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Abstract

A Duistermaat-Guillemin-Gutzwiller trace formula for Dirac-type operators on a globally
hyperbolic spatially compact stationary spacetime is achieved by generalising the recent
construction by Strohmaier and Zelditch [Adv. Math. 376, 107434 (2021)] to a vector
bundle setting. We have analysed the spectrum of the Lie derivative with respect to
a global timelike Killing vector field on the solution space of the Dirac equation and
found that it consists of discrete real eigenvalues. The distributional trace of the time
evolution operator has singularities at the periods of induced Killing flow on the manifold
of lightlike geodesics. This gives rise to the Weyl law asymptotic at the vanishing period.
A pivotal technical ingredient to prove these results is the Feynman propagator. In order
to obtain a Fourier integral description of this propagator, we have generalised the classic
work of Duistermaat and Hörmander [Acta Math. 128, 183 (1972)] on distinguished
parametrices for normally hyperbolic operators on a globally hyperbolic spacetime by
propounding their microlocalisation theorem to a bundle setting. As a by-product of
these analyses, another proof of the existence of Hadamard bisolutions for a normally
hyperbolic operator (resp. Dirac-type operator) is reported.
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Chapter 1

Introduction

In 1966, Kac [1] asked in a rather leisurely fashion:

“Can you hear the shape of a drum?”

This is arguably the quintessential question in spectral geometry. The Gutzwiller trace
formula is one of the paramount tools used to investigate such a beautiful interplay
between geometry and the spectral world in the sense explained below.

1.1 Trace formulae

1.1.1 A prelude

In order to understand the notion of a trace formula precisely, let us consider the simplest
non-trivial differential operator: the derivative

D := − i
d
d𝑥

(1.1)

acting on smooth functions 𝐶∞(S) on a circle S of length 𝑇 . Since 𝐶∞(S) is in a one-to-one
correspondence with 𝑇 -periodic functions on R, one defines

𝐿2(S) :=
{
𝑢 ∈ 𝐶∞(R) | ∀𝑥 ∈ R : 𝑢(𝑥 + 𝑇) = 𝑢(𝑥),

∫ 𝑇

0
𝑢(𝑥) 𝑢(𝑥) d𝑥 < ∞

}
. (1.2)

It is straightforward to compute the spectrum of D:

Spec D = {𝜆𝑛 |𝑛 ∈ Z}, 𝜆𝑛 := 𝑛𝜔, 𝜔 :=
2𝜋
𝑇

(1.3)

corresponding to the orthonormal eigenfunctions ϕ𝑛 := ei𝜆𝑛𝑥/
√
𝑇 . For any Schwartz

function 𝜌 ∈ S(R) on R and for all 𝑇 > 0, the Poisson summation formula reads (see
e.g. [2, Thm. 1.2]) ∑︁

𝑛∈Z
𝜌(𝜆𝑛) = 𝑇

∑︁
𝑘∈Z
(F −1𝜌) (𝑘𝑇), (1.4)

1



2 CHAPTER 1. INTRODUCTION

where F −1(𝜌) denotes the inverse Fourier transformation of 𝜌. One observes that the
left-hand side of this identity entirely consists of integral multiple of the fundamental
angular frequency 𝜔 on S, whereas the right-hand side involves only the length 𝑇 of S.
In other words, the Poisson summation formula associates the spectral data with a geomet-
ric quantity. As a natural suspicion, we may ask whether such a connection is something
specific to the simple operator (D) and/or the geometry (S) we have considered. How-
ever, this suspicion does not hold. For instance, the Poisson summation formula holds for
a Laplacian on a torus (see e.g. [2, Thm. 1.3]). Thus, one may wonder whether there are
some deeper reasons behind such a bridge between the spectral data and the geometric
world.

In order to gain a systematic understanding, let us consider the half-density bundle
(see Section 2.2.1) 𝛺1/2𝛴 → 𝛴 and a (positive-definite) hermitian vector bundle (E𝛴 →
𝛴, 〈· |· 〉), over a 𝑑 − 1-dimensional compact manifold 𝛴 without boundary and let 𝑃 be
an elliptic (see Definition 2.3.7), symmetric, first-order pseudodifferential operator (see
Definition 2.3.2) on E𝛴 ⊗ 𝛺1/2𝛴 . It is well-known that the spectrum of 𝑃 consists of
discrete real eigenvalues 𝜆±𝑛 and is not necessarily semi-bounded; each 𝜆±𝑛 is isolated and
has a finite multiplicity. Here, 𝜆±𝑛 are enumerated in increasing-order in the sense that
. . . < 𝜆−2 < 𝜆−1 < 0 =: 𝜆0 < 𝜆+1 < 𝜆+2 < . . . and with multiplicities. In general, 𝑃 is not a
trace-class operator but its suitable functions can be. For instance, the most important
operators in geometric analysis, such as, the Laplace-Beltrami operator (see (3.11)), the
d’Alembertian (see Example 3.2.2), the Schrödinger operator, and the Dirac operator (see
Definition 3.4.1) are not trace-class yet their suitable functions are trace-class. We opt for
an operator of the following form, originally due to Levitan [3] and to Avakumovič [4]
(see also [5])

∀𝑡 ∈ R : 𝑈𝑡 := e− i 𝑡𝑃 . (1.5)

This is by no means a canonical choice; see Table 1.1 for some other possibilities. How-
ever, adopting (1.5) over the other options offers the following two advantages [5, p.
196] (see also [6, p. XXV]):

𝑈𝑡 𝑡 𝑃 Partial Differential Equation (PDE) Method
1
𝑡−𝑃 R \ Spec 𝑃 - (𝑡 − 𝑃)𝑈𝑡 = 𝐼 Resolvent
𝑃−𝑡 C - - 𝜁 -function
e−𝑡𝑃 R+ Δ Heat eq. (𝜕𝑡 + Δ)𝑢 = 0 Hypoelliptic PDE

R ±
√
Δ Half-wave eq. (− i 𝜕𝑡 ±

√
Δ)𝑢 = 0 Hyperbolic PDE

e− i 𝑡𝑃 R 𝐻 Schrödinger eq. (− i 𝜕𝑡 − 𝐻)𝑢 = 0 Parabolic PDE
R 𝐻𝐷 Dirac eq. 𝐷𝑢 = 0 Hyperbolic PDE

Table 1.1: Different choices of 𝑈𝑡 with corresponding domains of 𝑡 and feasible 𝑃 (see
e.g. [5, 6]. Here Δ, 𝐻, 𝐻𝐷 , 𝐷 are the Laplace-Beltrami operator, the non-relativistic
Hamiltonian, the Dirac-Hamiltonian, and the Dirac-type operator, respectively.
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• 𝑈𝑡 is the solution operator to the Cauchy problem of the half-wave equation. That
is, given an initial data 𝑘 ∈ 𝐻1(𝛴 ; E𝛴 ⊗ 𝛺1/2𝛴), one has

(− i 𝜕𝑡 + 𝑃)𝑢 = 0⇒ 𝑢 = 𝑈𝑡 (𝑘), (1.6)

where 𝐻1(·) denotes the Sobolev space (see Section 3.3.1). We can even consider 𝑃
of order 𝑚 ≥ 2 and replace 𝑃 in the preceding equation by |𝑃 |1/𝑚 without destroying
its hyperbolic nature whilst − i𝑚 𝜕𝑚𝑡 + 𝑃 is no more hyperbolic for 𝑚 > 2. This, in
fact, shows our motivation to consider only first-order operators without loss of
generality. The primary reason in favour of the strictly hyperbolic operator − i 𝜕𝑡 +𝑃
compared to a hypoelliptic or a parabolic one is the finite propagation speed of
singularities of 𝑈𝑡 .

• The Weyl eigenvalue counting function of 𝑃

N+(𝜆) := #{𝑛 | 𝜆+𝑛 ≤ 𝜆+}, N−(𝜆) := #{𝑛 | 𝜆−𝑛 ≥ 𝜆−} (1.7)

is related to the distributional trace (as precised below) Tr𝑈𝑡 via the distributional
Fourier transform (see e.g. [7, Chap. 3]):

dN±

d𝜆
= F −1

𝑡 ↦→𝜆 (Tr𝑈𝑡). (1.8)

Therefore, the information contained in 𝑈𝑡 can be proficiently transferred to the
spectral function by means of the Tauberian arguments.

Our choice comes with the caveat that𝑈𝑡 is not a trace-class operator as, for instance,
𝑈0 is the identity operator. Thus, Tr𝑈𝑡 makes sense only as a distribution on R:

Tr𝑈𝑡 : S(R) → C, 𝜌 ↦→ Tr𝑈𝜌 := Tr
( ∫
R
𝑈𝑡 F −1(𝜌) d𝑡

)
, (1.9a)

𝑈𝜌𝑢 :=
( ∫
R
𝑈𝑡 F −1(𝜌) d𝑡

)
𝑢 :=

∫
R
𝑈𝑡 F −1(𝜌) 𝑢 d𝑡, (1.9b)

(F −1𝜌) (𝑡) = 1
2𝜋

∫
R

ei 𝑡𝜆𝜌(𝜆) d𝜆, (1.9c)

for any 𝑢 ∈ 𝐶∞c (𝛴 ; E𝛴 ⊗ 𝛺1/2𝛴), where the rightmost integral in (1.9b) is defined as a
vector-valued Riemann integral. Furthermore, it is a 1-parameter group of unitary oper-
ators (see Section 4.6) on 𝐿2(𝛴 ; E𝛴⊗𝛺1/2𝛴) and a bounded operator on 𝐻𝑠 (𝛴 ; E𝛴⊗𝛺1/2𝛴),
uniformly in 𝑡 ∈ R and for any 𝑠 ∈ R (see [5, Sec. 3] for the scalar, and, for instance, [8,
§20] for an elaboration).

Therefore, it makes sense to talk about the distributional trace of 𝑈𝑡 on 𝐿2(𝛴 ; E𝛴 ⊗
𝛺

1/2𝛴) and by the functional calculus Tr𝑈𝑡 =
∑
𝑛 exp(− i 𝑡𝜆±𝑛 ). Equivalently, we can com-

pute it deploying the Schwartz kernel U𝑡 of 𝑈𝑡 . Putting both together, we arrive at the
quintessential feature of trace formulae (see e.g. [9, Intro.])∑︁

𝑛

e− i 𝑡𝜆±𝑛 = Tr𝑈𝑡 =
∫
𝛴

tr
(
U𝑡 (𝑥, 𝑥)

)
, (1.10)
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where U𝑡 (𝑥, 𝑥) is the restriction of the Schwartz kernel U𝑡 (𝑥, 𝑦) of 𝑈𝑡 to the diagonal in
𝛴 × 𝛴 and tr is the endomorphism trace (see (3.8)). This unveils the underpinning of the
bridge connecting the spectral data of 𝑃 to the geometric world where this operator acts
on, as glimpsed in the Poisson summation formula (1.4) where 𝑃 = D and 𝛴 = S.

The geometry (S) considered in (1.4) was simple enough to compute the spectrum
and the Schwartz kernel explicitly, and hence one has an identity. But, this is an atypical
situation in a generic compact manifold. Therefore, one can, at best, approximate U𝑡
employing the theory of hyperbolic1 differential equations, usually by constructing para-
metrices (see Definition 3.2.14), and then obtain the Tauberian part in a straightforward
fashion. This leads to the notion of asymptotic trace formulae, where one investigates
large eigenvalues only by shifting the test function 𝜌(·) ↦→ 𝜌𝜇 (·) := 𝜌(· − 𝜇) by an amount
𝜇 and letting 𝜇 → ∞. In particular, if {ϕ𝑛} are orthonormal eigensections of 𝑃 on E𝛴 ,
then (see Section 2.3.4 for the precise meaning of an anti-dual bundle Ē ∗

𝛴
→ 𝛴)

U𝜌 (𝑥, 𝑦) =
∫
𝑡∈R

∑︁
𝑛∈N

e− i 𝑡𝜆±𝑛 (ϕ̄∗𝑛 � ϕ𝑛) (𝑥, 𝑦) (F −1𝜌) (𝑡) d𝑡, (1.11)

where the sum converges in 𝐶∞
(
𝛴 × 𝛴 ; (Ē ∗

𝛴
� E𝛴 ) ⊗ 𝛺1/2(𝛴 × 𝛴)

)
(see e.g. [11, p. 133]

for the scalar version), and the asymptotic trace formula reads

Tr(𝑈𝜌𝜇 ) =
∫
𝛴

tr
(
U𝜌𝜇 (𝑥, 𝑥)

)
, as 𝜇→ ±∞. (1.12)

The field of asymptotic (semi-classical) trace formulae stems from the study of Green’s
operator for a Schrödinger operator in the limit of vanishing Planck’s constant by Gutzwill
-er [12] (see also [13, Ch. 17]). This seminal work is not entirely rigorous; see for in-
stance, the expositions [2, 14] for a scrutinised discussion of his original idea. A number
of mathematically diligent proofs [10, 15–22] have been reported since then. Amongst
these, Chazarain [16, 17] (for Laplace-Beltrami operator on a closed Riemannian mani-
fold) and Duistermaat-Guillemin [10] (for a scalar and positive 𝑃 with other assumptions
as in the on going discussion) deployed the global theory of Fourier integral operators
to derive the complete singularity structure of the wave-trace. We refer to the mono-
graphs [23, Chap. XXIX], [24, Chap. 1], [25, Chap. 11] for details.

1.1.2 Duistermaat-Guillemin-Gutzwiller trace formula

To obtain a concrete understanding, let Δ be the Laplacian (in Geometers’ convention)
on a 𝑑 − 1-dimensional closed Riemannian manifold (𝛴, h). It is well-known that its

1The situation is opposite for the non-hyperbolic methods (resolvent, 𝜁 -function, heat-kernel) where
the PDE part is simpler but the Tauberian part always fails to provide a decent remainder estimation. In
fact, the best remainder estimations have been achieved employing hyperbolic methods [5, 10] (see also
the monograph [6] and references therein).
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spectrum SpecΔ comprises discrete eigenvalues 𝜆2
𝑛 and that the counting function NΔ(𝜆)

satisfies the celebrated Weyl law [5]

NΔ(𝜆) =
(
𝜆

2𝜋

)𝑑−1

vol(B̄𝑑−1) vol(𝛴), as 𝜆→∞, (1.13)

where vol(B̄𝑑−1) is the volume of the closed unit ball B̄𝑑−1 in R𝑑−1. As aforementioned,
the counting measure dNΔ/d𝜆 is related to the distributional trace Tr𝑈𝑡 via the Fourier
transform (1.8), where

∀𝑡 ∈ R : 𝑈𝑡 := e− i 𝑡
√
Δ (1.14)

is the solution map to the Cauchy problem of the half-wave operator − i 𝜕𝑡+
√
Δ. Moreover,

the singularity analysis of Tr𝑈𝑡 at 𝑡 = 0 gives rise to the half-wave trace invariants and its
singular support is contained in the set of periods of periodic geodesics 𝛾 on 𝛴 . Further-
more, Tr𝑈𝑡 admits a singularity expansion around the non-zero periods 𝑡 = 𝑇 ≠ 0 (under
some technical assumptions related to the clean intersection (see Definition A.1.15) con-
dition between certain manifolds) [10, 16] and its leading-order term can be expressed
by means of the fundamental periods and eigenvalues of the Poincaré maps of 𝛾’s [10,
Thm. 4.5].

In their seminal work, Duistermaat and Guillemin [10] have actually considered
𝑈𝑡 := e− i 𝑡 𝑚

√
𝑃 where 𝑃 is a positive, elliptic, symmetric pseudodifferential operator of

order 𝑚 > 0 on a compact boundaryless manifold 𝛴 .

