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Explainability in advanced manufacturing: leveraging the interpretability of

multi-criteria decision making and neutrosophic logic

Abstract
Interpretability has been a vital aspect of modelling since the emergence of machine

learning. Despite this, the dominance of non-transparent models due to their

arguable superior performance meant that interpretable transparent models were

seldom used, especially in data-driven applications. Interpretability is key to

reaching explainability. Thus, interpretable models are the most promising way to

achieve this. In this thesis, a new class of interpretable models (multi-criteria

decision making (MCDM)) is investigated, for the first time, in a series of industrial

and academic applications toward achieving explanation. The MCDM model is

shown to achieve enhanced interpretability following its extension with fuzzy

logic. The Fuzzy-MCDM model’s interpretability enables the generation of output

explanations. Consequently, the model’s interpretability is improved further by

introducing neutrosophic logic. The proposed models are applied to benchmark

and industrial pipe inspection datasets. The experimental results demonstrate the

framework’s capability for generating meaningful explanations; while maintaining

good performance. The purpose of explaining a model’s result is to pave the way

for broad adoption in fields where a decision’s accountability and transparency are

paramount due to the high stakes of the decisions. These areas include biomedical,

aviation, nuclear and advanced manufacturing. Machine learning adoption is

lacking in high stake areas due to the lack of explanation, an obstacle preventing

the acquisition of trust from the experts. The thesis describes how an interpretable

modelling framework is adapted to reduce the performance trade-off often

attributed to transparent models while exploiting the advantages to generate useful

explanatory information - a clear advantage over opaque models.
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1 Introduction

The level of understanding of tools and techniques has a considerable impact on

ensuring their safe and efficient use. This especially applies to AI, the prevalence of

which is growing at an unprecedented pace. The International Data Corporation

(IDC) forecasts that global AI spending to exceed $500 billion by 2023 [1]. The

popularity of opaque AI, in particular, has uncovered a considerable limitation; a

lack of transparency and, in turn, explainability. Pivotal to the driving forces of AI

lies a dominant methodology; robust1 machine learning (ML) algorithms that are

perceived as standard data-in-data-out black box systems.

As a result, some researchers have tried to address this by prescribing the only

solution available for black box models: post-hoc interpretability.

Post-interpretability, for short, is an interpretation methodology that is designed to

make black box models explainable. The key phrase is "designed to". Although

post-interpretability has shown potential, the mathematical proof for this is far

from formal. This is because post-interpretability seeks to model a black box model

with no regard for its structure.

Therefore, post-interpretability is merely a band-aid solution to a deep-rooted issue

in opaque ML: the lack of intrinsic interpretability. Simply introducing

interpretability to the ML model comes with challenges. Most recent research

efforts have focused on black box models. Hence, inherently interpretable

methodologies have yet to develop to the same level.

The social implications of non-transparent modelling can be far-reaching. Rudin et

al. [2] has warned that post-hoc interpretability is doing more harm than good. The

researchers give an example of how a black box model denied a prisoner’s parole

1robust: powerful ML techniques such as deep learning, and support vector machines and Naive
Bayes
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in the United States criminal justice system [2]. It is a landmark example of how

undetected bias in modelling can lead to a detrimental impact on human life and

potential society at large.

Groups of researchers have argued for model-based interpretability, as an

alternative to post-hoc [2], [3]. Model-interpretability is an intrinsic property

present in transparent models. However, opting for model-based interpretability

comes with its own set of challenges.

Most notably, maintaining the model-based interpretability of transparent models

comes at the cost of limiting the model’s dimensionality. Thus, the solution of just

adding more parameters or layers to improve performance is not a viable option; the

route for appropriating deep learning models for more complex problems.

The implementation of AI has undoubtedly improved the lives of many.

Nonetheless, this comes at the cost for an unlucky few, as in the case of the denied

parole described earlier.

The same analogy applies to advanced manufacturing, where undetected defects

can lead to potentially catastrophic incidents. For instance, when defects are left

undetected in commercial jets in service, a potential consequence is a fatal crash.

Notably, there are cases where cracks appear in blades long before their designed

operation time [4], [5].

1.1 Transparency

Transparency is a double-edged sword, as could be a variety of things. As a

concept, it is discussed extensively in a variety of different domains such as politics,

media and philosophy. In 2022, the world values information more than anything

else, so based on this, is non-transparency even an option? Some researchers argue

that excess transparency can lead to dire unintended consequences. For instance,

McGivern and Fischer [6] describe a multitude of potential practical and social

implications, such as doctors operating defensively and rising levels of blame. In

software publishing, open-source is occasionally considered a security risk,

especially by organisations in critical domains such as nuclear or finance [7]–[9].
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German philosopher Byung-Chul Han has criticised the extent to which society is

compelled to be transparent in a "totalitarian" manner dispelling important ideals

such as trust and the right to secrecy at a societal and political level [10]. In AI,

transparency is considered a "nice to have" in many applications. For instance, AI

used to unlock smartphones does not need to explain why it could not detect your

face. Countless other applications exist where a lack of transparency is not

particularly problematic, e.g. personalised advertising or search engines.

Nonetheless, transparency is perceived as a force for good. For many, increased

transparency is a prime driver of accountability and openness. It is vital that the

public is well-informed. Transparent media can provide much-needed clarity on

certain topics in an informative and educative manner. In medical consultations, a

transparent patient-clinician relationship does wonders for medical diagnosis, trust

and compliance [11]. In cyber security, unresolved vulnerabilities in software and

services are publicised, as part of the Common Vulnerabilities and Exposures

system, as an effort of resolution and prevention. In logistics, customers are now

provided with detailed tracking information related to a shipment.

Transparency in AI is similarly discussed. Lipton [12] explains that a few humans,

if any, are interpretable, and thus, engineers could be asking too much in the

interpretability of models. However, this could be true for some applications. It is

clear that explainability is vital to AI’s success in safety-critical areas such as

healthcare [13]. Ruden et al. [2] recommends employing inherently interpretable

methodology in high stake application; to avoid the pitfalls of so-called explainable

black box models.

In AI, transparency is widely agreed on to be a beneficial feature. However,

researchers still disagree on what explainability is and how it can be attained.

1.2 Problem statement

In decision-making, the consequence of a wrongful decision varies widely. A

common conundrum for some is deciding on what to have for dinner on the

takeout night. Not enjoying your meal would be one of the risks when you happen
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to select a mediocre restaurant or dish. User ratings, for instance, serve as a

decision support tool to assist customers in selecting a good restaurant. The

consequence of the wrong decision, however, is often minimal and short-lived.

By comparison, detecting defects in safety-critical parts is a different story.

Inspection processes of critical parts are highly regulated. Therefore, the

implementation of new tools, techniques and methodologies is scrutinised

carefully. This level of precaution acts as a protective barrier against the severe

consequence of wrongful decision-making.

For this reason, more care has to be taken when designing decision support

solutions for high stake applications. One of the key requirements is

documentation and justification. In the absence of automated models, the experts

are tasked to justify all decisions they make in a systematic manner.

Therefore, providing means for justification is tantamount to any decision support

tool for non-destructive testing (NDT) inspection. The idea of explanation is to

provide insight into why or how a decision was arrived at. Thus, explainability is

likely to serve as a promising starting point for justification support.

A review of current techniques for explanation revealed that two main categories

exist: model-based or post-hoc [12]. Although post-hoc has been seen to provide an

explanation of robust models, it is inconclusive whether the descriptive accuracy is

of an adequate level. However, model-based interpretability is expected to provide

better explanation capabilities. In terms of classification performance, the literature

points to a potential trade-off when opting from intrinsically interpretable models.

However, the theory of a trade-off has been discounted by prominent researchers in

the area [2].

When there is no trade-off, users of interpretable models are likely to benefit from

more insightful explanations. An explanation that is inferred rather than predicted.

Interpretable models possess a transparent structure, such as the internal variables

and parameters.

A research gap worth addressing is the lack of dependable data-driven explainable

modelling frameworks for classification. This gap has driven designers to opt for
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non-explainable data-driven models. Although these models provide satisfactory

performance, their explanatory capability is not suitable for high stake applications.

Consequently, a strong descriptive accuracy seeks to pave the way for fully

observable models. A model that indicates to its designers and users why it is

behaving the way it is. This seems like a given. However, this is not true for many

prominent methodologies such as deep learning and Bayesian modelling.

1.3 Research aims and objectives

Multi-Criteria Decision Making is a set of modelling techniques that provide

decision-making support based on a set of often conflicting criteria. By design,

multi criteria decision making (MCDM) mimics how a human was to decide

between a set of alternatives. MCDM is a sub-discipline of Operations Research - a

study of how organisations manage their operations effectively and efficiently.

The advantage of MCDM is its structure. Techniques such as TOPSIS enable the use

of human-understandable criteria to support decision-making. As a result, TOPSIS

satisfies model interpretability guidelines and hence, is considered a viable

candidate for an explainable modelling framework.

However, literature has seldom shown investigations of MCDM for classification -

a prominent gap. MCDM’s interpretable nature was seen as a promising starting

point for developing an explainable data-driven framework for classification.

An explanation is a key to supporting high stake decision-making, where experts

are often tasked with producing well-supported justification. Employing

non-explainable methodologies suffers from the crucial limitation of requiring the

expert to perform the classification process manually. Thus, any non-explainable

model would not provide a tangible benefit to the inspection process without

providing means for decision justification.

The project aim is to develop a data-driven interpretable classification framework,

capable of producing meaningful explanation.
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1.3.1 Objectives

A.1 Investigate and propose a ML modelling framework that enhances the

accuracy of existing state-of-the-art interpretable MCDM methods.

A.1.1 Identify literature gaps and investigate effective methods of constructing

interpretable models as part of MCDM methods.

A.1.2 Build computational frameworks that utilises systematically expert

knowledge in the model construction/tuning; demonstrate how this

knowledge enhances MCDM.

B.1 Propose a framework to make use of the interpretability by

B.1.1 Design and implement algorithms and metrics to enhance tracing and

analysing decision-making in linguistic form within MCDM.

B.1.2 Utilise the information framework in B.1.1, to enhance traceability and

understanding of decisions in MCDM in linguistic form.

C.1 To apply frameworks in A, B to Autonomous Defect Recognition (ADR)

C.1.1 The ADR shall be semi-autonomous; performing all tasks for defect

recognition semi-autonomously with a degree of human intervention.

C.1.2 The ADR shall be fully autonomous; performing all tasks for defect

recognition fully autonomously with no or minimal human interaction.

1.4 Achievements and contributions

1.4.1 MCDM as a classifier

MCDM’s inherent transparency makes it a promising candidate for interpretable

modelling. However, as a sub-discipline of operations research, it has been tailored

more for dealing with supporting operational decision-making. Example situations

include supplier selection or deciding which database package to use. Instead of

features, MCDM often utilises human-understandable criteria to extract relevant

decision supporting information. For instance, ranking techniques would produce
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a rank for each choice in a list of feasible alternatives. The ranks are determined

based on various model parameters such as criteria and weights.

Literature seldom demonstrates MCDM-based methodologies being explored or

investigated for classification [14]. Nevertheless, Baccour [14] illustrated areas

where an MCDM-based classifier can achieve satisfactory classification

performance. In Chapter 3, MCDM-based classifiers are compared with

state-of-the-art classification techniques. The proposed data-driven classifiers are

demonstrated to provide satisfactory performance compared to conventional

techniques.

1.4.2 Fuzzy-MCDM classifiers

Mamdani-type fuzzy logic (FL) can be an inherently transparent branch of fuzzy

theory. Mamdani can be constructed using expert knowledge rather than pure data-

driven fitting. Therefore, Mamdani-type FL is considered suitable for maximising

opportunities for model-based interpretability.

Pure-MCDM classifiers lack algorithmic transparency in their final classification

stage. MCDM was extended with a fuzzy inference system (FIS) to replace the final

classification process. The resulting Fuzzy-MCDM provides more insight into the

decision by summarising the MCDM measures concisely using a single output.

The Fuzzy-MCDM’s output is a continuous fuzzy class output ranging from 0 to 1.

The distance of the fuzzy class output from the classification threshold indicates the

classification’s confidence.

Extending MCDM with FL had a minimal, if any, impact on performance. The

increased interpretability of Fuzzy-MCDM is the rationale for its use.

1.4.3 MCDM classifier explanation framework

As will be discussed in further detail, interpretability and explainability are distinct

concepts. Although all explainable models are interpretable, the opposite is not true.

In Chapter 4, an explanation framework is proposed for MCDM-based classifiers.
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The framework presents graphical and textual explanations to the user. Graphical

explanations illustrate the impact of individual features on the classification result.

Meanwhile, textual explanation seeks to describe the state of different

sub-components of the classifier. A concluding linguistic statement explains

whether the two sub-models are in agreement.

The proposed design acts as a starting point toward devising a universal explanation

framework for explaining MCDM classifiers.

1.4.4 Neutrosophic-MCDM classifiers

The FL component enhances transparency noticeably. Nevertheless, the fuzzy class

output does not present counterfactual and indeterminate information separately.

Rather, all the information is summarised in a single output. This benefits the cause

of simplicity.

However, for the sake of further explainability, counterfactual information would

need to be distinguished from the factual. Neutrosophic Logic (NL) is a

generalisation of FL that handles falsity and indeterminacy in addition to degree of

truth. This level of granularity in the processing of information favours the

explainability objective.

The Neutrosophic-MCDM classifier maintains a data-driven structure and

classification performance while providing a breakdown of the class output into the

three neutrosophic components: truth, indeterminacy and falsity.

1.4.5 Ultrasonic pipe inspection

Effective high-density polyethylene (HDPE) pipe inspection is vital to their safety in

several key industries such as water and gas transport. Failing to detect defects can

lead to catastrophic incidents. In Chapters 5 and 6, a real-world pipe weld dataset is

used to test the proposed techniques and methodologies.

Defects and beads (a key indication) are classified with more than 85% overall

accuracy across the model types. Insight on how the classifiers decide on a certain
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way is generated using the explanation framework. The insights provide an

indication of the most influential features.

The use of MCDM for ultrasonic inspection of pipe welds provided decision support

with insights. This is only possible by using inherently interpretable frameworks in

conjunction with explanation capabilities.

1.4.6 Conference publications

• Published: H. Yusuf and G. Panoutsos, "Multi-criteria decision making using

Fuzzy Logic and ATOVIC with application to manufacturing," in 2020 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow: IEEE Inc.,

Jul. 2020, pp. 1–7.

• Published: H. Yusuf, K. Yang, and G. Panoutsos, "Fuzzy Multi-Criteria

Decision-Making: Example of an Explainable Classification Framework," in

UK Workshop on Computational Intelligence 2021, Aberystwyth, Wales:

Springer, Cham, 2021, pp. 15–26.

• Published: H. Yusuf, K. Yang, and G. Panoutsos, "Improving the

Explainability of Multi-Criteria Decision-Making using Neutrosophic Logic,"

in UK Workshop on Computational Intelligence 2022, Sheffield, UK: Springer,

Cham, 2022.

• Planned: H. Yusuf, K. Yang and G. Panoutsos, "Neutrosophic Logic as an

Explanation Framework for Multi-Criteria Decision-Making".

1.5 Thesis outline

The thesis structure is outlined in Figure 1.1. Background on key topics of relevance

to this project is presented in Chapter 2. The main topics include

interpretability/explainability, AI/ML and inspection in advanced manufacturing.

The chapter provides an overview of explainable artificial intelligence (XAI). A

summary of key ideas and theories is presented.
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Chapters 1-2
Introduction & Background

Chapter 3
Fuzzy-MCDM classifiers

Chapter 4
Explainability of Fuzzy-MCDM

classifiers

Chapter 7
Summary and Discussion

Chapter 6
Application to industrial case study

Chapter 5
Explainable Neutrosophic-MCDM

classifiers

Figure 1.1: Thesis outline

Chapters 3-6 are the core contribution chapters. For the benefit of the reader, this

thesis uses a recursive contribution-based structure. Thus, each core chapter

includes an introduction, literature review, methodology, results and discussion.

More detailed literature reviews are presented in each of the core chapters. The

rationale behind MCDM’s use is presented as an introduction of Chapter 3. Notable

examples of MCDM’s success are presented. Consequently, Fuzzy-MCDM

classifiers are proposed as an extension to the original amended fused

TOPSIS-VIKOR for classification (ATOVIC) classifier; first proposed by Baccour in

2018 [14]. The proposed framework seeks to enable absolute data-driven fitting

while maintaining the same level of interpretability. This was achieved by

employing a transparent approach to fitting, as explained in detail in Section 3.3. A
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set of five benchmark datasets are used as test data for assessing and comparing the

proposed frameworks with state-of-the-art classifiers. The results indicate a

variable trade-off of performance, if any. The suitability of the trade-off would

depend largely on the application and its size.

The reasoning for developing Fuzzy-MCDM is more apparent in Chapter 4. In this

chapter, an explanation framework is implemented to generate textual and

graphical explanations. The former is in the form of linguistic statements designed

to present factual and counterfactual explanations to the user. Three statements are

generated for the two opposite sub-models and the overall model. On the other

hand, a graphical explanation illustrates in a bar graph individual feature impact.

MCDM’s decomposable allows for graphical explanation to be generated for each

sub-model and class. This results in a set of four graphical explanation plots,

providing a glimpse of the state of the different model components to the user.

The insight produced by the explanation framework in Chapter 4 presents a

concrete example of how MCDM’s transparency can be exploited. In Chapter 5,

interpretability is taken a step further by the introduction of a

Neutrosophic-MCDM classifier. In Fuzzy-MCDM, the inference system output is in

the form of the degree of truth representing the positive class. This allows for a

concise representation of factual, counterfactual and indeterminate information.

Nevertheless, counterfactual and indeterminate information is particularly

important for the sake of explanation.

A neutrosophic logic set is designed to represent truth, indeterminacy and falsity

virtually independently. To paint a clearer picture, factual, counterfactual and

indeterminate information can be represented by the truth, falsity and

indeterminacy components, respectively. The explanation framework is extended

to graphically illustrate the neutrosophic outputs for each sub-model. By doing so,

insight is grouped into three areas of interest: factual, counterfactual and

indeterminate.

The performance results indicate no significant performance trade-off attributed to

the increased interpretability of NL. Thus, Neutrosophic-MCDM is seen as an
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improvement over the initial MCDM and Fuzzy-MCDM classifiers.

The proposed modelling frameworks were investigated in a practical setting by use

of an industrial case study. The area is the ultrasonic inspection of HDPE pipelines.

The datasets acquired are of 110mm HDPE pipe welds.

As a means of assessing the frameworks’ resilience and applicability, each

contributed technique is tested on two objectives of the dataset: detecting defects or

beads - a key indication.

Chapter 6 starts with a discussion of the importance of interpretability for inspection.

It highlights how accountability and compliance are driving the need of XAI in safety-

critical industry. Consequently, the defect and bead datasets are used to compare the

performance of the frameworks proposed.

The results demonstrate the power of MCDM-based classifiers in extracting

meaningful insight into the decision-making process. In a similar way to the

benchmark datasets, the MCDM classifiers generated graphical and textual

explanations. The explanations indicated why a decision went a certain way based

on the feature values and sub-models’ states.

Similarly to the benchmark datasets, the performance compared to conventional

classification techniques is somewhat lacking. However, the minimal drop in

performance, if existent, is a price worth paying for the extended explanation

capabilities. A valuable asset for increasingly regulated and safety-critical

industries.

The thesis is concluded with Chapter 7 where conclusions are summarised, and

future work is proposed.
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2 Background: interpretability,

explainability and manufacturing

2.1 Introduction

In machine learning, interest has been growing for interpretable and explainable

methodologies. In this chapter, an overview of interpretability and explainability is

presented. Key background concepts are described such as sources and types of

interpretability. Consequently, an overview of interpretable and explainable

classification frameworks is presented. The chapter is concluded with some

background on how the need for interpretable ML fits into the world of advanced

manufacturing.

2.2 Interpretability and explainability

In this section, an overview of interpretability and explainability in ML is presented.

The key topics to be discussed in this chapter are shown in Figure 2.1. Human’s

reliance on ML models sheds light on the downfalls of many popular methodologies.

The applicability of robust data-driven models has driven the adoption of deep and

complex techniques faster than simpler transparent models. As a result, research

and practice have highlighted the implications of using opaque models [2].

2.2.1 Interpretability

Most recently, there has been a growing interest in model interpretability. As a

concept, interpretability has no universal mathematical definition [15]. Although
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attempts have been made to quantify interpretability, they have often been limited

to a certain domain or model type [16].

Nonetheless, researchers have suggested broader non-mathematical definitions.

For instance, a definition by Kim et al. [17] states that: “Interpretability is the

degree to which a human can consistently predict the model’s result”. This view of

interpretability hinges on the predictability of the model to a human. In contrast,

Miller’s [18] definition below indicates the importance of understanding the cause.

“Interpretability is the degree to which a human can understand the
cause of a decision.”

Despite the differing definitions, Murdoch et al. [3] state that model interpretability is
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Interpretable models

Explainable models

Figure 2.2: The relationship between interpretable and explainable
illustrated in Venn diagram

nonetheless a beneficial blanket term that refers to methods of extracting meaningful

information about a model or its data.

Based on the preliminary definitions, interpretability is argued to be vital for

further success of ML’s adoption. One of the most prominent obstacles to ML’s

wider implementation remains to be a lack of explainable solutions in practice.

Although explainability is a term often used interchangeably with interpretability, it

is also used to distinguish between two distinct concepts. Interpretability refers to

the property of the modelling framework being used. The term refers to how much

of its design allows for it to be interpreted, i.e. understood. However, opting for

an interpretable framework does not guarantee that the interpretable information is

explainable. In other words, a model must be interpretable to have a chance of being

explainable; however this is not necessarily sufficient (Figure 2.2).

In some literature, the two terms interpretable AI and explainable AI are used to

distinguish between methodologies that aim to provide model-based versus post-

hoc explanation, respectively [19]. In this thesis, explainability is discussed as a

property of an interpretable model-based model.

The degree of explainability relies on several factors not limited to the modelling

framework. Another component of explainability is the human perceiving it. No

matter how many experts claim a model is explainable, it can only be considered

so if it is believed to be by an actual user, the same user who is expected to use the

system.

On that account, explainability is widely believed to be a concept even harder to

research than interpretability. This is because interpretability depends solely on the
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model at hand, while explainability is more susceptible to subjectivity. Nonetheless,

there are widely accepted concepts on what explainability aims to tackle.

The aim of explainability is to provide comprehensible information to a user in order

to facilitate their understanding of a model’s result. By doing so, the user could

appreciate, to a suitable extent, how or why a model decided a certain way, ideally,

to a level that enables the user to trust a model’s outcome.

2.2.2 Sources of interpretable information

Interpretable information can be components of the model that have the potential to

provide additional insight into the model’s result. The insight can then be used to

explain the model’s result and algorithm - assuming that the model is explainable.

The quantity of interpretable information varies depending on the model’s type.

For instance, the opaque nature of deep learning model means input and output

data could be the only real interpretation sources. In contrast, a more traditionally

transparent model such as decision trees (DT) has more interpretable information

extracted from various regions of the tree - assuming the data and thresholds are

human-understandable.

More formally, two categories divide the types of interpretability: post-hoc or

model-based. The former analyses the model’s result along with the inputs to

attempt to predict an explanation. It is often model-agnostic, i.e. does not require a

certain model type to function.

Meanwhile, model-based, as the name suggests, uses transparent models to provide

additional interpretable information extracted from the model’s internal structure

or based on an understanding of its transparent algorithm. Model-based uses more

information indicating the model’s inner workings. Hence it is seen as more likely

to enable a more representative explanation. For this reason, interpretable models

have more potential as providing usable explanation.

However, model-based explanation’s reliance on interpretable models, which are

inherently simpler, means it is associated with inferior performance. Therefore,

several researchers argue that adopting model-agnostic approaches to explanation
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is far more promising than living with the performance trade-off of transparent

models.

Meanwhile, another group of researchers urge experts to opt for interpretable

models for applications where the stakes are high [20]. Moreover, the researchers

suggest that the performance trade-off often associated with interpretable models is

not a mathematically proven phenomenon. Although this statement is factual, one

can say the same about the fact that the performance trade-off is, by comparison,

also not mathematically disproven.

The obstacle to concluding this somewhat controversial topic is the ability to define

interpretability mathematically. Attempts have been made to provide

interpretability metrics for certain model types, such as fuzzy logic [16]. However,

the metrics are far from being a universally accepted definition [15], [21].

Suppose this metric can be replicated for different model types. It could pave the

way for coming up with a universal definition for model interpretability.

The involvement of the human factor in interpretability and thus, explainability

means a test is arguably more practically possible than a metric. This is arguable

from a mathematical standpoint where humans are considerably unpredictable.

2.2.3 Explainability

Given the interpretability, challenge is done and dusted. A second challenge

emerges - explainability. When a model is explainable, a framework can be

developed to generate explanation.

An explanation has several properties, as described by Robnik-Sikonja et al. in 2018

[22]. The properties can be used to assess an explanation’s effectiveness based on

the methods used and the explanation itself.

Similar to interpretability, model explainability is still considered in its infancy as a

concept. At the time of writing, researchers are striving to define what explainability

is, assess its existence and implement it. However, explainability’s dependence on

interpretability adds another obstacle to its advancement.
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The properties of explanation methods are suggested by Robnik-Sikonja et al. as:

• Expressive power

• Translucency

• Portability

• Algorithmic complexity

Expressive power relates to what explanation can be produced based on the

explanation method utilised. For instance, natural language would have more

expressive power than decision trees.

Moreover, translucency specifies to what extent the model’s parameters are used

for explanation. For a black-box approach to explanation, only input-output data is

used since model parameters are not useful. In this case, the explanation method

would have no translucency. Conversely, interpretable models allow for the

development of translucent explanation methods.

The portability of explanation methods means their applicability to a wider variety

of machine learning models. It is always advantageous to design a method that

works in a more generous selection of alternatives. However, increased flexibility

means treating the model as a black box, thereby limiting the method’s translucency.

Algorithmic complexity describes how computationally intensive the method for

generating the explanation is. The method’s complexity could be an issue when

computation time is vital for the application.

Robotnik-Sikonja et al. go on to describe the properties of explanations themselves.

• Accuracy: refers to how well the explanation reflects unobserved uncertainties.

This does not apply to black-box models where only fidelity is used.

• Fidelity: refers to how representative the explanation is of the black-box model.

Fidelity is important to assess specifically for black-box models because of their

opaque nature.

• Consistency: refers to whether a consistent result is produced when the

explanation method is used with different models.
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• Stability: also tests consistency, however, across instances of the same model.

This confirms whether the explanation is stable i.e. dependable.

• Comprehensibility: refers to the extent to which humans can comprehend the

explanations. An important piece to solving the puzzle of explanation is the

human on the receiving end. Human comprehension and understanding vary

widely. Hence, comprehensibility is considered of the most challenging

aspects of explanation. It is also the whole point of explanation.

• Certainty: refers to how well explanation can represent true model certainty.

• Degree of Importance: refers to whether the explanation reflects which factors

influenced a decision within a model accurately.

• Novelty: refers to the ability of the explanation in handling novel data not

present in the training dataset in a way that indicates the data’s peculiarity.

• Representativeness: how well can the explanations cater for different

components of the model, i.e. does it explain all sub-structures of the model

or a small part.

2.2.4 Model transparency

Model transparency defines whether a model’s structure is interpretable. For

instance, deep learning models lack transparency because of their increasingly

complex structure. Meanwhile, the much simpler linear regression models enable a

user to understand fully how a prediction was calculated just by looking at the

coefficients m and c.

y = mx + c (2.1)

One of the challenges of attempting to explain more complex black-box models is

having to deal with high dimensionality - a case where many features are likely to

impact a decision. Attempting to explain black-box models using their internal

parameters is not considered practically possible. Therefore, a model-agnostic
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approach to interpretability was seen as the most promising way forward for

black-box models.

One of the ways researchers have tried to address this is by tapping into local

interpretability using local surrogate methods. Local surrogate is a post-hoc

explanation approach that uses external interpretable models; the local models

attempt to mimic the main, often black box, model’s classification process [23].

Consequently, explanatory models can be used to produce explanations more easily

because of their transparent nature. Post-hoc explanators are often built using

interpretable modelling methodologies such as decision trees, rules, or linear

regressions [23].

The main advantage of post-hoc is the ability to independently develop the ML

model and its explanator. Thus, the ML model can be switched out if it turns out to

be unsuitable, without the need to redesign the explanator.

Ribeiro et al. [24] proposed what turned out to be one of the most well-known local

surrogate methods - local interpretable model-agnostic explanations (LIME).

LIME’s well-defined structure enabled its implementation in widely utilised ML

programming languages such as Python and R.

LIME provided a straightforward way to retrofit pretty much any ML with

interpretability. This was a major selling point at the time since most

implementations opted for robust black-box models.

Post-hoc interpretability provided an easy way out for experts seeking to maintain

their use of black-box models. LIME was able to provide much-needed insight on

opaque models - providing users with vital explanatory information.

Although many model-agnostic interpretability methods exist, they all share a

common weakness; their reliance on an external explanatory model. In spite of

providing added simplicity, the explanatory model’s independence from the main

model means its explanation is not tied to the model’s inner workings. Therefore,

what the explanator provides in terms of explanation is merely a prediction.
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For this reason, it becomes more of a challenge for post-hoc explanators to adhere

to the justifiably stringent laws, and regulations present in critical industries such as

aerospace, oil & gas, nuclear and biomedical [15].

The individual explanation properties described earlier, such as stability, fidelity

and consistency, are more difficult to quantify and, in turn, maintain. Ironically, a

post-hoc explanation can, in many instances, work. However, there is limited

understanding on the inner workings. It creates a compounded problem where two

entities are now not fully interpretable: the model and its explanator. On the other

hand, opting for an inherently transparent model allows for inferred explanation. A

type of explanation that has a higher chance of being accurate and understandable.

2.2.5 What is a good explanation?

As described above, certain properties can be used to assess explanation [18].

Although these guidelines could be considered satisfactory from an engineering

perspective, they fall short of addressing explanation from a human standpoint.

Miller et al. [18] suggest that explanation is the answer to a logical why-question.

Such examples of why-questions can be:

• Why is the manufactured part defective?

• Why was a mortgage application rejected?

• Why is there a forecast for rain?

The questions urge so-called "everyday" explanations that are straightforward to

provide by an expert in the field. For instance, the first example can be explained by

citing the indications that reveal a defect. On the other hand, counterfactual can be

provided by describing the reasons the manufactured part is not considered healthy.

This contrastive form of explanation is the preferred option for humans [25]. This is

because it appears to single out the reason a decision went a certain way.

Therefore, it makes sense to design an explanation that highlights only a few factors

affecting the output. When numerous reasons are provided in the form of

explanation, the human is not able to appreciate the most important.
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In other words, the comprehensibility of an explanation depends strongly on the

complexity of the explanation itself. Hence, ensuring the explanation’s simplicity

goes a long way toward making it comprehensible.

2.3 Machine learning classification frameworks

ML frameworks for classification can be divided into two main categories:

transparent and opaque. Transparent frameworks enable the construction of

inherently interpretable models where the internal structure is accessible with the

potential for being explainable. Lipton suggests that a model’s transparency be

assessed using three criteria: simulatability, decomposability and algorithmic

transparency [12].

Simulatability, Lipton explains, is the degree to which a model can be simulated

using pen and paper by a human. Lipton believes the more simulatable a model is,

the more interpretable it likely is. For instance, linear regression models can be

easily simulated using pen and paper by calculating the linear equations

representing the model - simple two-operation arithmetic. A more complex model

could be a K-Means model with a large number of features, e.g. 1000. Although this

is not considered large by industry-standard, it is much too large to be simulatable

on pen and paper. Similarly, deep ANNs often have a large parameter set that

cannot possibly be simulated manually.

