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Abstract

Nowadays, data analysis has become more complicated.Agencies such as so-

cial media and online news sites cause rapid dissemination of information. This

situation creates a lot of relevant and irrelevant data. It takes a lot of effort to

make a meaningful analysis by extracting as many causal relational data as possi-

ble from the others. For example, from the diseases that trigger each other or the

effects of the bankrupt company on other market players. In our thesis, we made

a study to make these complex networks more understandable and readable.

We tried to apply Schreiber’s transfer entropy on a complex network as a

way to characterise interaction between data, in other words, information flow.

We measures network similarity using Jensen-Shannon divergence and Kullback-

Leibler divergence. With this, we wanted to compare the distribution of correla-

tions between different networks. We explore how both weighted and unweighted

representations derived from these characterisations perform on real-world time

series data. We also use the transfer entropy to weight the edges of a graph

where the nodes represent time series data and the edges represent the degree

of commonality of pairs of time series. We also make a comparison between the

graph characterisation calculated by von Neumann entropy and transfer entropy.

We also worked on smoothing the edge entropy by applying diffusion operation

on how this information flow can be in multiplex graphs. We examined the

causality of this information flow, especially in time-varying multiplex graph.
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Chapter 1

Introduction

In this chapter, we provide for introduction to the thesis. In particular, we

give our motivation and goals while doing this research. The chapter commences

by introducing some ideas and problems for graph characterisation in the network

science literature. Afterwards, we explain the characterisation method we recom-

mend to overcome these difficulties. The chapter finishes by giving an outline of

the reminder of the thesis.

1.1 Problem

For many years, people have tried to establish a cause-effect relationship be-

tween their observations, experiences and existing conditions. They observed

eclipses, stars, earthquakes to better understand the factors affecting their lives.

People saw these factors as a reason for good or bad events. In the simplest sense,

they wanted to change these results by praying, offering sacrifices and various rit-

uals for the next year’s crop or the victory of the next war. Later, people focused

more on understanding how the World works and on the connection between ef-

fect and factor, as in studies such as Pavlov’s Dogs or Pasteur’s experiments. In

modern times, this search continues to expand with more systematic foundations

such as forecasting the weather, the causes of diseases or financial market analysis

etc.

Network analysis is the analysis of interactions between entities, which can
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be products, customers, diseases, evolution or even devices. Organisations and

companies from all over the world use network analysis to demonstrate an effec-

tive approach in marketing, optimisation, fraud detection, disease detection and

investment analysis [4, 15, 34]. The Swiss mathematician Euler, who solved the

Königsberg Bridge Problem in 1735, opened a new door for science by making

the first systematic study of network analysis [63].

Over time, network analysis has evolved from a puzzle to problems involving

petabytes of data analysis for instance weather forecast, and customer-product

simple analysis. When the ease of data collected by digital materials such as mo-

bile phones and computers and the size of this data are taken into consideration,

the already complex system has become a more complex structure. Not only the

complexity of the data, but also its size is increasing day-by-day. This has made

network analysis more complicated, complex and costly than ever. In the last

two decades, the acceleration of the internet and its widespread use have affected

social structure and habits. Access to information became easier and access to

products became global rather than local. Wherever in the world, the entertain-

ment industry has transformed into video-on-demand services, games and social

media sharing. Spending turned online and investments turned into automated

trading/scripts. All of these new habits leave a variety of data behind them that

can be searched. Scientists are trying to analyse and make sense of these complex

systems and big data as quickly as possible. Because timely analysis may save

lives, may help farmers or help to make a more profitable trade.

Here we will focus more on the analysis of financial data. Significant amounts

of data are generated from auto-trade [67], online applications and growing buy-

sell orders [61]. It has become very easy for people to make trade decisions with

the information they have obtained from both conventional media and new types

of social media communication systems, and to put these decisions into action

immediately [50, 70]. It is becoming difficult for analysts and scientists to find a

pattern among this complex data.
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1.2 Goals

The aim of this study is to analyse complex structures in financial networks

and to try to characterise them with methods based on statistical principles. We

will model financial data to with the companies in the stock market as nodes and

consider the relations between these companies as edges.

We will create these edges both with cross-correlation, which is a widely used

in field, and with transfer entropy. The main reason for using transfer entropy

is that it maintains causality while establishing the relationships between nodes.

Causality is important in finance because two companies may not affect each

other equally, and we would like to include this feature in our model.

What we are trying to do to examine the similarities of the movements of

stocks in times of crisis and in times of non-crisis. We will measure whether

other stocks are affected by the movements of a stock, and if it is, how much

it is affected. At each time epoch we construct a weighted graph in which the

edge weights are computed from transfer entropies between pairs of nodes. This

is an instantaneous snap shot of the pattern of information flow between nodes.

We analyse time series by observing how this network structure evolves with

time. We have used statistical methods such as Principal component analysis

(PCA), Multidimensional scaling (MDS), Jensen–Shannon divergence (JSD) to

show this evolution more clearly. We have attempted to reveal the information

flow between the nodes by applying directional heat diffusion on Multiplex Net-

work representing of stock market data. We performed to make an analysis by

including information from the past and present in the model.

1.3 Thesis Overview

This Thesis is organised as follows. In Chapter 2, we review the research

literature related to the study presented in the thesis and give the necessary brief

descriptions of the concepts invested . In Chapter 3, we construct a network model

using transfer entropy. We also compare the model constructed using approximate

von Neumann entropy with the model constructed using Transfer Entropy. We
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also give the necessary background about graph theory in this section. Chapter 4

express to use of heat kernel smoothing on single and multiplex graphs. We build a

structure by based on the information flow as a heat flow. We perform an analysis

on both a single layer graphs and a multiplex graphs. Finally, in Chapter 5, we

discuss a conclusions from the work presented We identify the novel contributions

made as a result of the study. We also discuss several limitations and possible

future research directions.
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Chapter 2

Literature Review

In this chapter we will review the characterisation the general problem of

characterisation of data using graph-bases representation. We will also give the

basic definitions that we use based on graph theory. In addition, we will explain

how concept transfer entropy has developed over time and the growth in its appli-

cation areas. We will also give the definition of von Neumann entropy review the

literature. We also focus on heat diffusion on graphs and its basis in information

theory.

2.1 Graph Theory

Graph Theory has its origins in 1736, when Leonhard Euler solved the Königsberg

Bridge problem. His work is commonly quoted as the origin of graph theory [63].

Almost a century and a half later, the term ”graph” was introduced by J.J.

Sylvester in 1878 [75]. In general terms, it is a mathematical structure formed by

nodes and edges. It creates the mutual relations of a pair of objects. It can be

used to represent and solve problems from airline network optimisation to neural

network calculations.

Definition 1 (Graphs). A graph G is denoted as G = (V,E), where V is the

finite set of vertices and E ⊆ V × V is the finite set edges in the graph.
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1

2

3

4

5

Figure 2.1: An example of a graph with 5 nodes and 6 edges.

The vertices correspond to the dots in figure 2.1, and the edges correspond

to the lines between them. For Figure 2.1; G = (V,E) where, V = {1, 2, 3, 4, 5}

and E = {{1, 2}, {2, 3}, {2, 4}, {3, 5}, {3, 4}, {4, 5}}. Note that since the sets

are undirected, {{1, 2} and {{2, 1} are different definitions of the same edge.

Simple graphs do not contain directed edges such {1, 2} and {2, 1} can be used

interchangeably.

Definition 2 (Directed Graphs). A directed graph or digraph is a set of vertices

and a collection of directed edges that each connects an ordered pair of vertices.

1

2

3

4

5

Figure 2.2: An example of a digraph with 5 nodes and 6 directed-edges.

The vertices correspond to the dots in figure 2.2, and the edges correspond

to the lines. The arrows on the line indicates the direction. For Figure 2.2; G =

(V,E) where, V = {1, 2, 3, 4, 5} andE = {{2, 1}, {2, 3}, {2, 4}, {3, 4}, {4, 5}, {5, 3}}.

Note that since the sets are directed, {1, 2} and {2, 1} have different meanings

and they cannot be used interchangeably.
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Definition 3 (Weighted Graphs). A weighted graph is a graph with weights as-

signed to each edge. A weighted graph consists of a graph G = (V,E) and a weight

function ω : E → R. Usually, the edge weights are non-negative real numbers.

1

2

3

4

5

0.3

0.1

0.4

0.1

0.5

0.9

Figure 2.3: An example of a weighted graph with 5 nodes, 6 edges and 6 weight
corresponds to 6 edges.

For example, we might be interested in the distance of a highway between a

pair of cities, the correlation between a pair of stocks. These values can be by the

weight between two nodes. Weighted graphs may be directed or undirected. If an

egde is directional, there can be one weight, and if it is bi-directional, there can

be two different weights with different values. As an example, a vehicle travelling

from a high altitude to a low altitude will need less fuel then while trying to

climb. If we take the two cities as nodes and take the roads as edges, the fuel

usage is considered as a weight.

