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Abstract

Dysarthria is a motor speech disorder caused by damage to the nervous sys-

tem. People with dysarthria often have poorer motor control of their speech

articulators resulting in atypical speech. Consequently, the intelligibility of

dysarthric speech is often affected and this could affect the communication

ability of people with dysarthria, which may cause social exclusion. Dysarthria

is also often associated with physical disabilities. This group of people, there-

fore, have a higher need for automation and voice-enabled interfaces that could

improve their daily life. Automatic speech recognition (ASR) technology is be-

coming ever more ubiquitous. However, the performance on dysarthric speech

still lags far behind the mainstream ASR systems designed for typical speech.

The large systematic dysarthric and typical speech mismatch, the high speaker

variability and the data scarcity make the task challenging. Moreover, the fo-

cus on dysarthric speech recognition research has not moved from isolated

word to more challenging connected speech scenarios yet. There is a clear

need to improve continuous dysarthric speech recognition.

This thesis is the first to systematically investigate various methods for con-

tinuous dysarthric speech recognition. Experimental work conducted on the

TORGO dysarthric corpus shows that the deployed approaches and the de-

veloped systems effectively improve the recognition performance. The key

findings are as follows. Firstly, applying an out-of-domain language model

allows for a more reasonable decoding space for continuous dysarthric speech,

leading to fairer performance. Secondly, incorporating features extracted from

an autoencoder-bottleneck feature extractor which is jointly optimised with

a speech recogniser is shown to effectively lead to better recognition perfor-

mance. Employing the monophone regularisation as an auxiliary task can

further benefit the performance. Thirdly, by incorporating real articulatory

information alongside acoustic features, a multi-modal acoustic-articulatory

system is demonstrated to achieve encouraging performance. The best feature

fusion scheme is explored and shown to achieve better results. In conclu-

sion, this thesis makes promising progress in improving continuous dysarthric

speech recognition.



List of Acronyms and Abbreviations

ADSR automatic dysarthric speech recognition

ACDSR automatic continuous dysarthric speech recognition

MND motor neurone disease

PLP perceptual linear prediction

MFCC Mel-frequency cepstrum

OOD out-of-domain

MTL multi-task learning

EMA electromagnetic midsagittal articulography

CE cross-entropy

WER word error rate

MAMR maximum articulator motion range

OOV out-of-vocabulary

GMM Gaussian mixture model

HMM hidden Markov model



AM acoustic model

LM language model

SI speaker-independent

SD speaker-dependent

CI context-independent

CD context-dependent

MLP multi-layer perceptron

DNN deep neural network

CNN convolutional neural network

RNN recurrent neural network

LSTM long short-term memory

LiGRU light gated recurrent unit

TDNN time-delay neural network

TDNN-F time-delay neural networks

GAN generative adversarial network

AE autoencoder

BN bottleneck



CBN convolutive bottleneck network

AE-BN autoencoder bottleneck

PD Parkinson’s disease

CP cerebral palsy

DFT discrete Fourier transform

DCT discrete cosine transform

CMVN cepstral mean and variance normalisation

LOSO leave-one-speaker-out

SAT speaker adaption training

fMLLR feature-space MLLR

MAP maximum a posteriori

MLLT maximum likelihood linear transform

LDA linear discriminant analysis

MMI maximum mutual information

LF-MMI lattice-free maximum mutual information

EPG electropalatog raphy

ER enrolment data



ID interaction data

VOT voice onset time

VD vowel duration

FD fricative duration

VF vowel formant



viii



Contents

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Dysarthric Speech 15

2.1 Human Speech Production and Perception . . . . . . . . . . . . . . . . . . 16

2.1.1 Speech Production . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 What is Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Types of Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Dysarthric Speech Intelligibility . . . . . . . . . . . . . . . . . . . . 21

2.3 Acoustic Characteristics of Dysarthric Speech . . . . . . . . . . . . . . . . 23

2.3.1 The Mismatch to Typical Speech . . . . . . . . . . . . . . . . . . . 23

2.3.2 High Degree of Inter- and Intra-speaker Variability . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 A Review of Automatic Recognition for Dysarthric Speech 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 A Typical Automatic Speech Recognition System . . . . . . . . . . . . . . 34

3.2.1 Front-end Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



Contents x

3.2.3 Acoustic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Language Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Recent Progress in Automatic Recognition for Dysarthric Speech . . . . . . 43

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Acoustic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.5 Multimodal Acoustic Modelling . . . . . . . . . . . . . . . . . . . . 49

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Current Research Gaps in Dysarthric Speech Recognition Systems . 51

3.4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Dysarthric Speech Datasets and Comparison 53

4.1 Dysarthric Speech Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 The Whitaker Database . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 The Nemours Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 The HomeService Corpus . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.4 The UASpeech Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.5 The TORGO Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.6 Non-English Dysarthric Corpora . . . . . . . . . . . . . . . . . . . . 58

4.2 English Dysarthric Corpora Comparison . . . . . . . . . . . . . . . . . . . 59

5 Baseline Continuous Dysarthric Speech Recognition System 61

5.1 Baseline Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Baseline Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Results on the Full Test Set . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Results on Different Prompt Types . . . . . . . . . . . . . . . . . . 67

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Language Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 In-domain Task-specific TORGO Language Models . . . . . . . . . 69

5.3.2 Out-of-domain LibriSpeech Language Models . . . . . . . . . . . . 71

5.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 A Novel Speech Representation Learning Framework 81

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



xi Contents

6.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.2 Autoencoder Bottleneck Feature Extractor . . . . . . . . . . . . . . 84

6.2.3 Light Gated Recurrent Units Acoustic Model . . . . . . . . . . . . 86

6.2.4 Joint Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.5 Monophone Regularisation . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 The Training Setup for the TORGO Corpus . . . . . . . . . . . . . 89

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Incorporating Articulatory Information 97

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 TORGO Articulatory Data Visualisation . . . . . . . . . . . . . . . . . . . 100

7.2.1 TORGO EMA data . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.2 2-D Articulator Movement Trajectory . . . . . . . . . . . . . . . . . 103

7.2.3 3-D Point Cloud Plots . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Statistical Articulatory Space Distribution . . . . . . . . . . . . . . . . . . 106

7.3.1 Data Selection and Preparation . . . . . . . . . . . . . . . . . . . . 106

7.3.2 Maximum Articulator Motion Range . . . . . . . . . . . . . . . . . 106

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Multimodal Acoustic-articulatory Speech Recognition Systems 113

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.3 Acoustic-articulatory Dysarthric Speech Recognition Systems . . . . . . . . 118

8.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3.2 Exploration of Appropriate Measures for Articulatory Features . . . 119

8.3.3 Exploring the Effect of Different Training Sets . . . . . . . . . . . . 123

8.3.4 Acoustic and Articulatory Feature Fusion . . . . . . . . . . . . . . 124

8.3.5 Exploring the Effect of Transfer Learning . . . . . . . . . . . . . . . 128

8.3.6 Results for the Separate Sentence and Word Tasks . . . . . . . . . . 129

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9 Conclusion and Future Work 133

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



Contents xii

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.1 More Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.2 Employing Speech Representations from Other Components . . . . 138

9.2.3 Extension on the Multimodal Acoustic-articulatory Speech Recog-

nition Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 139

References 141



List of Figures

1.1 Organisation of the thesis indicated by the addressed research questions. . 11

2.1 Diagram showing human speech production at levels based on proximity

to the glottis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Waveform and spectrogram of the word ‘Jacket’ for speakers with different

dysarthria severity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Waveform and spectrogram of the sentence ‘Just one side got wet’ for

speakers with different dysarthria severity. . . . . . . . . . . . . . . . . . . 29

3.1 A typical ASR system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 MFCC feature extraction (modified). . . . . . . . . . . . . . . . . . . . . . 36

5.1 Comparison between the task-specific TORGO LMs and the full (both

tasks) TORGO LM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 WER, recognition confusion and OOV rate for LibriSpeech LMs for speak-

ers with different dysarthria severity levels. . . . . . . . . . . . . . . . . . . 75

5.3 Results of LibriSpeech LMs; see text for further details. . . . . . . . . . . . 78

5.4 Perplexity vs. vocabulary size for LibriSpeech trigram LMs. . . . . . . . . . 79

6.1 System architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 WER for different utterance subsets using the proposed “fMLLR+BN20 +

mono” model (modified). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 WER for different utterance subsets using the “fMLLR+BN20 + mono”

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 The placement coils on the RM, LM, UL, TT, TM and TB in the AG500

EMA system. The figure is adapted from the original article [Rudzicz et al.,

2012b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Sensor configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 2-D articulator movement trajectory for the utterance “The pair of shoes

was new” for speakers with different dysarthria severity levels. . . . . . . . 104



List of Figures xiv

7.4 3-D point cloud of the UL and LL for the utterance “The pair of shoes was

new” for speakers MC02 (typical) and F03 (moderate dysarthria). . . . . . 105

7.5 Statistics of MAMR between dysarthric and typical speech. . . . . . . . . . 107

8.1 An example of a clean channel of an EMA data sample. . . . . . . . . . . . 116

8.2 EMA data pre-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 EMA data downsampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.4 Three measures of EMA data. E dis: Euclidean distance. . . . . . . . . . . 119

8.5 MAMR distribution map of three articulatory measures of the lip sensors

for dysarthric and typical speech. . . . . . . . . . . . . . . . . . . . . . . . 121

8.6 Proposed speech recogniser. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.7 The proposed architectures fusing the acoustic and articulatory features at

different levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.8 CE loss for different fusion schemes. . . . . . . . . . . . . . . . . . . . . . . 128

8.9 WER at different epochs in the concat-2 system for speakers with

dysarthria (left) and typical speakers (right). . . . . . . . . . . . . . . . . . 129

8.10 The WER reduction employing transfer learning (TF) on the MFCC and

the (MFCC+Lip ud) systems. . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Tables

2.1 Types of dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Details of five popular English dysarthric corpora . . . . . . . . . . . . . . 59

5.1 The number of utterances per (F)emale and (M)ale speaker with dysarthria

in TORGO. ‘M/S’: moderate to severe intelligibility. ‘#’: the number of. . 63

5.2 The number of utterances per (F)emale and (M)ale speaker of the leave-

one-speaker-out models in TORGO. ‘M/S’: moderate to severe intelligibility. 65

5.3 WER using different acoustic models and the TORGO LM for full, isolated

words and sentences tasks, averaged for speakers with different dysarthria

severity levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 WER using different AMs and the task-specific TORGO LMs for isolated

words (TORGO unigram LM) and sentences (TORGO trigram LM ) tasks,

averaged for speakers with different dysarthria severity. . . . . . . . . . . . 71

5.5 WER using different AMs and the OOD LibriSpeech LMs for isolated words

(LibriSpeech unigram LM ) and sentences (LibriSpeech trigram LM ) tasks,

averaged for speakers with different dysarthria severity levels. . . . . . . . 76

6.1 Duration (hours) of the training and test data in each fold using the 5-fold

cross-training setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 WER using different speech representations and AMs for per (F)emale or

(M)ale speaker with dysarthria at different severity levels, and the averaged

result of all speakers ‘M/S’: moderate to severe level of dysarthria. . . . . . 91

6.3 The averaged WER for speakers with dysarthria when using different λ1s. . 92

6.4 Number of utterances recorded by array and head microphones per

dysarthric speaker per Session. ’s’: Session. . . . . . . . . . . . . . . . . . . 94

7.1 The number of EMA recordings of each speaker in TORGO. ‘-’ indicates

the missing recordings, ‘s’ represents ‘Session’. . . . . . . . . . . . . . . . 102



List of Tables xvi

7.2 The EMA data channel sequence attached for the typical and the dysarthric

group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 The number of utterances where the prompts are overlapping between

speaker MC02 and other speakers. . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 The MAMR statistics (µ and σ) for different articulators averaged for

dysarthric and typical speech. . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 The MAMR statistics (µ and σ) for different articulators of different speak-

ers with dysarthria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.6 The MAMR statistics (µ and σ) for different articulators of typical speakers.110

8.1 The MAMR statistics (µ and σ) of the three articulatory measures of the

lip sensors for dysarthric and typical speech. . . . . . . . . . . . . . . . . . 122

8.2 WER for systems trained on different input features and different articu-

latory measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 Systems trained on different training sets. . . . . . . . . . . . . . . . . . . 123

8.4 WER for systems trained on different training sets. . . . . . . . . . . . . . 124

8.5 WER for different feature fusion systems averaged for dysarthric and typ-

ical speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.6 Number of parameters (in millions) for different fusion schemes. . . . . . . 127

8.7 WER for systems applying transfer learning (TF). . . . . . . . . . . . . . . 130

8.8 WER for systems applying transfer learning (TF) for different utterance

types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 10



Introduction 2

Dysarthria is the most commonly acquired speech disorder, accounting for 53% of

all speech disorders [Morris et al., 2016]. It is caused by the damage to the nervous

system. Stroke, cerebral palsy (CP) and Parkinson’s disease (PD) are the most prevalent

causes of dysarthric speech in the UK [Therapists, 2006]. This neurological damage causes

the weakening or uncoordination of the muscles used for speaking. Therefore, people

with dysarthria often have poorer motor control of their speech articulators, producing

speech characterised as being heavily slurred, having a slower speaking rate, abnormal

pauses, false starts, and repetitions [Darley et al., 1969]. As a result, this group of

people, especially those with severe dysarthria, are difficult to understand for people who

are not familiar with their way of speaking. The reduced intelligibility of dysarthric

speech can cause problems in human-human communication which in turn can affect

social interaction, employment and even education.

People with dysarthria also often have physical motor disabilities such as those asso-

ciated with stroke or cerebral palsy. They often have more limited or involuntary body

movements. Consequently, they may experience difficulty carrying out simple daily tasks

such as using handles or switches. It is also difficult for them to interact with physical

devices such as keyboards and touch-screens. Especially nowadays, human-machine in-

teraction is increasingly needed by the general public as computer systems are now part

of everyday life (e.g., social media, email). People with dysarthria are increasingly left

behind due to the barrier in human-machine interaction caused by physical disabilities.

These problems demonstrate an increasing need to establish systems that can facili-

tate human-human communication and human-machine high-performance interaction for

people with dysarthria, which may improve their wellbeing and independence [Holmes

et al., 2010].

1.1 Motivation

Automatic speech recognition (ASR) technology underpins today’s voice-enabled inter-

faces by converting spoken utterances into text transcriptions. The speech-to-text trans-

lation process enables us to use voice with artificial technology (e.g., remote controls)



3 1.1. Motivation

whether it is in our homes, cars, offices or elsewhere. In this case, speech provides an

attractive interface for hand-free human-machine interaction. As a replacement for more

‘traditional’ physical interface elements like keys, knobs and handles, ASR-enabled tech-

nology has the potential to help people with dysarthria carry out simple daily tasks with a

better and more natural interaction with machines, without the need for fine motor skills.

In addition, a high-performance ASR system can provide an accurate text transcription

for a dysarthric utterance which helps people with dysarthria better communicate with

others (e.g., via automatic captioning or text-to-speech synthesis). Eventually, this tech-

nology would greatly improve the quality of life of people with dysarthria.

Speech recognition technology clearly has a lot of potential for people with dysarthria.

However, currently available commercial ASR systems do not work reliably for dysarthric

speech. Mainstream ASR systems are trained on large amounts of typical speech and

therefore fail to capture the specific characteristics of a person’s dysarthria. There is

therefore a clear need for a high-performance ASR system for dysarthric speech. Although

some progress has been made in recent years, the ASR performance on dysarthric speech

is still considerably lower than that achieved with typical speech.

There are several reasons why establishing high-performance ASR systems for peo-

ple with dysarthria is challenging. The large systematic dysarthric and typical speech

mismatch, coupled with the high speaker variability (usually depending on the severity

and type of dysarthria) means that large amounts of training data matched to a person’s

dysarthria is typically required to train adequate acoustic models to learn the mismatch

information and normalise different speakers well. However, there are very few dysarthric

datasets available and those that do exist contain a limited amount of data. The data

scarcity problem makes dysarthric speech difficult to model with recent data-hungry ASR

approaches designed for typical speech, for which there are hundreds and thousands of

hours of training data available. Moreover, most dysarthric datasets were not collected to

be used for ASR training but instead for purposes such as speech assessment. For these

reasons, great care needs to be taken when designing the ASR systems for dysarthric

speech.

It is also noticeable that most of the previous studies [Kim et al., 2008a, 2018; Xiong
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et al., 2018, 2020; Yu et al., 2018] on automatic dysarthric speech recognition (ADSR) have

focused on isolated words, since the commonly used dysarthric speech datasets mainly

contain single word utterances. Although a single word recognition system can be a great

help for people with dysarthria, it would not be adequate to cover most of their needs.

Systems that can only recognise isolated words severely limit the range of activities that

people with dysarthria can carry out. These systems do little to reduce the exclusion

caused by the communication problems experienced by people with dysarthria. Instead,

continuous speech (phrases and sentences) is much more natural to use. In order to

improve the communication ability of people with dysarthria, similar to the development

of typical speech recognition [Makhoul and Schwartz, 1995; Wachter et al., 2003; Young,

1996], the research focus of ADSR needs to move from the single word on to continuous

speech.

However, achieving an acceptable performance for a continuous dysarthric speech

recogniser is much more challenging than building a desirable isolated word recogniser

for dysarthric speech. Firstly, continuous dysarthric speech has more variability. The

reduced motor control of articulators makes people with dysarthria experience difficulty

moving their articulators from one target pronunciation position to another. As a result,

speaking multiple words is more challenging for people with dysarthria and more mispro-

nunciations will occur. Due to the high variability in dysarthric speech, locating the word

boundaries in a sentence and tackling the potential effects of coarticulation [Makhoul and

Schwartz, 1995] become more challenging. These problems do not need to be considered

in the isolated word recognition task. Secondly, and related, decoding is particularly

difficult for continuous dysarthric speech where there is increased uncertainty. When

decoding single words, the output will be one of the words in a closed-set vocabulary.

Even if the words vary a lot in pronunciation by a given speaker, it is a much easier task

as opposed to free continuous speech recognition using a probabilistic language model.

Finally, compared with isolated words, there is much less continuous dysarthric speech

data available which is insufficient to train an adequate model applicable for continuous

dysarthric speech.

The purpose of this research is to explore various approaches to building reliable and
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high-performance ASR systems for continuous dysarthric speech. This will improve the

ability of people with dysarthria to communicate in a more natural manner with both

humans and machines, and eventually, increase their social participation and improve their

independence in life. Difficulties in recognising continuous dysarthric speech mentioned

above will be considered when designing the systems, including data scarcity issues and

high degree of speech variation. It is essential to exploit ways of maximising the usage of

the currently available data and searching for additional sources of information to capture

the specific characteristics of dysarthria. Research questions and the main contributions

will be presented in the next two sections.

1.2 Research Questions

In order to achieve the above goals, the following research questions will be addressed:

RQ1: To progress the ADSR task from isolated word to continuous speech, it is im-

portant to identify and consider the difference between these two tasks. Most previous

ADSR studies have focused on isolated word recognition, using closed-set (usually small-

sized) vocabularies, where the training and test vocabularies were the same. However,

this is not applicable to how continuous speech ASR systems should be evaluated. When

it comes to continuous speech, a language model is needed and greatly affects the results.

ADSR is a low-resource task. The collected corpora normally have a limited number of

sentences with limited vocabulary sizes. This leads to problems when using a language

model only trained on the limited prompts within such dysarthric datasets. In this case,

the training and test sets are usually non-disjoint leading to unfair decoding (the language

model is tuned very highly to the sentences present in the corpus). In addition, the lim-

ited vocabulary size results in a large out-of-vocabulary rate, which will also influence the

recognition performance. This leads us to the question: what is an appropriate eval-

uation framework for continuous dysarthric speech recognition, given current

data limitations?

RQ2: With the popularity of deep learning approaches, there is a growing interest in

applying deep learning methods for speech representation learning, e.g., bottleneck and
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autoencoder-based features. These approaches may also be applicable to dysarthric speech

representation learning. Compared with hand-crafted features, neural networks can learn

richer representations which can capture the dysarthric and typical speech mismatch and

represent dysarthric speech better. As noted in RQ1, data scarcity is a major issue in the

ADSR task. The lack of dysarthric data limits the performance achieved by data-hungry

deep learning approaches designed for typical speech where large datasets are readily

available. Exploiting out-of-domain data is a good way to address this issue [Christensen

et al., 2013; Xiong et al., 2020; Yılmaz et al., 2019]. This leads us to the question: What

is a good way to leverage typical speech, which is out-of-domain, to learn more

robust representations for continuous dysarthric speech?

RQ3: All produced spoken sounds are the result of muscles contracting, which is

reflected by the movement of different articulators of the speaker – called articulatory

information. Due to speakers with dysarthria having poorer control of their articulators,

the unintended and involuntary movements make it hard to reproduce their speech (i.e.,

a typical phonetic token can be pronounced differently), which lacks consistency. Conse-

quently, the produced speech perceived by the listeners always exhibits high variability,

and there is often no robust acoustic cues for a specific phoneme. Compared with acous-

tic representations, articulatory space is simpler to model. The latter may help shape

each produced sound which helps in recognising the sound. When it comes to continuous

speech, it is also more suitable to better capture coarticulation. Articulatory information

may therefore hold complementary information that could be explored in ADSR systems.

Detailed analysis of the articulatory space of dysarthric speech is essential to support this

assumption. It can provide evidence for the difference between dysarthric and typical

speech in the articulatory space. Therefore, is it necessary to address the questions of

how can articulatory information characterise continuous dysarthric speech,

and what are the advantages of incorporating articulatory information?

RQ4: Previous studies have demonstrated that deploying articulatory information

alongside acoustic features results in better performance for dysarthric speech recognition.

However, the multimodal ADSR task has been limited by the lack of parallel acoustic-

articulatory data, therefore most of them use synthetic articulatory features learnt from
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an acoustic-articulatory mapping. The learnt articulation can be an inaccurate repre-

sentation of the real dysarthric articulatory space as the mapping is normally trained

on typical speech. Incorporating real articulatory data with acoustic features has not

been widely explored in the dysarthric speech community. Whether the real articula-

tory information is still beneficial in the recent more advanced acoustic models should

be explored. So the final research question is how can articulatory information be

incorporated effectively to build multimodal automatic continuous dysarthric

speech recognition (ACDSR) systems using recent acoustic models?

1.3 Contributions

This section identifies the main contributions of this thesis, along with the motivation

behind the work carried out.

Contribution 1: Out-of-domain language models.

It is observed that most of the commonly used dysarthric datasets contain much overlap

in the prompts read by the speakers. This needs to be considered when these resources are

re-purposed and used for ASR evaluation in low-resource data scenarios. Using language

models trained on non-disjoint training and test data when recognising continuous speech

will most likely result in an unfair design, which potentially produces unrealistically op-

timistic results. Previous studies have often neglected this problem. This contribution

addresses the research question RQ1. The work introduces language models trained on

out-of-domain (OOD) data 1 and performs evaluation separately on the word and sen-

tence tasks. It provides a fair benchmark for the current state-of-the-art for dysarthric

read speech ASR. The work demonstrates that employing OOD language models is fairer

and allows for a more meaningful decoding space. The Kaldi recipes of this evaluation

framework are available at https://github.com/zhengjunyue/CADSR-LM. The work will

be introduced in Chapter 5 and will be used as the basis for evaluations in the subsequent

chapters. The experimental work has been published as a conference paper [Yue et al.,

1Librispeech [Panayotov et al., 2015] is used as the OOD dataset. Compared with other large-size
typical speech datasets (e.g., Wall Street Journal [Paul and Baker, 1992]), Librispeech has the most
similar recorded speech style with the dysarthric speech dataset TORGO [Rudzicz et al., 2012b] used in
this thesis. Librispeech also has public and prunable pre-trained language models.
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2020b] in ICASSP 2020:

• Yue, Z., Xiong, F., Christensen, H., & Barker, J. (2020, May). Exploring Appropriate

Acoustic and Language Modelling Choices for Continuous Dysarthric Speech Recog-

nition. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) 2020.

Contribution 2: Autoencoder-based bottleneck features with multi-task

optimisation for ACDSR.

The second contribution addresses the research question RQ2. It is the first work

to demonstrate the effectiveness of learning deep speech representations (i.e., the

autoencoder-based bottleneck features) using multi-task optimisation techniques for

continuous dysarthric speech recognition. Specifically, the work establishes a framework

which allows for jointly optimising the autoencoder bottleneck (AE-BN) feature extractor

and the speech recogniser. This enables the speech recogniser to engage in and influence

the feature extraction process resulting in speech representations benefits to the phoneme

classification specifically. The work also increases the robustness of the dysarthric

speech representation learning process by pretraining the feature extractor on the OOD

typical data, which addresses the data scarcity problem. Monophone regularisation

is applied as a multi-task learning strategy to provide further improvement. The

results are state-of-the-art for continuous dysarthric speech recognition in the acoustic

domain. The experimental results are fully reproducible and the recipes are available at

https://github.com/zhengjunyue/bntg. The details will be presented in Chapter 6.

The experimental work has been published as a conference paper [Yue et al., 2020a] in

INTERSPEECH 2020.

• Yue, Z., Christensen, H., & Barker, J. (2020, July). Autoencoder Bottleneck Features

with Multi-task Optimisation for Improved Continuous Dysarthric Speech Recognition.

In Proceedings of the Annual Conference of the International Speech Communication

Association, INTERSPEECH 2020. International Speech Communication Association

(ISCA).



9 1.3. Contributions

Contribution 3: Acoustic-articulatory speech recognition frameworks.