Decomposability refers to whether the model’s structure can be intuitively visualised

as a collection of compartments, where each compartment has a well-understood

definable function. For instance, a system of hierarchical fuzzy logic set (FLS) can

be decomposed in terms of logic sets. The behaviour of each compartment, a FLS,

is defined by its rules and membership functions. Likewise, a decision tree model

could be decomposed in terms of its branches.

The remaining factor to consider is algorithmic transparency. This refers to how

understandable and transparent the optimisation algorithm is for a model. For

example, although an algorithm such as gradient descent is considered

human-understandable and transparent. Pairing this algorithm with a complex
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deep neural network means it will lose its transparency. In spite of the foundational

theory being well-understood, the high degree of dimensionality prevents a human

from peeking into the algorithm. Conversely, when the same algorithm is applied to

a linear regression model, the human can even go to the extent of computing the

gradient descent optimisation on pen and paper. Hence, from a practical point of

view, the lack of algorithmic transparency is perceived to impact an overall model’s

interpretability.

2.3.1 Explainable-AI

The need for explainable AI is evident in the growing research interest surrounding

it (see Figure 2.3). According to data from Scopus, the literature on interpretable and

explainable AI has been increasing for the last five years. Researchers from around

the world aim to address the knowledge gap of XAI.
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Figure 2.3: A bar graph illustrating the growth of contributions
published with key words in the legend related to interpretability
and explainability of AI. The data was downloaded from Scopus®
on 30th June 2022. Based on the methodology used by Arrieta et al.
[19].

Explainability methods in AI span a wide variety of categories from model-agnostic

to model-specific, model-based to post-hoc and local to global. It is vital to

understand the merits and limitations of each approach to ensure the selection of

the suitable one.
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The suitable flavour of explainability is sometimes dictated by the complexity of the

dataset. For example, a dataset with a large number of features means a complex

model may be required to address it. If so, model-based would be out of the picture.

Moreover, global interpretability is less likely to be applicable, and a model-agnostic

model could be the easiest way forward.

In contrast, when a dataset uses a small number of human-understandable features,

it becomes easier to access model-specific, model-based and global interpretability.

This is considered a near-ideal state for maximising the explanation’s quality. The

diagrams in Figures 2.4 aim to depict the worst versus best case scenarios of

interpretability and how they lead to predicted versus inferred interpretability,

respectively.

Worst case
scenario

Black box
model

Post-hoc
interpretability

Predicted
interpretability

Local
interpretability

Model-agnostic

Best case
scenario

White box
model

Model-based
interpretability

Inferred
interpretability

Global
interpretability

Model-specific

Figure 2.4: A set of block diagrams illustrating how choosing
between black and white box models can affect interpretability in
different ways. It depicts a case where the best and worst case
scenarios are realised when using a white and black box model
respectively.

The importance of the explanation’s quality varies according to the model’s intended
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domain. Sudjianto et al. [26] stress the importance of developing inherently

interpretable models for highly regulated sectors such as healthcare.

Although, post-hoc interpretability is expected to be able to cater for numerous

non-critical applications. These areas have a comparatively minimal consequence

of inaccuracies and biases. For example, when an ML algorithm fails to detect the

face of a user trying to unlock their phone - the consequence is that they have to log

in manually. When the smartphone provides a wrongful explanation as to why it

has failed to unlock - the consequence is similarly low.

Conversely, when a ML model is used to support a court of law in making its

decision, it is a totally different story. In this situation, a wrong decision could very

likely affect the livelihood of an individual [27].

As a result, a group of researchers have warned against attempting to explain black-

box models [2]. They justify their stance by citing a concern that explained black-

box models, according to theory, are more likely to produce inaccurate explanations

because of the manner in which interpretable is extracted. This refers to the fact that

post-hoc analysis operates independently with the model’s internals even where the

method is model-specific. For this reason, it is seen by the researchers as a way of

masking the issue into a bigger problem [2].

The most recent XAI review uncovered a significantly larger focus on post-hoc

methods. The reason for this could be the more prominent prevalence of black-box

models. XAI researchers justify opting for black-box models for their perceived

superior performance [3], [19], [28]–[30].

Meanwhile, supporters of inherently interpretable models have gone as far as stating

that the trade-off is a ’myth’ [2]. They have supported this statement by pointing to

numerous cases where interpretable models could perform as well as deep learning.

Nonetheless, the researchers admit that some domains remain where deep learning

is necessary and justified.

The takeaway is that inherently interpretable models should be used more often

than they are being used. More specifically, in areas where the importance of proper
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interpretability outweighs the convenience of fitting a black-box model. This is given

that the performance drop is non-existent.

Depending on post-hoc analysis for interpretability leads to what is referred to as

lower descriptive accuracy - a metric linked to how representative explanation is [3],

[30]. Inferior descriptive accuracy is particularly an issue in high stake applications,

where the wrong explanation can deter further investigation leading to a

compounded problem.

Nevertheless, some black box models have been investigated in high stake

applications despite the risks [2], [31], [32]. Reasons quoted by researchers often

mention the unbeatable performance of black-box models [3], [19], [28]–[30].

2.3.2 Interpretable models

As discussed previously, research interest XAI has been growing for more than a

decade [19]. More detailed reviews reveal information on key topics, techniques

and methodologies currently being explored. This section aims to summarise the

key findings and highlights information relevant to this project - model-based

interpretability.

Two approaches exist within the model-based: interpretable models and hybrid

models. The former uses a combination of interpretable and non-interpretable

components. The category of hybrid models is distinct from post-hoc explanation,

where an interpretable is used merely as an explanator. For hybrid model-based

interpretability, both components (interpretable and non-interpretable) take part in

the model execution.

On the other hand, a pure interpretable approach is possible with several standalone

or hybrid interpretable models. Several interpretable modelling techniques exist, as

listed in Figure 2.5.

The benefit of interpretable models is being able to leverage their transparency.

Model transparency allows the direct extraction of interpretable information to

deduce and infer a factual and counterfactual explanation.
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Interpretable models are intrinsically understandable and transparent. For instance,

DT can be visualised and understood intuitively by the average user. The criteria of

model transparency (simulatability, decomposability and algorithmic transparency)

are demonstratable to an extent not possible with conventional black-box models

such as deep neural networks or support vector machines.

Model-based

Interpretable models

Hybrid models

Logistic / Linear Regression

Decision Trees

K-Nearest Neighbours

Rule-based Models

Generalised Additive Models

Naive Bayes

Multi-Criteria Decision
Making

Fuzzy Logic

Neutrosophic Logic

ATOVIC

TOPSIS

VIKOR

AHP

Figure 2.5: A diagram illustrating model-based interpretability
methodologies and techniques.

Moreover, rule-based models such as FL allow for the same level of interpretability.

When FL was first proposed by Lotfi Zadeh in, it provided a method for designing

classifiers and controllers with transparency not provided by conventional models

and theory at the time.

Zadeh’s FL was proposed a long time before XAI was coined as a research area.

Nonetheless, it is estimated that FL literature accounts for a third of XAI

contributions.

Alonso et al.’s [33] analysis revealed a clear separation of fuzzy interpretability

from the main cluster of XAI. In other words, inter-citations between fuzzy-related

literature and non-fuzzy AI are relatively low. Therefore, Alonso et al. [33]

recommend the importance of closer collaboration between the different disciplines
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within XAI and more specifically, interpretable FL. The researchers justify this by

citing early fuzzy works on harnessing transparency and interpretability as early as

1999 and the fact that more than a quarter of XAI literature is related to FL

techniques.

MCDM is a set of techniques capable of providing decision support based on an

input of criteria representing the alternatives. MCDM is seen as an area where

different decision theories have been materialised into mathematical frameworks

for providing decision support.

MCDM is used in several areas to facilitate decision making, particularly when it

involves choosing between several alternatives. Notable applications include

supplier selection, data engine and software selector.

In spite of MCDM’s inherent simplicity, it has seldom been explored for classification

[14]. However, it has been combined with ML techniques such as FL as a means for

further optimising and strengthening its core application - alternative selection.

In MCDM lies a hidden strength, its inherent transparency and human

understandability. An MCDM technique such as TOPSIS uses a rather simple

structure where a decision matrix is constructed from the alternatives criteria

(features). Consequently, weights are assigned to indicate the importance of each

criterion numerically. Simple arithmetic is then used to determine a rank for each

alternative based on the criteria and ranks.

TOPSIS can be easily applied to an everyday problems such as selecting which dish

soup to use. Criteria can be as understandable as cost, availability and smell. The

importance of the criteria (weights) are assigned subject to the user’s preference.

2.4 Advanced manufacturing

Factories around the world have witnessed an unforeseen advancement in efficiency

and throughput following the advent of digital automation [34]. As a result, the

staggeringly high production rate of these factories meant quality assurance became

a more obvious issue.
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Despite the success rates of some of these factories being over 95%, the volume of

production meant that the remaining 5% could be significant. Thus, all production

lines became associated with a relatively high criticality level.

For instance, a small deviation from the production parameters could spell a

considerable loss of product. Therefore, robust controllers were installed to closely

monitor and control key performance indicators.

In spite of this, certain production processes result in uncertainty still not fully

understood. Thus, unpredictability becomes an issue which is addressed using

higher-level forms of control such as Model Predictive Control (MPC). These

approaches were made possible by the collection of data directly from the factory

manufacturing lines and using it to optimise the process further.

Similarly, in engineering factories, quality assurance is of paramount importance.

This is especially case for critical manufacturing infrastructures such as pipelines

and jet engine parts. Failure to detect defects in parts destined for safety-critical

applications could potentially lead to catastrophic consequences such as loss of life,

environmental disasters and damage to high-value assets.

Appropriately, domains where the consequences are high need to be regulated to

guard against these hazards. The regulations instantiated are designed to enforce

scrutiny on changes to operating procedures in these domains. In doing so, risks of

adopting new technologies can be managed.

One of the notable is IEC 615081 - a standard for ensuring the functional safety of

electric, electronic and programmable safety systems. Safety systems are

specialised control systems tasked with bringing a safety-critical process to rest

should it becomes dangerously unstable. It is used in conjunction with an

operational control system as a safeguard against the process deviating too far from

the safe operating zone.

In safety-critical industries such as oil & gas, an unstable process can spell all sorts

of costly incidents such as unplanned shutdowns, loss of assets or even fatalities.

1International Electrotechnical Commission 61508: Functional safety of
electrical/electronic/programmable electronic safety-related systems
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Safety systems minimise this risk in the arena of the control system.

Similarly, the use of AI/ML in these fields is subject to the same stringent

regulations. Although, our understanding of XAI is yet to mature to the same level

as other well-established areas such as safety system design.

Based on previous experience, it is clear compliance is one of the first hurdles in the

adoption of AI/ML in any regulated industry. By comparison, black-box models

have seen unprecedented prevalence in self-regulated or non-regulated industries.

This is arguably at the cost of proper validation [2].

The European Union (EU) have highlighted the importance of explanation in their

general data protection regulation (GDPR) legislation. The regulation stressed that

users are guaranteed the right to request an explanation for decisions made using an

automated algorithm that processes their personal information. This could apply to

processes such as automated credit card applications.

As consumers have experienced, automated rejections for credit are seldom

explained. It is unclear whether the algorithms are explainable since often these

models are propriety, thus, confidential. As a consequence of their opacity,

consumers are faced with rejection without being able to find the reason or set of

reasons.

Meanwhile, in advanced manufacturing and specifically quality assurance (QA), an

explanation is even more essential. When safety-critical parts are manufactured, it

is important not to miss defects because if faulty parts are installed, they are more

than likely to cause catastrophic consequences. If ML techniques are to be

employed to automate QA, they have to be able to provide a suitable explanation to

the NDT expert; since not providing an explanation that justifies the decision leaves

the expert in a situation where they have to come up with their own justification

and explanation. This defies one of the main purposes of decision support

automation - reducing manual labour.

More primitive testing methods are destructive in nature such as tensile strength.

The issue with destructive testing is that it ends up destroying the part, which causes
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waste. Also, destructive testing only tests a small sample of the products produced.

Therefore, some defects could potentially pass through the screening.

Alternatively, NDT approaches were explored. Various types of NDT technologies

exist, and applicability depends on the properties of the part that needs to be tested.

An example of a successful NDT method is Guided Wave Testing (GWT). It has

been used successfully in the detection of corrosion in pipelines. GWT works by

dispersing acoustic waves in along the length of a pipeline. The advantage of GWT

vs UT is its ability to detect corrosion over tens of meters versus the vicinity of the

probe.

The industrial scope of this project is to investigate ML techniques for the

classification of pipe weld defects. The material of the pipes is HDPE. Plastic

provides a special challenge in NDT; ultrasonic waves do not travel well in a

material of this type. As a result, a defect’s contrast would be more difficult to

distinguish. Nonetheless, newer methods phased array ultrasonic testing (PAUT)

have enabled higher resolution images.

However, the larger dataset means a more tedious job for the NDT expert. For

instance, a single weld requires the expert to inspect and analyse hundreds of

images manually. The time required to inspect the hundreds of newly installed

welds in a major project using plastic pipes is considerable. Moreover, the task’s

repetitive and cumbersome nature is seen as a perfect recipe for human error.

Thus, there has been an interest in developing automated NDT - methodologies for

automating the data analysis process. The aim is to reduce the amount of human

intervention required by an NDT expert.

2.5 Summary

In summary, there are two types of interpretability: model-based and post-hoc. It is

clear that model-based provided a better basis for generating better explanation.

However, this type interpretability relies on the use of an often simpler transparent

model. As a result, performance is likely to be impacted. The importance of
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explainability in advanced manufacturing was highlighted. A key area being high

stake decision making.

MCDM and fuzzy logic are highlighted as possessing a promising potential for

interpretable modelling. In the next chapter, Fuzzy-MCDM methodologies are

explored for data-driven classification by comparing them with key state-of-the-art

classifiers. A starting point for investigating the research gap of model-based

explainable modelling.
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3 Fuzzy-MCDM: interpretable ML

for classification

Fuzzy logic has been a prominent research area in the field of interpretable machine

learning. The versatility of FLSs has facilitated their adaptation to a wide array of

problems such as control, prediction and classification. Some of the most recent

interest in FLSs is excited by the fact that Mamdani-type sets have the potential for

interpretability and explainability. Multi-Criteria Decision Making (MCDM) is a set

of techniques capable of providing decision support based on an input of criteria

representing the alternatives. Similarly, MCDM is highly interpretable by nature

due to its human-understandable components and parameters. However, a pure

MCDM model would lack the ML rigour required to be able to produce

high-performing models. Therefore, in this chapter, a study is presented where

MCDM is extended with fuzzy logic to define four variations of MCDM-based

classifiers. Consequently, the classifiers are evaluated with five benchmark datasets

to compare their performance to state-of-art models and other MCDM techniques.

The results demonstrate how fuzzy-MCDM classifiers can provide comparable

performance to SOA classifiers for certain problems, paving the way for adapting

fuzzy-MCDM as a basis for an explainable data-driven classifier.
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3.1 Introduction

Fuzzy-multi-criteria-decision-making (fuzzy-MCDM) is a prominent research area

within the field of MCDM. As described in Chapter 2, MCDM was not initially

intended as a classifier. However, its combination with ML techniques has

prompted interest in its development as a potential data-driven classifier [14], [35],

[36]. Its inherent interpretability and simplicity are one of the main motivations for

this interest.

In this chapter, the proposed frameworks are compared with other well-established

ML classifiers. By doing so, MCDM-based is assessed as a potential viable

alternative to e.g. DT and Support Vector Machines (SVM), by determining key

trade-offs, if any, exist. In addition, a comparative analysis is presented on MCDM

techniques, including TOPSIS, VIKOR and, ATOVIC.

3.2 Interpretable ML methodologies

As described in the literature review, MCDM is a set of computational and

mathematical techniques for assessing a set of alternatives, based on often

conflicting criteria consisting of various costs and benefits [37]. MCDM are

normally used for decision-making in various fields where single or multiple

alternatives are selected from several, based on a well-defined set of criteria and

weights. Due to the interpretable nature of MCDM techniques, there has been

interest in their use in classification [14], [36].

3.2.1 Amended fused TOPSIS-VIKOR for classification: overview

Amended fused TOPSIS-VIKOR for Classification (ATOVIC) is an MCDM-based

classification framework initially designed by Leila Baccour in 2018 [14]. ATOVIC

is one of a few applications of MCDM-based methodologies for classification [14],

[36]. The TOPSIS-VIKOR framework, ATOVIC, is a version of MCDM that is

tailored for classification. This was achieved by treating the features as criteria and

utilising a sub-model for each class present in the data. The sub-models rank the
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data separately and consequently used to classify the data; the rank essentially acts

as a distance. MCDM methods are constructed using the following steps:

(a) Construction of the decision matrix

(b) Determining the weights of the criteria

(c) Setting the ideal solutions (positive and negative)

(d) The ideal solution is selected as the alternative closest to the positive ideal

solution (PIS) and farthest from the negative solution (NIS)

The distinction between the two ranking methods is that TOPSIS implements

normalisation for steps 1 and 2, while VIKOR does not; furthermore, TOPSIS uses

just the Euclidean distances to compare alternatives. Meanwhile, VIKOR combines

the usage of the Chebyshev, Euclidean and the weighted sum of both distances.

Baccour [14] has demonstrated the potential of ATOVIC through a comprehensive

set of comparative analyses. In the literature, the writer showed how their

proposed method could be used as an MCDM-based approach to classification. The

analyses contain cases where ATOVIC has performed as good as or better than

SOA classification techniques. Nonetheless, there were cases where ATOVIC did

not perform ideally. ATOVIC’s structure meant its inability to handle

non-numerical data such as text, images, or categorical attributes. This limitation

was evident in a chess dataset performance result where it had a low score

compared to the other models. The fitting process of the model is performed in a

single iteration, i.e., no iterative training was used. Omitting training simplified the

construction of the model, improving its interpretability, but it could have a

negative impact on performance, as demonstrated by Baccour [14]. A point worth

pointing out is relying on expert knowledge in certain aspects of model

construction means Baccour’s version of ATOVIC is not purely data-driven; this

becomes an issue for applications where expert knowledge simply does not exist.

3.2.2 State-of-art ML classification frameworks

ML classification frameworks vary in transparency and performance. Striking a

balance between the two can be a challenge, especially with the rising popularity of
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high-performing complex black box models. Black box models have an internal

structure that is not human-understandable [38]. For example, SVM! (SVM!),

Naive Bayes (NB) and Artificial Neural Networks (ANNs) are widely used black

box classification frameworks for their resilience and robust performance. The

techniques are optimised for data-driven training and provide satisfactory

performance when paired with good-quality datasets.

However, black box models still have a major limitation - the lack of transparency

in the model’s structure preventing a direct explanation of a model’s output. As an

alternative, an indirect post-hoc explanation can be generated by the use of an

external model for interpretation - often referred to as interpreter or explanator

[39]–[43]. Post-hoc interpretability can be model-agnostic, i.e., compatible for all

models types. Therefore, many researchers opt for post-hoc to avoid the potential

performance trade-off often associated with transparent models [44]–[49]. Turner

claims that the performance trade-off associated with transparent models is not

justifiable, even if it is minimal [44]. This rests on the possibility that

post-interpretability would develop to a level suitable for attaining meaningful and

accurate explanations. Moreover, Ribeiro et al. [50] argue that transparent models

are merely for insights and are not suitable for practical use because of their

considerably inferior performance. The claim is problematic because interpretable

models have been shown to perform adequately in certain situations [14], [35], [51].

In some applications, clear-cut explainability is essential for the model to be used,

which can only be achieved by directing tapping into the model’s internal

parameters. On that account, attempting to interpret the model by an external model

inherits a guaranteed gap between the two models. The gap cannot be perceived

nor eliminated due to the opaque nature of black box models. For this reason, other

post-hoc researchers have advised that transparent models should be used where

performance is satisfactory to exploit their benefits for direct interpretation [48].

Explaining a model’s result or decision is crucial for applications where the stake is

high. Providing decision-support while omitting explanation restricts the expert

from being able to fully rely on the model and, in turn, the building of trust. Gille et

al. [52] suggest the adoption of ML models is dependent upon trust. The



3.2. Interpretable ML methodologies 37

researchers highlight the implications of black box models, such as hampering the

implementation of ML models in practice; transparent models were cited as a

viable alternative. One of the drawbacks of black box ML models is the shallow

understanding designers have access to on what the parameters/output mean,

how they have been decided, and any hidden biases a model could have. This

results in cases where models were inadvertently trained with significant bias

[53]–[55]. An occurrence that cannot be overlooked for safety-critical applications

where undetected biases could potentially lead to catastrophic consequences. For

instance, if an ML model was implemented as a decision support tool, any bias

present in the model could instil a bias in an expert’s reasoning, possibly pushing

them towards the wrong decision. The consequence of the wrong decision can vary

widely depending on the application, so this needs to be taken into account when

designing a model.

Based on the risks, Ruden warned of the dire consequences rush implementations of

black box ML could have, with reference to real-world examples [20]. This included

a case where a person was mistakenly denied parole by a black box model, which

was a grave consequence to have to suffer [27]. Ruden urged ML designers to opt

for white box models where possible and suggested the trade-off of performance is

simply non-existent. Moreover, the decision’s consequences should align with the

transparency required in the model. For instance, a non-transparent model would

suffice in low stake situations such as personalised advertising or email spam filters.

By comparison, in healthcare, a wrongful diagnosis could cost a patient their health,

making transparency an important requirement of a model in healthcare. Ruden’s

recommendations are sensible given the scale of the damage opaque models can

cause when used inaptly.

3.2.3 FLSs as an interpretable ML framework

FLSs have often been used in the field of classification, as detailed in Chapter 2.

FLSs types and many techniques span a wide variety of applications since its

inception by Lotfi A. Zadeh in 1965 [56]. The main two categories of Type-1 FLSs

are Sugeno and Mamdani-type. While the former relies on optimisation algorithms
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for generating its rule-base, the latter is formulated based on expert knowledge.

The distinction in how the two types are constructed dictates how transparent the

model is, with the Mamdani-type being the more interpretable of the two.

Nonetheless, Sugeno-type is often favoured for its superior performance. However,

its lack of transparency is problematic, prompting researchers such as Pekaslan, in

[57], to propose an optimisation framework for Sugeno-type models while

maximising interpretability. Pekaslan demonstrates how their new optimisation

methodology maintained interpretability by constraining the search area to a desired

region - maximising a set of fuzzy metrics. The methodology’s ability to generate

visually interpretable membership functions (MFs) is a step in the right direction;

nevertheless, Sugeno as a fuzzy framework results in non-transparent output MFs

and uses a complex optimisation algorithm which not necessarily

user-understandable.

Therefore, Mamdani-type FL is being investigated and developed extensively for

interpretable modelling because of its transparent nature [33], [58]–[61]. A

comprehensive bibliometric analysis by Alonso et al. [33] revealed that

explainable-AI (XAI) research widely varied with different clusters working in

different directions. Although FL accounted for almost a third of XAI literature,

highly cited FL literature was separated from the other XAI segments in terms of

co-citations. This shows a lack of collaboration across the different XAI research

areas. Alonso et al. suggest more inter-XAI research collaborations could be fruitful

in accelerating progress [33].

To summarise, FL is considered interpretable because of its human-comprehensible

structure. Current XAI research trends indicate considerable interest in developing

fuzzy frameworks for interpretability and explainability. Hence, this makes FL a

promising candidate for interpretable modelling.

3.2.4 Model interpretability for FLSs and MCDM

Interpretability is an important aspect of ML modelling as it paves the way for XAI.

A more detailed review of interpretability is provided in Chapter 2. In this part, key

concepts of interest are described. Model interpretability is divided into two main
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categories: model-based and post-hoc. As the name suggests, the former employs

the model’s components to provide interpretability while the latter makes use of an

external model interpreter. Although post-hoc implementations of interpretability

could provide a satisfactory explanation in certain applications, the precision of

model-based interpretability is desirable in high stake applications.

Despite the considerable interest in XAI and the recognition of interpretability as a

goal post for a meaningful explanation, interpretability as a concept is yet to be

defined universally [61]. Instead, the concept of interpretability remains to be

perceived as a broad concept representing the starting point of how XAI can be

realised. As researchers investigate interpretability, it remains to be seen whether

an absolute definition applicable to all models can be attained. Alonso et al. explain

that interpretability has been difficult to formally define because of its dependence

on "two heterogeneous entities" referring to the model and the user [61]. This

statement highlights an important variable which is interpretability’s dependence

on the human user - a variable often overlooked by researchers. Nonetheless, the

theoretical concepts attempting to define interpretability are a useful starting point

for developing potentially interpretable frameworks.

As described in detail in Chapter 2, Lipton introduces several interpretability

criteria such as simulatability, decomposability and transparency [12]. The concepts are

broad, thus, providing a good basis for understanding how to assess the level of

interpretability of a model regardless of its type. MCDM fits the criteria devised by

Lipton; hence, it is considered a feasible alternative to state-of-the-art classifiers.

MCDM lacks the ability to process uncertainty motivating its extension with FL

[62]–[64]. Moreover, the FL extension is also an opportunity to improve the

MCDM’s performance.

FL interpretability relies on the transparency of its individual components,

including the membership functions (MFs) and the rule-base. Fuzzy interpretation

aims to design a model that is understood from two main perspectives: the model

designer and the user. This could be achieved by limiting the number of MFs to a

level the human mind can comprehend, as advised by Gacto et al. [16].

Psychologically speaking, this limit has been defined as 7 ± 2; dubbed as a guide
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for "our capacity for processing information" [65]. Gacto et al. stress that reducing

the number of MFs alone is insufficient and suggest minimising the overlap

between MFs is essential in maintaining their interpretability. The two metrics, the

number and overlap of MFs, are also applicable to fuzzy partitions.

For Mamdani-type rule-based systems (RBS), the metrics can be manipulated by the

model designer. Therefore, interpretability can be achieved by taking the metrics

into account when designing the FIS structure; by avoiding the use of numerous

fuzzy partitions, MFs and rules.

3.2.5 Why MCDM?

The rapid advancement of AI resulted in its unforeseen implementation in

numerous fields, including but not limited to manufacturing, finance, biomedical

and legal [66]–[69]. The use of AI came with an array of benefits, such as reducing

costs and improving efficiency. Despite this, implications arose due to the

prevalence of black-box models. The reduced transparency of black-box models

meant interpretability, and explainability was lacking. As a result, instances of

unexplained misclassifications have had grave consequences affecting the lives of

individuals, as in the criminal law field [20]. The implications prompted

international regulatory authorities and research institutions to stress the

importance of explainable AI [70]–[72].

For example, the EU’s General Data Protection Regulation (GDPR) law was

predominantly intended to protect individuals’ right to protect their data [70].

However, the law dictates that users of whom data was processed automatically

have the right to obtain ’meaningful information about the logic involved’ in

processing said data. Although this does not explicitly signal the need for XAI, it is

clear that systems utilising ML to perform automated decisions should now

transition to transparent methods to facilitate explainability functionality.

Furthermore, a report by the European Commission’s AI-HLEG1 suggests

transparency as a key requirement for trustworthy AI; where transparency in this

particular sense entails "traceability, explainability and communication".

1High-level expert group on artificial intelligence
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Conversely, the UK government, in its ’Guidelines for AI procurement’ document

[71] was more specific in its approach, advising procurers to ’avoid’ black box

models. The justification is that white box models allow users to benefit from

interpretability which results in models that are more likely to be sustainable by

future AI vendors. In spite of the clearer stance, the document remains a guideline

thus, it is less likely to result in many companies adopting white-box models.

The other obstacle to adopting white-box models, such as MCDM, is their limited

versatility and applicability. If improved, MCDM models serve as a promising

route to XAI. Their model-based interpretability allows designers to focus on

explainability - the ultimate aim. MCDM’s structure makes use of multiple

weighted criteria while, a set of ideal solutions define what the criteria should be

ideally. This method mimics how a human takes a decision when presented with

several alternatives. A prime example of MCDM is supplier selection, where a

company has to decide between a list of suppliers. This is often decided based on

criteria such as delivery speed, cost and payment terms. Although humans would

not necessarily quantify the criteria numerically in a practical setting, they would

still have a sense of how good or bad each of the criteria is. The weights represent

how important each of the different criteria is to the decision. Similarly, humans

would associate an importance level to different factors in a decision.

MCDM’s mimicking of the human’s decision-making thought process allows for a

promising research route. This is because the model will be able to do more than

just classify data; it will also be able to demonstrate to an expert how a decision

was made in a manner similar to their decision process. This can provide an expert

with the peace of mind knowing that they fully understand the reasoning behind a

decision, building the trust in the model [73].

3.3 Proposing fuzzy-MCDM-based classifiers

3.3.1 MCDM for classification

As described in Section 2. MCDM is a set of techniques capable of providing

decision support based on an input of criteria representing the alternatives. MCDM
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has seldom been explored for classification. However, some studies show its

success. For instance, Baccour proposed ATOVIC as one of the first MCDM-based

classifiers [14].

ATOVIC is a semi-data-driven MCDM classification framework proposed by Leila

Baccour in 2018 [14]. The model is constructed by defining a sub-MCDM model

for each class in the dataset. For instance, in binary classification, a sub-model is

constructed for each class; this involves setting all the model parameters, as will be

described in detail below.

Before model construction, the data is divided into a reference and testing dataset

(Xr and Xt respectively). Consecutively, normalised versions of the datasets are

represented by Θr and Θt, respectively.

Constructing the model entails obtaining the following:

(a) Normalised reference dataset Θr

(b) Feature weights wr

(c) Cost and benefit feature classification C, B

(d) Positive and negative ideal solutions f+, f−

(e) Measure extreme values Q±, R±, S±

hr
j p

=

√√√√ mr

∑
i=1

(xr
ijp
)2 (3.1)

where xr
ijp

is the non-normalised term for object i, feature j and, class p; mr is the

number of instances in the reference dataset Xr.

θr
ij p

=
xr

ij

hr
ij p

(3.2)

Normalisation is performed separately for each feature by calculation of a

normalisation factor hr
j p

. The factor is determined using feature data from the

reference dataset Xr using Equation (3.1); this is done for features j = 1 to jn and

classes p = 1 to k. The normalised term θr
ij p

is obtained using (3.2).
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wr
j =

σr
j

∑n
j=1 σr

j
(3.3)

where σr
j is the standard deviation of feature j.

After normalising the reference dataset Xr, the feature weights wr
j are calculated

using Equation (3.3). This method of weighting relies on the features variance

having a positive correlation with their respective impact to the classification result

[74].
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Figure 3.1: The relationship between costs and benefits for binary
datasets

To be able to determine the ideal solutions, features have to be assigned as costs C or

benefits B for each class. A feature that is a cost for a particular class, becomes larger

for records pertaining to the class and, becomes smaller if not a member of the class,

as illustrated in Figure 3.1.

f+p =
{

θr+
1 , θr+

2 , . . . , θr+
n
}

=
{
(maxiθ

r
ijp

/j ∈ B), (miniθ
r
ijp

/j ∈ C)
}

(3.4)

f−p =
{

θr−
1 , θr−

2 , . . . , θr−
n
}

=
{
(miniθ

r
ijp

/j ∈ B), (maxiθ
r
ijp

/j ∈ C)
}

(3.5)

where f+p and f−p are the positive and negative ideal solutions, respectively; θr+
n and
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θr−
n is the positive and negative ideal solution for feature n; θr

ijp
/j is the term for object

i, feature j and class p, from the normalised reference dataset. The ideal solutions

are calculated for features j = 1 to jn, classes p = 1 to k.

