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Abstract

This thesis focuses on two topics in the area of statistical modelling

applications.

The first topic concerns the evaluation of the reliability of Bayesian Hier-

archical Models for scRNAseq data. Bayesian Hierarchical Models (BHM)

are used in various application fields such as biology, social science and

engineering for identification of confounding factors, thus enabling the

extraction of the information of interest. BHMs are typically formulated

by specifying the data model, the parameters model and the prior distri-

butions. The posterior inference of a BHM depends on both the model

specification and the computational algorithm used. We use the term

"reliability" to indicate a methodology’s ability to recover the "ground

truth" or the underlying distribution embedded in the data. Testing the

reliability of a BHM is an open question. The most straightforward way

to test the reliability of a BHM inference is to compare the posterior

distributions with the ground truth value of the model parameters, when

available. However, when dealing with experimental data, the true value

of the underlying parameters is typically unknown. In these situations,

numerical experiments based on synthetic datasets generated from the

model itself offer a natural approach to check model performance and

posterior estimates. In this thesis, we show how to test the reliability of a

BHM. We introduce a change in the model assumptions to allow for prior

contamination, and develop a simulation-based evaluation framework

to assess the reliability of the inference of a given BHM. We illustrate

our approach on a specific BHM used for Bayesian analysis of scRNAseq

Data (BASiCS).
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The second topic considers the problem of efficient multi-way network

inference for non-Gaussian data. Classically, statistical datasets have

more data points than features (n > p). The standard model of classical

statistics caters for the case where data points are considered condition-

ally independent given the parameters. However, for n ≈ p or p > n data

such models are poorly determined. Kalaitzis et al. (2013) introduced

the Bigraphical Lasso, a method for two-way network inference in both

samples and features. Greenewald et al. (2019) introduced an algorithm

for the inference of the multi-way version. Both methods estimate sparse

precision matrices based on the Cartesian product of Gaussian Markov

random field graphs. However, the theoretical foundation of such models

has some gaps in the previous literature, to the best of my knowledge.

In this thesis we formally give and prove a theorem as the theoretical

foundation of multi-way graphical models. Moreover, the original Bi-

graphical Lasso algorithm is not applicable in case of large p and n due

to memory requirements. In this thesis we present Scalable Bigraphical

Lasso, a novel version of the algorithm which exploits eigenvalue decom-

position of the Cartesian product graph, and matrix algebra, to reduce

the memory requirements from O(n2p2) to O(n2 +p2), and to improve

the computational efficiency. We also present the Scalable K-graphical

Lasso method for multi-way network inference, leveraging eigenvalue de-

composition to simultaneously infer hidden structures in tensor-valued

data. Finally, many datasets in different application fields, such as biol-

ogy, medicine and social science, come as non-Gaussian data, for which

Gaussian based models such as the original Bigraphical model and its

multi-way version are not applicable. Thus, we extend our multi-way

network inference approach so that it can be used for non-Gaussian data.

In summary, our methodology accounts for the dependencies across

different directions in datasets, reduces the computational complexity

for high dimensional data and enables us to deal with both discrete and

continuous data. Numerical studies on both synthetic and real datasets

are presented to showcase the performance of our methods.
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Chapter 1

Introduction

1.1 Introduction

Many statistical models have been proposed to discover new knowledge and to

infer hidden structures from real world data. In this thesis we focus on two applied

statistical problems.

Real world problems are ubiquitously affected by various hidden factors. We

focus on an example in biology: The recent rapid evolution of high-throughput

sequencing technologies has enabled the quantification of gene expression at the

single-cell level. These data are called single-cell RNA sequencing (scRNAseq) data.

The gene expression data recorded by scRNAseq are affected by several hidden fac-

tors such as technical noise, cell size and biological variation. When dealing with this

type of data people have used Bayesian Hierarchical Models (BHMs). BHMs could

allow the identification of confounding factors, thus enabling the extraction of the

information of interest. A great advantage of BHMs for scRNAseq is that their infer-

ence often borrows information from across genes and cells. Therefore, they draw a

more comprehensive biological picture by putting the intercellular dynamics into

consideration. An example of BHM models for scRNAseq data is the BASiCS frame-

work developed in Vallejos et al. (2015, 2016) and Eling et al. (2018). This framework

allows them to infer relevant parameters from observed data, and the method will

determine some particular characteristics through parameters representing factors

which affect gene expression data. However, due to the complexity of Bayesian Hier-

archical Models and the high-dimensional nature of biological data, these models
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1.1 Introduction

could be computationally expensive and time-consuming. The high cost makes the

validation of these methods even more important and urgent. However, validation

for this methodology in the sense of comparing the ground truth with the inference

results was missing. This is because the ground truth of these hidden factors inferred

from BHMs is often unknown in biology. In Chapter 3 of this thesis, we address this

issue by exploiting a simulation-based framework for evaluation of BHMs.

Another problem is the learning of hidden structures from real world data. These

structures can appear in more than one dimensions. For example, videos contain

structures in pixels and in frames (Greenewald, 2017); Traffic data concerns relation-

ship of various factors such as space, time and direction (Ahn et al., 2022); Gene

expression data encodes conditional dependencies across cells (tissues) and across

genes (Almet et al., 2021; Cang & Nie, 2020; Svensson et al., 2020). Recently, two-

way and multi-way network models based on Gaussian distribution and graphical

models are proposed to infer these dependency structures simultaneously. Consider

a dataset in the form of a matrix, Kalaitzis et al. (2013) propose Bigraphical model,

which consists of a Gaussian distribution model with an inverse covariance matrix

structured as a Kronecker sum (KS) of two matrices. Here the KS structure of the

inverse covariance matrix corresponds to the Cartesian product of networks between

the rows and between the columns of the data matrix, respectively. The Bigraphical

Lasso algorithm is presented in Kalaitzis et al. (2013) to solve this problem. How-

ever, Bigraphical Lasso has the issue of computational efficiency, especially for high

dimensional data. Another limitation of Bigraphical Lasso is that it can only work

with Gaussian data, while a lot of real world data are non-Gaussian data, such as

count data. We address these issues in Chapter 4, where we propose a novel Scalable

Bigraphical Lasso by utilising eigen-decomposition and matrix algebra. We also ex-

tend our approach for application on non-Gaussian data by introducing a Gaussian

Copula approach, where the structure embedded in non-Gaussian data are projected

to the relationship between latent Gaussian variables.

The exploration above leads us to a new problem: real world data sometimes

come in the form of tensors with more than two dimensions. For example, in the case

of three dimensions, the data is stored in a cube-like structure where three indices are

needed to fix a data point. Greenewald et al. (2019) considered a multi-way network

model, which consists of a Gaussian distribution model with a inverse covariance
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matrix structured as a Kronecker sum (KS) of multiple matrices. Here the KS structure

of the inverse covariance matrix corresponds to the Cartesian product of networks

between each direction of the tensor-valued data. TeraLasso method is proposed by

Greenewald et al. (2019) to solve this model. However, it can only work on Gaussian

data, while in the real world some tensor-valued data are non-Gaussian. In Chapter

5, we propose a novel Scalable K-Graphical Lasso method based on our Scalable

Bigraphical Lasso method in Chapter 4, and we extend our method for application

on non-Gaussian tensor-valued data by introducing a Gaussian Copula approach.

1.2 Main Contributions

The following points summarise the main contributions of this thesis:

• Exploration of a simulation-based evaluation framework for Bayesian Hierar-

chical Models, including the study of the effect of a contaminated prior on the

posterior results.

• A modified BASiCS package, providing the choice of mixed prior on a spectrum.

• Implementation of the Simulation-based Calibration method for the BASiCS

framework.

• Proof of the existence of Gaussian Markov Random field for the Cartesian

Product of two Gaussian Markov Random field graphs.

• Development of Scalable Bigraphical Lasso, a novel eigen-decomposition

based algorithm for two-way network inference with a Kronecker sum (KS)

structure.

• Comparisons with other two-way (multi-way) network inference methods with

a KS structure, namely Bigraphical Lasso (Kalaitzis et al., 2013) and TeraLasso

(Greenewald et al., 2019), in terms of network recovery accuracy and running

time.

• Extension of the two-way network model to non-Gaussian data with a non-

paranormal Gaussian Copula approach.
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• Application of nonparanormal Scalable Bigraphical Lasso to image clustering.

• Application of nonparanormal Scalable Bigraphical Lasso to single-cell RNA

sequencing data.

• Development of Scalable K-graphical Lasso, an extension of Scalable Bigraphi-

cal Lasso, enabling multi-way network inference from K -way tensor-valued

data, K > 2.

• Comparisons with another multi-way network inference methods with a KS

structure, namely TeraLasso (Greenewald et al., 2019), in terms of network

recovery accuracy and running time.

• Extension of the multi-way network model to non-Gaussian data with a non-

paranormal Gaussian Copula approach.

• Application of nonparanormal Scalable KGraphical Lasso to image clustering.

1.3 Thesis Outline

This thesis is structured as the following:

• In Chapter 2, we introduce the mathematical background on Bayesian Statistics

and graphical models, including our proof of the existence of Gaussian Markov

Random field for the Cartesian Product of two Gaussian Markov Random field

graphs.

• In Chapter 3, we present our work on Simulation-based evaluation of Bayesian

Hierarchical Models, with BASiCS (Eling et al., 2018; Vallejos et al., 2015, 2016)

as an example. We show the limitation of the BASiCS framework based on

evidence we found from our exploration, and we pointed out the potential

direction for improvement for future work.

• In Chapter 4, we present our Scalable Bigraphical algorithm for matrix-variate

data and its extension to non-Gaussian data with a nonparanormal approach.

Our experiment on synthetic Gaussian data shows that, when comparing with
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Bigraphical Lasso, our method improves a lot in terms of efficiency while

maintaining high accuracy. Our experiments on synthetic count data and real

data have shown the applicability of our method on non-Gaussian data.

• In Chapter 5, we present our Scalable K-graphical algorithm for tensor-valued

data and its extension to non-Gaussian tensor-valued data with a nonparanor-

mal approach. Our experiment on synthetic Gaussian data shows that, when

comparing with TeraLasso, our method has significantly better performance

when the size of the tensor is small, while when the size of the tensor is large,

the performance of our method is still comparable with TeraLasso. We also

show the applicability of our method on non-Gaussian data with a synthetic

count data example and a real data example.

• In Chapter 6, we conclude this thesis and discuss future work.
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Chapter 2

Preliminaries

This chapter provides some general background of Bayesian Statistics and Graph-

ical Models, focusing on the mathematical and statistical concepts relevant to the

research presented in this thesis.

2.1 Bayesian Statistics

In Chapter 3 of this thesis, analysis of a type of model called Bayesian Hierarchical

Model is carried out, hence we introduce some relevant basic concepts of Bayesian

Statistics in this section.

In Probability Theory, given two events A and B with probabilities P (A) and P (B),

we define the conditional probability P (A|B) as a measure of the probability of A

occurring given that B has occurred (Pfeiffer, 2013). Bayes (1763) discussed a special

case of Bayes’ theorem, based on the conditional probability P (A|B) = P (B∩A)
P (B) , with

P (B) ̸= 0. Laplace (1814) introduces the theorem in a more general way, which is

called Bayes Theorem:

Theorem 2.1 [Bayes’ Theorem] When the set of events {A1, . . . , AM } represents all

the possible causes for event B , then for any Ai ∈ {A1, . . . , AM } we have

P (Ai |B) = P (B |Ai )P (Ai )∑M
j=1 P (A j )P (B |A j )

= P (B |Ai )P (Ai )

P (B)
.
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2.1 Bayesian Statistics

Here, P (Ai ) is our belief on the probability of event Ai before observing B , also called

the prior. When we observe B , this theorem can be used to update our belief on Ai .

As P (B) is usually unknown, it can be treated as an unknown constant. The posterior

P (Ai |B) can be computed using the proportional update:

P (Ai |B) ∝ P (B |Ai )P (Ai ).

Consider an observation of data y , the parameter ζ1 governing the data generating

process π(y |ζ1). We denote our prior belief on ζ1 as π(ζ1). Applying Bayes’ theorem,

we have

π(ζ1|y) ∝π(y |ζ1)π(ζ1). (2.1)

2.1.1 Bayesian Hierarchical Models

Bayesian Hierarchical Models (BHMs) are a type of probabilistic graphical model

based on Bayes’ Theorem. BHMs are widely used in various application fields such as

biology (Dondelinger et al., 2013; Fang et al., 2018), medicine (Lawson, 2018; Scannell

et al., 2020), engineering (Babaleye et al., 2019; Mishra et al., 2018) and social science

(Costa & Ortale, 2012; Yoshioka et al., 2022). Bayesian Hierarchical models can

allow the identification of confounding factors, thus enabling the extraction of the

information of interest conditionally on other factors in a complex system.

In Equation (2.1), we can use another unknown parameter ζ2 to describe our

prior belief on the generating process of ζ1, i.e. we can introduce the prior π(ζ1|ζ2).

In this case ζ2 is called the hyperparameter. Similarly, we have a hyperprior belief

on the generating process of ζ2, π(ζ2). In this framework, we can build a Bayesian

Hierarchical Model (BHM):

Stage 1: y |ζ1,ζ2 ∼π(y |ζ1,ζ2)

Stage 2: ζ1|ζ2 ∼π(ζ1|ζ2)

Stage 3: ζ2 ∼π(ζ2)

Applying the Bayes’ theorem, we can update our belief on ζ1 and ζ2:

π(ζ1,ζ2|y) ∝π(y |ζ1,ζ2)π(ζ1,ζ2)

=π(y |ζ1,ζ2)π(ζ1|ζ2)π(ζ2).
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2.1 Bayesian Statistics

It is possible that a BHM has more than three stages, more than one parameter and

more than one hyperparameters. In such case we can consider a general Bayesian

Hierarchical Model with data (observation) vector y and parameters
{
ζ(1), . . . ,ζ(M)}:

y |ζ(1) ∼π(y |ζ(1))

ζ(i )|ζ(i+1) ∼π(ζ(i )|ζ(i+1)), i = 1, . . . , M −1,

ζ(M) ∼π(
ζ(M)) .

Applying Bayes’ theorem, we have the posterior distribution:

ζ(i )|ζ(i+1), y ∼π(ζ(i )|ζ(i+1), y), i = 1, . . . M −1.

2.1.2 Identifiability

In statistical modelling, identifiability analysis aims to find out if the model param-

eters can be uniquely determined from the distribution of the observed samples

(Paulino & de Bragança Pereira, 1994). Consider a probability space
(
Y ,σ (Y ) ,Pζ

)
,

where Y is the sample space of observed data, σ (Y ) is the event space where an

event is a subset of Y , and Pζ =
{
Pζ : ζ ∈Z

}
is the family of parametric distribu-

tions in σ (Y ), with Z being an open subset of RM . Following Dasgupta et al. (2007),

Paulino & de Bragança Pereira (1994) and Rothenberg (1971), we give the following

definition:

Definition 2.1 The family Pζ is said to be (globally) identifiable if

Pζ(1) = Pζ(2) =⇒ ζ(1) = ζ(2).

For example, without any constraints, P(λ1,λ2) = Poisson(λ1λ2) is non-identifiable,

since (λ1,λ2) = (1,2) and (λ1,λ2) = (2,1) define the same distribution, and so P(1,2) =
P(2,1) ̸=⇒ (1,2) = (2,1).

8



2.1 Bayesian Statistics

2.1.3 Monte Carlo Markov Chain

For a given data-generating model π(y |ζ), observation y , and parameter vector ζ,

the calculation of the posterior density π
(
ζ|y) ∝ π (ζ)π(y |ζ) is often intractable,

hence in practice we often obtain posterior samples from π
(
ζ|y)

with numerical

methods. Markov Chain Monte Carlo (MCMC) methods are a class of algorithms

used to infer the posterior distribution numerically. Here we only introduce the

Adaptive Metropolis-within-Gibbs Sampling algorithm from Roberts & Rosenthal

(2009) as described in Algorithm 1. In short, Adaptive Metropolis refers to drawing

candidate values from a proposal distribution with adaptive parameters. In Roberts

& Rosenthal (2009), the proposal distributions are either Normal distributions or

log-Normal distributions, and the adaptive parameters are the standard deviation of

the Normal distributions or log-Normal distributions. The adaptive parameters are

updated every 50 iterations; and Gibbs Sampling draws each element ζi at iteration

n conditionally on the fixed value of
(
ζ(n)

1 , . . . ,ζ(n)
i−1,ζ(n−1)

i+1 , . . . ,ζ(n−1)
M

)
, where ζ(n)

j refers

to the sampling values of ζ j at iteration n. In the following algorithm, the proposal

distribution is a log-Normal distribution.

Algorithm 1 Adaptive Metropolis-within-Gibbs Sampler

Require: Data generating model π(y |ζ); prior distribution π(ζ); the initial value

of ζ = (ζ1, . . . ,ζM ), ζ(0) =
(
ζ(0)

1 , . . . ,ζ(0)
M

)
; the standard deviations, ς1, . . . ,ςM , of the

proposal distributions for ζ1, . . . ,ζM ; the number of iterations, N .

Initialise

while n in (1 : N ) do

for m in (1 : M) do

Draw a candidate value ζ∗m ∼ log-Normal
(
ζ(n−1)

m ,ς2
m

)
.

Calculate the logarithm of the acceptance ratio ra according to the marginal

distribution π
(
ζm |y ,ζ(n)

1 , . . . ,ζ(n)
m−1,ζ(n−1)

m+1 , . . . ,ζ(n−1)
M

)
:

log(ra) = log

 π
(
ζ∗m |y ,ζ(n)

1 , . . . ,ζ(n)
m−1,ζ(n−1)

m+1 , . . . ,ζ(n−1)
M

)
π

(
ζ(n−1)

m |y ,ζ(n)
1 , . . . ,ζ(n)

m−1,ζ(n−1)
m+1 , . . . ,ζ(n−1)

M

)
 .

Draw a number ru ∼ Uniform(0,1).
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if log(ra) ≤ log(ru) then

ζ(n)
m = ζ(n−1)

m .

else

ζ(n)
m = ζ∗m .

end if

if 50 exactly divides n then

ςm = ςm +δ (n), where δ (n) = min
{

0.01,
( n

50

)− 1
2

}
.

end if

end for

Obtain the posterior sample at the n-th iteration: ζ(n) =
(
ζ(n)

1 , . . . ,ζ(n)
M

)
.

end while

Return the posterior sample
{
ζ(1), . . . ,ζ(N )}.

2.2 Graphical Models

In Chapter 4 and Chapter 5 of this thesis, we extend a Gaussian graphical model for

non-Gaussian data applications and developed an efficient algorithm to infer the

relationships embedded in data. In this section, we introduce some relevant basic

concepts of graphical models (Lauritzen, 1996; Whittaker, 1990).

2.2.1 Graph theory

A graph, or a network, is a mathematical object defined by a pair G = (V ,E), where

V is a finite set of vertices and E ⊆V ×V is the set of edges. An edge in E is written

as an ordered pair of distinct vertices, e = (
vi , v j

) ∈ E . According to Lauritzen (1996),

if
(
vi , v j

)
and

(
vi , v j

)
are both in E for any vi , v j ∈ V , then the graph is undirected,

otherwise it is a directed graph. In chapter 4 and chapter 5 of this thesis, we only work

on undirected graphs. If
(
vi , v j

) ∈ E , vi and v j are called neighbours in the graph

(Kindermann, 1980). In Graph Theory, the structure of a finite graph is commonly

represented by a square matrix, called the adjacency matrix (Harary, 1962). The value

of each element Ai j ∈R of the adjacency matrix can represent the strength of the link

between vi and v j , these values are called weights (Acharya, 1980). The closer the
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weight Ai j is to 0, the weaker the link between vi and v j is, so that

Ai j = 0 ⇐⇒ (
vi , v j

) ∉ E .

In other words, there are no direct edges from vi to v j when Ai j = 0. Note that for an

undirected graph, the adjacency matrix is symmetric.

According to Girvan & Newman (2002), one of the properties a network can have

is community structure. A network has this property if its vertices can be partitioned

into subsets or clusters where the vertices are densely connected within each cluster

and loosely connected between different clusters. We present an illustrative example

in illustration in Figure 2.1.

Figure 2.1: An example of a graph with three clusters. We can see that there are many

connections inside each cluster, but very few connections between different clusters.

Consider graphs G1 = (V1,E1) , . . . ,GM = (VM ,EM ), then the Cartesian product

(called the box product 2, in Knauer & Knauer (2019)) of G1, . . . ,GM is defined as

(Sabidussi, 1959a)

G12 . . .2GM = (V ,E) ,

where

V =V1 ×·· ·×VM ,
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and

E =
{(

vi , v j
)

,
(
vi , v ′

j

)
|vi ∈Vi ,

(
v j , v ′

j

)
∈ E j , i , j = 1, . . . , M

}
⋃{(

vi , v j
)

,
(
v ′

i , v j
) |(vi , v ′

i

) ∈ Ei , v j ∈V j , i , j = 1, . . . , M
}

.

In other words, for any v ′
i , v ′

j ∈V , edge
(
v ′

i , v ′
j

)
∈ E if and only if

(
vi , v ′

i

) ∈ Ei , v j = v ′
j

with vi ∈Vi , or vi = v ′
i ,

(
v j , v ′

j

)
∈ E j with v j ∈ E j .

For two graphs G1 and G2 with adjacency matrices A(1) and A(2) respectively,

according to Cvetković et al. (1979), the adjacency matrix of their Cartesian product

G12G2 can be represented as the Kronecker sum of A(1) and A(2):

A(1) ⊕ A(2) = A(1) ⊗ I (1) + I (2) ⊗ A(2),

where I (1) represents the identity matrix with the same dimension as A(1), I (2) rep-

resents the identity matrix with the same dimension as A(2), and A ⊗B represents

the Kronecker product (also called tensor product). For n1 ×n2 matrix A = (
ai j

)
and

p1 ×p2 matrix B = (
bi j

)
, the Kronecker product A ⊗B is defined as

A ⊗B =


a11B a12B . . . a1n2 B
a21B a22B . . . a2n2 B

...
...

. . .
...

an11B an12B . . . an1n2 B

 .

2.2.2 Markov random field

Given a graph G = (V ,E), V = {v1, . . . , vn} and a set of random variables XV = {
Xv1 , . . . , Xvn

}
,

where each Xvi corresponds to vi in the graph, i = 1, . . . ,n, we have the following

definition for Markov random field (Kindermann, 1980).

Definition 2.2 A probability measure Pζ on XV = {
Xv1 , . . . , Xvn

}
is said to define a

Markov random field with respect to G if the local characteristics depend only on the

knowledge of the neighbours. In other words, for any v ∈V , if we denote the set of its

neighbours as N (v) = {
v ′ ∈V |(v, v ′) ∈ E or

(
v ′, v

) ∈ E
}
, then

P
(
XV |XV \{v}

)= P
(
XV |XV \N (v)

)
,

where V \V1 = {v ∈V |v ∉V1}.
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When the probability measure Pζ mentioned above is a multivariate normal

distribution,
(
Xv1 , . . . , Xvn

)∼ mN
(
µn ,Σn×n

)
, with the mean vector µ and covariance

matrix Σn×n , then we have a Gaussian Markov random field. The advantage of

multivariate normal distributions is that for precision matrix (inverse convariance

matrix)Ωn×n =Σ−1
n×n , one has

Ωi j = 0 ⇐⇒ (
vi , v j

) ∉ E , for all i ̸= j , i , j = 1, . . . ,n,

More formally, we have the following definition for Gaussian Markov random fields.

(Rue & Held, 2005)

Definition 2.3 A random vector X = (
Xv1 , . . . , Xvn

)⊤ ∈Rn is called a Gaussian Markov

random field with respect to graph G = (V ,E) with mean µ and precision matrix

Ωn×n =Σ−1
n×n , if and only if its density has the form

π (X) = (2π)−n/2 |Ωn×n |1/2 exp

[
−1

2

(
X−µ)⊤

Ωn×n
(
X−µ)]

,

and

Ωi j = 0 ⇐⇒ (
vi , v j

) ∉ E , for all i ̸= j , i , j = 1, . . . ,n.

For convenience, we call the graph G associated with X ∼ mN
(
µ,Ωn×n

)
a Gaussian

Markov random field graph. The precision matrixΩn×n encodes conditional Inde-

pendence between random variables Xv1 , . . . , Xvn . The support of Ωn×n describes

the structure of a Gaussian Markov random field graph.

Definition 2.4 The support of a m ×m matrix B, BSuppor t , is defined as below:

B Suppor t
i j =

{
1, Bi j ̸= 0

0, Bi j = 0.

In the case of precision matrix Ωn×n , ΩSuppor t
i j = 1 indicates the existence of an

undirected edge in the corresponding network between node i and node j . Also,

since the partial correlation coefficient between Xvi and Xv j , Ri j , can be calculated

as (Lauritzen, 1996)

Ri j =− Ωi j√
Ωi iΩ j j

,
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we note that a negativeΩi j indicates positive correlation between vi and v j .

When considering the Cartesian product of two Gaussian Markov random field

graphs, the statement in Theorem 2.2 has been used in previous works (Greenewald

et al., 2019; Kalaitzis et al., 2013). However, to the best of our knowledge, it has not

been properly formalised. Here, we introduce and prove Theorem 2.2.

Theorem 2.2 Consider two Gaussian Markov random field graphs G1 and G2 de-

fined by the n×n precision matrixΩ1 and the p ×p precision matrixΩ2 respectively.

Then the Gaussian Markov random field graph G , defined by the Kronecker sum

Ω=Ω1 ⊕Ω2, will be the Cartesian product G =G12G2 = (V ,E).

Proof. Denote the support of Ω1 as Ωsuppor t
1 , and the support of Ω2 as Ωsuppor t

2 ,

then Ωsuppor t
1 and Ωsuppor t

2 are the adjacency matrices of G1 and G2 respectively.

According to Cvetković et al. (1979), we haveΩsuppor t
1 ⊕Ωsuppor t

2 as the adjacency

matrix of G12G2.

It is also worth to note that the support ofΩ1 ⊕Ω2 can be written as

(Ω1 ⊕Ω2)suppor t =Ωsuppor t
1 ⊕Ωsuppor t

2 .

Therefore, we can take a random vector X = (
X1, . . . , Xnp

)⊤ ∼ mN
(
0,Ω−1

)
being a

Gaussian Markov random field with respect to graph G = G12G2 defined by the

precision matrixΩ=Ω1 ⊕Ω2, and G =G12G2 is a Gaussian Markov random field

graph. The density of X has the form

π (X) = (2π)−np/2 |Ω|1/2 exp

(
−1

2
X⊤ΩX

)
,

and

Ωi j = 0 ⇐⇒
(
Ω

suppor t
1 ⊕Ωsuppor t

2

)
i j
= 0 ⇐⇒ (

vi , v j
) ∉ E , for all i ̸= j , i , j = 1, . . . ,np.

2.2.3 Matrix calculus

In this subsection, we list some relevant properties of matrix calculus for later use.
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Properties of Kronecker product (Magnus & Neudecker, 1999) Consider matrices

A, B, C and D, we have

1. Associativity: A⊗B⊗C = (A⊗B)⊗C;

2. Bilinearity: If A+B and C+D exist, then

(A+B)⊗ (C+D) = A⊗C+A⊗D+B⊗C+B⊗D;

3. Mixed Product: If AC and BD exist, then

(A⊗B) (C⊗D) = AC⊗BD.

With these properties, we can extend Theorem 2.2 to the Cartesian product of M

Gaussian Markov random field graphs defined by precision matrices {Ω1, . . . ,ΩM },

since

Ω1 ⊕Ω2 ⊕·· ·⊕ΩM−1 ⊕ΩM = (Ω1 ⊕Ω2 ⊕·· ·⊕ΩM−1)⊕ΩM

can be viewed as the Cartesian product of G (M−1) and GM , where G (M−1) =G12 . . .2GM−1.

This process can be repeated for M −1 times.

Some knowledge of matrix differential calculus is also useful in later chapters.

Readers can consult Magnus & Neudecker (1999); Petersen et al. (2008) for further

details and the full mathematical background. Before introducing matrix differential

calculus rules, we define the differentiation with respect to matrix.

Definition 2.5 Consider a m ×n random variable matrix X = (
Xi j

)
and a differen-

tiable function f of matrix X, the scalar derivative of f with respect to X is defined

as

∂ f

∂X
=


∂ f
∂X11

. . . ∂ f
∂X1n

...
. . .

...
∂ f

∂Xm1
. . . ∂ f

∂Xmn

 .

Matrix differential calculus rules (Magnus & Neudecker, 1999; Petersen et al., 2008)

Consider random variable matrices X and Y, a constant matrix A, a differentiable

function f of matrix X. We list some of the most relevant matrix differential calculus

rules as follows:
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1. ∂(AX)
∂X = A;

2. ∂ ln|X|
∂X = tr

(
X−1

)
, where |X| represents the determinant of X, and tr(X) represents

the trace of X;

3. ∂(X⊗Y)
∂X = I⊗Y, ∂(X⊗Y)

∂Y = X⊗ I;

4.
∂tr[ f (X)]

∂X = ∂ f
∂X ;

5. If X is symmetric then we have

∂ f

∂X
=

[
∂ f

∂X

]
+

[
∂ f

∂X

]⊤
− I◦

[
∂ f

∂X

]
,

where ◦ is the Hadamard product. For m ×n matrices A = (
Ai j

)
and B = (

Bi j
)
,

the Hadamard product A◦B is defined as

(A◦B)i j = Ai j Bi j .

Furthermore, we note some derivatives with respect to a matrix element Xi j :

1. If X is symmetric, ∂X
∂Xi j

= Ji j + J j i − Ji j J j i , where in the matrix Ji j , the only

element different from zero is Ji j = 1;

2. ∂X⊗A
∂Xi j

= ∂X
∂Xi j

⊗A.

