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CHAPTER 1: INTRODUCTION 

 

1.1 SKIN BARRIER STRUCTURE AND FUNCTION 

The skin is the largest organ of the human body and performs a series of protective 

functions in response to the surrounding environment. Defence against heat loss, UV 

light, chemical entities and injury is achieved by its structure and homeostatic 

mechanisms such as thermoregulation and permeability barrier function. 

Antimicrobial protection is provided by sensory mechanisms within the epidermis 

connecting the innate to the adaptive immune system. 

 

1.1.1 The structure of the epidermis 

Classified as a stratified squamous epithelium, the epidermis represents the 

outermost layer of skin that overlays the dermis. A schematic of the epidermis and its 

predominant cell types is provided by Figure 1.1. Its structural basis is four distinct 

layers of keratinocytes that differ in both morphology and function, situated above a 

basement membrane. The epidermis is avascular, therefore the most metabolically 

active cells of this layer are found directly above this basement membrane where 

nutrients and oxygen diffuse readily from the capillaries of the dermis (1). At its apex, 

a terminally differentiated, cornified end product is synthesised that contacts the 

surrounding environment. 

 



Chapter 1: Introduction 15 

 

Figure 1.1: Cells and layers of the epidermis. (a) Keratinocytes are the predominant cell type and 

form the basis of its structure. (b) Langerhans cell and (c) CD8+ T cells are resident immune cells 

that sense and coordinate response to pathogen invasion. (d) Merkel cells function as touch 

receptors (e) Melanocytes synthesise melanosomes that are engulfed by surrounding 

keratinocytes and pigment the skin with melanin. 

 

The stratum basale (SB) is a columnar layer of un-differentiated stem cells that 

secrete an extracellular matrix (ECM) to form the basement membrane. The SB is 

referred to as the germinal layer as asymmetric, mitotic division generates daughter 

cells to maintain a proliferative basal layer, and supply differentiating keratinocytes to 

form the overlying layers of the epidermis (1). Expression of keratins commences in 

the SB to form keratin intermediate filaments (KIF) that are anchored to the basement 

membrane by hemidesmosomes (2). 
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In the stratum spinosum the KIF in combination with tubulin and actin form a 

cytoskeleton of ‘spinous’ morphology (3). In this layer, expression begins of essential 

proteins for cornified envelope formation such as transglutaminase -1, -5 (3). These 

keratinocytes are bound together by adhesive desmosomes, structurally composed of 

cadherin, armadillo and plakin protein families with desmoplakin interlocking the KIF 

(Figure 1.2). Also situated here are resident dendritic Langerhans cells that coordinate 

an innate immune response to invading pathogens through antigen uptake and 

presentation to the adaptive immune system (1, 4). 

 

Figure 1.2: Structure of the desmosome and corneodesmosome. (a) Schematic of the desmosome 

cell to cell protein adhesions that anchor the plasma membranes to the cytoskeleton. They are 

comprised of (1) the cadherins desmoglein (DG) and desmocollin (DC); (2) the armadillos 

plakoglobin (PG) and plakophilin (PP); and (3) the plakin desmoplakin (DP) that binds KIF. (b) 

Schematic of the corneodesmosome structure embedded in the cornified envelope with 

extracellular components desmoglein-1 (DG1), desmocollin-1 (DC1) reinforced by corneodesmosin 

(CDN). Figure adapted from Ishida-Yamamoto et al (5). 
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The stratum granulosum or granular layer is formed by 3-5 layers of keratinocytes 

entering a process of cornification. Here, the cells de-nucleate and are engulfed by the 

cornified envelope. Keratohyalin granules are present containing the large, insoluble, 

histidine-rich protein profilaggrin. In response to increasing intracellular Ca2+ levels, 

dephosphorylation and proteolytic cleavage of profilaggrin generates the monomeric 

matrix protein filaggrin (6). Mouse models and in-vitro studies have associated the 

serine proteases matriptase, prostasin and kallikrein-5 with this process, but the exact 

underlying mechanisms in humans remains unclear (7-9). Coupled with increased 

keratin expression, filaggrin (FLG) aggregates KIF in a cross-linked formation 

promoting the collapse and flattening of the cell. The ordered structure of the SG - 

rich in keratins and FLG - forms a tough, impermeable physical barrier, reinforced by 

cellular links such as adherens junctions, desmosomes and tight junctions (2, 3, 10). 

This forms an integral part of the skin barrier in conjunction with the cornified layer 

situated above. 

 

Finally, the process of cornification completes to form the outermost layer of the 

epidermis termed the stratum corneum (SC) or horny layer; the principal 

component of the skin barrier. It is formed by 15-30 compact layers of terminally 

differentiated, anuclear corneocytes. Being the interface to the surrounding 

environment, the SC provides protection from excessive water loss, environmental 

stressors and allergen penetration that is collectively termed skin barrier function. 
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1.1.2 The stratum corneum is central to the skin barrier 

Far from being dormant, the skin barrier is a biologically active amalgamation of 

protein and lipid structures, chemicals and proteolytic enzymes residing in the two 

outermost layers of the epidermis (Figure 1.3). As the central component of the skin 

barrier, a simple analogy is to compare the structure of the SC to a brick wall. Here 

the corneocytes (bricks) are surrounded by a lipid matrix (mortar) that binds the 

construction together (11). Professor Cork and colleagues (12) extended this model 

further to include corneodesmosomes (Figure 1.2). These modified desmosomes 

contain the extracellular components desmoglein -1, desmocollin -1 and 

corneodesmosin, that bind the cornified envelope and act like structural iron rods. 

Alongside tight junction proteins claudin -1 and occludin, they confer biomechanical 

rigidity and protection from mechanical stress (10, 12). 
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Figure 1.3: Structural components of the skin barrier. Corneocytes of the stratum corneum (SC) 

are engulfed by a cornified envelope and lipid matrix with corneodesmosomes providing cellular 

support. Natural Moisturising Factors are chemicals with humectant properties to maintain cell 

elasticity and support permeability barrier function in conjunction with tight junctions and the 

intercorneocyte lipid matrix. 

 

Encasing each corneocyte, the cornified envelope is formed by structural protein and 

lipid components. The protein base of envoplakin and periplakin provides anchorage 

to corneodesmosomes. Reinforcement is provided by involucrin, loricrin, filaggrin, 

elafin and small proline-rich proteins that are covalently cross-linked by isopeptides 

via the action of transglutaminases (3, 13). Attached to this protein scaffold is a w-

hydroxyacylsphingosine envelope that connects to an intercorneocyte lipid matrix; a 

lamellar membrane composed of ceramides (50%), cholesterol (25%) and free-fatty 

acids (15%) (14). The most abundant species here being a combination of 

phytosphingosine and 4-hydroxysphingosine bases with hydroxylated and non-

NMF

Corneodesmosome

Cornified envelope

Intercorneocyte
Lipid matrix

Stratum Corneum

Stratum Granulosum

Corneocyte Lipid membrane

Lamellar body

Keratohyalin granule

Tight Junctions
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hydroxylated fatty acid groups, and free fatty acids in a C24:0 / C26:0 structural 

conformation (15). These lipids of the intercorneocyte matrix are delivered to the SC 

via a unique epidermal organelle; the lamellar body (LB) (16). Packaged inside the LB 

are phospholipid, glucosylceramide, sphingomyelin lipid precursors and cholesterol 

sulphate, in addition to enzymes required for their subsequent processing such as 

beta glucocerebrosidase, acidic sphingomyelinase, secretory phospholipase A2 and 

neutral / acidic lipases (17). Upon LB delivery to the SC / SG interface, these lipid 

precursors are secreted into the intercorneocyte space, undergo hydrolysis, and are 

arranged into the ordered lipid matrix to form the structural basis of the permeability 

barrier (17). 

 

1.1.3 The permeability barrier regulates water loss from the skin 

Permeability barrier function is the homeostatic mechanism conferred by the SC, to 

prevent excessive transcutaneous water loss (inside-out barrier) while guarding 

against exogenous chemicals and allergens penetrating the skin (outside-in barrier). 

Its ordered structure prevents the penetration of molecules greater than 500 Daltons 

in size. The extensive hydrophobic lipid matrix allows small lipophilic substances of 

<150 Daltons (such as phenols) to penetrate, while also regulating the simple diffusion 

of water from within corneocytes to maintain optimal levels of hydration (15, 18). As 

shown by Imokawa and Hattori, treatment with acetone/ether to remove the lipid 

matrix from the intercorneocyte space induces xerosis and a significant decrease in 

skin hydration measured by conductance (19). Subsequent lipid replenishment in the 

form of cholesterol esters, sphingolipids and free fatty acids, reversed this 

experimental damage and recovered water content in the SC (20). 
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Water retention is key, but the permeability barrier is a dynamic system. Under steady 

state conditions a water concentration gradient exists, with movement from the 

wetter deeper SC layers towards the dryer skin surface (21). Regulating this 

movement are three structural routes: transcellular-corneocyte diffusion related to 

corneocyte size and thickness; (22, 23) paracellular diffusion through the “torturous” 

hydrophilic route of the lipid matrix; (24) and paracellular diffusion through tight 

junction (TJ) transmembrane proteins rich in claudin-1, claudin -4 and occludin that 

protect against lethal water loss by forming a barrier to water, ion and molecule 

movement in the upper stratum granulosum (25, 26). A skin barrier deficient in TJ 

proteins is also more permeable to albumin, associating these structures with the 

outside-in barrier against the penetration of irritants and allergens (26, 27). 

 

Transepidermal Water Loss (TEWL) is the passive flux of water vapour from the skin 

surface. It is commonly measured using non-invasive probes to assess permeability 

barrier status in vivo. Accordingly, removing the SC by tape stripping proportionally 

increases TEWL, and confirms that inside-out permeability barrier function resides in 

the SC (28). Somewhat more controversial is the use of TEWL to assess the outside-

in barrier to exogenous substances (29). In support of this application are studies that 

correlate TEWL with the in vitro and in vivo percutaneous absorption of both 

hydrophilic and lyophilic substances at various anatomical sites (30-32). In a rodent 

model, dye penetration assays using toluidine blue or biotin confirm the respective 

roles of the SC (outside-in) and tight junctions (inside-out) in permeability barrier 

function (33). 
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Another biochemical component of the inside-out permeability barrier is Natural 

Moisturising Factor (NMF). NMF is found in the SC and composed of free amino acids 

[FAA] (48%), organic acids (25%), lactate (10%), urea (8%) and inorganic ions (5%) (21, 

34). During terminal differentiation, FLG is catabolised to form a pool of intracellular 

FAAs that accounts for >70% found in the SC (35). The cysteine proteases bleomycin 

hydrolase and calpain 1, in addition to the cysteinyl aspartate protease caspace-14, 

have all been implicated in this processing from experimental work in mice (36, 37). 

FAAs such as glutamine and histidine are catabolised to form 2-pyrrolidone-5-

carboxylic acid (PCA) and urocanic acid respectively, with PCA constituting the major 

organic acid fraction of NMF (38). These molecules act as osmolytes, drawing in and 

retaining water within corneocytes to maintain optimal cell hydration, shape and SC 

elasticity (34). Further evidence to support this is found in xerotic skin conditions such 

as Ichthyosis Vulgaris (IV) where the permeability barrier fails and there is excessive 

water loss from the skin surface. In this scenario of xerosis, comparatively low levels 

of extractable FAA are found at the skin surface, and a linear relationship exists 

between their abundance and SC hydration measured by conductance (39). 

 

But FLG is not the sole source of NMF in the SC. Less abundant surface NMF 

components such as urea, lactate and inorganic ions are derived from eccrine 

sweating (40, 41). The physiological level of lactate and potassium in healthy subjects 

is linearly related to SC hydration, stiffness and pH (42). The effect that urea exerts on 

the skin barrier has been investigated by its topical application to human and rodent 

skin. Not only is it a potent humectant that maintains SC hydration, but it can restore 
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disturbed permeability barrier function by stimulating expression of key proteins 

central to terminal differentiation (43). 

 

1.1.4 The microbial barrier resists pathogen invasion 

To penetrate the epidermis, pathogens must first adhere to its surface. To combat 

this, the SC has many tools to guard against colonisation such as the acid mantle, 

reduced moisture content, desquamation, and a cooler surface temperature (44). An 

acidic skin pH is suboptimal for the growth of pathogenic bacteria such as 

Staphylococcus aureus, allowing colonisation by beneficial resident microflora (45, 

46). For example, the skin commensal Staphylococcus epidermidis not only competes 

for nutrients and space, but it also interacts with the host’s inflammatory response to 

pathogens and stimulates expression of antimicrobial peptides (47). Furthermore, 

Staphylococcus epidermidis and Staphylococcus hominis both express autologous 

antimicrobial peptides with the ability to selectively kill S aureus (48). So, an acidic 

skin surface promotes a more balanced microflora equipped to defend its niche, but 

what are the molecular mechanisms underlying this acidification of the SC? 

 

Throughout the SC, a pH gradient exists between the neutral inner layers and the more 

acidified superficial layers; the so-called acid mantle (49, 50). Historically it has been 

proposed that SC pH is derived from exogenous mechanisms such as microbial 

metabolism, sebaceous glands and sweat. More recently though, favour has shifted 

towards endogenous biological mechanisms being responsible for acidification 

including: (a) free-fatty acid synthesis from phospholipids during lipid matrix 

generation; (51) (b) the sodium/hydrogen antiporter-1 acidifying membrane domains 
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at the SC/SG interface; (51) and (c) the deamination of histidine to urocanic acid 

(UCA) as part of the filaggrin-derived NMF pathway (52). Questions have been asked 

of the latter’s contribution to SC pH, as urocanic acid is primarily intracellular, and 

histidase deficient mice have a normal, acidified skin-surface pH (53). Nevertheless, 

the loss of NMF is associated with a more alkaline SC in skin diseases such as Ichthyosis 

Vulgaris and AD (50, 54). Overall this suggests multiple biological pathways contribute 

to SC acidification with contingency if one mechanism fails (53). 

 

1.1.5 Desquamation is fundamental to continuous SC renewal 

To maintain its structural integrity, the SC is continuously renewed by the proliferating 

cells of the stratum basale (3). Complete renewal takes approximately one month, and 

in order to maintain a constant SC thickness, corneocytes are shed from the skin 

surface by the process of desquamation. As keratinocytes progress through terminal 

differentiation, they begin to express the kallikreins (KLK); a family of 15 extracellular 

serine peptidases possessing trypsin-like or chymotrypsin-like protease activity. It is 

the coordinated degradation of corneodesmosomes by KLK5 (trypsin-like) and KLK7 

(chymotrypsin-like) proteolytic activity commencing in the stratum compactum that 

is the biological process underlying desquamation in the model proposed by Caubet 

and colleagues (55). Since the model’s conception, KLK6, KLK14 and the aspartic 

proteinase cathepsin D have also been attributed to desquamation due to spatial 

locality to corneodesmosomes and the ability to degrade desmoglein -1 in vitro (56, 

57). 
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Structural analysis of the serine protease chymotrypsin using x-ray crystallography 

revealed the active site is formed by a catalytic triad of amino acids Histidine 57, 

Aspartic acid 102 and Serine 195 orientated in close proximity. The function of this 

arrangement is a charge relay system generating a nucleophilic Serine 195 able to 

break the amide bonds of its protein substrate (58). In the case of chymotrypsin, this 

would be large aromatic residues such as Tyrosine at the P1 position that bind the 

enzyme’s hydrophobic specificity pocket (59). 

 

The most abundant serine protease with chymotrypsin-like activity in the skin is KLK7 

(60). It has been shown in vitro at acidic pH that KLK7 degrades Desmocollin-1 and 

Corneodesmosin; with KLK5 required for Desmoglein-1 proteolysis and complete 

degradation of the extracellular corneodesmosome structural components in the SC 

(55). There is evidence that Corneodesmosin is a target of both KLK7 and KLK5, with 

processing of this 52-56kDa protein occurring throughout terminal differentiation to 

generate a 15kDa fragment present in non-cohesive corneocytes at the skin surface 

(61). 