Baccour suggested expert knowledge be used, where available, to determine C and

B [14]. Nonetheless, no method was given in case expert knowledge was absent,

implying the designer must have a certain level of expert knowledge about the

dataset to be able to construct the ATOVIC model. When the costs and benefits are

determined, the ideal solutions are simply calculated from the normalised features

θn as defined in Equations (3.4-3.5).

Sci =
n

∑
j=1

wr
j ∗ ( f+ijc − θijc)/( f+ijc − f−ijc), Sci ∈ [0, 1] (3.6)

Rci = max
j

[
wr

j ∗ ( f+ijc − θijc)/( f+ijc − f−ijc)
]
, Rci ∈ [0, 1] (3.7)

Qci = ρ
Sci − S−

c

S+
c − S−

c
+ (1 − ρ)

Rci − R−
c

R+
c − R−

c
, ρ ∈ [0, 1] (3.8)

where i is the row (record), j is the feature (input), ρ is the weighting parameter and;

S+
c = max(Sr

c) (3.9)

S−
c = min(Sr

c) (3.10)

R+
c = max(Rr

c) (3.11)

R−
c = min(Rr

c) (3.12)

where (3.9-3.12) are defined for classes c ∈ [1..k], where k is the number of classes.

The ideal solutions are utilised to calculate the different distance measures S, R and

Q; Manhattan (Equation (3.6)), Chebyshev (Equation (3.7)) and the normalised

weighted sum of both (Equation (3.8)), respectively. The measures S and R are

normalised using linear scaling to determine the weighted normalised sum Q by

using Equations (3.8-3.12). To be able to determine the extremes of S and R; they are

calculated from the reference dataset Θr for classes c ∈ [1..k].
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In order to classify data using ATOVIC, the minimums of the measures are used

to determine which class they point to (Figure 3.2). Since there are three measures,

there would be three results for each object. Hence, a series of logical operations

are executed to narrow down the result based on the three results. The following

steps are explained for binary and multi-classification applications. The first step is

to assess whether there is a dominant class within the set of results. If yes, it will

be used to determine the classification result, as illustrated in Figure 3.2. In cases

where a dominant class does not exist, the minimums will be assessed to determine

whether there is consensus between minQ and minR, or minQ and minS.

3.3.2 Improvements to ATOVIC

The original version of ATOVIC, as defined by Baccour in 2018, has its limitations

[14]. The model was mostly data-driven. However, it relies on expert knowledge to

determine whether each feature is a cost or benefit. This prevents ATOVIC from being

widely explored and implemented for problems where such expert knowledge does

not exist.

rj =
∑m

i=1(xij − x̄)(yi − ȳ)√
∑m

i=1(xij − x̄)2
√

∑m
i=1(yi − ȳ)2

(3.13)

where x is the value for row (object) i and feature j. The second variable y is the

labelled class for object i; and m is the number of objects.

Class 1: IF rj > 0 THEN: j is Cost; ELSE: j is Benefit (3.14)

Class 2: IF rj > 0 THEN: j is Benefit; ELSE: j is Cost (3.15)

As an improvement to ATOVIC, a method for classifying features as costs or benefits

was developed to eliminate the requirement for expert knowledge. The method uses

the Pearson correlation coefficient (see Equation (3.13)) as a means of determining

costs and benefits. The correlation rj of each feature j with the labelled class y is

calculated. The correlation’s polarity is used to classify features as a cost or benefit,

as defined in Equations (3.14-3.15).
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Figure 3.2: ATOVIC classification based on the measures S and R.
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wj =
rj

∑n
j=1 rj

(3.16)

where rj is Pearson coefficient (3.13) and, n is the number of features.

The weight calculation method was also modified, in Equation (3.16), to use the

correlation coefficient as opposed to the standard deviation in the original version

of ATOVIC. Standard deviation as a weight estimator could be satisfactory for

certain types of datasets. However, the correlation coefficient extracts the statistical

relationship between each feature and the class; hence, it is expected to enable

superior performance.

3.3.3 Extension to fuzzy-MCDM

Fuzzy-MCDM is a class of MCDM extended with fuzzy logic sets (FLSs) for

enhanced performance, adaptability and functionality. This can be achieved by

incorporating different aspects of FLSs, such as fuzzy numbers or fuzzy inference

systems. Fuzzy-ATOVIC is a version of ATOVIC which has been extended with FL

Sets. In the first iteration of fuzzy-ATOVIC, it was augmented with a FIS to replace

the final classification steps in ATOVIC. The rationale behind replacing condition

statements with a FIS is to improve its interpretability. Although the condition

statements provide interpretability, the FIS provides a fuzzy output which does a

better job of reflecting how certain the result is - a key advantage of Fuzzy-ATOVIC

versus ATOVIC.

The FIS takes in the distance measure as an input and provides a fuzzy class output

ranging from 0 to 1. The distance measure can be either of the three distance

measures: Q, R and S. The fuzzy output is defuzzified to determine the crispy class

by the use of a threshold, as illustrated in Figure 3.3.

The FIS rules are formulated based on an understanding of how the measure reflects

similarity and, whether the two sub-models are in agreement, as illustrated in Figure

3.4. The measures from both models are assessed as HI or LO - where HI is larger

than 0.5 and LO is lower than 0.5. This is suitable because the measures are unity

normalised. Consequently, when both models are in agreement, the sub-models
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Table 3.1: FIS structure: input-output MFs; where M represents
either of the measures Q, R or S.

Inputs MFs min max

∆D1 2 0 1

∆D2 2 0 1

nD 2 -1 1

Output 2 0 1

outcomes are used as a basis for the decision. Meanwhile, when the sub-models are

in conflict, the more definitive result from either sub-model is used. The rules are

formulated such that the more definitive model is determined numerically, using nD,

as defined by Equation (3.18). Since nD is a difference, its polarity can be used by the

FIS to discern which sub-model’s decision is more definitive. The MFs have been

designed intuitively such that a negative nD would mean the negative sub-model

is more definitive; conversely, a positive nD means the positive sub-model is more

definitive.

(a) Dc uses two MFs: class_1 (HI), class_2 (LO)

(b) nD uses two MFs: positive (positive outcome model is used for decision),

negative (negative outcome model is used for decision)

(c) Output: two MFs: class_1, class_2

∆Dc = ds,2 − ds,1 (3.17)

where s is the sub-model number; D represents one of the three measures: Q, R or

S; dc,1 is the distance to class one and, dc,2 is the distance to class two. Values for ∆Dc

are computed for c = 1 . . . k - where k is the number of classes.

nD = |∆D2| − |∆D1| (3.18)

The measures have an inverse relationship with similarity, similar to a distance; as
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Table 3.2: Fuzzy-MCDM classifiers: overview

Model Measures Normalisation FIS Type

Fuzzy-ATOVIC Q, R, S Eigenvalue Hierarchical

Fuzzy-TOPSIS S Eigenvalue Singular

Fuzzy-VIKOR - A Q, R, S Linear Hierarchical

Fuzzy-VIKOR - B Q, R, S None Hierarchical

the measure falls, the similarity is higher. Each sub-model provides two values of

each measure - one for each class. Thus, the two sub-models provide four Ds,c

values, where s is the sub-model number, and c is the class number.

ATOVIC as a framework uses three measures Q, R and S. Hence, a set of three FISs

is used in parallel to process the measures resulting in a Fuzzy Class Output from

each, as illustrated in Figure 3.5. The decision is an aggregation of the three FIS

outputs; the same applies to VIKOR. However, TOPSIS relies on a single measure

(measure S); therefore, a single FIS is sufficient for classification. The difference in

the ways classification occurs for the different MCDM methods could have an effect

on performance, as will be investigated in the next section. The differences include

the measures, normalisation method and FIS Types, as shown in Table 3.2.

3.4 Assessing fuzzy-MCDM-based classifiers

The aim of this section is to evaluate the proposed set of MCDM-based classifiers

against the standards expected from state-of-the-art classifiers. The section starts

with an introduction to the benchmark datasets used and the rationale as to why

they were selected. Consequently, three comparative studies are presented

assessing Fuzzy-MCDM frameworks. The first study compares Fuzzy-MCDM to a

set of state-of-the-art classification frameworks. Next, all Fuzzy-MCDM methods:

Fuzzy-ATOVIC, Fuzzy-TOPSIS and Fuzzy-VIKOR, are compared against each

other. Finally, the section is concluded with a comparison between ATOVIC and

Fuzzy-ATOVIC to demonstrate the effect of the fuzzy extension on performance.

The results are analysed with the purpose of assessing Fuzzy-MCDM feasibility as

an interpretable data-driven framework for classification.
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Figure 3.5: High-level structure of fuzzy component for
Fuzzy-ATOVIC

3.4.1 Benchmark datasets

In this chapter, benchmark datasets are utilised to investigate the performance of

various types of models against the proposed Fuzzy-MCDM-based classification

techniques, as defined in Section 3.3. The datasets were retrieved from public

repositories: KEEL-dataset 2 [75], and the University of California’s (UCI) Machine

Learning Repository [76]. In this section, the structure of the datasets and the

rationale behind their selection are described.

The proposed models are being investigated from interpretability so it was

important to be able to assess how the human-understandability of features can

impact this. Thus, a combination of human-understandable and

non-understandable datasets were selected. Also, the datasets comprised a range to

dimensionalities in order to assess the proposed model’s performance and

interpretability in relation to dataset complexity.

As data moves to the cloud in many fields, the availability of datasets is improved,

to the delight of data-hungry ML scientists around the world. The medical field is

2KEEL-dataset: Knowledge Extraction based on Evolutionary Training dataset repository
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Table 3.3: Parkinson’s disease speech dataset: attribute information

Attribute Type Count

ID Integer 1
Gender Category 1
Baseline Features Real 21
Intensity Parameters Real 3
Formant Frequencies Real 4
Bandwidth Parameters Real 4
Vocal Fold Real 22
Mel Frequency Cepstral Coefficients (MFCCs) Real 84
Wavelet Features Real 182
Tunable Q-Factor Wavelet Transform (TQWT) Real 432

Total 754

Table 3.4: Parkinson’s disease speech dataset: class information

No. Class Count

1 Negative 192
2 Positive 564

Total 756

no exception, with multiple online repositories storing datasets for ML research.

Data classification is useful for medical diagnosis, where patients need to be classified

as positive or negative. The first dataset used is for predicting whether a patient

suffers from Parkinson’s disease (PD), based on features extracted from a recording

of the patient speaking. The dataset contains two classes (negative and positive)

with significantly more instances representing positive data than negative, as

shown in Table 3.4. The dataset aims to diagnose patients based on an audio

recording of them speaking. Hence, the attributes include signal processing

features extracted from the recordings. Moreover, the signal features aim to capture

the patient’s speech frequency and amplitude characteristics via a series of

wavelets and transforms, as listed in Table 3.3.

For the second case study, the breast cancer dataset attributes rely on information

acquired by clinicians through breast cancer screening. The attributes score various

characteristics of a tumour, as listed in Table 3.5. The objective is to classify tumours

as either malignant or benign, i.e. cancerous or non-cancerous, respectively. The two
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Table 3.5: Breast cancer Wisconsin: attribute information

Attribute Type Domain

ID Integer 1
Clump Thickness Real [1, 10]
Uniformity of Cell Size Real [1, 10]
Uniformity of Cell Shape Real [1, 10]
Marginal Adhesion Real [1, 10]
Single Epithelial Cell Size Real [1, 10]
Bare Nuclei Real [1, 10]
Bland Chromatin Real [1, 10]
Normal Nucleoli Real [1, 10]
Mitoses Real [1, 10]

Total 754

Table 3.6: Breast cancer Wisconsin: class information

No. Class Count

1 Benign (non-cancerous) 458
2 Malignant (cancerous) 241

Total 699

classes are also imbalanced. However, the negative class is over-represented in this

dataset compared to the positive class for the PD dataset.

The next dataset that will be used is a Chess dataset. Any complete game of Chess

has three stages from start to finish: opening, middlegame and endgame. The

manner in which each player undertakes their three stages impacts the likelihood

of them winning. This dataset is concerned with a certain type of endgames where

the remaining pieces are the king and a rook for white, while the pieces remaining

for black are a king and pawn. The attributes contain information about where the

pieces are located, with a total of 36. The two classes are reasonably balanced (Table

3.7) and represent whether White can win or lose.

Table 3.7: Chess KR-vs-KP: class information

No. Class Count

1 Win 1669
2 Lose 1527

Total 699
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Table 3.8: Keel titanic dataset: attribute information

Attribute Type Domain

Class Category [−1.870, 0.965]
Age Category [−0.228, 4.38]
Sex Category [−1.920, 0.521]

Table 3.9: Kaggle titanic dataset: attribute information

Attribute Type Possible Values

ID Integer [1..891]
Ticket Class Integer [1..3]
Sex Category M, F
Age Real [0, 80]
Sibling(s)/Spouse(s) Integer [0..8]
Parent(s)/Children Integer [0..6]
Embarked Category C, Q, S

The last two datasets are Titanic passenger datasets for predicting passenger

survival. The first Titanic dataset was retrieved from the KEEL repository and had

three attributes (Table 3.8). Moreover, the second dataset contained a larger number

of attributes, including further information such as the number of family members,

passenger’s age, and the port embarked from.

Pre-processing of the data entailed encoding categorical features into a numeric

format. This was done because MCDM, in its current format, cannot handle

categorical features. Consequently, ten randomised resamples were generated for

each of the datasets in a 5-fold format. The k-fold cross-validation method is

considered to have less bias than the traditional 1-fold approach, which employs a

single set of training and testing datasets.

Table 3.10: Keel and Kaggle titanic datasets: class information

No. Class Keel Kaggle

1 Survived 1490 549
2 Casualty 711 342

Total 2201 891
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Table 3.11: Parkinson disease: performance

Model ACC (%)
F-Score

(%)
TPR (%) TNR (%)

Fuzzy-ATOVIC 78.8 70.6 84.6 61.6
Decision Trees 77.7 70.3 83.3 61.4
KNN 86.9 88.4 85.0 92.3
SVM 87.5 81.2 92.5 72.7
NB 44.2 42.9 28.3 90.7

3.4.2 Comparative analysis of MCDM-based and SOA classification

frameworks

In this section, MCDM-based classifiers are compared to a set of state of the

art (SOA) techniques. For simplicity, the best-performing proposed MCDM-based

classification model is compared to a set of SOA techniques, including DT,

K-Nearest Neighbour (KNN), Support Vector Machines (SVM) and Naive Bayes

(NB).

For the PD dataset, the performance trade-off was considerable, with a

performance drop of 20% when comparing the best MCDM to SVM, as shown in

Table 3.11. One of the possible reasons for this is the dataset had a large number of

features. MCDM’s inherent simplicity is weak point for dealing with more complex

problems. The inferior performance is also attributable to the MCDM’s simpler

training framework, which relies on a single iteration to fit the model, underscoring

the edge of iterative learning. The single iteration is executed based on the steps

described in Section 3.3. Moreover, certain types of real-world datasets may contain

an excess of a thousand features. Thus, it may be suitable to employ feature

extraction or selection to ensure MCDM-based classifiers have a better chance of

performing satisfactorily.

Contrary to the first dataset, for the breast cancer case study, the MCDM-based

classifier performs as good as or outperforms the SOA classifiers. When training

using the breast cancer dataset (in Table 3.12), Fuzzy-ATOVIC performed

marginally similar to other SOA with an accuracy of 95.6%. Since all models were

able to perform well, it is clear this is a good quality dataset with clear links

between the features and the different classes. Nevertheless, it serves as an example
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Table 3.12: Breast cancer: performance

Model ACC (%)
F-Score

(%)
TPR (%) TNR (%)

Fuzzy-VIKOR (no-norm) 95.9 94.7 91.6 98.1
Decision Trees 93.9 93.5 92.6 94.7
KNN 95.5 94.7 92.7 97.0
SVM 96.6 96.7 97.2 96.3
NB 96.8 96.8 97.2 96.5

Table 3.13: Keel titanic: performance

Model ACC (%)
F-Score

(%)
TPR (%) TNR (%)

Fuzzy-ATOVIC 77.8 63.8 49.1 91.2
Decision Trees 35.2 8.9 98.7 4.9
KNN 69.1 8.1 4.2 100.0
SVM 32.3 0.0 100.0 0.0
NB 32.3 0.0 100.0 0.0

of where MCDM-based classifiers can excel and could ultimately be developed as

an intrinsically explainable framework.

Running the same models on the KEEL Titanic dataset demonstrates a situation

where an MCDM-based classifier was able to outperform SOA classification

techniques. In this particular case, over-fitting caused the testing data performance

to be particularly low for SVM and NB despite both models performing excellently

for the training dataset. Since MCDM-based classifiers perform fitting rather than

learning, they perform better for datasets prone to over-fitting.

Despite KEEL Titanic having a simpler dataset, the quality of data was lacking

compared the breast cancer dataset. Therefore, the models performed consistently

better using the breast cancer dataset.

A great deal of discussion surrounds the viability of interpretable models due to

their perceived inferior accuracy performance. The theory that opting for

interpretable models means trading off performance is frequent in the literature

[77]–[80]. Despite this, other researchers have suggested the widely cited

performance trade-off theory is yet to be proven [2], [81]. The results provide a

promising indication that interpretable models could perform as good as less
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Table 3.14: Parkinson disease: performance

Model ACC (%)
F-Score

(%)
TPR (%) TNR (%)

Fuzzy-ATOVIC 78.8 70.6 84.6 61.6
Fuzzy-TOPSIS 78.7 70.5 84.6 61.4
Fuzzy-VIKOR (linear-norm) 76.1 72.2 78.4 69.0
Fuzzy-VIKOR (no-norm) 77.4 73.6 80.6 68.2

interpretable models. More specifically, it demonstrates MCDM-based classifiers

performing comparably to SOA classifiers - an important starting point for any

further investigation of MCDM as a dependable data-driven classifier. The

rationale behind opting for MCDM-based classifiers as opposed to SOA

interpretable techniques is the higher interpretability providing greater potential

for explainability.

3.4.3 Comparative analysis of MCDM-based frameworks for

classification

In this part, four types of Fuzzy-MCDM techniques (listed below) are compared

against each other in order to identify the most effective for classification in terms of

performance and interpretability. The use of MCDM-based classifiers was justified

by the last section, where it was shown the performance trade-off is manageable for

certain applications.

(a) Fuzzy-ATOVIC: a fusion of the benefits of TOPSIS and VIKOR. First introduced

by Baccour in 2018 [14] and consequently extended with FL to form Fuzzy-

ATOVIC.

(b) Fuzzy-TOPSIS: a FL extended version of TOPSIS tailored for classification

(c) Fuzzy-VIKOR (linear-norm): a FL extended version of VIKOR tailored for

classification, using linear normalisation

(d) Fuzzy-VIKOR (no-norm): a FL extended version of VIKOR tailored for

classification, with no normalisation

The PD dataset contains 754 attributes. A limitation that has been suggested for

interpretable models is the claim they cannot perform well with larger datasets.
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Table 3.15: Breast cancer: performance

Model ACC (%)
F-Score

(%)
TPR (%) TNR (%)

Fuzzy-ATOVIC 93.2 89.9 82.6 98.8
Fuzzy-TOPSIS 93.2 89.9 82.6 98.8
Fuzzy-VIKOR (linear-norm) 95.8 94.6 91.5 98.1
Fuzzy-VIKOR (no-norm) 95.9 94.7 91.6 98.1

Table 3.16: Chess: performance

Model ACC (%)
F-Score

(%)
TPR (%) TNR (%)

Fuzzy-ATOVIC 81.1 80.5 75.4 86.5
Fuzzy-TOPSIS 81.2 80.5 75.3 86.6
Fuzzy-VIKOR (linear-norm) 57.7 31.7 99.7 19.3
Fuzzy-VIKOR (no-norm) 57.4 31.0 100.0 22.9

Although 754 is not considered large by Big Data standards, it is nonetheless a

starting point for assessing the ability of MCDM to handle larger datasets. When

tested with the PD dataset, all MCDM methods achieved greater than 75% accuracy

in predicting a patient, as shown in Table 3.14. The highest scoring method was

Fuzzy-ATOVIC at 78.8% accuracy. Despite Fuzzy-ATOVIC performing the highest

on the accuracy, Fuzzy-VIKOR (no-norm) has the highest F-Score at 73.6%, which

signifies a higher balance between sensitivity and specificity (TPR and TNR,

respectively). The first set of results indicates performance is largely similar. Hence,

there is no clear advantage to using a specific model for the sake of accuracy levels.

Furthermore, when running the same models on the breast cancer dataset, the

performance levels (in Table 3.15) indicate better overall performance for

Fuzzy-VIKOR versions with and without normalisation. The trade-off for

Fuzzy-ATOVIC in this instance is the lower specificity rate which is a worthy

trade-off for better sensitivity - the successful detection of positive patients. In

contrast, when running the models on the Chess dataset Fuzzy-ATOVIC and

Fuzzy-TOPSIS performed better, as shown in Table 3.16. The Chess dataset is a

non-linear problem relying on categorical attributes that are represented

numerically. The structure of the data meant the method of normalisation used in

Fuzzy-ATOVIC and Fuzzy-TOPSIS had a negative impact on performance.
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Table 3.17: Keel Titanic: performance

Model ACC (%)
F-Score

(%)
TPR (%) TNR (%)

Fuzzy-ATOVIC 77.8 63.8 49.1 91.2
Fuzzy-TOPSIS 77.8 63.8 49.1 91.5
Fuzzy-VIKOR (linear-norm) 77.6 63.2 48.4 91.5
Fuzzy-VIKOR (no-norm) 77.6 63.2 48.4 91.5

Table 3.18: Kaggle Titanic: performance

Model ACC (%)
F-Score

(%)
TPR (%) TNR (%)

Fuzzy-ATOVIC 78.8 75.9 68.7 85.1
Fuzzy-TOPSIS 78.8 75.9 68.7 85.1
Fuzzy-VIKOR (linear-norm) 78.9 75.9 68.6 85.2
Fuzzy-VIKOR (no-norm) 78.8 75.9 68.6 85.2

The ideal solutions were inspected to understand how normalisation impacted

performance. It revealed that linear normalisation, used for Fuzzy-VIKOR

(linear-norm), caused some ideal solutions to be set as undefined values such as Inf

or NaN. This rendered the ideal solutions ineffective. Furthermore, when

non-normalised data (Fuzzy-VIKOR (no-norm)) was used for numerical categorical

data, it resulted in ideal solutions set at arbitrary integer values. This issue was

only apparent with the Chess dataset. Notably, the nature of multi-criteria

frameworks dictates that normalisation is vital for managing bias because of the

variability of the criteria’s ranges.

Finally, the model was run on two different Titanic datasets containing attributes of

passengers with the aim of predicting their survival. Interestingly, performance

characteristics (in Tables 3.17-3.18) are similar, with better specificity (TNR) than

sensitivity (TPR). However, the models had around 19% better sensitivity (TPR),

which resulted in an improved F-Score. Furthermore, the different types of

normalisation did not impact performance for the Titanic datasets.

To summarise, the performance results indicate that all four implementations of

Fuzzy-MCDM-based classifiers perform similarly for all datasets, except the Chess

dataset, in which case Fuzzy-ATOVIC and Fuzzy-TOPSIS had better performance.

As described in Section 3.3, the different Fuzzy-MCDM classifiers differ in
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parameter calculation technique and not in the general structure; therefore, the

level of interpretability is considered largely similar.

The expectation was that the normalisation technique was going to have

considerable impact on performance for all datasets. However, the results show

that the normalisation technique does not have a significant impact on performance

for most datasets tested. The only exception is the Chess dataset, where

performance deteriorated for the two Fuzzy-ATOVIC models because of the more

suited normalisation used by Fuzzy-ATOVIC and Fuzzy-TOPSIS.

3.4.4 Comparing ATOVIC and fuzzy-ATOVIC

In this part, ATOVIC is compared to the fuzzy proposed version, Fuzzy-ATOVIC.

The aim is to assess whether the proposed fuzzy extension resulted in a trade-off or

improvement. Based on the theoretical link between interpretability and

performance [77]–[80], it is expected the fuzzy extension could have a negative

impact on classification accuracy because of the increased interpretability of the

fuzzy version. However, the results yield a different story where Fuzzy-ATOVIC

outperforms ATOVIC in four out of the five datasets (Table 3.19).

The difference in structure between ATOVIC and Fuzzy-ATOVIC lies mainly in the

fuzzy extension. In it, a Fuzzy Inference System (FIS) is used to perform the

classification, based on the ATOVIC measures Q, R and S. By processing the three

measures separately in three separate FISs, it means the varying magnitudes of the

measures, due to the different distancing types, do not bias the decision-making

towards a specific distance type. Since ATOVIC utilises sub-models for

representing each class, bias could arise when a sub-model becomes representative

of more data. This could be due to a myriad of reasons that such as the feature-set,

weights and ideal solutions.

In addition, the ATOVIC model performed poorly for three out of five of the

datasets. Meanwhile, the Fuzzy-ATOVIC model improved accuracy and F-Measure

performance across all five datasets, which indicates it is likely to be suitable for a

wider variety of data problems. Moreover, the FIS adds an additional layer of

interpretability, as will be demonstrated in the next chapter.
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Table 3.19: ATOVIC and Fuzzy-ATOVIC performance results

ATOVIC Fuzzy-ATOVIC

Model ACC F-Score ACC F-Score

Parkinson disease 58.2 60.5 78.8 70.4
Breast Cancer 68.3 14.5 93.2 89.8
Chess 60.7 30.5 81.2 80.6
Keel Titanic 77.6 63.2 75.4 68.3
Kaggle Titanic 74.5 51.2 78.8 75.9

Moreover, the theory that interpretable modelling results are a trade-off of

performance is not a universal rule [2]. The results indicate a case were ATOVIC

was able to perform as good as SOA classification frameworks. Therefore, the

investigation of MCDM as a dependable data-driven classification framework is

considered a promising research gap.

The lack of optimisation capabilities prevented MCDM-based classifiers from

performing favourably with larger datasets such as the PD dataset. For this dataset,

Fuzzy-ATOVIC and DT performed 10% less accurately compared to SVM models -

highlighting a potential performance trade-off. Extensive literature show how

interpretability forces the trade-off of performance in a number of ML models

[77]–[80]. Nonetheless, the curse of interpretability on performance is a phenomenon

still worth investigating further for the fact it is yet to be unequivocally proven [2],

[81].

3.5 Summary

This chapter was the starting point for investigating a relatively new class of

methodologies for interpretable data-driven classification: MCDM. Three different

types of MCDM classifiers are defined: ATOVIC, VIKOR and TOPSIS.

Consequently, the models were extended with FL by the use of a Fuzzy Inference

System (FIS). The FIS was developed for processing the measures/distances

generated by the MCDM classifiers to perform the final classification. The results

demonstrate Fuzzy-MCDM’s potential for performing comparably to SOA models.

Examples of this include Fuzzy-ATOVIC achieving 95.9% accuracy, which was only
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1% less than the best performing SOA model: Naive Bayes. Moreover, for the Keel

Titanic dataset, Fuzzy-ATOVIC was the best performing at 77.8%. As expected,

there are cases where MCDM classifiers are lacking, such as the PD dataset, where

performance was particularly lower compared to SOA models. This highlights

MCDM’s limitation in dealing with larger feature sets.

Comparing the different Fuzzy-MCDM revealed performance was largely similar

except for cases where certain normalisation techniques resulted in undefined values

for categorical data. Hence, the recommendation is to utilise vector normalisation to

avoid undefined values.

Finally, comparing ATOVIC to its fuzzy extended version demonstrated a noticeable

improvement in performance and consistency of results. Therefore, Fuzzy-ATOVIC

users will be able to benefit from the increased performance of FL and enhanced

interpretability of ATOVIC.

Despite the benefits of MCDM-based classifiers, the methodology in its current

form lacks the training rigour provided by state-of-the-art data-driven classifiers.

Therefore, its classification performance can be quickly limited when dealing with

complex datasets.

Moreover, its simple structure prevents it from handling datasets with a large

number of features. As a result, the methodology’s applicability is not as wide as

state-of-the-art classifiers.

The main rationale for using MCDM is its inherent interpretability. If MCDM can

perform as good as SOA models, it is considered to be a viable candidate for data-

driven explainable-AI. The MCDM-based classifiers explainability is a gap that will

be investigated in the next chapter.
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4 Towards an explanation

framework for Fuzzy-MCDM

Data-driven classifiers based on MCDM and fuzzy logic possess significant

interpretability potential. MCDM, and in a more general sense, Decision Theory

has been one of the few areas that are yet to be explored as a possible jigsaw piece

to explainable AI. The area is often used to tackle a variety of problems in relation

to how humans make a decision using knowledge from disciplines such as

psychology, philosophy and cognition. Since the success of explainable-AI is

dependent on how the human user benefits from the generated explanation,

Decision Theory could prove useful in this regard as it is an area focused on how

humans make decisions. MCDM are a set of modelling techniques based on the

principles of Decision Theory. In this chapter, an explanation framework is

introduced for the first time, as a tailored augmentation for MCDM-based

classifiers. The framework uses model-based information to generate insightful

explanatory output. The insight describes the states of internal classifier parameters

and how they impact the model’s decision in a manner that is similar to a human’s

decision making process.
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4.1 Introduction

In the previous chapter, a set of Fuzzy-MCDM classifiers were proposed. They

were found to be a feasible option for certain areas where they achieve satisfactory

accuracy compared to state-of-the-art classifiers. This chapter explores one of the

main benefits of using interpretable modelling: the potential for explainability. The

chapter is started with a literature review on interpretability and explainability, as

shown in Figure 4.1. Consequently, a comprehensive explainable framework is

proposed for the first time for Fuzzy-MCDM. The framework is implemented for

five benchmark datasets - some of which consist of human-understandable

features. The chapter is concluded with a discussion appraising the explanation

framework as an XAI solution.

4.2

Literature


Interpretability &
Explainability

MCDM

Fuzzy-Logic

Natural
Language
Generation

Input-Output
relationship

4.3

Methodology

Explanation
Framework

Mimicking

Expert
Decision
Making

4.4

Applications


Benchmark
datasets

Good and bad
examples for
explanation

Discussion:

Arguments

Limitation

Appraisal

Psychology of
explainability

Explicability or
comprehensibility


discussion

XAI overview

Types of
explanation

Chapter 4

Sources of
interpretation

Figure 4.1: Chapter 4: mind map of general topics and concepts



4.2. Explainability: an overview 65

4.2 Explainability: an overview

4.2.1 The importance of model transparency

The term model transparency is often used as synonymous term for describing white

box models. However, the last decade’s growing interest for explainable-AI meant

model transparency has become a criterion for assessing how interpretable a model is

[12]. Lipton suggests three different transparency categories: decomposability,

simulatability and algorithmic transparency. Decomposability is defined by Lipton

as the degree to which a model can be decomposed into distinguishable

components with the requirement of understanding the purpose of each. Moreover,

simulatability focuses on how intuitive it could be to simulate i.e. execute the model

manually with pen and paper by a human. Lipton explains how decomposable and

simulatable a model is associated with its inherently interpretable. The last type of

transparency, algorithmic, refers to the modelling algorithm’s

human-understand-ability. Although the definitions defined by Lipton are not

universal, they pose a promising theory towards a complete definition of

interpretability.

The importance of model transparency varies depending on preferred route to

explainability. Explanation frameworks rely on a source to interpret information

from; this can be either model-based or a product of post-hoc analysis [12], [38].

Post-hoc interpretability relies solely on the input and output data to provide

model insight. Meanwhile, model-based is able to utilise internal model parameters

in addition to input-output data; therefore, model-based have more potential for

providing meaningful explanation inferred based on model execution. The main

downside of model-based interpretability is that is it incompatible with all model

types, most importantly robust complex methodologies such as deep learning.

