold et al., 2015). The 

method isolates a more homogenous population of vesicles in terms of size, morphology, and 

protein content (Tauro et al., 2012). Resulting EVs are devoid of contamination with proteins 

and protein aggregates and have been proven to be of higher purity by many studies ( Zhang 

et al., 2019a; Jeppesen et al., 2019; Huang et al., 2020; Chen et al., 2020a; Liangsupree et al., 

2021) and it works efficiently even if the input sample volume is small (Konoshenko et al., 

2018). However, such techniques are less popular due to high cost, and where selecting 

specific EV subtypes is not desirable (Peterson et al., 2015). In addition, immunocapture is not 

suited for processing large sample volumes (Théry et al., 2006; Li et al., 2017b).  
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Figure 4. 1 Dynabead immunocapture procedure. Captured EVs can be eluted for whole particle 
assays, such as transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). 
Alternatively, captured EVs can be lysed to study their molecular contents, including proteins and 
RNAs. Adapted from Chen et al. (2020) and created by Biorender. 

 
Several optimization parameters are required for each biological fluid and isolation 

method, (such as testing the optimal input volume), which should be carefully tested because 

of their significance in the validation stages of any EV biomarkers (Soekmadji et al., 2018; 

Clayton et al., 2019), as emphasized by MISEV 2018 guidelines (Thery et al., 2018).  

The sample storage conditions for EV-based research is necessary to acquire results 

that reproduce the original physiological state of EVs (Ayers et al., 2011). The effects of 

storage conditions (temperature and duration) on EVs can affect properties such as size, 

integrity, content, particle number, aggregation, and function (Bæk et al., 2016; Muller et al., 

2014; Jeyaram and Jay, 2018). 

According to the literature, currently there is no consensus on the storage of fluids 

because the effects of storage appear to vary with sample source (Théry et al., 2018a; Clayton 

et al., 2019). Storage before EV purification may be convenient to allow simultaneous 

processing of samples from different patients or sources (Witwer et al., 2013c), however, this 

may be unavoidable in cases where the samples are obtained from a biobank (Yuan et al., 
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2021). At the same time, there is some consensus that fresh samples of biological fluid are 

preferred (Ayers et al., 2011; Szatanek et al., 2015).  

According to the MISEV2018 guidelines, western blotting is commonly used to confirm 

the presence of vesicle markers, in which at least three distinct marker proteins should be 

examined. Since none of the common markers are unique to a single EV subtype, it is 

recommended that researchers choose adequate isolation techniques to rule out other EV 

types rather than relying just on characterised markers (Théry et al., 2018).  In our study, 

TSG101 (a luminal EV protein), and CD63, CD9, and CD81 (typical transmembrane EVs 

markers) were used to optimise the Dynabead protocol (Jankovičová et al., 2020). 

 

4.2 Aims and objectives 

The aims of this chapter were to determine if Dynabead immunocapture was a more suitable 

salivary EV isolation technique and to explore the impact of storage of saliva on subsequent 

EV isolation. To meet these aims, the following objectives will be addressed: 

• Compare the efficiency of Dynabead immunocapture to SEC. 

• Evaluate input sample volume and stability of EV-bead complexes post-capture. 

• Quantify unbound particles after immunocapture. 

• Assess the effect of storage of saliva on the capture of salivary EVs. 

4.3 Results 

4.3.1 Compare isolation of Salivary EVs by SEC and Dynabead immunocapture 

The first aim in this chapter was to isolate salivary EVs by both SEC and 

immunocapture to compare efficiency. 10 ml saliva was obtained from six volunteers under 

standardised conditions. The saliva was clarified as previously described in (Section 2.2.1.2) 

and concentrated to 1 ml. At this point the samples were divided, 0.5 ml was processed by 

SEC and 0.5 ml processed by Dynabead immunocapture. The resulting EV pellets from SEC 

(followed by UC) and Dynabead-EV complexes were solubilised in RIPA buffer and analysed 

by western blot for EV markers. The signal intensity of EV tetraspanin markers (CD63, CD9, 

and CD81) was much stronger with Dynabead isolation, which indicates that Dynabead 

isolation is more efficient than SEC (Figure 4.2). 
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Figure 4. 2 Comparison of Dynabead isolation and SEC. EVs were isolated from equal volumes of saliva 
and solubilised in RIPA buffer, separated by SDS-PAGE and subsequent western blot analysis. EV 
lysates were probed for CD63, CD81 and CD9. The western blot images show six independent 
biological samples. 

 

 
 
 

 
 
 
 
 
 
 
 

 
 

 

 
 

CD63

CD81

CD9

Dynabeads capture SEC

1      2      3     4       5    6          1     2    3    4    5    6          

50-60 kDa

22-26 kDa

24-27 kDa



 
 

76 
 

4.3.2 Optimization of Dynabead immuno-capture isolation method 

4.3.2.1 Evaluating the efficiency of Dynabead immunocapture 

We next sought to evaluate how consistent Dynabead immunocapture was at 

capturing salivary EVs from equivalent volumes of saliva. EV-Dynabead complexes were 

pulled out of solution and solubilised for analysis by western blot. The concentration/size of 

particles before and after capture (that remained in the unbound fraction) was measured by 

NTA (Figure 4.3A). Blotting for CD9, CD63, and CD81 suggested that EV capture was broadly 

similar between different biological samples (Figure 4.3B). The average number of particles 

in samples prior to immunocapture was 8.98 x 1010 particles. Whereas the average particle 

number in unbound fractions was 9.83x 109, which represents a significant decrease in 

particle number (p=0.0313) (Figure 4.3C) and capture of 89% of particles present in the input 

sample. NTA revealed that the mean diameter of particles in the input sample and in the 

unbound fraction  was around ~200 nm and not significantly different (p=0.2200) (Figure 

4.3D).  
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Figure 4. 3 Assessing the efficiency of Dynabead immunocapture. A) Schematic depicting the 
experimental design of incubating saliva with a CD9/CD63/CD81 Dynabead cocktail, followed by 
separation of marker-positive EVs from unbound fraction using a magnet. B) Western blotting to 
detect EV markers (CD81, CD63, and CD9). The western blot image shows three independent biological 
samples. C) The number of particles before and after capture determined by NTA. Data is the average 
n=3 ± SD. D) The mean diameter of particles measured by NTA. Data is the average n=3 ± SD. Pairwise 
comparisons were conducted by Student’s t-test ns=not significant, **= p<0.05. 
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4.3.2.2 Assessing the input volume of saliva for Dynabead immunocapture  
 

After determining the high efficiency and reproducibility of immunocapture using 5 

ml saliva (Figure 4.3), we next tried to determine the minimum input volume of saliva that 

provided a detectable yield of captured EVs. Increasing concentrations of saliva (equivalent 

of 1 to 5 ml) were incubated with a fixed quantity of CD9/CD63/CD81 Dynabeads. Western 

blotting using solubilised Dynabead-EV complexes showed increasing signal intensity as the 

saliva input increased (Figure 4.4A).  All EV markers (CD63, CD81, CD9 and TSG101) were 

detectable when the saliva input was ≥2 ml. Only CD9 and TSG101 were detectable when the 

saliva input volume was 1 ml. In parallel to western blotting, we quantified the number of 

particles that were added to the beads and how many did not bind to the beads to determine 

if they became saturated as saliva input volume increased. As the number of particles 

incubated with the beads increased so did the number of particles in the unbound fraction 

(Figure 4.4B). However, the increase appeared proportional to the input quantity rather than 

a rapid increase that might suggest bead saturation. 
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Figure 4. 4 Optimum volume of saliva for Dynabead isolation. A) Western blotting to detect EV 
markers (CD81, CD63, and CD9, TSG101) after incubating Dynabeads with 1 to 5 ml saliva. The blots 
are representative of 3 experiments. B) NTA was used to determine the number of particles in the 
input sample, the unbound fraction and the first PBS wash. Bars show average of 3 experiments with 
error bars representing standard deviation. 
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4.3.2.3 Visualisation of Dynabead-EV complexes by TEM 

One technical difficulty related to immunocapture is particle analysis of captured EVs 

by NTA or similar techniques. To perform NTA the EVs must be released from the Dynabeads, 

but this methodology is not included in the Manufacturer’s instructions. Instead, we 

attempted to confirm the presence of salivary EVs bound to Dynabeads by TEM. Images of 

Dynabeads incubated with PBS (negative control) and with concentrated saliva were captured 

and showed that the beads were round with an irregular surface (Figure 4.5A). Occasional EV-

like structures were visualised on the surface of the Dynabeads with a spherical shape and 

measuring ~50 nm diameter (Figure 4.5B). These structures were not observed on negative 

control beads (Figure 4.7A). 
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Figure 4. 5 Imaging of Dynabead-EV complexes by TEM. A) Tetraspanin Dynabeads incubated with 
PBS (negative control). B) Tetraspanin Dynabeads incubated with saliva. Images were obtained by 
negatively stained, resin embedded TEM. Black arrows indicated EV-like structures on the surface of 
Dynabeads. Scale bars represent 100 nm. 
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4.3.2.4 Effect of storage time on captured salivary EVs  

We next wanted to determine if Dynabead-EV complexes could be stored at 4°C, 

which may be an advantage for downstream biomarker studies. EVs were isolated from 5 ml 

saliva and after the final wash step were stored in PBS at 4°C for up to 14 days. Western 

blotting for common EV markers showed similar band intensity at 1- and 2-day timepoints, 

however, by day 7 there was a noticeable decrease in TSG101 signal intensity suggesting a 

decrease in EV integrity and loss of luminal cargo (Figure 4.6). 

 

 
 

                          
 
 

Figure 4. 6 Effect of storage time on captured salivary EVs.  EVs incubated with Dynabeads and after 
the final wash step were incubated at 4°C for up to 14 days. Dynabead-EV complexes were lysed in 20 
μl of lysis buffer and separated by 12% SDS-PAGE. After transferring them to a nitrocellulose 
membrane, they were blocked and incubated overnight with the primary antibodies. Blots were 
developed by incubation with appropriate HRP conjugated secondary antibodies and incubated with 
Supernova reagent before exposure to X-ray film and developed on a Xograph X4. The blots shown 
are representative of three independent experiments. 
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4.3.2.5 Effect of storage of saliva on capture of EVs  

Next, we sought to determine if saliva could be stored before EV isolation. This would 

inform if saliva samples needed to be processed fresh or could be stored for batch processing. 

EVs were either isolated immediately (control) or saliva was stored overnight at 4°C or -20°C 

prior to EV isolation by Dynabead immunocapture. Western blotting of Dynabead-EV complex 

lysates showed a decrease in TSG101 signal intensity after storage at 4°C and -20°C, 

suggesting a decrease in EV integrity and loss of luminal cargo (Figure 4.7).  
 

 

                                
Figure 4. 7 Storage of saliva prior to immunocapture of salivary EV. EVs were either isolated 
immediately (control) or saliva was stored overnight at 4°C or - 20°C prior to EV isolation, then 
Dynabead-EV complexes were resuspended in RIPA buffer containing protease inhibitors to solubilise 
EV protein. 20 μl of each sample was separated by SDS-PAGE and transferred to a nitrocellulose 
membrane for subsequent western blot analysis. Representative blot from 3 independent 
experiments. 
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4.4 Discussion  

4.4.1 Dynabead EV isolation is more efficient than SEC 

In this chapter, we demonstrated an immunoaffinity-based isolation strategy using 

Dynabeads that successfully isolates salivary EVs. Western blotting suggested that the capture 

technique yielded more EVs for downstream analysis compared to SEC. Although SEC appears 

suitable for isolating salivary EVs, the technique is time-consuming and low-throughput, 

which is a problem when dealing with many clinical samples. Isolation of EVs based on size 

alone is not optimal due to contamination with similar sized particles (Brennan et al., 2020). 