 

In order to maintain homeostatic control and guard against aberrant desquamation, 

this synergy of protease activity requires strict orchestration through a number of 

mechanisms, the first being sequential activation (Figure 1.4). Located on chromosome 

19q13.3-4, the expression of KLK1, KLK4 KLK5, KLK6, KLK7, KLK9, KLK10, KLK11, KLK13 

and KLK14 commences in the SG (62, 63). They are synthesised as inactive zymogens 

that require proteolytic cleavage of the N-terminal domain to become biologically 

active. Members of the KLK family itself can fulfil this role of processing in a proteolytic 
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cascade; KLK5 can cleave pro-KLK7; pro-KLK14 and autoregulate its own inactive 

zymogen, and KLK14 - an abundant source (up to 50%) of trypsin-like protease activity 

in the SC (64) - can cleave and activate pro-KLK5 (65). A role for the serine protease 

mesotrypsin has also been implicated in this proteolytic cascade of activation, (66) as 

has the matrix metalloproteinase-20 (67). 
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Figure 1.4: Multiple mechanisms control the rate of desquamation. Upon secretion with their 

inhibitor LEKTI at the SG / SC interface, the pro-KLK zymogens undergo a cascade of activation 

that initiates desquamation. This is balanced by strong LEKTI inhibition that weakens with 

acidification. Increasing dryness towards the skin surface also regulates proteolysis. The net result 

is greater rates of proteolysis in the deeper stratum compactum with corneodesmosome 

degradation largely complete by the stratum disjunctum. LEKTI: Lymphoepithelial-Kazal-type-

related inhibitor. 
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Once zymogen activation is complete, a second mechanism of control is inhibition. 

Located on chromosome 5q32, SPINK5 encodes Lymphoepithelial-Kazal-type-related 

inhibitor (LEKTI) that co-localises with KLK5 and KLK7 to block their activity (68). In 

vitro work has reported that LEKTI expression commences in the upper spinous layers 

in N-glycosylated form. Then it is rapidly cleaved by furin in a post-endoplasmic 

reticulum compartment to yield multidomain fragments capable of inhibiting KLK5, -7 

and -14 activity (69-71). Immunofluorescence and immunoelectron microscopy of 

tissue samples from healthy donors report that these active LEKTI fragments are 

compartmentally packaged with KLK5 and KLK7 into lamellar granules, and delivered 

to the SG / SC interface by secretory granulocytes (71, 72). The comparatively earlier 

expression and processing of LEKTI to its KLK targets is designed to provide an 

additional layer of proteolytic control (71). Inhibition is also provided by structural 

components of the SC. The persistence of tight junction structures alongside 

corneodesmosomes at the cell peripheries of stratum disjunctum indicate that they 

provide physical protection against premature degradation by desquamatory 

proteases (73). Furthermore, cholesterol sulphate is a potent inhibitor of trypsin and 

chymotrypsin activity that may account for the hyperkeratosis associated with X-

linked ichthyosis (74). 

 

A third layer of control is provided by the acid mantle (49, 50). Due to KLK5 and KLK14 

having a neutral-alkaline pH optimum, zymogen activation is initiated in the deeper SC 

layers. This is balanced by a strong KLK5-LEKTI inhibitory complex in this alkaline 

environment that weakens towards the acidic outer layers (70). The net result is a 

coordinated rate of corneodesmosome degradation that nears completion by the 
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upper stratum compactum (73, 75). In contrast, the activation of pro-KLK7 by KLK5 

has a more acidic-neutral optimum of pH5-7 (65). This delay in KLK7 activation 

suggests a more prominent role in the final stages of desquamation, such as the 

destruction of desmocollin -1 in the stratum disjunctum (55, 75). Despite this pH 

discrepancy for activation, both KLK5 and KLK7 are able to cleave corneodesmosin and 

desmocolin-1 at a similar rate in the pH range 5-7 (55). 

 

Removal of the acid mantle disrupts homeostasis through hyperactive desquamatory 

protease activity. In a murine model, Hachem and colleagues applied topical 

superbases to induce a short and longer-term rise in skin pH (76, 77). Consequently, a 

rapid increase in serine protease activity was associated with a concurrent reduction 

in SC integrity and cohesion through loss of desmoglein -1. Electron microscopy 

confirmed immature lamellar bilayers attributed to a protease-induced inhibition of 

b-glucocerebrosidase activity. All negative effects were normalised by a serine 

protease inhibition, highlighting a central role for SC pH in regulating desquamatory 

protease activity (76, 77). 

 

And finally, the degree of skin hydration can exert a regulatory effect on desquamatory 

protease activity. Water content and environmental humidity are able to modulate 

rates of KLK7 proteolysis in the SC (78, 79) in line with its water concentration gradient 

(21). Interestingly, using transmission electron microscopy and electron energy-loss 

spectroscopy on porcine skin, undegraded corneodesmosomes in the lower SC have 

been identified as water rich ion channels (80). These spatial increases in water 
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content could manifest as localised changes in KLK7 activity that coordinate 

corneodesmosome destruction in the stratum compactum. 

 

During the final stages of desquamation there are structural changes in the stratum 

disjunctum that facilitates corneocyte shedding. Using imaging techniques, Lin and 

colleagues show that the space once occupied by corneodesmosomes is replaced by 

hydrophilic intercorneocyte lacunar domains that expand due to water uptake and 

dehydration. This dynamic enables the cornified envelope to thicken that furthers 

lacunar widening. Coupled with the co-localisation of acid ceramidases to split the 

lamellar bilayers, the process of exfoliation is completed (75). 
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1.2 THE NEONATE SKIN BARRIER 

From the safety and warmth of the uterus where it is enveloped by amniotic fluid, upon 

birth, the skin of the neonate rapidly adapts to a dry, ex-uterine environment. Here, as 

is the case for adults, the neonate SC must provide an immediate barrier to 

detrimental water loss, allergen penetration and microbial attack upon its 

introduction to terrestrial life. The vernix caseosa - a hydrophobic barrier composed 

of water (80.5%) lipid (8-10%), and protein (8-10%) (81) that covers the skin surface 

upon birth - assists in this transition by providing continuity between the two 

environments; first by protecting the developing foetus from amniotic fluid in utero, 

and then by complementing the dry adaptation by hydrating the skin, providing a 

source of free amino acids, and supporting the development of the acid mantle (82, 

83). But not all term neonates are born with a protective covering of vernix, (84) so 

unaided, does the SC form an intact barrier immediately following birth? A first 

glimpse of the historical evidence hints that in final-trimester neonates at least, this is 

indeed the case, as at a gestational age of ³34 weeks the epidermis is structurally 

complete (85, 86). Permeability barrier function appears competent (30, 87) and the 

SC is of equivalent thickness to adults shortly after birth (88). But this apparent 

maturity assigned by histological analysis hides an inherent fragility and susceptibility 

in its structure and function, that is only corrected by an extended period of 

adaptation to life in a dry environment. 
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1.2.1 The cellular structure of the neonate-infant SC is immature compared to adults 

In line with the evolution of modern imaging and molecular techniques, a number of 

contemporary studies have analysed the structure of the neonate-infant SC in vivo and 

in vitro, and reported subtle differences compared to adults (Table 1.1). 

 

 

Table 1.1: Structural differences between the adult and neonate-infant SC. SEM: Scanning Electron 

Microscopy; CLSM: Confocal Laser Scanning Microscopy; FS: Fluorescent Spectroscopy; LM: Laser 

Microscopy. Data presented from Fluhr et al, (89) Stamatas et al, (90) and Naoko et al (91) * 

denotes longitudinal study design. 

 

At birth the SC surface is morphologically disorganised, characterised by poorly 

defined, asymmetric corneocyte clusters, that become more ordered during the first 

year (89). These corneocytes are smaller reflecting higher proliferation rates (89, 90). 

In agreement with this greater cell turnover, Naoko and colleagues applied laser 

microscopy to ex vivo SC samples collected by tape stripping to provide evidence of 

corneocytes becoming progressively smaller from birth (91). At age 5-6 weeks 

compared to adults there are differences in the spatial orientation of 

corneodesmosome fragments, with a lack of central cell-to-cell attachments between 

corneocyte layers in neonates (89). Differences in SC thickness also exist, with a 

Study Technique Age group Neonate-infant SC Adult SC

Fluhr et al 2014 SEM 5-6 weeks Corneocyte size = 646.3µm2

Irregular, poorly defined corneocytes
Non-uniform corneodesmosomes

Corneocyte size = 895.5µm2

Stamatas et al 2010 CLSM
FS

3-24 months SC thickness = 7.3µm
Corneocyte size = 949.5µm2

Increased cell proliferation

SC thickness = 10.5µm
Corneocyte size = 1077.6µm2

*Naoko et al 2013 LM 1,3,6 months Decreasing corneocyte size with age Not compared
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thinner SC composed of fewer corneocyte layers belonging to the infant (90). As 

postnatal age increases, these differences between infant and adult skin become less 

marked (89, 90). Collectively, these studies evidence the subtle structural differences 

at birth that persist throughout the early years of life as the barrier matures to adult-

like status. The question is, do these structural anomalies reflect altered SC function 

during this timeframe? 

 

1.2.2 Skin permeability barrier function at birth: complete or not? 

The status of skin permeability barrier function at birth has been addressed by a 

number of studies. There is evidence it becomes competent with increasing 

gestational age, as at full-term, water loss and chemical permeability is low (30, 85). 

But in order to make firm conclusions, a comparison to healthy adults is required 

where homeostasis has been attained. Many studies have addressed this using TEWL, 

but contrasting results means this is a contentious issue; with barrier function 

reported to be weaker, equal to, or stronger in term infants compared to adults (87, 

92-95). Methodological constraints may account for these observed discrepancies, as 

TEWL is sensitive to differences in skin care and the environmental conditions 

measurements are performed in (96). For example, the routine washing of neonates 

shortly after birth may bias the finding of ‘weakened’ permeability barrier function 

(higher TEWL) compared to adults, due to the skin absorbing water before 

measurements are taken (94). When capturing a TEWL measurement, the subject 

must remain still and calm in order to obtain robust flux data; a significant challenge 

when assessing young infants in a busy hospital setting where climate may not be 

adequately controlled. Therefore, although TEWL is an excellent minimally invasive, in 
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vivo measure of permeability barrier function in adults, these methodological 

constraints suggest it is not an ideal clinical tool that can be widely used in infant 

research. 

 

1.2.3 The functional parameters of the neonate-infant SC are in flux 

The skin of full-term neonates at birth is both dry and more alkaline indicating that 

homeostasis has not yet been attained (97, 98). The structural and functional 

consequences of a neutral skin pH at birth has been investigated using a rat model. In 

this environment of greater alkalinity, although TEWL is normal, the SC is more fragile, 

with compromised integrity and cohesion its distinguishing feature compared to older 

rats where acidification is complete (99). Here, using a combination of electron and 

confocal microscopy, the authors present incomplete lamellar membranes and lower 

corneodesmosome density through reduced expression of corneodesmosin and 

desmoglein 1, as key structural defects. A central mechanism to this being increased 

bulk serine protease activity (99). Accordingly, as the acid mantle forms a few days 

following birth, it correlates with the activation of lipid processing machinery that 

initiates the inside-out acidification of the SC from the SG interface (100). 

Interestingly, during this transitional acidification phase there was also a concomitant 

decrease in bulk serine protease activity alongside an increase in corneodesmosome 

density (99). This data in rats suggests that proteolytic components of desquamation 

are in flux, due to modulation by pH throughout acid mantle formation. It also suggests 

a temporary lack of buffering capacity as the SC extracellular spaces progressively 

acidify throughout its entire depth. 
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In contrast to the rat SC that acidifies after a few days, the human SC can take up to 

one month to stabilise around a physiological pH of 5.0, representing a comparatively 

extended period of skin barrier fragility (92, 98, 101). Furthermore, during this period, 

the skin hydrates, becomes smoother, and SC cohesion changes according to 

anatomical site (92, 93, 97, 98, 101). The status of permeability barrier function is less 

clear during these first few weeks of life, as at first glance, the cross-sectional study 

design suggests there is no change in TEWL (92). But this is misleading, as currently, 

perhaps the best evidence of TEWL status in the days following birth is provided by a 

longitudinal study conducted in a large cohort of 1903 neonates (102). Here, TEWL on 

average increased from 7.3 g/m2/hr at birth to 10.9 g/m2/hr at eight weeks old. This 

trend is corroborated by smaller studies of similar design, (91, 93) and reflects a 

significant weakening of permeability function during this transitional phase of skin 

development. Furthermore, environmental exposures that modulate TEWL could be 

exerting their effect during this time, such as the use of harsh detergents (103, 104) 

and exposure to house dust mite allergens (105). 

 

In summary, there are numerous structural differences between neonate-infant and 

adult skin that are reflected by altered function throughout early life. A thinner 

epidermis characterised by irregular corneocyte morphology, differences in spatial 

corneodesmosome organisation and increased proliferation rates exist alongside 

fluctuations in TEWL, hydration and pH, suggesting mechanisms underlying terminal 

corneocyte differentiation have not yet reached homeostasis. When comparing study 

designs, cross sectional may well be more cost effective and less onerous for 

participants and investigators alike, but are less equipped to detect more subtle 
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changes over time. For example, it is the longitudinal study design that reported the 

rise in TEWL and reduction in corneocyte size throughout early life (91, 93, 102). 
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1.3 ATOPIC DERMATITIS 

For reasons unknown the world is becoming more allergic. Adult IgE reactivity to 

common allergens is progressively increasing, (106) as is the worldwide incidence of 

eczema, asthma and rhinoconjunctivitis in children (107). Today the global prevalence 

of the allergic skin manifestation atopic dermatitis (synonyms: atopic eczema or 

eczema [AD]) is estimated to be around 10% of adults and around 20% of children (108, 

109). It is a chronic lifelong condition, (110) that represents a significant financial 

burden for society, patients and caregivers across the world through money spent on 

prescriptions, travel to appointments, specialised caring at home, and loss of earning 

through days off work (111-114). In the UK, the cost of treating mild-moderate AD is 

estimated to be around £462.99 million over 5 years (115). 

 

But money cannot be the only consideration. Yes, this is a treatable skin disease that 

will not directly cause mortality, but it profoundly affects lives in other ways. For 

example, AD is associated with other chronic, debilitating forms of atopy and poses a 

significant cardiovascular risk. Patient, caregiver and family quality of life is poor; with 

chronic itch, painful stinging skin and lack of sleep being common problems that 

correlate with greater disease severity. Patients are embarrassed and ashamed of 

their skin, yearning for a better acceptance of their condition and wanting to fit in with 

their peers (116-118). Children suffer from behavioural problems and are bullied (119, 

120). Often misunderstood by the general public as “just dry skin”, the chronic, 

unpredictable nature of AD means there is a wide range of disease phenotypes. At the 

mild end of the spectrum, itchy, localised xerosis and erythema precede full body 

manifestation, pain, weeping wounds and recurrent skin infection in its most severe 
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form, that is difficult to control. These patients lack confidence and are often unable 

to work and form meaningful relationships. This ultimately has a detrimental effect on 

mental wellbeing, culminating in anxiety, depression and increased suicide risk (121, 

122). A summary of these physical and mental comorbidities is presented by Table 1.2 

with an estimate of the proportion of patients affected. 

 

 

Table 1.2: Physical and mental health comorbidities associated with AD. Prevalence reported by 

Hua and Silverberg (123), Silverberg and Simpson (124) and Thyssen et al (125). 

 

In a clinical setting, AD is described as is a persistent, relapsing, inflammatory disease 

characterised by chronic xerosis, pruritus, and a susceptibility to skin infections. It 

forms part of the atopic diathesis; often manifesting alongside asthma, allergic rhinitis 

and food allergy, underlying a common pathogenesis shared by these conditions. 

