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Abstract

The establishment of high-throughput massively-parallel DNA sequencing 

technology has broadened the scope of metagenomics. The size and 

complexity of the datasets produced in such studies present considerable 

challenges.

The aim of this project was to investigate the potential for genomic signature 

features to be applied to raw high-throughput sequencing reads generated from 

multi-species samples. Grouping reads according to the genome from which 

they originate could allow for the study of previously unknown or poorly-

understood pathogens, and improve the performance of assembly of genome 

sequences from these reads.

Genomic signatures were compared to find the best feature or combination for 

grouping reads by species of origin. A range of datasets were developed to 

provide an effective basis for such analysis. The performance of a number of 

clustering methods was also compared. The accuracy of grouping that could be 

achieved was evaluated, and the effect of such a grouping on the performance 

of sequence assembly was assessed.

It was found that perfect species-specific grouping of raw sequencing data was 

outside of the scope of the approaches assessed here, but the enrichment of 

groups for reads from particular species was achievable. The single greatest 

obstacle to effective grouping was thought to be the short length of reads 

produced from current sequencing platforms. The individual assembly of 

grouped reads was found to produce results similar to those from assembling  

the dataset as a whole but with a reduction in the time required.

The future of DNA sequencing is bright, with technology advancing at a startling 

pace, providing improvements in read length, dataset size and experimental 

run-time. It is hoped that these advancements will prove beneficial to the 

approaches investigated here, which are likely to remain useful as the size and 

complexity of datasets increases.
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Introduction

Abstract

The size and complexity of high-throughput sequencing datasets, and the short 

length of the reads produced, has presented the biological research community 

with a new set of challenges to overcome. One of the greatest difficulties 

associated with metagenomic sequencing data is the need for effective 

methods to determine the phylogeny of sequenced samples, and to correctly 

assemble longer sequences from the reads, requiring an efficient means to 

distinguish between reads originating from the genomes of the different species 

in the sampled communities. Alignment-based approaches to sequence 

comparison scale poorly with large datasets and rely on the prior availability of 

sequences similar to those under investigation. Alignment-free approaches that 

utilise features of sequence composition to predict similarity between 

sequences are much more suited to large datasets and can group reads without 

the need for any prior information or the presence of sequence from a particular 

gene.

The aim of this project was to investigate the capability of composition-based 

methods of sequence comparison for the grouping and separation of reads from 

massively parallel high-throughput sequencing of multi-species environmental 

samples, according to the genome from which they originate.
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Context

Differences between the genomes of organisms are responsible for the full 

diversity of life, from the multitude of relatively subtle differences  between 

individuals of a species to the vast and obvious differences  between organisms 

of different species. The compositional differences  most commonly studied 

between the genomes of distinct species are the inconsistencies between the 

number and sequence of their genes. The accumulation of mutations, either 

individually within a gene sequence or in the loss/gain or duplication of whole 

genes, coupled with environmental selective pressures, form the major driving 

force of evolution. Over time, this process has created the diverse range of 

species we observe in the world. The study of genome sequences and the 

differences between them is  an important element of modern biological 

research.

Over the last ten years, genomic research has been altered completely by the 

introduction of increasingly high-throughput methods of DNA sequencing. The 

technology currently available enables  the elucidation of enough sequence to 

cover a whole eukaryote genome several times over in a single day. This 

provides the means to study differences between the genomes of different 

individuals and species on a scale scarcely imaginable twenty years ago.

These new methods have led to a rapid increase in the number of genome 

sequences known and the volume of sequencing data readily available, and 

opened up whole new avenues of research. These include the possibility of 

quickly and cheaply sequencing the genome of individuals, which may soon 

render it cost-effective to sequence the genome of every member of a 

population in order to provide genome-specific healthcare throughout their 

lifetime (Mardis 2011); the ability to rapidly identify the binding sites of a protein 

across an entire genome; the capability to study the transcriptome through high-

throughput EST sequencing (Nagaraj, Gasser et al. 2007); and the investigation 

of the combined genome of whole microbial communities sampled directly from 

their natural environment, a field known as metagenomics.

A short summary of DNA sequencing is  provided here, including an overview of 

the advances in sequencing technology that have led to this point, the 

advances that can be expected in the immediate future, and the avenues  of 
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research that have recently been opened up. Particular attention will be paid to 

metagenomics, the challenges associated with analysis  of the sequencing 

datasets generated in such studies, and possible ways to overcome these.
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DNA sequencing - an overview

Sanger sequencing

Prior to the relatively recent advancements  that have transformed DNA 

sequencing research, this data collection was generally carried out one 

sequence fragment at a time using the sequencing-by-synthesis method 

established by Frederick Sanger (Sanger, Nicklen et al. 1977). 

In the Sanger method, a polymerase enzyme is used to replicate a cloned 

fragment of DNA in four separate reactions, initiated by a primer molecule 

labelled with a radioactive or fluorescent group. In each reaction, all four 

deoxynucleotides (dNTPs) are present for incorporation into the new strand of 

DNA, but with a modified version of one of these dNTPs, which has  a second 

deoxygenated group at the 3’-end, also present in a lower concentration. These 

dideoxynucleotides (ddNTPs) can be incorporated into a novel strand of DNA 

by the polymerase, but lack the 3’-hydroxyl group that allows another dNTP to 

be added, thus terminating the strand synthesis. Each of the four reactions 

contains a different dideoxynucleotide, ddATP, ddCTP, ddGTP or ddTTP, so that 

the synthesis of strands in each reaction will be terminated at random with the 

inclusion of a ddNTP of a specific type, producing multiple strands  of different 

lengths in each reaction. Each length produced corresponds to the position of a 

nucleotide of the modified type present in the reaction.

After synthesis has been allowed to complete, the newly formed double-

stranded DNA (dsDNA) is  denatured to release single strands. The single-

stranded DNA (ssDNA) from each reaction is then analysed by one-dimensional 

polyacrylamide gel electrophoresis, with the strands from each reaction 

analysed in a separate lane, and the resultant gel imaged to detect the 

radioactive or fluorescent groups attached to the 5’-primer on each strand. The 

sequence of the original fragment is identified by the distance that the different 

lengths of strands have travelled through the gel in each lane.

Platforms were designed to automate this  process using microfluidic capillary 

systems and a collection of four different fluorescent dyes, corresponding to the 

four different nucleotides, with synthesised ssDNA flowing past a beam 

interrogating fluorescence at each length and interpreting the sequence. This 

automation reduces the time and manpower required for sequencing, and 
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increases the throughput accordingly, but the output is  still limited to ~100 kbp 

per day per system, rendering the sequencing of a whole genome by such 

means a costly and lengthy process (Mardis 2011).

‘Second-generation’ sequencing platforms

The introduction of high-throughput ‘massively parallel’ sequencing platforms in 

the last decade led to a dramatic increase in the total length of sequence that 

could be resolved in a given period of time, and at a stroke removed the 

limitations associated with the time and resources  required for sequence data 

production. For an illustration of these changes, see ‘DNA Sequencing Costs: 

Data from the NHGRI Large-Scale Genome Sequencing Program’, available at: 

www.genome.gov/sequencingcosts (Wetterstrand 2012). These figures show 

how the cost of producing 1 Mbp of raw sequence has fallen from ~$3800 in 

March 2002 to $0.09 in January 2012. About 5 years ago, as the high-

throughput ‘second generation’ sequencing platforms became widely available, 

the rate of decrease in the cost of sequencing accelerated dramatically. This 

relatively sudden decrease in the time required to generate large quantities of 

sequence data has placed a new emphasis on finding fast and effective 

methods of analysis.

These massively parallel sequencing technologies have been referred to as 

‘next-generation’ sequencing or more recently as ‘second-generation’ 

sequencing platforms, to distinguish them from the automated Sanger 

sequencing platforms that were widely used in the past and the more advanced 

platforms becoming available now and in the near future. Here, this second 

generation of sequencing platforms will be referred to as ‘high-throughput’ or 

‘massively parallel’, with a distinction made where necessary between these 

and the single-molecule (broadly speaking, third-generation) sequencing 

platforms.

Massively parallel sequencing technologies are those platforms that produce 

large volumes of sequence data by performing many thousands of sequencing-

by-synthesis  reactions at once, with each reaction providing a short read from a 

fragment of the target sequence. Several different platforms exist, sharing a 

common central theme in their method of sequencing. These technologies 

sequence a large target by determining many much smaller fragments of that 
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sequence, which can then be assembled together to reconstitute the original 

target sequence.

Three examples of massively parallel sequencing technology, notable for their 

widespread use in genomic research, are implemented in the Genome Analyser 

and HiSeq series of systems from Illumina (CA, USA), the SOLiD series from 

Applied Biosystems/Life Technologies (CA, USA) and the GS FLX series from 

454 Life Sciences/Roche (CT, USA), referred to here as  ‘454 sequencing’. All 

three of these platform types share many aspects in the methodology used to 

prepare and sequence samples.

In each case, the DNA of interest is first broken into fragments  (e.g. by 

sonication), which are selected for at an appropriate length (from several 

hundred basepairs up to around 1 kbp). A series of platform-specific adapter 

sequences are attached to these sequence fragments, which allow them to be 

immobilised onto a surface from which they will be interrogated. For the Illumina 

technologies, this  is  the surface of the sequencing chip, while in the case of 

SOLiD and 454 sequencing the sequence fragments are annealed to the 

surface of a bead that will later be placed onto the sequencing chip. Next, many 

copies of the fixed sequence fragments are produced through a polymerase 

chain reaction, with beads subjected to this reaction in an emulsion to allow a 

separate amplification of the sequence on each bead. After this amplification, 

beads are applied to individual wells  on a sequencing chip, or in the case of 

Illumina platforms, the chip holds spots of many copies of the sequence 

fragments.

The sequence of these fragments is determined by synthesising an opposing 

strand with the incorporation of nucleotides being signalled in some way to 

detect and distinguish bases as they are added. 

In the case of Illumina platforms, each free nucleotide (A, C, G or T) is modified 

with a fluorescent dye, which prevents another nucleotide from being added to 

the sequence after incorporation. In each cycle, after free nucleotides have 

been washed away, the wavelength of fluorescence emitted at each spot on the 

chip is identified to determine the nucleotides incorporated at each location, 

before the fluorescent dyes are removed to allow the addition of the next 

nucleotide to the sequence in the following cycle.
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The SOLiD system uses sets of labelled oligonucleotide primers, containing a 

specific dinucleotide sequence at the 5’-end followed by three non-specific 

bases, which bind and are ligated to a primer paired with the adaptor sequence 

on the opposing strand. The binding of an oligonucleotide probe is  dependent 

on the complementarity of the dinucleotide sequence with the opposing strand. 

After binding, the oligonucleotide probe is ligated to the preceding sequence on 

the synthesised strand, and fluorescence from the probe detected to determine 

the added dinucleotide. The fluorescent label is  then removed from the 

oligonucleotide to allow the next probe sequence to be ligated, and the process 

is  repeated for a set number of cycles before the ligated primer and probes are 

removed. Each probe interrogates  a dinucleotide on the opposing strand at 5 bp 

intervals, with five primers  used in cycles that bind the adaptor sequence at 

single-nucleotide intervals. The use of the multiple primers  allows the 

application of a set of oligonucleotide probes from a different starting point with 

each primer, such that every nucleotide in the target strand is bound by a probe 

and interrogated twice.

In 454 sequencing, the addition of nucleotides is identified through the detection 

of phospho-luminescence instead of fluorescent probes. The beads onto which 

DNA fragments have been immobilised are applied to wells on the chip. Other 

beads, onto which are immobilised other materials  required for sequencing, are 

also added to these wells. Nucleotides are introduced to and removed from 

these wells sequentially (one ‘letter’ after another) in a set number of cycles, 

with the release of inorganic pyrophosphate as a nucleotide is  added triggering 

a series of enzymatic reactions that result in the release of light by luciferase, 

which is detected by a high-resolution charge-coupled device. The repeated 

sequential application of nucleotides  allows the order in which nucleotides are 

added during replication in each well to be determined, providing a sequence 

for each fragment (Margulies, Egholm et al. 2005).

More recently, the Ion Torrent series of sequencers, also from Life 

Technologies, has  been introduced (Rothberg, Hinz et al. 2011). As with the 

other massively parallel sequencing platforms described previously, these 

produce many short reads determined from the individual replication of short 

fragments of sequence. Nucleotides  are again applied sequentially for fragment 

replication, and the release of H+ ions (protons) associated with the addition of 
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nucleotides to a strand is detected by a highly sensitive ion sensor on the base 

of the sequencing chip. This proton detection identifies the fragments that have 

been extended at each step.

In the case of Ion Torrent and 454 sequencing, homopolymers  (multiple 

sequential instances of a particular nucleotide) may be incorporated at once if 

the complementary strand being sequenced contains several of the same base 

in succession. The addition of a homopolymer is detected as a proportional 

increase in either brightness  (454 sequencing) or ion concentration (Ion Torrent) 

at the site of the multiple addition. This is precluded in Illumina and SOLiD 

sequencing, where the addition of further nucleotides is blocked until a 

cleavage step has taken place following the previous addition step.

The similarities between these massively parallel sequencing methods are 

manifested in similarities between the data produced from them. The product of 

a sequencing analysis in these cases is a large number of short sequence 

reads, each corresponding to a single sequencing reaction in the run. Quality 

information associated with each read is  also produced, to provide a measure 

of the confidence with which nucleotide identity was called at each position. 

The length of reads produced depends on the platform used for sequencing. At 

the shorter end of the spectrum of read lengths  are those from SOLiD and 

Illumina platforms, with SOLiD reads ~75 bp in length, older Illumina machines 

producing reads ~30 bp in length, and more recent models ~150 bp. Reads 

produced in 454 and Ion Torrent sequencing are longer, with Ion Torrent and the 

early 454 GS FLX technology producing sequences  ~250-400 bp in length, and 

more recently upgraded 454 systems increasing the maximum read length to 

~1000 bp (Mardis 2011). 

Although the individual reads are very short relative to the size of a genome, 

considerable coverage can be obtained in a single run by virtue of the huge 

number of reads that can be produced. A single massively parallel sequencing 

run produces hundreds of thousands or millions of reads, providing a massive 

amount of sequencing data for analysis. 

Each platform produces reads with a different sequencing error profile. For 

example, SOLiD systems have high accuracy in terms of nucleotide identity as 

each position in the target sequence is interrogated twice, although differences 
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in intensity of emitted fluorescence can make base-calling more difficult in later 

cycles of a run. As described previously, Ion Torrent and 454 sequencing can 

introduce multiple copies of the same nucleotide into a sequence in a single 

cycle, with errors in identifying the true length of these homopolymers more 

common in these platforms. The signal observed from the incorporation of a 

homopolymer scales with the number of nucleotides  included, but imprecision in 

this  proportionality can result in an erroneous call of the true length of the 

homopolymer, especially where this length is larger than just a few nucleotides 

(Le and Durbin 2011). The position of a base in a fragment, and the nucleotides 

that surround it have both been shown to influence the likelihood of an 

erroneous nucleotide identity call (Gilles, Meglecz et al. 2011; Nakamura, 

Oshima et al. 2011).

Although the huge yield of high-throughput platforms has  facilitated a dramatic 

decrease in the cost of sequencing, and a huge increase in the rate at which 

sequencing can be completed, the size of the datasets and the short length of 

reads produced has introduced a new set of challenges. Where the pace of 

genomic research was previously limited by the time required to determine the 

sequence of interest, the limiting factor is  now the time taken to effectively store, 

extract and analyse the sequencing data produced from these methods (Mardis 

2011; Scholz, Lo et al. 2012).

Sequence assembly

The short length of sequencing reads constitutes  one of the greatest obstacles 

to effective analysis of genomic sequences targeted with massively parallel 

approaches (Miller, Koren et al. 2010; Mardis 2011). Longer sequences can be 

reconstituted from the short reads through a process known as assembly, 

where sections of identical sequence are used to identify overlaps  between 

reads and subsequently join them together. The shorter the reads produced, the 

more difficult it is  to identify these overlaps, and the more reads are required to 

produce a given coverage of a target sequence (Scheibye-Alsing, Hoffmann et 

al. 2009; Miller, Koren et al. 2010).

Massively parallel sequencing of a genome or large section of sequence is 

usually performed using the ‘whole genome shotgun’ (WGS) approach. In WGS 

sequencing, the target genome is first sheared into small fragments and 
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separated based on size (typically by gel electrophoresis) before an appropriate 

size range is selected for sequencing. The fragments are the applied directly to 

sequencing, without any prior tagging or cloning to preserve an idea of the 

order in which they existed in the original target sequence. The sequencing 

reads produced from these fragments are then assembled into longer, 

contiguous sequences known as contigs (Scheibye-Alsing, Hoffmann et al. 

2009; Miller, Koren et al. 2010).

This  process is  computationally very expensive for large datasets, as it requires 

each read to be compared with every other in the dataset. The computational 

time required for sequence assembly scales  with the square of the number of 

sequences (Vinga 2003).

The processes behind sequence assembly from high-throughput sequencing 

data are discussed in more detail later.

The alternative to WGS for whole genome sequencing is to use a ‘tiled’ 

approach, whereby a library of cloned longer sections of the genome is 

prepared. These cloned sections are typically generated by treatment of the 

genome with a restriction enzyme, and are sequenced and assembled 

individually. The longer genome sections are cloned into a sequencing vector 

such as an artificial bacterial chromosome (BAC), which can be identified by a 

fingerprint sequence to determine the order of the reassembled sequences and 

reconstitute the genome sequence (Scheibye-Alsing, Hoffmann et al. 2009).

The WGS approach is much more widely used in modern research, owing to 

the simplicity of sample preparation, and the extensive genome coverage that 

can be obtained in a minimal number of individual experiments performed on 

high-throughput sequencing platforms. This speed and simplicity comes at the 

cost of a greater burden of sequence assembly, created by the production of so 

many sequencing reads with no prior information regarding their location, 

orientation, or order (Scheibye-Alsing, Hoffmann et al. 2009; Miller, Koren et al. 

2010).

Generally speaking, two approaches can be taken to assembly. One method is 

to use a reference sequence as a scaffold on which to base the assembly. This 

reference could be a genome sequence already obtained from an individual of 

the sampled species, or a homologous sequence from a closely related 
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species. Reads are aligned to the reference genome to determine their relative 

locations, allowing gaps in coverage and structural rearrangements in the 

genome to be identified. This guided assembly is particularly helpful in the 

sequencing of larger, more complex genomes, which contain a greater degree 

of repetitive sequence. Where a region of repetition is longer than the length of 

the sequencing reads produced, the assembly of reads covering this  region 

becomes complicated as tangles are formed between overlapping sequences. 

The use of a reference scaffold helps to simplify the process of untangling these 

reads. An assembly guided by such a reference sequence is  also less limited by 

the effects of the length of particularly short reads produced in sequencing with 

Illumina and SOLiD platforms, as less emphasis is placed on finding significant 

overlap between reads (Cronn, Liston et al. 2008).

The second approach is to assemble the reads without any previously obtained 

template information, a process known as de novo assembly (Paszkiewicz and 

Studholme 2010). Where no closely related reference genome is available, as is 

the case for the majority of organisms, this is the only option for sequence 

assembly. This approach has been successful when applied to reads at the 

longer end of the spectrum, and de novo genome assembly is becoming ever 

more viable. However, for shorter reads, and those generated from more 

complex genomes, the more directed method using a reference template makes 

extensive assembly significantly easier to achieve (Paszkiewicz and Studholme 

2010).

The success  of assembly can be improved by the generation of paired-end or 

mate-paired reads in sequencing. These are reads produced simultaneously 

from opposite ends of the same sequence fragment, which include a tag 

sequence that allows the pairs to be identified and considered in tandem during 

assembly (Scheibye-Alsing, Hoffmann et al. 2009). 

When sequence fragments are prepared for sequencing they are selected for 

by size, which provides an estimate for the distance that should exist between 

pairs of reads when assembling them after sequencing. This  prior knowledge of 

the rough spacing between two reads can simplify the process of assembly 

considerably. This information can be used to provide a more reliable prediction 

of where these reads belong in the assembly, and also identify structural 

rearrangements in a sequenced genome when compared to the reference. For 
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example, a pair of reads produced from each end of a short fragment but 

mapped to distant points on the reference genome would indicate the removal/

relocation of a large section of the reference sequence between these reads  in 

the target sequence. Similarly, the reversal of a section of sequence could be 

identified by the mapping of a pair of reads in the opposite direction to that 

observed in the reference (Scheibye-Alsing, Hoffmann et al. 2009).

The greatest obstacle to fast and effective sequence assembly is the short 

length and sheer number of sequencing reads produced by current sequencing 

experiments (Scheibye-Alsing, Hoffmann et al. 2009). The need for every read 

to be compared with all the others in a dataset, and for overlapping sections of 

sequence to be found within the short lengths of these reads, places  a 

considerable computational burden on the process. As massively parallel 

sequencing technologies improve, the typical length of reads produced is 

increasing, but so too is the typical size of a single sequencing dataset, 

providing greater coverage in a single experiment but further increasing the 

burden on the assembly process.

‘Third-generation’ sequencing platforms

It is predicted that another generation of platforms, often referred to as the 

‘single-molecule’ sequencers, will become widely available in the near future. 

These technologies do not rely on amplification of DNA fragments  before 

sequencing, as in massively parallel sequencing, instead determining the 

sequence of a single copy of the target. The first of these platforms to become 

available is the PacBio RS from Pacific Biosciences (CA, USA). In this case, 

sequencing occurs via polymerase enzymes immobilised in tiny holes  in a foil 

film on a glass slide. 

These polymerase molecules bind target DNA strands and replicate them using 

nucleotides labelled with type-specific fluorescent dyes. The extremely small 

width of the holes in the foil prevents light at the excitation wavelength of the 

fluorescent labels from penetrating the reaction solution much beyond the 

immobilised polymerase. As a labelled nucleotide is incorporated into the 

extending strand by the enzyme, it is held near the surface of the glass where it 

can be interrogated by the light beam. The nucleotide being added is identified 

by the wavelength of fluorescence emitted. This approach allows the sequence 
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of fragments to be determined as quickly as the polymerase can replicate them, 

returning sequencing reads at a faster rate and at greater lengths than those 

produced in massively parallel sequencing (Eid, Fehr et al. 2009).

Another example of single molecule sequencing is the ‘nanopore’ approach 

described in (Clarke, Wu et al. 2009) and currently under development by 

Oxford Nanopore Technologies (Oxford, UK). Nanopore sequencing is based 

on the use of protein pores that bind and transport DNA through a membrane. 

Detection of nucleotides is achieved by measuring tiny changes in electric 

capacitance across the pore. Theoretically, this methodology should allow the 

direct sequencing of DNA molecules of any length as a whole, at the high speed 

at which the molecule passes through the pore.  The technology is likely to 

become widely available over the next few years, and is predicted to instigate 

another revolution in the speed and convenience of genome sequencing, 

shifting the focus and the challenges of genomics research further towards the 

handling and analysis of the data produced.

Genome sequencing

The principal aim of many sequencing experiments is the determination of the 

genome sequence(s) of an individual, a species, or group of species. This 

information acts as a gateway to a greater understanding of many aspects of 

life, and forms a common theme throughout many different fields of research in 

the biological sciences. 

For example, a researcher interested in the genetic traits behind a heritable 

disorder in humans might aim to establish the differences between the genomes 

of an affected and a ‘normal’ individual in order to develop targeted treatments. 

A plant biologist interested in increasing yields in a particular crop species might 

wish to obtain the full genome sequence of this plant, to identify genes in this 

sequence, and use this  information in conjunction with results  from other 

experiments (such as microarray analysis) to identify those genes linked to the 

yield of the plants and the differences between sequences that might be 

responsible for this phenotype. 

Genome sequencing is also an integral step in the characterisation of 

pathogens, for example in the identification of mutations between bacterial 

strains to understand differences in pathogenicity (Harrison, Dyer et al. 2005). 
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The recent improvements  in sequencing have made it possible to include 

genome sequence information as part of a wider research project with relative 

speed and ease, and at low cost.

EST sequencing

The introduction of high-throughput sequencing technologies has also improved 

the scope for transcriptomic investigations, studying the profile of expression in 

coding regions of the genome. Other technologies, in particular microarray 

analysis platforms, have contributed to this field of study, allowing for the 

complete comparison of expression profiles in different tissues. This information 

can be particularly useful in the characterisation of disease, for example in 

comparing the genome-wide expression profiles of cancerous tissue with an 

equivalent healthy sample (Volinia, Calin et al. 2006), or in studying the knock-

on effects of variation in the levels of expression of a single gene product (e.g. 
Branney, Faas et al. 2009).

Expressed sequence tags (ESTs) are reads sequenced from cDNA prepared 

from a sample, providing insight into the expression profile of the sample based 

on the mRNA present. Rather than determining the full cDNA sequence, ESTs 

are read from either end of the transcript and can be used with a reference 

genome to identify their original position (Nagaraj, Gasser et al. 2007; 

Scheibye-Alsing, Hoffmann et al. 2009). The high-throughput nature of modern 

sequencing methods allows for a picture of the full expression profile (the 

transcriptome) of a sample to be built, based on the assumption that the 

number of ESTs sequenced for a gene is directly proportional to the level of 

expression of that gene (after copy number variations have been considered).

Amplicon sequencing

High-throughput sequencing has also allowed for the identification and study of 

polymorphisms between the genomes of individuals of the same, or closely 

related, species. Primer sets are used in PCR to amplify specific target regions 

of sequence from each genome into ‘amplicons’, which are then sequenced. By 

sequencing amplicons on a massively parallel platform, the amplicon 

sequences are covered at great depth, allowing for even rare polymorphisms to 

be identified when the sequences are compared (Rosani, Varotto et al. 2011).

Chapter 1 - DNA sequencing - an overview

15



SNP analysis

The large-scale identification of single nucleotide polymorphisms (SNPs) 

throughout genomic sequences has been made possible by high-throughput 

sequencing. The process requires that sequencing be performed at high depth, 

so that each potential polymorphism site is covered multiple times. If this 

criterion is fulfilled, the reads may be mapped to a reference genome sequence 

and positions  at which the nucleotide sequence differs can be identified as 

candidate SNP sites. Many methods have been developed that determine the 

confidence with which an SNP can be called at a particular site (e.g. McKenna, 

Hanna et al. 2010; Le and Durbin 2011), but as  a rule the more consistently that 

a polymorphism is  detected (i.e. the more it appears in the sequencing reads 

covering that site), the greater confidence can be had in the assignment of a 

SNP at that position (Nielsen, Paul et al. 2011).

SNP calling is an important field in the study of population genomics, as it 

allows for the genetic differences between individuals of a species to be 

identified and studied (Nielsen, Paul et al. 2011). It forms a key part of studies 

such as the 1000 Genomes Project (www.1000genomes.org), which aim to 

elucidate the key genomic differences between individuals and populations.
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Metagenomics and sequencing of multi-species samples

The capacity for massively parallel sequencing to produce a huge number of 

reads  at much higher speed and lower cost has made possible the 

simultaneous investigation of the genomics of complex environmental 

communities, a field of study known as metagenomics (Handelsman, Rondon et 

al. 1998). Whereas experiments aimed at sequencing the genome of a single 

species rely on the isolation and preparation of a pure sample, metagenomic 

datasets are typically sequenced directly from the genetic material of many 

species, extracted from an environmental sample. 

A metagenome contains sequences from the range of organisms present in the 

sample (under-representation of minority organisms notwithstanding), and can 

provide information about the make-up of communities  that are difficult to study 

by other means. It is  thought that less  than 1% of all bacterial species can be 

successfully cultured in the laboratory, so in most cases this  approach of 

directly sequencing species offers the only opportunity to study the genome 

(Torsvik, Sørheim et al. 1996; Rappe and Giovannoni 2003).

Metagenomic datasets  have been generated and studied from a wide range of 

environments, including microbial communities in oceanic water samples 

(Venter, Remington et al. 2004; Rusch, Halpern et al. 2007),  various soil 

samples (Rondon, August et al. 2000; Voget, Leggewie et al. 2003; Tringe, von 

Mering et al. 2005), the interior and exterior of the human body (Gill, Pop et al. 

2006; Grice, Kong et al. 2009; Qin, Li et al. 2010), the respiratory system of 

aquatic mammals (Lima, Rogers et al. 2012), and even the scrapings from a car 

windscreen (Kosakovsky Pond, Wadhawan et al. 2009).

Metagenomic studies predate second-generation sequencing methods, but the 

scale on which such samples could be studied was considerably smaller than is 

possible today (Handelsman, Rondon et al. 1998; Rondon, August et al. 2000). 

Initially, metagenomic analysis  of a microbial community relied on the isolation, 

cloning, sequencing and comparison of 16S rRNA sequences, to identify and 

characterise the phylogeny of species present in a sample. 

The ribosome is present in every form of cellular life, and the genes coding for 

the proteins and rRNA molecules from which it is constructed are well 

conserved between species, with well-established regions of variability. As a 
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common reference point between genomes, the sequences of these rRNAs - 

the 16S rRNA for prokaryotic species, and 18S rRNA for eukaryotes - are 

selectively reverse-transcribed and amplified via PCR, using sets  of generic 

primers, to allow a comparison of organisms (Lane, Pace et al. 1985; Pace 

1997; Venter, Remington et al. 2004).

Using this method, a phylogeny of the organisms in the sample can be built up 

based on variations in rRNA reads, compared to each other, or to a reference 

database of sequences to provide a wider context to the sample. Sequences 

within a sample can be grouped together into ‘phylotypes’, based upon a cutoff 

threshold of sequence identity, and such a grouping provides  a measure of the 

diversity within a sample (Pace 1997). However, it has  been found that typically 

less than 0.1% of sequences in a metagenomic dataset can be assigned to 

ribosomal RNA genes (McHardy and Rigoutsos 2007), so the likelihood of 

gaining a truly meaningful and comprehensive insight into the species 

contained within a metagenome using this method is  very small. Biases in the 

amplification of rRNA sequences can also lead to misrepresentation of the true 

number and proportions of different species within a sample (Baker, Tyson et al. 

2006; Eisen 2007).

Metagenomic analysis has been made considerably more viable by the 

introduction of high-throughput sequencing platforms. The massively parallel 

nature of most current sequencing platforms is  particularly well-suited, providing 

a large sample of sequence fragments from across the range of organisms in a 

community through shotgun sequencing of the sampled material. 

By sequencing fragments at random from a sample of a community, rather than 

targeting a specific region of sequence as in the comparison of rRNA genes, 

biases in the representation of species can be avoided, and much more 

information can be gained about the community. This sequence information can 

be used to investigate the wider range of genes  present in a sample, and 

introduces the possibility of constructing full genome sequences of the 

organisms present (Tyson, Chapman et al. 2004; Chen and Pachter 2005). The 

16S rRNA sequence is  still widely used to study the diversity of microbial 

communities (Tringe and Hugenholtz 2008), but the range of metagenomic 

studies  facilitated by high-throughput sequencing exceeds this. Modern 

research has come to include metatranscriptomic and metaproteomic studies to 
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complement metagenomics and provide an even greater insight into 

communities that remained practically unstudied until very recently (Simon and 

Daniel 2011).

The unculturability of the vast majority of microbial organisms has led to great 

bias in the representation of species in biological sequence databases, towards 

those organisms that have historically proven easiest to study (Huson, Richter 

et al. 2009). Metagenomics  has provided the means to begin redressing this 

balance, by allowing the study of species and communities that were previously 

inaccessible for analysis, and the elucidation of genome sequence from these 

species.

As a consequence of these changes, metagenomics has  been a rapidly 

growing field over recent years, and a range of databases and resources have 

been established to allow easier storage, access, browsing and analysis  of 

these datasets (Teeling, Waldmann et al. 2004; Seshadri, Kravitz et al. 2007; 

Richter, Ott et al. 2008; Schloss and Handelsman 2008; Lorenzi, Hoover et al. 

2011; Markowitz, Chen et al. 2012). For example, the MG-RAST database 

(Meyer, Paarmann et al. 2008) now contains >10,000 metagenomes for 

investigation and annotation. As sequencing technologies improve, and 

methods of data storage and analysis continue to develop, the number, range 

and size of metagenomic studies seems likely to continue to grow.

To gain a meaningful understanding of sampled communities  from 

metagenomic shotgun sequencing data, the reads produced must be compared 

in some way. This allows for the phylogeny of the sample to be investigated, 

function to be assigned to coding sequences obtained, and potentially for 

genomes to be reconstructed individually from the mixture of fragments  in the 

metagenome.
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Example Metagenomic Projects and Datasets

The Sorcerer II Global Ocean Sampling Project

Inspired by the voyage of the HMS Challenger, the vessel lead by Charles 

Wyville Thomson in the 1870s to dredge the ocean floors of the globe in order 

to study ad describe previously unidentified fauna, J. Craig Venter established 

the Global Ocean Sampling Project to perform a similar survey of the microbial 

populations of oceanic waters. Following a similar route to that of the 

Challenger, sampling of surface waters  was carried out by Venter and his  crew 

aboard his personal yacht, the Sorcerer II.

Following a pilot study of the Sargasso Sea, the full expedition began collecting 

samples of surface water at intervals along the route from the east of Canada, 

through the Panama Canal, to the Eastern Tropical Pacific. These samples 

were taken from coastal and open waters, as well as some freshwater samples 

for comparison. The aim of the project was to uncover the microbial diversity of 

these waters, and to compare these samples in order to better understand how 

the microbial populations and communities change across a range of locations 

and conditions. 

After samples  were filtered to isolate the microbial organisms of interest, 

environmental shotgun sequencing (Sanger method) produced a dataset of 

~6.4 million sequences of combined length ~5.9 Gbp (5,900 Mbp). The sheer 

scale and complexity of this  dataset served as an introduction to the difficulties 

that researchers would face in the analysis of metagenomes (Rusch, Halpern et 

al. 2007).

In the years  since the data was first published, a number of investigations have 

been carried out, each with the aim of studying and understanding a particular 

aspect of the communities sampled during the expedition. 

An early study identified the ribosomal 16S rRNA sequences present in the data 

after assembly into contiguous sequences, and used these fragments to 

analyse the taxonomic diversity within the whole oceanic metagenome (Rusch, 

Halpern et al. 2007). The scale of the dataset lead the researchers to develop 

novel methods for assembling contiguous sequences from complicated and 

noisy data, comparing the similarity of samples and visualising information 

about these samples, from sequence coverage and identity to metadata data 
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such as sampling time and location, and details of the sampled environment. 

In tandem with this initial study of organismal diversity, the diversity of protein 

sequences within the sampled communities was also investigated (Yooseph, 

Sutton et al. 2007). After open reading frames (ORFs, sections of DNA 

sequence between a start and stop codon in the translated sequence) were 

identified in all six potential frames  of translation within contigs assembled from 

the data, these sequences were compared to each other and all publicly 

available protein sequences in the NCBI, TIGR and Ensembl databases. This 

protein BLAST searching required over 1M CPU hours  to complete (Yooseph, 

Sutton et al. 2007). The alignment of all of these sequences allowed a 

clustering to be performed, grouping similar sequences to represent protein 

families. This novel approach to clustering and filtering of predicted protein 

sequences on such a large scale allowed for novel protein families to be 

predicted, and for additional information to be uncovered relating to those 

families already known at the time.

The novel methods of analysis and visualisation for metagenomic data 

developed and introduced as means of investigating data on such a huge scale 

were combined into an online resource and database, CAMERA (Seshadri, 

Kravitz et al. 2007), that is updated regularly with new tools for metagenome 

analyses such as protein prediction and functional annotation and acts as  a 

repository for other environmental datasets. The full dataset produced from the 

filtered water samples was also made publicly available for investigation by the 

wider scientific community.

A similar study of the global ocean sampling metagenome data focussed on 

viruses sequenced within the samples (Williamson, Rusch et al. 2008), using a 

conservative system of sequence classification against the NCBI database of 

non-redundant protein sequences  (nr) to describe the diversity of viruses within 

and between the different samples taken during the expedition. The same group 

of researchers have recently investigated water samples taken in another round 

of sampling from the Indian Ocean, using a combination of Sanger and 

massively parallel sequencing of size-filtered samples  to predict the virus 

diversity within the samples, and the predicted functions and taxonomic origin of 

viral protein sequences (Williamson, Allen et al. 2012). 
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Many other studies  have been carried out on the data, including efforts to 

identify trends in environmental conditions associated with the makeup of 

sample populations at different locations (Yilmaz, Iversen et al. 2012), and, 

similarly but conversely, the associations between microbial community/gene 

diversity and prevalence and environmental indicators such as dissolved iron 

(Desai, Desai et al. 2012; Toulza, Tagliabue et al. 2012).

The early studies of the oceanic metagenome dataset analysed sequences 

assembled from the original Sanger sequencing reads pooled from all samples 

taken as  part of the project. The microbial diversity between the individual 

samples taken throughout the Sorcerer II expedition was also studied, with 16S 

rRNA sequences within each sample being identified by sequence similarity 

with a reference sequence from E. coli (Biers, Sun et al. 2009). These 16S 

sequences were found to constitute only ~0.24% of the metagenome. The 16S 

reads were clustered by sequence similarity and combined with information 

regarding gene counts within the data to compare the diversity between 

samples and to predict the characteristics of the ‘average’ prokaryotic genome 

present within the dataset.

In each of these studies, the methods used to compare sequences and to group 

them taxonomically were largely reliant on alignment between sequences and 

reference databases. The demands of such an alignment-based approach 

required the harnessing of huge computational resources in order to bring the 

time requirement down to manageable levels (Yooseph, Sutton et al. 2007), 

especially in early studies where more advanced assembly software was  not yet 

available. However, even using more recent assembly software, as in 

(Williamson, Allen et al. 2012), to assemble such huge volumes of sequencing 

data is a demanding task, especially as  the number of sequences that can be 

obtained in a single experiment is ever-increasing, while the length of the 

individual reads is typically shorter than the Sanger sequences generated in the 

original Ocean Sampling project.

The Human Microbiome Project

Established in 2007, the Human Microbiome Project (HMP) is  an ongoing global 

initiative funded to the tune of $150M by the National Institutes for Health (NIH) 

of the USA. Intended to complement the sequencing of the human genome, the 
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aims of the HMP are described as: 

‘(1) to take advantage of new, high-throughput technologies to characterize the 

human microbiome more fully by studying samples from multiple body sites 

from each of at least 250 ‘‘normal’’ volunteers; (2) to determine whether there 

are associations between changes in the microbiome and health/disease by 

studying several different medical conditions; and (3) to provide both a 

standardized data resource and new technological approaches to enable such 

studies to be undertaken broadly in the scientific community. The ethical, legal, 

and social implications of such research are being systematically studied as 

well. The ultimate objective of the HMP is to demonstrate that there are 

opportunities to improve human health through monitoring or manipulation of 

the human microbiome.’ (Peterson, Garges et al. 2009).

At the time of writing, the project’s  website lists >200 publications relating to the 

HMP (http://commonfund.nih.gov/hmp/publications.aspx, 25/11/12), pertaining 

to the processes and ethics of microbiome sample collection, production of both 

16S rRNA and shotgun metagenomic sequencing data, and the subsequent 

storage, availability and analysis of this data. The output of new findings and 

techniques of analysis developed to address the huge volume of data 

associated with the project looks set to continue.

To date, these publications include descriptions of metagenomic analyses 

providing insight into the differences between tissues and between individuals 

(e.g. Faust, Sathirapongsasuti et al. 2012), differences between healthy and 

diseased tissue (e.g. Pushalkar, Mane et al. 2011; e.g. Liu, Faller et al. 2012), 

and the metabolic pathways of microbial communities within the body (e.g. 

Cantarel, Lombard et al. 2012). Also included are more general discussions  of 

the analytical and ethical issues faced in such a significant project (McGuire, 

Achenbaum et al. 2012; Segata, Waldron et al. 2012).

Both the Global Ocean Sampling and Human Microbiome projects  have 

produced a deluge of sequence data, which is the subject of a large proportion 

of the total metagenomics research currently carried out, and the source of 

many new bioinformatic tools  for the analysis of such data (e.g. Seshadri, 

Kravitz et al. 2007; Markowitz, Chen et al. 2012; Wang, Ye et al. 2012).
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One of the major challenges associated with this kind of data, containing many 
sequences from many genomes of species that are often closely related, is in 
the separation of these sequences according to the species such that the 
individual genes or genomes can be studied and compared within the context of 
the sampled community. 

In both of these major metagenomics projects, the majority of work has revolved 
around alignment-based sequence comparison, either in the form of 16S 
ribosomal RNA gene sequence comparison (e.g. Huse, Ye et al. 2012; Li, Bihan 
et al. 2012), or other marker genes (Segata, Waldron et al. 2012). The methods 
used to carry out these comparisons have improved greatly over the years, both 
in terms of speed and accuracy, and in the ever-increasing body of reference 
sequences that are available. However, as discussed in detail in the next 
section, this alignment-based approach, comparing either 16S rRNA or other 
marker gene sequences, has itʼs disadvantages.

Low-complexity metagenomes

While the large-scale Human Microbiome and Ocean Sampling projects involve 

the investigation of complex and diverse communities of many different species 

varying in their prevalence, the metagenomic approach can also be applied to 

the study of simpler communities. These communities, consisting of a smaller 

number of different species  overall, and often dominated by one species  in 

considerably greater abundance, are particularly relevant to this project as they 

more closely resemble the plant-host systems that are of most interest here 

(see Project Overview for more detail).

Several examples  of such investigations exist in the literature, with the most 

extensively studied example being the metagenome of biofilms sampled from 

acid mine drainage in North America (Tyson, Chapman et al. 2004). Other 

examples include several studies of symbiosis  between animals and bacteria 

(e.g. Woyke, Teeling et al. 2006; Wu, Daugherty et al. 2006), and the analysis  of 

sludge produced in the removal of inorganic phosphate from waste water 

(Martin, Ivanova et al. 2006). These low-complexity metagenomes offer the 

possibility of assembling whole microbial genomes from reads shotgun 

sequenced from the environmental sample (Tyson, Chapman et al. 2004; 

Martin, Ivanova et al. 2006).
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As with the larger and more complex metagenomes discussed previously, such 

low-complexity datasets are often studied by alignment-based methods, 

comparing 16S rRNA and other gene sequences (e.g. Tyson, Chapman et al. 

2004; e.g. Martin, Ivanova et al. 2006; e.g. Wu, Daugherty et al. 2006; e.g. 

Schloss and Handelsman 2008). However, the use of alignment-free 

comparison has become more widespread recently, with researchers using 

compositional features of sequences  to group metagenomic sequences based 

on a prediction of shared taxonomic origin. 

One example of this type of analysis is the use of tetranucleotide frequency 

distributions of sequences, combined with neural network clustering to group 

the acid mine drainage dataset (Abe, Sugawara et al. 2006; Dick, Andersson et 

al. 2009). Oligonucleotide frequencies have been used alongside alignment-

based techniques to separate sequences from mixed datasets, including those 

from host and symbiote genomes sequenced together (Chatterji, Yamazaki et 

al. 2008). Such oligonucleotide frequency patterns have also been used 

alongside a measure of the net read depth of sequences assembled from a 

shotgun metagenomic dataset, to group assembled sequences  belonging to the 

different bacterial species in symbiosis  with a marine worm (Woyke, Teeling et 

al. 2006), and a combination of read depth and GC content comparison was 

used to isolate sequences from different species in the original study of the acid 

mine drainage biofilm metagenome (Tyson, Chapman et al. 2004). A similar 

approach, identifying groups of assembled contigs based on GC content and 

read depth, has been used more recently as part of a mechanism for improving 

the simultaneous assembly of bacterial symbiont and nematode host genome 

sequences (Kumar and Blaxter 2011).

Several studies have also been published aiming to discover novel pathogens 

through shotgun sequencing of environmental samples. These experiments 

have largely focussed on prospecting for viral pathogens. 

Two such studies  have been carried out in honey bee populations in recent 

years. Motivated by the phenomenon known as colony collapse disorder, which 

has been associated with rapid and accelerated loss of bee colonies throughout 

the world, much research has been undertaken in an attempt to uncover the 

underlying cause(s). In one case, whole genome shotgun sequencing of the 

mite Varroa destructor uncovered genomic sequence of what the researchers 
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believe to be a novel bacterial and novel Baculovirus species  (Cornman, Schatz 

et al. 2010). These microbial sequences were discovered by plotting read depth 

and GC content of assembled contigs, as described previously for other low-

complexity metagenomes. 

A second study into honey bee pathogens, was based on sequencing of 

samples collected over a 10-month period from several colonies transported 

between multiple locations around the USA. Samples collected over the course 

of the study were analysed by microarray and qPCR for detection of known 

pathogens, and by shotgun sequencing at great depth for novel pathogens. This 

sequencing of one sample uncovered sequence predicted to belong to four new 

viruses amongst the data produced for other species and pathogens known to 

be present in the sample (Runckel, Flenniken et al. 2011). The sequences were 

assigned to these novel viruses after screening of assembled contigs  against a 

database of known honey bee pathogens had failed to produce hits  of 

acceptable strength. Any contigs that remained unassigned after this screening 

were mapped to a more comprehensive database and extended by further 

assembly with the complete dataset.

Many other similar studies have uncovered previously undescribed viruses, for 

example in samples from pig and bat (Sachsenroder, Twardziok et al. 2012; 

Tse, Tsang et al. 2012), with a similar approach taken to sequence analysis.

As with several of the other studies mentioned here, this  approach relies upon 

the availability of suitable reference data with which to compare the sequences 

of interest within a sample.
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Methods of sequence comparison

Alignment-based sequence comparison

As discussed previously, one of the greatest challenges facing the 

bioinformatics community is the need for effective ways to analyse the huge and 

complex datasets generated in sequencing experiments  using high-throughput, 

massively parallel platforms. This problem is compounded where the 

sequenced sample consists  of many different species in varying proportions 

(Scholz, Lo et al. 2012). 

Where a sequenced sample is known or predicted to contain a number of 

different species, it can be beneficial to group the sequences in the dataset 

according to a prediction of the genome from which they originate, a process 

often referred to as binning. Such a grouping can provide an insight into the 

phylogeny and complexity of a sample, through the investigation of the number, 

identity and relatedness of organisms represented by the grouped genomic 

sequences (Teeling, Meyerdierks et al. 2004). 

Grouping sequencing reads that originate from the same genome may also be 

useful as a technique to reduce the time required for assembly of individual 

genomes from the mixed data, and decrease the likelihood of erroneous 

sequence assembly incorporating reads from multiple genomes.

In order to predict a shared origin between reads, the reads must be compared 

in some way, using only the primary sequence information available in the 

sequencing dataset. Broadly, methods for the comparison of sequences fall into 

two categories: those based on alignment of sequences to assess similarity 

between the specific pattern of nucleotides in the sequence, and those based 

on the composition of the sequence, which aim to identify more general shared 

characteristics between sequences (Vinga 2003).

The alignment-based approach is most commonly taken when measuring the 

similarity between DNA sequences. This type of comparison forms the basis for 

BLAST (Altschul, Gish et al. 1990), which provides the means for searching a 

database of reference nucleotide or protein sequences, to determine homology 

and identify shared regions of sequence and common domains between a 

query and reference. With a range of tools  and a huge database of submitted 

sequences hosted and publicly available for access through the National Center 
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for Biotechnology Information (NCBI, USA), the use of BLAST for measuring 

and studying the similarities between DNA sequences has become a familiar 

resource for the biological science community. 

All alignment methods operate on a common central process of pairwise 

comparison of the bases in each sequence, finding the alignment of the 

sequences with the highest score computed from a set of parameters 

describing the reward for a correct pairwise match and the costs of allowing a 

mismatch or the introduction of a gap. This alignment-scoring methodology was 

first established by Waterman and Smith (Waterman and Smith 1981), and is 

commonly referred to as Smith-Waterman scoring.

As mentioned previously, the process of sequence assembly from short reads 

obtained from sequencing experiments is based on alignment to find overlaps 

between reads. DNA sequence alignment also plays an important role in the 

prediction of gene function, species and gene evolution, and the prediction of 

relatedness between organisms. Such predictions made through sequence 

alignment are based on significant levels of homology between sequences. 

As DNA sequences evolve, the primary nucleotide sequence changes through 

point mutations, insertions and deletions (including horizontal gene transfer, 

gene and chromosome duplications and increases/decreases in repetitive 

regions), and the splitting and merging of chromosomes. Whether these 

alterations to a genome are conserved through multiple generations and 

allowed to spread throughout the population depends on the consequences of 

these mutations to the sequence. 

A mutation in a vital section of a coding sequence is less likely to be maintained 

through multiple generations as it would be likely to have a deleterious effect on 

cellular function, and so these important regions of sequence - whole genes or 

smaller sections  most closely related to the function or regulation of a gene - 

are conserved across generations  and between species. This conservation of 

sequence leads to the homology observed between sequences  of different 

genes (where a particular domain may be shared between many proteins), 

individuals and organisms, and forms the basis  of comparison by sequence 

alignment.

Alignment is also a very effective method for analysis of longer sequences, 
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where local alignments can identify regions of homology amongst sequences 

that are otherwise divergent. It is an excellent approach to take in the study of 

small datasets of sequences, where primary sequence similarity is of particular 

interest and a good database of reference sequences for alignment is available. 

This  prior knowledge of references is  vital for alignment-based investigation of 

sequences: without a good basis for comparison, fewer homologous alignments 

may be found and the strength of conclusions that may be drawn will be limited. 

The easy access and availability of huge sequence databases like those 

maintained by the NCBI is enormously empowering for alignment-based 

analysis of new sequences, while the ever-increasing amount of sequence data 

under production ensures that these resources will only become more 

informative in the coming years.

Despite it’s  popularity, the alignment-based approach to sequence comparison 

can have disadvantages, especially in the age of massively parallel DNA 

sequencing. While sequence alignment is a hugely beneficial tool for the study 

of individual primary sequences in the context of a reference dataset, these 

approaches do not scale well and are unsuited to large datasets  of short 

sequences. The reliance on a reference database for predicting the phylogeny 

and function of sequencing reads prevents such methods  from providing insight 

into sequences originating from poorly understood branches of the Tree of Life, 

such as are commonly produced in metagenomic studies.

The size and complexity of metagenomic datasets makes these datasets 

particularly difficult to handle using alignment-based methods, and finding 

effective and efficient methods of analysis is a great challenge (Eisen 2007). 

The time required for alignment-based comparison of a set of sequences scales 

with the square of the number of sequences in the set. For a typical high-

throughput sequencing dataset containing 105 - 107 individual reads, this 

exponential scaling is prohibitive (Vinga 2003).

The requirement for a database of reference sequences with which to compare 

either rRNA or shotgun-sequenced genomic reads also presents a set of 

obstacles to effective analysis of environmental, multi-species samples. A 

sequence compared to a reference database can only be characterised 

according to the sequences contained within that database. As such, the scope 
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for comparison is  limited by the availability of references drawn from a wide 

taxonomic range. 

While modern sequence databases, such as the nt/nr database hosted and 

maintained by the NCBI, contain vast numbers of sequences obtained from a 

wide range of genomes, the distribution of available sequence information is far 

from uniform across phylogenies (Huson, Richter et al. 2009). This varied 

representation in available reference sequences could introduce bias  into the 

classification of sequences, based on homology found in an alignment-based 

comparison. It also complicates the issue of when and how a sampled 

sequence can be classified as sufficiently dissimilar to any sequence already 

known.

Without the use of a reference database, alignment could be used to group 

sequences in a metagenomic dataset based on homology between sequencing 

reads. However, with minority organisms in the sample likely to be represented 

sparsely and at low genome coverage, this approach is unlikely to result in 

effective grouping.

When considered alongside the computational challenges associated with the 

alignment-based analysis  of large numbers of sequences, the limitations of 

such an approach render it far from ideal for the study of environmental, 

metagenomic datasets. 

Composition-based sequence comparison

An alternative approach to the comparison of sequences is the use of features 

characterising the nucleotide composition of sequences  as a basis for the 

identification of similarities and dissimilarities  between them. This approach 

provides a much more suitable method of analysis for large sequencing 

datasets obtained from multi-species environmental samples,

The features  used in such a comparison represent patterns within the primary 

nucleotide sequence: trends in the composition of a molecule that are 

conserved throughout the genome. A simple and well-known example of such a 

feature is  the GC-content of a genome, a property that has been used for the 

characterisation and comparison of genomic sequences for many years.

The establishment of the relative frequency distribution of oligonucleotide 

‘words’ as an identifying characteristic of DNA sequences by Karlin and 
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Ladunga (1994), led to the coining of the phrase ‘genomic signature’ to describe 

these features (Karlin and Burge 1995). Oligonucleotide relative frequency 

distributions are the most well-established of several genomic signature 

features, discussed in more detail later, which have all been shown to allow 

differentiation between sequence fragments originating from different genomes.

For a feature of sequence composition to qualify as a genomic signature, the 

degree of variation observed between feature values of sequences originating 

from the same genome must be consistently smaller than that observed 

between the values of sequences from different species. The feature signature 

should be consistent throughout the whole genome, such that a feature value 

obtained from a short length of sequence (e.g. 1-10 kbp), is  similar to the value 

obtained from a longer length of sequence (e.g. 1 Mbp), and to the value 

obtained from a whole chromosome or the entire genome. As such, the 

grouping of sequences according to their origin is  not based on regions of 

specific nucleotide sequence identity but instead on the identification of a 

common pattern running through their composition.

Using such features to compare a set of sequences makes it possible to identify 

similarity between sequences without the need for a reference database and 

without relying on sequence homology. Each sequence can be considered 

using a single value or distribution calculated from its composition, allowing a 

much more straightforward grouping of the data that typically scales in 

proportion with the number of sequences as opposed to the square of this 

number as in alignment-based comparison (Vinga 2003). Such a composition-

based approach allows for sequencing reads to be grouped together regardless 

of whether the genome from which they originate has been studied previously 

or not, removing the need for a reference database for comparison, and in the 

absence of any overlapping sequence homology.

This  alignment-free approach has been successfully applied to the grouping 

and separation of sequences within multi-species  datasets  (Teeling, 

Meyerdierks et al. 2004; Abe, Sugawara et al. 2006; Martin, Diaz et al. 2008; 

Afreixo, Bastos et al. 2009; Saeed and Halgamuge 2009). A supervised 

approach can be taken to such grouping, where prior sequence information 

from a range of genomes can be ‘learnt’ and used to construct predictions of the 

nature and origin of query sequences (e.g. Martin, Diaz et al. 2008). However, 
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these supervised methods suffer from many of the same limitations imposed by 

the requirement for a reference database on alignment-based methods.

The principal limitation to composition-based methods of sequence comparison, 

when applied to massively parallel sequencing datasets, is the short length of 

the individual sequences that are compared. Even reads produced from 

platforms with the longest mean length - the GS FLX Titanium (Roche/454 Life 

Sciences) - rarely approach the ‘1 kbp barrier’, that has been described 

previously as the lower length limit at which fragment assignments can be made 

with confidence (McHardy and Rigoutsos 2007). At such short lengths, the 

feature patterns borne out over the whole genome and on which such 

comparison relies, can be difficult to identify amongst short-range, local 

variations in nucleotide content. Such local variations include regions of 

repetitive sequence or overrepresentation of particular codons in a coding 

region.
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Project summary

The aim of this project is to investigate the capability of composition-based 

methods of sequence comparison for the grouping and separation of reads from 

massively parallel high-throughput sequencing of multi-species environmental 

samples, according to the genome from which they originate.

The types of dataset of particular interest in this project are those produced 

from an environment containing a few different species. Such a dataset could 

be obtained from a sample of infected tissue, where sequencing reads would be 

expected to originate from the genomes of the host (e.g. a plant or insect), and 

the pathogen(s) (e.g. a bacterium, virus, or fungus). These datasets will 

generally be referred to as ‘multi-species’, rather than metagenomic, because 

metagenomics is typically associated with an environmental system or 

community on a much larger scale.