Therefore, affinity-based capture is as an option for improving recovery and purity of EVs. The 

success of this approach depends on the stable presence on the EV surface of a marker or 

markers that can strongly bind a detection reagent such as a marker-specific antibody. In our 

experiments, we were able to pull out the marker-positive EVs (CD63/CD9/CD81) using 

magnetic bead/antibody complexes against specific well-defined EV markers, which should 

leave contaminating particles behind in the unbound fraction.  

Many studies have demonstrated the high efficacy of Dynabeads in capturing EVs from 

biofluids using tetraspanin markers (Caby et al., 2005; Jakobsen et al., 2015; Zhang et al., 

2019a; Chen et al., 2020a; Karimi et al., 2022b).  Immunoselection has improved efficacy to 

isolate EV from biological fluids compared to ultracentrifugation and density gradient 

centrifugation, making them highly attractive and suitable for clinical applications and 

diagnostic purposes (Caby et al., 2005; Tauro et al., 2012). Hinzman et al. (2022) found that 

immunocapture yielded smaller vesicles of a more uniform size when compared with UC and 

SEC (Hinzman et al., 2022). When compared to UC, Zhang et al. (2019) discovered that EVs 

isolated using Dynabeads have much narrower size distribution after releasing EVs from the 

magnetic beads. Since most body fluid-EVs are currently isolated using precipitation methods, 

which are frequently prone to being crude and contain aggregated contaminants (Musante 

et al., 2012; Kim et al., 2012; Paolini et al., 2016; Gámez-Valero et al., 2016a), Dynabeads can 

be especially helpful in EV isolation from biological fluids. While Dynabead isolation addresses 

the aforementioned issues, it unavoidably has the disadvantage of being marker-specific and 

only isolating a certain subpopulation of EVs (Alvarez et al., 2012; Ji et al., 2013; Rutter and 

Innes, 2017). For example, when isolated from various biological sources or utilising various 

enrichment methods, EVs express various markers (Alvarez et al., 2012; Ji et al., 2013; Karimi 

et al., 2022a), or when cells are in a different state (e.g. stressed vs actively growing) (Rutter 
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and Innes, 2017), which can result in inconsistent EV yield and EV content between 

experiments. In addition, due to the heterogeneity of tumours, it is possible that not all cells 

within a tumour may express the target antigen, meaning that EVs derived from those cells 

may not be captured (O'Loghlen, 2018). Furthermore, antigen modulation can occur as 

cancers advance, so that a tumour may initially produce the target antigen but that expression 

may decrease with time or the antigenic epitope may be blocked or masked (Beatty and 

Gladney, 2015). However, with the continuous discovery of new EV markers, a Dynabead 

cocktail comprising antibodies against numerous EV markers may be a feasible alternative. 

This separation method may benefit studies on EV cargo in marker-positive EV 

subpopulations, and it might also be employed as a negative selection strategy to facilitate 

larger investigations into other non-vesicular extracellular particles (Tauro et al., 2012; Taylor 

and Shah, 2015). 

Here, in our study, we found that 89% of salivary EVs were captured from input 

samples. Moreover, NTA data from the input sample and the unbound fraction revealed a 

similar mean particle diameter size of ~200 nm. This is broadly in agreement with the study 

by Zhang et al. (2019) that tested the efficiency of Dynabead EV isolation from plasma, which 

showed a high recovery efficiency (78%). In addition, they measured the size of EVs in the 

input sample before and after Dynabead isolation and found that they were the same, at ~200 

nm (Zhang et al., 2019). Immunocaptured EVs appeared morphologically intact and had a 

typical spherical-shaped morphology by TEM, measuring ~50 nm diameter. However, the 

number of imaged particles was too low to conduct any meaningful size analysis. With more 

time for protocol optimisation, additional images with better contrast could have been 

generated. This might allow more EVs to be imaged and for their size to be quantified.  

 
4.4.2 Saliva input volume and storage conditions affect EV yield and integrity 
 

In accordance with the MISEV 2018 guidelines, different factors that may affect the 

binding efficiency of Dynabeads were carefully examined, including input volume and sample 

storage conditions. The optimum input volume of different biological fluids when choosing an 

EV enrichment protocol is important, as some biofluids may need to be concentrated prior to 

EV isolation to allow downstream analysis, for example, proteomic and transcriptomic 

analysis (Caby et al., 2005; Kim et al., 2012).  
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The current study showed that among different input volumes of saliva (1-5 ml), all EV 

markers were detected by western blot for ≥2 ml. NTA data revealed that Dynabeads did not 

show signs of saturation when up to 5 ml saliva was used as input volume. El-Khoury et al. 

(2016) used increasing amounts of starting material to investigate the impact on miRNA 

extracted from cells, plasma, and urine/plasma-derived exosomes. They showed that miRNA 

recovery was largely influenced by the amount of input material and by the isolation method 

(El-Khoury et al., 2016). Zarovni et al. (2015) showed that magnetic beads demonstrated 

linear titration of captured exosomes when incubated with  100 μl to 1000 μl plasma (Zarovni 

et al., 2015). Another  study found that increasing the protein levels of the input exosomes 

linearly correlated with the protein level of CD34+ exosomes captured from plasma. However, 

they found the unbound fraction still contained CD34+ EVs (Hong et al., 2014). In contrast, the 

maximum input volume of urine for EV isolation by immunocapture was found to be 10 ml, 

at which point the  beads became saturated (Reithmair et al., 2022). 

The optimisation of sample storage conditions for EV-based research is necessary to 

obtain results that reflect the original physiological state of EVs (Ayers et al., 2011). Storage 

of biofluids seems to be inevitable before isolating EVs as many samples are obtained from  

biobanks and cannot be processed at collection to allow simultaneous processing of samples 

from different patients or sources (Witwer et al., 2013c). Many studies have suggested that it 

is advisable to proceed to vesicle isolation immediately after collecting the biofluid.  Thus, 

fresh samples are often preferable, but not always practical (Ayers et al., 2011). The effects 

of storage conditions (temperature and duration) on EVs can affect properties such as size, 

integrity, content, particle number, aggregation, and function (Bæk et al., 2016; Muller et al., 

2014; Jeyaram and Jay, 2018). In our study, the appropriate handling of saliva was 

investigated. We have shown through western blot analysis of four EVs markers that the 

integrity of the EVs decreased when saliva was stored at 4°C and -20°C. Processing the saliva 

immediately gave the best yield of intact EVs for biomarker studies. Other studies have 

published contrasting findings that suggest saliva can be stored prior to EV isolation. The total 

protein, morphology, and expression of EV markers (CD9, ALIX, and TSG101) were stable 

when human saliva was stored at 4°C for 7 days, but evidence of minor degradation of certain 

proteins was also found after storage (Kumeda et al., 2017). Freezing samples at -80°C  has 

been reported to preserve most EV particles derived from blood, but incubation at 4°C and 

20°C caused significant loss of EV numbers (Lőrincz et al., 2014). The effects of storage might 
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change depending on the sample source (Clayton et al., 2019; Théry et al., 2018c). Duration 

of storage could also have an impact on RNA biomarker studies if RNA cargo is lost from EVs 

upon freezing (Debey et al., 2004; Sourvinou et al., 2013; Lee et al., 2016). Hu et al. (2020) 

have found that EVs isolated and stored for the short-term (2 weeks) at 4 °C would decrease 

the EV RNA level, whereas freezing at -80°C or -20°C for the long term showed no change in 

RNA or protein levels (Hu et al., 2020a). Our results show that Dynabead-EV complexes were 

stable at 4°C for at least 2 days. However, at 7-14 days there was a decrease in EV integrity 

and loss of luminal cargo. According to MISEV 2018 guidelines  isolated EVs should only be 

stored in the short-term at 4 °C. For long-term storage, isolated EVs should be stored at −80 °C 

(Witwer et al., 2013c; Théry et al., 2018c). 

 

4.4.3 Conclusion 

Altogether, this chapter demonstrates that Dynabead immunocapture is more 

efficacious than SEC isolation for capture salivary EVs. Though Dynabead capture appears to 

be less cost-effective when compared to traditional techniques such as DC and SEC, it isolated 

EVs that were detectable by western blotting from as little as 2 ml of saliva. The captured EVs 

were stable for up to 2 days once bound to Dynabeads, but extended storage led to 

degradation. In addition, isolation of salivary EV worked best from fresh saliva. The findings 

from this chapter inform the handling of clinical samples that will be utilised in the subsequent 

chapter.   
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5. Characterisation of OSCC patient salivary EV miRNA cargo  

5.1 Introduction 

It is generally recognised that EVs contain a wide range of molecular cargo, including 

protein, lipid, DNA, and RNA (Abels and Breakefield, 2016) with RNA being the most 

extensively studied. Deep sequencing of RNA cargos obtained from immune cell EVs revealed 

a diverse group of protein-coding and non-coding RNAs (Nolte-'t Hoen et al., 2012). The fact 

that EV RNA cargo differs from total cellular RNA suggests that packing mechanisms are 

selective (Nolte’T Hoen et al., 2012). Multiple RNA species have been found as EV cargo, with 

new RNA species being gradually discovered. Ratajczak et al. (2006) proposed that RNA might 

be transferred horizontally between donor and recipient cells via EVs (Ratajczak et al., 2006b). 

In 2007, Valadi et al. presented one of the instances of EV RNA exchange between cells. It was 

demonstrated that EVs transported messenger RNA (mRNA) into recipient cells, where the 

mRNAs were translated into proteins (Valadi et al., 2007a). Since then, the use of CRE 

recombinase-controlled reporter systems has demonstrated EV mRNA transport in vivo 

(Ridder et al., 2015). 

EVs also contain non-coding RNAs, which are of great interest because of how they 

regulate gene expression. Small nucleolar RNAs (snoRNAs), transfer RNAs (tRNAs), ribosomal 

RNAs (rRNAs), long non-coding RNAs (lncRNAs), piwi-interacting RNAs (piRNAs), and vtRNAs 

are some of the several forms of RNA that comprise this population (Nolte-'t Hoen et al., 

2012). Among all these, miRNAs represent a highly conserved class of RNA molecules. These 

small (19–22 nucleotides long) RNA molecules usually bind to their mRNA targets' 3’ 

untranslated region (3ʹUTR), causing post-transcriptional gene regulation through translation 

inhibition or mRNA degradation (Momen-Heravi and Bala, 2018a; Li et al., 2018). It has also 

been shown that the secondary structure of the 5ʹ untranslated region (5ʹUTR) of mRNA is 

important for miRNA-mediated gene regulation in humans (Gu et al., 2014). The presence of 

both mRNAs and miRNAs in EVs was first reported in 2007 (Valadi et al., 2007a). 