Definition 4 (Line Graph). The Line Graph represents the adjacencies between

edges of G. A line graph obtained by two vertices of LG(G) = (VL, EL) are

adjacent if and only if their corresponding edges of G have a vertex in common,

where;

VL = E

EL = {(u, v), (v, w) : (u, v) ∈ E, (v, w) ∈ E}

Definition 5 (Adjacency Matrix). Given a graph G = (V,E) where, V =
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{v1, v2, ..., vn}, the adjacency matrix for G is the n× n matrix A = {aij} where,

aij =

 1 if{vi, vj} ∈ E

0 otherwise

If G is a weighted graph with edge weights given by ω : E → R, then the

adjacency matrix for G is A = {aij} where,

aij =

 ω({vi, vj}) if{vi, vj} ∈ E

0 otherwise

A =



0 1 0 0 0

1 0 1 1 0

0 1 0 1 1

0 1 1 0 1

0 0 1 1 0


Adjacency Matrix

for the unweighted graph in Figure 2.1.

A =



0 0.3 0 0 0

0.3 0 0.1 0.9 0

0 0.1 0 0.5 0.4

0 0.9 0.5 0 0.1

0 0 0.4 0.1 0


Weighted Adjacency Matrix

for the weighted graph in Figure 2.3.

Figure 2.4: Adjacency Matrix representation for the given two graphs.

Definition 6 (Degree Matrix). Given a graph G = (V,E) where, V = {v1, v2, ..., vn},

the degree matrix for G is the n× n diagonal matrix defined as,

Di,j =

 deg(vi) if i = j

0 otherwise

where deg(vi) = |{vj ∈ V |(vi, vj) ∈ E}|, and counts the number of times an edge

terminates at that node.
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D =



1 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 2



Figure 2.5: Degree Matrix representation for the graph in Figure 2.1.

Definition 7 (Incidence Matrix). Incidence Matrix is the matrix that shows the

relationship between rows and columns in a graph. Given a graph G = (V,E)

where, number of vertices |V | = n, and number of edges |E| = m. The incidence

matrix is n×m matrix, whose entries are as follows

IMu(v, e) =

 1 if v is the incident node of edge e

0 otherwise

IMd(v, e) =


1 if v is the terminal node of edge e

−1 if v is the initial node of edge e

0 if v is not in e

IMu =



1 0 0 0 0 0

1 1 0 0 0 1

0 1 1 0 1 0

0 0 0 1 1 1

0 0 1 1 0 0


Incidence matrix for the

undirected graph in Figure 2.1.

IMd =



1 0 0 0 0 0

−1 −1 0 0 0 −1

0 1 1 0 −1 0

0 0 0 −1 1 1

0 0 −1 1 0 0


Incidence matrix for the

directed graph in Figure 2.2.

Figure 2.6: Incidence matrix for undirected and directed graph.

Since large-sized graphs are difficult to draw and read, we can determine out
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which nodes are connected to which edge using the incidence matrix. If our

graph is a directed graph, we can also determine the direction of an edge for the

incidence.

Definition 8 (Laplacian Matrix). Given a graph G = (V,E) where, V = {v1, v2, ..., vn},

the Laplacian matrix L is defined as L = D − A where D is the degree matrix

and A is the adjacency matrix of the graph. The element-wise definition of the

Laplacian matrix is;

Li,j =


deg(vi) if i = j

−1 if i ̸= j

0 otherwise

L =



1 −1 0 0 0

−1 3 −1 −1 0

0 −1 3 −1 −1

0 −1 −1 3 −1

0 0 −1 −1 2


=



1 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 2


−



0 1 0 0 0

1 0 1 1 0

0 1 0 1 1

0 1 1 0 1

0 0 1 1 0



Figure 2.7: Laplacian Matrix for the Figure 2.1 L = D − A.

The Laplacian matrix captures with many useful properties of a graph. The

spectral decomposition of the Laplacian matrix allows the creation of low-dimensional

embeddings of the nodes into a vector-space [1, 17].

Definition 9 (Normalised Laplacian Matrix). Given a graph G = (V,E), the

normalised Laplacian matrix L̃ is defined as L̃ = D−1/2LD−1/2 where L is the

Laplacian matrix and D is the degree matrix of the graph. The element-wise

definition of the Laplacian matrix is;

L̃ =


1 if vi = vj and deg(vi) ̸= 0

−1√
deg(vi)deg(vj)

if (vi, vj) ∈ E

0 otherwise
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Note that the normalised Laplacian L̃ is a symmetric matrix because L and

D1/2 are symmetric. The spectral decomposition of the normalised Laplacian

matrix is L̃ =
∑|V |

i=1 λiϕiϕ
T
i where λi are the eigenvalues and ϕi the corresponding

eigenvectors of L̃.

A node with a large degree will have a greater impact on the matrix properties

in the Laplacian matrix than the remaining nodes. Normalisation aims to make

remove the bias towards large degree nodes.

Definition 10 (Principal component analysis (PCA)). Principal component anal-

ysis is a method of size reduction while preserving as much information as pos-

sible. Consider an n × n data matrix X. Size reduction is achieved with the

following steps;

Step 1 - Normalise the data

z =
x− µ

σ

µ is the mean of the column from each entry. σ is the standard deviation of that

column.

Step 2 - Calculate the Covariance Matrix for the normalise the data

Covariance Matrix (CM) =


Cov(x1, x1) . . . Cov(x1, xn)

. . . . . . . . .

Cov(xn, x1) . . . Cov(xn, xn)


Step 3 - The eigenvectors and eigenvalues of the covariance matrix

The eigenvalues of CM are roots of the characteristic equation

det(CM − λI) = 0

det




Cov(x1, x1) . . . Cov(x1, xn)

. . . . . . . . .

Cov(xn, x1) . . . Cov(xn, xn)

−


λ . . . 0

0 . . . 0

0 . . . λ


 = 0
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det




Cov(x1, x1)− λ . . . Cov(x1, xn)

. . . . . . . . .

Cov(xn, x1) . . . Cov(xn, xn)− λ


 = 0

After solving this equation for the value of λ. The eigenvectors (ϕi) corresponding

to the eigenvalues (λi) can be calculated.

Step 4 - Feature Vector

The feature vector is that contains the eigenvectors corresponding to the eigenval-

ues in descending order as columns.

Feature Vector =
[
ϕ1 . . . ϕk

]
where k represents the number of components needed.

Step 5 - Forming Principal Components

Reduced Data Set = Feature Vectort × Normalise Data Sett

PCA is a method for reducing the dimensionality of large data sets but at

the same time minimizing information loss. Principal components are orthogonal

because they are eigenvectors of a covariance matrix [43].

2.2 Entropy

Entropy is a physical property that indicates the degree of disorder or uncer-

tainty in a system. Entropy is such a broad concept that we can see it from the

diagnosis of asthma [81] , as well as in the energy released after The Big Bang

[16]. We can also encounter the concept of entropy in information theory and al-

gorithms [72]. Entropy first entered the literature as a thermodynamics concept

[79]. However, in the 1950s, due to the development and expansion of computers,

it began to be examined more as a statistical value. In this thesis, we will deal

with Entropy within the scope of information theory.

In the late 1940s, Claude E. Shannon write the seminal paper called “A Math-

ematical Theory of Communication”[72]. Shannon focused in how best to encode
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the information a sender to transmits. He has determine the minimum number

of the bits needed to encode information in a signal. Here, entropy measures in-

formation lost from the system. It is the measure of data loss before the receiver

receives a data. After this study, the concept of entropy used in information

theory is often called Shannon entropy.

Definition 11 (Entropy). The entropy is the average level of ”information” con-

tained or ”uncertainty” specific to a variable’s possible outcomes. The entropy

for an event X is defined as;

H(X) =
∑
x∈X

p(x) log2
1

p(x)

= −
∑
x∈X

p(x) log2 p(x)
(2.1)

where, resummation is over the variable’s possible values. X random variables

with probability distributions p(x), x ∈ X.

The base of the logarithm may vary to suit the desired applications. If the

base is 2, gives the units are bits [49], while with base e the units are nats and

base 10 the units are dits [33]. Entropy is a function of the distribution of an

event. It does not depend on the actual values, but only on their probabilities.

An entropy can also be calculated for two discrete random variables. The

entropy that can be calculated for two variables without any conditions is called

joint entropy.