We also define the Frobenius norm of m ×n matrix A = (
Ai j

)
as

∥A∥F =
√√√√ m∑

i=1

n∑
j=1

∣∣Ai j
∣∣2.

Finally, consider the m ×n matrix A = (
Ai j

)
, the vectorisation of A is defined as

stacking each column of A into a vector of length mn, in other words,

vec(A) = (A11, A21, . . . , Am1, . . . , A1n , . . . , Amn)⊤ .

2.2.4 Background on tensors

To work on K -way tensor-valued data in Chapter 5, here we introduce some mathe-

matical background on tensor calculation. In simple words, tensors are a generalisa-

tion of vectors (Renteln, 2013). Formally, we define a tensor as follows:
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Definition 2.6 A K -way or K -th order tensor Y is an element of the tensor product

of K vector spaces. In other words, there exists Y1 ∈Rd1 , . . . ,YK ∈RdK , such that

Y= Y1 ⊗·· ·⊗YK .

A one-way tensor is a vector, a two-way tensor is a matrix, when K ≥ 3, we call it a

multi-way tensor.

A fibre of a tensor is the higher-order analogue of rows and columns. A fibre

is obtained by fixing all indices but one. Consider a K -way tensor Y, of which the

dimensions are d1 ×d2 ×·· ·×dK . A mode-k fibre can be denoted as Yi1,...,ik−1,ik+1,...,iK ,

and it is a vector of length dk . A slice of a tensor is the two-way sections of a tensor,

defined by fixing all but two indices. A slice defined by fixing all but indices in

mode-k1 and mode-k2 can be denoted as Y:,...,:,ik1 ,:,...,:,ik2 ,:,...,: (k1 < k2,k1,k2 = 1, . . . ,K ).

The matricization of Y along mode k (i.e. the k-th way) Y(k) is obtained by

arranging all the mode-k fibres of Y. The resulting Y(k) is a dk ×mk matrix, where

mk = ΠK
i=1di

dk
(Kolda & Bader, 2009). Figure 2.2 illustrates the three different types of

slices for a three-way tensor.

Figure 2.2: Types of slices for a three-way tensor Y.

(a): Horizontal slices: Yi1,:,:, i1 = 1, . . . ,d1.

(b): Lateral slices: Y:,i2,:, i2 = 1, . . . ,d2.

(c): Frontal slices; Y:,:,i3 , i3 = 1, . . . ,d3.

Example 2.1 Let us consider a three-way tensor Y ∈R3×4×2 with frontal slices Y:,:,1

and Y:,:,2 as follows:

Y:,:,1 =
1 2 3 4

5 6 7 8
9 10 11 12

 ,
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and

Y:,:,2 =
13 14 15 16

17 18 19 20
21 22 23 24

 .

Then the matricization along mode-1 is

Y(1) =
1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20
9 10 11 12 21 22 23 24

 ,

the matricization along mode-2 is

Y(2) =


1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

 ,

and the matricization along mode-3 is

Y(3) =
[

1 5 9 2 6 10 3 7 11 4 8 12
13 17 21 14 18 22 15 19 23 16 20 24

]
.

2.2.5 Gaussian copulas

Gaussian copulas are commonly used to extend Gaussian models to applications on

non-Gaussian data. Here we first introduce the definition of copulas then give some

further theoretical background on copulas.

Definition 2.7 (Sklar, 1973) An M-dimensional copula is a function C : [0,1]M 7→
[0,1], which satisfies the following conditions:

1. C (1, . . . ,1,um ,1, . . . ,1) = um for each m ≤ M and all um ∈ [0,1];

2. C (u1, . . . ,uM ) = 0 if um = 0 for any m ≤ M ;

3. C is increasing in each component um ∈ [0,1].

The theoretical foundation of copulas is given by Sklar’s Theorem (Sklar, 1973):
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Theorem 2.3 [Sklar’s Theorem] For any random variables X1, . . . , Xm with joint Cu-

mulative Density Function (CDF) F (x1, . . . , xm) and marginal CDFs F1 (x1) = P (X1 ≤ x1) ,

. . . ,Fm (Xm) = P (Xm ≤ xm), there exists a copula such that

F (x1, . . . , xm) =C (F1 (x1) , . . . ,Fm (xm)) .

Liu et al. (2009, 2012) defined the nonparanormal distribution:

Definition 2.8 A random vector X = (X1, . . . , Xm)⊤ has a nonparanormal distribution

if there exist a set of monotone and univariate functions
{

fk
}m

k=1 such that Z ≡ f (X) ∼
mN

(
µ,Σ

)
, where f (X) = (

f1 (X1) , . . . , fm (Xm)
)
. It then can be written that

X ∼ NPN
(
µ,Σ, f

)
.

Following Sklar’s Theorem, Liu et al. (2009) mentioned that for the nonparanormal

distribution, we have

F (X1, . . . , Xm) =Φµ,Σ
(
Φ−1 (F1 (X1)) , . . . ,Φ−1 (Fm (Xm))

)
,

whereΦµ,Σ is the multivariate Gaussian CDF andΦ is the univariate standard Gaus-

sian CDF.

Furthermore, we can deduce the corresponding copula

C (F1 (X1) , . . . ,Fm (Xm)) =Φµ,Σ
(
Φ−1 (F1 (X1)) , . . . ,Φ−1 (Fm (Xm))

)
.

This leads to X ∼ NPN
(
µ,Σ, f

)
, where f = {

fk
}m

k=1, fk (Xk ) =Φ−1 (Fk (Xk )), and(
f1 (X1) , . . . , fm (Xm)

)∼ mN
(
µ,Σ

)
.

Now we consider the p ×n random matrix Y = (
Yi j

)
, i = 1, . . . , p, j = 1, . . . ,n.

For each row vector of Y, Yi = (Yi 1, . . . ,Yi n)⊤ , i = 1, . . . , p, we consider the CDFs of

the marginal distributions F (r )
1 , . . . ,F (r )

j , . . . ,F (r )
n , where the superscript (r ) denotes

marginal distributions in row vectors. Then by Sklar’s theorem, for the CDF of a

n-dimensional multivariate normal distributionΦ(0n ,Ψ−1
n×n), there exists copula C (r )

such that

Φ{0n ,Ψ−1
n×n}

(
Φ−1

(
F (r )

1 (Yi 1)
)

, . . . ,Φ−1 (
F (r )

n (Yi n)
))=C (r )

(
F (r )

1 (Yi 1) , . . . ,F (r )
n (Yi n)

)
.
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That is, there exist functions f (r ) =
{

f (r )
j

}n

j=1
such that for each row vectors of Y,

Yi = (Yi 1, . . . ,Yi n)⊤ , i = 1, . . . , p, Z (r )
i ≡ f (r ) (Yi ) ∼ mN

(
0n ,Ψ−1

n×n

)
, where f (r ) (Yi ) =(

f (r )
1 (Yi 1) , . . . , f (r )

n (Yi n)
)
. Then we say Yi = (Yi 1, . . . ,Yi n)⊤ has a nonparanormal distri-

bution and write

Yi ∼ NPN
(
0n ,Ψ−1

n×n , f (r )) .

Lemma 2.1 (Liu et al., 2009) If X ∼ NPN
(
µ,Σ, f

)
is nonparanormal and each fk is

differentiable, then Xk1 is independent of Xk2 conditionally on all the other element

Xk in the vector X, if and only if Bk1k2 = 0, where B =Σ−1.

According to Lemma 2.1 (Liu et al., 2009)[Lemma 2], for Yi ∼ NPN
(
0n ,Ψ−1

n×n , f (r )
)
,

the dependencies between Yi 1, . . . , Yi n , i = 1, . . . , p can be illustrated by a Gaussian

Markov random field Graph Gr = (Vr ,Er ) corresponding to precision matrixΨn×n .

This is equivalent to having the latent variable Z(r ) = f (c)(Yi ) ∼ mN
(
0n ,Ψ−1

n×n

)
, i =

1, . . . , p.

Similarly, for each column vector of Y, Y j =
(
Y1 j , . . . ,Yp j

)⊤ , j = 1, . . . ,n, we con-

sider the CDF of marginal distributions F (c)
1 , . . . ,F (c)

i , . . . ,F (c)
n , where the superscript

(c) denotes marginal distributions in column vector. Then by Sklar’s theorem, for

the CDF of a p-dimensional multivariate normal distributionΦ(
0p ,Ψ−1

p×p

), there exists

copula C (c) such that

Φ(
0p ,Θ−1

p×p

) (Φ−1
(
F (c)

1

(
Y1 j

))
, . . . ,Φ−1

(
F (c)

p

(
Yp j

)))=C (c)
(
F (c)

1

(
Y1 j

)
, . . . ,F (c)

n

(
Yp j

))
.

That is, there exist functions f (c) =
{

f (c)
i

}p

i=1
such that for each column vector of Y,

Y j =
(
Y1 j , . . . ,Yp j

)⊤ , j = 1, . . . ,n, Z(c)
j ≡ f (c)

(
Y j

) ∼ mN
(
0p ,Θ−1

p×p

)
, where f (c)

(
Y j

) =(
f (c)

1

(
Y1 j

)
, . . . , f (c)

p
(
Yp j

))
. Then we say Y j = (

Y1 j , . . . ,Yp j
)⊤ has a nonparanormal

distribution and write

Y j ∼ NPN
(
0p ,Θ−1

p×p , f (c)
)

.

The dependence between Y1 j , . . . , Yp j can be illustrated by a Gaussian Markov ran-

dom field Graph Gc = (Vc ,Ec ) corresponding to precision matrixΘp×p . This is equiv-

alent to having the latent variable Z(c) = f (c)(Y j ) ∼ mN
(
0p ,Θ−1

p×p

)
, j = 1, . . . ,n.

In order to understand the whole picture of the dependency structure in p ×
n dataset Y, we combine the dependency structure in rows and the dependency
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structure in columns by considering the Cartesian product between Gc and Gr :

Gc2Gr =(Vr ×Vc , {(vi1 , vi2 ), (vi1 , v ′
i2

)|vi1 ∈Gc , (vi2 , v ′
i2

) ∈ Er }⋃
{(vi1 , vi2 ), (v ′

i1
, vi2 )|vi2 ∈Gr , (vi1 , v ′

i1
) ∈ Ec }).

According to Theorem 2.2 in Subsection 2.2.2, For G = Gc2Gr , we can find a

p ×n random matrix Z, such that vec(Z) ∼ mN
(
0,

(
Ψn×n ⊕Θp×p

)−1
)

and defines the

Gaussian Markov random graph G . We propose to view Z as the latent variable

projection of Y. More specifically, for vec(Y) = (
Y11, . . . ,Yi j , . . . ,Ypn

)
, consider the

cumulative density function of marginal distributions in vec(Y): F11, . . . ,Fi j , . . . ,Fpn .

Then by Sklar’s theorem, for the cumulative density function of the np-dimensional

distributionΦ(
0np ,(Ψn×n⊕Θp×p )−1

), there exists copula C such that

Φ(
0np,(Ψn×n⊕Θp×p)−1

) (Φ−1 (F11 (Y11)) , . . . ,Φ−1 (
Fpn

(
Ypn

)))=C
(
F11 (Y11) , . . . ,Fpn

(
Ypn

))
,

where Ψn×n ⊕Θp×p is the corresponding precision matrix. That is, there exists

functions f = {
fi j

}
{i , j } such that for vec(Y) = (

Y11, . . . ,Ypn
)
, vec(Z) ≡ f (vec(Y)) ∼

mN
(
0np ,Ω−1

)
, where f (vec(Y)) = (

f11 (Y11) , . . . , fpn
(
Ypn

))
. Therefore, the Gaussian

Markov random field graph associated with the precision matrixΨn×n ⊗Θp×p repre-

sents the overall dependency structure encoded in Y.
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Chapter 3

Simulation-based Evaluation of the

Reliability of Bayesian Hierarchical

Models for scRNAseq Data

3.1 Introduction

Bayesian Hierarchical Models (BHM) take into account relations between variables

(Congdon, 2014) by assuming a joint probability distribution for a set of parameters to

be related to the observation of interest. Lately, BHMs have been used in biomedical

applications. Using the term "reliability" to indicate a methodology’s ability to recover

the "ground truth" or the underlying distribution embedded in the data, we note that

validating the reliability of BHMs with high-dimensional parameters is a challenging

task, especially when applied to noisy biological data. Single-cell RNA sequencing

(scRNAseq) is a recent technique to quantify RNA molecules at single-cell level, thus

providing insights into the gene expression profile of each cell (Tang et al., 2009).

A recent example of BHM applied to scRNAseq data is the Bayesian Analysis

of Single-Cell Sequencing Data (BASiCS) framework introduced in Vallejos et al.

(2015, 2016), Eling et al. (2018). BASiCS aims to provide a structural method to

analyse scRNAseq count data while separating various latent variables affecting gene

expression, and therefore detecting gene expression heterogeneity in downstream

analysis. In its early release, BASiCS was introduced as a non-regression model

(Vallejos et al., 2015, 2016), assuming independence between the mean and variance
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factors in the model. The latest version of BASiCS is presented as a regression model

in Eling et al. (2018), considering the confounding effect between mean and variance

(Brennecke et al., 2013). The downstream analysis in this framework depends on the

posterior inference of the variables in the BHM.

However, due to the complexity of BHMs and the high-dimensional nature of

biological data, these models can be computationally expensive and time-consuming.

When constructing these models, the choice of the prior for the latent variables is

rarely assessed. One of the greatest advantages of Bayesian statistics is to adjust our

belief according to the data we are given. The idea is that the posterior would be

closer to the "truth" when observing enough data. Given the computational cost

associated to testing any quantitative result with biological experiments, it is worth

investigating whether these complex models combined with high-dimensional data

guarantee a reliable result or at least a result with acceptable uncertainty.

In this chapter, we examine the reliability of both the non-regression BASiCS

(Vallejos et al., 2015, 2016) and the regression BASiCS (Eling et al., 2018). Both

BASiCS models propose the posterior median to estimate relevant variables in the

downstream analysis. To validate this estimation, we work on synthetic datasets

generated from the corresponding prior model. To explore the influence of prior

specification, we also modify the original R package to introduce a continuous range

of choices for the prior distribution of the biological variation variable, in order to

test the model robustness under perturbed prior models. Finally, we show how the

Simulation-based Calibration method recently developed in Talts et al. (2018) can be

adapted here to validate high-dimensional parameter inferences.

3.1.1 Biological background

Single-cell RNA sequencing

Many phenotypes are defined by proteins, while the type and quantity of proteins are

determined by gene expression at the cellular level. When a gene is expressed, the

corresponding segment of DNA is transcribed into a type of RNA as an intermediate

step to be translated into proteins. These RNAs are called Messenger RNAs (Black-

burn et al., 2006). Therefore, counting the number of corresponding Messenger RNAs

in the cell can indicate the expression activity of the corresponding gene.
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The high-throughout sequencing technique developed by Margulies et al. (2005)

enabled RNA sequencing. Traditional bulk RNA sequencing is performed in a pool

of cell populations extracted from tissues. The RNA information is averaged over

millions of individual cells, which can mask biologically important heterogeneity

across cells. In 2009, Tang et al. (2009) published the first RNA sequencing study

at the single-cell level. Since then, many single-cell RNA sequencing (scRNAseq)

protocols have been developed (Bhargava et al., 2013; Hashimshony et al., 2012;

Islam et al., 2011, 2012; Macosko et al., 2015; Nakagawa & Hashimoto, 2020; Sasagawa

et al., 2013). Most current protocols follow the following steps:

1. Isolate single cells.

2. Lyse the cells.

3. Reverse transcription to obtain cDNA from mRNA, thus capture the informa-

tion of mRNA.

4. Pre-amplify the cDNAs.

5. Prepare cDNA libraries for sequencing.

6. Quantitative Analysis.

The process of cDNA amplification can result in a disproportional representation

of all the cDNAs in the sample, thereby affecting the downstream analysis. Therefore,

all the new protocols developed in the past few years incorporate unique molecule

identifiers (UMIs) into the primer oligonucleotide used for transcription reversion.

Here, the oligonucleotide molecules are used to build cDNAs, like bricks used to

build houses. UMIs barcode the cDNA obtained from each mRNA in the cell. The

number of copies of an mRNA in a given cell lysate is hence equivalent to the number

of UMIs that map to the particular mRNA (Fan et al., 2015; Islam et al., 2014; Jaitin

et al., 2014).

Currently, single-cell RNA sequencing still faces a few challenges:

1. Low capture efficiency of cDNAs.

2. Current methods to obtain single cells from tissue would introduce bias by

changing the environment of cells.
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3. The validation methods for quantitative analysis results are limited.

In this chapter we address challenge 3, focusing on a BHM framework BASiCS (Eling

et al., 2018; Vallejos et al., 2015, 2016) for the quantitative analysis for scRNAseq data.

BASiCS makes use of information from spike-in genes, which we introduce in the

next subsection.

Spike-in genes

Existing biological experimental techniques still introduce technical noises. In the

past few decades, external controls have been used to assess data quality (Fodor et al.,

1993, 1991; Heid et al., 1996; Higuchi et al., 1993; Lockhart et al., 1996; Schena et al.,

1995; Wittwer et al., 1997). Such "external control" are external molecules mixed into

their experimental sample at an early stage. The technical variation that occurs in the

experiment can be assessed through the measurement of these external molecules,

also called "spike-in molecules".

However, for years, the spike-in molecules used in the experiments were devel-

oped specifically for different platforms, which brings limited utility of such traceable

references. The lack of a standardised reference material also makes it difficult to

compare results across different protocols and platforms (Devonshire et al., 2010).

To expedite the approval of newly recognised bio-markers in diagnostics and drug

discovery, regulatory bodies also require standardised results with reference material

(FDA, 2006).

Since 2003, the External RNA Control Consortium has been developing a set of

RNA standards to be used as a true industry-wide standard control (Baker et al.,

2005; Devonshire et al., 2010; External-RNA-Controls-Consortium, 2005). Brennecke

et al. (2013) proposes to embed the data obtained from ERCC spike-ins into the

quantitative analysis step, separating biological and technical variation of gene

expression counts (Brennecke et al., 2013). Since then, ERCC spike-ins have become

an important tool for noise inference and quality control.
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3.1.2 BASiCS framework

The non-regression BASiCS model

The BASiCS framework (Vallejos et al., 2015, 2016) aims to provide a structural method

to analyse scRNAseq count data to detect highly variable genes (HVGs) and lowly

variable genes (LVGs). HVGs are expressed differently across cells because they

specialise in specific functions of certain cells. On the opposite, LVGs are expressed

at a stable level across cells, as they participate in general cellular activities.

A q ×n scRNAseq count matrix Y, with n cells, q0 biological genes and q − q0

spike-in genes, can be represented as follows:

Y =


Y11 Y12 . . . Y1n

Y21 Y22 . . . Y2n
...

...
. . .

...
Yq1 Yq2 . . . Yqn

 ,

where Yi j represents the mRNA count of gene i in cell j . Here we consider q0

biological genes, which are naturally in the cells, and q −q0 spike-in genes, which

are added during the experiment, in specific amounts, to help quantify the technical

noise. During the count process, all the mRNA molecules in each cell j are analysed

to see if they are associated to gene i . Therefore, a binomial process is a noted choice

for the generation of these datasets.

More formally, consider the Bernoulli process of going through all the N j mRNA

molecules in the cell j to check if each of them correspond to gene i . Let Yi j denote

the total number of successes in a large number N j of Bernoulli trials with low

successful probability pi j , where pi j is low, because there is a large amount of

different genes in a cell. Then Yi j ∼ Binomial
(
N j , pi j

)
.

P
(
Yi j = k

)= (
N j

k

)
pk

i j (1−pi j )N j−k ,k = 0,1, . . . , N j .
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When N j →+∞, pi j → 0, and λi j = N j pi j > 0, we have

lim
N j→+∞

P
(
Yi j = k

)= lim
N j→+∞

(
N j

k

)(
λi j

N j

)k (
N j −λi j

N j

)N j−k

= lim
N j→+∞

λk
i j

k !

N j !

(N j −k)!

(
1− λi j

N j

)N j (
1− λi j

N j

)−k

=
λk

i j exp(−λi j )

k !
,

since

lim
N j→+∞

N j !

(N j −k)!
= 1,

lim
N j→+∞

(
1− λi j

N j

)N j

= exp
(−λi j

)
,

and

lim
N j→+∞

(
1− λi j

N j

)−k

= 1.

Thus, the distribution of Yi j (i = 1, ..., q, j = 1, ...,n) can be approximated by a Poisson

distribution Poisson
(
N j pi j

)
(Poisson, 1837). This explains why within the BASiCS

framework, the gene i ’s expression count in cell j , Yi j , is modelled via a Poisson

distribution.

Vallejos et al. (2015, 2016) and Eling et al. (2018) note that the expected count

of gene i ’s expression in cell j can be affected by several factors as listed in Table

3.1. The BASiCS framework then relies on a number of distributional assumptions

for Yi j and related parameters, linked to factors in Table 3.1, and described below

as Assumptions 3.1-3.5. To sum up, a schematic representation of this hierarchical

model is given in Figure 3.1.

Assumption 3.1 The unexplained technical noise only depends on cell-specific

characteristics. For a given cell j , it affects the expression counts of all genes i = 1, ..., q

in the same manner. The expected count of gene i ’s expression in cell j could be

affected by several factors as listed in Table 3.1. BASiCS assumes the following

likelihood model:

Yi j
∣∣µi ,ρi j ,Φ j ,ν j

i nd∼
{

Poisson(µiΦ jν jρi j ), for i ∈ {1, ..., q0},
Poisson

(
µiν j

)
, for i ∈ {q0 +1, ..., q}.

(3.1)
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Figure 3.1: The directed acyclic graph of the non-regression BASiCS model. The

two choices for the prior distribution for δi , log-Normal and Gamma distributions,

are depicted. In the graph, we have biological genes i ∈ {1, . . . , q0}, spike-in genes

i ′ ∈ {q0 +1, . . . , q} and cells j , j ′ ∈ {1, . . . ,n}.

Assumption 3.2 The expression variability of gene i in cell j follows a Gamma

distribution depending on only gene i , but varies across different cells. In particular,

ρi j |δi
i nd∼ Gamma

( 1

δi
,

1

δi

)
, i = 1, ..., q0, j = 1, ...,n, (3.2)

E(ρi j ) = 1,

Var(ρi j ) = δi .

The biological variation factor for biological gene i ∈ {1, . . . , q0} across all cells, δi , has

two possible options for prior (Vallejos et al., 2015, 2016):

Log-normal prior: δi |σδ i nd∼ log-Normal
(
0,σ2

δ

)
, (3.3)

Gamma prior: δi |aδ,bδ
i nd∼ Gamma(aδ,bδ) , (3.4)

with the corresponding standard deviation, shape and rate parameters σδ, aδ,bδ > 0.
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Variables

Biological

gene

i = 1, ..., q0

in cell j

Spike-in

gene i =
q0 +1, ..., q

in cell j

Reason

The expected

expression count of

gene i , µi , i =
1, . . . , q0, q0 +1, . . . , q .

p p
For biological gene i = 1, . . . , q0, an overall

expression rate across all cells. For spike-in

gene i = q0 +1, . . . , q , the amount of spike-in

molecules that are added is known.

The size of cell j ,Φ j ,

j = 1. . . ,n.

p

A larger cell size could indicate that the cell is

in the later phase of the cell cycle, where it

produces more protein to support its

division, thereby we expect more total mRNA

counts from biological genes in the cell.

However, the number of spike-in molecules

injected into each cell is constant and not

affected.

The cell-to-cell

unexplained

technical noise ν j ,

j = 1, . . . ,n.

p p
Technical noise occurs when we prepare

every cell j individually, therefore it affects all

gene expression counts in each given cell j

equally.

Heterogeneous

expression of gene i

in any given cell j ,

ρi j , i = 1, . . . , q0,

j = 1, . . . ,n.

p The expression variability of gene i across

cells would affect the expression count of

gene i in cell j

Table 3.1: Variation sources in gene expression.

Assumption 3.3 The technical variation factor follows a Gamma distribution. In

particular,

ν j |θ, s j
i nd∼ Gamma

(1

θ
,

1

s jθ

)
, j = 1, ...,n, (3.5)

where the shape parameter 1
θ
> 0, and the rate parameter 1

s jθ
> 0, so that

E(ν j ) = s j ,

Var(ν j ) = s2
jθ.

In BASiCS, it is assumed that the general technical noise factor across all cells

θ|aθ,bθ ∼ Gamma(aθ,bθ), (3.6)
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and the technical noise related to a specific cell j ,

s j |as ,bs
i .i .d .∼ Gamma(as ,bs), j = 1, . . . ,n (3.7)

with the corresponding shape and rate parameters aθ,bθ, as ,bs > 0.

Assumption 3.4 The cell size variable follows a scaled Dirichlet distribution. In

particular,

(Φ1, ...,Φn) |p ∼ nDirichlet(p), (3.8)

where p = (
p1, ..., pn

)
is the concentration parameter of the Dirichlet distribution,

p1, . . . , pn > 0. The Dirichlet prior also restricts that

n∑n
j=1Φ j

= 1. (3.9)

Assumption 3.5 The expected expression count of gene i follows a log-Normal

distribution. In particular,

µi |σµ i nd∼ log-Normal
(
0,σ2

µ

)
, (3.10)

with σµ > 0.
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Identifiability of the non-regression BASiCS

Considering the distributions in (3.1) and (3.2), use the Poisson-Gamma mixture

result in Greenwood & Yule (1920). Integrate out ρi j for i = 1, . . . , q0:

π(Yi j |µi ,ν j ,Φ j ,δi )

=
∫ +∞

0
pPoi sson(Yi j |µi ,ν j ,Φ j ,ρi j ) ·pGamma(ρi j |δi )dρi j

=
∫ +∞

0

(
µiν jΦ jρi j

)Yi j

Yi j !
exp

(−µiν jΦ jρi j
) ·

(
1
δi

) 1
δi

Γ
(

1
δi

) (
ρi j

) 1
δi

−1
exp

(
− 1

δi
ρi j

)
dρi j

=
(
µiν jΦ j

)Yi j

Yi j !
·
(

1
δi

) 1
δi

Γ
(

1
δi

) ∫ +∞

0
exp

(−µiν jΦ jρi j
)
ρ

Yi j+ 1
δi

−1

i j exp

(
− 1

δi
ρi j

)
dρi j

=
(
µiν jΦ j

)Yi j

Yi j !
·
(

1
δi

) 1
δi

Γ
(

1
δi

) ∫ +∞

0
ρ

Yi j+ 1
δi

−1

i j exp

[
−

(
µiν jΦ j + 1

δi

)
·ρi j

]
dρi j

=
(
µiν jΦ j

)Yi j
(

1
δi

) 1
δi

Yi j !Γ
(

1
δi

) ∫ +∞

0

[(
δi

µiν jΦ jδi +1

)(
µiν jΦ jδi +1

δi

)
ρi j

]Yi j+ 1
δi

−1

·exp

(
−µiν jΦ jδi +1

δi
ρi j

)
dρi j

=
(
µiν jΦ j

)Yi j
(

1
δi

) 1
δi

Yi j !Γ
(

1
δi

) ∫ +∞

0

(
δi

µiν jΦ jδi +1

)Yi j+ 1
δi ·

[
µiν jΦ jδi +1

δi
ρi j

]Yi j+ 1
δi

−1

·exp

(
−µiν jΦ jδi +1

δi
ρi j

)
d

(
µiν jΦ jδi +1

δi
ρi j

)

=
(
µiν jΦ j

)Yi j
(

1
δi

) 1
δi

Yi j !Γ
(

1
δi

) ·
(

δi

µiν jΦ jδi +1

)Yi j+ 1
δi ·Γ

(
1

δi
+Yi j

)

=
Γ

(
1
δi
+Yi j

)
Yi j !Γ

(
1
δi

) · (µiν jΦ jδi
)Yi j ·

(
1

µiν jΦ jδi +1

)Yi j

·
(

1

µiν jΦ jδi +1

) 1
δi

=
Γ

(
1
δi
+Yi j

)
Yi j !Γ

(
1
δi

) (
µiν jΦ jδi

µiν jΦ jδi +1

)Yi j

·
(
1− µiν jΦ jδi

µiν jΦ jδi +1

) 1
δi

.
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We have the likelihood of the gene expression count of biological genes and spiked-in

genes:

Yi j |µi ,δi ,Φ j ,ν j
i nd∼

 Neg-Binomial

(
1
δi

,
Φ jν jµi

Φ jν jµi+ 1
δi

)
, i = 1, ..., q0, j = 1, ...,n;

Poisson
(
ν jµi

)
, i = q0 +1, ..., q, j = 1, ...,n.

(3.11)

The model in (3.11) looks not identifiable, in the sense that it is to be expected that

parameters µi , ν j andΦ j cannot be separately estimated from gene expression data

for biological genes, since they appear multiplied as µiν jΦ j in the expression above.

However, spike-in genes facilitate identifiability.

Firstly, for spiked-in genes, i = q0 +1, . . . , q , we note that the number of spiked-in

molecules added to each cell is recorded. Therefore, using the spiked-in information

across the cells j ∈ {1, . . . ,n}, the posterior distribution of ν j can be inferred from

Yi j ∼ Poisson
(
ν jµi

)
, i ∈ {q0 +1, . . . , q}, j ∈ {1, . . . ,n}. In particular,

π
(
ν j |Yi j ,µi

)∝π(ν j )
q∏

i=q0+1
π(Yi j |ν j ,µi )

=
( 1
θ

) 1
s j θ

Γ
( 1
θ

) ν 1
θ−1

j exp

[
− 1

s jθ
ν j

] q∏
i=q0+1

µ
Yi j

i ν
Yi j

j

Yi j !
exp

(−µiν j
)

=
( 1
θ

) 1
s j θ

∏q
i=q0+1µ

Yi j

i[∏q
i=q0+1

(
Yi j !