The Gutzwiller trace formula is structurally similar to that of Duistermaat-Guillemin
but the asymptotic is in the limit of vanishing Planck’s constant. To be precise, take
𝛴 = R𝑑−1 and E a trivial R-line bundle for simplicity. Let 𝐻 := ℏ2Δ + 𝑉 be the non-
relativistic Hamiltonian so that 𝑈𝑡,ℏ := e− i 𝑡𝐻/ℏ, where ℏ is some real parameter and 𝑉
is any appropriate smooth potential on R𝑑−1. If ℏ is small enough then the spectrum
of 𝐻 on 𝐿2(R𝑑−1) is discrete and there exists an orthonormal basis {ϕ𝑛} for 𝐿2(R𝑑−1)
of eigenfunctions of 𝐻. Let E𝑛,ℏ be the associated eigenvalues of 𝐻. Then one seeks
asymptotic expansion of

∑
𝑛 𝜌(E𝑛,ℏ−E/ℏ) in the limit ℏ → 0. Physically, ℏ is identified with

the reduced Planck’s constant so that ℏ→ 0 can be reckoned as the quantum-to-classical
transition and hence the name semi-classical trace formula (see e.g. [2, Sec. 2]). In
this thesis, however, we have only pursued along the tenet of the Duistermaat-Guillemin
trace formula and set ℏ = 1 throughout our exploration. Note, e− i 𝑡Δ is not a trace-class
operator since, for instance, on a circle its singular support is the entire real axis [10, p.
46].

1.1.3 Sandoval trace formula

Sandoval has generalised the Duistermaat-Guillemin trace formula for a Dirac-type oper-
ator �̂� on a hermitian vector bundle (E𝛴 → 𝛴, 〈·|·〉) over a closed Riemannian manifold
(𝛴, h) by studying
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∀𝑡 ∈ R : 𝑈𝑡 := e− i 𝑡�̂� . (1.15)

Arguably, �̂� is the most fundamental first-order differential operator in geometric anal-
ysis and it differs from a Laplace-Beltrami operator Δ on E𝛴 in that its spectrum Spec �̂�
is unbounded from both below and above whereas SpecΔ is bounded from the below
(semi-bounded). Sandoval’s investigation results in a straightforward generalisation of
the Weyl law [26, (5)] and Dirac-wave trace invariants [26, Thm. 2.2]. But, genuine
bundle features show up in terms of the holonomy group in the singularity analysis of
Tr𝑈𝑇≠0(�̂�) [26, Thm. 2.8]. However, there is an ad-hoc choice regarding the connection
used to deduce the holonomy group as elucidated below.

As a matter of fact, the Weitzenböck connection (see (3.126)) ∇̂ determined by �̂� and
h does not automatically induce a Clifford connection albeit such a connection always
exists (see Remark 3.4.3) and the corresponding operator is usually called a compatible
Dirac-type operator �̌�. They differ only by a smooth term 𝑊 := �̂� − �̌� ∈ 𝐶∞(𝛴 ; End E ).
To compute the principal symbol 𝜎�̂�𝑡

of𝑈𝑡 , Sandoval used the parallel transporter Ť with
respect to the Weitzenböck connection ∇̌ of �̌� instead of T̂ corresponding to ∇̂ [26, Prop.
5.3]. Moreover, she employed the trivialisation characterised by the vanishing subprin-
cipal symbol 𝜎sub

�̌�2 of �̌�2 [26, Cor. 5.11]. As a consequence, Ť appearing in expression of
𝜎�̂�𝑡

is somewhat expedient and the splitting of T̂ in terms of Ť and the average value2

of 𝑊 along the geodesic [0, 𝑡] 3 𝑠 ↦→ 𝛾(𝑠) ∈ S∗𝛴 is rather ad-hoc.

The objective of our study is twofold. First, we have relaxed all the aforementioned
ad-hoc considerations to compute 𝜎�̂�𝑡

. Next, one notices that 𝑈𝑡 solves the initial value
problem of the differential equation

(− i 𝜕𝑡 + �̂�)𝑢 = 0, 𝑢(𝑡0) = 𝑘 (1.16)

on a 𝑑-dimensional product manifold (in the context of general relativity, this is known
as the ultrastatic spacetime; see Remark 4.2.6 (e))

(M , g) := (R × 𝛴, d𝑡2 − h) (1.17)

admitting (at least) a global timelike Killing vector field 𝑍 := 𝜕𝑡 so that the external
parameter 𝑡 in 𝑈𝑡 can be considered as the canonical global time-coordinate on R. But,
− i 𝜕𝑡 + �̂� does not respect general relativistic covariance and so it seems more natural to
instead work with the Lorentzian Dirac-type operator 𝐷. Thus the study is devoted to
investigating a Lorentzian generalisation of Sandoval’s trace formula.

2See [26, (16)] for the precise expression.
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1.1.4 Riemannian trace formulae: A relativistic viewpoint

The Riemannian to Lorentzian transition is conceptually non-trivial because the solution
map to the Cauchy problem of the Dirac equation

𝐷𝑢 = 0, 𝑢 � 𝛴 = 𝑘 (1.18)

on a globally hyperbolic spacetime (see Definition 3.1.3) is no longer of the form (1.15),
since the Dirac-Hamiltonian (the counterpart of �̂�) becomes time-dependent. In order
to contemplate what should be looked for in a Lorentzian setting, we revisit the product
scenario from a relativistic viewpoint. One reckons that the solutions of (1.16) are of the
following form

ψ±𝑛 := e− i 𝑡𝜆±𝑛ϕ±𝑛 , (1.19)

where ϕ±𝑛 are the eigensections of �̂� corresponding to the eigenvalues 𝜆±𝑛 . But

𝑍ψ±𝑛 = − i𝜆±𝑛ψ
±
𝑛 (1.20)

and consequently,

Tr𝐿2 (𝛴 ;E )𝑈𝑡 =
∑︁

𝜆±𝑛∈Spec �̂�

e− i 𝑡𝜆±𝑛 = Trker(− i 𝜕𝑡+�̂�) e
𝑡𝑍 . (1.21)

In other words, the trace of the Dirac-wave group 𝑈𝑡 on a closed Riemannian manifold is
equivalent to the trace of the flow e𝑡𝑍 induced by the global timelike Killing vector field 𝑍 of
an ultrastatic spacetime M , acting on the kernel ker(− i 𝜕𝑡 + �̂�) of the half-wave operator
− i 𝜕𝑡 + �̂�. This is essentially a straightforward generalisation of the observation originally
due to Strohmaier and Zelditch [27, Sec. 10.1] in the context of a scalar wave operator.
Thus, the deep results on Riemannian spectral geometry as mentioned in Section 1.1.2
and 1.1.3 (and many more as available in the compendia [23, 24, 28–30], for instance)
are essentially achieved by investigating the solution operator of the half-wave equation
on an ultrastatic spacetime with a compact Cauchy hypersurface (see Definition 3.1.4)
without boundary.

It is, therefore, evident that a global timelike Killing flow (see (4.3)) 𝛯 on a Lorentzian
manifold plays a pivotal role and the most general class of spacetimes admitting such a
flow is known as the stationary spacetime (see Definition 4.2.1) (M , g, 𝛯). Physically
speaking, these spacetimes admit a canonical flow of time but unlike the ultrastatic case
there is no preferred time coordinate. They are interesting because a number of exact so-
lutions of Einstein’s equation (Schwarzschild and Kerr black holes) belong to this class.
We demand the global hyperbolicity condition on (M , g, 𝛯) to ensure the well-posed
Cauchy problem for (1.18). Therefore, the object of our study is the distributional trace
Tr𝑈𝑡 (see (4.21)) of the time evolution operator 𝑈𝑡 on a compact (to guarantee discrete
eigenvalues) Cauchy hypersurface 𝛴 ⊂ M without boundary. In addition to the con-
ceptual issues, our computational techniques (see Section 4.3.3 for details) are different
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from those used by Sandoval, primarily due to the fact that the Dirac Hamiltonian 𝐻𝐷
(see (4.36)) on a stationary spacetime is not of Dirac-type in contrast to �̂�. Furthermore,
we have computed 𝜎𝑈𝑡

(see Lemma 4.7.3 and 4.7.4) using the Weitzenböck connection
induced by 𝐷 in order to avoid the aforementioned expedient choice in Sandoval’s work,
as explained in the comment after the statement of the foremost Theorem 4.3.6.

As a quintessential relativistic operator, it furthermore allows to study the semi-
classical limit of quantum field theoretic observables interacting with classical gravity3.
Whilst spin (see Example 3.4.4)- or spinc-Dirac operators are desirable from a physics
point of view, we prefer to work on more general Dirac-type operators because they do
not enforce any topological restrictions on M 4 unlike the spin5-Dirac operators.

We would like to close this subsection by mentioning that this is not the only liter-
ature on Lorentzian trace formulae rather the first step towards this direction has been
taken up for the d’Alembertian operator (see Example 3.2.2) on the same spacetime ge-
ometry as in this thesis by Strohmaier and Zelditch [27]. We are going to describe their
work briefly in the next section. Therefore, the thesis (see Section 4.3.2 for the primary
results) can be viewed as the Lorentzian generalisation of Sandoval’s work propounding
the framework of Strohmaier-Zelditch into a bundle setting. Recently, McCormick [32]
has also extended Strohmaier-Zelditch trace formula for the vector d’Alembertian on a
spatially compact globally hyperbolic stationary spacetime equipped with the Kaluza-
Klein metric by employing a few results of this investigation.

1.1.5 Strohmaier-Zelditch trace formula

In the set-up of a globally hyperbolic stationary spacetime (M , g, 𝛯) with a compact
Cauchy hypersurface (𝛴, h), Strohmaier-Zelditch [27] have considered �, the d’Alembert
operator with a smooth potential invariant under the induced Killing flow 𝛯∗𝑠 , so that the
spectral problem can be stated as

�ψ𝑛 = 0, 𝑍ψ𝑛 = 𝜆𝑛ψ𝑛, (1.22)

where 𝜆𝑛 are the eigenvalues of the (timelike) complete Killing vector field 𝑍 (see Re-
mark 4.2.6 (a)) on M and ψ𝑛 are the joint eigenfunctions of � and 𝑍. This eigenvalue
problem is equivalent to that of an operator pencil of certain6 form which entails that
the eigenvalue problem cannot be interpreted for some operator on 𝛴 . Furthermore,
it reduces to the classical eigenvalue problem (Δ − 𝜆2)ϕ𝑛 = 0 only when the spacetime

3We do not require Einstein field equation to be satisfied.
4Global existence of a Lorentz metric depends on the topology of M . In particular, such a metric exists

in all non-compact manifolds and compact manifolds with vanishing Euler characteristics.
5A spin-structure always exists locally but its global existence depends on some higher orientability

property of the base manifold. For instance, spin (resp. spinc) structure exists if and only if the second
(resp. the third integral) Stiefel–Whitney class of M vanishes [31].

6See [27, (29)] for the precise form.
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metric g is of the product form (1.17), where Δ is the Laplacian on 𝛴 .

In the relativistic setting, the classical phase space is the conic symplectic manifold N
of lightlike (co)geodesics on the cotangent bundle T∗M of M in contrast to the cotangent
bundle T∗𝛴 → 𝛴 over a Cauchy hypersurface 𝛴 , as expected from the non-relativistic sce-
nario (see Section 4.4.2 for details). The trace Tr𝑈𝑡 of the quantum dynamics, governed
by the time-evolution operator 𝑈𝑡 of �, is given by (cf. (1.21))

Tr𝑈𝑡 = Trker� e𝑡𝑍 . (1.23)

Then, tailoring Duistermaat-Guillemin [10] framework in this Lorentzian set-up, they
have achieved asymptotic expressions for Tr𝑈𝑡=0 and Tr𝑈𝑇≠0, and have subsequently
obtained a Lorentzian Weyl law [27] (see also [33] and the review [34]).

1.2 Feynman propagators

On a globally hyperbolic spacetime, the Cauchy problem for any normally hyperbolic
operator (see Definition 3.2.1) � is well-posed. This implies the existence of unique
advanced and retarded fundamental solutions (propagators) (see Definition 3.2.10 and
Remark 3.2.13). The properties of these fundamental solutions are extremely impor-
tant for the understanding of classical wave propagation, such as the electromagnetic
waves. They appear naturally because of causality: the retarded fundamental solution
propagates to the future, whereas the advanced fundamental solution propagates to the
past. In quantum field theory, the appearance of time-ordering (see Appendix C.3) and
the enforcement of positivity of energy have led to the development of another type of
fundamental solution; the Feynman propagator. It propagates positive energy solutions to
the future and negative energy solutions to the past, and thus combines causality with the
notion of positivity of energy (see Example C.3.2). The explicit formulae of Lorentz in-
variant Feynman propagators for normally hyperbolic operators in Minkowski spacetime
is available in the standard textbooks of quantum field theory. As recalled in Exam-
ple C.3.2, the usual construction employs the Fourier transform. However, on a generic
globally hyperbolic spacetime there is neither a Fourier transform nor any reasonable no-
tion of energy in the absence of a global timelike Killing vector field. A priori, it is, therefore
unclear what a Feynman propagator should be.

In the theory of partial differential equations, the notion of a parametrix (see Defini-
tion 3.2.14) is often useful in the first stage on the construction of a true fundamental
solution. A parametrix, per se, is an inverse of the operator � modulo smoothing op-
erators. Parametrices are considered equivalent if they differ by smoothing operators.
It was a deep insight of Duistermaat and Hörmander [35] that there is a well-defined
notion of Feynman parametrices and these parametrices are unique up to smoothing
operators. In other words, they are unique as parametrices. In fact, the notion of dis-
tinguished parametrices for any scalar pseudodifferential operator of real principal type
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(see Definition 2.2.10) is given in their seminal article where they identified a geometric
notion of pseudoconvexity which allows one to prove uniqueness of such parametrices.
Roughly speaking, despite not not having any notion of energy due to the lack of a global
timelike Killing vector field, there is still a microlocal notion of positivity of energy and a
corresponding flow on the cotangent bundle. This microlocal notion can be used to char-
acterise Feynman parametrices (see Definition 3.2.17): they are distinguished by their
wavefront sets rather than the support properties.

Feynman parametrices play an extremely important role in quantum field theory on
curved spacetimes, and the theory has actually been developed to a certain extent first in
the physics literature. Canonical quantisation of linear fields can be done in two stages.
In the first step (see Appendix C.1), one constructs a field algebra from the space of
solutions of the respective equation of motion and next (see Appendix C.2), some quan-
tum state is required to construct a Hilbert space representation of this field algebra. In
Minkowski spacetime these two steps are usually combined into one owing to the exis-
tence of the vacuum state (see Example C.2.2), while it is more fruitful to separate them
in curved spacetimes. The first step can be done without any problems, exactly the same
way as in Minkowski spacetime but the second step necessitates a notion of a reasonable
state. It has been realised that a state compels certain conditions in order to perform
the usual operations in perturbative quantum field theory [36–38]. One of the identi-
fied conditions is a restriction of the type of singularity that one obtains from the state,
the so-called Hadamard condition (Definition C.2.3). Although Duistermaat and Hör-
mander were certainly aware of the developments in physics, it was realised only much
later by Radzikowski [39] that the expectation values of the time-ordered products with
respect to states satisfying the Hadamard condition are Feynman propagators. In fact,
the construction of a Hadamard state is equivalent to the construction of a Feynman
propagator that satisfies a certain (see Proposition 3.3.2) positivity property. The fact
that this positivity property holds for parametrices was already shown by Duistermaat
and Hörmander. This property for parametrices implies the existence of such Feynman
propagators and hence of Hadamard states (see [40]).

Apart from its applications in physics, Feynman parametrices also play an enormously
important role in mathematics. For instance, they appear in the context of Lorentzian
index theory as inverses modulo compact operators of the Dirac operator with Atyiah-
Patodi-Singer boundary conditions [41], local index theorem [42], and asymptotically
static spacetimes [43]. These concepts also arise in Vasy’s treatment of asymptotically
hyperbolic problems, see for example [44] and references therein, where even a non-
linear problem is discussed in this context. Moreover, the notion of Feynman propagator
also comes up naturally in the Lorentzian generalisation of the Duistermaat-Guillemin-
Gutzwiller trace formula as observed first in [27].

So far, Duistermaat and Hörmander’s construction of distinguished parametrices for
scalar pseudodifferential operators of real principal type has not been used much in the
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physics literature probably due to its great generality and the associated complex nota-
tion. Their main idea is, however, compelling and simple. The operator can be conju-
gated microlocally to a vector field and it is therefore sufficient to construct a parametrix
for the operator of differentiation on the real line. There are two distinguished fun-
damental solutions for the operator of differentiation. A choice of parametrix for each
connected component of the characteristic set of the operator results in a distinguished
parametrix. Thus, there are 2𝑁 distinguished parametrices for such a pseudodifferential
operator if 𝑁 is the number of connected components of its characteristic set. For the
wave operator, this gives 4 distinguished parametrices in dimensions 𝑑 ≥ 3 and 16 dist-
inghuished parametrices in 𝑑 = 2.