It has been demonstrated that the EVs released by tumour cells are different from 

those of normal cells (Tűzesi et al., 2017). EV RNA cargo has been shown to contribute to 

multiple pro-tumorigenic phenotypes such as increased proliferation, angiogenesis, and 

metastasis (Li et al., 2016b; Cai et al., 2019; Hu et al., 2020b; Baig et al., 2020). There are two 

main possible impacts of packaging RNA into EVs: removal of RNA from the cellular 
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environment and functional impact on recipient cells. A CRE recombinase-controlled reporter 

system was used to demonstrate that cancer EVs may spread oncogenic RNA species to 

nearby cells, suggesting a physiological function for EV RNA transfer (Zomer et al., 2015). 

Others have demonstrated that tumour suppressor miRNAs may be concentrated in cancer 

EVs, and that when EV release is inhibited, tumorigenic phenotypes of the cells are repressed 

(Ostenfeld et al., 2014b). 

Oral cancer screening has been proposed to employ particular salivary miRNAs as 

disease indicators (Liu et al., 2012b; Duz et al., 2016). Currently, characterising small EV RNA 

content is a main topic of research. It was discovered that RNA cargo is sorted differently into 

various types of EV because EVs are a highly diverse population (O'Brien et al., 2020). 

Numerous studies have suggested that miRNAs in salivary exosomes could be a potential 

resource for the diagnosis of oral cancer and may become a new oral cancer biomarker 

(Michael et al., 2010; Machida et al., 2016; Chiabotto et al., 2019). Langevin et al. (2017) 

detected differences in miRNA expression levels in salivary exosomes from patients with head 

and neck squamous cell carcinoma when compared to comparable controls using miRNA 

microarrays (Langevin et al., 2017). He et al. (2020) demonstrated differences expression  in 

miRNA 24-3p expression in salivary exosomes from patients with OSCC compared to the 

corresponding control saliva samples by using microarray analysis and subsequent qRT-PCR 

validation (He et al., 2020). EV miRNA cargo are protected from RNases in body fluids by 

encapsulation within the  phospholipid bilayer membrane (Mumford et al., 2018). Therefore, 

examination of EV miRNA from saliva, which is in contact with tumor tissue, could be 

exploited as a valuable source of biomarkers for oral cancer (Teng et al., 2021).  

Previous studies that have profiled salivary EV RNA have utilised EV isolation 

techniques such as UC that, in our laboratory, gave sub-optimal results (Langevin et al., 2017; 

Farag et al., 2021). Here we build on knowledge and expertise from our preliminary studies 

and employ our pre-optimised Dynabead EV isolation strategy. We also use an unbiased small 

RNA sequencing approach to determine EV miRNA cargo. 
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5.2 Aims and objectives 

The main aim of this chapter was to compare the miRNA cargo of salivary EVs isolated from 

patients with OSCC compared to healthy controls. To address this aim, the following 

objectives will be addressed: 

• Isolate salivary EVs from patient saliva samples using Dynabead immunocapture and 

extract EV RNA 

• Quantify salivary EV RNA by Bioanalyzer analysis.  

• Conduct small RNA sequencing on a subset of RNA samples to determine differentially 

expressed miRNA 

• Validate small RNA sequencing data in the whole cohort using qRT-PCR. 

 

5.3 Results 

5.3.1 Study participants  

A cohort of 17 newly diagnosed patients with OSCC (11 men and 6 women) were 

recruited. Although all cancer patients were diagnosed with OSCC, tumours were situated in 

different anatomical sites within the oral cavity: seven within the tongue, three within the 

retromolar region, one of the maxilla, two associated with the palate, one of the alveolar 

ridge, and three affecting the floor of the mouth. A cohort of 7 healthy patients (5 men and 2 

women) were also recruited from routine dental clinics. All patients were recruited in 

accordance with NHS ethics application IRAS: 264332/STH: 20945, during their treatment at 

Sheffield Teaching Hospitals Trust. Saliva collection from OSCC patients was carried out prior 

to cancer treatments such as surgical resection. Anonymised details of the study participants 

are provided below (Table 5.1).  
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Table 5. 1 Clinical details of OSCC patients and healthy controls. 

Sample 
number 

Site Gender Age Smoking 
status 

(cigarettes 
per day) 

 

Drinking Status 
(units per 

week) 
 

Disease status 
(healthy or 

cancer) 
 

C01 Tongue 
 
 

Male 63 - - Cancer 

C02 Left retromolar 
region 

 

Male 70 15 37.8 Cancer 

C03 Right retromolar 
region 

 

Male 56 10-12 50 Cancer 

C04 Left lateral 
tongue 

Male 72 0 
(stopped 

1996) 

14 Cancer 

C06 Left floor of 
mouth 

 

Female 
 
 

67 0 14 Cancer 

CO7 Right lateral 
tongue and floor 

of mouth 

Male 53 20 42 Cancer 

C08 Right ventral 
tongue 

Female 
 
 

52 15 42 Cancer 

C09 Maxilla Male 76 0 23 
 

Cancer 

C10 Right alveolar 
ridge 

 

Male 60 15-20 0 Cancer 

C11 Flour of mouth 
 
 

Female 61 5 (reduced 
from 20) 

None for 1 year Cancer 

C12 Retromolar 
region 

 

Male 71 20 18 Cancer 

C13 Tongue 
 

Male 71 30 8.7 Cancer 

C14 Ventral tongue 
 

Female 58 20 113.4 Cancer 

C15 Palate 
 
 

Male 62 20 120 Cancer 
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C16 Ventral tongue 
 

Male 75 0 13.53 Cancer 

C17 Palate 
 

Female 45 10 10 Cancer 

C20 Floor of mouth 
 

Female 
 

59 
 

Stopped 10 
ago 

 

21 
 

Cancer 

H06 NA Male 42 0 12 Healthy 

H07 NA Female 41 10 + 1 pipe 
of cannabis 

Occasional Healthy 

H10 NA Male 57 0 12 Healthy 

H11 NA Female 71 0 8 Healthy 

H12 NA Female 66 0 
(Stopped 15 
years ago) 

14 Healthy 

H13 NA Female 66 0 1.5 Healthy 

H14 NA Female 71 0 0 Healthy 

 
 
 

5.3.2 Transcriptomic analysis of clinical samples 

5.3.2.1 EV-RNA isolation and Bioanalyzer analysis  

To determine differences in small RNA cargo in salivary EVs produced by healthy and 

cancer patients, EVs were isolated by Dynabead immunocapture from up to 5ml of saliva. 

Total RNA was extracted from EV-Dynabead complexes and the integrity of isolated RNA was 

characterised using an Agilent 2100 Bioanalyzer coupled with an RNA 6000 Pico LabChip. The 

Bioanalyzer traces showed abundant small RNA species 25 to 200 nucleotides in length across 

all samples (except C10, C11, and C12, which failed Bioanalyzer analysis and were excluded 

from further analysis). This indicates the enrichment of small RNA species in EV RNA samples 

(Figure 5.1). There was an absence of ribosomal RNA peaks (18S, 28S) that are expected in 

cellular RNA samples. No differences were observed between the RNA profiles of OSCC 

patients and healthy controls (Figure 5.1 A,B).  EV-RNA concentrations were automatically 

calculated based on the area under the curve from cancer samples and control samples (Table 

5.2). 
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A) Healthy controls
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B) Cancer groups
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Figure 5. 1 Bioanalyzer traces of salivary EV-RNA.  EVs were isolated from the saliva of cancer patients 
and healthy individuals by Dynabead immunocapture and resuspended in RNA lysis buffer followed 
by RNA extraction. 1 μl of each purified RNA sample was used for RNA quantification on an RNA 6000 
Pico LabChip on an Agilent 2100 Bioanalyzer. The histograms show the RNA distributions range from 
25-200 nucleotides. The X axis shows the number of nucleotides (nt). The Y axis shows fluorescence 
units (FU).  
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Table 5. 2 EV RNA concentration determined by Bioanalyzer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample RNA 
concentration 

(pg/µl) 
H06 594 
H07 903 
H10 671 
H11 760 
H12 912 
H13 570 
H14 693 
C01 482 
C02 670 
C03 522 
C04 706 
C06 438 
C07 378 
C08 486 
C09 1102 
C10 0 
C11 0 
C12 0 
C13 842 
C14 925 
C15 788 
C16 1100 
C17 1057 
C20 633 
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5.3.2.2 Small RNA sequencing of salivary EV cargo 

At the time samples were sent for RNA sequencing not all patients had been recruited 

due to delays caused by the COVID pandemic and prolonged suspension of clinical research 

projects. We had originally planned to sequence age/sex matched samples and select healthy 

patients with similar smoking/drinking status to the OSCC patients. However, recruiting 

healthy patients became very difficult due to reduced routine dental treatment in the Charles 

Clifford Dental Hospital. The frequency of OSCC surgeries also reduced due to the impacts of 

the COVID pandemic. No patients (healthy or cancer) were recruited to this study for almost 

12 months. We therefore selected RNA samples derived from healthy patients (H06, H10 and 

H11) and OSCC patients (C02, C04, C06, C07 and C09) for sequencing that were available at 

the time. The healthy patients were selected and all drank alcohol which a common risk factor 

shared with the OSCC patients. The OSCC patients were selected to examine a variety of 

tumour locations within the oral cavity (retromolar region, tongue, floor of the mouth and 

maxilla). 

The salivary EV RNA from the cohort of five patients with OSCC and three healthy 

controls was analysed by small RNA sequencing, which showed that no miRNAs were 

significantly downregulated, but 17 out of 1398 miRNAs were significantly upregulated in 

OSCC patient-derived salivary EVs compared with the healthy group (Figure 5.2). The 

upregulated miRNA were: miR-92a-3p, miR-21-5p, miR-1273h-3p, miR-181a-5p, miR-16-5p, 

miR-22-3p, miR-29a-3p, miR-23a-3p, miR-320a-3p, miR-3184-5p, miR-1290, miR-101-3p, miR-

221-3p, miR-30d-5p, miR-186-5p, miR-1246, and miR-7847-3p. The largest fold change 

observed was for miR-1273h-3p (58.2-fold) and the smallest fold change was observed for 

miR-1290 (8.7-fold)  (Table 5.3). 
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Figure 5. 2 Relative abundance of miRNA in salivary EVs from OSCC cancer patients compared to 
healthy patients. Cut offs for Log2 fold change was set at -1 and 1 (2-fold change in either direction) 
and -Log10 P value > 1.3 (P value <0.05), which is denoted by the grey line. MiRNA reaching the fold 
change and P value cut-offs are highlighted in red. Named microRNA were selected for validation by 
qRT-PCR. 
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 Table 5. 3 Significantly upregulated miRNAs in OSCC salivary EVs. MiRNA are ordered by P value. 

 
 
 
 
 
 
 
 
 
 
                   
       

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name Fold change  P value 

miR-92a-3p 54.3 0.003 

miR-21-5p 49.8 0.004 

miR-1273h-3p 58.2 0.011 

miR-181a-5p 33.8 0.012 

miR-16-5p 28.0 0.013 

miR-22-3p 28.3 0.013 

miR-29a-3p 26.5 0.018 

miR-23a-3p 12.9 0.026 

miR-320a-3p 11.0 0.028 

miR-3184-5p 18.9 0.028 

miR-1290 8.7 0.029 

miR-101-3p 33.4 0.035 

miR-221-3p 19.8 0.037 

miR-30d-5p 31.3 0.041 

miR-186-5p 43.8 0.042 

miR-1246 9.1 0.044 

miR-7847-3p 15.7 0.048 
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5.3.2.2.1 Cluster analysis 

Principal component analysis (PCA) was performed according to the EV miRNA 

expression data to highlight the degree of similarity between each sample by converting 

complex data into a 2D format to find patterns or clustering. 