)]
Γ

( 1
θ

)ν
[∑q

i=q0+1 Yi j+ 1
θ−1

]
j e

−
(
µi+ 1

s j θ

)
ν j

,

where µi and Yi j are known for i ∈ {q0 +1, . . . , q}, j ∈ {1, . . . ,n}.

Since ν j , j = 1, . . . ,n are inferred with spiked-in information, the remaining iden-

tifiability conflict is between Φ j , j = 1, . . . ,n and the expected count of biological

genes µi = 1, . . . , q0. However, the restriction (3.9) in Dirichelet distribution ensures

the identifiability of Φ j , j = 1, . . . ,n and µi , i = 1, . . . , q0. This restriction imposes an

arbitrary scale toΦ j , but it does not affect the relative differences between the µi nor

the δi .

The regression BASiCS

According to Brennecke et al. (2013), a strong relationship is typically observed

between the variability and mean estimates. In this case, the interpretation of results
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from the model in the previous section would be hindered. As Eling et al. (2018)

argues, an intuitive approach would be to only compare variability δi of those genes

with equal mean expressionµi , but this is sub-optimal, especially when used between

groups of cells, as there are a large number of genes expressed differently between

populations. One such example given by Eling et al. (2018) is that reactive genes

that change in mean expression upon changing conditions are excluded from the

expression heterogeneity assessment by the intuitive solution. An alternative solution

is to directly adjust variability measures to remove the confounding effect between

mean and variability. For example, Peat et al. (2014) computes the empirical distance

between the squared coefficient of variation of gene i (CV2
i ) to the rolling median

CV2 across genes with expression levels similar to gene i . In line with this approach,

Eling et al. (2018) introduces the following joint prior distribution of the fraction of

working gene µi and the gene-specific hyperparameter δi :

µi |σµ i nd∼ log Normal
(
0,σ2

µ

)
, i = 1, ..., q0, (3.12)

δi |µi ,β,σ2
δ,λi

i nd∼ log Normal

(
f (µi ),

σ2
δ

λi

)
, i = 1, ..., q0. (3.13)

The latter is equivalent to the following nonlinear regression model:

log(δi ) = f (µi )+ωi , i = 1, ..., q0, (3.14)

where ωi |σ2
δ

,λi
i nd∼ Normal

(
0,

σ2
δ

λi

)
is a latent gene-specific residual over-dispersion

parameter, capturing departures from the overall trend across all genes expressed

at a given mean expression µi . For a gene i , positive ωi indicates more variation

than expected for genes with similar expression level, and negative ωi indicates less

variation than expected for genes with similar expression level.

A similar approach is introduced by DESeq2 (Love et al., 2014) in the context of

bulk RNA sequencing. Here the regression BASiCS assumes the trend as follows:

f (µi ) =α0 +α1 log
(
µi

)+ L∑
l=1

βl gl
(
log

(
µi

))
, i = 1, ..., q0 (3.15)

where β = α0,α1,β1, ...,βL are regression coefficients and g1(·), ..., gL(·) represent a

set of Gaussian Radial Basis Function (GRBF) kernels.
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Definition 3.1 The GRBF kernels are defined as

gl
(
log

(
µi

))= exp

{
− 1

2

[
log

(
µi

)−mi

hl

]2 }
, l = 1, ...,L (3.16)

where ml (l = 1, ...,L) are location hyperparameters for GRBF kernels and hl (l =
1, ...,L) are scale hyperparameters for GRBF kernels.

Assumption 3.6 A priori, ml (l ∈ {1, ...,L}), hl (l ∈ {1, ...,L}) and σ2
δ

are fixed. The

priors for β= (
α0,α1,β1, . . . ,βL

)
in Equation (3.16) and its hyperparameters are pro-

posed as follows:

β|σ2 i nd∼ Normal
(
0,σ2I

)
(3.17)

σ2 i nd∼ Inv-Gamma(aσ,bσ) (3.18)

λi |η i nd∼ Gamma
(η

2
,
η

2

)
, i ∈ {1, . . . , q0}. (3.19)

Equations (3.5)-(3.19) forms the regression BASiCS model, as shown in Figure 3.2.
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Yi jYi ′ j Yi j ′

Φ jν j µiρi j ν j ′ Φ j ′ ρi j ′µi ′

s j θ s j ′ δi

as bs p β λiaθ bθ σδ

η

σµ

σ

aσ bσ

Figure 3.2: the regression BASiCS directed acyclic graph. In the graph, we have

biological gene i ∈ {1, . . . , q0}, spike-in gene i ′ ∈ {q0 +1, . . . , q}, cells j , j ′ ∈ {1, . . . ,n}.

Gene expression variability

Based on observed data Y and the prior distribution chosen from the models de-

scribed in previous subsections, BASiCS infers the posterior distribution of µi , ν j , θ,

δi , Φ j and s j . To calculate the variance of gene expression count Yi j for biological

gene i = 1, . . . , q0 in cell j = 1, . . . ,n, we calculate E
(
Yi j

)
and E

(
Y 2

i j

)
given the BASiCS

model, which gives

E
(
Yi j |µi ,δi ,Φ j , s j ,θ

)= E
(
µiν jΦ jρi j |δi , s j ,θ

)
=µi E

(
ν j |s j ,θ

)
Φ j E

(
ρi j |δi

)
=µi ·

1
θ
1

s jθ

·Φ j ·
1
δi

1
δi

=µi s jΦ j ,
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and

E
[
Yi j

(
Yi j −1

) |µi ,δi ,Φ j , s j ,θ
]

=
+∞∑

Yi j=0
Yi j

(
Yi j −1

)∫ +∞

0

∫ +∞

0

(
µiΦ jν jρi j

)Yi j

Yi j !
exp

(−µiν jΦ jρi j
) (

1
s jθ

) 1
θ

Γ
( 1
θ

) ν 1
θ−1

j exp

(
− 1

s jθ
ν j

)

·
(

1
δi

) 1
δi

Γ
(

1
δi

) ρ 1
δi

−1

i j exp

(
− 1

δi
ρi j

)
dν j dρi j

=
∫ +∞

0
ρ

Yi j+ 1
δi

−1

i j exp

(
− 1

δi
ρi j

) +∞∑
Yi j=0

Yi j
(
Yi j −1

)( 1
s jθ

) 1
θ
(

1
δi

) 1
δi µ

Yi j

i Φ
Yi j

j

Yi j !Γ
( 1
θ

)
Γ

(
1
δi

)

·
∫ +∞

0

[(
µiΦ jρi j + 1

s jθ

)
ν j

]Yi j+ 1
θ−1

(
µiΦ jρi j + 1

s jθ

)Yi j+ 1
θ−1

exp

[
−

(
µiΦ jρi j + 1

s jθ

)
ν j

]
dν j dρi j

=
∫ +∞

0
ρ

1
δi

−1

i j exp

(
− 1

δi
ρi j

) +∞∑
Yi j=0

Yi j
(
Yi j −1

)( 1
s jθ

) 1
θ
(

1
δi

) 1
δi Φ

Yi j

j µ
Yi j

i ρ
Yi j

i j Γ
(
Yi j + 1

θ

)
Yi j !Γ

( 1
θ

)
Γ

(
1
δi

)(
µiΦ jρi j + 1

s jθ

)Yi j+ 1
θ

dρi j

=
∫ +∞

0

ρ
1
δi

−1

i j exp
(
− 1
δi
ρi j

)(
1

s jθ

) 1
θ
(

1
δi

) 1
δi 1

θ

( 1
θ
+1

)
Γ

(
1
δi

)(
µiΦ jρi j + 1

s jθ

) 1
θ

+∞∑
Yi j=2

Γ
(
Yi j + 1

θ

)(
Yi j −2

)
!Γ

( 1
θ
+2

) (
µiΦ jρi j

µiΦ jρi j + 1
θ

)Yi j

dρi j

=
∫ +∞

0

ρ
1
δi

−1

i j exp
(
− 1
δi
ρi j

)(
1

s jθ

) 1
θ
(

1
δi

) 1
δi 1

θ

( 1
θ
+1

)
µ2

iΦ
2
jρ

2
i j

Γ
(

1
δi

)(
µiΦ jρi j + 1

s jθ

) 1
θ+2

+∞∑
k=0

Γ
(
k + 1

θ
+2

)
Γ(k +2)Γ

( 1
θ

) (
µiΦ jρi j

µiΦ jρi j + 1
θ

)k

dρi j

=
∫ +∞

0

ρ
1
δi

−1

i j exp
(
− 1
δi
ρi j

)(
1

s jθ

) 1
θ
(

1
δi

) 1
δi 1

θ

( 1
θ
+1

)
µ2

iΦ
2
jρ

2
i j

Γ
(

1
δi

)(
µiΦ jρi j + 1

s jθ

) 1
θ+2

1(
1− µiΦ jρi j

µiΦ jρi j+ 1
s j θ

) 1
θ+2

dρi j

=
µ2

iΦ
2
j

(
1
δi

) 1
δi 1

θ

( 1
θ +1

)
(

1
s jθ

)2
Γ

(
1
δi

) ∫ +∞

0

(
1
δi
ρi j

) 1
δi

+1

(
1
δi

) 1
δi

+1
exp

(
− 1

δi
ρi j

)
δi d

[(
1

δi

)
ρi j

]

=
µ2

iΦ
2
j

1
θ

( 1
θ +1

)
(

1
s jθ

)2
Γ

(
1
δi

) Γ(
1

δi
+2

)
=µ2

i s2
jΦ

2
j (1+θ) (1+δi ) .

36



3.1 Introduction

Therefore, we can calculate the variance of the gene expression count of gene i in

cell j , in particular,

Var
(
Yi j |µi , δi , Φ j , s j , θ

)
= E

(
Y 2

i j |µi , δi , Φ j , s j , θ
)
−E2 (

Yi j |µi , δi , Φ j , s j , θ
)

= E
(
Yi j

(
Yi j −1

) |µi ,δi ,Φ j , s j ,θ
)+E

(
Yi j |µi ,δi ,Φ j , s j ,θ

)−E2 (
Yi j |µi , δi , Φ j , s j , θ

)
=µ2

i s2
jΦ

2
j (1+θ) (1+δi )+µi s jΦ j −µ2

i s2
jΦ

2
j

=µi s jΦ j +θ
(
µi s jΦ j

)2 +δi (θ+1)
(
µi s jΦ j

)2 .

On the right side of the above equation, only the third addend, containing δi , is

related to the gene specific cell-to-cell heterogeneous expression. BASiCS denotes the

proportion of expression variance caused by heterogeneous expression of biological

gene i in cell j as ψi j :

ψi j ≡
δi (θ+1)(µi s jΦ j )2

µi s jΦ j +θ(µi s jΦ j )2 +δi (θ+1)(µi s jΦ j )2

= δi (θ+1)

(µi s jΦ j )−1 +θ+δi (θ+1)
.

(3.20)

From the posterior distributions, BASiCS estimates ψi , the proportion of expression

variance caused by heterogeneous expression of gene i across all cells:

ψi ≈ δi (θ+1)[
µi (sΦ)∗

]−1 +θ+δi (θ+1)
, (3.21)

where

(sΦ)∗ ≡ median
j=1,...,n

{s jΦ j }. (3.22)

BASiCS generates the distribution of ψi according to the posterior distribution of

δi , µi , Φ j , s j and θ. BASiCS labels genes as Highly Variable Genes (HVGs) if

πH
i (γH ) ≡ P

(
ψi > γH

)>αH , (3.23)

and labels genes as Lowly Variable Genes (LVGs) if

πL
i (γL) ≡ P

(
ψi < γL

)>αL , (3.24)
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where the given variance contribution threshold γH and γL could be fixed prior to

the analysis, and the given evidence threshold αH and αL could be optimised by

letting {
EFDRαH = EFNRαH ,
EFDRαL = EFNRαL .

(3.25)

Here the Expected False Discovery Rate (EFDR), i.e. the possibility that BASiCS does

not label an HVG (LVG) as HVG (LVG), is defined as
EFDRαH ≡

∑q0
i=1

[
1−πH

i (γH )
]
1{πH

i (γH )>αH }∑q0
i=11{πH

i (γH )>αH }
,

EFDRαL ≡
∑q0

i=1

[
1−πL

i (γL)
]
1{πL

i (γL)>αL}∑q0
i=11{πL

i (γL)>αL}
,

(3.26)

where 1 (x ∈ A) is the indicator function, 1 (x ∈ A) = 1 if x ∈ A and 0 otherwise.

The Expected False Negative Rate (EFNR), i.e. the possibility that BASiCS labels

a non-HVG (non-LVG) as HVG (LVG) is defined as
EFNRαH ≡

∑q0
i=1π

H
i (γH )1{πH

i (γH )≤αH }∑q0
i=11{πH

i (γH )≤αH }

EFNRαL ≡
∑q0

i=1π
L
i (γL)1{πL

i (γL)≤αL}∑q0
i=11{πL

i (γL)≤αL}
.

(3.27)

3.1.3 Posterior predictive check

Rubin (1984) described the procedure of Posterior predictive check (PPC). In Gelman

et al. (1996), the term "Posterior Predictive Check" is introduced to describe such a

method to assess the fitness of a model, especially for Bayesian models. The idea

behind PPC is that if a model fits the observed data well, then the posterior predictive

data should be representative of the observed data. Here we briefly introduce the

general setting and process of PPC.

Consider a joint distribution over measurements y and parameters ζ, with speci-

fied likelihoodπ
(

y |ζ) and prior distributionπ (ζ). Bayes’ Theorem yields that for a set

of observations ỹ , the posterior distribution π
(
ζ|ỹ)∝π

(
ỹ ,ζ

)=π(
ỹ |ζ)·π (ζ). Denote

the corresponding parameter space of ζ as Z , the posterior predictive distribution

inferred with ỹ , π
(

y |ỹ)
, is calculated by marginalising the distribution of y given ζ

over the parameter space Z

π
(

y |ỹ)= ∫
Z
π

(
y |ζ)π(

ζ|ỹ)
dζ.
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Consider drawing a sequence of samples from the posterior distribution π
(
ζ|ỹ)∝

π(ζ)π
(

ỹ |ζ):

ζ (1) , . . . ,ζ (L) ∼π(
ζ|ỹ)

,

then for any given l = 1, . . . ,L, we draw one sample y (l ) from each corresponding pre-

dictive distributionπ
(

y |ζ (l )
)
. The observed data ỹ can be compared with the sample{

y (1) , . . . , y (L)
}

. In some literature, the observed data ỹ and sample
{

y (1) , . . . , y (L)
}

are compared using different summary statistics, such as the maximum absolute

values (Gelman et al., 1996), maximum values, minimum values and mean (Gel-

man et al., 2013). However, we decide to compare the value of the observed data

and the posterior predictive values directly without using any statistics to transform

the data. This is because the BASiCS model has a complicated structure with only

one set of data matrix for posterior inference; that is, for each gene i in cell j , the

observation Yi j is unique. Therefore, taking any summary statistics from a unique

Yi j for comparison would not be possible. The PPC results on both non-regression

and regression BASiCS are presented in Section 3.2.3. Essentially, PPC is designed to

validate the model assumptions (Talts et al., 2018). In order to assess the correctness

of the computational aspect of the BASiCS inference algorithm, we introduce another

method in the next section.

3.1.4 Simulation based calibration

Simulation based calibration (SBC) is a general procedure proposed in Talts et al.

(2018) for validating inferences from Bayesian algorithms capable of generating pos-

terior samples. Consider a joint distribution over measurements y and parameters ζ,

with specified likelihood π(y |ζ) and prior distribution π(ζ), so that

π(y ,ζ) =π(y |ζ) ·π(ζ).

Bayes’ Theorem yields that for a set of observations ỹ , the posterior distribution

π(ζ|ỹ) ∝π(ỹ ,ζ). Denote the corresponding parameter space of ζ as Z . Suppose we

simulate a ground truth ζ̃ ∈Z from the prior

ζ̃∼π(ζ),
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and then we generate data from the corresponding data generating process

ỹ ∼π(
y |ζ̃) .

It is clear that, by integrating the exact posteriors over the Bayesian joint distribu-

tion, one gets the prior distribution

π(ζ) =
∫
π

(
ζ|ỹ)

π
(

ỹ |ζ̃)π(
ζ̃
)

dỹdζ̃. (3.28)

Equation (3.28) is called the self consistency condition in Talts et al. (2018).

Consider drawing a sequence of samples from the posterior distribution π(ζ|ỹ) ∝
π(ζ)π(ỹ |ζ):

{ζ(1), . . . ,ζ(L)} ∼π(ζ|ỹ).

Condition (3.28) implies that ζ̃ and {ζ(1), . . . ,ζ(L)} will be distributed according to

the same distribution. Based on this, Talts et al. (2018) defined the following rank

statistic:

Definition 3.2 Let ζ̃∼ π(ζ), ỹ ∼ π(y |ζ̃), {ζ(1), . . . ,ζ(L)} ∼ π(ζ|ỹ) for any joint distri-

bution π(y ,ζ). Consider any one-dimensional random variable c : Z 7→R, the rank

statistic of the prior sample ζ̃ relative to the posterior sample {ζ(1), . . . ,ζ(L)} with

respect to c is defined as:

r
(
{c (ζ(1)) , . . . ,c (ζ(L))} ,c

(
ζ̃
))= L∑

l=1
1{ζ(l ):c(ζ(l ))<c

(
ζ̃)

)} [ζ(l )] , (3.29)

where for a set A,

1A(a) =
{

1, if a ∈ A,
0, else.

Talts et al. (2018) then proved the following theorem:

Theorem 3.1 Given an i.i.d. sample {ζ(1), . . . ,ζ(L)} from the posterior and any c :

Z 7→R, the rank statistic in (3.29) over ζ̃∼π(ζ) follows a discrete uniform distribution

over {0,1, . . . ,L}.

Based on the uniformity of the rank statistic, Talts et al. (2018) introduced Simulation-

based Calibration as a way of exploiting this result to validate the inference process
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in practice, by checking that the resulting rank statistic is uniformly distributed.

Algorithm 2 is proposed by Talts et al. (2018) to obtain a sample of rank statistic.

Algorithm 2 Simulation Based Calibration (SBC)

Require: Data generating model π(y |ζ), prior distribution π(ζ), function c : Z 7→R,

the number of samples, K , for rank statistic; the number of posterior samples, L,

used for calculating each rank statistic.

Initialise

for k in (1 : K ) do

Draw prior sample ζ̃
(k) ∼π (ζ).

Draw a simulated dataset ỹ (k) ∼π
(

y |ζ̃(k)
)
.

Use the Bayesian Inference method of your choice, generate posterior sample

π
(
ζ|ỹ(k)

)
.

Draw L posterior samples
{
ζ(k)(1), . . . ,ζ(k)(L)

}
∼π(

ζ|ỹ (k)
)
.

Compute rank statistic

r (k) = r
[{

c
(
ζ(k)(1)

)
, . . . ,c

(
ζ(k)(L)

)}
,c(ζ̃

(k)
)
]

=
L∑

l=1
1{
ζ(k)(l ):c

(
ζ(k)(l )

)
<c

(
ζ̃

(k)
)} [
ζ(k)(l )

]
.

end for

Plot the histogram of rank statistic r (k), for k = 1, . . . ,K .

Check the uniformity of the histogram of r (k), for k = 1, . . . ,K .

We note that Talts et al. (2018) recommends visual inspection for SBC results.

In a third-party R package BayesianTools (Hartig et al., 2019), which includes SBC

implementation, Kolmogorov-Smirnov test (Kolmogorov, 1933; Massey Jr, 1951;

Smirnov, 1939) is also used to assess the uniformality of SBC rank statistic. In short,

Kolmogorov-Smirnov test is based on examining the maximum distance between

the CDF curves of the reference distribution and the empirical distribution. In the

experiments presented in this chapter, we plot the empirical cumulative density

function (ECDF) of the rank statistic and CDFs of samples from Unif({0,1, . . . ,L}) for

comparison.

It is noted by Talts et al. (2018) that when the Bayesian Inference method applied

is MCMC, Algorithm 2 would introduce bias, due to the autocorrelation structure
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in the MCMC chain. To mitigate this issue, Talts et al. (2018) proposes that for

MCMC methods, one can add a step for assessing Effective Sample Size Ne f f [c] with

respect to the measurement of interest c(ζ). If Ne f f [c] > L then the autocorrelation

is negligible, otherwise the MCMC needs to be rerun for an appropriate length of

iterations.

Suppose the original posterior MCMC chain length is Nsample , the effective

MCMC chain length Ne f f [c] is calculated by

Ne f f [c] = Nsample

1+2
∑+∞
τ=1 Rτ[c]

, (3.30)

where Rτ[c] is the lag-τ autocorrelation of c:

Rτ[c] = Et [c(ζ(t ))c(ζ (t +τ))] . (3.31)

The lag-τ autocorrelation of c can be estimated numerically from the posterior

MCMC chain of length Nsample :

R(k)
τ [c] = 1

(Nsample −τ) ·Var
[

c
(
ζ(k)

)] Nsample−τ∑
t=1

[
c
(
ζ(k)(t )

)
− c

(
ζ(k)

)]

·
[

c
(
ζ(k)(t +τ)

)
− c

(
ζ(k)

)]
,

(3.32)

where Var
[

c
(
ζ(k)

)]
denotes the sample variance of samples c

(
ζ(k)(1)

)
,. . . ,c

(
ζ(k)

(
Nsample

))
,

and c
(
ζ(k)

)
denotes the sample mean of samples c

(
ζ(k)(1)

)
,. . . ,c

(
ζ(k)

(
Nsample

))
.

Talts et al. (2018) proposed the extended algorithm, Algorithm 3 for validation of

Bayesian models inferred by MCMC.
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Algorithm 3 Extended SBC for MCMC method

Require: Data generating model π(y |ζ), prior distribution π(ζ), function c : Z 7→R,

the number of samples, K , for rank statistic; the number of posterior samples, L,

used for calculating each rank statistic; the number of MCMC iterations, L′; the

resulted posterior MCMC chain length, Nsample .

Initialise

while k in (1 : K ) do

Draw prior sample ζ̃
(k) ∼π(ζ).

Draw a simulated data set ỹ (k) ∼π(y |ζ̃(k)
).

Run a MCMC for L′ iterations to generate the correlated posterior sample chain

of length Nsample from π(ζ(k)|ỹ (k)).

Compute the effective lag-τ autocorrelation for c, when τ= 0, . . . , Nsample −1:

R(k)
τ [c] = 1

(Nsample −τ)Var
(
c
(
ζ(k)

)) Nsample−τ∑
t=1

[
c
(
ζ(k)

t

)
− c

(
ζ(k)

)]
·
[

c
(
ζ(k)

t+τ
)
− c

(
ζ(k)

)]
.

(3.33)

Compute the effective sample size

N (k)
e f f [c] = Nsample

1+2
∑+∞
τ=1 Rτ[c]

. (3.34)

if Ne f f < L then

Rerun the MCMC for L′·L
Ne f f [c] iterations.

else

Thin the posterior MCMC chain to L samples
{
ζ(k) (1) , . . . ,ζ(k) (L)

}
, and trun-

cate any leftover sample from the k-th run after ζ(k) (L).

end if

Compute rank statistic

r (k) = r
({

c
(
ζ(k) (1)

)
, . . . ,c

(
ζ(k) (L)

)}
,c(ζ̃

(k)
)
)

(3.35)

=
L∑

l=1
1{
ζ(k)(l ):c

(
ζ(k)(l )

)
<c

(
ζ̃

(k)
)} (
ζ(k) (l )

)
. (3.36)

end while

Plot the histogram of rank statistic r (k), for k = 1, . . . ,K .

Check the uniformity of the histogram of r (k), for k = 1, . . . ,K .
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3.2 Evaluation of a Bayesian Hierarchical Model

In this section, we examine the reliability of the BASiCS (Eling et al., 2018; Vallejos

et al., 2015, 2016), as an example of a Bayesian Hierarchical model for scRNAseq

data. It is worth to mention that some experiments are already carried out in Eling

et al. (2018); Vallejos et al. (2015, 2016) to check the reliability of BASiCS. Vallejos et al.

(2016) experiments on synthetic datasets generated with varying cell-specific param-

etersΦ j , s j and global parameter θ, confirming that different values ofΦ j , s j and θ

in data simulation do not affect the posterior inference of gene-specific parameters.

Eling et al. (2018) carries out some experiments on a real dataset from Zeisel et al.

(2015), and finds that when the number of cell samples from the real dataset is small,

the non-regression BASiCS (Vallejos et al., 2016) tends to underestimate δi for lowly

expressed genes and to overestimate δi for genes with medium and high expression

levels, while the regression BASiCS (Eling et al., 2018) produces more robust results

regardless of the sample size. Here we examine the reliability of the BASiCS model

from other perspectives to get a more comprehensive understanding of it.

For BHMs applied to biological data, it is rare to have the ground truth of the

underlying parameters to assess the recovery of parameters of interest. In this section,

we simulate the gene expression count matrix from the prior model of non-regression

and regression BASiCS (Eling et al., 2018; Vallejos et al., 2015, 2016) respectively, and

then we plug in the synthetic data in the corresponding BASiCS MCMC to compare

the estimated posteriors with the “true” parameter values used for data generation,

using validation procedures such as PPC and SBC as introduced in Subsection 3.1.3

and 3.1.4. A detailed description of the prior models has been discussed in Subsection

3.1.2. Our experiments are performed in R 4.0.2 (R Core Team, 2013), code available

at https://github.com/lilythepooh/BASiCS-Reliability.git.

3.2.1 Uncertainty of the posterior median as a point estimate

In Eling et al. (2018); Vallejos et al. (2015, 2016), the posterior median is used to

estimate the value of δi , µi , ν j , φ j , s j , θ for downstream analysis. Here, we simulate

a dataset X(1)∗ of 100 genes, 10 spike-in genes, and 50 cells from non-regression

BASiCS model (Vallejos et al., 2016), simulating δi from a log-Normal distribution as

in Equation (3.3).
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BASiCS (Eling et al., 2018; Vallejos et al., 2015, 2016) requires data preprocessing,

where the genes and cells with too many 0 gene expression counts are filtered out.

After the required data-preprocessing procedure, we obtain the filtered dataset of

synthetic gene expression with n = 39 cells, q0 = 100 biological genes and q −q0 = 10

spike-in genes. Then we plug this synthetic dataset into the MCMC algorithm for

non-regression BASiCS (BASiCS package, Vallejos et al. (2016)), with fixed prior-

hyperparameter values as listed in Table 3.2.

hyperparameters σ2
µ σ2

δ
as bs aθ bθ p

prior value 0.8 0.5 1 1 1 1 (1, . . . ,1)

Table 3.2: Fixed prior values for hyperparameters in non-regression BASiCS

Similarly, we simulate a dataset X(2)∗ of 100 biological genes, 10 spike-in genes

and 50 cells from regression BASiCS model (Eling et al., 2018), where δi was sim-

ulated from a log-Normal distribution as in Equation (3.13). After the required

data-preprocessing procedure, we get a synthetic gene expression count dataset with

n = 44 cells, q0 = 98 biological genes and q−q0 = 10 spike-in genes. Then we plug the

fixed synthetic dataset back into the MCMC algorithm for regression BASiCS within

the BASiCS package (Eling et al., 2018), with fixed prior-hyperparameter values as

listed in Table 3.3.

hyperparameters σ2
µ σ2

δ
as bs aθ bθ p aσ bσ

prior value 0.8 0.5 1 1 1 1 (1, . . . ,1) 2 2

Table 3.3: Fixed prior values for hyperparameters in regression BASiCS

When recovering the parameter values used for generating datasets X(1)∗ and

X(2)∗, we replicate 100 MCMCs respectively, resulting in 100 posterior medians for

each parameter µi , δi , ν j , s j ,Φ j and θ from each model for i = 1, . . . , q0, j = 1, . . . ,n.

Each of the 100 MCMCs was run for 15,000 iterations, 10,000 burns and thinned by

5, resulting in 100 posterior samples of size 1,000 for both models respectively.

To illustrate the recovery of true parameters in each run, we calculated the 89%

Highest Density Credible Interval and 50% Highest Density Credible Interval using

bayestestR package (Makowski et al., 2019). We calculated the 89% Credible Interval

45



3.2 Evaluation of a Bayesian Hierarchical Model

rather than the common 95% because according to Makowski et al. (2019), 89%

credible intervals are more stable, in the sense that the standard deviation within a

89% credible interval is smaller than within 95% credible interval. We note that by the

time of the writing of this thesis, the 2022 updated version of R package bayestestR

(Makowski et al., 2019) is adopting 95% credible interval as default again, yet we

decide to present our experiment results as we obtained in the first instance.

Non-regression BASiCS

Figure 3.3: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for δi , for biological genes i = 1, . . . , q0 (q0 = 100),

and for one particular replication (the 35th) of the estimation procedure. Inferred

from the non-regression BASiCS model with the fixed dataset X(1)∗.

In Figure 3.3, we plot the 89% Highest Density Intervals, 50% Highest Density In-

tervals, posterior medians, posterior means and the ground truth for each of the

100 biological gene-specific variation parameter δi , from a single run (replication
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number 35) of non-regression BASiCS MCMC on X(1)∗. Among 100 biological gene-

specific variation parameters δi , i = 1, . . . ,100, 12 of the true values do not fall into the

89% Highest Density Credible Interval, and 45 of the true values do not fall into the

50% Highest Density Credible Interval. As can be observed, the level of stochasticity

in this BHM means that the posterior median as a single estimate of the parameter is

not always accurate, since these single estimates may not even properly capture the

relative relationship between δi1 and δi2 , i1 ̸= i2, , i1, i2 = 1, . . . , q0. For example, δ80

and δ82 have very similar posterior median and posterior mean (around 1.25), but

the true value for gene 82 (δ∗82 = 0.561) is much smaller than for gene 80 (δ∗80 = 1.944),

indicating a lower biological variation factor value for gene 82.