The aim of this investigation is threefold. First, we would like to revise and simplify
the construction of Duistermaat-Hörmander [35] in the special case of a normally hyper-
bolic operator. The second aim is to fill a gap in the literature: microlocalisation and the
corresponding construction of distinguished parametrices in Duistermaat-Hörmander is
covered in the literature only for scalar operators. Several constructions in index theory,
in trace formulae, and also in physics require the existence and uniqueness of Feynman
parametrices for operators acting on vector bundles. It is known that most of the con-
structions carry over to the case of any normally hyperbolic operator, since its principal
symbol is a scalar. There are, however, also important differences that appear on the
level of subprincipal symbols (see Definition 2.3.4). In this study, we would like to give a
precise statement (see Theorems 3.3.10 and 3.3.13) of microlocalisation for these class
of geometric operators. We then provide a detailed construction (Theorem 3.3.1) of
Feynman parametrices for vector bundles with complete proofs for their uniqueness and
discuss the effect of curvature of the bundle connection. We show (see Proposition 3.3.2)
that the construction can be carried out in such a way that the above mentioned positiv-
ity property holds, provided that the vector bundle has a hermitian inner product with
respect to which the operator is formally selfadjoint. Subsequently, we promote the Feyn-
man parametrices to the Feynman propagators (see Theorem 3.3.3) by employing the
well-posed Cauchy problem for a normally hyperbolic operator on a globally hyperbolic
spacetime. Third and finally, for any Dirac-type operator, we give (see Theorem 3.4.8) a
much more direct construction of Feynman propagators satisfying a positivity property.
We also discuss some consequences, including the usual propagation of singularity the-
orem (see Theorem 3.3.16). These are well known to hold for very general operators
on vector bundles. For instance, the propagation of polarisation sets has been proven by
Dencker using microlocalisation in the matrix setting [45].

As explained above (and see (C.16)), the construction of Feynman propagators sat-
isfying the positivity property is equivalent to the construction of Hadamard states.
There are several constructions of Hadamard states, even in the analytic category [46].
Amongst the methods to construct them, there are direct ones using singularity ex-
pansions employing the Lorentzian distance function (the so-called Hadamard expan-
sion) [40, 47–52], spectral methods that rely on frequency splitting (deformation method)
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[53, 54], pseudodifferential methods [55–60] (see also the monograph [61]), hologra-
phy [62–65] (see also the exposition [66]), and even global methods [44, 67–69] (see
also the review [70]). Many of these constructions can and have been generalised to the
bundle case. Each comes with their advantages and disadvantages.

1.3 Organisation

The thesis consists of three chapters and three appendices. Chapter 2 essentially contains
the background materials required for the thesis, while our genuine contributions have
been placed in Chapters 3 and 4. Appendices A and B primarily supplement Chapter 2
and substantially Chapter 4, whereas Chapter 3 is complemented by Appendix C.

Fourier integral operators are the prime technical tool used in this thesis. Specifically,
the symbolic viewpoint has been utilised heavily. We have begun Chapter 2 with the local
theory to motivate the global formulation. To make the local-to-global transition smooth,
first the naive theory of Fourier integral operators on Euclidean spaces has been given in
a pedagogical fashion, and then an invariant local formalism has been presented. This
characterisation paves the way to generalise the theory of Lagrangian distributions on
manifolds and subsequently on vector bundles. Besides reviewing the standard formu-
lae, we have proven bundle version of a few theorems usually available only for the
scalar case. Although, these proofs follow the standard ones with minor modifications,
they are not easy to find in the existing literature in a systematic way.

The subject matter of Chapter 3 is the Feynman propagators for any normally hy-
perbolic operator and any Dirac-type operator on a globally hyperbolic spacetime. To
keep the discourse self-contained, we start with explaining the necessary backgrounds
on Lorentzian geometry and on these operators. Our primary findings are presented
afterwards in Section 3.3.1, 3.4.4, and 3.5.6. In order to derive these results, we have
introduced the notion of a 𝑃-compatible connection (see Definition 3.3.6) induced by
the subprincipal symbol of a pseudodifferential operator 𝑃. This enables us to formulate
(see Theorem 3.3.10 and Remark 3.3.12) the microlocalisation of a pseudodifferential
operator of real-principal type on a vector bundle. Consequently, normally hyperbolic
operators are microlocalised (see Theorem 3.3.13).

The trace of the time-flow on the kernel of any Dirac-type operator on a globally
hyperbolic stationary spacetime has been investigated in Chapter 4. This chapter is com-
prised adequate background on the geometry of stationary spacetimes followed by our
primary findings in Section 4.3.2.

Appendix A summarises the composition of vector bundle-valued half-densities on
homogeneous canonical relations and relevant materials on conic symplectic geometry.
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A write up on vector bundle-valued polyhomogeneous symbol class on a canonical
relation has been offered in Appendix B.

Appendix C contains a non-technical prelude to quantum field theory in curved space-
time in the algebraic approach and a technical introduction to algebraic quantum states.
To relate this approach with the standard physics literature, we have used the Minkowski
vacuum as an elucidating example. This also motivates the demand of imposing the
Hadamard condition as a necessary criterion to select a physical state in curved space-
time.

1.4 Conventions

Throughout the thesis, a vector bundle E → 𝑀 means a smooth C-vector bundle over a
Hausdorff, second countable 𝑑 ∈ N-dimensional topological space 𝑀 furnished with an
equivalence class of smooth atlases. We use the notation ¤E to symbolise the zero-section
removed part of E . Occasionally, E is endowed with a non-degenerate sesquilinear form
(·|·) which is assumed to be anti-linear in its first argument. By a hermitian form 〈·|·〉
on E , we mean a positive-definite (·|·). A Lorentzian manifold and its special case - a
globally hyperbolic manifold, both are denoted by (M , g) with metric signature +− . . .−,
and 𝑑 := dim M ≥ 2.

Let 𝛺1/2 → 𝑀 be the bundle of half-densities over 𝑀. We denote the vector spaces
of smooth and compactly supported smooth half-densities on E by 𝐶∞(𝑀; E ⊗ 𝛺1/2)
and 𝐶∞c (𝑀; E ⊗ 𝛺1/2), and endow them with the Fréchet space and the inductive limit
topologies, respectively. The vector spaces of (compactly supported) distributional half-
densities (E′(𝑀; E ⊗ 𝛺1/2) :=

(
𝐶∞(𝑀; E ∗ ⊗ 𝛺1/2)

)′ resp.) D′(𝑀; E ⊗ 𝛺1/2) :=
(
𝐶∞c (𝑀; E ∗ ⊗

𝛺
1/2)

)′ on E are defined by the topological duals of (𝐶∞(𝑀; E ∗ ⊗ 𝛺1/2) resp.) 𝐶∞c (𝑀; E ∗ ⊗
𝛺

1/2), which are equipped with the weak ∗-topologies induced by the topologies of
(𝐶∞(𝑀; E ∗ ⊗ 𝛺1/2) resp.) 𝐶∞c (𝑀; E ∗ ⊗ 𝛺1/2), where E ∗ → 𝑀 is the dual bundle of E
(see e.g. [71, p. 307], [72, pp. 24-25, 146] for details of these spaces). On an oriented
Lorentzian manifold (M , g), we use the natural Lorentzian volume element to identify
𝐶∞(M ; E ) = 𝐶∞(M ; E ⊗𝛺1/2M ) and D′(M ; E ) = D′(M ; E ⊗𝛺1/2M ). Additionally, one
defines the space 𝐶∞sc (M ; E ) of spatially compact smooth sections of E as the set of all
𝑢 ∈ 𝐶∞(M ; E ) for which there exists a compact subset 𝐾 of M such that supp 𝑢 ⊂ 𝐽 (𝐾)
where 𝐽 (𝐾) := 𝐽+(𝐾) ∪ 𝐽−(𝐾) and 𝐽±(𝐾) are the causal future(past) of 𝐾; as a vector
space 𝐶∞sc (M ; E ) ⊂ 𝐶∞(M ; E ). Echoing this spirit 𝐶∞(𝑀) denotes the set of all C-valued
smooth functions on 𝑀.

The Fourier transform F (𝑢) of any 𝑢 ∈ 𝐿1(R𝑑 , d𝑥) is defined by

F (𝑢) :=
∫
R𝑑

e− i 𝑥·𝜃𝑢 d𝑥, and 𝑢 =
1
(2𝜋)𝑑

∫
R𝑑

ei 𝑥·𝜃F (𝑢) d𝜃, (1.24)
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whenever F (𝑢) ∈ 𝐿1 (
R𝑑 , d𝜃/(2𝜋)𝑑

)
, and here · is either the Euclidean or the Minkowski

inner product depending on the context. If 𝑇 : 𝐶∞c (𝑁; F ⊗ 𝛺1/2𝑁) → D′(𝑀; E ⊗ 𝛺1/2𝑀) is
an integral operator then its Schwartz kernel is denoted by T.

The symbol ∼ stands for the asymptotic summation and only the polyhomogeneous
symbol class 𝑆𝑚 is utilised in this thesis so that ΨDO𝑚 (resp. 𝐼𝑚) is the set of pseu-
dodifferential operators (resp. Lagrangian distributions) having polyhomogeneous to-
tal symbol. We have used the notation 𝑆𝑚−[𝑚

′] := 𝑆𝑚/𝑆𝑚−𝑚′ to represent the quotient
space (and similarly ΨDO𝑚−[𝑚′] , 𝐼𝑚−[𝑚

′] , etc.). We have succinctly written 𝑢 ≡ 𝑣 to mean
𝑢 − 𝑣 ∈ 𝐶∞(𝑀; E ⊗ 𝛺1/2) for any 𝑢, 𝑣 ∈ D′(𝑀; E ⊗ 𝛺1/2).



Chapter 2

Fourier Integral Operators

The standard theory of Lagrangian distributions on a vector bundle is recalled in this chapter.
In order to motivate the global formalism we begin with the local theory of partial differential
operators and generalise in ascending order, i.e., pseudodifferential operators are followed by
Fourier integral operators. The formulation of pseudodifferential (and Fourier integral) operators
on a manifold has been used as an intermediate step to complement the bundle setting.

2.1 Local theory of Fourier integral operators

2.1.1 Differential operators

Let𝑈 be an open subset of a 𝑑 ∈ N-dimensional Euclidean space R𝑑. A partial differential
operator 𝐿 of order (at most) 𝑚 ∈ R with smooth coefficients on 𝑈 can be expressed as

𝐿 =
∑︁
|𝛼 |≤𝑚

𝑓𝛼 D𝛼 : 𝐶∞(𝑈) → 𝐶∞(𝑈), (2.1)

for some 𝑓𝛼 ∈ 𝐶∞(𝑈) and here the multiindex notation (see Appendix B) has been used.
Employing Fourier transform F (𝑢) of 𝑢 ∈ 𝐶∞c (𝑈) one obtains

(𝐿𝑢) (𝑥) =

∫
𝑈

L(𝑥, 𝑦) 𝑢(𝑦) d𝑦, (2.2)

L(𝑥, 𝑦) :=
∫
R𝑑

ei(𝑥−𝑦)·𝜃 l(𝑥, 𝜃) d𝜃
(2𝜋)𝑑

, (2.3)

l(𝑥, 𝜃) :=
∑︁
|𝛼 |≤𝑚

𝑓𝛼𝜃
𝛼, (2.4)

where L and l are called the Schwartz kernel and the total symbol of 𝐿, respectively.
The leading order term

𝑙 (𝑥, 𝜃) :=
∑︁
|𝛼 |=𝑚

𝑓𝛼𝜃
𝛼 (2.5)

15
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of the total symbol is called the principal symbol of 𝐿. Let us denote the set of all partial
differential operators of order most 𝑚 ∈ R on 𝑈 by PDO𝑚 (𝑈).

One observes that the total symbol

𝜎tot : PDO𝑚 (𝑈) → P𝑚 (𝑈 × R𝑑), 𝐿 ↦→ 𝜎tot
𝐿

:= l (2.6’)

is an isomorphism between PDO𝑚 (𝑈) and the set P𝑚 (𝑈 × R𝑑) of all smooth functions on
𝑈 × R𝑑 which are polynomials of degree at most 𝑚 in R𝑑. This isomorphism tells that
knowing the total symbol l up to smooth terms is equivalent to the knowledge of the operator
𝐿 modulo smooth End

(
𝐶∞(𝑈)

)
, and hence, a sharper version of (2.6’) is

𝜎tot : PDO𝑚−[∞] (𝑈) → P𝑚−[∞] (T∗𝑈), [𝐿] ↦→ 𝜎tot
[𝐿 ] := [l], (2.6)

where PDO𝑚−[∞] (𝑈) means PDO𝑚 (𝑈) modulo smooth operators on𝑈. One also observes
that changing next to the leading-order terms in (2.1) does not change the principal
symbol:

𝜎 : PDO𝑚−[1] (𝑈) → P𝑚−[1] (T∗𝑈), [𝐿] ↦→ 𝜎[𝐿 ] := [𝑙], (2.7)

where PDO𝑚−[1] := PDO𝑚/PDO𝑚−1. Note that neither l nor L is well-behaved under the
change of coordinates whilst 𝑙 is. More precisely, let us consider a diffeomorphism

κ : 𝑈 → 𝑉, 𝑥 ↦→ 𝑦 := κ(𝑥) (2.8)

between two open subsets 𝑈,𝑉 ⊂ R𝑑 whose cotangent lift is

T∗κ : T∗𝑉 → T∗𝑈, (𝑦, 𝜂) ↦→ (𝑥, 𝜉) := T∗κ (𝑦, 𝜂) :=
(
κ−1(𝑦),T∗

κ−1 (𝑦)κ (𝜂)
)
, (2.9)

where T∗𝑦𝑉 3 𝜂 ↦→ T∗
κ−1 (𝑦)κ (𝜂) := 𝜂 ◦ d𝑥κ ∈ T∗𝑥𝑈 and d𝑥κ : T𝑥𝑈 → Tκ(𝑥)𝑉 is the tangent

mapping of κ. Hence one has the induced mapping

(T∗κ)∗ : 𝐶∞(T∗𝑈) → 𝐶∞(T∗𝑉), 𝑎 ↦→
(
(T∗κ)∗𝑎

)
(𝑦, 𝜂) := 𝑎

(
T∗κ (𝑦, 𝜂)

)
. (2.10)

Then the chain rule

D𝛼
𝑥 ↦→ d𝑥κ (D𝛼

𝑥 ) =
(𝜕κ 𝑗1
𝜕𝑥1

𝜕

i 𝜕𝑦 𝑗1

)𝛼1
. . .

(𝜕κ 𝑗𝑑
𝜕𝑥𝑑

𝜕

i 𝜕𝑦 𝑗𝑑

)𝛼𝑑
(2.11)

entails that the transformed total symbol l ↦→ (T∗κ)∗l ends up with messy tangled terms
involving higher derivatives of κ, whilst the principal symbol transforms invariantly:

(
(T∗κ)∗𝑙

)
(𝑦, 𝜂) =

∑︁
|𝛼 |=𝑚

(
(κ−1)∗ 𝑓𝛼

)
(𝑦)

((
(κ−1)∗ 𝜕κ

𝑗1

𝜕𝑥1

)
(𝑦) 𝜂 𝑗1

)𝛼1

. . .

((
(κ−1)∗ 𝜕κ

𝑗𝑑

𝜕𝑥𝑑

)
(𝑦) 𝜂 𝑗𝑑

)𝛼𝑑
.

(2.12)
In other words, the following diagrams commute for any 𝐿𝑈 ∈ PDO𝑚 (𝑈), 𝐿𝑉 ∈ PDO𝑚 (𝑉):
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𝐶∞(𝑉) 𝐶∞(𝑉)

𝐶∞(𝑈) 𝐶∞(𝑈)

𝐿𝑉

𝐿𝑈

κ∗ κ∗

PDO𝑚−[1] (𝑉)

PDO𝑚−[1] (𝑈)

𝑆𝑚−[1] (T∗𝑉)

𝑆𝑚−[1] (T∗𝑈)

𝛋 (T∗κ)∗

𝜎[𝐿𝑈 ]

𝜎[𝐿𝑉 ]

Figure 2.1: Transformation of a partial differential operator and its principal symbol
under the diffeomorphism κ := (2.8). In the right diagram, PDO𝑚 (𝑈) 3 𝐿𝑈 ↦→ 𝐿𝑉 :=
𝛋(𝐿𝑈) := (κ∗)−1 ◦ 𝐿𝑈 ◦ κ∗ ∈ PDO𝑚 (𝑉), and all other symbols are as defined in the ongoing
discussion.