The PCA plot shows that healthy samples (H06, H10 and H11) cluster together (Figure 

5.3). The cancer samples (C02, C04 and C09) are separated along PC1 and PC2 axes, exhibiting 

greater expression dissimilarity. However, C06 and C07 are clustered close together and 

adjacent to H06 (Figure 5.3). Both C06 and C07 were derived from saliva from patients with 

OSCC involving the floor of the mouth.  Whereas sample C09 (OSCC of the maxilla), C02 (OSCC 

of the retromolar region), and C04 (OSCC of the tongue) were clustered separately (Figure 

5.3).  

                        
Figure 5. 3 Principal component analysis of EV miRNA abundance. Each dot represents an individual 
sample. Green dots represent the healthy samples and red dots represent the OSCC samples. 
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5.3.2.2.2 Visualising miRNA families  

Here, we sought to visualise the entire EV miRNA dataset as a network using miRViz. 

MiRNAs are often redundant in the sense that many miRNAs can target the same mRNAs. As 

a result, miRNAs that are highly connected in the network might be interesting to study 

together. MiRViz (http://mirviz.prabi.fr/) is a webserver application designed to identify 

miRNA from the primary sequence and classify them into miRNA families, allowing direct 

visualization of miRNA families by connecting pairs of miRNA nodes that share the same seed 

sequence.  

Differentially expressed miRNAs present in salivary EV from OSCC and healthy patients 

were visualised on a colour scale, with red nodes indicating upregulation and green nodes 

indicating downregulation. This analysis was based on Log2 fold change for the entire miRNA 

dataset and no P value cut-off was applied. MirViz allowed global inspection of the dataset 

and also closer inspection of individual miRNA families and nodes (Figure 5.4). In the human 

genome, the miR-181 family is composed of four different 5p mature forms, namely miR-

181a-5p; miR-181b-5p; miR-181c-5p; and miR-181d-5p. miRViz showed that three members 

of the miR-181 family were upregulated in EV RNA from OSCC patients (Figure 5.4). The miR-

29 family contains three members: miR-29a-3p, miR-29b-3p, and miR-29c-3p. Two of the miR-

29 family and an associated miRNA (miR-6871-3p) were upregulated in OSCC derived EVs 

compared to healthy controls (Figure 5.4). Two members of the miR-23 family were also 

found to be upregulated in OSCC EV RNA samples (Figure 5.4). In contrast, despite miR-1273h-

3p being the most upregulated miRNA in the small RNA sequencing dataset, no other related 

miRNA were increased (Figure 5.4). 
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Figure 5. 4 Colour scale representation of the differentially expressed EV miRNAs grouped by seed 
sequence. Lines between individual nodes show similarity based on seed sequence. Red and green 
nodes correspond to miRNAs upregulated and downregulated in OSCC salivary EVs, respectively. The 
miRNA cluster in the black square corresponds to the miR-181 family, the purple hexagon corresponds 
to the miR-29 family, the green circle to the miR-1237 family, and the yellow triangular to the miR-23 
family. Analysis performed and images generated by miRViz. 
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5.3.2.3 Validation of upregulated miRNAs by qRT-PCR 

We next attempted to validate small RNA sequencing data by qRT-PCR. Four miRNAs 

were selected for validation (miR-21-5p, miR-29a-3p, miR-92a-3p and miR-181a-5p) from the 

list of significantly upregulated miRNA (Table 5.3) based on reports that they were 

upregulated in previous studies of OSCC. The small RNA sequencing data was inspected for 

miRNA present in equal quantities across all samples that could be used as an endogenous 

control, but no suitable candidates were found. Therefore qRT-PCR data is presented as Ct 

values, where a lower Ct value represents higher expression of the target miRNA. 

All 21 samples that yielded RNA (n = 14 cancer patients and n = 7 healthy controls) 

were included in the qRT-PCR analysis.  A comparison of cancer and healthy samples showed 

there was no statistically significant difference for any of the target miRNA (Figure 5.5). There 

was variation in Ct value between the groups and within each group. Apart from miR-29a-3p 

(where Ct values were more similar between groups), there was a trend that a proportion of 

cancer samples displayed higher expression (lower Ct value) for the target miRNA. However, 

due to the large amount of variation within the cancer group this did not reach statistical 

significance. 

  

 
 
 
 
 
  
 
 
 
 



 
 

105 
 

       
 
Figure 5. 5 Validation of small RNA sequencing by qRT-PCR. The study cohort of 14 cancer patients 
and 7 healthy controls were analysed. The Ct value of miRNA from cancer and a healthy control were 
plotted. An individual dot indicates one sample. P value > 0.05 by Student’s t-test is considered not 
significant (ns). 
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5.4. Discussion  

5.4.1 Integrity and quantity of RNA in salivary EVs  

Due to low RNA amounts and a lack of standards, such as those developed for cellular 

RNA, measuring the quantity and quality of EV-associated RNA is challenging. This is true for 

EVs derived from in vitro cell cultures in general, but it is especially true for those derived 

from patient samples, where high sample quantities may be difficult to obtain. Many of them 

are caused by the fact that research involving EV-RNA often involves working with minimal 

amounts of RNA in comparison to the quantities seen in cells (Mateescu et al., 2017b). EV 

samples largely lack complete large and small ribosomal RNA subunits, in contrast to cellular 

RNA, where intact ribosomal RNA predominates in the pool of RNA. As a result, the amount 

of RNA needed for certain analytical techniques (such as sequencing, microarrays, or qRT-

PCR) may differ from the guidelines for cellular RNA samples (Mateescu et al., 2017b).  

There are numerous RNA detection methods for quantifying EV-RNA, with the 

Bioanalyzer being one of the most useful for determining total RNA content and length 

distribution. Some groups isolating EVs from fluids such as blood plasma or urine report the 

enrichment of small RNA species and absence of 18s and 28s (Huang et al., 2013). In another 

study, Bioanalyzer traces showed enrichment of small RNAs in EVs and plasma of patients 

with OSCC (Momen-Heravi and Bala, 2018b). Here, the Bioanalyzer traces showed salivary 

EVs were enriched with small RNA species with the absence of intact 18s and 28s rRNA, which 

is in agreement with previous reports (Wei et al., 2017; Eldh et al., 2012). We did not observe 

any difference in EV RNA Bioanalyzer profiles between the different groups. Overall, our total 

EV RNA profiles seemed to be consistent with those stated in the literature and were of 

sufficient quantity for small RNA sequencing. 

 

5.4.2 Salivary EV miRNA biomarker profiles   

Here we attempted to build on previous studies that have attempted to use EV RNA 

signatures as biomarkers for oral cancer. Previous studies had utilised techniques such as  

differential ultracentrifugation (Langevin et al., 2017; Farag et al., 2021) and precipitation 

(ExoQuick) (Byun et al., 2015; He et al., 2020) to enrich salivary EVs. However, these methods 

are not able to separate salivary EVs from other extracellular particles (Yuana et al., 2015; 

Zlotogorski-Hurvitz et al., 2015). In addition, methods such as UC can be time-consuming and 
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are not suitable for processing large numbers of clinical samples. Therefore, we previously 

optimised a Dynabead salivary EV immunocapture protocol (Chapter 4), which could be 

adapted to a high throughput diagnostic lab setting.  We hypothesised that salivary EVs 

(captured using our Dynabead protocol) derived from OSCC patients contain oncogenic 

miRNAs that can be used as diagnostic biomarkers. Small RNA sequencing has advantages 

over microarray and qRT-PCR screening of miRNA because it offers high-throughput and 

unbiased analysis to discover low abundance and novel miRNA variants (Liu et al., 2011). 

In our study, small RNA sequencing was performed on a cohort of 5 patients with OSCC 

cancer and 3 healthy controls, which identified 17 miRNA that were upregulated in OSCC 

samples. Many of these miRNAs had previously been linked to OSCC in previous studies 

(summarised in Table 5.4). Some of these miRNAs are discussed in detail below. 
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Table 5. 4 MiRNA that were upregulated in OSCC patients in previous studies. 

Name  Sources References  

MiR-92a-3p Serum (MacLellan et al., 2012) 

MiR-21-5p Saliva/tissue 

Blood 

Plasma/tissue 

OSCC tissue 

EVs derived from oral 
cancer cell line 

(Jadhav et al., 2022) 

(Ren et al., 2014) 

(Schneider et al., 2018) 

(Hui et al., 2010b) 

(Chen et al., 2019) 

MiR-1246 EVs derived from oral 
cancer cell line 

Salivary EVs 

OSCC tissue 

 
(Sakha et al., 2016) 
 
(He et al., 2020) 
 

(Liao et al., 2015) 

Mi181a-5p OSSC tissue  

Tumour tissues/plasma 

(Zheng et al., 2018) 

(Yang et al., 2011) 

 
MiR-29a-3p  OSSC tissue 

EVs derived from oral 
cancer tissue 

OSCC tissue 

EVs derived from oral 
cancer cell line/ Blood 

(Manikandan et al., 2016) 

(Hulsmans and Holvoet, 
2013) 

 

(Cai et al., 2019) 

 
MiR-1290 OSCC cell line 

OSCC Cell line  

OSCC Tissue/cell line 

(Qin et al., 2019) 

(Janiszewska et al., 2015) 

(Chen et al., 2020b) 

MiR-23a-3p EVs derived from oral 
cancer cell line. 

EVs derived serum/OSCC 
tissue 

(Masaoka et al., 2021) 

(Bao et al., 2018) 

MiR-186-5p Plasma (Summerer et al., 2015) 

MiR-16-5p OSCC cells/tissue (Hui et al., 2010) 
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5.4.2.1 MiR-92a-3p 

Previously miR-92a has been identified as an oncogenic member of the miR-17-92 

family (Sandhu et al., 2013) and it has been shown to act on the proliferation of cancer cells 

and tumour growth, inhibit cell apoptosis and promote metastasis (Li et al., 2014). Yang et al. 

(2020) found  enriched exosomal miR-92a-3p in the plasma of hepatocellular carcinoma 

patients with high-metastatic potential (Yang et al., 2020). Jinghua et al. showed that miR-

92a-3p expression was enhanced in breast cancer tissues and cells (Jinghua et al., 2021). 

Groups have identified upregulation of miR-92a-3p in biological fluids for example, 

MacLellan et al. (2012) found an upregulation of miR-92a-3p in the serum of HNSCC patients, 

Fassan et al. (2020) revealed miR-92a-3p as a biomarker that was over-expressed in the blood 

of precancerous lesions of esophageal adenocarcinoma compared to normal squamous 

esophageal mucosa and Shin et al. (2015) observed elevated levels of miR-92a-3p in the 

plasma of breast cancer patients compared with healthy individuals. In addition, up-

regulation of miR-92a-3p has been reported in gastric cancer patients' sera (Li et al., 2017a).  

Overall, miR-92a-3p appears to be upregulated in biological fluid derived-exosomes. 

Progression of cancer appears to be a major function targeted by miR-92a-3p and may be 

responsible for development of cancer. 