Thus, post-hoc interpretability is still opted for in situations where only a complex

model can perform adequately for a given problem [3], [38], [82], [83].

However, post-hoc interpretability’s main limitation lies in the manner in which it

generates explanation. Since post-hoc only relies on input-output data, it is

somewhat limited in what it can provide in terms of a deep explanation. Therefore,
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although post-hoc is more widely applicable, this key obstacle holds the

methodology from being adopted as a dependable XAI solution. For this reason, a

group of researchers urge ML designers to opt for interpretable models as a first

resort for simpler problems [2], [81]. On the other hand, opposers of interpretable

models argue that the performance trade-off is not worthwhile [77]–[80]. However,

Rudin et al. stresses that it is not the interpretability that is responsible for the drop

in performance [2]. Ruden highlights an important argument by pointing out that

’the inferiority of interpretable models is not necessarily caused by their

interpretability’. The ultimate aim of explainability was always to provide a useful

explanation, while avoiding significant trade-off of performance. Opting for

post-hoc means attempting to improve the usefulness of the explanation while

being limited by the source of the interpretation; meanwhile, in model-based useful

explanation often appears more naturally while more effort has to be put in to

achieve satisfactory performance.

The current state-of-the-art AI solutions are predominantly using opaque models.

However, recent regulatory guidelines by the European Commission, UK

government and DARPA [70], [71], [84] have prompted a growing interest in

explainable-AI (XAI). The guidelines do not specify the methodology by which

explainability has to be achieved and, have left it to researchers to determine.

Nonetheless, the recommendations presented somewhat of a vision of what is to be

expected ultimately from XAI.

The focus on XAI was motivated by the limitations observed in conventional

non-explainable AI. Despite the promising performance achieved by prominent ML

learning techniques, the lack of explainability prevented wider adoption. An

explanation is not a functional requirement for low consequence applications such

as, facial recognition in photography and, active noise cancellation in headphones.

Nevertheless, explanation could be useful as an non-functional requirement for

designers and users. Serious consequence problems, on the other hand, are subject

to stringent protocols and regulations, which require a clear justification for all

decisions; this makes explanation a functional requirement for critical applications

such as medical, finance and, oil & gas.
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4.2.2 The psychology of explainability

The sole purpose of XAI is presenting explanation to human users. The manner in

which the explanatory information is received by the user depends on a host of

variables such as level of expertise and intellectual ability. For example, in

computer science, when designing a piece of software to be used by different

entities; each entity has a different combination of duties, knowledge and

experience. Therefore, the software’s interface must be catered to the wide variety

of requirements. Similarly, XAI as a proposition can only be truely successful if all

its users are able to benefit; this is only possible when the explanation is tailored for

each of the different parties [19]. The parties can include: the different users, the

model designer and model manager. In some cases, the model designer and

manager could be the same party.

Furthermore, an explanation is a form of language and, as cliché as it sounds,

language can be subjective. This bias of subjectivity in language means although a

piece of explanation is considered comprehensible to one human, it does not

guarantee it is for any other [59]. Comprehensibility refers to the desired state

where a model can be explained in a way a human can understand, i.e., grasp [19].

Comprehension in psychology is defined as the ’act of or capacity for grasping with

the intellect’ [85]. It highlights the importance of intellect in understanding

explanation.

For instance, if a decision support system was designed to diagnosis pneumonia

using X-ray imaging, the stakeholders involved include the patient, radiologist,

clinician and model designer. Clinicians and radiologists are both tasked with

interpreting image data, however, their distinct areas of expertise could affect how

understandable the explanation produced by the decision support decision is. If

this system was subject to GDPR law, the model’s explanation would have to be

understandable by the patient, i.e., the user’s right to meaningful explanation [70].

To explain a model’s result to an expert clinician is one thing. However, to provide

the same to the average patient is a more immense challenge clinicians occasionally

struggle with despite being experts in their field [86], [87].
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4.2.3 Explanation methodology

Explanation frameworks can be constructed using a variety of different

methodologies depending on the nature of the model to be explained. As described

in the previous section, XAI can be either post-hoc or model-based, as shown in

Figure 4.2. Literature on post-hoc XAI is more prominent with a higher number

compared to model-based [19]. Moreover, the frameworks are classified into

various categories depending on common attributes such as abstract level (local or

global) and methodology (decision trees, rule-based). Post-hoc methods utilise a

form of post-processing to predict why a model decided a certain way. With the

exception of model-agnostic methods, the methodologies vary widely depending

on the modelling technique they are tailored for.

Explainable-AI (XAI)

Post-hoc Model-based

Model-specific Model-agnostic

Logistic
Regression

Decision Trees

K-Nearest
Neighbour

Rule Based
Learners

General Additive
Models

Bayesian Models

Neural Networks

Support Vector
Machines

Ensembles and
Multiple Classifier

Systems

Figure 4.2: Flowchart representing the different types of explanation.
It is a simplified version based on a detailed flowchart by Barredo
Arrieta et al. [19].

In spite of the popularity of post-hoc interpretability, there exist several attempts at

model-based explainability [17], [77], [88]–[90]. Since model-based provides direct

explanation based on the model’s internal parameters, the insight has the potential
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XAI GoalsTransferability

Causality

Trustworthiness

Privacy Awareness

Accessibility

Fairness

Informativeness

Confidence
Interactivity

Figure 4.3: XAI goals research areas based on Barredo Arrieta et al.
literature in [19].

to reflect precisely how a model decided a certain including details such as which

features, rules and parameters were the root or contributing cause. Conversely, post-

hoc predicted explanations are restricted by their limited source of interpretation,

i.e., an opaque model’s input-output data.

The Cambridge Dictionary definition of explanation is as follows: "the details or

reasons that someone gives to make something clear or easy to understand" [91].

Although the dictionary definition is universal, there is a lack of agreement in the

research community regarding the definition, aims and rationale for explainable-AI

[19]. Barredo Arrieta et al. base the definition of XAI on the dictionary definition for

the word explanation as below:

“Given an audience, an explainable Artificial Intelligence produces
details or reasons to make its functioning clear or easy to understand.”

In contrast, Gunning’s definition emphasises additional aims of XAI, such as

building trust and managing the development of AI, as below and in [92].

“XAI will create a suite of machine learning techniques that enables
human users to understand, appropriately trust, and effectively
manage the emerging generation of artificially intelligent partners.”

Similarly, the goals of XAI are diverse (see Figure 4.3), including research areas

such as trustworthiness, confidence and accessibility [19]. The set of goals is

designed to tackle problems arising in the use of conventional opaque AI. The

relative importance of each goal depends on the application. For instance, more
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priority would be given to fairness in a law-related application. Moreover, any

problem involving users is likely to prioritise privacy awareness.

Explanation, when generated, can take many forms, including but not limited to

textual, graphical and audial. The medium selected would depend on the nature

of the underlying explanation. If the information presented to the user involves

complex ideas and concepts, then textual would be the optimal choice. Meanwhile,

numerical data could be understood better when represented graphically.

As a modelling technique, FL is considered a prominent research area for XAI with

around one third of literature [33]. It is inherently interpretable when used in the

Mamdani-type form. At a lower level, the model’s structure can be constructed to

ensure algorithmic transparency, decomposability and simulatability -

interpretability’s main components as proposed by Lipton [12]. Hence, FL is

considered a viable candidate for model-based interpretability and explainability

[58], [61], [93].

However, there has been comparatively less interest in utilising Decision Theory

knowledge for explainable AI [94]. Decision Theory as defined by Oxford

Dictionary as "the mathematical study of strategies for optimal decision-making

between options involving different risks or expectations of gain or loss depending

on the outcome". However, decision theory can be used solely as a modelling

technique. A subset of Decision Theory, Multi-Criteria Decision Making (MCDM),

is a widely researched methodology [95]–[97]. The nature of MCDM means it is

highly interpretable as it is aimed at augmenting a human’s decision making

process. Nevertheless, its simple nature has long limited its applicability to

data-driven applications until recently [14], [36]. It is evident that MCDM satisfies

the requirements of interpretability; hence, if enhanced adequately, it could be the

basis for an effective data-driven explainable framework.
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4.3 Proposing an explanation framework for MCDM-based

classifiers

In this section, an explanation framework is proposed for MCDM-based classifiers

for the first time. The framework utilises model-based information to generate

textual and graphical explanations. The former provides a series of three textual

statements for explaining: a. the negative class model, b. the positive class model

and c. the overall model. Meanwhile, graphical explanations provide a means for

visualising the impact of the individual features on a negative or positive

classification while, illustrating key model parameters.

4.3.1 Interpretable structure of MCDM-based classifiers

Multi-criteria decision making methodologies utilise various transparent structures

to make decisions - enabling inherent model-based interpretability. In contrast to post-

hoc, model-based allows for direct access to resourceful interpretable information

and, in turn, more meaningful explanation. Moreover, a MCDM model uses a set

of criteria linked with respective weights to signify impact on a rank. A rank is a

continuous number used to represent how good or bad an alternative is. When a set of

choices need to be compared, their ranks are computed and sorted to determine the

best, in descending order. This was how MCDM was utilised in deciding between

several alternatives based on a set of criteria. Nonetheless, a different approach was

needed for classification where the different alternatives are classes [14]. This was

achieved by employing sub-MCDM models, each representing a different class [14].

Fuzzy-MCDM’s structure has several sources of interpretation, for which there are

two categories: model training and execution. While the former uses information

from model construction for interpretation, the latter uses data from the execution

process. Interpretation is perceived to be useful for both the model designer and

user.

The requirement for a directly explainable model is its model-based interpretability.

As described in previous chapters, direct explainability has a better chance of

providing more representative explanation [3].
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Fuzzy-MCDM
Classifier

Sub-model

Class: 1

Sub-model

Class: 2

Sub-model

Class: 

Fuzzy Inference
System (FIS) Output

Figure 4.4: High-level abstract structure of the MCDM-classifier

Interpretable components include the model’s input(s), internal structure,

construction procedure and, output(s). Lipton, in [12], suggested several principles

for achieving model-based interpretability defined as simulatability, decomposability

and algorithmic transparency.

As described in detail in Chapter 3, a Fuzzy-MCDM classifier structure consists of

various transparent parameters such as the weights, ideal solutions and distance

measures (Figures 4.4-4.5). Moreover, the model construction procedure uses the

Pearson correlation coefficient along with simple arithmetic operations to determine

the ideal solutions - the only parameters required to run the model. Hence, the

relative simplicity of the model’s structure and construction makes Fuzzy-MCDM a

promising candidate for an explainable classification framework.

4.3.2 Decision trees for explanation

A method for explaining MCDM classifiers using decision trees is introduced in

this section. An explanation can be extracted by a variety of different methods. The
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Figure 4.5: Diagram visualising the structure of the MCDM-classifier
sub-model
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Figure 4.6: Decision tree for selecting the suitable explanatory
linguistic statement

Table 4.1: Linguistic sentence templates used for explaining the
classifier’s sub-models

# Sentence template

1 <sub-model> thinks the data is similar to <c1> and NOT similar to <c2>.

2 <sub-model> thinks the data is similar to <c2> and NOT similar to <c1>.

3
<sub-model> thinks the data is more similar to <similar_class> despite a
low similarity for both.

4
<sub-model> thinks the data is more similar to the <similar_class>
despite a high similarity for both.

method used depends on the nature of the source and, how the data will be

presented. In the case of Fuzzy-MCDM classifiers, decision trees are applicable for

retrieving meaningful explanations about how the sub-models, and, in turn, the

overall model decided a certain way.

A decision tree was used to choose how to explain a model or sub-model based on

pre-designed conditions, as shown in Figure 4.6. The linguistic conditions (HI and

LO) represent the regions below or larger than 0.5 - the centre of the normalisation

range. Four linguistic sentence templates are defined (Table 4.1). Templates #1 and

#2 provide a factual and counterfactual explanation. This is for cases where the data

is similar to a class while not similar to the opposite class. Meanwhile, templates #3

and #4 are used to explain when the data is similar or non-similar to either of the

classes. The templates allow for a sentence to be generated for each sub-model for

explaining why it decided a certain way.
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Table 4.2: Linguistic sentence templates used for explaining the
classifier’s the overall model

# Sentence template

1
Models are in agreement, hence the data was predicted to be
<similar_class>

2
Models are in conflict however, the measures pointed towards a better
similarity towards <similar_class>

Moreover, a final statement is generated to explain the overall model’s decision

based on the conclusions presented from the sub-models (Table 4.2). The sentence

refers to the sub-models classifications by explaining whether they are in

agreement or conflict. The agreement or conflict indicates the certainty.

The statements provide the user with more summarised information about the two

sub-models and, how they impacted the decision. In addition, relevant numerical

figures in brackets such as the distance measures and fuzzy class output, are

presented in brackets. For the Fuzzy-TOPSIS classifier, a single measure S is used

thus, the quantity of interpretable information is less compared to Fuzzy-ATOVIC

or Fuzzy-VIKOR. This allows the cognition-space to be utilised for explaining the

input(s) impact on the output, as will be demonstrated in the next section.

4.3.3 Visualisation of input impact on output

The previous section presented how linguistic statements were used to explain the

outcomes of the different sub-models and overall models. In this section, a method

for visualising the inputs’ impact on the sub-models outcomes is introduced. The

graphical explanation is generated by calculating a score for each feature for

indicating its impact on the sub-models outcome.

Fjc = 5

(
θt − f−jc
f+jc − f−jc

)
(4.1)

where Fjc is the feature score for feature j and class c; θj is the normalised feature

j; f−jc and f+jc are the negative and positive ideal solutions respectively. The feature
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score is calculated (Equation (4.1)) as a distance from the negative ideal solution,

which is inversely correlated with its impact on value of the measure and in turn the

outcome.

A set of scores is computed for each sub-model, representing the level of impact

each feature has on the positive ideal outcome for that particular model. The score

is scaled to a range of five for better readability and comparison.

Although the above method provides the user with visualisation of how close each

feature is to the ideal solutions, it does so without reference to the feature weights -

a key variable affecting impact.

In order to provide the user with information about the true impact a feature has on

the outcome, the feature weights w, as defined in Equation (3.3), were introduced to

the feature score calculation.

Fjc = 5 · wj

(
θt − f−jc
f+jc − f−jc

)
(4.2)

where wj is the weight for feature j.

Consequently, the features can be plotted to aid the user’s visualisation of the impact

of different inputs. A horizontal bar graph is the most suitable for comparing the

feature scores from several sub-models, as shown in Figure 4.7.

Cc =
b

∑
j=a

[
wj

(
θt − f−jc
f+jc − f−jc

)]
(4.3)

where Cc is the category impact for class c, a is the starting feature and b is the ending

feature to be summed.

For datasets with a large number of features, simply plotting the feature scores

would make the plots unreadable. Therefore, the features were grouped into

categories by relevance to reduce the number of bars. The features are aggregated
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Figure 4.7: Example of how a feature score graphical explanation
would look like in the form of a horizontal bar graph

by summation using Equation (4.3), but excluding the factor of five scaling.

Similarly, they are plotted in a bar graph, as shown in Figure 4.7.
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4.4 Assessing an explanation framework for MCDM-based

classifiers

In this section, the proposed explanation framework is applied to five benchmark

datasets. The explanation framework was shown to be applicable to a certain class

of problems where it provided valuable precise information on which features led

to a certain decision. Explanation is useful for applications where justification and

traceability are prominent functional requirements.

4.4.1 Explaining human-understandable datasets

To assess the merits of the explanatory framework, a set of three datasets were used

that consisted of human-understandable features. The set includes a Breast Cancer

dataset and two Titanic passenger datasets from the KEEL and Kaggle repository;

these datasets are the same ones used in assessing MCDM-based classifiers in the

previous Chapter 3. The structure and characteristics of the datasets were described

in detail in Section 3.4.1.

As described, the ultimate aim of explanation is to provide valuable insight into

how the decision was made. In this part, we provide examples from the different

case studies on how explanation can provide indicative insight into the decision. The

insight attempts to explain how a decision was arrived at and, indicate decision

certainty.

Breast cancer dataset

The Breast Cancer dataset offers an example where Fuzzy-ATOVIC performs well

from an accuracy perspective hence, providing a glimpse of the best-case scenario

for the explanation framework. As presented in Chapter 3, Fuzzy-ATOVIC

achieved an overall accuracy of 93.2%. In this section, several examples of graphical

and textual explanations are presented. Where an incomplete set of figures is

shown for the graphical explanation examples, a full set is provided in Appendix A.

A pair of bar plots highlight graphically the level of influence each feature has on a

certain classification result for each sub-model. The names of the features are listed
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Table 4.3: Breast Cancer dataset: feature names

# Name

1 Clump Thickness

2 Uniformity of Cell Size

3 Uniformity of Cell Shape

4 Marginal Adhesion

5 Single Epithelial Cell Size

6 Bare Nuclei

7 Bland Chromatin

8 Normal Nucleoli

9 Mitoses

in Table 4.3. A single bar graph illustrates the values of the measure S - the final

decider used for the classification process.
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Plot of S measures from the sub-models

Non-cancerous (-)
Cancerous (+)

Figure 4.8: Breast cancer dataset: distance measures S from the two
sub-models - example of a FN case: #1_3_098. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate." Fuzzy class: 0.36.
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Figure 4.9: Breast cancer dataset: graphical explanation of the
non-cancerous sub-model - example of a FN case: #1_3_98. Textual
explanation: “Non-cancerous model thinks the data is more similar
to Malignant (+ve) despite a high similarity for both."
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Figure 4.10: Breast cancer dataset: graphical explanation of the
cancerous sub-model - example of a FN case: #1_3_098. Textual
explanation: “Cancerous model thinks the data is similar to Benign
(-ve) and NOT similar to Malignant (+ve)"

In the first example for the Breast Cancer dataset, a FN case (Figures 4.8-4.10), the

graphical explanation illustrates the data being more similar to a cancerous

classification for the non-cancerous sub-model; this is clear because of the higher
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feature scores captured, as seen in Figure 4.9. The caption of each figure includes

the textual explanation associated with the data presented. Moreover, graphical

explanation for the cancerous points the other direction with the model showing a

similarity to non-cancerous classification and ruled out a cancerous decision (Figure

4.10). In this case, the overall explanation indicated that the ‘models are in conflict’

(in Figure 4.8) - a credible hint towards a false classification. Figure 4.8 presents the

values of S for the two sub-models cancerous and non-cancerous. When the

measure S is low it indicates a high similarity for that class.
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Figure 4.11: Breast cancer dataset: graphical explanation of the
non-cancerous sub-model - example of a FP case: #1_1_21. Textual
explanation: “Non-cancerous model thinks the data is similar to
Malignant (+ve) and NOT similar to Benign (-ve)."
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Figure 4.12: Breast cancer dataset: graphical explanation of the
cancerous sub-model - example of a FP case: #1_1_21. Textual
explanation: “Cancerous model thinks the data is more similar to the
Benign (-ve) despite a high similarity for both."

Similarly, for the second example, there was a conflict between the sub-models; the

result was a false positive classification. One of the reasons for the positive

classification is the strong similarity to the positive class captured by the

non-cancerous sub-model, as shown in Figure 4.11. On the other hand, the

cancerous sub-model had a weaker negative classification because of a high

similarity for both classes (Figure 4.12). In medical diagnosis, the trade-off of

specificity for higher sensitivity is desirable; However, insight pointing clinicians

towards a potential false classification is welcome as it can help prevent the

potential risks of wrongful diagnosis leading to improper treatment.
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Figure 4.13: Breast cancer dataset: distance measures S from the two
sub-models - example of a TP case: #1_3_93. Textual explanation:
“Models are in agreement hence, it is more likely the classification is
accurate." Fuzzy class: 0.80.
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Figure 4.14: Breast cancer dataset: distance measures S from the two
sub-models - example of a TN case: #1_3_63. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate." Fuzzy class: 0.39.

The last two examples demonstrate the model explaining true cases. For the TP

case (Figure 4.13), the sub-models were in agreement where both pointed to a

positive classification. In contrast, the sub-models were in conflict for the TN

example (Figures 4.14); this shows that despite an accurate classification,

explanation is not always indicative of this.
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Figure 4.15: Breast cancer dataset: how indicative the different
aspects of explanation are to a false or negative cases. Certain
statements refer to sentence templates #1 and #2 while, uncertain
statements refer to sentence templates #3 and #4.

To assess how indicative the explanation generated is, distribution information was

gathered (in Figure 4.15) on different aspects related to result in accuracy. For the

Breast Cancer dataset, true cases were more likely to result in an agreement

between the two sub-models, while false cases were more likely to result in a

conflict. Analysis of how the linguistic statements relate to accuracy revealed that

the use of less certain statements (#3 and #4) was linked to a higher occurrence of

false cases.



4.4. Assessing an explanation framework for MCDM-based classifiers 85

KEEL titanic dataset

Moreover, two Titanic datasets are explored for estimating whether a passenger is a

survivor or casualty. The datasets are the same ones used in Chapter 3 to assess

MCDM-based classifiers. The datasets vary in terms of the number of features

utilised. The Titanic KEEL dataset only uses three features which allow for simpler

graphical explanation, visualisation, and comprehension.
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Figure 4.16: KEEL titanic dataset: distance measures S from the two
sub-models - example of a FN case: #1_1_301. Textual explanation:
“Models are in agreement hence, it is more likely the classification is
accurate." Fuzzy class: 0.23.
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Figure 4.17: KEEL titanic dataset: graphical explanation of the
survivor sub-model - example of a FN case: #1_1_301. Textual
explanation: “Survivors model thinks the data is similar to Survivor
(-ve) and NOT similar to Casualty (+ve)."
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Figure 4.18: KEEL titanic dataset: graphical explanation of the
casualty sub-model - example of a FN case: #1_1_301. Textual
explanation: “Casualties model thinks the data is similar to Survivor
(-ve) and NOT similar to Casualty (+ve)"

Contrary to the FN example shown for the Breast Cancer dataset, the following

example resulted (Figures 4.16-4.18) in an agreement between the two sub-models.

In this example, it is highlighted how inaccurate classification can lead misleading

explanation. On the other hand, it clarifies the explanation’s prime function which

is, explaining how a decision was arrived at and, not whether it was a correct or

not.
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Figure 4.19: KEEL titanic dataset: distance measures S from the two
sub-models - example of a FP case: #1_1_75. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate." Fuzzy class: 0.74.
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Figure 4.20: KEEL titanic dataset: graphical explanation of the
casualty sub-model - example of a FP case: #1_1_75. Textual
explanation: “Casualties model thinks the data is more similar to the
Survivor (-ve) despite a high similarity for both."

Conversely, the next example (Figures 4.19-4.20) shows the sub-models in conflict.

The graphical explanation highlights the main contributor for the false

classification: the sex feature, which had a maximum score of five (as shown in

Figure 4.20). The high impact of the feature caused the survivor sub-model to

appear more certain using the criterion: the difference between the two distances.

The example demonstrates a case where a single feature was pinpointed as the

main cause of the classification going one way rather than the other.

The level of detail provided by the explanation allow the user to perceive the decision-

making process transparently and in a traceable way. This can facilitate the detection

of potential outliers or inconsistencies in the data.
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Figure 4.21: Titanic KEEL dataset: distance measures S from the two
sub-models - example of a TP case: #1_1_299. Textual explanation:
“Models are in agreement hence, it is more likely the classification is
accurate." Fuzzy class: 0.79.
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Figure 4.22: Titanic KEEL dataset: graphical explanation of the
survivor sub-model - example of a TP case: #1_1_299. Textual
explanation: “Survivors model thinks the data is similar to Casualty
(+ve) and NOT similar to Survivor (-ve)."
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Figure 4.23: Titanic KEEL dataset: graphical explanation of the
casualty sub-model - example of a TP case: #1_1_299. Textual
explanation: “Casualties model thinks the data is more similar to the
Casualty (+ve) despite a high similarity for both."

Moreover, the TP example (Figures 4.21-4.23) also demonstrate the varying degrees

with which each feature value is influencing a certain decision. For the survivor

sub-model (Figure 4.22), the Class and Sex attributes play a vital role in the positive

classification. Meanwhile, a comparatively weaker decision is made by the casualty

sub-model (Figure 4.23) due to similar feature scores for the two classes.

Furthermore, the distance measures S summarise the interaction between the two

models representatively (in Figure 4.21).
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Figure 4.24: Titanic KEEL dataset: distance measures S from the two
sub-models - example of a TN case: #1_1_27. Textual explanation:
“Models are in agreement hence, it is more likely the classification is
accurate." Fuzzy class: 0.37.

In the TP example (Figure 4.24), the sub-models are also in agreement. In this case
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the casualty sub-model showed a strong classification compared to the survivor sub-

model.

Kaggle titanic dataset

Similarly to the previous titanic dataset, the Kaggle Titanic dataset aims to predict

whether a passenger is a survivor or casualty based on a set of

human-understandable features. However, contrary to the previous dataset, this

dataset has seven features instead of three. The dataset features and structure were

explained in detail in Chapter 3.
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Figure 4.25: Titanic Kaggle dataset: distance measures S from the
two sub-models - example of a TP case: #1_1_110. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate." Fuzzy class: 0.65.
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Figure 4.26: Titanic Kaggle dataset: graphical explanation of the
survivor sub-model - example of a TP case: #1_1_110. Textual
explanation: “Survivors model thinks the data is similar to Casualty
(+ve) and NOT similar to Survivor (-ve)."
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Figure 4.27: Titanic Kaggle dataset: graphical explanation of the
casualty sub-model - example of a TP case: #1_1_110. Textual
explanation: “Casualties model thinks the data is similar to Survivor
(-ve) and NOT similar to Casualty (+ve)."
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Figure 4.28: Titanic Kaggle dataset: illustration of the distance
measures S from the two sub-models - example of a FP case: #1_1_4.
Textual explanation: “Models are in conflict hence, it is less likely the
classification is accurate." Fuzzy class: 0.72.
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Figure 4.29: Titanic Kaggle dataset: graphical explanation of the
survivor sub-model - example of a FP case: #1_1_4. Textual
explanation: “Survivors model thinks the data is similar to Casualty
(+ve) and NOT similar to Survivor (-ve)."
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Figure 4.30: Titanic Kaggle dataset: graphical explanation of the
casualty sub-model - example of a FP case: #1_1_4. Textual
explanation: “Casualties model thinks the data is more similar to the
Survivor (-ve) despite a high similarity for both."

Contrary to previous case studies, this dataset showcases instances where the

explanation framework was able to pinpoint the most contributing features

effectively. In the Breast Cancer dataset examples, a majority of the features often

contribute to the decision, which makes it less easy to identify the swing feature -

the feature that resulted in the decision swinging from positive to negative or vice

versa. In contrast, the explanation of Kaggle Titanic dataset yielded explanation

(Figures 4.25-4.30) with a clear-cut recognition of the most impactful features. In the

first two examples, we can see the Sex feature is often the most influential by its

feature score. By comparison, features such as Age and Sib/Spo often have low

feature scores.

This section demonstrated that the proposed explanation framework applied to

Fuzzy-ATOVIC classifiers provided significant insight into how the decision was

made. This is considered particularly useful for critical applications with high

stakes. It enables the user verify the model’s decision if needed without manually

assessing the data. Utilising a transparent form of explanation reduces the risk of

misinterpretation of the model that could be present. The limitation of the

explanation framework is that it dependent upon the classifier’s accuracy

performance. If the classifier performs accurately, the explanation will likely

become better-informed.
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4.4.2 Explaining non-human-understandable datasets

Parkinson disease dataset

Non-human understandable datasets present a unique challenge for explainability:

’how to explain the non-human understandable’. Where an incomplete set of figures

is shown for the graphical explanation examples, a full set is provided in Appendix

A.

The explanation framework will provide the same level of insight provided for the

previous human-understandable datasets with one caveat; the features hold no

meaning to the expected user. The Parkinson’s disease datasets contain 754

features. Therefore, plotting the feature scores for all features is not likely to be

comprehensible by a human user. The feature scores are aggregated into categories

(as listed in Table 4.4) for better readability.

Table 4.4: Parkinson disease: feature categories and no. of features in
each category

# Name Count

1 Gender 1

2 Baseline Features 21

3 Intensity Parameters 3

4 Formant Frequencies 4

5 Bandwidth Parameters 4

6 Vocal Fold 22

7 MFCC 84

8 Wavelet Features 182

9 TQWT Features 432

The first example from the Parkinson disease dataset (Figures 4.31-4.33) is a case

where the sub-models were in conflict. The Healthy sub-model classified the data

as Sick and, the Sick sub-model classified the data as Healthy. In this particular case,

the classifier’s processing of the measures resulted in a FN case because of the

categorically stronger classification perceived from the Sick sub-model. Despite the

difference between the measures being not that different, the Sick sub-model’s

slight edge caused the decision to be Sick rather than Healthy.
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Figure 4.31: Parkinson disease dataset: distance measures S from the
two sub-models - example of a FN case: #1_1_41. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate." Fuzzy class: 0.48.
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Figure 4.34: Parkinson disease dataset: distance measures S from the
two sub-models - example of a TP case: #1_1_43. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate." Fuzzy class: 0.52.

Similarly, the sub-models were also in conflict for the second example - a true

positive case (Figure 4.34). However, in this case, the model could find the right

result despite the conflict between the two sub-models. Although the sub-models

have a similar conflict, the Healthy sub-model had the edge pushing the overall

model towards the correct decision, albeit marginally with a fuzzy class of 0.52 -
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Figure 4.32: Parkinson disease dataset: graphical explanation of the
healthy sub-model - example of a FN case: #1_1_41. Textual
explanation: “Healthy model thinks the data is similar to Positive
(+ve) and NOT similar to Negative (-ve)."

just 0.02 above the classification threshold.
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Figure 4.33: Parkinson disease dataset: graphical explanation of the
sick sub-model - example of a FN case: #1_1_41. Textual explanation:
“Sick model thinks the data is similar to Negative (-ve) and NOT
similar to Positive (+ve)."
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Figure 4.35: Parkinson disease dataset: how indicative the different
aspects of explanation are to a false or negative cases. Certain
statements refer to sentence templates #1 and #2 while, uncertain
statements refer to sentence templates #3 and #4.
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Analysing the explanation revealed (in Figure 4.35) that for each TP or TN case

there is almost a 50/50 proportion of agreement or conflict between the

sub-models. However, for cases that are FP or FN, the models were in conflict

84.6% of the time. When relating agreement and conflict to how accurate the model

was, sub-models conflict was associated with a 92.9% accuracy rate compared to

69.7% for sub-models agreement. When comparing how accurate the models were

when different linguistic explanation statements were used, the two types (certain

vs uncertain) did not differ much in terms of associated accuracy: 79.0% vs 77.2%

respectively.

Chess dataset

A non-understandable dataset with a smaller number of features (36) allows for a

more comprehensible explanation in the case of the Chess dataset.

The feature-set consists of attributes describing vital conditions that can dictate or

indicate the possibility of a win or lose for white. Despite Chess being a widely

studied domain, the number of possible ways in which a game can pan out makes

it a rather complex system than commonly thought. For instance, the situation in a

Chess endgame where king-rook is faced with king-pawn can be decided in 209,718

possibilities [98]. The potential endings are represented by 36 conditional attributes

capturing key factors supporting either outcome.

The features are considered non-understandable because only an expert in Chess

theory would be able to comprehend their meaning and significance.
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Figure 4.36: Chess dataset: graphical explanation of the win
sub-model - example of a FN case: #1_1_339. Textual explanation:
“Winners model thinks the data is more similar to the Lose (+ve)
despite a high similarity for both."
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Figure 4.37: An example situation in Chess where white cannot
capture the black rook safely; since the white’s choice to capture the
rook would most likely result in white losing its pawn. Hence, rimmx
is false in this particular case.