The current limitation of acoustic-articulatory acoustic modelling for ADSR has two

aspects. Firstly, previous work modelled dysarthric articulation parameters from acoustic

signals using the acoustic-articulatory mapping knowledge learnt from typical speech,

while assuming the articulatory-acoustic mapping remains invariant between typical and

dysarthric speech. This leads to uncertainty as to whether the synthesised articulatory

data conformed to actual dysarthric speech properties. In contrast, the real recorded

dysarthric articulatory data (e.g., electromagnetic midsagittal articulography (EMA)

data) can better reflect the dysarthric articulatory space. Secondly, although previous

studies showed benefits in incorporating the real articulatory data for the ADSR task,

more recent state-of-the-art acoustic models need to be considered in order to test

whether such fusion of acoustic and articulatory information is still beneficial. This

contribution addresses research questions RQ3 and RQ4, evaluating the contribution

of the dysarthric speech articulatory data in combination with acoustic features for

automatic dysarthric speech recognition systems. It is the first work to address and

analyse the dysarthric and typical speech mismatch in the articulatory space and extends

the previous acoustic-articulatory ADSR work with more recent acoustic modelling ar-

chitectures. It also demonstrates that using the appropriate measure of real articulatory

information is beneficial for continuous dysarthric speech recognition. The details will be

presented in Chapter 7 and 8. A journal paper covering this work is under preparation:

• Yue, Z., Barker, J., Loweimi, E., Cvetkovic, Z., Christensen, H. Acoustic-articulatory

Multimodal Speech Recognition for Dysarthric Speech. IEEE/ACM Transactions on

Audio, Speech, and Language Processing (In preparation).

Contribution 4: Multi-stream acoustic-articulatory feature fusion for

dysarthric speech recognition.

Few studies have explored the optimal information fusion scheme for combining acoustic

and articulatory representations for dysarthric speech recognition. The acoustic and

articulatory representations encode different information, in various formats and with

different levels of importance to the task. Consequently, the optimal set of filters to



Introduction 10

process each stream will differ. Direct fusion at the input level does not permit such per

stream pre-processing. Therefore, it is essential to pre-process each stream individually

and fuse the processed streams at a higher level. This work is the first to propose

multi-stream acoustic-articulatory architectures which allow for different levels of fusion

for dysarthric speech acoustic modelling. It evaluates various levels to uncover the level

at which the fusion between both kinds of features occurring during processing is optimal

(at the input level, at the medium level or before the output layer). Experimental results

demonstrate that fusion at a later level achieves better performance as it underlines the

independence of both parameter groups. The optimal fusion level should be high enough

to effectively pre-process each information stream for the given task and low enough

to leave sufficient capacity after fusion for post-processing the fused streams. This

contribution further addresses the research question RQ4. The details will be presented

in Chapter 8. The experimental work was accepted as a conference paper [Yue et al.,

2022] in ICASSP 2022:

• Yue, Z., Loweimi, E., Cvetkovic, Z., Christensen, H., & Barker, J. (2022, May). Multi-

modal Acoustic-articulatory Feature Fusion for Dysarthric Speech Recognition. In

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

2022.

1.4 Thesis Overview

A diagram of the organisation of this thesis is shown in Figure 1.1. The remainder of the

thesis is presented in Chapters 2 to 9. The content of these chapters are summarised as

follows:

Chapter 2: Dysarthric Speech.

This chapter provides a background of what dysarthric speech is in order to give readers

a deeper insight. First, it starts with introducing two essential components in communi-

cation – speech production and human speech perception which help to understand how

to support people with dysarthria using this knowledge of speech perception. Then, a

brief description of what dysarthria is and how various types of dysarthria are medically
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Figure 1.1: Organisation of the thesis indicated by the addressed research questions.

classified is included. The definition of intelligibility and the techniques for assessing

the intelligibility (i.e., the severity) for dysarthric speech is discussed. This chapter also

gives an analysis of the acoustic characteristics of dysarthric speech, demonstrating the

dysarthric and typical speech mismatch, some speech variations and the challenges of

developing ASR systems on dysarthric speech.

Chapter 3: A Review of Automatic Recognition for Dysarthric Speech.

This chapter reviews the existing research literature concerning ADSR. It begins with a

brief introduction of a typical ASR system and its components. A review of the recent

progress on ADSR is then presented, including speech representation learning, acoustic

modelling, data augmentation and multimodal acoustic modelling. Finally, the current

research gaps in dysarthric speech recognition systems and the relevance to the research

questions are summarised.

Chapter 4: Dysarthric Speech Corpora and Comparison.

This chapter compares the commonly used English dysarthric speech corpora. The pre-

vious ADSR studies using the datasets are reviewed. Several dysarthric corpora in other

languages are also briefly described. Finally, the most appropriate dataset for this research

is selected and will be used in the following experimental chapters.

Chapter 5: Baseline Continuous Dysarthric Speech Recognition System.
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In this chapter, a baseline ACDSR system is established. Firstly, a pilot exploration

of state-of-the-art ASR system for a widely used dysarthric dataset – TORGO [Rudzicz

et al., 2012b] – based on Espana-Bonet and Fonollosa [2016]’s work is presented. The work

separates isolated word and sentence recognition into two tasks and reports the results

for each task separately. Then, the various designs of language models are discussed and

a novel fair evaluation approach employing an OOD language model is proposed. The

OOD language model will be used as the basis for evaluations in the subsequent chapters.

Chapter 6: Novel Speech Representation Leaning for Continuous

Dysarthric Speech Recognition

The work in this chapter proposes a novel ACDSR framework, which applies autoencoder

bottleneck features trained using multi-task optimisation techniques. First, the theory

of autoencoders and multi-task optimisation techniques are explained. The system

architecture is then presented. A five-fold cross training setup applied in this framework

is discussed. The training setup and the acoustic model will be used in the subsequent

chapters.

Chapter 7: Incorporating Articulatory Information.

In this chapter the articulatory data recordings available in TORGO are explored. The

articulatory motion patterns including 2-D trajectories and 3-D point cloud plots are

visualised. The statistical articulatory space distribution regarding maximum articulator

motion range (MAMR) is analysed for dysarthric and typical speech. These provide

evidence of the articulation mismatch between typical and dysarthric speech.

Chapter 8: Multimodal Acoustic-articulatory Speech Recognition Systems

for Continuous Dysarthric Speech.

This chapter demonstrates the effectiveness of incorporating articulatory information for

ACDSR. The procedure of processing the articulatory data in TORGO is covered. Dif-

ferent acoustic-articulatory ACDSR systems are explored using various measures of the

articulatory data and the subsets of training data. The optimal fusion level and scheme is

investigated to further improve the recognition performance for the acoustic-articulatory

ACDSR system.

Chapter 9: Conclusion and Future Work.
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This chapter summarises the main outcomes of the contributions in this thesis and outlines

some potential areas of future research.

The content of thesis is on the website https://zhengjunyue.github.io/ZJ-thesis/.
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Human speech production is the process of uttering articulated sounds or words, where

the speech articulator muscles are controlled by the neuro-motor interface. Neural damage

can lead to uncoordinated speech musculature movement, resulting in, for example, poor

articulation which causes a motor speech disorder. Dysarthria is the most commonly

acquired speech disorder.

Dysarthria was defined by Duffy [2013] as:

“A collective name for a group of neurologic speech disorders resulting from

abnormalities in the strength, speed, range, steadiness, tone, or accuracy of

movements required for control of the respiratory, phonatory, resonatory, ar-

ticulatory, and prosodic aspects of speech production.”

How common is dysarthria? Researchers don’t know exactly how many people have

dysarthria. However, it is known to be more common in people who have certain neuro-

logical conditions. For example, up to 30% of people with motor neurone disease (MND),

70% to 100% of people with Parkinson’s disease, and about 8% to 60% of people with

stroke have dysarthria [clinic, 2021]. This shows the necessity of understanding dysarthria

in order to support people with dysarthria in ways such as designing assistive technologies.

This chapter starts by introducing the essence of speech production and human speech

perception. It then discusses what causes dysarthria, what types of dysarthria there are,

and how dysarthric speech intelligibility is assessed. Towards the end of the chapter, the

acoustic characteristics of dysarthric speech are analysed to illustrate the dysarthric and

typical speech mismatch.

2.1 Human Speech Production and Perception

Speech production and perception are the two essential components in the process of

communication. The speech sound waves are produced by the speakers and then travel

from the speakers to the listeners. Spoken information is transmitted during this process.

Listeners receive the acoustic signals through their ears and perceive the spoken informa-

tion in an attempt to understand what the speaker intended to express. Understanding

the mechanism of human speech production and perception is a prerequisite for knowing
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how dysarthric speech is produced and how to support people with dysarthria using this

knowledge of speech perception.

2.1.1 Speech Production

The production of spoken language involves three levels of processing: conceptualisation,

formulation, and articulation [Levelt, 1999]. Since this thesis will not cover natural lan-

guage production but focus on the acoustic side of speech, articulation will be explained in

detail for speech production. Articulation is how people physically produce speech sounds

from the highly coordinated functioning of several components (e.g., lungs, glottis, larynx,

tongue, lips and jaw) in the human vocal tract. The vocal apparatus can be divided into

three levels according to the relative position to the larynx: the parts below the larynx

(i.e., subglottal structure), the larynx and its surrounding vocal folds components (i.e.,

glottal), and the parts above the larynx (i.e., supraglottal structure). Figure 2.1 shows a

diagram showing the human speech production at these three levels.

Figure 2.1: Diagram showing human speech production at levels based on proximity to
the glottis.

The physical production of speech could be described as an air-oriented process. First,

a stream of air flows from the subglottal level as the source of sound energy (i.e., the

pulmonary pressure provided by the lungs). The air then moves up to the larynx where it

passes through the glottis. The sound is generated by phonation through the glottis. The
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movement of the vocal tract enables this process. In particular, the vocal tract vibrates

to produce the fundamental frequency and its corresponding harmonics of the voice.

Here, the air pressure is transformed according to the movements of the supra glottal

articulators, resulting in the production of different vowels and consonants. Articulators

within the vocal tract are divided into two types when involved in speech production: fixed

and movable [Tatham and Morton, 2006]. These two types of articulators together create

places of constriction or narrowing within the vocal tract. The fixed articulators, such

as teeth and palate, are located in a particular region of the vocal tract on a repeatable

basis. In contrast, the movable articulators (e.g., lips, jaw and tongue) are dynamic. They

move, relocate or change their shapes while an utterance is produced.

The neurological way of describing speech production is brain-oriented, where the

speech production originates in various centres of the brain. A timed and coordinated

message is delivered to the musculoskeletal structure responsible for speech production

directing a neural activation. Speech production is a complex process where various

components are involved. Even small problems with any of these systems can cause

speech impairment. For instance, damage in the coordination of the motor commands

necessary for speech can cause difficulties in the manner of articulation. Damage existing

in the central or peripheral nervous system can cause weakness and incoordination in the

speech musculature.

2.1.2 Perception

“Speech is produced to be perceived” [Tatham and Morton, 2006]. Speakers convey their

thoughts by speaking. At the other end of the information transmission channel is the

process of the sounds of language being heard, interpreted and understood, which is

known as speech perception. In the process of communication, both correctly speaking

or perceiving a message is important. Perception is a learnable process. Listeners cannot

begin to understand a language unless they have acquired some knowledge of its phono-

logical, grammatical and semantic systems. Familiarisation with unfamiliar or ambiguous

speech signals can facilitate perceptual learning of that same speech signal [Borrie et al.,

2012]. Samuel and Kraljic [2009] and McClelland and Elman [1986] have suggested that
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the individual’s perceptual system is flexible and dynamically adjusts to match the in-

formation provided in the incoming signal. When listeners are familiarised with a speech

signal that is at first unfamiliar or ambiguous, they are able to modify their perceptual

strategies for subsequent processing of the speech. This is called perception learning. The

process could explain why people with speech disorders are often intelligible to their close

friends and family but not to others. Knowing about the perception learning could help

developing assistive techniques to support people with dysarthria. Perception learning

is an inherent characteristic of human beings; how might this be applied to machines?

Can automatic speech recognition (ASR) systems perform such a process to recognise

(dysarthric) speech better? Speech perception research has applications in building com-

puter systems that can recognise speech, in improving speech recognition for hearing- and

language-impaired listeners, and in foreign-language teaching. It is also a gold standard

for clinical differential diagnosis and judgments of the severity of atypical speech. This

motivates the exploration of the adaptation techniques to the target speech for the ASR

systems. For instance, Lally et al. [2019] have investigated the speech perception effects on

dysarthric speech. As familiarised human listeners better understand dysarthric speech,

the supervised (i.e., prior) information could facilitate familiarised ASR models.

2.2 Dysarthria

2.2.1 What is Dysarthria

Dysarthria is defined as a speech disorder caused by neurologic impairments affecting

the planning, programming, control or execution of speech. The neurologic impairments

disrupt the motor system which controls the physical production of speech [Gowers, 2001].

Different forms of disruption may result in different types of disorder. There are three

major causes of dysarthria. Firstly, a death of dopamine cells can cause deficiencies and

imbalance in the neurochemical system. This type of disorder is called neurochemical

dysarthria. Parkinson’s disease (PD) is such an example. Speakers with PD usually

have problems with body movements accompanied by tremors or shaking. This impaired

posture and balance results in changes in speech. Secondly, the gradual decline and



Dysarthric Speech 20

death of neuronal activity can cause MND. This is called degenerative dysarthria. The

reduced neuronal activity results in reduced motor control and sometimes even in the

wrong commands being sent to the articulators and other parts of the body. Thirdly,

some external or internal injuries may cause neurologic impairments. For instance, a

head injury can lead to the obstruction of blood supply to neurons. Likewise, stroke can

cause sudden damage to the brain. This can cause traumatic dysarthria. People with

stroke or other internal brain injuries usually have slurred or garbled speech.

2.2.2 Types of Dysarthria

Three criterion can be used to categorise dysarthria: the lesion site, the degree of

dysarthria severity and the developmental pattern. The motor neurone systems which

control speech articulation rely on different parts of the brain. Therefore, the damage to

any site may influence speech production. This section focuses on the types of dysarthria

classified by the site of the lesion and the expressed speech characteristics. According to

the site of the neurological damage, dysarthria can be classified into six types: Flaccid

dysarthria, Spastic dysarthria, Ataxic dysarthria, Hypokinetic dysarthria, Hyperkinetic

dysarthria and Mixed dysarthria. They are summarised in Table 2.1. In particular,

Flaccid dysarthria is caused by the damage to the lower motor neurone system,

mostly caused by stroke. An example of this type of dysarthria is bulbar palsy, charac-

terised by weakness in muscle movement and poor reflexes (so-called hypotonia). The

produced speech often has too much sound resonation (vibration) in the nose, a breathy

voice quality, mono-pitch and imprecise consonant production.

Spastic dysarthria is caused by damage to the upper motor neurons, caused mainly

by MND. An example of this type of dysarthria is pseudobulbar palsy. People with

pseudobulbar palsy cannot control their facial movements, and certain muscles are con-

tinuously contracted followed by overactive reflexes. The produced speech is characterised

by imprecise consonants, mono-pitch, reduced stress, a harsh and strained voice quality,

slow speaking rate and hypernasality.

Ataxic dysarthria is caused by the damage to the cerebellum. Ataxia is defined as

the lack of order. This causes mistakes in range, force, timing and direction of the speech
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articulators. People with ataxic dysarthria often move slowly and have decreased muscle

tension. They have less control of fast movements. The respiratory, phonatory and artic-

ulatory aspects of speech production are affected. The produced speech is characterised

by excess and equal stress, irregular articulatory breakdown, vowel distortion, harsh voice

quality, and imprecise consonants.

Hypokinetic dysarthria is caused by the extrapyramidal system, which describes a

number of centers in the brain and their associated tracts used to coordinate and process

motor commands. Damage to the extrapyramidal system can cause involuntary actions

and reduced movement. PD is one example of Hypokinetic dysarthria. People with

PD often have rigidity in muscles, slowness and limited range in speech movements. The

produced speech is characterised by reduced stress, mono-pitch, mono loudness, imprecise

consonants, inappropriate silence and a continuous breathy voice quality.

Hyperkinetic dysarthria is also caused by the extrapyramidal system. This kind

of damage to the extrapyramidal system causes an increase in the movement. Dysto-

nia is one example of Hyperkinetic dysarthria, which is a movement disorder in which a

person’s muscles contract uncontrollably. The produced speech is characterised by im-

precise consonants, distorted vowels, irregular articulatory breakdown, mono-pitch and

mono-loudness.

Mixed dysarthria refers to a combination of any of the above types of dysarthria.

The causes of the disorders are usually complicated. The most common conditions of

mixed dysarthria are degenerative (e.g., MND, PD) and vascular disorders (e.g., stroke).

2.2.3 Dysarthric Speech Intelligibility

The level of dysarthria is assessed by two subjective criteria: Human listener perceptual

measures of articulation, and speech intelligibility [Whurr, 1988]. Speech intelligibility

is defined as the accuracy with which a message is conveyed by a speaker and recovered

by a listener [Yorkston et al., 1999]. It could indicate how well a speaker is understood

despite speech impairments [Beukelman and Yorkston, 1979]. Speech intelligibility has

frequently been used as the main indicator of the severity level of dysarthria [Kent et al.,

1989], which is ranging from mild, moderate and severe or any condition within, such as,
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Table 2.1: Types of dysarthria

Types Damages Speech Characteristics Common Disorder
Flaccid
dysarthria

Lower motor neurons Breathy voice, mono-pitch
and imprecise consonant

Stroke, degenerative
disease and muscular
dystrophy

Spastic
dysarthria

Upper motor neurons Mono-pitch, reduced
stress, imprecise conso-
nant, slow rate, harsh and
strained voice

MND, multiple stroke

Ataxic
dysarthria

Cerebellum Affects the respiratory,
phonatory and articula-
tory

Cerebellar degenera-
tion

Hypokinetic
dysarthria

The extrapyramidal sys-
tem’s basal ganglia cir-
cuitry

reduced stress, imprecise
consonant, mono-pitch,
mono loudness and phases
of inappropriate silences

Parkinson’s disease
and parkinsonism

Hyperkinetic
dysarthria

The extrapyramidal sys-
tem’s basal ganglia com-
ponent or portions of the
cerebellar circuitry

Abnormal and unexpected
involuntary movements

Huntington’s disease

Mixed
dysarthria

A combination of any of
the above forms

Comprehensive character-
istics of each type

MND

mild-moderate [Klasner and Yorkston, 2005]. The higher the severity of dysarthria, the

lower the speech intelligibility score. Three popular clinical dysarthria assessment tools

are commonly used: the Frenchay Dysarthria Assessment [Enderby, 1980], Computerized

Assessment of Intelligibility of Dysarthric Speech [Yorkston et al., 1984b] and the Swedish

Dysarthria Test [Lillvik et al., 1999]. A significant correlation exists between speech

intelligibility and the accuracy achieved by the ASR system [Thomas-Stonell et al., 1998;

Wilson and Blaney, 2000]. In general, speakers with higher intelligibility scores (speakers

with mild dysarthria and typical speakers) tends to obtain better ASR performance on

their speech. In contrast, speech produced by speakers with lower intelligibility scores

(speakers with moderate and severe dysarthria) tends to get worse ASR performance.

The recognition abilities of humans and ASR systems on dysarthric speech in different

severity levels do vary, though. Sy and Horowitz [1993] suggested that, in general, for

moderately and mildly impaired speakers, the ASR performance is lower than the human

perception performance when considering listeners who were unfamiliar with the speaker.

Ferrier et al. [1995] hypothesised that at low and moderately low intelligibility levels,

applying speaker adaptation can improve the ASR performance to outperform human
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perception in recognising dysarthric speech. The reason might be that computers deal

more readily with altered but consistent category boundaries than humans.

2.3 Acoustic Characteristics of Dysarthric Speech

As mentioned above, dysarthria affects the way a person speaks. It interferes with ar-

ticulation, respiration, phonation, and resonance, causing reduced intelligibility of the

produced dysarthric speech. These atypical variations pose a great challenge for main-

stream ASR systems to achieve desirable performance on dysarthric speech and they affect

recognition accuracy. This section will present the acoustic characteristic of dysarthric

speech and how these differ from those of typical speech.

2.3.1 The Mismatch to Typical Speech

Regardless of the large variability, in general, there are three common types of mismatch

between dysarthric and typical speech: reduced speaking rate, less distinctive phone

classes and boundary position shift.

The reduced speaking rate has been shown to be the typical characteristic of

severely dysarthric speech [Raghavendra et al., 2001; Turner et al., 1995]. Due to the

damage in the neural-motor system, speakers with dysarthria often have difficulty mov-

ing their articulators from the position of one pronunciation to another. As a result, they

will need more time to produce an utterance with a slower speaking rate than typical

speakers. Many previous studies have done experiments to support this view. The mean

phoneme duration on several words and sentences for dysarthric versus typical speech was

calculated to show that, in general, the duration of dysarthric speech is longer than that

of typical speech [Kent et al., 1979]. The authors also found that the duration increased

with the increasing severity degree of the dysarthria. In addition, Brown and Aronson

[1970] found dysarthria caused prosodic impairments characterised by prolonged inter-

vals and phonemes. This also provides evidence of the slow speaking rate of dysarthric

speech. The slow speaking rate can lead to poorer performance of the speech recogniser

as non-existing words are inserted into the transcript [Turner et al., 1995].
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Less distinct phone classes is also considered to be one of the main characteristics

of dysarthric speech. By visualising the space of different vowels, Wilson and Blaney

[2000] found that the vowel space is more centralised/overlapping in dysarthric speech

while more distinct in typical speech. The less differentiable vowel target space might be

due to the reduced flexibility of articulators for people with dysarthria [Kent et al., 2004].

Consequently, it is more challenging for ASR systems to identify the phonemic categories

of dysarthric speech. This usually leads to substitution recognition errors.

The boundary position shifts refers to the additional shift in the boundaries be-

tween voice and voiceless contrast, e.g., ‘b’ and ‘p’. The standard category boundary

positions of dysarthric speech were found to shift to a higher value than that of typi-

cal speech by Wilson and Blaney [2000]. The new boundaries are consistent for mildly

dysarthric speech while inconsistent for more severely dysarthric speech. As a result,

the contrast between minimal pairs (e.g., voice and voiceless) is maintained for mildly

dysarthric speech but could not be always identified for speech at higher-level severity.

The word boundary ambiguity refers to the difficulty of detecting word boundaries

in a sentence. In continuous speech, there are no real breaks between individual words.

Isolating the words within a sentence is usually conducted by the listener [Maciuszek,

2018]. For example, strings “ice cream” and “I scream” sound indistinguishable but have

totally different meanings. This is known as word boundary ambiguity. Coarticulation,

which is when the acoustic realisation of a particular phoneme is affected by neighbouring

sounds, can also cause word boundary ambiguity [Crowley and Bowern, 2010]. In typical

speech, the word boundary ambiguity is often regarded as a lexical or syntactic ambiguity

of a specific language. The solution is often the concept of a word or a sentence. How-

ever, the word boundary ambiguity becomes bigger because the phonemic ambiguity is

sufficiently high in dysarthric speech [Liss et al., 1998]. Wilson and Blaney [2000] found

the prevalence of merging acoustic boundaries in dysarthric speech. In addition, the voice

and voiceless contrasts and different phone classes are often indistinguishable, which of-

ten occur at the word boundaries. Consequently, dysarthric speech sounds slurred and

blurred. Compared with isolated words, continuous dysarthric speech is more difficult to

recognise, with even harder word boundaries to be detected.
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2.3.2 High Degree of Inter- and Intra-speaker Variability

Apart from the main common acoustic characteristic mismatched with typical speech,

large variability is also a characteristic of dysarthric speech, affecting ASR performance.

The speech variability usually refers to linguistic variability, speaker variability and chan-

nel variability [Makhoul and Schwartz, 1995]. Speaker variability is a more related factor

in dysarthric speech, including inter- and intra speaker variability.

Inter-speaker variability means that the speech varies from speaker to speaker. As

mentioned in Section 2.2.3, dysarthria is assessed into different severity levels, ranging

from mild to severe. The acoustic characteristics produced by speakers in different sever-

ity levels are different. This is one type of inter-speaker variability. Studies have shown

that the greater speech variability often correlates with increasing severity of dysarthria

[Ferrier et al., 1995; Wilson and Blaney, 2000]. In addition, speakers with the same level

of dysarthria also produce speech with different characteristics. This might be because

dysarthria is often caused by various conditions leading to different acoustic characteris-

tics.

All speakers are different to each other but speakers with dysarthria have an even

higher level of variability. The mainstream ASR systems for typical speech are usually

speaker-independent (SI) models, i.e., the models trained on any other speakers in the

dataset except for the test speaker, which is inclusive of various speakers. However,

the SI dysarthric speech recognition systems still achieve poor performance due to the

large inter-speaker variability. The speech pattern learnt in the SI models are usually

not representative of the target dysarthric test speaker. For instance, Mengistu and

Rudzicz [2011] has trained SI systems using only dysarthric speech data. The results

showed that the model trained on dysarthric speech performs worse (24.85% vs 30.41%

word recognition rate) than the model trained on typical speech. This demonstrates that

the impact of speaker-variability is even larger than the dysarthric and typical speech

mismatch, and more data is required for training a well-performed SI model. Christensen

et al. [2012b] explored the dependence between the severity level of dysarthria and the

accuracy of the ASR and showed that each speaker with dysarthria has a personalised

optimal system. There have been studies exploring ways to build systems robust to inter-
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speaker variability, such as speaker adaption training (SAT) and deep learning training;

however, a large amount of speech data is always required for training. The data scarcity

problem makes these techniques more challenging to address the inter-speaker variability

efficiently well for dysarthric speech [Doyle et al., 1997].

Intra-speaker variability refers to the variety of speech produced by a single speaker

with dysarthria. Previous studies have analysed various measurements and provided

evidence of the intra-speaker variability. [Kent et al., 1979] analysed the duration of

the phone segments for dysarthric and typical speech. They found that speakers with

dysarthria are more variable in segment duration than typical speakers. Wilson and

Blaney [2000] analysed the parameters of voice including voice onset time (VOT), vowel

duration (VD), fricative duration (FD) and vowel formant (VF) in each of the utter-

ances. They found that the model adaptation ability to the speakers of dysarthria is slow

and it is hard to build a stable model for dysarthric speech. They demonstrated that,

in general, speakers with moderate and severe dysarthria exhibit greater intra-speaker

variability than the mild speakers and typical speakers. When the intra-speaker variation

is too wide to be modelled by the available training data (especially in small size), the

speaker-dependent models could perform even worse than the speaker adaptation mod-

els [Mengistu and Rudzicz, 2011]. The intra-speaker variability is challenging for ASR

systems due to the limited amount of dysarthric speech data resources. And there are

always limited number of speakers in the datasets.