The motivation for this  research is to establish the possible benefits of such a 

phylogenetic grouping of reads. An effective clustering may allow the 

identification of the species present in a sequenced sample allowing, for 

example, the identification of a particular pathogen, and the isolation of 

sequences belonging to the genome of a particular species in the sample. The 

isolation of pathogen reads from a dataset may facilitate the study of the 

genome of the pathogen where more conventional laboratory methods have 

failed. Grouping reads originating from a single genome may also improve the 

performance of sequence assembly methods applied to the dataset.

By using supervised methods  of grouping to provide a reference comparison 

with known pathogens, the nature or specific identity of the infectious agent(s) 

in the sample can be predicted. As in metagenomics, this approach of 

sequencing genetic material sampled directly from the tissue, removes the 

requirement for the pathogen to be isolated and cultured prior to analysis.

The grouping of reads by genome can also remove contaminants within the 

dataset, to allow the genome of the host or pathogen species to be studied 

more easily. The alignment-free approach to grouping of sequences does not 

rely on the prior availability of a full genome for either species in order to predict 

the reads  that belong to each group, which allows the study of potentially novel 

pathogens, in host species that are themselves not well-characterised.
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Grouping of sequencing datasets  using genomic signature features usually 

takes place after the reads have undergone assembly into longer contigs  (Chen 

and Pachter 2005). The use of longer sequences improves the accuracy of the 

grouping obtained but, as has been discussed already, the increased burden of 

larger datasets adversely affects the performance and runtime of the assembly 

process. Where a dataset contains a large number of individual reads 

originating from multiple genomes - as is the case for an environmental sample 

sequenced directly - it may be beneficial in terms of assembly speed and quality 

to separate these reads according to a prediction of shared origin prior to 

assembly. 

Grouping reads according to the genome from which they originate and 

assembling the groups of reads separately reduces the time taken to assemble 

these reads into longer stretches of sequence, relative to considering all reads 

in the dataset at once. It should also result in fewer erroneous, chimeric 

sequences being assembled from reads obtained from multiple genomes with 

regions of homology.

The following work describes the investigation of a range of published 

sequence features and the capacity for these features  to group and separate 

sequencing reads in a multi-species sequencing dataset. The features and their 

combinations are compared to determine the set that best differentiates 

between reads based on their species  of origin. This optimal set of features is 

used as a basis  for the comparison of a range of clustering methods in order to 

find the optimal combination of feature and method to group a dataset. The 

extent of grouping and separation of reads that was achieved is  then discussed 

in the context of the datasets  studied. The effect of such a grouping on the 

performance of a sequence assembly algorithm is  then investigated, to 

determine the benefit of such an approach.

Chapter 1 - Project summary

34





A comparison of genomic signature features applied to the 

clustering of simulated multi-species sequencing data by origin

Abstract

The capacity of four genomic signature sequence features to group short DNA 

sequencing reads according to their species of origin was compared. Two 

datasets, designed to simulate to a greater or lesser extent a typical multi-

species sequencing dataset, were represented by these four signature features 

and their combinations, and grouped by a simple clustering method. It was 

found that clustering of tetranucleotide relative frequency distribution and GC 

content vectors was most successful. Although it was possible to accurately 

group together by species sequences <1kb  in length in a low-complexity 

dataset, species-specific grouping of sequences was not feasible for data 

obtained from a larger number of species that were more closely related. In this 

case, a broader taxonomic grouping was achievable, enriching clusters for 

sequences from related species. It was concluded that a more appropriate 

dataset should be developed to determine the extent of grouping that could be 

achieved with true sequencing reads from a multi-species sample.

Chapter 2 - Abstract  

36

2



Introduction

The major theme of this  work is  the use of sequence composition-based feature 

vectors  to group together individual reads  produced from high-throughput DNA 

sequencing of a multi-organismal sample, according to the species from which 

they originated.

Once an appropriate sequencing dataset has been obtained - a process 

discussed in more detail later - the process of separating or clustering the reads 

by species of origin can be divided into two principal aspects: the generation of 

feature vectors from the sequences contained in the dataset; and the 

application of a clustering method to these feature vectors to produce groups of 

reads.

The desired result of the second of these steps is that the groups produced 

contain those sequences in the dataset that were derived from the same 

species in the sample. Ideally, the result would be a number of groups or 

clusters that is equal to the number of species  that contributed to the dataset, 

with each cluster containing all the sequences that originated from a single 

species with no contamination in the form of sequences from other organisms.

To maximise the success of this clustering, an appropriate type of feature vector 

should be chosen to represent the sequences in the first step. Feature vectors 

can be thought of as statistical representations of a sequence, which describe it 

in some way that is comparable between sequences. If these descriptions 

identify the differences between sequences from different species, while 

expressing the similarity of sequences from the same species  then the feature 

vectors can be used to group the data accordingly.

In this chapter, a comparison of four different types of feature vector taken from 

the literature is described. These four types of feature are applied, individually 

and in combination, to two synthetic datasets of different composition and 

complexity. The datasets simulate to a greater or lesser extent the type of data 

generated in high-throughput DNA sequencing, with the aim of finding the 

optimal vector type for clustering of these sequences.
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GC content

The GC content of DNA, the most well-known feature for characterising and 

comparing DNA sequencing, has been used to characterise sequences for 

many years (Musto, Naya et al. 2006; Ussery, Wassenaar et al. 2009), 

particularly in the classification and comparison of bacterial species, where it 

has become commonplace to refer to particular species as ‘GC-rich’ and ‘GC-

poor’ (e.g. Romero, Zavala et al. 2000; Naya, Romero et al. 2001). The GC 

content of bacterial species has been shown to vary across a wide range 

between species, in a bimodal distribution either side of the 50% GC content 

that might be expected as the most common (Ussery, Wassenaar et al. 2009), 

and it is this difference in GC content between the genomes of species, and the 

ease with which the content can be calculated that makes it such a widely used 

means of comparison.

The GC content of a sequence is simply the proportion of the sequence that is 

made up from guanine (G) and cytosine (C) nucleotides, calculated as the 

combined frequency of these two nucleotides, divided by the total number of 

nucleotides in the sequence. This proportion is equal across both strands of the 

DNA double helix, as each C or G nucleotide on one strand is  coupled with G or 

C on the opposing strand in Watson-Crick base-pairing (Watson and Crick 

1953).

Much investigation has been made into GC content, with a great deal of focus 

on the predicted increase in thermal stability conferred upon double-stranded 

DNA with an increased proportion of G/C basepairs (Bernardi and Bernardi 

1986; Galtier and Lobry 1997). This  stability at higher temperatures is thought to 

be a product of the three hydrogen bonds formed in the pairing of these two 

nucleotides on opposing strands, compared to two hydrogen bonds in Watson-

Crick pairing of adenine (A) and thymine (T) (Wada and Suyama 1986). 

The evolutionary cause of GC content variation between genomes has been 

debated at length for years, with increased thermal stability one much 

discussed theory, and alternatives including many other environmental 

pressures (Basak and Ghosh 2005; Musto, Naya et al. 2006; Wang, Susko et 

al. 2006) and biases in DNA replication and maintenance machinery (Wu, 

Zhang et al. 2012).
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GC content shows little variation throughout the genome in prokaryotic species 

(Sueoka 1962) although regional variations do exist, particularly around the 

centre of replication origin (Ussery, Wassenaar et al. 2009), and in coding 

regions (Bohlin, Skjerve et al. 2008). 

GC content varies much more markedly within the genomes of eukaryotic 

organisms, in regions known as isochores. Isochores in the human genome 

have been described as ~1 Mbp in length, and placed into five categories based 

on the proportion of G and C nucelotides in the sequence (Oliver, Bernaola-

Galván et al. 2001; Oliver, Carpena et al. 2002; Bernardi 2007). A correlation 

has been found between the locations of isochores  and the distribution of genes 

within the genome (Zoubak, Clay et al. 1996). 

It was originally thought that isochores were much more prominent in the 

genomes of warm-blooded organisms (Bernardi, Olofsson et al. 1985), but long-

range variations in GC content have been observed to some extent in yeasts 

and plants  (Oliver, Bernaola-Galván et al. 2001; Zhang and Zhang 2004; Oliver, 

Bernaola-Galvan et al. 2008).

Since full genome sequences have begun to be made available, the existence 

of isochores has been challenged (IHGC 2001), and uncertainty over their 

nature and definition remains (Elhaik, Graur et al. 2010).

The genome of Arabidopsis thaliana has been described as containing 15 

isochores across  it’s five chromosomes (Zhang and Zhang 2004), although this 

number and the criteria for assigning regions of sequence as isochores have 

been challenged (Chen and Gao 2005). The isochores described by (Zhang 

and Zhang 2004) span huge regions of the genome, up to ~10 Mbp in length. 

This  length and overall number of isochores is in stark contrast to the many ~1 

Mbp regions originally described as isochores in the human genome.

The existence of isochores in a genome could interfere with the grouping of 

sequencing reads obtained from a sample. If the variation in GC content within 

a genome in the sample were great enough between isochores, the sequencing 

reads generated from these different regions could be grouped separately. 

These separate groups of reads may overlap with those reads  produced from 

other genomes in the multi-species dataset, resulting in poorer inter-species 

separation of reads.
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In order to ascertain the likelihood of such interference occurring in the work in 

this  project, involving the genome of A. thaliana, a clustering analysis of 

sequences from this genome, classified by isochore, was performed here. This 

investigation was carried out to determine what effect, if any, the existence of 

isochores (as  defined by Zhang and Zhang 2004) might have on the grouping 

only of sequences from A. thaliana using the feature types and clustering 

methods used throughout this project.

As a descriptive property of DNA, GC content has been used previously, 

sometimes in conjunction with other sequence feature types, to group sequence 

fragments based on their predicted species of origin (Teeling, Meyerdierks et al. 

2004; Saeed and Halgamuge 2009). Given the consistency of GC content 

within the genome of prokaryotes, the ease with which it can be calculated, and 

its historical context as an established characteristic of DNA, the feature was 

used in the investigations described here (sometimes referred to simply as GC). 

The greater degree of variation of GC content within eukaryotic genomes was 

predicted to be a limitation when the methods were applied to datasets 

containing sequences from higher organisms.

Tetra-nucleotide frequency

First described by Karlin and Ladunga (1994), the distribution of the relative 

frequencies of oligonucleotide ‘words’ in DNA has become a popular basis for 

the comparison of genomic sequences of various lengths  (Pride, Meinersmann 

et al. 2003; Teeling, Meyerdierks et al. 2004; Paz, Kirzhner et al. 2006), gaining 

the nickname ‘genomic signature’ in the process (Karlin and Burge 1995). 

Previously published works have demonstrated that the distribution of 

oligonucleotide frequencies in a sequence are more similar in sequence 

fragments from the same species that in those from different species (Gentles 

and Karlin 2001), and established the capacity for these distributions to be used 

to group sequences according to the genome from which they originate (e.g. 

Teeling, Meyerdierks et al. 2004). 

The process for the calculation of the full oligonucleotide relative frequency 

distribution of a sequence is described in Figure 2.1. The distribution can be 

calculated for any user-defined integer ‘word’ length, ! (! = 2 in Fig. 2.1).
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Figure 2.1 Flow diagram describing the generation of an oligonucleotide frequency feature vector oligoFs, 
for sequence s.  In the example above, the word length ! = 2, while a ! = 4 was used in the work described 
in this project. A sliding (overlapping) window of size ! letters is used to count the frequency of all 4! 
possible combinations of letters in the DNA alphabet  A ∋ [A, C, G, T] (i - v).   These 4! counts,  which 

constitute individual dimensions of the feature vector can be reduced to  (4! + c)/2 counts, where c is the 
number of palindromic words of length ! (c  = 4!/2 for even values of !,  and 0 for odd values of !), by 
combining counts for words with those for their reverse complement and doubling the counts for 
palindromic words.  This has the effect of counting words on both strands of the sequence, and reduces 
the overall dimensionality of the resulting feature vector (vi).  These combined counts are normalised to 
the number of words in the sequence [sequence length - (word length - 1)] (vii), producing a feature vector, 
oligoFs, of relative oligonucleotide frequencies (viii).
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For a given sequence, the number of occurrences of each possible combination 

of nucleotides (word) of the given length is counted, with the words overlapping, 

such that each sequence produces a total of S - (! - 1) words, where S is 

defined as  the length of the sequence in base pairs. Each of these 

oligonucleotide (word) frequencies is then normalised to the total number of 

oligonucleotides in the sequence, and these relative frequency values form the 

feature vector. 

As each DNA sequence is composed from a four-letter nucleotide alphabet - A, 

C, G and T - the relative nucleotide frequency distribution is composed of 4! 

values; one for each combination of ! nucleotides. For example, the relative di-

nucleotide (! = 2) frequency distribution of a sequence contains 16 values, while 

the tetra-nucleotide (ℓ = 4) distribution contains 256. As depicted in Fig. 2.1, this 

dimensionality of the relative frequency distribution can be reduced by almost 

half by combining the frequencies of oligonucleotides with those of their reverse 

complement, and doubling the observed frequency of palindromic 

oligonucleotides. This process accounts for the oligonucleotide frequency 

distribution across both strands of the sequence, and reduces the size of the 

distributions produced from 4! to (4! + c)/2, where c is the number of palindromic 

oligonucleotides (c = 4!/2 for even values of !, and 0 for odd values  of !). As 

such, the di-nucleotide frequency distribution of a sequence can be expressed 

in 10 values instead of 16, and the tetra-nucleotide frequency distribution can 

be expressed in 136 values instead of 256. This  reduction could dramatically 

increase the runtime of any clustering methods applied to the data that are 

sensitive to high-dimensionality.

A balance must be struck between the increased specificity of the distribution 

generated from longer oligonucleotides and the increased sparseness that this 

exponential increase in distribution size introduces. A longer oligonucleotide 

produces a distribution of more values per sequence, which provides a greater 

scope for the differences and similarities between sequences to be expressed, 

but the larger number of possible oligonucleotide frequencies, counted from the 

same length of sequence, results  in a more sparsely-populated distribution. 

Indeed, it can be shown that >1% of all the approximately one trillion possible 

20 nucleotide ‘words’ can occur in the whole human genome of around 3 billion 

base pairs (Fedorova and Fedorov 2011).
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To illustrate this point further, if the di-nucleotide frequency distribution is taken 

from a sequence fragment 200 bp in length, sampled from a larger sequence, 

the distribution produced will be the product of 199 di-nucleotides  in 16 possible 

combinations, reduced to 10 dimensions as described previously. However, if 

the tetra-nucleotide frequency distribution is taken from the same 200 bp 

sequence, the distribution produced will be the product of 197 tetra-nucleotides 

in 256 possible combinations (reduced to 136 as above).

It follows from these calculations that the tetra-nucleotide frequency distribution 

will be more sparsely populated than that of the di-nucleotides in the sequence, 

having been sampled from a smaller space relative to the size of the distribution 

- the depth of sampling per oligonucleotide is greater for di-nucleotides, where 

the mean sampled frequency is equal to 199/16, than for tetra-nucleotides 

where the mean sampled frequency is  197/256. This distribution, then, is less 

likely to represent correctly the true distribution of tetra-nucleotides within the 

whole sequence (genome, chromosome etc.) from which the 200 bp was 

sampled, and is  subsequently less likely to be grouped accurately with another 

sequence sampled from the same source.

The other complication associated with increasing oligonucleotide length is in 

the calculation of the distribution. The computational requirement for calculation 

of these distributions scales exponentially with the increase in oligonucleotide 

length, proportional to the increase in the number of possible oligonucleotide 

combinations (4!).

Previously published work has shown that the benefit in discriminatory power 

associated with each additional nucleotide in the word length used (i.e. use of 

tri-nucleotides instead of di-nucleotides, use of penta-nucleotides instead of 

tetra-nucleotides etc.) decreases  considerably beyond a word length of four 

(Bohlin, Skjerve et al. 2008), and the research community has largely settled on 

the use of tetra-nucleotides (e.g. Pride, Meinersmann et al. 2003; Teeling, 

Meyerdierks et al. 2004; Willner, Thurber et al. 2009). Tetra-nucleotide 

frequency distributions (TNF) are the feature vectors used in the work described 

here.

Several variations  on oligonucleotide frequency distributions  have been used as 

genomic signatures, with the frequency counts being represented in different 
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ways to maximise the information provided by the distribution. A commonly used 

approach has been to represent observed oligonucleotide frequencies relative 

to their expected frequencies given the overall nucleotide composition of the 

sequence. For example, in a genome with a high overall GC content the 

frequency of oligonucleotides consisting largely of A and T nucleotides could be 

expected to be uniformly lower than of those of predominantly G and C 

nucleotides. By comparing the observed frequencies with the expected values, 

distribution vectors can be normalised to account in part for localised variation 

in nucleotide frequency. z-scores  calculated between observed and expected 

tetranucleotide frequencies (Teeling, Meyerdierks et al. 2004; Teeling, 

Waldmann et al. 2004) and probabilities  of observed tri- and tetranucleotides 

calculated by Markov chain estimation of expected values (Nasser, Breland et 

al. 2008) have been used to group sequences by species of origin.

Another variation on frequency counts  that has been used as a genomic 

signature feature is the tf-ti (term frequency-term importance) representation 

described by (Martin, Diaz et al. 2008). These feature distributions are 

calculated by dividing the observed frequency of a tetranucleotide by the 

product of the total number of tetranucleotides in that sequence and the total 

frequency of that tetranucleotide in all sequences in the dataset. This process 

results in the feature values for those tetranucleotides within the distribution that 

are rare within the sequence and/or common throughout the dataset being 

represented by a lower tf-ti score than those that are common within a 

sequence but relatively rare throughout the dataset as a whole. This 

representation is based on the rationale that it is the oligonucleotides that are 

not uniformly common or rare throughout the dataset but appear more often 

within individual sequences that are the most informative to any grouping 

performed.

Recently, it has been shown that the use of frequency distributions of only the 

palidromic words in a sequence can be used as a genomic signature feature 

(Lamprea-Burgunder, Ludin et al. 2011). These palindromic oligonucleotides are 

underrepresented in the genomes of many different species, and their 

distributions have been shown to allow grouping of ~10 kbp sequences by 

genome of origin (Lamprea-Burgunder, Ludin et al. 2011). The use of 

palindromic oligonucleotides, rather than the full distribution of all possible 
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words in each sequence, is beneficial to the analysis of large datasets, as the 

dimensionality and overall size of the feature vectors  produced from the 

sequences is reduced. Reduced dimensionality may be beneficial to the 

performance of any subsequent clustering analysis sensitive to this factor.

It is  noted here that the GC content features described above as a method for 

describing sequences can be interpreted as a very basic form of oligonucleotide 

frequency distribution vector, where the frequency of two mono-nucleotides 

have been combined to give a single value.

Similarly to the case of GC content, the mechanisms leading to these signature 

patterns in oligonucleotide frequency distributions of genomes are not well 

understood, but are thought to be the the product of slight variation in the DNA 

repair and replication machinery introducing slight bias towards/against the 

presence of certain oligonucleotides (Karlin, Mrázek et al. 1997).

Oligonucleotide frequency-derived error gradient

The oligonucleotide frequency-derived error gradient (OFDEG) was introduced 

by Isaam Saeed and Saman Halgamuge in 2009. As  the name suggests, this 

sequence feature is derived from oligonucleotide frequency distributions taken 

from sub-sequences sampled from each sequence in a dataset. An overview of 

the method by which these feature values are calculated is given in Figure 2.2.

For each sequence, a sub-sequence, LC, of length equal to that of the shortest 

sequence in the dataset, C, is taken. First, the frequency distribution of 

oligonucleotides of a defined length, m, is taken from this  sub-sequence as a 

whole. Next, a sample, si, of length i = m is taken from the sub-sequence, and 

the frequency distribution calculated from this sampled sequence. As this 

sampled sequence usually forms only a small fraction of the whole sub-

sequence, the frequency distribution is  likely to be considerably divergent from 

that of the whole, calculated previously. The error between these two 

distributions is calculated and stored.

This  process of sampling, distribution calculation and error measurement is 

repeated, with i increased by a step-size, t, at each iteration until the sampled 

sequence length is equal to that of the sub-sequence originally taken. As the 

sequences are at this  point identical, the error between the two distributions at 

this final stage will be equal to zero. Saeed and Halgamuge found that the error
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Figure 2.2 Flow diagram representing the processing of sequences to generate oligonucleotide frequency 
derived error gradient (OFDEG) feature values, as described in (Saeed & Halgamuge, 2009). The 
sequence is first trimmed from a random point up to length C, the length of the shortest sequence in the 
dataset,  producing LC. The tetranucleotide frequency distribution of LC, OL is calculated. A sub-sequence, 
si, of length i is taken. Initially, i = m, the length of the oligonucleotides used to calculate the frequency 
distribution (in this  case, m = 4) is  taken. The tetranucleotide frequency distribution of si, Os, is then 
calculated,  and ei, the error between Os and OL, is calculated and stored. The process of  sampling si from 
LC can be repeated a number of times, known as the sampling depth, d, and the mean error value, !i, 
taken. The process of sampling sub-sequences from LC is repeated for values of  i increasing by a step 
size, t,  with error values being calculated and stored at each sub-sequence length, until i ! C. The OFDEG 
statistic  is calculated as the gradient of a linear regression of the values of !i for lengths i between 0 and 
0.8*LC. For sequences of length greater than C,the whole process may be repeated several times, with 
the mean value of the error regression gradient subsequently used as the OFDEG value for the sequence.  
The user-defined number of these repeats is known as the re-sampling depth, r.

LC

repeat x r



values, collected as the sample size increases, decrease in a linear fashion for 

sampled sequences up to ~80% of the total length of the sub-sequence taken. 

When these error values calculated for sampled sequences between w and 

(0.8*LC) are plotted in a linear regression, the gradient of this regression forms 

the value for the OFDEG feature vector.

For all sequences longer than the shortest in the dataset, the process of taking 

a sub-sequence and calculating its OFDEG value may be repeated several 

times, with the sub-sequence taken at random on each iteration and the mean 

of the gradients calculated returned as the OFDEG feature value for the whole 

sequence. The number of times, r,  that this sub-sequence selection takes place 

is referred to as the re-sampling depth (Saeed and Halgamuge 2009).

The process of sampling a sequence at each step for calculation of the 

oligonucleotide distribution and error value may also be repeated, to increase 

the sample size at each step. The mean error across all sampled sequences is 

used for calculation of the OFDEG value. The number of times, d, that sampling 

is  repeated at each step is referred to as the sampling depth (Saeed and 

Halgamuge 2009).

In accordance with the values used in the original implementation of OFDEG 

features (Saeed and Halgamuge 2009), the re-sampling depth and sampling 

depth values used in the generation of these feature values in this work were 

set at 5 and 20 respectively.

Sequences were removed from the analysis if the OFDEG gradient was 

obtained from a regression with an R2 value <0.9. This measure was taken to 

prevent OFDEG values being used that were not derived from a consistent 

gradient on a linear regression. A lower R2 value is likely to be the result of 

OFDEG measurement from a partially highly-repetitive sequence, where the 

oligonucleotide distribution of shorter sections of the sequence is  more similar 

to that of the sequence as  a whole than would be expected from a ‘normal’ 

sequence taken from a non-repetitious section of the genome.

Inter-nucleotide distance

The concept of inter-nucleotide distances  (INDs) was introduced by Nair and 

Mahalakshmi (2005) as  a progression from binary indicator sequences (Voss 

1992; Anastassiou 2000), as a tool applied to the identification of promoter
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described by (Afreixo et al, 2009) (iii & iv).  The IND feature value is a measure of  the difference between these two distributions, calculated as the Kolmogorov-Smirnov distance 
between them(v).

i



regions in DNA sequences. A binary indicator sequence is a binary string of 

equal length to a string of symbols (in this case, the DNA sequence), such that 

the positions of particular type of symbol (A, C, G or T) in the sequence is 

denoted by a ‘1’ in the indicator sequence, and all other symbols by a ‘0’ (Voss 

1992). The principle was later applied to the characterisation and comparison of 

genomic sequences by Afreixo and colleagues (2009), introducing the use of 

IND features as a genomic signature pattern and using them to perform a 

phylogenetic analysis on DNA sequences from multiple species.

The process implemented in (Afreixo, Bastos  et al. 2009) to generate these IND 

feature vectors from a DNA sequence is outlined in Figure 2.3.

The global inter-nucleotide distance is defined as the number of nucleotide 

bases in a DNA sequence between one instance of a particular nucleotide - 

adenine (A), cytosine (C), guanine (G) or tyrosine (T) - and the next instance of 

that nucleotide. If these distances are counted and placed in a vector 

corresponding to the sequence, the frequency distribution of the distances in 

the vector can be determined. The IND feature value is a measure of how 

dissimilar this frequency distribution is  to the distribution of distances that would 

be expected if the sequence of nucleotides were the result of an independent 

random process, that is, where each nucleotide in the sequence was 

determined independently from the last, according to the relative proportions of 

the nucleotides observed in the whole sequence.

The dissimilarity is measured as the Kolmogorov-Smirnov (K-S) distance 

between the observed and expected IND distributions for each sequence. The 

distribution is calculated across the whole sequence, but only the observed and 

expected distribution of the first 25 distances - that is, the frequency distribution 

of inter-nucleotide distances 1, 2, 3, ..., 24, and 25 - are used to calculate the K-

S distance that forms the IND feature value for the sequence. In (Afreixo, 

Bastos et al. 2009), the first 100 distances were used for characterising 

sequences 500 kbp in length. Here, a distance limit of 25 was chosen for 

calculation of the distribution to account for the much shorter length of 

sequences under comparison. The limit was introduced as  a mechanism to 

guard against the possible generation of IND distributions that were excessively 

sparse, which could make comparison of sequences more difficult.
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On a related note, the authors of the original research establishing inter-

nucleotide distances as a descriptive feature of DNA sequences have recently 

published work on inter-dinucleotide distances of the human genome (Bastos, 

Afreixo et al. 2011). So far, no details  of investigation into the capacity for these 

features to be used as a genomic signature pattern have been published.

Feature type comparison

In order to find the optimal sequence feature vector, composed of any 

combination of the four feature types described, the quality of separation 

obtainable using each possible combination was studied and compared.

One of the challenges associated with performing clustering analysis with multi-

species sequencing data is  the lack of specific knowledge of the true content 

and proportions of the dataset. This limits the extent to which a quantitative 

evaluation can be performed on any results obtained, and the conclusions that 

can be drawn from such an analysis (Mavromatis, Ivanova et al. 2007).

In order to address this  problem, synthetic datasets have been introduced that 

either combine sequencing reads from several sequencing experiments 

performed on individual species (Mavromatis, Ivanova et al. 2007), or else 

contain sequencing reads produced from a mixed sample of known species in 

known proportions (Morgan, Darling et al. 2010).

The use of a simulated or synthetic dataset such as  these allows the clustering 

results produced with each feature type and combination of features to be 

compared directly through the error observed between the clustering and the 

‘true’ distribution of sequences within the dataset. When engineering such a 

dataset, it remains extremely challenging to accurately model the properties  of a 

true multi-species sequencing dataset, such as the particular sequence error 

and length profiles, the relative proportions of reads from different species, and 

the introduction of reads that do not effectively map to any contributing genome, 

due to high sequencing error, low quality base-calling or sequencing noise (e.g. 

Morgan, Darling et al. 2010).

In this chapter, the application of GC, IND, OFDEG and TNF features to 

clustering of two synthetic datasets is described, and the results  compared with 

the aim of identifying the feature(s) that enable the best separation of 

sequences according to their species of origin.
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First, a simplistic dataset was used as a basis  for investigation of clustering 

performance with an idealised dataset. Second, a more complex dataset 

containing sequences from more species, represented disproportionately, is 

used to provide a more stringent assessment of the clustering performance of 

each feature type and combination.

Dataset 1

The first round of feature comparisons was performed with an equally-

proportioned dataset of sequence fragments taken from the genome of three 

species that are not closely related: the plant Arabidopsis thaliana, the fungus 

Aspergillus fumigatus, and the bacteria Escherichia coli. The simplistic nature of 

this  dataset, referred to as  Dataset 1, allowed the upper limit of the clustering 

quality achievable with each feature and combination to be estimated. 

Several variants of the dataset were generated, each containing sequence 

fragments of a different mean length from 200 bp, at intervals  of 200 bp, up to 

1000 bp. It has been shown extensively that longer sequences  can be grouped 

more easily, due to the larger sample space from which the genomic signature 

pattern can be approximated (Abe, Kanaya et al. 2003; Huson, Auch et al. 

2007; Martin, Diaz et al. 2008; Saeed and Halgamuge 2009). However, most 

massively parallel sequencing technologies do not produce reads whose length 

approaches the upper boundary of the range chosen here. The most recent 454 

GS FLX Titanium platforms can produce reads as long as  1000 bp, but typically 

reads generated with this technology are ~700 bp in length, with those 

produced from Illumina, SOLiD and Ion Torrent platforms <400 bp in length. The 

evaluation of clustering results with each variant allowed the effect of increasing 

mean sequence length to be investigated, and provide an estimate of the 

potential for such an approach to be applied to data obtained from different 

sequencing platforms.

Dataset 1 contained 60,000 sequence fragments in total, divided into 20,000 

each from each of the three organisms. The size, constituents and proportions 

of this dataset are not typical of the properties that would be expected from a 

metagenomic or multi-species sequencing dataset, which would be larger 

(contain a larger number of sequences in total) and contain sequences 

originating from a larger number of species. In addition, the contributing species 
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would likely be more closely related and less equally proportioned.

simLC

The second dataset, simLC, was a previously published simulated dataset 

(Mavromatis, Ivanova et al. 2007), composed from Sanger sequencing reads of 

the genomes of 112 individual strains of 108 microbial species in varying 

proportions. (The published simLC dataset contains sequences from 113 strains 

from the 108 species, but, due to a database error, sequences from one of 

these species were omitted from the dataset implemented in the work described 

here.) A breakdown of simLC, showing the proportion of reads derived from 

each species in the dataset, is given in Figure 2.4.

In total, after reads were filtered according to the R2 parameter described for 

OFDEG features previously, the simLC dataset used consisted of 97,255 

individual reads, distributed in uneven proportions between the 112 constituent 

strains, with 43,306 reads (44.28%) derived from the three most highly 

represented - Rhodopseudomonas palustris HaA2, Bradyrhizobium sp. BTAi1, 

and Cytophaga hutchinsonii ATCC 33406 - while the least-represented species 

accounted for fewer than 200 sequences each. Additionally, the dataset 

consisted of four strains of R. palustris (BisA53, BisB5 BisB18 and the 

predominant HaA2), further increasing the dominance of this species within the 

dataset.

Rhodopseudomonas palustris is a species of gram-negative bacteria studied in 

large part because of its  highly adaptable metabolism (Larimer, Chain et al. 

2004). R. palustris is capable of switching between four types of metabolism - 

aerobic, anaerobic, chemo-autotrophic and photo-autotrophic (Larimer, Chain et 

al. 2004; Bell, Tan et al. 2010).

Bradyrhizobium sp. BTAi1 is a species  strain of bacteria that is  symbiotic to the 

roots  of plants and important in the process of nitrogen-fixation (van Rhijn and 

Vanderleyden, 1995). It is  the only species of Bradyrhizobium represented in 

simLC.

Cytophaga hutchinsonii is a species of gram-negative bacteria common in soil. 

It is  able to rapidly digest cellulose from plant tissue (Zhu et al. 2010). C. 

hutchinsonii ATCC 33406 is the only strain of the bacterium represented in 

simLC.
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The mean length of sequencing reads in the dataset was ~933 bp, which is 

considerably longer than that of reads produced in current high-throughput 

sequencing. Of the current high-throughput systems, 454 GS FLX Titanium 

sequencing (Roche/454 Life Sciences) produces the longest reads, but even 

the mean length of these reads is ~750 bp.

The larger mean length of sequencing reads  notwithstanding, the 

disproportionality of the dataset, the close relatedness of the species that 

constitute the dataset, and the large number of different species used all 

contributed to simLC providing a much more stringent test of the clustering 

capacity of the features investigated. 

CLARA

To ensure that any variation observed in results from each feature and 

combination could be accounted for solely by the different feature types used in 

each clustering experiment, the same clustering method was used for all 

experiments.

Clustering LARge Applications (CLARA) is a variant of partitioning around 

mediods (PAM, Kaufman and Rousseeuw 1990), itself closely related to k-

medians clustering (Kaufman and Rousseeuw 1990). Designed to apply the 

PAM method to larger datasets, CLARA takes a sample of the whole dataset 

and computes a dissimilarity matrix between these sampled datapoints. A user-

defined number of mediods, k, are selected to form the central points  of k 

clusters by finding the points with minimal summed dissimilarity to all the others 

in the same cluster within the sampled data. A datapoint within the sample is 

said to belong to the same cluster as a mediod if that datapoint is closer to that 

mediod than any other. After this  mediod selection has been completed for the 

sampled data, the remaining datapoints are assigned to the cluster containing 

their nearest mediod. 

This  clustering process is repeated multiple times with the best result returned, 

as determined by the mean distance from each datapoint in each cluster to its 

mediod.

Clustering by minimising dissimilarity between points makes the method robust 

to noise in the dataset (Kaufman and Rousseeuw 1990).
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Breakdown of simLC by reads-per-species

Figure 2.4 The proportion of reads in the simLC dataset derived from each of the 112 species and strains present.  A key is provided on the opposite page.



Materials and Methods

Preparation of A. thaliana fragments for isochore clustering analysis

The complete sequence of chromosome 1 of Arabidopsis thaliana 

(NC_003070.9, 30.4 Mbp, genomic GC content ~36%), obtained from the NCBI 

Genome database, was  divided into fragments of mean length 1 kb using the 

perl script ‘shortSeqCutter.pl’, reproduced in the Appendix. These sequence 

fragments were labelled according to the isochore/non-isochore region from 

which they originated along the chromosome. A breakdown of these regions is 

as follows (from Zhang and Zhang 2004): GC isochore, 0-9.74 Mbp; AT 

isochore, 9.74-13.48 Mbp; Centromeric isochore (Cen), 14.15-14.9 Mbp; non-

isochoric, all other sequence.

Dataset preparation - “Dataset 1”

The complete genome of Esherichia coli HS (NCBI accession number 

NC_009800.1, 4.6 Mbp, GC content ~51%) and Aspergillus fumigatus 

(NC_007197, 29.4 Mbp, GC content ~50%) and the complete sequence of 

chromosome 1 of Arabidopsis thaliana (NC_003070.9) were obtained from the 

NCBI Genome database and used to generate 60,000 short sequence 

fragments, with 20,000 fragments derived from the sequence of each species. 

Where insufficient sequence was available in one copy of the genome of E. coli, 

the sequence was treated as a circular, infinite repeat.

All non-ACGT characters had been removed from the complete sequences, to 

prevent these characters interfering with feature generation. Using 

‘shortSeqCutter.pl’ the genome and chromosome sequences were ‘cut’, starting 

from the 5’ terminus, into shorter fragments  n ± (0.1*n) bp in length, where n = 

[200, 400, 600, 800, 1000]. Therefore, Dataset 1 could be more appropriately 

described as a collection of datasets, consisting of sequence fragments of 

different mean lengths (n bp), derived from the same three genomic and 

chromosomal sequences.

Randomised sequences were also prepared to correspond to these datasets of 

sequence fragments. These randomised sequences were produced with the 

same length distribution as  the sequence fragments and the same nucleotide 

frequencies observed in these datasets.  That is, the same relative frequency of 

A, C, G and T was observed across all sequence fragments in the 
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corresponding ‘true’ dataset. These datasets of randomised sequences were 

generated using the perl script ‘randomSeqWriter.pl’ reproduced in Appendix A.

All perl scripts used in this  work were written and annotated by the author, 

unless otherwise stated.

Dataset preparation - simLC

The sequence dataset ‘simLC’ (Mavromatis, Ivanova et al. 2007) was used for 

feature evaluation. The dataset used contains sequencing reads from 112 

different species. Due to difficulties encountered when obtaining the data: the 

sequencing reads from Xylella fastidiosa Ann-1 were absent from the data used 

in this work.

A full breakdown of species  and corresponding sequence counts, and other 

additional information on the breakdown of the dataset is available at [http://

fames.jgi-psf.org./cgi-bin/dataset_desc.pl?dataset=sludge] (the row of details 

corresponding to X. fastidiosa Ann-1 should be disregarded in relation to this 

work), and is also reproduced in Appendix B. 

Any non-ACGT characters were removed from the sequences prior to use.

Generation of feature vectors

Files containing GC, IND, OFDEG and TNF features and their combinations 

were generated from sequences in FASTA format using the perl scripts 

‘featureWriter.pl’ and ‘featureComboWriter.pl’, reproduced in Appendix A. All 

sequences were filtered to remove any non-ACGT characters.

Clustering - CLARA

Clustering of feature vectors  was performed with CLARA (Clustering LARge 

Applications) (Kaufman and Rousseeuw 1990), using an implementation 

available in the R package cluster. Default settings were used unless otherwise 

stated. CLARA analysis of feature vector files was implemented using the perl 

script ‘claraAnalysisMulti.pl’, reproduced in Appendix A.

Clustering - evaluation by precision and recall

Effectivity of clustering was measured by two statistics, precision and recall 

(Kelley and Salzberg 2010).
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Precision (Pr) and recall (Rc) of clustering is calculated for each cluster as 

follows:

• The predominant class of data within the cluster is determined as the class 

represented by the largest number of datapoints in the cluster.

• The precision value of the cluster is calculated as the proportion of the total 

datapoints contained within the cluster that belong to this predominant class.

• The recall value of the cluster is calculated as the proportion of the total 

datapoints belonging to this predominant class that are contained within the 

cluster.

This is perhaps best illustrated with an example similar to the experiments 

carried out in this work. Let our example dataset for clustering contain 100 

sequences from three different species, species A, species B and species C, in 

a ratio of 2:1:1 such that 50 sequences are derived from A and 25 each from B 

and C. After clustering into three groups, we might observe the following results:

Table 2.1 Clustering of a 100-sequence dataset, derived from three species: A, B and C.

Species Cluster 1 Cluster 2 Cluster 3

A

B

C

35 5 10

0 25 0

10 0 15

For each cluster, we identify the most common class (species) of datapoint 

(sequence) present. These sequence counts are highlighted in bold above, 

showing that the predominant species for cluster 1 is species A, B for cluster 2 

and C for cluster 3.

The precision of clustering for each cluster is the proportion of all sequences in 

the cluster that belong to the predominant species: 

35/(35+0+10) = 35/45 = 77.78% for cluster 1,

25/(5+25+0) = 25/30 = 83.33% for cluster 2, and

15/(10+0+15) = 15/25 = 60.00% for cluster 3.

The recall of clustering for each cluster is the proportion of all sequences in the 

dataset belonging to the predominant species that are contained the cluster. So, 
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if the dataset contains 50 sequences from species A, and 25 from B and C, the 

recall of the three clusters is calculated as follows:

35/50 = 70% for cluster 1,

25/25 = 100% for cluster 2, and

15/25 = 60% for cluster 3.

Analysis of cluster files to produce precision and recall statistics was 

implemented using the perl scripts ‘claraResultsSummariser.pl’ and 

‘avePRwriter.pl’, reproduced in Appendix A.

Where clustering was evaluated at a higher level of taxonomy (genus, family 

etc.), precision and recall statistics were calculated using classifications of each 

sequence at this level.
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Results

Clustering of Arabidopsis thaliana isochores

Figure 2.5 shows the results of clustering of 1 kbp fragments of A. thaliana 

chromosome 1 into four groups, where sequences have been represented by 

the four individual feature types under investigation. The sequence fragments 

are labelled according to the isochore from which they originate within the 

chromosome.

The results in Fig. 2.5 indicated that sequences represented by GC, IND and 

TNF features were not grouped by isochore, with the clusters produced in 

CLARA analysis of these feature vectors containing sequences from each 

isochore in proportions close to those present in the data overall.

The groups produced with OFDEG feature vectors suggested that centromeric 

(Cen) sequences could be grouped separately from the majority of the 

remaining fragments under these conditions. However, it was hypothesised that 

this separation was more likely to be due to the more repetitive nature of 

centromeric sequence, which would be likely to result in an altered OFDEG 

profile in these sequences. 

The greater degree of repetition in the sequence would cause the error values 

of the sampled sub-sequences taken during OFDEG value calculation to 

decrease more rapidly. This difference in gradient, manifested in the OFDEG 

feature vector, would set these sequences apart from those from the less-

repetitive portions of the chromosome, resulting in their isolation in the 

clustering described here.

This analysis suggested that the presence of isochores in the genome of A. 

thaliana had little effect on the grouping of sequences obtained from each of the 

four feature types being compared. The read length of 1 kbp and uniform 

sampling strategy used here were not a good approximation of the sequencing 

reads that would be obtained through shotgun sequencing of the genome, but 

were considered acceptable for this preliminary analysis. It was assumed that 

the long range effect of increased or decreased GC content in isochores would 

be less likely to be discernible in shorter sequencing reads.
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Figure 2.5 Clustering of sequences from chromosome 1 of A. thaliana using CLARA with four types of feature, GC, IND, OFDEG, and TNF. The figure shows the proportion of 

sequences from the three isochores of the chromosome that was grouped into each of four clusters by CLARA. Sequences were taken from the chromosome at  ~1 kb intervals, and 

classified according to the isochores of the chromosome described by (Zhang and Zhang 2004). Sequences from the relatively GC-rich (GC), relatively GC-poor (AT) and centromeric 

isochores of the chromosome are labelled, as are sequences from non-isochoric regions.
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Clustering of Dataset 1

Tables 2.2 and 2.3 detail the precision and recall values obtained from CLARA 

clustering analysis of Dataset 1, for each feature type and their combinations 

generated across a range of mean sequence lengths. The dataset was 

clustered into three groups. 

The values provided in Tables 2.2 and 2.3 are the mean Pr and Rc statistics 

obtained across all three clusters, for each feature and mean sequence length. 

Also included in these tables are mean Pr and Rc values obtained from 

clustering of randomised sequences of Dataset 1 at two different mean 

sequence lengths.
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Table 2.2 Mean precision values of clusters produced by CLARA analysis of Dataset 1, characterised by four sequence composition features and their combinations.  The table shows 
values obtained from clustering with each feature or combination of features, across a range of increasing mean sequence lengths of Dataset 1, and includes two sets of precision 
values obtained from clustering of randomised sequences of Dataset 1.  The data was separated into three clusters.  Mean precision values between 0.6 and 0.7999 are highlighted in 
yellow, while values greater than or equal to 0.8 (clustering at mean precision of ! 80%) are emphasised and highlighted in amber.

Feature(s)

GC

IND

OFDEG

TNF

GC/IND

GC/OFDEG

GC/TNF

IND/OFDEG

IND/TNF

OFDEG/TNF

GC/IND/OFDEG

GC/IND/TNF

GC/OFDEG/TNF

IND/OFDEG/TNF

GC/IND/OFDEG/TNF

200 bp 200 bp Random 400 bp 400 bp Random 600 bp 800 bp 1000 bp

0.6408 0.3340 0.6594 0.3379 0.6848 0.7029 0.7155

0.3557 0.3347 0.3874 0.3372 0.3997 0.3968 0.4062

0.5143 0.3365 0.5584 0.3348 0.5721 0.5568 0.4753

0.7156 0.3360 0.7795 0.3391 0.8783 0.8302 0.8879

0.6348 0.3345 0.6762 0.3381 0.6950 0.6966 0.7152

0.6359 0.3352 0.6756 0.3374 0.6935 0.6997 0.7140

0.6534 0.3356 0.6699 0.3375 0.6709 0.6802 0.7470

0.3548 0.3355 0.3934 0.3379 0.4124 0.3926 0.3923

0.5736 0.3344 0.8441 0.3367 0.8791 0.7628 0.8921

0.7535 0.3377 0.7776 0.3350 0.7280 0.8757 0.8102

0.6274 0.3347 0.6732 0.3383 0.6776 0.7018 0.6965

0.6199 0.3342 0.6651 0.3391 0.7456 0.6914 0.7548

0.6598 0.3358 0.6811 0.3374 0.6539 0.7571 0.6810

0.5675 0.3344 0.7085 0.3370 0.8464 0.7694 0.6764

0.6542 0.3344 0.6462 0.3389 0.7266 0.7266 0.6728



Table 2.3 Mean recall values of clusters produced by CLARA analysis of Dataset 1,  characterised by four sequence composition features and their combinations.  The table shows 
values obtained from clustering with each feature or combination of features, across a range of increasing mean sequence lengths of Dataset 1,  and includes two sets of recall values 
obtained from clustering of randomised sequences of Dataset 1 (columns 3 and 5).   The data was separated into three clusters.  Mean recall values between 0.6 and 0.7999 are 
highlighted in yellow, while values greater than or equal to 0.8 (clustering at mean recall of ! 80%) are emphasised and highlighted in amber.

Feature(s)

GC

IND

OFDEG

TNF

GC/IND

GC/OFDEG

GC/TNF

IND/OFDEG

IND/TNF

OFDEG/TNF

GC/IND/OFDEG

GC/IND/TNF

GC/OFDEG/TNF

IND/OFDEG/TNF

GC/IND/OFDEG/TNF

200bp 200bp Random 400bp 400bp Random 600bp 800bp 1000bp

0.6132 0.3340 0.6436 0.3380 0.6753 0.6995 0.7124

0.3548 0.3347 0.3788 0.3372 0.3800 0.3870 0.3885

0.4810 0.3364 0.5405 0.3346 0.5536 0.5325 0.4581

0.6503 0.3350 0.6989 0.3390 0.8665 0.8000 0.8789

0.6280 0.3344 0.6696 0.3378 0.6862 0.6869 0.7110

0.6246 0.3353 0.6718 0.3374 0.6899 0.6951 0.7085

0.6035 0.3357 0.6522 0.3374 0.6470 0.6541 0.6392

0.3530 0.3357 0.3790 0.3377 0.3793 0.3882 0.3879

0.5912 0.3344 0.8286 0.3350 0.8653 0.7350 0.8906

0.7552 0.3376 0.7673 0.3350 0.6518 0.8715 0.7549

0.5825 0.3347 0.6535 0.3380 0.6685 0.6984 0.6804

0.6115 0.3342 0.6449 0.3389 0.7449 0.6755 0.7505

0.6007 0.3357 0.6080 0.3374 0.6082 0.7562 0.6593

0.5593 0.3343 0.7122 0.3352 0.8465 0.7589 0.6331

0.6167 0.3343 0.6082 0.3388 0.7127 0.7175 0.6284



Effect of increasing sequence size on clustering quality

A general trend could be identified in the results of CLARA clustering of Dataset 

1, of increasing quality of clustering with increasing mean sequence length in 

the dataset. For the majority of feature types and combinations, the precision 

and recall values obtained from clustering increased with the stepwise 

increases in mean sequence length. This effect is  particularly apparent in the Pr 

and Rc values obtained for clustering with GC content only, which displayed a 

roughly linear increase with increasing mean sequence length.

An exception to this  trend was observed between the values obtained from 

clustering at a mean length of 600 bp and 800 bp, where the quality of 

clustering with most feature types and combinations was observed to fall 

slightly. It was concluded that this was unlikely to be indicative of any upper 

sequence-length limit on clustering quality and may have been the result of 

chance inclusion of less easily distinguished regions of the genomes sampled 

as the total sampled area of each genome increased.

Clustering of randomised sequences - Dataset 1

The Pr and Rc values from clustering of randomised sequences of mean length 

200 bp and 400 bp (and of randomised sequences generated for the other 

mean sequence lengths but not shown here), remained at ~33% for all features 

and combinations and all mean sequence lengths. Given that the dataset 

consisted of sequences taken from three species in equal proportions, these 

results were what would be expected if the clustering occurred at random into 

three clusters of roughly equal size. This proved that any successful clustering 

of the true biological sequence fragments was the product of the specific order 

of nucleotides in the sequences, characterised by the feature vectors.

Feature evaluation - Dataset 1

In contrast to that of randomised sequences, the clustering of biological 

sequence fragments was shown to be more successful, albeit by varying 

degrees. The results showed that clustering with IND and IND+OFDEG features 

was only marginally better than those from the same features characterising 

randomised sequences, and showed little improvement with increasing 

sequence lengths - the mean Pr and Rc values for these two feature vector 

types failed to climb far beyond 40%. The clustering quality observed with the 
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use of OFDEG features was only marginally better, with Pr and Rc values ~55% 

for all mean sequence lengths except 1000 bp, where a substantial drop in 

quality to 45% and 47% was observed in mean Pr and Rc of clustering 

respectively.

Most of the remaining features and combinations returned mean Pr and Rc 

values of ~66-56% for the shortest set of sequences, with the quality of 

clustering increasing with sequence length, with some exceptions  between 600 

bp and 800 bp as mentioned previously. The best quality clustering was 

observed with TNF, IND+TNF, OFDEG+TNF and IND+OFDEG+TNF feature 

vectors. These feature combinations returned clusters with mean Pr and Rc 

values of ~80-90% for longer sequence lengths (600 bp, 800 bp and 1000 bp). 

The single best set of clusters were obtained from the use of IND+TNF feature 

vectors  with sequences of mean length 1000 bp (Pr = 89.21%, Rc = 89.06%). 

The same feature combination also returned markedly higher quality clusters 

than other feature vectors for sequences of mean length 400 bp (Pr = 84.41%, 

Rc = 82.86%).
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Clustering of simLC

Clustering of random and nonrandom sequences 

Initially, the simLC dataset was separated into 108 clusters in accordance with 

the total number of different species that were represented by the sequence 

reads present. Table 2.4 provides a summary of this clustering of the data with 

CLARA, represented as mean precision and recall values across all clusters 

and for all feature combinations, and includes the equivalent statistics for 

clustering of a corresponding dataset of randomised sequences.
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Table 2.4 Mean precision and recall values of clusters produced by CLARA analysis of simLC, characterised by four sequence composition features and their combinations.  The table 
shows values obtained from clustering the sequences with each feature or combination of  features and includes precision and recall values obtained from clustering of randomised 
sequences.  The data was separated into 108 clusters, in accordance with the total number of different species represented in the dataset.

Feature(s)

GC

IND

OFDEG

TNF

GC/IND

GC/OFDEG

GC/TNF

IND/OFDEG

IND/TNF

OFDEG/TNF

GC/IND/OFDEG

GC/IND/TNF

GC/OFDEG/TNF

IND/OFDEG/TNF

GC/IND/OFDEG/TNF

simLCsimLC simLC RandomisedsimLC Randomised

Precision Recall Precision Recall

0.2909 0.0340 0.2972 0.0093

0.3055 0.0098 0.2966 0.0093

0.3078 0.0134 0.2918 0.0093

0.4476 0.1148 0.3369 0.0097

0.3118 0.0386 0.2971 0.0093

0.2931 0.0336 0.2972 0.0093

0.4166 0.0864 0.3186 0.0094

0.2997 0.0141 0.2959 0.0093

0.3927 0.0866 0.3335 0.0094

0.4116 0.0969 0.3333 0.0096

0.2932 0.0401 0.2969 0.0093

0.3560 0.0782 0.3140 0.0095

0.3941 0.0771 0.3223 0.0094

0.4116 0.0768 0.3111 0.0094

0.4109 0.0734 0.3002 0.0093



Clustering of randomised sequences - simLC

These results provided a comparison between the quality of clustering achieved 

with the simLC dataset and randomised sequences. When applied to 

randomised sequences, all fifteen feature types and combinations returned 

clusters with mean Pr values of ~29-33% and mean Rc values  of ~0.93-0.97%. 

The predominant species in the dataset - that is, the species that is most 

represented in the sequences comprising the dataset - Rhodopseudomonas 

palustris (RP) contributed 30,739 sequences, or 31.6% of the total sequences 

clustered. 

As expected, the Pr and Rc statistics obtained here were consistent with those 

that would be obtained from uniform clustering of the data at random. The Pr 

statistics were calculated based on the best-represented species in each 

cluster, which after random clustering would be RP accounting for ~31.6% of 

sequences in the cluster. The Rc statistics  of ~0.92-0.93% for all features 

indicated that each cluster contained ~1/108 of the total sequences from the 

best-represented species in the dataset.

The Pr and Rc values obtained from clustering of the non-random, ‘true’ simLC 

sequences differ from those obtained from the randomised data, indicating that 

this clustering was not due to randomised grouping of the data.

Quality of clustering at species-level resolution

Variation was observed in the quality of clustering with different features and 

combinations. The highest-quality clustering at species level was observed with 

TNF feature vectors (mean Pr = 44.76%; mean Rc = 11.48%), while GC and 

GC+OFDEG feature vectors returned the lowest-quality clustering, with mean 

Pr values below those obtained with randomised sequences (29.09% and 

29.31% respectively) and mean recall values only marginally greater than those 

from clustering of randomised sequences with the same features (3.40% and 

3.36%).

The statistics detailed in Table 2.4 indicated that clustering at the species level 

was poor for all features  and combinations. On average, fewer than half of the 

sequences - in many cases fewer than one third - in any given cluster 

generated in this analysis originated from a single genome, and these 

sequences accounted for only a very small proportion (~1-10%) of the total 

Chapter 2 - Results  

68



sequences from that genome in the dataset.

With a relatively large number of clusters, and such closely related sequences, 

it was concluded that species-specific separation was outside the capabilities of 

this approach.

Nevertheless, a consistency was observed between the quality of clustering 

returned with the use of certain feature vectors in this analysis  and in the 

equivalent analysis with Dataset 1. The TNF and OFDEG+TNF feature vectors 

in particular returned relatively successful clustering in both cases.

Quality of clustering at higher levels of taxonomy

In view of the relatively poor separation observed in clustering simLC at 

species-level resolution, further investigation was performed comparing the 

quality of clustering obtained at lower resolution, where the data was clustered 

into a number of groups determined by the number of different classes at each 

taxonomic level from Genus, through Family and Order, to Class. A full 

taxonomic breakdown of the dataset is provided in Appendix B.

At each level, the data was clustered as before with all feature types and 

combinations for comparison and the results  were evaluated using labels  at the 

same level. The results of this analysis are detailed in Tables 2.5 and 2.6.

Chapter 2 - Results  

69



Table 2.5 Mean precision values of clusters produced by CLARA analysis of simLC at a range of taxonomic levels, characterised by four sequence composition features and their 
combinations.  The table shows values obtained from clustering the sequences with each feature or combination of features, calculated based on the taxonomic groups of organisms 
present  in the simLC dataset.  The number of  clusters that the data was separated into is given in the header to each column, with the corresponding phylogenetic level.  Cluster 
numbers were determined in accordance with the total number of different groups represented in the dataset at each level.

Feature(s) 108 (Species) 79 (Genus) 57 (Family) 39 (Order) 18 (Class)

GC 0.2909 0.3256 0.3998 0.4028 0.5037

IND 0.3055 0.3376 0.4328 0.4366 0.4797

OFDEG 0.3078 0.3346 0.4336 0.4342 0.5078

TNF 0.4476 0.4361 0.4878 0.5077 0.5436

GC/IND 0.3118 0.3656 0.4340 0.4674 0.5149

GC/OFDEG 0.2931 0.3240 0.3823 0.3950 0.4792

GC/TNF 0.4166 0.3977 0.4455 0.4835 0.4567

IND/OFDEG 0.2997 0.3530 0.4327 0.4423 0.4659

IND/TNF 0.3927 0.3856 0.4255 0.4931 0.5107

OFDEG/TNF 0.4116 0.4164 0.4712 0.4842 0.546

GC/IND/OFDEG 0.2932 0.3554 0.4190 0.4713 0.5305

GC/IND/TNF 0.3560 0.3650 0.4195 0.4760 0.5113

GC/OFDEG/TNF 0.3941 0.3894 0.4120 0.4767 0.4838

IND/OFDEG/TNF 0.4116 0.4132 0.4285 0.4487 0.4917

GC/IND/OFDEG/TNF 0.4109 0.3694 0.4162 0.4466 0.5038



Table 2.6 Mean recall values of clusters produced by CLARA analysis of simLC at a range of taxonomic levels, characterised by four sequence composition features and their 
combinations.  The table shows values obtained from clustering the sequences with each feature or combination of features, calculated based on the taxonomic groups of organisms 
present  in the simLC dataset.  The number of  clusters that the data was separated into is given in the header to each column, with the corresponding phylogenetic level.  Cluster 
numbers were determined in accordance with the total number of different taxonomic groups represented in the dataset at each level.