Somewhat surprisingly though, allergy is not always present with AD. Allergic or 

extrinsic AD (ADe) is associated with higher total serum IgE and predisposes to allergic 

comorbidities in children (126). Non-allergic or intrinsic AD (ADi) is clinically 

indistinguishable from ADe and accounts for approximately 20-30% of patients, (126, 

127) but total serum IgE measurements are similar to healthy controls (128). The 

absence of a systemic TH2 cell allergic response in ADi, challenges the long-standing 

Comorbidity Prevalence (%)

AD Control

Asthma 25.5 11.7

Allergic rhinitis 34.9 14.2

Food allergy 15.1 3.6

Clinician-diagnosed anxiety 7.5 4.4

Clinician-diagnosed depression 19.5 11.2
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historical view that it is a disease solely of an immunological imbalance (129). It also 

does little to explain the chronic xerosis that is ever present in patients. 

 

So if allergy is not the sole orchestrator, what additional pathological mechanisms give 

rise to AD? Family history is a significant risk factor and points to a strong genetic basis 

for the disease (130, 131). But despite this observation a large proportion of AD 

heritability today remains unexplained. To address this need, genome-wide 

association studies (GWAS) have been employed as a powerful tool to locate genetic 

regions associated with AD. For example, a recent meta-analysis by Paternoster et al 

in 21,000 AD cases and 95,000 controls brought the total number of risk loci identified 

to 31, associating impaired epidermal differentiation (1q21.3), the TH2 abnormality 

(5q31.1) and autoimmunity (5p13.2, 14q13.2) with disease (132). In total these risk 

signals account for <20% of all AD heritability, and with the majority being intragenic, a 

significant challenge here is determining their functional significance in AD 

pathogenesis. 

 

The current most significant genetic risk factor with functional consequence found to 

date encodes a structural protein that resides in the skin itself. Loss-of-function (LOF) 

mutations in the gene encoding the epidermal barrier protein Filaggrin (FLG), located 

on chromosome 1q21.3, represents the most widely replicated risk factor for AD in 

European populations (133, 134). Since this pivotal finding soon after the turn of the 

21st century, (135) the focus of AD research has shifted towards the defective skin 

barrier and its role in disease pathogenesis. In patients with AD, the structure and 

function of both involved and uninvolved sites is dysfunctional compared to healthy 
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skin. These barrier abnormalities confer increased permeability to exogenous 

substances and water, resulting in a dry skin phenotype susceptible to allergen 

penetration and cutaneous inflammation. Even environmental exposures can 

modulate AD risk, as living in a polluted urban environment, (136, 137) the use of harsh 

soaps (138, 139) and colonisation by S.aureus (140-142) can all exacerbate skin barrier 

breakdown and stimulate inflammation. Therefore, the modern pathogenic model for 

AD describes the interactions between a primary skin barrier defect, a spectrum of 

immune hyperactivity and negative environmental stressors that give rise to active 

disease (Figure 1.5). 
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Figure 1.5: The pathogenesis of AD. A dysfunctional skin barrier, environmental exposures and 

genetic predispositions combine to drive TH1, TH2, TH17 and TH22 skin inflammation. A defective skin 

barrier exacerbated by persistent scratching that permits the penetration of allergens and its 

colonisation by pathogens such as S.aureus. Pollution can modify disease risk and severity. In 

response to disruption, the epidermis initiates its repair through the expression of cytokines that 

contribute to the inflammatory environment in AD. For example, elevated expression of Thymic 

Stromal Lymphopoietin (TSLP) activates CD11c+ dendritic Langerhans cells to drive TH2 polarisation 

of CD4+ lymphocytes. IL: interleukin; TNFa: tumour necrosis factor alpha; INFg: interferon gamma; 

CCL: C-C motif chemokine ligand. 
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A valuable preclinical tool used in AD research to better understand basic pathogenic 

mechanisms of disease are animal models. For example, the hapten oxazolone, when 

repeatedly applied to hairless mice, mimics AD-like lesions and replicates the 

significant permeability barrier defect, TH2 dominant infiltrate and elevated serum IgE 

associated with disease (143). To simulate barrier disruption, allergen penetration and 

sensitisation, tape stripping combined with ovalbumin patch application has been 

utilised in BALB/c mice (144). In this disease model, repeated allergen exposure 

promoted skin thickening with marked inflammatory cell infiltrate, elevated TH1 / 2 

cytokine and chemokine production with increased total and allergen specific IgE. To 

mimic attenuated FLG expression in the epidermis, the flaky tail mouse (partial FLG 

loss) has been employed (145) and a Flg-/- mouse engineered (146) to simulate disease-

associated null mutations associated with AD. Both FLG models demonstrate an 

enhanced hapten-induced allergic immune response, with the Flg-/- mouse also 

displaying a dry, scaly phenotype with reduced levels of hygroscopic NMF and 

increased SC fragility. 
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1.3.1 Skin breakdown in AD  

1.3.1.1 Multiple defects manifest as weakened barrier function 

Both the inside-out and outside-in permeability barrier reside in the SC (28, 30-33) 

conferred by corneocyte, lipid and tight junction structural components (22-25). It is 

therefore inevitable that multiple defects in structure (summarised in Table 1.3) 

manifest as weakened permeability barrier function (elevated TEWL) at both non-

lesional and lesional sites, that gives rise to the underlying xerotic phenotype 

associated with AD (147-149). Such is the significance of this permeability barrier 

defect in AD patients, that TEWL and hydration (SCH) correlate with disease severity 

(147, 150). 

 

 

Table 1.3: Skin barrier breakdown in AD. CER: ceramides; A-SMase: Acid sphingomyelinase; K6: 

Keratin 6; K16: Keratin 16; K5: Keratin 5; FLG: Filaggrin; INV: Involucrin; CDSN: Corneodesmosin; LOR: 

Loricrin; KLK: Kallikrein; SA: Staphylococcus aureus; SCH: Stratum corneum hydration; TEWL: 

Transepidermal Water Loss; SC: Stratum Corneum. Data presented from Suarez-Farinas et al, 

(151) Jensen et al, (148) Janssens et al, (152) Imokawa et al, (153) De Benedetto et al, (27) Komatsu 

et al, (154) Morizane et al, (155) Voegeli et al, (156) and Nakatsuji et al (48). 

Barrier component Defect Functional significance References

Cornified envelope

Reduced / intermittent 
expression of FLG, INV, CDSN

Altered LOR expression
Increased K6 and K16

Increased K5

High skin pH
Fragile SC
Low SCH

Hyperkeratosis
Immature SC

Suarez-Farinas et al 2011
Jensen et al 2004

Lipids
Increase in short chain CER

Decreased bulk lipids
Decreased A-SMase activity

High TEWL
Low SCH

Janssens et al 2012
Imokawa et al 1991
Jensen et al 2004

Tight Junctions Reduced expression claudin -1, 
-23

Increased permeability De Benedetto et al 2011

Desquamation
Increased expression of KLK 5, 

-6, -7, -8, -10, -11, -13, -14
Increased protease activity

High TEWL
Thinner SC

Komatsu et al 2007
Morizane et al 2012
Voegeli et al 2009

Microbial Reduced commensals Pathogenic SA colonisation Nakatsuji et al 2017
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Histological analysis has confirmed incomplete late terminal differentiation associated 

with AD. In patients at both lesional and non-lesional sites compared to controls, key 

structural building blocks of the cornified envelope – Filaggrin and Involucrin – are 

poorly expressed, or in the case of Loricrin and Corneodesmosin; virtually absent (148, 

151, 157). This weakened structural integrity of the cornified envelope confers fragility 

in the face of mechanical stress (146, 158-160). An inherent barrier to complete 

differentiation is the disproportional abundance of proliferating keratinocytes. 

Expression of proliferation markers Keratin 6 and 16 is greater in AD skin and accounts 

for the hyperkeratosis that manifests at lesional sites (148, 157). Greater rates of 

proliferation signal the persistence of immature, non-differentiated keratinocytes in 

the SC, as supported by the greater expression of basal cell marker Keratin 5 

throughout the nucleated epidermis in AD skin (148). 

 

A significant disease-associated defect is also present in the lipid lamellae component 

of the SC. Bulk SC lipids are decreased by around 44-54%, with a 32-36% reduction in 

ceramides alongside reduced activity of acid sphingomyelinase; a key enzyme for 

generating free ceramides prior to processing into the lipid lamellae (148, 153). Not 

only lacking in quantity, but these ceramides also differ in structural composition and 

are enriched in shorter carbon chain species (152, 161). This shift to a shorter carbon 

chain length is associated with a less orthorhombic (ordered) lipid lamellae 

organisation and greater TEWL (103, 152). Weakened permeability barrier function is 

further compounded by the loss of key tight junction proteins - Claudin -1 and -23 - 

that regulate the paracellular movement of ions and water and form part of the inside-

out, and outside-in barrier (27, 33). 
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1.3.1.2 Filaggrin: a missing link in AD pathogenesis? 

Loss of function (LOF) mutations in the gene encoding profilaggrin cause Ichthyosis 

Vulgaris; (IV) an inherited skin disorder of incomplete keratinocyte differentiation 

(162). This study uncovered two common LOF mutations - the single nucleotide 

polymorphism R501X (rs61816761) and the 4-base pair deletion 2282del4 

(rs558269137) - in multiple families of UK and European decent with IV. Clinical 

similarities such as xerosis and palmar hyperlinearity exist between IV and AD, 

therefore a subsequent candidate gene approach uncovered the same common FLG 

LOF mutations predispose the development of AD (135). The four most prevalent FLG 

null mutations are summarised by Table 1.4. 

 

 

Table 1.4: Common FLG null mutations that predispose to AD. Minor allele frequencies (MAF) are 

reported by Margolis et al (163) in a white US population. 

 

Since this first finding in 2006, more recent meta-analysis of case control studies 

report that R501X and 2282del4 confer a 3-fold risk of AD; (OR: 3.12; 95%CI, 2.57-3.79) 

are associated with more severe, persistent, treatment-resistant forms of disease; and 

increase the risk of developing asthma (OR: 3.29; 95%CI, 2.84-3.82) (134, 163). 

Interestingly, one study found that maternal inheritance of these alleles exerts an 

additive effect on AD risk in IgE sensitised mothers, indicating a strong gene-

environment effect in their offspring (164). Intragenic copy number variation also 

Name RefSNP ID Mutation Consequence MAF (%)

R501x 61816761 G > A Stop 7.7

2282del4 558269137 ACTG deletion Frameshift 6.8

R2447x 138726443 G > A Stop 1.4

S3247x 150597413 G > T Stop 2.8
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modulates AD risk, with a protective effect associated with a higher number of FLG 

monomer repeats (165). 

 

These FLG LOF mutations negatively affect skin barrier structure and function in a 

dose-dependent manner. Histological analysis shows the complete absence of 

keratohyalin granules, a reduction in KIF density, and the loss of FLG monomers in 

homozygous IV patients carrying two LOF mutations, with residual expression 

remaining in heterozygotes (159, 162). An increased proportion of Ki-67 positive 

proliferative cells with subsequent greater number of SC layers is also found (159). In 

line with these structural abnormalities, skin barrier function is profoundly 

compromised through reduced SCH, elevated TEWL, delayed barrier recovery, 

increased pH and reduced cohesion compared to wild type controls (159). Greater 

inside-out permeability to water is attributed to a paracellular abnormality as a 

consequence of immature lamellar bilayers (159). 

 

In agreement with these findings in IV, there is strong evidence that AD patients 

carrying FLG LOF mutations also possess a significant defect in skin barrier structure 

and function. Observations such as increased skin roughness and scaling, differences 

in lipid profiles, elevated TEWL, decreased SCH, elevated pH and reduced SC integrity 

have all been reported in uninvolved FLG-deficient skin compared to healthy controls 

(158, 166, 167). To expand on these deficiencies further, both the flaky tail and FLG null 

mouse models of AD have been utilised to investigate the pathogenic consequences of 

inherited FLG loss from the epidermis. These mouse models exhibit a dry, scaly, more 

fragile primary skin phenotype, characterised by hyperkeratosis, the loss of 
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keratohyalin granules and FLG monomers from the cornified layer (146, 168). Both the 

inside-out, and outside-in skin barrier of these animals, measured by TEWL and dye 

penetration respectively, is significantly compromised (145). A defining feature of dry 

skin conditions is low levels of extractable NMF (39). AD is no exception to this in that 

SC NMF levels are significantly reduced compared to healthy skin (40, 146, 169). Given 

that monomeric FLG is its primary source, NMF levels in AD patients is indicative of 

corresponding FLG genotype (169, 170). 

 

Although undoubtedly significant, FLG LOF heritability by itself does not fully explain 

AD pathology. This is demonstrated by a German study in children that found 

population attributable risk of AD from FLG LOF mutations to be 13.5% and the 

penetrance at 38.5%, meaning just carrying a FLG LOF mutation does not guarantee 

active disease (171). Nevertheless, after many years of research focused on the 

powerful dysregulated TH2 type immune response, the discovery of FLG LOF mutations 

represents a pivotal paradigm shift towards a primary skin barrier defect underlying 

the pathogenesis of AD. 

 

1.3.1.3 Proteolytic barrier breakdown in AD 

Although a key part of normal skin barrier homeostasis, there is a growing body of 

evidence relating dysregulated protease activity to the primary skin barrier defect in 

AD. This is provided by the autosomal, recessive, inflammatory disease Netherton 

Syndrome (NS); a condition similar to severe AD in its clinical presentation and a 

predilection to food allergy, that suggests a shared pathogenesis between the two 

diseases. NS is caused by mutations in SPINK5 encoding the serine protease inhibitor 
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LEKTI (172). Loss of functioning LEKTI culminates in increased KLK5, KLK7, KLK14 and 

elastase-2 epidermal protease activity alongside a clinical phenotype of scaling, 

erythroderma and severe pruritis. This cocktail of unrelenting protease activity 

aggressively degrades corneodesmosomes to the extreme whereby the SC becomes 

detached from the SG. Coinciding with this structural abnormality is a marked 

permeability barrier defect (173-175). 

 

With these similarities to AD in mind, a candidate gene approach has associated a 

single nucleotide polymorphism (rs2303067) in SPINK5 with AD (176). As is the case in 

NS, although far less profound, the functional consequences of this frequent, non-

conservative E420KK LEKTI variant are elevated KLK5, KLK7 and elastase 2 protease 

activity, depleted SC cohesion through reduced expression of DSG1, and increased 

expression of TSLP compared to wild type controls (177). Although performed in 

healthy indivduals, (177) this study suggests a genetic basis for a protease defect in AD 

that accelerates barrier breakdown and disease development. This is supported by 

Vasilopoulos and colleagues proposing an additional risk locus; a gain in function 

insertion located in KLK7 (178). 

 

Unique to AD, a modulating effect of skin pH on protease activity has been reported by 

the flaky tail mouse model. Here, under steady-state conditions, elevated skin pH 

induces mRNA expression of KLK5, 7 and 14 to increase bulk serine protease activity 

assessed by in situ zymography (179). A similar modulation of serine protease activity 

is observed in the oxazolone-induced mouse model of AD, (143) an effect reversed by 

re-acidification of the SC (180). In general agreement with this pH mechanism, albeit 
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using more aggressive experimental methodology, neutralisation of the murine 

epidermis using topical superbases elicited a more pronounced protease-induced 

barrier defect. Application of 1,1,3,3-tetramethylguanidine or 1,8-diazabicyclo [5,4,0] 

undec-7-ene resulted in sustained serine protease hyperactivity, DSG1 degradation 

and loss of corneodesmosomes, in conjunction with a lipid processing defect (76, 77). 

Considering the evidence that eczematous skin has a higher pH, (181, 182) these 

findings together suggest a protease-mediated mechanism of skin barrier breakdown 

that warrants further investigation in human AD cohorts. 