As an example of showing the speaker variability, Figure 2.2 and 2.3 plots the waveform

amplitude envelope and spectrogram for dysarthric and typical speech of speakers with

varying severity levels: M01 (a severe male speaker), F03 (a moderate female speaker), F04

(a mild female speaker) and FC01/FC02 (typical female speakers). The figures are plotted

for the word ‘Jacket’ and the sentence ‘Just one side got wet’ from the TORGO dataset

[Rudzicz et al., 2012b] (one of the main databases with dysarthric speech) consisting

of both isolated words and sentences. Figure 2.2 shows that the speaking rate of the

speaker with the highest dysarthria severity level is approximately twice that of the typical

speakers. Generally, the higher the severity, the lower the speaking rate. It is also observed

that for the mildly dysarthric speech, the shapes of the waveform and the spectrogram are
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very similar to the typical speaker. In terms of speech intelligibility, vowels, stops, and

fricatives are depicted in temporal and spectral structures for typical and mildly dysarthric

speech. However, the disfluencies and vague transition are observed between the different

phonemes in moderately and especially in severely dysarthric speech. A big difference in

the vowel shapes can also be seen in the two figures. The envelope of the vowel is less

variant in severely dysarthric speech compared with the typical speech. This might be

because of the lack of muscle coordination. For the sentence illustrated in Figure 2.3, the

higher the intelligibility, the clearer the word boundaries are. The distortion can be seen

at the word boundaries in severely dysarthric speech.

2.4 Summary

This chapter gave an overview of speech production and perception, the background of

dysarthria, and an analysis of acoustic characteristics of dysarthric speech. The dysarthric

and typical speech mismatch and the inter- and intra-speaker variabilities in dysarthric

speech were illustrated. These pose great challenges to the performance of mainstream

ASR systems on dysarthric speech, especially on sentence utterances. The next chapter

will introduce the basic ASR technologies and review the progress of dysarthric speech

recognition.
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Figure 2.2: Waveform and spectrogram of the word ‘Jacket’ for speakers with different
dysarthria severity.
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Figure 2.3: Waveform and spectrogram of the sentence ‘Just one side got wet’ for speakers
with different dysarthria severity.
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3.1 Introduction

Speech is an attractive communication interface. It offers potential for people with

dysarthria, who find keyboards and touchscreens difficult to use, to effectively interact

with machines. It is also an effective input medium that enables people with dysarthria

to use speech commands for hands-free interaction with smart devices in their homes or

elsewhere. This speech-driven user interface can be provided by automatic speech recog-

nition (ASR) – a speech technology that translates input speech into text transcriptions.

ASR technology can also help people with dysarthria better engage in communicating

with non-familiar people by accurately transcribing what they have said. Therefore, a

high-performance ASR system has clear potential enhancing human-human and human-

machine interaction for people with dysarthria.

However, the current performance of ASR technology when applied to dysarthric

speech does not give rise to optimism. Dysarthric speech usually show a significant mis-

match to typical speech and has a high degree of variability. In addition, there is a lack

of suitable training data which limits the effectiveness of applying some deep learning

approaches on dysarthric speech. Consequently, mainstream ASR systems designed for

typical speech do not work reliably on dysarthric speech. Achieving an acceptable per-

formance for dysarthric speech is challenging. Carefully designed customised automatic

dysarthric speech recognition (ADSR) systems are required.

This chapter will review the recent progress and help identify the current research

gaps in dysarthric speech recognition. It will also relate the key research questions that

the thesis aims to address. The chapter is organised as follows. Section 3.2 will briefly

introduce the main components of a typical ASR framework focusing on those that are

most relevant in the context of this thesis. Then, Section 3.3 will review how research

has progressed in the field of dysarthric speech recognition within some broad application

domains. Finally, Section 3.4 will highlight the current research gaps in ADSR systems

and summarise the chapter.
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3.2 A Typical Automatic Speech Recognition System

Various components of an ASR system need to be adapted in order for the technology

to work well with dysarthric speech. Before reviewing the recent ADSR research, this

section briefly presents an overview of the generic architecture of a typical ASR system.

The main components relevant in the context of this thesis are introduced in detail.

Figure 3.1 depicts the generic workflow of a typical ASR system.

Figure 3.1: A typical ASR system.

• The signal processing front-end converts the input speech waveform into frame-level

acoustic feature vectors.

• Decoding is an implementation of a search algorithm which finds the optimal hy-

potheses for an input speech signal.

• The acoustic model is responsible for matching acoustic feature vectors to individual

words as defined in a vocabulary.

• The lexicon defines a dictionary of pronunciations of each word.
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• The language model represents syntactical, semantical and discourse constraints on

the word sequence from the acoustic model, which gives the probability of a sequence

of words.

As shown in Figure 3.1, a ASR system contains two main stages: feature extraction

(front-end processing) and decoding. The former will be discussed later in Section 3.2.1.

Decoding is also known as a search/inference process, which searches for the optimal

sequence of words W = w1, w2, ..., wn given the acoustic observations X = x1, x2, ..., xn

(the sequence of frame-based acoustic feature vectors). In particular, the decoder attempts

to determine the following:

W ∗ = arg max
W

P (W |X) (3.1)

where W ∗ denotes a word sequence.

Applying the Bayes’ Theorem, the above equation can be written as:

W ∗ = arg max
W

P (X|W )P (W )

P (X)
(3.2)

Since P (X) remains constant for each word sequence W , the search problem can be then

defined as two main parts:

W ∗ = arg max
W

P (X|W )P (W ) (3.3)

where P (X|W ) is estimated using the acoustic model and P (W ) is estimated using the

language model.

To summarise, the ASR process searches for the most probable word/word sequence

W ∗ given the observed acoustics X, using all knowledge sources (i.e., the acoustic model,

lexicon and language model). The algorithm searches for the best path with the highest

probability by expanding words, phonemes and hidden Markov model (HMM) states, and

assigning scores from the different components. Then a trackback process of the highest

probable path produces the best hypothesis transcription. The rest of this section will

describe front-end processing and each of the source knowledge components used in the

decoding process.
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3.2.1 Front-end Processing

Feature extraction is the first step in speech processing which transforms the input wave-

form into a sequence of acoustic feature vectors. This is also known as front-end process-

ing. Desirable acoustic features used for ASR should be compressed and encode the most

relevant information of the speech signal to distinguish between phonemes. The features

are also expected to be robust against speaker variability and any noise. The front-end

processing removes less significant information such as the intensity and background noise

of the speech signal as well as the speaker attributes, which helps the acoustic model be-

come robust to irrelevant data, and therefore, useful for the phoneme classification.

Although there are many types of feature representations, the Mel-frequency cepstrum

(MFCC) [Davis and Mermelstein, 1980] is the most commonly used feature in speech

recognition which is based on the cepstrum. MFCC features are used in all experiments

in this thesis as baselines. This section takes MFCC as an example to explain how hand-

crafted features are extracted. Figure 3.2 presents a diagram for the process of extracting

MFCC features.

Figure 3.2: MFCC feature extraction (modified).

The speech waveform is a continuous signal. First, the analogue signal is converted

into a digital signal by sampling and quantisation, so-called analogue-to-digital (A/D)

conversion. The extraction of MFCC starts by pre-emphasis which boosts the amount
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of energy (magnitude) of the high frequency components. Then, under the assumption

that the speech signal is stationary over short periods of time [Kwong and He, 2001],

the pre-emphasised signal is split into overlapping frames1. In the context of dysarthric

speech, given that the speaking rate is normally slower than typical speech, increasing the

frame shift (e.g., from 10 ms for typical speech to 15 ms for severely dysarthric speech)

may help compensate for the reduced speaking rate.

The discrete Fourier transform (DFT) extracts spectral information (e.g., the power

spectrum) from each windowed frame to compute how much energy is at each frequency

band. The design of the feature extraction is motivated by the models of the human

auditory system. Given that the human hearing is less sensitive to higher frequencies

(above 1000 Hz) and that the human response to signal level is logarithmic, the power

spectrum is passed through the Mel filterbank and logarithm. Finally, the discrete cosine

transform (DCT) is applied to transform the log magnitude spectrum to the cepstral

domain and remove redundant information. The resulting cepstral coefficients (12-D)

tend to be less correlated. After adding the energy to the resulting cepstral coefficients,

the dynamic coefficients (the first and second order derivatives of the features: ∆ + ∆∆)

are calculated to supplement the MFCC features. MFCC is highly effective in ASR,

but things could be better. Feature transformations have been applied to maximize the

separability between phonemes. For instance, linear discriminant analysis (LDA) [Fisher,

1936]) which is a dimensionality reduction technique that is commonly used for supervised

classification problems. It takes the speech feature vectors and builds HMM states with

a reduced feature space for all data. It models the differences in the phoneme classes and

separates the classes. Normalizations have been applied to reduce the mismatch between

training and test data as well as to normalize the speaker information. cepstral mean and

variance normalisation (CMVN) [Naik, 1995] is a computationally efficient normalization

technique for robust speech recognition. It linearly transforms the cepstral coefficients to

have the same segmental statistics and hence minimizes speaker mismatches.

1Usually, the input signal is analysed in terms of overlapping windows. Each resulting feature vector
represents the information in a frame [Jurafsky, 2000]. In ASR systems, 25 or 30ms are typically used
as the frame length [Jurafsky, 2000]. To avoid losing information at the frame boundaries and to obtain
a better temporal resolution [Rao and Vuppala, 2014], a frame shift (e.g., 10ms) which is shorter than
the frame length is commonly used.
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By looking at the source-filter theory [Fant, 1970] of speech production, the speech

signal is the response of the vocal tract filter (i.e., the result of the position of the articu-

lators) to a sound source. The sound source is mainly characterised by the fundamental

frequency (F0)/pitch, and it does not carry relevant information for phoneme identifica-

tion. As a result, the filter information is more commonly used in ASR. Cepstral analysis,

the last step of the MFCC feature extraction process, is one way of separating the source

and filter in a speech signal. In ASR systems, the redundant F0 information can be

removed through the separation and only the filter information is used. However, this

source-filter feature engine might not be optimal for dysarthric speech recognition. In

the case of dysarthric speech, the neurological impairment causes atrophy of the muscu-

loskeletal structure, therefore the articulators are poorly controlled. This variation of the

articulator positions affects the response of the vocal tract filter, which in turn affects

the effectiveness of MFCC. Other important pathological voice parameters (i.e., jitter,

shimmer and F0) could be appended when extracting the features.

Recently, with the popularity of deep learning techniques, features extracted from

artificial neural networks have been introduced in ASR systems. The features are usually

extracted from one of the intermediate layers of the neural network. Compared with hand-

crafted approaches, the neural networks can learn information relevant for the phoneme

classification from the speech signal automatically without the need of tuning the feature

parameters manually, which helps avoid losing relevant information to the task. To handle

dysarthric variabilities and the mismatch to typical speech, it is necessary but complex to

adjust feature parameters, such as the frame shift, filter bandwidth and vocal tract length

to particular speakers accordingly. Neural network-based representation learning therefore

can be particularly useful for dysarthric speech. However, the lack of dysarthric data

always limits the effectiveness of the deep representation learning techniques. Research

needs to be conducted to maximise the usage of available data. This thesis will explore

approaches to employing deep representations that benefit recognising dysarthric speech.
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3.2.2 Lexicon

Lexicons are lists of words with pronunciation for each word expressed as a phone sequence

[Jurafsky and Martin, 2009], which is also known as pronunciation dictionaries. The

commonly used publicly available English pronunciation dictionaries are Carnegie Mellon

University Pronouncing Dictionary (CMU) [Weide et al., 1998], CELEX [Baayen et al.,

1996] and PRONLEX [Kingsbury et al., 1997] lexicons, which are widely used for both

speech recognition and speech synthesis tasks. The following shows several examples of

lexicon entries:

ACTON AE K T AH N

FAMILY F AE M AH L IY

DESERT D EH Z ER T

DESERT D IH Z ER T

... ...

As seen, each element of the lexicon list consists of a word from the vocabulary (e.g.,

action) and a phone sequence (e.g., AE K T AH N). Most of the words have a single

pronunciation while some words may have more (e.g., desert: D EH Z ERT and desert:

D IH Z ER T).

Different English speaking accents and speaking styles can cause different recognition

results. How to choose a proper pronunciation dictionary for a dataset needs to be con-

sidered when designing a speech recognition system. TORGO [Rudzicz et al., 2012b],

the dysarthric speech corpus used in this thesis, is a Canadian English dataset. How-

ever, only American and British English pronunciation dictionaries are publicly available.

One of them needs to be chosen for the TORGO task. Canadian English may best be

described as a product of the country’s history: born out of treaties and settlement nego-

tiations and migrations between the British and the Americans. Researchers found that

although Canadian English is more similar to British English when it comes to spelling

and grammar, it is more similar in pronunciation to American English. Both Canadian

and American English are considered phonologically North American English and mostly

indistinguishable as America has always been Canada’s closest neighbour. One obvious

difference example between the way Canadians speak and the way the British speak is
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the letter ”r”. The British tend to omit the ”r” sound in words when speaking while

Americans and Canadians don’t. For instance, the pronunciation of the word ”far” in the

British dictionary is ”F AH”. Canadians pronounce it as ”F AA R”, which is the same

as in the American pronunciation dictionaries.

The lexicon can also be personalised. However, due to the large speaker variability and

the limited amount of dysarthric data, it is hard to create a representative personalised

lexicon for TORGO. In conclusion, the CMU American lexicon was used for the TORGO

speech recognition task.

3.2.3 Acoustic Modelling

The acoustic model provides the probability P (X|W ) for a sequence of feature vectors

X given a sequence of words W . HMM is widely used in acoustic modelling which mod-

els sub-word units (i.e., monophone or triphone models). Then, the sub-word units are

accumulated to produce word-HMMs based on the rules defined by the lexicon. HMM

is a stochastic finite-state automaton. Gaussian mixture model (GMM)-HMM has been

the most popular acoustic model in ASR systems. Each state of and HMM is associated

with weighted mixtures of Gaussian distributions, and includes transition probabilities

and observation probability distribution which is represented using a GMM. The proba-

bility of generating a sequence of feature vectors is inferred by a set of HMM states, the

probabilities of each state and the transition probabilities between the states.

With the development of deep learning techniques, hybrid deep neural network (DNN)-

HMM systems are extensively used in ASR research. They replace the GMMs in the

HMM with the outputs of a DNN as a phone probability estimator. The DNN learns

the appropriate network parameters: weights and bias, for assigning the probability of

each possible phonetic label for a given frame of input sequence data using the cross-

entropy loss function and softmax outputs. Compared with GMMs, DNNs can directly

use multiple frames in the input simultaneously to incorporate acoustic context.

Throughout this thesis, DNNs have clear potential for various tasks such as represen-

tation learning and acoustic modelling. However, deep layers result in a large amount

of parameters, and training adequate DNNs usually requires a large amount of data.
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Dysarthric speech recognition is a domain with very sparse data. How to maximise the

usage of existing data to train adequate DNN models is an essential question to explore.

The problems associated with wide variabilities in dysarthric speech and different speak-

ers also need to be dealt with when designing acoustic models. This thesis will investigate

ways of employing in-domain/out-of-domain (OOD) data for acoustic modelling as well

as various deep acoustic models for dysarthric speech.

3.2.4 Language Modelling

The language model covers syntactical, semantic and discourse constraints of the language

and assigns a prior probability P (W ) for any hypothesised word sequence W = w1w2...wn

[Jelinek, 1976]. When recognising isolated words, the output is restricted to a single word

within a closed-set vocabulary. A much simpler language model is used to store the prior

probability of each single word in the vocabulary. When it comes to large vocabulary

continuous speech recognition tasks, the N-gram model [Bahl et al., 1989] is the most

commonly used language model which follows an (N-1)-th order Markov assumption and

the probability of the current word only depends on the (N-1) predecessor words. P (W )

is computed as:

P (W ) = P (w1)P (w2|w1)
n∏

k=3

P (wk|wk−N+1...wk−1) (3.4)

where n is the total number of words and N is the language model parameter. The first

two items refer to the unigram and bigram. The N-gram language model parameters are

estimated using a maximum likelihood. Take tri-gram as an example:

P (wi|wi−1, wi−2) =
count(wi−2, wi−1, wi)

count(wi−2, wi−1)
(3.5)

where count(wi−2, wi−1, wi) is the number of times that the particular word sequence

(wi−2wi−1wi) occurs in the training data.

In practice, due to data sparsity, the above equation can fail to estimate any missing

N-gram sequences (count(wi−2, wi−1, wi) = 0). This is also called the zero probability
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problem. Estimating the parameters for an N-gram model is especially challenging for

larger values of N. As N grows larger, the data grows sparser and more zero counts will

occur. Such an issue can be addressed by applying smoothing methods that involve dis-

counting and back-off techniques. The Discounting methods (e.g., Witten-Bell discount-

ing [Witten, 1991] and Good-Turning discounting [Good, 1953]) handles the problem by

shifting the probability mass from the non-zero count N-grams to the zero or low count

N-grams, while the back-off technique (e.g., Katz back-off smoothing [Katz, 1987]) assigns

a zero-count n-gram with a scaled factor of its corresponding lower order n-gram counts.

In the past few years, with the advancements of deep neural networks, neural lan-

guage models (e.g., recurrent neural network (RNN)-based language model (LM)s (e.g.,

ELMo [Peters et al., 1802], sequence-to-sequence attention-based LMs and transformer-

based LMs (e.g., BERT [Devlin et al., 2018])) have been increasingly applied. RNN-based

language models are the basic ones. An RNN does not need to follow the Markov assump-

tion; therefore, it takes into account long-term dependencies. It appears to obtain lower

perplexities (i.e., an evaluation indicator for language models where a lower value is bet-

ter) than the N-grams. However, N-gram language models have lower latency and lower

computational costs in evaluation.

The N-gram language models are commonly used for dysarthric speech recognition,

typically N = 2, 3, 4. The 3-gram language model will be used throughout the thesis.

Dysarthric speech is a low-resource data domain, where there is much less continuous

dysarthric speech data available to train good continuous speech systems. Care needs

to be taken when employing in-domain language models to recognise continuous speech.

The small vocabulary size may lead to a large out-of-vocabulary rate and an increased

word error rate. In addition, the training and test sets tend to be non-disjoint which can

lead to overly optimistic evaluation results on sentence utterances.
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3.3 Recent Progress in Automatic Recognition for

Dysarthric Speech

3.3.1 Introduction

State-of-the-art mainstream ASR technology has obtained significant progress in many

real-world scenarios by employing deep learning approaches trained on thousands of hours

of speech data. However, improving ASR robustness against the distortions in dysarthric

speech is still a big challenge. One reason is that the data-driven deep learning ap-

proaches cannot work efficiently using the limited dysarthric speech data. In addition,

the significant mismatch to typical speech prevents mainstream ASR, designed for typical

speech, from effectively recognising dysarthric speech, particularly for severely affected

speakers. Therefore, ASR systems that are dedicated to dysarthric speech need to be

explored. There has been increasing interest in the development of ADSR during the

last few decades. Having introduced various components in a typical ASR system in Sec-

tion 3.2, this section will review related studies for dysarthric speech recognition under

speech representation learning, acoustic modelling, data augmentation and multimodal

modelling.

3.3.2 Representation Learning

Speech representations carry information that the subsequent models will learn, and var-

ious representation learning approaches contain or lose different parts of the original sig-

nal’s information. To build ADSR systems, it is expected that the learnt representation

has the ability to normalise the high speaker variability and capture information associ-

ated with the dysarthria. For this reason, the speech representation learning approaches

designed for typical speech might not be suitable for dysarthric speech. A comparative

study was conducted on various conventional acoustic features for dysarthric speech recog-

nition on TORGO by Mathew et al. [2018]. They compared the recognition performances

of systems using MFCC, perceptual linear prediction (PLP), filter bank and reflection

coefficients feature sets. It was found that the MFCC and PLP perform better than the
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filter bank and reflection coefficient for dysarthric speech. Considering the slower speak-

ing rate in dysarthric speech, Selouani et al. [2012] investigated the effect the window size

of speech frames has for dysarthric speech. It was observed that a window greater than

25 ms with an extended 15 ms frame shift leads to 8% - 10% improvement on average.

However, the scope of these two studies is limited in using the GMM-based acoustic model

while deep learning-based acoustic models have been more widely used recently.

Deep speech representations that are learnt through deep learning approaches have

drawn more and more attention in the ADSR task, and previous studies have demon-

strated the effectiveness of employing deep speech representations. The bottleneck (BN)

features refer to compressed features extracted from a neural network bottleneck layer

using a supervised criterion such as phoneme prediction accuracy [Grezl and Fousek,

2008]. The bottleneck reduces the feature dimension, forcing the network to discard the

redundant information irrelevant to the task. The convolutive bottleneck network (CBN)

was proposed to extract disorder-dependent features employing convolutional neural net-

work (CNN)s in Nakashika et al. [2014]. In the dysarthric speech, the key points in local

time-frequency regions of an input feature map are often shifted slightly due to the fluc-

tuation of the speech uttered by a person with dysarthria. The CNN was expected to deal

with the small local fluctuations by capturing the temporal information while the frame-

wise features (e.g., MFCCs) cannot, unless delta features are used. Employing features

extracted from CBNs was shown to outperform conventional features.

Deep learning approaches require a large amount of data for training, however, in-

sufficient data was used in this study. As a consequence, OOD data is usually used

for pretraining. Takashima et al. [2015] expanded Nakashika et al. [2014]’s work using

a pretrained CBN to prevent overfitting, which improved the acoustic modelling of the

dysarthric speech. Tandem features were introduced by Hermansky et al. [2000], which

fused the conventional features and the BN features extracted from a pretrained DNN

model. The BN features were demonstrated to capture complementary information for

dysarthric speech that can be beneficially fused with standard short-time spectral input

features [Yılmaz et al., 2019]. Multi-level Adaptive Networks features were proposed in

Christensen et al. [2013], which is an extension to the standard tandem features, exploiting
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OOD data for cross-domain adaptation.

There has been a growth of interest in applying autoencoder (AE) to extracting BN

features for dysarthric speech. [Chorowski et al., 2019; Sainath et al., 2012]. In contrast to

conventional BN features, AE-BN features are learnt by reconstructing the input features

in an unsupervised manner [Sainath et al., 2012]. This is more applicable in the con-

text of low-resource dysarthric speech. Bhat et al. [2018] applied a denoising dysarthric

speech feature enhancement framework using an AE. The system learnt non-linear map-

pings from the dysarthric speech to the typical speech. The enhanced features thereby

improved the dysarthric speech recognition performance. This approach is limited to

corpora with parallel recordings for both typical and dysarthric speech. These studies

have been performed using only isolated-word dysarthric corpora such as UASpeech [Kim

et al., 2008a]. The approaches applicable to a broader range of datasets and tasks is

under-explored.

In addition to the features extracted from the approaches mentioned above, there

have also been some other novel speech representation learning approaches specifically for

dysarthric speech. For instance, a Speech Vision model was proposed in Shahamiri [2021]

which extracted speech features visually by seeing the shape of the words pronounced by

people with dysarthria. The Speech Vision system achieved 67% improved recognition

accuracy for speakers in the UASpeech dataset.

3.3.3 Acoustic Modelling

As discussed in Section 2.3, dysarthric speech shows large speech variability associated

with the articulation disorder. Research has been conducted to improve the ability of

acoustic model to handle this variability. Conventional GMM-HMM acoustic models

were employed in ADSR systems at the early stage of the research [Hasegawa-Johnson

et al., 2006; Rudzicz, 2010c]. Then owing to the advance of deep learning techniques,

deep learning acoustic models started to be widely deployed in ADSR. There have been

two comparative studies exploring various deep learning architectures for instance DNNs,

CNNs, time-delay neural network (TDNN) and long short-term memory (LSTM)s using

dysarthric databases [Espana-Bonet and Fonollosa, 2016; Joy and Umesh, 2018]. The
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results demonstrated that the hybrid DNN-HMM models outperform the classical GMM-

HMM as well as other variants. Kim et al. [2018] modelled the spectral and temporal

characteristics associated with dysarthria using Convolutional LSTM-RNNs [Han et al.,

2017; Sainath et al., 2015] on the UASpeech dysarthric dataset. In this framework, the

CNNs extract effective local features and LSTM-RNNs model the temporal dependencies

of the features. As a result, this Convolutional LSTM-RNNs combined framework handles

the local fluctuation caused by articulation disorder by capturing the local temporal-

dimensional characteristics.

Although deep learning technologies have been successfully applied to typical ASR

systems, the performance on dysarthric speech is still far behind that achieved on typical

speech. The main reason is that the lack of sufficient dysarthric speech data limits the

generalisation of current state-of-the-art deep learning-based ASR systems [Tu et al.,

2017]. The amount of data is insufficient for the networks to capture the speech and

speaker variability to train a generalised model. The details of the data scarcity problem

will be explained in Section 3.3.4. There are two main approaches for training a model on

low-resource data: model adaptation and data augmentation. This section will focus on

the model adaptation approach while the latter will be reviewed in Section 3.3.4. Model

adaptation is adapting a source model to a target domain. Usually, a source model is first

trained on other data resources (e.g., the dysarthric speech data in other datasets or the

OOD typical speech data). Then the source model is fine-tuned on a small set of data of

the target speaker (speaker adaptation) or of the target dysarthric speech data.

Mengistu and Rudzicz [2011] adapted speaker-independent acoustic and lexicon mod-

els to the target speakers. The adaptation resulted in a significant WER reduction on the

target speakers. This is known as speaker adaptation. A variety of ADSR systems using

maximum likelihood and maximum a posteriori adaptation strategies are built in Chris-

tensen et al. [2012b]. They concluded that the model trained on typical speech adapted

to the domain of dysarthric speech is a viable way of achieving good performance despite

the inherent mismatch. The maximum a posteriori (MAP) estimation can deal with the

large mismatch to a large extent. Xiong et al. [2020] investigated the use of transfer

learning to adapt DNN models towards target speakers in personalised dysarthric speech



47 3.3. Recent Progress in Automatic Recognition for Dysarthric Speech

recognition systems. An utterance-based data selection of the source domain data was

proposed in this work to improve the transferability towards the target domain further.