Feature(s) 108 (Species) 79 (Genus) 57 (Family) 39 (Order) 18 (Class)

GC 0.0340 0.0385 0.0526 0.0739 0.1337

IND 0.0098 0.0143 0.0175 0.0256 0.0556

OFDEG 0.0134 0.0216 0.0274 0.0408 0.0838

TNF 0.1148 0.1106 0.1167 0.1160 0.1549

GC/IND 0.0386 0.0398 0.0540 0.0673 0.1297

GC/OFDEG 0.0336 0.0401 0.0528 0.0675 0.1291

GC/TNF 0.0864 0.0756 0.0949 0.0938 0.1573

IND/OFDEG 0.0141 0.0176 0.0175 0.0273 0.0555

IND/TNF 0.0866 0.0690 0.0732 0.0905 0.1265

OFDEG/TNF 0.0969 0.1060 0.1198 0.1428 0.1717

GC/IND/OFDEG 0.0401 0.0417 0.0494 0.0634 0.1223

GC/IND/TNF 0.0782 0.0558 0.0558 0.0733 0.149

GC/OFDEG/TNF 0.0771 0.0902 0.1033 0.1070 0.1606

IND/OFDEG/TNF 0.0768 0.0676 0.0767 0.0878 0.1138

GC/IND/OFDEG/TNF 0.0734 0.0677 0.0765 0.0890 0.1257



This  clustering analysis applied to randomised sequences (results not shown 

here) was found to produce results similar to those obtained at the previously, 

with clusters produced at random from the dataset and no specific grouping 

observed for any feature type or sequence classification.

In analysis of the true simLC dataset, the quality of clustering was found to 

improve with decreasing specificity of sequence classification (i.e. at higher 

levels  of taxonomy). Some of this improvement in clustering quality was 

accounted for by the decrease in the number of clusters  generated at each 

resolution, as was observed in the results from the grouping of randomised 

sequences. With the exception of clustering with IND, OFDEG and IND

+OFDEG feature vectors, quality of clustering simLC exceeded considerably 

that of randomised sequences.

As observed in the results  discussed previously the feature vector types that 

consistently produced the best clustering here were TNF and OFDEG+TNF. 

Clustering with GC+OFDEG+TNF features produced clusters with relatively 

good mean Rc, but conversely poor mean Pr values at each taxonomic level. In 

each case, these clustering statistics  were inferior to those returned from 

clustering with OFDEG+TNF, the same feature vectors discounting GC content.

On average, clusters produced and evaluated at the Class  level - the highest 

taxonomic level investigated here - with OFDEG+TNF feature vectors contained 

17.17% of the total sequences in the dataset that originated from the 

predominant Class in the cluster (Rc), which constituted 54.6% of the 

sequences in the cluster (Pr). Similar results were obtained from TNF feature 

vectors (mean Pr = 54.36%; mean Rc = 15.49%).

Quality of clustering using a hybrid labeling system

The results discussed previously for Dataset 1 indicated that a selection of the 

sequence features implemented here could be used to cluster a simple, equally 

proportioned dataset into groups that largely consisted of sequences from one 

species. When feature vectors such as TNF and OFDEG+TNF were used, each 

cluster produced corresponded in the most part to a single class (species) of 

the sequences in the dataset.

The same accuracy of clustering was not observed with simLC, where more 

sequences were grouped from more, more closely related species in vastly 
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different proportions were grouped. The results given in Tables 2.4-2.6, and 

discussed above, indicated that the accurate grouping of the sequences from a 

single class (species, genus, family etc.) in the dataset, into a single cluster was 

beyond the scope of the feature vectors compared here.

simLC was more complex than the type of multi-species sequencing datasets of 

particular interest here, obtained from samples containing a smaller number of 

species that could be expected to be more evolutionarily distinct. In this context, 

if one or several of the clusters produced from simLC was found to be 

considerably enriched with sequences from one class within the dataset, this 

could indicate that similar results could be expected when the features are 

applied to clustering of true sequencing read data. 

After consideration had been made of these results in the context of the 

composition of the simLC dataset, clustering was repeated with the data being 

separated into five clusters, based on and evaluated with a hybrid classification 

of the sequencing reads. 

This  hybrid classification placed each sequence read in one of five groups 

according to whether the read originated from one of the three most well-

represented species in the dataset - RP, Bradyrhizobium sp. BTAi1 (BR1), and 

Cytophaga hutchinsonii ATCC 33406 (CPH), sequences from which constituted 

almost half of those present in the dataset - or from any of the other 105 

species. These reads were split into two further classes based on their phylum: 

placing reads from those 39 species belonging to the proteobacteria, including 

RP and BR1, in one group and those from the remaining 70 species in another. 

The relative proportions of the dataset according to this hybrid taxonomic 

classification are presented in Figure 2.6 and Table 2.7.

This  hybrid classification was chosen to provide an indication of the separation 

and grouping that could be achieved across the range of abundances in simLC, 

allowing the clustering to be interpreted at the species level for the three most 

prevalent organisms, and at phylum level for the large number of other species 

also present in much smaller proportions. Using this system of classification, the 

wider patterns of grouping in this relatively complex dataset can be more easily 

identified: the specific separation of the reads taken from species represented 

in great numbers can be viewed alongside the more general patterns of 
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taxonomic grouping throughout the dataset.
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R. palustris Bradyrhizobium BTAi1 C. hutchinsonii ATCC 33406
Other Proteobacteria Other Non-Proteobacteria

Figure 2.6 A breakdown of sequences in simLC,  showing the proportions derived from each of the three 

most well-represented species (R. palustris, Bradyrhizobium sp. BTAi1 and C. hutchinsonii ATCC 33406), 

and from the remaining 105 species represented, divided between those that belong to the phylum 

proteobacteria (the group containing R. palustris and Bradyrhizobium sp. BTAi1), and those that do not.

Table 2.7 The total number of sequences derived from each of the five groups in the hybrid classification 

of simLC.

Organism/Taxonomic Group Number of sequencing reads in dataset

R. palustris

Bradyrhizobium sp. BTAi1

C. hutchinsonii ATCC 33406

Other Proteobacteria

Other Non-Proteobacteria

Cluster Totals

30739

9272

5154

31788

20302

97255
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This  hybrid classification was used to allow a much more straightforward 

interpretation of the clustering achieved with each feature and combination. As 

the dataset was dominated by sequences from a small fraction of the organisms 

represented overall - the three best-represented species  account for almost one 

half of sequences in the dataset - a separation of the sequences from these 

organisms in the clustering would indicate that a similar separation might be 

possible with sequencing data from a sample containing fewer species overall.

The results of grouping simLC into five clusters with CLARA, in accordance with 

the number of different classes of sequence in the data, are depicted by the 

sets of comparative pie charts in Fig. 2.7. There are fifteen sets of charts in 

total, with each set corresponding to a different feature vector type and 

containing one pie chart for each cluster produced from the dataset. The total 

area of each pie chart is directly proportional to the total number of sequences 

contained within the cluster it represents.

It would not be reasonable to expect clustering to produce a perfect grouping of 

the reads into the five classes assigned in the data. Any grouping and 

separation achieved for the dataset could not be expected to take place 

selectively at the species and phylum level, depending on the origin of each 

read. As such, a perfect clustering into each of the five classes is unattainable 

for the method, and the results  reported with this  classification do not provide 

great insight into the overall quality of grouping throughout the dataset.

Instead, this hybrid classification of the dataset is  intended to provide a clearer 

visualisation of the general trends in clustering throughout the dataset. The 

clustering can be expected to remain virtually identical after each run if starting 

conditions and parameters are conserved, and the classification of sequences 

within the dataset determines the lines along which the effects of this  clustering 

are interpreted. The results presented previously, where cluster analysis was 

performed at different taxonomic levels, proved difficult to interpret for the wide 

range of representation and relatedness for the different contributing organisms. 

The hybrid classification used here was intended to provide an indication of the 

grouping of species from the three most predominant species  in the dataset, 

while also allowing the general trends in grouping of sequences from the many 

remaining, and much less well-represented, species.
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Figure 2.7(i) - 2.7(xv) Comparative pie charts  describing the distribution of sequence reads in simLC between five clusters generated by CLARA analysis  with each sequence feature 
and their combinations.  Each set  of pie charts corresponds to a feature set.  The differently coloured sections of each chart correspond to the proportion of sequence reads in the 
cluster that are derived from one of the three most well-represented species in the dataset, or from any of the remaining 105 species divided by phylum into groups of Proteobacteria 
and non-Proteobacteria.  The pie charts are comparable by size - the area of each chart if directly  proportional to the number of  sequence reads contained in the cluster that it 
represents.
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When compared to the distribution of sequences in simLC as a whole (Fig. 2.6), 

it is  clear that some features and combinations - specifically IND, OFDEG, IND

+OFDEG vectors - produce clusters  whose distributions are not markedly 

dissimilar (see Fig. 2.7(ii), 2.7(iii) and 2.7(viii)). This similarity in distribution 

within clusters indicates that the separation of the data in these instances was 

close to random, with no notable enrichment in the clusters  for any of the 

classes in the dataset. Unless stated otherwise, the clustering results produced 

with these feature vectors  will not be included in the subsequent further 

discussion.

Some of the clusters produced with the remaining feature variants were 

enriched for one or a number of the classes in the dataset. Several patterns 

were observed.

One prominent trend in the results was the tendency for sequences from CPH 

to be clustered separately from sequences from the other two predominant 

species in simLC, RP and BR1. This effect could be identified in most of the 

sets of clusters produced, and was particularly apparent in clustering with GC, 

GC + IND + OFDEG, GC + OFDEG + TNF, and GC + IND + OFDEG + TNF 

feature vectors (see Fig. 2.7(i), 2.7(xi), 2.7(xiii), and 2.7(xv) respectively). 

In the results from these feature sets, all or the vast majority of the sequences 

from CPH were grouped into one or two clusters, with the majority of the other 

sequences in the cluster(s) originating from species in the Proteobacteria and 

non-Proteobacteria classes, with very few or no sequences from the other two 

predominant species in the dataset also present. 

The same trend could be seen in the results from the remaining feature 

combinations (not including those identified previously as having returned poor 

clustering of the data). However, the extent of ‘contamination’ with RP and BR1 

in those clusters containing the bulk of the CPH sequences  was increased in 

these cases, indicating poorer separation of the sequences between species.

Another trend observed throughout the sets of clusters depicted in Fig. 2.7 was 

the tendency for sequences  from RP and BR1 to be clustered together. The 

sequences from these two species were observed to be consistently grouped 

together and separately from those derived from CPH. Most commonly, the vast 

majority of sequences from these two species were grouped into two of the 
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clusters produced (or three, in the case of IND + TNF vectors), with the majority 

of remaining sequences in these two clusters originating from other 

proteobacteria.

This  pattern was particularly well-established in the clusters produced with the 

use of TNF, GC + TNF, IND + TNF, and IND + OFDEG + TNF vectors (see Fig. 

2.7(iv), 2.7(vii), 2.7(ix) and 2.7(xiv) respectively).

Feature evaluation - simLC

While the clusters generated with the different feature types and sets were 

similar (excepting IND, OFDEG and IND+OFDEG, as discussed previously), 

some important differences in the quality of separation were identified.

Of the clusters produced with the use of a single feature type only, those 

obtained with TNF features (Fig. 2.7(iv)) were the most successful. This set 

consisted of three larger and two smaller clusters. Almost all CPH sequences 

were grouped into two clusters, which contained a negligible amount of 

sequences from RP and BR1. 

CPH reads were grouped into TNF Cluster 1 with Rc 54.62%, at Pr 12.94%, 

and into TNF Cluster 3 with Rc 44.51%, at Pr 23.36%. RP and BR1 reads 

accounted for only 2.16% and 0.80% of TNF Cluster 1, and 0.12% and 0.10% 

of TNF Cluster 3, respectively. The remainder of these two clusters was 

accounted for by sequences  from other proteobacterial (TNF Cluster 1: 47.79%; 

TNF Cluster 3: 15.55%) and non-proteobacterial species (TNF Cluster 1: 

36.31%; TNF Cluster 3: 60.87%).

Almost all sequences from RP and BR1 were split between two of the remaining 

clusters. RP reads were grouped with Rc 49.78% and Pr 42.95% in TNF Cluster 

4, and Rc 48.10% and Pr 68.31% in TNF Cluster 5, while BR1 reads were 

grouped into the same clusters at Rc 69.00% and Pr 17.96%, and Rc 27.89% 

and Pr 11.95%. (These Rc and Pr statistics are calculated for the species stated 

for ease of description, and are not necessarily the best-represented in the 

relevant clusters.) Sequences from other proteobacterial species  constituted 

29.89% and 15.37% of the clusters, with the remaining reads originating from 

other non-proteobacterial species. No CPH reads were grouped into either of 

these clusters.

The quality of this  grouping with TNF features was marginally improved relative 
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to that achieved with GC feature vectors (Fig. 2.7(i)), where the clusters 

produced displayed a similar pattern, with a slightly less marked separation 

achieved between proteobacterial and non-proteobacterial species.

Using the clusters produced with TNF vectors as a baseline, little improvement 

was observed in the clustering obtained using a combination of two feature 

types. With the exception of IND + OFDEG, discussed previously, similar 

patterns were observed in the clusters produced with these combinations. 

A slight improvement in the quality of clustering was obtained with OFDEG + 

TNF vectors (Fig. 2.7(x)), where 99.83% of CPH sequences were grouped into 

two clusters, and 98.56% and 98.80% of sequences from RP and BR1 

respectively spread between the remaining three clusters. As such, the overlap 

between reads from these two predominant proteobacterial species and CPH 

was slightly reduced in the clustering, relative to the clusters produced with TNF 

features alone. However, this improvement was only very marginal, and could 

be accounted for in the most part by the consideration in this case of a third 

cluster containing sequences from RP and BR1. In the grouping produced with 

TNF features alone, these reads were concentrated almost entirely in only two 

clusters. 

Another improvement was observed, with OFDEG + TNF vectors, in the 

enrichment of one particular cluster for RP sequences. In the results from both 

TNF and OFDEG + TNF feature vectors, one cluster was found to contain 

approximately half of the RP reads in the dataset (TNF Cluster 5 Rc: 48.10%; 

OFDEG + TNF Cluster 5 Rc: 50.08%). In results from OFDEG + TNF feature 

vectors, these reads  constituted 73.73% of the sequences in the cluster (this 

figure is equivalent to the precision value used previously), compared to 

68.31% with the use of TNF features alone. 

GC + TNF feature vectors  were also found to provide a slight improvement in 

clustering relative to the use of TNF features alone. As opposed to the results 

from TNF and OFDEG + TNF vectors described previously, a large proportion of 

RP reads were clustered together into a single cluster. GC + TNF Cluster 5 

contained 77.09% of all the sequences belonging to this  species (Rc), with 

these reads constituting 57.95% of the whole cluster (Pr). 

This  increased proportion of RP sequences grouped into a single cluster was a 
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product of the large size of this cluster relative to those produced with the other 

vector variants. As  such, these RP sequences did not constitute a greater 

portion of the cluster itself than was observed from other feature sets such as 

GC + IND and GC + OFDEG.

Clusters produced from the use of combinations of three, and all four, feature 

types displayed separation of the dataset that was generally comparable to that 

achieved with TNF or GC feature vectors alone, with little improvement 

observed from any set of features beyond the marginal increase in clustering 

accuracy described for GC + TNF and OFDEG + TNF vectors.

The clusters produced using IND + OFDEG + TNF feature vectors (Fig. 2.7(xiv)) 

displayed good separation of proteobacterial and non-proteobacterial species 

into four principal groups, with one of the clusters produced containing markedly 

fewer sequences. These clusters showed particularly clearly the effect of 

grouping and separation along broad taxonomic lines that was  observed 

throughout the results with most of the vector variants used.

Feature generation times

A comparison of the time taken to generate each of the four feature types was 

performed. GC, IND, OFDEG and TNF feature vectors  were each produced 

from FASTA files of 1000, 5000 and 10,000 sequences, randomly generated 

from the four-letter DNA alphabet to a mean length of 300 bp. The time taken 

for feature generation to be completed from these files was recorded in each 

case. The results are summarised in Table 4.2.

Feature vector files were produced on a single 2.2 GHz AMD Opteron 6174 

CPU with 512 KB memory. This exercise was carried out to compare the 

computational burden associated with each feature type, and highlights an 

important consideration.

From the results in the table, it can be seen that GC features  took the least time 

to produce, with feature generation taking <1s for all data files.

IND and TNF feature vectors were found to take approximately the same 

amount of time to produce, at a rate of ~550 sequences/second and generating 

10,000 feature vectors in <20s.
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Table 2.8 Time taken (in seconds) to produce GC, IND, OFDEG and TNF feature vectors from a dataset of 

1000, 5000 and 10,000 randomly generated sequences with a mean length of 300 bp.

Feature

Time taken (seconds)Time taken (seconds)Time taken (seconds)

1000 sequences 5000 sequences 10000 sequences

GC

IND

OFDEG

TNF

0 0 0

1 9 18

54 7245 18022

1 9 19

OFDEG features were found to take considerably longer to produce, with 

feature generation for 1000 sequences taking nearly one minute, while 

characterising 10,000 sequences took more than five hours.

It is likely that this huge difference in time required for feature generation per 

sequence was the result of the nested multiple sampling steps required in the 

production of these features. In the methodology used here to produce these 

features, the sampling and re-sampling depth parameters were set to 20 and 5 

respectively. As each re-sampling loop included the set number of sampling 

loops at each sub-sequence size from which an error value is calculated, the 

number of individual calculations required for feature generation was very large. 

For example, if the process of generating the OFDEG value for a single 

sequence involved 50 stepwise increases in sampled sub-sequence length, this 

would include the calculation of 50 x 20 x 5, or 5000, tetra-nucleotide frequency 

distributions alone!  The calculation of error values and the linear regression of 

these values was also repeated multiple times for each sequence during feature 

generation.
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Discussion

Dataset 1

At this early stage of analysis, the results of clustering Dataset 1 indicated that 

TNF features were a particularly effective representation of sequences for this 

type of analysis. This feature was common to all the vectors that provided the 

best clustering of this dataset - TNF alone, and IND+TNF, OFDEG+TNF and 

IND+OFDEG+TNF combined vectors. 

The use of some of these combinations provided a slight improvement on the 

clustering achieved with TNF vectors alone, with IND+TNF returning the single 

best set of clusters, measured by the Pr and Rc statistics  described. This may 

indicate that the IND and TNF features are complementary, allowing for a more 

complete separation between sequences from different genomes: in regions 

where the profiles of one feature overlap between two genomes, the use of 

multiple feature types could allow for sequences from these regions to be 

distinguished if the profiles of the other feature type(s) remain distinct. Further 

comparison of IND, TNF and the other feature vector types  will provide a more 

complete understanding of which vectors most reliably produce good clustering.

The equal split in the sequences between the three species in Dataset 1, as 

well as  the considerable evolutionary distance between them, were deemed to 

be the causes of the similarity observed between Pr and Rc values obtained 

from clustering with this dataset. For each feature type and combination, at 

each mean sequence length of the data clustered, these values were found to 

be very closely matched. This effect was a product of the clusters in the data 

being produced of largely equal size: if the three clusters are equally sized, at 

20,000 reads each, and each species is represented by 20,000 reads in the 

dataset, then the precision and recall statistics for each cluster will be identical.

The decrease in clustering quality observed with decreasing mean sequence 

length in Dataset 1 suggested that shorter sequencing reads are not well-suited 

to this kind of clustering analysis. It has been observed previously that short 

sequence lengths can be particularly limiting to clustering with genomic 

signature features (Abe, Kanaya et al. 2003; Huson, Auch et al. 2007; Martin, 

Diaz et al. 2008; Saeed and Halgamuge 2009), and these results added further 

weight to that conclusion. Reads from Illumina, SOLiD and Ion Torrent 
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platforms, all with typical lengths below 400 bp, would be difficult to cluster 

effectively using the methods applied here, especially considering the additional 

levels  of complexity associated with true sequencing data compared to the 

more straightforward composition of Dataset 1.

The construction of Dataset 1 with a variety of mean sequence lengths allowed 

the influence of this variable on clustering to be studied, while the equal 

proportions of sequences from different species, and the small number of 

different organisms used allowed a simple analysis of the quality of clustering 

obtained for each feature set. The large phylogenetic distance between the 

three species used also increased the likelihood that a good separation 

between species would be achieved in clustering.

However, as was stated when the dataset was introduced, Dataset 1 was too 

simplistic to be truly informative in the investigation of feature vectors, beyond a 

basic identification of the trends in the comparison. The species contained in 

the dataset were too arbitrary and distinct, and too evenly represented in the 

data. 

The dataset was also relatively small, when compared to the 100,000s of 

sequencing reads  now obtained as a matter of course from a standard high-

throughput sequencing experiment.

Finally, the process of incrementally cutting sequence fragments of a randomly 

determined length from the genomic DNA sequences of the three species used 

was an extremely simplistic means of modelling true sequencing data, which 

failed to take into account the intricacies of the ‘real-world’ datasets: sequencing 

error profiles, sequencing noise, average read lengths, length distributions and 

variable coverage of the original sequence.

The clustering analysis performed with Dataset 1 provided a platform for the 

comparison of the sequence features and their combinations, but the 

conclusions that could be drawn from the results were limited. In order for a 

more detailed understanding of the potential of each feature vector type to be 

reached, a closer representation of true sequencing data was needed for use in 

further investigations.

Feature vectors  identified from analysis  of Dataset 1, as possible candidates for 

further use, included TNF, IND + TNF, OFDEG + TNF and IND + OFDEG + TNF 
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vectors.

simLC

The levels of success  achieved in clustering of Dataset 1 were not reached 

when the same features and methods were applied to the more complex 

dataset, simLC. The results detailed in Tables 2.4-2.6 and in Fig. 2.7(i)-2.7(xv) 

indicated that the isolation of reads from the genome of a single species was 

beyond the scope of the approach taken here, when the species contributing to 

the dataset are so closely related and disproportionately-represented.

Instead, a more successful approach to the clustering of a more complex 

dataset such as this  one appeared to be to separate the data along broader 

taxonomic lines into a smaller number of clusters than the total number of 

individual contributing genomes. The hybrid classification system detailed in 

Fig. 2.6 made interpretation of the quality of this clustering much easier, 

allowing for a more in-depth analysis and comparison of the results  obtained 

with each feature type and combination.

Although no species-specific clusters could be produced, sequencing reads 

from CPH and the two predominant proteobacterial species RP and BR1 were 

separated particularly well with TNF feature vectors (Fig. 2.7(iv)) when the 

dataset was grouped in this way. Co-clustering was observed between reads 

from these predominant species and those from other species of the same 

phylum. Another cluster was also produced that contained very few reads from 

any of the three best-represented species. These results indicated that the 

grouping and separation of simLC according to the genome from which reads 

had originated was relatively successful with these features.

As with Dataset 1, TNF features  appeared to be the common factor in the 

vectors  that produced the most accurate clustering results, with GC content also 

providing a good basis for separation of the data, at least along the broad 

taxonomic lines described here. IND and OFDEG features  were shown to 

produce negligible specificity in grouping of the dataset unless combined with 

one of the aforementioned feature types. This indicated that GC and TNF 

features were responsible for the majority of the distinction made between 

reads from different genomes during clustering.

Excepting those sets of clusters derived from IND, OFDEG and IND+OFDEG 
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feature vectors, which were found to provide results  no better than could be 

expected from clustering at random, a typical set of clusters produced from 

simLC could be described as consisting of: two clusters containing between 

them all or almost all of the sequences from RP and BR1, and a large fraction of 

the sequences from other proteobacterial species in the dataset; one or two 

clusters containing between them all or almost all of the sequences from CPH, 

with the remainder of sequences in these clusters belong to the Proteobacteria 

and non-Proteobacteria classes; and one or two clusters containing, almost 

exclusively, sequences from the two non-specific classes, Proteobacteria and 

non-Proteobacteria.

The clustering of sequences from RP and BR1 together with sequences from 

other proteobacterial species indicated that sequences from related organisms 

were being grouped together.

These results appeared to confirm that some separation of sequences 

according to species of origin was possible using most of the feature vector 

types investigated. For datasets such as simLC that are derived in unequal 

proportions from many closely related organisms, the accurate grouping of all 

sequences derived from one species into an individual cluster appears likely to 

be outside the scope of these methods. However, the results of clustering 

interpreted with a hybrid, summarised classification of the data showed that 

sequences could be grouped along much more broad taxonomic lines. Such a 

broad separation could allow some clusters to be enriched with the sequences 

from organisms represented much more highly in the dataset.

In some of the sets of clusters summarised in Fig. 2.7 all or almost all CPH 

reads were grouped together into a single cluster, that is, with Rc ~100%. 

However, these sequences constituted only a minority within the cluster as a 

whole (with Pr <<100%) A similar pattern was observed for RP and BR1, where 

the majority of reads from these species were clustered into one or two clusters, 

as described previously.

It may be that the lack of precise clustering - the production of clusters returning 

high Pr statistics - was a product of the closely related nature of the organisms 

contributing to the dataset. The tendency for the clustering together of 

sequences from proteobacterial species - including RP and BR1 - and, 
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separately, of non-proteobacterial species appeared to support this. 

If a greater number of clusters were to be generated using the same 

methodology, some of the clusters  formed might accurately and individually 

group together all of the sequences present from a single organism. Finding the 

optimal number of clusters to maximise this  effect, however, is not trivial. This  is 

especially true where little or no prior knowledge of the composition of the 

dataset under investigation is available.

When applied to a dataset that might typically be obtained from sequencing of 

an infected tissue sample, containing sequences from a relatively small number 

of different species that are not closely related, even a separation along the 

broad lines observed here could result in a fairly accurate clustering of the data. 

For example, if sequencing data generated from a plant tissue sample infected 

with a fungal pathogen was clustered, to a resolution comparable to that 

observed here, a separation of the sequences by phylum would still be sufficient 

to produce groups containing the host and pathogen sequences separately.

simLC was a more complex synthetic sequencing dataset than Dataset 1, 

discussed previously. Containing 97,255 sequences - after filtering - derived 

from 112 microbial species, simLC was ~50% larger than Dataset 1 and the 

product of sequences from many more organisms, which were more closely 

related than A. thaliana, A. fumigatus and E. coli. The degree of representation 

of each of the organisms in the data was also much more varied in simLC, with 

almost half of all the sequences originating from only three of the species. This 

variation in the representation of organisms within the dataset was  a much more 

realistic simulation of the properties expected of a true sequencing dataset from 

a mixed sample, where it is unlikely that any two organisms would be found to 

contribute equal numbers of sequences.

The sequences  contained within simLC were actual sequencing reads, taken in 

differing proportions, from experiments  aimed at sequencing each of the 

species involved and combined to form the dataset. This ensured a more 

accurate simulation of true sequencing data, as each read may carry 

sequencing errors  and any variation in length of reads was a product of natural 

variation in the sequencing process, rather than an arbitrary and simplistic 

random variation, introduced artificially as in Dataset 1. 
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However, because the sequencing reads that comprise simLC originated from 

Sanger sequencing experiments, the length distribution of the reads and the 

errors introduced into the reads during sequencing were the product of this 

sequencing method, and could not be assumed to accurately represent those of 

a high-throughput sequencing platform.

Two of the limitations of Dataset 1, described previously, were applicable also to 

simLC. Firstly, the mean length of the sequences, ~933 bp, was greater than 

that of most high-throughput sequencing read datasets currently produced. 

Secondly, the size of the dataset (97,255 sequences) was relatively small when 

compared to the 100,000s of individual reads typically obtained from a single 

sequencing experiment. 

Additional concerns also existed over the complexity of the dataset and the 

short evolutionary distance between many of the species from which the 

dataset is derived. Given that the aim of this project was to determine whether 

any of the sequence features investigated were suitable for clustering of 

sequencing reads generated from infected tissue, which would commonly 

contain only a small number of relatively unrelated species in proportions  great 

enough to be relevant post-sequencing, the composition of the simLC dataset 

from 112 microbial species may be too complex for the results of the clustering 

experiments described here to be truly informative.

Feature vectors  identified here as possible candidates for further use were TNF, 

GC + TNF, OFDEG + TNF and IND + OFDEG + TNF vectors.
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Limitations of the sequence features

Analysis  of GC content is  a very basic method of characterising a sequence, 

and effective separation of sequences from different species using this feature 

relies upon the overall GC content of the genomes being distinct, an 

assumption that cannot be made for all combinations of species. In relation to 

the organisms represented in simLC, GC features appeared to be sufficient to 

group the data along broad taxonomic lines. This may have been the result of 

so many species being present in the dataset across a taxonomic range.

However, GC content is likely to prove a less effective sequence feature when 

applied to a dataset derived from species with a similar genomic GC content 

profile, or multi-cellular eukaryotic species with regional variations in their 

genomic GC content profile. While the GC content of prokaryotic genomes 

remains consistent throughout the full sequence, the existence of isochores in 

the genomes of higher organisms, meaning that the GC content varies over 

whole regions many kbp in size, may reduce the effectivity of this feature in 

application to more complex species. 

Characterising sequences from multiple isochores  by GC content increases the 

likelihood of overlaps occurring between the GC profiles  of sequences from the 

genomes of distinct species and subsequently of these sequences being 

grouped together incorrectly during clustering. Clustering by GC content may 

also result in sequences  originating from the same genome being clustered 

separately due to the existence of these isochores. The brief analysis of this 

effect presented here suggested that the presence of isochores in the genome 

of A. thaliana did not have a significant effect of sequence grouping. It is 

possible that a stronger effect on clustering may be observed for sequences 

from other species.

Similar limitations also apply to the tetra-nucleotide frequency profiles of 

genomes: two genomes, from species that are not closely related, could 

conceivably have very similar TNF distributions.  This would be likely to lead to 

difficulties in separating sequences from these species in a dataset. However, 

because the TNF profile of a sequence/genome consists of many individual 

frequency values, the likelihood of such circumstances arising, especially in two 

organisms represented in the same dataset, are much reduced compared to the 
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single-variable GC content feature.

The regional variation in GC content of eukaryotic genomes may also introduce 

some variation in oligonucleotide frequency across the whole genome. This 

effect has been compensated for in the past by measuring the relative 

abundance of oligonucleotides for each sequence, normalising the frequency of 

the oligonucleotide against those of its constituent nucleotides, a method that 

has been shown to provide a signature pattern consistent across the genome 

(Gentles and Karlin 2001; Simmons 2008). This representation of TNF features 

was not used in the investigations discussed here.

Coding regions of the genome have been shown to exhibit a slightly different 

inter-nucleotide distance (IND) profile from that of the genome as a whole, due 

to the existence of a reading frame of tri-nucleotide codons in these regions 

(Afreixo, Bastos et al. 2009). Beyond this, little investigation has been made into 

IND and OFDEG features in the context of the challenges associated with 

eukaryotic genomes, and the effect of the existence of isochores on the 

consistency of these features is not well understood. 

Application of all four feature types to datasets  containing sequences from 

eukaryotic organisms, beyond the simplistic case presented in Dataset 1, will 

provide a basis  for determining the potential of each feature for effective 

clustering of this kind of data.

While the overall computational time required to generate OFDEG statistics for 

a dataset was shown to be considerably larger than the equivalent for the other 

three feature types, this limitation may be mitigated in large part through 

parallelisation of the feature generation process. The increased time 

requirement for OFDEG features is  a consequence of the multiple nested 

sampling steps involved in their calculation. It would be relatively simple to run 

these individual sampling and re-sampling steps in parallel on multiple separate 

processing units, before collating the error values produced in each of these 

steps for computation of the gradient of their regression. 

If this parallelisation of OFDEG generation were carried out, and feature 

generation performed on an array of many processor cores, the ‘wall clock’ time 

required to produce these features could be reduced by a huge degree to a 

level comparable with that of the other types discussed here.
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Taking these factors  into consideration and based on the results of feature 

comparisons with the simLC dataset, TNF features were determined to be the 

most suitable for separation of sequences.

Conclusion and future work

As discussed previously, both datasets used in this chapter were synthetic and 

were not expected to perfectly mimic the characteristics of a ‘true’ high-

throughput sequencing dataset. In order for the potential of the features to be 

fully evaluated, another dataset should be found that more closely resembles 

such data, while retaining the advantages provided by a synthetic dataset: prior 

knowledge of the source of every sequence in dataset such that any clustering 

performed on the data can be assessed quantitatively.

An effort to develop such a dataset, through 454 GS FLX sequencing (Roche/

454 Life Sciences) of tissue from a plant with a fully sequenced genome, 

infected with a pathogen with a genome that has also been sequenced fully, are 

described in the next chapter.
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Preparation and analysis of high-throughput sequencing data 

from a host-pathogen system with fully available reference 

genome sequences

Abstract

A pair of sequencing datasets were prepared from Arabidopsis  thaliana plants 

inoculated with the bacterium Pseudomonas syringae pv. tomato DC3000 or 

Cucumber mosaic virus. The aim of these experiments was to investigate 

whether this approach could produce a dataset suitable as a basis for 

comparison of sequence features and methods of clustering analysis. As the full 

genome sequence was available for the plant host and both pathogens, the 

reads generated in sequencing by 454 GS FLX could be mapped to a 

contributing genome, providing insight into the relative proportion of reads 

derived from each species in the sample and potentially allowing the 

quantitative evaluation of the results of any clustering analysis performed on the 

dataset. The datasets produced from samples prepared with both pathogens 

were found to contain a negligible number of reads originating from the 

pathogen genome, preventing their use in any further clustering analysis and 

suggesting that this sequencing approach may not be suitable for the 

preparation of data for such analysis.
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Introduction

In the previous chapter, an assessment of sequence feature vectors was 

described. The features were used to cluster two synthetic datasets  that were 

developed to simulate the data produced by high-throughput DNA sequencing 

of multi-species samples. It was recognised that these datasets were not ideal 

resources for predicting or evaluating the performance of these feature vectors. 

In one case, this unsuitability stemmed from the simplicity of the dataset, where 

the sequences used from each species  were in equal proportion and derived 

from species that were very well separated in evolutionary distance. In the 

other, the dataset contained sequences that were too long and from too many 

different species, that were too closely related, for the scope of methods under 

investigation here. Finally, both datasets were composed of fewer than 105 

individual reads, placing them at the lower size limit of a high-throughput 

sequencing dataset, which can typically consist of millions of reads. A more 

stringent evaluation of sequence feature vectors could be carried out with a 

larger dataset.

A more suitable dataset for the evaluation of these features might be obtained 

by the actual sequencing of a sample containing multiple species, where all 

species present have the full sequence of their genome available. The use of 

such a dataset would have the combined advantages of providing the user prior 

knowledge of the species from which each sequence contained in the dataset 

has originated, while also removing the uncertainty of how any methods tested 

on the dataset will perform when applied to other datasets  that have been 

produced in true sequencing experiments  from a natural combination of 

species.

The aim of the work described in this chapter was to prepare a pair of 

sequencing datasets from a fully sequenced plant host infected with fully 

sequenced pathogen species, to investigate the nature and proportions of the 

sequencing reads produced, and to determine whether these datasets would be 

suitable for use in the evaluation of sequence clustering methods. By 

inoculating individuals  belonging to a host plant species with a fully sequenced 

genome, with a pathogen with a fully sequenced genome and preparing the 

infected tissue that is  produced for sequencing, a dataset of sequencing reads 
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belonging to either the host species or the pathogen should be produced. As 

the genome of each species used in production of the dataset is fully available, 

a reference database can be built from these sequences and (sequencing error 

and noise notwithstanding) used to assign an origin to each individual read 

produced in sequencing by mapping each one to one of the reference 

sequences. 

Once the reads have been assigned, the proportion of the dataset originating 

from each species can be determined, and its  suitability for use in the 

evaluation of clustering methods can be assessed. 

Arabidopsis thaliana ecotype Col-0 (A. thaliana, genome size ~119 Mbp, mean 

GC content ~36%) was chosen as  a suitable host plant. A. thaliana is  a very 

well-studied plant (Initiative 2000) that is fast-growing and has a small genome 

(~119 Mbp in five chromosomes (Swarbreck, Wilks et al. 2008)) in contrast to 

those of most of the other plant species that have had their genomes fully 

sequenced (e.g. genome size of the tomato plant, Solanum lycopersicum = 

~781 Mbp in 12 chromosomes, according to the most recent NCBI Genome 

assembly (http://www.ncbi.nlm.nih.gov/genome/assembly/243988/)). These 

properties made it a sensible candidate for use in these experiments: the short 

maturation period reducing the time between planting seeds and the individuals 

being ready for inoculation, and the small genome reducing the size of the 

reference database to be produced and therefore the time required to assign 

sequencing output to it.

Pseudomonas syringae pv. tomato DC3000 (P. syringae DC3000, genome size 

~6.4 Mbp + ~140 kbp in two plasmids, mean GC content ~58%) is a bacterial 

pathogen of A. thaliana (Whalen, Innes et al. 1991), whose interactions with the 

host plant have been extensively studied (Soylu, Brown et al. 2005; Thilmony, 

Underwood et al. 2006; Kim, Kim et al. 2008; Rico, McCraw et al. 2011). As a 

result of this, the interaction between A. thaliana and P. syringae pv. tomato 

DC3000 has  been established as a model system, and the genome of the 

bacteria has  been fully sequenced (Buell, Joardar et al. 2003). This made it 

suitable for use as a bacterial pathogen in this series of experiments.

Cucumber mosaic virus (CMV, genome size 6.45 kbp, mean GC content ~41%) 

is  a widespread plant pathogen, which is known to infect a wide range of plant 
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species including A. thaliana (Sosnova and Polak 1975). It can be transmitted 

easily between plants mechanically or by seed infection, and has a genome that 

has been fully sequenced, composed of three single-stranded RNAs (Rizzo and 

Palukaitis 1988; Rizzo and Palukaitis 1989; Owen, Shintaku et al. 1990). As a 

pathogen of A. thaliana with a fully sequenced genome, CMV was a suitable 

choice of pathogen for use in these experiments.

Two sequencing datasets were prepared, from A. thaliana tissue infected in one 

case with P. syringae pv. tomato DC3000 and in the other with CMV. In addition 

to these two datasets, two control datasets  were also prepared for each 

pathogen treatment, one from untreated plants  and another from “dummy 

inoculated” plants.

Dummy inoculated plants  were treated identically to plants that were inoculated 

with viral or bacterial material, but in the absence of any pathogenic material.  

For example, where true inoculations were carried out using bacteria 

suspended in water or virus-infected plant material homogenised in phosphate 

buffer, dummy inoculated plants were treated using only water or buffer. 

Sampling from these dummy inoculated plants acts as a control to ensure that 

any differences observed between inoculated and untreated samples were the 

result of the presence of the pathogen, rather than a product of the inoculation 

process itself.

Plants were harvested at an appropriate time point after inoculation, and DNA 

or RNA extracted from bacterial- and viral-treated plants  respectively. DNA or 

cDNA prepared from the extracted RNA was sequenced by 454 GS FLX 

(Roche/454 Life Sciences). The sequencing reads  produced were then mapped 

to the genomes of A. thaliana and the appropriate pathogen. The proportions of 

the datasets that originated from each species are reported and discussed, in 

the context of the feature comparison and clustering analysis  to be performed in 

the remainder of the project.
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Materials and Methods

Inoculation of plants

Arabidopsis thaliana ecotype Col-0 plants were grown for at least 18 days after 

sowing before any treatment was carried out. 

For each pathogen, three treatment groups were established: untreated, 

dummy inoculated and pathogen inoculated plants  (for brevity, sometimes 

referred to as UT, DI, and P. syringae or CMV according to pathogen). Plants 

belonging to each treatment group were grown and treated in separate growth 

chambers, under identical conditions, to prevent cross-contamination between 

groups.

• Viral inoculation

Fresh leaf material infected with Cucumber mosaic virus (CMV) was 

homogenised in phosphate buffer (0.04M NO2HPO4, 0.027M KH2PO4 in distilled 

water) to release sap, with Celite (powdered diatomite) added to increase 

abrasion of the leaf surface and improve the likelihood of viral inoculation.

This  mixture was rubbed onto the surface of a single lowest-level leaf on each 

target plant, and left for ~2 mins, before washing with distilled water.

Plants referred to as ‘dummy inoculated’ in relation to viral inoculation were 

treated identically, but rubbed with a mixture of phosphate buffer and Celite 

only.

Plants referred to as ‘untreated’ were left untreated.

• Bacterial inoculation

Target A. thaliana plants were sealed individually in clear polythene bags  for 

~18 hours prior to inoculation, to facilitate the uptake of bacteria into leaves 

and, after inoculation, resealed in the bags for ~72 hours.

Plants referred to as ‘untreated’ were not sealed in bags and were left 

untreated.

• Spraying protocol

Cultured Pseudomonas syringae pv. tomato DC3000 (referred to as simply P. 

syringae, unless otherwise specified) was suspended in distilled water until 

turbid. Each target plant was individually removed from its polythene bag, and 
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bacterial suspension sprayed onto the plant using a small, sterilised, plastic 

atomiser.

Plants referred to as  ‘dummy inoculated’ in relation to bacterial spraying 

inoculation were treated identically, but sprayed only with distilled water using a 

different, sterilised atomiser before being resealed in a polythene bag.

Plants referred to as ‘untreated’ were not sealed in bags and were left 

untreated.

• Rubbing protocol

Each plant was removed from its bag and cultured P. syringae from a plate of 

growth medium was rubbed gently onto the underside of a single, lowest-level 

leaf using a sterile gloved hand.

Plants referred to as ‘dummy inoculated’ (in relation to bacterial rubbing 

inoculation) were treated identically, but rubbed in the absence of any cultured 

bacteria before being resealed in a polythene bag.

Tissue sampling

Tissue samples (100 mg) were taken from leaves of A. thaliana. Where a 

specific leaf was used as the point of inoculation (i.e. in viral inoculation and 

bacterial rubbing inoculation), samples  were taken from systemic leaves, 

separate and distinct from the inoculated leaf and from a higher (younger) point 

on the plant stem. This  helped to ensure that any pathogen material detected 

during the analysis of these samples was the result of systemic infection of the 

plant, rather than residual material remaining on the surface of the treated leaf.

Tissue samples taken from viral treatment groups were stored at -80℃ until 

needed for RNA extraction. Tissue samples taken from bacterial treatment 

groups were stored at -20℃ until needed for DNA extraction.

Extraction of RNA from viral treatment groups

RNA was extracted viral treatment group samples, for analysis  by quantitative 

reverse transcription-coupled polymerase chain reaction (qRT-PCR).

Extraction of RNA was achieved using RNEasy Kit (Qiagen), following 

manufacturer’s  instructions for plant tissue samples, including all optional steps 

and using the buffers provided. Briefly, 100 mg plant tissue was homogenised in 
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Buffer RLT+!-mercaptoethanol (450 µl) by shaking vigorously with glass beads 

and applied to a QIAshredder column, then centrifuged to remove tissue debris. 

Ethanol (0.5 x sample volume) was added to the sample, which was then 

applied to a RNEasy spin column and centrifuged to bind RNA to the column. A 

DNase digestion (Appendix D of RNEasy Kit handbook) was performed on the 

immobilised sample, before washing with a series  of buffers (700 µl RW1, 2 x 

500 µl RPE). Extracted RNA was eluted in 2 x 30 µl RNase-free water and 

stored at -80 ℃ until needed. 

Two slightly different methods were used in RNA extraction. In method LqN, 

tissue samples were frozen in liquid nitrogen before and during 

homogenisation, until Buffer RLT was added. In method NLqN the use of liquid 

nitrogen was omitted.

Extraction of DNA from bacterial treatment groups

DNA was extracted from bacterial treatment group samples, for analysis by 

quantitative polymerase chain reaction (qPCR), to assess the relative 

concentration of P. syringae DNA present in the tissue samples taken.

Extraction of DNA was achieved using DNEasy Kit (Qiagen), following 

manufacturer’s  instructions for small plant tissue samples, including all optional 

steps (excepting those related to tissue disruption) and using the buffers 

provided. Tissue (100 mg) was homogenised in 400 µl Buffer AP1 (provided 

with DNEasy Kit) by shaking vigorously with glass beads, RNase added and the 

sample incubated for 10 minutes at room temperature to allow RNA digestion. 

Buffer AP2 (130 µl) was added and the sample applied to a QIAshredder 

column and centrifuged to remove tissue debris. A third buffer, 1.5 x sample 

volume of AP3+ethanol, was added and the sample applied to a DNEasy spin 

column and centrifuged to immobilise DNA. The sample was  washed with 

Buffer AW (2 x 500 µl) and DNA eluted in 2 x 50 µl Buffer AE and stored at -20 

℃ until needed. 

TaqMan assays

The presence and relative concentration of pathogenic material in a sample of 

extracted DNA or RNA was determined by quantitative polymerase chain 

reaction (qPCR) or quantitative reverse transcription-coupled polymerase chain 

reaction (qRT-PCR) respectively. These analyses were performed using a 
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TaqMan assay for each pathogen, and another assay to detect the presence of 

cytochrome oxidase. 

Cytochrome oxidase subunit 1 (COX) is one part of a ‘housekeeping’ enzyme, 

vital for the metabolism of cells  and as such the COX gene (contained in the 

mitochondrial genome) is highly conserved between species and consistently 

active in the great majority of cells. Consequently, an assay for this gene in 

plants is applicable as an assay to detect plant material across  many species 

(Boonham, Laurenson et al. 2009). In this experiment, fluorescent activity 

observed from the COX-specific assay demonstrates the presence of plant 

genetic material in the extracted RNA or DNA.

First described by (Holland, Abramson et al. 1991), a TaqMan assay is a set of 

biochemical reagents that combine to form a test specific to a target DNA 

sequence, where the level of fluorescence emitted from a sample under 

analysis is proportional to the number of copies of the target sequence present 

in the sample. 

The assay set consists of four reagents: two primers, which straddle or 

‘bookend’ the target sequence; a probe, consisting of the target sequence, a 

fluorophore and a ‘quencher’ group that absorbs  the fluorescence emitted from 

the fluorophore when in close proximity; and a DNA polymerase with 5’ 

exonuclease activity (Taq polymerase).
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Assay sequences:

• Cucumber mosaic virus

Forward primer: GCTTGTTTCGCGCATTCAA

Reverse primer: GAGGCAGRAACTTTACGRACYGT

Probe: FAM-TTAATCCTTTGCCGAAATTTGATTCTACCCGT-BHQ1

• Pseudomonas syringae pv. tomato DC3000

P. syringae forward primer: GTGAAACTGCATTCTTCCATGTG

P. syringae reverse primer: TTGCGTCCTGGCGTTGT

P. syringae probe: FAM-CCGGTGGCAGATCCTCTCCATACCA-BHQ1

• Cytochrome oxidase subunit 1

COX forward primer: CGTCGCATTCCAGATTATCCA

COX reverse primer: CAACTACGGATATATAAGRRCCRRAACTG

COX probe: VIC-AGGGCATTCCATCCAGCGTAAGCA-TAMRA

COX assay sequences originally published in (Boonham, Laurenson et al. 

2009).

qPCR and qRT-PCR

To assess the relative concentrations of cytochrome oxidase and CMV RNA 

present, samples of RNA extracted from viral treatment group plants were 

analysed by qRT-PCR. Similarly, DNA extracted from bacterial treatment group 

samples were analysed by qPCR, to determine the relative concentrations of 

COX and P. syringae DNA present.

As in standard PCR, commonly used to quickly produce many copies of a single 

target sequence, in qPCR and qRT-PCR a pair of primers are used to allow 

amplification of the target sequence, doubling the copy number for every 

thermal cycle of the reaction until insufficient primers remain or the cycling is 

halted and amplification ceases. As  new copies  of the target sequence are 

produced in this amplification, a probe binds to its reverse complement on one 

strand of the target sequence. As the reverse complement of this strand of the 

target sequence is  produced by the polymerase, the probe is  removed 

nucleotide-by-nucleotide - a process of ‘overwriting’ achieved by the 5’ 

Chapter 3 - Materials and Methods  

115



exonuclease activity of the Taq polymerase. As the probe is degraded by the 

Taq polymerase, the quenching group is removed from the proximity of the 

fluorophore, and the subsequent increase in emitted fluorescence can be 

observed by a fluorimeter.

As each probe sequence has  a single fluorophore attached, the observed 

increase in fluorescence remains proportional to the increase in copy number of 

the target sequence as long as sufficient probe remains available for binding to 

newly produced target sequences (assuming the primers are truly target-

specific i.e. no non-specific amplification is  taking place alongside the desired 

reaction). 

In qRT-PCR a reverse transcription step is  included before thermal cycling, to 

produce double-stranded cDNA copies of the RNA present in the sample. This 

allows the subsequent qPCR analysis to progress correctly.

qPCR and qRT-PCR results are represented as Ct values. The Ct value of an 

experiment is the number of amplification cycles required for fluorescence 

emitted from the TaqMan assay to reach a given threshold value. This threshold 

value will be reached in fewer cycles with increasing initial concentration of 

target sequence, which is assumed to correspond to initial concentration of 

pathogenic DNA/cDNA here. A decrease in Ct value of ~3.3 cycles corresponds 

to an approximately tenfold increase in starting concentration of target 

sequence. The threshold value from which Ct values were calculated was set at 

0.2, the default value for the software provided by Applied Biosystems for use 

with the equipment.
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Analysis of extracted RNA by qRT-PCR

Moloney Murine Leukemia Virus  (M-MuLV) Reverse Transcriptase was used to 

prepare cDNA from extracted RNA, using the TaqMan assay primers also used 

in target sequence detection during qRT-PCR analysis. Samples were prepared 

for analysis in 96-well plates, each well containing 25 µl prepared as detailed in 

Table 3.1. 

Each sample was analysed in duplicate for each of the two assays, for the 

detection of COX and CMV. Positive and negative control samples were 

prepared to ensure that a presence or absence of assay activity from a sample 

can be attributed only to a presence or absence of the target sequence in the 

extracted RNA sample. Positive controls  were prepared with RNA extracted 

from a sample known to be infected with CMV, while negative controls  were 

prepared as in Table 3.1 but without the addition of an RNA extract.

Prepared samples were cycled using an ABI 7900HT Fast Real-Time PCR 

System with the thermal cycling conditions detailed in Table 3.2.
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Table 3.1 Reagents and volumes used in preparation of samples for qRT-PCR analysis.

Reagent 
(stock concentration)

Volume 
(final concentration)

Buffer A 
(10X Stock Solution, Life Technologies)

MgCl2 (25 mM)

dNTPs (2.5 mM each)

Forward Primer (7.5 µM)

Reverse Primer (7.5 µM)

TaqMan Probe (5 µM)

AmpliTaq Gold DNA Polymerase 

(5 U/µl, Life Technologies)

M-MuLV Reverse Transcriptase 

(20 U/µl, Fermentas)

Extracted RNA sample

Water

2.5 µl (1x)

5.5 µl (5.5 mM)

2 µl (200 µM each)

1 µl (300 nM)

1 µl (300 nM)

0.5 µl (200 nM)

0.125 µl (0.625 U)

0.05 µl (1 U)

1 µl

11.375 µl

Table 3.2 Thermal cycling conditions for qRT-PCR analysis of extracted RNA samples.

Phase Number of cycles Temperature Time (mins:secs)

1 1

2 1

3 403 40

48 ℃ 30:00

95 ℃ 10:00

95 ℃ 0:15

60 ℃ 1:00
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Analysis of extracted DNA by qPCR

Extracted DNA samples were prepared for qPCR analysis  in 96-well plates, 

each well containing 25 µl prepared as detailed in Table 3.3. Samples were 

prepared in duplicate and with controls as described for RNA samples 

previously. Positive controls  were prepared with DNA from a sample known to 

contain both assay targets, while negative controls  were prepared as below, but 

without the addition of a DNA extract.

Prepared samples were cycled using an ABI 7900HT Fast Real-Time PCR 

System with the thermal cycling conditions detailed in Table 3.4.

Table 3.3 Reagents and volumes used in preparation of samples for qPCR analysis.

Reagent 
(stock concentration)

Volume 
(final concentration)

Buffer A (10X Stock Solution)

MgCl2 (25 mM)

dNTPs (2.5 mM each)

Forward Primer (7.5 µM)

Reverse Primer (7.5 µM)

TaqMan Probe (5 µM)

Taq Polymerase (Gold, 5 U/µl)

Extracted DNA sample

Water

2.5 µl (1x)

5.5 µl (5.5 mM)

2 µl (200 µM each)

1 µl (300 nM)

1 µl (300 nM)

0.5 µl (200 nM)

0.125 µl (0.625 U)

1 µl

11.375 µl

Table 3.4 Thermal cycling conditions for qPCR analysis of extracted DNA samples.

Phase Number of cycles Temperature Time (mins:secs)

1 1

2 1

3 403 40

50 ℃ 2:00

95 ℃ 10:00

95 ℃ 0:15

60 ℃ 1:00

Chapter 3 - Materials and Methods  

119



Preparation of cDNA for sequencing from extracted RNA

A 10 µl aliquot of each of 20 RNA samples from the three viral treatment groups 

was pooled and prepared for sequencing by reverse transcription to cDNA. 

cDNA was synthesised from each of these 200 µl pooled samples using the 

First-Strand cDNA Synthesis  Kit (Fermentas) according to the manufacturers 

instructions for first- and second-strand cDNA synthesis.

Quantification of total DNA

DNA content of samples was quantified using a Qubit fluorimeter (Invitrogen), in 

preparation for sequencing of extracted DNA/RNA. DNA/cDNA samples (1 µl) 

were quantified using the ‘high specificity dsDNA’ kit, containing a set of 

standards for calibration of the fluorimeter and reagents  for preparation of 

samples for detection, for use with the fluorimeter as per the manufacturer’s 

instructions.

Preparation of extracted DNA and RNA for sequencing

It was estimated that a total of ~500 ng of DNA or cDNA for each sample would 

be sufficient for sequencing by 454 GS FLX (Roche/454 Life Sciences). A 15 µl 

aliquot was taken from each of 15 DNA extracts from untreated plants and 

pooled, while 10µl aliquots were taken and pooled from each of 15 DNA 

extracts from plants in the dummy inoculated and P. syringae inoculated 

treatment groups to give !500 ng total DNA for sequencing for each group. 

These volumes were chosen based on the concentration in extracts taken from 

each treatment group (results not shown here). The quantity of DNA present in 

these pooled samples was also determined, to ensure sufficient DNA was 

present for sequencing. Results of this quantification analysis, indicating total 

DNA present in the pooled samples, are given in Table 3.5.

The concentration of cDNA synthesised from pooled RNA extracts was also 

determined by fluorimeter analysis. cDNA synthesis was repeated for all three 

treatment groups, and a third time for CMV-inoculated samples, due to 

insufficient cDNA yield from the first round of cDNA synthesis. 

cDNA was purified in preparation for 454 GS FLX DNA sequencing, according 

to the manufacturer’s instructions  for sample preparation. cDNA yield after 

purification of the combined products of these multiple rounds of synthesis are 

given in Table 3.5.
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Table 3.5 Amount  of DNA sequenced from each treatment group, according to results of  quantification 

analysis with Qubit fluorimeter. *ds-cDNA purified from the combined product of  two rounds of double-

stranded cDNA synthesis from pooled RNA samples. **ds-cDNA purified from the combined product of 

three rounds of double-stranded cDNA synthesis pooled RNA samples

Treatment Group DNA/cDNA sequenced (ng)

Untreated Plant DNA

Dummy Inoculated Plant DNA

P. syringae Inoculated Plant DNA

Untreated Plant cDNA

Dummy Inoculated Plant cDNA

CMV Inoculated Plant cDNA

672

588

924

327*

376*

359**

Pooled DNA samples from bacterial inoculation groups were determined to 

contain over 500ng DNA for sequencing. After purification, total cDNA yields 

available for sequencing were below 500ng. While acknowledging concerns 

over the relatively small amount of cDNA available for sequencing, no further 

cDNA was prepared in view of the purity of the cDNA and constraints on 

available resources.