The first example is a FN case (see Figure 4.36) where the rimmx feature had a

significant impact on the negative classification of a lose for both sub-models. The

rimmx feature represents whether the black rook can be captured safely, which if

true, puts white at a clear advantage. Therefore, white is considered unable to win

when rimmx is false; for example, this can arise in a situation where the black rook

can only be captured by sacrificing the white pawn, as shown in Figure 4.37.
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Another feature common for both sub-model negative class is r2ar8, which checks

whether the black rook has safe access to file A or rank 8; both locations enable Black

to guard against White’s successful queening of the knight - a key milestone for White

to secure a win (-ve).

Furthermore, the wknck, rkxwp, mulch and wkna8 features were picked up as most

impactful both sub-models. The commonality of the features between the two sub-

models reveals an association detected in both sub-models.
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Figure 4.38: Chess dataset: graphical explanation of the win
sub-model - example of a TN case: #1_1_2. Textual explanation:
“Winners model thinks the data is more similar to the Lose (+ve)
despite a high similarity for both."
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Figure 4.39: Chess dataset: graphical explanation of the lose
sub-model - example of a TN case: #1_1_2. Textual explanation:
“Losers model thinks the data is similar to Win (-ve) and NOT
similar to Lose (+ve)."

For the TN case, the S measures indicate that the sub-models were also in conflict

and, decided in a similar manner to the FN example. However, this case turned out

to be true. Comparing the feature impacts (in Figures 4.38-4.39) for the sub-models

from the two examples singled-out the fuzzy class as a potential indicator of whether

the classification is likely to be true or false; the fuzzy class for the TN case was further

away from the threshold (0.50) - at 0.37 compared to 0.41.
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Figure 4.40: Chess dataset: how indicative the different aspects of
explanation are to a false or negative cases. Certain statements refer
to sentence templates #1 and #2 while, uncertain statements refer to
sentence templates #3 and #4.

Analysing the relation between different explanation aspects revealed that TP and

TN cases were more likely to result in a conflict between the sub-models than

agreement (see Figure 4.40). However, FP and FN cases are almost certain to cause

conflict at a rate of 95.9%. Comparing the true-vs-false distribution of cases where

the sub-models were in agreement or conflict showed a higher association between

conflict and true results i.e. accuracy of the result. When the models were in

agreement, only 73.8% of the results were accurate compared to 97.5% when the

models were in conflict. The relation between the linguistic statements and
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performance revealed that certain statements were associated with better accuracy

(92.4% vs 75.9%).

4.5 Summary

In this chapter it was demonstrated that the proposed explanation framework

developed for Fuzzy-MCDM classifiers provided valuable insight into the decision

making process. Textual statements described the sub-models’ decisions followed

by information on whether they were in conflict or agreement. The inclusion of the

fuzzy class provided a summary of the overall classification in relation to the

threshold (0.5). This provided an indication for the the decision’s certainty.

Applying the explanation framework to human understandable datasets

showcased its capability in pinpointing the key features that led to a certain

decision. From a practical point of view, accurately distinguishing the data that led

to a specific decision is one of the main purposes of explainable-AI.

Applying the explanation framework to non-human understandable datasets such

as Parkinson’s disease and Chess yielded similar results. However, the high

dimensionality of the datasets meant the graphical explanation could only display

a subset of the most influential features. Hence, the effectiveness of the framework

is limited by the degree of comprehensibility offered by the feature-set. Although

the framework was able to find the most impactful features, this information was

only as useful as the user’s understanding of the features. Therefore, the

framework’s applicability and effectiveness is dependent upon the availability of

human-understandable feature-sets that adequately represent the problem at hand.

The analysis of the various explanation aspects associated with performance

accuracy revealed a relation that can be potentially exploited to provide valuable

additional information to the user. For instance, whether the model’s are in

agreement or conflict can be statistically associated with a higher probability of

accuracy. In this next chapter, extending Fuzzy-MCDM’s explainability is further

investigated.
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The explanation framework provided access to traceable insight into the decision.

However, when the model was inaccurate, the explanation was often misleading.

The users would benefit from indicators of classification certainty.

The feature scores illustrated the impact of each feature to the user. However, in

its current representation, it is sometimes not immediately clear which smaller set

of features was the tipping point for a decision. Highlighting the most impactful

features in a more easily distinguishable way would make the explanation more

comprehensible to the user.
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5 Neutrosophic-TOPSIS for

enhanced explainability

Machine Learning models are able to achieve satisfactory performance in various

controlled and uncontrolled environments. In spite of this, uncertainty in the data

could inadvertently cause the model to be trained incorrectly, embedding a bias in

the model’s logic. Some biases and inaccuracies are detected in the model’s

inception. Meanwhile, less obvious ones are overlooked because of the small

proportion of results they affect. When the bias is detected, later on, it is often far

too late to undo the harm it has caused. Neutrosophic Logic is a further

generalisation of FL that provides additional interpretability using additional sets

handling falsity and indeterminacy. This chapter builds on previous work; it

proposed a data-driven neutrosophic-TOPSIS classifier to further enhance

explainability. The proposal builds on the fuzzy-TOPSIS by using the neutrosophic

components to indicate indeterminacy and falsehood. The two added components

provide an extra layer of explainability that is considered useful for providing the

user with a more comprehensive understanding of the decision. Performance

results demonstrate no or minimal trade-off when opting for neutrosophic-TOPSIS

versus fuzzy-TOPSIS. Consequently, an explanation framework is developed to

process the newly added components to generate a more detailed explanation of

the results.

5.1 Introduction

Data uncertainty is one of the main obstacles preventing the adoption of ML

models in numerous fields. Uncertainty is, after all, part and parcel of the world. A
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system, natural or synthetic, is likely to exhibit at least some uncertainty during its

lifetime. For instance, a car’s combustion engine is known to be a time variant

system in control engineering. This means the system’s dynamics are expected to

vary as the engine ages. Therefore, the engine’s control loops may need to be

manually tuned to maintain a satisfactory level of performance. Control theory

methodology such as adaptive control has been introduced to tackle time varying

systems in an autonomous manner.

Similarly, in ML modelling, tackling indeterminacy could be at the forefront of

whether a particular methodology succeeds or not. This is because uncertainty,

unpredictability, and inconsistencies are increasingly prevalent in real-world

datasets.

For instance, the level of uncertainty varies depending on the disease being

diagnosed. Despite the unprecedented advancement seen in modern medicine, it is

still difficult to diagnose some diseases because of the manner in which they can be

detected. Therefore, a methodology capable of handling uncertainty and

inconsistency is paramount.

Similarly, in the area of advanced manufacturing, nondestructive testing

methodologies for emerging materials could lack the scanning rigour required to

provide clear-cut conclusions. Hence, the uncertainty in the results must be

conveyed by the ML model’s results. In other words, the models must be able to

assess how conclusive a result is based on the quality of the data.

In the second section, a framework is proposed for using NL in conjunction with

TOPSIS to construct a data-driven explainable model for classification. The

neutrosophic-MCDM classifier presents indeterminacy and falsity in addition to

the degree of truth.

The chapter is concluded with a set of results where the proposed framework is

applied to seven datasets. Consequently, cases are presented as examples where the

model was accurate or inaccurate, shedding light on how the frameworks generate

explanations for datasets spanning a variety of applications and data types.

TOPSIS
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5.2 Neutrosophic logic-based classifiers: an overview

NL is a generalisation of FL that represents each logical variable using an ordered

triple; truth, indeterminacy and falsity. In FL, the truth value becomes a real interval

[0, 1] where every value within the range represents a degree of truth t with an

assumed associated degree of falsity simply defined as 1 − t.

The falsity was seen as a limitation because of its dependence on truth.

Consequently, Atassanov introduced intuitionistic FL which augments FL with a

real set to represent falsehood f where f ∈ [0, 1]. The sentence p becomes an

ordered pair as defined below.

t, f ∈ [0, 1] (5.1)

v(p) = (t, f ) (5.2)

t + f ≤ 1 (5.3)

Atassanov’s approach allows for the sum of truth and falsity (5.3) to be less than

one, which could be used to represent cases where indeterminacy exists. The assumed

value representing indeterminacy, in this case, would be 1− (t + f ). However, what

if the indeterminacy, like falsity, would need to be independent of truth and falsity?

Smarandache’s neutrosophic logic sets aim to address this by defining a separate

set for indeterminacy [99]. NL is based on neutrosophy - a relatively recent branch

of philosophy also proposed by Smarandache. Neutrosophy is said to be based on

’ancient roots’ and aims to address "the origin, nature and scope of neutralities, as

well as their interactions with different ideational spectra” [100].

A neutrosophic logic set N is defined as: N = (T, I, F) : T, I, F ⊇ [0, 1]. Therefore,

each sentence p yields v(p) = (T, I, F); an ordered triple with truth, indeterminacy

and falsity components. NL goes on to unrestrict the values the three components

can hold such that t + i + f ≤ 3+. This allows for representing a variety of

inconsistencies. For instance, it is possible that a sentence p a has high truth and

falsity simultaneously. Moreover, indeterminacy is not reserved just for
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indeterminacy but also for handling all sources of unpredictability such as but not

limited to uncertainty, imprecision, errors, randomness and vagueness.

The advantage of neutrosophic logic is apparent when attempting to solve complex

problems, more specifically, domains where uncertainty, unpredictability and

randomness are common. Previous efforts to address the challenges included the

investigation of a variety of new set techniques such as intuitionistic,

interval-valued and Type-2 FL. Although successful, the methods lacked the ability

to process paradoxical inconsistencies. Thus, Smarandache proposed NL with the

aim of dealing with a wider range of unpredictability in data [99].

5.2.1 Explainability

As described in Chapter 2, explainability is a key requirement for ML models

utilised to support high stake decision-making. FL and MCDM are both considered

inherently interpretable frameworks because of their transparent and

decomposable structure.

Similarly, NL, as a generalisation of FL, inherits its interpretability. In addition to

addressing truth, NL has two additional independent sets that represent

indeterminacy and falsity. Therefore, the technique can be used to process

indeterminate and inconsistent data while still maintaining interpretability.

FLSs use a continuous degree of membership versus the binary one used in binary

sets, allowing for finer representation of data. Furthermore, intuitionistic sets

provide an additional set to predict falsehood in addition to truth. Meanwhile, the

higher dimensionality of NL enables it to represent a wider variety of data, as

illustrated in Figure 5.2.
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Binary Sets

Fuzzy Sets

Intuitionistic Sets

Neutrosphic Sets

Plithogenic Sets

Figure 5.2: A diagram illustrating the variety of data different set
types can represent

Plithogenic Sets are a higher dimensionality logic set proposed by Smarandache in

2018 [101]. Smarandache describes the newly proposed sets as a generalisation of

"classical logic, fuzzy logic, intuitionistic fuzzy logic, and neutrosophic logic" [101].

NL allows for the use of three sets (truth, indeterminacy and falsehood). Meanwhile,

Plithogenic Logic Sets allow for four or more sets, hence can be used to represent a

wider gamut of data.

5.2.2 MCDM and neutrosophic logic

MCDM is a popular branch of decision theory often exploited for optimising decision

making. Similarly, NL has been explored extensively for decision making; according to

a 10-year bibliometric analysis [102].

As a result, MCDM and NL are often explored in conjunction for augmenting

MCDM’s capabilities [102]. Despite extensive research in the shared research area

of NL-MCDM, there is a lack of investigations focusing on classification. Instead, a

vast majority focused on MCDM-related applications such as supplier selection

[103]–[111]. Moreover, MCDM and NL were combined by replacing MCDM

variables with neutrosophic numbers - an approach that omits the rule-based

capability of NL.
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Therefore, MCDM-based NL is a research gap that could prove fruitful in exploring

a data-driven explainable framework for classification. The techniques are both

naturally interpretable and possess a simple model structure; thus, it is more likely

a high degree of interpretability could be maintained after combining the two

methodologies.

5.3 Extending TOPSIS with neutrosophic logic

In this section, a data-driven and explainable neutrosophic-TOPSIS classification

framework is proposed. Contrary to previously proposed methodologies pairing

Neutrosophy and TOPSIS, this framework uses NL and TOPSIS in conjunction as a

system.

TOPSIS is extended using a neutrosophic inference system (NIS) that augments

TOPSIS’s classification capability while providing enhanced interpretable

information via the three neutrosophic components: truth, indeterminacy and

falsity. Furthermore, an explanation framework is devised to tap into the additional

insight which is presented to the user in textual and graphical form.

5.3.1 Neutrosophic inference system

In previous chapters, a data-driven fuzzy-TOPSIS-based classifier was introduced.

The fuzzy component was seen as an enhancement to TOPSIS’s model

interpretability. Meanwhile, performance has varied according to the dataset used.

Furthermore, the fuzzy-TOPSIS model, paired with the explanation framework

proposed in chapter 4, provided useful insight into the decision-making process.

The insight enabled the user to gauge the impact features had on the sub-models

and, in turn, the model overall.

The high granularity of such an explanation came at a cost; a level of detail too high

to comprehend at a glance. For instance, providing a quantification for the impact

of each feature could be seen as too much detail for the user. Thus, there is a need to

summarise this information concisely.
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The neutrosophic-TOPSIS framework is built by replacing the FL component within

fuzzy-TOPSIS with a set of NIS. The inference systems process the S measures from

the TOPSIS sub-models to produce the NL outputs: truth, indeterminacy and falsity.

The structure of the neutrosophic component is based on Ansari et al.’s literature

[112].

Neutrosophic logic sets are a generalisation of FLSs such that each neutrosophic

component is computed by means of a separate inference system, as shown in Figure

5.3. A NIS is used for each MCDM sub-model. By doing so, a pair of neutrosophic

outputs are generated for each class and sub-model, providing two for each class

and four in total. The number of components becomes 12, a high number in relation

to the cognition limit. For this reason, the pair of outputs for the same class are

aggregated to produce just six outputs.

TOPSIS Truth
 Inference System

Indeterminacy
 Inference System

Falsity 
Inference System

Fuzzy-TOPSIS

Neutrosophic-TOPSIS

Figure 5.3: A high abstraction visualisation of the difference between
fuzzy-TOPSIS and neutrosophic-TOPSIS

The class with the higher aggregated truth is considered to have a higher similarity

leading to the output class. The rules of the inference system are formulated such

that truth rises as the S measure drops while it is vice versa for the falsity.

Meanwhile, the indeterminacy peaks when the S measures for the opposing classes
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are the same. When the measures are close to being the same, it is a sign the

sub-model in question is indecisive. The indeterminacy is considered a useful

component to provide the user with an indication as to the certainty of the decision.

Furthermore, the NL extension adopts a hierarchical structure whereby the TOPSIS

sub-models’ outputs are processed separately using two NL rule-based classifiers.

The neutrosophic outputs are then aggregated to form a pair of outputs, one for

each class. The rationale behind the design is to ensure a high level of traceability

throughout the classification process. By doing so, the neutrosophic outputs are

provided for each step in the classification process. This enables a great deal of

transparency and decomposability, as illustrated in Figure 5.4.

TOPSIS

Negative
Class 

Sub-model

Positive 
Class 

Sub-model

NL
Sub-model

NL
Sub-model

Aggregation
Neutrosophic
output for
each class

Pair of
neutrosophic

outputs

Pair of
neutrosophic

outputs

Figure 5.4: An illustration of the proposed NL extension structure to
the TOPSIS-based classifier. It utilised two sub-NL-models, each
processing the measures output from the TOPSIS sub-models
separately before final stage aggregation and classification.

The inputs to each of the NL sub-models include the following:

(a) Sn,1: the measure for the negative class; where n is the sub-model number

ranging from 1 to 2.

(b) Sn,2: the measure for the positive class.

(c) ∆S: the difference between the two measures.
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Table 5.1: A summary of how changes in the measure S values
impact the neutrosophic outputs: truth, indeterminacy and falsity.

Neutrosophic Output

Measure S TOPSIS Truth Indeterminacy Falsity

0.5 to 0.0 High similarity Rising Dropping Dropping

0.5 to 1.0 Low similarity Dropping Rising Rising

∆M ≥ 0.05 High conclusiveness Polarity dependent Dropping Polarity dependent

∆M < 0.05 Low conclusiveness Polarity dependent Rising Polarity dependent

∆Sc = Sc,2 − Sc,1 (5.4)

Where Sc,1 is the distance to class one; Sc,2 is the distance to class two; and c is the

sub-model number.

The model’s dimensionality has to be kept at a minimum to ensure the inference

system’s interpretability. Therefore, only two input Membership function (MF)s

were used for inputs 1 and 2, while three were used for input 3.

Consequently, the rules were configured for each component in a separate inference

system (as illustrated previously in Figure 5.3). By doing so, the rule-based

classifier maintained a high level of decomposability and simulatability - key

aspects of interpretability [12].

For instance, a low S measure for a certain class signifies high similarity and, thus,

high truth with low indeterminacy and falsity. In contrast, a high S measure would

be vice versa, as shown in Table 5.1. Moreover, the difference between the measures

impacts mainly on indeterminacy. However, truth and falsity are also impacted

based on the difference’s polarity. The polarity of the difference indicates which

class is more similar to the other.

In line with FLS, a variety of configurations were proposed for carrying out basic

connectives. For the sake of the neutrosophic extension, the conjunction connective

is required. Several methods of NL conjunction exist. Rivieccio et al. summarise the
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key methods below [113]:

v(p1 ∧ p2) = (t1 · t2, i1 · i2, f1 · f2) (5.5)

v(p1 ∧ p2) = (min(t1, t2), min(i1, i2), max( f1, f2)) (5.6)

v(p1 ∧ p2) = (min(t1, t2), max(i1, i2), max( f1, f2)) (5.7)

Where v is the neutrosophic valuation such that v(pn) = (t, i, f ) ∈ N, and;

N = {(T, I, F) : T, I, F ⊆ [0, 1]} (5.8)

Following aggregation using (5.6), the truth value for the opposite classes is

compared to perform the final classification. The reason indeterminacy and falsity

were not used was that it requires further aggregation. By doing so, it introduces an

opaque layer in the classification process. Instead, they remain to provide

additional insight on the decision.

5.3.2 Explanation framework

The explanation framework presents the user with textual and graphical

information generated as part of the classification. Similarly to the explanation

framework proposed in 4.3, this framework aims to enable the user to visualise and

trace the decision-making process graphically while being provided with

statements that summarise the outcomes of each sub-component of the model.

The sub-components include the TOPSIS and NL sub-models. The TOPSIS

component of the model was not altered. Thus, the explanation framework was

used as is for that part of the model. Meanwhile, a new set of linguistic statements

were designed for the NL sub-models. Likewise, they present factual and

counterfactual information in a concise manner.

Three sentence templates were used (Table 5.2) for explaining the three states of a

sub-model illustrated in Figure 5.5. The templates include fields to generate the

statement based on the class and sub-model being explained. In addition, the

statements include neutrosophic outputs for the sub-model being explained. A
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Start

truth > falsity

#1

truth < falsity

#2

truth = falsity

#3

Figure 5.5: Visualisation of the conditions for selecting the sentence
template.

Table 5.2: Linguistic sentence templates used for explaining the
classifier’s NL sub-models

# Sentence template

1 For the <cc> class, the <model> thinks the data has a higher truth (<t>) relative to its falsity
(<f>). The relative indeterminacy is <ind> (<i>).

2 For the <cc> class, the<model> thinks the data has a higher falsity (<f>) relative to its truth
(<t>). The relative indeterminacy is <ind> (<i>).

3 For the <cc> class, the <model> thinks the data has a truth (<t>) equal to its falsity (<f>).
The relative indeterminacy is <ind> (<i>).

descriptor was added for specifying whether indeterminacy was less, average, more.

The descriptors are the same as the names of the MFs used in the indeterminacy

inference system.

5.4 Comparative analysis of fuzzy-TOPSIS and

neut-TOPSIS

The focus should be now to the experimental evidence on Neutrosophic-TOPSIS,

where the proposed methodology is applied to seven different datasets. Five of the

seven are the same benchmark datasets used to assess the modelling frameworks

proposed in Chapters 3 and 4. The last two datasets are based on a plastic pipe

inspection case study for enhancing volumetric nondestructive testing of industrial

plastic pipelines.
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Table 5.3: Parkinson Disease Dataset: neut-TOPSIS vs fuzzy-TOPSIS

µ ± σ (%)

Model ACC FMR TPR TNR

fuzzy-TOPSIS 78.7 ± 3.8 70.5 ± 4.9 84.6 ± 6.5 61.4 ± 8.9

neut-TOPSIS 76.4 ± 3.4 71.3 ± 4.7 80.4 ± 5.1 64.7 ± 8.4

Table 5.4: Breast Cancer Dataset: neut-TOPSIS vs fuzzy-TOPSIS

µ ± σ (%)

Model ACC FMR TPR TNR

fuzzy-TOPSIS 93.2 ± 2.0 89.9 ± 3.1 82.6 ± 5.1 98.8 ± 1.0

neut-TOPSIS 92.2 ± 1.8 88.0 ± 3.2 79.2 ± 5.0 99.1 ± 0.9

5.4.1 Performance: benchmark datasets

Even though performance is not the ultimate indicator for appraising explainable

ML models, nonetheless, they are imperative for ruling out any significant

performance trade-offs. To that effect, this section presents a comparative analysis

between fuzzy-TOPSIS and Neutrosophic-TOPSIS.

The benchmark datasets are the same ones used in the previous Chapters 3 and 4.

For details of dataset structure and attributes, please refer to Section 3.4.1. The

neut-TOPSIS framework introduced additional components to provide a higher

level of interpretability. Based on theories on the link between interpretability and

performance, it was expected that neut-TOPSIS could result in a reduction in

performance [3].

In line with the expectation, the accuracy (ACC) of the neut-TOPSIS was lower at

76.4% compared to 78.7% of the fuzzy-TOPSIS model (Table 5.3). The improved true

negative rate (TNR) for the neut-TOPSIS model meant a lower true positive rate

(TPR). Nonetheless, the neut-TOPSIS still had a slightly higher F-measure (FMR)

overall. Thus, performance is perceived to be largely similar for the two frameworks

for this dataset.

Similarly, for the breast cancer dataset the ACC was lower for the neut-TOPSIS

model, as presented in Table 5.4. This was mainly due to the 3.4% drop in the TPR.

The figures so far from the two benchmark datasets indicate a similar performance
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Table 5.5: Keel Titanic Dataset: neut-TOPSIS vs fuzzy-TOPSIS

µ ± σ (%)

Model ACC FMR TPR TNR

fuzzy-TOPSIS 77.8 ± 1.9 63.8 ± 4.1 49.1 ± 4.7 91.5 ± 1.3

neut-TOPSIS 77.6 ± 1.9 63.2 ± 4.3 48.4 ± 4.9 91.5 ± 1.3

Table 5.6: Kaggle Titanic Dataset: neut-TOPSIS vs fuzzy-TOPSIS

µ ± σ (%)

Model ACC FMR TPR TNR

fuzzy-TOPSIS 78.8 ± 3.0 75.9 ± 4.0 68.7 ± 6.1 85.1 ± 2.5

neut-TOPSIS 78.9 ± 2.4 74.0 ± 4.6 64.6 ± 7.8 87.7 ± 4.6

between the two frameworks, despite the increased interpretability of neut-TOPSIS.

The trend is similar for the two titanic benchmark datasets (KEEL and Kaggle),

where there was a slight drop in ACC and FMR performance, as presented in

Tables 5.5-5.6. Likewise, the TPRs saw a reduction for the two datasets.

In contrast to the previous datasets, the neut-TOPSIS saw an improvement in all

performance metrics for the chess dataset, as shown in Table 5.7. Despite the

increase in performance, the standard deviation has stayed the same or improved

for all metrics except the TNR.

In summary, the performance across the two different frameworks has seen a range

of results. In spite of the enhanced interpretability of the neut-TOPSIS versus the

fuzzy-TOPSIS framework, accuracy was satisfactorily maintained for all the

benchmark datasets with at most a 2.3% drop in performance for the Parkinson’s

disease dataset. Meanwhile, at best was a 4.0% improvement in performance seen

for the chess dataset. The results indicate a non-significant loss, if any, in

performance across the two different frameworks. The results indicate

Table 5.7: Chess Dataset: neut-TOPSIS vs fuzzy-TOPSIS

µ ± σ (%)

Model ACC FMR TPR TNR

fuzzy-TOPSIS 81.2 ± 1.8 80.5 ± 1.9 75.3 ± 2.8 86.6 ± 2.4

neut-TOPSIS 85.2 ± 1.8 85.0 ± 1.8 82.9 ± 2.3 87.2 ± 2.6
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neut-TOPSIS’s viability as an alternative to the fuzzy-TOPSIS classifier proposed in

Chapter 3.

5.4.2 Explaining benchmark datasets

Before proceeding to examine the explanation examples, it is important to point out

that non-satisfactory performance can affect how meaningful the generated

explanation can be. The explanation examples seek to document the successes as

well as the failures of the model for each of the five benchmark datasets.

Breast cancer

The breast cancer dataset is an example where the model performed particularly

well. Examples of the model explanation in this section represent a best-case

scenario example.
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Plot of S measures from the sub-models

Non-cancerous (-)
Cancerous (+)

Figure 5.6: Breast cancer dataset: distance measures S from the two
sub-models - example of a TN case: #5_2_61. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate. The data was classified as Non-cancerous (-) by the model.”
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Figure 5.7: Breast cancer dataset: Graphical explanation of the
Non-cancerous (-) NL sub-model - example of a TN case: #5_2_61. (a)
Explanation: “For the Non-cancerous (-) class, the Non-cancerous
Model thinks the data has a higher truth (0.945) relative to its falsity
(0.055). The relative indetermency is low (0.405).”. (b) Explanation:
“For the Cancerous (+) class, the Non-cancerous Model thinks the
data has a higher falsity (0.595) relative to its truth (0.405). The
relative indetermency is high (0.945).”
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Figure 5.8: Breast cancer dataset: Graphical explanation of the
Cancerous (+) NL sub-model - example of a TN case: #5_2_61. (a)
Explanation: “For the Non-cancerous (-) class, the Non-cancerous
Model thinks the data has a higher truth (0.980) relative to its falsity
(0.020). The relative indetermency is low (0.020).”. (b) Explanation:
“For the Cancerous (+) class, the Non-cancerous Model thinks the
data has a higher falsity (0.980) relative to its truth (0.020). The
relative indetermency is low (0.020).”
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Figure 5.9: Breast cancer dataset: Graphical explanation of the
overall NL sub-model - example of a TN case: #5_2_61. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Non-cancerous (-) compared to Cancerous (+).” (a)
Explanation: “For the Non-cancerous (-) class, the overall sub-model
thinks the data has a higher truth (0.945) relative to its falsity (0.055).
The relative indetermency is low (0.405).”. (b) Explanation: “For the
Cancerous (+) class, the overall sub-model thinks the data has a
higher falsity (0.980) relative to its truth (0.020). The relative
indetermency is high (0.945).”

Firstly, a TN case is presented in which the MCDM sub-models were in conflict, as

shown in Figures 5.6-5.9.

The conflict meant that the sub-models decided on different classes. In this case,

the negative sub-model pointed towards a higher similarity to the positive class, as

shown in Figure 5.7. Meanwhile, the positive sub-model pointed towards a higher

similarity to the negative class (Figure 5.8).

The pairs of neutrosophic outputs from the sub-models are then aggregated to

produce a pair of outputs representing the final decision.

Overall, the negative class had a higher truth (0.405) compared to the low truth for

the positive class, hence the negative classification. Similarly, the falsity components

indicated the same information with a higher falsity (0.980) for the positive class

compared to the negative class (0.595).

Overall, the positive class sub-model’s indeterminacy was relatively high (0.980) due

to the small difference between the S measures, as shown in Figure 5.6. Although

only the truth component is used for the decision, the additional NL components
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provide a quantifiable indication of the indeterminacy and falsity associated with

the decision.

The following examples will show just the overall aggregated neutrosophic output.

Please refer to Appendix B for an extended copy of all the examples shown.
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Figure 5.10: Breast Cancer Dataset: distance measures S from the two
sub-models - example of a FN case: #5_3_104. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate. The data was classified as Non-cancerous (-) by the model.”
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Figure 5.11: Breast cancer dataset: graphical explanation of the
overall NL sub-model - example of a FN case: #5_3_104. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Non-cancerous (-) compared to Cancerous (+).” (a)
Explanation: “For the Non-cancerous (-) class, the overall sub-model
thinks the data has a higher falsity (0.860) relative to its truth (0.140).
The relative indetermency is low (0.140).”. (b) Explanation: “For the
Cancerous (+) class, the overall sub-model thinks the data has a
higher falsity (0.870) relative to its truth (0.130). The relative
indetermency is low (0.140).”

Similarly, the sub-models are in conflict for this FN example, as shown in Figures

5.10-5.11. The NL component generated similar truth levels for the negative and

positive classes, at 0.140 and 0.130, respectively. Two aspects indicate low certainty

in the decision: small truth levels and high falsity for the negative class.
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Figure 5.12: Breast cancer dataset: graphical explanation of the
overall NL sub-model - example of a TP case: #8_5_106. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Cancerous (+) compared to Non-cancerous (-).” (a)
Explanation: “For the Non-cancerous (-) class, the overall sub-model
thinks the data has a higher falsity (0.965) relative to its truth (0.035).
The relative indetermency is high (0.875).”. (b) Explanation: “For the
Cancerous (+) class, the overall sub-model thinks the data has a
higher truth (0.875) relative to its falsity (0.500). The relative
indetermency is average (0.475).”
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For the previous example, the indeterminacy was similar for both classes. In this TP

example, however, the positive class had a lower value of indeterminacy (see Figure

5.12). Despite the low truth for the negative class, its high indeterminacy conveys a

potential misclassification. However, coupled with the positive class’s higher truth

makes for an average positive classification.

0 0.2 0.4 0.6 0.8 1.0

T

I

F

0.135

0.135

0.865

Neutrosophic output

C
om

po
ne

nt

Negative Class

(a)

0 0.2 0.4 0.6 0.8 1.0

T

I

F

0.135

0.135

0.865

Neutrosophic output
C

om
po

ne
nt

Positive Class

(b)

Figure 5.13: Breast Cancer Dataset: Graphical explanation of the
overall NL sub-model - example of a FP case: #6_2_22. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Cancerous (+) compared to Non-cancerous (-).” (a)
Explanation: “For the Non-cancerous (-) class, the overall sub-model
thinks the data has a higher falsity (0.865) relative to its truth (0.135).
The relative indetermency is low (0.135).”. (b) Explanation: “For the
Cancerous (+) class, the overall sub-model thinks the data has a
higher falsity (0.865) relative to its truth (0.135). The relative
indetermency is low (0.135).”

Moreover, this FP case had a similar output to the TP case (Figure 5.13). The

distinction in the following values points to a lower certainty compared to the TP

case:

• Lower positive class truth: 0.135 versus 0.475

• Lower positive class indeterminacy: 0.135 versus 0.475

• Higher negative class truth: 0.135 versus 0.035

• Lower negative class indeterminacy: 0.135 versus 0.875

• Lower negative class falsity: 0.865 versus 0.965
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Figure 5.14: Breast Cancer Dataset: a set of pie charts presenting an
analysis of how the different aspects of the neutrosophic outputs
relate to accuracy performance for the negative class sub-model.
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Figure 5.15: Breast Cancer Dataset: a set of pie charts presenting an
analysis of how the different aspects of the neutrosophic outputs
relate to accuracy performance for the positive class sub-model.