In order to achieve an intrinsic characterisation of these notions, we observe that [74]
(see also [75], [76, pp. 151-152])

e− i λ𝑥·𝜉𝐿 (ei λ𝑥·𝜉) =
∑︁
|𝛼 |≤𝑚

𝑓𝛼𝜉
𝛼λ𝛼, ∀λ ∈ R+ (2.13)

is a polynomial in λ of degree 𝑚 for any 𝐿 ∈ PDO𝑚 (𝑈). Conversely, any continuous linear
operator satisfying the preceding property is a differential operator of order 𝑚 and can
be expressed as (2.2). Evidently, hence

𝜎tot
𝐿
(𝑥, 𝜉) := e− i 𝑥·𝜉𝐿 (ei 𝑥·𝜉), 𝜎𝐿 (𝑥, 𝜉) := lim

λ→∞
λ−𝑚e− i λ𝑥·𝜉𝐿 (ei λ𝑥·𝜉). (2.14)

2.1.2 Pseudodifferential operators

The essential notion of a pseudodifferential operator is to consider an operator of the
form (2.2) whose Schwartz kernel is also singular at the diagonal yet generalises a dif-
ferential operator in the sense that it does not respect supports and that the total sym-
bol (2.5) of a differential operator is replaced by a wider class of functions. To be precise,
a pseudodifferential operator 𝑃 on 𝑈 of order (at most) 𝑚 ∈ R is a continuous linear
map (see e.g. [77, p. 69])

𝑃 : 𝐶∞c (𝑈) → 𝐶∞(𝑈), 𝑢 ↦→ (𝑃𝑢) (𝑥) :=
∫
𝑈

P(𝑥, 𝑦) 𝑢(𝑦) d𝑦 (2.15)

whose Schwartz kernel P ∈ D′(𝑈 ×𝑈) is of the form

P(𝑥, 𝑦) = 1
(2𝜋)𝑑

∫
R𝑑

ei(𝑥−𝑦)·𝜃p(𝑥, 𝑦; 𝜃) d𝜃, (2.16)

for some element p in the symbol class (see Definition B.1.6) 𝑆𝑚 (𝑈 ×𝑈 × R𝑑) ) P𝑚 (𝑈 ×
𝑈 ×R𝑑). Note, the preceding expression is an oscillatory integral and thus it must be un-
derstood in a distributional sense. We denote the set of all such operators by ΨDO𝑚 (𝑈).
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Recall, the set of smoothing operators ΨDO−∞(𝑈) is defined as the set of all linear con-
tinuous operators 𝐶∞c (𝑈) → 𝐶∞(𝑈) whose Schwartz kernels are smooth.

Naturally, we are now tempted to have the notions of the total symbol and the prin-
cipal symbol, for which, let us introduce a subset of ΨDO𝑚 (𝑈) which respects support.

Definition 2.1.1. Let 𝑈 ⊂ R𝑑 be an open set and ΨDO𝑚 (𝑈) the set of all pseudodiffer-
ential operators on 𝑈 of order (at most) 𝑚 ∈ R. An element 𝑃 ∈ ΨDO𝑚 (𝑈) is called
properly supported if both projections suppP→ 𝑈,𝑈 from the support of its Schwartz
kernel P in 𝑈 × 𝑈 to 𝑈 are proper maps, i.e., for every compact set 𝐾 ⊂ 𝑈 there is a
compact set 𝐾 ⊂ 𝑈 such that [78, p. 103] (see also [77, Def. 18.1.21])

supp 𝑢 ⊂ 𝐾 ⇒ supp(𝑃𝑢) ⊂ 𝐾, 𝑢 � 𝐾 = 0⇒ (𝑃𝑢) � 𝐾 = 0. (2.17)

Analogously, p ∈ 𝑆𝑚 (𝑈×𝑈×R𝑑) is called properly supported if the projectors clo
(
Pr(supp p)

)
→ 𝑈,𝑈 are proper, where Pr p projects p onto 𝑈 ×𝑈 and clo denotes the closure.

A properly supported pseudodifferential operator can be defined with restricting supports,
i.e., 𝑃 : 𝐶∞c (𝑈) → 𝐶∞c (𝑈), 𝑃 : E′(𝑈) → E′(𝑈) and moreover 𝑃 : 𝐶∞(𝑈) → 𝐶∞(𝑈), 𝑃 :
D′(𝑈) → D′(𝑈). These operators are useful because

Proposition 2.1.2. Every pseudodifferential operator of order 𝑚 can be written as a com-
bination of an 𝑚-order properly supported pseudodifferential operator and a smoothing
operator [78, p. 103].

The concept of the total symbol of a pseudodifferential operator is formalised as
follows.

Theorem 2.1.3. As in the terminologies of Definition 2.1.1, any properly supported 𝑃 ∈
ΨDO𝑚 (𝑈) can be uniquely expressed as [78, Thm. 2.1.1]

(𝑃𝑢) (𝑥) =
∫
R𝑑

ei(𝑥−𝑦)·𝜉𝜎tot
𝑃
(𝑥, 𝜉) 𝑢(𝑦) d𝑦 d𝜉

(2𝜋)𝑑
, (2.18)

where the total symbol 𝜎tot
𝑃
(𝑥, 𝜉) := e− i 𝑥·𝜉𝑃(ei •·𝜉) (𝑥) is given by means of the following

asymptotic summation (see Definition B.1.4) formula

𝜎tot
𝑃
(𝑥, 𝜉) ∼

∑︁
𝛼∈N𝑑

0

1
𝛼!
(𝜕𝛼𝜉 D𝛼

𝑦p) (𝑥, 𝑥, 𝜉), (2.19)

where p as in (2.16) is an element of 𝑆𝑚 (𝑈 ×𝑈 × R𝑑).

Conversely, given any proper p ∈ 𝑆𝑚 (𝑈 ×𝑈 ×R𝑑), every operator of the form (2.18) with
total symbol (2.19) is in the set of properly supported ΨDO𝑚 (𝑈).
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Since a generic pseudodifferential operator 𝑃 differs from its properly supported part
𝑃 only by a smoothing operator, one sets

𝜎tot : ΨDO𝑚−[∞] (𝑈) → 𝑆𝑚−[∞] (T∗𝑈), [𝑃] ↦→ 𝜎tot
[𝑃 ] := 𝜎tot

𝑃
. (2.20)

The preceding expression of 𝜎tot
[𝑃 ] then exhibits that (2.4) holds for pseudodifferential

operators in the asymptotic sense. Furthermore, this expression paves the way to define
the principal symbol 𝜎𝑃 of 𝑃, which is precisely the leading order homogeneous term
in (2.19). Clearly, it does not see smooth terms, and so 𝜎𝑃 is identified with it.

Definition 2.1.4. As in the terminologies of Definition 2.1.1, let 𝑆𝑚 (T∗𝑈) be the space
of symbols on the cotangent bundle T∗𝑈 over 𝑈. Then, the principal symbol 𝜎𝑃 of
𝑃 ∈ ΨDO𝑚 (𝑈) is defined by the isomorphism [78, p. 110]

𝜎 : ΨDO𝑚−[1] (𝑈) → 𝑆𝑚−[1] (T∗𝑈), [𝑃] ↦→
𝜎[𝑃 ] := homogeneous term of degree 𝑚 in (2.19) mod 𝑆𝑚−1(T∗𝑈). (2.21)

In terms of transformation properties, 𝜎tot
𝑃

and 𝜎𝑃 resemble those of a differential
operator. More precisely, under the action of κ := (2.8), the total symbol of any properly
supported 𝑃 ∈ ΨDO𝑚 (𝑈) transforms like [78, (2.1.14)] (see also [77, Thm. 18.1.17])(

(T∗κ)∗𝜎tot
𝑃

)
(𝑦, 𝜂) ∼

∑︁
|𝛼 |≤𝑚

1
𝛼!
𝜕𝛼𝜉 p(𝑥, 𝜉) D

𝛼
𝑥
ei ρ(𝑥,𝑥)·(T∗𝑥κ)−1 (𝜉) ��

𝑥=𝑥
(2.22)

where (𝑥, 𝜉) :=
(
κ−1(𝑦),T∗𝑥κ 𝜂

)
and ρ(𝑥, 𝑥) := κ(𝑥) − κ(𝑥) − (𝑥 − 𝑥)d𝑥κ.

Remark 2.1.5. The leading-homogeneous term 𝑝 in (2.22) satisfies (see e.g. [77, p. 83])(
(T∗κ)∗𝑝

)
(𝑦, 𝜂) = 𝑝

(
𝑥,T∗𝑥κ 𝜂

)
. (2.23)

It is then evident that the principal symbol is an invariantly defined homogeneous func-
tion on the punctured cotangent bundle ¤T∗𝑈 in contrast to the total symbol. In other
words, Figure 2.1 holds for pseudodifferential operators as well.

So far, we have specified a (properly supported) pseudodifferential operator by its
Schwartz kernel (2.18) which has been given as an oscillatory integral whose integrand
is ei(𝑥−𝑦)·𝜉𝜎tot

𝑃
(𝑥, 𝜉). But, neither the exponent nor the total symbol are invariant under a

diffeomorphism, and so it is unforeseeable whether the Schwartz kernel has an invariant
meaning. So, we ought to look for an intrinsic characterisation of such class distribu-
tions. It is well-recognised that the singularity structure is a characteristic feature of
a distribution. But, our purpose cannot be served by the singular support1 as it is not
diffeomorphism invariant. Thus, one introduces the wavefront set [79], [78, (2.5.2)]

WF 𝑢 :=
⋂

𝑃∈ΨDO0 (𝑈)
𝑃𝑢∈𝐶∞ (𝑈)

Char 𝑃, Char 𝑃 := {(𝑥0, 𝜉
0) ∈ ¤T∗𝑈 | 𝜎𝑃 (𝑥0, 𝜉

0) = 0}. (2.24)

1Recall, the singular support singsupp 𝑢 of a distribution 𝑢 ∈ D ′(𝑈) is the set of all points in 𝑈 having
no open neighbourhood to which the restriction of 𝑢 is a smooth function (see e.g. [76, Def. 2.2.3].
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of a distribution 𝑢 ∈ D′(𝑈), where the intersection runs over all properly supported 𝑃 and
Char 𝑃 is called the characteristic of 𝑃. Evidently, a wavefront set transforms covariantly
under a diffeomorphism. Equivalently, ¤T∗𝑈 3 (𝑥0, 𝜉

0) ∉ WF 𝑢 if and only if there exists a
compactly supported smooth function 𝑓 on 𝑈 non-vanishing at 𝑥0 ∈ 𝑈 such that the Fourier
transform of

(
F ( 𝑓 𝑢)

)
(𝜉) is rapidly decreasing in a conic neighbourhood of 𝜉0 [78, Prop.

2.5.5]. Note, wavefront set is a generalisation of the singular support because the latter
is the base projection of the former [78, Thm. 2.5.3]. Speaking differently, singsupp 𝑢
only provides the location of the singularities whilst WF 𝑢 furnishes the cotangent vectors
causing them, on top of their locations. If A ∈ D′(𝑈 × 𝑉) is a bidistribution where 𝑉 is
an open subset of any Euclidean space, then its twisted wavefront set is given by [78,
Thm. 2.5.14]

WF′A := {(𝑥, 𝜉; 𝑦,−𝜂) ∈ ¤T∗𝑈 × ¤T∗𝑉 | (𝑥, 𝜉; 𝑦, 𝜂) ∈ WFA} (2.25)

Details of wavefront set is available, for instance, in [76, 80, 81].

It follows that the wavefront set of the Schwartz kernel of a pseudodifferential oper-
ator [78, p. 124] (see also [77, Thm. 18.1.16, 18.1.26]):

WFP ⊆ {(𝑥, 𝜉; 𝑥,−𝜉) ∈ ¤T∗𝑈 × ¤T∗𝑈} = (𝛥𝑈)⊥∗ (2.26)

is contained in the conormal bundle (𝛥𝑈)⊥∗ of the diagonal embedding

𝛥 : 𝑈 → 𝑈 ×𝑈, 𝑥 ↦→ 𝛥(𝑥) := (𝑥, 𝑥). (2.27)

By projecting T∗𝑈×T∗𝑈 → T∗𝑈 on the first factor, (𝛥𝑈)⊥∗ can be identified with T∗𝑈 and

WF 𝑃 = ES 𝑃 := {(𝑥, 𝜉) ∈ ¤T∗𝑈 | (𝑥, 𝜉; 𝑥, 𝜉) ∈ WF′P}, (2.28)

is called the wavefront set, also known as the essential support of a pseudodifferen-
tial operator 𝑃. This is the smallest conic set such that 𝑃 is of order −∞ in ¤T∗𝑈 \WF 𝑃. In
particular, if 𝑃 is properly supported then ¤T∗𝑈 \WF 𝑃 is the largest open conic set where
𝜎tot

𝑃
(2.19) is rapidly decreasing [78, Prop. 2.5.8].

Given a 𝑃 ∈ ΨDO𝑚 (𝑈), there exists a unique formally dual operator 𝑃∗ ∈ ΨDO𝑚 (𝑈)
such that

𝑃∗ : E′(𝑈) → D′(𝑈), 𝑢 ↦→ (𝑃∗𝑢) (𝜙) := 𝑢(𝑃𝜙) (2.29)

for any 𝜙 ∈ 𝐶∞c (𝑈). Pseudodifferential operators are microlocal, meaning that

WF(𝑃𝑢) ⊆ WF 𝑃 ∩WF 𝑢 ⇒ singsupp(𝑃𝑢) ⊆ singsupp 𝑢 (2.30)

for any 𝑢 ∈ E′(𝑈). Elements of ΨDO−∞(𝑈) are called smoothing operators due to the
fact that they map E′(𝑈) → 𝐶∞(𝑈). We remark that, by the Peetre theorem [82] - every
linear and local operator is a partial differential operator 𝐿:

∀𝑢 ∈ D′(𝑈) : supp(𝐿𝑢) ⊆ supp 𝑢. (2.31)
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Thus, pseudodifferential operators are pseudolocal (actually microlocal) generalisation
of differential operators in the sense that they respect the singular support (actually
wavefront set) instead of the support.

With the precise formulation (2.26) of singularities of P, one furthermore notices
that (𝛥𝑈)⊥∗ is generated by the non-degenerate phase function (see Definition A.1.8)
𝜑 := (𝑥 − 𝑦) · 𝜉, as explained in Example A.1.11. In fact, it is the conormal bundle
rather the oscillatory integral (2.16) that characterises P invariantly [78] (for details,
see e.g. [83], [84, Sec. 2.3], [85, Sec. VIII.1]).

Definition 2.1.6. As in the terminologies of Definition 2.1.4, let (𝛥𝑈)⊥∗ be the conormal
bundle of the diagonal embedding (2.27). Then the space 𝐼𝑚

(
𝑈×𝑈, (𝛥𝑈)⊥∗

)
of conormal

distribution of degree (at most) 𝑚 is defined as the set of all bidistributions P ∈ D′(𝑈 ×
𝑈) on 𝑈 of the form [78, (2.4.1)]

P(𝜙 ⊗ 𝑢) =
∫
R𝑑

∫
𝑈

∫
𝑈

ei(𝑥−𝑦)·𝜉p(𝑥, 𝑦, 𝜉) 𝜙(𝑥) 𝑢(𝑦) d𝑥 d𝑦
d𝜉
(2𝜋)𝑑

, (2.32)

where 𝑢, 𝜙 ∈ 𝐶∞c (𝑈) and p ∈ 𝑆𝑚 (𝑈 ×𝑈 × R𝑑).

Then, 𝑃 ∈ ΨDO𝑚 (𝑈) is invariantly defined as the integral operator (2.15) whose
Schwartz kernel P ∈ 𝐼𝑚

(
𝑈 ×𝑈, (𝛥𝑈)⊥∗

)
.

Example 2.1.7. Let Δ be the Laplacian on an open set 𝑈 ⊂ R𝑑. Then 𝑛
√
Δ ∈ ΨDO2/𝑛 (𝑈).