The selection is based on the entropy of posterior probability, which is seen to obey a

Gaussian distribution statistically. A two-step acoustic model adaptation approach was

proposed in Takashima et al. [2020], aiming to tackle the large mismatch when adapting

the pretrained ASR model trained on typical speech to dysarthric speech. In their archi-

tecture, an ASR model was first adapted to multiple speakers with dysarthria in order

to learn the speaking style of dysarthric speech. Then the adapted model was further

adapted for the target speaker. This adaptation scheme transfers the common knowledge

learnt from a speaker-independent dysarthria model into the target speaker-dependent

dysarthria model. More recently, a novel Bayesian parametric and neural architectural

domain adaptation approach was proposed by Deng et al. [2021]. The model rapidly

ports lattice-free maximum mutual information (LF-MMI) trained TDNNs ASR systems

developed using a large amount of typical speech data to elderly and disordered speech

task domains of more limited quantities.

The typical speech used in the dysarthric speech recognition adaptation system is re-

garded as OOD data. Exploiting OOD data has been shown to be beneficial for dysarthric

speech [Christensen et al., 2013; Yılmaz et al., 2019]. Pretraining a model with OOD

data can be especially crucial when little in-domain training data is available. The OOD

typical-data pretraining framework was introduced in Christensen et al. [2013] to increase

the robustness of the dysarthric speech representation learning process. Different model

training setups using different subsets of data (typical, dysarthric or both typical and

dysarthric data) were further investigated in Yılmaz et al. [2019] using a deep BN net-

work. They concluded that the best performance is achieved by training the BN feature

extractor on a large amount of OOD typical speech while the acoustic model is trained

on the extracted dysarthric BN features.

3.3.4 Data Augmentation

Compared with typical speech, dysarthric speech is much more difficult to collect. There

are always a limited number of dysarthric speakers involved in the recordings. Some
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speakers with dysarthria are afraid of exposing their privacy by recording, and some find

it difficult to come to the studio to complete the recording independently. In addition,

speakers with severe dysarthria tend to tire quickly and speak slowly. As a result, the

number of utterances recorded in a session is limited [Doyle et al., 1997]. The state-of-the-

art data-driven ASR systems do not work well when feeding with small datasets. So far,

the most commonly used English dysarthria datasets are Nemours (3 hours; American

English [Menendez-Pidal et al., 1996]), TORGO (35 hours; Canadian English [Rudzicz

et al., 2012b]), UASpeech (64.7 hours; American English [Kim et al., 2008a]) and the

homeService (9.5 hours; British English [Nicolao et al., 2016]). More details about each

database will be presented in Chapter 4. All of those dysarthric datasets are much smaller

than the typical modern speech ASR databases containing thousands of hours of speech

data such as LibriSpeech [Panayotov et al., 2015]. Hence, a major current limitation is a

need for a large dataset to train better ADSR systems.

In recent years, increasing interest has been attached to the data augmentation ap-

proaches to handle the low-resource dysarthric speech data. Data augmentation refers to

the process of artificially generating new synthetic samples for training from the original

training data. There have been studies of various audio data augmentation approaches,

e.g., speed perturbation, time-stretching, pitch shifting, dynamic range compression and

adding noise, successfully applied to ASR for typical speech [Ko et al., 2015; Parascandolo

et al., 2016; Piczak, 2015; Salamon and Bello, 2017]. Research has also demonstrated the

benefit of employing data augmentation approaches on the ADSR task. Motivated by

the spectral-temporal level differences of dysarthric speech from typical speech such as

slower speaking rates, recent studies in data augmentation for dysarthric speech have been

mainly focused on tempo-adjustments [Xiong et al., 2019], speed perturbation [Vachhani

et al., 2018] and vocal tract length perturbation [Geng et al., 2020] from typical speech. In

this way, not only is the speech generated but also new speakers are simulated. The gener-

ated “dysarthric like” speech is characterised by a slower speaking rate and modified vocal

tract spectral shape. Then it is used to augment the original limited dysarthric speech

training data. For instance, Vachhani et al. [2018] employed temporal and speed modifi-

cations to simulate extra dysarthric speech. They analysed phone durations for dysarthric
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speech for speakers with different degrees of severity and generated corresponding syn-

thetic dysarthric speech that matches the duration.

Motivated by work in Kaneko et al. [2017a,b], Jiao et al. [2018] applied adversar-

ial training following the voice conversion function to transform typical speech toward

dysarthric speech. The approach used listeners’ judgement and a classifier to evaluate

whether the simulated dysarthric speech matches actual dysarthric speech. The gener-

ated dysarthric speech using a convolutional generative adversarial network (GAN) [Jin

et al., 2021] has been applied to the ADSR task and obtained the lowest word error

rate (WER) on the UASpeech test set.

3.3.5 Multimodal Acoustic Modelling

If one data modality is not enough to capture the information of dysarthric speech, jointly

modelling multimodal data may benefit the task. Data from other modalities may hold

complementary information to improve the performance on ADSR.

There has been growing interest in building multimodal speech recognition systems

recently. The most commonly used data modalities are visual and articulatory data. The

articulatory data refers to the articulator movements collected by sensors attaching ar-

ticulators. Compared with acoustic representations, articulatory information has been

shown to be less speaker-variant [Fujimura, 1986] and more suitable to model the coartic-

ulation [Wrench and Richmond, 2000] (will be discussed in Chapter 7). The visual data is

usually images of video frames including the speaker’s face. These two features have been

successfully applied in many recent audio-visual and acoustic-articulatory ASR systems

for typical speech [Afouras et al., 2018; Badino et al., 2016; Estellers and Thiran, 2012;

Mitra et al., 2017; Wrench and Richmond, 2000]. Incorporating features from other data

modalities is also promising for low-resource data ASR tasks. For instance, Abraham

et al. [2017] employed articulatory features on low-resource languages ASR by jointly es-

timating the articulatory features and the acoustic model. The approach achieved relative

23% and 10% improvement on two low-resource Indian language datasets.

The visual features were employed on dysarthric speech in Salama et al. [2014] using

the UASpeech dataset. It was demonstrated that the visual features extracted from the
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video recordings were highly effective for recognition performance. In particular, they

increased the recognition accuracy by around 3%. Incorporating articulatory information

has also been shown to benefit ADSR tasks [Rudzicz, 2009; Xiong et al., 2018]. Since

speakers with dysarthria differ from the typical speakers in the manner of their articu-

lation, measuring the articulation empirically is beneficial [Rudzicz, 2011; Yılmaz et al.,

2018]. It has the potential to outperform the acoustic-features-only frameworks. Due to

the limited amount of dysarthric articulatory data, the synthetic articulatory data has

been used to support acoustic features to improve acoustic modelling of dysarthric speech

[Xiong et al., 2018; Yılmaz et al., 2018]. The synthesiser estimates the articulatory data

from the acoustic representations by learning the acoustic-articulatory mapping.

For instance, Xiong et al. [2018] employed LSTM-RNNs to estimate articulatory in-

formation from acoustic features by learning the acoustic-to-articulatory mapping. The

estimated articulatory features were then augmented with the conventional acoustic fea-

tures achieving consistent improvement on dysarthric speech. Yılmaz et al. [2018] sug-

gested that jointly using the articulatory and the acoustic features has potential against

the spectro-temporal deviations in the dysarthric speech. The synthesisers are normally

trained on typical speech and then applied to generate dysarthric speech. Given the mis-

match between dysarthric and typical speech, the synthetic articulatory features might

not reflect the real dysarthric articulatory space effectively. There have been several

studies deploying the real dysarthric articulatory data [Rudzicz, 2010a,c; Rudzicz et al.,

2012a]. However, most of these studies are based on GMM-HMM or simple DNN acous-

tic models. Acoustic-articulatory dysarthric speech recognition systems applying the real

articulatory data with recent advanced acoustic models will be established in Chapter 8.
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3.4 Summary

3.4.1 Current Research Gaps in Dysarthric Speech Recognition

Systems

Although some progress has been made on dysarthric speech recognition, the performance

is still unsatisfactory. There are still gaps in the research in ADSR.

1. Most of the previous ADSR studies were conducted on the isolated word dysarthric

datasets (e.g., UASpeech). Although a few of them use the dysarthric datasets containing

continuous speech, the difference between the isolated word and the sentence tasks has

not been investigated.

2. The current acoustic-articulatory ADSR frameworks employed synthesised articu-

latory data are not optimal. The dysarthric articulation parameters were usually derived

from acoustic signals using knowledge about typical speech, making it uncertain whether

the synthesised articulatory data is in line with the actual dysarthric speech properties.

Actual real recorded dysarthric articulatory data, instead, should be more reliable to

use. However, the real dysarthric articulatory information is currently under-analysed.

Whether it is still beneficial to incorporate it with more recent acoustic modelling archi-

tectures is also under-explored.

As a result, the following chapters will fill the gaps by investigating the difference

between the isolated word and sentence tasks and moving the research focus to continuous

dysarthric speech recognition.

3.4.2 Summary

There has been much interest in building ASR systems for people with dysarthria. This

chapter reviewed various techniques that have been used to address the major challenges

in ADSR: the mismatch to typical speech, the high intra- and inter-speaker variability

and data scarcity. Although progress has been made, the recognition performance on

dysarthric speech is still far behind that for typical speech. It is also noticed that most of

the previous studies on dysarthric speech have focused on isolated word recognition with
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limited vocabulary sizes. Although the single word recognition system can benefit people

with dysarthria, systems that only recognise isolated words limit the range of activities

that people with dysarthria can carry out. It is believed that people with dysarthria need

help with a more natural way of communication (i.e., producing phrases and sentences in

a large vocabulary size). In the following chapters, a series of studies using various speech

recognition technologies to build robust ASR systems on continuous dysarthric speech will

be carried out. Research questions will be explored and addressed in Chapter 5 (RQ1),

Chapter 6 (RQ2), Chapter 7 (RQ3) and Chapter 8 (RQ4).
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It is important to find an appropriate dataset before conducting the experiments. This

chapter reviews some widely used dysarthric datasets used in previous studies. Section 4.1

presents several English dysarthric databases in detail (as this research focuses on En-

glish) and briefly introduces several non-English dysarthric datasets. The commonly used

English dysarthric speech datasets are listed and compared in Section 4.2 to find the most

appropriate dataset for this research.

4.1 Dysarthric Speech Corpora

As based in an English speaking country, this work is particularly interested in English

dysarthric corpora. There are five commonly used English dysarthric speech corpora

available: the Whitaker [Deller Jr et al., 1993], the Nemours [Menendez-Pidal et al.,

1996], the UASpeech [Kim et al., 2008a], the TORGO [Rudzicz et al., 2012b] and the

homeService [Nicolao et al., 2016].

4.1.1 The Whitaker Database

The Whitaker Database is an American English corpus that comprises the speech of 6

speakers with cerebral palsy (CP) at different severity levels and one typical speaker. The

prompting items comprise 46 words: 26 alphabet letters, 10 single digits and 10 con-

trol words (‘start’, ‘stop’, ‘yes’, ‘no’, ‘go’, ‘help’, ‘erase’, ‘rubout’, ‘repeat’, and ‘enter’),

and other 35 words from the “Grandfather” passage [Johnson et al., 1963]. The partici-

pants were asked to repeat each word at least 30 times. The total number of dysarthric

utterances is 19275. The audio recordings were sampled at 10 kHz.

The Whitaker dataset has been referenced in papers describing the collection of many

other dysarthric speech datasets. However, it has not been commonly used by recent

automatic dysarthric speech recognition (ADSR) studies since the vocabulary size is too

small to train a practical ADSR system.
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4.1.2 The Nemours Corpus

The collection Nemours corpus was motivated by intelligibility assessment and the inves-

tigation of general characteristics of dysarthric speech, such as production error patterns.

The Nemours database comprises the speech of 11 male speakers with various degrees

of CP assessed by a speech therapist using the Frenchay Dysarthria Assessment (FDA)

tool. Each speaker spoke 74 short nonsense sentences and two paragraphs of connected

speech. Each nonsense sentence in the database has the structure of ‘The X is Ying the

Z’, where X and Z are monosyllabic nouns, and Y is disyllabic verb. During the recording,

participants randomly selected X and Z (X ̸= Z) without replacement from a set of 74

monosyllabic nouns and selected Y from a set of 37 disyllabic verbs. Note that all of

the words within a set differ in a single phoneme. The vocabulary size of the nonsense

sentence recordings is 111. It includes two paragraphs taken from the “Grandfather” and

the “Rainbow” passage. The audio recordings are sampled at 16 kHz.

Rudzicz [2007] has implemented experiments on the Nemours database by compar-

ing the performance of a speaker-dependent and a speaker-adaptive Gaussian mixture

model (GMM)–hidden Markov model (HMM) system. Caballero Morales and Cox [2009]

modelled and attempted to correct the errors made by the speaker. The ‘The X is Ying the

Z’ sentence structure in the Nemours datasets enables the phonetic comparison between

different utterances. However, Nemours has been used in fewer studies as the dataset is

not publicly available now.

4.1.3 The HomeService Corpus

The homeService database is a British English corpus of dysarthric speech data recorded

in the home environment. It is motivated by developing a system that works in real

environments (e.g., the home) which helps people with dysarthria interact with devices

using the commands in a single word. The homeService corpus comprises the speech of five

(three males and two females) speakers with severe dysarthria (three of them were with

CP, one speaker was with motor neurone disease (MND), and the rest has not had the

speaker’s condition noted). The speech data was collected in two approaches: enrolment
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data (ER) and interaction data (ID). The ER data was recorded as participants read

lists of the words that they had chosen as commands in their system. The ID data

was recorded as the participants operated the electronic devices in the house with the

homeService speech-enabled interface. Three speakers were recorded with both ER and

ID data, while the other two speakers only have the ER data due to personal reasons.

The total recording duration is approximately 10 hours and the vocabulary size is 131.

The audio recordings were sampled at 48 kHz. Only the 16 kHz-sampled, single-channel

version of the audio was released. The recordings were collected over several months,

allowing longitudinal studies on voice variations which are caused by degenerative speech

impairment.

The homeService has been used for dysarthric speech recognition in Nicolao et al.

[2016] and for dysarthria severity classification in Purohit et al. [2021]. The additional

dysarthric dataset – UASpeech were used in both studies to train background models.

The number of speakers with dysarthria in the dataset and the vocabulary size are both

small, making it challenging to train an adequate automatic speech recognition (ASR)

system for dysarthric speech solely on homeService. In addition, the recordings collected

from the home environment is usually noisier than the recordings collected in the lab, so

additional processing (e.g., denoising) is needed.

4.1.4 The UASpeech Corpus

UASpeech is an American English dysarthric speech database for Universal Access Re-

search created by the University of Illinois. It is a collection of recordings from 16 speakers

with CP and 13 age-matched typical speakers. The prompting items are all isolated words.

The audio recordings were recorded by an eight-microphone array sampled at 48 kHz. The

aligned visual features of speech were also captured by one video camera along with the

audio recordings. The speakers with dysarthria in the database ranged from four sever-

ity levels (namely Severe, Moderate-Severe, Moderate and Mild) based on a subjective

estimate of perceptual speech intelligibility assessment [Kim et al., 2008b]. Each speaker

in the datasets read 455 distinct words, composed of 155 common words from 4 groups:

10 digits, 29 Nato alphabet letters, 19 command words (‘up’, ‘down’ etc.), 100 common
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words (‘the’, ‘this’ etc.) and 300 uncommon words from the “Grandfather” passage and

PBS (TIMIT sentences). The 455 words are split into three blocks for each speaker, and

each block contains the common words and one-third of uncommon words. Blocks 1 and 3

were used as training data while block 2 as test data in previous UASpeech-based studies

(e.g., [Christensen et al., 2012a]), and approximately 126,000 utterances were involved in

the training and test sets.

UASpeech has been widely used in ADSR studies [Kim et al., 2018; Xiong et al.,

2018, 2019; Yu et al., 2018] as it is the largest dysarthric speech corpus in American

English with well pre-defined training and test partition. Researchers have also published

standard scripts for the ADSR task (e.g., [Xiong et al., 2019, 2020]) on UASpeech, making

it easier for others to explore models based on the well-presented baselines. Various models

have been implemented and improvements are made on UASpeech. For instance, Xiong

et al. [2019] applied the speech tempo adjustments to the acoustic features which reduced

dysarthric and typical speech mismatch and achieved consistent recognition performance

improvements on UASpeech. Xiong et al. [2018] also made improvements by employing

estimated articulatory-based representations to better model dysarthric speech variability.

The only limitation of the application of this dataset is that it only contains isolated words,

which constraints the ADSR systems being applied to continuous speech.

4.1.5 The TORGO Corpus

The TORGO dataset is a Canadian English corpus created by the University of Toronto.

It is a collection of 21 hours of aligned acoustic and articulatory recordings from 15 speak-

ers. Eight of them (five males and three females) are with different degrees of dysarthria

(Severe, Moderate to severe, Moderate and Mild) with CP or amyotrophic lateral sclerosis.

The others are age- and gender-matched typical speakers (four males and three females).

On average, 415 and 800 utterances were recorded from each speaker with dysarthria and

typical speaker, respectively. The audio recordings were obtained by one head-mounted

and one array microphone sampled at 16 kHz in four types of stimulation: non-word,

isolated words, sentences and photograph descriptions. Usually, only isolated words and

sentences are used in experiments. The non-word recordings are only used to control the



Dysarthric Speech Datasets and Comparison 58

baseline speaker abilities in the recording stage, and the photograph descriptions do not

have text transcription. The set of single words consist of English digits, international

radio alphabets, twenty most frequent words in British National Corpus [Landow, 1993],

and some phonetically contrasting pairs of words selected by Kent et al. [1989]. Most of

the restricted sentences were selected from Yorkston-Beukelman assessment of intelligi-

bility [Yorkston et al., 1984a] and the TIMIT database [Lamel et al., 1989]. The dataset

consists of 615 unique words and 354 unique sentences. The total vocabulary size is 1573,

of which the vocabulary size for the sentence prompts on their own is 1083. Apart from

acoustic speech data, aligned articulatory data is also recorded for some of the utterances

using a 3-D AG500 electromagnetic midsagittal articulography (EMA) system [Kroos,

2008].

TORGO has also been widely used since it was published [Espana-Bonet and Fonol-

losa, 2016; Joy and Umesh, 2018; Rudzicz, 2011]. Rudzicz [2011] achieved significant

recognition improvements on the dysarthric speech by deploying the production knowl-

edge – articulatory information using the conventional acoustic models. Joy and Umesh

[2018] explored various ways and tuned various parameters to improve GMM and deep

neural network (DNN) acoustic models for dysarthric speech recognition. Most of the pre-

vious TORGO-based work evaluate the whole dataset without considering the difference

between the isolated word and sentence. This thesis will investigate a proper evaluation

approach that works well for both isolated word and sentence tasks.

4.1.6 Non-English Dysarthric Corpora

There also exists some dysarthric corpora collected for other languages. For instance, the

Mexican Spanish corpora [Deller Jr et al., 1993], the Korean dysarthric corpora [Choi

et al., 2012], the Cantonese dysarthric corpus in Cantonese [Wong et al., 2015], the TY-

PALOC corpus in French [Meunier et al., 2016] and the EasyCall corpus in Italian [Turrisi

et al., 2021].
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Database utt type Num of Spk Num of utt/spk vocab size

Whitaker isolated words 7 (6 Dys, 1 Typ) 3200 81
Nemours sentences 11 (11 Dys, 1 Typ) 74 111
UASpeech isolated words 29 (16 Dys, 13 Typ) 455 455
TORGO isolated words and sentences 15 (8 Dys, 7 Typ) 951-969 1573
homeService isolated words 5 (5 Dys) various 131

Table 4.1: Details of five popular English dysarthric corpora

4.2 English Dysarthric Corpora Comparison

What should a desirable dataset for this research be? First, as the main target of this

research is to improve recognition performance on continuous speech, the dataset should

consist of not only isolated words but also sentences. Second, the dataset should be

phonetically rich – the bigger the vocabulary size, the more utterances, the more speakers,

the better. Moreover, the dataset should be appropriate for the ASR task. For instance,

unlike datasets designed for speaker assessment, the one used for ASR should be able to

split into non-disjoint training and test sets. It is an asset that the dataset contains data

from other modalities (e.g., video or articulatory).

Different corpora are designed for various purposes. Nemours is motivated by the in-

telligibility assessment and homeService is motivated by developing a system that works

in real environments. UASpeech is developed for ADSR research to design assistive tech-

nologies for people with dysarthria. TORGO is designed for the comparative study of

dysarthric and typical speech. Table 4.1 summarises the details (the utterance type, the

number of speakers, the number of utterances per speaker and the vocabulary size) of

each English dysarthric speech dataset. UASpeech comprises the most speakers (both

dysarthric and typical) and TORGO has the most utterances per speaker in addition

to the largest vocabulary size. TORGO appears to be the only dataset consisting of

both word and sentence prompting items. Containing a large number of speakers and a

medium-sized vocabulary, UASpeech is a well-designed corpus for ADSR with a disjoint

set of training and test sets. However, it could only work with isolated word recognition.

Both Nemours and TORGO contain sentence utterances, therefore, are able to use for

continuous dysarthric speech recognition. Compared with Nemours, the TORGO dataset
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has a larger vocabulary size and more recording samples. The utterances in Nemours

have a fixed structure of ‘The X is Ying the Z’, while the utterances in TORGO are more

flexible and natural. In addition, the aligned acoustic and articulatory recordings make

the TORGO dataset particularly interesting in continuous speech scenarios. The articula-

tory information could be exploited to build more complicated but robust ADSR systems.

Consequently, TORGO is selected for the baseline experiments and further study of the

research in this thesis.

However, TORGO is still not a perfect corpus for this ADSR task. For instance,

the linguistic overlap among speakers (will be explained in Section 5.2.3) and the unwell

explored articulatory recordings for each speaker (will be explained in Section 7.1.2).

These limitations can largely influence the recognition performance on this dataset. A

strong baseline considering limitations need to build for more fair results.
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This chapter presents a pilot study of the recent automatic dysarthric speech recogni-

tion (ADSR) systems using the TORGO dysarthric database, which has been concluded

as the best suitable corpus for this research in Chapter 4. A continuous dysarthric speech

recognition baseline is then built on TORGO. Unlike previous TORGO-based studies as

reviewed in Section 3.3, which evaluated the recognition performance averaged for the

whole dataset, the performance is evaluated by prompt types, i.e., considering word and

sentence recognition as two separate tasks, in this chapter. Based on the observed results,

the problems of the evaluation framework of previous ADSR systems are noticed and dis-

cussed. As shown in Chapter 4, very few datasets exist that allow researchers to develop

speaker-specific continuous speech recognition systems for people with dysarthria, and

they are mostly not designed for automatic speech recognition (ASR), meaning great care

has to be taken to choose an appropriate experimental setup. Then, the impact of the

language model (LM) design is investigated and the out-of-domain (OOD) LMs trained

with data originating from other datasets are proposed.

The work presented in this chapter explores two essential questions: How to design

the baseline experimental framework on TORGO? and What is a fair way to evaluate the

continuous dysarthric speech recognition system with a limited amount of data and the

issues with lack of variability in the prompts? Following the above research questions,

a reproducible benchmark for continuous dysarthric speech recognition is developed by

using the recent acoustic models and OOD LMs for further research.

5.1 Baseline Experiment

5.1.1 Data Cleaning

Before building the baseline system, data cleaning needs to be done such as removing the

noise data in the dataset. First, the audio recordings annotated with ‘xxx’, which indicates

spurious noise, were discarded. Then, recordings shorter than 15 ms were removed given

that the 15 ms frame shift is the smallest unit in an ASR system. Finally, any wrongly

annotated recordings were also removed, most of which were accidentally recorded without

any acoustic signal but were not annotated as noise in the dataset. Table 5.1 summarises
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the remaining number of utterances in both word and sentence types per speaker in

TORGO after cleaning the data.

Severity Severe M/S Moderate Mild

Speaker F01 M01 M02 M04 M05 F03 F04 M03

# Utterances in both types 228 739 766 651 572 1072 667 800
# Word utterances 188 561 582 500 440 797 498 610
# Sentence utterances 40 178 184 151 132 275 169 190
# Unique utterances 94 319 333 228 382 422 351 345

Table 5.1: The number of utterances per (F)emale and (M)ale speaker with dysarthria in
TORGO. ‘M/S’: moderate to severe intelligibility. ‘#’: the number of.

5.1.2 System Overview

The open-source Kaldi Speech Recognition toolkit [Povey et al., 2011] created by Johns

Hopkins University was used in the experiments. Kaldi is a flexible software that is

intended for building speech recognition systems. Four modules in an ASR pipeline are

described for the system architecture: feature extraction, acoustic modelling, language

modelling and pronunciation lexicon.

Feature extraction: 39-D MFCC+∆+∆∆ with a spliced context window of length 9

frames is used. The Mel-frequency cepstrum (MFCC)s are then subsequently transformed

to a 40-D vector via linear discriminant analysis (LDA) and maximum likelihood linear

transform (MLLT) to get more evolved speaker-independent features. Afterwards, the

feature-space MLLR (fMLLR) is employed for speaker adaption training (SAT). 100-

D i-vectors are also added to gather specific speaker information during deep neural

network (DNN) training.

Language Modelling: The LM used for the baseline is reproduced from previous

TORGO-based studies [Espana-Bonet and Fonollosa, 2016; Joy and Umesh, 2018] using

the SRILM Toolkit [Stolcke, 2002]. In particular, it is a standard trigram LM built on

prompts of the training data in TORGO. Interpolated Kneser-Ney discounting is applied

to the LM for smoothing. From hereon, this LM used in the baseline is referred to as the

TORGO LM.
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Pronunciation Lexicon: The Carnegie Mellon University (CMU) Pronouncing Dic-

tionary is used as the lexicon. It consists of over 134,000 words and their pronunciations

in the ARPAbet phoneme set with 39 phonemes. The standard three-state context-

dependent triphone models are used for acoustic modelling. Compared with the mono-

phone model, the triphone model takes into account the position of phones within a word.

For instance, for a phone AA, the extended phone list will include AA B, AA E, AA I

and AA S, indicating whether the phone occurs in the beginning, end, internal of a word

or as a singleton phone, respectively. This word position-dependent phone set includes

167 phones in total.

Acoustic Modelling: The classical Gaussian mixture model (GMM)-hidden Markov

model (HMM) architecture and hybrid DNN-HMM architectures have been explored for

acoustic modelling. The GMM-HMM employs a triphone model with speaker adapted

transformation. In the GMM-HMM system, first, a monophone model is trained with

13-D MFCC features. Then the obtained alignments are used for basic triphone model

training with 39-D MFCC+∆+∆∆ features. Afterwards, speaker-independent transfor-

mations (LDA and MLLT) are applied to get the triphone speaker-independent align-

ments. Finally, fMLLR is applied for speaker-adaptive training as the speaker-dependent

transformation. Discriminative training such as maximum mutual information (MMI)

and feature-space MMI training are also employed to fit the HMM parameters.