As described in section 5.3, the neutrosophic outputs (truth, indeterminacy and

falsity) are calculated based on three membership functions: more, mid and less.

Based on this, an analysis was run to view the relation between the output MF and

performance. The analysis was run for both NL sub-models and is presented in

Figures 5.14-5.15.
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For the truth and falsity components, the negative class NL sub-model produced a

near similar distribution across accurate and inaccurate cases (Figure 5.14).

However, the indeterminacy component had a higher proportion of more for

accurate cases compared to inaccurate (26.4% versus 5.6%) and a lower proportion

of low (4.1% versus 25.6%). Therefore, counter-intuitively, indeterminacy is more

likely to be higher values for accurate cases compared to inaccurate.

In contrast, the truth and falsity components for the positive class sub-model did

not reflect the same distributions. Intuitively, accurate cases were more likely to

have larger truth values and smaller falsity values. Meanwhile, the indeterminacy

components produced larger values for accurate cases.

KEEL titanic

The KEEL titanic dataset uses three features to classify a passenger as a survivor or

casualty.
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Figure 5.16: Titanic - KEEL Dataset: Illustration of the distance
measures S from the two sub-models - example of a TP case:
#3_4_309. Textual explanation: “Models are in agreement hence, it is
more likely the classification is accurate. The data was classified as
Casualty (+) by the model.”
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Figure 5.17: Titanic - KEEL Dataset: Graphical explanation of the
overall NL sub-model - example of a TP case: #3_4_309. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Casualty (+) compared to Survivor (-).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.935) relative to its truth (0.065). The
relative indetermency is average (0.495).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.505) relative to its truth (0.495). The relative indetermency
is high (0.855).”

Contrary to the TN example for the breast cancer dataset, for this TP example, the

MCDM sub-models are in agreement, as shown in Figures 5.16-5.17. The negative

class had a significantly lower truth compared to the positive class, which led to the

positive classification. Despite the high indeterminacy of the positive class, the

positive class sub-model was still able to produce a truth value higher than the

negative class sub-model.
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Figure 5.18: Titanic - KEEL Dataset: Graphical explanation of the
overall NL sub-model - example of a FP case: #6_3_145. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Casualty (+) compared to Survivor (-).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.865) relative to its truth (0.135). The
relative indetermency is high (0.855).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
truth (0.855) relative to its falsity (0.500). The relative indetermency
is high (0.855).”

Moreover, for this second example, the model misclassified the data as positive.

Looking at the neutrosophic output for the positive class reveals that the

indeterminacy was high at 0.855, as shown in Figure 5.18. However, the lower truth

level for the negative class caused the positive classification. The high

indeterminacy in the data perceived by the negative class could be the cause of the

low truth level.
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Figure 5.19: Titanic - KEEL Dataset: Illustration of the distance
measures S from the two sub-models - example of a TN case:
#2_2_128. Textual explanation: “Models are in agreement hence, it is
more likely the classification is accurate. The data was classified as
Survivor (-) by the model.”
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Figure 5.20: Titanic - KEEL Dataset: Graphical explanation of the
overall NL sub-model - example of a TN case: #2_2_128. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Survivor (-) compared to Casualty (+).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher truth (0.960) relative to its falsity (0.040). The
relative indetermency is low (0.040).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (1.000) relative to its truth (0.000). The relative indetermency
is low (0.040).”

The next example (Figures 5.19-5.20) showcases how the explanation is generated

for a classification with high degree of certainty. The TN case resulted in truth and

falsity values at opposite extremes for the NL sub-models, while indeterminacy
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maintained low values for both. The MCDM sub-models were in agreement;

therefore, there is little to signify any uncertainty for this particular example.
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Figure 5.21: Titanic - KEEL Dataset: Graphical explanation of the
overall NL sub-model - example of a FN case: #3_4_377. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Survivor (-) compared to Casualty (+).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher truth (0.920) relative to its falsity (0.080). The
relative indetermency is low (0.080).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.970) relative to its truth (0.030). The relative indetermency
is low (0.080).”

An issue arises for this FN example, where the same level of certainty is reflected

in the neutrosophic output despite the inaccuracy of the model. This is an example

where the explanation is misleading due to the classifier’s inaccuracy, as shown in

Figure 5.21.

Kaggle titanic

The aim of the Kaggle Titanic dataset is also to predict a passenger’s survival;

however, it uses seven features instead of three.
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Figure 5.22: Titanic - Kaggle Dataset: Graphical explanation of the
overall NL sub-model - example of a TP case: #3_2_135. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Casualty (+) compared to Survivor (-).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.875) relative to its truth (0.125). The
relative indetermency is low (0.145).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
truth (0.855) relative to its falsity (0.500). The relative indetermency
is low (0.145).”

Similarly to the TP example for the KEEL dataset, the truth level is high at 0.855.

However, the indeterminacy is significantly lower at 0.145 for both classes (Figure

5.22). This, combined with a low falsity, makes it a relatively certain positive

classification.
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Figure 5.23: Titanic - Kaggle Dataset: Graphical explanation of the
overall NL sub-model - example of a FP case: #4_3_38. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Casualty (+) compared to Survivor (-).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.855) relative to its truth (0.145). The
relative indetermency is high (0.855).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.855) relative to its truth (0.145). The relative indetermency
is high (0.855).”
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By comparison, the FP example (Figure 5.23) had a lower truth for the positive class

and a high indeterminacy. Both of which were indicative of less certainty in the

classification.
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Figure 5.24: Titanic - Kaggle Dataset: Graphical explanation of the
overall NL sub-model - example of a TN case: #5_4_108. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Survivor (-) compared to Casualty (+).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.855) relative to its truth (0.145). The
relative indetermency is high (0.855).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.985) relative to its truth (0.015). The relative indetermency
is average (0.495).”

The TN example for this (Figure 5.24) dataset was a less certain one because of the

higher indeterminacy outputs for both classes compared to the KEEL dataset. In

spite of this, the model was still able to accurately classify the passenger.
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Figure 5.25: Titanic - Kaggle Dataset: Graphical explanation of the
overall NL sub-model - example of a FN case: #6_1_175. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Survivor (-) compared to Casualty (+).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher truth (0.865) relative to its falsity (0.135). The
relative indetermency is low (0.135).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.990) relative to its truth (0.010). The relative indetermency
is low (0.135).”

On the other hand, for the FN example (Figure 5.25), the model misclassified the

data despite the low indeterminacy. In addition, the neutrosophic outputs of the NL

sub-model both pointed to the same conclusion. The MCDM model’s inaccuracy

resulted in the wrongful classification and misleading explanation, as seen with the

FN example for the KEEL dataset. Therefore, the classifier’s accuracy plays a vital

role in the explanation’s meaningfulness.

Parkinson disease

In this section, two cases will be compared to give an idea of whether NL output

considerably varies for examples of the same type. Moreover, the explanation’s

stability is demonstrated.
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Figure 5.26: Parkinson Disease Dataset: distance measures S from
the two sub-models - example of a TP case: #10_1_51. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate. The data was classified as Sick (+) by the
model.”
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Figure 5.27: Parkinson Disease Dataset: distance measures S from
the two sub-models - example of a TP case: #2_1_78. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate. The data was classified as Sick (+) by the
model.”
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Figure 5.28: Parkinson disease dataset: graphical explanation of the
overall NL sub-model - example of a TP case: #10_1_51. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Sick (+) compared to Healthy (-).” (a) Explanation:
“For the Healthy (-) class, the overall sub-model thinks the data has
a higher falsity (0.875) relative to its truth (0.125). The relative
indetermency is high (0.855).”. (b) Explanation: “For the Sick (+)
class, the overall sub-model thinks the data has a higher truth (0.855)
relative to its falsity (0.500). The relative indetermency is average
(0.495).”
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Figure 5.29: Parkinson disease dataset: graphical explanation of the
overall NL sub-model - example of a TP case: #2_1_78. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Sick (+) compared to Healthy (-).” (a) Explanation:
“For the Healthy (-) class, the overall sub-model thinks the data has
a higher falsity (0.905) relative to its truth (0.095). The relative
indetermency is high (0.870).”. (b) Explanation: “For the Sick (+)
class, the overall sub-model thinks the data has a higher truth (0.870)
relative to its falsity (0.500). The relative indetermency is average
(0.480).”

The TP cases present an example where there was minimal variation in the NL

outputs across the two subjects, as presented in Figures 5.28 and 5.29. This was due

to the similar S measure values generated by the MCDM sub-model as shown in

Figures 5.26 and 5.27.
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Figure 5.30: Parkinson Disease Dataset: distance measures S from
the two sub-models - example of a FN case: #3_3_55. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate. The data was classified as Healthy (-) by the
model.”
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Figure 5.31: Parkinson Disease Dataset: distance measures S from
the two sub-models - example of a FN case: #7_4_55. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate. The data was classified as Healthy (-) by the
model.”
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Figure 5.32: Parkinson disease dataset: graphical explanation of the
overall NL sub-model - example of a FN case: #3_3_55. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Healthy (-) compared to Sick (+).” (a) Explanation:
“For the Healthy (-) class, the overall sub-model thinks the data has
a higher falsity (0.855) relative to its truth (0.145). The relative
indetermency is low (0.145).”. (b) Explanation: “For the Sick (+)
class, the overall sub-model thinks the data has a higher falsity
(0.870) relative to its truth (0.130). The relative indetermency is low
(0.145).”
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Figure 5.33: Parkinson disease dataset: graphical explanation of the
overall NL sub-model - example of a FN case: #7_4_55. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Healthy (-) compared to Sick (+).” (a) Explanation:
“For the Healthy (-) class, the overall sub-model thinks the data has
a higher falsity (0.860) relative to its truth (0.140). The relative
indetermency is low (0.140).”. (b) Explanation: “For the Sick (+)
class, the overall sub-model thinks the data has a higher falsity
(0.865) relative to its truth (0.135). The relative indetermency is low
(0.140).”

Furthermore, a similar image is portrayed for the FN examples where the NL had

near identical values (Figures 5.32 and 5.33). Inspecting the S measures reveals once

again this is not a mere generalisation, but, a proportional representation of the

MCDM output, as shown in Figures 5.30 and 5.31.
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Chess
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Figure 5.34: Chess dataset: graphical explanation of the overall NL
sub-model - example of a TN case: #3_2_169. Overall explanation:
“Based on the overall sub-model’s output the data was more similar
to Win (-) compared to Lose (+).” (a) Explanation: “For the Win (-)
class, the overall sub-model thinks the data has a higher falsity
(0.505) relative to its truth (0.495). The relative indeterminacy is high
(0.855).”. (b) Explanation: “For the Lose (+) class, the overall
sub-model thinks the data has a higher falsity (0.530) relative to its
truth (0.470). The relative indeterminacy is high (0.880).”
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Figure 5.35: Chess dataset: graphical explanation of the overall NL
sub-model - example of a TN case: #8_2_154. Overall explanation:
“Based on the overall sub-model’s output the data was more similar
to Win (-) compared to Lose (+).” (a) Explanation: “For the Win (-)
class, the overall sub-model thinks the data has a higher truth (0.855)
relative to its falsity (0.145). The relative indeterminacy is high
(0.890).”. (b) Explanation: “For the Lose (+) class, the overall
sub-model thinks the data has a higher falsity (0.865) relative to its
truth (0.135). The relative indeterminacy is high (0.890).”

In contrast to the Parkinson disease dataset, the chess dataset resulted in distinct

neutrosophic outputs for cases of the same type as presented in Figures 5.34-5.35.

For the TN examples, four out of the six outputs differed. The second example had
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a higher certainty overall because of the higher truth for the negative class paired

with a lower truth for the positive class.

0 0.2 0.4 0.6 0.8 1.0

T

I

F

0.135

0.855

0.865

Neutrosophic output

C
om

po
ne

nt
Negative Class

(a)

0 0.2 0.4 0.6 0.8 1.0

T

I

F

0.855

0.855

0.500

Neutrosophic output

C
om

po
ne

nt

Positive Class

(b)

Figure 5.36: Chess dataset: graphical explanation of the overall NL
sub-model - example of a FP case: #5_1_51. Overall explanation:
“Based on the overall sub-model’s output the data was more similar
to Lose (+) compared to Win (-).” (a) Explanation: “For the Win (-)
class, the overall sub-model thinks the data has a higher falsity
(0.865) relative to its truth (0.135). The relative indeterminacy is high
(0.855).”. (b) Explanation: “For the Lose (+) class, the overall
sub-model thinks the data has a higher truth (0.855) relative to its
falsity (0.500). The relative indeterminacy is high (0.855).”
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Figure 5.37: Chess dataset: graphical explanation of the overall NL
sub-model - example of a FP case: #5_3_200. Overall explanation:
“Based on the overall sub-model’s output the data was more similar
to Lose (+) compared to Win (-).” (a) Explanation: “For the Win (-)
class, the overall sub-model thinks the data has a higher falsity
(0.870) relative to its truth (0.130). The relative indeterminacy is high
(0.855).”. (b) Explanation: “For the Lose (+) class, the overall
sub-model thinks the data has a higher falsity (0.505) relative to its
truth (0.495). The relative indeterminacy is high (0.855).”

However, only one output changed significantly for the FP examples (Figures

5.36-5.37). Therefore, confidence in the two decisions is considered relatively

similar. Analysing TP examples revealed a similar pattern where outputs varied
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Table 5.8: BF Bead: neut-TOPSIS vs fuzzy-TOPSIS

µ ± σ (%)

Model ACC FMR TPR TNR

fuzzy-TOPSIS 81.3 ± 2.8 81.3 ± 2.7 81.1 ± 3.4 81.6 ± 4.0

neut-TOPSIS 79.6 ± 2.7 79.2 ± 2.6 84.6 ± 3.2 74.6 ± 3.9

Table 5.9: BF Defects: neut-TOPSIS vs fuzzy-TOPSIS

µ ± σ (%)

Model ACC FMR TPR TNR

fuzzy-TOPSIS 87.7 ± 2.7 87.4 ± 2.7 93.2 ± 3.0 82.4 ± 4.5

neut-TOPSIS 87.6 ± 2.6 87.3 ± 2.7 93.3 ± 3.0 82.2 ± 4.6

across the same type; only for FN were the outputs nearly identical. A more

in-depth analysis is required to discern whether the neutrosophic outputs provide

the insight they represent. Nonetheless, it is imperative the values vary with less

variability for similar cases - explanation stability.

5.4.3 Performance: weld datasets

In the spirit of assessing neut-TOPSIS’s resilience and consistency as a data-driven

classifier, the framework was investigated using the BF weld datasets: bead and

defect detection. For a detailed description of the industrial case study, please refer

to chapter 6.

For the bead detection (Table 5.8), the fuzzy-TOPSIS model still had better

performance than neut-TOPSIS; the former achieved 0.7% and 2.1% higher ACC

and FMR, respectively. This was due to the drop in TNR performance for

neut-TOPSIS.

Performance for the defect dataset across the two frameworks was close to identical,

with not more than a 0.1% difference for all four metrics (Table 5.9). Therefore, the

absence of a performance trade-off makes neut-TOPSIS the obvious choice for this

dataset.
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5.4.4 Explaining: welding datasets

In this section, examples of explanation are presented for bead and defect detection

datasets. Where an incomplete set of figures is shown for the graphical explanation

examples, a full set is provided in Appendix B.

Bead detection

Explanation examples for these datasets include the ultrasonic image. The aim of

this dataset is to classify images as either containing a bead or not. A bead is a

protruding structure along the weld seam. Locating the bead indication enables

NDT analysts to have an idea of the aligned of the weld in the ultrasonic image. The

bead indication often appears as a high amplitude almost-horizontal ribbon.
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Figure 5.38: BF weld bead detection: Graphical explanation of the No
Bead NL sub-model - example of a TP case: #1_5_175_23_45. (a)
Explanation: “For the No bead (-) class, the No Bead Model thinks
the data has a higher falsity (0.920) relative to its truth (0.080). The
relative indetermency is low (0.080).”. (b) Explanation: “For the
Bead (+) class, the No Bead Model thinks the data has a higher truth
(0.920) relative to its falsity (0.500). The relative indetermency is low
(0.080).”
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Figure 5.39: BF weld bead detection: Graphical explanation of the
Bead NL sub-model - example of a TP case: #1_5_175_23_45. (a)
Explanation: “For the No bead (-) class, the No Bead Model thinks
the data has a higher falsity (0.865) relative to its truth (0.135). The
relative indetermency is low (0.135).”. (b) Explanation: “For the
Bead (+) class, the No Bead Model thinks the data has a higher truth
(0.865) relative to its falsity (0.500). The relative indetermency is low
(0.135).”
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Figure 5.40: BF weld bead detection: Graphical explanation of the
overall NL sub-model - example of a TP case: #1_5_175_23_45.
Overall explanation: “Based on the overall sub-model’s output the
data was more similar to Bead (+) compared to No bead (-).” (a)
Explanation: “For the No bead (-) class, the overall sub-model thinks
the data has a higher falsity (0.920) relative to its truth (0.080). The
relative indetermency is low (0.135).”. (b) Explanation: “For the
Bead (+) class, the overall sub-model thinks the data has a higher
truth (0.865) relative to its falsity (0.500). The relative indetermency
is low (0.135).”

In the first example, a TP case, an extended version of the NL explanation is

presented where the neutrosophic outputs are illustrated for the sub-models before

(Figures 5.38-5.39) and after aggregation (Figure 5.40). The No Bead model (Figure

5.38) output shows a case where the truth is higher for the Bead class. Similarly, the

Bead sub-model has the same result (Figure 5.39). As a result, following
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aggregation, the Bead had a higher truth overall and resulted in a strong

classification.
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Figure 5.41: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#1_5_175_23_45. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate.”. (b) Plot of UT
image data for the same example. The image was classified as Bead
by the model.

The bead is ribbon-like indication with a horizontal shape. An example of a bead

indication is shown in Figure 5.41.
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Figure 5.42: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FN case:
#1_2_176_23_35. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate.”. (b) Plot of UT image
data for the same example. The image was classified as No Bead by
the model.

0 0.2 0.4 0.6 0.8 1.0

T

I

F

0.495

0.855

0.505

Neutrosophic output

C
om

po
ne

nt

Negative Class

(a)

0 0.2 0.4 0.6 0.8 1.0

T

I

F

0.140

0.855

0.860

Neutrosophic output

C
om

po
ne

nt

Positive Class

(b)

Figure 5.43: BF weld bead detection: Graphical explanation of the
overall NL sub-model - example of a FN case: #1_2_176_23_35.
Overall explanation: “Based on the overall sub-model’s output the
data was more similar to No bead (-) compared to Bead (+).” (a)
Explanation: “For the No bead (-) class, the overall sub-model thinks
the data has a higher falsity (0.505) relative to its truth (0.495). The
relative indetermency is high (0.855).”. (b) Explanation: “For the
Bead (+) class, the overall sub-model thinks the data has a higher
falsity (0.860) relative to its truth (0.140). The relative indetermency
is high (0.855).”

In this FN example, looking at the image reveals a faint bead signal around the



146 Chapter 5. Neutrosophic-TOPSIS for enhanced explainability

200mm depth (Figure 5.42). The amplitude of the indication makes the Bead harder

to discern. The MCDM sub-models were in conflict with the No Bead sub-model

pointing towards Bead. Meanwhile, the Bead sub-model was pointing towards No

Bead. The conflict was resolved by using the sub-model with the larger difference

between its measures - the Bead sub-model. Hence, the No Bead decision, as shown

in Figures 5.42-5.43.

Defect detection

Defect indications enable the detection of flaws in a pipe weld. In this section, the

neut-TOPSIS model is used to classify image slices for defect detection.
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Figure 5.44: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#2_4_114_21_58. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate.”. (b) Plot of UT
image data for the same example. The image was classified as
defective by the model.
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Figure 5.45: BF weld defect detection: Graphical explanation of the
overall NL sub-model - example of a TP case: #2_4_114_21_58.
Overall explanation: “Based on the overall sub-model’s output the
data was more similar to Defective (+) compared to Non-defective
(-).” (a) Explanation: “For the Non-defective (-) class, the overall
sub-model thinks the data has a higher falsity (0.955) relative to its
truth (0.045). The relative indetermency is low (0.140).”. (b)
Explanation: “For the Defective (+) class, the overall sub-model
thinks the data has a higher truth (0.860) relative to its falsity (0.500).
The relative indetermency is low (0.140).”

Firstly, a TP example (Figures 5.44-5.45) demonstrates a case where the model

successfully detected a defect. In this case, both NL sub-models had a high truth for

the positive class and a low falsify for the negative class. Similarly, the overall NL

output reflected the same characteristics; hence it is considered a high certainty

positive classification.
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Figure 5.46: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FN case:
#8_5_107_19_61. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate.”. (b) Plot of UT image
data for the same example. The image was classified as non-defective
by the model.
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Figure 5.47: BF weld defect detection: Graphical explanation of the
overall NL sub-model - example of a FN case: #8_5_107_19_61.
Overall explanation: “Based on the overall sub-model’s output the
data was more similar to Non-defective (-) compared to Defective
(+).” (a) Explanation: “For the Non-defective (-) class, the overall
sub-model thinks the data has a higher falsity (0.865) relative to its
truth (0.135). The relative indetermency is low (0.135).”. (b)
Explanation: “For the Defective (+) class, the overall sub-model
thinks the data has a higher falsity (0.890) relative to its truth (0.110).
The relative indetermency is low (0.135).”

For the FN case, however, overall truth levels for both classes were low (Figure
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5.47). Thus, compared to the previous example, it is indicatively, based on the

explanation, less certain. Therefore, this insight could be useful for experts in

discerning misclassification when presented with the image (Figure 5.46).
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Figure 5.48: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TN case:
#5_2_25_3_8. Textual explanation: “Models are in agreement hence,
it is more likely the classification is accurate.”. (b) Plot of UT image
data for the same example. The image was classified as non-defective
by the model.
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Figure 5.49: BF weld defect detection: Graphical explanation of the
overall NL sub-model - example of a TN case: #5_2_25_3_8. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Non-defective (-) compared to Defective (+).” (a)
Explanation: “For the Non-defective (-) class, the overall sub-model
thinks the data has a higher truth (0.855) relative to its falsity (0.145).
The relative indetermency is low (0.145).”. (b) Explanation: “For the
Defective (+) class, the overall sub-model thinks the data has a
higher falsity (1.000) relative to its truth (0.000). The relative
indetermency is low (0.145).”

In this TN case (Figures 5.48-5.49), the high amplitude indications were expected

to confuse the classifier into thinking there is a defect. Although the non-defective

sub-model was relatively inconclusive with S measures that are close in value, the

defective sub-model could not be more conclusive with a truth level of 1.0 for the

negative class.
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Figure 5.50: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FP case:
#7_1_40_19_49. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate.”. (b) Plot of UT
image data for the same example. The image was classified as
defective by the model.
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Figure 5.51: BF weld defect detection: Graphical explanation of the
overall NL sub-model - example of a FP case: #7_1_40_19_49.
Overall explanation: “Based on the overall sub-model’s output the
data was more similar to Defective (+) compared to Non-defective
(-).” (a) Explanation: “For the Non-defective (-) class, the overall
sub-model thinks the data has a higher falsity (0.935) relative to its
truth (0.065). The relative indetermency is high (0.855).”. (b)
Explanation: “For the Defective (+) class, the overall sub-model
thinks the data has a higher truth (0.855) relative to its falsity (0.500).
The relative indetermency is high (0.855).”

Meanwhile, the FP case (Figures 5.50-5.51) had a less conclusive classification with
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indeterminacy for both sub-models at 0.855. Despite the high truth for the positive

class, the falsity was average at 0.5. Also, the negative class had a low truth level

and high falsity; thus, the only indication of a potential misclassification was

indeterminacy. The UT image slice is considered relatively clean and has minimal if

any, signs of defect indication. Therefore, this weld is likely to be picked up as

inaccurate by an industry expert. It is worth noting FPs as more tolerable than FNs

in the application of defect detection because of the associated consequence

severity.

5.5 Summary

In this chapter, neutrosphic-TOPSIS is proposed as an improvement to

fuzzy-TOPSIS. The new framework provides additional explanations based on its

falsity and indeterminacy components. Despite enhanced interpretability,

performance stayed largely the same for all datasets tested.

Explanation examples were presented for seven datasets. For the fuzzy-TOPSIS

classifier, the explanation framework illustrated the impact of each feature on each

sub-model separately. The approach presented a granular representation of impact

down to the features - an explanation offering a lower level abstraction. This was

useful in tracing how a decision was arrived at based on the feature values.

The Neutrosophic-TOPSIS classifier, on the other hand, summarises the state of the

sub-models using its neutrosophic components: truth, indeterminacy and falsity.

As a result, the user can be presented with a high-level explanation where each

component is explained using the three neutrosophic components. The small

number of components involved makes it easier for the user to comprehend the

state of the sub-models and how they affected the overall model’s decision.

Since the TOPSIS component remains unchanged, the feature-level explanations can

still be provided in addition to the Neutrosophic explanations.

The NL extension expanded upon the FIS in the previous chapter by providing three

components. This increased the number of insights presented to the user. As a
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result, the complexity of the graphs presented to the user was increased; thus, this

potentially has a negative effect on the comprehensibility of the explanation.
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6 Application to nondestructive

testing: a pipe inspection case

study

The omission of explanation from AI models is a key obstacle to their widespread

adoption. Attempts have been made to solve this issue by trying to explain opaque

models. Although some success has been sought, opaque models limit what is

achievable since they infer insight from external models not involved in the

classification process. Therefore, opting for intrinsically interpretable models is the

only way to access direct explanation. In this chapter, ultrasonic testing data

gathered from an industrial project on volumetric pipe inspection is processed to

extract a nine-feature dataset. Consequently, an inherently explainable framework,

based on Fuzzy-MCDM methodologies, is applied to the dataset and shown to

achieve satisfactory performance compared to K-Means. The explanation

framework is able to pinpoint the most influential features for each of the decisions

in a traceable fashion. The study points to the framework’s versatility and its ability

to provide satisfactory performance while generating meaningful explanations

aligned with the classifier’s inner workings. In addition, it alludes to the possibility

in the future of naturally interpretable approaches.
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6.1 Introduction

The implementation of decision support systems in real-life applications depends on

a host of variables. Obstacles to their adoption vary; however, a common one is the

lack of transparency, traceability and understandability of such systems, all of which

are related to explainability. Industrial decision support systems are no exception.

In this chapter, an application of explainable modelling is presented, using the

fuzzy-TOPSIS framework, to ultrasonic pipe inspection. The framework is based

on the fuzzy-TOPSIS classifier first proposed in chapter 3. In the first section, a

literature review is described on advanced manufacturing and then specifically

pipe inspection. Consequently, a description of the steps applied to prepare the

data; pre-processing and labelling. Finally, the chapter is concluded with a

presentation of the results, discussion and suggestions for future work.

6.2 Pipe inspection in advanced manufacturing

The industrial revolutions paved the way for dramatic improvements to how

manufacturing is performed. Steam engines pumped early mechanically automated

mass-producing machines at the start of the first revolution. Consequently, the

second revolution brought about new inventions and technologies that increased

the efficiency of how mass production is performed. Moreover, the invention of the

modern steam turbine provided access to cheap electricity, which paved the way

for the electrification of numerous applications. The development of electronics

and, in turn, integrated circuits saw the start of a new era in industrialisation - the

digital age. Although mechanical and analogue electronics enabled automation to a

certain extent, digitisation made possible the emergence of several precise

manufacturing processes. The boost in controllability meant highly repeatable tasks

could be optimised to a level not possible with previous control technologies. For

instance, the emergence of servo motors allowed for highly precise manufacturing

technologies based on robotics, such as friction stir welding, additive

manufacturing and robotic manipulators.
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The rise of automation, although vastly rewarding, came with its challenges. Despite

the unimaginable level of accuracy achievable by robust control, manufacturing is

everything but ideal. The increasing levels of repeatable success achieved come at

a cost; less data is generated on defects because of the high rates of success. Thus,

machine learning models lack the datasets required to achieve satisfactory accuracy

performance. Nonetheless, Industry 4.0 initiatives are at the forefront of solving this

problem. By connecting all components of the factory chain to the cloud, more data

than ever before is accessible by model designers.

Buttfusion (BF) and electro-fusion (EF) welding are the most prominent

thermo-fusion joining techniques used for HDPE pipe welding in industrial

installations around the world. EF welding uses an external HDPE sleeve with a

coil embedded; it is excited with a current that generates enough heat to mould the

edges of the pipes to the sleeve and, in turn, together. In contrast, BF does not

utilise any additional fillers or components; rather, it relies solely on the material of

pipes. This is achieved by heating the pipe’s edges and pushing them together at a

pre-defined pressure. The softened edges bead up to form a tight seal once cooled.

Steel pipes have been the preferred option for critical applications for their superior

tensile strength. However, HDPE provides resistance to corrosion steel cannot

match among other benefits, such as strength-to-weight ratio, electrical insulation,

and longer service life [114], [115]. Thus, HDPE pipes have been applied in critical

areas such as water, gas and nuclear [116]; This fosters new challenges to the safety

of their use. Efforts have been undertaken to optimise the welding process, such as

an established procedure erected through an international standard, ISO 21307. The

standard seeks to ensure the safety of welds produced. Moreover, a key

requirement in producing HDPE welds is the Quality Assurance (QA) process,

where NDE techniques have been designed to use PAUT.

QA is one of the main priorities of any mass-producing factory, as it goes without

saying that by assuring quality, efficiency is improved. HDPE pipe welding is an

area where QA is particularly vital. Experts estimate there are 700 million plastic

welds in operation around the globe in various industries such as gas, mining and

energy [116]. Critical industries’ reliance on HDPE pipelines means defects have to
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be treated very seriously to ensure their safety. For this reason, there has been an

industry interest in developing volumetric inspection techniques for HDPE welds

[117]. The advancements in this field gave rise to a common challenge; the high

dimensionality of the data generated. This makes the NDT system’s current reliance

on manual analysis unsustainable. As a result, ML modelling could prove useful in

automating this process.

However, the introduction of modelling in any system often results in discrepancies

and inaccuracies; there is minimal room for error in a high stake area such as this.

In addition, the NDT expert must still be the entity to take the decision because

of the absence of regulation for complete dependence on decision support systems.

For this reason, explaining the classification result could prove useful for the NDT

expert’s task of justifying decisions.

There is a lack of literature that demonstrates modelling being used for automating

the NDT process for plastic pipe welds [118]. Thus, there is a clear research gap

that needs to be addressed. This chapter addresses the gap by demonstrating, for

the first time ever, an implementation of an explainable classifier for BF plastic pipe

weld defects.

6.3 Applying Fuzzy-TOPSIS classifiers to automated defect

recognition

6.3.1 Data collection and conversion

UT as described in the previous section, entails a variety of distinct techniques and

methodologies. PAUT is a form of UT where the scanner consists of an array of

transducers, as opposed to a single transducer used in conventional UT systems.

In the case of UT for pipe inspection, the use of PAUT is widely used; however, the

probe configuration is varied to suit the weld type. In the case of BF welds, an angle

beam is favoured for its ability to focus on the region of interest - the weld seam, as

illustrated in Figures 6.2-6.3.

The procedure for scanning a BF weld consists of the following steps
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Probe

Bead

Scanning belt

Couplant

Figure 6.2: Illustration of the BF weld PAUT angle beam inspection
with the use of a scanning belt to control the course of the probe. The
scanning trajectory, as illustrated, is along the outer diameter of the
pipe, parallel to the pipe’s axis.

(a) Cleaning the pipe surface, if necessary.

(b) Installing PAUT system on the pipe; the probe and scanning belt.

(c) Applying UT coupling gel to the region of the probe is expected to be in contact

with the probe. Coupling gel acts as a UT signal interface between the probe and

the pipe.