 

5.4.2.2 MiR-21-5p  

MiR-21 is one of the most abundant and well-conserved miRNAs identified (Jenike and 

Halushka, 2021). It is overexpressed in a number of solid malignant tumours and has been 

shown to be a strong prognostic marker in head and neck cancer (Childs et al., 2009; Fu et al., 

2011; Sannigrahi et al., 2018; Dioguardi et al., 2020). MiR-21 is a critical regulator of cell 

proliferation, migration, invasion, apoptosis, metastasis, and the epithelial to mesenchymal 

transition during cancer progression in a variety of cancers (Chan et al., 2005; Li et al., 2009; 

Hermansen et al., 2013; Cappellesso et al., 2014), and it has been postulated that miR-21 

expression might indicate a worse prognosis (Asangani et al., 2008; Hwang et al., 2010).  

Previous studies have demonstrated a statistically significant correlation between 

miR-21-5p expression in the saliva and tumour tissue of patients with OSCC with cervical 

lymph node metastasis with a diagnostic accuracy of 65% to 71.54% in saliva and 69% to 

81.54% in tumour tissue (Jadhav et al., 2022). Higher levels of miR-21 expression have been 

shown in HNSCC tissue (Shen et al., 2022), and in tongue cancer have been linked to advanced 



 
 

110 
 

clinical stage, poor differentiation, and lymph node metastasis (Avissar et al., 2009; Ganci et 

al., 2016); increased expression of mi-21-5p in HNSCC tissue has also been shown (Shen et al., 

2022). Another study found that miR-21 promotes oral tongue squamous cell carcinoma 

invasion via the Wnt/-catenin pathway by targeting DKK2 in vitro (Kawakita et al., 2014) while 

Zhang et al. showed exosomal delivery of miR-21-5p to human umbilical vein endothelial cells 

increased angiogenesis via inhibiting CXCL10 (Zhang et al., 2022). Chen et al. (2019) revealed 

that OSCC EVs are enriched with miR-21-5p and are associated with increased metastasis, 

stemness, chemoresistance, and poor survival in patients with OSCC (Chen et al., 2019). 

Bodily-fluid-based miRNA studies have revealed higher expression of miR-21-5p in the 

blood of OSCC patients (Ren et al., 2014; Schneider et al., 2018). Furthermore, miR-21-5p 

expression in circulating exosomes was markedly higher in colorectal cancer patients than in 

healthy donors (He et al., 2021).  

Overall, miR-21-5p is a critically important miRNA in the development of many 

cancers. It was shown to be up-regulated in a variety of cancers, mainly in the biological fluid 

of OSCC cancer. 

 

5.4.2.3 MiR-181a-5p 

MiR-181a-5p belongs to the miR-181 family, which plays an important role in 

malignant diseases (Zekri et al., 2018).  It has been suggested  that MiR-181a-5p acts as a 

tumour suppressor gene in many cancers (Shen et al., 2018), however, Zheng et al. (2018) 

found  miR-181a-5p was significantly upregulated in OSCC tissue and  was linked to tumour 

proliferation in a variety of cancers  with roles in cell cycle, apoptosis, proliferation, migration, 

and invasion (Zheng et al., 2018). In addition, miR-181a-5p is widely known to be associated 

with the development and differentiation of blood vascular endothelial cells (Kazenwadel et 

al., 2010) and lymphocytes (Li et al., 2007). miR-181a-5p was found to be associated with 

lymph node metastasis and poor OSCC patient survival (Childs et al., 2009; Chang et al., 2013). 

Yang et al. (2011) discovered over-expression of miR-181 correlated with lymph-node 

metastasis of OSCC, vascular invasion, and poor survival. Up-regulation of miR-181 has been 

reported in OSCC transformation from dysplasia (leucoplakia) to invasive tumour (Liu et al., 

2020). 
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MiRNA-181-5p was found to be overexpressed in the plasma exosomes of patients 

with  thyroid cancer (Samsonov et al., 2016), colon cancer (Shtam et al., 2017) and lung cancer 

(Tian et al., 2017). Gao et al. (2014) found that miR-181-5p was highly expressed in the salivary 

supernatant of patients with pancreatic cancer (Gao et al., 2014). In addition, elevated 

expression of miR-181a was identified as a negative prognostic molecular marker in HNSCC 

(Jamali et al., 2015) in a meta-analysis of 21 studies involving 1,685 patients,. 

Overall, miR-181a-5p plays a key role in the development of cancer and upregulation 

of miR-181a-5p has been identified in exosomes derived from biological fluid. 

 

5.4.2.4 MiR-16-5p 

MiR-16-5p has been shown to be a vital component of the intracellular miRNA 

regulatory network, causing an inhibitory effect on the growth and invasion of cancer, 

including breast cancer and osteosarcoma. Qu et al. (2017) showed overexpression of miR-

16-5p contributes to growth inhibition in vitro and in vivo, cell apoptosis, and a decrease in 

the invasiove capacity of breast carcinoma cells (Qu et al., 2017).  Gu et al. (2020) found that 

overexpression of miR-16-5p resulted in the inhibition of the proliferation, migration, and 

invasion of osteosarcoma cells (Gu et al., 2020). 

MiR-16 has been reported to be one of the most stably expressed miRNAs in body 

fluids (Bryzgunova et al., 2016; Romani et al., 2021). Fan et al. showed overexpression of miR-

16-5p in the serum of early breast cancer patients (Fan et al., 2018). In lung cancer patients, 

levels of miR-16-5p were elevated in the plasma of two subclasses of lung cancer, 

adenocarcinoma and squamous cell carcinoma, in comparison with healthy controls (Wang 

et al., 2018a). Furthermore, upregulated miR-16-5p was identified in tissue samples of HNSCC 

(Hui et al., 2010a). Overexpression in exosomes derived from the tissue of oesophageal 

squamous cell carcinoma has been shown by Chen et al. (2019).  

Overall, miR-16-5p appears to inhibit the growth and metastasis of cancer and is 

overexpressed in biological fluids and tissue of a number of cancers. 

 

5.4.2.5 MiR-22-3p 
 

MiR-22 has been shown to have a significant impact on cancer phenotypes such as 

proliferation, cell cycle and apoptosis, invasion, and metastasis (Yang et al., 2015; Luo et al., 
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2017). MiR-22 has also been shown to accelerate cell senescence, suppress energy 

metabolism and angiogenesis, and slow the EMT process in various cancers  (Xu et al., 2011; 

Yamakuchi et al., 2011). The mechanisms of miR-22-induced tumour progression are complex 

(Landgraf et al., 2007) and may involve numerous regulated genes, such as PTEN, Sp1, SIRT-

1, CD147, and E-cadherin (Luo et al., 2017; Dhar et al., 2017; Xia et al., 2017). Zuo et al. (2015) 

discovered overexpression of miR-22-3p markedly suppressed the proliferation, invasion, and 

migration of gastric cancer cells (Zuo et al., 2015). Thereby, miR-22 could play a tumour 

suppressor or oncogenic role in different tumour types (Nejati et al., 2021). 

In miRNA-EVs studies, miR-22-3p has been detected as one of the top 20 most 

abundant miRs in plasma-derived EVs (Sundar et al., 2019). Petkevich et al. (2021) 

investigated non-exosomal and exosomal miRNA expression levels of miR-22-3p in blood 

plasma of liver cancer patients and showed that miR-22-3p was detected in both plasma amd 

plasma exsomes (Petkevich et al., 2021). Also, Naakka et al. (2022) found significant 

overexpression of miR-22-3p in tissue samples of mucoepidermoid carcinoma (Naakka et al., 

2022). MiR-22-3p was highly up-regulated in cervical cancer tissues (Lv et al., 2018). 

Generally, MiR-22-3p appears to have both tumour suppressor and oncogenic 

activities in several tumour types and has been shown to be overexpressed in biological 

samples of different cancers. 

 

5.4.2.6 MiR-29a-3p 

MiR-29a regulates several hallmarks of cancer, including cell growth, migration, and 

tumour formation. MiR-29a has recently been in the spotlight as a tumour oncogene that is 

frequently increased in cancers (Li et al., 2017c). Upregulation of miR-29a-3p is observed in 

OSCC-derived exosomes, promoting M2 subtype macrophage polarization, which 

subsequently promoted the proliferation and invasion of SCC-9 and CAL-27 cells (Cai et al., 

2019). Overexpressed miR-29a-3p in exosomes was also demonstrated in ovarian cancer cell 

lines, which promoted ovarian cancer cell proliferation and immune escape and also 

correlated with poor prognosis of patients (Lu et al., 2021).    

Focusing on the tight connection between miR-29  and the incidence and 

development of OSCC, miR-29 represents a miRNA family with three members, including miR-

29a-3p, miR-29b-3p, and miR-29c-3p. A significant level of its expression was discovered in 

OSCC tissue (Manikandan et al., 2016). Also, Hulsmans and Holvoet, (2013) found that the 
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expression of miR-29a-3p was detected in exosomes secreted by tumour cells (Hulsmans and 

Holvoet, 2013).  

Circulating levels of miR-29a-3p increased in exosomes derived from the plasma of 

lung cancer patients (Dinh et al., 2016). Li et al. (2020) found  that the increased miR-29a-3p 

in serum-derived-exosomes plays a crucial role in hepatocellular carcinoma progression (Li et 

al., 2020). Overall, miR-29a-3p has  been shown to mediate either tumour suppressive or 

oncogenic functions in distinct malignancies. It was upregulated in EVs derived from biological 

fluids. 

 

5.4.2.7 MiR-23a-3p 

MiR-23a is one of the most thoroughly investigated miRNAs in many forms of human 

cancer, and it has a variety of functions in tumour genesis, development, invasion, and 

metastasis (Wang et al., 2018b). Many studies have shown that miR-23a-3p is upregulated in 

a variety of cancers and is closely related to the development of cancer (Ma et al., 2022). 

Advances in cancer research have highlighted the cancer-promoting function of miR-23a in 

regulating cell proliferation, apoptosis, EMT and angiogenesis progress (Lee et al., 2020; Liu 

et al., 2016). High expression of miR-23a in tumour tissue was shown to be linked with 

advanced clinical stage and lymph node metastases in laryngeal carcinoma (Zhang et al., 

2015).  It has been reported, that miR-23a-3p promotes the development of prostate 

cancer  (Wen et al., 2015b), gastric cancer (Liu et al., 2018) and gliomas (Hu et al., 2013). This 

research implies that miR-23a is important in terms of cancer stage, differentiation, and 

metastasis. 

Masaoka et al. (2021) recognised upregulated miR-23a-3p in exosomal miRNAs in the 

OSCC-derived cell lines compared to human normal keratinocytes (Masaoka et al., 2021). 

Additionally, it has been noted that esophageal squamous cell carcinoma tissue has enhanced 

miR-23a-3p expression (Zhu et al., 2013). According to Ma et al., miR-23a expression was 

considerably greater in breast tumour tissues (Ma et al., 2017). Bao et al.  found that miR-

23a-3p expression was up-regulated in the tumour tissue of nasopharyngeal carcinoma (Bao 

et al., 2018) 

In bodily-fluid-based miRNA studies, it has been shown that there is overexpression of 

miR-23a-3p in serum samples from patients with colon cancer (Jahid et al., 2012).  
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Generally, miR-23a-3p appears to be upregulated in serum and has a promoting role 

in several cancer types. 