2.1.3 Fourier integral operators

As observed in the last two sections, the partial differential operators are local whereas
the pseudodifferential operators are microlocal. Fourier integral operators are a vast
generalisation of the latter in the sense that it maps a function on a set to a distribution
on another set by allowing a general phase function. Let 𝑈 ⊂ R𝑑𝑈 and 𝑉 ⊂ R𝑑𝑉 be open
sets. Then, a Fourier integral operator of order (at most) 𝑚 ∈ R is the continuous
linear map [78, Sec. 1.4] (see also [23, Prop. 25.1.5’] and, e.g. [85, Sec. VI.2])

𝐴 : 𝐶∞c (𝑉) → D′(𝑈), 𝑣 ↦→ (𝐴𝑣) (𝑥) :=
∫
𝑉

A(𝑥, 𝑦) 𝑣(𝑦) d𝑦 (2.33)

whose Schwartz kernel A is given by the oscillatory integral of the form

A(𝑥, 𝑦) = (2𝜋)−(𝑑𝑈+𝑑𝑉 +2𝑛−2𝑒)/4
∫
R𝑛

ei 𝜑(𝑥,𝑦;𝜃)a(𝑥, 𝑦; 𝜃) d𝜃 (2.34)

where 𝜑 is a clean phase function with excess 𝑒 on 𝑈 × 𝑉 × ¤R𝑛 (see Definition A.1.8),
a ∈ 𝑆𝑚+(𝑑𝑈+𝑑𝑉 −2𝑛−2𝑒)/4(𝑈 ×𝑉 × R𝑛) and d𝜃 is the Lebesgue measure on R𝑛.
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Being an oscillatory integral, (2.34) must be understood as a formal expression that
does not pointwise make sense rather it defines a bidistribution D′(𝑈 × 𝑉) in the sense
that [78, Sec. 1.2] (see also, e.g. [84, Sec. 2.2-2.3], [8, Sec. 1.1-1.3] for details)

(𝐴𝑣) (𝜙) := A(𝜙 ⊗ 𝑣) = (2𝜋)−(𝑑𝑈+𝑑𝑉 +2𝑛−2𝑒)/4
∫
R𝑛

∫
𝑉

∫
𝑈

ei 𝜑(𝑥,𝑦;𝜃)a(𝑥, 𝑦; 𝜃) 𝜙(𝑥) 𝑣(𝑦) d𝑥 d𝑦 d𝜃

(2.35)
for any 𝜙 ∈ 𝐶∞c (𝑈). The precise meaning of this expression is as follows [78, Thm. 1.4.1]:

(i) If 𝜑 has no critical point as a function of (𝑥, 𝑦; 𝜃) then the oscillatory integral (2.35)
exists and it is a continuous bilinear form for the𝐶𝑘c -topologies on 𝑣 and 𝜙 whenever

𝑚 − 𝑘 < −𝑛. (2.36)

When (2.36) is valid then one obtains a continuous linear map

𝐴 : 𝐶𝑘c (𝑉) → D′𝑘 (𝑈) (2.37)

whose Schwartz kernel A ∈ D′𝑘 (𝑈 ×𝑉) is given by the oscillatory integral

A(𝑢) =
∫
R𝑛

∫
𝑉

∫
𝑈

ei 𝜑(𝑥,𝑦;𝜃)𝑎(𝑥, 𝑦; 𝜃) 𝑢(𝑥, 𝑦) d𝑥 d𝑦 d𝜃, ∀𝑢 ∈ 𝐶∞c (𝑈 ×𝑉). (2.38)

(ii) If, for each fixed 𝑥, 𝜑 has no critical point (𝑦0; 𝜃0) then (2.34) is defined as an
oscillatory integral. One obtains a continuous map

𝐴 : 𝐶𝑘c (𝑉) → 𝐶 (𝑈) (2.39)

when (2.36) is valid. By differentiation under the integral sign, it follows that 𝐴 is
also a continuous map from 𝐶𝑘c (𝑉) to 𝐶 𝑗 (𝑈) provided

𝑚 + 𝑛 + 𝑗 < 𝑘. (2.40)

(iii) If, for each fixed 𝑦, 𝜑 has no critical point (𝑥0; 𝜃0) then the adjoint of 𝐴 has the
properties listed in (ii), so

𝐴 : E′ 𝑗 (𝑉) → D′𝑘 (𝑈) (2.41)

is a continuous map when (2.40) is fulfilled. In particular, 𝐴 defines a continuous
map from E′(𝑉) to D′(𝑈).

(iv) Let R be the open set of all (𝑥, 𝑦) ∈ 𝑈 × 𝑉 such that 𝜑(𝑥, 𝑦; 𝜃) has no critical point
as a function of 𝜃. Then the oscillatory integral

A(𝑥, 𝑦) = (2𝜋)−(𝑑𝑈+𝑑𝑉 +2𝑛−2𝑒)/4
∫
R𝑛

ei 𝜑(𝑥,𝑦;𝜃)𝑎(𝑥, 𝑦; 𝜃) d𝜃 (2.42)

defines a function in 𝐶∞(R) which is equal to the distribution (2.38) in R. If
R = 𝑈 × 𝑉 , it follows that 𝐴 is an integral operator with the smooth Schwartz
kernel A ∈ 𝐶∞(𝑈 ×𝑉), so

𝐴 : E′(𝑉) → 𝐶∞(𝑈) (2.43)

is a continuous map, called the smoothing operator from 𝑉 to 𝑈.
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As described for the kernel of a pseudodifferential operator, we would like to charac-
terise the oscillatory integral A in an invariant fashion starting with the observation that
its wavefront set [78, Thm. 3.2.6]

WFA ⊆ 𝐶′, 𝐶′ :=
{
(𝑥0, d𝑥0𝜑; 𝑦0,−d𝑦0𝜑) ∈ ¤T∗𝑈 × ¤T∗𝑉 | (grad𝜃 𝜑) (𝑥0, 𝑦0; 𝜃0) = 0

}
(2.44)

is contained in the homogeneous twisted canonical relation (Definition A.1.12) 𝐶′ from
¤T∗𝑉 to ¤T∗𝑈 which is closed in ¤T∗(𝑈 × 𝑉). The Schwartz kernel of a Fourier integral
operator is then intrinsically formalised as,

Definition 2.1.8. Let 𝑈 ⊂ R𝑑𝑈 , 𝑉 ⊂ R𝑑𝑉 be open sets and 𝐶 ⊂ ¤T∗𝑈 × ¤T∗𝑉 a homoge-
neous canonical relation which is closed in ¤T∗(𝑈 × 𝑉). Then the space 𝐼𝑚 (𝑈 × 𝑉,𝐶′) of
Lagrangian distributions of order (at most) 𝑚 ∈ R is defined as the set of all bidistri-
butions A ∈ D′(𝑈 ×𝑉) on 𝑈 ×𝑉 of the form (2.35) [78, Def. 3.2.2].

Therefore, a Fourier integral operator 𝐴 associated with a closed homogeneous canonical
relation 𝐶 ⊂ ¤T∗𝑈× ¤T∗𝑉 is defined by the integral operator (2.33) whose Schwartz A kernel is
an element of 𝐼𝑚 (𝑈 ×𝑉,𝐶′). We denote the set of all such operators by FIO𝑚 (𝑉 → 𝑈,𝐶′).
Note, given an oscillatory integral representation of A of the form (2.34), the order 𝜇 of
homogeneity of a is related to the order 𝑚 of 𝐴 by (see e.g. [84, (2.4.22)])

𝑚 = 𝜇 + 𝑛
2
− 𝑑𝑈 + 𝑑𝑉

4
. (2.45)

The apparently counter-intuitive (2𝜋)−(𝑑𝑈+𝑑𝑉 +2𝑛−2𝑒)/4 factor in (2.35) has been cho-
sen in order to match the (2𝜋)−𝑑 factor in (2.16) when 𝑑𝑈 = 𝑑𝑉 = 𝑑 = 𝑛 and 𝑒 = 0.
As expected, 𝐼𝑚

(
𝑈 × 𝑈, (𝛥𝑈)⊥∗

)
is a special case of 𝐼𝑚 (𝑈 × 𝑉,𝐶′) when 𝐶 is given by

the graph of the identity homogeneous symplectomorphism on 𝑈, globally generated by
the particular non-degenerate phase function 𝜑 := (𝑥 − 𝑦) · 𝜉 (as elucidated in Exam-
ple A.1.11). Besides 𝐶∞(𝑈 ×𝑉) ⊂ 𝐼−∞(𝑈 ×𝑉,𝐶′) (see e.g. [85, Prop. 3.2 (p. 439)]), i.e.,
the kernel of a smoothing operator (2.43) can be thought as an element of 𝐼−∞(𝑈×𝑉,𝐶′).

In order to define the principal symbol of a Fourier integral operator, one cannot
directly look for an isomorphism between FIO𝑚 (𝑉 → 𝑈,𝐶′) and the respective symbol
class, as done for pseudodifferential operators (Definition 2.1.4) because there is no
analog of (2.19) for the total symbol of a Fourier integral operator due to the fact that a
canonical relation is more intricate than the conormal bundle (𝛥𝑈)⊥∗. Since a pseudodif-
ferential operator is characterised by its Schwartz kernel and (𝛥𝑈)⊥∗ � T∗𝑈, its principal
symbol isomorphism map (2.21) is equivalent to [78, Thm. 2.4.2]

𝐼𝑚−[1]
(
𝑈 ×𝑈, (𝛥𝑈)⊥∗

)
� 𝑆

(
(𝛥𝑈)⊥∗

)
. (2.46)

This paves the right direction to address the principal symbol of a Fourier integral oper-
ator. In other words, one pursues an isomorphism between 𝐼𝑚 (𝑈 × 𝑉,𝐶′) and respective
symbol space on 𝐶. It turns out that one actually requires to consider half-density (see
Section 2.2.1 and Remark 2.2.8 for further motivation)-valued symbols on 𝐶 of order
𝑚 + (𝑑𝑈 + 𝑑𝑉 )/4 in order to define an invariant principal symbol [78, Thm. 3.2.1].
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Definition 2.1.9. As in the terminologies of Definition 2.1.8, suppose that 𝛺1/2𝐶,M →
𝐶 are the half-density bundle (see Appendix A.1.6) and the Keller-Maslov bundle (see
Definition A.1.19) over 𝐶, respectively, and that 𝑆𝑚+(𝑑𝑈+𝑑𝑉 )/4−[1] (𝐶;M ⊗ 𝛺1/2𝐶) is the
space (see (B.14)) of M ⊗ 𝛺1/2𝐶-valued symbols on 𝐶. Then, the principal symbol of
a Lagrangian distribution is defined by the isomorphism [10, (7.6)] (see also [23, Prop.
25.1.5’])

𝜎 : 𝐼𝑚−[1] (𝑈 ×𝑉,𝐶′) → 𝑆𝑚+
𝑑𝑈 +𝑑𝑉

4 −[1] (𝐶;M ⊗ 𝛺1/2𝐶),

[A] ↦→ 𝜎[A] (𝑥, 𝜉; 𝑦, 𝜂) :=
∫
ℭ𝜉 ,𝜂

d𝜃′′𝑎(𝑥, 𝑦; 𝜃′, 𝜃′′)m ⊗ |dv𝐶 |
1
2 mod 𝑆𝑚+

𝑑𝑈 +𝑑𝑉
4 −1(·), (2.47)

where 𝐼𝑚−[1] := 𝐼𝑚/𝐼𝑚−1, 𝑎 is the top-order homogeneous term of a in (2.34), m and√︁
|dv𝐶 | are sections of M and 𝛺1/2𝐶, respectively. For each (𝑥, 𝜉; 𝑦, 𝜂) ∈ 𝐶, 𝜑 is a represen-

tative of the stable equivalence class (see Remark A.1.9) of clean phase functions with
excess 𝑒 (see Definition A.1.8) for 𝐶 and

ℭ𝜉,𝜂 := {(𝑥, 𝑦; 𝜃) ∈ (grad𝜃 𝜑)−1(0) | d𝑥𝜑 := 𝜉, d𝑦𝜑 =: 𝜂} (2.48)

is the 𝑒-dimensional fibre over the corresponding Lagrangian fibration (see (A.33)).
Here, d𝜃′′ is the Lebesgue measure on ¤R𝑒 and the variable 𝜃′′ is defined by the split-
ting2 ¤R𝑛 ∈ 𝜃 = (𝜃′, 𝜃′′) ∈ ¤R𝑛−𝑒 × ¤R𝑒 such that the projection ℭ𝜉,𝜂 3 (𝑥, 𝑦; 𝜃′, 𝜃′′) ↦→ 𝜃′′ ∈ R𝑒
has a bijective differential so that, for a fixed 𝜃′′ = cst, 𝜑(𝑥, 𝑦; 𝜃′, cst) is non-degenerate.

Explicit expressions of m (see Appendix A.1.4) and
√︁
|dv𝐶 | (see Appendix A.1.6) in

terms of 𝜑 entail [23, (25.1.4)′, p. 15]

𝜎A(𝑥, 𝜉; 𝑦, 𝜂) =
√︁
|d𝜉 | |d𝜂 |

∫
ℭ

𝑎(𝑥, 𝑦; 𝜃′, 𝜃′′) ei𝜋/4 sgn(Hess𝑥,𝑦;𝜃 ′ 𝜑)√︁
| det(Hess𝑥,𝑦;𝜃 ′ 𝜑) |

d𝜃′′, (2.49)

where Hess𝑥,𝑦;𝜃 ′ 𝜑 is the Hessian matrix (see (3.18)) of 𝜑(𝑥, 𝑦; 𝜃′, cst) with respect to
(𝑥, 𝑦; 𝜃′) ∈ ℭ𝜉,𝜂:

Hess𝑥,𝑦;𝜃 ′ 𝜑 =

©«

𝜕2𝜑

𝜕𝑥𝑖𝜕𝑥𝑖
8

𝜕2𝜑

𝜕𝑥𝑖𝜕𝑦 𝑗
𝜕2𝜑

𝜕𝑥𝑖𝜕𝜃′
𝑘

𝜕2𝜑

𝜕𝑦 𝑗𝜕𝑥𝑖
𝜕2𝜑

𝜕𝑦 𝑗𝜕𝑦 𝑗
8

𝜕2𝜑

𝜕𝑦 𝑗𝜕𝜃′
𝑘

𝜕2𝜑

𝜕𝜃′
𝑘
𝜕𝑥𝑖

𝜕2𝜑

𝜕𝜃′
𝑘
𝜕𝑦 𝑗

𝜕2𝜑

𝜕𝜃′
𝑘
𝜕𝜃′

𝑘 8

ª®®®®®®®®¬
(2.50)

for 𝑖, 𝑖8 = 1, . . . , 𝑑𝑈 ; 𝑗 , 𝑗 8 = 1, . . . , 𝑑𝑉 ; 𝑘, 𝑘 8 = 1, . . . , 𝑛 − 𝑒. Here, d𝜉 d𝜂 is the Lebesgue
measure on 𝐶 at (𝑥, 𝜉; 𝑦, 𝜂).

2Such splitting is always possible due to the Thom splitting (also known as the parametrised Morse)
lemma (see e.g. [77, App. C. 6], [86, p. 52]).
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If 𝐶 is parametrised by a non-degenerate phase function φ, i.e., 𝑒 = 0, then the 𝜃-
variable is no longer required to be split up and so the expression of 𝜎A simplifies to [78,
Thm. 3.2.5] (see also [23, Prop. 25.1.5] and (A.68))

𝜎[A] (𝑥, 𝜉; 𝑦, 𝜂) := 𝑎(𝑥, 𝑦; 𝜃) ei𝜋/4 sgn(Hessφ)√︁
| det(Hessφ) |

√︁
|d𝜉 | |d𝜂 | mod 𝑆𝑚+

𝑑𝑈 +𝑑𝑉
4 −1(·),

Hessφ =

©«

𝜕2φ

𝜕𝑥𝑖𝜕𝑥𝑖
8

𝜕2φ

𝜕𝑥𝑖𝜕𝑦 𝑗
𝜕2φ

𝜕𝑥𝑖𝜕𝜃𝑘
𝜕2φ

𝜕𝑦 𝑗𝜕𝑥𝑖
𝜕2φ

𝜕𝑦 𝑗𝜕𝑦 𝑗
8

𝜕2φ

𝜕𝑦 𝑗𝜕𝜃𝑘
𝜕2φ

𝜕𝜃𝑘𝜕𝑥
𝑖

𝜕2φ

𝜕𝜃𝑘𝜕𝑦
𝑗

𝜕2φ

𝜕𝜃𝑘𝜕𝜃𝑘 8

ª®®®®®®®¬
. (2.51)

Remark 2.1.10. The half-density 𝜎A is invariant under any diffeomorphism apart from
the Maslov factor of absolute value 1 [23, (25.1.14)].