Figure 3.4: True values (µ∗
i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0 (q0 = 100),

and for one particular replication (the 35th) of the estimation procedure. Inferred

from the non-regression BASiCS model with the fixed dataset X(1)∗.

In Figure 3.4, we plot the 89% Highest Density Intervals, 50% Highest Density

Intervals, posterior medians, posterior means and the ground truth for each of the
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100 expected gene-expression level parameter µi , from a single run (replication

number 35) of non-regression BASiCS MCMC on X(1)∗. Among 100 expected gene-

expression level parameters µi , i = 1, . . . ,100 used to simulate X(1)∗, 14 of the true

values do not fall into the 89% Highest Density Credible Interval, while 55 of the true

values do not fall into the 50% Highest Density Credible Interval. Again, it shows

that the posterior median does not necessarily reflect even the relative relationship

between µi1 and µi2 , i1 ̸= i2, i1, i2 = 1, . . . , q0. For example, µ6 and µ60 have very

similar true values (around 1.3), but both the posterior mean and posterior median

of µ6 (around 1.5) are much larger than the posterior mean and posterior median

of µ60 (around 0.8), creating an illusion of higher expected gene expression level for

gene 6 compared to gene 60, which is far from the truth.

Figure 3.5: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for δi , for biological genes i = 1, . . . , q0 (q0 = 100),

and for one particular replication (the 84th) of the estimation procedure. Inferred

from the non-regression BASiCS model with the fixed dataset X(1)∗.

Although our observations correspond to a particular run (35th), they are still

48



3.2 Evaluation of a Bayesian Hierarchical Model

valid when exploring any of the other 99 replications. For example, in Figure 3.5,

we plot the 89% Highest Density Intervals, 50% Highest Density Intervals, poste-

rior medians, posterior means and the ground truth for each of the 100 biological

gene-specific variation parameter δi , from a different run (replication number 84) of

non-regression BASiCS MCMC on X(1)∗. Among 100 biological gene-specific varia-

tion parameter δi , i = 1, . . . ,100, 10 of the true values do not fall into the 89% Highest

Density Credible Interval, and 49 of the true values do not fall into the 50% Highest

Density Credible Interval. Again, it shows that using the posterior median as an

estimation of the true value does not necessarily reflect even the relative relationship

between δi1 and δi2 , i1 ̸= i2, i1, i2 = 1, . . . , q0. δ80 and δ82 have very similar posterior

median and posterior mean (around 1.25), but the true value of δ82 (0.561) is signifi-

cantly smaller than δ80 (1.944), indicating a lower biological variation factor value for

gene 82.

Figure 3.6: True values (µ∗
i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0 (q0 = 100),

and for one particular replication (the 84th) of the estimation procedure. Inferred

from the non-regression BASiCS model with the fixed dataset X(1)∗.
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The similarity between the 35th replication and the other 99 replications is also

true for the expected gene-expression level parameter µi . For example, in Figure 3.6,

we plot the 89% Highest Density Intervals, 50% Highest Density Intervals, posterior

medians, posterior means and the ground truth for each of the 100 biological gene-

specific variation parameter µi , from a different run (replication number 84) of

non-regression BASiCS MCMC on X(1)∗. Among 100 expected gene-expression level

parameters µi , i = 1, . . . ,100 used to simulate X(1)∗, 19 of the true values do not fall

into the 89% Highest Density Credible Interval, and 55 of the true values do not fall

into the 50% Highest Density Credible Interval. Again, it shows that the posterior

median does not necessarily reflect even the relative relationship between µi1 and

µi2 , i1 ̸= i2, i1, i2 = 1, . . . , q0. µ6 and µ60 have very similar true values (around 1.3), but

both the posterior mean and posterior median of µ6 (around 1.5) are significantly

larger than the posterior mean and posterior median of µ60 (around 0.8), creating

an illusion of higher expected gene expression level for gene 6 compared to gene 60,

which is far from the truth.

To give an overview of the estimation accuracy of posterior medians inferred from

the non-regression BASiCS model with X(1)∗, we plot all the gene-specific parameters

(δi and µi , i = 1, . . . , q0) from 200 replication runs with this one fixed dataset X(1)∗,

as shown in Figure 3.7. Here the x-axis of each point corresponds to the true value

of that gene-specific parameter δi or µi (i = 1, . . . , q0), which we used to simulate

dataset X(1)∗. Since all 200 replications are run on the one fixed dataset X(1)∗, naturally

the plot shows that each true value on x-axis corresponds to 200 posterior medians

estimated from 200 replications of posterior inference. If the posterior median as

point estimate is accurate, we would expect all the coloured points to fall near the

line y = x.

Figure 3.7 shows that more posterior medians of µi fall inside the 20% relative

error range compared to δi , but the posterior medians of µi vary more compared

to δi . That is, for a particular gene i , the posterior medians of µi from two runs

could be more different to the posterior medians of δi in the same two runs. The

posterior medians of µi suffer more from the stochasticity of the MCMC algorithm.

Besides, on the one hand, almost all µi (i = 1, . . . , q0) out of the 20% relative error

range have large true values and are underestimated. It is possible that the posterior

could not recover the true value of µi because it is too large. In other words, these
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µi , i = 1, . . . , q0 are relatively extreme values in the parameter generating distribution

µi ∼ log-Normal
(
0,σ2

µ

)
, and the information given by the generated dataset X(1)∗

may not be enough to shift the posterior distribution further from the prior. On the

other hand, the δi , i = 1, . . . , q0 out of 20% relative error range seem to be evenly

distributed on both sides of the line y = x.
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Figure 3.7: True value to posterior median of all gene-specific parameters, 200 repli-

cations, inferred from the non-regression BASiCS model with the fixed dataset X(1)∗.

Some readers may argue that the above results are not representative as they

are only results from repeated experiments on one particular synthetic dataset X(1)∗.

In order to explore this, we simulate 100 datasets of 100 genes, 10 spike-in genes,

and 50 cells from the non-regression BASiCS model (3.1)-(3.10) (Vallejos et al., 2016),

simulating δi from a log-Normal distribution as in Equation (3.3). After the required

data preprocessing, we plug each dataset back into the non-regression BASiCS MCMC

for one replication, resulting in 100 posterior samples for δi , µi , ν j , Φ j , s j , θ, i =
1, . . . , q0, j = 1, . . . ,n. Here we still focus on gene-specific parameters δi and µi . As

examples we focus on the results from two synthetic dataset, the 11th and the 42nd.
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Some of the analysis below may seem repetitive, but note that we are only presenting

them to demonstrate that the problems exposed in Figure 3.3-3.6 are general rather

than a coincidence caused by any particular dataset.

Figure 3.8: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for δi , for biological genes i = 1, . . . , q0, and

for estimation procedure on the 11th synthetic dataset generated with the non-

regression BASiCS model.

In Figure 3.8, we plot the 89% Highest Density Intervals, 50% Highest Density

Intervals, posterior medians, posterior means and the ground truth for each of the 98

biological gene-specific variation parameter δi , from the one run of non-regression

BASiCS MCMC on the 11th generated dataset. Among 98 biological gene-specific

variation parameters δi , 9 of the true values do not fall into the 89% Highest Density

Credible Interval, and 48 of the true values do not fall into the 50% Highest Density

Credible Interval. Neither the posterior mean nor the posterior median can reflect

the relative relationship between δi1 and δi2 , for any i1 ̸= i2, i1, i2 = 1, . . . , q0. For

example, δ46 and δ47 have similar true value (around 0.85), but both the posterior
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median and the posterior mean of δ46 (around 2.6) is much larger than those of δ47

(around 1.1).

Figure 3.9: True values (µ∗
i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0, and

for estimation procedure on the 11th synthetic dataset generated with the non-

regression BASiCS model.

In Figure 3.9, we plot the 89% Highest Density Intervals, 50% Highest Density

Intervals, posterior medians, posterior means and the ground truth for each of the

98 expected gene-expression level parameter µi , from the one run of non-regression

BASiCS MCMC on the 11th generated dataset. Among 98 expected gene-expression

level parameters µi , 6 of the true values do not fall into the 89% Highest Density

Credible Interval, and 45 of the true values do not fall into the 50% Highest Density

Credible Interval. Neither the posterior mean nor the posterior median can reflect the

relative relationship between any µi1 and µi2 , i1 ̸= i2, i1, i2 = 1, . . . , q0. For example,

µ88 and µ93 have similar true values (around 1.85) , but both the posterior median

and the posterior mean ofµ89 (around 1.7) is much smaller than the posterior median

and the posterior mean of µ93 (around 3.2).
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Figure 3.10: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0, and

for estimation procedure on the 42nd synthetic dataset generated with the non-

regression BASiCS model.

In Figure 3.10, we plot the 89% Highest Density Intervals, 50% Highest Density

Intervals, posterior medians, posterior means and the ground truth for each of the

97 biological gene-specific variation parameter δi , from the one run of the non-

regression BASiCS MCMC on the 42nd generated dataset. Among 97 biological gene-

specific variation parameters δi , 17 of the true values do not fall into the 89% Highest

Density Credible Interval, and 57 of the true values do not fall into the 50% Highest

Density Credible Interval. Neither the posterior mean nor the posterior median

can reflect the relative relationship between any δi1 and δi2 , i1 ̸= i2, i1, i2 = 1, . . . , q0.

For example, δ31 and δ33 have similar posterior mean and posterior median level

(around 2), but the true value of δ31 (0.350) is much smaller than the true value of

δ33 (2.112).

In Figure 3.11, we plot the 89% Highest Density Intervals, 50% Highest Density

Intervals, posterior medians, posterior means and the ground truth for each of the 97
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Figure 3.11: True values (µ∗
i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0, and

for estimation procedure on the 42nd synthetic dataset generated with the non-

regression BASiCS model.

expected gene-expression level parameter µi , from the one run of non-regression

BASiCS MCMC on the 42nd generated dataset. Among 97 expected gene expression

level parameters µi , 11 of the true values do not fall into the 89% Highest Density

Credible Interval, and 54 of the true values do not fall into the 50% Highest Density

Credible Interval. Neither the posterior mean nor the posterior median can reflect the

relative relationship between any µi1 and µi2 , i1 ̸= i2, i1, i2 = 1, . . . , q0. For example,

µ61 and µ69 have similar posterior median and posterior mean (around 5.4), but the

true value of µ61 (8.700) is much larger than the true value of µ69 (4.704). Figure

3.11 also shows that the larger the true value is, the larger the posterior variance

is, indicating that the non-regression BASiCS cannot recover a larger true value

precisely.

These results from non-regression BASiCS using different re-generated datasets

are consistent with the result from the fixed dataset X(1)∗. The recovery of parameters
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is not accurate in instances, especially for those larger parameter values. Neither of

the point estimates (median or mean) seem to be accurate enough, not being able

in some instances even to correctly quantify the relative relationship between two

parameter values.

Regression BASiCS

The BASiCS framework has been updated in Eling et al. (2018), taking into account the

confounding effect between mean and variability. To explore if the resulted regression

BASiCS MCMC improves estimation accuracy, we move on to test the regression part

of the BASiCS package (Eling et al., 2018) with the dataset X(2)∗, which is generated

with the regression BASiCS model Equation (3.5) - Equation (3.19). As with X(1)∗

which we discussed earlier, the one fixed dataset X(2)∗ is plugged into regression

BASiCS MCMC. We replicate 100 MCMCs, resulting in 100 posterior medians for each

parameters δi ,µi ,ν j ,Φ j , s j and θ for i = 1, . . . , q0, j = 1, . . . ,n (q0 = 98, n = 44).

In Figure 3.12, we plot the 89% Highest Density Intervals, 50% Highest Density

Intervals, posterior medians, posterior means and the ground truth for each of the

98 biological gene-specific variation parameter δi , from a single run (replication

number 29) of regression BASiCS MCMC on X(2)∗. Among 98 gene-specific biological

variation parameters δi , 10 of the true values δ∗i do not fall inside the estimated 89%

Highest Density Credible Interval, and 54 of the true values do not fall inside the

50% Highest Density Credible Interval. We note that those 10 true values outside

of the 89% Highest Density Credible Intervals are small values between (0,1) with

very narrow posterior Highest Density Credible Intervals. In this case, the posterior

median could still act as a fair single point estimate for them. For most δi , the

variance of the posteriors looks much smaller compared to Figure 3.3, but such

precision only occurs on the posteriors of δi with small true values.

In Figure 3.13, we plot the 89% Highest Density Intervals, 50% Highest Density

Intervals, posterior medians, posterior means and the ground truth for each of the 98

expected gene expression level parameter µi , from a single run (replication number

29) of regression BASiCS MCMC on X(2)∗. Among 98 expected gene expression level

parameter µi , 4 of the true values µ∗
i do not fall into the 89% Highest Density Credible
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Figure 3.12: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0 (q0 = 98),

and for the 29th run of synthetic data generation and estimation procedure. Inferred

from the regression BASiCS model with the fixed dataset X(2)∗.

Interval, and 55 of the true values do not fall into the 50% Highest Density Credible

Interval.

For the 29th estimation procedure on fixed synthetic dataset X(2)∗ with regression

BASiCS, if we consider the true values of δi which fall outside of the corresponding

89% Highest Density Credible Interval, and the true values of µi which fall outside of

the corresponding 89% Highest Density Credible Interval, we find that they mostly

correspond to different genes. In particular, the δ∗i that do not fall into the 89%

Highest Density Credible Interval are δ∗11, δ∗16, δ∗21, δ∗23, δ∗30, δ∗43, δ∗48, δ∗51, δ∗59 and

δ∗70, while the µ∗
i that do not fall into the 89% Highest Density Credible Interval

are µ∗
70, µ∗

85, µ∗
91, µ∗

95 and µ∗
99. Here all the true values of µi which are out of the

corresponding 89% Highest Density Credible Interval are small values between (0,2).

They are outside of the 89% Credible Interval because the posteriors has smaller

57



3.2 Evaluation of a Bayesian Hierarchical Model

Figure 3.13: True values (µ∗
i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0 (q0 = 98),

and for the 29th run of synthetic data generation and estimation procedure. Inferred

from the regression BASiCS model with the fixed dataset X(2)∗.

variance.

Although our observations correspond to a particular run (29th), they are still

valid when exploring any of the other 99 replications. For example, in Figure 3.14,

we plot the 89% Highest Density Intervals, 50% Highest Density Intervals, posterior

medians, posterior means and the ground truth for each of the 98 biological gene-

specific variation parameter δi , from a different run (replication number 57) of

regression BASiCS MCMC on X(2)∗. Among 98 biological gene-specific variation

parameter δi , 10 of the true values δ∗i do not fall into the 89% Highest Density

Credible Interval, 56 of the true value do not fall into the 50% Highest Density Credible

Interval. We note that those 10 true values outside of the 89% Highest Density

Credible Intervals are small values between (0,1) with very narrow posterior Highest

Density Credible Intervals. In this case, the posterior median can still be considered

as a fairly accurate point estimate. For most δi , the variance of the posteriors looks
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much smaller compared to Figure 3.3, but such precision only occurred on the

posteriors of δi with small true values.

Figure 3.14: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0 (q0 = 98),

and for the 57th run of synthetic data generation and estimation procedure. Inferred

from the regression BASiCS model with the fixed dataset X(2)∗.

The similarity between the 29th replication and the other 99 replications is also

true for the expected gene-expression level parameter µi . In Figure 3.15, we plot the

89% Highest Density Intervals, 50% Highest Density Intervals, posterior medians,

posterior means and the ground truth for each of the 98 expected gene expression

level parameter µi , from a different run (replication number 57) of regression BASiCS

MCMC on X(2)∗. Among 98 expected gene expression level parameter µi , 5 of the

true values µ∗
i do not fall into the 89% Highest Density Credible Interval, 56 of the

true values do not fall into the 50% Highest Density Credible Interval.

For the 57th estimation procedure on fixed synthetic dataset X(2)∗ with regression

BASiCS, if we consider the true values of δi which fall outside of the corresponding
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Figure 3.15: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0 (q0 = 98),

and for the 57th run of synthetic data generation and estimation procedure. Inferred

from the regression BASiCS model with the fixed dataset X(2)∗.

89% Highest Density Credible Interval, and the true values of µi which fall outside of

the corresponding 89% Highest Density Credible Interval, we find that they corre-

spond to different genes. In particular, the δ∗i that do not fall into the 89% Highest

Density Credible Interval are δ∗11, δ∗16, δ∗21, δ∗23, δ∗24, δ∗30, δ∗48, δ∗51, δ∗59 and δ∗71, while

the µ∗
i that do not fall into the 89% Highest Density Credible Interval are µ∗

12, µ∗
21, µ∗

70,

µ∗
85 and µ∗

99. Here only µ12 has a true value too high (11.66) that the MCMC could

not recover, other true values of µi which are out of the corresponding 89% Highest

Density Credible Interval are small values between (0,2). They are outside of the 89%

Credible Interval because the posteriors has smaller variance.

To give an overview of the estimation accuracy of posterior medians inferred from

the regression BASiCS model with X(2)∗, we plot all the gene-specific parameters (δi

and µi , i = 1, . . . , q0) from 100 replication runs with this one fixed dataset X(2)∗, as
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shown in Figure 3.16. Here the x-axis of each point corresponds to the true value of

that gene-specific parameter δi orµi (i = 1, . . . , q0), which we used to simulate dataset

X(2)∗. Since all 100 replications are run on the one fixed dataset X(2)∗, naturally the

plot shows that each true value on the x-axis corresponds to 100 posterior medians

estimated from 100 replications of posterior inference. If the posterior median as

point estimate is accurate, we would expect all the coloured points fall on the line

y = x.

Figure 3.16 shows that more posterior medians of µi fall inside the 20% relative

error range when compared to δi . When compared to Figure 3.7, more posterior

medians of µi inferred from regression BASiCS falls inside the 20% than the posterior

medians of µi inferred from non-regression BASiCS. However, compared to the

posterior medians of δi inferred from non-regression BASiCS, a few δi in regression

BASiCS model have more varying posterior median value across replication runs,

indicating more stochasticity across replication runs.
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Figure 3.16: True value to posterior median of all gene-specific parameters, 100

replications, inferred from the regression BASiCS model with the fixed dataset X(1).
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This subsection so far shows the recovery of parameters using the regression

BASiCS model on one particular synthetic dataset X(2)∗. To prove the generality of

our analysis above, we simulate 100 datasets of 100 genes, 10 spike-in genes, and 50

cells from regression BASiCS model (3.5)-(3.19) (Eling et al., 2018). After the required

data preprocessing, we plug each dataset back into the regression BASiCS MCMC

for one replication, resulting in 100 posterior samples for δi , µi , ν j , Φ j , s j , θ, i =
1, . . . , q0, j = 1, . . . ,n. Here we still focus on gene-specific parameters δi and µi . As

examples we focus on the results from two synthetic dataset, the 5th and the 60th.

Some of the analysis below may seem repetitive, but note that we are only presenting

them to demonstrate that the problems exposed in Figure 3.12-3.15 are general rather

than a coincidence caused by any particular dataset.

Figure 3.17: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for δi , for biological genes i = 1, . . . , q0, and

for estimation procedure on the 5th synthetic dataset generated generated with

regression BASiCS model.

In Figure 3.17, we plot the 89% Highest Density Intervals, 50% Highest Density
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Intervals, posterior medians, posterior means and the ground truth for each of the

98 biological gene-specific variation parameter δi , from the one run of regression

BASiCS MCMC on the 5th generated dataset. Among 98 biological gene-specific

variation parameters δi , 10 of the true values do not fall into the 89% Highest Density

Credible Interval, and 51 of the true value do not fall into the 50% Highest Density

Credible Interval. Apart from δ38 which has a relatively high true value (3.15) and

was overestimated, the other 9 true δ∗i outside of 89% Highest Density Interval are

small values between (0,1.04) with very narrow posterior Highest Density Interval. In

this case, the posterior median could still act as fair point estimates for them. For

most δi , the variance of the posteriors looks much smaller compared to Figure 3.8,

but such precision only occurrs on the posteriors of δi with small true values.

Figure 3.18: True values (µ∗
i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0, and

for estimation procedure on the 5th synthetic dataset generated generated with

regression BASiCS model.

In Figure 3.18, we plot the 89% Highest Density Intervals, 50% Highest Density
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Intervals, posterior medians, posterior means and the ground truth for each of the 98

expected gene-expression level parameter µi , from the one run of regression BASiCS

MCMC on the 5th generated dataset. Among 98 expected gene expression level

parameter µi , 4 of the true values do not fall into the 89% Highest Density Credible

Interval, 51 of the true values do not fall into the 50% Highest Density Credible

Interval.

For the 5th synthetic data generation and estimation procedure with regression

BASiCS, if we consider the true values of δi which fall outside of the corresponding

89% Highest Density Credible Interval, and the true values of µi which fall outside of

the corresponding 89% Highest Density Credible Interval, we find that they corre-

spond to different genes. In particular, the δ∗i that do not fall into the 89% Highest

Density Credible Interval are δ∗10, δ∗33, δ∗38, δ∗47, δ∗48, δ∗52, δ∗72, δ∗75, δ∗87 and δ∗96, while

the µ∗
i that do not fall into the 89% Highest Density Credible Interval are µ∗

6 , µ∗
59,

µ∗
87 and µ∗

96. Here all the true values of µi which fall out of the corresponding 89%

Highest Density Credible Interval are small values between (0,2). Most of them are

outside of the 89% Credible Interval because the posteriors have smaller variance.

In Figure 3.19, we plot 89% Highest Density Intervals, 50% Highest Density In-

tervals, posterior medians, posterior means and the ground truth for each of the

97 biological gene-specific variation parameter δi , from the one run of regression

BASiCS MCMC on the 60th generated dataset. Among 97 biological gene-specific

variation parameter δi , 14 of the true values do not fall into the 89% Highest Density

Credible Interval, 52 of the true value do not fall into the 50% Highest Density Cred-

ible Interval. This time 12 true values outside of 89% Highest Density Interval are

large values in (1.7,31) with very large posterior Highest Density Interval, indicating

the posterior could not capture the precise level of δi when the true value is large.

In Figure 3.20, we plot the 89% Highest Density Intervals, 50% Highest Density

Intervals, posterior medians, posterior means and the ground truth for each of the 97

expected gene-expression level parameter µi , from the one run of regression BASiCS

MCMC on the 60th generated dataset. Among 97 expected gene expression level

parameter µi , 4 of the true values do not fall into the 89% Highest Density Credible

Interval, 54 of the true values do not fall into the 50% Highest Density Credible

Interval.
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Figure 3.19: True values (δ∗i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for δi , for biological genes i = 1, . . . , q0, and

for estimation procedure on the 60th synthetic dataset generated generated with

regression BASiCS model.

For the 60th synthetic data generation and estimation procedure with regression

BASiCS, if we consider the true values of δi which fall outside of the corresponding

89% Highest Density Credible Interval, and the true values of µi which fall outside of

the corresponding 89% Highest Density Credible Interval, we find that they corre-

spond to different genes. In particular, the δ∗i that do not fall into the 89% Highest

Density Credible Interval are δ∗1 , δ∗3 , δ∗7 , δ∗22, δ∗32, δ∗48, δ∗51, δ∗55, δ∗59, δ∗67, δ∗77, δ∗83, δ∗97

and δ∗100, while the µ∗
i that do not fall into the 89% Highest Density Credible Interval

are µ∗
12, µ∗

59, µ∗
83 and µ∗

92. Apart from µ12 which has relatively high true value (16.22)

and were underestimated, the other 3 true value of µi which fall outside of the cor-

responding 89% Highest Density Interval are small values between (0,2) with very

narrow posterior Highest Density Interval. In this case the posterior median could

still act as fair point estimates for the true value.
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Figure 3.20: True values (µ∗
i ) and posterior estimates (median, mean, 89% and 50%

Highest Density Credible Intervals) for µi , for biological genes i = 1, . . . , q0, and

for estimation procedure on the 60th synthetic dataset generated generated with

regression BASiCS model.

3.2.2 Posterior Predictive Check

Following Gelman et al. (2013), we use Posterior Predictive Check (PPC) to assess our

model fit. For a run in Subsection 3.2.1, from each set of parameters {µi ,ν j ,Φ j ,δi } in

1000 posterior samples, we simulate a posterior predictive value of biological gene

expression count X (1)
i j for non-regression BASICS and X (2)

i j for regression BASiCS, from

Equation (3.11), which results in 1000 posterior predictive X (1)
i j for non-regression

BASiCS and 1000 posterior predictive X (2)
i j for regression BASiCS, to compare with

the true data X (1)∗
i j and X (2)∗

i j , respectively.

66



3.2 Evaluation of a Bayesian Hierarchical Model

Figure 3.21: histogram: posterior predictive distribution of X (1)
i j , simulated from the

posteriors of run 1.

red line: input data X (1)∗
i j .

(a): gene i = 7, cell j = 1. (b): gene i = 10, cell j = 12.

(c): gene i = 38, cell j = 14. (d): gene i = 56, cell j = 33.

Figure 3.21 and Figure 3.22 plot the histogram of posterior predictive X (1)
i j and

X (2)
i j and the vertical line of x = X (1)∗

i j and x = X (2)∗
i j for non-regression BASiCS model

and regression BASiCS model, respectively. We can see that the regression BASiCS

model (Eling et al., 2018) performs better compared with the non-regression BASiCS

model (Vallejos et al., 2016).
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Figure 3.22: histogram: posterior predictive distribution of X (2)
i j , simulated from the

posteriors of run 1, regression BASiCS model.

red line: input data X (2)∗
i j .

(a): gene i = 1, cell j = 9. (b): gene i = 12, cell j = 2.

(c): gene i = 15, cell j = 11. (d): gene i = 77, cell j = 7.

3.2.3 Sensitivity to contamination on prior

In this subsection, we modified the non-regression part of BASiCS package Vallejos

et al. (2016) so that we can pass an ε into the prior of δi :

δi
i nd∼ (1−ε) · log-Normal

(
0,σ2

δ

)+ε ·Gamma(aδ,bδ) , (3.37)

which gives us a continuous range of choice for the prior distribution of δi .

We simulate one dataset from non-regression BASiCS model (3.1)-(3.10) (Vallejos

et al., 2016), simulating δi from log-Normal distribution, which is equivalent to

let ε = 0 in (3.37). Then we plug this one dataset back to the MCMC of Vallejos

et al. (2016), with fixed prior-hyperparameter values in Table 3.2 and changing ε ∈
{0,0.25,0.5,0.75,1}.

To investigate the stochastic variation in MCMC result, for each fixed

ε ∈ {0,0.25,0.5,0.75,1}, we replicate the MCMC for 200 times. Each MCMC was run for
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Figure 3.23: Gene-specific posterior results with one fixed synthetic dataset, varying

ε, i.e. varying the prior of δi , for gene i = 1, . . . , q0, with 200 replications for each ε.

The curves: Posterior samples of δi and µi , for gene i = 1.

The vertical line: The true value of δi and µi used in data generation, for gene i = 1.

15,000 iterations, 10,000 burns and thinned by 5, resulting in length-1000 posterior

samples. We plot the posterior distribution curves of these posterior samples.

Figure 3.23 shows several things. Firstly, focusing on one ε value, the curves imply

a degree of stochastic variation of the MCMC posterior samples. Secondly, from the

relative position of the vertical line x = ground truth and the curves we can see that,

on the one hand, the recovery of δ1 worsens with larger ε, i.e. a prior distribution,

δi
i nd∼ (1−ε) · log-Normal

(
0,σ2

δ

)+ε ·Gamma(aδ,bδ) ,

more different from the true distribution we simulated δi from,

δi
i nd∼ log-Normal

(
0,σ2

δ

)
.

On the other hand, the recovery of µi does not suffer a significant change due to the

change of ε, implying the change of the prior of δi does not affect µi much.
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Figure 3.24: Gene-specific posterior results with one fixed synthetic dataset, varying

ε, i.e. varying the prior of δi , for gene i = 1, . . . , q0, with 200 replications for each ε.

The curves: Posterior samples of δi and µi , for gene i = 38.

The vertical line: The true value of δi and µi used in data generation, for gene i = 38.

However, it is not always the same case for other genes in this synthetic dataset.

Figure 3.24 shows that for gene 38 in this synthetic dataset, the MCMC recovery of

δ38 is consistently wrong, regardless of the choice of ε, i.e. the prior distribution.

Figure 3.25 shows the posterior results of the cell-specific parameters. We can

see that the change of the prior for gene-specific parameter δi does not affect the

inference of cell-specific parameters. In particular, from the results from replications

with fixed ε, the posterior ν j and φ j has higher stochasticity compared to the pos-

terior of other parameters in the same replications. This result is consistent with

the convergence diagnosis showed in the Supplementary material of Vallejos et al.

(2016), where the trace plots indicate that the Monte Carlo Markov Chain of ν j and

φ j do not converge in this version of BASiCS MCMC.
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Figure 3.25: Gene-specific posterior results with one fixed synthetic dataset, varying

ε, i.e. varying the prior of δi , for gene i = 1, . . . , q0, with 200 replications for each ε.

The curves: Posterior samples of ν j , φ j and s j , for cell j = 2.

The vertical line: The true value of ν j , φ j and s j used in data generation, for cell

j = 2.

3.2.4 Simulation based calibration adapted for BHM with high-

dimensional parameters

BASiCS is implemented via MCMC , therefore it can be assessed with the extended

SBC with the Effective Sample Size assessment, as described in Subsection 3.1.4.