The six samples were prepared for sequencing according to the manufacturer’s 

instructions and sequenced in two separate sequencing runs, corresponding to 

the two pathogens used, and each sample was sequenced on one region of a 

single 454 GS FLX plate.

Assignment of sequencing reads to reference genomes

After sequencing was completed, reads generated from each sample were 

aligned against two reference genomes using SSAHA2 (Ning, Cox et al. 2001). 

Sequences used were the complete genomes of Arabidopsis thaliana Col-0 

(NCBI Genome accession numbers NC_003070, NC_000932 and NC_001284) 

and of the appropriate pathogen for each database - either Pseudomonas 

syringae pv. tomato DC3000 (NC_004578, NC_004632, NC_004633) or 

Cucumber mosaic virus (NC_002035). These reference genomes included the 

A. thaliana organellar genomes and two plasmids found in P. syringae pv. 

tomato DC3000, as well as  the chromosomal genomes, and all three CMV 

genomic RNA sequences.
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SSAHA2 is a sequence alignment program, designed to allow fast mapping of 

short DNA sequences to a user-defined reference database. The software 

compiles a hash table of oligonucleotide words (13-mers in the default settings 

for 454 sequencing reads) from the sequences in the reference database and 

holds it in the system memory. This ready availability of the whole hash table 

allows SSAHA2 to rapidly find exact matches, to seed alignments between 

query sequences and a reference sequence and return these as ‘hits’ between 

the two sequences (Ning, Cox et al. 2001). A newer software package, SMALT, 

has recently been released that the developers promise improves on the 

performance and ease of use of SSAHA2 (available from http://

www.sanger.ac.uk/resources/software/smalt/), although at the time of writing, no 

scientific report has yet been published detailing this software. 

A sequencing read was assigned to a reference sequence if an alignment was 

found between the two sequences that did not exceed an expectation value (E-

value) cutoff of 1 x 10-4. This expectation value is a measure of the likelihood 

that this  alignment could occur by chance between two unrelated sequences. 

SSAHA2 ranks alignment hits between a query and a reference sequence in 

order of alignment quality, based on the Smith-Waterman score (Waterman and 

Smith 1981), with the hit returning the highest score ranked first. Where multiple 

hits  were found for a single read here, this ranking based on S-W score was 

used to assign the read to a reference sequence.

Reads for which no alignment was found were placed in two groups: reads for 

which no hits were found for either reference genome and reads for which no 

alignment with a sufficiently low E-value were found.

SSAHA2 database generation and analysis  was performed according to the 

developers instructions, using the built-in settings for 454 GS FLX sequencing 

reads (using the -454 tag on execution), which specifies the following options: -

kmer 13; -skip 3; -seeds 2; -score 30; -cmatch 10; -ckmer 6 (detailed in the user 

manual for SSAHA2).

Processing of SSAHA2 results  (in SAM format) and E-value-limited assignment 

of sequencing reads to a reference genome were carried out using the perl 

script ‘SAMseqAssigner.pl’, reproduced in Appendix A.
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Results

Comparison of bacterial inoculation techniques

Two commonly used bacterial inoculation techniques were compared, to 

determine which most efficiently produced infection in Arabidopsis thaliana 

plants for dataset generation. Eight plants  were inoculated with P. syringae pv. 

tomato DC3000, using two alternative methods of rubbing and spraying the 

bacteria onto four plants each. 

Samples were taken from each plant at 17 and 21 days post-inoculation, and 

analysed by qPCR, to determine concentration of P. syringae DNA present. 

Results are given in Table 3.6.

Table 3.6 Mean threshold fluorescence cycle (Ct) values for P. syringae pv tomato DC3000 and 

cytochrome oxidase (COX) assay of inoculated A. thaliana tissue samples. Lower Ct values indicate a 

higher initial concentration of assay target DN9A sequence in the sample prior to amplification in qPCR. 

Samples marked as ‘not detected’  possessed a starting concentration that  was insufficient to be detected 

in the forty thermal cycles over which amplification occurred.

Inoculation Method RubRub SpraySpray

Assay P. syringae COX P. syringae COX

Dummy Inoculated 
Samples Day 17 not detected 33.5759 not detected 33.7736

P. syringae Inoculated 
Samples Day 17 34.8489 33.5480 30.6720 33.5957

Dummy Inoculated 
Samples Day 21 not detected 32.9825 not detected 32.5474

P. syringae Inoculated 
Samples Day 21 32.4631 32.2923 30.1573 32.7670

In the sets of samples taken at both time points, the Ct values measured with 

the P. syringae assay from samples prepared by spraying inoculation were 

found to be lower than those measured from samples inoculated by rubbing 

protocol. 

As a lower mean Ct value indicates a greater starting concentration of target 

sequence, it was concluded that the concentration of bacterial DNA obtained 

from samples inoculated by spraying protocol was consistently higher than 
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those from samples inoculated by rubbing. At both sampling time points, the Ct 

values measured with the COX assay were similar between samples  prepared 

with both inoculation methods, suggesting that the differences in Ct values 

observed with the pathogen assay were the result of differences in starting 

concentration of P. syringae DNA, as opposed to differences in overall starting 

concentration of all DNA.

From the higher yields observed from samples prepared by spraying 

inoculation, it was concluded that this was the more efficient method for 

inoculation of the A. thaliana plants with the cultured bacteria. This method was 

used to inoculate plants used in all subsequent experiments. 

Determination of optimal tissue sampling time

The composition of a sequencing dataset is determined in part by the relative 

proportions of host and pathogen DNA/cDNA present in the sequenced sample. 

As the pathogen genome is  considerably smaller than that of the plant host, in 

order to try to ensure that the pathogen is represented by as many reads as 

possible in a sequencing dataset produced from the samples, the level of 

pathogen present in the samples should be maximised. As such, tissue samples 

should be taken at an appropriate time point post-inoculation when levels of 

pathogen material in the tissue are at their highest.

To estimate the optimal sampling time post-inoculation to maximise the level of 

pathogen material present in tissue samples, three tissue samples  were taken 

from inoculated plants at three-day time intervals  (where day 0 was the point of 

inoculation). DNA, for P. syringae-inoculated plant samples, and RNA extracts, 

for CMV-inoculated plant samples, from these samples were analysed by 

qPCR/qRT-PCR. Results are given in Table 3.7 and Figure 3.1.
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Figure 3.1 Mean Ct values resulting from qPCR (DNA) or qRT-PCR (RNA) analysis with cytochrome 

oxidase- and pathogen-specific TaqMan assays, measured from plant tissue samples taken every three 

days over 24 days. Values for DNA samples (with P. syringae assay) are shown in (a),  with values for 

RNA samples (with CMV assay) in (b). Standard error bars are given for each mean Ct value.
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Table 3.7 Mean threshold fluorescence cycle (Ct) values for P syringae pv tomato DC3000 and CMV 

TaqMan assay of inoculated A thaliana tissue samples taken over 24 days. Lower Ct values indicate a 

higher initial concentration of pathogenic DNA/cDNA in the sample prior to amplification in qPCR.

Sampling Time 
(days post-
inoculation)

Mean Ct Value - 
P. syringae

Standard Error - 
P. syringae

Mean Ct Value - 
CMV

Standard Error - 
CMV

3 28.81 2.61 27.47 2.21

6 23.73 0.67 29.28 2.95

9 24.23 0.47 26.09 5.81

12 26.73 1.37 18.50 1.01

15 23.68 0.92 22.41 3.95

18 30.00 3.72 23.85 3.44

21 29.23 3.24 22.88 3.85

24 28.01 1.48 24.05 3.78

A correlation was observed between the mean Ct values derived from the P. 

syringae and the COX assay. This indicated that the variation observed in P. 

syringae assay Ct values  could mostly be attributed to variation in the absolute 

DNA yield from the tissue samples taken at each time point, rather than 

variation in the starting concentration of P. syringae DNA present. This 

correlation suggested that the concentration of P. syringae DNA remained fairly 

consistent throughout the course of the experiment. 

The same correlation was not observed between mean Ct values of COX and 

CMV in the qRT-PCR results. The amplification profiles of the COX assay were 

poor (compared to the exponential amplification expected in successful qPCR/

qRT-PCR analysis) and inconsistent (see Figures 3.1 and 3.2), making it very 

difficult to observe any pattern in the results. It was suggested that this  poor 

amplification may have been the result of degradation of RNA prior to analysis. 

This  degradation was most likely to have taken place during extraction, as 

tissue and extracted RNA were kept frozen at all other times  before analysis. If 

the breakdown of RNA could be prevented prior to analysis, it was predicted 

that a repeat of this time course would be more informative.

A more identifiable pattern was observed in the mean Ct values  derived from 
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the CMV assay. If the poor amplification observed with the COX assay was in 

fact due to degradation during extraction, the relative absence of this effect with 

the CMV assay may have been due to protection of the viral RNA by the protein 

capsid during the early stages of extraction. 

It was estimated that the optimal time point post-inoculation for harvesting 

tissue samples was  15 days and 12 days for plants inoculated with P. syringae 

and CMV respectively. The choice of time point for sampling of P. syringae 

inoculated was made as day 15 post-inoculation, based on the lowest mean Ct 

value observed throughout the time course. The lack of stable COX assay 

results, to compare the CMV values with, led to the time point for harvesting of 

viral treatment groups to be chosen as day 12, the point at which the lowest 

absolute mean Ct value was observed with the CMV assay.

Study of RNA degradation in samples extracted using liquid nitrogen

The RNA samples used in the analyses described so far were extracted using 

the method NLqN. For examples of the poor amplification observed for COX 

RNA in these samples, see Table 3.7 and Figures 3.1 and 3.2.

In order to test the hypothesis that the poor COX amplification was the result of 

RNA degradation during extraction, and subsequently adopt the most effective 

method of extraction, a second protocol was devised (method LqN), using liquid 

nitrogen to keep the plant tissue frozen during the early stages of the extraction 

process when the tissue was homogenised, and extracts prepared by these two 

methods were compared. Freezing the tissue minimises degradation of the 

RNA by RNases prior to stabilisation with the addition of Buffer RLT, which was 

predicted to be the principal factor influencing the poor quality of RNA observed 

in the samples previously. Other than this use of liquid nitrogen, the two 

extraction protocols were identical.

RNA was extracted using method LqN from four untreated A. thaliana plants, 

and qRT-PCR analysis performed on these samples. Figure 3.3 shows a 

comparison of the mean Ct values observed from samples extracted by the two 

methods.
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qRT-PCR Analysis of RNA Extracted with Method NLqN

Figure 3.2 Example of qRT-PCR amplification profiles observed with COX assay of  RNA samples 

extracted from A. thaliana tissue using NLqN method.
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Figure 3.3 A comparison of average Ct values observed from qRT-PCR analysis with cytochrome oxidase 

assay of RNA extracted from plant  tissue samples using methods with (right) and without (left) liquid 

nitrogen. Error bars show the standard error of the mean values given.
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The COX assay-derived Ct values observed from RNA samples extracted by 

method LqN were consistently lower and showed less variation than those from 

samples where no liquid nitrogen was used during extraction. These results 

supported the hypothesis that the poor amplification observed with the COX 

assay (Fig. 3.2) was a result of the degradation of RNA during the extraction 

process, and that this effect could be reduced by ensuring that tissue samples 

remained frozen at all times during homogenisation.

Due to the consistently improved qRT-PCR results observed from samples 

extracted by method LqN, this protocol was used for all further RNA extractions. 

Latent CMV infection in A. thaliana plants

In preliminary qRT-PCR experiments, low-level amplification was observed with 

the CMV assay in RNA extracts from untreated and dummy inoculated plants. 

As precautions had been taken to prevent cross-contamination between 

treatment groups  during sample prepartion, it was hypothesised that the low-

level amplification of CMV in samples from those plants not inoculated with the 

virus could be attributed to a latent infection of the plants, probably due to seed 

contamination.

To further test this  hypothesis, a newly grown batch of plants was treated in the 

three separate viral treatment groups as described previously. After four days, 

tissue samples were taken from three plants in each treatment group. RNA 

extracts were taken and analysed by qRT-PCR. The results are illustrated as 

amplification profiles  of the CMV assay in Figure 3.4. Pairs of traces 

corresponding to CMV inoculated samples are marked with an asterisk. The Ct 

values of the three CMV inoculated samples ranged between 20-27 cycles, 

whilst those of untreated and dummy inoculated samples ranged between 

33-40 cycles. 
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qRT-PCR Analysis of Viral Treatment Groups

Figure 3.4 Amplification profile of fluorescence observed with CMV-specific TaqMan assay of  three tissue 

samples taken from each treatment group four days post-inoculation. Fluorescence increases 

proportionally  with an increase in concentration of the pathogen-specific assay target sequence. Traces 

observed from CMV inoculated samples are marked with an asterisk (*), while those from untreated and 

dummy inoculated samples are left unmarked above.

* * *
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Two conclusions were drawn from the amplification profiles illustrated in Fig. 

3.4.

Firstly, the marked difference between Ct values obtained from CMV-inoculated 

samples and those from untreated and dummy inoculated plants indicated that 

viral inoculations had been successful. The amplification profiles of the three 

CMV-inoculated samples indicated that the concentration of CMV material in 

these RNA extracts  was ~3-6 orders of magnitude greater than in the untreated 

and dummy inoculated samples, only four days after inoculation. 

Secondly, the low-level amplification of the CMV assay observed again in these 

untreated and dummy inoculated samples added further weight to the 

hypothesis that the A. thaliana plants used in these experiments  carried a latent 

CMV infection. Some amplification was detected in all samples, although the 

level of fluorescence did not exceed the threshold during the set number of 

amplification cycles in some cases

Assuming that no non-specific amplification occurred with the assay, no 

fluorescence should be observed from the assay probe in the results of an qRT-

PCR experiment if the starting concentration of assay target sequence in the 

sample is zero. No CMV was detected in negative control samples run in the 

qRT-PCR experiments, where reactions were prepared in the absence of an 

RNA sample. This lack of activity indicated that any fluorescence observed from 

the assay in the experimental samples could not be attributed to non-specific 

amplification.

Due to the relatively negligible level of CMV infection observed in untreated and 

dummy inoculated plants, it was considered unlikely that it would adversely 

affect the quality of any sequencing results obtained from these A. thaliana 

plants. Even in the event that samples from these plants were sequenced 

deeply enough for this low-level infection to be detected, the coverage of the 

CMV genome that could be expected from samples of those plants inoculated 

with the virus would be so much greater as to easily distinguish the samples 

from this treatment group.
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qPCR analysis of DNA extracts in preparation for sequencing

DNA was extracted 15 days post-inoculation, with 25 tissue samples taken from 

14 plants in each bacterial treatment group, giving 75 samples in total for 

sequencing. To test for cross-contamination in the samples from different 

treatment groups, these DNA extracts were analysed by qPCR. The results of 

these experiments can be found in Table 3.8 and Figure 3.5. 

COX assay results were consistent between all three treatment groups, with 

mean Ct values ranging between ~30-35 cycles. The samples taken from 

untreated plants exhibited no activity with the P. syringae assay. Fluorescence 

from the P. syringae-specific TaqMan assay exceeded the threshold value in 

only a single replicate of one sample of dummy inoculated plants, at 39.05 

cycles. This  detection during the final cycle of the experiment indicated only a 

very low concentration of P. syringae DNA and was most likely the result of a 

pipetting error or airborne contamination between wells  in the plate during 

preparation.

The mean Ct of samples  from bacteria-inoculated plants with P. syringae-

specific assay was  26.72 cycles, indicating that inoculation of plants was 

achieved as intended. No cross-contamination was observed in untreated or 

dummy inoculated samples.

These results  suggested that the DNA samples extracted from these plants 

were suitable for sequencing.

However, the relative concentrations of DNA from P. syringae and A. thaliana 

could not be estimated accurately from the qPCR results  described here. In 

order for such an estimation to be made, a means of calibration would be 

required that would allow for the Ct values observed here to be translated into 

more informative estimations of the concentration of assayed sequence present 

within the sample. The most common approach taken to calibration is  to 

produce a standard curve of Ct values observed from q(RT-)PCR analysis  of 

several samples of known concentration of target DNA/RNA. Using the curve 

extrapolated from these standardised Ct values, experimental values obtained 

from q(RT-)PCR of samples  can be converted to an estimate of the starting 

concentration of target DNA/RNA in the sample.

The lack of such a means of estimating the concentrations  of plant and 
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bacterial/viral DNA or RNA in the extracted samples is a major limitation on the 

interpretation of the results given here and elsewhere in this work.
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Table 3.8 Mean Ct values observed in qPCR analysis  with COX- and P. syringae pv. tomato DC3000-

specific TaqMan assays of DNA extracted from plant tissue samples from three bacterial treatment groups.

Treatment Group
Mean Ct 

(COX Assay)
Mean Ct 

(P. syringae Assay)

Untreated

Dummy Inoculated

P. syringae Inoculated

32.0266 not detected

31.0688 39.97

35.4511 26.72

Figure 3.5 Mean Ct values observed in qPCR analysis with COX- and P. syringae pv. tomato DC3000-

specific TaqMan assays of DNA extracted from plant tissue samples from three bacterial treatment groups.
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qRT-PCR analysis of RNA extracts in preparation for sequencing

RNA was extracted 12 days post-inoculation, with 40 tissue samples taken from 

from 17 plants  in each viral treatment group, giving 120 samples in total. To test 

for any cross-contamination between plants  and samples, and for the low-level 

CMV infection identified previously, these RNA extracts were analysed by qRT-

PCR. The results of these experiments can be seen in Table 3.9 and Figure 3.6. 

Figures 3.7-3.9 provide a comparison of CMV assay amplification profiles of 

samples from each of the three viral treatment groups.

The qRT-PCR results from analysis of untreated and dummy inoculated 

samples provided further evidence that the A. thaliana plants  used in these 

experiments carried very low levels of CMV (Figs 3.7 and 3.8). When analysed 

with CMV TaqMan assay, untreated samples returned a mean Ct value of 33.09 

cycles, while samples from dummy inoculated plants gave a mean Ct of 38.22 

cycles. At 23.06 cycles, the mean Ct of these virus-inoculated plant samples 

was ~10 cycles lower than that of untreated plant samples and ~15 cycles lower 

than that of dummy inoculated plants. These results indicated a starting 

concentration of CMV RNA in CMV-inoculated samples ~103 x higher than that 

in untreated samples and ~104-105 x higher than that in dummy inoculated 

samples.

The results obtained from CMV-inoculated samples suggested that the viral 

inoculations performed on plants  in this  treatment group were successful, 

confirming what was previously indicated by the results of an equivalent 

analysis, of samples taken four days post-inoculation. 

A difference of approximately five cycles was observed between the mean Ct 

values obtained from untreated and dummy inoculated samples, 12 days after 

inoculation. With the former set of samples also exhibiting several amplification 

profiles stronger than were observed from any of the dummy inoculated 

samples, these results suggested that untreated plant samples  contained a 

higher average starting concentration than from those taken from dummy 

inoculated plants.

As the dummy inoculation process was the only difference in treatment between 

these two groups, it was concluded that the difference in the levels of latent 

CMV in the tissue samples was a consequence of this treatment.
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The full inoculation method involved rubbing the surface of a single leaf with a 

mixture of homogenised infected plant tissue and Celite (powdered diatomite) in 

a phosphate buffer. Rubbing with Celite causes abrasion to the leaf surface, 

improving the likelihood of uptake of virus. The dummy inoculation methodology 

involved rubbing the leaf surface with a mixture of Celite and phosphate buffer 

only. As such, though no uptake of virus would have occurred, the abrasion 

caused by the Celite still damaged the leaf surface. Systemic wound response 

to this kind of leaf tissue damage is well documented in plants (see (Sun, Jiang 

et al. 2011) for a recent review of this  effect), and such a response was 

predicted to be the cause of the lower levels of CMV infection observed in 

dummy inoculated plants. The tissue damage sustained to the inoculated leaf 

triggered a rapid systemic response that increased the plants resistance, 

resulting in a decrease in the titre of CMV present in the tissue samples taken 

for analysis.

Although CMV was detected in all the samples from viral treatment groups, the 

considerably greater concentrations of viral RNA detected in the CMV 

inoculated samples indicated that the inoculations performed had been 

successful. As discussed previously, the levels of viral RNA detected in samples 

from untreated and dummy inoculated plants were several orders of magnitude 

lower than in those from CMV inoculated plants, and, with this difference taken 

into consideration, alongside constraints on time and resources, it was 

concluded that these samples were suitable for sequencing.

If the level of CMV material present in the untreated and/or dummy inoculated 

RNA extracts was  great enough to contribute to the reads produced in 

sequencing, the proportion of CMV reads in these datasets should be 

significantly smaller than in those generated from the CMV-inoculated samples, 

in correspondence with the difference observed in these qRT-PCR results. 

The difference, observed by qRT-PCR analysis, in levels of CMV present in 

untreated and in dummy inoculated plant samples may also be reflected in the 

sequencing results obtained from these treatment groups, with fewer CMV 

reads being generated from dummy inoculated plant RNA than untreated plant 

RNA.

Unfortunately, due to the lack of a means of calibration, it was not possible to 
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quantify these differences between levels  of CMV present in samples from 

different treatment groups  and between the levels of viral and plant cDNA within 

each sample. As such, specific estimations of relative concentrations and 

subsequent predictions of the likely proportions per species of sequencing 

reads produced from the samples were not possible.
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Table 3.9 Mean Ct values observed in qRT-PCR analysis with COX- and CMV-specific TaqMan assays of 

RNA extracted from plant tissue samples from three treatment groups.

Treatment Group
Mean Ct 

(COX Assay)
Mean Ct 

(CMV Assay)

Untreated

Dummy Inoculated

CMV Inoculated

26.6986 33.09

25.9026 38.22

26.717 23.06

Figure 3.6 Mean Ct values observed in qRT-PCR analysis with COX- and CMV-specific TaqMan assays of 

RNA extracted from plant tissue samples from three treatment groups.
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qRT-PCR Analysis of Untreated Plant Samples

Figure 3.7 Amplification profile of fluorescence observed in qRT-PCR analysis with CMV-specific TaqMan 

assay of RNA extracted from plant tissue samples of untreated plants, to be used in sequencing.
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qRT-PCR Analysis of Dummy Inoculated Plant Samples

Figure 3.8 Amplification profile of fluorescence observed in qRT-PCR analysis with CMV-specific TaqMan 

assay of RNA extracted from plant tissue samples of dummy inoculated plants, to be used in sequencing.
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qRT-PCR Analysis of CMV Inoculated Plant Samples

Figure 3.9 Amplification profile of fluorescence observed in qRT-PCR analysis with CMV-specific TaqMan 

assay of RNA extracted from plant tissue samples of CMV inoculated plants, to be used in sequencing.
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Results of high-throughput DNA sequencing - read breakdown

• Bacterial treatment groups

Table 3.10 provides a breakdown, by reference sequence, of assignments  of 

sequencing reads from the three bacterial treatment groups, produced by 

mapping to the A. thaliana and P. syringae pv. tomato DC3000 genomes with 

SSAHA2.

As illustrated in Figure 3.10, the relative proportion of reads assigned to each 

genome remained broadly consistent between the three samples. The dataset 

(defined as  the set of all reads returned from sequencing of the DNA sample) of 

106,294 reads from untreated plants was found to contain 92,209 reads 

(86.75%) assigned to A. thaliana, 905 (0.85%) to P. syringae, and 13,180 

(12.40%) reads that could not be assigned to either genome. The 

corresponding proportions found in the dummy inoculated (115,614 reads) and 

the P. syringae inoculated (116,874 reads) datasets were 103,247 (89.30%) and 

97,612 (83.52%) reads assigned to A. thaliana, 297 (0.26%) and 369 (0.32%) 

reads assigned to P. syringae, and 12,070 (10.44%) and 18,893 (16.17%) reads 

left unassigned respectively.

The read assignments detailed in Table 3.5 also displayed a consistency 

between datasets in the proportion of reads assigned to individual reference 

sequences. This pattern can be better identified in Figure 3.11. Sequencing 

reads from some chromosomes of A. thaliana appeared to be over-represented, 

and the same pattern of representation of each of the plants five chromosomes 

was observed in the SSAHA2 results from each of the three datasets.

The relative proportions  of A. thaliana, P. syringae and unassigned sequencing 

reads given in Figure 3.10 for each bacterial treatment group were broadly 

similar. Most notably, the dataset of reads obtained from P. syringae inoculated 

plants did not contain more reads mapped to the bacterial genome. In fact, the 

dataset containing the most reads assigned to P. syringae was found to be that 

derived from untreated plants (905 reads compared to 369 from P. syringae 

inoculated plants and 297 from dummy inoculated plants).
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Table 3.10 Number of sequencing reads from each treatment group assigned to reference A. thaliana and 

P. syringae pv. tomato DC3000 genome sequences. Reads were assigned using SSAHA2, with an 

additional E-value cutoff threshold of  1 x 10-4. Also given are numbers of sequencing reads from each 

treatment  group that were not assigned to any of the reference sequences,  either due to the lack of an 

alignment with a suitably low E-value being found, or the lack of any alignment being found.

Reference Sequence
Untreated Plant 

Reads

Dummy Inoculated 

Plant Reads

P. syringae 

Inoculated Plant 

Reads

A. thaliana Chr. 1

A. thaliana Chr. 2

A. thaliana Chr. 3

A. thaliana Chr. 4

A. thaliana Chr. 5

A. thaliana Chloroplast

A. thaliana 
Mitochondrion

P. syringae 
pv. tomato DC3000

Plasmid pDC3000A

Plasmid pDC3000B

Unassigned
(E-value above cutoff)

Unassigned 
(no alignment found)

Total

16286 18289 17293

15100 16828 16056

20449 22093 22349

12643 13939 13939

17709 19594 19087

7214 9543 5822

2808 2961 3066

888 297 368

7 0 0

10 0 1

1214 1462 1246

11966 10608 17647

106294 115614 116874
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Figure 3.10 Proportion of sequence reads from each bacterial treatment group that were mapped to the reference genome of A. thaliana or P. syringae pv. tomato DC3000 with 
SSAHA2.  The proportion of reads left unmapped is also shown.  A more detailed breakdown of these reads assignments is provided in Table 3.5.
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Figure 3.11 Proportion of  sequence reads from each bacterial treatment group that were mapped to each reference sequence with SSAHA2.   The proportion of reads left unmapped is 
also shown, with reads with assignments rejected based on expectation value labelled as ‘rejected’ and those where no hits were found with SSAHA2 labelled as ‘no hits’.  
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• Viral treatment groups

Table 3.11 provides a breakdown of sequencing read assignments  to the 

genomes of A. thaliana and CMV, mapped by SSAHA2. No reads from the 

datasets obtained from untreated and dummy inoculated plants were assigned 

to the CMV genome, while 273 (0.20%) reads from CMV inoculated plants were 

assigned to the viral genome. 21,738 (17.46%), 24,704 (18.63%), and 25,482 

(18.93%) reads remained unassigned from the untreated, dummy inoculated, 

and CMV inoculated datasets respectively. As Figure 3.12 shows more clearly, 

the ratio of plant, virus and unassigned sequencing reads remained broadly 

consistent between the three datasets, with the key difference that only the data 

obtained from CMV inoculated plants contained any reads that were assigned 

to the CMV genome.

Similarly to the data obtained from DNA sequencing of the bacterial treatment 

groups, the proportions of reads assigned to individual reference sequences 

remained consistent between viral treatment groups. This consistency of spread 

between reference sequences can be seen in Figure 3.13, with an over-

representation of reads assigned to chromosome 3 of A. thaliana being 

particularly prominent. In each of the three datasets described in Table 3.11, 

over half of all sequencing reads produced for each sample were assigned to 

this chromosome.
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Table 3.11 Number of sequencing reads from each treatment group assigned to reference A. thaliana and 

Cucumber mosaic virus genome sequences. Reads were assigned using SSAHA2,  with an additional E-

value cutoff threshold of 1 x 10-4. Also given are numbers of sequencing reads from each treatment  group 

that  were not assigned to any of the reference sequences, either due to the lack of an alignment with a 

suitably low E-value being found, or the lack of any alignment being found.

Reference Sequence
Untreated Plant 

Reads

Dummy Inoculated 

Plant Reads

CMV Inoculated 

Plant Reads

A. thaliana Chr. 1

A. thaliana Chr. 2

A. thaliana Chr. 3

A. thaliana Chr. 4

A. thaliana Chr. 5

A. thaliana Chloroplast

A. thaliana 
Mitochondrion

CMV RNA 1

CMV RNA 2

CMV RNA 3

Unassigned 
(E-value above cutoff)

Unassigned 
(no alignment found)

Total

2105 2332 2159

11096 11386 11052

68682 72117 75463
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Figure 3.12 Proportion of sequence reads from each viral treatment group that were mapped to the reference genome of  A. thaliana or CMV with SSAHA2.  The proportion of reads 
left unmapped is also shown.  A more detailed breakdown of these reads assignments is provided in Table 3.6.
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Figure 3.13 Proportion of sequence reads from each viral treatment group that were mapped to each reference sequence with SSAHA2.  The proportion of reads left unmapped is 
also shown, with reads with assignments rejected based on expectation value labelled as ‘rejected’ and those where no hits were found with SSAHA2 labelled as ‘no hits’.  
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Discussion

Datasets produced from bacterial treatment groups

Results of previous qPCR analyses  had confirmed the presence of P. syringae 

DNA in only the samples from plants  inoculated with the bacteria. This 

suggested that the assignment of reads in sequencing data from untreated and 

dummy inoculated samples to this genome, which accounted for fewer than 1% 

of the total reads produced, was likely to be the result of chance alignment or 

sequencing error producing reads that were mapped to the bacterial genome 

over that of A. thaliana. 

Given that the proportion of sequencing reads from P. syringae inoculated 

samples that were mapped to the bacterial genome was of the same order of 

magnitude as in the other two datasets, it could not be concluded that the 

presence of these reads was due to bacterial inoculation of the plants in this 

treatment group.

Instead, it was most likely that the reads that did map to the P. syringae DC3000 

genome in the SSAHA2 analysis  originated from bacteria that were naturally 

present in all of the samples e.g. on the surface of the leaf tissue harvested for 

extraction. Reads originating from the genome of other bacterial species would 

be more likely to map to the bacterial Pseudomonas genome than to that of A. 

thaliana, and these were the only reference sequences available during 

mapping. Further investigation of the alignments between these reads and the 

P. syringae genome, comparing the score and degree of sequence identity 

observed to that obtained in alignment to a broader range of reference 

sequences, e.g. all available bacterial genome sequences or the NCBI nt 

database of all non-redundant publicly available nucleotide sequences, would 

allow greater confidence in this prediction. If these reads were still found to map 

to a bacterial reference in these less-specific databases, but with a greater 

degree of sequence identity, it could be concluded that other bacteria present in 

the sample were their probable source.

In a dataset of sequencing reads, the constituent sequences  of the original 

sample should be represented in broadly similarly proportions to their relative 

abundance, although some bias in the proportions of reads produced has been 

shown to exist (Morgan, Darling et al. 2010). The extent of sequencing of 
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material present in relatively small proportions in the sample is  largely 

dependent on how ‘deep’ the sequencing goes - that is, how large-scale the 

experiment is in terms of number of parallel sequencing reactions carried out.

These results indicated that the level of P. syringae DNA present in the 

inoculated sample was insufficient to be detected by sequencing performed on 

this scale.

The three datasets produced from bacterial treatment groups did not contain a 

sufficient number of bacterial sequencing reads, in proportions great enough to 

be suitable for use in clustering analysis as intended.
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Datasets produced from viral treatment groups

While the relative proportions of reads assigned to the reference genome of A. 

thaliana and reads  left unassigned were similar between the datasets produced 

from the three viral treatment groups, one important difference existed between 

these datasets and those from the bacterial treatment groups discussed 

previously. In this case, the only dataset that was found to contain reads that 

were mapped to the CMV genome was that derived from CMV-inoculated 

plants, despite the qRT-PCR results indicating that samples from all three 

treatment groups had contained CMV RNA (and subsequently cDNA) in some 

quantity.

These results suggested that the scale of sequencing performed here was just 

large enough for the detection of CMV present at the levels  observed in the 

samples from virus inoculated plants, but not for the detection of the virus  when 

present in the lower titres described for untreated and dummy inoculated 

samples. 

It is interesting to note that no reads were assigned by chance or sequencing 

error to the CMV genome in these datasets, which was believed to be the case 

with P. syringae-assigned reads in the data obtained from bacterial treatment 

group samples.

The relative quantities of A. thaliana (~81%) and CMV (~0.2%) sequencing 

reads present in the data obtained from virus-inoculated samples were too 

disproportionate, and the total number of CMV reads assigned by SSAHA2 too 

small, for the dataset to be useable for the clustering analysis experiments 

discussed throughout the other sections of this work.
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Conclusion and future work

The aim of the experiments  described here was to produce a pair of datasets 

containing high-throughput sequencing reads derived from a natural system 

containing species  with fully sequenced genomes, and to assess the suitability 

of these datasets for use in the appraisal of a range of clustering methods.

Despite qPCR/qRT-PCR analysis results  indicating the presence of pathogen 

material in considerable concentrations in the samples prepared for both P. 

syringae and CMV, the sequencing datasets produced were not found to 

contain reads originating from these species in sufficient numbers  to be suitable 

for use in the evaluation of clustering methods. 

The very low quantities of pathogen sequencing reads produced in both cases 

suggested that these sequences were only represented in very low 

concentration in the sequenced samples. The short length of the pathogen 

genomes, relative to that of the plant host, means that, even if sequence from 

these pathogen genomes was present in a high copy number in these samples, 

it might constitute only a small fraction of the overall sequence present. As 

such, sequencing on a larger scale would be require for more reads from these 

genomes to be produced. This deeper sequencing would not affect the overall 

proportions of host and pathogen sequences present in the datasets.

It was predicted that sequencing of the viral treatment group samples on a 

larger scale would result in the presence of CMV sequencing reads in the data 

produced from the untreated and dummy inoculated samples, as a product of 

the low-level infection observed in these samples in qRT-PCR analysis. 

However, based on the relatively small number of reads assigned to CMV in 

data from plants that were inoculated with CMV, and the vast predicted 

discrepancy in the concentration of CMV RNA between this sample and those 

from untreated and dummy inoculated plants, the additional costs  required for 

such deep sequencing render such further investigation unfeasible.

For a more suitable dataset to be prepared, samples containing higher levels of 

pathogen would be required. This could be achieved by repeating the process, 

using a virus of a higher titre, comparing a range of different pathogen options, 

or by repeating the time course experiment, to determine the optimal point to 

harvest tissue samples  to maximise the relative level of pathogen material 
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present in the samples. The use of the improved method for RNA extraction in 

such a time course would make the results more informative.

The results  obtained here may indicate that the approach of directly sequencing 

infected tissue may not be suitable to produce multi-species datasets  that can 

be analysed by clustering analysis, which tends to be problematic when applied 

to highly disproportionate data. However, personal correspondence has 

suggested that this  may not be the case for every combination of host and 

pathogen, as other datasets have been produced that are thought to contain 

reads belonging to the genomes of both host and pathogen species. Some of 

these datasets were used later in this work (see Chapter 5).

As no suitable dataset was produced here for evaluation of sequence feature 

vectors  and clustering methods, alternative approaches to obtaining such a 

dataset were considered. The next chapter details the steps taken to develop a 

dataset containing a mixture of sequencing reads from a host and a bacterial 

pathogen, by combining reads produced from separate sequencing 

experiments in more appropriate proportions.
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A comparison of genomic signature features applied to the 

clustering of true sequencing reads by species of origin

Abstract

The capacity of four genomic signature sequence features to group short DNA 

sequencing reads according to their species of origin was compared once more. 

In this case, the dataset used as a basis for this comparison was an 

amalgamation of true sequencing reads produced in separate experiments from 

untreated Arabidopsis thaliana and Pseudomonas sp. 2_1_26. Consistent with 

previous analyses, it was found that tetranucleotide frequency distribution 

vectors provided the most successful separation of reads by species of origin. 

Using these features it was possible to group together >90% of Pseudomonas 

reads into a single cluster, with these reads accounting for ~60% of the cluster. 

Other groups were formed containing almost exclusively reads from A. thaliana. 

It was predicted that, applied to reads from more up-to-date sequencing 

platforms, with improved average read lengths, this approach could produce 

even more accurate grouping of comparable datasets. Alternative methods of 

clustering may also allow for improvement in the quality of clustering achievable 

with use of the same feature vectors.
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Introduction

An evaluation of the power for four different DNA sequence composition 

features to separate short DNA sequences into groups based on their species 

of origin was described in Chapter 2. Using two different datasets as a platform, 

the quality of sequence clustering obtained with the use of each feature type 

and combination was compared.

When the limitations of these datasets  were considered, it was concluded that a 

more suitable dataset could be produced. The first dataset used was  too simple, 

containing fewer sequences than would be expected in a high-throughput 

sequencing dataset, from species evolutionarily distant from one another and 

represented in equal proportion. Conversely, the second dataset (simLC 

(Mavromatis, Ivanova et al. 2007)), was held to be too complex, containing too 

many species that were too closely related and represented in a wide range of 

proportions. The mean read length was also longer than is representative of 

most high-throughput sequencing platforms currently in widespread use.

An ideal dataset for the evaluation of features being performed here would 

consist of actual sequencing reads, produced from a natural mixture of species 

whose genomes have been fully sequenced. The subsequent assignment of 

each sequencing read to one of the contributing genomes (sequencing errors 

notwithstanding) would allow for quantitative evaluation of the performance of 

any clustering analysis  performed with the dataset. Efforts  to prepare such a 

dataset, from plant tissue infected separately with a bacterial and a viral 

pathogen, were described in Chapter 3.

Analysis  of these sequencing datasets  with SSAHA2, mapping reads to a 

reference database of the genomes of contributing species to establish the 

numbers of reads produced from each, indicated that only a negligible 

proportion of the reads contained in these datasets originated from the 

genomes of the pathogens used in preparation of the samples. This was 

thought to be a result of insufficient presence of pathogen genetic material in 

the samples, relative to the volume of host plant material.

In order to further evaluate the four feature types compared in Chapter 2 in the 

absence of a suitable true sequencing dataset, a compromise was found. A 

dataset was engineered, composed entirely of high-throughput sequencing 
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reads, as similar as possible to that desired initially. All sequencing reads 

generated from DNA extracted from untreated A. thaliana, as described in 

Chapter 3, were combined with reads from an experiment sequencing the 

genome of a bacterial species. The preparation and use of this  dataset as a 

platform for further comparison of the four sequence feature types is described 

in this chapter.

The full set of 106,294 sequencing reads produced from untreated A. thaliana 

were used, so that the resultant dataset would resemble as  closely as possible 

a true sequencing dataset. For this to be achieved, it was necessary that reads 

that did not map to the A. thaliana genome in the original SSAHA2 analysis 

were included, as these reads were representative of the ‘noise’ introduced into 

sequencing datasets by sequencing error and other species present in the 

sample from which DNA was extracted. The proportion of the new dataset that 

was accounted for by reads that were mapped to P. syringae DC3000 or 

remained unassigned by SSAHA2 are given in Figure 4.1. For a discussion of 

the origins of these reads that did not map to the A. thaliana genome, see 

Chapter 3.

The A. thaliana sequencing reads, generated on the 454 GS FLX Titanium 

platform (Roche/454 Life Sciences) in an experiment aimed at low-coverage 

sequencing of the genome of Pseudomonas sp. 2_1_26, were sampled and 

trimmed to match the profile of lengths of those reads produced from A. thaliana 

as described in the previous chapter. 

The Titanium variant of 454 Life Sciences/Roche’s GS FLX platform is an 

upgraded version of the technology that produces  more reads, of a greater 

average length (~108 reads per run, at a mean length of ~450-700 bp), than 

those generated with the standard GS FLX technology used in the work 

described in Chapter 3 (~106 reads per run at a mean length ~400 bp). 

The combination of these generally longer sequence reads with those derived 

from A. thaliana would produce an unrealistic dataset, where the reads 

originating from samples from one species have a different length profile than 

those from the other species. The intention of creating this dataset was that the 

combined sequence reads could be distinguished based on their nucleotide 

composition using the sequence features detailed previously. As has been 
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discussed elsewhere, the length of a sequence is  a key factor in the 

effectiveness of these features. The longer the sequence, the higher the 

likelihood that the feature vector used will closely resemble the true feature 

profile of the source genome.

To prevent the introduction of such a bias towards effective clustering of the 

Pseudomonas sp. 2_1_26 (Pseudomonas) reads, and in an attempt to maintain 

consistency throughout the dataset, the randomly selected reads were 

‘trimmed’ to an appropriate length in accordance with the sequence length 

profile of the reads from A. thaliana.

The trimmed Pseudomonas reads  were added to those from untreated A. 

thaliana in a ratio of ~1:5 to produce a dataset, referred to as UT+Psp2126, with 

the desired proportions of ‘pathogen’ and ‘host’ reads.

The UT+Psp2126 dataset was different from the two datasets used previously, 

as it was derived from two evolutionarily distant species and consisted of actual 

sequencing reads, albeit artificially mixed, rather than artificially produced 

sequence fragments (Dataset 1) or Sanger sequencing fragments  (simLC). The 

use of sequencing reads  (after trimming) ensured an appropriate profile of 

lengths and the incorporation of sequencing errors during production. The 

dataset was intended to provide a much closer approximation to the kind that 

would be expected from sequencing of an infected plant tissue sample.

The quality of reads from high-throughput platforms such as the GS FLX is 

known to deteriorate as the number of nucleotide flow cycles increases during 

sequencing. As the ends of the Titanium reads from Pseudomonas sp. 2_1_26 

were trimmed to produce a sample with the same length profile as the reads 

from A. thaliana, the bases produced in the later cycles were removed. The 

result of this  trimming was that the overall quality of the trimmed Pseudomonas 

reads was greater than that of the reads generated from the untreated A. 

thaliana sample with which they were combined. It is  very likely that this 

difference in quality between the two sets  of reads is manifested as  a difference 

in error profiles, with more base call errors in the reads from A. thaliana than in 

those from Pseudomonas. As detailed in Table 6.1 of Chapter 6, the mean 

Phred30 score for reads from untreated A. thaliana was 0.6478 (with a standard 

deviation of 0.1735) while that of the trimmed Pseudomonas sp. 2_1_26 was 
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0.8237 (0.2116). The Phred30 score of a read is  calculated as the proportion of 

bases called for that read at a Phred quality score equal to or greater than 30 

(confidence ! [1-1*10-3]). Thisl discrepancy between the error profiles of reads 

from the two experiments, as well as the use of reads from a bacterial species 

that does not infect A. thaliana, prevented UT+Psp2126 from perfectly 

representing a single, true sequencing dataset, but the construction of the 

dataset from true sequencing reads provided a much closer approximation than 

any other dataset used so far in this  work, or any other synthetic dataset 

available.

The sequenced Pseudomonas sp. 2_1_26 bacteria were isolated from the 

human gastrointestinal tract, and, although relatively closely related to P. 

syringae pv. tomato DC3000, this species is  not a pathogen of A. thaliana. 

Despite this, these reads were chosen for use as the dataset was available as a 

454 sequencing dataset, where most publicly available raw data had been 

produced on other massively parallel sequencing platforms. This Pseudomonas 

species was as closely related to the P. syringae pv. tomato DC3000 pathogen 

used previously as could be found in 454 GS FLX sequencing format. Data 

from other sequencing platforms could not be combined with the A. thaliana 454 

GS FLX reads, and still produce a realistic simulation of a true sequencing 

dataset. Reads produced from Illumina and SOLiD platforms  are on average 

much shorter, and with different error profiles to those produced on 454 

sequencing platforms.

The genome of Pseudomonas sp. 2_1_26 has a relatively high GC content of 

66.4% (Ulrich and Zhulin 2010), rendering it considerably more GC-rich than the 

genome of A. thaliana, with a mean GC content of ~36% (The Arabidopsis 

Genome Initiative 2000). This discrepancy between the two genomes 

suggested that some success could be achieved with the use of GC content in 

grouping the reads from each species  together, and separating reads from the 

different species.

As before, an evaluation of the four features introduced in Chapter 1 - GC 

content (GC), inter-nucleotide distances (IND, Afreixo, Bastos  et al. 2009), 

oligonucleotide frequency-derived error gradients (OFDEG, Saeed and 

Halgamuge 2009) and tetra-nucleotide frequency distributions (TNF, Karlin and 

Ladunga 1994; Teeling, Meyerdierks et al. 2004) - was  performed, using a 

Chapter 4 - Introduction

161



single clustering method, CLARA. The aim of this evaluation was to compare 

the capability of each feature and combination of features  to represent the 

sequences of within UT+Psp2126, and allow a successful grouping and 

separation of the data according to their original genomes. 
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Materials and Methods

Dataset preparation - UT+Psp2126

A dataset was prepared from a set of 454 GS FLX sequencing reads generated 

from DNA extracted from untreated Arabidopsis thaliana plants, as described in 

Chapter 3. These reads were combined with a second set generated in a 

separate experiment aimed at sequencing the genome of Pseudomonas sp. 

2_1_26 as part of the Human Microbiome U54 project (HMP U54 Project, Broad 

Institute, broadinstitute.org).

A random sample of 19,045 sequencing reads was taken from sample 

SRR063796 in the NCBI Sequence Read Archive (SRA, http://

www.ncbi.nlm.nih.gov/Traces/sra), These reads were chosen at random from 

the full set of 201,903 reads produced by sequencing of a sample of 

Pseudomonas sp. 2_1_26, isolated from the human gut and sequenced on 454 

GS FLX Titanium.

The frequency of sequence lengths was calculated at 100 bp intervals for the A. 

thaliana sequencing reads used. These frequencies were used to establish a 

sequence length distribution profile for the dataset as a whole. The 3’ ends of 

the sampled Pseudomonas sequences  were removed to produce sequence 

fragments that fitted the proportions of this distribution at each length interval. 

For each Pseudomonas read, a length interval was chosen at random, with the 

probability of the read falling into each interval equal to the proportion of A. 

thaliana reads that fell in that interval. The sequence was then ‘trimmed’ to a 

randomly determined length within the limits of that interval. The minimum read 

length was limited to 40 bp, consistent with the filtering built into the sequencing 

platform itself.

Trimmed Pseudomonas reads were combined with the untreated A. thaliana 

reads produced in the work described in Chapter 3. The proportions of the 

resulting dataset are laid out in Figure 4.1. A broad breakdown of the sequence 

assignments as mapped to the genomes of A. thaliana and P. syringae pv. 

tomato DC3000 by SSAHA2, described in Chapter 3, is included in this figure, 

showing the proportions of the reads from untreated A. thaliana that were 

mapped to either genome, and those that remained unassigned. 
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UT (A. thaliana) UT (unassigned) UT (P. syrinage DC3000)
Pseudomonas sp. 2_1_26

Figure 4.1 A breakdown of UT+Psp2126, the product of a combination of reads from sequencing of DNA 

extracted from untreated A. thaliana plants and sequencing of Pseudomonas sp. 2_1_26, describing the 

proportion of sequences in the dataset that  originate from each set of sequencing results.  The sequences 

from untreated A. thaliana are further differentiated according to the genome to which they were assigned 

by SSAHA2 as described in Chapter 3. Those sequences assigned by SSAHA2 to A. thaliana, to P. 

syringae pv. tomato DC3000 and those left unassigned are represented in differing shades of blue, while 

reads originating from Pseudomonas sp. 2_1_26 are represented in green.

Table 4.1 The number of sequences in UT+Psp2126 that belong to each species. The numbers of reads 

that  were assigned, by SSAHA2 mapping, to A. thaliana and P.  syringae DC3000, and of those left 

unassigned in are also given.

Sequence origin                      

(SSAHA2 assignment)
Reads in dataset

UT (A. thaliana)

UT (unassigned)

UT (P. syringae pv. tomato DC3000)

Pseudomonas sp. 2_1_26

Total

104175

1214

905

19045

125339
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Generation of feature vectors

GC, IND, OFDEG and TNF feature vectors, and combinations  of these four, 

were generated for each sequence in the UT+Psp2126 dataset as described in 

the Methods section of Chapter 1.

Clustering - CLARA

Clustering of feature vectors was carried out using CLARA (Kaufman and 

Rousseeuw 1990), as described in the Methods section of Chapter 1. 

The quality of clustering achieved is sometimes described by precision (Pr) and 

recall (Rc) statistics, also described in Chapter 1. For convenience, a brief 

summary of these two statistics is reproduced here:

• The predominant class of data within the cluster is determined as the class 

represented by the largest number of datapoints in the cluster.

• The precision value of the cluster is calculated as the proportion of the total 

datapoints contained within the cluster that belong to this predominant class.

• The recall value of the cluster is calculated as the proportion of the total 

datapoints belonging to this predominant class that are contained within the 

cluster.
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Results

The scope for the four feature types, and their combinations, to allow separation 

and grouping of the reads in the UT+Psp2126 dataset was evaluated by 

clustering of the dataset into sets of two, and five clusters.

Clustering into two groups was performed to coincide with the number of 

species known to have been sampled and sequenced to produce the data. The 

data was also clustered into five groups to provide an indication of the effect of 

separating reads into a number of clusters larger than the number of principally 

contributing species. It was thought that A. thaliana reads, grouped together 

with the majority of Pseudomonas reads where two clusters were produced, 

might be further separated from the bacterial reads if the data were divided 

further, allowing for more successful isolation of the Pseudomonas sequences.

Such a separation into multiple groups per species could be successful where 

regional variations in genomic signature profile exist in the genome, as with 

isochores of varying GC content. It was hypothesised that subgroups of reads 

within the A. thaliana genome, with a signature feature profile different from 

other groups of reads sampled from a different region of the genome, might be 

clustered together with the Pseudomonas reads where the data was divided 

only into two. This effect could be avoided if the dataset was separated into a 

larger number of clusters.

CLARA analysis of UT+Psp2126 - two clusters

Figure 4.2(i-xv) provides a breakdown of the results of grouping of the UT

+Psp2126 dataset, by CLARA, into two clusters with each feature vector type 

and combination of features. 

As with the charts  reproduced in Fig. 2.5, each chart in Fig. 4.2 here represents 

a single cluster in the results. The area of each chart is  directly proportional to 

the number of sequencing reads present in each cluster.

Two clusters were generated from the dataset in accordance with the number of 

distinct species known to have contributed reads to the dataset. It is possible 

that reads from other species were also produced due to sample contamination, 

but any such sequences were assumed to constitute only a negligible 

proportion of the data.
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If perfect clustering were to be achieved, the two clusters produced would each 

contain all sequencing reads derived from one of these species  - one cluster 

containing 106,294 reads from untreated Arabidopsis thaliana and no others, 

and the other containing 19,045 reads  from Pseudomonas sp. 2_1_26. 

Analysed using Pr and Rc statistics, these clusters would return values of 100% 

for both statistics.
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GC (i)

Figure 4.2(i) - 4.2(xv) Comparative pie charts describing the distribution of sequence reads in UT
+Psp2126 dataset between two clusters generated by CLARA analysis with each sequence feature and 
their combinations.  Each set of pie charts  corresponds to a feature set.  The sections of each chart 
correspond to the proportion of sequence reads in the cluster that are derived from reads from untreated 
A. thaliana (shades of blue) and Pseudomonas sp 2_1_26 (green).  Reads from untreated A. thaliana are 
further broken down into subsets according to their assignment to the genome of A. thaliana and P. 
syringae pv. tomato DC3000 by SSAHA2, with those sequences left unassigned also identified.  The pie 
charts are comparable by size - the area of each chart if directly proportional to the number of sequence 
reads contained in the cluster that it represents. Fig. 4.2(ii) - 4.2(xv) follow this page.
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Coherent with clustering results obtained when applied to previous datasets, 

the differentiation between sequencing reads from A. thaliana and 

Pseudomonas sp. 2_1_26 was found to be poor in clusters obtained with IND 

(Fig. 4.2(ii)) and OFDEG (Fig. 4.2(iii)) feature vectors. In the results from both of 

these feature types, two clusters were produced, of broadly similar size and 

containing reads from both species in proportions similar to those of the dataset 

as a whole (A. thaliana: ~85%; Pseudomonas sp. 2_1_26: ~15%). Equally poor 

clustering was observed with IND + OFDEG vectors (Fig. 4.2(viii)).

Greater success was  achieved with GC (Fig. 4.2(i)) and TNF (Fig. 4.2(iv)) 

feature vectors. As before, the clustering results obtained with the use of these 

two feature types displayed similar patterns. 

In both sets of results, one of the clusters generated contained a considerably 

larger proportion of the total sequencing reads than the other. The larger cluster 

contained a major proportion of reads generated from A. thaliana. With GC 

features, this cluster contained A. thaliana reads at Rc 86.99% and Pr 99.21%, 

while with TNF features the reads were clustered at Rc 90.37% and Pr 98.72%. 

Conversely, the smaller cluster contained the vast majority of reads from 

Pseudomonas sp. 2_1_26 in the dataset. With GC features, these reads were 

clustered at Rc 96.12% and Pr 43.03%, and with TNF at Rc 93.44% and Pr 

36.51%. As such, the larger cluster consisted almost entirely of reads from A. 

thaliana, while the smaller cluster, though containing the vast majority of 

Pseudomonas reads in the dataset, still mostly consisted of A. thaliana reads.

Excluding IND + OFDEG, discussed previously, the feature combinations  were 

found to produce clusters similar to those produced with GC and TNF single-

feature vectors. In the results from all combined feature vectors, the same 

pattern was observed in clustering. No combination of features was found to 

provide an obvious improvement on the grouping achieved with GC or TNF 

features used on their own.

Excluding the results  from IND, OFDEG and IND + OFDEG vectors, where no 

notable discrimination between reads based on species could be identified, it 

was observed that reads generated from untreated A. thaliana samples, that 

had been assigned by SSAHA2 to the genome of Pseudomonas syringae pv. 

tomato DC3000 (labelled ‘UT(P. syringae DC3000)’ in Fig 4.2) tended to be 
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grouped into a cluster with the majority of the Pseudomonas sp. 2_1_26. 

As the A. thaliana samples from which the dataset was prepared were not 

found to contain P. syringae DC3000 material when analysed by qPCR assay, 

the 905 reads mapped to this genome were thought to be the result of mis-

sequencing of A. thaliana DNA (see Chapter 3). 

Nevertheless, it was not surprising to find these sequences clustered with 

Pseudomonas reads  here. SSAHA2 maps and assigns a sequence to a 

reference genome based on an alignment of the sequences, suggesting that 

these reads held significant sequence homology to a region of the P. syringae 

DC3000 genome. Assuming a considerable level of homology between the 

genomes of the two Pseudomonas species, as would be expected in closely 

related species, these homologous A. thaliana reads could be expected to 

produce features be grouped with true bacterial reads, regardless of their 

source.
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UT+Psp2126 - five clusters

Figure 4.3(i-xv) provides a breakdown of the results  obtained from grouping of 

UT+Psp2126 by CLARA into five clusters, with each feature vector type and 

combination of features. The area of each chart is directly proportional to the 

number of sequencing reads present in each cluster, excepting those marked 

with an asterisk, where the number of sequences contained in the cluster was 

too small to be proportionally represented in a chart.