Definition 12 (Joint Entropy). The joint entropy of X and Y is defined as

H(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
1

p(x, y)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)
(2.2)

where, p(x, y) is the joint probability of these values occurring together. The sets

X and Y contain the two discrete random variables with probability distributions

p(x), x ∈ X and p(y), y ∈ Y .
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The joint entropy of a set of random variables is a non-negative number

(H(X, Y ) ≥ 0). Due to properties of joint probability H(X, Y ) = H(Y,X).

The joint entropy of a set of variables is greater than or equal to the maxi-

mum of the individual entropies of all the variables in the set i.e. H(X, Y ) ≥

max[H(X), H(Y )]. Similarly, the joint entropy of a set of variables is less than

or equal to the sum of the individual entropies of all the variables in the se i.e.

H(X, Y ) ≤ H(X)+H(Y ). Equality has to if and only if X and Y are statistically

independent.

If an observation or condition comes into play when calculating the entropy

of two random variables, the entropy is called conditional entropy and is defined

as follows.

Definition 13 (Conditional entropy). The entropy of Y when X is known [23]

H(Y | X) =
∑
x∈X

p(x)H(Y | X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y | x) log2 p(y | x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y | x)

=
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x)

p(x, y)

(2.3)

In other words, it is the expected number of bits required to identify X when Y is

known to both encoder and decoder.

The conditional entropy equals zero if and only if the value of Y is completely

determined by the value of X. On the contrary, iff Y and X are independent

random variables, H(Y | X) = 0. Also, according to the chain rule [23] the joint

entropy of a pair of random variables is the sum of the entropy of one and the

conditional entropy of the other (H(X, Y ) = H(X) +H(Y | X)).

The Relative Entropy or Kullback–Leibler Divergence (KLD) is a measure of

the distance between two distributions or a measure of how much one probability

distribution differs from a second reference of probability distribution.
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Definition 14 (Relative Entropy or KLD). P and Q are two probability distri-

butions defined on the same probability space. The Kullback–Leibler divergence

between P and Q is defined as [23]

DKL(P ∥ Q) =
∑
x

P (x) log2
P (x)

Q(x)
(2.4)

From their definition it follows that the KLD is not a symmetrical distance.

DKL(P ∥ Q) ̸= DKL(Q ∥ P )

Moreover DKL(P ∥ Q) ≥ 0, and also iff DKL(P ∥ Q) = 0 when P (x) = Q(x). As

a result, KLD does not follow to triangle equality, and so it is not a true distance.

Entropy has been used in various ways in a variety studies. Demetrius and

Manke used entropy analysis in biology to formulate an evolutionary model using

correlation measures [29]. Their model based on the Darwinian principles of

evolution. They represented molecular entities such as proteins as nodes, and the

interactions between these entities as edges. Their result showed the entropy of

network is correlated with robustness the entropy reaches maximal values where

evolution increases robustness, and reaches minimum values where the evolution

decreases in robustness.

Cancer networks can also be representable using graphs and entropy [68].

According to Tannenbaum et al., search engine and cell biology have common el-

ements such as noisy data and reliance on input [76]. They have shown that search

engines and cell biological cycles are based on empirical distributions. Their ap-

proach has been used to assess financial market robustness and to differentiate

the biological networks of cancer cells from healthy ones [32].

Regardless of the field of study, if a system can be represented as a graph, the

entropic approach to this system gains meaning. Low or high value of entropy

can interpreted of the structure of the network representation.
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2.3 Information Transfer for Finance

Research of time series analysis is a mature discipline spanning many decades.

It can occur in different forms, from analysis of the movements of objects in

space [11] to stock market analysis[13, 34]. Lacasa et al. introduced a non-

parametric method to analyse multivariate time series [51]. This method enhances

the information for high dimensional dynamic systems it can be used for the

analysis of large, non-stationary and heterogeneous time series. The authors also

study financial time series to demonstrate that can account for their method the

US’s 35 largest company stocks in NYSE and NASDAQ over the period 1998 -

2013.

In stock market analysis, transfer entropy is frequently used to measure causal

relationship. It is easy to determine which stock or industry are more dominant

than others. One of the very first examples was published by Baek et al. in 2005

[5]. Their analysis shows that the majority of companies in the stock market

are influenced by energy companies. The authors also emphasized that transfer

entropy is relatively better than other methods they used. In financial networks,

entropy measures the uncertainty and exposes as a measure of randomness. For

example, if stocks have high rate of entropy, they mey be riskier than others with

lower value of entropy [14].

At the time of war, earthquake or illness, the stock market and the commodity

market are the first institutions to be affected. Financial activity are subject to

potential possible crisis. Studies have been carried out in order to predict the

occurring potential crises. Gao and Hu have developed an early warning system

for stocks [34]. The system may not warn significant financial quake but the

system has well predicted the fluctuations in stocks prices. Their system is based

on the Omori Law which is an early warning system for earthquake after stocks.

They analysed the 2008 global financial crises and particularly the most attention-

grabbing stocks like AIG and Lehman Brothers. They have demonstrate that the

early warning system they have developed is really promising in predicting stock

market crises. In fact, they showed that the system could also be generalized and

applied to predict general economic recessions.
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Another study on finance by Dimpfl and Peter allows determining, measuring

and testing for information transfer without being restricted to linear dynamics

[78]. Also, they examine the impact of the credit default swap market and the

corporate bond market for the pricing of credit risk. Their analysis contains pre-

crisis, crisis and post-crisis periods. The analysis shows the credit default swap

market become more important during the crisis period.

In finance, according to the desired analysis, time series can be aggregated and

analyzed over period ranging from one week to 10 years. In other words, a value

can be created by analyzing the one-week value of a stock, or with its 10-year

value. Marti et al. determined how many days are most suitable for clustering

time series [60]. They analysed different types of models and clustering methods.

The results showed time window varied between 250 to 500 realisations (roughly

1 to 2 years of daily returns) depending on the clustering methodology.

Harre focused on the 1997 Asian Financial Crises [41]. He measured the

entropy, transfer entropy and Pearson correlation of the price change of the Dow

Jones Industrial Average (DJIA) over the period of the Asian Financial Crisis. In

the study on the comparison of transfer entropy and Pearson correlation methods,

transfer entropy showed better results for detecting crises.

It shows that the Transfer Entropy has a wide application area with applica-

tions in social sciences, neuroscience, finance and applied physics. Whether it is

just a statistical approach or a multidisciplinary approach like Omori law [34], it

gives reliable results to the researchers.

Before giving the definition of the Transfer Entropy, there will be some def-

initions that we need to provide as prerequisites. We commence with mutual

information.

Definition 15 (Mutual information). Mutual information (MI) measures the

amount of information obtained about one random variable through knowledge of

the other[72].

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x)p(y) (2.5)
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In terms of KLD,

I(X;Y ) = DKL(p(x, y) ∥ p(x)p(y)) (2.6)

In terms of conditional and joint entropy,

I(X;Y ) = H(X) +H(Y )−H(X, Y )

= H(X)−H(X | Y )

= H(Y )−H(Y | X)

(2.7)

High mutual information indicates a large reduction in uncertainty, while a

small value indicates a small reduction in uncertainty. If MI is zero, it means

that the variables are independent. It can also be seen from Equation 2.5 that

mutual information is symmetrical.

H(X) H(Y )

H(X | Y ) H(Y | X)I(X : Y )

H(X, Y )

Figure 2.8: The relationship between entropy and mutual information expressed
using a Venn diagram.

In Figure 2.8, H(X) is represented by the entire set on the left, while H(Y ) is

the entire set on the right. Mutual Information(I(X, Y )) is the intersection of the

left and right. Joint entropy (H(X, Y )) is the union of the two sets. Conditional

entropies(H(X|Y ),H(Y |X)) are above illustrated in the figure.

Mutual information is a measurement of the information that two sets share.

It measures how much one the set tells us about another. Mutual information

is a symmetrical quantity and it is not always easy to compute. There are some

estimation methods for Mutual information which are conventional estimator

binning methods, entropy estimators from k-nearest neighbour distance [46].
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Mutual information does not convey dynamic or directed information. Time

delay mutual information is suited for this purpose than standard mutual infor-

mation. However, it is still not well suited to distinguish information. Schreiber

proposed a new measurement referenced to as “Transfer Entropy”, which is able

to distinguish the causes and effects, and to detect asymmetry in the interaction

of the component subsystems [69].

We can use the conditional mutual information to define the uncertainty of X

due to knowledge of Y when Z is additionally given.

Definition 16 (Conditional Mutual Information). The conditional mutual infor-

mation of random variables X and Y given Z is defined by [23, 24, 33, 42].