Example 2.1.11. Suppose that 𝑈 ⊂ R𝑑 and 𝑉 ⊂ R𝑛 are open sets and that κ ∈ 𝐶∞(𝑈,𝑉).
Then, the definition of pullback

κ∗ : 𝐶∞c (𝑉) → 𝐶∞(𝑈), 𝑢 ↦→ κ∗𝑢 := 𝑢 ◦ κ (2.52)

entails (see e.g. [84, p. 37], [87, Sec. 5.25])

(κ∗𝑢) (𝑥) = 𝑢
(
κ(𝑥)

)
= 𝛿κ(𝑥) (𝑢) =

1
(2𝜋)𝑛

∫
R𝑛

∫
𝑉

ei(κ(𝑥)−𝑦)·𝜂𝑢(𝑦) d𝑦 d𝜂. (2.53)

That is, κ∗ is a Fourier integral operator whose Schwartz kernel is given by

K := (2𝜋)−(𝑛−𝑑+𝑑+3𝑛)/4
∫
R𝑛

ei 𝜑d𝜂, 𝜑 :=
(
κ(𝑥) − 𝑦

)
· 𝜂 (2.54)

where the phase function 𝜑 is non-degenerate whose fibre-critical set (see (A.18)) is

C :=
{
(𝑥0, 𝑦0; 𝜂0) ∈ 𝑈 ×𝑉 × ¤R𝑛 | 𝑦0 = κ(𝑥0)

}
. (2.55)

Thereby, κ∗ is of order ((2.45)) 𝑛−𝑑
4 and is associated with the canonical relation (see (A.33))

𝐶 := {(𝑥, 𝜉; 𝑦,−𝜂) ∈ T∗𝑈 × ¤T∗𝑉 | 𝑦 = κ(𝑥), 𝜉 = d∗𝑥κ (𝜂)}, (2.56)

where d∗𝑥κ : T∗
κ(𝑥)𝑉 → T∗𝑥𝑈 is the algebraic dual of the tangent mapping d𝑥κ : T𝑥𝑈 →

Tκ(𝑥)𝑉 of κ. Furthermore, its principal symbol is given by (cf. (2.51))

𝜎K(𝑥, 𝜉; 𝑦, 𝜂) :=

√︁
|d𝜉 | |d𝜂 |
(2𝜋) 𝑛−𝑑4

ei𝜋/4 sgn(Hess 𝜑)

| det(Hess 𝜑) | 12
, Hess 𝜑 =

©«
d2κ 𝑗

d𝑥𝑖d𝑥𝑖8
𝜂 𝑗 0

dκ 𝑗

d𝑥𝑖
0 0 −1

dκ 𝑗

d𝑥𝑖
−1 0

ª®®®®¬
, (2.57)

where we have used κ(𝑥) =
(
κ1(𝑥), . . . , κ𝑛 (𝑥)

)
.
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In addition, if κ is a diffeomorphism then we can consider its cotangent lift T∗κ, and
thus 𝐶′ =

{(
T∗κ (𝑦, 𝜂); (𝑦, 𝜂)

)}
is the graph of the induced symplectomorphism

T∗κ : ¤T∗𝑉 → ¤T∗𝑈, (𝑦, 𝜂) ↦→ 𝜘(𝑦, 𝜂) :=
(
κ−1(𝑦),T∗𝑥κ (𝜂)

)
. (2.58)

A careful look at 𝐶 in the preceding example reveals that 𝐶 is not homogeneous
because 𝜉 in (2.56) is not necessarily non-zero even if 𝜂 is. As a consequence, Hess 𝜑
in 𝜎K may vanish. This entails that κ∗ is not a homogeneous Fourier integral operator.
The assumption of homogeneity in this context ensures that a Fourier integral operator
(and its dual) maps smooth functions to smooth functions rather than distributions (see
e.g. [23, (25.2.1)]). We will discuss a plausible solution of this problem for the restriction
map (a special case of the preceding example) in a bundle setting in Example 2.3.12.

2.2 Fourier Integral Operators on manifolds

We would like to extend our preceding discussion on manifolds in this section. As pseu-
dodifferential operators and their generalisation - Fourier integral operators are defined
as integral operators by means of invariantly defined Schwartz kernels, it follows that
those kernels must be integrable, at least in their second variable. However, there is no
invariant way to integrate a function on a manifold. Thus, we are compelled to work with
densities instead of functions and particularly, half-densities turn out to be convenient.

2.2.1 Distributional half-densities

Densities

We recall that an 𝑠 ∈ C-density on a 𝑑-dimensional real vector space V is a function
𝜇 : V 𝑑 → C such that (see e.g. [25, Sec. 6.1-6.3], [85, pp. 374-377], [88, pp. 428-432])

𝜇(𝑇𝑣1, . . . , 𝑇𝑣𝑑) = | det𝑇 |𝑠𝜇(𝑣1, . . . , 𝑣𝑑) (2.59)

for any linear transformation 𝑇 : V → V and for all (𝑣1, . . . , 𝑣𝑑) ∈ V 𝑑. Such a quantity
always exists and the set of all such densities is denoted by 𝛺𝑠 (V ). It is a 1-dimensional
vector space over C.

The 𝑠-density bundle 𝛺𝑠𝑀 → 𝑀 over a manifold 𝑀 is defined by

∀𝑠 ∈ C : 𝛺𝑠𝑀 :=
⊔
𝑥∈𝑀

𝛺𝑠 (T𝑥𝑀), (2.60)

which is a (smooth) trivialisable C-line bundle, i.e., for each 𝑠, 𝛺𝑠 (T𝑥𝑀) � C but in a
non-canonical fashion. A section of 𝛺𝑠𝑀 are called an 𝑠-density on 𝑀; 𝑠 = 1-density is
simply called a density. Let

(
𝑈, (𝑥𝑖)

)
be a local chart around 𝑥 ∈ 𝑀 and

(
T𝑥𝑈, (𝜕/𝜕𝑥𝑖)

)
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(resp.
(
T∗𝑥𝑈, (d𝑥𝑖)

)
) the induced natural chart for the tangent bundle T𝑀 → 𝑀 (resp.

cotangent bundle T∗𝑀 → 𝑀). Then

|d𝑥1(𝑥) ∧ . . . ∧ d𝑥𝑑 (𝑥) |𝑠
( 𝜕

𝜕𝑥1
(𝑥) ∧ . . . ∧ 𝜕

𝜕𝑥𝑑
(𝑥)

)
= 1 (2.61)

defines a canonical local section |d𝑥 |𝑠 := |d𝑥1∧ . . .∧d𝑥𝑑 |𝑠 ∈ 𝐶∞(𝑈;𝛺𝑠𝑀), where 𝜕/𝜕𝑥1(𝑥)∧
. . .∧𝜕/𝜕𝑥𝑑 (𝑥) is the generator of the line ¤Λ𝑑T𝑥𝑀 defined by local coordinates. |d𝑥 |𝑠 defines
a nowhere-vanishing section of 𝛺𝑠𝑀 by allowing 𝑥 to vary in the preceding equation. Any
(compactly supported) smooth 𝑠-density 𝜇 on 𝑀 can locally be expressed as

𝜇 = 𝑓 |d𝑥 |𝑠 (2.62)

for a unique C-valued (compactly supported) smooth function 𝑓 = 𝜇(𝜕/𝜕𝑥1∧ . . .∧𝜕/𝜕𝑥𝑑)
on 𝑈. A density 𝜇 on 𝑀 is said to be positive if its value at each point 𝑥 of 𝑀 has that
property: 𝜇(𝑥) (𝑋1, . . . , 𝑋𝑑) > 0 for any linearly independent 𝑑-tuple of tangent vectors
(𝑥; 𝑋1, . . . , 𝑋𝑑) on 𝑀. Note, a smooth manifold 𝑀 always admits a smooth positive density
on 𝑀 and the set of positive densities on 𝑀 is an open subset of 𝛺𝑀 whose intersection
with each fibre is convex.

Example 2.2.1. (a) Let 𝑀 := R𝑑 with standard coordinates (𝑥1, . . . , 𝑥𝑑) and 𝑓 be a
smooth function on R𝑑. A canonical trivialisation of the density bundle 𝛺R𝑑 → R𝑑
is provided by Lebesgue measure d𝑥. Then the most general smooth 𝑠-density on
R𝑑 is given by 𝜇 := 𝑓 |d𝑥 |𝛼 and it is positive whenever 𝑓 is so.

(b) Let 𝑀 be an oriented manifold, i.e., it admits a volume form dv. Then, every
smooth function 𝑓 on 𝑀 defines a smooth 𝑠-density 𝜇 := 𝑓 |dv|𝑠 on 𝑀, where |dv| is
a positive density, defined by |dv|𝑥 := |dv(𝑥) | for each 𝑥 ∈ 𝑀.

(c) Let (M, σ) be a 2𝑑-dimensional symplectic manifold (see Section A.1.1) and 𝑓 ∈
𝐶∞(M). M is always orientable because it admits a smooth canonical volume form,
the Liouville form

dv := (−1)𝑑 (𝑑−1)/2σ
𝑑

𝑑!
, σ𝑑 := σ ∧ . . . ∧ σ (2.63)

and thus any smooth 𝑠-density on M is given by 𝜇 := 𝑓 |dv|𝑠. In particular, the cotan-
gent bundle T∗𝑀 → 𝑀 over a 𝑑-dimensional manifold 𝑀 is a symplectic manifold
and its Liouville form is given by (see Example A.1.2)

dv � 𝑈 = d𝑥1 ∧ . . . ∧ d𝑥𝑑 ∧ d𝜉1 ∧ . . . ∧ d𝜉𝑑 = d𝑥 d𝜉 (2.64)

in the Darboux chart
(
𝑈, (𝑥𝑖, 𝜉𝑖)

)
. Thus, any smooth 𝑠-density on T∗𝑀 is globally

(resp. locally) given by 𝜇 = 𝑓 |dv|𝑠 (resp. 𝜇 = 𝑓 ( |d𝑥 | |d𝜉 |)𝑠).
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(d) Let (M , g) be a 𝑑-dimensional Lorentzian manifold (see Section 3.1). At each
𝑥 ∈M , (M , g) admits a canonical smooth volume element, the Lorentzian volume
element dvg, induced by the Lorentzian metric g (see e.g. [89, p. 195]):

dvg (𝑥) (𝑋1, . . . , 𝑋𝑑) := det
(
g𝑥 (𝑋𝑛, 𝑒𝑖)

)
, (2.65)

where 𝑋𝑛 ∈ T𝑥M and {𝑒𝑖} is an orthogonal basis for T𝑥M . In terms of a local
oriented coordinate chart

(
𝑈, (𝑥𝑖)

)
on M , this canonical volume element reads

dvg (𝑥) =
√︁
| det g|d𝑥1 ∧ . . . d𝑥𝑑 . (2.66)

Thus, every smooth 𝑠-density 𝜇 on M is locally given by 𝜇(𝑥) = 𝑓 (𝑥) |d𝑥 |𝑠 for a
unique 𝑓 ∈ 𝐶∞(𝑈). However, dvg might not exists globally in contrast to 𝜇. The
(global) Lorentzian volume form exists if and only if M is orientable and then one
identifies a smooth function on M with a smooth 𝑠-density on M employing the
Lorentzian 𝑠-density |dvg |𝑠 := | det g|𝑠/2 |d𝑥 |𝑠:

𝐶∞(M ) 3 𝑓 ↦→ 𝑓 |dvg |𝑠 ∈ 𝐶∞(M ;𝛺𝑠M ). (2.67)

(e) A (𝛴, 𝜄) semi-Riemannian hypersurface of an orientable semi-Riemannian manifold
(M , g) is orientable if and only if it admits a smooth unit normal vector field N. In
particular, if 𝑐 is a value of 𝑓 ∈ 𝐶∞(M ,R) then 𝛴 := 𝑓 −1(𝑐) is a semi-Riemannian
hypersurface of M if and only if g(grad 𝑓 , grad 𝑓 ) ≶ 0 on 𝛴 . In this case

N :=
grad 𝑓

‖grad 𝑓 ‖g
(2.68)

is a (unique up to ±) unit normal vector field along 𝛴 . Thus 𝛴 is orientable whose
orientation is determined by N and its volume form is given by (see e.g. [89, Lem.
7.8, Prop. 4.17], [88, Prop. 15.21])

dv𝛴 = 𝜄
∗(NydvM ), (2.69)

where y is the interior multiplication.

To illustrate this, let us consider the standard 𝑑-sphere S𝑑. The inclusion 𝜄 : S𝑑 ↩→
R𝑑+1 is a smooth embedding and the vector field N := 𝑥𝑖𝜕/𝜕𝑥𝑖 is nowhere tangent to
S𝑑 and thus N induces a density on S𝑑 via the preceding equation. In particular,
d𝑥 = d𝑥1∧d𝑥2∧d𝑥3 is a volume form of R3 and then the preceding equation entails
that |𝑥1 d𝑥2 ∧ d𝑥3 + 𝑥2 d𝑥3 ∧ d𝑥1 + 𝑥3 d𝑥1 ∧ d𝑥2 | is the induced density on S2, where
(𝑥1)1 + (𝑥2)2 + (𝑥3)2 = 1 on S2 (see e.g. [88, Exm. 15.22, Ex. 16 − 9]).

In what follows, it is required to consider homogeneous (half-)densities on a punc-
tured cotangent bundle and on its conic Lagrangian subsmanifolds. These are examples
(see Example A.1.2, A.1.11) of a conic symplectic manifold (M,mλ) (see Definition A.1.1
for a precise formulation). A half-density 𝜇 on M is called homogeneous resp. posi-
tively homogeneous of degree 𝑘 ∈ R if

∀λ ∈ ¤R (resp. R+) : m∗
λ
𝜇 = λ𝑘𝜇. (2.70)
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Example 2.2.2. (a) The standard 𝑠-density (Example 2.2.1 (a)) |d𝜃 |𝑠 on ¤R𝑛 is homo-
geneous of degree 𝑠𝑛 (see e.g. [23, p. 13], [84, (2.1.13)]).

(b) As in Example 2.2.1 (c), the conormal bundle (see Example A.1.7) (𝛥𝑀)⊥ of the
diagonal in 𝑀 × 𝑀 is isomorphic to T∗𝑀. Hence it has a natural half-density
|d𝑥 |1/2 |d𝜉 |1/2 of degree dim(𝑀 × 𝑀)/4 = 𝑑/2 (see e.g. [77, p. 104]).

(c) The density |dv𝐶 | on a canonical relation 𝐶 as constructed in Appendix A.1.6 and
used in Definition 2.1.9 is of degree 𝑛 because the degree of homogeneity of the
Lebesgue density (see (A.65)) on the fibre-critical manifold is 𝑑𝑀 + 𝑑𝑁 whereas that
of the determinant in (A.65) is 𝑑𝑀 + 𝑑𝑁 − 𝑛 (see e.g. [11, p. 123]).

Distributional densities

The pointwise product between a 𝑠-density and 1− 𝑠 density is a 1-density which permits
us to define the following bilinear form (see e.g. [9, Sec. 4.2], [84, Sec. 1.1])

〈·, ·〉 : 𝐶∞(𝑀;𝛺𝑠𝑀) × 𝐶∞c (𝑀;𝛺1−𝑠𝑀) → C, (𝜇, 𝜙) ↦→ 〈𝜇, 𝜙〉 :=
∫
𝑀

𝜇(𝑥) 𝜙(𝑥). (2.71)

This form is continuous because | 〈𝜇, 𝜙〉 | ≤ ‖𝜇‖
𝐿1 (𝑀 ;

√
𝛺) ‖𝜙‖∞. In this thesis only 𝑠 =

1/2 will be used unless stated otherwise. Thus, we define the space D′(𝑀;𝛺1/2𝑀) :=(
𝐶∞c (𝑀;𝛺1/2𝑀)

)′ of distributional half-densities on 𝑀 as the topological dual of 𝐶∞c (𝑀;
𝛺

1/2𝑀), i.e., the space of all C-valued continuous C-linear functionals on 𝐶∞c (𝑀;𝛺1/2𝑀).
Throughout the thesis, D′(𝑀;𝛺1/2𝑀) will be endowed with the weak ∗-topology. Note,
one can define distributions D′(𝑀) on 𝑀 by patching up distributions D′(𝑈𝛼) on local
charts {(𝑈𝛼, 𝜅𝛼)}𝛼 for 𝑀, where D′(𝑈𝛼) is obtained by pushing-forward the distributions
D′

(
𝜅𝛼 (𝑈𝛼);𝛺R𝑑

)
. But, D(𝑀;𝛺) ≠ D′(𝑀) (see e.g. [76, Sec. 6.3], [9, Sec. 4.2.2]).