 

5.4.2.8 MiR-1290 

MiR-1290 has been found in a variety of cancers, including colon, pancreatic, lung, and 

liver cancer; hence, its position as an oncomir is well established (Manikandan et al., 2016; 

Guz et al., 2022). Upregulation of miR-1290 was associated with clinicopathological 

characteristics and poor prognosis in OSCC patients and  promoted cell metastasis and 

epithelial-mesenchymal transition (EMT) (Qin et al., 2019). Over-expression of miR-1290 has 

enhanced proliferation of lung adenocarcinoma cells and induced cell cycle progression  and  

invasiveness (Xiao et al., 2018). All of these studies indicated that miR-1290 was a tumour 

promoter in some human cancers.  Li and colleagues reported that patients with elevated 

circulating miR-1290 expression level had a poorer outcome after resection of their 

pancreatic cancer (Li et al., 2013). In addition, Mo and colleagues reported that high miR-1290 

levels in lung  carcinoma tissue and serum correlated with a poor prognosis (Mo et al., 2015). 

Circulating miR-1290 is a novel and promising biomarker for the early detection of 

colorectal cancer as it is overexpressed in plasma derived exosomes (Ma et al., 2018). 

Furthermore, upregulation of exosomal miR-1290 was shown in the blood plasma of gastric 

cancer patients (Huang et al., 2019) and the serum of hepatocellular carcinoma (Wang et al., 

2021). In addition, in previous studies, upregulation of miR-1290 has been identified in 

esophageal squamous cell carcinoma tissue (Xie et al., 2017), and laryngeal carcinoma cell 

lines (Janiszewska et al., 2015) and also in nasopharyngeal carcinoma tissue (Chen et al., 

2020b). 

Overall, miR-1290 appears to enhance the proliferation, migration, and invasiveness 

of many tumors, and it was upregulated in exosomal miRs of biological fluids. 

 

5.4.2.9 MiR-1246 

MiR-1246 has been found to exert oncogenic roles in oral, colorectal, breast, renal, 

laryngeal, pancreatic and ovarian cancers as well as melanoma and glioma. The expression of 

miR-1246 has shown also to be increased in OSCC tissues and a high level of miR-1246 was 

associated with tumour grade (Liao et al., 2015). Furthermore,  miR-1246 has been identified 



 
 

115 
 

as a novel target of p53 (Liao et al., 2012). Sakha et al. (2016) have demonstrated miR-1246 

in exosomes derived from oral cancer cell line  induced a pro-metastatic phenotype, including 

increase cell motility and invasion through the regulation of DENND2D in oral squamous cell 

carcinoma (Sakha et al., 2016). Recently, miR-1246 was shown to have crucial roles in tumour 

initiation and metastasis (Kim et al., 2016; Zhang et al., 2016). Chen et al. reported that 

upregulation of serum miR-1246 expression could predict lymph node metastasis in patients 

with early-stage cervical squamous cell carcinoma (Chen et al., 2013). 

He et al. (2020) discovered that miR-1246 was highly upregulated in salivary EVs from 

OSCC patients (He et al., 2020). Furthermore, Machida et al. (2016) found levels of miR-1246 

in salivary exosomes were higher in pancreatic cancer patients than in healthy control 

participants (Machida et al., 2016). The miR-1246 biomarker contained in circulating 

exosomes has been well-evaluated as a biomarker for early detection of pancreatic cancer 

(Xu et al., 2017), breast cancer (Hannafon et al., 2016), prostate cancer (Bhagirath et al., 

2018), and hepatocellular carcinoma (Wang et al., 2018c). The serum exosomal levels of miR-

1246 were significantly higher in colorectal cancer (Ogata-Kawata et al., 2014). 

Overall, MiR-1246 is widely regarded as an oncogenic miRNA in human cancers, and 

it was found to be upregulated in many EV derived from many biological fluids such as 

saliva. 

 

5.4.2.10 MiR-186-5p 

MiR-186 was documented as a tumor suppressor miRNA by targeting multiple 

oncogenes in the majority of studies (Xiang et al., 2020), while conflicting reports verified miR-

186 as an oncomir (Xiang et al., 2020). Alterations of miR-186 expression were demonstrated 

in numerous cancer tissues or cell lines, and it has been shown to play a vital role in 

oncogenesis, invasion, metastasis, apoptosis, and drug resistance (Xiang et al., 2020). One 

report showed the levels of miR-186 were increased in metastatic prostate cancer cells (Jones 

et al., 2018). However, Chen and Zhang (2022) found that  overexpression of miR-186-5p 

suppressed the proliferation and migration of OSCC cells and tissue (Chen and Zhang, 2022).  

Summerer et al. (2015) identified an upregulation of  miR-186-5p in the plasma of HNSCC 

patients (Summerer et al., 2015). A study reported that miR-186-5p was overexpressed in not 

only tumour tissues and blood, but also urine from bladder cancer patients (He et al., 2017). 
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Islam et al. (2017) revealed that miR-186 was significantly upregulated in colorectal cancer 

tissues and cells.  

On the basis of the identified functions, it could be concluded that the altered 

expression of miR-186 might also play a critical part in oral carcinogenesis and prognosis. 

 

5.4.2.11 MiR-320a-3p 

MiR-320 has been shown to be an oncogenic miRNA in breast cancer, brain tumours, 

and biliary tract cancer (Yang et al., 2014), but in gastric cancer, colon cancer, ovarian cancer, 

esophageal cancer, and clear cell renal cell carcinoma it is reported to be a tumor suppressor 

(Gutschner et al., 2013; Zhao et al., 2014; Serguienko et al., 2015). MiR-320a has different 

expression levels and roles in multiple malignancies (Peng et al., 2021). Notably, miR-320a 

was identified as a metastatic suppressor in colorectal cancer  and high expression of miR-

320a-3p in stage II tumours was associated with better disease-free survival in colorectal 

cancer patients (Schepeler et al., 2008). Hence, miR-320a is an important suppressive miRNA 

in colorectal cancer development and metastasis.  

In bodily-fluid-based EV-miRNA studies, miR-320a-3p was upregulated in serum 

exosomes of hepatocellular carcinoma (Wen et al., 2015a). Navarro et al. (2019) reported 

upregulated expression of miR-320a-3p in the plasma of pancreatic cancer patients. Similarly, 

miR-320a-3p has been shown to be significantly increased in the plasma of osteosarcoma 

patients (Lian et al., 2015). Overall, miR-320a-3p appears to be upregulated in biological fluids 

and has a dual oncogenic and suppressor effect in different cancers. 

  

5.3 Clustering  

OSCC is a group of diverse heterogeneous cancers that arise from a variety of 

anatomical sites and are associated with a variety of risk factors related to both behaviour 

and genetic background, making OSCC one of the most complex cancers (Marcu and Yeoh, 

2009). Many studies have shown that the clinical features of OSCC, as well as prognosis and 

treatment, vary with different anatomical locations and stages (Manikandan et al., 2016). This 

emphasises the importance of using large patient cohorts for profiling to illustrate the 

diversity among the different OSCCs (Lajer et al., 2011). In addition, there is a considerable 

variation in the miRNA profiles across different studies of head and neck cancer, which might 
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reflect differences in stage, grade and sampling from multiple anatomical sites (Lajer et al., 

2011). 

Priciple component analysis (PCA)  has been used to obtain an overview of the 

differences and similarities of the tissue miRNA expression profile among different cancers 

and normal patient groups (Manikandan et al., 2016). Manikandan et al. (2016) showed that 

clustering of OSCC samples with moderately or well differentiated histology was scattered in 

all quadrants of a PCA plot, demonstrating the molecular heterogeneity of OSCC. They 

suggested that different staging did not correlate with miRNA expression and also suggested 

the need for more studies with a larger cohorts to uncover patterns (Manikandan et al., 2016). 

Also, Nunvar et al. (2021) revealed that miRNA expression pattern of head and neck cancer 

samples was most significantly associated with anatomical location (Nunvar et al., 2021). 

Some studies have shown overlapping clustering of normal controls and cancer samples (Lajer 

et al., 2011), whilst others show distinct clustering between groups (Schneider et al., 2018). 

The present study showed by PCA that healthy samples clustered together, whereas 

cancer samples were more scattered. However, CO6 and CO7 (both floor of the mouth) 

clustered together and closer to the healthy controls than the other cancer samples. It has 

been suggested that anatomical sites might play a dominant role in changing the miRNA 

expression patterns (Nunvar et al., 2021). Another explanation could be the embryological 

origin of the tissues that the tumours are derived from. The mucosa of the oral cavity, such 

as the anterior two thirds of the tongue and all of the hard palate, has an ectodermic origin, 

whereas the mucosa of the floor of the mouth is of endodermic origin (Hughes and Chuong, 

2003). Alternatively, C06 and C07 could cluster with the healthy samples because those 

tumours were smaller and released fewer extracellular vesicles into the saliva. However, we 

have no data relating to the size of the tumours and so this remains speculative. If we had a 

larger cohort of cancer patients the samples could have been analysed based on anatomical 

location or other relevant clinical parameters (tumour size, grade etc), but this was not 

possible with the number of patients recruited and the data collected.  

 

5.4 Validation  by RT-QPCR 

Validation of small RNA sequencing data was attempted by qRT-PCR analysis of four 

miRNAs (miR-21-5p, miR-29a-3p, miR-92a-3p and miR-181a-5p) that were significantly 
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upregulated. However, none of these miRNAs were significantly upregulated based on the 

qRT-PCR data.   

Many studies have reported that some miRNAs fail as cancer biomarkers in validation 

studies (Sapre et al., 2014). Our finding was consistent with the Koppers-Lalic study (2016), 

where miRNAs were validated by qRT-PCR in prostate cancer associated miRNAs in urinary 

EVs. miR-21, miR-375, and miR-204 failed to robustly discriminate for disease in a validation 

study with qRT-PCR-detection of mature miRNA sequences. They confirmed that detection of 

mature miRNA sequences using qRT-PCR does not always correspond with RNA sequencing 

data. The majority of the previous studies have not included validation of significant miRNAs 

and hence they lack the ability to demonstrate reproducibility of data (Mahn et al., 2011; 

Moltzahn et al., 2011; Shen et al., 2012). 

Many studies have reported that in order to achieve accurate, reproducible, and 

biologically relevant miRNA qRT-PCR data, experimental variation (technical and biological) 

should be corrected for by using reference genes (Chang et al., 2010). However, use of 

unreliable reference genes for normalisation may lead to inaccurate quantitation of miRNAs 

of interest (Davoren et al., 2008; Peltier and Latham, 2008).  