 

Animal models have provided a rich source of mechanistic evidence, but currently, the 

degree of SC protease hyperactivity in AD patients is unclear, limiting the translatory 

potential of this basic research to clinical treatments. In human subjects, perhaps the 

most comprehensive account of dysregulated protease activity related to AD is 

provided by Voegeli and colleagues. Here, the authors used fluorescent peptide 

substrates to profile a range of SC proteolytic activities in patients with mild-to-

moderate disease compared to non-lesional skin and healthy controls (156). Increased 

proteolysis attributed to plasmin, urokinase, leukocyte elastase, trypsin-like, 

chymotrypsin-like and tryptase-like activity was noted in active AD compared to 

healthy skin, and was associated with SC thinning, and reduced skin barrier function 

measured by TEWL, skin-surface pH and SCH (156). Protein quantification in the same 

subjects found elevated expression of KLK7, KLK11 and plasmin in active AD, accounting 

for in part, the observed increases in proteolytic activity (183). A similar small study 

found no evidence for elevated trypsin, and chymotrypsin-like protease activity in the 

uninvolved, dry skin of patients with established AD, despite a general trend for 
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widespread increased Kallikrein protein expression in the SC (154). These findings 

provide preliminary pathogenic evidence relating a synergy of SC protease 

hyperactivity to accelerated barrier breakdown in AD once cutaneous inflammation is 

established. Not addressed by these studies however is the potential modulating effect 

of disease severity on protease activity, nor the primary subclinical protease defect 

that may exist before disease onset. Nevertheless, this preliminary work supports the 

finding that remedying part of this proteolytic imbalance through topical inhibition, 

may prove efficacious for the treatment of established AD and chronic itch (184). 
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1.3.2 Inflammation in AD 

A current model of AD course (185) places non-allergic or intrinsic AD as the first phase 

of disease, with allergen sensitisation and elevated IgE denoting progression to 

extrinsic AD (phase 2) Phase 3 is a more chronic, autoallergic stage. The latter phases 

are associated with an increased risk of further allergic and cardiovascular 

comorbidities (Figure 1.6). 

 

 

Figure 1.6: The course of AD. Genetic susceptibility to a skin barrier defect and subclinical 

inflammation promotes non-allergic intrinsic AD (phase 1). Allergen penetration and sensitisation 

denotes progression to allergic AD (phase 2). Autoallergic AD (phase 3) represents a more chronic 

stage of disease. Figure adapted from Danby et al (185). 

 

Acute lesional AD is mediated by the infiltration of CD4+ T cells of the adaptive immune 

system that produce cytokines to drive cutaneous inflammation and orchestrate the 

dysregulated immune response. Skin resident dendritic cells present antigens to naïve 

T cells that upon recognition, differentiate into distinct T helper (Th) subsets classified 

by their cytokine expression. In AD, the Th2 cell subset predominates, but there is also 

evidence of a Th1, Th17 and Th22 inflammatory milieu, highlighting the heterogeneous 
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immunological profile associated with disease pathogenesis and course (151, 157, 186). 

Compared to psoriasis, there is an attenuated up-regulation of Th17 axis genes 

associated with IL-17 such as CCL20 in both acute and chronic phases of established 

AD; but their increased expression is more strongly associated with early disease 

onset, with IL-26 correlating with barrier dysfunction in infants (157, 187). Th22 and Th1 

genes such as IL-22 and IFN-g respectively are expressed in acute AD with their 

upregulation noted in more chronic disease (157). Interestingly, the induction of Th1 

immune genes such as interferon gamma receptor 1, CXCL (C-X-C Motif Chemokine 

ligand) -9 and CXCL10 in infants is lacking compared to adults, highlighting further 

differential immune pathogenesis over time (157, 187). 

 

1.3.2.1 TH2 axis is central to AD pathogenesis 

The inside-out model of AD pathogenesis refers to the broad spectrum of 

dysregulated inflammation that forms the basis of acute lesional disease and drives 

the production of allergic IgE (129, 188). Central to this is a strong TH2 polarised 

immune signature; evident in innate skin resident keratinocytes and dendritic cells, 

(189, 190) infiltrating and circulating lymphocytes of the adaptive immune system, (191, 

192) and serum (193). The alarmin TSLP expressed by keratinocytes is an essential 

initiator of Th2 signalling and allergic skin inflammation (194). In the early development 

of eczematous reactions by allergy patch testing, expression of the cytokine 

interleukin (IL)-4 predominates (195) that stimulates the production of chemokines 

(CCL17 / CCL22) by resident dendritic cells (196) to augment the infiltration of 

activated Th2 cells (197). Further overexpression of IL-4 and IL-13 by these activated T 

cells in lesional skin promotes B cell class switching to produce IgE and promote 
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eosinophilia (198-200). Further evidence underpinning IL-4 and IL-13 in disease 

pathogenesis is provided by transgenic mouse model of spontaneous pruritic skin 

inflammation (201) and the discovery of a missense mutation predisposing to high 

patient IgE levels in Japanese and German populations with AD (202, 203). It has 

recently emerged that Itch, the hallmark symptom of AD, is attributed to IL-31 

expression by activated Th2 cells (204). 

 

Full thickness skin biopsies from AD patients coupled with molecular techniques is a 

valuable tool for capturing inflammatory profiles and cellular infiltrate at various stages 

of disease. Using this methodology, a spectrum of cutaneous inflammation has been 

reported in non-lesional AD compared to heathy skin. Here, TH2 type cytokines and 

chemokines predominate with increased expression of IL-13, CCL5, CCL11, CCL17, 

CCL18, CCL22 alongside MX-1 (TH1) and IL-22 (TH22) (151). Interestingly, the degree of 

this subclinical inflammation correlates with disease severity, suggesting a pathogenic 

role for non-lesional skin in the development of active lesions, and confirming that 

normal-appearing AD skin is far from healthy (151). Transitioning from non-lesional to 

acute and then chronic AD is associated with a dose dependant increase in expression 

of TH1, TH2, TH17 and TH22 type chemokines and cytokines, correlating with greater 

numbers of infiltrating T cells, myeloid cells, dendritic cells and Langerhans cells (157, 

205). 
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1.3.2.2 Skin barrier defects trigger cutaneous inflammation 

In response to barrier disruption, the epidermis initiates its subsequent repair 

through the expression of proinflammatory cytokines. After tape stripping to 

experimentally damage the SC, an increase in TEWL and thickness is accompanied by 

epidermal expression of Keratin-16, TNF-a (tumour necrosis factor alpha), IFN-g 

(interferon gamma), IL-8 and IL-10 (206). Prolonged scratching as a consequence of 

unrelenting KLK7 or cathepsin S activity, precedes the development of skin lesions 

characterised by lymphocyte infiltration and TH1 cytokines (207, 208). This stressed 

epidermal barrier undergoing repair, shares similarities with the subclinical barrier 

defect and inflammation encountered in non-lesional AD compared to healthy skin 

(148, 151). When skin barrier disruption becomes more chronic - as is the case in FLG 

LOF mutation carriers - there is increased epidermal expression of IL-1a and IL-1b, an 

observation supported by fatty acid deficient mice (54, 209). Therefore, a damaged 

skin barrier alone is sufficient to autonomously initiate a proinflammatory 

environment that signals disease onset and forms the foundation of heightened TH1 

cytokine levels found in lesional disease (205, 210, 211). This evidence associates skin 

barrier dysfunction to TH1 type inflammation, but how does it relate to the hallmark 

TH2 inflammatory environment found in diseased skin? 

 

One answer may reside in the innate expression of TSLP by keratinocytes. Highly 

expressed in AD (212) and following barrier disruption, TSLP stimulates CD11c+ 

dendrocytes and polarises naïve CD4+ T cells to produce TH2 cytokines (192, 213). 

There is also evidence that TSLP is an essential inflammatory mediator in the allergic 

sensitisation to ovalbumin through disrupted skin (214). Likewise, in the mouse model 
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of NS, aberrant KLK5-mediated cleavage of PAR2 primes cutaneous TH2 inflammation 

through increased expression of TSLP (173-175, 215, 216). Elevated TSLP expression is 

also associated with barrier disruption as a consequence of FLG loss from the 

epidermis (179, 212). Here, animals with hyperkeratosis, acanthosis and permeability 

barrier dysfunction are predisposed to cutaneous TH2 inflammation, elevated IgE and 

a reduced threshold to irritants and allergens (179, 212, 217). In this scenario, antigens 

such as ovalbumin can penetrate more readily to exacerbate a background dermal 

inflammatory infiltrate of lymphocytes, mononuclear cells and eosinophils through 

further induction of the TH1, TH2, TH17 axis that drives allergen specific IgE production 

(146, 218, 219). This data together demonstrates how barrier dysfunction of multiple 

forms can facilitate antigen penetration and prime disease associated inflammation. 

Interestingly, TNF-a is required for TSLP induction in skin explants, providing a 

mechanism that connects the proinflammatory response related to barrier damage to 

the proallergic arm of the immune system (220). 
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1.3.2.3 The acquired skin barrier defect 

In a self-perpetuating pathogenic loop, the heightened inflammatory 

microenvironment of AD in return can disrupt the skin barrier and exacerbate its 

breakdown. In vitro experimental models that simulate disease-associated 

inflammation, have informed that the cytokines IL-4, IL-13 and IL-25, (143, 221, 222) in 

addition to IL-22, (223) and IL-31 (224) can all knockdown FLG expression and 

subsequently reduce levels of NMF. This is confirmed in patients with functional FLG 

expression, as disease severity exerts a similar effect on skin barrier structure and 

function independent to LOF mutations (225, 226). Additional structural SC 

components supressed by cytokines IL-4 and IL-13 include the lipid lamellae, (227, 228) 

and the cornified envelope proteins (151, 229-231). These cytokines can also stimulate 

expression of KLK7, (155, 229) accounting for the increased chymotrypsin-like 

protease acitivity reported in patients with active disease (156). Therefore, not only 

can a significant barrier defect be inherited, these studies together provide evidence 

on how it can be acquired as a consequence of disease inflammation. 
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1.4 SKIN BIOMARKERS FOR AD 

AD is a chronic, unpredictable disease, often waxing and waning between periods of 

flare and remission. In these circumstances it is primarily managed through reactive 

topical anti-inflammatory therapy to treat clinical lesions. Control is then maintained 

by the proactive use of emollients and topical anti-inflammatories that modify disease 

course by treating the barrier defect and subclinical inflammation (211, 232) to prolong 

the subsequent time-to-flare and reduce severity (233-235). This treatment strategy 

emphasises the pathogenic synergy between a barrier defect and subclinical 

inflammation that steers the natural disease course. 

 

1.4.1 Using biomarkers to understand the natural course of AD 

Considering its pivotal role in AD pathogenesis, the skin barrier promises a rich source 

of potential biomarkers to provide information on triggers, severity and prognosis 

associated with its breakdown (236). Non-lesional skin being far from healthy due to 

its altered structure, hyperproliferation, compromised function and subclinical 

inflammation, (147, 148, 151, 157) is an ideal point of enquiry due its close relationship 

with disease onset and severity (151, 152, 211). Using non-invasive techniques such as 

tape stripping to provide SC samples for laboratory analysis, (156, 170, 237) patient 

cohorts can be easily screened at non-lesional sites for biomarkers related to skin 

barrier breakdown. A better understanding of these pathogenic signals in uninvolved 

skin may provide valuable information on disease course and help combat the 

unpredictable nature of AD. 
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Dysregulated proteolytic activity is one such candidate for biomarker exploration. 

Animal models have demonstrated the consequences of protease hyperactivity in AD 

and NS such as spontaneous lesions, accelerated corneodesmosome degradation and 

increased TSLP expression, suggesting a central role in disease pathogenesis through 

premature skin barrier breakdown and the synthesis of TH2 type inflammation (173-

175, 207, 215, 216). But robust mechanistic evidence in patients is lacking, particularly 

on how risk genotypes may translate to increased proteolysis within the SC. In 

addition, clinical phenotypes associated with protease hyperactivity in AD are largely 

unknown (Figure 1.7). 

 

Filaggrin and its related breakdown product NMF, offer another intriguing avenue for 

biomarker research. In contrast to desquamatory proteases, mechanisms of low NMF 

and the clinical phenotypes associated with FLG risk genotypes are comparatively 

better understood. Low levels of NMF components PCA and UCA in the SC, has 

recently been linked to the FLG null genotype and AD severity, suggesting that in 

children at least, an NMF defect can be acquired and modulated through the degree 

of cutaneous inflammation present as measured by SCORAD (170, 225). But this 

documented relationship with disease severity albeit significant, is weak, and may 

indicate other factors that modulate NMF in the skin. Another reason for this weak 

association with disease severity could be it is lacking data from the largest pool of 

NMF residing in the SC; free amino acids (34). 
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A direct consequence of the primary NMF defect may be increased protease activity. 

AD is disease of elevated skin pH (181, 182) due to FLG LOF mutations or the onset of 

inflammation (54, 143, 166). As SC desquamatory protease activity is pH and 

desiccation sensitive, here is a potential mechanism of barrier breakdown that 

requires further investigation (Figure 1.7). 

 

 

Figure 1.7: Mechanisms of skin barrier breakdown related to increased protease activity and low 

NMF. The functional consequence of risk mutations predisposing to increased desquamatory 

protease activity and the resulting clinical phenotypes in AD are largely unknown. In contrast, a 

primary NMF defect as a consequence of FLG LOF mutations (inherited) or active disease 

(acquired) is associated with dry skin and elevated pH that may drive protease hyperactivity in 

uninvolved skin. E O AD: early-onset AD. 
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1.4.2 Using biomarkers to understand AD development 

Neonates are not born with visible signs of AD, but the majority of cases develop during 

the first year of life (238, 239). It is therefore perhaps of no coincidence that this 

extended period of skin barrier ‘optimisation’ and fragility coincides with a significant 

risk of developing AD. Currently it is unknown exactly why a child will develop active 

disease, but there are significant epidemiological clues emerging from population-

based studies. By far the best predictor a clinician or caregiver has is parental AD (130, 

131). Environmental exposures such as climate, living in an urban environment, and 

even the geographical location of your mother’s birth can modulate AD risk (137, 240, 

241). Given these strong gene-environment signals, it is plausible to put forward the 

following pathogenic scenario: that neonates genetically predisposed to AD, are 

subjected to negative environmental stressors that further weaken an already fragile 

skin permeability barrier vulnerable to breakdown (Figure 1.8). This culminates in a 

greater barrier defect by 8 weeks of age and an 8-fold increased risk of developing AD 

by one year (102). With this in mind, it is also plausible to think that one may be able to 

pick up further mechanisms of skin barrier breakdown throughout the neonate period 

that exacerbate loss of permeability barrier function and predate the onset of clinical 

AD. 
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Figure 1.8: The relationship between neonate-infant skin barrier development and AD risk. 

Throughout the first 3 months of life when dynamic structural and functional SC changes are taking 

place, the skin barrier is more susceptible to environmental stress, culminating in elevated TEWL 

at 3 months of age. Infants at risk of AD are less able to adapt to these environmental challenges 

and have weaker permeability barrier function both at birth and 2 months old (upper-quartile 

TEWL, shaded red) TEWL values reported by Kelleher at al., 2015 (102). 
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1.4.3 Endophenotype stratification is a future goal for AD 

Although xerosis, pruritis and flexural erythema are common features in AD, the 4 

major and 23 minor observations contained within the Hanifin and Rajka diagnostic 

criteria tells us that disease phenotypes can be heterogenous in nature (242). A route 

cause of this is its multifactorial pathology, therefore, a truer illustration of AD may be 

a series of subtypes or endophenotypes that reflect distinct underlying molecular 

mechanisms of disease. Central to this endophenotype subclassification are 

biomarkers; a series of biological tools that can be objectively measured and provide 

information on progression from predisposing genotype to clinical phenotype (236). 

As our knowledge of disease pathogenesis continues to grow, preventing the natural 

disease course using a biomarker / endophenotype approach to stratify patient 

cohorts and treat accordingly, is a future goal for current AD research in an era of 

personalised medicine (236, 243). 
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SCOPE OF THESIS 

 

Breakdown of the skin barrier is a key component of AD pathogenesis. Although the 

unaffected skin of patients appears healthy, underlying structural defects render it 

functionally inadequate. The evidence suggests this facilitates allergen penetration and 

primes subclinical inflammation to signal disease onset and severity. Despite being key 

components of a healthy, biologically active skin barrier at physiological levels, there is 

growing evidence that both protease hyperactivity and low levels of NMF within the SC 

contribute to barrier breakdown in adult AD. 