(d) Initialising the data acquisition unit (DAU) with the recommended configuration

suitable for the pipe material and thickness.

(e) Starting data collection mode on the DAU.

(f) Moving the scanner along the outer diameter of the pipe, as consistently as

possible, with the aid of the scanning belt.

(g) Ending the data collection mode.

(h) Verifying the quality of the data collected by analysing the data manually using

the DAU.

The encoder built into the scanning belt keeps track of the scanner’s position along

the circumference of the pipe. The DAU would then use the position information to

sort the data following its scan process. Thus, providing a reference point that can

be used to locate potential indications physically on the weld.
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OD

Pipe

Probe

Bead

Scanning direction

Figure 6.3: Illustration of the scanning direction in relation to the OD
and ID of the pipe, in a cross-sectional view from the side. The
positioning of the probe aims to capture UT waves reflected from the
region of interest - the weld area. Moreover, it is worth noting that
the ultrasound waves, because of their physical characteristics, do
not travel past the pipe’s ID; therefore, it is required to scan along
the full outer circumference to be able to inspect the complete weld.

The data is saved in a proprietary format developed by Olympus - the PAUT system

manufacturer. To be able to utilise the data from the system, a data extraction library1

was utilised. The library was used to convert the data to the Matlab format. The

library supports data retrieval to Matlab directly, using the code presented in Figure

6.4.

Once extracted, the data had to be converted from the raw signal format,

amplitude-scan (A-Scan), to the image format utilised for BF inspection,

brightness-scan (B-Scan). PAUT imagery aggregates A-Scan signal data in a

manner that enables the NDT expert to analyse the data effectively and efficiently.

Each A-Scan in the dataset represents an amplitude reading from a specific

transducer at a certain circumferential position. Meanwhile, each B-Scan image

seeks to display all A-Scans readings from a specific transducer. In BF inspection,

each transducer represents scanning at a particular step angle.

Bj =

[
Aj,1 Aj,2 · · · Aj,n

]
(6.1)

Where Bj is the B-Scan image at angle step j, Aj,n is the A-Scan signal at angle step j

and at circumference step n.

1Olympus NDT Data Access Library - Software Version 1.10
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1 clc; clear; % clears command line and workspace
2

3 IN_DIR='C:\Users\Hesham\BFData\BF_OPD\'; %input directory
4 OUT_DIR='C:\Users\Hesham\BFData\BF_OPD_MAT\'; %output directory
5

6 FILENAME_MASK='*.opd'; %defines file extension to look for
7

8 %scans input directory for opd files.
9 [paths,names]=get_files_paths(DIR,FILENAME_MASK);

10

11 %for loop processes all .opd files detected in input directory
12 %and converts them into .mat format.
13 for file=1:length(paths)
14

15 %readRDT is a Matlab function file written by Olympus to utilise
16 %the Olympus \ac{NDT} Data Access Library − Software Version 1.10
17 DATA=readRDT(paths{file});
18

19 file_name=names{file}; %stores filename of current file
20

21 %saves the relevant variables to a .mat file by the same name
22 save(strcat(OUT_DIRECTORY,file_name,'.mat'),'DATA','file_name')
23

24 end

Figure 6.4: Matlab code for converting the data from the Olympus
proprietry format (.opd) to Matlab format (.mat)

Moreover, the B-Scan image Bj at angle step j is defined by (6.1). Therefore, the

resolution of the B-Scan image depends on the length of the A-Scan and the

circumference of the pipe. The A-Scan’s length is based on the scanning depth and

scanning resolution.

6.3.2 Data labelling and feature extraction

After the data preparation stage, all the images were readily processed in the

B-Scan format. Consequently, data labelling and feature extraction was required

before any modelling. The image analysis aims to locate various key features, such

as indications representing the pipe components or potential defects. Two sets of

labelled data were produced for bead and defect detection, respectively.

For bead detection, the data was manually labelled in one of two classes: Bead or No

Bead. Each B-Scan image was labelled to be either of these classes. A total of 2030

B-Scans were labelled from 30 weld scans.
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In contrast, for the defect detection, the B-Scans were cropped into square image

slices into one of two classes: Defective or Non-defective. The process was done

manually to limit this project’s scope to investigate the underlying interpretable

modelling methodology, assuming that such a technique could be viably

developed. A total of 1076 slices were labelled from 15 welds.

Amplitude µ =
∑ xn

N
(6.2)

Amplitude σ =

√
∑(xn − µ)2

N
(6.3)

Where xn is the amplitude at pixel n, and N is the total number of pixels in the image.

Following labelling, a total of nine features f j were extracted from the labelled

images. They are based on pixel amplitude, gray level co-occurrence

matrix (GCLM) and edges detected. Two amplitude-based features are calculated:

the mean and standard deviation (6.2, 6.3). Since high-amplitude indications are

often how defects and other objects are located in the image, these features could be

useful.

GCLM Contrast = ∑
a,b

|a − b|2P(a, b) (6.4)

GCLM Correlation = ∑
a,b

(a − µa) (a − µb) P(a, b)
σaσb

(6.5)

GCLM Energy = ∑
a,b
(P(a, b))2 (6.6)

GCLM Homogeneity = ∑
a,b

P(a, b)
1 + |a − b| (6.7)

Where a is the first pixel; b is the adjacent pixel to be compared and; P(a, b) presents

the probability for gray-level pairs a and b, defined by (6.8), based on [119].
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Furthermore, four GCLM based features are calculated: contrast, correlation,

energy and homogeneity, as defined in (6.4-6.7), based on [119], [120]. Although the

amplitude could be a promising indicator for a particular object, the image’s texture

feature could be used to distinguish between patterns with similar amplitude

characteristics, such as genuine indications and background noise.

P(a, b) =
x(a,b)

N

∑
a,b=0

x(a,b)

(6.8)

Where x(a,b) is value at row a and column b.

Mean Connected Edge Length =
Total Edge Pixels

Number of Connected Edges
(6.9)

The final component of the feature-set is the three edge detection-related features.

The first feature provides the total number of edge pixels. Meanwhile, the second

feature counts the number of total connected edges. This attempts to capture shape

information and size. The third edge detection feature calculates the mean length

of the connected edges detected, hence providing summarised insight about a key

characteristic of the edges detected - their mean size as in (6.9).

6.3.3 Fuzzy-TOPSIS as a UT image classifier

The modelling frameworks applied in this chapter are described in detail in the

previous chapters on Fuzzy-MCDM and explanation frameworks, in Sections 3.3

and 4.3.

Since performance does not differ significantly between the different Fuzzy-MCDM

classifiers, fuzzy-TOPSIS was favoured for its relative simplicity. As presented in

Section 3.3, fuzzy-TOPSIS utilises a simpler singular FIS as opposed to the

hierarchical one used for Fuzzy-ATOVIC and Fuzzy-VIseKriterijumska

Optimizacija I Kompromisno Resenje (translation: Multicriteria Optimization and

Compromise Solution) (VIKOR). Thus, maximising the model’s interpretability and

allowing for the design of an explanation framework proposed in Section 4.3.
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Centroid Cj,p =

N

∑
i=1

xi,jp

N
(6.10)

Where Cj,p is the centroid for feature j, for class (and cluster) p and; xi,jp
is the value

of feature j for row i and, class p.

As a comparison, a supervised K-Means model in a single iteration approach where

a cluster was used to represent each class. The mean of each feature in each class was

calculated to form the centroids, as defined in (6.10). This enables a fair assessment

of fuzzy-TOPSIS as a classifier where it can be compared with a model from the same

paradigm.

6.4 Experimental results

In this section, the performance results are presented for the fuzzy-TOPSIS classifier

in comparison with K-means. Consequently, the benefit of opting for an inherently

interpretable classifier is highlighted by demonstrating how transparency-driven

explanation is exploited for meaningful and direct insight. The process is repeated

across two different tasks: bead detection and defect recognition. Finally, the

section is concluded by analysing how different aspects of the explanation relate to

performance.

6.4.1 Bead detection

The process of manual defect recognition of BF welds entails a series of operations

by the expert designed to gather as much information from the UT image. The steps

would vary depending on the application. For BF, the first step is locating the bead

indication. This gives an idea of where the weld is positioned in relation to the

image. The aim is to save the expert time by automatically determining the images

detected with beads.

The BF bead weld dataset was distributed into two classes Bead and No Bead. The

classes are not balanced with significantly more cases of No Bead. The No Bead class
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Table 6.1: BF weld bead dataset: class distribution before and after
data balancing

No. Class Before % After %

1 No Bead (-) 1492 73.5 538 50.0

2 Bead (+) 538 26.5 538 50.0

Total 2030 100.0 1076 100.0

Table 6.2: BF Weld dataset: feature names

# Name

1 Amplitude Mean

2 Amplitude SD

3 GCLM Contrast

4 GCLM Correlation

5 GCLM Energy

6 GCLM Homogeneity

7 Edge Pixels Count

8 Number of Edges

9 Average Edge Length

was under-sampled to match the sample count of the Bead class, as presented in

Table 6.1; as a method of balancing the dataset and achieving superior performance.

The feature set contained nine features, as shown in Table 6.2. The first two features

describe the amplitude characteristics of the image as this is the first criteria experts

utilise to distinguish and locate indications in ultrasonic images. Secondly, GCLM

features describe texture information that could be useful in discerning whether the

image contains a defect. Finally, edge detection-related features (7 to 9) summarise

edge data detected in the image with the aim of picking up statistical characteristics

associated with edges found in the images of interest.

Performance

Contrary to expectation, the fuzzy-TOPSIS model performed favourably compared

to the K-Means model with more than 5% performance improvement for both ACC

and FMR, as presented in Table 6.3. Despite, K-Means having a higher TPR, its

lower TNR is seen as the reason for its inferior overall performance. Therefore, for

this dataset, using fuzzy-TOPSIS instead of K-Means does not result in a trade-off of

performance.
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Table 6.3: BF weld bead detection: performance comparison between
TOPSIS and K-Means for the testing dataset for ten randomised runs
of 5-fold data

µ ± σ (%)

Model ACC FMR TPR TNR

Fuzzy-TOPSIS 81.3 ± 2.8 81.3 ± 2.7 81.1 ± 3.4 81.6 ± 4.0

K-Means 75.9 ± 2.4 74.5 ± 3.0 85.9 ± 3.0 66.0 ± 4.8

Explanation results

The explanation framework is the key advantage of adopting an inherently

interpretable framework. Below are several examples from the framework’s

explanation for the bead detection dataset. The bead is the region of a BF weld

in-line with the weld seam - the axis at which the two pipes are joined. The nature

of the BF welding technique results in what is called a bead protrusion appearing at

the weld seam. Fortunately, this bead allows for a highly visible indication to be

visible on the UT image - which provides a visual aid for experts.

The bead indication is often characterised by a higher-amplitude horizontal ribbon-

like indication which is always somewhat parallel to the x-axis - the circumferential

direction. This is a result of the scanning direction, which occurs along the pipe’s

outer circumference, i.e. in the same direction as the weld seam and bead.
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Figure 6.5: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#2_2_136_6_48. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate. Fuzzy class:
0.65”. (b) Plot of UT image data for the same example. The image
was classified as Bead by the model.
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Figure 6.6: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a TP case: #2_2_136_6_48. Textual
explanation: “No bead model thinks the data is similar to Bead (+ve)
and NOT similar to No bead (-ve).”
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Figure 6.7: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a TP case: #2_2_136_6_48. Textual
explanation: “Bead model thinks the data is more similar to Bead
(+ve) despite a high similarity for both.”

We begin with two TP examples that demonstrate how different aspects of the

explanation vary with how prominent the bead indication is in the UT image. The

first example (Figures 6.5-6.7) illustrates a case where the bead indication is

distinctly visible since it maintains high amplitude throughout - considerably

distinguishable from the background noise.
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Figure 6.8: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#2_2_145_10_35. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate. Fuzzy class: 0.57”. (b)
Plot of UT image data for the same example. The image was
classified as Bead by the model.
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Figure 6.9: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a TP case: #2_2_145_10_35. Textual
explanation: “No bead model thinks the data is similar to Bead (+ve)
and NOT similar to No bead (-ve).”
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Figure 6.10: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a TP case: #2_2_145_10_35. Textual
explanation: “Bead model thinks the data is more similar to No bead
(-ve) despite a high similarity for both.”

However, in the second example (Figures 6.8-6.10) the bead indication is relatively

less visible between a circumferential position of 100 and 300; this is perceived by a

lower amplitude in this range. The following aspects of the explanation indicate a

less obvious classification:

(a) Conflict between the two sub-models versus agreement in the previous example.

(b) The fuzzy class output is closer to the 0.5 threshold with a value of 0.57 compared

to 0.65 for the previous example.

(c) The No Bead model predicted a significantly lower similarity to the Bead class with

a measure of 0.305 compared to 0.209 for the previous example.
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Figure 6.11: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TN case:
#2_2_8_4_60. Textual explanation: “Models are in conflict hence, it is
less likely the classification is accurate. Fuzzy class: 0.37”. (b) Plot of
UT image data for the same example. The image was classified as No
Bead by the model.
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Figure 6.12: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a TN case: #2_2_8_4_60. Textual
explanation: “No bead model thinks the data is more similar to Bead
(+ve) despite a high similarity for both.”
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Figure 6.13: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a TN case: #2_2_8_4_60. Textual
explanation: “Bead model thinks the data is similar to No bead (-ve)
and NOT similar to Bead (+ve).”

Moreover, the TN example (in Figures 6.11-6.13) shows an instance where the

image lacks a prominent bead signal thus, was successfully classified as No Bead.

The sub-models were in conflict which indicates potential uncertainty in the

decision. After inspecting the image, in Figure 6.11, a faint but distinguishable

indication in the same position as a potential bead indication is observed; this

might explain the lack of agreement between the sub-models. Although the No Bead

sub-model decided for Bead, the Bead sub-model’s stronger decision towards No

Bead was sufficient to reach the correct outcome. Furthermore, the edge-related

features were the most impactful for the Bead sub-model’s decision, as shown in

Figure 6.13. Notably, such indicative information could be deemed useful to experts

for understanding the model’s decision and/or coming up with a justification.
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Figure 6.14: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FP case:
#2_2_91_33_19. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate. Fuzzy class:
0.67”. (b) Plot of UT image data for the same example. The image
was classified as Bead by the model.
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Figure 6.15: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a FP case: #2_2_91_33_19. Textual
explanation: “No bead model thinks the data is similar to Bead (+ve)
and NOT similar to No bead (-ve).”
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Figure 6.16: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a FP case: #2_2_91_33_19. Textual
explanation: “Bead model thinks the data is more similar to Bead
(+ve) despite a high similarity for both.”

Similar to the TP examples, this pair of FP cases shows another example of how

explanation describes the level of certainty associated with the classification. Both

cases result in an incorrect classification, however, the first example (in Figures 6.14-

6.16) contains several bead-like indications which seemed to have tricked the model

into misclassifying the image as Bead. This is confirmed by observing the edge-

related features (7-9), which have high scores across the two sub-models.
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Figure 6.17: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FP case:
#2_2_16_8_57. Textual explanation: “Models are in conflict hence, it
is less likely the classification is accurate. Fuzzy class: 0.65”. (b) Plot
of UT image data for the same example. The image was classified as
Bead by the model.
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Figure 6.18: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a FP case: #2_2_16_8_57. Textual
explanation: “No bead model thinks the data is similar to Bead (+ve)
and NOT similar to No bead (-ve).”
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Figure 6.19: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a FP case: #2_2_16_8_57. Textual
explanation: “Bead model thinks the data is more similar to No bead
(-ve) despite a high similarity for both.”

In contrast, for the second example, the image (in Figure 6.17) does not contain any

visible bead-like indications. Furthermore, in spite of a conflict between the

sub-models, the classification was incorrect. The deciding component behind the

inaccurate decision was the No Bead sub-model because of its stronger positive

classification, as shown in Figure 6.17. The significant background noise in the top

area of the image may be the cause of No Bead sub-model perceiving high similarity

to bead.
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Figure 6.20: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FN case:
#2_2_151_15_51. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate. Fuzzy class: 0.37”. (b)
Plot of UT image data for the same example. The image was
classified as No Bead by the model.
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Figure 6.21: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a FN case: #2_2_151_15_51. Textual
explanation: “No bead model thinks the data is more similar to Bead
(+ve) despite a high similarity for both.”
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Figure 6.22: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a FN case: #2_2_151_15_51. Textual
explanation: “Bead model thinks the data is similar to No bead (-ve)
and NOT similar to Bead (+ve).”

In this example (Figures 6.20-6.22), the model was not able to detect the bead

indication, although it was distinguishable when looking at the image, as shown in

Figure 6.20. It would have been the correct decision if the No Bead sub-model had

been decided. However, the Bead sub-model’s stronger decision towards No Bead

was the deciding factor. Similar to some previous examples, the edge-related

features (7-9) had the greatest influence on the Bead sub-model’s decision, as

shown in Figure 6.22. FN cases are more problematic, particularly for cases where

classification models are primarily relied upon.

6.4.2 Defect recognition

The next vital step of UT inspection of BF welds is being able to recognise defects.

However, experts recognise defects in a similar way to beads by looking at various

regions of the images where high amplitude indications occur. Hence, for this

dataset, a slice of the image is classified instead of the image as a whole - mimicking

an expert’s technique.

The BF defect weld dataset was distributed into two classes defective and

non-defective. The classes are relatively balanced, with around the same number of
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Table 6.4: BF weld defect dataset: class distribution

No. Class Count %

1 Non-defective (-) 427 51.1

2 Defective (+) 408 48.9

Total 835 100

Table 6.5: BF weld defect recognition: performance comparison
between TOPSIS and K-means for the testing dataset for ten
randomised runs of 5-fold data

µ ± σ (%)

Model ACC FMR TPR TNR

Fuzzy-TOPSIS 87.7 ± 2.7 87.4 ± 2.7 93.2 ± 3.0 82.4 ± 4.5

K-Means 84.1 ± 2.7 82.9 ± 3.1 94.7 ± 2.4 73.9 ± 5.0

cases in both classes, as presented in Table 6.4. Similarly, the dataset contained the

same nine features as the bead detection dataset, listed in Table 6.2.

Performance

The fuzzy-TOPSIS classifier used two sub-models to represent the two classes:

defective vs non-defective. As a performance assessment, it was compared with a K

Means classifier with two clusters in an attempt to gauge its accuracy on a model

with similar capability. There was an expectation of seeing a performance drop for

the fuzzy-TOPSIS model since it is not well-established as a classification

methodology. Nonetheless, the performance was similar between the two models,

with fuzzy-TOPSIS actually performing 3.6% more accurate, as presented in Figure

6.5. The specificity of fuzzy-TOPSIS was also considerably better at 82.4%

compared to 73.9%; this was at an apparent cost of a 1.5% drop in sensitivity.
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Explanation results
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Figure 6.23: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#2_2_97_2_57. Textual explanation: “Models are in agreement hence,
it is more likely the classification is accurate. Fuzzy class: 0.78”. (b)
Plot of UT image data for the same example. The image was
classified as defective by the model.
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Figure 6.24: BF weld defect detection: Graphical explanation of the
Non-defective sub-model - example of a TP case: #2_2_97_2_57.
Textual explanation: “Non-defective model thinks the data is similar
to Defective (+ve) and NOT similar to Non-defective (-ve).”
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Figure 6.25: BF weld defect detection: Graphical explanation of the
Defective sub-model - example of a TP case: #2_2_97_2_57. Textual
explanation: “Defective model thinks the data is more similar to
Defective (+ve) despite a high similarity for both.”

The indications visible on the UT images vary in amplitude depending on how

prominent the defects are relative to the ultrasonic transducer. In the first example,

a TP case, the defect is not particularly obvious (as shown in Figure 6.23).

Nonetheless, the sub-models were in agreement, both of which classified the image

slice as defective. Inspecting the feature scores for the two sub-models (in Figures

6.24-6.25) revealed that feature #3 and other GCLM features had values closer to the

positive ideal solutions for the positive class.
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Figure 6.26: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#2_2_113_20_59. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate. Fuzzy class: 0.58”. (b)
Plot of UT image data for the same example. The image was
classified as defective by the model.
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Figure 6.27: BF weld defect detection: Graphical explanation of the
Non-defective sub-model - example of a TP case: #2_2_113_20_59.
Textual explanation: “Non-defective model thinks the data is similar
to Defective (+ve) and NOT similar to Non-defective (-ve).”
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Figure 6.28: BF weld defect detection: Graphical explanation of the
Defective sub-model - example of a TP case: #2_2_113_20_59. Textual
explanation: “Defective model thinks the data is similar to
Non-defective (-ve) and NOT similar to Defective (+ve).”

Moreover, the second TP example demonstrates a case where the two sub-models

are in conflict, where the non-defective model predicts the slice to be defective,

while the defective model predicts it to be non-defective (as shown in Figure 6.26).

Despite the conflict, the slice was correctly classified as defective. Inspecting the

feature scores (in Figures 6.27-6.28) highlighted the key criteria affecting the

decision. More importantly, the feature scores for the non-defective model

provided the most meaningful information because of its pivotal role in this

decision. A large number of the features had a score higher than 0.5, which for this

dataset is considered impactful. Most notable features affecting the decision include

the GCLM features (specifically GCLM Contrast (#3)), edge pixels count (#7) and

mean amplitude (#1).
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Figure 6.29: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TN case:
#2_2_41_19_39. Textual explanation: “Models are in conflict hence, it
is less likely the classification is accurate. Fuzzy class: 0.45”. (b) Plot
of UT image data for the same example. The image was classified as
non-defective by the model.
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Figure 6.30: BF weld defect detection: Graphical explanation of the
Non-defective sub-model - example of a TN case: #2_2_41_19_39.
Textual explanation: “Non-defective model thinks the data is similar
to Defective (+ve) and NOT similar to Non-defective (-ve).”
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Figure 6.31: BF weld defect detection: Graphical explanation of the
Defective sub-model - example of a TN case: #2_2_41_19_39. Textual
explanation: “Defective model thinks the data is similar to
Non-defective (-ve) and NOT similar to Defective (+ve).”

Meanwhile, for non-defective slices, there are examples where negative cases are

less obvious than others, i.e. containing high amplitude indications that have a

similar shape and size to defects. The first example (Figures 6.29-6.31)

demonstrates how the model correctly classifies a negative case. The model was in

a similar conflict to the previous TP example. However, in this instance, the

defective model’s measures indicated a higher certainty; thus, the image was

classified as non-defective. Based on the feature scores, features 5 and 6 (GCLM

Energy and Homogeneity) had a significant impact on the decision for the defective

sub-model, thus, the overall model.
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Figure 6.32: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TN case:
#2_2_22_3_8. Textual explanation: “Models are in agreement hence,
it is more likely the classification is accurate. Fuzzy class: 0.2”. (b)
Plot of UT image data for the same example. The image was
classified as non-defective by the model.
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Figure 6.33: BF weld defect detection: Graphical explanation of the
Non-defective sub-model - example of a TN case: #2_2_22_3_8.
Textual explanation: “Non-defective model thinks the data is more
similar to Non-defective (-ve) despite a high similarity for both.”
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Figure 6.34: BF weld defect detection: Graphical explanation of the
Defective sub-model - example of a TN case: #2_2_22_3_8. Textual
explanation: “Defective model thinks the data is similar to
Non-defective (-ve) and NOT similar to Defective (+ve).”

Furthermore, the second TN example (Figures 6.32-6.34) demonstrates how the

model deals with a more challenging negative case, for which, the image contains

high amplitude indications similar in shape and size to a defect. Contrary to the

previous example, the models agree that the image slice is non-defective. In addition,

as expected since the feature scores are high for the negative class for both the

sub-models. As a result, the values of the measures for the non-defective class were

low, as summarised by a low fuzzy class output of 0.2. The strong classification

provides insight to the user with regard to the potential accuracy of the result. In

this example, the insight aligns with the correctness of the classification.
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Figure 6.35: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FP case:
#2_2_13_2_19. Textual explanation: “Models are in conflict hence, it
is less likely the classification is accurate. Fuzzy class: 0.53”. (b) Plot
of UT image data for the same example. The image was classified as
defective by the model.
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Figure 6.36: BF weld defect detection: Graphical explanation of the
Non-defective sub-model - example of a FP case: #2_2_13_2_19.
Textual explanation: “Non-defective model thinks the data is similar
to Defective (+ve) and NOT similar to Non-defective (-ve).”
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Figure 6.37: BF weld defect detection: Graphical explanation of the
Defective sub-model - example of a FP case: #2_2_13_2_19. Textual
explanation: “Defective model thinks the data is similar to
Non-defective (-ve) and NOT similar to Defective (+ve).”

In cases where the model was inaccurate in its prediction, explanation insight could

play a vital role in providing some indication of potential uncertainty. There are

two types of false cases: negative or positive. Although FP cases require more work

to assess the case manually, they are less problematic in advanced manufacturing

compared to FN cases, where critical defects could be potentially overlooked. An

example of an FP case in Figures 6.35-6.37, demonstrates how high amplitude

indications with similar characteristics can fool the model into predicting the image

slice as a defect. Despite the inaccurate classification, various indicators point to a

lower level of certainty. For instance, the fuzzy class has a value relatively close to

the threshold at 0.53.
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Figure 6.38: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FN case:
#2_2_111_20_56. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate. Fuzzy class: 0.44”. (b)
Plot of UT image data for the same example. The image was
classified as non-defective by the model.
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Figure 6.39: BF weld defect detection: Graphical explanation of the
Non-defective sub-model - example of a FN case: #2_2_111_20_56.
Textual explanation: “Non-defective model thinks the data is similar
to Defective (+ve) and NOT similar to Non-defective (-ve).”
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Figure 6.40: BF weld defect detection: Graphical explanation of the
Defective sub-model - example of a FN case: #2_2_111_20_56. Textual
explanation: “Defective model thinks the data is similar to
Non-defective (-ve) and NOT similar to Defective (+ve).”

Similarly, the FN example (Figures 6.38-6.40) has seen a conflict between the sub-

models and fuzzy class close to the threshold, as shown in Figure 6.38. The culprit

behind this inaccuracy is apparent by examining the feature scores for the deciding

sub-model - defective, in Figure 6.40. Despite the slice image containing a highly

visible defect-shaped indication, its associated criteria resemble values of a typical

image that does not contain any defects. Features related to the amplitude, GCLM

and edges all had a significant impact. Even though the non-defective model still

classified the image as a defect, the weaker relative classification meant the defective

model was the deciding model.

6.4.3 Explanation analysis

Naturally, different aspects of the explanation are statistically associated with how

accurate the model’s prediction is. In this part, we present an analysis of how the

aspects relate to performance for the two areas: bead and defect recognition.

For the bead dataset, analysis of true-vs-false cases, in Figure 6.41, TP and TN cases

are more likely to result in an agreement between the two sub-models (65.2%), while

FP and FN cases are more likely to result in a conflict (74.7%). Meanwhile, an analysis
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Figure 6.41: Fuzzy-TOPSIS BF Bead Weld Dataset: a set of pie charts
are used to illustrate how indicative the different aspects of
explanation are to false or negative cases.

of agreement-vs-conflict illustrated that a higher proportion of cases are likely to

be true when the sub-models are in conflict versus agreement - a counter-intuitive

association. Comparatively, the certainty of the linguistic statement had an intuitive

association, where images described with certain statements by at least one of the

sub-models are more likely to be true. In contrast, for the defect dataset, images

described with uncertain statements were more likely to be true. Nonetheless, the

defect dataset statistics follow a similar trend for the remaining two aspects of the

explanation, as shown in Figure 6.42.

The correlation analysis could prove useful in tuning the linguistic terms to match
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the associated likeliness of accuracy. By doing so, the user would be presented with

an explanation that is more likely to be meaningful, insightful and relevant.
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Figure 6.42: Fuzzy-TOPSIS BF Defect Weld Dataset: a set of pie
charts is used to illustrate how indicative the different aspects of an
explanation are to false or negative cases.

Fuzzy-TOPSIS as a newly proposed data-driven explainable framework allows for

generating a direct explanation that not only provides much-needed insight into

the model output but a means for representative traceability. The main cited con

preventing the adoption of model-based interpretability is the suggestion that

interpretable models lack performance rigour [77]–[80]. In spite of this, Ruden et al.

argue that this trade-off is yet to be proven and stresses that the risks outweigh the

loss of performance for high stake applications [2]. This is particularly insightful
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since a lack of explanation could potentially contribute to increasing the risk of

wrongful decision-making, especially in areas where justification is vital for

decision-making.

Moreover, following the regulation of plastic pipes, they have been adopted in

several safety-critical applications such as water and gas transportation. For this

reason, BF pipe weld inspection is considered a high stake application because of

the associated potential consequences. When a weld is scanned, it results in

hundreds of images that are normally analysed manually by an NDT expert.

Automated NDT utilising non-explainable frameworks provides the expert with a

list of potential indications lacking any associated explanation. Hence, requires the

expert’s effort to reanalyse the data manually to provide the justification

documentation required. This is where fuzzy-TOPSIS as a framework has been

demonstrated to be able to do; present the expert with all the subject matter criteria

in a format designed to eventually obviate the need for manual analysis, i.e.

reaching autonomous defect recognition.

6.5 Summary

Applying Fuzzy-TOPSIS classifiers to a real-world industrial problem of BF weld

inspection demonstrated once again a case where the performance trade-off is

insignificant or nonexistent compared to when using a purpose-built classification

framework - K-Means. Moreover, the explanation framework was shown to

generate a similar explanation to the ones seen for the benchmark datasets explored

in previous chapters. The modelling framework’s data-driven nature allowed

transferability to this dataset with no modification. The evidence from this study

points to the Fuzzy-TOPSIS effectiveness as a data-driven explained framework.

In spite of this, the explanation’s dependence on model accuracy means that the

insight can occasionally be misleading. Strategies to enhance the performance might

involve:

• Improving the Fuzzy-TOPSIS fitting methodology
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• Developing a framework for exploiting statistical associations to extract more

aligned explanations

• Exploring methodologies of optimising data selection to better suit inherently

interpretable models

Moreover, the current framework has only been explored for binary classification.

It might be worth investigating the avenue for scalability in a multi-class problem,

which could prove useful for tackling more complex classification problems. This

could be potentially achieved by expanding all the individual model components

(FIS, TOPSIS and explanation) to incorporate the support of several classes.

Multi-class support is expected to lead to an increase in the model’s dimensionality.

Dimensionality is a key metric for maintaining interpretability. A reasonable

approach to tackle this issue could be to utilise data aggregation techniques to

streamline the data into a dimensionality that is human-comprehensible.

Another possible area of future research would be to investigate why interpretable

models are seldom investigated in the industry despite the growing interest from

academia and governmental organisations [70]–[72], [84], [121].

The advantages of applying an interpretable classification framework in advanced

manufacturing provide opportunities for accessing meaningful insight to assist

users and model designers.

Despite the benefits, MCDM-based classifiers are not expected to achieve

comparable performance when paired with complex datasets. Performance is not

the sole goal. However, it is considered paramount to any modelling

methodology’s success.
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7 Conclusions and

Recommendations for Future Work

7.1 Summary

Contrary to popular belief, interpretable models can achieve satisfactory

performance compared to opaque models, given a chance [2]. An example of

interpretable models performing satisfactorily had been presented. MCDM and

fuzzy-MCDM classifiers had been investigated using benchmark datasets.

Although performance varied widely across the different datasets, there had been

cases where the MCDM-based classifier achieved similar performance to the state-

of-the-art classifier.

However, the whole point of opting for MCDM had been to harness its

interpretability and potential explainability. An explanation framework is proposed

for the fuzzy-TOPSIS classifier.