I(X;Y |Z) = H(X,Z) +H(Y, Z)−H(Z)−H(X, Y, Z)

= H(X | Z) +H(Y | Z)−H(X, Y | Z)

= H(X | Z)−H(X | Y, Z)

(2.8)

Conditional Mutual Information is also defined as,

I(X;Y |Z) = −
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log2
p(x, y, z), p(z)

p(x, z)p(y, z)
(2.9)

Transfer Entropy (TE) is a variant of Conditional Mutual Information which

was first defined by Schreiber [69]

Definition 17 (Transfer Entropy). Transfer entropy is the conditional mutual

information with the history of the influenced variable [42, 69],

TY→X = I(Xt;Yt−1|Xt−1)

= H(Xt|Xt−1)−H(Xt|Xt−1, Yt−1)
(2.10)

Transfer Entropy is also defined as, [33, 49, 66]
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TY→X = −
∑
x∈X

∑
y∈Y

p(xt, yt−1, xt−1)log2
p(xt|yt−1, xt−1)

p(xt|xt−1)

= −
∑
x∈X

∑
y∈Y

p(xt, yt−1, xt−1)log2
p(xt, yt−1, xt−1)p(xt−1)

p(xt, xt−1)p(yt−1, xt−1)

(2.11)

Here xt−1 and yt−1 are the past states of the x and y respectively, t is the time

index.

After giving these definitions, we can illustrate them with the the following Venn

diagram.

H(X|Y, Z)
I(X;Y |Z)

H(Y |X,Z)

I(X;Y ;Z)

I(X;Z|Y ) I(Y : Z|X)

H(Z|X,Y )

Figure 2.9: Various information measures associated with correlated variables
X, Y and Z. In this Venn diagram H(X|Y, Z), H(Y |X,Z) and H(Z|X, Y ) are
conditional entropies. I(X;Y |Z), I(X;Z|Y ) and I(Y ;Z|X) show the conditional
mutual information.

Transfer Entropy shows similarities with Granger Causality, which is another

causality measure in the statistical analysing time series [38]. Barnett et al.

showed that these two concepts are equal, when Gaussian variables are used [8].

We will continue by defining another method of measuring, which is very

similar to Kullback–Leibler divergence. Jensen-Shannon deviation is a measure

of the difference between probability distributions in terms of entropy difference

associated with probability distributions [52].

Definition 18 (Jensen–Shannon Divergence (JSD)). Suppose that P and Q

are two probability distributions defined on the same probability space, then the
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Jensen–Shannon Divergence is defined as,

DJSD(P ∥ Q) =
1

2
DKL(P ∥ M) +

1

2
DKL(Q ∥ M) (2.12)

where DKL(P ∥ Q) is the Kullback–Leibler divergence and M = 1
2
(P +Q).

The JSD defined in terms of entropy,

DJSD(P ∥ Q) = H(M)− 1

2
(H(P ) +H(Q))

= H(P ⊕Q)− 1

2
(H(P ) +H(Q))

(2.13)

where H(P ⊕Q) is the entropy associated with the corresponding probability dis-

tribution over of the union graph [6]. The union graph is called a graph that is the

sum of the adjacency matrices of the two given graphs (P and Q in this example).

The Jensen–Shannon divergence is a method of measuring the similarity be-

tween two probability distributions on the same probability space. Although JSD

is based on the Kullback-Leibler divergence, JSD differs from KLD in some as-

pects such as its symmetry. It can be seen from Equations 2.12 and 2.13 that the

JSD is a symmetrical measurement.

JSD is a positive-defined measurement. In the study of Lin, it is bounded by

1, given that one uses the base 2 logarithm [55].

0 ≤ DJSD(P ∥ Q) ≤ 1

In general, the bound in base b is logb(2). More generally, the Jensen–Shannon

divergence is bounded by logb(n) for more than two probability distributions [55],

0 ≤ DJSD(P1, P2, · · · , Pn) ≤ logb(n)

The square root of the Jensen–Shannon divergence is a metric often referred

to as Jensen–Shannon distance [31].
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2.4 von Neumann Entropy

In quantum mechanical system, given the density matrix ρ, its von Neumann

entropy is defined as

S(ρ) = −tr(ρ lnρ)

where tr denotes the trace operator. The von Neumann entropy of ρ can also be

computed as the Shannon entropy of the spectrum of ρ

S(ρ) = −
|V |∑
i=1

λi lnλi

where λi are the eigenvalues of the ρ, on condition that 0 ln0 = 0. The von

Neumann entropy was defined in quantum mechanics but, can be expressed in

terms of the Shannon entropy associated with the eigenvalues of the density

matrix.

2.4.1 von Neumann Entropy of Undirected Graphs

The spectral decomposition of The normalized Laplacian matrix of the graph

G is defined as

L̃ =

|V |∑
i=1

λiϕiϕ
T
i

where λi are the eigenvalues and ϕi the corresponding eigenvectors of L̃. With the

spectrum of the normalized Laplacian matrix, we can take advantage of some use-

ful spectral properties of the graph G. For example, the eigenvalues are bounded

between 0 and 2 [17].

HvN = −
|V |∑
i=1

λ̃i

|V |
ln

λ̃i

|V |

where |V | is the number of nodes in the graph.
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2.4.2 Approximate von Neumann entropy

Han et.al. have shown how to approximate von Neumann entropy for undi-

rected graph in terms of simple degree statistics using the quadratic approxima-

tion to the Shannon entropy x lnx ≈ x(1− x) [40].

HV N ≈ 1− 1

|V |
− 1

|V |2
∑

(u,v)∈E

1

dudv

This allows the efficient calculation for the network entropy in O(N2) rather than

O(N3) from the normalised Laplacian spectrum [40].

2.5 Heat Diffusion on Graphs

The Heat diffusion models have been be widely applied in real world scenarios.

Ma et al. proposed a model for social network marketing using Heat Diffusion on

a graph [58]. Observing people’s attention and shifting to certain topics on social

media platforms such as Twitter can also be understood with a heat dissipation

model. In another study, Thanou et al. used graph learning algorithm to detect

patterns from Uber rides in New York City [77]. In this example the movement of

people in buildings or vehicles in cities represented by a geographic information.

The heat kernel can also be thought of as describing the heat flow along

the edges of the graph over time [37], where the flow rate is determined by the

Laplacian of the graph. In particular, the graph Laplacian matrix is used to

model the diffusion of heat along a graph. Bie et al. studied whether the trace

of the heat kernel could be used to characterizing the properties of graphs [85].

We can give the heat equation associated with the Laplacian as follows,

∂ht

∂t
= −L̃ht (2.14)

where L̃ is normalised Laplacian matrix, ht is the heat kernel and t is time. The

heat kernel is the fundamental solution of the heat equation [85]. The solution

to the heat equation is

ht = e−tL̃ (2.15)
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Exponentiating the Laplacian eigenspectrum will calculate the heat kernel on

a graph [17].

ht = Φexp[−Λt]ΦT

=

|V |∑
i=1

exp[−λit]ϕiϕ
T
i

(2.16)

The heat kernel is a |V |×|V |matrix. If we examine this equation element-wise

for the G graph; Let u and v be two nodes of G,

ht(u, v) =

|V |∑
i=1

exp[−λit]ϕi(u)ϕi(v) (2.17)

Kondor and Lafferty focused on generating kernels on an undirected and un-

weighted graph [45]. One of their conclusions was that diffusion kernels can be

practical use when standard sparse matrix techniques are used. They also stated

that the key to the success of kernel-based algorithms is the implicit mapping

from a data space to some, usually much higher dimensional, feature space that

better captures the structure inherent in the data.

Chung et.al. studied a discrete version of heat kernel smoothing on graphs

[20]. They demonstrated that the method can be used to smooth irregularly

shapes on data in 3D images. They also developed an application that shows

how to filter out the data in lung blood vessel trees obtained from tomography.

This focuses on a weighted graph.
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Chapter 3

Graph Time Series Analysis

using Transfer Entropy

3.1 Introduction

Before we begin to explain transfer entropy, we need to explain the concept of

entropy. The German physicist Rudolf Clausius introduced the concept of entropy

in 1850 as a way of expressing the second law of thermodynamics. Clausius states

that the total entropy of a closed system cannot decrease but will always increase

[22]. Entropy is the measure of the disorder of a system and since the entropy will

increase continuously in closed systems, the disorder is always in the direction of

increase. However, within a closed system, the entropy of one system can decrease

by increasing the entropy of another system [53]. But the total entropy of this

system always tends to increase. For example, the growth of plants and trees in

the world with the effect of sunlight reduces the current entropy, but the entropy

of the solar system rises much more due to the solar flares that create these rays.

In later years, the statistical definition of the concept of entropy was given by the

Austrian physicist Ludwig Boltzmann [27]. The American scientist Willard Gibbs

developed the interpretation of entropy in Statistical mechanics as a measure of

uncertainty, disorder, or confusion [36]. In 1932, John von Neumann expanded the

Gibbs entropy in classical statistical mechanics to quantum statistical mechanics

[84]. This entropy has come to be called von Neumann entropy. This was then
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followed by the application of entropy in probability theory by Claude Shannon

(1948) [72] and with Shannon’s approach, the foundations of information theory

were laid.