In the hybrid system, the alignment for DNN senones (i.e., context-dependent

phonemic states) is obtained with an additional GMM-HMM training using

MFCC+LDA+MLLT+fMLLR features. The factored form of time-delay neural

networks (TDNN-F) [Povey et al., 2018] incorporating convolutional neural net-

work (CNN)s is used as a state-of-the-art DNN architecture. The trick of factorising

matrices with a semi-orthogonal constraint of TDNN-F has been shown beneficial to

ASR tasks [Xiong et al., 2020]. The inputs are 40-D log-Mel spectrogram features.

The TDNN-F-CNN architecture used in the experiment comprises two CNN layers at

the bottom, followed by nine TDNN-F layers. A linear layer, similar to linear hidden

network (LHN) [Gemello et al., 2007], is added for speaker adaption before the output

layer.
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Severity Severe M/S Moderate Mild

Speaker F01 M01 M02 M04 M05 F03 F04 M03
# Utterances in train 16158 15647 15620 15735 15814 15314 15719 15586
# Utterances in test 228 739 766 651 572 1072 667 800
# Word utterances in test 188 561 582 500 440 797 498 610
# Sentence utterances in test 40 178 184 151 132 275 169 190
# Unique utterances in train 969 966 963 965 965 951 964 968
# Unique utterances in test 94 319 333 228 382 422 351 345
# Common utterances in train and test 94 316 327 224 378 404 346 344
# Different utterances in train and test 0 3 6 4 4 18 5 1
% Prompt overlap 100% 99.1% 98.2% 98.2% 98.9% 95.7% 98.6% 99.7%

Table 5.2: The number of utterances per (F)emale and (M)ale speaker of the leave-one-
speaker-out models in TORGO. ‘M/S’: moderate to severe intelligibility.

Experimental Setup: As reviewed in Section 4.1 TORGO does not come with a

pre-defined training and test partition. In previous studies, researchers used the leave-

one-speaker-out approach to maximise the use of the available training data and trained

speaker-independent models. In particular, for each split, 14 speakers were used for

training and the 15th held out speaker was used for testing. In this way, 15 models were

trained and each of the 15 speakers was evaluated separately. The leave-one-speaker-out

strategy is employed for training and testing in the baseline experiment in this research.

Table 5.2 presents the number of utterances in the training and test sets of TORGO

per speaker when applying leave-one-speaker-out. The acoustic models (GMM-HMMs

or DNN-HMMs) are trained using both dysarthric and typical speech [Espana-Bonet and

Fonollosa, 2016; Joy and Umesh, 2018; Mengistu and Rudzicz, 2011]. The optimal number

of HMM states and Gaussians for the task is also explored. It is found that using 6000

HMM states and 6000 Gaussians yields the best result. The training data is augmented

using speed perturbation with factors 0.9, 1.0 and 1.1.

5.2 Baseline Results Discussion

The performance of the ASR systems is usually measured by word error rate (WER).

The WER is described as follows:

WER =
Del + Ins+ Subs

Nutt

∗ 100% (5.1)
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where Del, Ins and Subs are the number of deletions, insertions and substitutions, respec-

tively. Nutt represents the total number of words in a reference utterance. WER will be

used as the main evaluation measurement throughout the thesis.

5.2.1 Results on the Full Test Set

Before looking into the best choice of LM and splitting off the test set, it is worth looking at

results in the usual setup first. The baseline results are reported as the WERs averaged for

each severity group (i.e., severe, moderate and mild)1. The first row of Table 5.3 presents

the results of the full test set. It shows that the DNN performs better than the GMM

for speakers in all dysarthria severity levels. In particular, 12.0% (69.4% vs. 57.6%),

2.9% (35.9% vs. 33.0%) and 0.8% (15.1% vs. 14.3%) absolute WER has been reduced

for the severe, moderate and mild groups by applying the DNN model compared with

GMM. This demonstrates that the DNN has a good ability in learning latent information

of dysarthric speech and modelling dysarthric speech by being than the GMM.

TORGO LM

Severe Moderate Mild

Task GMM DNN GMM DNN GMM DNN

Full Test set 69.6 57.6 35.9 33.0 15.1 14.3

Isolated words 79.8 82.0 66.3 65.5 22.4 19.5

Sentences 62.0 48.3 23.3 22.7 11.2 12.2

Table 5.3: WER using different acoustic models and the TORGO LM for full, isolated
words and sentences tasks, averaged for speakers with different dysarthria severity levels.

1It is noticed that the WERs for speaker M05 with moderate to severe dysarthria are exceptionally
high. After further exploration by splitting the test set by microphone types, it was found that the WER
of the head microphone subset is 14.60% higher than that of the array microphone subset, on account
of the unexceptionally loud noise in the audio files recorded by the head microphone for speaker M05.
Therefore, the results exclude the moderate-to-severe (i.e., speaker M05) group.
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5.2.2 Results on Different Prompt Types

Considering the search space of recognising sentences is more complicated than recognising

isolated words, the impact of LM on the isolated words and sentences should be different.

In order to explore the difference, the results are reported on the word and sentence

test sets separately in the second and third rows in Table 5.3. Significantly different

performance is observed on the two prompt types for the GMM and DNN systems. And

it is surprising that much better performance is achieved on the sentences than on the

isolated words for each severity level when using the TORGO LM (i.e., a trigram LM

built on all prompts in the TORGO training data similar to LMs used in Espana-Bonet

and Fonollosa [2016]; Joy and Umesh [2018]), with a 26.0% higher performance on average.

When comparing GMM and DNN acoustic model (AM)s, the DNN provides varied

performance gains across the tasks. In general, the higher the severity level, the more the

DNN is able to improve the performance on the sentence subset (13.7%, 0.6% and -1% 1

reduced WER for the severe, moderate and mild group). The opposite effect is observed

for the word subset. Note that for severely dysarthric speech, although the DNN decreases

the overall WER achieved by the GMM on the full test set by 12%, it is evident that this

overall decrease is the result of a (modest) increase in the word task (2.2%) and a large

decrease for the sentence task (13.7%) when looking at the results separately on different

prompt types. The DNN even has a negative influence (WER increases by 2.2%) on the

word subset compared to the GMM. The task-specific (isolated words and sentences)

results give a more nuanced picture of the performance. This inspires further exploration

of the essence of various evaluation effects on the word and sentence tasks.

5.2.3 Discussion

Based on the observations in the baseline results, the data in TORGO is thoroughly

analysed. Looking back to Table 5.2, although the corpus contains from 15,314 to 16,158

recorded utterances for training for each speaker, only a fraction of these (between 951

1The decreased performance on the sentence subset in the mild condition shows evidence of the
existence of the bias caused by the in-domain LM. DNN is able to learn more useful acoustic information
than the GMM and achieve better performance. However, the GMM acoustic model leads to a better
result since it relies more on the LM.



Baseline Continuous Dysarthric Speech Recognition System 68

and 969) are in fact unique. There is a significant overlap (as shown in the row of ’Prompt

overlap’ in Table 5.2) between any given speaker’s utterances (in response to word and

sentence prompts) and those seen in their training set (provided by the remaining 14

speakers). The high overlapping percentages demonstrate the high degree of repetition

within and across speakers. This is sensible for assessment or across speaker comparisons,

but not convenient for ASR. In fact, the standard approach of using a leave-one-speaker-

out cross-validation setup with this dataset has encouraged previous researchers to train

LMs on training sets that are almost completely overlapping with the test set. Therefore,

the TORGO LM trained on any speaker’s training data is highly tuned to the test set.

LMs impose a syntactic and semantic constraint on the ASR decoding process by

assigning probabilistic estimates to the occurrence of short word sequences (‘n-grams’).

The LM is typically trained using large amounts of natural language text data [Tsujii,

2011]. When it comes to low resource data, care has to be taken to not unfairly design the

LM so as to give over-optimistic results by training it on within-corpora data. Especially

for dysarthric datasets, which have usually not been collected for the purpose of training

ASR systems but instead for purposes such as diagnosis and impairment severity assess-

ment, the prompts are largely overlapping across speakers. However, LMs in previous

TORGO-based studies have typically been trained on the within-corpus training prompts

(i.e., the TORGO LM), which means the LMs were unfairly designed – trained on non-

disjoint training and test data. This has potentially produced misleading, unrealistically

optimistic results for continuous speech recognition. This could be verified by the baseline

results shown in Table 5.3 that the recognition results on sentences are much better than

the isolated words. Researchers are faced with challenging choices when attempting to

set up experimental frameworks aimed at facilitating meaningful research on improving

continuous dysarthric speech recognition. When setting up an evaluation framework in

an ASR system, it is essential that the chosen LM reflects a realistic scenario as best as

possible. The small vocabulary size and the limited amount of continuous utterances limit

the system search space and make the system less practical for real application. Training

LMs on more text in a larger vocabulary using OOD data is one way of establishing an

evaluation framework which allows for a more mearningful decoding space (in terms of
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WER). Note this will evidently result in worse baseline performance. However, the result

is more meaningful in terms of evaluating the success of acoustic modelling strategies in

general, not just fitting the (non-ASR) database available for research.

5.3 Language Model Design

The baseline results (as shown in Subsection 5.2.1 and 5.2.2) present the weaknesses of

the TORGO LM used in previous TORGO-based ASR studies. To explore the effect of

different LMs, two task-specific TORGO LMs are trained for the word (TORGO unigram

LM) and sentence (TORGO trigram LM) recognition tasks separately. This enables us

to explore how the two distinct word and sentence recognition tasks are affected by the

choice of the LM. Then a series OOD LMs originating from LibriSpeech are built to

explore the optimal complexity of the LM.

5.3.1 In-domain Task-specific TORGO Language Models

The TORGO unigram LM for the isolated word utterances is built as a standard

unigram LM, whereas the TORGO trigram LM is specific to the sentence utterances

which is trigram. In particular, the TORGO unigram LM is constructed on TORGO’s

615 unique isolated words. It restricts one-word output per utterance by a uniform word

grammar network. The network contains silence models at the start and the end while

all possible test words are in the middle. All words in the corpus are in parallel and they

are assigned with the same log probability of -log(1/N), where N is the number of words.

This follows the method used in Christensen et al. [2012b]. The grammar in Finite State

Transducer (FST) format contains lines like the following:

0 1 !SIL !SIL 0

1 2 A A − log(1/N)

1 2 ABBREV IATED ABBREV IATED − log(1/N)

1 2 ABLE −BODIED ABLE −BODIED − log(1/N)

1 2 ABLUTIONS ABLUTIONS − log(1/N)

1 2 ABOUT ABOUT − log(1/N)
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...

2 0

where the 1st and 2nd columns represent the start and the end grammar states, the 3rd

and 4th columns represent the recognised words and the last column represents the log

probability of the state transducer. This unigram LM could be regarded as a multi-class

classification task where the number of classes is 615 (i.e., the number of unique isolated

words in the dataset).

The TORGO trigram LM is built on 313 to 354 (depending on different speakers)

unique training sentence prompts as defined by the speaker-specific TORGO training

data split. A Witten-Bell discounting [Chen and Goodman, 1999] is applied to this

TORGO trigram LM for smoothing. The task-specific TORGO LMs are less complex

than the full TORGO LM due to the reduction of the training corpus size and no out-of-

vocabulary (OOV) words or extra confusion in the system.

Table 5.4 shows the results of testing with the task-specific LMs, and Figure 5.1

presents the absolute performance gains (the reduced WER) comparing the results of

the task-specific TORGO LMs in Table 5.4 and the results of the TORGO LM in Ta-

ble 5.3 (the second and the third rows) by drawing the improvement lines for the isolated

word and sentence recognition tasks. Not surprisingly, both task-specific TORGO LMs

achieve better results than the TORGO LM evaluated on the corresponding utterance

type subset. It is seen that as the dysarthria severity degree increases, the improvement

made by the TORGO unigram LM on the isolated word task increases (3.66%, 17.32%

and 19.23% respectively). In contrast, the opposite case occurs for the TORGO trigram

LM recognising sentences. The consistent improvement across speakers on the words per-

formance is caused by the constraint made by the unigram LM, which forces the ASR

system to output a single word. It can also eliminate some of the insertion errors caused

by the slow speaking rate characterised by the moderate and severe groups. The sentences

performance of the mild speakers drops from 12.2% to a highly optimistic value (2.0%).

This indicates that the constraint (e.g., reduction of training corpus) makes the trained

TORGO trigram LM highly tuned to the test set by removing the isolated words from

the training set. Therefore, the evaluation results are overly optimistic.
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Task-specific TORGO LMs

Severe Moderate Mild

LM GMM DNN GMM DNN GMM DNN

TORGO unigram LM 61.5 62.8 54.9 48.2 19.2 15.9

TORGO trigram LM 59.7 41.8 16.0 12.8 3.1 2.0

Table 5.4: WER using different AMs and the task-specific TORGO LMs for isolated
words (TORGO unigram LM) and sentences (TORGO trigram LM ) tasks, averaged for
speakers with different dysarthria severity.
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Figure 5.1: Comparison between the task-specific TORGO LMs and the full (both tasks)
TORGO LM.

5.3.2 Out-of-domain LibriSpeech Language Models

To measure the impact of the biases introduced by the within-corpus TORGO LMs,

the ASR performances to those obtained with LMs built from non-TORGO texts are

compared. For this purpose, the LibriSpeech corpus [Panayotov et al., 2015] is introduced

to as the OOD text corpus for LM training. It is a read speech dataset based on LibriVox’s

audiobooks, containing 1000 hours of speech sampled at 16 kHz. Around 803 million

tokens from 14,500 public domain books and 900,000 unique words taken from Project

Gutenberg books [Panayotov et al., 2015] are used for the LM training. The 200,000 most
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frequent words are selected to be in the lexicon, and the Sequitur G2P toolkit [Bisani

and Ney, 2008] is used to generate pronunciations for words not present in the CMU

pronunciation dictionary [Kominek and Black, 2004]. The corpus has been made freely

available for download, along with separately pre-built LMs which could be pruned into

different LM sizes.

Two types of OOD LMs: LibriSpeech unigram LMs and LibriSpeech trigram LMs are

used for the isolated word and sentence task, respectively. The LibriSpeech unigram

LMs are built for isolated words over a range of vocabulary sizes: {2k, 5k, 10k, 15k,

20k, 25k, 30k, 35k, 40k, 45k, 50k, 100k, 150k, 200k}, by gradually extending the vocab-

ulary originating from LibriSpeech in line with the decreasing order of word frequency.

For instance, a 2k vocabulary size represents a vocabulary list containing the 2k most

frequently occurring words in the LM. As vocabulary size increases, the LM complexity

also increases. The optimal LM complexity for speakers is explored by using different

vocabulary sizes.

The LibriSpeech trigram LMs are built for continuous dysarthric speech by prun-

ing the pre-trained and pruned 3-gram LibriSpeech LM using the change-lm-vocab

method in the SRILM toolkit. In particular, the change-lm-vocab method modifies

the LM size by putting constraint on the vocabulary list. The method has three parame-

ters: vocab (a list of vocabulary used in the LM), lm (a LM file, usually it is an arpa file

fromat) and write-lm (a new LM file). During the LM pruning process, the OOV words

are converted to the <UNK> tag in the unigram while any N-grams containing OOV

words are removed, and then the model is re-normalised. Compared with the isolated

words, the sentences are more likely to cover the most frequent word such as pronouns.

For this reason, the LibriSpeech trigram LMs are built over a range of vocabulary

sizes starting from 0.1k for the sentence task. Compared with unigram LMs, additional

smaller vocabulary sizes {0.1k, 0.2k, 0.5k, 1k, 1.5k} are introduced to ensure that the

OOV rate is not too low at the beginning to mislead the result.

For the detailed neural network configurations, the reader is directed to the released

Kaldi scripts1.

1The Kaldi scripts for this work’s experiments have been released at
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5.3.3 Results and Discussion

In addition to WER, the OOV rate, Correct Rate (CorrR) and recognition confusion

(Conf) are employed to measure the ASR systems. The CorrR refers to the proportion of

the correctly recognised words in the reference utterance. The Conf is defined to measure

how much confusion the system experiences when attempting to recognise words it is

aware of, i.e., the in-vocabulary words. It could also be explained as the proportion of

in-vocabulary words that have been wrongly recognised. The recognition confusion Conf

can be calculated as follows:

Conf =
i− c

i
= 1 − c

i
(5.2)

where c denotes the number of correctly recognised words, and i is the number of in-

vocabulary words. It could also be written in the form that is related to CorrR and OOV

rate:

Conf = 1 −
c
n

n−o
n

= 1 − CorrR

1 − (OOV rate)
(5.3)

where n denotes the number of words in the reference utterance, and o is the number

of OOV words. It is notable in the uniform LM: WER = 1 − CorrR. This is because

instead of three types of errors (i.e., insertion, deletion and substitution errors), only the

substitution error is presented in the output. In this case, the recognition confusion Conf

can also be calculated as follows:

Conf = 1 − 1 −WER

1 − (OOV rate)
(5.4)

In addition, to measure how well a LM predicts a token (a word or a sentence),

the perplexity (ppl) [Katz, 1987] and ppl1 are applied. The ppl measures the geometric

average of 1/(probability of each token), i.e., the perplexity. And ppl1 denotes the average

perplexity per word excluding the </s> tokens 1. The formulas of ppl and ppl1 are written

https://github.com/zhengjunyue/CADSR-LM
1</s> is an end-of-sentence (EOS) token which makes the n-gram grammar a true probability distri-

bution [Jurafsky, 2000]. The </s> token prevents the probability of the whole language being infinite by
limiting how long strings in a language can get. Only if the sentence ends in EOS, will the distribution
over strings of any length P(EOS — ...) be high enough that the sentence is always guaranteed to stop
after having generated a finite number of words.
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as follows:

ppl = 10
−logprob

(words−OOV s+sentences) (5.5)

ppl1 = 10
−logprob

(words−OOV s) (5.6)

where the logprob refers to the log probability of a sentence, i.e., the log sum of prob-

abilities for each n-gram in a sentence. The OOV words are silently ignored during the

calculation. A low perplexity indicates the LM is good at predicting the sample.

The relationship between the impaired speech severity and the complexity of the Lib-

riSpeech LMs is explored. The increasing vocabulary size indicates the increasing LM

complexity, since more OOD words are introduced, resulting in more confusion in the

search process in the ASR system. Figure 5.2a and 5.2b plot the WER, OOV rate and

Conf for a range of vocabulary sizes for different severity groups (plotted in different

colours). A base-10 log scale is used for the x-axis (vocabulary size). On each line, the

lowest WER achieved by the LM with the specific vocabulary size is annotated with a

coloured circle. The black line represents how the OOV rates vary by different vocabulary

sizes. As the vocabulary size increases, more words are introduced to the LM, and the

OOV rate gets smaller. For some of the speakers, the OOV rate will never become zero

even though the LM reaches the largest size. This happens because some of the words in

the TORGO prompts are OOV words of the CMU dictionary. The solid and dashed lines

represent the DNN and GMM AMs, respectively.

Table 5.5 shows the results from these selected vocabulary sizes (indicated by ‘optimal

vocab size’) for the LibriSpeech LM1. Comparing the results in Table 5.5 with the TORGO

LM (Table 5.3) for the DNN AM on the isolated word task, the LibriSpeech unigram

LM showed improvements across speakers with moderate and severe dysarthria. This

might be because it reduces a large number of insertion errors resulting from the slow

speaking rate, by constraining the output to be a single word. However, for mildly

impaired speakers, since their speaking rate is similar to the typical speakers, although the

LibriSpeech unigram LM constrains the output to make the task easier, it still degrades

1The lowest WER are used instead of the ‘knee’ of each WER line for results comparison.
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Figure 5.2: WER, recognition confusion and OOV rate for LibriSpeech LMs for speakers
with different dysarthria severity levels.
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the performance due to the reduced complexity. Comparing the sentence performances

in Table 5.5 (86.4%, 65.6% and 38.4% WER) and those using TORGO LM (the last row

of Table 5.3 (48.3%, 22.7% and 12.2% WER)), the WER obtained by the LibriSpeech

trigram LMs are on average relatively 40.5% worse for moderate and severe speakers

and even 26.2% for mild speakers. In contrast to the unrealistically small WERs of the

TORGO LM, these results present a fairer evaluation.

LibriSpeech unigram LMs; isolated word task

Severe Moderate Mild
GMM DNN GMM DNN GMM DNN

The lowest WER (%) 84.5 80.2 66.4 64.5 34.5 27.0
Optimal vocab size 5k 15k 30k 30k 50k 50k

LibriSpeech trigram LMs; sentences task

Severe Moderate Mild
GMM DNN GMM DNN GMM DNN

The lowest WER (%) 92.3 86.4 67.3 65.6 36.4 38.4
Optimal vocab size 100k 20k 50k 200k 150k 150k

Table 5.5: WER using different AMs and the OOD LibriSpeech LMs for isolated words
(LibriSpeech unigram LM ) and sentences (LibriSpeech trigram LM ) tasks, averaged for
speakers with different dysarthria severity levels.

It is seen that, in general, speakers with dysarthria at different levels of severity require

the LibriSpeech LMs with different vocabulary sizes: the higher the severity level, the

smaller the optimal vocabulary size. To explain the possible reasons, the Conf rate is

plotted across speakers with different degrees of dysarthria in Figure 5.2c and 5.2d.

It is seen that there is more confusability in the speech as the severity level is higher.

Therefore, reducing the vocabulary size reduces the chance of poorly pronounced common

words being mistaken for low-frequency words that might be better acoustic matches.

Typically, as for the word recognition task, as the vocabulary size increases, the confusion

sees a monotonic increase across all the speakers. While in the sentence recognition

task, the confusion rates reach the minimum point with 0.1k, 10k and 20k vocabulary

sizes individually for speakers with severe, moderate and mild dysarthria. This might

be because the continually reducing OOV rate and the increasing number of utterances
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available, offset the extra confusions (i.e., some of the extended words are in a recognisable

range to reduce some substitution errors caused by OOV words). The greater the severity

of dysarthria, the less compensation is made by the decreasing OOV rate. Comparing

different AMs, when further increasing the vocabulary size after the optimal vocabulary

sizes required by the LibriSpeech LMs, the recognition confusion of the GMM systems

will increase more than that of the DNN models.

Figure 5.3 further explores the effect of different AMs on the best LM size for each

degree of dysarthria, where the best performance for each AM (GMM and DNN) of certain

LM size is marked with a red circle and purple triangle, respectively, onto the OOV rate

line as well. Considering the large inter-speaker variability characterised by dysarthric

speech, three representative speakers at each level (severe, moderate and mild) are selected

to investigate the effect of the LibriSpeech unigram LM and LibriSpeech trigram LMs.

When looking at the plots in each column, besides the conclusion made above, it is seen

that for the severe speaker F01, DNN requires a larger vocabulary size for both OOD LMs

that performs best combined with the GMM AM, which results in dramatically decreased

OOV rate to achieve the best performance, where the Conf line starts to be flat. Although,

for speakers with less severe dysarthria, DNN seems to influence also the best LM size,

the effect is small both in terms of OOV rate and Conf rate. This is presented in Table 5.5

where the best performance of the OOD LMs are denoted with “Min WER”, and also

the vocabulary size for the LM that achieve the best WER, indicated by “Min Size” in

the table, is shown.

Especially for the LibriSpeech trigram LMs used for testing the phrase-based speech

data, the CorrR lines are also plotted in Figure 5.3. As shown in Figure 5.4, as the

vocabulary size increases, the perplexities of all speakers increase monotonically. However,

the result is unlikely to be monotonously worse, and the correctness does not drop much

after reaching an optimal value. Thus, the optimal LM complexity is driven by several

factors, for instance, dysarthria severity which means highly speaker-dependent and AM

quality. Although the result obtained by the LibriSpeech trigram LMs is worse than the

TORGO LM, which is on average 37.23% for moderate and severe speakers and even

24.28% for mildly dysarthric speakers, unlike to get the unrealistic small perplexity and
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Figure 5.3: Results of LibriSpeech LMs; see text for further details.
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WER, it guarantees better fairness and could be further explored for better performance

in the future.
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Figure 5.4: Perplexity vs. vocabulary size for LibriSpeech trigram LMs.

5.4 Conclusion

Starting with a pilot ASR study to build a baseline on TORGO, this chapter presented

an in-depth analysis comparing LMs trained on TORGO text prompts with LMs trained

on varying vocabulary-sized subsets of LibriSpeech. It was found that the TORGO LMs

(used widely in literature) give a hugely overestimated performance of ADSR because of

prompt overlap between training and test parts. In comparison, the LibriSpeech models

offer a lower but fairer performance which will better allow for a more meaningful decoding

space (in terms of WER). Exploring different vocabulary sizes for the LibriSpeech LMs,

it was found that in general, the lowest WERs are achieved with the largest vocabulary

size. The greater the severity, the less complex the LM is required to have for the best

results. In real applications, speaker-specific LMs may be appropriate as, depending on

the severity and when not asked to read prompts, speakers would choose to use different

language constructs and words to counteract specific speech impairments. The baseline

with OOD LibriSpeech LMs provides a solid and fair benchmark for continuous dysarthric

speech recognition with an appropriate evaluation framework. Chapter 6 will build more

robust ASR systems for continuous dysarthric speech on top of the baseline in this chapter,
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exploring a novel speech representation learning framework and advanced acoustic models.
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6.1 Introduction

In Chapter 5, a continuous dysarthric speech recognition baseline framework was built

using the TORGO corpus which employed out-of-domain (OOD) language models. This

work provides a fair evaluation approach for automatic continuous dysarthric speech recog-

nition (ACDSR) task which will be used in the following experiments. As discussed in the

previous chapters, data scarcity is a major issue in the automatic dysarthric speech recog-

nition (ADSR) task. There are even less continuous dysarthric speech data available. As

a result, the amount of dysarthric data is usually insufficient to train robust continuous

speech systems using conventional approaches. Exploiting OOD data is a good way to

address this issue [Christensen et al., 2013; Xiong et al., 2020; Yılmaz et al., 2019].