Notably, in complex real data models like BASiCS, we have multiple measurements of

interest c1(ζ), . . . ,cM (ζ). Therefore, similar to Talts et al. (2018), we assess the minimal

Effective Sample Size with respect to all the measurements of interest, that is, if:

min
m=1,...,M

{
Ne f f [cm]

}> L. (3.38)

To implement this approach for the BHM in Subsection 3.1.2, we define c as the

projection function to each individual parameter in the parameter vector ζ. This is

similar to the identity function c proposed in Schad et al. (2021) for models with a
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single parameter, where the diagnosis consists of checking if the rank statistic for

the parameter mirrors a uniform distribution. However, in BHMs like BASiCS, the

approach can be adapted for the high-dimensional parameter space (Talts et al.,

2018) ζ= (
δ1, . . . ,δq0 ,µ1, . . . ,µq0 ,ν1, . . . ,νn ,φ1, . . . ,φn , s1, . . . , sn ,θ

)
. We define cδi (ζ) =

δi , cµi (ζ) = µi , cν j (ζ) = ν j , cΦ j (ζ) =Φ j ,cs j (ζ) = s j ,cθ(ζ) = θ in Equation (3.38), and

we assess if:

min
i , j

{
Ne f f [δi ], Ne f f [µi ], Ne f f [ν j ], Ne f f [Φ j ], Ne f f [s j ], Ne f f [θ]

}> L.

Algorithm 4 SBC for BASiCS: individual parameters

Require: Data generating model π(Xi j |δi ,µi ,ν j ,Φ j , s j ,θ), prior distribution

π(δi ),π(µi ),π(ν j ),π(Φ j ),π(s j ),π(θ), the number of rank statistic K , , the number

of MCMC iterations L′, the resulted posterior MCMC chain length Nsample , the

number of posterior sample used for calculating each rank statistic L ≈ Nsample

10 .

Initialise

while k in (1 : K ) do

Draw prior sample for i=1,. . . ,q, j=1,. . . ,n:

δ̃(k)
i ∼π(δi ), µ̃(k)

i ∼π(µi ), ν̃(k)
j ∼π(ν j ), Φ̃(k)

j ∼π(Φ j ), s̃(k)
j ∼π(s j ), θ̃(k) ∼π(θ).

Draw a simulated dataset, for i = 1, . . . , q, j = 1, . . . ,n :

X̃ (k)
i j ∼π

(
Xi j |δ̃(k)

i , µ̃(k)
i , ν̃(k)

j ,Φ̃(k)
j , s̃(k)

j , θ̃(k)
)
.

Run the corresponding MCMC algorithm with Input dataset X̃(k) =
(

X̃ (k)
i j

)
in

BASiCS package for L′ iterations to generate the correlated posterior sample chain

of length Nsample from π(δ(k)
i ,µ(k)

i ,ν(k)
j ,Φ(k)

j , s(k)
j ,θ(k)| ˜y (k)):(

δ(k)
i (t ),µ(k)

i (t ),ν(k)
j (t ),Φ(k)

j (t ), s(k)
j (t ),θ(k)(t )

)
for t = 1, . . . , Nsample , , i = 1, . . . , q, j =

1, . . . ,n.

Call R function LaplacesDemon::ESS (Statisticat & LLC., 2021) to compute the

effective sample size for each parameter, N (k)
e f f [δi ], N (k)

e f f [µi ], N (k)
e f f [ν j ], N (k)

e f f [Φ j ],

N (k)
e f f [s j ], N (k)

e f f [θ], for i = 1, . . . , q, , j = 1, . . . ,n.

N (k)
e f f = min{N (k)

e f f [δi ], N (k)
e f f [µi ], N (k)

e f f [ν j ], N (k)
e f f [Φ j ], N (k)

e f f [s j ], N (k)
e f f [θ].}
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if N (k)
e f f < L then

rerun the MCMC for L′·L
N (k)

e f f

iterations.

else

For each i = 1, . . . , q0, j = 1, . . . ,n, thin the posterior MCMC chain to L samples{(
δ(k)

i (tl ),µ(k)
i (tl ),ν(k)

j (tl ),Φ(k)
j (tl ), s(k)

j (tl ),θ(k)(tl )
)}L

l=1
, and truncate any leftover

sample from the k-th run after
(
δ(k)

i (tL),µ(k)
i (tL),ν(k)

j (tL),Φ(k)
j (tL), s(k)

j (tL),θ(k)(tL)
)
.

end if

Compute rank statistic for i = 1, . . . , q , j = 1, . . . ,n:

r (k)[δi ] = r
({
δ(k)

i (t1), . . . ,δ(k)
i (tL)

}
, δ̃(k)

i

)
=

L∑
l=1

1{
tl :δ(k)

i (tl )<δ̃(k)
i

} (
δ(k)

i (tl )
)

.

Similarly, calculate r (k)[µi ], r (k)[ν j ], r (k)[Φ j ], r (k)[s j ], r (k)[θ].

end while

Plot the histogram of rank statistic r (k)
i j . for k = 1, . . . ,K .

Check the uniformity of the histogram of r (k)
i j . for k = 1, . . . ,K .

This leads to Algorithm 4, which we implement and apply to the BASiCS non-

regression model. In order to check the deviation of rank statistics from

Uniform({0,1, . . . ,L}), we plot the empirical cumulative density function (ECDF) and

the expected CDF behaviour of Uniform({0,1, . . . ,L}).

As Algorithm 4 demonstrates, in k = 1, . . . ,K runs, all the parameters δ̃(k)
i , µ̃(k)

i ,

ν̃(k)
j , Φ̃(k)

j ,s̃(k)
j , �θ(k) are re-simulated from the corresponding i .i .d . prior distribution

for all i = 1, . . . , q0, j = 1, . . . ,n. Therefore, the rank statistic of each δi is equivalent to

each other, the same applies to µi ,ν j ,Φ j , s j ,θ. Without losing generality, in Figure

3.26, we plot the ECDF of δ1, s1,θ,Φ1,ν1,µ1. From Figure 3.26, one can observe that

the behaviour of the rank statistics for most of the parameters are close to the uniform

distribution. On the other hand, the rank statistics for θ are far from the uniform

distribution, suggesting that θ is likely to be underestimated in this model. This

illustrates the applicability of the techniques in Talts et al. (2018) for diagnosing the

estimation of parameters in a BHM such as that in Figure 3.1.
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Figure 3.26: SBC results of non-regression BASiCS (Vallejos et al., 2016). For the model

parameters s j , δi , θ, Φ j , ν j and µi , the ECDF of the calculated rank statistic (dark

blue) and 500 uniform samples (light blue) are plotted. Without loosing generality,

here i = 1, j = 1.

We also perform the Simulation based calibration procedure described in Al-

gorithm 4 on regression BASiCS model, adapted from Talts et al. (2018). Similar

to the arguments in the last paragraph, without losing generality, in Figure 3.27

we plot the ECDF for the calculated rank statistics and the uniform distribution

for δ1, s1,θ,Φ1,ν1,µ1. In terms of the Simulation-based Calibration results, the be-

haviours observed for the regression BASiCS model in Figure 3.27 are similar to those

observed for the non-regression BASiCS model in Figure 3.26. In particular, the rank

statistics for most parameters in Figure 3.27 are close to a uniform distribution. The

low ranks of s j are seen slightly more often in the computed ranks than we would

expect from a uniform distribution, and the rank statistic of θ is far from the range of

the uniform distribution. Thus, this suggests that θ tends to be underestimated in

the regression BASiCS model.
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Figure 3.27: SBC results of regression BASiCS (Eling et al., 2018). For the model

parameters s j , δi and θ, Φ j , ν j , µi , the ECDF of the calculated rank statistic (dark

blue) and 500 uniform samples (light blue) are plotted. Without loosing generality,

here i = 1, j = 1.

3.3 Conclusion

In summary, we have illustrated a simulation-based evaluation framework for BHMs

for scRNAseq. We explored the reliability of a non-Gaussian distribution based BHM

inferred via Monte Carlo Markov Chain (MCMC) algorithm, using the BASiCS frame-

work developed by Vallejos et al. (2015, 2016) and by Eling et al. (2018) as an example.

From our experiments, both posterior median and posterior mean are revealed to

be inaccurate point estimates at times, showing the limitations of considering point

estimates from posterior distributions for downstream analysis, when considering

BHMs for scRNAseq. In Subsection 3.2.2, we also show that for a fixed given model,

the effect of a contaminated prior on the posteriors varies. For the purpose of this

experiment on contaminated prior distribution, we modified the BASiCS package

from Vallejos et al. (2015, 2016) and Eling et al. (2018), providing the choice of a mixed
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prior on a spectrum. We also implemented two validation methods for Bayesian

models, namely the Posterior Predictive Check (Gelman et al., 1996; Rubin, 1984) and

Simulation based calibration (Talts et al., 2018), specifically for BASiCS framework

in R (R Core Team, 2013). Our analysis in Subsection 3.2.1 and 3.2.3 shows that

regression BASiCS achieves some improvement over non-regression BASiCS on the

posterior estimation accuracy in terms of the length of 89% credible interval and

posterior predictive distribution. The Simulation based calibration method imple-

mented in Subsection 3.2.4 returns similar results for the two models. This is because

the Simulation based calibration approach implemented here relies on checking if

the true value of the parameter used to generate the corresponding synthetic dataset

falls inside the posterior credible interval estimated under the assumed model (Talts

et al., 2018). From our experiments, we identified that one of the parameters, namely

the global technical noise parameter θ in BASiCS framework, is consistently underes-

timated, thereby suggesting the future direction for the improvement of the BASiCS

framework. Since the ground truth is typically unknown in BHM, we would like to

emphasise that a simulation based reliability analysis is important in validating BHM

and its implementation.
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Chapter 4

Scalable Bigraphical Lasso

4.1 Introduction

In this chapter we present an eigen-decomposition based two-way network inference

approach for count data. The main motivation of this research is that real world

problems often come with correlations between several dimensions. For example,

in biology the gene expression data encodes the relationship between genes and

the relationship between cells or tissues (Teng & Huang, 2009). Another example is

the multi-channel electroencephalography (EEG) data from brain imaging research

(Bijma et al., 2005), where the data in matrix form encodes the temporal trajectory and

the relationship between different channels. Recently, Gaussian graphical models

have been developed for two-way network inference on matrix data, and these

models are even extended to multi-network inference on tensor data. For example,

Tsiligkaridis & Hero (2013) and Zhou (2014) study a matrix normal distribution

where the precision matrix corresponds to the Kronecker product between the row-

specific and the column-specific precision matrices. Kalaitzis et al. (2013) introduces

Bigraphical Lasso, and Greenewald et al. (2019) introduces TeraLasso, both studying

a multivariate normal distribution where the precision matrix corresponds to a

Kronecker sum instead of a Kronecker product of matrices.

However, a multivariate normal distribution can only be applied to Gaussian

data. Many datasets in different application fields come with count data, such as

the scRNAseq data mentioned in Chapter 3, for which Gaussian based models are

not applicable. Some methods use other distributions to infer networks from the
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data. Jia et al. (2017) infers the gene regulation networks with a Poisson-Gamma

based Bayesian Hierarchical Model, borrowing information across cells. McDavid

et al. (2019) infers the gene regulation networks with a multivariate Hurdle model

(zero-inflated mixed Gaussian). Several approaches have extended the use of Gaus-

sian models to an appropriate continuous transformation of count data. Liu et al.

(2009) and Liu et al. (2012) proposes a semiparametric approach, and Roy & Dunson

(2020) proposes a nonparametric approach, while Chiquet et al. (2019) considered

Bayesian Hierarchical Models. However, all these methods only produce a one-way

network inference. Bartlett et al. (2021) proposes a Bayesian model with a prior

having decoupled two-way sparsity to infer a dynamic network structure through

time. However, the method still depends on a pre-inferred or known ordering of time.

Our method extends the semiparametric approach to enable a two-way network

inference on non-Gaussian data, where the structure in both dimensions is to be

inferred simultaneously. Firstly, we present a Scalable Bigraphical Lasso algorithm,

reducing both the space complexity and the computational complexity of the infer-

ence, with respect to the Bigraphical Lasso algorithm originally developed by Kalaitzis

et al. (2013). Secondly, we extend the Bigraphical model to count data by means of a

semiparametric approach. Our proposed methodology not only accounts for the de-

pendencies across both instances and features, but also reduces the computational

complexity for high dimensional data.

This chapter is structured as follows: In Section 4.2 we present a detailed review

on this topic; In Section 4.3 we present our Scalable Bigraphical Lasso algorithm

for Gaussian data; In Section 4.4 we propose a semiparametric extension to the

Bigraphical model for count data; In Section 4.5 we showcase the performance of our

method on both synthetic and real datasets.

4.2 Background

4.2.1 From the matrix normal model to the Kronecker sum struc-

ture

As we have introduced in Chapter 2, for a Gaussian density, the precision matrix de-

fines an undirected Gaussian Markov random field graph (Lauritzen, 1996), encoding
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conditional independence between variables in the Gaussian model. Therefore we

can induce the network structure from the support of the precision matrix. A matrix

normal model with the Kronecker sum structure is proposed in Kalaitzis et al. (2013).

If a p ×n random matrix Y follows a matrix normal distribution,

Y ∼ MNp×n

(
Mp×n ;Ψ−1

n×n ,Θ−1
p×p

)
,

with the mean matrix Mp×n , and with precision matrix Ψn×n indicating the de-

pendency structure in rows, and precision matrixΘp×p indicating the dependency

structure in columns. The model can be reparametrized and shifted such that the vec-

torised random matrix follows an np-dimensional multivariate normal distribution

(denoted as mN):

vec(Y) ∼ mNnp

(
0np ,

(
Ψn×n ⊗Θp×p

)−1
)

,

where ⊗ denotes the Kronecker product (KP),Ψn×n ⊗Θp×p is the overall precision

matrix, and 0np is a column vector of zeros of length np. Kalaitzis et al. (2013)

proposes to use the Kronecker sum (KS) Ψn×n ⊕Θp×p =Ψn×n ⊗ Ip + In ⊗Θp×p to

structure the overall precision matrix instead.

In a KS-structured matrix normal distribution, for a p ×n random matrix Y, we

write

vec(Y) ∼ mNnp

(
0np ,

(
Ψn×n ⊕Θp×p

)−1
)

.

The KS-structure has several advantages. Firstly, in algebraic graph theory, the

Kronecker sum corresponds to the Cartesian product of graphs (Sabidussi, 1959b). A

KS-structured model therefore provides intuitive and interpretable results. Secondly,

for high-dimensional data, the KS-structure enhances the sparsity of the network,

reducing the computation complexity and memory requirements.

4.2.2 Rank-based estimation in a Gaussian graphical model

Both KP-structured and KS-structured matrix normal distributions can only be ap-

plied on Gaussian data. To model count data or other non-Gaussian data via a

Gaussian graphical model, the Gaussian copula can be applied to transfer these data

into a latent Gaussian variable. Liu et al. (2012) proposes a semiparametric Gaussian

copula for one-way network inference. For a p×n matrix Y, Liu et al. (2012) considers
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it as n samples of a p−dimensional vector
(
Y1 j , . . . ,Yp j

)
. Liu et al. (2012) assumes

that there exist functions f = {
fi

}p
i=1 such that for j = 1, . . . ,n:(

f1
(
Y1 j

)
, . . . , fp

(
Yp j

))∼ mNp

(
0p ,Θ−1

p×p

)
,

where Θp×p is an unknown precision matrix. In this case Y j =
(
Y1 j , . . . ,Yp j

)
is said

to follow a nonparanormal multivariate normal distribution, Y j ∼ NPN
(
0p ,Θ−1

p×p , f
)
.

Then they inferred the precision matrixΘp×p with the following objective function

from graphical lasso (Friedman et al., 2008):

min
Θp×p

{
tr

(
Θp×p S

)− ln
∣∣Θp×p

∣∣+β ∑
i1,i2

Θi1i2

}
,

where S is the empirical covariance matrix of
(

f1
(
Y1 j

)
, . . . , fp

(
Yp j

))
, j = 1, . . . ,n in

graphical lasso, ln
∣∣Θp×p

∣∣ is the natural logarithm of the determinant ofΘp×p , andβ is

the regularization parameter controlling sparsity. Liu et al. (2012) uses the estimated

correlation matrix Ŝ instead of S, estimated using Kendall’s tau or Spearman’s rho. In

particular, one defines ∆i ( j , j ′) = Yi j −Yi j ′ , so that

(Kendall’s tau)

τ̂i1i2 =
2

n (n −1)

∑
j< j ′

sign
(
∆i1 ( j , j ′)∆i2 ( j , j ′)

)
,

(Spearman’s rho)

ρ̂i1i2 =
∑n

j=1

(
r (c)

i1 j − r̄ (c)
j

)(
r (c)

i2 j − r̄ (c)
j

)
√∑n

j=1

(
r (c)

i1 j − r̄ (c)
j

)2 (
r (c)

i2 j − r̄ (c)
j

)2
,

where r (c)
i j is the rank of Yi j among Y1 j , . . . ,Yp j and r̄ (c)

j = 1
p

∑p
i=1 r (c)

i j = 1+p
2 . Corre-

spondingly,

Ŝi1i2 =
{

sin
(
π
2 τ̂

(c)
i1i2

)
, i1 ̸= i2,

1, i1 = i2.

Ŝi1i2 =
{

2sin
(
π
6 ρ̂

(c)
i1i2

)
, i1 ̸= i2,

1, i1 = i2.

Ning & Liu (2013) extends the matrix-normal distribution with Kronecker product

structure to non-Gaussian data with a similar semiparametric approach applied on

both the row vectors and the column vectors of Y.
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4.2.3 Background on Bigraphical lasso

In this subsection, we introduce some more details on the Bigraphical Lasso method

(Kalaitzis et al., 2013) which works on the multivariate model with KS structure.

Let Y ∈ Rp×n be a random matrix. Assume each row of Y are generated as i.i.d.

samples from mN
(
0n ,Ψ−1

n×n

)
, then each row of Y is a Gaussian Markov random

field, and the dependency structure in the rows of Y is a Gaussian Markov random

field graph associated with the precision matrix Ψn×n . At the same time, assume

each column of Y are generated as i.i.d. samples from mN
(
0p ,Θ−1

p×p

)
, then each

column of Y is a Gaussian Markov random field, and the dependency structure in the

columns of Y is a Gaussian Markov random field graph associated with the precision

matrixΘp×p . Consider the overall structure in Y being the Cartesian product of the

structure in rows and in columns, then from the discussion in Chapter 2, we have

vec(Y) ∼ mN
(
0,

(
Ψn×n ⊗Θp×p

)−1
)
, and the probability density of Y as

π (Y) ∝ exp
{−tr

(
Ψn×nYY⊤)− tr

(
Θp×p Y⊤Y

)}
,

with a precision matrix given by the K S:

Ω=Ψn×n ⊕Θp×p =Ψn×n ⊗ Ip + In ⊗Θp×p .

Through this representation we obtain a parameter vector of size
(
n2 +p2

)
instead of

the usual
(
n2p2

)
.

Given data in the form of some design matrix Y, the Bigraphical Lasso model pro-

posed in Kalaitzis et al. (2013) estimates the sparse K S-structured inverse covariance

of a matrix normal by minimising the ℓ1-penalized negative likelihood function of

(Ψn×n ,Θp×p ):

min
Θp×p ,Ψn×n

{
ntr

(
Θp×p S

)+ptr(Ψn×nT)− ln |Ψn×n ⊕Θp×p |+β1||Ψn×n ||1 +β2||Θp×p ||1
}

,

(4.1)

where S = 1
n Y⊤Y and T = 1

p YY⊤ are empirical covariance matrices across the samples

and features respectively, and β1 and β2 are regularization parameters.

From Equation (4.1), we need a method to estimate two graphs simultaneously –

one over the columns of Y, corresponding to the sparsity pattern ofΘp×p , and another

over the rows of Y, corresponding to the sparsity pattern ofΨn×n . The original paper
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of Kalaitzis et al. (2013) proposes a flip-flop approach first optimizing over Ψn×n ,

while holdingΘp×p fixed, and then optimizing overΘp×p while holdingΨn×n fixed.

They show that in case of no regularization, the first step of the optimization problem

is reduced to

min
Ψn×n

{
ptr(Ψn×nT)− ln

∣∣Ψn×n ⊕Θp×p
∣∣}.

Obtaining the stationary point:

T− 1
2p T◦ I = 1

p trp (W)− 1
2p trp (W)◦ I , (4.2)

where ◦ is the Hadamard product and we define W = (
Ψn×n ⊕Θp×p

)−1. The block-

wise trace trp (·) is an operator as defined in Definition 4.1.

Definition 4.1 (Kalaitzis et al., 2013) If M is a np ×np matrix written in terms of n2

p ×p blocks, as

M =

M11 . . . M1n
...

...
Mn1 . . . Mnn

 ,

then trp (M) is the n ×n matrix of traces of these p ×p blocks:

trp (M) =

tr(M11) . . . tr (M1n)
...

...
tr (Mn1) . . . tr (Mnn)

 .

While the approach proposed in Kalaitzis et al. (2013) dramatically reduces the com-

putational complexity from O(np) of naive GLasso (Friedman et al., 2008) to O(n+p),

its memory requirements (i.e. space complexity) are prohibitive for problems involv-

ing large n or p. Our contribution in Section 4.3 is to give a more efficient solution in

terms of computational and space complexity.

4.3 Scalable Bigraphical Lasso Algorithm

Consider the eigen-decomposition of the two precision matricesΨn×n = UΛ1U⊤ and

Θp×p = VΛ2V⊤, whereΛ1 ∈Rn×n andΛ2 ∈Rp×p are diagonal matrices of eigenvalues

and U = (
ui j

) ∈ Rn×n and V = (
vi j

) ∈ Rp×p are orthogonal eigenvectors matrices
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associated withΨn×n andΘp×p , respectively. It follows that Equation (4.2.3) can be

rewritten as

Ω= (U⊗V) [Λ1 ⊗ Ip + In ⊗Λ2]
(
U⊤⊗V⊤)

. (4.3)

Proof of Equation (4.3). Using the Bilinearity and Mixed Product properties of Kro-

necker product, also noting that UU⊤ = In , VV⊤ = Ip , we have

Ω=Ψn×n ⊕Θp×p

= UΛ1U⊤⊗ Ip + In ⊗VΛ2V⊤

= (U⊗V) [Λ1 ⊗ Ip + In ⊗Λ2]
(
U⊤⊗V⊤)

.

We note that the inverse of a symmetric matrix for which an eigenvalue decom-

position is provided is obtained by inverting the eigenvalues,

W =Ω−1 = (U⊗V) [Λ1 ⊗ Ip + In ⊗Λ2]−1 (
U⊤⊗V⊤)

.

Taking (
In ⊗V⊤)(

In ⊗ Ip
)= In ⊗V⊤,

then

WΩ= In ⊗ Ip (4.4)

can be premultiplied by In ⊗V⊤ to provide(
In ⊗V⊤)

WΩ= (
U⊗ Ip

)
D

(
U⊤⊗V⊤)

Ω, (4.5)

where D = [Λ1 ⊗ Ip + In ⊗Λ2]−1 is a diagonal matrix.

Proof of Equation (4.5).(
U⊗ Ip

)
D

(
U⊤⊗V⊤)

Ω= (
U⊗ Ip

)
D

(
U⊤⊗V⊤)(

Ψn×n ⊗ Ip + In ⊗VΛ2V⊤)
= (

U⊗ Ip
)

D
(
U⊤⊗ Ip

)(
In ⊗V⊤)(

Ψn×n ⊗ Ip + In ⊗VΛ2V⊤)
= (

U⊗ Ip
)

D
(
U⊤⊗ Ip

)(
Ψn×n ⊗V⊤+ In ⊗Λ2V⊤)

= In ⊗V⊤

= In ⊗V⊤WΩ.
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If we multiply both sides of Equation (4.5) by In ⊗V, we have

In ⊗ Ip = (
U⊗ Ip

)
D

(
U⊤⊗ Ip

)(
Ψn×n ⊗ Ip + In ⊗Λ2

)
, (4.6)

Proof of Equation (4.6). Note that WΩ= Inp , therefore we can write Equation (4.5)

as: (
In ⊗V⊤)

WΩ= (
U⊗ Ip

)
D

(
U⊤⊗V⊤)

Ω.

If we multiply both sides of the equation above by In ⊗V:(
In ⊗V⊤)

WΩ (In ⊗V) = (
U⊗ Ip

)
D

(
U⊤⊗V⊤)

Ω (In ⊗V) .

From the right-hand side, we get
(
U⊗ Ip

)
D

(
U⊤⊗ Ip

)(
Ψn×n ⊗ Ip + In ⊗Λ2

)
. On the

left-hand side, remember that WΩ= Inp , so(
In ⊗V⊤)

WΩ (In ⊗V) = In ⊗ Ip .

Equation (4.6) can be rewritten in a similar form as Equation (4.4)

ŴΩ̂= In ⊗ Ip ,

where

Ŵ = [
U⊗ Ip

]
D

[
U⊤⊗ Ip

]
and

Ω̂=Ψn×n ⊗ Ip + In ⊗Λ2.

We partition Ŵ and Ω̂ into blocks

Ŵ =
[

Ŵ11 Ŵ1\1

Ŵ\11 Ŵ\1\1

]
,

Ω̂=
[
Ω̂11 Ω̂1\1

Ω̂\11 Ω̂\1\1

]
,

where Ŵ11 and Ω̂11 are p ×p matrices and Ŵ\11 and Ω̂\11 are p (n −1)×p matrices.

Then from the bottom-left block of

ŴΩ̂= Ŵ
(
Ψn×n ⊗ Ip + In ⊗Λ2

)= In ⊗ Ip , (4.7)
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we get

Ŵ\11
(
ψ11Ip +Λ2

)+Ŵ\1\1
(
ψ\11 ⊗ Ip

)= 0n−1 ⊗ Ip ,

where we use the notation Ψn×n = (
ψi j

)
i , j=1,...,n and ψ\11 representing the corre-

sponding sub-block. Post multiplying both sides of the last equation by
(
ψ11Ip +Λ2

)−1

we have

Ŵ\11 +Ŵ\1\1


(
ψ11Ip +Λ2

)−1
ψ21

...(
ψ11Ip +Λ2

)−1
ψn1

= 0n−1 ⊗ Ip . (4.8)

Proof of Equation (4.8). In order to prove Equation (4.8), we first note that, from the

bottom-left block of

ŴΩ̂=
[

Ŵ11 Ŵ1\1

Ŵ\11 Ŵ\1\1

]
ψ11Ip +Λ2 . . . ψ1nIp

...
. . .

...

ψn1Ip . . . ψnnIp +Λ2

= In ⊗ Ip

we get

Ŵ\11Ω̂11 +Ŵ\1\1Ω̂\11 = Ŵ\11
(
ψ11Ip +Λ2

)+Ŵ\1\1
(
ψ\11 ⊗ Ip

)= 0n−1 ⊗ Ip .

Thus, multiplying both sides of the last equation by
(
ψ11Ip +Λ2

)−1, one has

Ŵ\11 +Ŵ\1\1


(
ψ11Ip +Λ2

)−1
ψ21

...(
ψ11Ip +Λ2

)−1
ψn1

= 0n−1 ⊗ Ip .

Decomposing Ŵ\1\1 in (n −1) adjacent blocks Ŵ\1k ∈ R(n−1)p×p , ∀k ∈ {2, . . . ,n},

then Equation (4.8) can be rewritten as

Ŵ\11+Ŵ\12
(
ψ11Ip +Λ2

)−1
ψ21 +·· ·+Ŵ\1n

(
ψ11Ip +Λ2

)−1
ψn1 = 0n−1 ⊗ Ip .

Proposition 4.1 Following the assumptions and calculations above we have

trp (W) = trp
(
Ŵ

)
.
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Proof of Proposition 4.1. Proposition 4.1 follows from the fact that[
In ⊗V⊤]

W [In ⊗V] = [
U⊗ Ip

]
D

[
U⊤⊗ Ip

]= Ŵ.

Then, the p ×p blocks of W and Ŵ hold a similarity relation:

Ŵi j = V⊤Wi j V,

and hence trp (W) = trp
(
Ŵ

)
.

Proposition 4.1 enables us to make use of the stationary point given in Equation

(4.2). As described in Kalaitzis et al. (2013), we can partition the empirical covariance

T as

T =
[

t11 t1\1

t\11 T\1\1

]
,

where t\11 ∈Rn−1 and T\1\1 ∈R(n−1)×(n−1). In particular, from the lower left block of

(4.2) we get

t\11 = 1

p
trp (W\11) .

Taking the block-wise trace trp (·) of both sides of (4.8), gives

pt\11 +A\1\1ψ\11 = 0n−1, (4.9)

where A⊤
\1\1 ∈R(n−1)×(n−1) is:

A⊤
\1\1 ≜


trp

{
Ŵ\12

(
ψ11Ip +Λ2

)−1
}⊤

...

trp

{
Ŵ\1n

(
ψ11Ip +Λ2

)−1
}⊤

 . (4.10)

The problem posed in Equation (4.9) is addressed via a lasso regression. In

Proposition 4.2, we use some of the previous decomposition in order to reduce the

computational complexity of the problem.

Proposition 4.2 Following the assumptions and calculations above we have

trp

{
Ŵ\1k

(
ψ11Ip +Λ2

)−1
}
=

p∑
j=1

1

ψ11 +λ2 j


∑n

i=1
u2i uki
λ1i+λ21
...∑n

i=1
uni uki
λ1i+λ2p

 ,

where λ11 . . .λ1n and λ21 . . .λ2p are the diagonal values of Λ1 ∈Rn×n and Λ2 ∈Rp×p ,

respectively.
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Proof of Proposition 4.2. To prove Proposition 4.2, we note that

Ŵ\1\1 =
[
U\1 ⊗ Ip

]
D

[
U⊤

\1 ⊗ Ip
]=


u21Ip . . . u2nIp

...
. . .

...

un1Ip . . . unnIp

D


u21Ip . . . un1Ip

...
. . .