2.2.2 Pseudodifferential operators

To put forward the concept of a conormal distribution on a manifold, one can choose a lo-
cal chart where the invariant Definition 2.1.6 applies and then, pullback the local pieces,
glue together and prove chosen coordinate chart independence. However, it turns out
that there is an intrinsic way to define this object which requires to introduce the notion
of a Besov space as described below.

Let 1 ≤ 𝔭 ≤ ∞ and 𝑚 ∈ R. The Besov space 𝔭𝐻𝑚 (R𝑑) is the Banach space of all
temperate distributions 𝑢 ∈ S′(R𝑑) on a Euclidean space R𝑑 such that F (𝑢) ∈ 𝐿2

loc(R
𝑑)

and the norm (for 𝔭 ≠ ∞) 𝔭‖𝑢‖𝑚 :=
( ∑

𝑖 ‖(2𝜋)−𝑑
∫
U𝑖

ei 𝑥·𝜉 (F 𝑢) (𝜉) d𝜉‖𝔭𝑚
)1/𝔭 is finite; in case

𝔭 = ∞ one sets ∞‖𝑢‖𝑚 :=
(
sup𝑖 ‖(2𝜋)−𝑑

∫
U𝑖

ei 𝑥·𝜉 (F 𝑢) (𝜉) d𝜉‖𝔭𝑚
)1/𝔭. Here, ‖ · ‖𝑠 denotes the

Sobolev norm and U𝑖 := {𝜉 ∈ R𝑑 | R𝑖−1 < |𝜉 | < R𝑖}, R0 := 0, R𝑖 := 2𝑖−1 for all 𝑖 > 0 (see
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e.g. [77, Def. B.1.1]). If 𝑈 ⊂ R𝑑 is an open subset, then the Besov space 𝔭𝐻𝑠
loc(𝑈) is de-

fined as the set of all distributions 𝑢 ∈ D′(𝑈) such that 𝜙𝑢 ∈ 𝔭𝐻𝑠 (R𝑑) for every 𝜙 ∈ 𝐶∞c (𝑈).
More generally, on a manifold 𝑀, the Besov space 𝔭𝐻𝑠

loc(𝑀) is defined as the set of all
distributions 𝑢 ∈ D′(𝑀) such that (𝜅−1)∗𝑢 ∈ 𝔭𝐻𝑠

loc

(
𝜅(𝑈)

)
for every smooth coordinate

chart (𝑈, 𝜅) for 𝑀. The topology is defined by the seminorms 𝑢 ↦→ 𝔭‖𝜙(𝜅−1)∗𝑢‖𝑠 where 𝜙
is an arbitrary element in 𝐶∞c (𝜅(𝑈)) (see e.g. [77, p. 475]).

Definition 2.2.3. Let 𝛺1/2 → 𝑀 be the half-density bundle over a 𝑑-dimensional mani-
fold 𝑀 and 𝑆 ⊂ 𝑀 a closed submanifold. Then the space 𝐼𝑚 (𝑀, 𝑆;𝛺1/2) of distributional
half-densities on 𝑀, conormal with respect to 𝑆 and of degree (at most) 𝑚 ∈ R, is de-
fined as the set of all distributional half-densities 𝑢 ∈ D′(𝑀;𝛺1/2) such that 𝐿1 . . . 𝐿𝑁𝑢 ∈
∞𝐻−𝑚−𝑑/4loc (𝑀;𝛺1/2) for all 𝑁 ∈ N0 and for all 𝐿𝑖 ∈ PDO1(𝑀;𝛺1/2) with smooth coefficients

tangential to 𝑆. Here ∞𝐻−𝑚−𝑑/4loc (𝑀;𝛺1/2) denotes the Besov space and the topology is the

weakest one which makes the maps 𝑢 ↦→ 𝐿1 . . . 𝐿𝑁𝑢 ∈ ∞𝐻−𝑚−𝑑/4loc (𝑀;𝛺1/2) continuous [77,
Def. 18.2.6].

Definition 2.2.4. Let 𝛺1/2 → 𝑀 be the bundle of half-densities over a manifold 𝑀 and
𝑚 ∈ R. A pseudodifferential operator 𝑃 on 𝑀 of order (at most) 𝑚 is a continuous
linear mapping (see e.g [77, p. 100])

𝑃 : 𝐶∞c (𝑀;𝛺1/2) → 𝐶∞(𝑀;𝛺1/2), 𝑢 ↦→ (𝑃𝑢) (𝑥) :=
∫
𝑀

P(𝑥, 𝑦) 𝑢(𝑦) (2.72)

whose Schwartz kernel P is an element in the space of conormal distributions 𝐼𝑚
(
𝑀 ×

𝑀, (𝛥𝑀)⊥∗;𝛺1/2(𝑀 × 𝑀)
)

where 𝛥 : 𝑀 → 𝑀 × 𝑀 is the diagonal embedding. The set of
all such operators is denoted by ΨDO𝑚 (𝑀;𝛺1/2).

The abstract definition implies that a pseudodifferential operator 𝑃 on a manifold
𝑀 is locally a collection {𝑃𝛼}𝛼 of pseudodifferential operators 𝑃𝛼 ∈ ΨDO𝑚

(
𝜅𝛼 (𝑈𝛼)

)
on

local charts {(𝑈𝛼, 𝜅𝛼)}𝛼 for 𝑀. To see this assertion, let
√︁
|𝜇 | be an arbitrary but fixed

half-density on 𝑀 and let M̂, M̌ ∈ End
(
𝐶∞c (𝑈𝛼)

)
be defined as multiplications by 𝜒, 𝜒 ∈

𝐶∞c (𝑈𝛼), respectively. Then (see e.g. [77, p. 85], [90, Sec. 7.3]),

𝑃𝛼 := 𝑃𝜅𝛼 := (𝜅∗𝛼)−1 ◦ 𝑃 � 𝑈𝛼 ◦ 𝜅∗𝛼 ∈ ΨDO𝑚
(
𝜅𝛼 (𝑈𝛼)

)
,

𝑃 � 𝑈𝛼 := M̂ ◦ 𝑃 ◦ M̌ ∈ ΨDO𝑚 (𝑈𝛼) (2.73)

is a local representative of 𝑃 with respect to the local charts and the chosen half-density.
By Proposition 2.1.2, the Schwartz kernel P𝛼 (𝒙, 𝒚)

√︁
|𝜇𝛼 (𝒙) | ⊗

√︁
|𝜇𝛼 (𝒚) | of 𝑃𝛼 must be of

the form

P𝛼 (𝒙, 𝒚) =
∫
R𝑑

ei(𝒙−𝒚)·𝝃𝜎tot
𝑃𝛼
(𝒙, 𝝃) d𝝃

(2𝜋)𝑑
mod 𝐶∞

(
𝜅𝛼 (𝑈𝛼) × 𝜅𝛼 (𝑈𝛼)

)
(2.74)

and vice-versa. Here, the total symbol 𝜎tot
𝑃𝛼
(𝒙, 𝝃) is given by (2.19) and 𝜇𝛼 (𝒙) is the

Euclidean representative (cf. (2.62) and Example 2.2.1(a)) of the chosen density at 𝒙 :=
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𝜅𝛼 (𝑥) ∈ 𝜅𝛼 (𝑈𝛼). In general, it is necessary to have sufficiently many local patches 𝑈𝛼 for
𝑀 so that the products 𝑈𝛼 ×𝑈𝛼 form an atlas for 𝑀 × 𝑀. But P is off-diagonally smooth,
and thus, it suffices to consider just an atlas {(𝑈𝛼, 𝜅𝛼)}𝛼 for 𝑀.

Remark 2.2.5. Let ¤T∗𝑀 → 𝑀 be the punctured cotangent bundle over a manifold 𝑀 and
let {(𝑈𝛼, 𝜅𝛼)}𝛼 (resp. {(U𝛼, 𝜘𝛼)}𝛼) be an atlas (resp. a homogeneous symplectic atlas
(see Theorem A.1.4 and Example A.1.2)) for 𝑀 (resp. ¤T∗𝑀) such that

𝜘𝛼 : U𝛼 → 𝜅𝛼 (𝑈𝛼) × ¤R𝑑 . (2.75)

The preceding map allows us to pullback 𝜎tot
𝑃𝛼

to obtain 𝜎tot
𝑃�𝑈𝛼
∈ 𝑆𝑚 (U𝛼) (see Appendix B.2).

But, 𝜎tot
𝑃𝛼

does not behave nicely under a coordinate transformation as observed in (2.22)
and thus it is impossible to patch up the local isomorphismsΨDO𝑚−[∞] (𝑈𝛼) � 𝑆𝑚−[∞] (U𝛼)
to obtain a global one.

Analogously, 𝜎𝑃�𝑈𝛼 is simply obtained by pulling back the leading order homogeneous
term 𝜎𝑃𝛼 in 𝜎tot

𝑃𝛼
:

𝜎 : ΨDO𝑚 (𝑈𝛼) → 𝑆𝑚 (U𝛼), 𝑃 � 𝑈𝛼 ↦→ 𝜎𝑃�𝑈𝛼 := 𝜘∗𝛼𝜎𝑃𝛼 . (2.76)

In contrast to 𝜎tot
[𝑃 ] , 𝜎[𝑃 ] can be promoted to the global isomorphism ΨDO𝑚−[1] (𝑀) �

𝑆𝑚−[1] (T∗𝑀) due to the fact that 𝜎𝑃�𝑈𝛼 is an invariantly defined homogeneous function
on U𝛼 as Remarked in 2.1.5 (see e.g. [77, pp. 85-86]).

Definition 2.2.6. As in the terminologies of Definition 2.2.4, let 𝑆𝑚 (T∗𝑀) be the space
of half-density-valued symbols (see Appendix B.2) on the cotangent bundle T∗𝑀 over 𝑀.
Then, the principal symbol 𝜎𝑃 of 𝑃 ∈ ΨDO𝑚 (𝑀;𝛺1/2) is defined by the isomorphism
(see e.g. [77, (18.1.29)′])

𝜎 : ΨDO𝑚−[1] (𝑀;𝛺1/2) → 𝑆𝑚−[1] (T∗𝑀), (2.77)

where ΨDO𝑚−[1] := ΨDO𝑚/ΨDO𝑚−1. In a homogeneous symplectic chart (as in Re-
mark 2.2.5) {(U𝛼, 𝜘𝛼)}𝛼 for ¤T∗𝑀, the preceding isomorphism is given by

[𝑃] ↦→ 𝜎[𝑃 ] (𝑥, 𝜉) := 𝜘∗𝛼 (𝜎[𝑃𝛼 ]) |dvT∗𝑀 (𝑥, 𝜉) |
1
2 mod 𝑆𝑚−1(·), (2.78)

where dvT∗𝑀 is the natural volume (Example 2.2.1(c)) form on T∗𝑀 and 𝜎[𝑃𝛼 ] is the prin-
cipal symbol of a Euclidean representative 𝑃𝛼 := (2.73) of 𝑃.

At this point one may wonder whether the next-to-leading order term in 𝜎tot
[𝑃 ] has

some invariant meaning. Unfortunately, this naive expectation does not go well, rather
the following combination works.
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Definition 2.2.7. As in the terminologies of Definitions 2.2.4 and 2.2.6, the subprincipal
symbol 𝜎sub

𝑃
of 𝑃 ∈ ΨDO𝑚 (𝑀;𝛺1/2) is defined by the isomorphism [35, (5.2.8)] (see

also [77, Thm. 18.1.33])

𝜎sub : ΨDO𝑚−[2] (𝑀;𝛺1/2) → 𝑆𝑚−1−[1] (T∗𝑀),

[𝑃] ↦→ 𝜎sub
[𝑃 ] (𝑥, 𝜉) := 𝑝𝑚−1 |dvT∗𝑀 (𝑥, 𝜉) |

1
2 + i

2
𝜕2𝜎𝑃

𝜕𝑥𝑖𝜕𝜉𝑖
(𝑥, 𝜉) mod 𝑆𝑚−2(·),(2.79)

where 𝑝𝑚−1 is the next-to-leading order term in the expression (cf. (2.19)) of the total
symbol of 𝑃, pulled back to U𝛼.

Remark 2.2.8. 𝜎sub
𝑃�𝑈 transforms as [35, Prop. 5.2.1] (see also [77, (18.1.33′)]):(

(T∗𝜅)∗𝜎sub
𝑃

)
(𝒙, 𝝃) = 𝜎sub

𝑃𝜅

(
𝒙,T∗𝑥𝜅 𝝃

)
(2.80)

under a coordinate change 𝑈 3 𝑥 ↦→ 𝒙 := 𝜅(𝑥) ∈ 𝜅(𝑈). Thus it is an invariantly defined
homogeneous function on ¤T∗𝑀 (cf. Remark 2.1.5).

We will compute subprincipal symbol of 𝑃 ∈ ΨDO𝑚 (M ) on a Lorentzian manifold
(M , g) in Chapter 3. Then, one has the canonical Lorentzian volume form dvg (Exam-
ple 2.2.1 (d)) so that 𝜎𝑃 = 𝑝

√︁
|dvg |, and 𝜎sub

𝑃
is given by (see e.g. [24, Rem. 2.1.10])

𝜎sub
𝑃
(𝑥, 𝜉) = 𝑝𝑚−1(𝑥, 𝜉) +

i
2
𝜕2𝑝

𝜕𝑥𝑖𝜕𝜉𝑖
(𝑥, 𝜉) + i

2
Γ
𝑗

𝑗𝑖
(𝑥) 𝜕𝑝

𝜕𝜉𝑖
(𝜉) mod 𝑆𝑚−2( ¤T∗M ) (2.81)

where 𝑝, 𝑝𝑚−1 are considered as functions and Γ 𝑗
𝑗𝑖

are the contracted Christoffel symbols
on M . Therefore, subprincipal symbol is independent of local coordinates but depends on
the chosen half-density.

𝐶∞c
(
𝜅(𝑈)

)
𝐶∞

(
𝜅(𝑈)

)
𝐶∞c (𝑈) 𝐶∞(𝑈)

𝑃𝜅

𝑃

𝜅∗ 𝜅∗

𝑆𝑚
(
𝜅(𝑈)

)
𝑆𝑚 (T∗𝑈)

ΨDO𝑚
(
𝜅(𝑈)

)
ΨDO𝑚 (𝑈;𝛺1/2)

𝑆𝑚−1 (
𝜅(𝑈)

)
𝑆𝑚−1(T∗𝑈)

(T∗𝜅)∗ (2.73) (T∗𝜅)∗

𝜎𝑃

𝜎𝑃𝜅

𝜎sub
𝑃

𝜎sub
𝑃𝜅

Figure 2.2: Transformation of a pseudodifferential operator, its principal symbol and
subprincipal symbol under a coordinate chart (𝑈, 𝜅).

We now introduce the following terminologies required to define a special class of
pseudodifferential operators which is going to play a pivotal role in this thesis.
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Definition 2.2.9. Let 𝑀 be a manifold and 𝐻 a Hamiltonian function on its cotangent
bundle T∗𝑀. A bicharacteristic (strip) of 𝐻 through a point (𝑥0, 𝜉

0) ∈ T∗𝑀 is the integral
curve 𝛾 : R ⊇ I → T∗𝑀 of the Hamiltonian vector field 𝑋𝐻 (see (A.3)) with initial data
𝛾(𝑠0) := (𝑥0, 𝜉

0). If 𝐻 (𝑥0, 𝜉
0) = 0 then 𝛾 is called the null bicharacteristic (strip) of 𝐻.

The projection 𝑐 : I→ 𝑀 of 𝛾 on 𝑀 is called the bicharacteristic (curve).