Shannon introduced the concept of information entropy, which is a measure-

ment of how much information there is in a signal. Shannon focused on how best

to encode the information a sender sends to receiver, and he showed a method

to measure a minimum number of bits required to send information without los-

ing its meaning [72]. The method is the development of information theory and

the measurement called ”Shannon Entropy”. This method is used in many al-

gorithms and applications, from compression technologies [7] to information flow

[3, 71] and fields of diverse as [9] and economics [2, 35]. For example, in finaince,

entropy can be used to measures uncertainty and financial risk. If a stock has a

high rate of entropy, it may be riskier than others.

3.2 Transfer Entropy

Schreiber developed the Transfer Entropy (TE) [69] concept based on Shannon

entropy. It gives a time-asymmetric statistical measurement, which characterises

the amount of information flow between two time series or from one variable to

the another. So, TE shares some of the properties of mutual information but

takes the dynamics of information into account, and it gives causal relations from

which we can infer regulatory dynamics. Transfer entropy measures a directed

relationship between variables. As seen in the Definition 17, TY→X and TX→Y

are not equal.

There are several estimation method for transfer entropy computation in the

literature such as kernel estimation [65, 57, 90], the binning method [82, 24, 78],

the k-nearest neighbor method [46, 89] and the symbolic method [59, 30, 74]

among others. Transfer entropy can be useful in analysing complex systems such

as biological or artificial systems [56, 83, 86, 88] or financial systems [41, 42, 59,

62, 88]. In general, there are two methods of establishing transfer entropy, which

are mutual information and Kullback- Leibler Divergence (KLD). We will show

them in the following sections.

42



Transfer Entropy as Conditional Mutual Information

Transfer Entropy TY→X which means information transition from Y to X,

can be written as a Conditional Mutual Information. If we consider the Z in

Equation 2.8 as the past value of Xt

TY→X = I(Xt+1, Yt|Xt) = H(Xt+1|Xt)−H(Xt+1|Xt, Yt) (3.1)

Here X and Y two processes, Xt and Yt are the past states of the variable X

and Y respectively. t is the time index.

Transfer Entropy as Kullback- Leibler Divergence

Transfer Entropy also can be explained as Kullback-Leibler Divergence.

TY→X = DKL(p(Xt+1, Yt, Xt) ∥ p(Xt+1|Xt)p(Yt|Xt)p(Xt)) (3.2)

Here X and Y two processes, Xt and Yt are the past states of the variable X

and Y respectively. t is the time index. When calculating TE, Schreiber, himself

used the KLD for conditional probabilities [69, 44].

Transfer Entropy on Edge Weighted Graphs

In this chapter we will use Schreiber’s transfer entropy to develop a new

entropic characterisation of graphs from time series data. We use the transfer

entropy to weight the edges of a graph where the nodes represent time series

data and the edges represent the degree of commonality of pairs of time series.

The result is a weighted graph which captures th information transfer between

nodes over specific time intervals. Then, the weighted normalised Laplacian were

applied, which we defined in Definition 9. We characterise the network at each

time interval using the von Neumann entropy computed from the normalised

Laplacian spectrum, and study how this entropic characterisation evolves with

time, and can be used to capture temporal changes in network structure.

Suppose that G(V,E) is a graph with vertex set V and edge set E ⊆ V × V .
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Let u and v be any two elements of the node set V (u, v ∈ V ). We use the transfer

entropy to define an edge weight Wu,v(t) = Tu→v(t) between nodes u and v at

time t. The thresholded weighted adjacency matrix A is defined as follows

A(u, v) =

Wu,v, if Wu,v > threshold.

0, otherwise.

(3.3)

Here we have applied a threshold to reduce noise in the system. The threshold

we will choose here should be at a level that will both reduce the noise in the

system and not affect the general characteristics of the system. Our method

of determining the threshold was the trial and error method. As a result of

the different threshold trials we made, by taking the strongest 5 percentage of

edges. We both reduced the level of noise and, we have preserved the general

characteristic of the system.

We have also constructed a graph from the clusters where the stocks are

in the same sector to represent how the edge transfer entropy distributes itself

across both within and between sector links. To do this suppose each node can

be assigned a unique label µu and that these labels can be partitioned into a

set of m sector-class-labels, Ω = {ω1, ..., ωm}. In the case of the financial data

analysed later in the paper, the node labels (µu) represent individual stock, while

sector labels (ωn) represent different commercial or industrial sectors to which

individual stock belong. We can define a weighted sector neighborhood matrix

with specified labels and elements.

ATωa,ωb
=

∑
µu∈ωa

∑
µv∈ωb

Wu,v (3.4)

graph created on stocks in the same industry The graph created on stocks in the

same industry TG = (Ω, AT ) where Ω is the sector labels and AT the weighted

adjacency matrix. The diagonal elements are the total transfer entropy associated

with stocks within each sector, while off-diagonal elements are the total transfer

entropy between pairs not belonging to the same sector.

For both graphs we need to compute the transfer entropy. To do this we
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compute the normalised Laplacian matrix and from the eigenvalues of this matrix

we compute the von Neumann entropy. The weighted degree matrix of graph G

is a diagonal matrix D whose elements are given by D(u, u) = du =
∑

v∈V A(u, v)

The normalized Laplacian matrix of the graph G is defined as L̃ = D−1/2(D −

A)D−1/2 and has elements

L̃ =


1 if u = v and dv ̸= 0

−1√
dudv

if (u, v) ∈ E

0 otherwise

The spectral decomposition of the normalised Laplacian matrix is L̃ =
∑|V |

i=1 λiϕiϕ
T
i

where λi are the eigenvalues and ϕi the corresponding eigenvectors of L̃.

3.2.1 Transfer Entropy for a graph

Suppose that an edge connects node u and node v, let these be any two

elements of the node set V . That associated with the nodes are time series Ru

and Rv. For each node of the time series is over a time window of duration

∆t, and are denoted by Ru(t) = {ut−∆t, ut−∆t+1, . . . , ut} and similarly Rv(t) =

{vt−∆t, vt−∆t+1, . . . , vt}. To calculate the entropy transfer from node u to node

v introduce a time delay (τ) for the windowed time series at node u, i.e. we

consider the series Ru(t+ τ) = {ut+τ−∆τ , ut+τ−∆τ+1, . . . , ut+τ}.

With these ingredients the entropy transfer is computable using Ru(t), Rv(t)

and Ru(t+ τ) [8, 57].

Tu→v(t) = −
∑
t

p(Ru(t+ τ), Ru(t), Rj(t)) log2
p(Ru(t+ τ)|Ru(t), Rv(t))

p(Ru(t+ τ)|Ru(t))

Tu→v(t) = −
∑
t

p(Ru(t+ τ), Ru(t), Rv(t)) log2
p(Ru(t+ τ), Ru(t), Rv(t))p(Ru(t))

p(Ru(t+ τ), Ru(t))p(Ru(t), Rv(t))

Edge Weighting via Time Series Cross-Correlation

Our aim is to explore which network characterisation allows for the most pre-

cise description of market crises. To this end, we construct representations based
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on the time evolution of both edge-weighted (correlation-based and transfer-

entropy-based) and unweighted market networks. We compute the Pearson Cor-

relation coefficient between the node time series to compute an edge-weight. For

nodes u and v the Pearson coefficient is

ρ(u, v) = Cov(Ru, Rv)/V ar(Ru)V ar(Rv)

where Cov(Ru, Rv) is the covariance of the two time series and V ar(Ru) and

V ar(Rv) are their individual variances. The edge weight is given by W (u, v) =

abs(ρ(u, v)). The cross-correlation is calculated for all pairs of time series and

gives a V × V cross-correlation matrix. The representation of similarity of pairs

of graphs based on distribution of correlation coefficient, the edge (u, v) the prob-

ability is pu,v = Wu,v/
∑

(Wu,v). We convert the correlations to probabilities in

order to compute Kullback-Leibler Divergence (KLD) between graphs.

3.3 Experiments

We will commence by giving informations about the compilation of data and

it is preparation for analysis. Also same basic theoretical information about tools

used will be given.

3.3.1 Data Collection

Knowing the data you use is one of the most crucial point in data analysis.

We use real-time historical financial data in order to be able to visualise the data

more clearly and to make reasonable assessments about the results. We chose 8

different sectors and 100 largest companies in each sector. So we have collected

a total of 800 shares. We used fetch function in MATLAB to collect data from

Yahoo! for each stock we chose earlier. Then, the dataset was cleaned to make

it suitable for use. After this data clearing process, we have a total of 431 shares

remaining. The reason why about 350 companies were eliminated is because the

companies’ IPO (Initial Public Offering) dates are after the start date of the

dataset or the company closed between the dates of the dataset such as Facebook
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or Lehman Brothers. To be more specific, Facebook’s IPO was long after the

first date of the dataset, while Lehman Brothers closed within the dataset dates.