 

As cases of AD continue to rise in children around the world, focus has shifted to 

prophylactic interventions from birth to support barrier development throughout a 

period of fragility as it adapts to terrestrial life. The hypothesis here being that disease 

onset in infancy can be delayed or even halted by correcting the barrier defect in 

predisposed individuals. But in contrast to adults, the infant skin barrier is not well 

characterised. There are unanswered questions on its rate of development and the 

mechanisms of breakdown preceding disease onset during infancy, that if addressed, 

will provide a better understanding of this somewhat unpredictable disease. 

Furthermore, the identification of at-risk individuals with greater precision may 

facilitate the appropriate intervention to disrupt the natural course of AD
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STUDY OBJECTIVES: 

To perform a series of clinical studies in infants and adults to better understand 

normal skin barrier development from birth and investigate its potential breakdown 

in subjects predisposed to AD by: 

 

• Adapting non-invasive laboratory assays based on tape stripping to monitor 

protease activity and NMF development as biomarkers of terminal corneocyte 

differentiation in a longitudinal birth cohort. Compare findings to healthy adult 

controls to elucidate how the neonate SC differs to adult skin. 

 

• Developing and validating the use of Infrared Spectroscopy as a non-destructive 

in vivo method of NMF quantification for assessing skin health and the inherited 

or acquired FLG defect. 

 

• Investigating differential trajectories of skin barrier development from birth in 

infants that do and do not develop disease. Assessing the predictive potential of 

skin barrier biomarkers measured in a community setting at birth and 4-weeks, 

for the development of AD by 12 months of age. 
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Figure 1.9: Biomarkers of skin barrier development and breakdown associated with AD. Healthy 

skin barrier development was initially assessed over 4 weeks by non-invasive measures and tape 

stripping (Chapter 2). The logistic and practicality issues raised led to the development of FTIR 

methodology for the measurement of NMF in adults (Chapter 3) that was piloted from birth to 

track skin barrier development and breakdown longitudinally (1 year) in relation to AD 

development (Chapter 4). 
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What’s already known about this topic? 

From birth the acidification and hydration of the infant stratum corneum to adult levels 

suggests transitory mechanisms underlying differentiation and desquamation. 

Study aims 

To assess the feasibility of non-invasive skin tests and tape stripping to better 

understand healthy neonate skin barrier development. 

Study objectives 

To perform a longitudinal cohort study with measurements performed at birth and 

repeated at 4 weeks to monitor the biophysical (TEWL, SCH, pH) and biological 

(protease activity, NMF) properties of the developing neonate SC. 

What does this study add? 

Superficial chymotrypsin-like protease activity and natural moisturising factors (NMF) 

increase from birth to 4 weeks of age and differ to adults. Impaired barrier function at 

birth is accompanied by elevated chymotrypsin-like protease activity and reduced 

NMF, highlighting why certain infants are predisposed to epidermal barrier breakdown 

and the development of atopic dermatitis (AD). 

What is the translational message? 

Our data reinforce the need for infant skincare regimens from birth that protect and 

support normal barrier development. Targeted skincare strategies to ameliorate 

heightened chymotrypsin-like protease activity and low NMF may be an important 

preventative measure for neonates at increased risk of developing AD. 
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ABSTRACT 

From birth, the functional properties of the neonatal epidermal barrier mature 

whereby the stratum corneum (SC) hydrates and the skin surface acidifies. The 

identification of a thinner infant SC compared to adults suggests underdeveloped 

mechanisms underlying differentiation and desquamation. The aim of this study was 

to assess the functional properties of the neonatal SC from birth, in conjunction with 

the quantification of superficial chymotrypsin-like protease activity and filaggrin-

derived natural moisturising factors (NMF). A total of 115 neonates recruited to the oil 

in baby skincare (OBSeRvE) randomised controlled trial underwent a full evaluation of 

the SC at birth (<72 hours old) and at 4 weeks of age (n=39, no oil control group) using 

minimally invasive instrumentation and methodology. A cohort of 20 unrelated adults 

was recruited for comparison. At birth NMF levels correlated with SC hydration 

(r=0.50) and skin-surface pH (r=-0.54). From birth to 4 weeks, transepidermal water 

loss (TEWL), superficial chymotrypsin-like activity and filaggrin-derived NMF 

significantly elevated. Impaired epidermal barrier function at birth (>75th percentile 

TEWL) was accompanied by significantly elevated chymotrypsin-like protease activity 

and reduced levels of NMF. In conclusion, the biophysical, biological and functional 

properties of the developing neonatal SC are transitional from birth to 4 weeks of age 

and differ significantly to adults. The presence of impaired barrier function with 

elevated chymotrypsin-like protease activity and reduced NMF at birth suggests why 

certain infants are predisposed to epidermal barrier breakdown and the development 

of atopic dermatitis (AD). 
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INTRODUCTION 

The developing infant epidermal barrier demonstrates significant structural and 

functional immaturity as it transitions to adult-like status throughout the first year of 

life (244). For example from its sub-optimal condition reported at birth, the neonatal 

stratum corneum (SC) rapidly hydrates and the skin-surface acidifies to adult levels 

by around day 28 (92, 98, 245-247). The application of novel methodology to infant skin 

research has revealed a 30% thinner, more disorganised SC with increased cell 

turnover, characterised by smaller, poorly defined, irregular corneocyte clusters and 

non-uniformly distributed corneodesmosome artifacts compared to adults (89, 90). 

Considering the significant influence of SC hydration and pH on epidermal barrier 

homeostasis, (76, 78, 248) these observations combined suggest that infant 

mechanisms of differentiation and desquamation are either underdeveloped or poorly 

regulated. 

 

It is perhaps of no coincidence that this potentially vulnerable transitional period of 

infant epidermal barrier maturation coincides chronologically with the onset (<1 year 

of age) of skin manifestations such as atopic dermatitis (AD); (238, 239) an 

inflammatory disease arising from mechanisms of epidermal barrier breakdown 

exacerbated by negative environmental triggers (185). One such example of a potential 

unexplored, negative environmental stressor on normal, full-term infant epidermal 

barrier maturation is the use of natural oils to treat dry skin; a practice routinely 

recommended by midwives despite the absence of supporting clinical evidence (249). 

To this end, the recently published OBSeRvE (Oil in Baby SkincaRE) randomised 

controlled trial investigated the effect of natural oils on the infant SC throughout the 
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first month of life (250). Using this valuable OBSeRvE study birth cohort, an 

opportunity arose to perform an ancillary study evaluating the biophysical and 

biological properties of the neonatal epidermal barrier at birth in a substantial number 

of subjects (n=115), with repeat measurements pursued at 4 weeks in the no oil control 

group (n=39) to monitor its early development and investigate early signals of barrier 

breakdown during this critical period. Of particular interest, superficial chymotrypsin-

like protease activity and the level of filaggrin-derived NMF was quantified ex-vivo to 

elucidate their role in desquamation maturation and the development of infant barrier 

function. In an effort to put the infant results obtained into context, a comparison to 

an unrelated, healthy adult cohort is presented. Finally, using elevated TEWL at birth 

as a predictive factor for the development of AD by 1 year, (102) an exploratory analysis 

was performed to investigate the relationship between desquamatory chymotrypsin-

like protease activity and NMF with impaired barrier function in neonates. 
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MATERIALS AND METHODS 

OBSeRvE study birth cohort 

A total of 115 healthy, full term (≥37+0 weeks gestation) neonates were recruited at 

Saint Mary’s Hospital, Central Manchester NHS Foundation Trust, between September 

2013 and June 2014 in accordance with the main Oil in Baby SkincaRE (OBSeRvE) pilot, 

assessor-blinded, randomised controlled trial protocol (250). Ethical approval for the 

OBSeRvE study was provided by the Greater Manchester East Research Ethics 

Committee (13/NW/0512). Infants randomised to the no oil control group represented 

the returning infant cohort at 4 weeks of age (n = 39). All infant assessments were 

performed at Saint Mary’s Hospital shortly after birth (<72 hours old) before discharge 

from the postnatal ward and repeated at 4 weeks of age. 

 

Healthy adult cohort 

An unrelated cohort of adults with healthy skin (n=20) was recruited from the local 

community between January and April 2015 by Sheffield Dermatology Research, at the 

University of Sheffield, UK. Volunteers in this cohort had no medical history of skin 

conditions or atopy and refrained from using any topical products for at least 7 days 

prior to the single assessment day. The NHS Trent Multicentre Research Ethics 

Committee approved this study component (04/MREC/70). 

 

Sample size 

The infant cohort size for the OBSeRvE study (242) was set at 100 to allow 30 babies 

per intervention group accounting for a 10% loss-to-follow up. This was considered 

sufficient for a feasibility trial of this nature. For the unrelated cohort of adults, twenty 
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participants were recruited for comparison to infant skin as reported by Fluhr et al by 

cross sectional study design (92). 

 

Biophysical assessment of the epidermal barrier 

Study sites for both cohorts were defined as: 1) the left volar forearm, midway 

between the antecubital fossa and the wrist; and 2) the left thigh, midway between the 

patella and groin. The biophysical properties of the infant epidermal barrier were 

assessed as previously reported by the OBSeRvE study (250). Healthy adult 

assessments were conducted at Sheffield Dermatology Research in room conditions 

maintained at 20.60 ±0.62°C, and 35.71 ±6.51% relative humidity following an initial 

acclimatisation period of 20 minutes. A series of minimally invasive techniques were 

employed for assessment including: a single Transepidermal water loss (TEWL) 

measurement using an AquaFlux AF200 condensing chamber probe (Biox Systems 

Ltd., London, UK); skin-surface pH and capacitance measurements performed in 

triplicate (CK electronic GmbH, Cologne, Germany); and tape-stripping – the 

application and removal of 3 consecutive D-squame discs from a single site using a 

plunger to consistently apply a standard 225 g/cm2 of pressure to each disc (CuDerm, 

Dallas, USA). Infrared densitometry using a SquameScan 850A (Heiland electronic, 

Wetzlar, Germany) was utilised to quantify the mass of SC removed by tape-stripping 

(251). Following infrared densitometry, all D-squames collected were stored at -80°C 

before further analysis. 
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Determination of chymotrypsin-like protease activity and natural moisturising factor 

levels 

Superficial chymotrypsin-like protease activity was assayed ex-vivo (156, 252) from 

pooled, forearm-collected D-squame discs 1-3 using substrate MeOSuc-Arg-Pro-Tyr-

AMC (Peptide Protein Research Ltd, Southampton, UK). Superficial levels of filaggrin-

derived natural moisturising factors (NMF) were quantified ex-vivo from pooled, thigh-

collected D-squame discs 1-3, by combining o-Phthaldialdehyde derivatization (42) 

(free amino acids [FAA] see Appendix Figure 6.1, page 164) and High Performance Liquid 

Chromatography (2-Pyrrolidone-5-carboxylic acid [PCA] and urocanic acid [UCA]) 

(253). A Shimadzu HPLC system comprising of a LC-20AD XR pump, SIL-20A XR 

autosampler and SPD-M20A diode array detector (Shimadzu, Kyoto, Japan) combined 

with Phenomenex Aqua® 5µm C18 125Å column (Phenomenex, Macclesfield, UK) at a 

flow rate of 0.8 ml min-1 was used for analysis. Protease activity (nU / µg), and NMF 

(the sum of FAA, PCA and UCA [nmol / mg]) were normalised relative to the mass of 

SC removed by tape stripping. The limit of quantification (LOQ) for this methodology 

was as follows: protease = 0.0017 nmol / ml 7-Amino-4-methylcoumarin (AMC); FAA = 

0.024 nmol / ml; PCA = 0.025 nmol / ml and UCA = 0.005 nmol / ml. Samples falling 

below the quantification threshold were assigned a value 0.5x the LOQ for statistical 

analysis. 

 

Data analysis 

All data was collated in excel and statistical tests were executed using GraphPad Prism 

v6.0b (GraphPad Software Inc., La Jolla, USA). Infant and adult means (TEWL, SCH, skin 

surface pH, SC mass, protease activity and NMF) and quartile means (protease activity 
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and NMF only) at birth were compared using a 1-way analysis of variance (ANOVA) with 

Bonferroni’s post-hoc test. Correlation analysis was performed through calculation of 

Pearson coefficients (r). The significance threshold was set at p=<0.05. All 

measurements were included for statistical analysis. 
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RESULTS 

Biophysical properties of the neonatal stratum corneum (SC) are transitional from 

birth 

Table 2.1 presents the fluctuations in transepidermal water loss (TEWL), capacitance 

and skin-surface pH that occur on the neonatal forearm SC from birth through to 4 

weeks of age. Of the 115 neonates recruited, 98% had no visible vernix caseosa (VC) 

present, and 1.7% had minimal coverage at the first assessment (<72 hours old). No 

visible VC was present at any of the test sites throughout the study. In newborn infants 

(<72 hours old), TEWL (12.14 ±2.31g/m2/h) was comparable to adult skin (12.64 

±3.09g/m2/h) suggesting competent epidermal barrier function (inside-out) at birth. 

Subject age at the point of TEWL assessment ranged from 6.8 hours to 55.18 hours. 

Correlation analysis revealed no relationship between neonate age and TEWL 

(Pearson coefficient r=0.04ns data not shown). However, during the first 4 weeks of 

infant life, TEWL overall significantly increased (25/35 individuals) representative of 

weakened epidermal barrier function during this period. Capacitance measurements 

as an indirect assessment of SC hydration, increased significantly from birth (17.66 

±4.55 relative capacitance units [RCU]) through early infancy (41.79 ±9.65 RCU). From 

birth, the process of skin surface acidification was complete by 4 weeks of age. 

Newborn infant SC was both drier (-13.81 ±4.55 RCU), and more alkaline (+1.15 ±0.51 

pH units) than adult skin. Infrared densitometry confirmed that comparable SC mass 

(SC cohesion) was removed by tape stripping to 3 discs in each group. These trends 

in skin barrier development were confirmed by analysing the OBSeRvE untreated 

group only (n=35) that had measurements taken at both timepoints (see Appendix 

Table 6.1, page 166). A family history of AD is associated with early disease onset during 
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infancy (254). As 32% of the birth cohort reported a family history of AD (father, 

mother or sibling with a clinical diagnosis of AD), the influence of this risk factor on the 

developing epidermal barrier was investigated. Cohort stratification of biophysical 

measurements according to a family history of AD at birth and at 4 weeks generated 

no significant differences in our results to report. 

 

 

Table 2.1: Cohort demographics and the biophysical properties of the developing infant forearm 

stratum corneum (SC) at birth and 4 weeks of age, compared to adults. Statistical significance was 

determined using a 1-way analysis of variance (ANOVA) combined with Bonferroni’s post-hoc 

analysis. *p = <0.05, ****p = <0.0001, ns: not significant. RCU: relative capacitance units. AD: atopic 

dermatitis. ∞39 infants were randomised to the OBSeRvE no oil control group, but 4 infants were 

loss-to-follow-up. A significant difference in SC hydration and skin-surface pH (****p = <0.0001) 

was also found between birth and adult cohorts. Mean±SD presented. 