The dataset was grouped into five clusters in response to the consistent 

grouping of the vast majority of Pseudomonas sp. 2_1_26 reads into a cluster 

also containing reads  from A. thaliana (in a ratio of ~3:2). It was thought that 

these bacterial reads might be further separated from those originating from the 

plant genome if the dataset were grouped into a number of clusters greater than 

the number of species known to have been sequenced in production of the 

dataset. 

For example, if the genome of A. thaliana contains regional variations in profile 

of the feature types used to compare sequences, the reads derived from these 

different regions might be grouped separately during clustering. This could 

result in co-clustering of some A. thaliana reads with those obtained from 

Pseudomonas, as was observed previously. Clustering into additional groups 

might allow for these subsets within the A. thaliana reads to be isolated from the 

Pseudomonas reads, increasing the precision of their grouping without 

adversely affecting recall within the bacterial data. 
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Figure 4.3(i) - 4.3(xv) Comparative pie charts describing the distribution of  sequence reads in UT/P2126 dataset between five clusters generated by CLARA analysis with each 
sequence feature and their combinations.  Each set of pie charts corresponds to a feature set.   The differently coloured sections of  each chart correspond to the proportion of 
sequence reads in the cluster that are derived from reads from untreated A. thaliana and Pseudomonas sp 2_126.  The pie charts are comparable by size - the area of each chart if 
directly proportional to the number of  sequence reads contained in the cluster that it represents.  For ease of visual interpretation, there are several exceptions to this, in  Figure 4.3
(iv),  4.3(vii), 4.3(ix),  4.3(x), 4.3(xiv) and 4.3(xv) (marked with an asterisk), where the total number of sequencing reads contained in a cluster was too small to be represented 
proportionally in a pie chart on the same scale as the other clusters produced.
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Once again, clustering results produced with IND, OFDEG and IND + OFDEG 

feature vectors  displayed poor separation between sequencing reads from the 

two species (Fig. 4.3(ii), 4.3(iii) and 4.3(viii)). As in the results  from grouping into 

two clusters, the distribution of sequences within clusters  was found to mirror 

that of the dataset as a whole.

Similarity with the results obtained from grouping UT+Psp2126 into two clusters 

was also found in the results from GC and TNF features. As  before, clustering 

with these features was found to be relatively effective. However, a more 

discernible difference was observed here, between the quality of clustering 

achieved with GC and TNF features. 

In both sets of results, one cluster was found to contain a large fraction of the 

total Pseudomonas sp. 2_1_26 reads in the dataset. With GC features this 

cluster grouped Pseudomonas reads at Rc 87.85% and Pr 68.84%, and with 

TNF features at Rc 93.43% and Pr 63.49%. In both cases, most of the 

remaining Pseudomonas reads  were grouped into a second cluster, leaving 

three other clusters populated almost exclusively with A. thaliana reads.

In the results  from TNF features, the cluster containing most of the remaining 

Pseudomonas reads, was much larger than the other clusters  produced, 

accounting for over half of the total reads in the dataset. Of the reads in this 

cluster only 1.85% originated from Pseudomonas 2_1_26. 

Of the remaining three clusters produced with TNF feature vectors, one 

contained only 3 reads in total, and could be effectively disregarded. The other 

two clusters  were composed almost entirely of A. thaliana reads (Pr values of 

99.94% and 99.91%).

In the results from GC features, the cluster containing most of the remaining 

Pseudomonas reads was much smaller than its equivalent in the TNF results. 

Of the reads in this cluster, 13.07% were derived from Pseudomonas, a greater 

proportion of the cluster than in the results  obtained with TNF features. The 

distribution of reads from different species within this cluster resembled that of 

the dataset as a whole, indicating that this cluster was not markedly enriched 

with reads from either of the represented species. Although this cluster 

contained A. thaliana reads at a lower Pr than in the equivalent from TNF 

features, the actual number of Pseudomonas reads contained in the two 
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clusters was almost identical: the greater Pr statistic for the TNF-derived cluster 

was a product of the much greater size of the cluster overall.

The remaining three clusters produced with GC feature vectors were composed 

predominantly of reads from untreated A. thaliana, with Pr values of 99.74%, 

98.33% and 99.98% respectively. 

In coherence with the clustering results observed with a different number of 

clusters and different datasets, GC and TNF feature vectors were clearly 

observed here to provide a considerable level of enrichment for reads derived 

from the same species in some or all of the clusters produced. 

In this case, the separation and grouping obtained with TNF feature vectors was 

marginally more accurate than with GC, but the difference between the two sets 

of results was not great. However, grouping with TNF feature vectors resulted in 

>93% of all Pseudomonas reads in UT+Psp2126 being clustered together and 

constituting almost two thirds of the reads in that cluster - a considerable 

enrichment in a single cluster.

Of the vectors  of combined feature types, clusters produced with each of IND + 

TNF (Fig. 4.3(ix)), OFDEG + TNF (Fig. 4.3(x)) and IND + OFDEG + TNF (Fig. 

4.3(xiv)) vectors were observed to be of comparable quality and hold similar 

properties to those produced with TNF features alone. The clusters produced 

with these three feature combination vectors varied slightly in size and 

composition, but displayed largely the same pattern in the distribution of 

Pseudomonas reads within them. None of these combinations of features 

yielded results that constituted an improvement in terms of levels of enrichment 

in clusters, relative to that of TNF features used on their own.

The remaining combinations  produced results similar to those obtained with the 

use of GC feature vectors.

As was observed in the grouping of UT+Psp2126 into two clusters, reads that 

were generated from untreated A. thaliana, but that were mapped by SSAHA2 

to the genome of P. syringae DC3000, tended to be grouped into clusters 

containing a higher proportion of Psedomonas sp. 2_1_26 reads.
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Discussion

Several trends were identified in the clustering performance obtained with the 

different feature types and combinations throughout all of these comparisons. 

Firstly, representation of sequences with GC and TNF features  was found to 

provide much more successful clustering than with IND and OFDEG vectors.

Throughout the range of datasets used here (both in this chapter, and in 

Chapter 1), with variations in the sequence length, the number of different 

species represented, the relatedness of those species  and the proportions of 

representation within the dataset, tetra-nucleotide frequency feature vectors 

were found to consistently produce some of the most successful clustering 

results. In cases where TNF vectors did not produce the best clusters, then the 

quality of TNF-derived clusters was found to be only marginally lower than that 

of another feature combination.

GC content was also found to produce good clustering in the cases considered 

here. Often the quality of the clusters produced was comparable to those from 

TNF features, but was never found to excel this standard. 

As discussed in Chapter 1, the single-variable nature of the GC content feature 

and the regional variation of GC content in isochores of the genomes of 

eukaryotic organisms makes it easy to foresee circumstances in which GC 

content would not be a suitable mechanism by which to separate reads. For 

example, where two or more sampled organisms from which the sequencing 

dataset was taken share a similar genomic GC content or, in the case of higher 

organisms, considerable overlap exists in the GC content of some isochores 

within one or more of their genomes. It is  conceivable that this effect was 

observed in the results  of clustering the UT+Psp2126 dataset with GC features, 

where a number of A. thaliana-derived reads were clustered together with the 

majority of Pseudomonas sp. 2_1_26 reads.

Similar limitations may exist for tetra-nucleotide frequencies, and the other 

feature types used here. Intra-genomic variations in GC content are inevitably 

linked to similar variations in oligonucleotide content, which will be manifested 

as regional variations in the oligonucleotide distribution of the genome. 

However, the multiple frequencies that contribute to each vector in the case of 

TNF features  and other oligonucleotide frequency features may provide some 
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protection against local variability in the frequency of a single nucleotide.

With these limitations in mind, it is important to consider again the impact of the 

short length of the reads present in the dataset. This short length means that 

the source of variation in GC content of the sequences was likely to be natural 

short-range variation, in addition to the mid- to long-range variations observed 

in the mosaic structure of the A. thaliana genome.

This  level of variation is an unavoidable obstacle associated with the short 

length of the reads  produced by current sequencing platforms, and is the single 

greatest limiting factor in the kind of clustering experiments that have been 

performed here, for every type of sequence feature: a read can be considered 

as a sample taken from the whole genome, and the longer the read, the larger 

the sample and the higher the likelihood that feature vectors produced from this 

sample will accurately represent the genome as a whole. As the technology 

improves, producing more reads per run at a greater mean length (e.g. the 454 

GS FLX Titanium platform used to produce the Pseudomonas sp. 2_1_26 reads 

used here), this limitation will begin to be addressed.

The similarity in the clustering results obtained with GC and TNF features 

throughout these experiments, and the lack of any significant improvement in 

clustering quality when vectors were used that combined these two features, 

indicated a redundancy between the two types of feature. The information 

provided by measuring the GC content of a sequence is captured in the tetra-

nucleotide relative frequency distribution of that sequence, in the form of the 

frequencies of all G- and C-containing tetra-nucleotides.

The remaining feature types, IND and OFDEG, were consistently found to 

produce poor clustering results from the different datasets used. It was 

concluded that these features, used on their own or in combination, were not 

suitable for clustering of sequencing reads by species of origin as desired. 

When used in conjunction with one of the other two feature types, a marginal 

improvement in clustering results was sometimes observed.  For an example, 

see the IND+TNF and IND+OFDEG five-cluster results with UT+Psp2126 (Fig. 

4.3(ix) and 4.3(x)). However, such an improvement was not consistently 

observed over multiple datasets/number of clusters.

Without the parallelisation of OFDEG feature generation, the time taken to 
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produce large numbers of these feature vectors appeared prohibitive (see 

results detailed in Chapter 2), especially when compared to that taken to 

produce the other feature types, and the relative performance of these feature 

types.

With these considerations made, it was concluded that vectors  of TNF features 

on their own were the most suitable form of sequence representation for use in 

clustering where the desired outcome is the grouping of sequences from the 

same taxonomic source.

In this evaluation, features were compared using a single clustering method, 

CLARA, so that any difference in the results obtained could be fully attributed to 

the difference in feature vectors used to represent the sequences in the dataset. 

Many more clustering methods exist that could be used to separate the data, 

and a range of these clustering methods will be compared, using TNF feature 

vectors, in the next chapter, with the aim of finding an optimal combination of 

feature vector and clustering method for grouping of sequencing reads.

Chapter 4 - Discussion

198





A comparison of clustering methods applied to true 

sequencing reads represented by composition-based feature 

vectors

Abstract

A range of clustering methods were compared, to establish the optimal method 

to be combined with the feature vectors elected previously, for grouping of DNA 

sequencing reads by their species of origin. An overview of different types of 

clustering method is provided, and the challenges associated with clustering of 

large datasets with high dimensionality discussed. A selection of suitable 

methods were used to cluster the reads contained in the simulated dataset UT

+Psp2126, and the results compared. The most effective approach was found 

to be k-means clustering, a relatively simple partitioning method. The most 

successful clustering of UT+Psp2126 was not sufficient to entirely isolate all of 

the reads belonging to either species in the sequenced sample. However, it was 

predicted that an enrichment in a cluster with reads derived from a particular 

species was likely to prove beneficial in further analysis of the data, such as in 

sequence assembly and/or the study of minority or pathogen species in a 

sample.
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Introduction

Previous chapters have dealt with the comparison and selection of feature 

vectors, to represent DNA sequencing reads for clustering based on their 

species of origin. Following comparison by CLARA clustering performance, it 

was concluded that tetra-nucleotide frequency distribution (TNF) vectors 

provided the most effective characterisation of sequences, of the four feature 

types compared and their combinations.

This  chapter will focus on the second element of sequence comparison and 

grouping: the choice of clustering method. The aim of clustering is  to identify 

distinct groups within a dataset (Berkhin 2006). The features used to represent 

the data determine the lines  along which it is then grouped and separated. As 

such, the process of feature comparison can be thought of as the selection of a 

feature space in which the differences between sequences from different 

species, and similarities between those from the same species are best 

manifested. The process of clustering method comparison is then the selection 

of a method that can best identify these groups in the feature space. The 

suitability of a clustering method for this task is dependent on a number of 

factors including dataset size and dimensionality, cluster shape and intra-cluster 

data distribution.

There exist a huge number of methods for data clustering, utilising a variety of 

approaches and targeted towards many different fields and disciplines, 

including text-mining (Chen, Tseng et al. 2010), pattern recognition (Wiesinger-

mayr, Vierlinger et al. 2007), analysis of flow cytometry data (Sugar and Sealfon 

2010), and image analysis/interpretation (Del Frate, Pacifici et al. 2007). A 

complete review and comparison of the many methods available is  beyond the 

scope of the work described here. Instead, the focus is  on several of the main 

types of clustering method and their commonly used implementations, applied 

to raw high-throughput sequencing data characterised using TNF vectors. 

Clustering methods fall into many categories. Several of the most commonly 

used approaches are described briefly here. For an overview of many clustering 

methods, and discussion of the implementation and limitations of these 

methods, see (Berkhin 2006).
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k-Means and other partitioning clustering approaches

Partitioning approaches to clustering are defined as those methods where the 

dataset is divided into a set number of groups based on some measure of 

clustering quality. A common theme between such methods is the requirement 

for the desired number of groups to be specified, with a partitioning of the data 

based around a central point for each cluster. This differs from other 

approaches, such as hierarchical clustering, which do not require the number of 

groups to be input.

The most well-known of the partitioning clustering methods is k-means (KM) 

clustering (Macqueen 1967). In this  approach, the data is grouped into a 

defined number of clusters, k, by minimising the distance between the points  in 

a cluster and the mean data vector of these points. Several similar algorithms 

exist to implement this  system (Forgy 1965; Hartigan and Wong 1979; Lloyd 

1982), in addition to that first published by J. MacQueen.

In the MacQueen implementation, a number of points, k, are chosen as initial 

‘centroids’ for clusters in the data. The remaining points in the dataset are 

added to the group whose centroid it is closest to in the feature space. After all 

data vectors have been added to a cluster, the centroid for each cluster is 

recalculated as the mean vector for all points in the cluster. Each vector in the 

dataset is then reassigned according to these new centroids, and the centroids 

recalculated again. This process is  repeated until no change in the centroid 

positions produces a better solution. By minimising the distance between each 

data point and its  cluster centroid, this process has the effect of minimising the 

sum-of-squares distance within each cluster (Macqueen 1967).

Other partitioning methods include the closely related k-medians, fuzzy c-

means (Bezdek 1981) and partitioning around mediods (Kaufman and 

Rousseeuw 1990).

Fuzzy c-means (FCM) clustering is  a ‘soft’ version of k-means clustering, where 

each datapoint is associated with a set of weightings corresponding to its level 

of membership to each cluster produced. A datapoint that is very close to a 

single centroid will be heavily weighted towards that cluster, while a datapoint 

that is not located so close to any centroid in the feature space will have 

weightings that are more evenly spread between multiple clusters (Bezdek 
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1981).

Partitioning around mediods (PAM) uses representative points  in the data - 

mediods rather than centroids - as the centres around which clusters  are 

defined, based on minimising a measure of dissimilarity between points in a 

cluster, rather than maximising similarity as in KM and FCM clustering. For large 

datasets where the PAM algorithm is  unsuitable due to time and memory 

requirements, a variant of the method, CLARA (Clustering LARge Applications), 

is  used. In CLARA, a sample is  taken from the dataset and clustered as with the 

PAM method, after which the remaining datapoints are grouped according to the 

cluster mediod that is closest in the feature space (Kaufman and Rousseeuw 

1990).

As PAM and CLARA use representative points in clusters, rather than a centroid 

vector, the approach is  more robust to outliers in clusters, which would distort 

the values in any such averaged vector (Kaufman and Rousseeuw 1990). 

Clustering results  produced by partitioning methods can be sensitive to the 

datapoints chosen to initialise the grouping. As the grouping is built around a 

moving average originating from a (usually randomly) chosen datapoint, the 

process of rearrangement to find a grouping is liable to settle at a local 

minimum if the initial centres are not located closely enough to the true cluster 

centres in the data. This effect may be guarded against by choosing centres 

manually (if approximations to the appropriate centres are known), or else 

performing the clustering multiple times and choosing the best/most frequently 

observed solution.

Cluster validity

If the true number of different populations sampled in a dataset is not known, as 

is  likely to be the case for the kind of sequencing datasets of interest in this 

project, the correct number of groups into which the data should be clustered is 

difficult to estimate with great confidence.

The problem of predicting the correct or optimal number of clusters into which a 

dataset should be separated is referred to as cluster validity and has been 

studied for many years (for an in-depth, albeit slightly outdated, overview of this 

subject, see this review (Halkidi, Batistakis et al. 2001) and the references 

therein). Cluster validity predictions are of particular importance in partitioning 
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clustering where the number of groups must be defined at the outset of 

analysis. If a sub-optimal number of clusters is produced, points that are 

distinctly grouped in a dataset may be clustered together (where the defined 

number of clusters is too small) or arbitrarily divided into several groups (where 

the defined number of clusters is too large). How well-defined the groups of 

datapoints, and which points are grouped together, is dependent on the feature 

used to compare them.

This  introduces an interesting question with regard to the clustering of the 

sequencing read datasets of interest here: is the optimum number of clusters  for 

these datasets equal to the number of species that contribute a considerable 

proportion of reads in the data? Or do the reads  from a single species  form 

more than one cluster within the feature space, perhaps due to regional 

variations in tetranucleotide frequency within the genome (as with isochores of 

differing G/C content)?

The optimal number of clusters  predicted by a cluster validity method is based 

on a purely mathematical approach, with no prior information on the ‘correct’ 

number of populations  within the data assumed. As such, the results of cluster 

validity analysis  and the desired outcome of read clustering may not be 

identical, as the optimal grouping determined by cluster validity may divide 

reads originating from a single genome into multiple clusters.

The effect of grouping the dataset into a number of clusters larger than the 

number of species present was investigated in Chapter 4, where the UT

+Psp2126 dataset was separated by CLARA into five clusters, using a range of 

feature types and combinations. The results described there suggested that 

increasing the number of clusters  in this  way was most likely to result in division 

of reads from the A. thaliana host into multiple groups while the clustering of 

those from Pseudomonas sp. 2_1_26 tended to remain largely uneffected. This 

may be due to the difference in complexity between the plant and bacterial 

genomes, with regional differences in tetranucleotide frequency more likely to 

be present in the genome of A. thaliana.

A full survey of available validity methods was not appropriate here. Instead, a 

selection of methods were used based largely on accessibility and ease of 

implementation. The cluster validity methods used in this work are prediction 
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strength (Tibshirani and Walther 2011), the gap statistic (Tibshirani, Walther et 

al. 2001), and pamk(), an implementation of the PAM/CLARA clustering method 

in R by Christian Hennig, that returns the optimal number of clusters in a 

specified range. 

In the pamk() implementation, the choice of the optimal number of clusters is 

based on the average silhouette width of the clusters produced in each case 

(part of the package fpc, available at http://cran.r-project.org/web/packages/fpc/

index.html). The silhouette width of a cluster is a measure of how closely 

grouped the points in the cluster are, and how well-defined the separation is 

between clusters in the results of the PAM analysis (Kaufman and Rousseeuw 

1990).

In the prediction strength method, the number of clusters is predicted based on 

cross-validation of results  obtained from clustering of samples taken from the 

dataset (Tibshirani and Walther 2011). The same authors produced the gap 

statistic as a measure of cluster validity. This method measures a difference 

between the dispersion within clusters and that that would be expected from an 

appropriate standard distribution of data. The most suitable number of clusters 

is  selected as the value that maximises this difference (Tibshirani, Walther et al. 

2001).

Previous research has highlighted a tendancy for the k-means clustering 

algorithm to preferentially group data into similarly-sized clusters (Yeung, 

Haynor et al. 2001), behaviour that may be a recurring issue with partitioning 

methods, when applied to a dataset composed from classes present in unequal 

proportions.

Another difficulty associated with partitioning approaches, and common 

between many clustering methods that use Euclidean distance as a measure of 

the relatedness of points in a dataset, is  the bias towards production of 

spherical/convex clusters. As grouping of data in KM, CLARA and FCM 

clustering is  based on finding the centres (whether centroids or mediods) that 

minimise the Euclidean distance between the points and the centre in a cluster, 

the ideal shape for such a cluster will be spherical around the centre. This bias 

makes such methods less  suitable for finding groups in the dataset that are not 

arranged in such a standard shape (Berkhin 2006).
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Hierarchical clustering

Unlike partitioning clustering methods, hierarchical clustering does not split the 

dataset into a defined number of clusters, instead producing a dendrogram, a 

treelike framework of connections, between datapoints according to how closely 

they are located in the feature space. A ‘stopping criterion’ can be applied to the 

clustering, such that once the data has been grouped into a certain number of 

clusters, or the level of divergence or similarity in the groups produced has 

reached a certain threshold, the clustering process is  ceased. However, the 

specification of such a criterion is not required for clustering.

Generally speaking, hierarchical clustering can operate in either a divisive, ‘top-

down’ or agglomerative, ‘bottom-up’ fashion. In the former, the whole dataset is 

split into constituent parts  based on a measure of distance between groups of 

points. This process  is  repeated in a stepwise fashion until the dataset can be 

split no further, that is, when each individual datapoint is in a ‘group’ of its  own. 

A common analogy holds that ‘top-down’ hierarchical clustering can be thought 

of as producing a tree from the trunk (the whole dataset), outwards through a 

network of increasingly small branches, to the individual leaves  (the datapoints 

themselves). ‘Bottom-up’ clustering operates in the reverse direction, from the 

leaves to the trunk, grouping datapoints with those closest to them, then 

grouping the closest groups together repeatedly until a single cluster is formed 

of the whole dataset (Kaufman and Rousseeuw 1990; Murtagh and Contreras 

2012).

With the data clustered in this way, the results  can be interpreted as any 

number of groups (up to the number of individual points in the dataset), by 

interrogating the dendrogram at the appropriate branching point. Choosing this 

branching point, without prior knowledge of the exact composition of the 

dataset, may be difficult.

Where a decision must be made on which groups to merge, the distance 

between groups of points can be measured in a number of ways, generally 

referred to as ‘linkage metrics’. Commonly used linkage metrics  include, single-

link, average link and complete link, corresponding respectively to the use of 

the distance between the two closest points in the two clusters, the mean 

centroids of the two clusters, and the two farthest-apart points in the clusters. 
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Where these linkage metrics are measured by Euclidean distance, hierarchical 

clustering preferentially constructs spherical clusters as described previously. 

Approaches to hierarchical clustering have been developed that are more 

suitable for identifying groups of non-standard shape in a dataset (Karypis, Eui-

Hong et al. 1999; Guha, Rastogi et al. 2001).

Hierarchical clustering requires the construction of a n x n connectivity matrix 

(where n is equal to the number of points in the dataset) detailing the distance 

between each point in the data and every other point. For large datasets like the 

sequencing data that is the subject of these investigations, this connectivity 

matrix becomes too large to be held in system memory and as such most 

hierarchical clustering approaches are inappropriate for such analysis. Methods 

have been developed to tackle this, by producing a dendrogram from a sample 

of the data, with groups  at each branch represented by a sample of the points 

contained (Guha, Rastogi et al. 2001), by reducing the size of the connectivity 

matrix by removing all values bar those corresponding to a set number of 

nearest neighbours for each point (Karypis, Eui-Hong et al. 1999), or by 

creating a summary of the dataset and using this  for clustering (Zhang, 

Ramakrishnan et al. 1997).

Density-based clustering

A cluster in a dataset, represented spatially, can be thought of as a region of the 

feature space more densely populated with datapoints than the surrounding 

area. Density-based clustering methods define groups in the data based on the 

numbers of points located in the same region of the feature space. If the 

number of points in a given region of a set size is  above a given boundary 

value, these points are grouped together along with any other points similarly 

closely located in the surrounding feature space.

One of the most popular density-based clustering methods, DBSCAN (Density 

Based Spatial Clustering of Applications  with Noise, Ester, Kriegel et al. 1996), 

works on a neighbourhood system, where a cluster is defined as a collection of 

points within a set distance limit (the neighbourhood) of a preset number of 

other points  in the feature space. The cluster consists of the neighbourhood of 

every point fulfilling these criteria, that is within the neighbourhood of at least 

one other point in the cluster.
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The use of distance between one point and the next to define the boundaries of 

a cluster allows for clusters of any shape to be identified by density-based 

clustering, and provides  automatic removal of outliers from the grouping 

(Kailing, Kriegel et al. 2004).

Density-based clustering performance tends to suffer when applied to data with 

a higher dimensionality than standard spatial observations in two or three 

dimensions (Weber, Schek et al. 1998). The TNF vectors used here to 

characterise DNA sequences contain 136 individual values, rendering 

approaches such as DBSCAN unsuitable for use in analysis of such a dataset. 

The methods are also not scaleable to larger datasets  (Viswanath and Suresh 

Babu 2009). Density-based methods exist that are less sensitive to high 

dimensionality, which may be more suited to application to a dataset of TNF 

feature vectors  (Hinneburg and Gabriel 2007; Viswanath and Suresh Babu 

2009; Sugar and Sealfon 2010). Methods that are applicable to large datasets 

are not necessarily applicable to high-dimensional data, and vice versa. For 

example, the Misty Mountain clustering described by (Sugar and Sealfon 2010) 

does not scale well to higher levels of dimensionality such as the 136 

dimensions of the TNF feature space.

Spectral clustering

Spectral clustering methods implement a dimensionality reduction on a 

connectivity matrix of the dataset, by constructing a graph of relationships 

between datapoints and finding a partition of this graph to group the data 

(Kannan, Vempala et al. 2000; Ng, Jordan et al. 2001; Tian, Yang et al. 2008; 

Zhang and You 2011).

These methods can be powerful when applied to relatively small datasets but, 

largely due to the requirement for a full connectivity matrix to be constructed to 

compare the datapoints are much less suitable for analysis of large datasets 

(Yan and Jordan 2009). Methods have been developed that are more 

applicable, including KASP (k-means-based approximate spectral clustering, 

Yan and Jordan 2009), approximating the optimal solution using a set of 

representative points to partition the dataset as a whole.

Model-based clustering

Model-based methods constitute a different approach to clustering. Where 
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many of the methods described previously operate through direct interrogation 

of the points in the dataset and the relationships between them, model-based 

clustering treats the datapoints as sampled data from one of a number of 

distributions in a mixed population. The aim is to fit a mixture model - a set of 

defined distributions with different means in the feature space - to the observed 

data and try to identify the points that belong to each distribution in the mixture, 

providing a grouping of the data (Berkhin 2006).

The selection of an appropriate model, consisting of suitable distributions  that fit 

the observed data, allows for the number of different groups of classes in the 

data to be estimated - each distribution should correspond to a single group. 

The selection of a mixture model from a range can be achieved by finding the 

best fit using the Expectation-Maximisation (EM) Algorithm (Dempster, Laird et 

al. 1977; Fraley and Raftery 2002). For each mixture model, the EM Algorithm 

calculates the probability that each datapoint belongs to each distribution, 

producing a weighted classification for each point and approximating the 

parameters of the distributions present, and then calculates a likelihood that the 

observed data originated from the mixture model of these distributions, 

providing a measure of the quality of the model.

Many examples  of model-based clustering exist, one of the most commonly 

used being an implementation in the MCLUST software package, which builds 

mixture models from Gaussian distributions (Fraley and Raftery 1999). Other 

implementations exist, using other types of distribution (Cheeseman and Stutz 

1996) and even mixtures of mixtures of distributions (Browne, McNicholas et al. 

2012).

Self-organising maps

Self-organising maps (SOMs) are a type of artificial neural network first 

introduced by (Kohonen 1982). The map consists of a grid of nodes, onto which 

vectors  from the dataset are placed one-by-one. Vectors  are chosen at random 

from the dataset and placed onto a node on the grid. After the first vector has 

been placed, the nodes to which the remaining vectors are added are 

determined based on similarity between the vector to be added and those 

already present on the grid. Vectors are placed on the same node, or an 

adjacent node to those to which they show similarity. As vectors are placed, the 
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grid ‘learns’ the data, with distances between nodes growing and shrinking 

depending on the degree of similarity between the data placed onto each node 

(Kohonen 1982; Kohonen 1990).

Initially the grid of nodes  is equally spaced, but as vectors are added and the 

learning process progresses, the grid warps and stretches. After the whole 

dataset has been incorporated, nodes containing similar vectors are held more 

closely together and those that are more different are further apart (Kohonen 

1982; Kohonen 1990).

As in KM clustering, the similarity between a vector and those on the grid is 

measured as the distance in the feature space between the vector and a mean 

vector of those already assigned to each node. As vectors are added to the 

grid, these mean vectors are recalculated. 

In addition to affecting the mean vector representing its node, the assignment of 

a vector also affects the mean vectors  representing the nodes nearby. The 

magnitude of this  effect is dependent on the distance between the nodes, and 

the progress through the learning process. Initially, the effect that a vector 

assignment has on nearby nodes is large, but as more vectors are added and 

the grid fits to the data, this effect is reduced (Kohonen 1982; Kohonen 1990).

For large maps composed of thousands of nodes, clusters of nodes, 

themselves containing groups of similar data vectors, may be identified after a 

dataset has been applied to the SOM, using a matrix of distances between the 

nodes and their nearest neighbours (Ultsch and Fabian 2005).

SOMs have been successfully applied to DNA sequence data, characterised by 

their nucleotide composition (Kanaya, Kinouchi et al. 2001; Abe, Kanaya et al. 

2002; Abe, Kanaya et al. 2003; Abe, Sugawara et al. 2006). Recently, growing 

SOMs that allow for new nodes to be created if the existing node cannot 

adequately represent the variation in the data assigned to it, and hierarchically 

structured maps projected onto non-Euclidean space have been introduced for 

such analysis (Chan, Hsu et al. 2008; Martin, Diaz et al. 2008).

The hyperbolic hierarchically growing SOM (HHSOM) is of particular interest 

here, due to it’s  apparent capacity to successfully group and separate 

sequences of a length comparable to those produced in high-throughput 

sequencing (Martin, Diaz et al. 2008).
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Data can be grouped with an SOM in an unsupervised manner, with nodes and 

the distances between them allowing for groups to be identified in the data. 

However, the successful clustering of short (200 bp and 500 bp) sequence 

fragments using an HHSOM was achieved using a semi-supervised method, 

where longer (e.g. 50 kbp) fragments from the genomes being clustered were 

used to construct the SOM and the shorter fragments  classified with this map 

after the learning process had been completed (Martin, Diaz et al. 2008). This 

suggests that the unguided grouping of raw sequencing reads being assessed 

here may prove unsuccessful with an HHSOM in the absence of a set of longer 

sequences for training.

Another difference between the published implementation of HHSOM and the 

approach taken here is  in the type of features applied to the map in clustering. 

Martin et al utilised a variant of TNF features in their work - the tf-ti features 

modified to amplify the signal from rare oligonucleotides present in reads and 

mask that of oligonucleotides  common throughout the dataset (Martin, Diaz et 

al. 2008). These features are described in more detail in Chapter 2 of this work.

The SOM-based approach to clustering is not so sensitive to the size of the 

dataset, as each datapoint is  considered only once during clustering, and its 

placement onto a node is  determined in the context of the current state of the 

SOM grid. This allows the method to scale well with an increasing number of 

datapoints.

Comparison of clustering methods

The clustering performance of several of the methods outlined here was 

compared, to find the combination of TNF features and clustering method that 

produced the best grouping of sequencing reads  according to their species of 

origin. Clustering analysis  was applied to the UT+Psp2126 dataset of 

sequencing reads obtained from untreated A. thaliana plant tissue and the 

bacterium Pseudomonas sp. 2_1_26, described in the previous chapter, with 

sequences characterised as TNF vectors.

The methods used in this comparison were chosen based on availability 

(generally as an implementation in R), and suitability for use with a large, 

multidimensional dataset such as UT+Psp2126 or any other dataset of raw 

high-throughput sequencing reads, represented by TNF features.
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As mentioned previously, TNF feature vectors consist of 136 relative frequency 

values and as such the TNF feature space can be described as 136-

dimensional. The adverse effects  of high-dimensionality on density-based 

clustering was discussed previously, and it was concluded that the DBSCAN 

method was not suitable for application to this data. No suitable R 

implementation of DENCLUE (Hinneburg and Gabriel 2007), a density-based 

approach less sensitive to high-dimensionality, was available at the time of 

writing.

The size of the dataset presented a problem for hierarchical and spectral 

clustering. The requirement for construction of an n x n connectivity matrix of 

the dataset constituted too great a burden on system memory for standard 

implementations of these methods  to be used. This is especially apparent when 

we consider that the UT+Psp2126 dataset is  comparably small in relation to 

many sequencing datasets.

A variant of spectral clustering, KASP, was used in this comparison. As 

mentioned previously, KASP provides an approximation to spectral clustering 

for large datasets, by operating on a sample of representative points in the 

dataset to produce a solution using k-means clustering (Yan and Jordan 2009).

Three partitioning clustering methods were compared: KM, FCM and CLARA. 

Two cluster validity methods described earlier, prediction strength and pamk(), 

were used to estimate the optimal number of clusters that should be produced 

using these methods. Results obtained for the numbers of clusters  predicted to 

be optimal by these methods, as well as for two clusters (in accordance with the 

two species  known to be represented in the dataset) were compared. The gap 

statistic was not used to predict an optimal number of clusters as it was found to 

be unsuitable for application to such a large dataset. 

Finally, an implementation of the HHSOM method in MatLab, kindly provided by 

Christian Martin and colleagues, the original developers of the system, was also 

used and the results compared with those from other methods.

Evaluation of cluster quality

One of the challenges associated with a comparison such as this, of a broad 

range of methods with differing input and output, is in finding a systematic 

method for evaluating the results  and measuring the relative quality of the 
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separation of data in each case.

So far in this project, where data has been separated by a partitioning clustering 

method (CLARA), clustering has been assessed in large part using statistics of 

precision and recall. These metrics are used again here, with the aim of 

providing a simple and easily understood means of direct comparison between 

clustering by different methods and different variations of the same method.

In general terms, the ideal separation of a dataset such as that used here would 

produce two clusters with each wholly containing (i.e. with both precision and 

recall scores of 1.0) the reads derived from one of the two principal contributing 

species, A. thaliana and Pseudomonas sp. 2_1_26. The quality of clusters 

produced here was evaluated based on how closely they resembled this ideal 

separation.

The quality of these clusters  was evaluated with a particular focus on the 

isolation of Pseudomonas reads. This view was taken based on the 

disproportionality of representation of the two species  in the dataset: reads from 

Pseudomonas account for approximately 16% of UT+Psp2126, and effectively 

separating this minority of reads to isolate the ‘pathogen’ was of particular 

interest in this project. Where the number of clusters produced was greater than 

the number of species predicted to be present in the dataset (i.e. >2), this 

approach was taken with the aim of further isolating these Pseudomonas reads 

at the cost of dividing those derived from A. thaliana into multiple groups. 

This  may be necessary as subgroups with differing typical TNF profiles may 

exist within the plant reads, taken from regions of the A. thaliana genome with a 

slightly different distribution of tetranucleotides, as with G/C content in the 

isochores of the genome. By increasing the number of clusters produced, the 

reads from these sub-populations may be grouped together separately, 

preventing them from being erroneously included in a cluster that would 

otherwise be principally composed of Pseudomonas reads. This applies more 

widely to other host-pathogen datasets, where one genome is larger and more 

complex, and contributes a larger proportion of reads.

Chapter 5 - Introduction  

213



Materials and Methods

Generation of TNF feature vectors from sequencing reads

TNF vectors were generated for sequencing reads in the UT+Psp2126 dataset 

in FASTA format, using the perl script ‘featureWriter.pl’, reproduced in Appendix 

A.

k-Means clustering

KM clustering was performed using the kmeans() implementation, part of the R 

package stats. Unless otherwise stated, default settings were used in clustering. 

All R packages used here are available through CRAN (the Comprehensive R 

Archive Network, cran.r-project.org/).

The implementation allows for a choice of four different algorithms for clustering 

- Hartigan-Wong, Lloyd, Forgy and MacQueen (Forgy 1965; Macqueen 1967; 

Hartigan and Wong 1979; Lloyd 1982). A comparison of clustering results, with 

the UT+Psp2126 dataset, obtained using each of these four options showed no 

difference between clusters  produced (results not shown), and the default 

algorithm (Hartigan-Wong) was used in all k-means analysis detailed here.

Fuzzy c-means clustering

Fuzzy c-means (FCM) clustering was performed using the cmeans() 

implementation, part of the R package e1071. Default settings were used 

unless otherwise stated. The cmeans() implementation allows for a choice 

between Euclidean and Manhattan distance measures for clustering of 

datapoints, and for the degree of fuzziness of clustering to be defined. A 

comparison between the two distance measures, and the effect of increasing 

fuzziness of clustering on the grouping produced, is discussed later.

CLARA

As in previous chapters, CLARA clustering was performed using the clara() 

implementation, part of the R package cluster. Unless otherwise stated, default 

settings were used in clustering. Similarly to the cmeans() algorithm mentioned 

above, clara() allows the user to choose a distance measure, between 

Euclidean and Manhattan distance. A comparison of the quality of clustering 

obtained with each of these two options suggested that the use of a different 

distance measure produced very little difference in outcome (results not shown 
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here). Euclidean distance, the default setting, was used in all CLARA 

experiments discussed here.

Cluster validity

Three cluster validity methods were used with the dataset, to estimate the 

optimal number of clusters  to be produced with partitioning methods KM, FCM 

and CLARA. Such an estimation using the gap statistic (Tibshirani, Walther et 

al. 2001) was found to take much too long to produce a result with such a large 

dataset and the method was discarded.

An estimation was made with the more recent prediction strength method 

(Tibshirani and Walther 2011), using the R implementation prediction.strength(), 

and with the function pamk(), both implemented by Christian Hennig in the R 

package fpc.

The optimal number of clusters to be produced from UT+Psp2126 was 

estimated as  3 from the prediction strength method, and 7 from pamk() (results 

not shown).

KASP

Spectral clustering using k-means, KASP, was implemented using an R 

implementation kasp() detailed in (Yan and Jordan 2009) and downloaded from 

the authors’ website (http://www.cs.berkeley.edu/~jordan/fasp.html).

The kasp() implementation allows for input of two variables, ! and ", that affect 

data sampling and cluster boundary estimation during clustering. The fraction of 

the dataset sampled for clustering is  determined by ! and " dictates the 

Gaussian bandwidth kernel. Selection of optimal values for these parameters is 

discussed later. Beyond these parameters, default settings were used.

HHSOM

Grouping of data with a hyperbolic hierarchically growing self-organising map 
(HHSOM) was performed using a MatLab implementation, published by (Martin, 
Diaz et al. 2008), and kindly provided by the authors (C. Martin, by personal 
correspondence).
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Results

Parameter selection for FCM clustering

The R implementation of FCM used here provided a choice of distance 

measure to be used in computing the similarity between datapoints, between 

Euclidean and Manhattan (city block) distance. To investigate the effect that this 

choice of distance measure might have on the effectivity of clustering of 

sequence reads, the clusters  produced from the UT+Psp2126 dataset with each 

option were compared. The results are given in Table 5.1.

Table 5.1 A comparison of the FCM clustering results  obtained from grouping the UT+Psp2126 dataset 

into two clusters using Euclidean and Manhattan distance to measure the similarity between TNF vectors.

Cluster Organism

Euclidean Manhattan

Reads in cluster Reads in cluster

1
A. thaliana

1
Pseudomonas sp. 2_1_26

2
A. thaliana

2
Pseudomonas sp. 2_1_26

13254 22380

18282 18726

93040 83914

763 319

The clusters produced using each distance measure were broadly similar. In 

both cases, the clusters were produced with high recall - they contained the 

vast majority of reads in the dataset belonging to either A. thaliana or 

Pseudomonas sp. 2_1_26 (Pseudomonas). In the case of the predominant 

class in the data, A. thaliana, this high recall was also reflected in a high 

precision value for the cluster, with 99.19% of reads in Cluster 2 generated 

using Euclidean distance being derived from A. thaliana, accounting for 87.53% 

of all A. thaliana reads in the dataset, and 99.62% of reads, accounting for 

78.95% of all A. thaliana reads where the data was clustered using Manhattan 

distance.

The high recall of Pseudomonas sp. 2_1_26 reads in the opposing clusters of 

both sets of results was not reflected in a high precision for these clusters, with 

bacterial sequencing reads accounting only for around half of the total number 

of reads in these clusters (57.97% (Euclidean) and 45.55% (Manhattan)).
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Beyond this general pattern within the results, the difference between the 

clustering produced using the two distance measures could be summarised as 

follows: clustering using Manhattan distance grouped a slightly larger proportion 

of the Pseudomonas reads into a single cluster in comparison with clusters 

produced using Euclidean distance, but at the cost of reduced precision within 

that cluster. The inclusion of an extra 444 Pseudomonas reads was 

accompanied by 9126 A. thaliana extra reads in the same cluster. With this cost 

in mind, it was concluded that Euclidean distance was most suitable for use in 

all further FCM analysis described here. 

The second variable in FCM clustering that could effect the quality of clusters 

produced is the degree of ‘fuzziness’ used in grouping of the data. To determine 

the optimal value for this parameter, clustering of UT+Psp2126 was performed 

with a range of fuzziness values. The results are given in Table 5.2 and 

illustrated in Figure 5.1.

Chapter 5 - Results

217



Table 5.2 Results of FCM clustering of UT+Psp2126 dataset represented by TNF feature vectors, into three groups and with increasing degree of fuzziness used in grouping of the 

data. The clusters produced are broken down by sequencing reads generated from A. thaliana and Pseudomonas sp. 2_1_26. 

Cluster Organism

FuzzinessFuzzinessFuzzinessFuzzinessFuzzinessFuzzinessFuzzinessFuzziness

1.1 1.2 1.3 1.4 1.5 2 3 4

1
A. thaliana

1
Pseudomonas sp. 

2_1_26

2
A. thaliana

2
Pseudomonas sp. 

2_1_26

3
A. thaliana

3
Pseudomonas sp. 

2_1_26

61383 56628 54152 51578 49980 79553 79592 79592

1036 985 841 658 615 242 242 242

10479 10631 11493 13256 13947 26660 26673 26678

17934 17965 18101 18285 18332 18803 18803 18803

34432 39035 40649 41460 42367 81 29 24

75 95 103 102 98 0 0 0



Figure 5.1 Precision and recall values of Pseudomonas  sp. 2_1_26 sequencing reads for the cluster with 

the greatest recall of these reads in results of FCM clustering into three groups, with increasing fuzziness. 
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The Pr and Rc values plotted in Fig. 5.1 were derived from FCM clustering of 

the dataset into three groups. The statistics for the cluster with the greatest 

recall of Pseudomonas reads are shown in the figure, to illustrate the effect of 

varying the degree of fuzziness in clustering on the grouping of this  minority 

class within the data. As can be seen from Table 5.1, the vast majority of 

Pseudomonas sequencing reads in the dataset were consistently grouped 

together into a single cluster. It is  the quality of clustering achieved with this 

minority class within the dataset (the Pseudomonas sequences) that is most 

indicative of the success of the clustering performed.

The results indicated that the proportion of all Pseudomonas reads within the 

dataset that were contained in a single cluster (reflected in the recall value of 

the cluster) increased with increasing fuzziness of clustering, reaching a limit 

just below 99% when the degree of fuzziness was increased !2. However, this 

increased recall of Pseudomonas reads was accompanied by a decrease in the 

precision of clustering, to a limit of ~41%, caused by the increasing inclusion of 

A. thaliana reads within the cluster. The increase in recall associated with 

increasing fuzziness of clustering from a minimal value of 1.1, to a maximum 

value of 4, was from 94.17% to 98.73%, with a decrease in precision of 

clustering from 63.12% to 41.34%.

The cost to clustering precision, associated with a relatively modest increase in 

recall provided by increased fuzziness of clustering, suggested that fuzzy 

clustering of this data did not provide an advantage over standard, non-fuzzy 

partition clustering methods such as KM and CLARA.
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Parameter selection for spectral clustering

The KASP spectral clustering implementation used in this work allowed for two 

parameters used in the grouping of data to be defined. The authors of the 

implementation advised that a range of values be tried for these variables, ! 

and ", to determine the optimal combination for the dataset concerned. The 

example data that accompanied the implementation used included several 

datasets of comparable size and complexity to the UT+Psp2126 dataset used 

here, with guideline values of ! and " provided for these example datasets.

These datasets varied in three properties, the number of datapoints  in the set, 

the number of features representing each datapoint (the dimensionality), and 

the number of classes within the dataset. Two of the example datasets were 

comparable to UT+Psp2126 (the ‘Connect 4’ and ‘Census Income’ datasets), 

with guideline values for ! and " of 200 and 50, and 500 and 10, respectively.

In addition to these suggested values, the authors also recommended that ", 

the Gaussian kernel bandwidth parameter, be searched over a range to find the 

optimal value for a dataset. In order to estimate the optimal values of both ! and 

" for KASP analysis  of UT+Psp2126, clustering was performed for five different 

values of " over a range of values for !, the data reduction (sampling) ratio. An 

example of the results  obtained is given in Figure 5.2. The results obtained 

were very similar for all values used, (" = [1, 10, 20, 50, 100]), and only the 

results for " = 10 are reproduced here.

The quality of clustering as measured by the proportion of reads successfully 

separated was included here as this  measure was built into the R 

implementation used here. However, as the figure clearly shows, the results  of 

KASP clustering are much better represented using the precision and recall 

statistics used previously, as these measures provide an evaluation of 

clustering independent of the relative size of the clusters produced.

The variance in quality of results as measured by this statistic (not shown in Fig. 

5.2 for ease of interpretation), increased with increasing sampling ratio, as 

smaller samples were taken from the dataset as  representative points for k-

means clustering.
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Figure 5.2 Results of KASP spectral clustering of UT+Psp2126, over a range of values for !, the sampling ratio, with ", the Gaussian kernel bandwidth, set at 10. The same analysis 
was performed, over the same range of values for !, for a selection of other values for " yielding near identical results.
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The plots of these statistics in Figure 5.2 showed that, although the overall 

proportion of reads correctly separated by KASP varied across a range of 

values for !, the clustering of sequencing reads by KASP remained close to 

random across the range of values used for ! and ". 

The consistency of the precision values for both species  in both clusters, 

~84.8% for A. thaliana and ~15.2% for Pseudomonas, across the whole range 

of values for ! showed that the variation in recall values and the KASP statistic 

was the product of variation in the size of the clusters  produced. The precision 

values remained nearly identical to the proportions of sequences from each 

species in the dataset as a whole, suggesting that the grouping of sequences 

by KASP was near-random, and did not provide any significant enrichment for 

sequences from either species.

It may be the case that no appropriate combination of values for ! and " exists 

that would allow effective KASP clustering in this  case, perhaps due to the sie 

and/or dimensionality of the dataset. However, a more thorough approach 

searching across a range of values for " with a set value for ! could allow a 

more robust conclusion to be drawn. 

It is not known whether an optimal set of values for ! and ", determined for UT

+Psp2126 or some other dataset, would be applicable to all sequencing 

datasets prepared in a similar way. This process of determining optimal 

parameter values could constitute an inconvenient and lengthy additional step 

in the clustering process, especially given the poor quality of results obtained in 

this analysis.
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HHSOM

When originally published by Martin, Diaz and colleagues (2008), the HHSOM 

method was applied to a dataset of 350 microbial genomes represented with 

feature vectors closely related to tetra-nucleotide frequency distributions, using 

a hierarchical self-organising map arranged in five rings over hyperbolic space. 

This  suggested that the size and dimensionality of UT+Psp2126 should not be 

limiting on the performance of the HHSOM method.

The UT+Psp2126 dataset used here, containing sequences from the genomes 

of only two species, differed substantially in nature from this  microbial dataset. 

With fewer species contributing to the dataset the appropriate number of nodes 

onto which the data will be clustered was predicted to be smaller, corresponding 

to the requirement for less space to distinguish between groups  of reads. To 

determine whether a smaller grid, constructed from nodes on fewer rings, was 

more appropriate for use with this dataset, results of HHSOM analysis  of UT

+Psp2126, on a grid of two, three and five rings were evaluated. In each case, 

the HHSOM was trained and tested with all UT+Psp2126 reads, represented as 

TNF feature vectors. The results are illustrated in Figures 5.3, 5.4 and 5.5.

Chapter 5 - Results  

224



Figure 5.3 The number of sequencing reads from A. thaliana (blue) and Pseudomonas sp. 2_1_26 (green) assigned to each node of a 2-ring HHSOM trained with the dataset            
UT+Psp2126.
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Figure 5.4 The number of sequencing reads from A. thaliana (blue) and Pseudomonas sp. 2_1_26 (green) assigned to each node of a 3-ring HHSOM trained with the dataset            
UT+Psp2126.
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Figure 5.5 The number of sequencing reads from A. thaliana (blue) and Pseudomonas sp. 2_1_26 (green) assigned to each node of a 5-ring HHSOM trained with the dataset            
UT+Psp2126.
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From these results it was  clear that, in each case, the proportions of reads from 

each species assigned to each node of the HHSOM remained consistent with 

their overall proportions in the dataset. Across the range of grid sizes/number of 

rings implemented, no enrichment for reads from one particular species was 

observed in any node or group of nodes.

As originally published, the HHSOM method was intended for use in a 

supervised or semi-supervised approach, with the HHSOM grid first trained 

either using complete genome sequences or longer (1-50 kbp) sequence 

fragments. Shorter sequences were then grouped together onto the nodes of 

the trained HHSOM, and classified according to the labels applied to the longer, 

training sequences. An approach similar to this, used with this data, might 

produce a more successful grouping than was achieved using only the short 

sequencing reads in the UT+Psp2126 dataset.

Supervised methods are problematic when applied to a dataset of unknown 

composition. It could be inefficient to train an HHSOM using longer sequences 

or whole genomes before classifying the sequences in such a dataset, as 

without specific knowledge of the species that contributed to the data, a wide 

range of genomes would be required for training. However, if predictions could 

be made about the composition of the dataset, this range of genomes could be 

narrowed to provide a training dataset of more manageable proportions. 

Alternatively, it may be feasible to develop a collection of ‘pre-trained’ maps that 

have been trained with sequences from common host species and groups of 

pathogens, with the map used to analyse a dataset chosen based on the host 

species and type of pathogen thought to be present in the sequenced sample.

The sequences applied to the HHSOM system were also represented differently 

in the published application of the method, using tfti vectors, a variant of the 

tetra-nucleotide frequency distribution that is designed to accentuate the 

differences between sequences (Martin, Diaz et al. 2008).

The use of tf-ti vectors with the dataset analysed here might also provide an 

improvement to HHSOM results, and indeed the results obtained from the other 

methods evaluated. However, the short length of sequencing reads remains  a 

major obstacle to successful clustering.
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Comparison of partitioning clustering methods

The performance of three partitioning methods, KM, FCM and CLARA, were 

evaluated using the UT+Psp2126 dataset, represented by TNF feature vectors. 

A comparison of the results obtained from each of these methods, clustering the 

data into two, three and seven clusters, is presented in Tables 5.3, 5.4 and 5.5 

respectively.

As disagreement was observed between the two values  returned from the 

cluster validity methods used and with the true number of species known to 

have contributed directly to the dataset, all three values were used in 

partitioning clustering of the dataset. This disagreement between cluster validity 

predictions was an indication that the groups in the dataset were not well-

defined within the TNF feature space, an issue that had been made apparent by 

the imperfect separation observed between reads from each species in clusters 

previously produced using these features.
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Table 5.3 Precision and recall statistics for clusters produced from UT+Psp2126 using three different partioning clustering methods.  The dataset  was clustered into two groups.  The 

best  Pr and Rc values for each of the two species present  in the dataset are highlighted.  Two Rc values are highlighted for A. thaliana reads, as the same Rc value was recorded in 

clusters from both k-means and CLARA.

Method

Cluster Species

k-Meansk-Means Fuzzy c-Means (fuzziness = 1.1)Fuzzy c-Means (fuzziness = 1.1) CLARACLARA

Pr Rc Pr Rc Pr Rc

1

A. thaliana

1
Pseudomonas 

sp. 2_1_26

2

A. thaliana

2
Pseudomonas 

sp. 2_1_26

0.9916 0.8780 0.9919 0.8753 0.9914 0.8780

0.0084 0.0413 0.0081 0.0401 0.0086 0.0424

0.4153 0.1220 0.4203 0.1247 0.4156 0.1220

0.5847 0.9587 0.5797 0.9599 0.5844 0.9576



Table 5.4 Precision and recall statistics for clusters produced from UT+Psp2126 using three different partioning clustering methods.  The dataset was clustered into three groups.  The 

best Pr and Rc values for each of the two species present in the dataset are highlighted.

Cluster Species

k-Meansk-Means Fuzzy c-Means (fuzziness = 1.1)Fuzzy c-Means (fuzziness = 1.1) CLARACLARA

Pr Rc Pr Rc Pr Rc

1

A. thaliana

1
Pseudomonas sp. 

2_1_26

2

A. thaliana

2
Pseudomonas sp. 

2_1_26

3

A. thaliana

3
Pseudomonas sp. 

2_1_26

0.9845 0.6148 0.9834 0.5775 0.9859 0.5486

0.0155 0.0539 0.0166 0.0544 0.0141 0.0438

0.3721 0.1001 0.3688 0.0986 0.4102 0.1185

0.6279 0.9431 0.6312 0.9417 0.5898 0.9510

0.9981 0.2850 0.9978 0.3239 0.9972 0.3329

0.0019 0.0030 0.0022 0.0039 0.0028 0.0052



Table 5.5 Precision and recall statistics for clusters produced from UT+Psp2126 using three different partioning clustering methods.  The dataset was clustered into seven groups.  
The best  Pr and Rc values for each of the two species present in the dataset are highlighted in yellow.  Values for CLARA clusters 6 and 7 (highlighted in orange) contained fewer than 
20 sequencing reads in total, and were discounted from the search for the highest Pr and Rc values for each species.



Cluster Species

k-Meansk-Means Fuzzy c-Means (fuzziness = 1.1)Fuzzy c-Means (fuzziness = 1.1) CLARACLARA

Pr Rc Pr Rc Pr Rc

1
A. thaliana

1
Pseudomonas sp. 

2_1_26

2
A. thaliana

2
Pseudomonas 

sp. 2_1_26

3
A. thaliana

3
Pseudomonas sp. 

2_1_26

4
A. thaliana

4
Pseudomonas sp. 

2_1_26

5
A. thaliana

5
Pseudomonas sp. 

2_1_26

6
A. thaliana

6
Pseudomonas sp. 

2_1_26

7
A. thaliana

7
Pseudomonas sp. 

2_1_26

0.9994 0.0952 0.9989 0.1323 0.9730 0.2900

0.0006 0.0003 0.0011 0.0008 0.0270 0.0448

0.9958 0.1492 0.9952 0.1875 0.9939 0.3594

0.0042 0.0035 0.0048 0.0051 0.0061 0.0123

0.9966 0.2236 0.9973 0.2343 0.3779 0.1024

0.0034 0.0042 0.0027 0.0036 0.6221 0.9409

0.9998 0.0624 0.9997 0.0622 0.9989 0.1895

0.0002 0.0001 0.0003 0.0001 0.0011 0.0012

0.9934 0.2786 0.9897 0.2019 0.9995 0.0586

0.0066 0.0103 0.0103 0.0118 0.0005 0.0002

0.2944 0.0622 0.2936 0.0610 0.2500 0.0000

0.7056 0.8321 0.7064 0.8192 0.7500 0.0006

0.8279 0.1288 0.8088 0.1208 1.0000 0.0001

0.1721 0.1495 0.1912 0.1594 0.0000 0.0000



The results indicated that very similar clustering results could be obtained with 

the use of each of the three partitioning clustering methods and with a range of 

numbers of clusters. These partitioning methods produced clusters in the data 

much more successfully than with any of the other, non-partitioning methods 

investigated here. 

With these three methods, grouping the reads into two clusters (Table 5.3) 

produced one cluster with Rc >95% for Pseudomonas reads, and another with 

Rc of almost 90% for A. thaliana reads. 