...

u2nIp . . . unnIp

 ,

where U\1 ∈R(n−1)×n is the matrix formed by the last n −1 rows of U. Then, we can

decompose Ŵ\1\1 in (n −1)× (n −1) blocks [Ŵ\1\1]ℓ,k ∈Rp×p , with

[Ŵ\1\1]ℓ,k =
[∑n

i=1
uℓi uki
λ1i+λ21

. . . 0

0 . . .
∑n

i=1
uℓi uki
λ1i+λ2p

]
, ℓ,k ∈ {2, . . . ,n}.

This formulation allows us to write each trace term of Equation (4.9) as

trp

{
Ŵ\1k

(
ψ11Ip +Λ2

)−1
}
=


tr

{
Ŵ\1\1

}
1,k

(
ψ11Ip +Λ2

)−1

...

tr
{

Ŵ\1\1
}

(n−1),k

(
ψ11Ip +Λ2

)−1

 , k ∈ {1, . . . ,n −1},

More explicitly,

trp

{
Ŵ\1k

(
ψ11Ip +Λ2

)−1
}
=


∑p

j=1

∑n
i=1

1
ψ11+λ2 j

u2i uki
λ1i+λ2 j

...∑p
j=1

∑n
i=1

1
ψ11+λ2 j

uni uki
λ1i+λ2 j

=


∑p

j=1
1

ψ11+λ2 j

∑n
i=1

u2i uki
λ1i+λ2 j

...∑p
j=1

1
ψ11+λ2 j

∑n
i=1

uni uki
λ1i+λ2 j



=
p∑

j=1

1

ψ11 +λ2 j


∑n

i=1
u2i uki
λ1i+λ2 j
...∑n

i=1
uni uki
λ1i+λ2p

 .

We note that by imposing an ℓ1 penalty on ψ\11, the problem posed in (4.9)

reduces to a lasso regression involving now only the matrix U, the diagonal ofΛ1 and

Λ2, and ψ11. This decomposition frees the prohibitive amount of memory needed to

store the matrix Ŵ, which is of size n2p2.

The lasso regression will provide an estimation on the first column ofΨn×n . For

the update of all the other columns ψ\i i we need to reiterate the same approach.

Indeed we partitionΨn×n into ψi i ,ψ\i i , ψi \i andΨ\i \i for i = 1, . . . ,n. We then find

a sparse solution of pt\i i +A\i \iψ\i i = 0n−1 with lasso regression. Given the new
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value ψ\i i , we then compute the eigenvalues matrixΛ1 and eigenvectors matrix U

ofΨn×n . This will provide the updated values to be used in Proposition 4.2. Hence,

after n steps, the columns ofΨn×n are estimated. Similarly the estimation ofΘp×p ,

conditionally on fixed Ψn×n , becomes directly analogous to the above simply by

transposing the design matrix (samples become features and vice-versa) and is

obtained in p steps.

Our approach is summarised in Algorithm 5 for Gaussian data. We point out that

the convergence of Algorithm 5 could also be directly verified on the value of the

objective function (4.1) at each step, but, due to the computation of
∣∣Ψn×n ⊕Θp×p

∣∣,
when p,n >> 100 this becomes unfeasible. Indeed, the space complexity can be

reduced from O
(
n2p2

)
to O

(
n2 +p2

)
by means of Proposition 4.3.

Algorithm 5 scBiGLasso

Input: Maximum iteration number N , tolerance ε, M many observations of p ×n

matrices Ym , m = 1, . . . , M . β1,β2, initial estimates ofΨn×n and Θp×p ,Ψ(0)
n×n and

Θ(0)
p×p .

For each Ym , T(m) ← p−1YmY⊤
m .

T ← 1
M

∑M
m=1 T(m).

repeat

# EstimateΨn×n :

for iteration τ= 1, . . . , N do

DecomposeΨ(τ−1)
n×n = U(τ−1)Λ(τ−1)

1 U(τ−1)⊤ andΘ(τ−1)
p×p = V(τ−1)Λ(τ−1)

2 V(τ−1)⊤.

for i = 1, . . . ,n do

PartitionΨ(τ−1)
n×n into ψ(τ−1)

i i ,ψ(τ−1)
i \i , ψ(τ−1)

\i i andΨ(τ−1)
\i \i .

Calculate A(τ−1)
\i \i similar to Equation (4.10) and Proposition 4.2

with ψ(τ−1)
i i , U(τ−1),Λ(τ−1)

1 andΛ(τ−1)
1 .

With Lasso regression (Friedman et al., 2008), find a sparse solution, ψ∗
i \i ,

for

pti \i +A(τ−1)
\i \i ψ(τ)

i \i = 0n−1.
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Calculate the direction vector from

ψ(τ−1)
i \i to ψ∗

i \i : ∆ψ(τ)
i \i =ψ∗

i \i −ψ(τ−1)
i \i .

Since the objective of solving pti \i +A(τ−1)
\i \i ψ(τ)

i \i = 0n−1

can be written as f
(
ψ(τ)

i \i

)
=

∥∥∥ti \i + 1
p A(τ−1)

\i \i ψ(τ)
i \i

∥∥∥2

F
,

Calculate ∇ f
(
ψi \i

)= 2 1
p2 A(τ−1)⊤

\i \i A(τ−1)
\i \i ψ(τ)

i \i +2 1
p A(τ−1)⊤

\i \i ti \i .

Take ζ= min{λ11, . . . ,λ1n}.

# Implement FISTA (Beck & Teboulle, 2009) with backtracking line search.

Calculate Q = f
(
ψ(τ−1)

i \i

)
+∇ f

(
ψ(τ−1)

i \i

)⊤
∆ψ(τ)

i \i + 1
2ζ

∥∥∥∆ψ(τ)
i \i

∥∥∥2

F
and f (ψ∗

i \i ).

t0 = 1, a = 0.

while f
(
ψ∗

i \i

)>Q do

a = a +1, ta+1 =
1+

√
1+4t 2

a

2
.

ψ∗
i \i =ψ(τ−1)

i \i + ta −1

ta+1
∆ψ(τ)

i \i .

∆ψ(τ)
i \i =ψ∗

i \i −ψ(τ−1)
i \i .

Calculate Q = f
(
ψ(τ−1)

i \i

)
+∇ f

(
ψ(τ−1)

i \i

)⊤
∆ψ(τ)

i \i + 1
2ζ

∥∥∥∆ψ(τ)
i \i

∥∥∥2

F
and f (ψ∗

i \i ).

end while

Update the non-diagonal column ψ(τ)
i \i =ψ∗

i \i .

end for

# EstimateΘp×p :

Proceed as if estimatingΨn×n with input Y⊤,β1,β2.

Calculate the change in the estimated matrices from each iteration

∆Ψ(τ) = ∥Ψ(τ)
n×n −Ψ(τ−1)

n×n ∥2
F ,

∆Θ(τ) = ∥Θ(τ)
p×p −Θ(τ−1)

p×p ∥2
F .

end for

until Maximum iteration number reached, or

max
τ∗=τ−2,τ−1,τ

{
(∆Ψ(τ∗) +∆Θ(τ∗))

}< ε, for τ≥ 3.
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Proposition 4.3 Following the assumptions and calculations above we have

|Ψn×n ⊕Θp×p | =
n∏

i=1

p∏
j=1

(
λ1i +λ2 j

)
.

Proof of Proposition 4.3. Proposition 4.3 follows from the fact that

W =Ω−1 = (U⊗V) [Λ1 ⊗ Ip + In ⊗Λ2]−1 (
U⊤⊗V⊤)

,

and

D =



1
λ11+λ21

. . . 0 . . . 0 . . . 0
...

. . .
... . . .

... . . .
...

0 . . . 1
λ11+λ2p

. . . 0 . . . 0
... . . .

...
. . .

... . . .
...

0 . . . 0 . . . 1
λ1n+λ21

. . . 0
... . . .

... . . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1
λ1n+λ2p


,

where λ11 . . .λ1n are the diagonal values ofΛ1 ∈Rn×n and λ21 . . .λ2p are the diagonal

values ofΛ2 ∈Rp×p . Then, we can write

|Ψn×n ⊕Θp×p | = | (U⊗V)D−1 (
U⊤⊗V⊤) | = |U⊗V|2|D−1| = |U|2p |V|2n

n∏
i=1

p∏
j=1

(
λ1i +λ2 j

)
=

n∏
i=1

p∏
j=1

(
λ1i +λ2 j

)
.

It follows that:

ln |Ψn×n ⊕Θp×p | =
n∑

i=1

p∑
j=1

ln |λ1i +λ2 j | =C .

Hence we can write the objective function as

min
Θp×p ,Ψn×n

{
ntr

(
Θp×p S

)+ptr(Ψn×nT)−C +β1||Ψn×n ||1 +β2||Θp×p ||1
}

.

Note that this scalable version of the Bigraphical Lasso is able to deal with higher

dimensional problems. This is mainly due to the fact that in our implementation

90



4.4 Nonparanormal Bigraphical Lasso Model

there is no need to directly evaluate the matrix W. Instead we just need the eigen-

decomposition of the two precision matricesΨn×n andΘp×p . In the original paper

Kalaitzis et al. (2013) at each step i the blocks of W are explicitly updated and of course

were involved in the next step of the estimation. In particular W\i i is computed

via backward-substitution in Equation (4.8) and W11 via backward-substitution in

Equation (4.7).

In summary, as we are not interested in the estimation of the overall Ŵ norΩ, we

will never explicitly update them, but we will rather focus on the estimation ofΨn×n

andΘp×p . This leads to a space complexity reduction from O(n2p2) to O(n2 +p2) by

means of Proposition 4.2 and Proposition 4.3.

Our Scalable Bigraphical Lasso algorithm (ScB) benefits from the same statis-

tical convergence properties embedded in the original Bigraphical Lasso model

(Kalaitzis et al., 2013). Greenewald et al. (2019) gives the statistical convergence

rates (Greenewald et al., 2019, Theorems 1-3) (Greenewald et al., 2019, Lemma 19,

Supplementary Material) of the Bigraphical Lasso model and its generalisation for

K -way tensor-valued data.

4.4 Nonparanormal Bigraphical Lasso Model

The method in Section 4.3 only deals with Gaussian data, while in real world many

data come in the form of count data. In this section, we introduce a Gaussian copula

based method to adapt Algorithm 5 for count data. We start by introducing the

definition of the matrix nonparanormal distribution with a Kronecker sum structure.

Definition 4.2 Consider a p×n non-Gaussian data matrix Y. Y follows a matrix non-

paranormal distribution with a Kronecker sum structure MNPNK S

(
M;Ψ−1

n×n ,Θ−1
p×p ; f

)
,

with mean matrix M, and whereΨn×n andΘp×p are the row-specific and the column-

specific precision matrices, if and only if there exists a set of monotonic transforma-

tions f = {
fi j

} j=1,...,n
i=1,...,p such that

vec
(

f (Y)
)∼ mN

(
vec(M),

(
Ψn×n ⊕Θp×p

)−1
)

.

In this chapter, we only consider the model after centering, i.e vec(M) = 0np . The

choices fi j
(
Yi j

)= Yi j and fi j
(
Yi j

)= lnYi j give us multivariate Normal distribution
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and multivariate log-Normal distribution respectively. Since we only require f to be

monotone, this model provides us with a wider family of distributions to work on,

thus extends the Bigraphical model to non-Gaussian data. We note that the model

in Definition 4.2 can be viewed as a latent model, with latent variable Z = f (Y) and

vec(Z) ∼ mN
(
0np ,

(
Ψn×n ⊕Θp×p

)−1
)
.

Following the arguments in Kalaitzis et al. (2013) and Greenewald et al. (2019), the

supports ofΨn×n andΘp×p encode the dependence structure of the row variables

and the column variables, respectively. Following the discussion in Section 2.2,

Ψn×n ⊕Θp×p represents the Cartesian product of the Gaussian Markov random field

graphs corresponding to the rows and the columns. In the next section, we introduce

a method to infer the nonparanormal distribution without explicitly defining f .

4.4.1 Estimation of the precision matrices

We now consider the estimation of the precision matricesΨn×n andΘp×p . Like the

lasso methods applied in one-way network inference and in Gaussian Bigraphical

models, we enforce sparsity on Ψn×n and Θp×p by regularization on the negative

log-likelihood, which gives us the objective function:

min
Ψn×n ,Θp×p

{
− ln |Ω | +ptr(Ψn×nT)+ntr

(
Θp×p S

)+β1∥Ψn×n∥1 +β2∥Θp×p∥1

}
,

where T = 1
p

(
ZZ⊤)

is the empirical covariance matrix along the rows, and S = 1
n

(
Z⊤Z

)
is the empirical covariance matrix along the columns. The only problem that remains

now is to estimate the empirical covariance matrices T and S. When estimating

one-way network, Liu et al. (2012) proposed the nonparanormal skeptic, exploiting

Kendall’s tau or Spearman’s rho, without explicitly calculating the marginal trans-

forming function f . Similarly, we define Kendall’s tau and Spearman’s rho along

rows and columns. More specifically, let r (c)
i j be the rank of Yi j among Y1 j , . . . ,Yp j

and r̄ (c)
j = 1

p

∑p
i=1 ri j = p+1

2 . Define ∆i ( j , j ′) = Yi j −Yi j ′ . We consider the following

statistics:

(Column-wise Kendall’s tau)

τ̂(c)
i1i2

= 2

n (n −1)

∑
j< j ′

sign
(
∆i1 ( j , j ′)∆i2 ( j , j ′)

)
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(Column-wise Spearman’s rho)

ρ̂(c)
i1i2

=
∑n

j=1

(
r (c)

i1 j − r̄ (c)
j

)(
r (c)

i2 j − r̄ (c)
j

)
√∑n

j=1

(
r (c)

i1 j − r̄ (c)
j

)2 (
r (c)

i2 j − r̄ (c)
j

)2
.

Similarly, let r (r )
i j be the rank of Yi j among Yi 1, . . . ,Yi n and r̄ (r )

i = 1
n

∑n
j=1 ri j = n+1

2 .

Define ∆ j (i , i ′) = Yi j −Yi ′ j . We consider the following statistics:

(Row-wise Kendall’s tau)

τ̂(r )
j1 j2

= 2

p
(
p −1

) ∑
i<i ′

sign
(
∆ j1 (i , i ′)∆ j2 (i , i ′)

)
,

(Row-wise Spearman’s rho)

ρ̂(r )
j1 j2

=
∑p

i=1

(
r (r )

i j1
− r̄ (r )

i

)(
r (r )

i j2
− r̄ (r )

i

)
√∑p

i=1

(
r (r )

i j1
− r̄ (r )

i

)2 (
r (r )

i j2
− r̄ (r )

i

)2
.

And the following estimated covariance matrices using Kendall’s tau and Spearman’s

rho:

T̂ j1 j2 =
{

sin
(
π
2 τ̂

(r )
j1 j2

)
, j1 ̸= j2,

1, j1 = j2.
(4.11)

T̂ j1 j2 =
{

2sin
(
π
6 ρ̂

(r )
j1 j2

)
, j1 ̸= j2,

1, j1 = j2.
(4.12)

Ŝi1i2 =
{

sin
(
π
2 τ̂

(c)
i1i2

)
, i1 ̸= i2,

1, i1 = i2.

Ŝi1i2 =
{

2sin
(
π
6 ρ̂

(c)
i1i2

)
, i1 ̸= i2,

1, i1 = i2.

In Algorithm 6 we summarise the Nonparanormal Scalable Bigraphical Lasso ap-

proach for count data.
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Algorithm 6 Nonparanormal scBiGLasso

Input: Maximum iteration number N , tolerance ε, M many observations of p ×n

count matrices Ym , m = 1, . . . , M . β1,β2 and initial estimates of Ψn×n and Θp×p ,

Ψ(0)
n×n andΘ(0)

p×p .

For each Ym , calculate T̂(m) according to Equation (4.11) or (4.12).

T ← 1
M

∑M
m=1 T̂(m)

repeat

# EstimateΨn×n :

for iteration τ= 1, . . . , N do

DecomposeΨ(τ−1)
n×n = U(τ−1)Λ(τ−1)

1 U(τ−1)⊤ andΘ(τ−1)
p×p = V(τ−1)Λ(τ−1)

2 V(τ−1)⊤.

for i = 1, . . . ,n do

PartitionΨ(τ−1)
n×n into ψ(τ−1)

i i ,ψ(τ−1)
i \i , ψ(τ−1)

\i i andΨ(τ−1)
\i \i .

Calculate A(τ−1)
\i \i as in Equation (4.10) and Proposition 4.2

with ψ(τ−1)
i i , U(τ−1),Λ(τ−1)

1 andΛ(τ−1)
1 .

With Lasso regression, find a sparse solution, ψ∗
i \i ,

for pti \i +A(τ−1)
\i \i ψ(τ)

i \i = 0n−1.

Calculate the direction vector from

ψ(τ−1)
i \i to ψ∗

i \i : ∆ψ(τ)
i \i =ψ∗

i \i −ψ(τ−1)
i \i .

Since the objective of solving pti \i +A(τ−1)
\i \i ψ(τ)

i \i = 0n−1

can be written as f
(
ψi \i

)= ∥∥∥ti \i + 1
p A(τ−1)

\i \i ψ(τ)
i \i

∥∥∥2

F
,

Calculate ∇ f
(
ψi \i

)= 2 1
p2 A(τ−1)⊤

\i \i A(τ−1)
\i \i ψ(τ)

i \i +2 1
p A(τ−1)⊤

\i \i ti \i .

Take ζ= min{λ11, . . . ,λ1n}.

# Implement FISTA (Beck & Teboulle, 2009) with backtracking line search.

Calculate Q = f
(
ψ(τ−1)

i \i

)
+∇ f

(
ψ(τ−1)

i \i

)⊤
∆ψ(τ)

i \i + 1
2ζ

∥∥∥∆ψ(τ)
i \i

∥∥∥2

F
and f (ψ∗

i \i ).

t0 = 1, a = 0.

while f
(
ψ∗

i \i

)>Q do

a = a +1, ta+1 =
1+

√
1+4t 2

a

2
.

ψ∗
i \i =ψ(τ−1)

i \i + ta −1

ta+1
∆ψ(τ)

i \i .

∆ψ(τ)
i \i =ψ∗

i \i −ψ(τ−1)
i \i .

Calculate Q = f
(
ψ(τ−1)

i \i

)
+∇ f

(
ψ(τ−1)

i \i

)⊤
∆ψ(τ)

i \i + 1
2ζ

∥∥∥∆ψ(τ)
i \i

∥∥∥2

F
and f (ψ∗

i \i ).

end while
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Update the non-diagonal column ψ(τ)
i \i =ψ∗

i \i .

end for

# EstimateΘp×p :

Proceed as if estimatingΨn×n with input Y⊤,β1,β2.

Calculate the change in the estimated matrices from each iteration

∆Ψ(τ) = ∥Ψ(τ)
n×n −Ψ(τ−1)

n×n ∥2
F ,

∆Θ(τ) = ∥Θ(τ)
p×p −Θ(τ−1)

p×p ∥2
F ,

end for

until Maximum iteration number reached, or

max
τ∗=τ−2,τ−1,τ

{
(∆Ψ(τ∗) +∆Θ(τ∗))

}< ε, for τ≥ 3.

4.5 Numerical Results

In this section, we implement our Scalable Bigraphical Lasso algorithm in MATLAB

(MATLAB, 2020). After precision matrices Ψn×n and Θp×p are inferred, they are

transformed into binary matrices to reveal the network structures, where any negative

value in the precision matrices become 1 and any non-negative value become 0. We

illustrate applications of our overall approach on both synthetic and real datasets as

described in the following subsections. The code to reproduce our results is available

on GitHub.

4.5.1 Synthetic Gaussian Data

To demonstrate the efficiency of our Scalable Bigraphical Lasso algorithm (Algorithm

5), we generate sparse positive definite matricesΨn×n andΘp×p , then simulate M

many p ×n Gaussian data Y (m)
G , m = 1, . . . , M from mN

(
0,

(
Ψn×n ⊕Θp×p

)−1
)
. We

plug Y (m)
G , m = 1, . . . , M into our implemented Algorithm 5, Bigraphical Lasso from

Kalaitzis et al. (2013) and TeraLasso from Greenewald et al. (2019). Figure 4.1 shows a

comparison between the convergence times of Algorithm 1 and Bigraphical Lasso for

increasing problem dimensions n = p. We can observe that, as expected, Algorithm

5 converges in significantly faster times, allowing one to tackle higher dimensional
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problems in practice. Table 4.1 shows the network recovery when n = p = 100. We

can see that our method provides high Accuracy while improving greatly on speed;

see Section 4.5.2 for the definition of Accuracy.

Table 4.1: Comparison between computational convergence times, Accuracy ofΨ

and ofΘ for Bigraphical Lasso (Kalaitzis et al., 2013), TeraLasso (Greenewald et al.,

2019) and Algorithm 5, on a synthetic Gaussian dataset with dimensions n = p = 100.

Method AccuracyΨ AccuracyΘ Time(s)

BigLasso 0.9032 0.9028 852.56

ScBigLasso 0.9032 0.9028 2.88

TeraLasso 0.7948 0.8460 0.42
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100

200

300

400
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700

800

900
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scBiglasso

Figure 4.1: Computational convergence time (seconds) comparison between Bi-

graphical Lasso (Kalaitzis et al., 2013) and Algorithm 5, for increasing values of the

dataset dimensions n = p.
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4.5.2 Synthetic count data

We generate and process Gaussian Copula-based count data through the following

steps:

1. Generate sparse positive definite matrix Ψn×n and Θp×p . Calculate the Kro-

necker sum of Ψn×n and Θp×p .Generate M multivariate-normal vectors of

length p ×n from mN
(
0,Ω−1

)
, whereΩ=Ψn×n ⊗ Ip + In ⊗Θp×p .

2. Centre each of the M multivariate-normal vectors around their mean, and

reshape the vectors into p ×n matrices X(1), . . . ,X(M).

3. For each X(m), m = 1, . . . , M , calculate the matrix P (m) such that P (m)
i j =Φ

(
X (m)

i j

)
,

whereΦ (·) is the cumulative density function of the standard normal distribu-

tion.

4. For each m = 1, . . . , M , produce the negative binomial variable

Y (m)
i j =QN B

(
P (m)

i j ,r, p
)

,

where QN B
(·,r, p

)
is the quantile function of Negative-Binomial

(
r, p

)
, with r

the number of success to be observed and p the success rate, resulting in M

matrices of count data Ym .

Below we describe some of the criteria we use to assess the recovery of the syn-

thetic network. Denote T P as the number of True Positives in the network recovery,

T N as the number of True Negatives in the network recovery, F P as the number of

False Positives in the network recovery, and F N the number of False Negatives in the

network recovery, then we can define

Pr eci si on = T P

T P +F P
, Recal l = T P

T P +F N
,

Accur ac y = T P +T N

T P +T N +F P +F N
,

T PR = T P

T P +F N
, F PR = F P

T N +F P
.

Figure 4.2 shows some results from synthetic data. Figure 4.2 (a) is the Precision-

Recall of the recovery ofΨn×n with changing β1 (different points on the graph) and
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β2 (different colours on the graph). Two arbitrary values of β2 have been chosen

to illustrate how the results do not depend on β2. This is expected as β1 is the

regularization parameter forΨn×n , while β2 corresponds toΘp×p . A similar result is

shown in Figure 4.2 (b), where the Precision-Recall of the recovery ofΘp×p heavily

depends on the choice of β2, regardless of the β1 value. Figure 4.2 (c)(d) show that

high values of T PR and Accuracy, with low values of F PR, can be achieved for

appropriate choices of β1 and β2 in the range [0.005,0.016].
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Figure 4.2: Synthetic network recovery results. (a) Precision-Recall of the network

recovery relating to the support ofΨn×n ; (b) Precision-Recall of the network recov-

ery relating to the support of Θp×p ; (c) Accuracy vs corresponding regularization

parameter β1 (β2) of the network recovery relating to the support ofΨn×n (Θp×p );

(d) TPR-FPR of the network recovery relating to the support ofΨn×n (Θp×p ), where

the corresponding regularization parameter β1 (β2) ∈ {0.005 : 0.001 : 0.0016}.
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Figure 4.3: Synthetic network recovery. We generated synthetic data as described in

Section 5.2 using a block-diagonal precision matrix forΘ0 plus Gaussian noise (Left

plot). On the right we plot the estimatedΘ via our method. In this example, we used

β2 = 0.002.

Figure 4.3 shows network recovery for another synthetic count dataset, where the

original precision matrixΘ0 was generated with block diagonals and Gaussian noise

throughout the matrix. We observe that our method leads to good recovery of the

corresponding blocks. Further discussion on the choice of optimal regularization

parameters β= (β1,β2) is in Subsection 4.5.5.
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4.5.3 An example from the COIL-20 Dataset

We use frames of several rotating objects from the COIL-201 dataset for data analysis.

Each frame is a grey-scaled picture, as shown in Figure 4.4.

Figure 4.4: First line: frames of a rotating rubber duck from COIL-20 dataset.

Second line: frames of a rotating toy cat from COIL-20 dataset.

Third line: frames of a ratating baby powder bottle from COIL-20 dataset.

Each original frame contained 128 pixels.

We reduced the resolution of each frame from 128×128 to 16×16, and subsampled

11 frames evenly from total 72 frames for each object, respectively. After vectorising

each frames (stacking their pixels into 256×1 vectors), we arrange them into a design

matrix Y. Here we wish to test if our model is able to cluster frames of the same

object together, so arranged the vectorised frames of all three objects into the same

matrix. This leads to a data matrix 256×33, where each column vector of length 256

is from a vectorised frame. The data were plugged into our Algorithm 6 of Scalable

Bigraphical Lasso. After inferring the matrixΨ (33×33) andΘ (256×256), we use a

binary transformation where only the negative values are considered as an edge in

the network.
1https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Figure 4.5: Recovered networks of both relationship between frames and between

pixels in frames. Ψ represents the relationship between frames (33 frames, 11 frames

for each of the three objects, respectively), whileΘ represents the structure in pixels.

In this example, we used (β1,β2) = (0.008,0.007).

Figure 4.5 shows the results inferred from the COIL-20 data. The network of

frames (Ψ) shows roughly three distinct clusters of frames every 11 frames, indeed,

when we arrange Y, the 1st-11th columns are the vectorised matrices from the frames

of rotating rubber ducks, the 12th-22nd columns are the vectorised matrices from

the frames of rotating toy cats, and the 23rd-33rd columns are the vectorised from

the frames of rotating baby powder bottles. The network of pixels (Θ) showed strong

dependencies between the 49th-160th pixels in intervals of roughly 16, where 16 is

the number of pixels we considered in each column of a frame, and the 49th-160th

pixels in the subsample of a frame roughly corresponds to where most of the white

pixels, i.e. the object itself are. This result shows that our method, the scalable

Bigraphical Lasso, is able to cluster image frames conditional on the dependencies

between pixels.

We acknowledge that the image clustering result presented still has space for

improvement. We shall improve this method for image clustering and discuss it

further in Chapter 5.
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4.5.4 mESC scRNA-seq data

We use a single cell gene expression dataset from mouse embryonic stem cells (mESC)

available in Buettner et al. (2015). The data consist of measurements of gene counts

in 182 single cells at different stages of the cell cycle. We will refer to the three phases

as G1, S and G2M, as shown in Figure 4.6. According to the label provided by Buettner

et al. (2015), in our dataset there are 65 cells in the G2M phase.

Figure 4.6: Cell cycle stages drawn according to the description in Humphrey &

Brooks (2008).

After analysing the list of gene names in dataset through DAVID tool (Dennis et al.,

2003), 700 genes are annotated as cell cycle related. Of these, we considered 167

genes more active during mitosis as labelled by DAVID, the cell division phase and

last part of the cell cycle (G2M).

In Figures 4.7 and 4.8, we show how our model allows the identification of the

sub-population of cells that correspond to the G2M stage. In Figure 4.7 we show

the estimated precision matrices for the cells (left) and the genes (right). We use

a binary transformation where only the negative values are considered an edge in

the network. In Figure 4.8 we plot the corresponding networks, over imposing the

clusters found with the label propagation approach developed by Raghavan et al.
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(2007) (implemented in R package igraph (Csardi et al., 2006)). We note that ∼ 92%

of the G2M cells are clustered in a densely connected module (Ψ network plot in

Figure 4.8), while no connection is measured between cells in different phases of the

cell cycle. As expected, on the other hand, the mitosis genes are all densely connected

in a single cluster (Θ network plot in Figure 4.8).
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Figure 4.7: Networks recovered by our proposed Scalable Bigraphical Lasso algo-

rithm combined with the nonparanormal transformation as described in Section 4.2,(
β1,β2

)= (0.014,0.001).

Figure 4.8: Ψ (left) andΘ (right) induced networks and communities. Each coloured

outer circles corresponds to a cluster. Different outer circles with similar colours

corresponds to different clusters. On the right, all the genes are identified to be in

the same cluster.
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4.5.5 The effect of regularization parameters

Our algorithms depend on the regularization parameters β1 and β2. Figure 4.10

below illustrates the effect of these parameters on the performance of our algorithms.

We generated two random sparse positive-definite matrices with a sparsity of 0.1

and non-zero entries normally distributed with mean 1 and variance 2. These were

used as precision matricesΨ0 andΘ0 to create the Kronecker product matrixΩ0 as

plotted in Figure 4.9. This synthetic dataset corresponds to the experiment plotted in

Figure 4.2.
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Figure 4.9: Precision matrix Ψ0 (left), Θ0 (centre) and corresponding Kronecker

product matrixΩ0 (right) for our exemplar synthetic dataset.