The lack of statistical significance in our qRT-PCR data could be due to inaccurate 

quantification of EV RNA, which is reflected in the large variation of Ct values. As mentioned 

previously, quantification of EV RNA is challenging. A previous study has reported that 

variability observed in Ct value between samples  are commonly due to PCR efficiency, 

starting material, pipetting errors and biological variation (Ruiz-Villalba et al., 2021). Normally 

a references gene would also be used to correct for any differences in RNA input (Ruiz-Villalba 

et al., 2021). Gouin et al. (2017) have proved that identification of reference genes for EVs 

remains challenging, especially as the source of the EVs becomes more complex such as those 

isolated from bodily fluids (Gouin et al., 2017). Also, it has been noted that identified 

reference genes for  specific EV populations, including liver carcinoma (Li and Li, 2015), 

colorectal cancer (Chiba et al., 2012) and cerebrospinal fluid (Zanello and SB, 2014), in the 

majority of these studies, one reference gene is not sufficient but rather the mean of multiple 

genes is necessary. One alternative to using reference genes is absolute quantification of copy 

number (Bracht et al., 2021). However, this would still rely on accurate quantification of EV 

RNA to produce reliable data.  
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5.5 Conclusion 

In this study, we demonstrated the possibility of using Dynabead immunocapture to 

isolate salivary EVs from OSCC patient samples for downstream biomarker screening. Using a 

small RNA sequencing approach we identified 17 miRNA were significantly enriched in salivary 

EVs from OSCC patients. Many of these miRNAs have been previously identified as potential 

biomarkers for OSCC, which is encouraging. Despite the difficulty with validating these miRNA 

by traditional qRT-PCR, it would be worth evaluating other methods for validation, such as 

absolute quantification of copy number.   
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6. Final discussion 

6.1 The challenges of using saliva in EV biomarker studies 

EVs have been isolated from diverse biofluids including blood (Caby et al., 2005), urine 

(Bryzgunova et al., 2016), breast milk (Lässer et al., 2011a), cerebrospinal (Akers et al., 2015), 

ascitic fluids (Cappellesso et al., 2014), bronchoalveolar lavage (Wahlund et al., 2017), semen 

(Madison et al., 2017), tears (Grigor'eva et al., 2016) and saliva (Ogawa et al., 2008). The 

viscosity of these fluids, as well as their fat and protein content, are highly variable, which 

may affect EV purity and yield (Mallia et al., 2020). Standardized pre-analytical steps are 

critically important for the successful experimental outcome of any experiment and to 

minimize artefacts in EV-analysis, particularly when EVs are derived from complex body fluids 

such as saliva (Witwer et al., 2013b). Saliva is produced by three major paired glands (the 

sublingual, submandibular, and parotid) and additional smaller glands lining the oral cavity. 
The salivary glands secrete fluid transported from serum as well as tissues surrounding the 

glands. Other human saliva constituents are derived from the oral mucosa, periodontium, and 

the oral microbiome (Caporossi et al., 2010).  

For the last two decades, saliva has been used as a non-invasive source of biomarkers, 

which can be collected easily and could be a substitute for blood. However, when compared 

to other biofluids, saliva has limitations and challenges, including composition variability and 

high viscosity due to mucins (Humphrey and Williamson, 2001), and the presence of α-

amylase, which masks low-abundance salivary protein biomarkers that have the potential to 

be useful for diagnosis (Deutsch et al., 2008). In addition, low RNA abundance, small sample 

volumes, highly fragmented RNA, and high abundance of bacterial content, all create 

challenges for downstream RNA sequencing assays (Faur et al., 2021). 

Successful measurement of salivary analytes such as EV-associated miRNA requires 

optimal collection, processing, and storage procedures (Witwer et al., 2013b). In previous 

studies, a number of factors were considered relevant to the collection of saliva samples such 

as: location, sampling time, instruction to participants and the method of collection, while 

various levels of salivary constituents could be produced via the distinctive glands (Zakowski 

and Bruns, 1985). EV production and composition would possibly vary between each salivary 

gland  (Ogawa et al., 2008 Lässer et al., 2011a; Gallo et al., 2012). In addition, the composition 

of whole saliva may be influenced by extraneous factors which may limit its use as a 
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biomarker, such as social habits (e.g. smoking, drinking alcohol and diet). Therefore it is 

common to ask saliva donors to abstain from smoking or consuming food or drink (except 

water) for an hour before the sample is taken (Iwai et al., 2016; Gai et al., 2018). Oral hygiene 

could also impact the composition of saliva at the time of collection (Pernot et al., 2014). 

Furthermore, the content of saliva may alter with response to stress due to physical activity 

(Simkin et al., 2012). Hence, donors also need to refrain from vigorous physical exercise 

before the collection of saliva (Rohleder and Nater, 2009).  

There are two main ways to collect saliva: unstimulated or stimulated saliva, which 

varies from study to study. Unstimulated saliva is collected by draining or drooling, spitting, 

suction, or swabbing. Stimulated saliva is collected by providing the patients with a stimulant 

agent, such as citric acid, paraffin, or a gum base (Yakob et al., 2014). Unstimulated saliva 

collection is the most common method and was used prior to EV isolation in many studies 

due to its ability to reflect the status of the body (Liangsupree et al., 2021). Collection of 

stimulated saliva samples is significantly faster and more comfortable for the patient than 

collection of unstimulated saliva, which may make it preferable for screening of larger 

populations. However, downstream analysis has revealed dilution of the components in 

stimulated saliva  (Yakob et al., 2014; Schafer et al., 2014). With stimulated collection, saliva 

is obtained primarily from the parotid gland, whereas unstimulated (resting) saliva is 

produced primarily by the submandibular gland, with minor contributions from the parotid 

and sublingual glands (Dodds et al., 2005; de Almeida et al., 2008). Thus, unstimulated saliva 

is more favourable for biomarker discovery and has been used in most diagnostic studies 

(Principe et al., 2013). 

In the current study, we followed the accepted best practice for saliva collection 

(passive drool) based on the factors described above. Healthy volunteers (donating saliva for 

the initial optimisation experiments) and healthy control patients (attending the Charles 

Clifford Dental Hospital for routine procedures) were asked to refrain from eating or drinking 

anything for at least one hour prior to the collection of saliva. Collection of saliva from OSCC 

patients was standardised as the samples were collected on the morning of surgery, therefore 

the patients were all nil by mouth. However, this presented an additional challenge. Patients 

often struggled to produce a large volume of saliva due to dry mouth, which was likely a result 

of fasting and pre-surgery anxiety. We currently do not know how this might have affected 

the composition of the collected saliva and the EVs contained within. 
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The MISEV 2018 guidelines emphasise the importance of biological fluid storage in the 

validation stages of any EV biomarker (Thery et al., 2018). Storage of biological fluids before 

EV isolation may affect EV characteristics, including stability, number of particles, 

aggregation, and function (Muller et al., 2014; Bæk et al., 2016). According to literature 

searches, there is no definite consensus about the storage of fluids because the effects of 

storage appear to vary with sample source (Théry et al., 2018a; Clayton et al., 2019). In the 

current study we showed the signal intensity of salivary EV luminal protein TSG101 was more 

stable without saliva storage suggesting that fresh saliva is more suitable for biomarker 

studies. However, the analysis of TSG101 is a surrogate marker for EV RNA cargo and our goal 

was to extract RNA from salivary EVs for downstream analysis. Therefore, measurement of 

RNA cargo in response to storage of saliva prior to EV isolation could have provided valuable 

information. As mentioned previously, however, accurate quantification of EV RNA provides 

its own challenges.  

Further studies by using TEM to detect intact EVs are required to fully elucidate the 

effect of saliva storage on EV biomarkers. Standardisation of sample collection and storage 

conditions are vital to allow comparison between studies conducted by different research 

groups.  

 

6.2 Technical challenges of working with extracellular vesicles  
 

Due to the pervasive participation of EVs in a variety of cellular functions and their 

potential utility in translational disease applications, including screening, diagnosis, and 

treatment development, there has been a rapid increase in scientific interest in EVs 

(Wiklander et al., 2019). Well-defined, intact, and high-purity EV isolation is necessary to 

accomplish these requirements. The development of EV subclass research has been limited 

by the fact that EVs are heterogeneous and current EV isolation techniques are unable to 

discriminate between different EV subpopulations (Willms et al., 2018). Traditional EV 

purification approaches rely on EV biophysical parameters (such as size and density), which 

might cause the co-purification of other extracellular particles with similar qualities (Cocozza 

et al., 2020a). Exomeres (Karimi et al., 2018b; Mathieu et al., 2019) and lipoproteins (high 

density lipoprotein, low density lipoprotein) are lipid-based but non-vesicular components of 

these particles, the latter was discovered, and its size range is comparable to that of small EVs 
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(Scheinberg et al., 1954).  Other protein complexes discovered in EV preparations include 

argonautes, nucleosomes, and vault particles, none of which are associated with EVs 

(Jeppesen et al., 2019).  

In the current study, we assessed the suitability of three commonly used isolation 

techniques, ultracentrifugation, SEC and Dynabead immunocapture, to isolate salivary EVs 

(Figure 6.1). According to literature, one of the limitations in using ultracentrifugation for 

isolation of EVs is co-precipitation of protein aggregates and nucleosome fragments, which 

can lead to decreased sample purity and may affect downstream analysis (Furi et al., 2017). 

In the current study, we showed that UC was not suitable to isolate salivary EVs, due to the 

production of a sticky pellet, making it difficult to resuspend, suggesting particle aggregation. 

Despite abandoning the use of UC early in the project, it would have been useful to conduct 

some preliminary analysis on the resulting pellets. Western blotting of pellet lysates could 

have revealed the identity of any co-isolated particles. 

Preservation of vesicle integrity and prevention of EV aggregation are notable 

advantages of using SEC (Liangsupree et al., 2021). We showed that this technique was 

effective at fractionating EVs and soluble factors, as demonstrated by separation of EVs and 

α-amylase (one of the most abundant proteins in saliva). However, our data suggested the EV 

rich fractions were contaminated with other particles such as vault particles (MVP) and high-

density lipoprotein particles (APOA). Whilst the detection of these proteins by western 

blotting suggests the presence of the mentioned particles, additional analysis by electron 

microscopy could have demonstrated the presence of these particles in SEC isolates. 

  Finally, we evaluated Dynabead immunocapture. This approach is a quick, simple, and 

effective EV purification technique that is more feasible in clinical applications (Chen et al., 

2022). In the current study, we demonstrated that immunocapture was more efficient than 

SEC at enriching CD63+ CD9+ CD81+ EVs. Immunocapture offers unique advantages for the 

recovery of EVs from complex and viscous fluids in terms of increased efficiency and 

specificity of capture, integrity, and selective origin of isolated vesicles. The immunocapture 

approach has the disadvantage of only picking particular EV populations that are positive for 

the selection markers, despite the fact that it has been demonstrated to produce purer EVs 

than traditional methods (Chen et al., 2020). Therefore, EVs without surface identifiers or 

with different surface markers won't be purified. Furthermore, EVs may display distinct 

markers when separated from different biological sources (Alvarez et al., 2012; Ji et al., 2013), 
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or when cells are in a different state (for example, stressed vs. actively developing), which 

may induce changes in EV yield and EV content across experiments (Rutter and Innes, 2017). 

In addition, due to the heterogeneity of tumours, it is possible that not all cells within a 

tumour may express the target antigen, such that EVs derived from those cells will not be 

captured (O'Loghlen, 2018). Furthermore, antigen modulation can occur as cancers advance, 

so that a tumour may initially produce the target antigen but that expression may decrease 

with time or the antigenic epitope may be blocked or masked (Beatty and Gladney, 2015). It 

would have been valuable to characterise what was present in the unbound fraction from 

Dynabead isolations. Other common EV markers (such as EpCAM) could have been probed by 

western blotting to determine if there were additional populations that had not bound to the 

beads. Additionally, probing for markers of other extracellular particles such as vaults (MVP) 

and lipoprotein particles (ApoA) could indicate their successful separation from EVs. 

More advanced isolation approaches have been devised in order to address the 

aforementioned problems and enable improved isolation of EV subtypes.  These innovative 

methods utilise size, charge, and affinity to better resolve and produce the separation of 

various EV subpopulations, producing EVs with the purity and integrity required for the 

intended applications (Liangsupree et al., 2021). For instance, field-flow fractionation (FFF), 

which separates macromolecules depending on their diffusion coefficients, is the most 

popular of the modern size-based isolation techniques (Sitar et al., 2015). Besides, FFF might 

also give an accurate assessment of EV size distribution, size morphology, and aggregation 

states when used in combination with light scattering detectors (Liangsupree et al., 2021). 