We tried to keep the time range of the stock prices as wide as possible and got

around 5500 working days. The reason for not choosing a longer time is that

as time increases, the number of potential stocks decreases. So if the number of

days increased to 6000, the number of shares will decrease to 350. Our reference

point is the last date of December 2016, because the date as close to the present

day as possible. About 20 years of data will be sufficient for our study. We will

be able to examine the stable time before the crises, the crisis times, and the

post-crisis times. For this purpose, we have arranged the dataset to be around

5500 working days, from January 1995. There are various reference points in the

dataset, such as the Financial crisis of 2007-2008, 2011 summer stock markets

plunge, 2015 Chinese stock market turbulence, 2016 Brexit etc.

The log-returns of the closing prices are used for experiments over time, de-

fined as

Rt = ln(Pt)− ln(Pt−1)

at time t, where Pt and Pt−1 are the closing prices at time t. The cross-correlation

method to obtain a cross-correlation coefficient matrix for each 28 working day

of period of time.

In the stock market, companies have certain ups and downs. These frequency

vary according to what companies do and the industry they are in. For example,

frequency of tech companies in an approximately 1-year (the ups and downs of

stock prices depend on annual frequencies). This period is 3-5 years in automo-

tive companies. The reason of this, people tend to change their phones almost

every year, while they usually change their vehicles every 3-5 years. Instead of

determining variable time windows for each stock, we tried to calculate by taking

windows of 28 working days on average.

After all this data preparation, there are 431 labeled stocks emerged. These

stocks were divided into 8 different sectors according to the business they serve.

These sectors are Basic Material, Consumer Goods, Financials, Healthcare, In-

dustrial Goods, Services, Technology, Utilities.
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Basic Material 50 stocks
Consumer Goods 62 stocks
Financials 50 stocks
Healthcare 51 stocks
Industrial Goods 68 stocks
Services 49 stocks
Technology 44 stocks
Utilities 57 stocks
Total 431 stocks

Table 3.1: 8 different sectors and the number of stocks belonging to this sectors.

431 shares belonging to these sectors, and over a preiod of 5500 days. We

obtain 5500 undirected date, 5500 directed data and 5500 correlation matrix.

3.3.2 Time Series Analysis using Transfer Entropy and

von Neumann Entropy
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Dot-Com

9/11 Global Financial Crisis
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Chinese stock market turbulence

Figure 3.1: 3.1a (in red) is the von Neumann entropy computed from the nor-
malised Laplacian spectrum. 3.1b (in blue) shows the transfer entropy applied
of the weighted transfer entropy graph as a function of time. 3.1c (in red) is the
approximate von Neumann entropy of Han et al [40].

In Figure 3.1 the main features to note are that the different financial crises
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emerge more clearly when we use transfer entropy to weight the edges of the

graph than when the two alternatives are used. From left to right the main peaks

correspond to Asian financial crisis (1997), dot-com bubble (2000), 9/11 (2001),

global financial crisis (2007−08), European debt crisis (2009−12), Chinese stock

market turbulence (2015− 16).

To take this analysis of the transfer entropy one step further we perform

principal components analysis on a time series whose components are the total

transfer entropies associated with each node in the graph.

Figure 3.2: PCA for transfer entropy stock-price graphs. The Figure a shows the
status of the first 3 components of PCA relative to each other. Figure b, Figure
c and Figure d shows pairwise cases.

In Figure 3.2 we show different views of the leading three principal component

projections of the time series. The different colours correspond to the financial

epochs associated with different crises. It is interesting that the different crises

correspond to different subspaces in the plot, following clearly clustered trajecto-

ries.

In Figure 3.3 we take this analysis one step further and show times series of the

within and between sector transfer entropy for the finance and technology sectors.

The financial sector dominates during the global financial crises when compared

to other sectors. Moreover, the financial sector seems to be quite effective in

determining the direction of the market during the crises in 2008. The technology
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Figure 3.3: The top plot (Figure Finance) shows the information flow between
the Finance sector and other stocks. The plot in blue in this figure shows the
overall market impact of the finance sector over a period of time. The one in
red shows the impact of the whole market on the financial sector over the same
time period. The figure below (Figure Technology) shows the results of the same
calculation for the technology sector

sector, on the other hand, is generally affected by the other sectors by the middle

of the 2000’s. After the Dot-com bubble, it gradually moves to a position that

has affected the market. In the Europe and China financial crises, it has been

observed to be passive.

3.3.3 Whole Network Visualization

In this section, we will visualize at the data we have created, using differ-

ent statistical approaches. First, we will the sum of cross-correlation coefficient

matrix at each time epoch, which allow let us visualise how all of a share-hold

market moves in time. We will compare this data with S&P500’s historical data

of approximately 20 years.

As a reference, we will use the S&P500 index which is a stock market index

based on the market capitalizations of 500 large companies listed on the NYSE

or NASDAQ. We also use the largest companies in their sectors, so they can give

information about each other in stock movement.

In addition, we have examined the entropy which is another analysis param-
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Figure 3.4: The blue line represents the sum of the corelation values at certain
time epocs and the red line represents the S&P500 index. In November 2008
there is a 205% correlation increase against the S&P500 drop of 46%, in April
2010 there is a 257% correlation increase against the S&P500 drop of 15% and in
August 2011 there is a 284% correlation increase against the S&P500 drop of 19%.
The graph shows that while the market is moving downwards, the correlations
have increased.

eter.

As in the Figure 3.5, there can be observed an inverse correlation between

von Neumann Entropy and S&P 500 over the last few years. It is normal that

the entropy of crisis times increases and firms try to get the best position to be

influenced by the crisis.

3.3.4 Sectoral Network Visualization

We will evaluate 8 different sectors in this section and study their total core-

lations and entropies. The correlations of these sectors are calculated by the

correlations of the stocks in each sector with each other. For example, when

calculating the corelation for the Financial sector, only 50 stocks in the finance

sector is computed. For other sectors it is calculated on this tab.

We will examine the comparison of the sectors with the general trend for

about 20 years. We normalize the results (using the Euclidean normalisation,

||v|| = (
∑N

k |vk|2)
1
2 ) so that the data is more readable, then we look at the
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Figure 3.5: The blue line represents the von Neumann Entropy and the red line
represents the S&P 500 index. We used a moving average filter for 20 days
timewindow for the von Neumann Entropy. The figure shows that, in some cases
there is a similar movement such around 1998, but it can be seen in 2001, 2009
or 2011 that von Neumann Entropy and S&P 500 are not in parallel.

correlation with total correlations.

We show the normalised sector connections in Figure 3.7. The Utilities show a

much smaller correlation them to remaining sectors. On the other hand, with the

new century, the trend of the Technology sector is becoming much more similar

to the overall stock market. Around the 2008 crisis, we can observe that the

Financial sector has disintegrated.

We are also see that Consumer Goods are almost always in perfect harmony

with the general stock market trend. Also, Industrial Goods has a divergence

from the general trend in the first decade. The interesting point is that unlike

Figure 3.6, consumer goods have not seen a common move with the stock market

until more recent years.

3.3.5 Non-Metric MultiDimensional scaling (Graph Clus-

tering)

Non-Metric Multidimensional scaling (nmMDS) used the similarities (or dis-

similarities) of a dataset. We can analyse any kind of similarity (or dissimilarity)

matrix or correlation matrices using nmMDS [25, 48]. nmMDS which embed sets
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Figure 3.6: Correlations between sectors and all stock in our data (all 431 stocks
without any sector separation). The sum of the intra-sector correlations and the
correlations of all the stock are compared. Although almost all sectors showed
a similar trend with the stock market, the Consumer Goods sector shows a very
similar trend with the market in many crisis points.

of date defined in terms of similarity measurements rather than ordinal values

into a vector space spanned by the eigenvectors of the similarity matrix [85]. If

there is zero distance, maximum similarity is observed. The smaller the distance,

the higher the similarity or the distance increases, the similarity decreases.

A simplified view of the nmMDS algorithm is as follows:

Step 1 - Assign nodes.

Step 2 - Compute the distances (D) among all pairs of nodes.

Step 3 - Calculate the stress function (shown in equation 3.5) according to the

resultant distance (or correlation) matrix.

Step 4 - Adjust the coordinates of each point in the direction of stress.