In Figure 4.10(a)-(b) we show the Precision-Recall for the estimated precision

matrices. In particular, subfigure (a) refers to the estimate of Ψn×n when varying

β1, while subfigure (b) refers to the estimate ofΘp×p when varying β2. These curves

suggest that optimal choices of β1 lie within the interval [0.007,0.01] and similarly

β2 should lie within the interval [0.006,0.008]. When choosing values within these

intervals, one tries to strike a balance between Precision and Recall. In order to

explore further the impact of the regularization parameters, we also computed the

Akaike Information Criteria (AIC ) (Akaike, 1998).

AICΨ =−2lnπ∗ (Y|Ψ)+2w,

AICΘ =−2lnπ∗ (Y|Θ)+2w,

where w is the number of edges in the estimated network, and

lnπ∗ (Y|Ψ) = lnπ(Y|Ψ,Θ)− terms not concerningΨ,

lnπ∗ (Y|Θ) = lnπ(Y|Ψ,Θ)− terms not concerningΘ.
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Figure 4.10: Synthetic network recovery results. Information Criterion and regulariza-

tion parameters.(a) Precision-Recall of the network recovery relating to the support

ofΨn×n ; (b) Precision-Recall of the network recovery relating to the support ofΘp×p ;

Akaike Information Criterion and regularization parameters. (c) β1-AICΨ; (d) β2-

AICΘ;

In subfigures (c) and (d) we plot the AIC curves corresponding to the estimated

precision matrices when varying β1 and β2 respectively. AIC is a heuristic criterion

that helps selecting from several models. Ones with lower AIC values are generally

preferred, however, a lower AIC does not necessarily indicate one model is better

than another and further investigation is usually needed. The AIC curve depicted in

subfigure (c) confirms the suggestion on the optimal choices for the regularization

parameters obtained with the Precision-Recall plot, but the AIC curve in subfigure

(d) suggest a vaguer range for optimal regularization parameter in [0.006,0.012].

Therefore, when dealing with problems without known truth, although AIC can be

used to help identify the interval of potential optimal regularization parameters, it is
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not necessarily accurate and should be used with caution. Alternative methods to

find the optimal regularization parameter should be explored in the future.

4.6 Conclusions

In this work, we present a Scalable Bigraphical Lasso algorithm. In particular, we

exploit eigenvalue decomposition of the Cartesian product graph to present a more

efficient version of the algorithm presented in Kalaitzis et al. (2013). Our approach

reduces memory requirements from O(n2p2) to O(n2 +p2), and reduces the com-

putational time by up to a factor of 200 in our experiments (case p = n = 100 in

Figure 4.1 and Table 4.1). Note that comparisons for n = p > 100 were restricted

because of the memory limitation in Kalaitzis et al. (2013). Additionally, we propose

a Gaussian-copula based model and a semiparametric approach that enables the

application of the proposed Bigraphical model to non-Gaussian data. This is particu-

larly relevant for count data applications, such as single cell data. Future work will

include optimisation of the choice of the regularization parameters, and potential

extension to K -way network inference for non-Gaussian data, with K > 2.

Data availability

The code and data is available at https://github.com/luisacutillo78/Scalable_

Bigraphical_Lasso.git.

106

https://github.com/luisacutillo78/Scalable_Bigraphical_Lasso.git
https://github.com/luisacutillo78/Scalable_Bigraphical_Lasso.git


Chapter 5

Scalable K-graphical Lasso

5.1 Introduction

In this chapter, we extend the two-way Scalable Bigraphical Lasso for application on

multi-way data. The main motivation of this extension is that tensor-valued data are

more and more common in the real world. For example, coloured images encodes

information in three colour channels: red, green and blue (RGB). Another example is

that functional magnetic resonance image (fRMI) data are naturally represented in

three-way tensors (Xu et al., 2017). Xiong et al. (2010) also considered the analysis of

tensor-valued data for recommendation systems.

Recently, Gaussian graphical models have been extended for application on

tensor-valued data. TeraLasso (Greenewald et al., 2019) considers a Kronecker sum

structured model for tensor-valued data. SyGlasso (Wang et al., 2020) considers a

Kronecker product structured model for tensor-valued data. In Chapter 4, we have

shown that in two-way cases, our Scalable Bigraphical Lasso algorithm obtains better

accuracy compared to TeraLasso, while we prefer a KS structured model for its spar-

sity and interpretability. Moreover, methods such as TeraLasso and SyGlasso have not

considered the application on non-Gaussian data. Following the previous arguments

in Section 2.2 and Chapter 4, we consider the Gaussian Copula associating with

Cartesian products of Gaussian Markov random field graphs, where each individual

Gaussian Markov random field graph encodes the dependency relationship along

each fibre of the tensor-valued data.
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This chapter is structured as follows: In Section 5.2 we present our Scalable

K-graphical Lasso algorithm for Gaussian tensor-valued data; In Section 5.3 we

present a semiparametric extension to the Scalable K-graphical Lasso method for

non-Gaussian data; In Section 5.4 we showcase the performance of our method on

both synthetic and real datasets.

5.2 Scalable K-graphical Lasso Algorithm

Similar to Greenewald et al. (2019), we assume that the vectorised tensor vec(Y)

follows a multivariate Normal distribution, in particular,

vec(Y) ∼ mN (0,Ω) ,

where

Ω=Ψ(1) ⊕Ψ(2) ⊕·· ·⊕Ψ(K ) =
K∑

i=1
I[d1:(i−1)]⊗Ψ(i ) ⊗ I[d(i+1):K ], (5.1)

with

Ψ(k) ∈Rdk×dk ,

I[dk:l ] = Idk ⊗·· ·⊗ Idl , k, l ≤ K ,k ≤ l .

For M independent identically distributed data samples
{
Y1, . . . ,YM

}
in the form of

K -way tensors, we estimate the sparse K S-structured inverse covariance matrices by

minimising the ℓ1-penalized negative log-likelihood:

min
Ψ(1),...,Ψ(K )

{
− ln |Ω | +∑

k
pk tr

(
Ψ(k)S(k)

)
+∑

k
βk∥Ψ(k)∥1

}
, (5.2)

where pk =
∏

(di )K
i=1

dk
, S(k) = 1

M pk

∑N
n=1 Y(n)

(k)Y(n)⊤
(k) ∈Rdk×dk with Y(n)

(k) being the matriciza-

tion of Y along mode k. Following the idea of flip-flop approach in Chapter 4, we

propose to focus on updating oneΨ(k) at a time while fixing all the otherΨ(k ′), k ′ ̸= k.

In case of no regularization, the k-th step of the optimization problem is reduced to

min
Ψ(k)

{
− ln |Ψ(1) ⊕·· ·⊕Ψ(k) ⊕·· ·⊕Ψ(K ) | +pk tr

(
Ψ(k)S(k)

)}
.

Obtaining the stationary point:

S(k) − 1

2pk
S(k) ◦ Idk =

1

pk
trpk (W)− 1

2pk
tr(W)◦ Idk , (5.3)
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5.2 Scalable K-graphical Lasso Algorithm

where ◦ is the Hadamard product and we define W = (
Ψ(1) ⊕·· ·⊕Ψ(K )

)−1
. The block-

wise trace trp (·) is an operator as defined in Definition 4.1.

Proof of equation (5.3). Focus onΨ(k) and ignore the penalty term, denote the ob-

jective function relevant toΨ(k), LΨ(k) , as

LΨ(k) =− ln |Ψ(1) ⊕·· ·⊕Ψ(k) ⊕·· ·⊕Ψ(K ) | +pk tr
(
Ψ(k)S(k)

)
.

Calculate the element-wise first-order derivative of Lk with respect toΨ(k):

∂ ln |Ψ(1) ⊕·· ·⊕Ψ(k) ⊕ . . .Ψ(K ) |
∂ψ(k)

i j

= tr

Ω−1∂
(
Ψ(1) ⊕·· ·⊕Ψ(k) ⊕·· ·⊕Ψ(K )

)
∂ψ(k)

i j


= tr

Ω−1

I[d1:(k−1)]⊗Ψ(k) ⊗ I[d(k+1):K ]

∂ψ(k)
i j


= tr

{
Ω−1

(
I[d1:(k−1)]⊗

(
Ji j + J j i − Ji j J j i

)
⊗ I[d(k+1):K ]

)}

= tr

W


0 . . . 0
... I(i , j )

pk

...

0 . . . 0


+ tr

{
W

(
I[d1:(k−1)]⊗ J j i ⊗ I[d(k+1):K ]

)}

− tr
{

W
(
I[d1:(k−1)]⊗ Ji j J j i ⊗ I[d(k+1):K ]

)}
= 2tr

{
W(i , j )

}− 1{i= j } · tr
{

Wi j
}

,

where Ji j is the single entry matrix with Ji j = 1 and zeros elsewhere, I(i , j ) is at the

(i , j )-th block of size pk ×pk , and

1{i= j } =
1, i = j ,

0, i ̸= j .

Taking into account the whole matrixΨ(k), we have

∂ ln |Ψ(1) ⊕·· ·⊕Ψ(k) ⊕·· ·⊕Ψ(K ) |
∂Ψ(k)

= 2trpk (W)− trpk (W)◦ Idk .

We also have

∂pk tr
(
Ψ(k)

)
∂Ψ(k)

= 2pk S(k) −S(k) ◦ Idk .
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To sum up, the first-order derivative of the objective function (ignoring the penalties)

with respect toΨ(k) is

∂Lk

∂Ψ(k)
=−2trpk (W)+ trpk (W)◦ Idk +2pk S(k) −S(k) ◦ Idk .

Let ∂Lk

∂Ψ(k) = 0, we have Equation (5.3).

To solve (5.3), consider the eigen-decompositionΨ(k) = U(k)Λk U(k)⊤ for all k =
1, . . . ,K , where Λk ∈ Rdk×dk are eigenvalue diagonal matrices, and U(k) =

(
u(k)

i j

)
∈

Rdk×dk are orthogonal eigenvector matrices. It follows that Equation (5.1) can be

rewritten as

Ω= (
U(1) ⊗·· ·⊗U(K ))( K∑

i=1
I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)(
U(1)⊤⊗·· ·⊗U(K )⊤)

. (5.4)

Proof of Equation (5.4).

Ω=
K∑

i=1
I[d1:(i−1)]⊗Ψ(i ) ⊗ I[d(i+1):K ]

=
K∑

i=1
I[d1:(i−1)]⊗U(i )Λi U(i )⊤⊗ I[d(i+1):K ]

=
K∑

i=1

(
U(1) ⊗·· ·⊗U(i−1)I[d1:(i−1)]U(1)⊤⊗·· ·⊗U(i−1)⊤

)
⊗U(i )Λi U(i )⊤

⊗
(
U(i+1) ⊗·· ·⊗U(K )I[d(i+1):K ]U(i+1)⊤⊗·· ·⊗U(K )⊤

)
=

K∑
i=1

(
U(1) ⊗·· ·⊗U(i−1) ⊗U(i ) ⊗U(i+1) ⊗·· ·⊗U(K )

)(
I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
·
(
U(1)⊤⊗·· ·⊗U(i−1)⊤⊗U(i )⊤⊗U(i+1)⊤⊗·· ·⊗U(K )⊤

)
=

(
U(1) ⊗·· ·⊗U(i−1) ⊗U(i ) ⊗U(i+1) ⊗·· ·⊗U(K )

)(
K∑

i=1
I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
· (U(1)⊤⊗·· ·⊗U(K )⊤)

.

We note that the inverse of a symmetric matrix for which an eigenvalue decom-

position is provided is obtained by inverting the eigenvalues,

W =Ω−1 = (
U(1) ⊗·· ·⊗U(K ))( K∑

i=1
I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)−1 (
U(1)⊤⊗·· ·⊗U(K )⊤)

.
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Taking(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)(
I[d1:(k−1)]⊗ Idk ⊗ I[d(k+1):K ]

)
= I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ],

then WΩ= I can be premultiplied by
(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
to provide(

U(1)⊤⊗·· ·⊗U(k−1)⊤⊗ Idk ⊗U(k+1)⊤⊗·· ·⊗U(K )⊤
)
·WΩ

=
(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

(
U(1)⊤⊗·· ·⊗U(K )⊤)

Ω,
(5.5)

where D =
(∑K

i=1 I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)−1
is a diagonal matrix.

Proof of Equation (5.5).(
U(1)⊤⊗·· ·⊗U(k−1)⊤⊗ Idk ⊗U(k+1)⊤⊗·· ·⊗U(K )⊤

)
·WΩ

=
(
U(1)⊤⊗·· ·⊗U(k−1)⊤⊗ Idk ⊗U(k+1)⊤⊗·· ·⊗U(K )⊤

)(
U(1) ⊗·· ·⊗U(K ))

·D
(
U(1)⊤⊗·· ·⊗U(K )⊤)

Ω

=
(
U(1)⊤U(1) ⊗·· ·⊗U(k−1)⊤U(k−1) ⊗ Idk Uk ⊗U(k+1)⊤U(k+1) ⊗·· ·⊗U(K )⊤U(K )

)
·D

(
U(1)⊤⊗·· ·⊗U(K )⊤)

Ω

=
(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

(
U(1)⊤⊗·· ·⊗U(K )⊤)

Ω.

If we multiply both sides of Equation (5.5) by
(
U(1) ⊗·· ·⊗U(k−1) ⊗ Idk ⊗U(k+1) ⊗·· ·⊗U(K )

)
,

we have

WΩ=
(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

(
I[

d1:(k1)
]⊗U(k)⊤⊗ I[d(k+1):K ]

)
·
(

I[d1:(k−1)]⊗Ψ(k) ⊗ I[d(k+1):K ]+
∑
i ̸=k

I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
.

(5.6)

Proof of Equation (5.6). If we multiply the left side of Equation (5.5) by
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(
U(1) ⊗·· ·⊗U(k−1) ⊗ Idk ⊗U(k+1) ⊗·· ·⊗U(K )

)
, we have(

U(1)⊤⊗·· ·⊗U(k−1)⊤⊗ Idk ⊗U(k+1)⊤⊗·· ·⊗U(K )⊤
)
·WΩ

·
(
U(1) ⊗·· ·⊗U(k−1) ⊗ Idk ⊗U(k+1) ⊗·· ·⊗U(K )

)
=

(
U(1)⊤⊗·· ·⊗U(k−1)⊤⊗ Idk ⊗U(k+1)⊤⊗·· ·⊗U(K )⊤

)
I

·
(
U(1) ⊗·· ·⊗U(k−1) ⊗ Idk ⊗U(k+1) ⊗·· ·⊗U(K )

)
=

(
U(1)⊤U(1) ⊗·· ·⊗U(k−1)⊤U(k−1) ⊗ Idk ⊗U(k+1)⊤U(k+1) ⊗·· ·⊗U(K )⊤U(K )

)
= I

= WΩ;

If we multiply the right side of Equation (5.5) by
(
U(1) ⊗·· ·⊗U(k−1) ⊗ Idk ⊗U(k+1) ⊗·· ·⊗U(K )

)
,

we have(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

(
U(1)⊤⊗·· ·⊗U(K )⊤)

Ω

·
(
U(1) ⊗·· ·⊗U(k−1) ⊗ Idk ⊗U(k+1) ⊗·· ·⊗U(K )

)
=

(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

· (U(1)⊤⊗·· ·⊗U(K )⊤)(
U(1) ⊗·· ·⊗U(K ))D

· (U(1)⊤⊗·· ·⊗U(K )⊤)(
U(1) ⊗·· ·⊗U(k−1) ⊗ Idk ⊗U(k+1) ⊗·· ·⊗U(K )

)
=

(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

·
(
I[d1:(k−1)]⊗U(k)⊤U(k) ⊗ I[d(k+1):K ]

)(
K∑

i=1
I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
·
(
I[d1:(k−1)]⊗U(k)⊤⊗ I[d(k+1):K ]

)
=

(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

·
(
I[d1:(k−1)]⊗U(k)⊤⊗ I[d(k+1):K ]

)(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)(
K∑

i=1
I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
·
(
I[d1:(k−1)]⊗U(k)⊤⊗ I[d(k+1):K ]

)
=

(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

(
I[d1:(k−1)]⊗U(k)⊤⊗ I[d(k+1):K ]

)
·
(

I[d1:(k−1)]⊗Ψ(k) ⊗ I[d(k+1):K ]+
∑
i ̸=k

I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
.
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According to Equation (5.6), we consider the following approximation of W and

Ω:

Ŵ =
(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
D

(
I[d1:(k−1)]⊗U(k)⊤⊗ I[d(k+1):K ]

)
,

Ω̂=
(

I[d1:(k−1)]⊗Ψ(k) ⊗ I[d(k+1):K ]+
∑
i ̸=k

I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
.

Without loss of generality, consider k = 1, then:

Ŵ = (
U(1) ⊗ I[d2:K ]

)
D

(
U(1)⊤⊗ I[d2:K ]

)
,

Ω̂=
(
Ψ(1) ⊗ I[d2:K ] +

∑
i>1

I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
.

We partition Ŵ and Ω̂ into blocks

Ŵ =
[

Ŵ11 Ŵ1\1

Ŵ\11 Ŵ\1\1

]
,

Ω̂=
[
Ω̂11 Ω̂1\1

Ω̂\11 Ω̂\1\1

]
,

where Ŵ11 and Ω̂11 are p1 ×p1 matrices and Ŵ\11 and Ω̂\11 are p1 (d1 −1)×p1. Note

that I[d2:K ] = Ip1 , then from the bottom-left block of

ŴΩ̂= Ŵ

(
Ψ(1) ⊗ I[d2:K ] +

∑
i>1

I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
= Id1 ⊗ Ip1 ,

we get

Ŵ\11 · Ω̂11 +Ŵ\1\1Ω̂\11

= Ŵ\11 ·
(
ψ(1)

11 Ip1 +
∑
i ̸=1

I[d2:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
+Ŵ\1\1 ·

(
ψ\11 ⊗ Ip1

)
= 0d1−1 ⊗ Ip1 ,

where we use the notation Ψ(k) =
(
ψ(k)

i j

)
i , j=1,...,dk

and ψ(k)
\i i representing the corre-

sponding sub-block. Post multiplying both sides of the last equation by(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)
we have

Ŵ\11 +Ŵ\1\1


(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1
ψ(1)

21
...(

ψ(1)
11 Ip1 +

∑
i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1
ψ(1)

d11

= 0d1−1 ⊗ Ip1 . (5.7)
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Proof of Equation (5.7). In order to prove Equation (5.7), we first note that, from the

bottom-left block of ŴΩ̂= Id1 ⊗ Ip1 , where

Ŵ =
[

Ŵ11 Ŵ1\1

Ŵ\11 Ŵ\1\1

]

and

Ω̂=


ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ I[d(i+1):K ] . . . ψ(1)
1d1

Ip1

...
. . .

...

ψ(1)
d11Ip1 . . . ψ(1)

d1d1
Ip1 +

∑
i ̸=1 I[d2:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

 ,

we get

Ŵ\11 · Ω̂11 +Ŵ\1\1Ω̂\11

= Ŵ\11 ·
(
ψ(1)

11 Ip1 +
∑
i ̸=1

I[d2:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)
+Ŵ\1\1 ·

(
ψ\11 ⊗ Ip1

)
= 0d1−1 ⊗ Ip1 .

Thus, multiplying both sides of the last equation by(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)
, one has Equation (5.7).

Decomposing Ŵ\1\1 in (dk−1) adjacent blocks W\1k ∈R(d1−1)p1×p1 , ∀k ∈ {2, . . . ,d1},

then Equation (5.7) can be rewritten as

Ŵ\11+Ŵ\12

(
ψ(1)

11 Ip1 +
∑
i ̸=1

I[d2:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)−1

ψ(1)
21 + . . .

· · ·+Ŵ\1d1

(
ψ(1)

11 Ip1 +
∑
i ̸=1

I[d2:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)−1

ψ(1)
p11 = 0d1−1 ⊗ Ip1 .

Proposition 5.1 Following the assumptions and calculations above we have

trpk (W) = trpk

(
Ŵ

)
,∀k = 1, . . . ,K .

Proof of Proposition 5.1. Without losing generality, we prove the case where k = 1.

114



5.2 Scalable K-graphical Lasso Algorithm

Proposition 5.1 becomes trp1 (W) = trp1

(
Ŵ

)
, which follows from the fact that[

Id1 ⊗U(2)⊤⊗·· ·⊗U(K )⊤]
W

[
Id1 ⊗U(2) ⊗·· ·⊗U(K )]

= [
Id1 ⊗U(2)⊤⊗·· ·⊗U(K )⊤](

U(1) ⊗·· ·⊗U(K ))( K∑
i=1

I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)−1

· (U(1)⊤⊗·· ·⊗U(K )⊤)[
Id1 ⊗U(2) ⊗·· ·⊗U(K )]

= [
Id1 U(1) ⊗U(2)⊤U(2) ⊗·· ·⊗U(K )⊤U(K )](

K∑
i=1

I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)−1

· [U(1)⊤Id1 ⊗U(2)⊤U(2) ⊗·· ·⊗U(K )⊤U(K )]
= [

U(1) ⊗ I[d2:K ]
]

D
[
U(1)⊤⊗ I[d2:K ]

]
= Ŵ.

Then, the p1 ×p1 blocks of W and Ŵ hold a similarity relation:

Ŵi j =
(
U(2)⊤⊗·· ·⊗U(K )⊤)

Wi j
(
U(2) ⊗·· ·⊗U(K ))

and hence trp1 (W) = trp1

(
Ŵ

)
.

Proposition 5.1 enables us to make use of the stationary point given in Equation

(5.3). Similarly to Chapter 4, we can partition the empirical covariance along the

mode-1 fibre, S(1) as

S(1) =
[

s(1)
11 s(1)

1\1
s(1)

\11 S(1)
\1\1

]
,

where s(1)
11 ∈R, s(1)

1\1 ∈Rdk−1, s(1)
\11 ∈Rdk−1, S(1)

\1\1 ∈R(d1−1)×(d1−1). In particular, from the

lower left block of Equation (5.3) we get

S(1) = 1

p1
trp1 (W) . (5.8)

Taking the operation trp1 (·) on both sides of Equation (5.7), gives

trp1

(
Ŵ\11

)+


trp1

{
Ŵ\1\1

(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1
ψ(1)

21

}
...

trp1

{
Ŵ\1\1

(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1
ψ(1)

d11

}
= 0. (5.9)

From Proposition 5.1 we also have

trp1 (W) = trp1

(
Ŵ

)
.
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Combining the above equation with (5.9) and (5.8), we have:

p1s(1)
\11 +A(1)

\1\1ψ\11 = 0d1−1, (5.10)

where

A(1)
\1\1 =


trp1

{
Ŵ\1\1

(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1
ψ(1)

21

}⊤

...

trp1

{
Ŵ\1\1

(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1
ψd11

}⊤

 . (5.11)

The problem posed in Equation (5.10) is addressed via a lasso regression method from

Friedman et al. (2008). In Proposition 5.2 we use some of the previous decomposition

in order to reduce the computational complexity of the problem.

Proposition 5.2 Following the assumptions and calculations above we have

trp1

{
Ŵ\1\1

(
ψ(1)

11 Ip1 +
∑
i ̸=1

I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1

ψ(1)
k1

}⊤

=
d2∑

j2=1
· · ·

dK∑
jK =1

1

ψ(1)
11 +λ2 j2 +·· ·+λK jK


∑d1

i=1

u(1)
2i u(1)

ki
λ1i+λ2 j2+···+λK jK

...∑d1
i=1

u(1)
d1i u(1)

ki

λ1i+λ2 j2+···+λK jK

 ,

where λk1, . . . ,λkdk are the diagonal values ofΛk ∈Rdk×dk , ∀k = 1, . . . ,K .

Proof of Proposition 5.2. To prove Proposition 5.2, we note that

Ŵ\1\1 =
[

U(1)
\1 ⊗ Ip1

]
D

[
U(1)⊤

\1 ⊗ Ip1

]

=


u21Ip1 . . . u2d1 Ip1

...
. . .

...

ud11Ip1 . . . ud1d1 Ip1

D


u21Ip1 . . . ud11Ip1

...
. . .

...

u2d1 Ip1 . . . ud1d1 Ip1

 ,

where U\1 ∈R(d1−1)×d1 is the matrix formed by the last d1 −1 rows of U(1). Then, we

can decompose Ŵ\1\1 in (d1 −1)× (d1 −1) blocks [Ŵ\1\1]ℓ,k ∈Rp1×p1 , with

[Ŵ\1\1]ℓ,k =
[∑d1

i=1
uℓi uki

λ1i+λ21+···+λK 1
. . . 0

0 . . .
∑d1

i=1
uℓi uki

λ1i+λ2d2+···+λK dK

]
, ℓ,k ∈ {2, . . . ,d1}.
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This formulation allows us to write each trace term of Equation (5.10) as

trp1

{
Ŵ\1k

(
ψ(1)

11 Ip1 +
∑
i ̸=1

I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1}

=


tr

{
Ŵ\1\1

}
1,k

(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1

...

tr
{

Ŵ\1\1
}

(d1−1),k

(
ψ(1)

11 Ip1 +
∑

i ̸=1 I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1

 , k ∈ {2, . . . ,d1}.

More explicitly,

trp1

{
Ŵ\1k

(
ψ(1)

11 Ip1 +
∑
i ̸=1

I[d2:(i−1)]⊗Λi ⊗ Id[(i+1):K ]

)−1}

=



∑d2
j2=1 · · ·

∑dK
jK =1

∑d1
i=1

1
ψ(1)

11 +λ2 j2+···+λK jK
· u(1)

2i u(1)
ki

λ1i+λ2 j2+···+λK jK∑d2
j2=1 · · ·

∑dK
jK =1

∑d1
i=1

1
ψ(1)

11 +λ2 j2+···+λK jK
· u(1)

3i u(1)
ki

λ1i+λ2 j2+···+λK jK

...∑d2
j2=1 · · ·

∑dK
jK =1

∑d1
i=1

1
ψ(1)

11 +λ2 j2+···+λK jK
· u(1)

d1i u(1)
ki

λ1i+λ2 j2+···+λK jK



=
d2∑

j2=1
· · ·

dK∑
jK =1

1

ψ(1)
11 +λ2 j2 +·· ·+λK jK


∑d1

i=1

u(1)
2i u(1)

ki
λ1i+λ2 j2+···+λK jK

...∑d1
i=1

u(1)
d1i u(1)

ki

λ1i+λ2 j2+···+λK jK

 .

We note that by imposing an ℓ1 penalty onΨ(1)
\11, the problem posed in (5.10) re-

duces to a lasso regression involving now only the matrix U, the diagonal ofΛ1, . . . ,ΛK

and ψ11. This decomposition frees the prohibitive amount of memory needed to

store the matrix Ŵ, which is of size d 2
1 p2

1.

The lasso regression will provide an estimation on the first column ofΨ(1). For

updating all the other columnsΨ(1)
\i i we need to reiterate the same approach. Indeed

we partition Ψ(1) into ψ(1)
i i ,ψ(1)

\i i and Ψ(1)
\i \i for i = 1, . . . ,d1. We then find a sparse

solution of p1s(1)
\i i +A\i \iψ

(1)
\i i = 0n−1 with lasso regression. Hence, after n steps, the

columns ofΨ(1) are estimated. Given all the new values ψ(1)
\i i , i = 1, . . . ,d1, we then

compute the eigenvalues matrix Λ1 and eigenvectors matrix U(1) ofΨ(1). This will
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5.2 Scalable K-graphical Lasso Algorithm

provide the updated values to be used in Proposition 5.2. Similarly the estimation

ofΨ(k), k = 2, . . . ,K , conditionally on fixedΨ(1), . . . ,Ψ(k−1),Ψ(k+1), . . . ,Ψ(K ) becomes

directly analogous to the above simply by focusing on the estimated covariance S(k)

along the mode-k fibre and is obtained in dk steps.

Our approach is summarised in Algorithm 7 for Gaussian data. We point out

that the convergence of Algorithm 7 could also be directly verified on the value

of the objective function (5.2) at each step. However, due to the computation of∣∣Ψ(1) ⊕·· ·⊕Ψ(K )
∣∣, this becomes unfeasible with bigger K and bigger d1, . . . ,dK . In-

deed, the space complexity can be reduced from O
(∏K

k=1 d 2
k

)
to O

(∑K
k=1 d 2

k

)
by means

of Proposition 5.3.

Algorithm 7 scKGLasso

Input: Maximum iteration number N , tolerance ε,

M many observations of d1 ×·· ·×dK tensors Ym , m = 1, . . . , M .

Regularization parameters β1, . . . ,βK , initial estimates ofΨ(k), denoted as

Ψ(k)(0), k = 1, . . . ,K .

For each Ym , k = 1, . . . ,K , perform matricization along mode-k fibre,

obtaining Y(k)
m .

Calculate Ŝ(k)
m ← p−1

k Y(k)
m Y(k)⊤

m .

Ŝ(k) ← 1
M

∑M
m=1 Ŝ(k)

m

repeat

for iteration τ= 1, . . . , N do

DecomposeΨ(k)(τ−1) = U(k)(τ−1)Λ(τ−1)
k U(k)(τ−1)⊤, k = 1, . . . ,K .

for k = 1, . . . ,K do

# EstimateΨ(k) :

for i = 1, . . . ,d1 do

PartitionΨ(k)(τ−1) into ψ(k)(τ−1)
i i ,ψ(k)(τ−1)

i \i , ψ(k)(τ−1)
\i i andΨ(k)(τ−1)

\i \i .

Calculate A(k)(τ−1)
\i \i similar to Proposition 5.2

with ψ(k)(τ−1)
i i , U(k)(τ−1),Λ(k)(τ−1)

1 andΛ(k)(τ−1)
1 .

With Lasso regression (Friedman et al., 2008), find a sparse solution,ψ(k)∗
i \i ,

for pk s(k)
i \i +A(k)(τ−1)

\i \i ψ(k)(τ)
i \i = 0dk−1.