However, even this method falls short of completely separating distinct EV subtypes, 

necessitating further concentrating processes and minimal loading amounts to prevent self-

association and overloading effects (Liangsupree et al., 2021). 

A strategy to accomplish EV separation with better purity and specificity than any 

currently existing approach might be produced by the combination of isolation techniques 

based on several biophysical features, even if it is impossible to completely purify EVs from 

other entities (Multia et al., 2020). For instance, utilising immunoaffinity chromatography in 

combination with the FFF approach to separate EV subpopulations produced EVs that were 

extremely pure, intact, and concentrated (Multia et al., 2020). The EV yield is heavily 
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dependent on the selective markers and size ranges, and it also has the drawback of requiring 

extremely specialised equipment and trained operators. Electric field-induced release and 

measurement, a recently created revolutionary diagnostic tool, can detect EV RNA directly 

with only 40 µL of bodily fluid (Wei et al., 2014; Tu et al., 2015; Pu et al., 2016). More research 

and deployment of saliva-based point-of-care technology may enable improved rapid clinical 

treatment. 
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Figure 6. 1 Diagram of the EV isolation techniques used in this study and their outcomes.  In this 
study, EVs from saliva were isolated by three techniques: DC, SEC, and Dynabead immunocapture. In 
which, purification of DC-derived pellets resulted in EVs with particle aggregation and sticky pellet, 
SEC co-purified vault particles (MVP) and lipoprotein (ApoAI) with EVs. However, capturing from 
concentrated saliva using Dynabeads led to improved enrichment of CD9+CD63+CD81+ EVs, 
compared to SEC. 
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6.3 Can small RNA in salivary EVs be used as a biomarker signature for oral cancer? 

MiRNAs are small (19–22 nucleotides long) non-coding RNAs that interact with the 

RNA-induced silencing complex (RISC), binding to the 3’UTR of mRNA to induce either mRNA 

degradation or mRNA translation inhibition (Mohr and Mott, 2015). MiRNA influence vital 

processes such as cell cycle, apoptosis, proliferation, and differentiation by regulating target 

gene expression (Guo et al., 2014), and any dysregulation of miRNA expression contributes to 

cancer tumorigenesis, such as invasion, angiogenesis, progression, metastasis, and 

chemoresistance (Valadi et al., 2007c).  

MiRNA were identified in salivary EVs, which have attracted the interest of many 

researchers due to their potential as a source of biomarkers in the diagnosis of oral cancer 

and oral disease (Faur et al., 2021). Sampling salivary EVs offers a promising and alternative 

way to measure disease in real-time (Sui et al., 2021). The salivary EV cargo originates from 

the lavage process and blood stream, from where EVs passively pass into saliva through 

gingival sulcus fluid and are also secreted from the oral epithelial layer. As a consequence, the 

concentration of EV miRNA in saliva is higher than in blood and act as mediators of 

intercellular signalling through RNA and functional protein exchange (Sui et al., 2021), in 

which they are protected by an EV lipid barrier against enzymatic degradation. As a result, 

they are more stable in the extracellular environment compared with cell-free miRNA. Thus, 

the accuracy of EV miRNA-based cancer detection increases, making them attractive 

diagnostic tools for clinical application (Ingenito et al., 2019). 

Based on differences between the salivary EVs originating from healthy subjects 

compared to patients with cancer, it is possible that disease-specific EVs may differ in 

functional properties (Nonaka and Wong, 2017a). It has been shown that the amount and 

content of salivary EVs are highly variable even in patients with the same tumour types and 

stages (Nonaka and Wong, 2018). The increased number of EVs, as well as the change in shape 

and expression of EV cargo such as RNA, were most noticeable in cancer-derived EVs (Rak and 

Guha, 2012). RNA species such as miRNAs are the best-studied and annotated, particularly 

regarding current EV research. According to a search of Google Scholar/Pubmed between 

2010-2021, five articles were included for salivary EV-miRNA, four focused on oral cancer and 

one on premalignant lesion detection (Byun et al., 2015; Langevin et al., 2017; Gai et al., 2018; 

He et al., 2020; Farag et al., 2021). These studies analysed twelve salivary EV miRNA, 

presenting different techniques of EV and miRNA identification for HNSCC detection and  all 



 
 

129 
 

five articles presented a low bias risk and high applicability (Faur et al., 2021). The current 

study was built on these previous studies that have attempted to use EV RNA signatures as 

biomarkers for oral cancer. 

In the studies evaluated, the size of salivary samples utilised for EV miRNA detection 

varied. Gallo et al. demonstrated that a small amount of saliva contains enough EV miRNA for 

proper analysis (Gallo et al., 2012). EV miRNA expression was analysed by various methods, 

which could cause heterogeneous results. The main miRNA profiling methods are next-

generation sequencing, miRNA microarray analysis, qRT-PCR and digital PCR (dPCR)  

(Yoshizawa and Wong, 2013).  Small RNA sequencing has advantages over microarray and 

qRT-PCR screening of miRNA because it offers high-throughput and unbiased analysis to 

discover low abundance and novel miRNA variants (Liu et al., 2011). However, disadvantages 

include high cost and complicated data manipulation is required for analysis (Nonaka and Wong, 

2018). 

Complications of miRNA-based cancer detection can be related to other factors, such 

as lifestyle (smoking), inflammation, and the ageing process, which may alter the miRNA 

expression and further interfere with the cancer diagnosis process (Takahashi et al., 2013). 

For example, alcohol consumption induces changes in EV characteristics (He et al., 2020). This 

is particularly relevant to our study as alcohol is a major risk factor for developing OSCC. As 

can be seen in the clinical information gathered from our OSCC cohort, the majority consume 

alcohol (in combination with smoking). It is challenging to find healthy controls with an 

alcohol and smoking consumption similar to the OSCC group. Some miRNA (e.g. miR-24-3p) 

are expressed differently in older people compared to younger people (He et al., 2020). Lack 

of a standardised technique will result in reduced concordance between results and, 

moreover, insufficient laboratory validation (Gallo et al., 2012). MiRNAs have been shown to 

degrade at various rates in various fluids. For instance, miR-124a is rapidly reduced in saliva 

samples (less than 10% detectable after 3 min) in comparison to miR-191 (about 30% 

detectable after 30 min) (Park et al., 2009b; Fălămaş et al., 2020). MiRNA degradation rates 

are likely related to if they are free in solution, part of a protein complex or shielded within 

an EV membrane.  
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Figure 6. 2 Salivary EVs as a source of miRNA biomarkers for OSCC diagnosis. 
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6.4. Limitations, future work and conclusion 
 
6.4.1 Limitations 

The findings of this study have to be seen in light of some limitations that need to be 

addressed. In particular, the COVID-19 pandemic disrupted many plans. We were unable to 

achieve several of the project's intended objectives due to lockdown of our laboratories from 

March 2020 to August 2020 and limited lab access with a maximum of 10 hours per week 

from August 2020 to April 2021. Because of the reduction in conventional dental care at the 

Charles Clifford Dental Hospital, recruiting healthy patients became exceptionally challenging. 

In addition, the number of OSCC surgical resections was decreased. For over a year, no 

patients (healthy or cancer) were enrolled in this study. Certain experiments were delayed or 

interrupted as a result of this. We needed to have a sufficient sample size in order to draw 

valid results from small RNA sequencing analysis. However, time restraints meant that this 

analysis was conducted on a smaller number of samples than intended. As mentioned in the 

previous studies, the composition of salivary EV miRNAs in healthy subjects may vary with 

external risk factors such as HPV infection, alcohol consumption, cigarette smoking, etc. The 

diagnostic bias caused by the patients' exposure to the above-mentioned risk factors should 

be considered. There are limitations regarding clinical samples, such as large variation 

between subjects in terms of sex, age, drinking and smoking status, where controls and OSCC 

samples were not completely matched. Also, insufficient patient data was collected (e.g. 

tumour size, grade, etc.). We also chose to conduct small RNA sequencing on a cohort of 

patient samples with OSCC affecting different anatomical locations in the oral cavity. In 

hindsight, it might have been advantageous to focus on a particular OSCC location such as the 

tongue. The other patient samples could have then been included in qRT-PCR validation. 

However, due to COVID related impacts on the project, there was not sufficient time to recruit 

all the patients before selecting samples for small RNA sequencing.  

Characterisation of salivary EVs from cancer patients and comparison with healthy 

controls (NTA, TEM and western blotting) would have been desirable. This would have 

allowed detection in changes in size, concentration, morphology and protein markers of EVs. 

However, due to the limited sample volumes obtained it was not possible to conduct this 

additional analysis. The priority was to obtain sufficient RNA for downstream analysis.  
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6.4.2 Future work 

The immediate priority for further work should be to validate the current small RNA 

sequencing data using alternative methods such as digital PCR for absolute copy number 

quantification. Future small RNA sequencing studies should include a larger cohort size, which 

would allow better matching of controls and OSCC samples. Analysis of a larger cohort would 

also allow samples to be grouped based on anatomical location of the tumour. In addition, 

the inclusion of more OSCC samples would reveal if the miRNA profiles of OSCC EVs could 

continue to be differentiated into specific groups by unbiased PCA clustering. More clinical 

information such as tumour grade and size, etc., should be collected, which may help with 

setting cut-offs for samples to be included in initial biomarker discovery.  

Future studies may evaluate if the upregulated miRNA identified in salivary EVs are 

upregulated in OSCC cell lines by using qRT-PCR. This would allow experiments to be 

performed to determine if these miRNA have any functional effects in vitro. If the function of 

these miRNA in the tumour microenvironment can be elucidated, they may prove to be novel 

therapeutic targets as well as diagnostic biomarkers.      

Several studies suggest morphological differences between EVs isolated from healthy 

individuals and patients with OSCC. Future work by using (NTA,TEM and WB) should aim to 

further characterise these differences and to identify specific surface markers, which might 

inform immunoaffinity EV isolation strategies. Further characterization of the unbound 

fraction from Dynabead preparations is required to determine if there are EVs and/or other 

unbound extracellular particles present.  

6.4.3 Conclusion  

Currently, a complete clinical oral examination is used to detect OSCC, along with a 

biopsy for a histological investigation if an abnormal region is found. For histological 

confirmation of the oral cancer, the site from which the biopsy sample is collected is essential. 

However, because malignant and precancerous lesions don't occur uniformly, choosing the 

best place can be challenging. This study provides further evidence that saliva presents a rich 

and accessible source of biomarkers for cancer diagnosis. Isolation of salivary EVs represents 
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a way to enrich intact biomarkers (protected by an EV membrane) that might otherwise be 

masked by higher abundance molecules or may be degraded in whole saliva.  

Overall, this was the first study to use Dynabead immunocapture to enrich salivary EVs 

for downstream small RNA sequencing analysis. This strategy could one day be applied to an 

automated diagnostic lab setting. The miRNAs contained within salivary EVs are promising 

biomarkers for OSCC. They can be detected in relatively small amounts of saliva, which is 

necessary for a rapid and non-invasive cancer diagnostic test. Once appropriate RNA 

biomarkers are validated they could be used in the detection of premalignant lesions and 

early-stage oral cancers, which would significantly improve patient outcomes. Such 

biomarkers could also be used to predict and monitor responses to therapy. 
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