Step 5 - Repeat steps 2-4 until the stress won’t get any lower.
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Figure 3.8: Correlation between sectors. The average total correlation values of
the sectors are written as vectors and the correlation with each other is computed
and compared. There is the highest correlation between Industrial Goods and
Utilities. On average, Industrial Goodsn has the highest correlation between the
other sectors.
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Kruskal’s non-metric MDS Stress function;

Stress =

√∑
(D − d)2∑

(d2)
(3.5)

the stress function, which is simply a measure of lack of fit between dissimilarities

matrix (D) and adjusted distances (d) [12]. Kruskal [47] suggests the benchmarks

in table 3.2.

Stress Goodness-of-fit
0.200 poor
0.100 fair
0.050 good
0.025 excellent
0.000 perfect

Table 3.2: Stress Value Benchmark

In our own study we used MDS with cross-correlation. Which means, we used

similarity values resulting from cross-correlation for each pair of nodes. The nodes

in the MDS is already an assignment because it will hold 431x431 matrices and

each matrix represents a specific day. Taking a 28 day time interval, 431 stocks

were examined. 431x431 symmetric matrix appeared in correlation output. Then,

after the 3rd step and afterwards. We tried to reach the result by minimizing the

stress value. mdscale function are used on Matlab to do this calculations.

There is a fluctuation in S&P500 in between 2008 and 2012, as Figure 3.4

shows. To illustrate the results of MDS, we are dealing with the peak and bottom

points of the fluctuation between these dates.

In Figure 3.9, as the average correlation values increase, in the general sense

the sectors have established a much tighter connection with each other. Another

point is that stocks of each sector are clustered. For example the clusters in the

utilities sector are clearly visible in each graph. Another point that needs to be

addressed is that the stress values are very small. If we take table 3.2 as reference,

all stress values are good (around 0.05). We see that the stress value is slightly

smaller 3-D space. In Figure 3.10, no clustering or pattern was observed. The

stocks of the sectors are dispersed in both the 2d and 3d space. Stress values are
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Figure 3.9: 2D and 3D MDS for peak points; each color represents different
sectors, Basic Mat, Consumer Goods, Financials, Healthcare, Industrial Goods,
Services, Technology, Utilities. On the selected dates, there is a regular, low
entropy activity in the markets as the stress value is low.

above 0.1 levels in the 3D space, while in the 2D space this value reaches 0.25,

and these values are at poor levels according to table 3.2.

3.4 Summary

We used transfer entropy to analyze a financial market dataset that includes

closing prices of stocks traded over a 5400-day period. We commenced by con-

structing a graph in which the edges represent information flow between windowed

time series for the stock, quantified using transfer entropy. It has been shown

that the von Neumann entropy of the resulting weighted graph provides a better

localization of temporal anomalies in the network structure due to global finan-

cial crises. Compared to the approximate von Neumann entropy, it is less prone

to noise. Also, PCA of cumulative node transfer entropy over time shows that

different financials occupy different subspaces that do not overlap substantially.
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Figure 3.10: 2D and 3D MDS for Bottom points Basic Mat, Consumer Goods,
Financials, Healthcare, Industrial Goods, Services, Technology, Utilities. Since
the stress value is high on the selected dates (above), low entropy, a steady activity
is not observed in the markets.

By reducing the dimensionality of the problem by considering a representation

based on cumulative transfer entropy within and between sectors, we can still

distinguish abnormal periods, but less clearly.

Thus, transfer entropy appeares to capture the flow of information within

financial trading networks in a less noise-prone way than von Neumann entropy.

However, this is at the expense of computational cost.
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Chapter 4

Heat-Kernel Smoothing

The main purpose of smoothing is to minimize undesirable distortion and

noise while maintaining important features. Diffusion-based filters have become

a powerful and well-developed technique for smoothing [18, 19, 54]. Here we

remove unwanted noise from both single graph and multigraph with heat kernel

diffusion.

Kernel smoothing is a statistical method can be used to estimate a real valued

function as the weighted average of nearby observed data. It expands on the

notion of a moving average [18].

4.1 Heat Kernel on Graphs

Here we will use the Heat kernel as the kernel smoother. The heat diffusion

on the graph G = (V,E). The Laplacian matrix (L) of a graph (G) is a matrix

that define as the difference between the degree matrix and the adjacency matrix.

The normalized Laplacian matrix, defined as L̃ = D−1/2LD−1/2 [17].

Matrix form the heat equation on a graph associated with the Laplacian L is

[17]

∂Ht

∂t
= −LHt (4.1)

where the Ht is |V |x|V | matrix and t is time. The heat flow along the edges of

the graph with time, where the rate of flow is set by the Laplacian (L). The heat
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kernel satisfies the initial condition H0 = I, where I is the identity matrix. The

solution of the heat equation is found by exponentiating the Laplacian matrix

with time t,

Ht = e−tL

= I − tL+
t2L2

2!
− t3L3

3!
+

t4L4

4!
− . . .

(4.2)

If we express Laplacian with eigenspectrum (L = ΦΛΦ) and if we use in the

equation above (equation 4.2). The heat kernel becomes

Ht = Φe−tΛΦ

The heat kernel is a |V |x|V | symmetric matrix with elements

Ht(i, j) =

|V |∑
v=1

ϕv(i)e
−tλvϕv(j) (4.3)

when t tends to zero, then Ht ≃ I − Lt, the heat kernel depends on the local

connectivity structure of the graph. Else, if t is big, the kernel is governed by

the global structure of the graph, here Ht ≃ ϕ2e
−tλ2ϕT

2 , where λ2 is the smallest

non-zero eigenvalue, i.e. the Fiedler vector [17, 21, 87].

R(u) be noisy signal and F (u) be the denoised signal at u-th vector for u =

1, 2, . . . , |V |, then we have

Ft(u) =

|V |∑
v=1

Ht(u, v)R(u) (4.4)

where Ht(u, v) denotes the (u, v) element of matrix H at time t [80].

4.2 Multilayer Network Structure

We will smooth the edge entropy by performing a diffusion operation on a

Multilayer graph. Here, Multilayer graph will be explained and then directed

causality will be defined on this graph.
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4.2.1 Multilayer Graph

In basic network theory, a network is represented by a graph G = (V,E),

where V is the set of nodes and E the edges between nodes. This network will

be referred to as a single layer graph. In Definition 1 we explained about single

layer graph.

Here we use a similar formalism to characterize multilayer networks. If we

assume that each different state the network is a different network, which in our

study, these different states are created by states of the same network at different

times.

A multilayer network can be represent by the set

G = {G[1], G[2], . . . , G[M ]}

where G[n] is a single layer graph at state n. Here G is a multilayer network with

M layers [10, 64].

To calculate multilayer laplacian, also called supra-Laplacian, A[n] is adjacency

matrix and D[n] is degree matrix of nth layer. Corresponding laplacian is L[n] =

D[n]−A[n] for inter-layer network. The supra-Laplacian L of the whole multilayer

may be separated in two contributions [39, 73]

L = LN + LI (4.5)

where LN stands for the supra-Laplacian of the intralayers and LI for the

interlayer supra-Laplacian. The LN is just the direct sum of the intralayer Lapla-

cians,

LN =


L[1] 0 0 0

0 L[2] 0 0

0 0
. . . 0

0 0 0 L[n]


The interlayer supra-Laplacian (LI) may be expressed as the Kronecker prod-
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uct of the interlayer Laplacian and the N ×N identity matrix I [73, 26],

LI = LI ⊗ I

where LI is interlayer Laplacian. LI = D − W I where, W I ∈ N × N whose

components represent the adjacency of the connection between every pair of layers

[73, 26]. Therefore,

Lϕ = (LN + LI)ϕ = λϕ (4.6)

ϕ is an eigenvector of the full supra-Laplacian and λ is the eigenvalue corre-

sponding to this eigenvector [73].

L =


L1 0 0

0 L2 0

0 0 L3

+ LI


I −I 0

−I I −I

0 −I I


Here we represent a 3-layered Multilayer graph, where L1, L2, L3 are the Lapla-

cian matrices of the respective layers, and LI is the interlayer diffusion coefficient.

4.3 Smoothing Edge Entropy

4.3.1 Graph Transformation

In our dataset, nodes represent a stock. The interaction of these stocks with

each other represents the edges. We were able to quantify this interaction by

calculating with Transfer Entropy (Section 3.2) and Cross-Correlation (section

3.2.1).

In order to define heat diffusion over edges, we need to convert the network

from the node-based to edge-base. After the conversion, G = (V,E) graph will

turn into LG (Definition 4), which is |V |2 × |V |2. Each edge from G become a

node in LG. All weight of the edges of G become the node values in the LG.

There are no edge weights in LG, all edge weights become 1. We will use the

line graph to calculate heat diffusion on graph. After the diffusion process, we

will make another conversion from the line graph to the original graph. So the
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nodes in LG will transform into edges in G, along with this we will have made a

diffusion for edges in G.