  

Birth Mean difference 
(95% CI) 

Infant (4 wks) Mean difference 
(95% CI) 

Healthy adult 

Subjects (n) 115 - 
 

35∞ - 
 

20 

Age  28.11 (±11.32) 
Hours 

- 
 

30.7 (±2.35) 
Days 

- 24.65 (±6.67) 
Years 

Sex (% male) 57 - 
 

64 - 
 

25 

Family history of AD 37/115 - 
 

13/39 - 
 

0/20 

TEWL (g/m2/h) 12.14 (±2.31) 
 

1.23 *  
(0.05, 2.42) 

 

13.38 (±3.02) 
 

0.73 ns 
 (-0.97, 2.44) 

12.64 (±3.09) 
 

SC Hydration (RCU)		 17.66 (±4.55)§ 
 

24.13 **** 
(21.30, 26.97) 

 

41.79 (±9.65) 
 

10.32 **** 
(6.21, 14.43) 

31.47 (±6.90) 
 

Skin-surface pH 5.93 (±0.51)§ 0.94 **** 
(0.73, 1.16) 

 

4.98 (±0.34) 0.20 ns 
(-0.11, 0.52) 

4.78 (±0.42) 
 

SC cohesion (µg / 3 discs) 292.43 (±77.17) 
 

 12.22 ns 
(-23.47, 47.90) 

 

304.65 (±88.65) 
 

29.23 ns 
(-22.58, 81.04) 

275.42 (±62.45) 
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Development of superficial chymotrypsin-like protease activity and natural 

moisturising factor (NMF) levels from birth 

Superficial chymotrypsin-like protease activity at birth (1.03 ±0.69 nU/µg) was 

equivalent to that observed in healthy adults (0.84 ±0.53 nU/µg) suggesting that this 

component of SC desquamation was fully developed (Figure 2.1a). In contrast, Figure 

2.1b shows that the level of filaggrin-derived NMF at birth (243.25 ±209.68 nmol/mg) 

was significantly lower than the healthy adult cohort (1693.26 ±708.86 nmol/mg). In 

neonates at birth, the level of filaggrin-derived NMF significantly correlated with TEWL 

(r=-0.38), SC hydration (r=0.50) and skin-surface pH (r=-0.54, Table 2.2). From birth, 

a significant increase in superficial chymotrypsin-like protease activity (1.70 ±0.93 

nU/µg) and NMF levels (2330.25 ±1415.04 nmol/mg) occurred by 4 weeks of age. As 

was the case previously, this trend was confirmed by analysing the untreated infant 

cohort only (n=35), with 69% (protease) and 96% (NMF) of individuals showing an 

increase in this group (see Appendix Table 6.1, page 166). With regards to NMF, all 

components quantified followed this trend of up-regulation (Table 2.3). Infants with a 

family history of AD showed no significant difference in chymotrypsin-like protease 

activity or NMF levels at birth and 4 weeks of age to those reported here. 
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Figure 2.1: Development of superficial chymotrypsin-like protease activity and filaggrin-derived 

natural moisturising factors (NMF) from birth. (a) Quantification of ex-vivo chymotrypsin-like 

protease activity, and (b) NMF levels, from collected D-squames discs in neonates at birth (n = 115), 

repeated at 4 weeks of age (n = 35) compared to an unrelated healthy adult cohort (n = 20). 

Significantly elevated chymotrypsin-like protease activity was observed at 4 weeks compared to 

birth (mean difference: 0.67; 95% Confidence interval [CI]: 0.33, 1.01; ****p = <0.0001) and adults 

(mean difference: 0.86; 95% CI: 0.36, 1.35; ***p = <0.001). Compared to birth, significantly elevated 

levels of NMF was observed at 4 weeks (mean difference: 2087; 95% CI: 1759, 2415; ****p = <0.0001) 

and in adults (mean difference: 1450; 95% CI: 1038, 1862; ****p = <0.0001). A significant difference 

was also found in NMF between 4 weeks and adults (*p = <0.05). Significance was determined using 

a 1-way analysis of variance (ANOVA) with Bonferroni’s post-hoc analysis. Mean ± SD presented. 
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Table 2.2: Correlation between the biophysical and biological properties of the SC in infants at 

birth (<72 hours old) and 4 weeks of age. Pearson correlation coefficient (with 95% confidence 

interval) presented. *p = <0.05, **p = <0.01, ****p = <0.0001, ns: not significant. RCU: relative 

capacitance units. ∞39 infants were randomised to the OBSeRvE no oil control group but 4 infants 

were loss-to-follow-up. 

 

 

 

Table 2.3: Composition of filaggrin-derived NMF in infants at birth (<72 hours old), 4 weeks of age 

and healthy adults. 

  

TEWL 
(g/m2/h) 

SC Hydration  
(RCU)	 

Skin-surface 
 pH 

Chymotrypsin-like 
protease activity 

Birth 
(n =115) 

0.26 ** 
(0.08, 0.43) 

-0.30 ** 
(-0.46, -0.12) 

0.25 ** 
(0.07, 0.42) 

Infant 4wks 
(n =35)∞ 

0.12 ns 
(-0.22, 0.44) 

-0.39 * 
(-0.64, -0.06) 

0.10 ns 
(-0.26, 0.40) 

Natural moisturising factor 
(NMF) 

Birth 
(n =115) 

-0.38 **** 
(-0.53, -0.21) 

0.50 **** 
(0.35, 0.63) 

-0.54 **** 
(-0.66, -0.40) 

Infant 4wks 
(n =35)∞ 

-0.23 ns 
(-0.53, 0.11) 

-0.10 ns 
(-0.42, 0.24) 

-0.13 ns 
(-0.44, 0.21) 

NMF component (nmol / mg) Birth Infant (4 wks) Healthy adult 

Free amino acids 205.60 (±175.01)  1829.08 (±1120.26) 1408.05 (±538.82) 

2-Pyrrolidone-5-carboxylic acid 23.57 (±24.01) 320.80 (±188.08) 224.44 (±132.43) 

Urocanic acid 14.09 (±14.65) 180.38 (±123.93) 
 

60.78 (±55.78) 
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Impaired epidermal barrier function at birth is accompanied by elevated 

chymotrypsin-like protease activity and reduced levels of NMF 

Recently the presence of impaired epidermal barrier function (elevated TEWL) at 

birth and at 2 months has been presented as a predictive factor for the development 

of AD by 1 year of age (102). In this study at birth, superficial chymotrypsin-like protease 

activity and filaggrin-derived NMF correlated with TEWL (r=0.26 and -0.38, Table 2.2), 

therefore stratification of these biological components according to TEWL was 

performed as an exploratory analysis to further characterise impaired epidermal 

barrier function at birth (Figure 2.2). TEWL was grouped as follows: 1-25th percentile 

≤10.45g/m2/h; 26-50th percentile = ≤12.14 g/m2/h; 51-75th percentile = ≤13.34 g/m2/h. 

Figure 2.2 demonstrates that in neonates with the highest TEWL at birth (76-100th 

percentile, ≥13.35 g/m2/h) there also co-exists significantly elevated chymotrypsin-like 

protease activity (1.41 ±1.04 nU/µg) and reduced levels of filaggrin-derived NMF (139.80 

±114.40 nmol/mg) compared to individuals within the lower percentiles. Included in 

this subgroup of neonates with the highest TEWL were five individuals with 118-209% 

higher chymotrypsin-like protease activity than the group mean (Figure 2.2). Neonates 

with a family history of AD were present across all TEWL percentile groups in equal 

proportions. 
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Figure 2.2: Impaired epidermal barrier function at birth is accompanied by elevated 

chymotrypsin-like protease activity and reduced levels of filaggrin-derived NMF. Stratification of 

superficial (a) chymotrypsin-like protease activity, and (b) NMF levels at birth in accordance with 

TEWL (n = 115). Co-existing in neonates with the highest TEWL at birth (n=29, upper percentile: 76-

100th) was significantly elevated superficial chymotrypsin-like protease activity and reduced levels 

of filaggrin-derived NMF compared to the lower percentiles (1-75th, n=86). Significance was 

determined using a 1-way analysis of variance (ANOVA) with Bonferroni’s post-hoc analysis. 

Mean±SD presented. 
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DISCUSSION 

Using minimally invasive technology applied to a substantial, full-term healthy birth 

cohort, this study reports that the biophysical and biological properties of the neonatal 

epidermal barrier are transitional from birth through to at least 4 weeks of age. During 

this period where epidermal barrier function declines, SC hydration increases and the 

skin surface acidifies, an elevation in superficial chymotrypsin-like protease activity 

(attributed to kallirein-7 [KLK-7]) and filaggrin-derived NMF was also observed. At 4 

weeks of age, rather than reaching maturity, chymotrypsin-like protease activity and 

NMF increased beyond the levels exhibited by healthy adults. Thus, our data supports 

the view that infant skin is functionally immature compared to adults with 

undeveloped mechanisms of desquamation and differentiation. This reinforces the 

need for infant skin care regimens from birth that protect and support normal barrier 

development (255). Accounting for neonates with a reported family history of AD had 

no significant effect on our measurements, suggesting that this risk factor does not 

manifest as impaired barrier function during the first 4 weeks of life. The observation 

of weakened epidermal permeability barrier function occurring at some point 

between leaving hospital and 4 weeks following birth, highlights the potential 

vulnerability of infant skin to environmental stressors and supports the strategy of 

epidermal barrier enhancement from birth in high-risk individuals as a preventative 

AD measure (256). 

 

At birth, both the presence of the vernix caseosa (VC) and the active secretion of 

sebaceous lipids (sebum) at the neonate skin surface have the potential to affect the 

observations reported by this study. The VC is a protective, hydrophobic layer 
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comprising of water (80.5%), lipids (8-10%) and proteins (8-10%), (81) reported to be 

visibly present in around half of neonates at birth (84). Previous studies have identified 

that VC retention maintains SC hydration and supports acid mantle development, (82) 

contributed to in part by providing a source of free amino acids to the superficial SC 

(83). A complementary role for the VC in neonatal epidermal barrier maturation is an 

intriguing topic, but as no visible vernix was observed at the test sites in neonates 

participating in our study at the point of assessment (<72 hours), no exploratory 

analysis to address this question could be performed. Sebum levels on the forehead 

rapidly increase following birth (245) more markedly in females, (257) thought to 

result from a flood of maternal androgens during labour (258). Experimental work in 

a murine model demonstrated that the topical application of sebum proves 

detrimental to structural surface SC lipids, subsequently elevating TEWL, reducing 

hydration, and initiating a proinflammatory cascade (259). An interesting question 

therefore remains as to the effect of excess surface sebum on the infant epidermal 

barrier that warrants further investigation. 

 

The status of epidermal barrier function at birth in healthy, full-term neonates 

compared to adults remains inconclusively resolved. For example, reported in the 

literature are independent studies demonstrating reduced, (93) equivalent (92) or 

elevated (94) TEWL at birth compared to adults when measured using open-

chambered evaporimeters. The results presented here using a closed chamber-

condenser system suggest neonatal epidermal barrier function in healthy, full-term 

neonates is competent when assessed throughout the immediate days following birth. 

One interesting aspect of our study was that forearm TEWL increased significantly in 
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our infant cohort from birth during the early weeks of life, an observation replicated 

by larger studies, (102) and at different anatomical sites such as the thigh and buttocks 

(93). This elevation in TEWL seemingly persists longitudinally towards the second year 

of life as the barrier matures to adult like status (260). 

 

One potential mechanism of weakened epidermal permeability barrier function at 4 

weeks of age is the concomitant increase in chymotrypsin-like activity reported from 

birth by this study. In skin diseases such as AD whereby a thinner SC signals epidermal 

barrier breakdown, impaired permeability barrier function co-exists and correlates 

with hyperactive desquamatory protease activity (156, 252). Therefore, the increase in 

chymotrypsin-like  activity at the surface of the developing neonatal epidermal barrier 

could provide a valid explanation for the elevated TEWL, structural differences and 

immature desquamatory mechanisms observed in infants compared to adult skin (89, 

90, 260). Considering the regulatory effect of SC pH and hydration on desquamatory 

proteases, (76, 156) the authors’ hypothesised a period of protease activity maturation 

occurring in conjunction with the normalisation of barrier function to adult levels 

during the first 4 weeks of life (92, 98, 245-247). In contrast to this, surface 

chymotrypsin-like activity at birth was found to be already mature, and its significant 

rise beyond adult levels over the period studied occurred independently from the 

acidification and hydration of the SC. Moving forward, the mechanisms underlying 

elevated SC protease activity throughout this neonatal period requires further 

investigation. Furthermore, in the interest of a more complete picture of neonatal 

desquamation maturation, the activity of additional proteases such as kallikrein-5 

(KLK-5) requires clarification (55). The quantification of KLK-5 was not possible under 
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the remit of this study. This was due to a paucity of available samples for laboratory 

analysis, as a consequence of the ethical restrictions applied to tape stripping in 

neonates. 

 

Within the SC, a pool of NMF derived from filaggrin proteolysis, maintains barrier 

function through its hydrating and acidifying properties; (6) a mechanism confirmed 

by this study in neonates through correlation analysis at birth. It is therefore perhaps 

not unexpected that the observed increase in SC hydration and skin-surface 

acidification from birth to 4 weeks of age was accompanied by a significant 9-fold rise 

in NMF reported here on the infant thigh. Generation of NMF is regulated by 

environmental humidity, and the transitioning from in utero to a drier, terrestrial 

environment at birth, signals the activation of filaggrin proteolysis within the neonatal 

SC (248). As the latter stages of cornification proceeds, NMF production is indirectly 

dependent on KLK-7 activity through caspace-14 activation, (261) providing yet another 

potential insight into the concomitant rise in chymotrypsin-like activity from birth. But 

our NMF findings at the infant SC surface are not uniformly replicated in the literature. 

For example, in consensus with this study are Visscher and colleagues, who 

demonstrated a significant rise in free amino acids from birth when quantified ex-vivo 

from tape strips in infants at 1 month of age (83). Fluhr et al., (92) using raman confocal 

microscopy to quantify PCA, serine, glycine, histidine, lactic acid, urea and trans-UCA, 

identified a similar trend but at up to a SC depth of 5µm only. Interestingly bulk 

profiling performed by the same authors uncovered a greater NMF pool in neonates 

aggregating at 5-25µm depth (92). Once again this could reflect an inhibitory action of 

the prenatal environment on the developing profilaggrin-filaggrin-NMF pathway 
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leading to the accumulation of NMF within the lower SC layers in neonates. In 

disagreement with the significant rise in surface NMF levels from birth presented here 

is an investigation utilising attenuated total reflectance fourier transform infrared 

spectroscopy (ATR-FTIR) methodology to quantify free amino acids, urea, lactic acid, 

PCA (93). Here the authors declare no significant NMF differences in infants compared 

to adults but provide no descriptive results as supporting evidence for this conclusion. 

 

Using elevated TEWL at birth as a predictive factor for the development of AD by 1 year, 

(102) presented here is the suggestion that altered superficial chymotrypsin-like 

activity and low NMF are early signals underlying epidermal barrier breakdown in 

predisposed individuals at birth. Of course it is entirely possible that this observation 

reflects the greater presence of FLG mutations in this sub-cohort of neonates with 

elevated TEWL; (179, 262) a point we could not address due to the omission of DNA 

sample collection by this study. Nevertheless, although undoubtedly significant in 

disease pathogenesis, FLG loss-of-function mutations do not provide the full 

mechanistic insight of epidermal barrier breakdown in AD as neatly demonstrated by 

Kelleher and colleagues (102). One limitation of this study is that our exploratory 

analysis is purely speculatory, and no follow up of infants to determine a clinical 

diagnosis of AD was sought due to the limited cohort size. Only subsequent, well 

designed longitudinal feasibility studies can provide a definitive insight into the 

questions raised by this investigation such as the pathogenic relationship between 

protease activity, NMF and AD onset in infancy. Thus, in an era of AD management 

whereby intervening or modifying the natural course of the disease is a primary aim, 

clinical strategies aimed at ameliorating these identified early mechanisms of barrier 
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breakdown may prove a valuable preventative measure in neonates at increased risk 

of developing AD (236, 243). 

 

Valuable lessons were learned through conducting the OBSeRvE study. For example, it 

was noted there is limited space on the neonate forearm for SC sampling by tape 

stripping. As Fourier Transform Infrared (FTIR) spectroscopy is a suitable tool for the 

in vivo measurement of NMF, a logical next step would be to develop and validate this 

methodology for use in clinical studies. A benchtop FTIR device was also found to be 

inflexible and impeded recruitment due to the requirement of moving families from 

the maternity ward to the study room. In response to this a portable FTIR device was 

introduced for future work. 
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Study aims 

To develop and validate a novel portable methodology for the rapid in vivo assessment 

of NMF at the skin surface. 

 

Study objectives 

To perform a cohort study in adult participants with and without AD in order to: 

• Use chemometrics to model NMF from absorbance spectra collected using 

FTIR spectroscopy. 

• Simulate known scenarios of reduced NMF abundance in the skin to compare 

the FTIR technique to more established laboratory methodology. 

  



Chapter 3: FTIR for the quantification of NMF 91 

AUTHOR CONTRIBUTIONS 

This chapter presents the author-approved version of a manuscript ready for 

submission to a Dermatology journal. It is a methodology paper detailing the use of 

FTIR spectroscopy for the rapid measurement of NMF. 