The feature extraction process is an essential part of an automatic speech recognition

(ASR) system. The performance of the feature extraction stage underpins the perfor-

mance of the ASR system. No matter how well-designed the acoustic and language

models are, the ASR system cannot perform well if the features do not capture the useful

information in the signal. Given that the acoustics of dysarthric speech are highly vari-

able and with low intelligibility, it is difficult to capture the robust acoustic cues by using

the hand-crafted features that carry less useful information. With the popularity of deep

learning approaches, there is a growing interest in applying deep learning methods for

speech representation learning. Due to the deep architecture, neural networks can learn

richer representations than the hand-crafted features or learn complementary information

to the hand-crafted features which may also be applicable to dysarthric speech represen-

tation learning. However, a large amount of data is required for neural network training,

and the performance is constrained due to the lack of dysarthric data.

Previous studies have demonstrated the effectiveness of employing speech representa-

tions such as bottleneck (BN) features [Takashima et al., 2015; Yılmaz et al., 2019] to

support acoustic features for improving acoustic modelling of dysarthric speech. The BN

features are extracted from a neural network bottleneck layer trained with a supervised

criterion such as phoneme prediction accuracy [Grezl and Fousek, 2008]. The BN features

have been shown to capture complementary information for dysarthric speech that can
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be beneficially fused with standard short-time spectral input features [Takashima et al.,

2015; Yılmaz et al., 2019].

Recently, there has been growing interest in autoencoder-based bottleneck features

(e.g., autoencoder bottleneck (AE-BN) features) [Chorowski et al., 2019; Sainath et al.,

2012]. In contrast to the conventional BN features, AE-BN features are learnt by re-

constructing the input features in an unsupervised manner [Sainath et al., 2012]. Unsu-

pervised learning has the advantage that neither the transcription of the training data

nor a linguistic pronunciation lexicon is required. It can be very useful when there are

a large of unlabeled dysarthric speech available for training. Autoencoder is also able

to exploit the local dependencies in the sequential data [Chorowski et al., 2019]. For

this reason, it has the potential to improve continuous speech recognition performance

since the power to capture local dependencies is important when modelling continuous

speech. The autoencoder (AE)-based models have been used in the context of isolated-

word ADSR. For instance, in Bhat et al. [2018]; Vachhani et al. [2017], the AEs were

applied for dysarthric speech feature enhancement by learning non-linear mappings from

the dysarthric speech to the typical speech. The enhanced dysarthric features tended

to be like typical speech, and were used for recognition obtaining higher accuracy. This

AE-based feature enhancement approach is limited to corpora with parallel recordings for

both typical and dysarthric speech. To make the approach applicable to a wider range of

datasets and tasks, the AE-BN features are proposed to be applied which are extracted

using the reconstruction objective driven by the same input and output in this chapter.

Given the data scarcity issue, the OOD typical-data pretraining framework can in-

crease the robustness of the dysarthric speech representation learning process when little

in-domain training data is available. The pretraining framework which applied OOD

typical speech data at the feature extraction stage was introduced in Christensen et al.

[2013] for tandem features learning. Various BN feature extractors using both typical and

dysarthric data were investigated in Yılmaz et al. [2019]. It was concluded that using a

large amount of OOD typical speech data to train the BN feature extractor achieved the

best recognition performance on dysarthric speech.

This chapter explores the second research question RQ2: What is a good way to lever-
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age typical speech, which is OOD, to learn more robust representations for continuous

dysarthric speech? Motivated by the above previous studies, the work proposes a novel

speech representation learning framework for ACDSR: an AE-BN feature extractor mak-

ing use of the OOD knowledge with multi-task optimisation techniques. In particular, the

feature extractor is built using an AE-BN architecture pretrained on OOD typical speech

data to increase the robustness of the dysarthric speech representation learning process.

In addition, to accommodate for the possible drawback of the unsupervised AE-BN fea-

ture learning approach, the framework allows for jointly optimising the AE-BN feature

extractor and the speech recogniser. This enables the speech recogniser to engage in and

influence the feature extraction process. The extracted speech representations, therefore,

can benefit the phoneme classification specifically. Monophone regularisation is applied

as a multi-task learning strategy to provide further improvement.

6.2 System Overview

This section gives a system overview including the system architecture and the description

of several main components in the system.

6.2.1 System Architecture

Figure 6.1 depicts the architecture of the proposed ACDSR system. The red box on

the left shows the AE-BN feature extractor and the blue box on the right represents

the speech recogniser. In particular, the AE-BN feature extractor is first trained on the

100-hour subset of LibriSpeech [Panayotov et al., 2015] corpus, which is a large typical

read speech dataset. The pretrained feature extractor is then fine-tuned using dysarthric

data in TORGO, and the extracted dysarthric AE-BN features are concatenated with the

input acoustic features and fed into the speech recogniser.

6.2.2 Autoencoder Bottleneck Feature Extractor

Autoencoder is a type of neural network which learns an efficient data representation

(encoding) in an unsupervised manner [Liou et al., 2014]. Dimensionality reduction is
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Figure 6.1: System architecture.

conducted by AE. It consists of two parts: an encoder and a decoder. The encoder encodes

the high dimensional input feature vectors into lower-dimensional latent variables (in the

following called AE-BN features). The decoder reconstructs the original input (as close

as possible to its original input) from the generated latent variables. This two processes

could be defined as transitions ϕ and ψ:

ϕ : X → F

ψ : F → X

L(X, (ϕ · ψ)X) = ||X − (ϕ · ψ)X||2

ϕ, ψ = arg minL(X, (ϕ · ψ)X)

(6.1)

where X represents the input vectors and F represents the latent variables (the AE-BN

features). AEs are trained to minimise reconstruction errors L(X, (ϕ · ψ)X) between X

and (ϕ · ψ)X. The reconstruction error is typically the mean square error calculated
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between the reconstructed feature vector yi and the true input feature vector xi:

LossAE = (
1

n
)

n∑
i=1

(yi − xi)
2 (6.2)

where n is the number of frames.

The AE-BN feature is driven by two opposing constraints: i) the reconstruction objec-

tive which forces the AE-BN feature to capture as much of the input data characteristics

as possible, and ii) the bottleneck (i.e., the dimension reduction) which forces the network

to discard the redundant information that is not needed for the inversion. AE-BN features

are expected to capture complementary information for dysarthric speech to the acoustic

features. However, redundant information might also be captured by the unsupervised

feature learning approach, i.e., information that is needed for signal reconstruction but

not important for phoneme classification (e.g., speaker variability, pitch). Designing ef-

fective regularisation (described in Section 6.2.4 and Section 6.2.5) techniques either for

the feature extractor or the acoustic model (AM) has the potential to compensate for the

deficiency.

6.2.3 Light Gated Recurrent Units Acoustic Model

The speech recogniser uses light gated recurrent unit (LiGRU) as the AM. The perfor-

mance improvements on ADSR have been made by exploring various deep learning archi-

tectures such as convolutional neural network (CNN), time-delay neural network (TDNN)

and long short-term memory (LSTM) [Espana-Bonet and Fonollosa, 2016; Hermann et al.,

2020; Kim et al., 2018; Mengistu and Rudzicz, 2011] in the past few years. Recently, the

LiGRU [Ravanelli et al., 2018] have been shown to outperform existing architecture on

large typical speech datasets such as LibriSpeech and TIMIT [Zue et al., 1990]. Recur-

rent neural networks are effective tools to process sequential data such as speech [Li and

Wu, 2015]. As an advanced recurrent neural network (RNN), the LiGRU model has the

capability to exploit large time contexts and to capture long-term speech modulations.

Compared with LSTMs Hochreiter and Schmidhuber [1997], LiGRUs have a simpler cell

design that allows for faster training. The design also avoids the numerical issue of learn-
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ing long-term dependencies and mitigates the vanishing gradient problem.

The LiGRU model has not been used for ACDSR. To demonstrate the effectiveness of

using the LiGRU model, a test is done by only replacing the AMs with the LiGRU-based

model while keeping the same experimental settings as in Espana-Bonet and Fonollosa

[2016] and Chapter 5. Evaluating on the sentence subset of TORGO, it is found that

the performance achieved by the LiGRU AM in is comparable to other AMs presented in

previous papers. For instance, the TDNN model achieves 70.72% word error rate (WER)

averaged across all speakers, while LiGRU achieves 71.08%. For speakers with severe

dysarthria, the LiGRU model performs even better (83.90% vs 86.40%). These compara-

ble results are achieved in Pytorch-Kaldi [Ravanelli et al., 2019] without the benefits of

the (computationally expensive) lattice-free maximum mutual information training used

in the systems using the Kaldi [Povey et al., 2011] toolkit. The LiGRU AM will be used

in the remainder of this thesis.

6.2.4 Joint Optimisation

The feature extractor and speech recogniser are often designed independently in the pre-

vious studies. This means that the feature extractor is tuned according to criteria not

directly related to ASR performance. Recently, deep neural network (DNN)s have made

the integration of various components of a typical ASR system possible. In Ravanelli

et al. [2016] a DNN-based integrated network for distant speech recognition was proposed

that combined speech enhancement and speech recognition modules allowing for the joint

updating of parameters. It was shown that the joint training achieves better results than

training each part separately. It was also demonstrated that a pretraining strategy with a

fine-tuning phase improves performance. The core idea of joint training is that the feature

extractor should provide more discriminative representations for the ASR task as it is in

part guided by the speech recognition cost function [Ravanelli et al., 2016]. In this case,

the speech recognition gradient is also back-propagated through the feature extraction

module.

In this chapter, in addition to training the AE-BN feature extractor and the speech

recogniser separately, an integrated framework where these two parts are jointly optimised
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is proposed. The feature extractor is pretrained on LibriSpeech data and fine-tuned using

TORGO dysarthric data. The recently proposed PyTorch-Kaldi framework provides a

platform to implement the joint optimisation which can be difficult to perform in Kaldi.

The parameters are updated by back-propagating a weighted sum of the AE reconstruction

loss and the cross-entropy loss,

LossJoint = λ1 ∗ LossAE + LossASR λ1 ∈ (0, 1) (6.3)

where λ1 controls the trade-off between the reconstruction quality of the feature extractor

and the effectiveness of the speech recogniser.

6.2.5 Monophone Regularisation

To train a more robust AM, the multi-task learning (MTL) technique has been applied to

hybrid DNN systems in Bell et al. [2016] by added a secondary task of predicting alter-

native ccontext-dependent (CD) (i.e., triphone) or context-independent (CI) (i.e., mono-

phone) targets. Consistent improvements were achieved over the standard single target

training approach on large-vocabulary typical speech recognition tasks. Importantly, this

strategy does not require additional data. This makes it suitable for the low-resource

data domain, for instance, dysarthric speech. This MTL scheme can be regarded as a

technique to regularise the AM. The regularisation prevents the AM from over-fitting to

a single senone target classification by learning additional CI or CD labels. This encour-

ages a better presentation of the data to be learnt by the AM (and by extension, by the

auto-encoder when joint optimisation is engaged).

In this work, multi-task regularisation is applied to the AM. Particularly, monophone

classification is used as a secondary task by adding another softmax classifier to estimate

the CI states. The joint optimisation cost function becomes the sum of the LossCD and

the cross-entropy loss LossCI between the true CI labels and the predictions:

LossASR = LossCD + λ2 ∗ LossCI (6.4)

where λ2 indicates the weighting between each task’s loss.
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6.3 Experiments and Results

6.3.1 Experimental Setup

The AE-BN feature extractor used in this work consists of a four-layer encoder and a

two-layer decoder. The encoder contains two convolutional layers to learn rich local

representations and two multi-layer perceptron (MLP) layers to flatten the feature vectors

and encode the high dimensional features into a lower-dimensional representation. The

decoder comprises two MLP layers fed by the learned AE-BN features and aims to produce

an output matching the original input.

The LiGRU-based AM follows the design from [Ravanelli et al., 2018], containing five

stacked bidirectional LSTM layers [Graves et al., 2013] and a final softmax classifier.

Recurrent dropout (0.15) is used as a regularisation technique. The minibatch sizes are

128 and 16 for the AE-BN feature extractor and the AM, respectively. Stochastic gradient

descent optimisation is used in the feature extractor and RMSProp in the LiGRU model.

Learning-rate annealing is applied with a factor of 0.5. The 200k vocabulary size trigram

language model originating from the OOD LibriSpeech data is used for evaluation as in

Chapter 5.

6.3.2 The Training Setup for the TORGO Corpus

TORGO does not come with a pre-defined training and test partition. An N-fold cross-

training (N=5) setup is applied, with the total dataset (including all speakers) being

divided into five folds (i.e., one fifth of each speaker in every fold)1. According to Sec-

tion 5.2.3, TORGO features a lot of repeated prompts across speakers. The N-fold cross-

training maximises the available training and test data while maintaining the need for

disjoint training and test sets. Table 6.1 summarises the duration of the recordings in

each fold (after excluding the recordings that are shorter than 25 ms and any wrongly

annotated audio). The ratio of the duration of the two utterance type subsets (isolated

word vs. sentence) is about 1.5:1.1.

1The pre-defined training and test partition set is available at
https://github.com/zhengjunyue/bntg.
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Table 6.1: Duration (hours) of the training and test data in each fold using the 5-fold
cross-training setup

subset fold 1 fold 2 fold 3 fold 4 fold 5

train all 10.71 10.69 10.71 10.83 10.57

train sentence 4.63 4.54 4.60 4.71 4.59

train word 6.10 6.15 6.11 6.12 6.16

test all 2.71 2.73 2.72 2.59 2.67

test sentence 1.14 1.22 1.17 1.06 1.18

test word 1.57 1.51 1.55 1.53 1.49

Most of the previous TORGO-based work used the leave-one-speaker-out (LOSO)

approach to train speaker-independent (SI) models [Espana-Bonet and Fonollosa, 2016;

Hermann et al., 2020; Mengistu and Rudzicz, 2011]. Most of them reported results av-

eraged for speakers at different dysarthria severity levels. However, when looking at the

results for individual speakers, it is found the performance for each speaker varies a lot,

even for those at the same severity level of dysarthria. The LOSO approach trains differ-

ent AMs for each speaker with a different amount of data. This makes the trained models

not comparable. The unbalanced data yields greatly varying recognition results even for

speakers within the same dysarthria severity. In addition, with only eight speakers, there

are insufficient speakers in TORGO to capture the wide inter-speaker variability observed

in dysarthria. In a LOSO SI setting, speaker performances will be more determined by

the chance degree of matched-ness of the target speaker to the few others in the training

set, i.e., rather than to any intrinsic difficulty of the speech itself.

The previously published work using UASpeech [Kim et al., 2008a] which employed

2:1 disjoint training and test partition scheme for isolated word recognition provides a

good inspiration to the 5-fold cross-training setting. The UASpeech-based work split the

data of each speaker into three disjoint blocks, and each block consists of non-repeated

245 words. Blocks 1 and 3 are used for training and block 2 for the test. TORGO does

not have enough unique utterances as in UASpeech, so the dataset is split manually into

five folds. The N-fold cross-training approach ensures a good trade-off between having
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a reasonably large training set while providing some matched speaker training data to

allow for a more meaningful comparison of recognition performance across speakers.

6.3.3 Results

Table 6.2: WER using different speech representations and AMs for per (F)emale or
(M)ale speaker with dysarthria at different severity levels, and the averaged result of all
speakers ‘M/S’: moderate to severe level of dysarthria.

Severe M/S Moderate Mild

Models F01 M01 M02 M04 M05 F03 F04 M03 Average

MFCC 77.93 77.91 76.17 91.66 85.46 51.47 22.27 22.04 59.22

fMLLR 73.86 76.36 73.12 88.66 83.74 49.18 21.71 21.69 57.33

fMLLR+BN20 69.84 71.55 72.26 85.97 78.9 47.06 19.75 19.86 54.70

fMLLR+BN20 + mono 71.47 69.3 70.88 79.91 77.18 44.21 18.26 18.23 52.37

fMLLR+BN20 + joint 69.29 70.54 71.65 83.37 80.4 47.74 19.5 19.65 54.05

fMLLR+BN20 + mono + joint 70.65 69.07 70.81 81.82 78.4 45.18 18.42 19.15 52.99

fMLLR+BN20 (TORGO) 75.22 76.91 73.65 89.03 83.55 48.54 20.96 20.03 57.83

Baseline result: Results are shown in Table 6.2. The 1st row displays the baseline

system using the LiGRU AM trained on 39-D Mel-frequency cepstrum (MFCC) feature

and without using the AE-BN feature extractor. Compared with the results in Yue et al.

[2020b], the baseline achieves consistent improvement on ASR task for speakers with

all dysarthria severity levels. The MFCC features are then substituted with the 40-D

feature-space MLLR (fMLLR) features (the 2nd row). It is seen that fMLLR features

outperform the baseline MFCCs, reducing WER by 3% for speakers with moderate and

severe dysarthria. Therefore, fMLLR features are used as the input in the following

experiments.

AE-BN feature result: The AE-BN feature extractor is pretrained on the 100-hour

OOD LibriSpeech data for a more generalised model than trained on the task-specific

TORGO dysarthric data. The latter case has bad results since the TORGO dysarthric

dataset is too small to train a suitable feature extractor. When introducing the AE-BN

feature extractor, since the recognition loss depends on the width of the bottleneck, the

optimal dimensionality of the AE-BN features is explored. It is found that 20 is the best
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dimensionality for this task, with results reported in the 3rd row in Table 6.2. Introducing

the AE-BN features reduced WER by a further 1.77% to 4.84% absolute.

Monophone regularisation result: Further improvements are made by applying

multi-task optimisation techniques. λ2 is set to be 1 as the previous work did. Comparing

the 3rd and 4th rows in Table 6.2, the AM regulariser successfully reduces WER by an

absolute 2.33% across speakers. For speakers with severe dysarthria, the WERs are

reduced by from 1.83% to 6.06% with the exception of speaker F01 (where the WER is even

higher). For speakers with moderate dysarthria, there is a 2.85% recognition performance

improvement. This indicates that a single set of triphone targets is not optimal for the

discriminative clustering process (i.e., phoneme classification). The additional CI label

learning step strengthens the dysarthric AM.

Joint optimisation of AE and ASR result: Since users can employ their own fea-

tures with PyTorch-Kaldi, it is possible to train a cascade between a speech representation

extractor and a speech recogniser. The extractor aims to generate BN features which are

then concatenated with the original inputs to be fed into the ASR model to predict CD

phone states. In this case, the LibriSpeech AE parameters are retrained using TORGO

dysarthric data, and the AE-BN feature extractor and the speech recogniser are jointly

trained by back-propagating the sum of the AE loss (i.e., mean square error) and the

cross-entropy ASR prediction loss. When tuning the jointly optimised model, different

values of λ1 (Eq. 6.3) ranging from 0.1 to 1 are tested with 0.2 producing the best ASR

performance. The λ1 tuning results are presented in Table 6.3 averaged for all speakers

with dysarthria. Comparing the 3rd and the 5th rows in Table 6.2, the joint optimisation

technique achieves a WER reduction of 0.65% absolute compared to the model that trains

the feature extractor and AM separately.

Table 6.3: The averaged WER for speakers with dysarthria when using different λ1s.

λ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WER (%) 56.61 54.05 55.73 57.67 59.13 60.20 65.33 68.59 74.56 89.76

The “BN20+fMLLR + mono + joint” system in the last row in Table 6.2 applies
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the joint optimisation technique to the AM with monophone regularisation. Comparing

the last three rows shows that the monophone regularisation technique provides a further

improvement on the joint optimisation model and vice versa except for some speakers with

severe dysarthria. Almost all the benefits seen in the last row are coming from monophone

regularisation, therefore it appears that the joint optimisation provides no significant

benefit when coupled with a sufficiently strong AM. The possible reason is that the

joint training is actually performed as a fine-tuning procedure, and the hyperparameters

such as learning rate need to be selected properly to take advantage of the pretraining.

Although the joint optimisation does not provide the benefits expected, it remains an

under-explored research direction deserving of further investigation. The overall best

result (52.37% WER) is obtained when employing monophone regularisation alone.

6.3.4 Discussion

Effect of Utterance Type: The results show that achieving an acceptable performance

for a continuous dysarthric speech recogniser remains challenging. This is exacerbated

by the fact that some speakers with dysarthria produce many repetitions and false starts

when having to speak in full sentences. Figure 6.2 illustrates WERs for not just the

TORGO sentence task, but also for the isolated word task and the full, combined test

set across all speakers. In general, and as expected, the sentence task is harder for all

speakers; and for some speakers (e.g., M04 and M05), the sentence performances are much

worse. Inspection of the audio confirmed that the ASR transcription had many insertions

caused by disfluencies typical for speakers with dysarthria.

Effect of Microphone Type: The acoustic data in TORGO is simultaneously

recorded by a head-mounted and a single directional microphone (in the following called

array microphone). It is interesting to explore whether the microphone type affects the

performance. It is observed that the amount of data recorded by different microphone

types (head vs array) per speaker per session is different as shown in Table 6.4. Some

data was removed from the original dataset because of the severe Gaussian acoustic noise

caused by the electric field when the electromagnetic midsagittal articulography (EMA)

interfered with the microphones. To explore the effect of the channel type, the results for
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Figure 6.2: WER for different utterance subsets using the proposed “fMLLR+BN20 +
mono” model (modified).

different channel subsets are presented in Figure 6.3.

Table 6.4: Number of utterances recorded by array and head microphones per dysarthric
speaker per Session. ’s’: Session.

Severe M/S Moderate Mild

Microphones F01 M01 M02 M04 M05 F03 F04 M03

array total 134 386 400 520 - 848 448 416

s1 134 100 240 126 - 204 199 -

s2 - 286 160 294 - 435 249 416

s3 - - - - - 209 - -

head total 132 386 409 298 523 577 250 421

s1 132 100 240 - 130 204 - -

s2 - 286 169 298 393 159 250 421

s3 - - - - - 214 - -

Figure 6.3 indicates that the performance on the word subset of the two channels

varies a lot1. Notably, for speakers M01 and F03, the performance on utterances recorded

by the array microphone is approximately 40% worse than the head microphones. This

1Array microphone recordings of speaker M05 are removed from the dataset since they are distorted.
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might be because the head microphone is more sensitive to the electric field generated

by the electromagnetic articulograph. For the sentence subset, there is no significant

difference between the performance of the two channels. However, it is notable that for

speaker F03, the array channel result is better than the head channel on word utterances

while the opposite case happens on sentence utterances. The potential reason might be

the different amount of utterances recorded by these two channels for different utterance

types.
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Figure 6.3: WER for different utterance subsets using the “fMLLR+BN20 + mono”
system.
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6.4 Conclusion

This chapter has explored a proposed novel speech representation learning framework for

ACDSR, including a pretrained and fine-tuned AE-BN feature extractor and multi-task

optimisation techniques. One of the current advanced LiGRU architecture is used for the

AM, and the system is evaluated with the fairly designed OOD language model proposed

in Chapter 5. The results demonstrated the effectiveness of augmenting conventional

acoustic features with the extracted AE-BN features, reducing WERs by 2.63% absolute

on average compared with the MFCC baseline. More WER reduction was achieved on

higher dysarthria severity levels. The multi-task optimisation techniques: monophone reg-

ularisation and joint optimisation made further recognition performance improvements by

reducing 2.33% and 0.65% absolute WER. However, no consistent additional benefit was

found by using the joint optimisation technique when applied in conjunction with mono-

phone regularisation. Overall, the proposed framework learns useful speech representation

for the phoneme classification task on continuous dysarthric speech and demonstrates a

way of exploiting OOD data for speech representation learning. Besides acoustic informa-

tion, the additional information source of speech production may carry complementary

information for dysarthric speech clues. The following two chapters Chapter 7 and Chap-

ter 8 will systematically explore the articulatory data using TORGO and exploit it to

build robust ACDSR systems.
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7.1 Introduction

The previous chapters present the work using acoustic information for automatic con-

tinuous dysarthric speech recognition (ACDSR). Given that the acoustics of dysarthric

speech are highly variable, a typical phonetic token can be pronounced differently. There

are often no robust acoustic cues for a specific phoneme. The single acoustic modality

might not be a good solution for acoustic modelling trained on a limited amount of data.

The multimodal automatic speech recognition (ASR) utilises the data from other modal-

ities to facilitate the task when it is insufficient using the single data modality. Attempts

have been made to harness alternative or additional sources of knowledge captured during

speech production. One such additional source of information is the articulatory infor-

mation, which captures the movements of speakers’ articulators (e.g., lips and tongue).

The positioning of the articulators plays an important role in human speech production.

Compared with acoustic representations, the articulatory information directly models the

signal in the speech production domain. It has been shown to be more noise-robust

[Wrench and Richmond, 2000], less speaker-variant [Fujimura, 1986] and more suitable

to model the coarticulation variability [Frankel and King, 2001; Kirchhoff et al., 2002].

Articulatory information may therefore hold complementary information that could be

exploited by automatic dysarthric speech recognition (ADSR) and ACDSR systems.

The articulatory data can be acquired from electromagnetic midsagittal articulography

(EMA) [Schönle et al., 1987], laryngography [Gilbert et al., 1984] and electropalatog

raphy (EPG) [Hardcastle and Gibbon, 1997] equipments. Recently, the most commonly

used system for articulatory data collection is EMA. An EMA system collects the 2-D or

3-D recordings of articulatory movements inside and outside the vocal tract by attaching

sensor coils to articulators of the participants. The participants wear a special helmet that

produces an alternating magnetic field. The movement of the sensors results in changes

in the magnetic field, which generate electrical currents. The electrical currents are then

converted to the movement angle and location of the articulators, which can simulate the

shape of the vocal tract.

However, dysarthric articulatory data is difficult to collect and currently, very few
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dysarthric datasets contain aligned acoustic and articulatory data. Due to the limited

amount of dysarthric articulatory data, synthetic (often referred to as pseudo) articulatory

data obtained via learnt acoustic-to-articulatory mappings has been employed to support

acoustic features for improving acoustic modelling of dysarthric speech [Xiong et al., 2018;

Yılmaz et al., 2018]. By learning the mapping from the acoustic to the articulatory space,

the synthesiser estimates the articulatory data from the acoustic representations. Gnus-

peech [Hill et al., 2017] and TADA [Nam et al., 2004] are the two popular articulatory data

synthesisers. The potential drawback of synthetic articulatory features is that they might

not represent the real dysarthric articulatory space effectively. That is, the synthesisers

are normally trained on typical speech and then applied to generate dysarthric speech

while assuming the articulatory-acoustic mapping remains invariant between typical and

dysarthric speech. In contrast, the real recorded dysarthric articulatory data can better

reflect the dysarthric articulatory space.