As was observed in CLARA results in previous chapters, the clusters produced 

here containing the vast majority of Pseudomonas reads returned Pr values 

~58% with all three methods, suggesting that the reads from the least-

represented species in the dataset could be grouped together, but only along 

with a considerable number of reads from the dominant species. Nevertheless, 

the extent to which the vast majority of Pseudomonas reads were isolated in a 

single cluster with these methods, with the other containing A. thaliana reads 

almost exclusively, represented a marked improvement on the separation of 

reads achieved with any other methods investigated here. 

The consistent inclusion of a relatively large number of A. thaliana reads in 

clusters containing most of the Pseudomonas reads indicated that some 

overlap existed between the TNF feature profiles of reads from the two species. 

There may exist multiple populations with different TNF distributions within the 

reads of both species, and particularly of A. thaliana, as  eukaryotic genomes 

are known to exhibit a greater degree of heterogeneity. If this were to be the 

case, the A. thaliana sequences clustered with the bulk of the Pseudomonas 

reads may belong to localised regions within the A. thaliana genome.

Grouping the reads into more clusters than the number of species represented 

in the dataset allowed the investigation of the potential for these methods  to 

isolate Pseudomonas reads more effectively. Splitting the data this way allows 

for clusters  to be produced based on groups that may exist within the 

population of reads from one species, as described. If such an approach was 

successful, a cluster would be produced with a similar recall value to that 

observed with two clusters (~95%) for Pseudomonas sp. 2_1_26 reads, but with 

higher precision indicating that a smaller quantity of A. thaliana reads  had also 

Chapter 5 - Results

233



been grouped into the cluster. Precision and recall values  for three and seven 

clusters produced using each of the three clustering methods are given in 

Tables 5.4 and 5.5.

The results in both tables indicated that, while a slight improvement in the 

precision of grouping Pseudomonas reads was obtained, the major effect of 

increasing the number of clusters generated by KM, FCM and CLARA clustering 

was to divide the A. thaliana reads that had previously been grouped together 

between the additional clusters. Where the data was separated into three 

clusters, each of the three methods produced a single cluster with Rc ~94-95% 

for Pseudomonas reads, similarly to grouping into two clusters. These 

Pseudomonas reads  accounted for ~59-63% of the cluster in each case, with 

the highest Rc (CLARA Cluster 2, 95.1%) being associated with the lowest Pr 

value (58.98%), and vice versa (FCM Cluster 2, Pr=94.17%, Rc=63.12%). 

With each method, the other two clusters  produced predominantly contained A. 

thaliana reads, at a precision of ~98-99%, effectively splitting the A. thaliana-

rich cluster found when the data was grouped into two clusters.

Where the dataset was grouped into seven clusters, as detailed in Table 5.5, 

both the KM and FCM methods produced a single cluster with Rc ~82-83% for 

Pseudomonas reads, and Pr ~70%. The remaining bacterial reads were mostly 

grouped into one other cluster in the results, at a lower precision of ~17-19%. 

The similarities  observed between clusters  produced by KM and FCM were 

perhaps not surprising, as such a low degree of fuzziness was used in FCM 

clustering. Excluding the fuzzy approach to grouping the data the two methods 

are virtually identical, so with fuzziness kept relatively minimal the results 

obtained from each method could be expected to be similar.

In the results produced with CLARA, two of the clusters produced contained 

fewer than 20 reads in total (these clusters are highlighted in orange in Table 

5.5). As  such, the dataset was effectively grouped into five clusters. Within 

these five clusters, Pseudomonas reads were grouped along lines similar to the 

grouping into two or three clusters, with Rc ~94% in one cluster at Pr ~62%. 

The remaining reads were divided between the other four clusters, 

predominantly populated by reads from A. thaliana.

In each of these sets  of results, an increase in precision of clustering of 
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Pseudomonas reads was associated with a decrease in recall, and vice versa. 

A. thaliana reads were regularly grouped together with very little 

‘contamination’ from bacterial sequences. This trend had been identified 

previously when comparing feature types for representing the sequences.

The similarity in the pattern of results observed when different numbers of 

clusters were produced suggested that if these methods were applied to a 

dataset of unknown composition (i.e. where the exact number of species 

represented in the data is  not known), the choice of the number of clusters  is 

not critical for successful grouping. The number of clusters chosen should be 

larger or equal to the number of species present, to avoid sequencing reads 

from multiple species being grouped together unnecessarily. If this approach is 

taken, a system predicting the origin of reads contained in each cluster must be 

introduced to allow for the groups of most interest to be identified.

Of all the clustering methods compared here, k-means clustering was chosen 

as the most suitable method for use with TNF feature vectors in further 

sequence clustering experiments. The clusters  obtained from the use of KM 

were consistently of a good quality relative to the other methods  used, and the 

method itself is easily implemented, very widely known and easily understood, 

making it the most suitable candidate. 
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Discussion

The level of accuracy achieved in the clustering described here suggested that 

it would be difficult to use such methods to fully isolate reads belonging to a 

pathogen from a sequencing dataset similar to that analysed here. However, 

the enrichment of particular clusters for reads from each species might improve 

any further analysis, such as a genome assembly performed on the clustered 

reads. This could allow the sequencing and characterisation of pathogens that 

have previously been difficult to study. An investigation into the effect of 

clustering on the performance of sequence assembly is  described in the next 

chapter.

Supervised methods of clustering the data could allow predictions to be made 

about the identity or phylogeny of species contained in a dataset, as  discussed 

for HHSOM clustering. The limitations associated with using reference 

sequences/databases to analyse sequencing datasets  from environmental 

samples, especially those containing previously uncharacterised or poorly 

characterised species, have been discussed extensively previously in this work.

The considerably greater levels of success observed in clustering reads from 

different species  using KM, FCM and CLARA, relative to the near-random 

grouping of reads observed with other methods  investigated here, may be a 

consequence of the feature selection process described in previous chapters. 

The TNF feature vectors used here to represent sequences in the comparison 

of methods were selected based on their clustering performance with a range of 

sequence datasets, using CLARA to group the data. It is  possible that this 

process introduced a bias favouring the selection of a feature vector type more 

suited for use with partitioning clustering than other methods.

However, as all clustering methods group and separate data based on 

measures of similarity between points, a feature type that succeeds in 

portraying sequences such that those originating from the same species are 

more similar to each other than to those from another species could be 

expected to produce the desired grouping of the data using any method suitable 

for such a comparison.

As with the range of feature vectors compared previously, the list of methods 

evaluated here is  by no means exhaustive. As  new methods are introduced, 

Chapter 5 - Discussion  

236



and increases in computing power allow established methods to overcome the 

issues associated with large and complex datasets, many more powerful 

techniques may become available for such clustering analysis. Improvements to 

the technology used to sequence samples and produce these datasets are also 

likely to result in an increase in the mean sequencing read length, providing an 

improvement to results.
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A comparison of de novo sequence assembly performance 

before and after clustering reads according to a prediction of 

shared origin

Abstract

The effect that the clustering of sequencing reads has on the speed and quality 

of sequence assembly was investigated. Unguided, de novo assembly of the 

simulated dataset UT+Psp2126 and three real sequencing datasets was 

performed before and after clustering, with groups of reads produced in 

clustering assembled individually and the results considered together. The data 

was clustered by the TNF/k-means approach chosen through the work 

described throughout this thesis, and at random. The results of these 

assemblies were compared, to establish an understanding of the effect that 

clustering prior to assembly has on the number of contigs constructed and the 

total sequence covered by these contigs. The effect of clustering on the time 

required for assembly was also studied. The results indicated that clustering by 

TNF/k-means did not adversely affect the contigs produced, and was 

considerably more effective than randomised clustering in terms of maintaining 

the assembled coverage of minority genomes in a dataset while minimising the 

construction of chimeric contigs. Clustering of reads was also found to reduce 

the time required for assembly of the datasets. This approach may be beneficial 

when applied to assembly of very large and complex datasets, allowing for a 

reduction in the time required without cost to the quality of assembly. Individual 

cluster assemblies may also allow for the isolation and investigation of minority/

pathogen genomes in a multi-species sample.
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Introduction

The previous work in this  project was devoted to identifying the optimal 

combination of sequence features and clustering method for use in the 

sequence composition-based comparison of DNA sequencing reads produced 

from a multi-species  sample, to cluster these reads according to their species of 

origin. It was determined that, of the range of features and methods compared, 

the combination of tetranucleotide relative frequency distribution feature (TNF) 

vectors  and k-means clustering produced the most complete separation and 

grouping of sequencing reads. This  combined approach is referred to here as 

TNF/k-means.

Using this methodology, clusters of reads  could be produced that were enriched 

with reads originating from the genome of one particular species over the others 

represented in the dataset, although the complete separation of reads in such a 

fashion was not found to be possible.

In this chapter, the effect that the clustering of sequencing reads has on the 

assembly of contiguous sequences is investigated.

The vast majority of DNA sequencing experiments are performed with the aim 

of elucidating a stretch of sequence, from a single gene to an entire genome, 

many times longer than the individual reads produced by current sequencing 

platforms. In order for these longer sequences to be determined, the short 

reads produced in the initial sequencing must be combined, a process 

commonly referred to as sequence assembly (Paszkiewicz and Studholme 

2010).

There exist many different software packages that can be used for assembly, 

each generally intended for use with reads obtained from different sequencing 

platforms, or targeted at experiments with specific aims. These different 

assembly packages are too numerous to be listed here, but a good, albeit 

slightly outdated, collection of many of the different options is available at (http://

genome.ku.dk/resources/assembly/methods.html, Scheibye-Alsing, Hoffmann 

et al. 2009). A detailed review of all existing methods is  outside the scope of this 

work, but a general methodology is shared by the majority of assembly 

packages. What follows is a summary of this common central process.

Sequence assembly is based on the principle of multiple sequence alignment, 
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where a pairwise comparison is  made between every sequencing read in a 

dataset, to identify overlapping regions of homologous sequence between 

reads. These overlapping stretches are taken to indicate where the sequence 

from one read flows into that of the other, and the two reads  can be joined 

together by this overlap. This  can happen many times during the assembly 

process, with more reads being assimilated into these longer sequences 

according to the overlapping regions found, until all reads have been compared. 

The longer sequences produced in this process are known as contiguous 

sequences, or contigs.

This  contig assembly can be performed using a reference genome as a 

scaffold, with reads and contigs being aligned to this scaffold. However, this 

approach requires the availability of a genome sequence from the same 

species, or another suitably homologous genome, to act as an appropriate 

scaffold (e.g. Wheeler, Srinivasan et al. 2008). 

If no such reference is available, as is the case when sequencing material from 

the majority of species, a de novo assembly of reads must be performed using 

only the overlaps  found between reads (e.g. Chaisson and Pevzner 2008; 

Paszkiewicz and Studholme 2010; Simpson and Durbin 2012). In such a case, 

the successful assembly of all or the vast majority of a whole genome relies  on 

the depth of the sequencing carried out on a sample providing sufficient 

overlapping regions throughout the whole genome. The depth of sequencing is 

the average number of times that a given point in the target has been 

sequenced during the experiment. The more sequences are produced from a 

sample, the greater this depth will be.

The existence of large regions of repetitive and/or palindromic sequence in 

eukaryotic genomes complicates the assembly process, with reads originating 

from these regions forming loops  or forks in the alignment, which must be 

resolved before a single consensus sequence can be reached. The presence of 

repetitive regions of sequence is particularly problematic for assembly when the 

length of these regions exceeds that of the read lengths of the sequencing 

platform. If a read cannot span the full length of a repeating section of the 

genome, the true length of this section cannot be resolved just by assembling 

together the reads obatined from each end. As a result, repetitive and duplicate 

reads tend to be removed from the analysis prior to assembly (e.g. Wang, Wong 
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et al. 2002), as are any sequences that are too short to contribute effectively.

Overlaps between reads are generally identified from sections of identical 

sequence of a given length, known as ‘seeds’, from which longer overlaps can 

be established. Information on the quality of sequencing reads may also be 

used in the assembly, to aid the judgement of a good alignment and the 

determination of a consensus sequence between aligned reads in a contig.

Because assembly requires every sequence in a dataset to be compared with 

every other sequence so that overlapping regions can be identified, the time 

required for assembly scales poorly as  the number of reads  in the dataset, and 

can become very large for datasets generated at the depth required for effective 

genome sequencing.

Where a dataset is assembled that contains sequences from more than one 

species, as is  the case in the investigations described here, it is  possible for 

contigs to be erroneously constructed from reads obtained from two or more 

different species. These contigs are referred to here as chimeric, and are more 

likely to be assembled if a large degree of identity exists between the genomes 

of the species sequenced in the dataset. This should be of minimal concern in 

the work described here due to the highly-divergent nature of the organisms 

that contributed to the datasets used.

The enrichment within each group of reads for sequences from one particular 

species, achieved by TNF/k-means, may be beneficial in the study of multi-

species samples. Such clustering might allow contigs assembled from reads 

from one particular species to be isolated in the assembly results  of a single 

cluster, and is predicted to be coupled with a decrease in time required for the 

dataset to be assembled.

Any separation of a dataset will reduce the time required to compute an 

assembly. However, arbitrarily separating reads in a dataset in order to reduce 

computation time is likely to be detrimental to the quality of assembly produced 

from the dataset as  a whole, since reads that might otherwise have been 

combined into contigs become separated into different groups. 

This  risk is likely to be reduced where the reads in a dataset can be separated 

according to their species of origin, as reads that would used in assembly of a 

single contig are more likely to be grouped together than if the separation was 
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performed at random. This  also improves the likelihood of constructing large 

portions of genomic sequence for specific species from the reads clustered 

together in each group. If coupled with a system for predicting the likely 

contents of each cluster (in terms of the species from which reads originated in 

that cluster), this could allow for isolation and increased simplicity of the study of 

the genome of particular, minority genomes in a multi-species or metagenomic 

dataset.

It is feasible that such a separation could also reduce the risk of erroneous 

assembly of chimeric contigs, combining reads produced from the genomes of 

two different species. However, given the short length of the reads of interest 

here, and the sequence similarity-dependent nature of the assembly process, it 

appears probable that two reads that would be combined in the production of a 

contig would also be grouped together during clustering of the dataset.

Here, the software package provided for use with the 454 GS FLX sequencing 

platform, based around Newbler (gsAssembler, Roche/454 Life Sciences, CT, 

USA) was used for sequencing read assembly. This package was chosen as it 

is  widely-used and the datasets studied here were all produced on the 454 

sequencing platform.

Several datasets of sequencing reads, both simulated and obtained from real 

samples, were assembled before and after k-means  clustering of TNF vectors 

generated from the reads.

The UT+Psp2126 dataset introduced in Chapter 4, consisting of reads from 

separate experiments sequencing A. thaliana and Pseudomonas sp. 2_1_26 

combined in a ratio of ~5:1, was used as a basis for species-specific 

investigation of  the number and length of contigs, with three true sequencing 

datasets obtained from samples of infected plant tissue. Data was used from 

blackberry (Rubus fruticosus) predicted to be infected with a bacterial pathogen, 

ivy (genus Hedera) predicted to be infected with both a bacterial and a fungal 

pathogen, and tomato (Lycopersicum solanum) predicted to be infected with 

Pepino mosaic virus (PepMV). 

Summary statistics for these datasets are provided in Table 6.1.
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Table 6.1 Summary statistics of  datasets used in assembly and, where possible,  the genomes that contributed to these datasets.  Statistics could not be provided from unknown 
pathogens predicted to be present.  
1. Complete genome sequence of A. thaliana (assembly TAIR1). 
2. Incomplete genome of Pseudomonas sp. 2_1_26 (draft v1 from MiST 2.1 (Ulrich and Zhulin 2010)). 
3. Very little Rubus fruticosus sequence data is publicly available. As such, all sequences available in the NCBI Nucleotide database were used to provide an estimate of the G/C 
content of the genome (17 sequences, 12518 bp total).
4. As with R. fruticosus, very little sequence data is available for organisms in genus Hedera.  Sequences available in the NCBI Nucleotide database for Hedera helix (English Ivy) were 
used to provide an estimate of G/C content of the genome (223 sequences, 190798 bp). 
5. Complete genome sequence of Solanum lycopersicum (assembly SL2.40). 
6. Complete genome sequence of Pepino Mosaic Virus (NCBI accession no. NC_004067).  
*statistic derived from an incomplete genome. 
**statistic derived from a limited number of available nucleotide sequences from this species.



Dataset Organism Genome Size Genome GC 
content

Reads in 
dataset

Total size of dataset / 
mean read length bp

Dataset GC 
content 
(st. dev)

Dataset mean 
Phred30 Score 

(st. dev)

UT+Psp2126

A. thaliana [1]

UT+Psp2126
Pseudomonas 
sp. 2_1_26 [2]

1

Rubus fruticosus [3]

1

bacterial pathogen

2

Hedera [4]

2 bacterial pathogen2

fungal pathogen

3

S. lycopersicum [5]

3

PepMV [6]

119.67 Mbp 0.36

125339

27.96 Mbp / 223 bp 
(~23.7 Mbp A. thaliana; 

~4.25 Mbp 
Pseudomonas)

0.4488
(0.1348)

0.6478
(0.1735)

6.3 Mbp* 0.66*

125339

27.96 Mbp / 223 bp 
(~23.7 Mbp A. thaliana; 

~4.25 Mbp 
Pseudomonas)

0.4488
(0.1348) 0.8237

(0.2116)

n/a 0.41**

111531 46.46 Mbp / 417 bp 0.5392 
(0.0463)

0.7066 
(0.2009)

n/a n/a

111531 46.46 Mbp / 417 bp 0.5392 
(0.0463)

0.7066 
(0.2009)

n/a 0.37**

22733 5.22 Mbp / 230 bp 0.5162 
(0.0482)

0.6485 
(0.2139)

n/a n/a 22733 5.22 Mbp / 230 bp 0.5162 
(0.0482)

0.6485 
(0.2139)

n/a n/a

22733 5.22 Mbp / 230 bp 0.5162 
(0.0482)

0.6485 
(0.2139)

781.35 Mbp 0.35

65691 16.59 Mbp / 253 bp 0.5018 
(0.0837)

0.8828 
(0.1386)

6.45 kbp 0.41

65691 16.59 Mbp / 253 bp 0.5018 
(0.0837)

0.8828 
(0.1386)



Materials and Methods

Clustering of reads

Tetranucleotide relative frequency distribution vectors, generated from reads as 

described in Chapter 2, were clustered by k-means, using the Perl script 

‘partClustering.pl’ reproduced in Appendix A.

Randomly generated clusters were produced by assigning to each read a 

pseudorandom integer between 1 and k, where k was equal to the desired 

number of clusters. These pseudorandom labels were then used to determine 

the reads belonging in each cluster.

Contig assembly

Sequencing reads  in FASTA format, with accompanying .qual files, were 

assembled with Newbler (GSAssembler v2.6, Roche/454 Life Sciences, CT, 

USA). Files for samples 1 (blackberry), 2 (ivy), and 3 (tomato/PepMV) were 

kindly provided by the Plant Pathology (formerly Novel Methods) Group, Food 

and Environment Research Agency (FERA, Sand Hutton, York, UK). The names 

by which these datasets are referred to here are an indication of the host and, 

in the case of tomato/PepMV, pathogen species predicted by blastn/blastx 

searching of NCBI Genbank to be present in the sequenced samples (predicted 

presence of PepMV based on personal correspondence).

Analysis of assembly results

Contigs produced and the reads used by the assembly were summarised using 

the Perl script ‘contigInfo.pl’, reproduced in Appendix A. This script operates  on 

the ‘454Contigs.ace’ and ‘454ReadStatus.txt’ files  produced in the results of a 

genomic DNA assembly. 

Where isotigs were produced from assembly of cDNA, ‘contigInfo.pl’ was  used 

to summarise the reads used and isotigs produced, operating on the file 

‘454Isotigs.ace’ instead of the equivalent ‘454Contigs.ace’. A summary of 

contigs was obtained from the file ‘454ContigGraph.txt’ also produced in the 

results of an assembly. In correspondence with the contigs detailed in the 

‘454Contigs.ace’ file for a genomic DNA assembly, only those contigs !100 bp 

in length were summarised here for cDNA assemblies.
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Results

UT+Psp2126

The UT+Psp2126 dataset was assembled before and after clustering into two 

groups of reads, by TNF/k-means analysis and by random assignment. Where 

reads were assigned at random, one set of groups was produced in 

approximately equal proportion (i.e. in proportions of 0.5 of the whole dataset), 

and a second set grouped into the same proportions as those generated by 

TNF/k-means. 

These randomly generated clusters of reads were produced to allow any effects 

on assembly that were specific to TNF/k-means clustering to be distinguished 

from those caused by the difference in the number of reads available for 

assembly when clusters were grouped separately. Clusters  produced at random 

in equal proportion were included to provide an impression of the assembly 

results that could be expected if the dataset were divided in such a way as to 

provide the maximum reduction in the number of reads considered for assembly 

in each analysis and thus provide the greatest reduction in time required for 

assembly.

After clusters had been produced, these sets of reads were assembled 

individually. A comparison of the contigs produced is given in Table 6.2.

The statistics presented in Table 6.2 were intended to provide an indication of 

the overall sequence correctly assembled into contigs in each case. The 

combined total length of all contigs produced in assembly is given, as well as 

the combined total length of contigs constructed entirely from reads from a 

single species - A. thaliana and Pseudomonas - and chimeric contigs 

assembled from a mixture of reads from these two species. The combined 

length of all contigs produced from reads derived from a single species (labelled 

NCCL in Table 6.2) provided a measure of the total sequence that was 

assumed to be correctly assembled from the dataset. Counts are also provided 

of the number of individual reads assembled and partially assembled, and of 

the number of singleton reads, that could not be assembled into longer 

stretches of sequence.
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Table 6.2 Details of contigs produced from assembly of UT+Psp2126 dataset as a whole, and separated into two clusters.  The combined number of reads assembled and partially 

assembled (APA), and the number of singleton reads left unassembled are given.  A breakdown is included, of contigs constructed exclusively from reads obtained from sequencing of 

A. thaliana (marked ‘All A. thaliana’), Pseudomonas sp. 2_1_26 (marked ‘All Pseudomonas’), and of those constructed from a combination of reads obtained from both species 

(marked ‘Chimeric’).  A summary of contigs produced from two randomly-generated clusters of reads is also included.  The total sequence covered by these contigs is  included, as is  

the combined length of all non-chimeric contigs (NCCL), which provides a measure of the total sequence successfully assembled.



Metric

Un-

clustered
Clustered with TNF/k-meansClustered with TNF/k-meansClustered with TNF/k-means

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with ~1/2 reads 

in each group

Clustered at random with ~1/2 reads 

in each group

Clustered at random with ~1/2 reads 

in each group

All reads Cluster 1 Cluster 2 Total Cluster 1 Cluster 2 Total Cluster 1 Cluster 2 Total

Contigs

Combined length (bp)

Mean length (bp)

APA

Singletons

All A. thaliana

Combined length (bp)

All Pseudomonas

Combined length (bp)

Chimeric

Combined length (bp)

NCCL (bp)

604 117 504 621 142 346 488 191 196 387

407408 56997 355467 412464 138765 300003 438768 205203 209681 414884

675 487 705 664 1028 817 899 1074 1070 1072

27683 4167 23345 27512 6021 19955 25976 12670 12258 24928

91072 24938 65907 90845 23872 69450 93322 47279 47396 94675

493 23 487 510 131 319 450 181 187 368

359216 18213 348320 366533 110275 251644 361919 170741 188178 358919

107 92 16 108 3 42 45 9 5 14

46130 38227 6936 45163 638 17336 17974 3685 1679 5364

4 2 1 3 1 6 7 1 4 5

2062 557 211 768 27852 31023 58875 30777 19824 50601

405346 56440 355256 411696 110913 268980 379893 174426 189857 364283



Where the UT+Psp2126 dataset was assembled without first being split into 

clusters of reads, contigs were produced from A. thaliana and Pseudomonas 

reads in proportions roughly equal to those of the sequencing reads in the 

dataset. A large proportion of reads (72.66%) were left unassembled, and four 

chimeric contigs were produced accounting for a total of ~2 kbp of sequence.

Where assembly was performed on reads clustered by TNF/k-means, 621 

contigs were produced in total between both groups of reads, a slight increase 

on the 604 produced when the dataset was assembled as a whole. These 

contigs were shorter on average than those assembled when the dataset was 

considered as a whole, but the total combined length of these contigs was ~5 

kbp longer.

In total, 17 more A. thaliana contigs were assembed from reads  clustered by 

TNF/k-means, with a slight increase (~7 kbp) observed in the total length of 

these contigs. The combined length of Pseudomonas contigs assembled from 

this  grouping was ~1 kbp less than from UT+Psp2126 considered as a whole, 

with one more contig produced from TNF/k-means-clustered reads. 

Assembly after TNF/k-means clustering also resulted in the construction of one 

fewer chimeric contigs, with the 3 such sequences  produced constituting only 

768 bp in total. 

Assembly of reads clustered at random in the same proportions as the groups 

produced by TNF/k-means produced fewer contigs overall. However, the 

combined length of the 488 contigs produced in total from these groups was 

~31.3 kbp greater than that of those assembled from the dataset considered as 

a whole, and ~26.3 kbp greater than those produced from TNF/k-means-

clustered reads.

The combined length of contigs  produced entirely from A. thaliana reads 

randomly grouped in this  way was ~2.7 kbp greater than from those assembled 

from the whole dataset considered together, but ~4.6 kbp less  than from those 

produced from assembly of reads grouped by TNF/k-means. A considerable 

reduction was observed in the combined length of Pseudomonas contigs 

produced in this case, with ~18 kbp of sequence assembled in total. This 

constituted a reduction of >60% in the combined length produced, relative to 

where reads were left unclustered, or clustered by TNF/k-means.
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As such, the increase in total length of contigs  observed in assembly of these 

randomly grouped reads, compared with that of reads clustered by TNF/k-

means, could be almost entirely attributed to the construction of 7 chimeric 

contigs at a total combined length of 58,875 bp. 

Similar results were observed from the assembly of reads  divided at random 

into equally sized groups. In this case, a smaller number of contigs were 

produced overall (387), but the combined length of these contigs was once 

again observed to be greater than in the case of unclustered reads (an increase 

of ~7.4 kbp) and reads clustered by TNF/k-means (~2.4 kbp).

A reduction was observed in the number of A. thaliana (368) and Pseudomonas 

contigs (14) produced. In this case, the combined length of these groups of 

contigs was found to be shorter than of the equivalent sets assembled from 

unclustered and TNF/k-means-clustered reads. Once again, the greater overall 

combined contig length of these assemblies was accounted for by the size of 

the chimeric contigs  produced. Between these two randomly produced groups 

of reads, 5 chimeric contigs were assembled with a combined length of 50,601 

bp.

In all of these assemblies, both clustered and unclustered, the numbers  of 

reads assembled and left unassembled remained broadly consistent. Marginally 

fewer reads were assembled or partially assembled where the dataset was 

grouped by TNF/k-means (a reduction of 171), while randomised grouping was 

associated with a decrease of 1,707 reads assembled/partially assembled in 

the case of groups proportional with those generated by TNF/k-means and 

2,755 in the case of reads  grouped in equal proportion. Conversely, the number 

of singleton reads increased by similar margins in each case.

The total length of sequencing reads in the dataset that were produced from A. 

thaliana was ~23.7 Mbp, approximately 19.8% of the total length of the genome.  

The 19,045 reads from sequencing of Pseudomonas sp. 2_1_26 constituted 

~4.25 Mbp in total, or approximately 67.5% of the predicted length of the 

genome (from draft v1 of the genome, see Table 6.1).

According to the Lander-Waterman theory for predicting coverage in an 

assembly project (Lander and Waterman 1988), the expected number of 

individual mapped regions along a genome can be modelled as a function of 
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the number of reads, the read and genome length and the length of overlap 

required to join two reads together to form a contig. This approach is designed 

for single genome assembly projects, and several variations have been 

proposed including those for metagenomic applications (Hooper, Dalevi et al. 

2010) and assembly of paired-end reads (Wendl 2006). Although the UT

+Psp2126 dataset contains sequences obtained from more than one species, 

the Lander-Waterman theory should still be applicable to the two constituent 

sets of reads, considered separately. Such an approach would not be possible 

where the numbers  of reads and length of genome were not known for the 

individual organisms that contributed to the dataset.

Following the Lander-Waterman theory as described in (Lander and Waterman 

1988), the total number of mapped regions (contigs + mapped singletons) on 

the genome of A. thaliana was predicted to be 90,348. Of these, the predicted 

number of contigs (those mapped regions containing multiple, overlapping 

reads) was 13,554, leaving 76,794 predicted singleton reads that would map to 

the genome of A. thaliana. The total length of mapped regions  on the genome 

was predicted to be ~21.6 Mbp. Assuming that the mean length of those 

singleton reads  predicted was equal to that of the all the reads in the dataset, 

223 bp, the predicted total length of singleton reads was (76,794 * 223) = ~17.1 

Mbp. After this length of predicted singletons mapped is subtracted from the 

total predicted mapped length, the predicted total length of assembled contigs 

from A. thaliana by this method was (21.6 - 17.1) = ~4.5 Mbp.

The same calculations for Pseudomonas reads yielded a prediction of 4654 

contigs and 6299 singletons. Pseudomonas contigs were predicted to have a 

combined length of ~1.7 Mbp. 

In both cases, the observed amount of sequence assembled from reads of each 

genome was considerably smaller than predicted by the Lander-Waterman 

method. The numbers of contigs assembled were also markedly fewer than 

predicted. This discrepancy remained across all assemblies  of the data, 

regardless of clustering conditions.

In the case of sequencing reads obtained from A. thaliana, analysis by 

alignment to a reference database containing the full genome (see Chapter 3) 

had already suggested that not all of the reads could be assigned to the plant. 
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As such, the predictions of mapping all of these reads were likely to over-

estimate the level of coverage that could be achieved. A similar investigation 

was not undertaken for Pseudomonas sp. 2_1_26 reads, which were assumed 

to be completely derived from the bacterial genome.

The significant overestimation of assembly could also be a result of the 

presence of many reads originating from the same or repetitive regions of the 

genome. If this were the case, depth of coverage would not be uniformly spread 

across the genome (as assumed in the Lander-Waterman model), but instead 

would be concentrated at points of high coverage.

Without further investigation into the actual genomic mapping of all reads 

(rather than de novo assembly investigated here), the reasons for this 

inconsistency between expected and observed sequence assembly can only be 

speculated upon.

Unfortunately, the information required for predicting coverage and mapping by 

this  method (total reads from each species and genome lengths) were not 

available for the other datasets considered here, so similar estimations of 

assembly were not made.

In order to better observe the effect of randomly clustering the dataset, and to 

distinguish the effect of TNF/k-means clustering compared to this randomised 

division of reads, UT+Psp2126 was assembled in randomly generated groups 

across a range of size ratios. At intervals of 0.05 of the total number of reads in 

the dataset, sets of two clusters were produced at random from UT+Psp2126 

and assembled. The results of these assemblies, combined between the two 

clusters, are plotted in Figures 6.1 and 6.2, across the range of size ratios 

produced. Also plotted in the figures are statistics  obtained from assembly of 

reads clustered by TNF/k-means, at the appropriate distance along the axis  of 

size ratios.
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Figure 6.1 The effect of increasing disproportionality  of split between clusters on assembly of UT+Psp2126. The combined length of contigs is plotted, for the unclustered dataset, 
and for reads derived from the A. thaliana genome only, assembled from reads clustered at random into two groups. The total non-chimeric contig length (NCCL) is  also given. The 
statistics are plotted against the proportion of reads contained in the largest cluster. Values are included for assembly of clusters produced randomly in proportions of 0.95/0.05, 
0.9/0.1,  0.85/0.15, ...,  0.55/0.45, 0.5/0.5, and for assembly of the dataset as a whole. The equivalent statistics are included for assembly of reads clustered by the TNF/k-means 
approach,  a the appropriate point along the x-axis Error bars are included for assembly of  randomly-generated clusters, given as standard error from the mean for three repeats of  
clustering the dataset at random.
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Figure 6.2 The effect of increasing disproportionality of split between clusters on assembly of UT+Psp2126. The combined length of contigs from Pseudomonas reads only, and of 
chimeric contigs, produced from reads from both species,  are given as assembled from reads clustered at random into two groups. The statistics are plotted against the proportion of 
reads contained in the largest cluster. Values are included for assembly of clusters produced randomly in proportions of 0.95/0.05, 0.9/0.1, 0.85/0.15, ..., 0.55/0.45, 0.5/0.5, and for 
assembly of the dataset as a whole. The equivalent statistics are included for assembly of reads clustered by the TNF/k-means approach, a the appropriate point  along the x-axis. 
Error bars are included for assembly of randomly-generated clusters, given as standard error from the mean for three repeats of clustering the dataset.
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Across the range of size ratios, with one exception at 0.95/0.05, the combined 

length of all contigs was  found to be greater from assembly of randomly 

clustered reads than from assembly of the unclustered dataset. This  increase 

reached a peak at a size ratio of 0.7/0.3, where the combined length of all 

contigs assembled was ~25 kbp greater than from the unclustered data.

The combined length of A. thaliana contigs was found to increase where the 

dataset was randomly grouped at size ratios  from 0.95/0.05 to 0.7/0.3, relative 

to those assembled from the unclustered data. A considerable decrease was 

observed between a ratio of 0.7/0.3 and 0.65/0.35, at which point the combined 

length of A. thaliana contigs fell below that assembled from unclustered reads. 

The combined length was found to increase steadily from this point, for 

assembly of clusters of proportions from 0.65/0.35 to 0.5/0.5.

In contrast to this variation in combined length of A. thaliana contigs  around that 

obtained from unclustered reads, the combined length of contigs assembled 

entirely from Pseudomonas reads was found to decrease steadily as the 

proportionality of randomised clustering was increased (see Fig. 6.2). 

Pseudomonas contigs assembled from unclustered reads formed a total length 

of ~46 kbp. This combined length was  found to decrease steadily with each 

cluster size ratio, falling to ~5 kbp where the dataset was divided in equal 

proportions of 0.5/0.5.

Conversely, the combined length of chimeric contigs produced in assembly was 

found to increase from a relatively negligible 2 kbp for unclustered reads, 

peaking at ~59 kbp at a size ratio of 0.65/0.35 before decreasing again for the 

remaining randomised clustering ratios. This  combined length of chimeric 

contigs exhibited a greater degree of variation between repeats of random 

clustering than the other statistics used to describe the assemblies.

The variation in combined chimeric contig length was reflected in the total 

combined length of non-chimeric contigs (Fig. 6.1), which remained close to the 

overall combined length of all contigs from assembly of unclustered reads  and 

reads clustered randomly at a size ratio of 0.95/0.05 and 0.9/0.1, but thereafter 

failed to increase alongside this  overall measure of combined contig length. 

Where the length of chimeric contigs was removed, the combined length of 

assembled sequences was found to remain broadly consistent with that of 
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unclustered reads, for random cluster size ratios from 0.95/0.05 to 0.7/0.3, 

before decreasing by ~50 kbp at 0.65/0.35, as was observed in the combined 

length of A. thaliana contigs. In fact, these length statistics were very similar at 

these size ratios, because the combined length of Pseudomonas contigs 

constituted a very small proportion of the overall length at these ratios.

The combined length of all contigs  produced from reads clustered by TNF/k-

means was found to be ~12.4 kbp less than that observed with reads clustered 

randomly at a ratio of 0.75/0.25 (Fig. 6.1). This randomised clustering ratio 

interval was extremely close to the 0.7501/0.2499 split of reads produced by 

TNF/k-means clustering.

Although the overall combined contig length from this  TNF/k-means-clustered 

assembly was smaller than that observed from randomly clustered reads, the 

combined length of chimeric contigs was considerably smaller (Fig. 6.2), giving 

a greater combined length of non-chimeric contigs in assembly of these clusters 

than in the equivalent randomly clustered reads. The combined length of 

Pseudomonas contigs was  also observed to be markedly larger than for 

randomly divided reads, and only slightly reduced (by ~1 kbp) relative to those 

assembled when the dataset was considered as a whole.

Where reads  were clustered by TNF/k-means, some distinction could be made 

between the assemblies performed on the individual clusters. The vast majority 

of A. thaliana sequence assembled from the dataset under this clustering 

(348,320 bp, or 95.03%) was obtained from a single cluster. The same effect 

was observed for assembled Pseudomonas sequence, where 38,227 bp 

(84.64%) was produced from reads contained in the opposing cluster from this 

large fraction of plant contig length. This separation of contigs was not observed 

where the dataset was divided at random. In these cases, the proportions of A. 

thaliana and Pseudomonas sequence assembled from each cluster remained 

broadly consistent with the overall proportions of reads contained in each 

group, with little differentiation between the combined length of contigs from 

each species.

The combined length of A. thaliana contigs assembled from reads clustered by 

TNF/k-means was ~15 kbp less than from randomly clustered reads at a size 

ratio of 0.75/0.25.
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The marked decrease in combined length of A. thaliana contigs and the 

associated increase in chimeric contigs visible where UT+Psp2126 was 

randomly grouped at a size ratio of 0.65/0.35, compared to the assembly at a 

ratio of 0.7/0.3, was difficult to explain. It may be that the reduction in the size of 

the largest of the two groups produced fell below some threshold value for the 

mean coverage of A. thaliana provided by these reads, resulting in a sudden fall 

in the total sequence that could be produced for this genome. The subsequent 

rise in combined length of A. thaliana contigs as  the ratio of cluster sizes 

approached parity could then be explained as a result of increasing mean 

coverage of the plant genome in the smallest cluster. It is difficult to draw any 

firm conclusions on this without further investigation into the specific coverage 

within the dataset, and the nature of the contigs being produced.
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Sample 1 - blackberry + suspected bacterial pathogen

The blackberry dataset of 111,531 reads was assembled as a whole, after TNF/

k-means clustering, and after randomised division of reads into two groups, as 

before. The dataset was clustered into two groups, as  this was the number of 

species predicted to be present in the sequenced sample - the blackberry plant 

host and a bacterial pathogen. A summary of the contigs produced in these 

assemblies is given in Table 6.3.

A larger number of contigs were assembled in total from reads clustered by 

TNF/k-means (143), and clustered at random in proportions equal to those 

obtained from TNF/k-means (136) and in a ratio of 0.5/0.5 (127), than were 

constructed from the unclustered dataset (119 contigs). Clustered reads were 

also assembled to cover a greater total sequence across these contigs, with 

TNF/k-means-clustered contigs returning a combined length of ~110 kbp, 

randomly generated clusters of the same proportions as these producing 

clusters of total length ~138.5 kbp and equally proportioned randomly divided 

clusters ~136 kbp, compared to a combined length of ~94.5 kbp in contigs 

assembled from unclustered reads.

The combined numbers of assembled and partially assembled were similar for 

each assembly, with ~102,000 reads used in each case. The randomly grouped 

assemblies returned a greater number of singleton reads than in the assembly 

of unclustered reads and reads clustered by TNF/k-means.
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Table 6.3 Details of contigs produced from de novo assembly of the blackberry dataset as a whole, and separated into two clusters. The number of reads assembled,  the combined 

number of reads assembled and partially assembled (APA) and the number of singleton reads are given. Statistics are included for reads clustered at random and with TNF/k-means.

Metric

Un-

clustered
Clustered with TNF/k-meansClustered with TNF/k-meansClustered with TNF/k-means

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with ~1/2 reads in 

each group

Clustered at random with ~1/2 reads in 

each group

Clustered at random with ~1/2 reads in 

each group

All reads Cluster 1 Cluster 2 Total Cluster 1 Cluster 2 Total Cluster 1 Cluster 2 Total

Contigs

Combined 
length (bp)

Mean length 

(bp)

APA

Singletons

119 103 40 143 92 44 136 60 67 127

94686 88338 22203 110541 86845 51692 138537 66113 70024 136137

796 858 555 773 944 1175 1019 1102 1045 1072

102574 75571 27227 102798 74639 27211 101850 51038 50999 102037

6224 4225 1983 6208 5094 2207 7301 3521 3543 7064



Sample 2 - ivy + supected bacterial and fungal pathogens

The ivy dataset of 22,733 reads was assembled as a whole, and after TNF/k-

means and random clustering, as before. In this  case, three groups were 

produced, to reflect the three species thought to be present in the sequenced 

sample: the ivy plant host, a fungal and a bacterial pathogen. A summary of the 

contigs produced in these assemblies is given in Table 6.4.

Here, as observed with the blackberry dataset, the total numbers of contigs 

assembled from clustered reads were greater than those produced from the 

unclustered ivy dataset (97): assembly of reads clustered by TNF/k-means 

(104), at random in the same proportions as produced by TNF/k-means (143), 

and at random into equally proportioned clusters (167). The combined length of 

contigs produced from clustered reads was also found to be greater than that 

from contigs assembled from the unclustered dataset. In the case of clusters 

produced by TNF/k-means, this combined length of contigs was ~57 kbp, 

approximately 3 kbp greater than obtained from unclustered reads, while 

assembly of randomly generated clusters of the same proportions as the three 

produced by TNF/k-means produced contigs  of total length ~87 kbp, and 

randomly assembled clusters of equal proportions ~103 kbp.

As observed with the previous datasets, the number of reads assembled or 

partially assembled remained broadly consistent between the different methods 

of clustering. In this instance, fewer singleton reads remained in the assembly 

of clustered reads - 3212 singletons remained from unclustered assembly, while 

the smallest number of singletons in a clustered assembly, where the dataset 

was divided at random into clusters  of identical size to those generated by TNF/

k-means, was 2255.
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Table 6.4 Details of contigs produced from de novo assembly of ivy dataset as a whole, and separated into three clusters. The number of reads assembled, the combined number of 

reads assembled and partially assembled (APA) and the number of singleton reads are given. Statistics are included for reads clustered at random and with TNF/k-means.

Metric

Un-

clustered
Clustered with TNF/k-meansClustered with TNF/k-meansClustered with TNF/k-meansClustered with TNF/k-means

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with same 

proportions as TNF/k-means groups

Clustered at random with ~1/3 reads in 

each group

Clustered at random with ~1/3 reads in 

each group

Clustered at random with ~1/3 reads in 

each group

Clustered at random with ~1/3 reads in 

each group

All reads
Cluster 

1

Cluster 

2

Cluster 

3
Total

Cluster 

1

Cluster 

2

Cluster 

3
Total

Cluster 

1

Cluster 

2

Cluster 

3
Total

Contigs

Combined 
length (bp)

Mean 
length (bp)

APA

Singletons

97 99 3 2 104 84 36 23 143 59 52 56 167

53954 55051 1606 446 57103 50289 24078 12904 87271 35409 35793 32159 103361

556 556 535 223 549 599 669 561 610 600 688 574 619

17144 13487 1732 712 15931 14868 2480 765 18113 5966 6256 5805 18027

3212 1981 603 70 2654 2089 103 63 2255 987 588 922 2497



Sample 3 - tomato + Pepino mosaic virus

The tomato/PepMV dataset of 65,691 cDNA reads was assembled as a whole, 

and after TNF/k-means and random clustering into two groups, the number of 

groups corresponding to the predicted number of species contributing to the 

sequences in the dataset. A summary of the isotigs and contigs produced in 

these assemblies is given in Table 6.5.

Once again, a similar pattern was observed in these results as in those 

discussed previously. After reads were clustered with TNF/k-means, a slightly 

larger number of contigs  were assembled (82) than from the unclustered 

dataset (67). Assembly of randomly grouped reads produced 73 contigs where 

the groups produced were of the same sixze as those generated by TNF/k-

means, and 71 where the dataset was divided into equally proportioned groups.

The combined length of the contigs produced from the dataset when reads 

were left unclustered was 56.6 kbp. As with the other datasets investigated, the 

assembly of clustered reads produced contigs of greater combined length than 

where the dataset was assembled as a whole. After reads were clustered with 

TNF/k-means, the assembled contigs covered 60.5 kbp, while assembly 

following the randomised grouping of reads produced contigs of combined 

length 73 kbp and 73.4 kbp where reads groups were of the same size as in 

TNF/k-means and of equal size respectively.

The mean length of contigs  produced from randomly grouped reads was also 

greater than that of unclustered reads and reads clustered by TF/k-means. A 

small reduction in mean contig length was observed where reads were 

clustered by TNF/k-means, relative to the unclustered data.

The number of isotigs  assembled in each case correlated with the numbers  of 

contigs produced. However, the mean length of these isotigs was greatest 

where the dataset was assembled without first being clustered.

The nuber of reads assembled and partially assembled remained consistent 

across each set of assemblies, but a slightly greater number of singleton reads 

remained in the clustered assemblies (~5.3 - 5.4 kbp in contrast to 5 kbp for 

unclustered assembly).
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Table 6.5 Details of contigs and isotigs produced from de novo assembly of tomato/PepMV dataset as a whole and separated into two clusters. The number of  reads assembled, the 

combined number of reads assembled and partially assembled (APA) and the number of singletons are given. Statistics are given for reads clustered at random and by TNF/k-means.

Metric

Un-
clustered Clustered with TNF/k-meansClustered with TNF/k-meansClustered with TNF/k-means Clustered at random with same 

proportions as TNF/k-means groups
Clustered at random with same 

proportions as TNF/k-means groups
Clustered at random with same 

proportions as TNF/k-means groups
Clustered at random with ~1/2 reads 

in each group
Clustered at random with ~1/2 reads 

in each group
Clustered at random with ~1/2 reads 

in each group

All reads Cluster 1 Cluster 2 Total Cluster 1 Cluster 2 Total Cluster 1 Cluster 2 Total

Contigs

Combined
length (bp)

Mean length
(bp)

Isotigs

Mean length 
(bp)

APA

Singletons

67 64 18 82 22 51 73 35 36 71

56637 39232 21323 60555 29084 43972 73056 36126 37350 73476

845 613 1185 738 1322 862 1001 1032 1038 1035

73 69 19 88 23 59 82 36 40 78

1599 656 1625 865 1588 1121 1252 1548 1418 1441

60231 15460 44491 59951 18470 41483 59953 30079 29912 59973

5003 4634 762 5396 1773 3526 5299 2605 2695 5286



Speed of assembly

The time taken for completion of assembly for each dataset as a whole and in 

clusters is detailed in Table 6.6. Assembly was performed on a single 2.2 GHz 

AMD Opteron 6174 CPU with 512 KB memory.

The total time required for assembly of each dataset was reduced when clusters 

of reads from the dataset were considered separately. A greater reduction in 

time required for assembly was observed where reads  were clustered at 

random into equally sized groups, than when clustered with TNF/k-means.
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Table 6.6 CPU time in seconds taken for Newbler de novo assembly of each dataset, before and after clustering both with TNF/k-means and at random.

Dataset Whole Dataset Clustered with TNF/k-meansClustered with TNF/k-meansClustered with TNF/k-meansClustered with TNF/k-meansClustered with TNF/k-means Clustered at randomClustered at randomClustered at randomClustered at randomClustered at random

UT+Psp2126
Cluster 1Cluster 1 Cluster 2Cluster 2 Total Cluster 1Cluster 1 Cluster 2Cluster 2 Total

UT+Psp2126
444.428 s 77.744 s77.744 s 315.001 s315.001 s 392.745 s 182.493 s182.493 s 180.199 s180.199 s 362.692 s

Blackberry R34r5
Cluster 1Cluster 1 Cluster 2Cluster 2 Total Cluster 1Cluster 1 Cluster 2Cluster 2 Total

Blackberry R34r5
6386.751 s 3384.738 s3384.738 s 1732.481 s1732.481 s 5117.219 s 1746.831 s1746.831 s 1728.347 s1728.347 s 3475.178 s

Ivy 10
Cluster 1 Cluster 2Cluster 2 Cluster 3 Total Cluster 1 Cluster 2Cluster 2 Cluster 3 Total

Ivy 10
252.471 s 221.847 s 21.479 s21.479 s 0.838 s 244.164 s 49.468 s 51.874 s51.874 s 48.148 s 149.490 s

Tomato/PepMV 1
Cluster 1Cluster 1 Cluster 2Cluster 2 Total Cluster 1Cluster 1 Cluster 2Cluster 2 Total

Tomato/PepMV 1
390.477 s 60.585 s60.585 s 278.356 s278.356 s 338.941 s 110.175 s110.175 s 137.725 s137.725 s 247.900 s



Discussion

UT+Psp2126

In previous chapters  it had been observed that clustering of reads by TNF/k-

means analysis produced groups in the data that were enriched with reads from 

a single species. Here, this enrichment was manifested in the disproportionate 

number and combined length of contigs assembled from A. thaliana reads in 

one cluster and Pseudomonas reads in the opposing cluster. These proportions 

were considerably divergent from the ~5:1 ratio of A. thaliana and 

Pseudomonas reads in the dataset as a whole.

Although the total combined length of A. thaliana contigs remained broadly 

consistent between all assemblies performed with UT+Psp2126, with the mean 

length of these contigs  even found to increase where the dataset was divided at 

random, a distinctive effect was observed on the number and combined length 

of Pseudomonas contigs. Those Pseudomonas contigs  constructed from reads 

grouped by TNF/k-means provided coverage for the bacterial genome that was 

comparable to that produced from the dataset without clustering, whereas a 

considerable drop in Pseudomonas sequence assembly was observed when 

UT+Psp2126 was grouped at random.

The randomised clustering of reads was also found to result in a marked 

increase in erroneous assembly of chimeric contigs, compared to those from 

unclustered and TNF/k-means-clustered reads. Although the assembly of 

randomly grouped reads produced a greater overall combined length of all the 

contigs assembled, the combined length of ‘pure’ contigs assembled from reads 

derived from a single species was found to be less than in unclustered or TNF/

k-means-clustered assembly.

Considering the detrimental effect on the contigs assembled from randomly 

clustered reads, especially on those contigs constructed exclusively from 

Pseudomonas reads, sequence assembly from groups  of reads produced by 

TNF/k-means was found to be preferable to random clustering. In fact, the 

overall assembly of TNF/k-means-clustered reads produced results almost 

identical to those from assembly of the whole dataset considered at once, with 

only a slight reduction in the combined length of Pseudomonas contigs. This is 

best illustrated in Figs. 6.1 and 6.2, where the improvement in assembly with 
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the TNF/k-means approach, compared with that of randomly generated clusters 

of the same size, is especially apparent. The overall length of the three chimeric 

contigs assembled from these clustered reads was also found to be lower than 

that observed from unclustered reads, which may suggest that the clustering of 

reads prior to assembly reduces the likelihood of such contigs being assembled.

The differences between assembly of TNF/k-means-clustered reads and of 

reads randomly grouped in the same proportions as these clusters - the greater 

combined length of Pseudomonas contigs and the reduced length of chimeric 

sequence produced with TNF/k-means clusters - could be attributed entirely to 

the method of clustering used, as all other conditions for assembly remained 

identical.

The increase in mean length of A. thaliana contigs in both cases of randomised 

clustering was difficult to explain without further investigation of the specific 

nature and sequence of these contigs.  Further investigation of both the contigs 

assembled, and the mapping of these sequences and other reads to the 

genomes of both species would allow for the true coverage to be determined. 

As well as allowing for a greater understanding of the effects of grouping reads 

on de novo assembly, this would also provide insight into the reasons for the 

discrepancy between expected and observed coverage of the genomes by the 

contigs produced.

Further study of these results is required for a full understanding of the effects 

of randomised clustering to be gained. A repeat of these analyses, using a 

range of other assembly software packages would also allow for the impact of 

the choice of approach to assembly to be assessed and accounted for.

True sequencing datasets

Assembly of the three real sequencing datasets could not be assessed in the 

same, species-specific detail as with UT+Psp2126, as the prior knowledge of 

the origin of each read was not available in these cases. However, a number of 

trends were observed throughout the results that suggested that clustering of 

reads prior to assembly might have produced similar effects with these 

datasets.

In each case, the numbers of reads assembled and partially assembled, and 

the number of singleton reads, were found to be broadly consistent in assembly 
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of the dataset before and after clustering. This  indicated that the differences 

observed in the number and length of contigs produced in assembly were the 

result of the differences in the clustering of the data, rather than an 

inconsistency in the total number of reads used in each assembly. This pattern 

was also observed in the analysis of UT+Psp2126, although a slight decrease 

in assembled and partially assembled reads and a slight increase in singleton 

reads was observed with assembly after randomised grouping in that case.

Another trend common between the analysis of all three true sequencing 

datasets was the assembly of a greater combined length of contigs after 

randomised clustering into groups, for both size ratios  used. Assembly after 

clustering by TNF/k-means also produced a greater combined contig length 

than where the dataset remained unclustered, for all three datasets, but this 

increase was not as great as for randomly grouped reads.

Where UT+Psp2126 was clustered at random, a considerable increase in the 

assembly of chimeric sequence was  observed, which had the effect of 

producing an increase in the overall combined length of contigs constructed. It 

may be that a similar effect could account for the increase in combined contig 

length observed with the three true sequencing datasets discussed here. 

However, without further investigation, or knowledge of the origin of the reads 

used in each of these assemblies, the conclusions that could be drawn from 

these analyses was limited. The consistencies between the results from each 

dataset and from UT+Psp2126 suggested that TNF/k-means clustering may 

have been effective with true sequencing datasets as well as the simulated 

dataset, and as such further exploration was desirable.

In order to more fully evaluate the effect of prior clustering of reads on the 

nature of contigs produced in assembly, the reads and the contigs  produced 

from the true sequencing datasets used here could be analysed by alignment to 

a reference database of sequences belonging to the species represented in the 

dataset, or closely related species. This would allow a better understanding of 

the effectivity of the clustering in grouping together reads originating from the 

same species, and of how effectively these reads were assembled together into 

non-chimeric contigs.
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Effect of clustering on speed of assembly

As was expected, the clustering of datasets  prior to assembly reduced the 

overall time required for assembly of reads to be completed. The greatest 

reduction, in terms of absolute time required, was observed with assembly of 

sample 1, the blackberry dataset that consisted of ~111,000 reads. Here, a 

reduction of ~20% was observed in the time required for assembly when the 

dataset was first clustered by TNF/k-means, or a reduction of 21:10 (mins:secs) 

from 106:27 to 85:17 in absolute terms. 

The reduction could be compounded further by performing the assembly of 

each cluster of reads  in parallel using multiple processors, rather than one after 

another. Given sufficient processors, if performed in parallel the assembly of a 

whole dataset could be expected to take little more real ‘wall clock’ time than 

the time required for assembly of the largest cluster produced.

The effect of the size of clusters on the speed of assembly was illustrated by the 

use of randomly generated, equally sized groups of reads. Assembly of these 

groups required less time than for TNF/k-means-clustered reads, with the time 

required for assembly of sample 1 reduced by 48:32, or ~45.5%. This was due 

to the greater reduction in size, in terms of number of sequences, between the 

largest cluster produced at random and the dataset as a whole. 

As the time required for an assembly to be performed is proportional to the 

square of the number of sequences in the dataset, the time required for several 

clusters of reads to be assembled increases with the square of the size of the 

largest cluster. The largest randomly produced cluster contains approximately 1/

k of the total reads in a dataset, where k  is the number of clusters produced, 

while the largest cluster produced with TNF/k-means  can be of any size from 1/

k up to that of the dataset as a whole, which results in a greater time 

requirement for a TNF/k-means-clustered assembly.

However, the similarity in contigs  produced from assembly of a whole dataset 

and from clusters of reads produced with TNF/k-means, suggested that the 

improvement in CPU time requirement associated with clustering reads in this 

way comes at very little cost in terms of quality of the assembly results. The 

reduction in Pseudomonas contig number and mean length and the increase in 

chimeric contig number and mean length observed where UT+Psp2126 was 
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randomly clustered suggested that, while a greater reduction in CPU time 

requirement was obtained from random clustering, this approach had a much 

greater impact on the assembly results, which was unlikely to be desirable.