 

Study conceptualisation: JC/SD/MJC; Methodology: JC/SD; Data collection: JC; 

Formal analysis: JC; Project Administration: JC/SD; Supervision: SD/MJC; Funding 

Acquisition: SD/MJC. 

 

JC authored the manuscript and was responsible for writing and submitting an ethics 

application to the University of Sheffield Research Ethics Committee. 

  



Chapter 3: FTIR for the quantification of NMF 92 

ABSTRACT 

The relative abundance of skin-derived Natural Moisturising Factors (NMF) is 

indicative of Filaggrin (FLG) genotype, Atopic Dermatitis (AD) severity and the 

condition of the permeability barrier. They are routinely analysed by ex vivo laboratory 

assay, however this is a time consuming and labour-intensive process. As an 

alternative, this study evaluated an in vivo infrared spectroscopic method for the rapid 

measurement of NMF in subjects with AD or healthy skin. Chemometric modelling of 

NMF by Partial Least Squares (PLS) regression calibrated absorption in the fingerprint 

spectral region obtained using a portable Fourier Transform Infrared (FTIR) device 

against quantitative NMF obtained by standard ex vivo laboratory analysis. The four 

common European FLG loss of function (LOF) mutations were screened. Acceptable 

PLS model accuracy was noted for both calibration (R2=0.73) and validation (R2=0.70) 

data sets. Cohort stratification revealed a clinically relevant deficiency in modelled 

NMF at the antecubital fossa in AD and FLG LOF mutation carriers. Receiver Operating 

Characteristic curves supported this discrimination of clinical phenotypes confirming 

suitability for assessing the inherited and acquired FLG defect associated with AD. 

Independent replication of these preliminary findings is required, but the rapid, 

portable, non-destructive nature of this methodology makes it suitable for any clinical 

setting. 
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INTRODUCTION 

The quantification of Natural Moisturising Factors (NMF) is of value to scientists and 

clinicians around the world with an interest in Atopic Dermatitis (AD) and cosmetic 

research alike. Synthesised in the lower Stratum Corneum (SC) through the 

catabolism of Filaggrin (FLG) monomers during terminal differentiation, the 

predominant components of NMF – free amino acids (fAA), pyrrolidone carboxylic acid 

(PCA) and the less abundant urocanic acid (UCA) - are powerful humectants integral 

to maintaining the physical permeability barrier of the skin (35). Confronted by a 

comparatively dry environment at the SC surface, these chemicals act to preserve 

optimal levels of corneocyte hydration, that in turn, maintains skin plasticity, limits 

water loss and regulates the rate of desquamation (34, 38, 79). In its absence, NMF 

deficiency is synonymous with xerosis, FLG genotype, greater disease severity in AD 

and the suboptimal functioning of the permeability barrier (39, 170, 225, 263, 264). 

Recent evidence in children suggests that FLG mutation status may predict the degree 

of skin barrier recovery following 6-weeks topical corticosteroid treatment, 

highlighting a novel use of NMF quantification in AD (265). 

 

Its extraction from tape strips and subsequent analysis by High Performance Liquid 

Chromatography (HPLC) is a fully quantitative assessment of NMF ex vivo. Although 

this technique is extensively used, it requires laboratory access and is both time 

consuming and labour intensive when applied to larger cohorts, thus impeding its 

widespread use in clinical research. As an alternative, in vivo vibrational spectroscopy 

can assess the molecular composition of the skin to reveal components of its 

biochemical structure, including NMF (21, 253). Techniques such as Confocal Raman 
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Microspectroscopy has been employed to discriminate FLG genotype, (266) whereas 

Fourier Transform Infrared (FTIR) Spectroscopy – arguably a more widely accessible 

technology - is yet to be explored in AD. Here we trial a portable, hand-held FTIR 

spectrometer as a research tool to rapidly measure NMF by modelling its 

chemometric absorption profile against quantitative values obtained by ex vivo 

laboratory assay. A preliminary evaluation of the in vivo model is achieved by replicating 

known clinical and environmental scenarios of reduced NMF abundance in the skin. 
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MATERIALS & METHODS 

Participants 

A cohort study was designed to compare surface NMF levels between volunteers with 

either AD or healthy skin using in vivo FTIR spectroscopy as a novel method of 

quantification. Volunteers were recruited from the local community of the city of 

Sheffield, UK between November 2017 and April 2019. A diagnosis of AD was made using 

the UK working party criteria (267). Healthy volunteers had no history of skin disease. 

An additional cohort of five healthy volunteers was recruited to investigate the effect 

of a short water soak (20 minutes, 1ml distilled water warmed to 37ºC contained by an 

open chamber) on NMF. All volunteers were asked not to apply any topical products 

or shower the morning of the study visit. Ethical permission for this study was granted 

by the University of Sheffield Research Ethics Committee (uREC ref: 021945) and 

informed consent was obtained from each participant prior to taking part. 

 

Sample size 

As this was an exploratory, proof of concept study, and no pertinent data on clinically 

relevant differences was available, no formal sample size calculation was performed. 

The size of the study was based upon Kezic at al (170) that piloted NMF measurement 

by HPLC as a biomarker of FLG genotype and reported a mean difference between 

wild type and heterozygous FLG mutation carriers of 1.14µmol mg-1. 

 

Skin assessments 

All skin assessments were performed during a single visit to our dedicated, climate-

controlled skin barrier suite located at the University of Sheffield. Room conditions 
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were maintained at 20±2°C and 38-50% relative humidity. The volar aspect of the 

forearm and the antecubital fossa were the designated study sites. The Eczema Area 

and Severity Index (EASI) score was employed as a measure of AD severity. 

Transepidermal Water Loss (TEWL) was assessed using an AquaFlux AF200 closed 

chamber condensing device (Biox Systems Ltd, London, UK). Skin capacitance was 

measured using a Corneometer CM825 probe (CK electronic GmbH, Cologne, 

Germany). Volunteers acclimatised to the room conditions for 20 minutes prior to 

assessment. 

 

Infrared Spectroscopy 

A portable 4300 Handheld Fourier Transform Infrared (FTIR) spectrometer with 

mercury cadmium telluride detector (Agilent Technologies, Santa Clara, USA) was 

equipped with a 3-bounce / 2-pass diamond Attenuated Total Reflectance (ATR) 

accessory to collect absorption spectra at the skin surface in the mid infrared region 

from 32 scans at 4cm-1 resolution. 

 

NMF laboratory analysis ex vivo by tape stripping 

Adapted from a published assay, (253) SC collected by tape stripping the skin surface 

(22mm discs, ts1-3, 6 discs in total per sampling data point, see Figure 3.1) was cut and 

pooled in 750µl methanol. Samples were then subjected to an ultrasonic bath (20 

mins) agitated at 4°C (20 mins) filtered using a 0.2µm syringe filter and dried. Distilled 

water (200µl) was used to resuspend samples before analysis. Isocratic elution of 

pyrrolidine carboxylic acid (PCA peak at 210nm) and urocanic acid (UCA peak at 

270nm) was performed in 0.1M phosphate buffer (pH 2.75) containing 1% acetonitrile 
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using a Shimadzu HPLC system (Shimadzu, Kyoto, Japan) equipped with Synergi Hydro 

RP column (Phenomenex, Macclesfield, UK). 25µl of sample was injected in duplicate. 

The same extract was used to quantify free amino acids (fAA) by o-phthalaldehyde 

derivatization in duplicate (see Appendix Figure 6.1, page 164). Quantification of each 

NMF component was achieved by standard curve interpolation. The sum of all NMF 

components was calculated (tNMF) and normalised relative to the amount of SC 

removed by tape stripping (251). 

 

FLG genotyping 

Genomic DNA was extracted from buccal swabs using the QIAamp DNA mini kit 

(Qiagen, Hilden, Germany). The four common European mutations were screened by 

Taqman (R501X and 2282del4) or sequencing (R2447X and S3247X) using established 

primer and probe sets (268). 

 

Chemometric modelling 

To confirm regions of IR absorption by NMF components in vitro, chemicals were 

purchased from Sigma (Merck Life Science UK Ltd., Dorset, UK) dissolved in water at 

the following mol%: Serine 31%; Glycine 16%; PCA 13%; Histidine 8%; Citrulline 6%; 

Ornithine 6%; Threonine 6%; UCA 4%; Arginine 3%; Alanine 3%) and analysed using the 

same spectrometer. For the in vivo quantification of NMF by FTIR, Partial Least Squares 

(PLS) regression modelling using the chemometrics software package Microlab 

Expert (Agilent Technologies, Santa Clara, USA) was employed to calibrate infrared 

absorption across the fingerprint spectral region (1090-1653cm-1) against quantitative 

tNMF. For each volunteer, four sampling data points were entered into the model, split 
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equally into calibration and validation sets (Figure 3.1). Four spectral repeats were 

averaged for each individual sampling data point. Prior to modelling all spectra were 

normalised relative to Amide III at 1245cm-1 (269). 

 

Statistical analysis 

All study data was collated in Excel. An unpaired student’s t test was used to compare 

means (TEWL, SCH, SC mass, ex vivo and in vivo modelled NMF) between clinical 

groups. The coefficient of determination assessed the linear regression model fit of ex 

vivo and in vivo NMF. Discrimination of AD phenotype and FLG LOF genotype by in vivo 

modelled NMF abundance was explored using binary logistic regression and Receiver 

Operating Characteristic (ROC) curve. All tests were performed using GraphPad 

prism 9 (San Diego, California, USA). 
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Figure 3.1: Overview of the model build. TS: tape stripping site (discs 1-3 collected); RCF/LCF: 

Right/left antecubital fossa; RFA/LFA: Right/left forearm. FTIR: Fourier Transform Infrared 

Spectroscopy. 
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RESULTS 

A total of 26 participants with healthy skin (n=15) or AD (n=11) were recruited and 

completed the single study visit (Table 3.1). On average, all three components of NMF 

(fAA, PCA and UCA) quantified by ex vivo laboratory analysis from tape strips (discs 1-

3) were significantly reduced in the AD group compared to healthy skin (Table 3.1). No 

significant differences in Transepidermal Water Loss (TEWL) or capacitance (a 

measure of SC hydration) were observed between groups indicating comparable skin 

permeability barrier function. This can be attributed to mild disease in the AD cohort 

(2/11 individuals with active disease) and an even distribution of FLG loss-of-function 

(LOF) mutations in each group. 
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 Healthy AD p value 

n 15 11  
Age (years) 37 ±14 36 ±13 - 

Sex (% female) 66 45 - 
1TEWL (g/m2/hr) 13.17 ±3.05 14.52 ±4.21 0.37 

1Capacitance (units) 33.71 ±6.83 29.48 ±7.12 0.14 
2EASI score - 2.53 ±0.39 - 

3FLG LOF (%) 3/15 (20) 4/11 (36) - 
R501x / wt  1/3 1/4  

2282del4 / wt 1/3 -  
R2447x / wt 1/3 1/4  
S3247x / wt  - 1/4  

2282del4 / R2447x - 1/4  
1+tNMF (µmoles mg-1) 1.28 ±0.67 0.77 ±0.25 0.02 

1+fAA (µmoles mg-1) 1.05 ±0.53 0.66 ±0.22 0.04 
1+PCA (µmoles mg-1) 0.18 ±0.11 0.08 ±0.03 0.01 
1+UCA (µmoles mg-1) 0.05 ±0.03 0.03 ±0.01 0.03 

4SC mass (mg-1) 0.47 ±0.08 0.45 ±0.05 0.63 
 

Table 3.1: Study cohort characteristics. Mean ±SD presented 1Averaged across all sampling data 

points per person (see Materials and Methods); 2Whole body EASI score averaged from two 

individuals with active AD; 3Carrying at least one FLG LOF allele with specific genotypes listed below; 

4Cumulative mass of SC removed by tape stripping (discs 1-3) determined by densitometry 

averaged across all sampling data points; +ex vivo laboratory quantification of fAA: free amino acids; 

PCA: pyrrolidone carboxylic acid; UCA: urocanic acid from tape strips (discs 1-3). tNMF is the sum 

of these three components. 

 

Model calibration and validation 

Using a FTIR device to collect spectra from the skin surface in vivo, a PLS chemometric 

model was built to calibrate absorption across the fingerprint spectral region (1090-

1653cm-1) against quantitative ex vivo tNMF obtained by tape strip laboratory analysis. 

All spectra were normalised relative to Amide III at 1245cm-1 prior to modelling, albeit 

similar model outputs were obtained by normalisation at 1640cm-1 and 1540cm-1 
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corresponding to Amide I and II respectively (see Appendix Table 6.2, page 167). A plot 

of ex vivo versus in vivo modelled tNMF is presented in Figure 3.2a and 3.2b. Using a 

six-factor predictive model, the observed coefficient of determination for both 

calibration (R2=0.73) and validation (R2=0.70) data sets indicate an acceptable degree 

of accuracy, with precision (±0.35µmoles mg-1) denoted by the root mean square error 

of calibration (RMSEC). A similar value (±0.33µmoles mg-1) was noted for the root 

mean square error of cross validation (RMSECV). A plot of model loading – the 

strength of association between wavenumber and predictive factor – shows that 

absorption across the full spectral region contributes to the NMF model, with peaks at 

around 1580, 1480, 1400 and 1340cm-1 suggestive of a greater influence at these 

wavenumbers (Figure 3.2c). These regions of interest share similarities with an in vitro 

NMF FTIR spectrum (Fig 3.2c), implying the model is detecting changes in absorption 

related to NMF and its relative abundance in the skin. 

  



Chapter 3: FTIR for the quantification of NMF 103 

 

Figure 3.2: PLS chemometric modelling of surface NMF in the mid infrared spectral region. (a) 

Plot of ex vivo quantified (discs 1-3 collected by tape stripping) versus in vivo FTIR modelled tNMF 

(the sum of fAA, PCA and UCA) for calibration and (b) validation data sets (see Materials and 

Methods for further details). R2 = coefficient of determination. RMSEC = Root Mean Square Error 

of Calibration. Respective residual plot inset. Individuals with active AD are shaded red. (c) Loading 

plot correlating wavenumber absorption to predictive factor (6 in total, colour coded) with 

cumulative plot denoted by the dashed line above. Absorbance spectrum of an in vitro NMF solution 

(black solid line) is overlayed for reference. 
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Comparing the sensitivity and reproducibility of both methods 

For each method of NMF assessment, a breakdown of each experimental repeat 

obtained from the validation sampling data points (1 and 2) across the full cohort is 

presented by Table 3.2. Both methods reliably reported higher tNMF at the antecubital 

fossa compared to the forearm. Overall, greater intra-measurement variability was 

associated with the four in vivo FTIR repeats. This finding was not unexpected due to 

sampling differences (two laboratory repeats of one extracted sample compared to 

four unique FTIR spectra collected) and can be considered an acceptable trade-off for 

the comparable ease and speed of the FTIR methodology. 

 

 Forearm (data point 1)  
tNMF 

Antecubital fossa (data point 2) 
tNMF 

 In vivo Ex vivo In vivo Ex vivo 
Mean 0.90 ±0.53 (0.81) 0.99 ±0.48 (0.87) 1.14 ±0.63 (1.08) 1.16 ±0.76 (0.96) 

Repeat 1 0.91 ±0.53 (0.83) 0.99 ±0.48 (0.87) 1.24 ±0.58 (1.13) 1.16 ±0.76 (0.96) 
Repeat 2 0.89 ±0.51 (0.68) 0.99 ±0.49 (0.88) 1.22 ±0.64 (1.12) 1.16 ±0.78 (0.95) 
Repeat 3 0.87 ±0.49 (0.85) - 1.01 ±0.64 (0.96) - 
Repeat 4 0.93 ±0.59 (0.82) - 1.08 ±0.66 (1.01) - 

 

Table 3.2: Comparing the sensitivity and reproducibility of both NMF quantification methods. 