The explanation framework taps into the model’s internal parameters to extract

interpretable information. The key features influencing the decision are indicated

via the graphical and textual explanation generated. The decomposable

components were explained by separate textual statements. The chapter

demonstrated what had been possible after harnessing a transparent model for the

rationale of optimising explanation.

Furthermore, it had been demonstrated that the proposed explanation framework

developed for fuzzy-MCDM classifiers provided valuable insight into the decision-

making process. Textual statements described the sub-models’ decisions following

by information on whether they were in conflict or agreement. The fuzzy class output



198 Chapter 7. Conclusions and Recommendations for Future Work

provided a summary of the overall classification with the threshold, which indicated

the decision’s statistical certainty. Applying the explanation framework to human-

understandable datasets showcased its capability to pinpoint the key features that

led to a certain decision. From a practical point of view, accurately distinguishing

the data that led to a specific decision is one of the main purposes of XAI.

Applying the explanation framework to non-human understandable datasets such

as Parkinson’s disease and chess yielded similar results. However, the high

dimensionality of the datasets meant the graphical explanation could only display

a subset of the most influential features. Hence, the framework’s effectiveness is

limited by the degree of comprehensibility offered by the feature-set. Although the

framework had been able to find the most impactful features, this information had

been only as useful as the user’s understanding of the features. Therefore, the

framework’s applicability and effectiveness are dependent upon the availability of

human-understandable feature-sets that adequately represent the problem at hand.

The analysis of the various explanation aspects associated with performance

accuracy revealed a relation that can be potentially exploited to provide valuable

additional information to the user. For instance, whether the models are in

agreement or conflict can be statistically associated with a higher probability of

accuracy.

The explanation framework provided factual and counterfactual information by

presenting key variables from the two sub-models. The measures indicated how

factual or counterfactual a classification had been. The FL component summarised

this information into a single fuzzy class output value. Despite the fuzzy output

being a continuous number, it did not provide a breakdown of the factual and

counterfactual components.

Relativity presented in the form of counterfactual explanation enhanced the

comprehensibility experience. Humans seek counterfactual explanations naturally

[15].

NL was seen as a potential solution to this gap. As opposed to type-1 FL, NL

employs three components: truth, indeterminacy and falsity. In Chapter 5, the
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TOPSIS classifier is extended with a NIS. The rules are configured such that factual

and counterfactual indications are reflected in the truth, indeterminacy and falsity.

Similarly to the fuzzy extension, Neutrosophic-TOPSIS had been involved in the

final classification.

Each classification result presented by the Neutrosophic-TOPSIS model included

factual and counterfactual information summarised concisely by two figures: truth

and falsity.

Performance of neutrosophic-TOPSIS had been largely similar to fuzzy-TOPSIS.

Hence, it is a clear improvement over the framework initially proposed in previous

chapters.

In parallel, the proposed methodologies were investigated for two real-world

industrial case studies: bead and defect detection. Bead indications are used in

practice to detect the position of the pipe in the UT image.

The chapter demonstrated the applicability of interpretable modelling to real-world

industrial problems. The UT inspection techniques utilised for data collection aim

to detect flaws in safety-critical plastic pipelines.

The application is considered high stake because misclassification could lead to

catastrophic consequences. Catastrophic level incidents are the highest severity and

could entail a loss of life among widespread consequences such as significant

environmental pollution and damage to assets. The sort of consequences that cause

major harm to society.

Hence, it is imperative that ML models designed to provide decision support in

safety-critical areas such as these provide transparency. The purpose of

transparency is to reduce the chances of hidden biases and enable experts to

understand the limitations of the model more intuitively. The proposed classifiers

possess a great deal of transparency in their fitting algorithm and execution

process.

Nonetheless, opting for Neutrosophic Logic and MCDM-based classifiers still has

its limitations. Despite the benefits, the methodology in its current form lacks the
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training rigour achievable through state-of-the-art classifiers. Therefore, its

classification performance can be quickly limited when dealing with complex

datasets. In addition, its simple structure prevents it from handling datasets with

many features; an example is the Parkinson’s disease dataset. As a result, the

methodology’s applicability is not as wide as state-of-the-art classifiers.

The feature scores illustrated the impact of each feature to the user. However, in its

current representation, it is sometimes not immediately clear which smaller set of

features had been the tipping point for a decision. Highlighting the most impactful

features in a more easily distinguishable way would make the explanation more

comprehensible to the user [15].

The NL extension expanded upon the FIS in the previous chapter by providing three

components. This increased the number of insights presented to the user. As a result,

the complexity of the graphs presented to the user had been increased; thus, this

potentially has a negative effect on the comprehensibility of the explanation.

Despite the benefits, MCDM-based classifiers are not expected to achieve

comparable performance when paired with complex datasets. Performance is not

the sole goal. However, it is considered paramount to any modelling

methodology’s success.

7.2 Conclusion

The aim of the project set at the start was to develop a data-driven interpretable

classification framework, capable of producing meaningful explanation. The aim

had been based on the contributions in this thesis achieving objective A of designing

an MCDM-based - an interpretable framework for classification. Furthermore, the

explanation framework proposed had addressed objective B. The development of an

explanation framework for MCDM-based classifiers.

Finally, the frameworks were applied to ADR as per objective C. However, full

autonomy was not achievable as part of this project. This entailed designing a

robotic pipe inspection device which was not part of the scope the project.
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7.3 Future Work

In the new proposed frameworks lie several areas of improvement. In this section,

we provide suggestions of how some key limitations could be addressed.

7.3.1 Performance and dimensionality

The performance of the MCDM-based classifiers had been satisfactory for low

dimensionality datasets. However, it is expected the classifiers would not perform

adequately when presented with complex high dimensionality datasets such as

image data because of their simple structure.

When the proposed classifiers are fitted with a large feature set, the single iteration

fitting algorithm may not be adequate. Exploration of a learning algorithm is vital

to the classifier’s success in modelling larger or complex datasets. However, it is

recommended to undertake caution when devising the algorithm to avoid

introducing significant algorithmic opacity.

7.3.2 Interpretability and explainability metrics

The explanation frameworks proposed provided a proof-of-concept

implementation. The frameworks presented internal model parameters in a

manner that enabled the visualisation of feature impact. Moreover, the textual

explanation presented key factual and counterfactual information. The

explanations painted a complete picture of the different components of the model

with little regard for human comprehension.

The human component of explanation effectiveness must be explored more

extensively to assess the framework’s suitability to be implemented in practice.

Coming up with an explanation metric that can be used for optimisation is ideal.

However, the explanation’s subjective nature is the main obstacle to this.

Therefore, the first step is to develop an interpretability metric for MCDM classifiers.

The metric will serve as an optimisation parameter that can be used for a potential

training algorithm.
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7.3.3 Multi-class support

The proposed models serve the purpose of experimentation using binary datasets.

However, in practice exist areas where multi-class support is needed. Developing

the proposed models for handling more than two classes would be useful in

widening its applicability.

Implementing a multi-class MCDM model means the introduction of additional

parameters through sub-models. The extension is expected to yield further

challenges for interpretability. Moreover, an optimisation algorithm for learning

becomes more vital to performance success.
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A Complete set of explanation

examples for chapter 4

A.1 Breast cancer dataset

A.1.1 TP Example: Case #1_3_93
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Figure A.1: Breast Cancer Dataset: Illustration of the distance
measures S from the two sub-models - example of a TP case:
#1_3_93. Textual explanation: “Models are in agreement hence, it is
more likely the classification is accurate." Fuzzy class: 0.80.
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Figure A.2: Breast Cancer Dataset: Graphical explanation of the
non-cancerous sub-model - example of a TP case: #1_3_93. Textual
explanation: “Non-cancerous model thinks the data is similar to
Malignant (+ve) and NOT similar to Benign (-ve)."
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Figure A.3: Breast Cancer Dataset: Graphical explanation of the
cancerous sub-model - example of a TP case: #1_3_93. Textual
explanation: “Cancerous model thinks the data is more similar to the
Malignant (+ve) despite a high similarity for both"
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A.1.2 TN Example: Case #1_3_63
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Figure A.4: Breast Cancer Dataset: Illustration of the distance
measures S from the two sub-models - example of a TN case:
#1_3_63. Textual explanation: “Models are in conflict hence, it is less
likely the classification is accurate." Fuzzy class: 0.39.
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Figure A.5: Breast Cancer Dataset: Graphical explanation of the
non-cancerous sub-model - example of a TN case: #1_3_63. Textual
explanation: “Non-cancerous model thinks the data is more similar
to the Malignant (+ve) despite a high similarity for both."
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Figure A.6: Breast Cancer Dataset: Graphical explanation of the
cancerous sub-model - example of a TN case: #1_3_63. Textual
explanation: “Cancerous model thinks the data is similar to Benign
(-ve) and NOT similar to Malignant (+ve)."

A.2 KEEL titanic dataset

A.2.1 FP Example: Case #1_1_75
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Figure A.7: KEEL Titanic Dataset: Illustration of the distance
measures S from the two sub-models - example of a FP case:
#1_1_75. Textual explanation: “Models are in conflict hence, it is less
likely the classification is accurate." Fuzzy class: 0.74.
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Figure A.8: KEEL Titanic Dataset: Graphical explanation of the
survivor sub-model - example of a FP case: #1_1_75. Textual
explanation: “Survivors model thinks the data is similar to Casualty
(+ve) and NOT similar to Survivor (-ve)."
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Figure A.9: KEEL Titanic Dataset: Graphical explanation of the
casualty sub-model - example of a FP case: #1_1_75. Textual
explanation: “Casualties model thinks the data is more similar to the
Survivor (-ve) despite a high similarity for both."
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Figure A.10: Titanic KEEL Dataset: Illustration of the distance
measures S from the two sub-models - example of a TN case:
#1_1_27. Textual explanation: “Models are in agreement hence, it is
more likely the classification is accurate." Fuzzy class: 0.37.
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Figure A.11: Titanic KEEL Dataset: Graphical explanation of the
survivor sub-model - example of a TN case: #1_1_27. Textual
explanation: “Survivors model thinks the data is more similar to the
Survivor (-ve) despite a high similarity for both."

A.2.2 TN Example: Case #1_1_27

A.2.3 Explanation analysis

A.3 Kaggle titanic dataset

A.3.1 FN Example: Case #1_1_111
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Figure A.14: Titanic Kaggle dataset: Graphical explanation of the
survivor sub-model - example of a FN case: #1_1_111. Textual
explanation: “Survivors model thinks the data is similar to Survivor
(-ve) and NOT similar to Casualty (+ve)."
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Figure A.12: Titanic KEEL Dataset: Graphical explanation of the
casualty sub-model - example of a TN case: #1_1_27. Textual
explanation: “Casualties model thinks the data is similar to Survivor
(-ve) and NOT similar to Casualty (+ve)."
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Figure A.15: Titanic Kaggle dataset: graphical explanation of the
casualty sub-model - example of a FN case: #1_1_111. Textual
explanation: “Casualties model thinks the data is similar to Survivor
(-ve) and NOT similar to Casualty (+ve)."
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Figure A.16: Titanic Kaggle dataset: distance measures S from the
two sub-models - example of a FN case: #1_1_111. Textual
explanation: “Models are in agreement hence, it is more likely the
classification is accurate. Fuzzy class: 0.32"

A.3.2 TN Example: Case #1_1_1
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Figure A.17: Titanic Kaggle dataset: graphical explanation of the
survivor sub-model - example of a TN case: #1_1_1. Textual
explanation: “Survivors model thinks the data is similar to Survivor
(-ve) and NOT similar to Casualty (+ve)."
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Figure A.18: Titanic Kaggle dataset: graphical explanation of the
casualty sub-model - example of a TN case: #1_1_1. Textual
explanation: “Casualties model thinks the data is similar to Survivor
(-ve) and NOT similar to Casualty (+ve)."
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Figure A.19: Titanic Kaggle dataset: illustration of the distance
measures S from the two sub-models - example of a TN case: #1_1_1.
Textual explanation: “Models are in agreement hence, it is more
likely the classification is accurate. Fuzzy class: 0.24"
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A.3.3 Explanation analsis

A.4 Parkinson’s disease dataset

A.4.1 TP Example: Case #1_1_43
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Figure A.21: Parkinson disease dataset: distance measures S from
the two sub-models - example of a TP case: #1_1_43. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate." Fuzzy class: 0.52.
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Figure A.22: Parkinson disease dataset: graphical explanation of the
healthy sub-model - example of a TP case: #1_1_43. Textual
explanation: “Healthy model thinks the data is similar to Positive
(+ve) and NOT similar to Negative (-ve)."
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Figure A.23: Parkinson disease dataset: graphical explanation of the
sick sub-model - example of a TP case: #1_1_43. Textual explanation:
“Sick model thinks the data is more similar to the Negative (-ve)
despite a high similarity for both."

A.5 Chess dataset

A.5.1 TN Example: Case #1_1_339
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Figure A.24: Chess dataset: distance measures S from the two
sub-models - example of a FN case: #1_1_339. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate." Fuzzy class: 0.41
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Figure A.25: Chess dataset: graphical explanation of the win
sub-model - example of a FN case: #1_1_339. Textual explanation:
“Winners model thinks the data is more similar to the Lose (+ve)
despite a high similarity for both."
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Figure A.26: Chess dataset: graphical explanation of the lose
sub-model - example of a FN case: #1_1_339. Textual explanation:
“Losers model thinks the data is similar to Win (-ve) and NOT
similar to Lose (+ve)."
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Figure A.27: Chess Dataset: Illustration of the distance measures S
from the two sub-models - example of a TN case: #1_1_2. Textual
explanation: “Models are in conflict hence, it is less likely the
classification is accurate." Fuzzy class: 0.37
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Figure A.28: Chess Dataset: Graphical explanation of the win
sub-model - example of a TN case: #1_1_2. Textual explanation:
“Winners model thinks the data is more similar to the Lose (+ve)
despite a high similarity for both."
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Figure A.29: Chess Dataset: Graphical explanation of the lose
sub-model - example of a TN case: #1_1_2. Textual explanation:
“Losers model thinks the data is similar to Win (-ve) and NOT
similar to Lose (+ve)."
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Figure A.13: Titanic KEEL Dataset: a set of pie charts are used to
illustrate how indicative the different aspects of explanation are to a
false or negative cases. Certain statements refer to sentence
templates #1 and #2 while, uncertain statements refer to sentence
templates #3 and #4.
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Figure A.20: Titanic Kaggle Dataset: a set of pie charts are used to
illustrate how indicative the different aspects of explanation are to a
false or negative cases. Certain statements refer to sentence
templates #1 and #2 while, uncertain statements refer to sentence
templates #3 and #4.
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B Complete set of explanation

examples for chapter 5

B.1 Breast cancer dataset

B.1.1 TP example: #8_5_106
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Figure B.1: Breast Cancer Dataset: distance measures S from the two
sub-models - example of a TP case: #8_5_106. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate. The data was classified as Cancerous (+) by the model.”
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Figure B.2: Breast cancer dataset: graphical explanation of the
overall NL sub-model - example of a TP case: #8_5_106. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Cancerous (+) compared to Non-cancerous (-).” (a)
Explanation: “For the Non-cancerous (-) class, the overall sub-model
thinks the data has a higher falsity (0.965) relative to its truth (0.035).
The relative indetermency is high (0.875).”. (b) Explanation: “For the
Cancerous (+) class, the overall sub-model thinks the data has a
higher truth (0.875) relative to its falsity (0.500). The relative
indetermency is average (0.475).”

B.1.2 FP example: #6_2_22
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Figure B.3: Breast Cancer Dataset: distance measures S from the two
sub-models - example of a FP case: #6_2_22. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate. The data was classified as Cancerous (+) by the model.”



B.2. KEEL titanic dataset 235

0 0.2 0.4 0.6 0.8 1.0

T

I

F

0.135

0.135

0.865

Neutrosophic output

C
om

po
ne

nt

Negative Class

(a)

0 0.2 0.4 0.6 0.8 1.0

T

I

F

0.135

0.135

0.865

Neutrosophic output

C
om

po
ne

nt

Positive Class

(b)

Figure B.4: Breast Cancer Dataset: Graphical explanation of the
overall NL sub-model - example of a FP case: #6_2_22. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Cancerous (+) compared to Non-cancerous (-).” (a)
Explanation: “For the Non-cancerous (-) class, the overall sub-model
thinks the data has a higher falsity (0.865) relative to its truth (0.135).
The relative indetermency is low (0.135).”. (b) Explanation: “For the
Cancerous (+) class, the overall sub-model thinks the data has a
higher falsity (0.865) relative to its truth (0.135). The relative
indetermency is low (0.135).”

B.2 KEEL titanic dataset

B.2.1 FP example: #6_3_145
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Figure B.5: Titanic - KEEL Dataset: Illustration of the distance
measures S from the two sub-models - example of a FP case:
#6_3_145. Textual explanation: “Models are in conflict hence, it is
less likely the classification is accurate. The data was classified as
Casualty (+) by the model.”
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Figure B.6: Titanic - KEEL Dataset: Graphical explanation of the
overall NL sub-model - example of a FP case: #6_3_145. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Casualty (+) compared to Survivor (-).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.865) relative to its truth (0.135). The
relative indetermency is high (0.855).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
truth (0.855) relative to its falsity (0.500). The relative indetermency
is high (0.855).”

B.2.2 FN example: #3_4_377
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Figure B.7: Titanic - KEEL Dataset: Graphical explanation of the
overall NL sub-model - example of a FN case: #3_4_377. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Survivor (-) compared to Casualty (+).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher truth (0.920) relative to its falsity (0.080). The
relative indetermency is low (0.080).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.970) relative to its truth (0.030). The relative indetermency
is low (0.080).”
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B.3 Kaggle titanic dataset

B.3.1 TP example: #3_2_135
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Figure B.8: Titanic - Kaggle Dataset: Illustration of the distance
measures S from the two sub-models - example of a TP case:
#3_2_135. Textual explanation: “Models are in agreement hence, it is
more likely the classification is accurate. The data was classified as
Casualty (+) by the model.”
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Figure B.9: Titanic - Kaggle Dataset: Graphical explanation of the
overall NL sub-model - example of a TP case: #3_2_135. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Casualty (+) compared to Survivor (-).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.875) relative to its truth (0.125). The
relative indetermency is low (0.145).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
truth (0.855) relative to its falsity (0.500). The relative indetermency
is low (0.145).”
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B.3.2 FP example: #4_3_38
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Figure B.10: Titanic - Kaggle Dataset: Illustration of the distance
measures S from the two sub-models - example of a FP case:
#4_3_38. Textual explanation: “Models are in agreement hence, it is
more likely the classification is accurate. The data was classified as
Casualty (+) by the model.”
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Figure B.11: Titanic - Kaggle Dataset: Graphical explanation of the
overall NL sub-model - example of a FP case: #4_3_38. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Casualty (+) compared to Survivor (-).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.855) relative to its truth (0.145). The
relative indetermency is high (0.855).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.855) relative to its truth (0.145). The relative indetermency
is high (0.855).”
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B.3.3 TN example: #5_4_108
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Figure B.12: Titanic - Kaggle Dataset: Illustration of the distance
measures S from the two sub-models - example of a TN case:
#5_4_108. Textual explanation: “Models are in agreement hence, it is
more likely the classification is accurate. The data was classified as
Survivor (-) by the model.”
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Figure B.13: Titanic - Kaggle Dataset: Graphical explanation of the
overall NL sub-model - example of a TN case: #5_4_108. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Survivor (-) compared to Casualty (+).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher falsity (0.855) relative to its truth (0.145). The
relative indetermency is high (0.855).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.985) relative to its truth (0.015). The relative indetermency
is average (0.495).”
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B.3.4 FN example: #6_1_175
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Figure B.14: Titanic - Kaggle Dataset: Illustration of the distance
measures S from the two sub-models - example of a FN case:
#6_1_175. Textual explanation: “Models are in agreement hence, it is
more likely the classification is accurate. The data was classified as
Survivor (-) by the model.”
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Figure B.15: Titanic - Kaggle Dataset: Graphical explanation of the
overall NL sub-model - example of a FN case: #6_1_175. Overall
explanation: “Based on the overall sub-model’s output the data was
more similar to Survivor (-) compared to Casualty (+).” (a)
Explanation: “For the Survivor (-) class, the overall sub-model thinks
the data has a higher truth (0.865) relative to its falsity (0.135). The
relative indetermency is low (0.135).”. (b) Explanation: “For the
Casualty (+) class, the overall sub-model thinks the data has a higher
falsity (0.990) relative to its truth (0.010). The relative indetermency
is low (0.135).”
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B.4 Chess dataset

B.4.1 First TN example: #3_2_169
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Figure B.16: Chess Dataset: distance measures S from the two
sub-models - example of a TN case: #3_2_169. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate. The data was classified as Win (-) by the model.”
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Figure B.17: Chess dataset: graphical explanation of the overall NL
sub-model - example of a TN case: #3_2_169. Overall explanation:
“Based on the overall sub-model’s output the data was more similar
to Win (-) compared to Lose (+).” (a) Explanation: “For the Win (-)
class, the overall sub-model thinks the data has a higher falsity
(0.505) relative to its truth (0.495). The relative indeterminacy is high
(0.855).”. (b) Explanation: “For the Lose (+) class, the overall
sub-model thinks the data has a higher falsity (0.530) relative to its
truth (0.470). The relative indeterminacy is high (0.880).”
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B.4.2 Second TN example: #8_2_154
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Figure B.18: Chess Dataset: distance measures S from the two
sub-models - example of a TN case: #8_2_154. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate. The data was classified as Win (-) by the model.”
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Figure B.19: Chess dataset: graphical explanation of the overall NL
sub-model - example of a TN case: #8_2_154. Overall explanation:
“Based on the overall sub-model’s output the data was more similar
to Win (-) compared to Lose (+).” (a) Explanation: “For the Win (-)
class, the overall sub-model thinks the data has a higher truth (0.855)
relative to its falsity (0.145). The relative indeterminacy is high
(0.890).”. (b) Explanation: “For the Lose (+) class, the overall
sub-model thinks the data has a higher falsity (0.865) relative to its
truth (0.135). The relative indeterminacy is high (0.890).”
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B.4.3 First FP example: #5_1_51
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Figure B.20: Chess Dataset: distance measures S from the two
sub-models - example of a FP case: #5_1_51. Textual explanation:
“Models are in conflict hence, it is less likely the classification is
accurate. The data was classified as Lose (+) by the model.”
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Figure B.21: Chess dataset: graphical explanation of the overall NL
sub-model - example of a FP case: #5_1_51. Overall explanation:
“Based on the overall sub-model’s output the data was more similar
to Lose (+) compared to Win (-).” (a) Explanation: “For the Win (-)
class, the overall sub-model thinks the data has a higher falsity
(0.865) relative to its truth (0.135). The relative indeterminacy is high
(0.855).”. (b) Explanation: “For the Lose (+) class, the overall
sub-model thinks the data has a higher truth (0.855) relative to its
falsity (0.500). The relative indeterminacy is high (0.855).”
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B.4.4 Second FP example: #5_3_200
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Figure B.22: Chess Dataset: distance measures S from the two
sub-models - example of a FP case: #5_3_200. Textual explanation:
“Models are in agreement hence, it is more likely the classification is
accurate. The data was classified as Lose (+) by the model.”
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Figure B.23: Chess dataset: graphical explanation of the overall NL
sub-model - example of a FP case: #5_3_200. Overall explanation:
“Based on the overall sub-model’s output the data was more similar
to Lose (+) compared to Win (-).” (a) Explanation: “For the Win (-)
class, the overall sub-model thinks the data has a higher falsity
(0.870) relative to its truth (0.130). The relative indeterminacy is high
(0.855).”. (b) Explanation: “For the Lose (+) class, the overall
sub-model thinks the data has a higher falsity (0.505) relative to its
truth (0.495). The relative indeterminacy is high (0.855).”
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B.5 Butt-fusion weld bead dataset

B.5.1 TP example: #1_5_175
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Figure B.24: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#1_5_175_23_45. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate.”. (b) Plot of UT
image data for the same example. The image was classified as Bead
by the model.
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Figure B.25: BF weld bead detection: Graphical explanation of the
overall NL sub-model - example of a TP case: #1_5_175_23_45.
Overall explanation: “Based on the overall sub-model’s output the
data was more similar to Bead (+) compared to No bead (-).” (a)
Explanation: “For the No bead (-) class, the overall sub-model thinks
the data has a higher falsity (0.920) relative to its truth (0.080). The
relative indetermency is low (0.135).”. (b) Explanation: “For the
Bead (+) class, the overall sub-model thinks the data has a higher
truth (0.865) relative to its falsity (0.500). The relative indetermency
is low (0.135).”



B.6. Butt-fusion weld defects dataset 247

B.6 Butt-fusion weld defects dataset

B.6.1 TP example: #2_4_114
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Figure B.26: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#2_4_114_21_58. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate.”. (b) Plot of UT
image data for the same example. The image was classified as
defective by the model.
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Figure B.27: BF weld defect detection: Graphical explanation of the
overall NL sub-model - example of a TP case: #2_4_114_21_58.
Overall explanation: “Based on the overall sub-model’s output the
data was more similar to Defective (+) compared to Non-defective
(-).” (a) Explanation: “For the Non-defective (-) class, the overall
sub-model thinks the data has a higher falsity (0.955) relative to its
truth (0.045). The relative indetermency is low (0.140).”. (b)
Explanation: “For the Defective (+) class, the overall sub-model
thinks the data has a higher truth (0.860) relative to its falsity (0.500).
The relative indetermency is low (0.140).”



249

C Complete set of explanation

examples for chapter 6

C.1 Bead detection: explanation examples

C.1.1 First TP Example: Case #2_2_136_6_48
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Figure C.1: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#2_2_136_6_48. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate. Fuzzy class:
0.65”. (b) Plot of UT image data for the same example. The image
was classified as Bead by the model.
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Figure C.2: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a TP case: #2_2_136_6_48. Textual
explanation: “No bead model thinks the data is similar to Bead (+ve)
and NOT similar to No bead (-ve).”
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Figure C.3: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a TP case: #2_2_136_6_48. Textual
explanation: “Bead model thinks the data is more similar to Bead
(+ve) despite a high similarity for both.”
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C.1.2 Second TP Example: #2_2_145_10_35
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Figure C.4: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a TP case:
#2_2_145_10_35. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate. Fuzzy class: 0.57”. (b)
Plot of UT image data for the same example. The image was
classified as Bead by the model.
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Figure C.5: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a TP case: #2_2_145_10_35. Textual
explanation: “No bead model thinks the data is similar to Bead (+ve)
and NOT similar to No bead (-ve).”
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Figure C.6: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a TP case: #2_2_145_10_35. Textual
explanation: “Bead model thinks the data is more similar to No bead
(-ve) despite a high similarity for both.”

C.1.3 First FP Example: Case #2_2_91_33_19
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Figure C.7: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FP case:
#2_2_91_33_19. Textual explanation: “Models are in agreement
hence, it is more likely the classification is accurate. Fuzzy class:
0.67”. (b) Plot of UT image data for the same example. The image
was classified as Bead by the model.
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Figure C.8: BF weld bead detection: Graphical explanation of the No
Bead sub-model - example of a FP case: #2_2_91_33_19. Textual
explanation: “No bead model thinks the data is similar to Bead (+ve)
and NOT similar to No bead (-ve).”
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Figure C.9: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a FP case: #2_2_91_33_19. Textual
explanation: “Bead model thinks the data is more similar to Bead
(+ve) despite a high similarity for both.”
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C.1.4 Second FP Example: Case #2_2_16_8_5
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Figure C.10: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FP case:
#2_2_16_8_57. Textual explanation: “Models are in conflict hence, it
is less likely the classification is accurate. Fuzzy class: 0.65”. (b) Plot
of UT image data for the same example. The image was classified as
Bead by the model.
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Figure C.11: BF weld bead detection: Graphical explanation of the
No Bead sub-model - example of a FP case: #2_2_16_8_57. Textual
explanation: “No bead model thinks the data is similar to Bead (+ve)
and NOT similar to No bead (-ve).”
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Figure C.12: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a FP case: #2_2_16_8_57. Textual
explanation: “Bead model thinks the data is more similar to No bead
(-ve) despite a high similarity for both.”

C.1.5 FN Example: #2_2_151_15_51
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Figure C.13: BF weld bead detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FN case:
#2_2_151_15_51. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate. Fuzzy class: 0.37”. (b)
Plot of UT image data for the same example. The image was
classified as No Bead by the model.
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Figure C.14: BF weld bead detection: Graphical explanation of the
No Bead sub-model - example of a FN case: #2_2_151_15_51. Textual
explanation: “No bead model thinks the data is more similar to Bead
(+ve) despite a high similarity for both.”
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Figure C.15: BF weld bead detection: Graphical explanation of the
Bead sub-model - example of a FN case: #2_2_151_15_51. Textual
explanation: “Bead model thinks the data is similar to No bead (-ve)
and NOT similar to Bead (+ve).”
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C.2 Defect recognition: explanation examples

C.2.1 FP Example: #2_2_13_2_1
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Figure C.16: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FP case:
#2_2_13_2_19. Textual explanation: “Models are in conflict hence, it
is less likely the classification is accurate. Fuzzy class: 0.53”. (b) Plot
of UT image data for the same example. The image was classified as
defective by the model.
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Figure C.17: BF weld defect detection: Graphical explanation of the
Non-defective sub-model - example of a FP case: #2_2_13_2_19.
Textual explanation: “Non-defective model thinks the data is similar
to Defective (+ve) and NOT similar to Non-defective (-ve).”
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Figure C.18: BF weld defect detection: Graphical explanation of the
Defective sub-model - example of a FP case: #2_2_13_2_19. Textual
explanation: “Defective model thinks the data is similar to
Non-defective (-ve) and NOT similar to Defective (+ve).”
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C.2.2 FN Example: #2_2_111_20_5

0 0.2 0.4 0.6 0.8 1 1.2

D
ef

ec
ti

ve
N

on
-d

ef
ec

ti
ve

0.701

0.127

0.191

0.597

Normalised Measure

Su
b-

m
od

el
C

la
ss

Plot of S measures from the sub-models

Non-defective (-)
Defective (+)

(a)

Slice

UT B-Scan Image

 NDEF

100 200 300

Circumferential position - mm

100

200

300

D
ep

th
 - 

m
m

0 100 200
(b)

Figure C.19: BF weld defect detection: (a) Illustration of the distance
measures S from the two sub-models - example of a FN case:
#2_2_111_20_56. Textual explanation: “Models are in conflict hence,
it is less likely the classification is accurate. Fuzzy class: 0.44”. (b)
Plot of UT image data for the same example. The image was
classified as non-defective by the model.
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Figure C.20: BF weld defect detection: Graphical explanation of the
Non-defective sub-model - example of a FN case: #2_2_111_20_56.
Textual explanation: “Non-defective model thinks the data is similar
to Defective (+ve) and NOT similar to Non-defective (-ve).”



260 Appendix C. Complete set of explanation examples for chapter 6

0 2 4 6

1

2

3

4

5

6

7

8

9

0.58

0.64

0.62

0.18

0.89

0.80

0.51

0.02

0.10

Feature Score

Fe
at

ur
e

N
o.

Negative Class

0 2 4 6

1

2

3

4

5

6

7

8

9

0.23

0.08

0.13

0.19

0.17

0.13

0.30

0.06

0.23

Feature Score

Fe
at

ur
e

N
o.

Positive Class

Figure C.21: BF weld defect detection: Graphical explanation of the
Defective sub-model - example of a FN case: #2_2_111_20_56. Textual
explanation: “Defective model thinks the data is similar to
Non-defective (-ve) and NOT similar to Defective (+ve).”
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