Given the substantial differences between the typical and dysarthric speech signals,

there can be a significant mismatch between the acoustic-articulatory mappings for typical

and dysarthric speech. This leads to uncertainty as to whether the synthesised articu-

latory data conformed to actual dysarthric speech properties. Therefore, using acoustic-

articulatory mappings learned for typical speech is suboptimal and accompanied by a

significant error. In this chapter, the recorded dysarthric EMA data in the TORGO

dysarthric speech dataset will be exploited. Does using the real dysarthric articulatory

data minimise such errors, and is it a more reliable speech representative? Detailed anal-

ysis of the articulatory space of dysarthric speech is essential to answer these questions.

It can provide evidence for the key differences in the production of the dysarthric and

typical speech regarding the articulatory side.

The rest of the chapter is organised as follows: The 2-D articulator movement trajec-

tory and the 3-D point cloud of some samples are visualised in Section 7.2, which provides

intuitive observation of the difference between dysarthric and typical speech. Section 7.3

presents a systematical comparison of the dysarthric and typical articulator movement

patterns by analysing the statistical articulatory space distribution of the articulatory

data using the maximum articulator motion range (MAMR) indicator. Section 7.4 gives
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a summary of this chapter.

7.2 TORGO Articulatory Data Visualisation

In this section, the 2-D articulator movement trajectory and the 3-D point cloud of some

articulatory data samples in TORGO are visualised. The visualisation provides intuitive

observation of the articulatory difference between dysarthric and typical speech. First,

the details of the recorded articulatory data in TORGO are presented.

7.2.1 TORGO EMA data

The articulatory data in TORGO were collected through a 3-D AG500 EMA system (also

known as EMA data). The EMA data samples are measured by 12 sensors capturing

articulatory movements in the 3-D space, each returning sensor positions in Cartesian

coordinates (x, y, z) along with the six spatial orientation angles. The sensors are attached

to the tongue back (TB), tongue middle (TM), tongue tip (TT), forehead, bridge of the

nose (BN), upper lip (UL), lower lip (LL), lower incisor (LI), left mouth (LM), right

mouth (RM), left ear (LE) and right ear (RE). The sensors attached behind each ear

are used for reference purposes and to record the head motion. Figure 7.1 illustrates the

placement of some of the sensor coils attached to the articulators during data collection

in TORGO.

After removing the data samples that were not well recorded, TORGO consists of

7177 EMA data samples. Since the acoustic data (16,363 audio data samples) is recorded

by a head-mounted and array microphone simultaneously, one set of EMA data usually is

associated with two sets of acoustic data. Therefore, TORGO contains aligned acoustic

and articulatory recordings for most of the utterances (13,127/16,363), which are used in

the following (Chapter 8) experiments. Table 7.1 presents the number of EMA recordings

in each session of the individual speaker in TORGO. Not all speakers in the dataset have

articulatory recordings, and there is some missing EMA data in some sessions of the

speakers. The missing EMA data is usually removed due to the dropped sensors or the

disturbing magnetic field during the recording session.
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Figure 7.1: The placement coils on the RM, LM, UL, TT, TM and TB in the AG500
EMA system. The figure is adapted from the original article [Rudzicz et al., 2012b].

Visartico [Ouni et al., 2012] is a useful articulatory data visualisation tool. By sim-

ulating the sensor attachment, it is first used to check whether the name of the sensors

used corresponds to the correct sensor and whether there are any problematic sensors.

The sensor configuration in Visartico is illustrated in Figure 7.2

Figure 7.2: Sensor configuration.
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Table 7.1: The number of EMA recordings of each speaker in TORGO. ‘-’ indicates the
missing recordings, ‘s’ represents ‘Session’.

Severe M/S Moderate Mild
Session F01 M01 M02 M04 M05 F03 F04 M03

total - 100 169 298 523 661 250 421
s1 - 100 - - 130 - - -
s2 - - 169 298 393 447 250 421
s3 - - - - - 214 - -

Typical speakers
Session FC01 FC02 FC03 MC01 MC02 MC03 MC04

total 225 999 795 754 696 600 656
s1 225 - 405 333 388 600 656
s2 - - 390 - 308 - -
s3 - 999 - 421 - - -

In the following, some observations are presented.

1. The order of the sensor data saved for typical speakers and speakers with dysarthria

is different. Table 7.2 presents the channel sequence for the dysarthric and typical

groups. It is seen that the 4th, 5th and 10th sensors are attached differently (marked

with the red colour). Care should be taken when using the EMA data of all sensors

from all speakers. The sensor sequences of the tongue and lip articulators (i.e., the

1st, 2nd, 3rd, 5th and 10th sensors) are the same for the two groups. So using the lip or

tongue information will not be affected by the mismatching sensor order.

2. Some problematic sensors are observed for some speakers. One case is that some

attached sensors move to other places accidentally during the recording. This happens

for speakers M04 and MC01, where the TB sensor moves out of their mouths. This

might be because the electromagnetic signal of this sensor is interfered with by the

external signal or the sensor drops off during the recording. Another observation is

that some sensors do not work for speaker M05, where the TM and TB sensors have

no data recorded, i.e., zero values for TM and TB.

3. The UL and LL sensors have no obvious attached problem across speakers. Therefore,

the lip articulatory information might be a better choice to use as articulatory features
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compared with the tongue articulators. Other sensors attached to the forehead, BN,

LE and RE, are used for reference purposes and to record head motion. The following

experiments will use the data from the lip region (UL and LL) and the tongue region

(TT, TB and TM) as articulatory features.

Table 7.2: The EMA data channel sequence attached for the typical and the dysarthric
group

Channel No. Typical Dysarthric

1 Tongue back (TB) Tongue back (TB)
2 Tongue middle (TM) Tongue middle (TM)
3 Tongue tip (TT) Tongue tip (TT)
4 Right mouth (RM) Forehead
5 Forehead Bridge of the nose (BN)
6 Upper lip (UL) Upper lip (UL)
7 Lower lip (LL) Lower lip (LL)
8 Lower incisor (LI) Lower incisor (LI)
9 Left mouth (LM) Left mouth (LM)
10 Bridge of the nose (BN) Right mouth (RM)
11 Left ear (LE) Left ear (LE)
12 Right ear (RE) Right ear (RE)

7.2.2 2-D Articulator Movement Trajectory

Figure 7.3 depicts the 2-D articulator movement trajectory for the utterances spoken by

four speakers with different severity levels: MC02 (typical), F04 (mild), F03 (moderate)

and M04 (severe) with the same prompt “The pair of shoes was new”. The sensors

corresponding to the numbers labelled in Figure 7.3 can be found in Figure 7.2.

It is seen that the typical speaker has the clearest tongue articulator movement trajec-

tories. The tongue articulators’ (i.e., sensors 1, 2 and 3) movement ranges of the typical

speakers and the speakers with mild dysarthria are smaller than the speakers with mod-

erate and severe dysarthria. For instance, for sensor 2, the movement ranges (mm) along

the X-axis and Y-axis are (5.38, 5.32) for typical speech, (5.56, 6.43) for mild speech,

(5.78, 7.53) for moderate speech and (8.03, 10.86) for severe speech. It suggests that the

tongues of speakers with moderate and severe dysarthria are less flexible to move around.
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The lip sensors of the mild speaker have smaller movement ranges than the severe speaker,

where the movement area (mm2) for sensor 6 and sensor 7 is (2.13, 11.55) for speaker

F04 and (15.96, 27.88) for speaker M04). This indicates that the typical speaker does

not need to move (open or close) his or her mouth that much to make a pronunciation.

In contrast, the speakers with dysarthria have struggled to open and close their mouths

during speaking in an uncontrolled shape.

a) MC02 (Typical)

d) M04 (Severe)c) F03 (Moderate)

b) F04 (Mild)

Figure 7.3: 2-D articulator movement trajectory for the utterance “The pair of shoes was
new” for speakers with different dysarthria severity levels.

7.2.3 3-D Point Cloud Plots

The 3-D point cloud of the UL and LL articulators for speaker F03 with moderate

dysarthria and the typical speaker MC03 are plotted in Figure 7.4. It is seen that the

typical speaker has a clearer lip articulator movement trajectory in the 3-D space. The lip

articulators’ movement ranges of the typical speech are lower than the dysarthric speech

along the left-right (UL: 15.1mm Typ 34.2mm Dys, LL: 6.50mm Typ 19.33mm Dys) and



105 7.2. TORGO Articulatory Data Visualisation

up-down (UL: 0.28mm Typ 0.71mm Dys, LL: 0.61mm Typ 0.93mm Dys) directions. The

difference between the two groups along the front-back direction is small. The observation

is consistent with the findings of the 2-D articulator movement trajectory in Section 7.2.2.

a) MC02 LL (Typical)

d) F03 UL (Moderate)c) F03 LL (Moderate)

b) MC02 UL (Typical)

Figure 7.4: 3-D point cloud of the UL and LL for the utterance “The pair of shoes was
new” for speakers MC02 (typical) and F03 (moderate dysarthria).

This section is an intuition of the articulatory difference between the dysarthric and

typical speech by visualising the EMA data. However, the 2-D articulator movement

trajectory and 3-D point cloud plots of several samples are not representative of the motion

patterns of all dysarthric and typical utterances. To this end, a thorough quantitative

analysis on articulator motion patterns will be presented in Section 7.3 based on the

Cartesian coordinates position such as the MAMR [Duan et al., 2020].
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7.3 Statistical Articulatory Space Distribution

In this section, quantitative analysis on the statistical articulatory space distribution of

the lip and tongue regions is carried out using a part of the TORGO dataset. The analysis

is made over the dysarthric and typical speech. The MAMR is used as an indicator of

the articulatory space distribution, which measures the difference between the maximum

and the minimum articulator position values within a single utterance.

7.3.1 Data Selection and Preparation

In order to make better comparison, the utterances where the prompts are overlapping

between speakers are used. Speaker M04 and M05 are left out due to dropped sensors

being observed. Therefore, the recordings from four speakers with dysarthria (M01, F03,

F04 and M03) and four typical speakers (MC01, MC02, FC02 and FC03) are eventually

used for the analysis. Speaker MC02 is selected as the base speaker to determine the

utterances used to compare with other speakers, since he has the largest number of utter-

ances with the prompts overlapping with other speakers. Table 7.3 presents the number

of utterances where the prompts are overlapping between speaker MC02 and other speak-

ers. For instance, 80 means that speaker M01 and MC02 have 80 utterances where the

prompts are overlapping.

Table 7.3: The number of utterances where the prompts are overlapping between speaker
MC02 and other speakers.

Speaker M01 F03 F04 M03 FC02 FC03 MC01

MC02 80 274 209 339 756 579 555

7.3.2 Maximum Articulator Motion Range

Figure 7.5a and Figure 7.5b compares the MAMR mean (µ) and standard deviation (σ) of

different articulators (TT, TM, TB, UL and LL1) along three directions: X (front-back),

1There are initially 12 sensor coils attached (shown in Table 7.2), and five of them are chosen to be
used (UL, LL, TT, TM, TB) as articulatory features while others are used as reference sensors.
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Y (left-right) and Z (up-down). The values are averaged for the typical speech (speaker

MC02) and the dysarthric speech (speaker M01, F03, F04 and M03).

(a) MAMR mean (µ). (b) MAMR standard deviation (σ).

Figure 7.5: Statistics of MAMR between dysarthric and typical speech.

Table 7.4 presents the MAMR µ and σ of the two groups. In general, the σ of the

typical speech is lower than the dysarthric speech (except for the UL articulator along

the Z direction). It indicates that the dysarthric speech exhibits more fluctuation than

the typical speech. TB has much higher σ along the X direction (σ = 30.52) for the

dysarthric speech than the typical speech (σ = 5.62), suggesting that the speakers with

dysarthria have less control over the muscle of the root of the tongue when producing

speech. Looking at µ, all sensors exhibit higher MAMR for the dysarthric speech than the

typical speech along the Z direction. It suggests that people with dysarthria tend to move

their articulators up and down in a broader range than the typical speakers. However,

along the X and Y directions, the dysarthric speech does not always have higher MAMR

than the typical speech.

Large speaker variability exists for dysarthric speech. Given that speakers M01, F03,

F04 and M03 have different severity levels, the MAMR distribution statistics are analysed

for speakers with dysarthria individually in Table 7.5. The values in Table 7.6 examine

whether the large MAMR distribution statistical difference exists among different typical

speakers (MC01, MC02 and FC02). The difference between the µs of all five articula-
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tors among different typical speakers varies from 0.68 mm to 2.47 mm, from 0.74 mm to

8.41 mm and from 0.83 mm to 3.08 mm along the X, Y and Z direction, respectively. In

contrast, the difference between the µs is much bigger among different dysarthric speakers.

The µ difference between the moderate and mild speakers is much smaller than the µ

difference between the severe and moderate, the severe and mild speakers. It indicates that

the articulatory movement patterns are different at various severity levels. The moderate

and mild speakers are more similar and are in turn more similar to the typical speakers,

while speakers with severe dysarthria have much higher MAMR µ and σ values. This

indicates that the speakers with severe dysarthria have less control over their articulators

and exhibit much more variability in their speech.

Note that there is an exception along the Y direction for UL and LL articulators

in Table 7.5. Although the σs of the severe speaker are higher than the moderate and

mild speakers, the µs of the severe speaker (5.97 mm and 9.89 mm) are lower than the

moderate (27.76 mm and 20.48 mm) and mild (26.95 mm 23.36 mm) speakers. This might

be because that the severe speaker moves her mouth with poorer flexibility when moving

her mouth along the left-right direction. It is also seen that the motion ranges of all

five articulators are narrower in the Z direction compared with the other two directions.

Take TT as an example, the µs are 1.18 mm (13.10 mm and 6.42 mm along the X and Y

directions) and 0.66 mm (10.72 mm and 10.05 mm along the X and Y directions) across

speakers. Besides, the σs display less fluctuation along the Z direction, for both speakers

with dysarthria and typical speakers.



109 7.3. Statistical Articulatory Space Distribution

Table 7.4: The MAMR statistics (µ and σ) for different articulators averaged for
dysarthric and typical speech.

Dysarthric speech Typical speech
Articulator Direction µ /mm σ µ /mm σ

X 13.1 16.18 10.72 7.58
TT Y 6.42 10.04 10.05 9.8

Z 1.18 1.94 0.66 1.0

X 6.06 11.45 5.68 4.47
TM Y - - - -

Z 1.71 3.67 0.68 2.62

X 17.8 30.52 11.93 5.62
TB Y 15.26 13.21 13.42 5.73

Z 2.38 4.15 2.0 0.57

X 6.27 11.46 7.43 5.5
UL Y 21.07 26.26 18.68 8.68

Z 0.83 2.62 0.54 2.88

X - - - -
LL Y 19.26 10.61 26.55 10.31

Z 0.74 1.51 0.36 0.39

Table 7.5: The MAMR statistics (µ and σ) for different articulators of different speakers
with dysarthria.

M01 (Severe) F03 (Moderate) F04 (Mild)

Articulator Direction µ /mm σ µ /mm σ µ /mm σ

X 21.74 30.11 10.4 5.21 9.85 7.44

TT Y 11.76 11.12 5.72 4.75 5.73 6.71

Z 3.26 1.42 1.11 1.37 0.81 0.93

X 23.35 23.03 3.25 2.64 4.53 4.59

TM Y - - - - - -

Z 4.64 6.17 1.79 2.67 0.91 1.47

X 48.23 74.17 9.78 6.2 15.05 6.66

TB Y 23.08 29.87 14.19 13.52 12.03 6.8

Z 3.35 1.51 2.83 1.47 2.42 1.41

X 5.72 10.03 4.14 3.28 5.5 17.24

UL Y 5.97 7.72 27.76 44.01 26.95 11.34

Z 2.0 5.21 0.83 1.69 0.60 0.72

X - - - - - -

LL Y 9.89 19.73 20.48 10.62 23.36 9.94

Z 1.58 2.01 0.59 1.15 0.61 0.47
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Table 7.6: The MAMR statistics (µ and σ) for different articulators of typical speakers.

MC01 MC02 FC02

Articulator Direction µ /mm σ µ /mm σ µ /mm σ

X 12.67 6.31 12.23 11.55 12.91 10.88

TT Y 6.76 5.63 7.34 8.87 5.67 3.82

Z 11.40 9.47 10.93 1.19 9.79 3.58

X 4.76 5.60 6.50 7.08 6.66 11.27

TM Y - - - - - -

Z 3.48 2.59 3.79 1.08 6.15 2.17

X 11.89 9.48 11.66 6.97 14.13 5.85

TB Y 16.91 6.68 13.20 5.71 15.61 14.9

Z 5.68 7.55 1.94 1.60 5.02 2.49

X 7.94 8.55 8.06 6.72 6.95 13.04

UL Y 27.65 11.96 19.24 9.15 25.32 16.57

Z 0.07 0.03 0.51 0.57 1.31 1.41

X - - - - - -

LL Y 23.52 8.88 23.55 9.53 22.78 12.13

Z 0.13 0.05 0.42 0.45 0.96 0.96

7.4 Summary

This chapter illustrated the articulatory mismatch between dysarthric and typical speech

by visualising and systematically analysing the real articulatory data in the TORGO

dataset. Specifically, the 2-D and 3-D point cloud visualisation of several articulatory

data samples provided intuitive observation of the mismatch. Then the statistical space

distribution regarding MAMR was compared between dysarthric and typical speech,

demonstrating the key differences of the production of the dysarthric speech regarding

the articulatory side. This exploration provided evidence that instead of using estimated

articulation parameters from acoustic signals using knowledge about typical speech, the
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real articulatory data can only conform to actual dysarthric speech properties with less

uncertainty. In the next chapter, the recorded articulatory data will be applied to build

robust acoustic-articulatory speech systems for dysarthric speech.
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8.1 Introduction

In Chapter 7 the statistical distribution of the articulatory movement has been analysed.

It demonstrates the articulatory restrictions that speakers with dysarthria have, as well

as the motion mismatch between the dysarthric and typical speech in the articulatory

space. This indicates that the articulatory information can reflect the essence of the

dysarthria and can capture the variability of dysarthric speech. In addition, the acoustic

and articulatory mismatch between dysarthric and typical speech leads to the mismatch

between the acoustic-articulatory mappings for typical and dysarthric speech. Using

the synthetic dysarthric articulatory information obtained via acoustic-to-articulatory

mappings learnt for typical speech can be accompanied by a significant error. In contrast,

the real articulatory information is a more reliable speech representative that can better

reflect the actual dysarthric speech properties for automatic dysarthric speech recognition

(ADSR).

Multimodal speech recognition has received increased attention in recent years. This

is because deep learning provides effective frameworks for fusing different data modalities.

Previous studies have demonstrated the benefit of incorporating articulatory features by

building acoustic-articulatory automatic speech recognition (ASR) systems for typical

speech [Badino et al., 2016; Mitra et al., 2017]. As mentioned in the previous chapter,

compared with acoustic representations, the articulatory information is more noise-robust

[Wrench and Richmond, 2000], less speaker-variant [Fujimura, 1986] and more suitable

to model the coarticulation variability [Frankel and King, 2001; Kirchhoff et al., 2002].

It is expected that the additional articulatory information integrated with conventional

acoustic features can be more representative to help improve the performance of dysarthric

speech recognition. However, most of the research on dysarthric speech recognition has

focused on using the acoustic feature representations. Incorporating real articulatory data

with acoustic features has not been widely explored in the dysarthric speech community.

Limited research on multimodal ADSR has been carried out due to the lack of parallel

multimodal data in the dysarthric domain. Synthetic articulatory data have been jointly

used with the acoustic features in Xiong et al. [2018]; Yılmaz et al. [2018], and made
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recognition improvement for ADSR. However, the synthetic dysarthric articulatory data

was modelled from the acoustic-articulatory mappings learned for typical speech, which is

accompanied by a significant error owing to the dysarthric and typical speech mismatch.

The real dysarthric articulatory data needs to be exploited to minimise such error.

TORGO is a widely used dysarthric speech dataset [Rudzicz et al., 2012b], consisting of

aligned acoustic and articulatory data for both dysarthric and typical speech. There have

been several TORGO-based studies incorporating its articulatory data [Rudzicz, 2009,

2010b,c; Rudzicz et al., 2012a], and some have demonstrated improved recognition per-

formance after incorporating articulatory information with acoustic features on speaker-

dependent (SD) models [Rudzicz, 2009]. It is noticed that most of these TORGO-based

studies employed the Gaussian mixture model (GMM)-hidden Markov model (HMM)

or simple deep neural network (DNN) acoustic models. Whether the articulatory infor-

mation is still beneficial when combined with state-of-the-art acoustic models proposed

recently needs to be verified.

In addition, the better fusion scheme for fusing articulatory and acoustic features is

not clear. The concatenation of the acoustic and articulatory features in the input level,

although simple, is in fact suboptimal [Loweimi et al., 2020]. This is because the acoustic

and articulatory representations encode different information in various formats and with

different importance to the task. Consequently, the optimal set of filters to process each

stream will differ. Pre-processing each stream individually, and then fusing the processed

streams at a higher level is necessary. Direct feature concatenation at the input level does

not allow such per stream pre-processing separately.

This chapter demonstrates the effectiveness of multimodal acoustic modelling for

dysarthric speech recognition using conventional acoustic features along with articulatory

information. It extends the previous acoustic-articulatory ADSR studies with more recent

acoustic modelling architectures. It also discusses how to better apply the articulatory

information and what is a better information fusion scheme in an acoustic-articulatory

speech recognition system. Section 8.2 presents data processing for electromagnetic mid-

sagittal articulography (EMA) data in TORGO. Various multimodal acoustic-articulatory

ADSR system are explored in Section 8.3. Section 8.4 concludes this chapter.
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8.2 Data Processing

The raw EMA data in TORGO is stored as a 1-D array in binary files. The length of the

array is (N samples * N variables * N sensors), where N samples refers to the number of

samples, and the number of sensors (N sensors) is 12. The number of variables recorded

for each sample channel is 7, including 3 Cartesian sensor positions in (x, y, z) directions,

3 spatial orientation angles and an extra 0. In order to make better use of the EMA data,

it needs to be processed properly. First, the data is reshaped to a 3-D array (N samples,

7, 12). Like most previous studies, the sensor positions in the (x, y, z) directions are used

to measure the articulatory movements in this work. The 3-D array is then reshaped

to three 12-D vectors: data x, data y and data z. Figure 8.1 depicts the 12th channel of

data x of a sample as an example.

Figure 8.1: An example of a clean channel of an EMA data sample.

Before being employed as a feature, the raw EMA data needs to be appropriately

processed. It is pre-processed by three steps: low-pass filtering, downsampling and channel

selection, as depicted in Figure 8.2.
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Figure 8.2: EMA data pre-processing.

A Butterworth low-pass filter is first applied to reduce the high-frequency measure-

ment noise existing in most of the EMA data channels. The high cutoff frequency of

the filter is set to 10 Hz, and the order is 5. The acoustic (e.g., Mel-frequency cep-

strum (MFCC)) and the articulatory data have different frame rates, namely 100 Hz and

200 Hz, respectively. Therefore, the EMA data needs to be downsampled to align with

the acoustic features (100 Hz). Figure 8.3 compares the two downsampling approaches:

the anti-aliasing filtering and the Fourier resampling. It is seen that the downsampled

data using the Fourier resampling fits better to the raw EMA data. A Python script

was created to read and pre-process the raw EMA data in TORGO, which is available at

https://github.com/zhengjunyue/art tg. The EMA data consists of 12 channels, and

each channel corresponds to a sensor which attached to an articulator. Since different ar-

ticulators work differently, it might be the case that not all EMA channels can benefit the



Multimodal Acoustic-articulatory Speech Recognition Systems 118

recognition task for dysarthric speech. To avoid redundant information, the task-beneficial

EMA channels which can complement the acoustic features towards achieving the highest

recognition result are selected as the articulatory features. This process is called channel

selection, which is done along with the acoustic-articulatory speech recognition task by

comparing the performance for each system in terms of word error rate (WER).

Figure 8.3: EMA data downsampling.

8.3 Acoustic-articulatory Dysarthric Speech Recog-

nition Systems

In this section, various acoustic-articulatory ADSR systems are explored by comparing

various articulatory feature settings, training configurations and feature fusion level. The

impact of transfer learning on the multimodal framework is also investigated.

8.3.1 Experimental Setup

Figure 8.6 depicts the structure of the proposed multimodal acoustic-articulatory speech

recogniser, where each stream is first pre-processed by Network-1 and Network-2, and then

the fused streams are post-processed by Network-3 before reaching the output layer. The

39-D MFCCs and 3-D EMA features are used as inputs, with splicing of ±5 contextual

frames. The training data is augmented using speed perturbation (using factors 0.9, 1.0

and 1.1). Including the feature scheme, the proposed acoustic models are cascades of

convolutional neural network (CNN), fully-connected multi-layer perceptron (MLP) and
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light gated recurrent unit (LiGRU) [Ravanelli et al., 2018]. The CNNs are a cascade of

three 1-D convolutional layers as used in Loweimi et al. [2020]. The subsequent structure,

including the LiGRU and MLP layers, is the same as proposed in Chapter 6. The 5-

fold cross-training TORGO setup used in Chapter 6 is applied. The independent 200k

vocabulary size Librispeech trigram language model proposed in Chapter 5 is employed

for decoding.

8.3.2 Exploration of Appropriate Measures for Articulatory

Features

There are different ways to employ the EMA data. Three measures of the processed EMA

data are considered as articulatory features:

1. The Cartesian coordinates (x,y,z) positions.

2. The Euclidean distance between the articulatory sensors and the origin (0,0,0), so-

called origin Euclidean distance.

3. The pair-wise Euclidean distance between sensors.

Figure 8.4 illustrates the three articulatory measures in the 3-D space.
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Figure 8.4: Three measures of EMA data. E dis: Euclidean distance.