4.3.2 Heat Diffusion on Single Graph

A LG transformation will be made for each graph we have. Then we will have

a new graph. Regardless of the interaction of this new graph with other new

graphs, a diffusion process will be applied in the intralayer. Diffusion will have

spread within the intralayer.

After this diffusion process, another transformation will be made and a new

smooth G will be created from LG. The size of the newly created smooth G will

also be in V × V , like the original G. By calculating the total entropy of this

newly created smooth G, we complete the smoothing process for a single-layer

graph.

4.3.3 Heat Diffusion on Multilayer Graph

When doing heat diffusion for multilayer graphs, we start by doing a LG

transformation for each graph, just like we do for single graphs. Heat diffusion

will work slightly differently on multilayer graphs. In a multilayer graph, the heat

transfer of a node is not only through the nodes of the layer to which it belongs.

This transfer will also occur with the corresponding nodes in adjacent layers. The

supra-laplacian calculation in equation 4.5 provides us this flux.

The diagonal part of the supra-laplacian represents the intra-layer flux, while

the off-diagonal part represents the inter-layer flux. Since the heat flow is only

between adjacent layers in inter-layer heat diffusion, the elements of the supra-

laplacian matrix are zero except for the diagonal elements, one upper and one

lower of the diagonals.

The size of each single-layer laplacian matrix inside the supra-laplacian (SL)

matrix is |V |2x|V |2. When we construct a block diagonal matrix with these

laplacians, the size of the resulting SL matrix becomes |V |2M ×|V |2M , where M

indicates the number of layers.

Gomez et al. have shown that spectral decomposition, which we can divide
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the matrix into eigenvalue and eigenvector, can be applied for SL [39]. Thus, a

heat diffusion is applied to the entire multilayer network as in equation 4.3. After

diffusion, we do one more transformation from LG to G. Finally, we look at the

total entropy of each layer in the multilayer graph [28]. The entropy value is cal-

culated separately for each graph. Another purpose of the second transformation

is to make a more efficient analysis for labeled data sets. A comparison can be

made with the node in the original network and the node created after diffusion.

4.4 Experiments

In this section, we will see the applications related to smoothing that we have

done on graphs. As I explained in the section 3.3.1, I will use my own data set

that I have created. The elements of this dataset are stocks. I choose this data

set both because I have used it in previous experiments and because I know its

labels. Thus, it was possible for me to make comments about the labels when

needed.

Figure 4.1 shows the heat diffusion value applied for different time values.

Here, heat diffusion is applied to each layer individually. Afterwards, the total

entropy value within each layer is calculated. From a data set of about 5500

layers, the same amount of total entropy value is formed. Here, there was no

smoothing at t=0. For the t=0.05 and t=0.1, the noise disappeared significantly,

in addition, the spikes showing the characteristics of the plot were still clearly

visible. For the t=0.2, spikes began to disappear together with the noise.

Figure 4.2 shows the 5-Layered Multilayer Graph Heat kernel Smoothing with

different time values.

Here, heat diffusion is calculated on Multi Graphs created with 5 graphs
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Figure 4.1: Single Graph Heat kernel Smoothing with different time values. Blue
indicates t=0, that is, the absence of any smoothing. In the graph, the t value
gradually increased and finally the purple graph was drawn for the t=0.02 value.
Here it can be seen that as the t value increases, the smoothing increases. At the
t=0.02 level, the spikes are close to disappearing.

selected sequentially.

L =



L1 0 0 0 0

0 L2 0 0 0

0 0 L3 0 0

0 0 0 L4 0

0 0 0 0 L5


+ LI



I −I 0 0 0

−I I −I 0 0

0 −I I −I 0

0 0 −I I −I

0 0 0 −I I


Here we represent a 5-layered Multilayer graph, where L1, L2, L3, L4, L5 are

the Laplacian matrices of the respective layers, and LI is the interlayer diffusion

coefficient.

Here, heat diffusion is applied to 5-layered graph one by one. Afterwards,

the total entropy value within each layer is calculated. Although our dataset has
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Figure 4.2: 5-Layered Multilayer Graph Heat kernel Smoothing with different
time values. Black indicates t=0, it shows the original graph without any smooth-
ing. The t value was gradually increased in the graph and finally a turquoise
graph was drawn for the t=5 value. As the t value increased, although the dis-
tance between the peak point and the negative peak decreased, no significant
noise reduction was observed.

5500 layers, we tried to make a smoothing using only 5 layers. The biggest reason

for this is the converted LG data set that comes in very large sizes. Even only

5-layered graph has 928805 × 928805 size. As can be seen from the Figure 4.2 ,

this smoothing was only possible for 500 different layers. The reason for this is

that the calculations of the resulting matrices take a very long time.
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4.5 Summary

Here we demonstrate a graphical signal noise reduction method based on heat

kernel smoothing. Experimental results demonstrated the effectiveness of the

proposed methods. However, only heat kernel smoothing has been studied here.

It will be interesting to examine how it works with other smoothing methods.

Basically, the aim of this study was to achieve noise reduction by performing

heat diffusion on a multilayer graph. However, in the later stages of the study, the

experiments could not be carried out as predicted due to the high computation

cost. Even so, promising results were obtained in the method created by single

layer smoothing.

The t value in heat diffusion has a very significant value in noise reduction.

When this t value is selected big, the peak points in the graph begin to fade as

expected. On the contrary, when t value is selected too small, the smothing will

be so minimal that it cannot be observed,
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Chapter 5

Conclusion

5.1 Contribution

We used transfer entropy to analyze data on closing prices by considering

different financial datasets. The datasets are reliable enough in terms of the

number of stocks as well as the number of days covered. The data set contains

almost all of the major crisis events in the last twenty years. These stocks are

selected with the largest market value. The biggest reason for this big companies

plays a big role in market movements by their Market Cap and inspiring small

companies which has small Market Cap and listed on the stock market. We are

constructing a graph in which the edges represent information flow between time

series for a stock, quantified using transfer entropy. The von Neumann entropy

of the resulting weighted graph has been shown to provide better localisation of

temporal anomalies in network structure due to global financial crises. Transfer

entropy is less prone to noise compared to the approximate von Neumann entropy

of Han et. al. [40], described as Chapter 3.

Reducing the dimensionality of the problem we can still separate anomalous

epochs, but less clearly. So, considering the cost of this calculation, we can say

that, transfer entropy appears to capture information flow within the financial

trading networks in a manner which is less prone to noise than von Neumann

entropy.

As another outcome, we have analysed how transfer entropy and cross-correlation
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can be used to construct both unweighted and weighted network representations

of time-evolving data. We explore how the entropy of these graphs, both undi-

rected and directed, can be used to detect network anomalies. The result is

that transfer entropy performs better than time-series cross-correlation when our

dataset is considered. Moreover, if unweighted networks are used, the charac-

terisations are more stable, and these two measures are used to threshold edges

instead of weighting them.

Another result, we extracted from the heat diffusion study for Multiplayer

graphs. A significant noise reduction is achieved by heat diffusion in single layer

graphs. But here it is necessary to choose the t value wisely. In this study, a

smoothing was also attempted for Multilayer graph, but it is far from the expected

result.

5.2 Limitations

There are a number of limitations with the methods proposed. First, it should

be noted that cross-correlation analysis can only be applied to measure the pair-

wise correlation between time series. A good comparison may not be accepted

because it cannot give information about the causal relationship between time

series. However, transfer entropy gives a causal relationship. The results may

differ according to the approach methods used in calculating the TE. Although

we use the binning method in terms of computational cost here, the results of

different approach methods can also be analyzed,

A limitation can be mentioned for the causal relationship for the transfer

entropy. The causal relationship between a pair of time-series could be directed,

or indirect, which means a third time-series may be an agent for the causality or

just a combination of both. If there were a third time-series in effect, transfer

entropy could not determine it.

In this study, we encountered the biggest limitation in multilayer graph smooth-

ing analysis. Here, we had very serious computation limitations both in trans-

formation (G to LG and LG to G) and in the calculation of heat diffusion after

supra laplacian. The size of the resulting matrix was very large, and it was quite
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challenging for a 5500 layer data set, even for a 5 layer data set.

5.3 Future Work

Our future work will focus on how to use the transfer entropy representation

to construct kernel representations of graph time series. Also, one can look at

the results of the different methods used to calculate TE.

It is possible to try to explore a local structure rather than a global style

adopted in the thesis. Also, we aim to explore how to transfer entropy can

be used to analyse single networks, and that clustering node and explore node

salience using centrality and related measures.

Researching machine learning applications with transfer entropy that will de-

tect anomalies in advance seems to be promissing. We plan to make an ML

application that will detect anomalies in advance.

Heat diffusion for multilayer graph also needs new studies to minimize com-

putational cost.
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