118
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Calculate the direction vector from

ψ(k)(τ−1)
i \i to ψ(1)∗

i \i : ∆ψ(k)(τ)
i \i =ψ(k)∗

i \i −ψ(k)(τ−1)
i \i .

Since the objective of solving pk si \i +A(k)(τ−1)
\i \i ψ(k)(τ)

i \i = 0dk−1

can be written as f
(
ψ(k)(τ)

i \i

)
=

∥∥∥si \i + 1
pk

A(k)(τ−1)
\i \i ψ(k)(τ)

i \i

∥∥∥2

F
,

Calculate ∇ f
(
ψ(k)(τ)

i \i

)
= 2 1

p2
k

A(k)(τ−1)⊤
\i \i A(k)(τ−1)

\i \i ψ(k)(τ)
i \i +2 1

pk
A(k)(τ−1)⊤

\i \i s(k)
i \i .

Take ζ= min
{
λk1, . . . ,λkdk

}
.

# Implement FISTA (Beck & Teboulle, 2009) with backtracking line search.

Calculate Q = f
(
ψ(k)(τ−1)

i \i

)
+∇ f

(
ψ(k)(τ−1)

i \i

)⊤
∆ψ(k)(τ)

i \i + 1
2ζ

∥∥∥∆ψ(k)(τ)
i \i

∥∥∥2

F
and

f (ψ(k)∗
i \i ).

t0 = 1, a = 0.

while f
(
ψ(k)∗

i \i

)
>Q do

a = a +1, ta+1 =
1+

√
1+4t 2

a

2
.

ψ(k)∗
i \i =ψ(k)(τ−1)

i \i + ta −1

ta+1
∆ψ(k)(τ)

i \i .

∆ψ(k)(τ)
i \i =ψ(k)∗

i \i −ψ(k)(τ−1)
i \i .

Calculate Q = f
(
ψ(k)(τ−1)

i \i

)
+∇ f

(
ψ(k)(τ−1)

i \i

)⊤
∆ψ(k)(τ)

i \i + 1
2ζ

∥∥∥∆ψ(k)(τ)
i \i

∥∥∥2

F

and f (ψ(k)∗
i \i ).

end while

Update the non-diagonal column ψ(k)(τ)
i \i =ψ(k)∗

i \i .

end for

Calculate the change in the estimated matrices from each iteration

∆Ψ(k)(τ) = ∥Ψ(k)(τ) −Ψ(k)(τ−1)∥2
F ,

end for

end for

until Maximum iteration number reached, or

max
τ∗=τ−2,τ−1,τ

{∑K
k=1∆Ψ

(k)(τ∗)
}< ε, for τ≥ 3.
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Proposition 5.3 Following the assumptions and calculations above we have

∣∣Ψ(1) ⊕·· ·⊕Ψ(K )
∣∣= d1∏

j1=1
· · ·

dK∏
jK =1

(
λ1 j1 +·· ·+λK jK

)
.

Proof of Proposition 5.3. Proposition 5.3 follows from the fact that

W =Ω−1 = (
U(1) ⊗·· ·⊗U(K ))( K∑

i=1
I[d1:(i−1)]⊗Λi ⊗ I[d(i+1):K ]

)−1 (
U(1)⊤⊗·· ·⊗U(K )⊤)

,

and

D =



1∑K
k=1λk1

0 . . . . . . . . . 0

0 1
λ11+λ22+∑K

k=3λk1
0 . . . . . . 0

...
...

. . .
...

...
...

0 . . . . . . 1
λ11+∑K

k=1λkdk

. . . 0

...
...

...
...

. . .
...

0 . . . . . . . . . . . . 1∑K
k=1λkdk


,

where λk1 . . .λkdk are the diagonal values ofΛk ∈Rdk×dk , k = 1, . . . ,K . Then, we can

write∣∣Ψ(1) ⊕·· ·⊕Ψ(K )
∣∣= ∣∣(U(1) ⊗·· ·⊗U(K ))D−1 (

U(1)⊤⊗·· ·⊗U(K )⊤)∣∣= ∣∣U(1) ⊗·· ·⊗U(K )
∣∣2 ∣∣D−1

∣∣
=

K∏
k=1

(∣∣∣U(k)
∣∣∣2pk

)
·

d1∏
j1=1

· · ·
dK∏

jK =1

(
λ1 j1 +·· ·+λK jK

)
=

d1∏
j1=1

· · ·
dK∏

jK =1

(
λ1 j1 +·· ·+λK jK

)
.

It follows that:

ln
∣∣Ψ(1) ⊕·· ·⊕Ψ(K )

∣∣= d1∑
j1=1

· · ·
dK∑

jK =1
ln

∣∣λ1 j1 +·· ·+λK jK

∣∣=C .

Hence we can write the objective function as

min
Ψ(1),...,Ψ(K )

{∑
k

pk tr
(
Ψ(k)S(k)

)
−C +∑

k
βk∥Ψ(k)∥1

}
.
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In summary, as we are not interested in the estimation of the overall W norΩ,

we will never explicitly update them, but we will rather focus on the estimation

of Ψ(k), k = 1, . . . ,K . This leads to a space complexity of O
(∑K

k=1 d 2
k

)
by means of

Proposition 5.2 and Proposition 5.3.

Our Scalable K-graphical Lasso algorithm (ScK) benefits from the same statistical

convergence properties embedded in the original Bigraphical Lasso model (Kalaitzis

et al., 2013) and its extension for K -way tensor data in Greenewald et al. (2019).

Greenewald et al. (2019) gives the statistical convergence rates (Greenewald et al.,

2019, Theorems 1-3) (Greenewald et al., 2019, Lemma 19, Supplementary Material)

of the Bigraphical Lasso model and its generalisation for K -way tensor data.

5.3 Nonparanormal K-graphical Lasso Model

The method in Section 5.2 only deals with Gaussian data, while in real world many

data come in the form of count data. In this Section, we introduce a Gaussian copula

based method to adapt Algorithm 7 for count data and other non-Gaussian data. We

start by introducing the definition of the tensor nonparanormal distribution with a

Kronecker sum structure.

Definition 5.1 Consider a d1 ×·· ·×dK non-Gaussian data tensor Y. Y follows a

tensor nonparanormal distribution with a Kronecker sum structure

TNPNK S

(
M;

{(
Ψ(k)

)−1
}K

k=1
; f

)
, with mean tensor M, and where Ψ(k) is the preci-

sion matrix along the mode-k fibre, ∀k = 1, . . . ,K , if and only if there exists a set of

monotonic transformations f = {
f j1... jK

}
jk∈{1,...,dk },k∈{1,...,K } such that

vec
(

f (Y)
)∼ mN

(
vec(M),

(
Ψ(1) ⊕·· ·⊕Ψ(K ))−1

)
.

In this chapter, we only consider the model after centering, i.e vec(M) = 0∏K
k=1 dk

. The

choices f j1... jK

(
Y j1... jK

) = Y j1... jK and f j1... jK

(
Y j1... jK

) = lnY j1... jK give us multivariate

Normal distribution and multivariate log-Normal distribution respectively. Since

we only require f to be monotone, this model provides us with a wider family of

distributions to work on, thus extends the K-graphical model to non-Gaussian data.

We note that the model in Definition 5.1 can be viewed as a latent model, with latent

variable Z= f (Y) and vec(Z) ∼ mN
(
0∏K

k=1(dk ),
(
Ψ(1) ⊕·· ·⊕Ψ(K )

)−1
)
.
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Following the arguments in Chapter 4 and Kalaitzis et al. (2013), the support

of Ψ(k) encodes the dependence structure of variables along the mode-k fibre of

Y, ∀k = 1, . . . ,K , respectively. Following the discussion in Section 2.2, Ψ(1) ⊕ ·· · ⊕
Ψ(K ) represents the Cartesian product of the Gaussian Markov random field graphs

corresponding to every fibres on mode k = 1, . . . ,K . Similarly to Subsection 4.4.1,

in next subsection we inroduce a method to infer the nonparanormal distribution

without explicitly defining f .

5.3.1 Estimation of the precision matrices

We now consider the estimation of the precision matricesΨ(k), k = 1, . . . ,K . Like the

lasso methods applied in one-way network inference and in Gaussian Bigraphical

models, we enforce sparsity onΨ(k), k = 1, . . . ,K by regularization on the negative

log-likelihood, which gives us the objective function:

min
Ψ(1),...,Ψ(k)

{
− ln |Ω | +∑

k
pk tr

(
Ψ(k)S(k)

)
+∑

k
βk∥Ψ(k)∥1

}
,

where S(k) = 1
pk

(
Z(k)Z(k)⊤)

is the empirical covariance matrix along the mode-k fi-

bre, and Z(k) is the matricization of Z along mode-k fibre. The only problem that

remains now is to estimate the empirical covariance matrices S(k), k = 1, . . . ,K . When

estimating one-way network, Liu et al. (2012) proposed the nonparanormal skeptic,

exploiting Kendall’s tau or Spearman’s rho, without explicitly calculating the marginal

transforming function f . Similarly, we define Kendall’s tau and Spearman’s rho

along each mode-k fibre, k = 1, . . . ,K . More specifically, let r (k)
jk i be the rank of Y (k)

jk i

among Y (k)
1i , . . . ,Y (k)

dk i and r̄ (k)
i = 1

dk

∑dk
jk=1 r jk i = dk+1

2 . Define ∆(k)
jk

(i , i ′) = Y (k)
jk i −Y (k)

jk i ′ .

We consider the following statistics:

(mode-k-fibre-wise Kendall’s tau)

τ̂(k)
jk j ′k

= 2

pk
(
pk −1

) ∑
i1<i2

sign

(
∆(k)

jk
(i1, i2)∆(k)

j ′k
(i1, i2)

)
(mode-k-fibre-wise Spearman’s rho)

ρ̂(k)
jk j ′k

=
∑pk

i1=1

(
r (k)

jk i1
− r̄ (k)

i1

)(
r (k)

jk i2
− r̄ (k)

i2

)
√∑pk

i2=1

(
r (k)

jk i1
− r̄ (k)

i1

)2 (
r (k)

jk i2
− r̄ (k)

i2

)2
.

122



5.3 Nonparanormal K-graphical Lasso Model

And the following estimated covariance matrices using Kendall’s tau and Spearman’s

rho:

Ŝ(k)
jk j ′k

=
sin

(
π
2 τ̂

(k)
jk j ′k

)
, jk ̸= j ′k ,

1, jk = j ′k .
(5.12)

Ŝ(k)
jk j ′k

=
2sin

(
π
6 ρ̂

(k)
jk j ′k

)
, jk ̸= j ′k ,

1, jk = j ′k .
(5.13)

In Algorithm 8 we summarise the Nonparanormal Scalable K-graphical Lasso ap-

proach for count data.

Algorithm 8 Nonparanormal scKGLasso

Input: Maximum iteration number N , tolerance ε,

M many observations of d1 ×·· ·×dK tensors Ym , m = 1, . . . , M .

Regularization parameters β1, . . . ,βK , initial estimates ofΨ(k), denoted as

Ψ(k)(0), k = 1, . . . ,K .

For each Ym , k = 1, . . . ,K , perform matricization along mode-k fibre,

obtaining Y(k)
m .

For each Y(k)
m , calculate Ŝ(k)

m according to Equation (5.12) or (5.13).

Ŝ(k) ← 1
M

∑M
m=1 Ŝ(k)

m

repeat

for iteration τ= 1, . . . , N do

DecomposeΨ(k)(τ−1) = U(k)(τ−1)Λ(τ−1)
k U(k)(τ−1)⊤, k = 1, . . . ,K .

for k = 1, . . . ,K do

# EstimateΨ(k) :

for i = 1, . . . ,d1 do

PartitionΨ(k)(τ−1) into ψ(k)(τ−1)
i i ,ψ(k)(τ−1)

i \i , bψ(k)(τ−1)
\i i andΨ(k)(τ−1)

\i \i .

Calculate A(k)(τ−1)
\i \i similar to Proposition 5.2

with ψ(k)(τ−1)
i i , U(k)(τ−1),Λ(k)(τ−1)

1 andΛ(k)(τ−1)
1 .

With Lasso regression (Friedman et al., 2008), find a sparse solution,ψ(k)∗
i \i ,

for pk s(k)
i \i +A(k)(τ−1)

\i \i ψ(k)(τ)
i \i = 0dk−1.
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Calculate the direction vector from

ψ(k)(τ−1)
i \i to ψ(1)∗

i \i : ∆ψ(k)(τ)
i \i =ψ(k)∗

i \i −ψ(k)(τ−1)
i \i .

Since the objective of solving pk si \i +A(k)(τ−1)
\i \i ψ(k)(τ)

i \i = 0dk−1

can be written as f
(
ψ(k)(τ)

i \i

)
=

∥∥∥si \i + 1
pk

A(k)(τ−1)
\i \i ψ(k)(τ)

i \i

∥∥∥2

F
,

Calculate ∇ f
(
ψ(k)(τ)

i \i

)
= 2 1

p2
k

A(k)(τ−1)⊤
\i \i A(k)(τ−1)

\i \i ψ(k)(τ)
i \i +2 1

pk
A(k)(τ−1)⊤

\i \i s(k)
i \i .

Take ζ= min
{
λk1, . . . ,λkdk

}
.

# Implement FISTA (Beck & Teboulle, 2009) with backtracking line search.

Calculate Q = f
(
ψ(k)(τ−1)

i \i

)
+∇ f

(
ψ(k)(τ−1)

i \i

)⊤
∆ψ(k)(τ)

i \i + 1
2ζ

∥∥∥∆ψ(k)(τ)
i \i

∥∥∥2

F
and

f (ψ(k)∗
i \i ).

t0 = 1, a = 0.

while f
(
ψ(k)∗

i \i

)
>Q do

a = a +1, ta+1 =
1+

√
1+4t 2

a

2
.

ψ(k)∗
i \i =ψ(k)(τ−1)

i \i + ta −1

ta+1
∆ψ(k)(τ)

i \i .

∆ψ(k)(τ)
i \i =ψ(k)∗

i \i −ψ(k)(τ−1)
i \i .

Calculate Q = f
(
ψ(k)(τ−1)

i \i

)
+∇ f

(
ψ(k)(τ−1)

i \i

)⊤
∆ψ(k)(τ)

i \i + 1
2ζ

∥∥∥∆ψ(k)(τ)
i \i

∥∥∥2

F

and f (ψ(k)∗
i \i ).

end while

Update the non-diagonal column ψ(k)(τ)
i \i =ψ(k)∗

i \i .

end for

Calculate the change in the estimated matrices from each iteration

∆Ψ(k)(τ) = ∥Ψ(k)(τ) −Ψ(k)(τ−1)∥2
F

end for

end for

until Maximum iteration number reached, or

max
τ∗=τ−2,τ−1,τ

{∑K
k=1∆Ψ

(k)(τ∗)
}< ε, for τ≥ 3.
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5.4 Numerical Results

In this section, we implement our Scalable K-graphical Lasso algorithm in MATLAB

(MATLAB, 2020). After inferring the precision matricesΨ(k),k = 1, . . . ,K , these ma-

trices are transformed into binary matrices to reveal the network structures, where

any negative value in the precision matrices become 1 and any non-negative value

become 0. We illustrate applications of our overall approach on both synthetic and

real datasets as described in the following subsections.

5.4.1 Synthetic Gaussian Data

To compare our Scalable K-graphical Lasso algorithm (Algorithm 7) with TeraLasso

(Greenewald et al., 2019), we generate K = 3 sparse positive definite matricesΨ(k)
0 ∈

Rdk×dk , k = 1, . . . ,K , then we simulate M many d1×·· ·×dK Gaussian data vec
(
Y(m)

G

)
,

m = 1, . . . , M , from mN
(
0,

(
Ψ(1) ⊕·· ·⊕Ψ(K )

)−1
)
. We plug Y(m)

G , m = 1, . . . , M into our

implemented Algorithm 7 and TeraLasso from Greenewald et al. (2019). For network

recovery criteria such as Precision, Recall, Accuracy and TPR and FPR, we refer the

readers to our definitions in Subsection 4.5.2.

Figure 5.1 shows a comparison between the convergence times and Accuracy of

Algorithm 7 and TeraLasso for increasing problem dimensions d1 = d2 = d3. We can

observe that, while Scalable K-graphical Lasso (scKGLasso) is slower than Teralasso

by a fraction, the Accuracy of scKGLasso is significantly higher than TeraLasso when

dk is small, and the Accuracy of scKGLasso is still comparable to TeraLasso when

dk is higher. In fact, even in higher dimensions, the Accuracy of bPsi (1) recovery

is still higher than TeraLasso, while the Accuracy of Ψ(2) and Ψ(3) are only slightly

lower than TeraLasso in higher dimensions. This means that when a tensor dataset

has higher dimensions in some modes and lower dimensions in other modes, our

scKGLasso might be a more stable choice.
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Figure 5.1: Computational convergence time (second s) and accuracy comparison

between TeraLasso (Greenewald et al., 2019) and Algorithm 7, for increasing values

of the dataset dimensions d1 = d2 = d3, K = 3.

In Figure 5.2 we present the Precision-Recall curves from synthetic Gaussian

data. Figure 5.2 (a) is the Precision-Recall of the recovery ofΨ(1) with changing β1

(different points on the graph) and (β2,β3) (different colours on the graph). Two

arbitrary sets of (β2,β3) have been chosen to illustrate how the results do not depend

on (β2,β3). This is expected as β1 is the regularization parameter for Ψ(1), while

(β2,β3) correspond toΨ(2),Ψ(3). Similar results are shown in Figure 5.2 (b) and (c),

where the Precision-Recall of the recovery ofΨ(k) heavily depends on the choice of

βk , regardless of the value of other βl , l ̸= k.
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Figure 5.2: Synthetic network recovery results. (a) Precision-Recall of the network

recovery relating to the support ofΨ(1); (b) Precision-Recall of the network recovery

relating to the support ofΨ(2); (c) Precision-Recall of the network recovery relating

to the support ofΨ(3).

Figure 5.3 shows that high values of T PR and Accuracy, with low values of F PR,

can be achieved for appropriate choices of β1, β2 and β3 in the range [0.001,0.009].
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Figure 5.3: Synthetic network recovery results. (a) Accuracy vs corresponding reg-

ularization parameter βk of the network recovery relating to the support of Ψ(k),

k = 1,2,3. (b) TPR-FPR of the network recovery relating to the support ofΨ(k), where

the corresponding regularization parameter βk ∈ [0.001,0.009].
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5.4.2 Synthetic count data

We generate and process Gaussian Copula-based count data through the following

steps:

1. Generate sparse positive definite matrixΨ(k), k = 1, . . . ,K .

2. Perform eigen-decompositionΨ(k) = U(k)⊤Λk U(k), k = 1, . . . ,K .

3. Calculate v = diag(Λ1)⊗·· ·⊗diag(ΛK ) ∈R
∏K

k=1 dk . Obtaining v =
(
v1, . . . , v∏K

k=1 dk

)
.

4. Generate M vectors of Gaussian samples xm = (
xm (1) , . . . , xm

(∏K
k=1 dk

))
, where

each xm (i ) ∼ Normal(0,1) , ∀m = 1, . . . , M , ∀i = 1, . . . ,
∏K

k=1 dk .

5. For each xm , m = 1, . . . , M , let

zm (i ) = xm(i )p
vi

, ∀i = 1, . . . ,
K∏

k=1
dk .

6. For k = 1, . . . ,K , repeating

zm =
(
I[d1:(k−1)]⊗U(k) ⊗ I[d(k+1):K ]

)
, ∀m = 1, . . . , M .

7. Calculate the Pm such that Pm =Φ (xm(i )), whereΦ (·) is the cumulative density

function of the standard normal distribution.

8. For each m = 1, . . . , M , produce the negative binomial variable

ym(i ) =QN B
(
Pm ,r, p

)
, where QN B

(·,r, p
)

is the quantile function of

Negative-Binomial
(
r, p

)
, with r the number of success to be observed and p

the success rate, resulting in M vectors of count data ym .

9. Rearrange each ym into tensor Ym ∈Rd1×···×dK .

We implement Algorithm 8 and plug the synthetic count data in. In Figure 5.4

we present the Precision-Recall curves from synthetic count data. Figure 5.4 (a) is

the Precision-Recall of the recovery ofΨ(1) with changing β1 (different points on the

graph) and (β2,β3) (different colours on the graph). Two arbitrary sets of (β2,β3) have

been chosen to illustrate how the results do not depend on (β2,β3). This is expected

as β1 is the regularization parameter forΨ(1), while (β2,β3) corresponds toΨ(2),Ψ(3).
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Figure 5.4: Synthetic network recovery results. (a) Precision-Recall of the network

recovery relating to the support ofΨ(1); (b) Precision-Recall of the network recovery

relating to the support ofΨ(2); (c) Precision-Recall of the network recovery relating

to the support ofΨ(3).
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Figure 5.5: Synthetic network recovery results. (a) Accuracy vs corresponding reg-

ularization parameter βk of the network recovery relating to the support of Ψ(k),

k = 1,2,3. (b) TPR-FPR of the network recovery relating to the support ofΨ(k), where

the corresponding regularization parameter βk ∈ [0.005,0.03].

Similar results are shown in Figure 5.4 (b) and (c), where the Precision-Recall of

the recovery ofΨ(k) heavily depends on the choice of βk , regardless of the value of
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other βl , l ̸= k. We note that here the precision of the network recovery stays high,

while the recall rate only varies because a bigger value of regularization parameter

βk results in a more sparse network estimation.

Figure 5.5 shows that high values of T PR and Accuracy, with low values of F PR,

can be achieved for appropriate choices of β1, β2 and β3 in the range [0.005,0.03].

5.4.3 An example from the COIL-20 Dataset

In this subsection, our aim is to show the applicability of Algorithm 8 with a real

dataset with K = 3. In particular, we use frames of several rotating objects from the

COIL-201 dataset for data analysis. Each frame is a grey-scaled picture, as shown in

Figure 5.6.

Figure 5.6: First line: frames of a rotating rubber duck from COIL-20 dataset.

Second line: frames of a rotating toy cat from COIL-20 dataset.

Third line: frames of a ratating baby powder bottle from COIL-20 dataset.

Each original frame contained 128 pixels.

We reduced the resolution of each frame from 128×128 to 8×8, and read all the 72

frames for each object. After vectorising each frame (stacking its 8×8 pixels into 64×1

vectors), we rearrange them into 3 matrices with size 64×72, each corresponding

to an object. we obtain a 3-way tensor 64×72×3, Y, by stacking the three matrices

together as three slices of the tensor, where mode-1 fibre corresponds to 64 pixels

from a frame, mode-2 fibre corresponds to 72 frames for each object, and mode-3

fibre corresponds to 3 objects. Here we aim to test if our model is able to distinguish

1https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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the objects while recognising the temporal dependency between each 72 frames. The

data were plugged into our Algorithm 8 of Scalable K-graphical Lasso. After inferring

the matrixΨ(1) (64×64),Ψ(2) (72×72) andΨ(3) (3×3), we use a binary transformation

where only the negative values are considered as an edge in the network.
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Figure 5.7: Recovered networks of relationships between pixels in frames, between

frames and between objects. Ψ(1) represents the structure in pixels (64 pixels);

Ψ(2) represents the temporal dependencies between frames (72 frames); Ψ(3) rep-

resents the relationship between objects. In this example, we used (β1,β2,β3) =
(0.005,0.005,0.2).

Figure 5.7 shows the results inferred from the COIL-20 data. The network of

pixels (Ψ(1)) shows strong dependencies between the 1st-40nd pixels in intervals

of roughly 8, where 8 is the number of pixels we considered in each column of a

frame, and the 17th-40th pixels in the subsample of a frame roughly corresponds

to where most of the white pixels, i.e. the object itself, are. The network of frames

(Ψ(2)) shows a clear temporal trajectory of 72 frames, indeed, when we arrange Y, the

mode-2 fibres are the vectorised matrices from the frames of rotating rubber ducks,

the vectorised matrices from the frames of rotating toy cats, and the vectorised from

the frames of rotating baby powder bottles. The network of objectsΨ(3) shows no

relationship between different objects as we expected. This result shows that our

method, the scalable K-graphical Lasso, is able to distinguish objects conditional on

the dependencies between pixels and the dependencies in time.
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5.5 Conclusion

In this chapter, we present a Scalable K-graphical Lasso algorithm. In particular,

we utilised eigenvalue decomposition to simultaneously infer hidden structures in

tensor-valued data. Many datasets in different application fields, such as biology,

medicine and social science, come as non-Gaussian data, for which Gaussian based

models are not applicable. We propose a Gaussian-copula based model and a semi-

parametric approach that enables the application of the proposed K-graphical model

to tensor-valued non-Gaussian data. Our methodology accounts for the dependen-

cies across different directions in datasets, reduces the computational complexity

for high dimensional data and enables us to deal with both discrete and continuous

data.

In numerical results we showcase the performance of our method with synthetic

and real datasets. we have focused on K = 3, but we would expect the algorithm also

work for K -way tensor-valued data with a larger K . Our experiment on synthetic

Gaussian data shows that, compared to TeraLasso (Greenewald et al., 2019), our

method gives better accuracy when dataset dimensions dk , k = 1, . . . ,K are small,

while its accuracy is still comparable with TeraLasso when the dataset dimensions

dk , k = 1, . . . ,K are larger. This indicates that our method is more stable especially

when dealing with tensor data with small dk along some modes and large dk along

other modes. Further experiments on synthetic count data show that our method

can work well on tensor-valued count data. Our real data example is a continuation

from the discussion in Subsection 4.5.3, and it shows our approach can infer the

hidden structures in tensor-valued real data along different modes.
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Chapter 6

Concluding Remarks

In this chapter we summarise the main contributions of this thesis and discuss some

potential directions for future work.

This thesis has two aims. The first is to explore a simulation-based evaluation

framework for Bayesian Hierarchical Models (BHMs) for scRNAseq data. The second

is to introduce a novel and efficient inference algorithm for multi-way network

inference for Gaussian and non-Gaussian data.

Regarding the first goal, in Chapter 3, we have illustrated a simulation-based

evaluation framework for BHMs for scRNAseq. We explore the reliability of a non-

Gaussian distribution based BHM inferred via the Monte Carlo Markov Chain (MCMC)

algorithm, using the BASiCS framework developed by Vallejos et al. (2015, 2016) and

by Eling et al. (2018) as an example. From our experiments, both the posterior me-

dian and the posterior mean are revealed to be inaccurate point estimates for model

parameters at times, showing the limitations of considering point estimates from

posterior distributions for downstream analysis, when considering BHMs for

scRNAseq. We also show that for a fixed given model, the effect of a contaminated

prior distribution on the posteriors varies. For the purpose of this experiment on

contaminated prior distribution, we modified the BASiCS package from Vallejos et al.

(2015, 2016) and Eling et al. (2018), providing the choice of a mixed prior on a spec-

trum. We also implemented two validation methods for Bayesian models, namely

the Posterior Predictive Check (Gelman et al., 1996; Rubin, 1984) and Simulation

based calibration (Talts et al., 2018), specifically for BASiCS framework in R (R Core

Team, 2013). From our experiments, we identified that a parameter, namely the
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global technical noise parameter θ in BASiCS framework, is consistently underesti-

mated, thereby suggesting the future direction for the improvement of the BASiCS

framework.

As for our second goal in this thesis, firstly, in Chapter 2, we formally give and

proved Theorem 2.2 as the theoretical basis of the Bigraphical model proposed by

Kalaitzis et al. (2013), thereby closing a theoretical gap in the Bigraphical model and

its extension to multi-way graphical model (Greenewald, 2017) based on Gaussian

Markov random fields. Secondly, in Chapter 3, we developed the Scalable Bigraphical

Lasso, a novel algorithm for simultaneous inference of two-way networks from ma-

trix valued data, which exploits eigen-decomposition and matrix algebra in order to

improve the computational efficiency with respect to the original Bigraphical Lasso,

which allows one to tackle bigger datasets and problems. Moreover, by introduc-

ing a Gaussian copula approach, we enabled the two-way graphical models based

on Gaussian Markov random fields to be applied to non-Gaussian data, which are

common in real world applications. Our experiment on synthetic Gaussian data

shows that, compared to the past methods in the literature (Greenewald et al., 2019;

Kalaitzis et al., 2013), our method performs better in terms of computational effi-

ciency while still maintaining high accuracy. Our experiment on synthetic count

data shows that our method, which exploits the Gaussian copula transformation,

can successfully infer hidden structures from non-Gaussian data. We also illustrate

the broad applicability of our method with real data examples of image clustering

and scRNAseq gene expression data analysis. Last but not least, we developed the

Scalable K-graphical Lasso, leveraging eigen-decomposition and matrix algebra in

order to carry out simultaneous inference of multi-way networks from tensor-valued

data. We also introduce a Gaussian copula approach to extend our method to struc-

ture discovery for non-Gaussian tensor-valued data. Our experiment on synthetic

Gaussian data shows that, compared to TeraLasso (Greenewald et al., 2019), our

method performs significantly better when the tensor size is small, while when the

tensor size is large, our method’s performance is still comparable with TeraLasso.

This shows that for the tensor-valued real data which varies in sizes on different

dimensions, our method could be a safer choice. Furthermore, we show the applica-

bility of our method on non-Gaussian data, which is lacking in previous methods,

via experiments on synthetic count data and real data.
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The work presented in this thesis leads us to more interesting questions for future

research. From the evaluation experiement for BHMs on scRNAseq data in Chapter

3, we could further investigate some other choices of point estimate from posterior

samples, and we could also study alternative inference algorithms to deal with the

problem of underestimation for certain parameters, which is highlighted in our

experiments. Furthermore, future work could be focused on enhancing the multi-

way network inference algorithm, presented in Chapter 5, to improve efficiency when

dealing with high dimensional data. Finally, we could explore the applicability of our

proposed methodologies in alternative application fields, such as neuroscience and

traffic sciences.
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