The Cartesian coordinates (either (x,y) or (x,y,z)) of the articulators are the most com-

monly used articulatory features in previous ADSR studies [Rudzicz, 2009; Rudzicz et al.,
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2012a]. Instead of measuring where the articulators are, the Euclidean distance measures

the distance between the articulators. The Euclidean distance between the articulator

and the origin (0,0,0) and the pair-wise Euclidean distance between two articulators (e.g.,

in the lip region1) are exploited as the articulatory features.

Figure 8.5 plots the maximum articulator motion range (MAMR) distribution maps

of the three measures of the lip sensors along the front-back direction for the dysarthric

and typical speech separately.The MAMR in the top and bottom figures obeys the log-

normal distribution, and the middle figure follows the bimodal distribution as it has

two peaks. The local maximums for the typical speech are 26 and 64, while the local

maximums for the dysarthric group are 50 and 120. Comparing the envelopes of the

MAMR distribution, the pair-wise Euclidean distance appears to distinguish between the

dysarthric and typical speech the best. Although the MAMR of the origin Euclidean

distance is the most dispersed among the three measures, the overall envelope is more

overlapped than the pair-wise Euclidean distance. It is also observed from the origin

Euclidean distance figure that the MAMR distribution converges more slowly for the

dysarthric speech than the typical speech, and there tend to be more utterances with

high MAMR (e.g., higher than 100 ms). This is owing to more abnormal MAMR in the

dysarthric speech.

Table 8.1 compares the MAMR mean (µ) and standard deviation (σ) of the three

articulatory measures of the lip sensors for dysarthric and typical speech. The standard

deviation of the dysarthric speech is higher than the typical speech among the three mea-

sures. With higher standard deviation, speakers with dysarthria exhibit more fluctuation

than typical speakers. The MAMR mean for the dysarthric speech is bigger than the

typical speech of the first two measures (i.e., the Cartesian coordinates and the origin

Euclidean distance). In contrary, the MAMR mean for the dysarthric speech is smaller

than the typical speech of the third measure (i.e., the pair-wise Euclidean distance). The

MAMRs of Cartesian coordinates and the origin Euclidean distance measure the absolute

displacement of the articulators while the pair-wise Euclidean distance measures the rela-

tive displacement. This indicates that the speakers with dysarthria tend to move or shake

1The Euclidean distance between the UL (UL x,UL y,UL z) and LL (LL x,LL y,LL z).
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Figure 8.5: MAMR distribution map of three articulatory measures of the lip sensors for
dysarthric and typical speech.
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their bodies or heads while speaking. They work harder to move their articulators (i.e.,

resulting in smaller MAMR means). This demonstrates the pair-wise Euclidean distance’s

ability to remove the body/head movement influence. The articulatory features therefore

are implicitly normalised.

Table 8.1: The MAMR statistics (µ and σ) of the three articulatory measures of the lip
sensors for dysarthric and typical speech.

Dysarthric speech Typical speech

Articulator µ /mm σ µ /mm σ

Lip 21 26.26 19 8.68

Lip ud origin 74 35.74 64 23.20

Lip ud 26 20.04 34 13.67

Table 8.2 compares the WER of systems trained on different input features using

different articulatory measures. The training data is the combination of the dysarthric

and typical speech. The results are averaged for the dysarthric and typical speech. The

1st row displays the baseline results using only MFCC acoustic features. The results

of the systems concatenating the lip and tongue Cartesian coordinates with the MFCC

are reported in the 2nd and the 3rd rows. It is observed that both MFCC+Tongue and

MFCC+Lip systems outperform the baseline MFCC system reducing WER by 0.12% and

1.07% absolute on average for the dysarthric speech. 0.41% and 0.43% performance gains

are also achieved for the typical speech by integrating the lip and tongue information.

The lip information adds more benefit to the ADSR model than the tongue information.

As a result, the lip information will be employed in the following experiments.

Although the overall improvement is obtained by employing the Cartesian coordi-

nates of the lip articulators, it is found that it does not provide consistent improvement

across all speakers. The 4th and 5th rows in Table 8.2 present the results of using the

Euclidean distance-based articulatory features. It shows that the MFCC+Lip ud system

outperforms any other articulatory measures, reducing WER by 1.91% and 0.53% for

the dysarthric and typical speech, respectively, compared with the baseline MFCC sys-
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tem. The most task-beneficial articulatory measure appears to be the pair-wise Euclidean

distance system using the lip information1 (Lip ud), which will be used in the following

experiments.

Table 8.2: WER for systems trained on different input features and different articulatory
measures.

Input Features Dysarthric Typical

MFCC 47.80 16.38

MFCC+Tongue 47.66 15.97

MFCC+Lip 46.73 15.95

MFCC+Lip ud origin 46.33 16.01

MFCC+Lip ud 45.89 15.85

8.3.3 Exploring the Effect of Different Training Sets

There have been comparative studies on the speaker-independent (SI), SD and speaker

adaptation ADSR systems previously [Christensen et al., 2013, 2012b; Raghavendra et al.,

2001] using acoustic information. In this section, whether SI and SD is better, and

whether using out-of-domain (OOD) typical speech helps the recognition performance for

the acoustic-articulatory ADSR are investigated. The following systems listed in Table 8.3

are explored.

Table 8.3: Systems trained on different training sets.

SD Trained on the data of the target speaker

SI Trained on the data of all other speakers

Train Dys Trained on the dysarthric speech only

Train Typ Trained on the typical speech only

Train Both Trained on both the dysarthric and typical speech

1The Euclidean distance between the UL (UL x,UL y,UL z) and LL (LL x,LL y,LL z).
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Table 8.4: WER for systems trained on different training sets.

System Dysarthric Typical

Train Both (SI) 45.89 15.85
Train Dys (SI) 50.79 17.60
Train Typ (SI) 86.61 15.58

SD 79.85 16.62

The results of systems listed in Table 8.3 are reported in Table 8.4. The 1st to the

3rd rows are the results for the SI systems trained on both dysarthric and typical speech

(Train Both), the dysarthric speech (Train Dys) and the typical speech (Train Typ). The

last row presents the results of the SD system. It is observed that the Train Both system

achieves the best performance for both dysarthric and typical speech, followed by the

Train Dys, SD and the Train Typ system. Comparing the results of the three SI systems,

both Train Dys and Train Typ systems benefit from adding training data from the other

domain when recognising the dysarthric speech. This indicates that adding typical speech

data during training can help in recognising dysarthric speech. The best result for the

typical speech is obtained by the Train Typ system. The limited amount of training

data is not compensated for by adding the dysarthric speech data. The variability and

uncertainty of the trained model have been increased instead. This suggests that the

additional dysarthric speech data confuses the system recognising the typical speech. This

also indicates the significant mismatch between the dysarthric and the typical speech. It is

notable that the performance of the SD system is much worse than the Train Dys system

for dysarthric speech. This is different from what was found in Rudzicz [2009]; Salama

et al. [2014]. The reason might be that the amount of training data is too small to train

recent robust acoustic models. With the best performance, the Train Both system using

the MFCC+Lip ud features as input will be applied in the following experiments.

8.3.4 Acoustic and Articulatory Feature Fusion

The early (feature-based) integration and late (model-based) integration are two widely

used methods to fuse different data modalities. The former concatenates two different
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features in a single feature vector frame-by-frame before feeding them into the acoustic

model. The latter implements the integration at a later stage of the speech recognition

process, i.e., by combining the results of the classifiers for different feature modalities as

the final phoneme classification result. Based on previous knowledge, the model trained on

the articulatory data alone cannot capture acoustic information and therefore performs

poorly in recognition. The late integration is not suitable in the acoustic-articulatory

ADSR task. The following experiments apply the feature-based integration approach as

illustrated in the yellow box in Figure 8.6.

Acoustic features

Speech Recogniser

Network-3

Network-1

Output Layer

Fusion

Network-2

Articulatory features

Figure 8.6: Proposed speech recogniser.

The simplest way of integrating the articulatory features is concatenating them with

acoustic features in a single vector on a frame-by-frame basis and at the network’s input

level. However, a direct concatenation of these features might be suboptimal. This is

owing to the fact that these two information streams carry different types of information,

encoded in different forms with different importance to the given task. This necessitates
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applying a bespoke per-stream pre-processing before fusion at an optimal level of abstrac-

tion. The Network-1 and Network-2 components in the green box in Figure 8.6 perform

multi-stream per-processing while Network-3 carries out post-processing after fusion and

before the output layer. In Loweimi et al. [2020], multi-stream acoustic modelling and

fusion at low, medium and high levels were studied. Inspired by such a framework, the

optimal fusion level is explored by concatenating individually processed streams at three

stages in this section. The following fusion levels are studied: at the input level (concat-

1), at the medium level after the last convolutional layer (concat-2), and at the high

level after the last recurrent layer and before the output layer (concat-3). concat-0

represents the direct concatenation and does not include convolutional layers, where the

baseline acoustic model consists of recurrent (LiGRU) and fully-connected MLP layers.

Figure 8.7 illustrates various concatenation levels and fusion schemes.

Figure 8.7: The proposed architectures fusing the acoustic and articulatory features at
different levels.

The results of different feature fusion systems are reported in Table 8.5. The 1st and 2nd

rows display the results of the MFCC and MFCC+Lip ud systems (also referred to concat-

0 ). It is seen that the direct feature fusion at the input level outperforms the baseline

MFCC system. On average, it reduces WER by 1.91% and 0.53% (absolute) for dysarthric

and typical speech, respectively. The 3rd to 5th rows in Table 8.5 show the results of

introducing the multi-stream CNN feature fusion schemes. Comparing the concat-1 and

concat-2 with concat-0 (i.e., (MFCC+Lip ud)) shows 0.49% and 2.68% absolute WER

reductions for dysarthric speech, respectively. The concat-2 system appears to be the
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best fusion scheme while concat-3 leads to the poorest performance.

Table 8.5: WER for different feature fusion systems averaged for dysarthric and typical
speech.

System Dysarthric Typical

MFCC 47.80 16.38

concat-0 45.89 15.85

concat-1 45.40 15.02

concat-2 43.21 12.88

concat-3 60.42 35.15

The number of trainable parameters (#params) is counted for each model in Table 8.6.

As seen, fusion at higher levels greatly increases #params. For example, #params of the

concat-3 system is 1.5 times of the concat-1 and concat-2 systems. This makes the model

more liable to overfitting, especially in low-resource data scenarios. Furthermore, concate-

nating the streams close to the output layer could give rise to insufficient post-processing

(after fusion). Our experimental results for dysarthric speech verify the conclusion in

Loweimi et al. [2020] regarding the optimal fusion level: it should be high enough to ef-

fectively pre-process each information stream for the given task and low enough to leave

sufficient capacity after fusion for post-processing the fused streams.

Table 8.6: Number of parameters (in millions) for different fusion schemes.

MFCC concat-0 concat-1 concat-2 concat-3

#params 11.1 11.3 15.1 15.0 24.9

Figure 8.8 compares the evolution of the cross-entropy (CE) loss of various proposed

fusion schemes during training. It illustrates that the concat-3 system converges faster

than other models. The concat-2 system tends to have the lowest training and validation

loss which is due to the fact that it provides the best trade-off in terms of pre- and
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post-processing.
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Figure 8.8: CE loss for different fusion schemes.

The performance evolution of the concat-2 system across different epochs was then

explored. The results for speakers with dysarthria and typical speakers are plotted in

Figure 8.9. As seen, the WER improvement for speakers with severe dysarthria is notably

limited and does not continuously improve during training, contrary to the typical or mild

conditions. Moreover, the performance reaches a plateau after 10 epochs for dysarthric

speech while for the typical speech, the performance keeps significantly improving up to

15 epochs.

8.3.5 Exploring the Effect of Transfer Learning

To utilise the existing data more efficiently, the transfer learning strategy is applied to

adapt the learnt model to each target speaker. In particular, the acoustic model is pre-

trained on both dysarthric and typical data. Then some layers are re-trained on the test

speaker’s training data. After several explorations, it was found that freezing the learnt

parameters in the first six layers, then re-training the last fully connected layer together

with the classifiers is the best configuration for the transfer learning system. Typically,

the first several layers in the neural networks learn to capture the global information of
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Figure 8.9: WER at different epochs in the concat-2 system for speakers with dysarthria
(left) and typical speakers (right).

the representations, and the last few layers are more likely to learn the fine features.

Table 8.7 reports WERs along with the relative gain obtained by applying transfer

learning for each system. The transfer learning strategy successfully reduces WER for

all three systems (MFCC, MFCC+Lip ud and concat-2 ). Applying transfer learning,

the concat-2 system achieves the best performance with 3.62% and 8.39% relative gains

for the dysarthric and typical speech. It is also observed that both MFCC+Lip ud and

concat-2 systems obtain more relative performance gains than the MFCC system when

applying the transfer learning strategy. This indicates that the additional articulatory

information helps learn better information from the target speaker during the transfer

process. That is, the transfer learning strategy is of greater benefit for the fused acoustic

and articulatory features than for the acoustic-only features.

8.3.6 Results for the Separate Sentence and Word Tasks

In order to investigate how the systems perform on the continuous speech, the results

for the separated word and sentence task are reported in Table 8.8. It shows that the

additional lip articulatory features effectively improve the recognition performance on the

sentence task for both dysarthric and typical speech. The improvement made by the lip
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Table 8.7: WER for systems applying transfer learning (TF).

System Dysarthric Typical

MFCC 47.80 16.38
MFCC TF 46.91 (1.86%) 15.55 (5.07%)

MFCC+Lip ud 45.89 15.85
MFCC+Lip ud TF 43.77 (4.62%) 14.26 (10.03%)

concat-2 43.21 12.88
concat-2 TF 41.70 (3.62%) 11.08 (8.39%)

information on the sentence subset is greater than that made on the full (sentence+word)

testset for the dysarthric speech. In contrast, the lip articulatory features benefit more

on the word task for the typical speech. The above results suggest that the additional

lip articulatory information is effective on the sentence recognition task for dysarthric

speech. It helps severely dysarthric continuous speech particularly.

Table 8.8: WER for systems applying transfer learning (TF) for different utterance types.

System Dysarthric Typical
Subsets Sentence Word Sentence Word

MFCC 53.63 41.23 18.10 10.07

MFCC+Lip ud 50.11 39.88 17.85 9.35

Figure 8.10 compares the WER reduction employing the transfer learning strategy on

the MFCC and MFCC+Lip ud systems for the word, the sentence and the word+sentence

tasks across speakers with dysarthria. It is found that, in general, the transfer learning

strategy is more beneficial when incorporating articulatory information for the continuous,

severely dysarthric speech.
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Figure 8.10: The WER reduction employing transfer learning (TF) on the MFCC and
the (MFCC+Lip ud) systems.

8.4 Conclusion

This chapter demonstrated the effectiveness of incorporating the real articulatory infor-

mation along with acoustic features constructing multimodal acoustic-articulatory speech

recognition systems with recent advanced acoustic models on the TORGO dataset. The

pair-wise Euclidean distance of the articulators in the lip region was shown to be the most

appropriate articulatory feature for the ADSR task. The proposed multi-stream acoustic

models consist of convolutional, recurrent and fully-connected layers allowing the multi-
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modal features to be fused via various schemes and at different levels of abstraction. The

best performance was achieved by fusing the acoustic and articulatory information at the

medium level trained on both dysarthric and typical data, which reduced the absolute

WER by 4.6% compared with the MFCC baseline. Further improvement was achieved

by exploiting the transfer learning strategy resulted in a 1.5% (absolute) WER reduction.

It is also notable that transfer learning is more effective on fused acoustic and articula-

tory features than on acoustic-only information. The work systematically addressed the

research question RQ4 with several explorations. It built a benchmark for multimodal

acoustic-articulatory ADSR system which also achieves performance gain on continuous

speech. The next chapter will summarise the work in this thesis and present future work

that is promising to be explored.
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9.1 Conclusions

After introducing the topic of this thesis in Chapter 1, the thesis began by providing a

background overview of dysarthria and dysarthric speech in Chapter 2. Dysarthria is a

common speech disorder stemming from disruption in the neuro-motor interface [Gowers,

2001]. People with dysarthria often produce atypical speech due to the poorer motor

control of their speech articulators. As a result, the intelligibility of dysarthric speech

to listeners and the ability of machines to recognise dysarthric speech is affected. This

then causes increasing social exclusion for people with dysarthria. In addition, people

with dysarthria often have physical disabilities, meaning that simple tasks in daily life,

such as turning on the light, can be affected. This demonstrates a significant need for

automation and voice-enabled interfaces to help this group of people communicate better

and live independently. However, the atypical speech makes it hard to interact with the

devices using their voice.

There is, therefore, an urgent need for a reliable automatic speech recognition (ASR)

system capable of recognising dysarthric speech with high accuracy, especially for speech

assessed at the severe level of dysarthria. However, due to data scarcity, significant

dysarthric and typical speech mismatch and high speaker variability, the automatic

dysarthric speech recognition (ADSR) task is still challenging, and lags far behind the

mainstream ASR systems for typical speech in terms of performance. ASR on continuous

dysarthric speech is under-explored. This thesis was based on deploying state-of-the-art

technologies in speech and deep learning to build benchmark systems for automatic

continuous dysarthric speech recognition (ACDSR).

To improve ACDSR systems, this thesis attempted to explore and find the answers

to the fundamental research questions put forward in Section 1.2. Each of the research

questions will be restated now along with a summary of how this thesis addressed it.

(RQ1): What is an appropriate evaluation framework for continuous

dysarthric speech recognition, given current data limitations?

The pilot study in Chapter 5 showed that most of the existing dysarthric datasets

(including TORGO) contain many overlapped prompts across speakers. By evaluating
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the word and sentence recognition tasks separately, the examination of the existing

TORGO-based ADSR literature highlights the problems with how these systems are

evaluated. The training and test sets for the in-domain TORGO language model

is non-disjoint, leading to overly optimistic results for recognising sentences. Two

task-specific TORGO language models were introduced to further support the fact. To

choose appropriate language models in this low-resource task, language models trained

on varying vocabulary-sized subsets of the external LibriSpeech dataset were proposed.

The results demonstrated that the out-of-domain (OOD) language models provided

lower but fairer performance. They helped the model better generalise to truly unseen

utterances and allowed for a much larger decoding space. In addition, it was found that

the vocabulary size of the OOD language models affected the WERs. In general, the

lowest WERs are achieved with the largest vocabulary size. A reproducible benchmark

for the current state-of-the-art ACDSR system with a fairly designed OOD language

model was established. It is the first study to systematically explore and improve the

evaluation methods on continuous dysarthric speech. The OOD language model was

demonstrated to provide a more appropriate evaluation framework than the in-domain

language models.

(RQ2): What is a good way to leverage typical speech, which is out-of-

domain, to learn more robust representations for dysarthric speech?

Typical speech can be leveraged for dysarthric speech recognition in various ways. In-

spired by Christensen et al. [2013]; Takashima et al. [2015]; Yılmaz et al. [2019]’s studies,

an improved ACDSR system with a pretrained autoencoder bottleneck (AE-BN) feature

extractor and applying multi-task optimisation techniques was established in Chapter 6.

The results demonstrated the effectiveness of employing AE-BN features extracted from

a feature extractor pretrained on OOD LibriSpeech data for the ACDSR task by reducing

WERs by 2.63% absolute on average. Joint optimisation of the AE-BN feature extractor

and the speech recogniser resulted in better AE-BN features achieving 0.65% absolute

recognition improvements. The acoustic model was strengthened by applying monophone

regularisation as an auxiliary task achieving 2.33% absolute WER reduction. However,

the joint optimisation technique provided no consistent additional benefit when applied
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together with monophone regularisation. The robust representations for dysarthric speech

can be learnt by fine-tuning a pretrained OOD AE-BN feature extractor with joint opti-

misation.

(RQ3): How can articulatory information characterise continuous

dysarthric speech, and what are the advantages of incorporating articulatory

information?

Instead of using synthetic speech data, Chapter 7 focused on analysing the real articula-

tory data recorded in TORGO. Visualising the 2-D articulator movement trajectory and

the 3-D point cloud of several sentence samples provided evidence that the articulators

of speakers with moderate and severe dysarthria were less flexible. The statistical

articulatory space distribution of the articulatory data was quantitatively analysed using

the maximum articulator motion range (MAMR) indicator, which measures articulator

motion patterns. This demonstrated the mismatch between dysarthric and typical speech

in the articulatory space. It also showed that articulatory information was capable of

capturing the speaker variability. The additional articulatory data stream integrated

with conventional acoustic features could be more representative for dysarthric speech.

(RQ4): How can articulatory information be incorporated effectively to

build multimodal ACDSR systems using recent acoustic models?

This research question was explored in Chapter 8. First, exploring the effectiveness of

different components of articulators and various measures of the articulatory data, the

results suggested that employing the information of the lip articulators achieved better

results on dysarthric speech than others. The pair-wise Euclidean distance between the

lip articulators was demonstrated to be the best articulatory measure for the ADSR task.

Then, various training configurations were investigated and combining dysarthric and

typical speech data for training was shown to be the best training configuration for the

acoustic-articulatory system. Multi-stream architectures consist of convolutional, recur-

rent and fully connected layers allowing for per-stream pre-processing were established

to investigate the optimal fusion level of the acoustic and articulatory features. It was

found that the optimal fusion level should be high enough to effectively pre-process each

information stream for the given task and low enough to leave sufficient capacity after
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fusion for post-processing the fused streams. The optimal fusion scheme achieved a no-

table performance gain on dysarthric speech. Finally, the transfer learning strategy was

applied to further improve the recognition performance. The proposed model leads to

significant performance gains for ACDSR.

In conclusion, this thesis made promising progress in improving continuous dysarthric

speech recognition. The frameworks are available at https://github.com/zhengjunyue/CADSR-LM

and the experimental results are fully reproducible.

9.2 Future Work

The previous section described the main contributions towards improving the performance

on continuous dysarthric speech. However, some challenges still need to be addressed to

improve the overall performance of the proposed systems. Future directions for this work

are discussed below.

9.2.1 More Data

The main issue of working with medical datasets is having limited access to useful data.

The lack of data is mainly caused by the limited number of recordings and the ethical

issues of sharing data. However, the deep learning based techniques largely depend on the

quantity and quality of the data. For instance, collecting data from more speakers with

dysarthria would allow for a better understanding of the speaker variability, which might

further allow us to train acoustic models that are more generalised to different speakers.

The performance of the proposed systems might be further improved with more data by

training better language and acoustic models using deep learning techniques. At the time

of writing this thesis, more dysarthric datasets have been collected, which contains richer

recordings (e.g., [Turrisi et al., 2021]). These data can be utilised to train more robust

systems for ACDSR.

Data augmentation is an alternative way to access more data. A speed perturbation

method has been used in this thesis. Other data augmentation approaches could be

employed in future work, such as voice conversion [Harvill et al., 2021; Jin et al., 2021]

and SpecAugment [Park et al., 2019].
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9.2.2 Employing Speech Representations from Other Compo-
nents

In this thesis, the speech representations are based on handcrafted spectral features such

as MFCCs. There are many other types of features that could be explored. Recent ASR

research has achieved improved performance by learning speech information directly from

the waveform. The raw waveform avoids the limitation of the spectral representations

where useful information would have been lost during the feature computation, which

might help learn better speaker and speech information in the dysarthric domain. The

raw waveform has been successfully exploited in the dysarthric detection task [Millet

and Zeghidour, 2019; Zeghidour, 2019]. End-to-end systems enable a learnable front-end

where the speech representations are learnt from raw waveform jointly with the phoneme

classifier [Zeghidour et al., 2018], which will be optimal for the given task. Learning low-

level representation of speech has the potential to push state-of-the-art for ACDSR even

further with more dysarthric speech data.

Another widely applied approach is source-filter modelling [Chiba and Kajiyama,

1958], which is among the fundamental techniques in speech processing. Based on the

properties of the human speech production system, this model characterises the speech

signal as a temporal convolution of some random or quasiperiodic excitation (Exc) sig-

nal (source) passing through a linear filter representing the vocal tract (VT). The filter

component is primarily associated with the linguistic content of the speech signal while

the source component is associated with the speaker attributes. Loweimi et al. [2021]

demonstrated the efficacy of building acoustic models using the raw magnitude spectra

of the source and filter components. Source-filter modelling has the potential to offer a

special advantage in the context of ACDSR. When the model takes two inputs character-

ising the lingual content (vocal tract) and speaker attributes (excitation), among others,

it learns to normalise the speaker-associated properties reflected in the source component

while extracting the lingual content of the speech from the filter component. Such im-

plicit speaker normalisation is highly desirable in recognising dysarthric speech with high

speaker variability.



139 9.2. Future Work

9.2.3 Extension on the Multimodal Acoustic-articulatory
Speech Recognition Framework

Although the effectiveness of incorporating articulatory data with acoustic data have

been demonstrated in Chapter 8, the paired acoustic and articulatory data is required

in both training and testing. However, it is impractical to record articulator movements

in real-life speech recognition scenarios if more paired data is required for training. This

constraint requires ASR systems to utilise articulatory data only for training, i.e., to

recognise without the articulatory data.

Articulatory-to-acoustic inversion [Atal et al., 1978] is one potential approach to solv-

ing this problem, where the articulatory features are generated from the acoustic signal

through a learnt mapping. This, however, is challenging since the mapping between acous-

tic and articulatory data spaces is non-linear and not unique [Richmond, 2002]. More-

over, the limited paired dysarthric acoustic and articulatory data hinder the effectiveness

of learning the mapping. Using OOD typical data to train the articulatory-to-acoustic

inversion mapping system might help with this problem. Still, care needs to be taken

considering the dysarthric and typical speech mismatch in the articulatory aspect. An-

other way is to embed the articulatory data in the model to adjust the parameters and

optionally the structure of the acoustic model. In this case, the articulatory data is not

required during testing and can be deployed during training. Recently, the distillation

training [Yu et al., 2016] approach has been widely used to incorporate knowledge into the

network. The knowledge can be transferred through soft targets from a “teacher” model

trained with additional features to a “student” model with no access to those features.

In this study, the “teacher” model could be trained with both articulatory and acoustic

data, and then the outputs of the “teacher” model are used as additional targets during

training the “student” model with only acoustic data.

9.2.4 Concluding Remarks

This thesis has built novel ASR systems to improve human-human communication and

human-machine interaction for people with dysarthria. We explored techniques and

methodologies in deep learning and speech technology. The evaluation of the ASR sys-
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tems demonstrated promising results which confirms that there is a potentially bright

future for assistive speech-driven devices for people with dysarthria.
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