Conclusion and future work

The capability, provided by TNF/k-means clustering, to assemble a large 

proportion of the overall sequence covered for each species  in the dataset in 

separate groups may prove to be beneficial for future analyses of multi-species 

samples. The isolation of the vast majority of Pseudomonas contigs from the 

vast majority of A. thaliana contigs in separate cluster assemblies opens up the 

possibility of not only reducing the time required for computation of dataset 

assembly, but also simplifying the study of pathogens/minority species in multi-

species samples.

The reduction in the time required for assembly, combined with an enrichment 

in contigs produced from a single species in a given cluster, suggested that the 

TNF/k-means approach may be advantageous, especially in analysis of very 

large sequencing datasets. If the number of contigs obtained, as a whole and 

from assembly of reads from each species represented in the dataset, is not 

considerably adversely affected by clustering, as was suggested by the results 

obtained here, the time required to assemble a dataset can be reduced 

effectively using this method. The approach also provided the advantage of 

isolating contigs from a particular species, in the assembly results from an 

individual cluster.

Although the reductions observed where reads were clustered by TNF/k-means 

were not large as a proportion of the time required for unclustered assembly, 

the reduction in real terms for sample 1, where assembly took >20 minutes less 

time to complete, suggested that this approach could be very useful if it was not 

associated with a deleterious  effect on the assembled sequences. Such a 

reduction in time would be most beneficial for the increasingly large datasets 

being produced as  high-throughput sequencing technologies advance. The 

ever-increasing numbers of individual reads being produced from massively 

parallel sequencing platforms are resulting in a huge increase in the time 

required for assembly of contigs from these datasets. Under such conditions, 

even a 20% reduction could cut the overall time required for assembly by hours
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The UT+Psp2126 dataset cannot be thought truly representative of a true 

sequencing dataset, as it was  constructed from reads obtained from two 

separate sequencing experiments. As  such, the conclusions that can be drawn 

from a comparison of the assembly results obtained from this dataset and the 

three true sequencing datasets  are limited. However, the common trends 

observed between the results from each dataset do suggest that some success 

might have been achieved in the clustering and contig assembly of these reads 

according to their species of origin.

To allow for firm conclusions to be drawn from the results described in this 

chapter, further investigation of the assemblies and datasets would be required. 

An alignment-based analysis of those datasets containing unknown pathogens 

and poorly characterised host species could provide a prediction of the relative 

proportions of sequence present from each species and further insight into the 

possible effects of clustering. Mapping the reads in these datasets to a 

reference database of genomic sequences from the host species and related 

organisms, and to bacterial or fungal sequences thought to be related to those 

present would allow these proportions to be predicted.

Similarly, by comparing the assembled contigs to a database such as that 

described above (or a larger database of sequences such as the NCBI nt 

database of non-redundant nucleotide sequences), firmer conclusions might be 

drawn regarding the success of assembly before and after clustering, and the 

similarity/difference between these different assemblies  assessed in a more 

quantitative manner. Without this information, the current results can only hint at 

the possible effects of clustering on assembly through observations of similar 

trends in the summary statistics  of the datasets used and assemblies 

performed.

The Lander-Waterman model used to make predictions of coverage and 

assembly in UT+Psp2126 is well-established and easily understood, but a 

method designed for use with metagenomic datasets (e.g. Hooper, Dalevi et al. 

2010) may have been more appropriate for use here, and with the other 

datasets considered, where no predictions  could be made due to the lack of 

information about their contents and origin.
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Once again, the existence of a true sequencing dataset containing reads from 

species with a fully sequenced genome, as was aimed to be produced in the 

work described in Chapter 3, would allow a considerably greater insight into the 

type of analysis discussed here. The availability of such a dataset for analysis 

would remove the limitations associated with the use of simulated sequencing 

datasets such as UT+Psp2126 in making predictions about the clustering and 

assembly of true sequencing data, while simultaneously eliminating the 

uncertainty associated with drawing conclusions from data of largely unknown 

or poorly characterised origin.
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Discussion and future directions

Abstract

In this chapter, the work reported in this thesis is discussed within the context of 

the wider research environment. Suggestions are made regarding the future 

directions that the research may take, and how impending developments in 

sequencing technology might impact upon it.
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Discussion

The development of new techniques of sequence comparison, the introduction 

of new sequencing platforms and the continuing increases  in computational 

power and storage capacity are bringing about rapid changes in the fields of 

metagenomics and biological sequence analysis.

To date, most metagenomics research has been into microbial datasets  more 

complex than the host-pathogen systems of most interest here. The emphasis 

on microbial communities in the wider literature can be attributed to the difficulty 

encountered in culturing most bacterial species (Costello, Lauber et al. 2009; 

Dick, Andersson et al. 2009; Qin, Li et al. 2010; Rodriguez-Brito, Li et al. 2010), 

and in understanding the interactions and relationships that prevail within these 

populations. 

While the alignment-free approach to grouping sequences taken in this  project 

is  similar to some the methods used in other studies in the literature, the data of 

interest here is  different in both general composition and complexity. The 

emphasis of this  project was  on environmental samples containing fewer 

species in total than a typical microbial metagenome, with a view to isolating 

and identifying minority constituents (i.e. pathogens in a host system).

The datasets produced here, to allow a quantitative evaluation of clustering, 

reflected this  difference in focus. Datasets  have been published previously with 

a controlled composition, either through the combination of reads from 

individual experiments, sequencing a variety of microbial species (Mavromatis, 

Ivanova et al. 2007) or through sequencing of a number of microbial species, 

mixed together artificially in roughly equal proportions (Morgan, Darling et al. 

2010). These datasets may provide a good insight into the performance of 

many methods used to study complex metagenomic datasets, but are not 

wholly appropriate for use here. 

The efforts made here to prepare a dataset of sequencing reads  from an in vivo 

mixture of species represented a different approach (see Chapter 3), using 

organisms with fully-sequenced genomes in combination as naturally as 

possible, to determine the relative proportions of sequences obtained for each 

species following sequencing. 

The results obtained from this  approach suggested that the ratio of host to 
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pathogen material extracted from these systems was too disproportionate for 

the datasets to be useful in evaluating the methods under investigation. This 

disproportionality suggested that, for some combinations of host and pathogen 

species, the general approach taken here of sequencing infected tissue and 

grouping the reads obtained may not be successful in many cases. As 

discussed previously, other multi-species datasets  have been produced, 

including those used in the work described in Chapter 6, that contain sufficient 

reads from both species to be suitable for this approach. Further investigation 

would be required to determine the proportions of reads required from each 

species to render such an approach worthwhile.

However, the requirement for alignment-free methods of analysis remains. The 

improvement of current sequencing platforms, and the introduction of new 

platforms is  leading to the production of datasets containing ever more reads, 

often of a longer length. For example,the Ion Torrent platform (Rothberg, Hinz et 

al. 2011, Life Technologies, CT, USA) is capable of sequencing millions of 

reads, each ~200 bp in length (increasing to ~400 bp by the end of 2012), in a 

fraction of the runtime required by previous high-throughput technologies. 

Single molecule sequencing technologies  developed by Pacific Biosystems 

(CA, USA) are capable of producing reads of length exceeding the 1kb mark, 

with a mean sequence insert length >3 kbp, which is  circularised and 

s e q u e n c e d r e p e a t e d l y i n e a c h r e a d p r o d u c e d ( h t t p : / /

www.pacificbiosciences.com/products/smrt-technology/smrt-sequencing-

advantage/).

There are many benefits associated with these improvements in sequencing 

technology. Genomes are being sequenced at ever greater coverage (the Ion 

Torrent platform can sequence a typical 45 Mbp bacterial chromosome at ~25x 

coverage), and environmental communities being sequenced at a greater 

depth, allowing for the detection and characterisation of more and more 

species. 

The huge volume of data produced is also associated with an increased burden 

on the systems for storage and computation of sequencing reads. Alignment-

based analysis methods do not scale well with the number of sequences for 

comparison, so the motivation for developing alignment-free approaches such 

as those discussed here remains as powerful as ever. This is  especially true for 
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metagenomic studies, which require an efficient means  for identifying reads 

from different species in the dataset to take full advantage of the benefits 

offered by such technological advances.

The major obstacle to successful clustering of sequencing data is  the short 

average length of the reads  produced from current high-throughput 

technologies. However, advances in sequencing technology are already leading 

to an improvement in these read lengths. The reads generated by the platforms 

manufactured by Roche/454 Life Sciences (CT, USA) fall at the longer end of 

the length spectrum, with reads of up to 1 kbp produced by the most up-to-date 

Titanium system. As the mean length of reads increases, the effectivity of 

clustering methods applied to these datasets  should improve accordingly, and 

many of the limitations observed in this project may soon no longer be relevant.

Conventionally, metagenomic sequences have been classified, either through 

alignment or composition-based methods, after assembly into contigs. This 

approach has the advantage of considerably increasing the length of the 

sequences for classification. In the case of alignment-based methods of 

analysis, this  increased length provides a larger range along which to build an 

alignment and subsequently greater confidence in any regions of similarity 

found along this length. Where sequence composition features have been used, 

the increased length of assembled contigs provides a greater sampling space 

for the calculation of these composition features, improving the likelihood of  

effectively approximating the true feature profile of the original genome of a 

sequence, and the probability of two sequences originating from the same 

genome producing similar profiles. The assembly of sequences also reduces 

the pool size for comparison, which is likely to reduce the time and 

computational power required for further downstream analysis of the data.

However, as  discussed the process of sequence assembly can be time-

consuming for large datasets - an issue that is predicted to be exacerbated by 

further advancements in sequencing technology resulting in larger and larger 

numbers of reads being produced. 

Given the considerable limitations to the grouping and separation of sequences 

observed in this project with the short length of unassembled reads, it may be 

that the additional step of assembly prior to any further grouping or classification 
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would be beneficial in spite of the computational burden of the task.

The results  presented in Chapter 6 suggested that clustering of reads  prior to 

assembly may reduce the time required for assembly while having little effect on 

the overall results of this assembly. There was also some evidence to suggest 

that such a process of clustering raw reads prior to sequencing could reduce 

the likelihood and extent of chimeric sequence assembly, combining reads 

originating from multiple genomes into a single contig. 

If these effects  are genuine, it is thought that clustering could prove valuable as 

a first step towards assembly and further analysis  and classification of 

sequences, providing both an improvement in assembly time and accuracy, as 

well as a prediction of shared origin for reads contained in the groups produced. 

As discussed in Chapter 6, these results require considerable further 

investigation before any confidence can be placed in these suggestions.

The advanced sequencing technology being developed by Oxford Nanopore 

Technologies promises a massively-increased read length with no theoretical 

limit, and the capability to produce these sequences at high speed in a process 

known as ‘strand sequencing’ (Lieberman, Cherf et al. 2010). When these 

systems become widely-available, whole genome sequencing is likely to 

undergo another revolution, shifting the focus of research further towards the 

informatics associated with storing, handling and analysing sequence data.  

Strand sequencing is likely to be hugely beneficial in the generation of whole 

chromosome and genome sequences, but it does not offer the same depth of 

sampling associated with the use of massively-parallel sequencing methods  to 

generate millions of individual reads from many different sequence fragments, 

which may limit its suitability for use in metagenomic analyses.
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Future directions

Sequence features

As discussed previously, the four feature types evaluated in this project are not 

the only available means for representation of DNA sequences by their 

composition. Other characteristics of sequences have been used in the past, 

including average mutual information profiles (Bauer, Schuster et al. 2008) and 

chaos game representation (Jeffrey 1990; Deschavanne and Giron 1999; 

Almeida, Carriço et al. 2001; Joseph and Sasikumar 2006), although it has 

been suggested that this form of sequence representation is superseded by 

oligonucleotide frequency distributions (Goldman 1993) and as such may not 

provide further improvement on the clustering achieved already.

The ratio between the observed and expected oligonulceotide frequencies in 

host and virus genomes has  been used to study similarities in the signature 

patterns of these sequences (Barrai 1990; Pride, Wassenaar et al. 2006), while 

a measure of information content of sequences has been used more recently to 

distinguish phage genomic material from that of bacterial species  (Bohlin, van 

Passel et al. 2012). The potential of this method for separation of pathogen and 

host sequences is discussed in more depth later.

The representation of tetranucleotide frequencies as tf-ti vectors for use with  

the hyperbolic hierarchically-growing self-organising map HHSOM (Martin, Diaz 

et al. 2008) aims to increase the signal from informative features in the 

distribution, by amplifying the frequency of rare features  while reducing that of 

features common throughout the sequences in the dataset, so as to highlight 

the differences between sequences.

An evaluation of all of these feature types, similar to that carried out for the 

features investigated here, would provide a more exhaustive survey of the 

options available for characterising sequences.

Recently, Carlos Bastos, Vera Afreixo and colleagues, who introduced inter-

nucleotide distances as  a method for comparing and grouping DNA sequences, 

published results  of an investigation into inter-di-nucleotide distances (Bastos, 

Afreixo et al. 2011). This  group identified the potential for inter-nucleotide 

distances to be used as genomic signature features  and, although these 

features were not found to be useful in the work described in this  thesis, some 
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investigation might be made into whether inter-dinucleotide distances could be 

used in a similar way.

Clustering methods

The range of clustering methods compared in Chapter 5 was by no means a 

complete collection of the techniques available for grouping and separating 

sequence reads. 

Other methods that have been or could be applied to the grouping of nucleic 

acid sequences include; the hierarchical clustering methods CHAMELEON 

(Karypis, Eui-Hong et al. 1999) and CURE (Guha, Rastogi et al. 2001; Qian, Shi 

et al. 2002), both designed for use with large datasets; the density-based 

clustering algorithm DENCLUE (Hinneburg and Gabriel 2007), which is 

designed to overcome the difficulties associated with applying such methods to 

high-dimensional data such as  the oligonucleotide frequency vectors  used here; 

and model-based approaches, using implementations such as MCLUST (Fraley 

and Raftery 1999; Fraley and Raftery 2002) to identify groups in the data by 

fitting distributions to the data. An evaluation of the clustering performance of 

such methods, with the kind of sequencing data of interest here would provide a 

further understanding of the best approach to take to grouping and separating 

reads.

In addition to the HHSOM (Martin, Diaz et al. 2008) implemented here, several 

other variants  of the SOM have been applied to the problem of separating and 

grouping sequences according to their species of origin. The emergent SOM 

(ESOM, Ultsch and Fabian 2005) and growing SOM have both been used in 

metagenomic analysis of a microbial community (Chan, Hsu et al. 2008; Dick, 

Andersson et al. 2009). These studies have been published in addition to 

studies using standard SOMs in similar analysis of DNA sequences (Kanaya, 

Kinouchi et al. 2001; Abe, Kanaya et al. 2002; Abe, Sugawara et al. 2006).

These maps have been applied to microbial communities of many more species 

than in the datasets focussed on in this work, and the methods require further 

investigation. The difficulty of using such methods lies in the need for a training 

dataset to prepare a map for use as a classifier of sequencing reads. As 

discussed in the conclusion to Chapter 5, sequences  as short as  those typically 

obtained from high-throughput sequencing have only been successfully 
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clustered using SOMs previously trained with a set of longer sequences. This 

approach is inefficient where the component species in a sequenced sample 

are not known and may prove to be unfeasible for clustering of raw sequencing 

reads from multi-species samples.

Rather than training a new map for each sample sequenced, based on a 

prediction of the species present, it may be possible to build a range of SOMs 

trained with sequences from the genomes of host species and their common 

pathogens. Such an approach has become popular in the development of 

microarray systems for the detection of pathogens, and as the number of 

available genomes and genomic sequences increases, so too should the range 

of host and pathogen species for which SOMs could be prepared.

Datasets

With further time and resources available, another attempt could be made to 

produce the kind of dataset that was aimed for in the work described in Chapter 

3. That host and pathogen material was  extracted in such unequal proportions 

in the sequenced samples was  unexpected, and may suggest that such an 

approach to the isolation and identification of pathogen sequence reads is 

neither efficient nor cost-effective. However, such an approach, of directly 

sequencing DNA/RNA extracted from infected tissue to produce data for 

clustering analysis  is still considered worthwhile. Investigation of samples 

prepared from other combinations of host and pathogen species, especially with 

viral species of a known high titre, will provide a much better understanding of 

the limits of this methodology.

The dataset used for further feature comparison, UT+Psp2126 despite being 

composed from true sequencing reads, does not provide the ideal platform for 

feature comparison. One limitation of the UT+Psp2126 dataset used here was 

the use of a bacterial species, Pseudomonas sp. 2_1_26, that is a human 

pathogen and not a pathogen of the host plant species, A. thaliana. 

This  combination does not model the selective pressures that may exist 

between the host and pathogen, which may have an effect on the relationship 

between their signature feature patterns. This issue could be addressed if a real 

dataset was used, or if sequencing reads from two more appropriate species 

were used to construct the dataset. 

Chapter 7 - Future directions

280



Sequence assembly

As new sequencing technologies and methods are introduced, and as current 

platforms are improved, both the number and mean length of reads are 

generally predicted to increase. As the number of reads in a dataset increases, 

a reduction in assembly time will become more beneficial. 

The largest datasets analysed here contained in the order of 105 reads, and the 

time required for assembly of these datasets was relatively short. However, 

modern sequencing platforms are capable of generating many times more 

reads in a single sequencing experiment. For example, the Ion Proton System 

from Life Technologies (CT and CA, USA) aims to produce datasets in the order 

of 108-109 reads, a figure likely to increase as the technology is upgraded in the 

near future. Such an increase in dataset size makes the benefits associated 

with successful clustering of a multi-species dataset all the more important.

As discussed, the general increase in mean length of reads produced in 

sequencing is likely to improve the effectiveness of this approach, as  clustering 

of reads based on sequence composition features becomes easier.

Identifying clusters of interest

Most of the clustering methods surveyed here were unsupervised, that is, they 

group the data according to the features provided, without access to any prior 

information about the classes present. Consequently, the clusters produced 

have no labels asssociated with them, providing a prediction of their contents. 

In the case of the sequence clustering of interest here, grouping of a 

sequencing dataset derived from a sample of unknown composition (e.g. a 

sample of tissue infected with an unknown pathogen) would produce a number 

of clusters. One or more of these clusters could be expected to contain a large 

proportion of the sequences derived from the pathogen genome, while others 

may contain very few pathogen sequences at all. The challenge, if the aim is to 

isolate these pathogen sequences, is to predict which of these clusters are of 

interest.

One approach to doing so could be to produce a summary of each cluster to 

allow a comparison between them and a prediction of which clusters are of 

most interest. For example, if the mean GC content of the sequences contained 

in each cluster was compared (accompanied by some measure of the intra-
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cluster variance), prior knowledge of the GC content of the host genome, or 

assumptions about the type of pathogen present, could allow the identification 

of the cluster(s) most likely to contain the bulk of the pathogenic sequences 

from the dataset.

Similarly, the availability of a database containing oligonucleotide relative 

frequency profiles of available genomes/sequences  would allow the mean 

profile to be displayed for each cluster and a prediction made regarding its 

contents. 

Virus-host genomic signature co-evolution

The work in this project has revolved around the ability to group and separate 

DNA sequences according to their species of origin, by using certain signature 

feature patterns conserved throughout the genome to characterise and 

compare these sequences. 

Published research has established that viral species, reliant on host machinery 

to replicate and maintain their genome, display similar oligonucleotide 

frequency patterns in their genomes to those of the host itself (Barrai 1990; 

Pride, Wassenaar et al. 2006; Simmons 2008). If the methods described in this 

work were applied to sequencing data taken from a sample of tissue infected 

with a viral pathogen, it is  likely that such similarity in signature feature patterns 

between genomes would have a diminishing effect on their resolving power.  

The issue is  further complicated by the existence of endogenous retroviral 

sequences in host genomes (Lower, Lower et al. 1996), which may be difficult 

to distinguish from the true viral sequencing reads present in a sample 

containing a host and viral pathogen.

Further investigation, applying the clustering techniques used here and/or other 

similar approaches to sequencing data obtained from a virus-infected sample is 

required, in order for the effects and consequences of the similarities between 

viral and host sequences to be understood fully. It is  possible that, even if 

analysis via oligonucleotide relative frequency patterns cannot resolve host and 

virus sequences so successfully, other means of comparison may be 

applicable. 

For example, recent results indicate that a measure of information capacity can 

be used to distinguish phage and prokaryote sequences (Bohlin, van Passel et 
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al. 2012). This method of characterisation exploits the highly compact nature of 

the viral genome, requiring high information content per nucleotide in the 

sequence. Given the relative profligacy of eukaryotic genomes, such a 

characterisation might be successfully applied in a complementary fashion 

alongside oligonucleotide frequency vectors when clustering sequences from a 

host-virus dataset, but the presence of endogenous retroviral sequences in 

eukaryotic genomes may make this distinction more difficult.
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Appendix A

Annotated reproductions of perl scripts used in the project. Scripts are given in 

chronological order of use throughout the project.

• Appendix A-1: a flowchart of the use of scripts in Chapter 2

• Appendix A-2:  shortSeqCutter.pl (Chapter 2)

• Appendix A-3:  randomSeqWriter.pl (Chapter 2)

• Appendix A-4:  featureWriter.pl (Chapter 2)

• Appendix A-5:  featureComboWriter.pl (Chapter 2)

• Appendix A-6:  claraAnalysisMulti.pl (Chapter 2)

• Appendix A-7:  claraResultsSummariser.pl (Chapter 2)

• Appendix A-8:  avePRwriter.pl (Chapter 2)

• Appendix A-9:  SAMseqAssigner.pl (Chapter 3)

• Appendix A-10:  partClustering.pl (Chapter 6)

• Appendix A-11:  contigInfo.pl (Chapter 6)

• Appendix A-12:  randomSeqFetcher.pl (Chapter 6)
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Appendix A-1: Use of perl scripts in Chapter 2.
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shortSeqCutter.pl

featureWriter.pl

randomSeqWriter.pl

featureComboWriter.pl

claraAnalysisMulti.pl claraResultsSummariser.pl

avePRwriter.pl

produce sequence 
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produce equivalent 
randomised sequences 
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generate feature 
vectors for all 

sequences

generate 
combinations of 
four feature types

cluster feature 
vectors

produce summary 
count files for 

clusters produced 
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Appendix A-2

shortSeqCutter.pl

#! /usr/bin/perl
use warnings;
use strict;
use Bio::SeqIO;

#enter name of input file ("[species][Gen/Chr][number].fasta") and desired average 
length
my $filename = shift;
my $aveLength = shift;

#import sequences as Bio::Seq objects
my $genome = Bio::SeqIO -> new(-file => $filename, -format => "fasta");
my $genomeseq = $genome->next_seq;
my $fullseq = $genomeseq->seq;
my $fragnumber = 1;

#establish name for label of fragments and output filename
my @namesplit = split /Gen|Chr/, $filename;
my @infilesplit = split /\./, $filename;
my $orgname = $namesplit[0];
my $outfile = "$infilesplit[0]" . "_$aveLength" . "bp.fasta";

#initialise random sequence length
my $randlength = "\\w" x (int(rand(0.2*$aveLength+1)+(0.9*$aveLength)));

#write random length sequence fragments to output file
open (SHORTSEQSFILE, ">$outfile");
while ($fullseq =~ /\G($randlength)/gc) {
    print SHORTSEQSFILE (">$orgname$fragnumber\n$1\n\n");
 $fragnumber = ++$fragnumber;
 $randlength = "\\w" x (int(rand(0.2*$aveLength+1)+(0.9*$aveLength)));
}

close SHORTSEQSFILE;
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Appendix A-3

randomSeqWriter.pl

#! /usr/bin/perl

use warnings;

use strict;

use Bio::SeqIO;

#compute input filename, preference for whether species name from sequence ID 

string should be used in random sequence ID ([T/F]) and output filename

my $inputFile = shift;

my $namesPref = shift;

my $outfile = shift;

$namesPref="\U$namesPref";

#import input sequences as Bio::Seq objects and generate array of sequence objects

my $seq_in = Bio::SeqIO->new(-file => "$inputFile", -format => "fasta");

my ($seq,@seq_array);

while ($seq = $seq_in->next_seq) {

 push (@seq_array, $seq);

}

#calculate mean sequence length of input sequences and set as mean length for 

output random sequences

my $totLength=0;

foreach $seq (@seq_array) {

 $totLength=$totLength+$seq->length;

}

my $aveLength=$totLength/@seq_array;

my $randSeqAveLength=int($aveLength);

#calculate proportions of A, C, G & T in input dataset

my $totalAP=0;

my $totalCP=0;

my $totalGP=0;

my $totalTP=0;

foreach $seq (@seq_array) {

 my $acount = (($seq->seq) =~ tr/Aa//);

 my $ccount = (($seq->seq) =~ tr/Cc//);

 my $gcount = (($seq->seq) =~ tr/Gg//);
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 my $tcount = (($seq->seq) =~ tr/Tt//);
 my $aprop = $acount/$seq->length;
 my $cprop = $ccount/$seq->length;
 my $gprop = $gcount/$seq->length;
 my $tprop = $tcount/$seq->length;
 $totalAP = $totalAP + $aprop;
 $totalCP = $totalCP + $cprop;
 $totalGP = $totalGP + $gprop;
 $totalTP = $totalTP + $tprop;
}
my $aveAP = $totalAP/@seq_array;
my $aveCP = $totalCP/@seq_array;
my $aveGP = $totalGP/@seq_array;
my $aveTP = $totalTP/@seq_array;
my $check = $aveAP+$aveCP+$aveGP+$aveTP;

#find and store number of sequences to be generated for each species represented in 
input dataset
my %nameHash;
my $name;
my @names;
my $seqID;
my @IDSplit;
foreach $seq (@seq_array) {
 $seqID = $seq->id;
 @IDSplit = split /(\d+)/, $seqID;
 my $name = $IDSplit[0];
 if (exists ($nameHash{$name})) {
  $nameHash{$name}++;
 }
 else {
  $nameHash{$name}=1;
  push (@names, $name);
 }
}

#generate alphabetised system for labelling random sequence 'species' if $namesPref 
ne 'T'
my @alphabet = ("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", 
"U", "V", "W", "X", "Z");
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if (@alphabet < @names) {
 foreach my $firstLetter (@alphabet) {
  foreach my $secondLetter (@alphabet) {
   my $secondOrderLetter = "$firstLetter" . "$secondLetter";
   push (@alphabet, $secondOrderLetter);
  }
 }
}

#open output file and print random sequences to it
my @outfileSplit = split /\./, $outfile;
$outfile = "$outfileSplit[0]RandomSeqs.fasta";
my $randSeq;
open (OUTPUTFH, ">$outfile") or die "$!";
if ($namesPref eq "T" or $namesPref eq "TRUE") {
 foreach $seq (@seq_array) {
  $seqID = $seq->id;
  @IDSplit = split /(\d+)/, $seqID;
  my $seqLabel = shift (@IDSplit);
  my $seqNo = join "", @IDSplit;
  print OUTPUTFH (">" . $seqLabel . "Random" . $seqNo . "\n");
  $randSeq = write_random_sequence($randSeqAveLength, $aveAP, 
$aveCP, $aveGP, $aveTP);
  print OUTPUTFH ("$randSeq\n\n");
 }
}
else {
 my $speciesIndex=0;
 foreach $name (@names) {
  my $index = 1;
  while ($index <= $nameHash{$name}) {
   print OUTPUTFH (">Species" . $alphabet[$speciesIndex] . 
"_Random$index\n");
   $index++;
   $randSeq = write_random_sequence($randSeqAveLength, 
$aveAP, $aveCP, $aveGP, $aveTP);
   print OUTPUTFH ("$randSeq\n\n");
  }
  $speciesIndex++
 }
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}

close OUTPUTFH;

#subroutine for writing random sequences
sub write_random_sequence {
 my $RSAL = $_[0];
 my $AInterval = $_[1];
 my $CInterval = $AInterval + $_[2];
 my $GInterval = $CInterval + $_[3];
 my $TInterval = $GInterval + $_[4];
 my @randSeqChars;
 my $pos = 0;
 my $randLength = int(rand(0.2*$RSAL)+(0.9*$RSAL));
 while ($pos < $randLength) {
  my $dieroll = rand(1);
  if ($dieroll <= $AInterval) {
   push (@randSeqChars, "A");
  }
  elsif ($dieroll <= $CInterval) {
   push (@randSeqChars, "C");
  }
  elsif ($dieroll <= $GInterval) {
   push (@randSeqChars, "G");
  }
  elsif ($dieroll <= $TInterval) {
   push (@randSeqChars, "T");
  }
  $pos++
 }
 my $randSeq = join "", @randSeqChars;
 return $randSeq;
}
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Appendix A-4

featureWriter.pl

#! /usr/bin/perl

use warnings;

use strict;

use Bio::SeqIO;

use Bio::Tools::SeqWords;

use File::Basename;

use Statistics::Descriptive;

#input FASTA filename

my $filename = shift;

# read sequences from file into Bio::SeqIO object

my $seq_in = Bio::SeqIO->new(-file => "$filename", -format => "fasta");

#input features

my @setFeatures = ("GC", "IND", "OFDEG", "TNF");

my %selectedFeatures;

my $check=0;

my $featuresInput = shift;

chomp $featuresInput;

#prepare to generate chosen feature(s)

my @featuresArray = split /\,\s/, $featuresInput;

foreach my $inputFeature (@featuresArray) {

 foreach my $setFeature (@setFeatures) {

  if ($inputFeature eq $setFeature) {

   $selectedFeatures{$setFeature}=1;

   $check++;

  }

  elsif (exists($selectedFeatures{$setFeature})) {

  }

  else {

   $selectedFeatures{$setFeature}=0;

  }

 }

}
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#check that no unknown feature types have been input
my $FAlength = scalar @featuresArray;
if ($check != $FAlength) {
 die and print LOGFH ("\nUnrecognised Feature Entered.  Accepted Features are: 
@setFeatures\n");
}

#create array of sequence objects
my ($seq,@seq_array);
while ($seq = $seq_in->next_seq) {
 push (@seq_array, $seq);
}

#prepare output file and open filehandle
my @nameext = split /\./, $filename;
my $specFeatures = join "", @featuresArray;
my $statsfile = "$nameext[0]$specFeatures.txt";
open (STATSFILE, ">$statsfile") or die "$!";

#initialise parameters for OFDEG generation
my $samplingDepth = 20;
my $resamplingCutoff = 5;

#initialise cutoff length value for IND calculation
my $cutoffLength = 25;

#G/C content
my %GChash;
if ($selectedFeatures{"GC"}==1) {
 foreach $seq (@seq_array) {
#count ACTG & calculate as proporotion of seq
  my $seqID = $seq->id;
  my $acount = (($seq->seq) =~ tr/Aa//);
  my $ccount = (($seq->seq) =~ tr/Cc//);
  my $gcount = (($seq->seq) =~ tr/Gg//);
  my $tcount = (($seq->seq) =~ tr/Tt//);
  my $propGC = ($ccount + $gcount)/($seq->length);
  $GChash{$seqID} = $propGC;
 }
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 print "GC content done...\n";

}

#generate all possible tetranucleotides in an array

my @firstn = ("A", "C", "G", "T");

my @secondn = ("A", "C", "G", "T");

my @thirdn = ("A", "C", "G", "T");

my @fourthn = ("A", "C", "G", "T");

my ($tetraseq, @tetra_array);

foreach my $firstn(@firstn) {

 foreach my $secondn(@secondn) {

  foreach my $thirdn(@thirdn) {

   foreach my $fourthn(@fourthn) {

    $tetraseq = ($firstn . $secondn . $thirdn . $fourthn);

    push(@tetra_array, $tetraseq);

   }

  }

 }

}

#TetraNucleotide Frequencies

my %TNFhash;

if ($selectedFeatures{"TNF"}==1) {

 foreach $seq (@seq_array) {

  my $seqID = $seq->id;

  my $fragment = $seq->seq;

  my $tetranucs = (($seq->length) - 3);

  my $seq_word = Bio::Tools::SeqWords->new(-seq => $seq);

  my $tetralength = 4;

#generate a hash of tetranucleotide counts

  my $tetracount = $seq_word->count_overlap_words($tetralength);

  my %tetrahash = %$tetracount;

  my $revword;

  my %endhash;

#calculate relative frequencies, as prop of total tetranucleotides in sequence

  foreach $tetraseq(@tetra_array) {

   if (exists($tetrahash{$tetraseq})) {

    $tetrahash{$tetraseq}=($tetrahash{$tetraseq}/

$tetranucs);

   }
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   else {

    $tetrahash{$tetraseq} = 0;

   }

  }

#combine relative frequencies with those of their reverse complement, or doubled in 

the case of palindromic sequences

  foreach $tetraseq(sort keys %tetrahash) {

   $revword = reverse($tetraseq);  

   $revword =~ tr/[AaGgTtCc]/TtCcAaGg/;

   $revword = uc($revword);

   if (exists($endhash{$revword})) {

   }

   else {

    if ($tetraseq eq $revword) {

     $endhash{$tetraseq} = $tetrahash{$tetraseq};

    }

    else {

     $endhash{$tetraseq} = $tetrahash{$tetraseq} + 

$tetrahash{$revword};

    }

   }

  }

#add combined relative frequencies to hash of TNF vectors

  foreach $tetraseq (sort keys %endhash) {

   push (@{$TNFhash{$seqID}}, $endhash{$tetraseq});

  }

 }

 print "Tetranucleotide Frequencies done...\n";

}

#Find length of shortest sequence

my $shortestLength = 0;

my $shortestSeq;

foreach $seq (@seq_array) {

 my $seqLength = $seq->length;

 if ($shortestLength == 0) {

  $shortestLength = $seqLength;

  $shortestSeq = $seq->id;

 }

 else {
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  if ($seqLength < $shortestLength) {
   $shortestLength = $seqLength;
   $shortestSeq = $seq->id;
  }
 }
}
           
     #
#OFDEG
my $wordSizeInput = int(0.1 * $shortestLength);
my $wordSize;
my $stepSize = $wordSizeInput;
my $startPos;
my $endPos;
my $truncSeq;
my @distanceArray;
my $dist;
my $EucDist;
my $iteration;
my $sample;
my $totalED;
my $meanDist;
my %meanDistsHash;
my $index;
my $totalMeanDist;
my $meanOfMeans;
my @MOMArray;
my @wordSizeArray;

my %OFDEGhash;
if ($selectedFeatures{"OFDEG"}==1) {
 foreach $seq (@seq_array) {
  my $seqID = $seq->id;
 
#create Statistics::Descriptive::Full object for regression analysis
  my $stat = Statistics::Descriptive::Full->new();
  $iteration=1;
 
#for set number of resamples...
  while ($iteration <= $resamplingCutoff) {
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#if sequence is longer than the shortest sequence in the dataset, take sample of 

shortest sequence length from the sequence

   if ($seq->length > $shortestLength) {

    $startPos = int(rand($seq->length - $shortestLength));

    if ($startPos == 0) {

     $startPos = 1;

    }

   }

   else {

    $startPos=1;

   }

   $endPos = $startPos + $shortestLength - 1;

   $truncSeq = $seq->trunc($startPos, $endPos);

   my $truncSeqWord = Bio::Tools::SeqWords->new(-seq => 

$truncSeq);

  
#count tetranucleotides in sampled sequence 
   my $tetraLength = 4;

   my $revtruncSeq = $truncSeq->revcom;

   my $revTruncWord = Bio::Tools::SeqWords->new(-seq => 

$revtruncSeq);

   my $tetracount = $truncSeqWord->count_overlap_words

($tetraLength);

   my %tetrahash = %$tetracount;

   my $revtetcnt = $revTruncWord->count_overlap_words

($tetraLength);

   my %revtethash = %$revtetcnt;

   my $truncSeqLength=$truncSeq->length;

   my $totalTetranucs = $truncSeqLength-3;
   my %mergedtethash = ();

   foreach $tetraseq(@tetra_array) {

    if (exists($tetrahash{$tetraseq})) {

     $tetrahash{$tetraseq} = $tetrahash{$tetraseq};

    }

    else {

     $tetrahash{$tetraseq} = 0;

    }

    if (exists($revtethash{$tetraseq})) {

     $revtethash{$tetraseq} = $revtethash{$tetraseq};
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    }

    else {

     $revtethash{$tetraseq} = 0;

    }

   }

   foreach $tetraseq(@tetra_array) {

    $mergedtethash{$tetraseq} = ($tetrahash{$tetraseq} + 

$revtethash{$tetraseq})/(2*$truncSeqLength);

   }

   $wordSize = $wordSizeInput;

  
# for sub-sequence sizes up to 80% of shortest sequence length, calculate 

tetranucleotide frequency distributions for subsequences starting at word-size length 

and increasing by step-size, then calculate and store error as Euclidean distance 

between the two distributions

   while ($wordSize <= int(0.8 * $shortestLength)) {

    $EucDist=0;

    $totalED=0;

    $sample=1;

   
#for set number of samples at each subsequence length...  
    while ($sample <= $samplingDepth) {

     my $subSeqStart = int(rand($truncSeq->length - 

$wordSize + 1));

     if ($subSeqStart == 0) {

      $subSeqStart = 1;

     }

     my $subSeqEnd = $subSeqStart + $wordSize-1;

     my $subSeq = $truncSeq->trunc($subSeqStart, 

$subSeqEnd);

     my $subWords = Bio::Tools::SeqWords->new(-

seq => $subSeq);

     my $revSub = $subSeq->revcom;

     my $revSubWords = Bio::Tools::SeqWords->new

(-seq => $revSub);

     my $subtetracount = $subWords-

>count_overlap_words(4);

     my %subtetrahash = %$subtetracount;

     my $revsubtetcount = $revSubWords-

>count_overlap_words(4);

Appendices - A

14



     my %revsubtethash = %$revsubtetcount;

     my %mergedsubtethash = ();

     my $subSeqLength = $subSeq->length;

     my $subTetranucs = $subSeqLength-3;

     foreach $tetraseq(@tetra_array) {

      if (exists($subtetrahash{$tetraseq})) {

       $subtetrahash{$tetraseq} = 

$subtetrahash{$tetraseq};

      }

      else {

       $subtetrahash{$tetraseq} = 0;

      }

      if (exists($revsubtethash{$tetraseq})) {

       $revsubtethash{$tetraseq} = 

$revsubtethash{$tetraseq};

      }

      else {

       $revsubtethash{$tetraseq} = 0;

      }

     }

     foreach $tetraseq(@tetra_array) {

      $mergedsubtethash{$tetraseq} = 

($subtetrahash{$tetraseq} + $revsubtethash{$tetraseq})/(2*$subSeqLength);

     }

     foreach $tetraseq(@tetra_array) {

      $dist = $mergedtethash{$tetraseq} - 

$mergedsubtethash{$tetraseq};

      if ($dist < 0) {

       $dist = 0 - $dist;

      }

      $EucDist = $EucDist + $dist;

     }

     push (@distanceArray,$EucDist);

     $sample++;

    }

    foreach $EucDist(@distanceArray) {

     $totalED = $totalED + $EucDist;

    }

    $meanDist = $totalED/$samplingDepth;

    ${$meanDistsHash{$wordSize}}[$iteration] = $meanDist;
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    @distanceArray = ();
    $wordSize = $wordSize + $stepSize;
   }
   $iteration++; 
  }

  @wordSizeArray = ();
  @MOMArray = ();
 
#take mean of errors at each subsequence length and use these values to plot 
regression and obtain OFDEG gradient value
  foreach $wordSize(sort {$a <=> $b} keys %meanDistsHash) {
   push (@wordSizeArray,$wordSize);
   $totalMeanDist=0;
   $index=1;
   while ($index <= $resamplingCutoff) {
    $totalMeanDist = $totalMeanDist + ${$meanDistsHash
{$wordSize}}[$index];
    $index++;
   }
   $meanOfMeans = $totalMeanDist/$resamplingCutoff;
   push (@MOMArray,$meanOfMeans);
  }
  $stat->add_data(@MOMArray);
  my @fitResults = $stat->least_squares_fit(@wordSizeArray);
  my ($gradient, $correlation, $error) = ($fitResults[1], (0-$fitResults[2]), 
$fitResults[3]);
 
#filter out OFDEG values obtained from regressions with poor correlation
  unless ($correlation <= 0.9) {
   $OFDEGhash{$seqID} = $gradient;
  }
 }
 print "OFDEG done...\n";
}

#InterNucleotide Distances
my %INDhash;
if ($selectedFeatures{"IND"}==1) {
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 my @distVector;

 my $numSeqs = 0;

 my $maxDistTotal = 0;

 foreach $seq (@seq_array) {

  $cutoffLength = 25;

  my $seqID = $seq->id;

  my $fragment = $seq->seq;

  my $seqLength = $seq->length;

 
# create statistics object for least-squares fit later

  my $stat = Statistics::Descriptive::Full->new();

  my $acount = (($fragment) =~ tr/Aa//)/length($fragment);

  my $ccount = (($fragment) =~ tr/Cc//)/length($fragment);

  my $gcount = (($fragment) =~ tr/Gg//)/length($fragment);

  my $tcount = (($fragment) =~ tr/Tt//)/length($fragment);

  my @counts = ($acount,$ccount,$gcount,$tcount);

 
#split sequence into individual characters

  my @splitSeq = split //, $fragment;

  my $pos = 0;

  my $dist = 1;

  my $Odist = "";

  my $overlap;

 
#calculate distances for each position in the sequence

  while ($pos < $seqLength) {

   $Odist = "";

   my $currDist = $pos + $dist;

   if (($pos+$dist) >= length($fragment)) {

   $overlap = $currDist - length($fragment);

   $Odist = 0 - $pos + $overlap;

   $currDist = $pos + $Odist;

  }

  my $posBase = $splitSeq[$pos];

  my $distBase = $splitSeq[$currDist];

  die "posBase undefined for sequence $seqID (length $seqLength) 

position $pos distance $dist\n" unless (defined($posBase));

  die "distBase undefined for sequence $seqID (length $seqLength) 

position $pos distance $dist\n" unless (defined($distBase));

  if ($posBase eq $distBase) {
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   if ($Odist ne "") {

    $dist = length($fragment) + $Odist;

   }

   push (@distVector, $dist);

   $pos++;

   $dist=1;

  }

  else {

   $dist++;

  }

 }

#count frequency of distances

 my @distribution=();

 my $maxDist;

 my $currDist;

 foreach $dist(@distVector) {

  if (defined $maxDist) {

   if ($dist > $maxDist) {

    $maxDist = $dist;

   }

  }

  else {

   $maxDist = $dist;

  }

  my $index=$dist-1;

  $distribution[$index]++;

 }

 my $COF=0;

 my @COF_array=();

 my $distCheck = 0;

 my @limitedDist;

#create distribution of distance frequencies up to cutoff
 while ($distCheck < $cutoffLength) {

  if (defined($distribution[$distCheck])) {

   push (@limitedDist, $distribution[$distCheck]);

  }

  else {

   push (@limitedDist, 0);
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  }

  $distCheck++;

 }

#calculate observed relative frequencies

 foreach my $freq(@limitedDist) {

  if (defined $freq) {

   $freq=$freq/$seqLength;

  }

  else {

   $freq=0;

  }


#calculate cumulative observed frquencies

  $COF = $COF + $freq;

  push (@COF_array, $COF);

 }


#calculate expected frequencies and cumulative expected frequencies

 my $exptDist = 1;

 my $exptFreq = 0;

 my @exptDistribution=();

 while ($exptDist <= $cutoffLength) {

  foreach my $nucRF (@counts) {

   $exptFreq = $exptFreq+(($nucRF**2)*((1-$nucRF)**

($exptDist-1)));

  }

  push (@exptDistribution, $exptFreq);

  $exptDist++;

  $exptFreq=0;

 }

 my $CEF=0;

 my @CEF_array=();

 foreach $exptFreq(@exptDistribution) {

  if (defined $exptFreq) {

  }

  else {

   $exptFreq=0;

  }

  $CEF = $CEF+$exptFreq;
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  push (@CEF_array, $CEF);

 }

#calculate difference between observed and expected frequencies and determine 

largest for K-S distance

 my $currIndex=0;

 my @CFdiff_array=();

 $maxDistTotal = $maxDistTotal+$maxDist;

 while ($currIndex < 25) {

  my $CFdiff = $CEF_array[$currIndex] - $COF_array[$currIndex];

  if ($CFdiff < 0) {

   $CFdiff = 0 - $CFdiff;

  }

  push (@CFdiff_array, $CFdiff);

  $currIndex++;

 }

 my @CFD_sorted = sort {$a<=>$b} @CFdiff_array;

 my $KSdist = $CFD_sorted[$currIndex-1];

 $INDhash{$seqID} = $KSdist;

 @distVector=();

}

print "Internucleotide Distances done...\n";

}

#print feature values to file using OFDEG filter...

if ($selectedFeatures{"OFDEG"}==1) {

 foreach $seq (@seq_array) {

  my $seqID = $seq->id;

  if (exists ($OFDEGhash{$seqID})) {

   print STATSFILE ("$seqID\t$OFDEGhash{$seqID}");

   if ($selectedFeatures{"IND"}==1) {

    print STATSFILE ("\t$INDhash{$seqID}");

   }

   if ($selectedFeatures{"GC"}==1) {

    print STATSFILE ("\t$GChash{$seqID}");

   }

   if ($selectedFeatures{"TNF"}==1) {

    foreach my $TNF (@{$TNFhash{$seqID}}) {

     print STATSFILE ("\t$TNF");

    }
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   }

   print STATSFILE ("\n");

  }

 }

}

#...or without filter if OFDEG values have not been produced

else {

 foreach $seq (@seq_array) {

  my $seqID = $seq->id;

  print STATSFILE ("$seqID");  
  if ($selectedFeatures{"IND"}==1) {  
  print STATSFILE ("\t$INDhash{$seqID}");

  }

  if ($selectedFeatures{"GC"}==1) {

   print STATSFILE ("\t$GChash{$seqID}");

  }

  if ($selectedFeatures{"TNF"}==1) {

   foreach my $TNF (@{$TNFhash{$seqID}}) {

    print STATSFILE ("\t$TNF");

   }

  }

  print STATSFILE ("\n");

 }

} 
close STATSFILE;
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Appendix A-5

featureComboWriter.pl

#! /usr/bin/perl
use warnings;
use strict;

#input list of FASTA files to produce feature vectors from, and generate array of 
filenames
my $filesListFile = shift;
my @filesList;
my $file;
open (FLFH, "<$filesListFile");
while ($file = (<FLFH>)) {
 push (@filesList, $file);
}

#prepare array of feature types and combinations
my @featuresList = ("GC", "IND", "OFDEG", "TNF");
#feature combo list - can be edited if only a selection of combinations are required
my @featCombos = ("GC\, IND", "GC\, OFDEG", "GC\, TNF", "IND\, OFDEG", "IND\, 
TNF", "OFDEG\, TNF", "GC\, IND\, OFDEG", "GC\, IND\, TNF", "GC\, OFDEG\, TNF", "IND
\, OFDEG\, TNF", "GC\, IND\, OFDEG\, TNF");
my @fullFL;
push (@fullFL, @featuresList);
push (@fullFL, @featCombos);
my $feature;
my $featCombo;

#for each file...
foreach $file (@filesList) {
 my @fileSplit = split /\./, $file;
#run featureWriterMulti.pl for each feature type, to generate individual feature files - 
comment out if feature files have been generated already
 foreach $feature (@featuresList) {
  my @featArgs = ("perl", "featureWriter.pl", $file, $feature);
  system(@featArgs);
 }
 my %featValuesHash;
 my $ID;
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 my @values;
#read files and prepare hashes for individual feature types
 foreach $feature (@featuresList) {
  my $featFile = $fileSplit[0] . $feature . ".txt";
  open (FEATFH, "<$featFile");
  my $line;
  while ($line = <FEATFH>) {
   chomp $line;
   @values = split /\s/, $line;
   $ID = shift(@values);
   $featValuesHash{$ID}{$feature} = [ @values ];
  }
 }
#generate feature combos
 foreach $featCombo (@featCombos) {
  my @featsList = split /\,\s/, $featCombo;
  my $featsString = join "", @featsList;
  my $outfile = $fileSplit[0] . $featsString . ".txt";
  open (OUTFH, ">$outfile");
  my $OFDEG = 0;
  foreach my $feat (@featsList) {
   if ($feat eq "OFDEG") {
    $OFDEG = 1;
   }
  }
#if OFDEG is included in feature types for combination, use the IDs from the OFDEG 
file, to avoid inclusion of those sequences that failed the OFDEG R^2 threshold test
  foreach $ID (sort keys %featValuesHash) {
   if ($OFDEG == 1) {
    if (exists($featValuesHash{$ID}{"OFDEG"})) {
     print OUTFH ("$ID");
     foreach my $feat (@featsList) {
      foreach my $value (@{$featValuesHash
{$ID}{$feat}}) {
       print OUTFH ("\t$value");
      }
     }
     print OUTFH ("\n");
    }
   }
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   else {
    print OUTFH ("$ID");
    foreach my $feat (@featsList) {
     foreach my $value (@{$featValuesHash{$ID}
{$feat}}) {
      print OUTFH ("\t$value");
     }
    }
    print OUTFH ("\n");
   }
  }
 }
}
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Appendix A-6

claraAnalysisMulti.pl

#! /usr/bin/perl

use warnings;

use strict;

use lib "/usr/lib/perl5/site_perl/5.8.8";

use Statistics::R;

use File::Basename;

#import the desired number of clusters to be produced by CLARA and a text file 

containing a list of feature vector files to be clustered

my $numClusters = shift;

my $statsFileList = shift;

my @statsFiles;

#generate array of input filenames

open (LISTFH, "<$statsFileList");

while (<LISTFH>) {

 push (@statsFiles, $_);

}

#for each input file...

foreach my $statsfile (@statsFiles) {

#prepare filename for generation of output cluster files

 my @nameext = split /\./, $statsfile;

 my $name = $nameext[0];

#make new R object

 my $R = Statistics::R->new;

#start R and, if range of number of clusters has been input, determine optimal number 

of clusters within range based on mean silhouette width of clusters

 $R->startR;

 if ($numClusters =~ m/\d\:\d/) {

  my $rangeUL;

  if ($numClusters =~ m/1\:\d/) {

   die "\a1 is not a valid number of clusters!\n";

   my @rangeSplit = split /\:/, $numClusters;
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   $rangeSplit[0] = 2;

   $rangeUL = $rangeSplit[1];

   $numClusters = join ':', @rangeSplit;

   print "Finding optimal number of clusters in range $numClusters

\n";

  }

 
#run CLARA in R with optimal number of clusters...