Mean ±SD and (median) of in vivo FTIR versus ex vivo quantified tNMF for each experimental repeat 

across the full cohort (n=26) at the forearm and antecubital fossa. Repeat 1 = 1st spectrum collected 

/ 1st laboratory repeat; Repeat 2 = 2nd spectrum collected / 2nd laboratory repeat; Repeat 3 = 3rd 

spectrum collected; Repeat 4: 4th spectrum collected. Repeats collected as part of the validation 

sampling data points (see Materials and Methods for further details). 
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Preliminary model evaluation 

The model was then verified in three ways by replicating known scenarios of reduced 

NMF reported in the literature. First, as it is highly soluble in water, NMF was modelled 

before and after bathing the antecubital fossa, in a small, independent cohort of 

volunteers (n=5). As expected, soaking with water for 20 minutes induced a significant 

67% reduction in modelled tNMF (Figure 3.3a). Mean FTIR spectra and mean 

difference spectra (baseline minus post-soak) revealed changes in absorption related 

to this decline in NMF at around (1) 1580, (2) 1480, (3) 1400, (4) 1340 and (5) 1280cm-1 

(Figure 3.3c and d). Next, to investigate the potential clinical relevance of this 

methodology, the main study cohort (n=26) was stratified in two ways to compare 

healthy skin to AD; and wild type to FLG LOF mutation carriers. In line with the results 

of the water soak, mean FTIR spectra and mean difference spectra obtained from 

these clinical phenotypes revealed similar patterns in absorption between groups 

(Figure 3.3e-h). These regions correspond with an in vitro NMF absorbance spectrum 

(Figure 3.3b), reinforcing their relationship with fluctuating NMF abundance in the 

skin. 

 



Chapter 3: FTIR for the quantification of NMF 106 

 

Figure 3.3: Correlating spectral regions with NMF abundance. (a) in vivo modelled tNMF before 

(T0) and after (H20) soaking the antecubital fossa with water (20 minutes) in an additional cohort 

of five healthy volunteers. A significant reduction in tNMF was observed using a paired students t 

test (c) Mean FTIR spectra and (d) mean difference spectra (T0-H20) showing the change in 

absorbance following the water soak. (e) Mean spectra and (f) mean difference spectra (n=26) at 

the antecubital fossa obtained from healthy (blue line) and AD subjects (red dotted line). (g) Mean 

FTIR spectra and (h) mean difference spectra (n=26) at the antecubital fossa obtained from wild 

type (blue) and FLG LOF mutation carriers (red dotted line). Consistent changes in absorption 

were found at (1) 1580cm-1 (2) 1480cm-1 (3) 1400cm-1 (4) 1340cm-1 and (5) 1280cm-1 that correlate 

with an in vitro absorption profile of NMF (b). 
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Modelled tNMF discriminates between clinical phenotypes 

At the antecubital fossa there was a significant difference between means compared, 

with modelled tNMF being 0.64µmol mg-1 lower in the AD group (Figure 3.4a) 

compared to healthy skin (-1.07 to 0.21 95%CI) and 0.60µmol mg-1 lower in the FLG LOF 

mutation carrier group (Figure 3.4b) compared to wild type (-1.11 to 0.09 95% CI). This 

discrimination of clinical phenotypes at the antecubital fossa was supported by 

Receiver Operating Characteristic curve analysis (Figure 3.4a and b lower panels) of in 

vivo modelled tNMF (AD/Healthy: area under the curve 0.81, 95% CI, 0.63-0.99, 

p=0.008; FLG/WT: area under the curve 0.83, 95% CI, 0.66-0.99, p=0.01). It should be 

noted that these findings were not repeated at the forearm with modelled tNMF being 

0.20µmol mg-1 lower in the AD group compared to healthy skin and 0.17µmol mg-1 lower 

in the FLG LOF mutation carrier group compared to wild type (see Appendix Figure 6.3 

page 168). This indicates a predilection towards the antecubital fossa for the 

discrimination of clinical phenotypes in AD. Similar model outputs were obtained by 

normalisation at 1640cm-1 and 1540cm-1 corresponding to Amide I and II respectively 

(see Appendix Table 6.2, page 167). 
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Figure 3.4: In vivo modelled tNMF discriminates between clinical phenotypes in AD. Cohort 

stratification (n=26) to compare mean in vivo tNMF at the antecubital fossa between (a) healthy 

skin / AD and (b) wild type (WT) / FLG LOF mutation carriers. Only the model validation data points 

are presented (see Materials and Methods for further details). Please refer to Figure 3.2 for key. 

Individuals with active AD are shaded red. p values denote the result of an unpaired students t test. 

A Receiver Operating Characteristic curve obtained by simple logistic regression of modelled tNMF 

is presented below the corresponding graph (AD/Healthy: area under the curve 0.81, 95% CI, 0.63-

0.99, p=0.008; FLG/WT: area under the curve 0.83, 95% CI, 0.66-0.99, p=0.01). 
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DISCUSSION 

The ex vivo analysis of NMF from tape strips is a fully quantitative, minimally invasive, 

validated laboratory technique, widely used in skin barrier research. It has been 

employed to monitor SC development from birth, (83, 270) characterise the unique 

barrier defect in AD (271, 272) and investigate detrimental environmental exposures to 

the skin (273, 274). By comparison, relatively few studies have looked towards non-

destructive spectroscopic techniques to estimate NMF abundance in the context of 

disease pathogenesis. Here we provide preliminary evidence to suggest that in vivo 

FTIR NMF measurements are both robust and comparable to the established ex vivo 

technique in its ability to discriminate between clinical phenotypes and assess the 

inherited or acquired FLG defect associated with AD (170, 225). Considering the study 

was performed using a portable device that can provide rapid measurements at the 

skin surface with no sample preparation required, this methodology has the potential 

to open new avenues of research to any clinical setting when tape stripping is not a 

feasible option. 

 

By using the full fingerprint region, our study reports key frequencies of IR absorption 

that are consistent with both the structure and abundance of NMF components in the 

skin. For example, the 1400cm-1 and 1580cm-1 wavenumber regions correspond to the 

symmetric (269) and asymmetric (253) stretching modes of the carboxylate (-COO-) 

functional group present in free amino acids and their derivatives. Another region of 

interest at around 1480cm-1 was also identified by our study that may relate to 

methylene group (CH2), C-N and NH2 vibrations (275). It cannot be ruled out that this 

CH2 signal represents both lipid and protein fractions of the SC, but decreased 
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absorption in this region was observed here after soaking, suggesting the removal of 

water-soluble components that contribute to its absorption intensity. Interestingly, 

the 1340cm-1 spectral region has been assigned to the hydroxyl group (C-)OH bending 

mode of serine, (276) the most abundant amino acid in the SC (21). 

 

To evaluate the FTIR methodology, the model output was verified by simulating known 

scenarios of reduced NMF abundance in the skin. In this regard, comparable results 

were obtained to the ex vivo HPLC assay reporting lower NMF associated with 

nonlesional AD compared to controls, FLG LOF mutations and soaking (170, 225, 277). 

In line with Raman Spectroscopy, the FTIR NMF measurements were predictive of FLG 

genotype - albeit inferior at patient classification - that may relate to the former’s 

ability to assess NMF across the full SC depth (266). Another contributory factor to 

the improved sensitivity and specificity of Raman to discriminate genotypes could be 

its use in patients with greater disease severity; (169) a proven modulator of NMF 

abundance in the SC that would enhance the primary FLG defect (225). When Raman 

Spectroscopy is used in a similar cohort to ours in that it is free of active disease, a 

comparable predictive AUC for FLG genotype is reported (278). Overall, it can be 

argued that FTIR offers greater flexibility, as it discriminated at the skin surface using 

four simple measurements (approximately 1 minute per spectrum) and allows 

multiple anatomical sites to be quickly and easily assayed by the same device during a 

single study visit. 
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One limitation to the accuracy of the in vivo FTIR NMF model is the omission of sweat-

derived components such as lactic acid and urea from the ex vivo laboratory 

calibration that represents up to 20% of total NMF in the skin (248). These molecules 

share structural similarities to FLG derived NMF, therefore it is anticipated they 

contribute to the FTIR absorption at the key frequencies reported here. It may be 

concluded though in our study cohort at least, that this contribution is minimal, as 

there was no clear tendency for the in vivo model to overestimate NMF at the 

antecubital fossa, a site more prone to sweating. Although a disease-associated 

sweating dysfunction has recently been reported in AD, (279) the decision was made 

to omit lactate and urea from the present study to focus on model evaluation against 

the more established FLG pathophysiology. A second limitation is that FTIR can only 

analyse surfaces. This may render the methodology susceptible to subjects washing or 

applying topical treatments to their skin prior to analysis. As NMF depth profiling with 

FTIR is only possible in conjunction with tape stripping, this study focused on non-

destructive surface measurements in the first instance to maximise its potential as a 

tool for clinical research. Due to the small cohort size and absence of more severe 

cases, a third limitation of this study was the inability to replicate the known reduction 

of NMF by AD severity (225). Overall, as this study reports preliminary findings only, 

replication with an independent data set is required to work towards unlocking the 

full clinical translatory potential of the FTIR technique. 
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By comparing AD skin to healthy controls, an intriguing disease-associated reduction 

in NMF was noted, suggestive of subclinical inflammation not only in unaffected skin, 

but in patients with a history of disease that are generally clear of symptoms. This has 

been evidenced before at a greater SC depth on the forearm, (280) and is supported 

here by NMF assessment at the antecubital fossa, a site more commonly prone to AD 

lesions. By tracking this NMF defect longitudinally with disease course in conjunction 

with further novel measures of subclinical inflammation, (281) the evidence suggests 

it may be of clinical value for monitoring remission following the successful treatment 

of clinical disease (211). Another potential utility of the in vivo FTIR methodology is 

related to the knowledge that neonates who later go on to develop AD possess a skin 

barrier defect long before the onset of clinical disease (282). There is evidence to 

suggest that low NMF associates with skin barrier breakdown at birth (283). 

Therefore, as is the case in adults with unaffected skin, the hypothesis that NMF 

abundance may also be discriminative in neonates and be predictive of AD onset either 

alone, or in conjunction with other biomarkers, is an intriguing proposition yet to be 

determined. This is one of the research questions addressed by the following chapter 

describing an observational cohort study that uses skin testing from birth to monitor 

skin barrier development and AD risk. 
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Study aims 

To better understand healthy skin barrier development from birth and its breakdown 

associated with AD over the first year of life. 

 

Study objectives 

Use skin testing to perform a longitudinal, observational cohort study from birth in 

order to: 

• Monitor skin health (TEWL) in conjunction with the biological (protease activity, 

NMF) and biochemical (water and surface lipids by FTIR) properties of the 

developing infant SC to 12 months of age. 

• Identify any differential skin barrier development associated with AD. 

• Assess the feasibility of skin testing in a healthcare and community setting to 

inform on AD risk from birth. 
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CHAPTER 6: APPENDIX 

 

6.1 MATERIALS AND METHODS - SUPPORTING INFORMATION 

 

6.1.1 Quantification of free amino acids by o-phthalaldehyde assay 

Validation of the plate-based assay described by Nakagawa et al (42) for the 

quantification of free amino acids using o-phthalaldehyde derivatisation. 

 

 

Figure 6.1: Relationship between two methods of free amino acid quantification. NMF was 

extracted from SC samples collected by tape stripping from seven healthy adults by the method 

described (Chapter 3 Materials and Methods). Free amino acid content from each sample was 

measured by amino acid analyser (Biochrom Ltd, Cambridge, UK) and o-phthalaldehyde 

derivatisation, normalised to protein content measured by densitometry and plotted for 

comparison (nmol/mg). Linear regression confirmed excellent agreement between the two 

methods (R2=0.995). Due to comparative speed and ease of the plate-based o-phthalaldehyde 

assay, it was selected to quantify free amino acids from clinical samples collected by tape stripping. 
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6.1.2 Assay normalisation: Relationship between infrared absorbance (850nm) and 

protein content (µg) on 14mm discs collected by tape stripping 

The following figure describes a repeat of the work reported by Voegeli et al., to 

validate the use of densitometry for the quantification of SC mass removed by tape 

stripping using 14mm d squame discs. 

 

 

Figure 6.2: Relationship between infrared absorbance and protein content on 14mm discs. SC 

samples collected by tape stripping (13 discs) was performed in four adults with healthy skin and 

absorbance at 850nm was measured using an infrared densitometer (SquameScan™, Heiland 

Electronic, Wetzlar, Germany). Total protein was extracted from each disc using 1M NaOH for one 

hour with agitation and neutralised with 1M HCL. Protein quantification was performed using a 

QuantiPro™ BCA assay kit and bovine g-globulin standard (Merck Life Science UK Ltd., Dorset, UK). 

Plot of absorption vs extracted protein presented. Linear regression determined a good 

agreement between the two methods (R2 =0.7656). The subsequent equation y=1.305x-4.07 was 

used to calculate SC mass removed by tape stripping from absorbance measurments for the 

purpose of infant protease and NMF assay normalisation. 
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6.2 CHAPTER 2 - SUPPLEMENTARY RESULTS 

 
 Birth 4 weeks Mean diff (95% CI) p value 

TEWL (g/m2/h) 12.61(±2.3) 13.38(±3.0) 0.82(-0.33,1.96) 0.1570 

SCH (RCU) 16.14(±3.8) 41.79(±9.7) 25.65(22.21,29.08) <0.0001 

Skin-surface pH 6.05(±0.6) 4.98(±0.3) -1.05(-1.26,-0.84) <0.0001 
SC cohesion 
(ìg/3discs) 267(±67) 305(±89) 37.6(-1,77) 0.0577 

Chymotrypsin-like 
activity (nU/ìg) 1.12(±0.7) 1.70(±0.9) 0.58(0.17,0.99) 0.0068 

NMF (nmol/mg) 221(±198) 2330(±1415) 2109(1623,2595) <0.0001 

 

Supplementary Table 6.1: The biophysical and biological properties of the developing infant 

forearm stratum corneum (SC) from birth to 4 weeks of age. In contrast to Chapter 2 showing the 

full cohort, here, the OBSeRvE no treatment group is presented only (n=35). This group has 

measurements taken at birth and again at 4 weeks to assess skin barrier development 

longitudinally over time. Statistical significance was determined using a paired students t test. RCU: 

relative capacitance units. 
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6.3 CHAPTER 3 - SUPPLEMENTARY RESULTS 

 

6.3.1 PLS model outputs according to mode of normalisation 

Comparable results were observed for each different mode of Amide normalisation 

 

 1640cm-1 normalisation 1540cm-1 normalisation 
 Healthy AD WT FLG Healthy AD WT FLG 

Calibration (R2) 0.72 0.71 
Validation (R2) 0.72 0.71 

in vivo tNMF FA 
site 1 (µmol mg-1) 

0.97 0.70 0.91 0.71 0.97 0.71 0.90 0.77 

in vivo tNMF CF 
site 2 (µmol mg-1) 

1.38 0.74** 1.27 0.66* 1.37 0.73** 1.25 0.71* 

 

Table 6.2: Comparison of model outputs using alternative Amide normalisation modes prior to 

modelling. FA: forearm; CF: antecubital fossa. Asterisks denote the result of a paired students t test 

(Healthy compared to AD; WT compared to FLG).**p=<0.01, *p=<0.05. 
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6.3.2 In vivo modelling of NMF abundance by FTIR 

There was no discrimination of clinical phenotypes by NMF measured on the forearm 

 

 

Figure 6.3: Evaluation of in vivo modelled surface tNMF at the forearm. No significant differences 

in mean tNMF was found at the forearm using an unpaired students t test for (a) healthy compared 

to AD and (b) wild type compared to FLG LOF mutation carriers. Corresponding mean FTIR spectra 

shown below each graph. Blue line = healthy (left) and wild type (WT-right). Red dotted line = atopic 

dermatitis (AD-left) and FLG LOF mutation carriers (right). Please refer to Figure 3.2 for key. 
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6.4 CHAPTER 4 - SUPPLEMENTARY RESULTS 
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Chapter 4 – Supplementary results (continued) 
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Chapter 4 – Supplementary results (continued) 
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Chapter 4 – Supplementary results (continued) 
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Chapter 4 – Supplementary results (continued) 
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Chapter 4 – Supplementary results (continued) 
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6.5 CHAPTER 5: FINAL DISCUSSION - SUPPLEMENTARY RESULTS 

 
.
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