  $R->send(qq`setwd(\"/var/www/html/toby\") \n library(cluster) \n 

f=file(\"$statsfile\", open=\"r\") \n t=read.table(f, row.names=1) \n x=data.frame(t) 

\n asw<-numeric($rangeUL) \n for (k in $numClusters) \n asw[k] <- clara(x, k) \$ 

silinfo \$ avg.width \n k.best<-which.max(asw) \n print(k.best)`);

  my $optClusters = $R->read;

  $optClusters =~ s/\[1\]\s//;

  print "Optimal number of clusters in range $numClusters: $optClusters

\n";

  $numClusters = $optClusters;

  $R->stopR();

 }

#...or with input number of clusters, and print sequence IDs to separate files for each 

cluster.

 print "\nRunning clara with $numClusters clusters.\n";

 $R->startR;

 $R->send(qq`setwd(\"/tf/people/tah501\") \n library(cluster) \n f=file

(\"$statsfile\", open=\"r\") \n t=read.table(f, row.names=1) \n df=data.frame(t) \n 

clarax <- clara(df, $numClusters) \n clusdf <- data.frame(clarax\$clustering) \n 

clusSizes = 1:$numClusters \n clusSizes[1:$numClusters]=0 \n for (i in 

1:$numClusters) { \n clustFile = paste("$name", "cluster", i, ".txt", sep="") \n x = which

(clusdf==i) \n y=row.names(clusdf)[x] \n clusterNames = data.frame(y) \n write.table

(clusterNames, file=clustFile, col.names=F, row.names=F, quote=F) \n clusSizes[i]

=length(x) \n } \n clusSizes=data.frame(clusSizes) \n for (j in 1:$numClusters) { \n 

row.names(clusSizes)[j] = paste("clus", j, sep="") \n } \n print(clusSizes) \n`);

 my $returnedValue = $R->read;

 $R->stopR();

 $returnedValue =~ s/clus\d+\s+//g;

 my @clusterSizes = split /\n/, $returnedValue;

 shift(@clusterSizes);

#print the number of reads that were grouped into each cluster
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 print "\nCluster Sizes:\n";

 my $currClust = 1;

 foreach my $clusterSize (@clusterSizes) {

    print "Cluster $currClust:\t$clusterSize Sequences\n";

    $currClust++;

 }

} 
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Appendix A-7

claraResultsSummariser.pl

#! /usr/bin/perl

use warnings;

use strict;

use lib "/usr/lib/perl5/site_perl/5.8.8";

use Bio::SeqIO;

use Bio::Tools::SeqWords;

use File::Basename;

#import input number of clusters produced in CLARA, a preference for whether to print 

to output files the total numbers of reads from each species on each cluster ([T/TRUE]/

[F/FALSE]), the shared section of the cluster file names (without the features, a number 

and ".txt" after), and the features clustered

my $numClusters = shift;

my $totalsPrint = shift;

my $commonName = shift;

my $feats = shift;

#check that a number of clusters has been entered

unless ($numClusters =~ /\d+/) {

 print "\a\nYou must specify the number of clusters generated by clara!  Please 

enter number of clusters:  ";

 $numClusters = <STDIN>;

}

#check that a common name for the cluster files has been entered

if (defined ($commonName)) {

}

else {

print "\nPlease enter the common segment of file name for each cluster file.  For 

example, if the clusters are called \'ExampleCluster1.txt\', \'ExampleCluster2.txt\' etc, 

enter \'ExampleCluster\' here...  "; 

$commonName = <STDIN>;

chomp $commonName;

}

#for each cluster, open an output file and read the lines from the cluster files, counting 

the numbers of sequences from each species in each cluster
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my $i = 1;

my %clusMaxima;

my %speciesTotals;

my %clusDomSp;

my %clusPrecisions;

my $outFile = ("$commonName" . "$feats" . "ClusStats.txt");

open (OUTFILE, ">$outFile");

while ($i <= $numClusters) {

 my $clusFile = ("$commonName" . "$feats" . "cluster$i.txt");

 open (CLUSTERFILE, "<$clusFile") or die "$!";

 my @lines = <CLUSTERFILE>;

 my @speciesLabels;

 my %speciesPresent=();

 my $species;

 foreach my $line (@lines) {

  chomp $line;

  @speciesLabels = split /\d/, $line;

  $species = $speciesLabels[0];

 
#species defined by first six characters of ID string, allowing for differentiation 

between reads from different experiments

  $species = substr $species, 0, 6;

  if (exists ($speciesPresent{$species})) {

   $speciesPresent{$species}++;

  }

  else {

   $speciesPresent{$species}=1;

  }

 }

#'flip' the %speciesPresent hash, so that the predominant species in the cluster can be 

determined later

 my %speciesSeqs = reverse %speciesPresent;

 my $seqNo;

 my @seqNos;


#for each species present in the cluster, add the read counts to the respective totals 

for the species - for recall calculation later

 foreach $species (sort keys %speciesPresent) {

  $seqNo = $speciesPresent{$species};

  push (@seqNos, $seqNo);
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  if (exists ($speciesTotals{$species})) {

   $speciesTotals{$species}=$speciesTotals{$species}+

$speciesPresent{$species};

  }

  else {

   $speciesTotals{$species}=$speciesPresent{$species};

  }

 }

#if $totalsPrint was defined as 'TRUE' or 'T', print the species totals to the output files

 if (defined ($totalsPrint)) {

  if ($totalsPrint eq "T") {

   print OUTFILE ("Cluster$i:  \n");

   foreach $species (sort keys %speciesPresent) {

    print OUTFILE ("$species\t$speciesPresent{$species}\n");

   }

   print OUTFILE ("\n");

  }

  elsif ($totalsPrint eq "TRUE") {

   print OUTFILE ("Cluster$i:  \n");

   foreach $species (sort keys %speciesPresent) {

    print OUTFILE ("$species\t$speciesPresent{$species}\n");

   }

   print OUTFILE ("\n");

  }

 }

#find the largest number of reads for all species in the cluster

 my @sortedSNs = sort {$b <=> $a} @seqNos;

 my $maxSeqNo = $sortedSNs[0];

#define cluster species from this maximum read count

 my $clusSpecies = $speciesSeqs{$maxSeqNo};

 my $clusTotal=0;

 my $clusterName = ("Cluster " . $i);


#store maximum read count for cluster

 $clusMaxima{$clusterName} = $maxSeqNo;


#store name of predominant species for cluster

 $clusDomSp{$clusterName} = $clusSpecies;
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#calculate total number of reads in cluster - for calculation of precision

 foreach $seqNo (@seqNos) {

  $clusTotal = $clusTotal+$seqNo;

 }


#calculate precision of cluster to 4dp

 my $precision = sprintf ("%.4f", $maxSeqNo/$clusTotal);

 $clusPrecisions{$clusterName} = $precision;

 close CLUSTERFILE;

 $i++;

}

#print precision and recall values to output file

print OUTFILE ("$feats\nPr\tRc\n");

foreach my $clust (sort keys %clusMaxima) {

 my $clusSpecies = $clusDomSp{$clust};

 my $recall = sprintf ("%.4f", $clusMaxima{$clust}/$speciesTotals{$clusSpecies});

 print OUTFILE ("$clusPrecisions{$clust}\t$recall\n");

}

close OUTFILE; 
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Appendix A-8

avePRwriter.pl

#! /usr/bin/perl

use warnings;

use strict;

use lib '/usr/local/perllibPDA';

#import name of FASTA file, features used, and number of clusters

my $fastaFile = shift;

my $feats = shift;

my @fastaSplit = split /\./, $fastaFile;

my $name = $fastaSplit[0];

my $numClusters = shift;

my $prFile = "$name" . "$feats" . "ClusStats.txt";

my $outFile = "$name" . "AvePRSummary.txt";

#read PR file for features

open (INFH, "<$prFile");

my $line;

my @lines;

while ($line = (<INFH>)) {

 push (@lines, $line);

}

close INFH;

#remove first two lines of file - these are title lines

shift (@lines);

shift (@lines);

my @precisionValues;

my $precisionValue;

my @recallValues;

my $recallValue;

#read precision and recall values from file

foreach $line (@lines) {

 my @prValues = split /\s/, $line;

 $precisionValue = $prValues[0];

 $recallValue = $prValues[1];

 push (@precisionValues, $precisionValue);

 push (@recallValues, $recallValue);
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}

#calculate mean precision and recall values and standard deviations to 4dp
my $totPrecision = 0;
my $totRecall = 0;
foreach $precisionValue (@precisionValues) {
 $totPrecision = $totPrecision + $precisionValue;
}
foreach $recallValue (@recallValues) {
 $totRecall = $totRecall + $recallValue;
}
my $avePrecision = sprintf ("%.4f", $totPrecision/$numClusters);
my $aveRecall = sprintf ("%.4f", $totRecall/$numClusters);
my $pStDev = sqrt((($totPrecision*2)/$numClusters) - ($avePrecision*$avePrecision));
my $rStDev = sqrt((($totRecall*2)/$numClusters) - ($aveRecall*$aveRecall));

#print features, mean values and standard deviations to output file, amending file 
rather than overwriting it
open (OUTFH, ">>$outFile");
print OUTFH ("$feats\t$avePrecision\t\($pStDev\)\t$aveRecall\t\($rStDev\)\n");
close OUTFH;
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Appendix A-9

SAMseqAssigner.pl

#! /usr/bin/perl
use strict;
use warnings;
use Bio::SeqIO;

#import SAM filename, a file of keys converting accession numbers to species names, 
and the file of sequences that were aligned by SSAHA2
my $samFile = shift;
my $keyFile = shift;
my $seqFile = shift;
my @SFsplit = split /Mapped\./, $samFile;

#initialise output filenames
my $outFile = $SFsplit[0] . "Assignments.txt";
my $poorAlignFile = "PoorlyAlignedSeqs.txt";
my $unalignedFile = "UnmappedSeqs.txt";

#generate Bio::Seq object for each sequence in $seqFile
my @IDarray;
my $seq_in = Bio::SeqIO->new(-file => $seqFile, -format => "fasta");
while (my $seq = $seq_in->next_seq) {
 my $seqID = $seq->id;
 push (@IDarray, $seqID);
}

#generate conversion hash for accession number -> species from $keyFile
my ($keyLine, @keyLines);
open (KEYFH, "<$keyFile");
while ($keyLine = (<KEYFH>)) {
 chomp $keyLine;
 push (@keyLines, $keyLine);
}
my ($accNo, $species, %keyHash);
foreach $keyLine (@keyLines) {
 ($accNo, $species) = split /\t/, $keyLine;
 $keyHash{$accNo} = $species;
}
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#read lines from SAM file
my ($samLine, @samLines);
open (SAMFH, "<$samFile");
while ($samLine = (<SAMFH>)) {
 push (@samLines, $samLine);
}

#store reference sequence from top hit for each query sequence in SAM file, or label as 
unassigned if the best alignment score is <40
my ($qName, $flag, $rName, $pos, $mapQ, $cigar, $rNext, $pNext, $tLen, $seq, 
$qual, $aScore, $mScore, %alignmentHash, $rAcc, $aTag, $aType);
foreach $samLine (@samLines) {
 ($qName, $flag, $rName, $pos, $mapQ, $cigar, $rNext, $pNext, $tLen, $seq, 
$qual, $aScore, $mScore) = split /\t/, $samLine;
 unless (defined($alignmentHash{$qName})) {
  ($aTag, $aType, $aScore) = split /\:/, $aScore;
  if ($aScore >= 40) {
   $rName =~ m/(NC\_\d+)/;
   $rAcc = $1;
   $alignmentHash{$qName} = $rAcc;
  }
  else {
   $alignmentHash{$qName} = "No significant alignment found in 
reference database (p < 0.0001) -> Alignment Score = $aScore";
  }
 }
}

#open output files and print assignments (or lack of) to output file, and print 
unassigned (due to score cutoff, rather than lack of hits) query sequence IDs to a 
separate file ($poorAlignFile)
open (OUTFH, ">$outFile");
open (PAFH, ">$poorAlignFile");
my ($query, $refAcc, $assignment);
foreach $query (keys %alignmentHash) {
 if ($alignmentHash{$query} =~ m/NC\_\d+/) {
  $refAcc = $alignmentHash{$query};
  $assignment = $keyHash{$refAcc};
 }
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 else {
  $assignment = $alignmentHash{$query};
  print PAFH ("$query\n");
 }
 print OUTFH ("$query\t$assignment\n");
}
close OUTFH;
close PAFH;

#open output file for query sequence IDs for which no hits were returned at all
open (UAFH, ">$unalignedFile");
foreach my $ID (@IDarray) {
 if (exists($alignmentHash{$ID})) {
 }
 else {
  print UAFH ("$ID\n");
 }
}
close UAFH;
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Appendix A-10

partClustering.pl

#! /usr/bin/perl

use strict;

use warnings;

use Statistics::R;

use Cwd;

#input a tab-delimited feature vector text file, number of clusters, method (can be 

"kmeans", "fuzzyk", "clara", "k", "f", "c"), and a fuzziness measure if using FCM

my $dataFile = shift or die "\aYou must provide a data file for clustering.\n";

my $numClusters = shift or die "\aYou must specify a desired number of clusters to be 

produced.\n";

my $method = shift or die "\aYou must specify a clustering method.\n";

my $fuzziness = shift;

my @methodList = ("kmeans", "fuzzyk", "clara", "k", "f", "c");

#check input number of clusters is greater than 1

if ($numClusters < 2) {

 die "\aNumber of clusters must be greater than 1!\n";

}

#check that method entered is valid, and that only one was entered

$method = lc($method);

my $monitor = 0;

foreach my $listedMethod (@methodList) {

 if ($method eq $listedMethod) {

  $monitor++;

 }

}

unless ($monitor==1) {

 print "\aYou must enter one valid clustering method name from:\n";

 foreach my $methString (@methodList) {

  print "$methString\n";

  die;

 }

}

#check for fuzziness value if FCM was chosen method
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if ($method eq "fuzzyk" || $method eq "f") {

 unless (defined($fuzziness)) {

  die "\aYou must define a degree of fuzziness (any value \> 1) for fuzzy 

c means clustering.\n";

 }

}

#run appropriate method and generate output of files listing sequence IDs in each 

cluster

my $outFile;

my @dataFileSplit = split /\./, $dataFile;

my $name = $dataFileSplit[0];

my $wd = getcwd();

my $path = $name;

my @pathSplit = split /\//, $path;

my $fileName = pop(@pathSplit);

my $fullFileName = join "\.", ($fileName, $dataFileSplit[-1]);

push(@pathSplit, "");

my @fullPath = ($wd, @pathSplit);

my $dir = join "/", @fullPath;

my $R = Statistics::R->new();

$R->startR;

if ($method eq "kmeans" || $method eq "k") {

 my $methFolder = "KMClusters";

 my $clusFolder = $numClusters . "C";

 $outFile = $name . "kMeans.txt";

 $R->send(qq`setwd(\"$dir") \n library(stats) \n f=file(\"$fullFileName\", open=

\"r\") \n t=read.table(f, row.names=1) \n df=data.frame(t) \n  KMX <- kmeans(df, 

$numClusters, iter\.max=50) \n clusdf <- data.frame(KMX\$cluster) \n clusSizes = 

1:$numClusters \n clusSizes[1:$numClusters]=0 \n for (i in 1:$numClusters) { \n 

clustFile = paste("$fileName", "KMcluster", i, ".txt", sep="") \n x = which(clusdf==i) \n 

y=row.names(clusdf)[x] \n clusterNames = data.frame(y) \n write.table(clusterNames, 

file=clustFile, col.names=F, row.names=F, quote=F) \n clusSizes[i]=length(x) \n } \n 

clusSizes=data.frame(clusSizes) \n for (j in 1:$numClusters) { \n row.names(clusSizes)

[j] = paste("clus", j, sep="") \n } \n test = "test" \n print(test) \n`);

 my $returnedValue = $R->read;

 print "$returnedValue\n";

 print $methFolder . "/" . $clusFolder . "/" . $name . "KMcluster\n";

 $R->stopR();

}
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if ($method eq "fuzzyk" || $method eq "f") {

 my $methFolder = "FCMClusters";

 my $clusFolder = $numClusters . "C";

 my $fuzzFolder = $fuzziness;

 $outFile = $name . "FuzzykMeans.txt";

 $R->send(qq`setwd(\"$dir") \n library(e1071) \n library(class) \n f=file

(\"$fullFileName\", open=\"r\") \n t=read.table(f, row.names=1) \n df=data.frame(t) 

\n  fuzzyCM <- cmeans(df, $numClusters, m=$fuzziness) \n clusdf <- data.frame

(fuzzyCM\$cluster) \n clusSizes = 1:$numClusters \n clusSizes[1:$numClusters]=0 \n 

for (i in 1:$numClusters) { \n clustFile = paste("$fileName", "FCMcluster", i, ".txt", 

sep="") \n x = which(clusdf==i) \n y=row.names(clusdf)[x] \n clusterNames = 

data.frame(y) \n write.table(clusterNames, file=clustFile, col.names=F, row.names=F, 

quote=F) \n clusSizes[i]=length(x) \n } \n clusSizes=data.frame(clusSizes) \n for (j in 

1:$numClusters) { \n row.names(clusSizes)[j] = paste("clus", j, sep="") \n } \n test = 

"test" \n print(test) \n`);

 my $returnedValue = $R->read;

 print "$returnedValue\n";

 print $methFolder . "/" . $clusFolder . "/" . $fuzzFolder . "/" . $name . 

"FCMcluster\n";

 $R->stopR();

}

if ($method eq "clara" || $method eq "c") {

 my $methFolder = "CLARAClusters";

 my $clusFolder = $numClusters . "C";

 $outFile = $name . "CLARA.txt";

 $R->send(qq`setwd(\"$dir") \n library(cluster) \n f=file(\"$fullFileName\", 

open=\"r\") \n t=read.table(f, row.names=1) \n df=data.frame(t) \n clarax <- clara(df, 

$numClusters, samples = 50) \n clusdf <- data.frame(clarax\$clustering) \n clusSizes 

= 1:$numClusters \n clusSizes[1:$numClusters]=0 \n for (i in 1:$numClusters) { \n 

clustFile = paste("$fileName", "CLARAcluster", i, ".txt", sep="") \n x = which(clusdf==i) 

\n y=row.names(clusdf)[x] \n clusterNames = data.frame(y) \n write.table

(clusterNames, file=clustFile, col.names=F, row.names=F, quote=F) \n clusSizes[i]

=length(x) \n } \n clusSizes=data.frame(clusSizes) \n for (j in 1:$numClusters) { \n 

row.names(clusSizes)[j] = paste("clus", j, sep="") \n } \n test = "test" \n print(test) \n`);

 my $returnedValue = $R->read;

 print $methFolder . "/" . $clusFolder . "/" . $name . "CLARAcluster\n";

 print "$returnedValue\n";

 $R->stopR();

}
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Appendix A-11

contigInfo.pl

#! /usr/bin/perl

use warnings;

use strict;

#input 454Contigs.ace and 454readStatus.txt files for assembly

my $inFile = shift;

my $idFile = shift;

#get all sequence IDs according to file format

#my @seqFileSplit = split /\./, $seqFile;

#my (@seqIDs, $seqID);

#if ($seqFileSplit[-1] eq "fasta") {

# open FASTAGREP, "grep ^> $seqFile |" or die "can't fork: $!";

# while (<FASTAGREP>) {

#  my $IDline = $_;

#  chomp $IDline;

#  $seqID = $IDline =~ s/>//;

#  push (@seqIDs, $seqID);

# }

#}

#elsif ($seqFileSplit[-1] eq "fastq") {

# open FASTQGREP, "grep ^@ $seqFile |" or die "can't fork: $!";

# while (<FASTQGREP>) {

#  my $IDline = $_;

#  chomp $IDline;

#  $seqID = $IDline =~ s/@//;

#  push (@seqIDs, $seqID);

# }

#}

#use 454ReadStatus.txt file to record status of each read

open (IDFH, "<$idFile");

my (@idLines, $idLine, $id, $status, %reads);

while (<IDFH>) {

 $idLine = $_;

 chomp $idLine;

 push (@idLines, $idLine);
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}
my $junkHeading = shift(@idLines);
foreach $idLine (@idLines) {
 my @IDLsplit = split /\t/, $idLine;
 $id = $IDLsplit[0];
 $status = $IDLsplit[1];
 $reads{$id} = $status;
}
close IDFH;

my @seqInfoLines;

#grep all CO contig header lines
open COGREP, "grep ^CO $inFile |" or die "can't fork: $!";
while (<COGREP>) {
 push (@seqInfoLines, $_);
}
close COGREP;
my (%contigs, $contigID, $length, @readsUsed, @cIDs, @cReads);

my @lengths = ();
#initialise contig info hash and add lengths
foreach my $SIline (@seqInfoLines) {
 my @siSplit = split /\s/, $SIline;
 $contigID = $siSplit[1];
 push (@cIDs, $contigID);
 $length = $siSplit[2];
 push (@readsUsed, $siSplit[3]);
 $contigs{$contigID} = {"Length" => $length};
 push (@lengths, $length);
}

#create cumulative read counts
my $rInd=0;
foreach my $count (@readsUsed) {
 unless ($rInd == 0) {
  $count = $count + $cReads[$rInd-1];
 }
 push (@cReads, $count);
 $rInd++;
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}

#grep lists of reads used in each contig

open AFGREP, "grep ^AF $inFile |";

my $index = 0;

my @contigReads = ();

my @foundReads = ();

while (<AFGREP>) {

 my $readLine = $_;

 chomp $readLine;

 my @rlSplit = split /\s/, $readLine;

 my $readID = $rlSplit[1];

 push (@contigReads, $readID);

 push (@foundReads, $readID);

 if ($. == $cReads[$index]) {

  $contigs{$cIDs[$index]}{"Reads"} = [@contigReads];

  @contigReads = ();

  $index++;

 }

}

close AFGREP;

my $tooShort  = 0;

my $partAss   = 0;

my $assembled = 0;

my $singleton = 0;

my $outlier   = 0;

my $repeat    = 0;

foreach $id (keys %reads) {

 if ($reads{$id} eq "TooShort") {

  $tooShort++;

 }

 elsif ($reads{$id} eq "Repeat") {

  $repeat++;

 }

 elsif ($reads{$id} eq "PartiallyAssembled") {

  $partAss++;

 }

 elsif ($reads{$id} eq "Assembled") {

  $assembled++;
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 }

 elsif ($reads{$id} eq "Singleton") {

  $singleton++;

 }

 elsif ($reads{$id} eq "Outlier") {

  $outlier++;

 }

}

#print read stats

print "Number of assembled reads:\t$assembled\n";

print "Number of partially assembled reads:\t$partAss\n";

print "Number of singleton reads:\t$singleton\n";

print "Number of repeat reads:\t$repeat\n";

print "Number of outlier reads:\t$outlier\n";

print "Number of reads too short for assembly:\t$tooShort\n\n";

#calculate mean contig length

my $totalLength = 0;

my $meanLength = 0;

my $numCtgs = 0;

foreach $contigID (@cIDs) {

 foreach my $key (sort keys %{$contigs{$contigID}}) {

  if ($key eq "Length") {

   $totalLength = $totalLength + $contigs{$contigID}{$key};

   $numCtgs++;

  }

 }

}

#calculate N50 length & score

my $sumContigs = $totalLength;

my $N50length;

my $N50score = 0;

my $cumLength = 0;

my @sortedLengths = sort {$b <=> $a} @lengths;

foreach my $sLength (@sortedLengths) {

 unless ($cumLength > ($sumContigs/2)) {

  $N50length = $sLength;

  $cumLength = $cumLength + $sLength;

  $N50score++;

 }

Appendices - A

43



}

$meanLength = $totalLength/$numCtgs;

#print overall contig stats

print "Cumulative length of all contigs:\t$sumContigs bp\n";

print "Mean length of all contigs:\t$meanLength bp\n";

print "N50 length of all contigs:\t$N50length bp\n";

print "N50 score of all contigs:\t$N50score\n\n";

#print species-specific contig attributes

print "Contig Info:\n\n";

my %specContigLengths;

my %specContigCounts;

my %specLengthArrays;

foreach $contigID (@cIDs) {

 my %specReads;

 foreach my $key (sort keys %{$contigs{$contigID}}) {

  if ($key eq "Reads") {

   foreach my $readID (@{$contigs{$contigID}{$key}}) {

    my $idString = substr($readID, 0, 5);

    if (exists($specReads{$idString})) {

     $specReads{$idString}++;

    }

    else {

     $specReads{$idString}=1;

    }

   }

   my $specCount = 0;

   my $specID;

   foreach my $id (keys %specReads) {

    $specID = $id;

    $specCount++;

   }

   if ($specCount == 1) {

    if (exists($specContigLengths{$specID})) {

     $specContigLengths{$specID} = 

$specContigLengths{$specID} + $contigs{$contigID}{"Length"};

     $specContigCounts{$specID}++;

     push (@{$specLengthArrays{$specID}}, $contigs

{$contigID}{"Length"});

    }
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    else {

     $specContigLengths{$specID} = $contigs

{$contigID}{"Length"};

     $specContigCounts{$specID} = 1;

     $specLengthArrays{$specID} = ();

     $specLengthArrays{$specID} = [$contigs

{$contigID}{"Length"}];

    }

   }

   else {

    if (exists($specContigLengths{"Hybrid"})) {

     $specContigLengths{"Hybrid"} = 

$specContigLengths{"Hybrid"} + $contigs{$contigID}{"Length"};

     $specContigCounts{"Hybrid"}++;

     push (@{$specLengthArrays{"Hybrid"}}, $contigs

{$contigID}{"Length"});

    }

    else {

     $specContigLengths{"Hybrid"} = $contigs

{$contigID}{"Length"};

     $specContigCounts{"Hybrid"} = 1;

     $specLengthArrays{"Hybrid"} = ();

     $specLengthArrays{"Hybrid"} = [$contigs

{$contigID}{"Length"}];

    }

   }

  }

  else {

#   print "$key\t$contigs{$contigID}{$key}\n\n";

  }

 }

}

foreach my $contigLabel (keys %specContigLengths) {

 my @specLengths = @{$specLengthArrays{$contigLabel}};

 my @lengthsSorted = sort {$b <=> $a} @specLengths;

 my $spN50length;

 my $spN50score = 0;

 my $spCumLength = 0;

 my $spSumContigs = $specContigLengths{$contigLabel};

 foreach my $spLength (@lengthsSorted) {
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  unless ($spCumLength > ($spSumContigs/2)) {

   $spN50length = $spLength;

   $spCumLength = $spCumLength + $spLength;

   $spN50score++;

  }

 }

 my $meanSpecLength = $specContigLengths{$contigLabel} / 

$specContigCounts{$contigLabel};

 print $contigLabel, ":\t", $specContigLengths{$contigLabel}, " bp in\t", 

$specContigCounts{$contigLabel}, " contigs\tmean length:\t", $meanSpecLength, " bp

\tN50 length:\t$spN50length\tN50 score:\t$spN50score\n";

}
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Appendix A-12

randomSeqFetcher.pl

#! /usr/bin/perl

use strict;

use warnings;

#collect input of ratios, fasta & quality file, and determine number of clusters

my $ratios = shift;

chomp $ratios;

my @ratios = split /,/, $ratios;

foreach my $r (@ratios) {

 print "$r\n";

}

my $numClusters = scalar(@ratios);

my $fastaFile = shift;

my $fastqFile = shift;

my %fasta;

my %fastq;

my $ID;

my $seqString;

my $qualString;

my $seqLine;

my $qualLine;

my @seqLines = ();

my @qualLines = ();

#store FASTA IDs, and sequences combined line-by-line

open (FASTAFH, "<$fastaFile");

while (<FASTAFH>) {

 if ($_ =~ />/) {

  my $seqLineCount = scalar(@seqLines);

  unless ($seqLineCount == 0) {

   $seqString = join "", @seqLines;

   $fasta{$ID} = $seqString;

  }

  $ID = $_;

  chomp $ID;

  @seqLines = ();
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 }

 else {

  $seqLine = $_;

  chomp $seqLine;

  push(@seqLines, $seqLine);

 }

}

$seqString = join "", @seqLines;

$fasta{$ID} = $seqString;

close FASTAFH;

#store QUAL info

open (FASTQFH, "<$fastqFile");

while (<FASTQFH>) {

 if ($_ =~ />/) {

  my $qualLineCount = scalar(@qualLines);

  unless ($qualLineCount == 0) {

   $qualString = join "", @qualLines;

   $fastq{$ID} = $qualString;

  }

  $ID = $_;

  chomp $ID;

  @qualLines = ();

 }

 else {

  $qualLine = $_;

  chomp $qualLine;

  push(@qualLines, $qualLine);

 }

}

$qualString = join "", @qualLines;

$fastq{$ID} = $qualString;

close FASTQFH;

my %clusters;

my $rn;

my $ratio;

my $cRatio;

my $rClus;

my $end;
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my $c2count = 0;

#randomly assign a cluster number to each ID

foreach $ID (keys %fasta) {

 $cRatio = 0;

 $rClus = 0;

 $rn = rand(1);

 $end = 0;

 foreach $ratio (@ratios) {

  unless ($end == 1) {

   $cRatio = $cRatio+$ratio;

   $rClus++;

   if ($rn < $cRatio) {

    $clusters{$ID} = $rClus;

    $end = 1;

   }

  }

 }

}

#foreach $ID (keys %fasta) {

# foreach my $QID (keys %fastq) {

#  if ($ID =~ $QID) {

#   my $newQID = $ID;

#   $fastq{$newQID} = $fastq{$QID};

#  }

# }
#}

#write a pair of files for each cluster

my $clusterNo = 1;

while ($clusterNo <= $numClusters) {

 my $clusCount = 0;

 my @outFasta = ("randomCluster", $clusterNo, ".fasta");

 my @outQual  = ("randomCluster", $clusterNo, ".qual");

 my $outFasta = join "", @outFasta;

 my $outQual  = join "", @outQual;

 open (OUTFASTA, ">$outFasta");

 open (OUTQUAL, ">$outQual");

 foreach $ID (keys %clusters) {
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  if ($clusters{$ID} == $clusterNo) {

   print OUTFASTA ("$ID\n", $fasta{$ID}, "\n");

   print OUTQUAL ("$ID\n", $fastq{$ID}, "\n");

   $clusCount++;

  }

 }

 print "$clusCount\n";

 close OUTFASTA;

 close OUTQUAL;

 $clusterNo++;

}
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Appendix B

• Appendix B-1: a table detailing the composition of the simulated dataset 

simLC (Mavromatis, Ivanova et al. 2007).

• Appendix B-2: a table detailing the taxonomy of each species contributing to 

simLC, up to the phylum level.
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Appendix B-1

A table detailing the composition of the simulated dataset simLC.

Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Rhodopseudomonas palustris 
HaA2 5331656 28861 27684394 5.19 637000240 316058

Bradyrhizobium sp. BTAi1 8422430 9277 9432593 1.11 640427103 288000

Cytophaga hutchinsonii ATCC 
33406 4433218 5168 4132410 0.93 637000087 269798

Moorella thermoacetica ATCC 
39073 2628784 674 667732 0.25 637000167 264732

Xylella fastidiosa Dixon 2622328 601 527819 0.2 638341237 155919

Ehrlichia canis Jake 1315030 196 192979 0.14 637000097 269484

Rubrobacter xylanophilus DSM 
9941 3299423 409 472860 0.14 637000248 266117

Thiobacillus denitrificans ATCC 
25259 2909809 395 432598 0.14 637000324 292415



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Bacillus cereus NVH391-98 3915845 520 530628 0.13 640753006 315749

Burkholderia sp. sp.strain 383 8676277 1074 1134915 0.13 637000051 269483

Caldicellulosiruptor 
accharolyticus UNDEF 2788317 367 374864 0.13 640427106 351627

Chloroflexus aurantiacus J-10-
fl 5193782 679 676090 0.13 641228485 324602

Clostridium beijerincki NCIMB 
8052 5952522 737 774306 0.13 640753016 290402

Crocosphaera watsonii WH 
8501 6285399 812 853754 0.13 638341074 165597

Ehrlichia chaffeensis sapulpa 1005812 150 137612 0.13 638341079 332415

Prochlorococcus sp. NATL2A 1842899 253 243780 0.13 637000212 59920

Psychrobacter cryopegella 
UNDEF 3101097 422 406224 0.13 637000227 335284



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Rhodopseudomonas palustris 
BisB18 5513844 699 718618 0.13 637000237 316056

Shewanella sp. ANA-3 5100729 664 672467 0.13 639633058 94122

Shewanella sp. MR-7 4546355 568 592166 0.13 637000260 60481

Silicibacter sp. TM1040 4198271 469 547605 0.13 637000268 292414

Thermoanaerobacter 
ethanolicus 39E 2282740 315 298534 0.13 641522655 340099

Actinobacillus succinogenes 
130Z 2046146 252 263514 0.12 640753001 339671

Burkholderia ambifaria AMMD 7503613 955 966386 0.12 637000047 339670

Chlorobium limicola DSMZ 245
(T) 2761915 381 354901 0.12 642555121 290315

Deinococcus geothermalis 
DSM11300 3164085 415 401474 0.12 641228488 319795



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Jannaschia sp. CCS1 4404049 543 529621 0.12 637000137 290400

Kineococcus radiotolerans 
SRS30216 4893957 566 588484 0.12 640753031 266940

Methylobacillus flagellatus 
strain KT 2971517 365 369843 0.12 637000165 265072

Nitrobacter winogradskyi 
Nb-255 3402093 427 414571 0.12 637000193 323098

Novosphingobium 
aromaticivorans DSM 12444 
(F199) 

3561584 520 446895 0.12 640427126 279238

Pelodictyon 
phaeoclathratiforme BU-1 
(DSMZ 5477(T))

3000217 402 384821 0.12 642555146 324925

Polaromonas sp. JS666 5898676 733 737085 0.12 637000208 296591

Pseudoalteromonas atlantica 
T6c 5094958 588 615147 0.12 637000216 342610

Rhodopseudomonas palustris 
BisB5 4892717 575 593532 0.12 637000238 316057



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Sphingopyxis alaskensis 
RB2256 3343420 438 415701 0.12 637000271 317655

Thiomicrospira denitrificans 
ATCC 33889 2201561 277 268886 0.12 637000326 326298

Trichodesmium erythraeum 
IMS101 7750108 977 954106 0.12 637000329 203124

Alkalilimnicola ehrlichei 
MLHE-1 3272789 373 374946 0.11 637000005 187272

Anabaena variabilis ATCC 
29413 7105752 855 795384 0.11 646564504 240292

Anaeromyxobacter 
dehalogenans 2CP-C 5013479 584 590941 0.11 637000007 290397

Arthrobacter sp. FB24 5011599 570 556264 0.11 639633006 290399

Azotobacter vinelandii AvOP 5352434 650 601559 0.11 643692004 322710

Burkholderia cenocepacia AU 
1054 7249477 879 833042 0.11 637000046 331271



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Burkholderia cenocepacia 
HI2424 8139086 956 907846 0.11 639633014 331272

Burkholderia vietnamiensis G4 8410976 992 996433 0.11 640069307 269482

Clostridium thermocellum 
ATCC 27405 3894953 461 435152 0.11 640069309 203119

Desulfitobacterium hafniense 
DCB-2 6083768 769 684554 0.11 643348537 272564

Desulfovibrio desulfuricans 
G20 3730232 484 436153 0.11 637000095 207559

Exiguobacterium UNDEF 
255-15 2894116 377 329023 0.11 641522626 262543

Frankia sp. CcI3 5433628 645 625569 0.11 637000116 106370

Frankia sp. EAN1pec 9081415 1109 1070299 0.11 641228492 298653

Geobacter metallireducens 
GS-15 4011182 515 469635 0.11 637000119 269799



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Lactobacillus casei ATCC 334 2760660 362 330900 0.11 639633028 321967

Lactobacillus gasseri ATCC 
33323 1950210 244 231961 0.11 639633030 324831

Marinobacter aquaeolei VT8 4647952 547 542695 0.11 639633037 351348

Methanospirillum hungatei JF-1 3544738 429 412292 0.11 637000164 323259

Nitrobacter hamburgensis 
UNDEF 5011522 630 592565 0.11 637000192 323097

Nitrosococcus oceani UNDEF 3522111 409 398323 0.11 637000194 323261

Nitrosomonas eutropha C71 2711982 314 313955 0.11 637000196 335283

Nitrosospira multiformis ATCC 
25196 3234309 378 366210 0.11 637000197 323848

Nocardioides sp. JS614 5394058 636 632236 0.11 639633046 196162



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Pelobacter carbinolicus DSM 
2380 3662252 489 425000 0.11 637000204 338963

Pelobacter propionicus DSM 
2379 4466736 508 505009 0.11 639633050 338966

Pseudomonas putida F1 5925059 675 687896 0.11 640427132 351746

Pseudomonas syringae B728a 6093698 746 673596 0.11 637000224 205918

Rhodoferax ferrireducens 
UNDEF 4969784 599 563098 0.11 637000235 338969

Rhodopseudomonas palustris 
BisA53 5502424 636 648905 0.11 639279312 316055

Rhodospirillum rubrum ATCC 
11170 4406557 559 519746 0.11 637000241 269796

Shewanella amazonensis 
SB2B 4264533 536 497450 0.11 639633057 326297

Shewanella baltica OS155 5084318 621 589065 0.11 640069330 325240



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Shewanella frigidimarina 
NCMB400 4782427 551 539657 0.11 637000257 318167

Shewanella putefaciens 
UNDEF 4577697 565 537581 0.11 640427141 319224

Shewanella sp. PV-4 4474526 524 502771 0.11 640069331 323850

Streptococcus suis 89/1591 1978218 263 234214 0.11 638341209 286604

Syntrophobacter fumaroxidans 
MPOB 4848841 606 561886 0.11 639633063 335543

Alkaliphillus metalliredigenes 
UNDEF 4410303 489 452259 0.1 640753002 293826

Bifidobacterium longum 
DJO10A 2375286 288 238822 0.1 638341019 205913

Brevibacterium linens BL2 4510745 542 465883 0.1 638341022 321955

Chlorobium phaeobacteroides 
DSM 266 3114286 359 339279 0.1 639633020 290317



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Dechloromonas aromatica 
RCB 4501104 537 455726 0.1 637000088 159087

Ferroplasma acidarmanus fer1 1971391 238 201766 0.1 638341092 333146

Haemophilus somnus 129PT 2008359 232 208703 0.1 637000127 205914

Lactococcus lactis cremoris 
SK11 2613164 301 267507 0.1 639633031 272622

Leuconostoc mesenteroides 
mesenteroides ATCC 8293 1976579 235 199695 0.1 639633034 203120

Magnetococcus sp. MC-1 4628740 504 479512 0.1 639633036 156889

Paracoccus denitrificans 
PD1222 5175736 585 556907 0.1 639633048 318586

Pediococcus pentosaceus 
ATCC 25745 1814631 217 189252 0.1 639633049 278197

Pelodictyon luteolum UNDEF 2364842 250 238945 0.1 637000205 319225



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Prochlorococcus marinus str. 
MIT 9312 1709204 183 178782 0.1 637000210 74546

Prosthecochloris aestuarii 
SK413/DSMZ 271(t) 2563197 282 269231 0.1 642555149 290512

Prosthecochloris sp. BS1 4444192 483 450134 0.1 642555122 331678

Saccharophagus degradans 
2-40 5057531 582 538073 0.1 637000249 203122

Shewanella sp. W3-18-1 4754010 533 520544 0.1 639633059 351745

Syntrophomonas wolfei 
Goettingen 2845772 314 311703 0.1 637000316 335541

Thiomicrospira crunogena 
XCL-2 2427734 274 260697 0.1 637000325 317025

Burkholderia xenovorans 
LB400 9731138 1149 934846 0.09 637000053 266265

Chlorobium vvibrioforme f. 
thiosulfatophilum DSMZ 265(T) 1980186 199 191789 0.09 640427130 290318



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Chromohalobacter salexigens 
DSM3043 4404049 454 423738 0.09 637000075 290398

Enterococcus faecium DO 2848380 359 260405 0.09 638341080 333849

Lactobacillus delbrueckii 
bulgaricus ATCC BAA-365 1629380 195 152277 0.09 639633029 321956

Mesorhizobium sp. BNC1 4977960 567 464795 0.09 637000160 266779

Methanococcoides burtonii 
DSM6242 2575032 268 248743 0.09 637000161 259564

Methanosarcina barkeri Fusaro 4873766 545 468320 0.09 637000162 269797

Pseudomonas fluorescens 
PfO-1 6438405 730 599462 0.09 637000221 205922

Psychrobacter arcticum 273-4 2650701 327 258585 0.09 637000226 259536

Synechococcus sp. PCC 7942 
(elongatus) 2695903 316 266393 0.09 637000308 1140



Taxon Genome size Reads used Total size of 
read sequence

Estimated 
coverage

IMG taxon id NCBI taxonomy 
id

Thermobifida fusca YX 3642249 434 347485 0.09 637000319 269800

Oenococcus oeni PSU-1 1782786 182 157278 0.08 639633047 203123

Rhodobacter sphaeroides 2.4.1 4603060 514 394254 0.08 640069327 272943

Lactobacillus brevis ATCC 367 1880818 177 143668 0.07 639633027 387344

Streptococcus thermophilus 
LMD-9 1842121 178 146176 0.07 639633062 322159



Appendix B-2
A table detailing the taxonomy of each species contributing to simLC, up to the phylum level. Details of the three most well-represented 
species in the dataset are emphasised.

Species Genus Family Order Class Phylum

Actinobacillus succinogenes 
130Z Actinobacillus Pasteurellaceae Pasteurellales Gammaproteobacteria Proteobacteria

Alkalilimnicola ehrlichei 
MLHE-1 Alkalilimnicola Ectothio-

rhodospiraceae Chromatiales Gammaproteobacteria Proteobacteria

Alkaliphillus metalliredigenes 
UNDEF Alkaliphillus Clostridiaceae Clostridiales Clostridia Firmicutes

Anabaena variabilis ATCC 
29413 Anabaena Nostocaceae Nostocales Nostocales Cyanobacteria

Anaeromyxobacter 
dehalogenans 2CP-C Anaeromyxobacter Myxococcaceae Myxococcales Deltaproteobacteria Proteobacteria

Arthrobacter sp. FB24 Arthrobacter Micrococcaceae Actinomycetales Actinobacteria Actinobacteria



Species Genus Family Order Class Phylum

Azotobacter vinelandii AvOP Azotobacter Pseudomonadaceae Pseudomonadales Gammaproteobacteria Proteobacteria

Bacillus cereus NVH391-98 Bacillus Bacillaceae Bacillales Bacilli Firmicutes

Bifidobacterium longum 
DJO10A Bifidobacterium Bifidobacteriaceae Bifidobacteriales Actinobacteria Actinobacteria

Bradyrhizobium sp. BTAi1 Bradyrhizobium Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria

Brevibacterium linens BL2 Brevibacterium Brevibacteriaceae Burkholderiales Betaproteobacteria Proteobacteria

Burkholderia ambifaria AMMD Burkholderia Burkholderiaceae Burkholderiales Betaproteobacteria Proteobacteria

Burkholderia cenocepacia AU 
1054 Burkholderia Burkholderiaceae Burkholderiales Betaproteobacteria Proteobacteria



Species Genus Family Order Class Phylum

Burkholderia cenocepacia 
HI2424 Burkholderia Burkholderiaceae Burkholderiales Betaproteobacteria Proteobacteria

Burkholderia sp. sp.strain 383 Burkholderia Burkholderiaceae Burkholderiales Betaproteobacteria Proteobacteria

Burkholderia vietnamiensis G4 Burkholderia Burkholderiaceae Burkholderiales Betaproteobacteria Proteobacteria

Burkholderia xenovorans 
LB400 Burkholderia Burkholderiaceae Burkholderiales Betaproteobacteria Proteobacteria

Caldicellulosiruptor 
accharolyticus UNDEF Caldicellulosiruptor Caldicellulosiruptor Thermo-

anaerobacterales Clostridia Firmicutes

Chlorobium limicola DSMZ 245
(T) Chlorobium Chlorobiaceae Chlorobiales Chlorobia Chlorobi

Chlorobium phaeobacteroides 
DSM 266 Chlorobium Chlorobiaceae Chlorobiales Chlorobia Chlorobi



Species Genus Family Order Class Phylum

Chlorobium vvibrioforme f. 
thiosulfatophilum DSMZ 265(T) Chlorobium Chlorobiaceae Chlorobiales Chlorobia Chlorobi

Chloroflexus aurantiacus J-10-
fl Chloroflexus Chloroflexaceae Chloroflexales Chloroflexi Chloroflexi

Chromohalobacter salexigens 
DSM3043 Chromohalobacter Halomonadaceae Oceanospirillales Gammaproteobacteria Proteobacteria

Clostridium beijerincki NCIMB 
8052 Clostridium Clostridiaceae Clostridiales Clostridia Firmicutes

Clostridium thermocellum 
ATCC 27405 Clostridium Clostridiaceae Clostridiales Clostridia Firmicutes

Crocosphaera watsonii WH 
8501 Crocosphaera Crocosphaera Chroococcales Chroococcales Cyanobacteria

Cytophaga hutchinsonii 
ATCC 33406 Cytophaga Cytophagaceae Cytophagales Cytophagia Bacteroidetes



Species Genus Family Order Class Phylum

Dechloromonas aromatica 
RCB Dechloromonas Rhodocyclaceae Rhodocyclales Betaproteobacteria Proteobacteria

Deinococcus geothermalis 
DSM11300 Deinococcus Deinococcaceae Deinococcales Deinococci Deinococcus_Thermus

Desulfitobacterium hafniense 
DCB-2 Desulfitobacterium Peptococcaceae Clostridiales Clostridia Firmicutes

Desulfovibrio desulfuricans 
G20 Desulfovibrio Desulfovibrionaceae Desulfovibrionales Deltaproteobacteria Proteobacteria

Ehrlichia canis Jake Ehrlichia Anaplasmataceae Rickettsiales Alphaproteobacteria Proteobacteria

Ehrlichia chaffeensis sapulpa Ehrlichia Anaplasmataceae Rickettsiales Alphaproteobacteria Proteobacteria

Enterococcus faecium DO Enterococcus Enterococcaceae Lactobacillales Bacilli Firmicutes



Species Genus Family Order Class Phylum

Exiguobacterium UNDEF 
255-15 Exiguobacterium Exiguobacterium Bacillales Bacilli Firmicutes

Ferroplasma acidarmanus fer1 
Ferroplasma Ferroplasmaceae Thermoplasmatales Thermoplasmata Thermoplasmata

Frankia sp. CcI3 Frankia Frankiaceae Actinomycetales Actinobacteria Actinobacteria

Frankia sp. EAN1pec Frankia Frankiaceae Actinomycetales Actinobacteria Actinobacteria

Geobacter metallireducens 
GS-15 Geobacter Geobacteraceae Desulfuromonadales Deltaproteobacteria Proteobacteria

Haemophilus somnus 129PT Haemophilus Pasteurellaceae Pasteurellales Gammaproteobacteria Proteobacteria

Jannaschia sp. CCS1 Jannaschia Rhodobacteraceae Rhodobacterales Alphaproteobacteria Proteobacteria



Species Genus Family Order Class Phylum

Kineococcus radiotolerans 
SRS30216 Kineococcus Kineosporiaceae Actinomycetales Actinobacteria Actinobacteria

Lactobacillus brevis ATCC 367 Lactobacillus Lactobacillaceae Lactobacillales Bacilli Firmicutes

Lactobacillus casei ATCC 334 Lactobacillus Lactobacillaceae Lactobacillales Bacilli Firmicutes

Lactobacillus delbrueckii 
bulgaricus ATCC BAA-365 Lactobacillus Lactobacillaceae Lactobacillales Bacilli Firmicutes

Lactobacillus gasseri ATCC 
33323 Lactobacillus Lactobacillaceae Lactobacillales Bacilli Firmicutes

Lactococcus lactis cremoris 
SK11 Lactococcus Streptococcaceae Lactobacillales Bacilli Firmicutes

Leuconostoc mesenteroides 
mesenteroides ATCC 8293 Leuconostoc Leuconostocaceae Lactobacillales Bacilli Firmicutes



Species Genus Family Order Class Phylum

Magnetococcus sp. MC-1 Magnetococcus Magnetococcus Magnetococcus Magnetococcus Proteobacteria

Marinobacter aquaeolei VT8 Marinobacter Alteromonadaceae Alteromonadales Gammaproteobacteria Proteobacteria

Mesorhizobium sp. BNC1 Mesorhizobium Phyllobacteriaceae Rhizobiales Alphaproteobacteria Proteobacteria

Methanococcoides burtonii 
DSM6242 Methanococcoides Methanosarcinaceae Methanosarcinales Methanomicrobia Methanomicrobia

Methanosarcina barkeri Fusaro Methanosarcina Methanosarcinaceae Methanosarcinales Methanomicrobia Methanomicrobia

Methanospirillum hungatei JF-1 Methanospirillum Methanospirillaceae Methanomicrobiales Methanomicrobia Methanomicrobia

Methylobacillus flagellatus 
strain KT Methylobacillus Methylophilaceae Methylophilales Betaproteobacteria Proteobacteria



Species Genus Family Order Class Phylum

Moorella thermoacetica ATCC 
39073 Moorella Thermo-

anaerobacteraceae
Thermo-
anaerobacterales Clostridia Firmicutes

Nitrobacter hamburgensis 
UNDEF Nitrobacter Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria

Nitrobacter winogradskyi 
Nb-255 Nitrobacter Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria

Nitrosococcus oceani UNDEF Nitrosococcus Chromatiaceae Chromatiales Gammaproteobacteria Proteobacteria

Nitrosomonas eutropha C71 Nitrosomonas Nitrosomonadaceae Nitrosomonadales Betaproteobacteria Proteobacteria

Nitrosospira multiformis ATCC 
25196 Nitrosospira Nitrosomonadaceae Nitrosomonadales Betaproteobacteria Proteobacteria

Nocardioides sp. JS614 Nocardioides Nocardioidaceae Actinomycetales Actinobacteria Actinobacteria



Species Genus Family Order Class Phylum

Novosphingobium 
aromaticivorans DSM 12444 
(F199) 

Novosphingobium Sphingomonadaceae Sphingomonadales Alphaproteobacteria Proteobacteria

Oenococcus oeni PSU-1 Oenococcus Leuconostocaceae Lactobacillales Bacilli Firmicutes

Paracoccus denitrificans 
PD1222 Paracoccus Rhodobacteraceae Rhodobacterales Alphaproteobacteria Proteobacteria

Pediococcus pentosaceus 
ATCC 25745 Pediococcus Lactobacillaceae Lactobacillales Bacilli Firmicutes

Pelobacter carbinolicus DSM 
2380 Pelobacter Pelobacteraceae Desulfuromonadales Deltaproteobacteria Proteobacteria

Pelobacter propionicus DSM 
2379 Pelobacter Pelobacteraceae Desulfuromonadales Deltaproteobacteria Proteobacteria

Pelodictyon luteolum UNDEF Pelodictyon Chlorobiaceae Chlorobiales Chlorobia Chlorobi



Species Genus Family Order Class Phylum

Pelodictyon 
phaeoclathratiforme BU-1 
(DSMZ 5477(T)) 

Pelodictyon Chlorobiaceae Chlorobiales Chlorobia Chlorobi

Polaromonas sp. JS666 Polaromonas Comamonadaceae Burkholderiales Betaproteobacteria Proteobacteria

Prochlorococcus marinus str. 
MIT 9312 

Prochlorococcus Prochlorococcaceae Prochlorales Prochlorales Cyanobacteria

Prochlorococcus sp. NATL2A Prochlorococcus Prochlorococcaceae Prochlorales Prochlorales Cyanobacteria

Prosthecochloris aestuarii 
SK413/DSMZ 271(t) Prosthecochloris Chlorobiaceae Chlorobiales Chlorobia Chlorobi

Prosthecochloris sp. BS1 Prosthecochloris Chlorobiaceae Chlorobiales Chlorobia Chlorobi

Pseudoalteromonas atlantica 
T6c Pseudoalteromonas Pseudo-

alteromonadaceae Alteromonadales Gammaproteobacteria Proteobacteria



Species Genus Family Order Class Phylum

Pseudomonas fluorescens 
PfO-1 Pseudomonas Pseudomonadaceae Pseudomonadales Gammaproteobacteria Proteobacteria

Pseudomonas putida F1 Pseudomonas Pseudomonadaceae Pseudomonadales Gammaproteobacteria Proteobacteria

Pseudomonas syringae B728a Pseudomonas Pseudomonadaceae Pseudomonadales Gammaproteobacteria Proteobacteria

Psychrobacter arcticum 273-4 Psychrobacter Moraxellaceae Pseudomonadales Gammaproteobacteria Proteobacteria

Psychrobacter cryopegella 
UNDEF Psychrobacter Moraxellaceae Pseudomonadales Gammaproteobacteria Proteobacteria

Rhodobacter sphaeroides 2.4.1 Rhodobacter Rhodobacteraceae Rhodobacterales Alphaproteobacteria Proteobacteria

Rhodoferax ferrireducens 
UNDEF Rhodoferax Comamonadaceae Burkholderiales Betaproteobacteria Proteobacteria



Species Genus Family Order Class Phylum

Rhodopseudomonas palustris 
BisA53 Rhodopseudomonas Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria

Rhodopseudomonas palustris 
BisB18 Rhodopseudomonas Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria

Rhodopseudomonas palustris 
BisB5 Rhodopseudomonas Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria

Rhodopseudomonas 
palustris HaA2 Rhodopseudomonas Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria

Rhodospirillum rubrum ATCC 
11170 Rhodospirillum Rhodospirillaceae Rhodospirillales Alphaproteobacteria Proteobacteria

Rubrobacter xylanophilus DSM 
9941 Rubrobacter Rubrobacteraceae Rubrobacterales Actinobacteria Actinobacteria

Saccharophagus degradans 
2-40 Saccharophagus Alteromonadaceae Alteromonadales Gammaproteobacteria Proteobacteria



Species Genus Family Order Class Phylum

Shewanella amazonensis 
SB2B Shewanella Shewanellaceae Alteromonadales Gammaproteobacteria Proteobacteria

Shewanella baltica OS155 Shewanella Shewanellaceae Alteromonadales Gammaproteobacteria Proteobacteria

Shewanella frigidimarina 
NCMB400 Shewanella Shewanellaceae Alteromonadales Gammaproteobacteria Proteobacteria

Shewanella putefaciens 
UNDEF Shewanella Shewanellaceae Alteromonadales Gammaproteobacteria Proteobacteria

Shewanella sp. ANA-3 Shewanella Shewanellaceae Alteromonadales Gammaproteobacteria Proteobacteria

Shewanella sp. MR-7 Shewanella Shewanellaceae Alteromonadales Gammaproteobacteria Proteobacteria

Shewanella sp. PV-4 Shewanella Shewanellaceae Alteromonadales Gammaproteobacteria Proteobacteria



Species Genus Family Order Class Phylum

Shewanella sp. W3-18-1 Shewanella Shewanellaceae Alteromonadales Gammaproteobacteria Proteobacteria

Silicibacter sp. TM1040 Silicibacter Rhodobacteraceae Rhodobacterales Alphaproteobacteria Proteobacteria

Sphingopyxis alaskensis 
RB2256 Sphingopyxis Sphingomonadaceae Sphingomonadales Alphaproteobacteria Proteobacteria

Streptococcus suis 89/1591 Streptococcus Streptococcaceae Lactobacillales Bacilli Firmicutes

Streptococcus thermophilus 
LMD-9 Streptococcus Streptococcaceae Lactobacillales Bacilli Firmicutes

Synechococcus sp. PCC 7942 
(elongatus) Synechococcus Chroococcus Chroococcales Chroococcales Cyanobacteria

Syntrophobacter fumaroxidans 
MPOB Syntrophobacter Syntrophomonadaceae Clostridiales Clostridia Firmicutes



Species Genus Family Order Class Phylum

Syntrophomonas wolfei 
Goettingen Syntrophomonas Syntrophomonadaceae Clostridiales Clostridia Firmicutes

Thermoanaerobacter 
ethanolicus 39E Thermoanaerobacter Thermo-

anaerobacteraceae
Thermo-
anaerobacterales Clostridia Firmicutes

Thermobifida fusca YX Thermobifida Nocardiopsaceae Actinomycetales Actinobacteria Actinobacteria

Thiobacillus denitrificans ATCC 
25259 Thiobacillus Hydrogenophilaceae Hydrogenophilales Betaproteobacteria Proteobacteria

Thiomicrospira crunogena 
XCL-2 Thiomicrospira Piscirickettsiaceae Thiotrichales Gammaproteobacteria Proteobacteria

Thiomicrospira denitrificans 
ATCC 33889 Thiomicrospira Piscirickettsiaceae Thiotrichales Gammaproteobacteria Proteobacteria

Trichodesmium erythraeum 
IMS101 Trichodesmium Trichodesmium Oscillatoriales Oscillatoriales Cyanobacteria



Species Genus Family Order Class Phylum

Xylella fastidiosa Dixon Xylella Xanthomonadaceae Xanthomonadales Gammaproteobacteria Proteobacteria



Table of Abbreviations

Abbreviation Term Definition

APA Assembled + Partially-Assembled
The combined number of sequencing reads assembled and partially-
assembled into contigs by Newbler.

BR1 Bradyrhizobium sp. BTAi1
A particular strain of bacterium symbiotic to the roots of plants and important in 
the process of nitrogen-fixation (van Rhijn and Vanderleyden, 1995).  One of 
the three most well-represented species in the dataset simLC.

CLARA Clustering LARge Applications
A modified implementation of the PAM method of clustering designed for use 
with large datasets (Kaufman and Rousseeuw 1990).

CPH Cytophaga hutchinsonii ATCC 33406
A particular strain of a species of gram-negative bacterium, common in soils 
and able to rapidly digest cellulose (Zhu et al. 2010).  One of the three most 
well-represented species in the dataset simLC.

DBSCAN Density Based Spatial Clustering of Applications with Noise A density-based clustering algorithm (Ester, Kriegel et al. 1996).

ddNTP di-deoxynucleotide
a modified deoxynucleotide base with an additional deoxygenated group that 
prevents further elongation after incorporation into a strand.

DENCLUE Fast Clustering Based on Kernel Density Estimation A density-based approach less sensitive to high-dimensionality than DBSCAN 
(Hinneburg and Gabriel 2007).

EST Expressed Sequence Tag A short sequencing read from either end of an RNA transcript.



Abbreviation Term Definition

FCM Fuzzy c-Means clustering

A soft partitioning clustering method, similar to k-means clustering, that allows 
for datapoints to belong to more than one group, with a weighting associated 
with each point for each group, denoting the degree of its membership to the 
group (Bezdek 1981).

GC GC content
A sequence feature vector describing the proportion of a sequence that is 
made up of G and C nucleotides.

GC+IND etc. GC content and inter-nucleotide distance vector
A feature vector containing the values of the features specified by their 
abbreviations.

HHSOM Hyperbolic Hierarchically-growing Self-Organising Map
A specialised variant of the SOM, projected in hyperbolic  space and arranged 
in rings of nodes growing from the centre of the map (Martin et al. 2008).

IND Inter-Nucleotide Distance
A sequence feature vector consisting of a single value, the Kolmogorov-
Smirnov distance between observed and expected frequencies of distances 
between nucleotides of the same type (Afreixo et al. 2009).

KASP k-means-based Approximate SPectral clustering
An implementation of spectral clustering designed for use with large datasets, 
approximating the optimal solution using a set of representative points to 
partition the dataset as a whole (Yan and Jordan 2009).

KM k-Means clustering
A partitioning clustering method, that divides data into a set number of groups 
by minimising the distance between each datapoint in a group and the mean 
vector of these datapoints.

OFDEG Oligonucleotide Frequency-Derived Error Gradient

A sequence feature vector consisting of a single value, the gradient of the 
degradation of error values calculated between oligonucleotide relative 
frequency distributions of the sequence and sub-sequences of increasing 
length (Saeed and Halgamuge 2009).



Abbreviation Term Definition

PAM Partitioning Around Mediods

A partitioning clustering method, similar to k-means/k-medians clustering, that 
groups data by minimising the total  distance between the points in a group and 
a central, representative point in that group (the mediod) (Kaufman and 
Rousseeuw 1990).

Pr Precision
A measure of the quality of clustering, calculated as the proportion of a single 
cluster that is accounted for by the predominant class of data within that 
cluster (Kelley and Salzberg 2010).

Rc Recall
A measure of the quality of clustering, calculated as the proportion of all the 
data belonging to a class within the dataset that is accounted for by the 
predominant class of data within that cluster (Kelley and Salzberg 2010).

RPH Rhodopseudomonas palustris HaA2
A particular strain of a species of gram-negative bacterium with a highly-
adaptable metabolism (Larimer et al. 2004; Bell  et al. 2009).  One of the three 
most well-represented species in the dataset simLC.

SOM Self-Organising Map
A grid of nodes that ‘learns’ a dataset as it is applied, with the distance 
between nodes increasing or decreasing according to the level of similarity 
between the data applied to them (Kohonen 1982).

TNF TetraNucleotide relative Frequency distribution vector
A sequence feature vector describing the relative frequency distribution of 4-
letter nucleotide ‘words’ in a sequence.
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