Definition 2.2.10. As in the terminologies of Definition 2.2.4, any properly supported
𝑃 ∈ ΨDO𝑚 (𝑀;𝛺1/2) is of real principal type on a manifold 𝑀 if 𝑃 has a real homoge-
neous principal symbol 𝑝 of order 𝑚 and no complete null bicharacteristic (strip) of 𝑝
stays over a compact set in 𝑀 [35, Def. 6.3.2].

Remark 2.2.11. The non-trapping property for the bicharacteristics of 𝑝 locally means
that d𝑝 is not proportional to the Liouville form (see Example A.1.2) θ of T∗𝑀 at any
(𝑥0, 𝜉

0) ∈ Char 𝑃. Equivalently, this can be rephrased as that 𝑋𝑝 and the radial vector
field (see Definition A.8) are linearly independent at every (𝑥0, 𝜉

0) ∈ Char 𝑃:

∀(𝑥0, 𝜉
0) ∈ Char 𝑃 : 𝑋𝑝 (𝑥0, 𝜉

0) ≠ 0. (2.82)

This property implies that Char 𝑃 is a smooth, closed conic hypersurface of dimension 2𝑑−1
(see e.g. [23, p. 54], [85, Sec. VIII.7]).

2.2.3 Lagrangian distributions

To define a Lagrangian distribution on 𝑀 one observes that 𝐼𝑚 (𝑀, 𝑆;𝛺1/2) is the largest
subspace of the Besov space (introduced in Section 2.2.2) ∞𝐻−𝑚−𝑑/4loc (𝑀;𝛺1/2) which is
invariant under the action of all first-order partial differential operators tangent to 𝑆.
Moreover, any first-order pseudodifferential operator having vanishing principal symbol
on 𝑆⊥∗ keeps 𝐼𝑚 (𝑀, 𝑆;𝛺1/2) invariant [77, Thm. 18.2.12]. Since conormal bundles are a
particular case of Lagrangian submanifolds (see Example A.1.7), the last fact is used to
define Lagrangian distributions.

Definition 2.2.12. Let 𝛺1/2, ¤T∗𝑀 → 𝑀 be the bundle of half-densities and the punc-
tured cotangent bundle over a 𝑑-dimensional manifold 𝑀 and 𝛬 ⊂ ¤T∗𝑀 a closed conic
Lagrangian submanifold (see Definition A.1.5). Then the space 𝐼𝑚 (𝑀, 𝛬;𝛺1/2) of La-
grangian distributional half-densities on 𝑀, of order (at most) 𝑚 ∈ R, is defined
as the set of all distributional half-densities 𝑢 ∈ D′(𝑀;𝛺1/2) such that 𝑃1 . . . 𝑃𝑁𝑢 ∈
∞𝐻−𝑚−𝑑/4loc (𝑀;𝛺1/2) for all 𝑁 ∈ N0 and for all properly supported 𝑃𝑖 ∈ ΨDO1(𝑀;𝛺1/2)
having vanishing principal symbols on 𝛬, where ∞𝐻−𝑚−𝑑/4loc (𝑀;𝛺1/2) denotes the Besov
space [23, Def. 25.1.1].

In pursuance of utilising 𝐼𝑚 (𝑀, 𝛬;𝛺1/2) for the Schwartz kernel of a Fourier integral
operator, 𝑀 has to be replaced by a product manifold 𝑀×𝑁 where 𝑁 is an arbitrary man-
ifold and then the role of 𝛬 will be played by a canonical relation (see Definition A.1.12).
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Definition 2.2.13. Let 𝑀, 𝑁 be manifolds endowed with the bundles of half-densities
𝛺

1/2𝑀 → 𝑀, 𝛺
1/2𝑁 → 𝑁. Suppose that ¤T∗𝑀 (resp. ¤T∗𝑁) is the punctured cotangent

bundle of 𝑀 (resp. 𝑁) and that 𝐶 is a homogeneous canonical relation form ¤T∗𝑁 to ¤T∗𝑀
which is closed in ¤T∗(𝑀 × 𝑁). A linear continuous operator [23, Def. 25.2.1]

𝐴 : 𝐶∞c (𝑁;𝛺1/2𝑁) → D′(𝑀;𝛺1/2𝑀), 𝑣 ↦→ (𝐴𝑣) (𝑥) :=
∫
𝑁

A(𝑥, 𝑦) 𝑣(𝑦) (2.83)

whose Schwartz kernel A belongs to the Lagrangian distribution 𝐼𝑚
(
𝑀 × 𝑁,𝐶′;𝛺1/2(𝑀 ×

𝑁)
)
, is called the Fourier integral operator of order (at most) 𝑚 ∈ R from compactly

supported half-densities on 𝑁 to distributional half-densities on 𝑀 associated with
the canonical relation 𝐶. We will denote set of all such operators by FIO𝑚 (𝛺1/2𝑁 →
𝑁, 𝛺

1/2𝑀 → 𝑀;𝐶′).

Similar to the pseudodifferential operators, Fourier integral operators can also be
written as a collection of local Fourier integral operators on atlases for 𝑀 and 𝑁. But
their localisation is intricate because a generic canonical relation is more complicated
than the conormal bundle (𝛥𝑀)⊥∗ and the requisite to localise in covectors together with
their base points makes our previous localisation by cutoff functions inadequate. We
localise an element of 𝐼𝑚

(
𝑀 × 𝑁,𝐶′;𝛺1/2(𝑀 × 𝑁)

)
by making use of

Lemma 2.2.14. As in the terminologies of Definition 2.2.12, if 𝑢 ∈ 𝐼𝑚 (𝑀, 𝛬;𝛺1/2) then

WF 𝑢 ⊂ 𝛬 (2.84)

and 𝑃𝑢 ∈ 𝐼𝑚 (𝑀, 𝛬;𝛺1/2) if 𝑃 ∈ ΨDO0(𝑀;𝛺1/2). Conversely, 𝑢 ∈ 𝐼𝑚 (𝑀, 𝛬;𝛺1/2) if for every
(𝑥, 𝜉) ∈ ¤T∗𝑀 one can find properly supported 𝑄 ∈ ΨDO0(𝑀;𝛺1/2) non-characteristic at
(𝑥, 𝜉) such that 𝑄𝑢 ∈ 𝐼𝑚 (𝑀, 𝛬;𝛺1/2) [23, Lem. 25.1.2].

Therefore, appropriate pseudodifferential operators play the same role for Lagrangian
distributions that cutoff functions (cf. (2.73)) do for the conormal bundle (𝛥𝑀)⊥∗ and the
preceding lemma reduces the investigation of A ∈ 𝐼𝑚

(
𝑀 × 𝑁,𝐶′;𝛺1/2(𝑀 × 𝑁)

)
to the case

where WFA is contained in a small closed conic neighbourhood of (𝑥, 𝜉; 𝑦, 𝜂) ∈ 𝐶′ and
(𝑥, 𝑦) ∈ suppA. More generally, given a homogeneous canonical relation 𝐶 of the open
cone 𝔘×𝔙 ⊂ ¤T∗𝑀× ¤T∗𝑁, one says that A ∈ 𝐼𝑚

(
𝑀×𝑁,𝐶′;𝛺1/2(𝑀×𝑁)

)
at (𝑥, 𝜉; 𝑦, 𝜂) ∈ 𝔘×𝔙

if there is an open conic neighbourhoodU×V of (𝑥, 𝜉; 𝑦, 𝜂) contained in 𝔘×𝔙 such that
(𝑃 ⊗ 𝑄)A ∈ 𝐼𝑚

(
𝑀 × 𝑁,𝐶′;𝛺1/2(𝑀 × 𝑁)

)
for all properly supported 𝑃 ∈ ΨDO0(𝑀;𝛺1/2𝑀)

(resp. 𝑄 ∈ ΨDO0(𝑁;𝛺1/2𝑁)) having WF 𝑃 ⊂ clo(U) (resp. WF𝑄 ⊂ clo(V)). In fact, it
suffices to know this for some such 𝑃 ⊗ 𝑄 non-characteristic at (𝑥, 𝜉; 𝑦, 𝜂) [23, p. 5].

In order to get a local description of A, let {(𝑈𝛼, 𝜅𝛼)}𝛼 (resp. {(𝑉𝛽, 𝜌𝛽)}𝛽) be atlas for
𝑀 (resp. 𝑁). Since ¤T∗𝑀 and ¤T∗𝑁 are conic symplectic manifolds (see Definition A.1.1
and Example A.1.2), there are homogeneous atlas {(U𝛼, 𝜘𝛼)}𝛼 (resp. {(V𝛽, 𝜚𝛽)}𝛽) for
¤T∗𝑀 (resp. ¤T∗𝑁) such that

𝜘𝛼 : U𝛼 → 𝜅𝛼 (𝑈𝛼) × ¤R𝑑𝑀 , 𝜚𝛽 : V𝛽 → 𝜌𝛽 (𝑉𝛽) × ¤R𝑑𝑁 , (2.85)
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by the homogeneous Darboux Theorem A.1.4. For each (𝑥, 𝜉; 𝑦, 𝜂) ∈ 𝐶′, suppose that
[𝜑𝛼,𝛽] is an element of the stable equivalence class of phase functions for 𝐶′ with excess
𝑒𝛼,𝛽 (see Definition A.1.8 and Remark A.1.9), defined on an open conic neighbourhood
of

(
𝒙 := 𝜅𝛼 (𝑥), 𝒚 := 𝜌𝛽 (𝑦), 𝜃

)
in 𝜅𝛼 (𝑈𝛼) × 𝜌𝛽 (𝑉𝛽) × ¤R𝑛𝛼,𝛽 for some 𝑛𝛼,𝛽 ∈ N, and that

C𝛼,𝛽 := {(𝒙0, 𝒚0; 𝜃0) ∈ 𝜅𝛼 (𝑈𝛼) × 𝜌𝛽 (𝑉𝛽) × ¤R𝑛𝛼,𝛽 | grad𝜃 𝜑𝛼,𝛽 (𝒙0, 𝒚0; 𝜃0) = 0} (2.86)

is the fibre-critical manifold of 𝜑𝛼,𝛽. Then (see (A.33))

𝐶′𝛼,𝛽 := {(𝒙, 𝝃; 𝒚, 𝜼) ∈ 𝜘𝛼 (U𝛼) × 𝜚𝛽 (V𝛽) | (𝒙, 𝒚; 𝜃) ∈ C𝛼,𝛽, 𝝃 = d𝒙𝜑𝛼,𝛽, 𝜼 = d𝒚𝜑𝛼,𝛽)} (2.87)

is a Euclidean representative of 𝐶′ in a conic neighbourhood U𝛼 ×V𝛽 of (𝑥, 𝜉; 𝑦, 𝜂) ∈ 𝐶′.
Hence, locally

A =
∑︁
𝛼,𝛽

(𝜅𝛼 × 𝜌𝛽)−1
∗ A𝛼,𝛽 (2.88)

where suppA𝛼,𝛽 is locally finite and module 𝐶∞
(
𝜅𝛼 (𝑈𝛼) × 𝜌𝛽 (𝑉𝛽)

)
is of the form [78, Def.

3.2.2], [23, Prop. 25.1.5’]:

A𝛼,𝛽 (𝒙, 𝒚) ≡ (2𝜋)−(𝑑𝑀+𝑑𝑁 +2𝑛𝛼,𝛽−2𝑒𝛼,𝛽)/4
∫
R
𝑛𝛼,𝛽

ei 𝜑𝛼,𝛽 (𝒙,𝒚,𝜃)a𝛼,𝛽 (𝒙, 𝒚; 𝜃) d𝜃. (2.89)

Here, ≡ means modulo smoothing kernels, a𝛼,𝛽 ∈ 𝑆𝑚+(𝑑𝑀+𝑑𝑁−2𝑛𝛼,𝛽−2𝑒𝛼,𝛽)/4(R𝑑𝑀 × R𝑑𝑁 ×
R𝑛𝛼,𝛽 ) having support in the interior of a sufficiently small conic neighbourhood of C𝛼,𝛽
contained in the domain of definition of 𝜑𝛼,𝛽 and d𝜃 is the Lebesgue measure at 𝜃 ∈ ¤R𝑛𝛼,𝛽 .

Since the principal symbol of a scalar Lagrangian distribution has good transforma-
tion property under a diffeomorphism, one defines 𝜎A in a local chart to identify with
𝜎A𝛼,𝛽

by enjoying the independence with respect to the chosen coordinates.

Definition 2.2.15. As in the terminologies of Definition 2.2.12, let 𝛺1/2𝐶,M → 𝐶 be
the half-density bundle (see Appendix A.1.6) and the Keller-Maslov bundle (see Defini-
tion A.1.19) over𝐶, respectively, and 𝑆𝑚+(𝑑𝑀+𝑑𝑁 )/4−[1] (𝐶;M⊗𝛺1/2𝐶) the space (see (B.14))
of M ⊗ 𝛺1/2𝐶-valued symbols on 𝐶. Then the principal symbol of a Lagrangian distribu-
tion is defined by the isomorphism [10, (7.6)] (see also [23, Prop. 25.1.5’])

𝜎 : 𝐼𝑚−[1]
(
𝑀 × 𝑁,𝐶′;𝛺1/2(𝑀 × 𝑁)

)
→ 𝑆𝑚+

𝑑𝑀 +𝑑𝑁
4 −[1] (𝐶;M ⊗ 𝛺1/2𝐶), (2.90)

where 𝐼𝑚−[1] := 𝐼𝑚/𝐼𝑚−1. In a homogeneous symplectic chart (U𝛼 × V𝛽, 𝜘𝛼 × 𝜚𝛽) for 𝐶′

(see e.g. [77, Thm. 21.2.8]) induced from those {(U𝛼, 𝜘𝛼)}𝛼 (resp. {(V𝛽, 𝜚𝛽)}𝛽) for ¤T∗𝑀
(resp. ¤T∗𝑁) with (2.85), the preceding isomorphism is given by

[A] ↦→ 𝜎[A] (𝑥, 𝜉; 𝑦, 𝜂) := (𝜘𝛼 × 𝜚𝛽)∗
(∫
ℭ

d𝜃′′𝑎𝛼,𝛽 (𝒙, 𝒚; 𝜃′, 𝜃′′)
)
m(𝑥, 𝜉; 𝑦, 𝜂) ⊗√︁

|dv𝐶 (𝑥, 𝜉; 𝑦, 𝜂) | mod 𝑆𝑚+
𝑑𝑈 +𝑑𝑉

4 −1(·), (2.91)

where 𝑎𝛼,𝛽 is the top-order homogeneous term of a𝛼,𝛽 in (2.89) and all other symbols are
as in Definition 2.1.9.
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Example 2.2.16. Let (𝛴, 𝜄𝛴 ) be an 𝑛-dimensional immersed submanifold of a 𝑑- dimen-
sional manifold 𝑀 and 𝛺

1/2𝑀 → 𝑀 the bundle of half-densities over 𝑀. Then the pull-
back

𝜄∗
𝛴

: 𝐶∞c (𝑀;𝛺1/2𝑀) → 𝐶∞(𝛴 ;𝛺1/2𝑀𝛴 ) (2.92)

of the injective immersion 𝜄𝛴 : 𝛴 ↩→ 𝑀 is called the restriction map. It is known that 𝛴
admits an adapted atlas, i.e., an atlas whose charts are induced from the charts of 𝑀. In
other words, for each 𝑥′ ∈ 𝛴 , there exist a chart (𝑉, 𝜌) for 𝛴 at 𝑥′ and a chart (𝑈, 𝜅) for
𝑀 at 𝜄𝛴 (𝑥′) such that 𝜄𝛴 (𝑉) ⊂ 𝑈 and

𝜅 ◦ 𝜄𝛴 ◦ 𝜌−1(𝒙′) = (0, . . . , 0, 𝒙𝑑−𝑛+1, . . . , 𝒙𝑑) (2.93)

is a chart for 𝛴 . We read off from as a special case of Example 2.1.11 that 𝜄∗
𝛴

is a Fourier
integral operator whose Schwartz kernel is given by

R𝛴 (𝒙′, 𝒚) := (2𝜋)−(𝑑−𝑛+𝑛+3𝑑)/4
∫
R𝑑

ei 𝜑𝛴 d𝜼,

𝜑𝛴 := (𝒙𝑖 − 𝒚𝑖)𝜼𝑖 − 𝒚 𝑗𝜼 𝑗 , 𝑖 = codim 𝛴 + 1, . . . , 𝑑, 𝑗 = 1, . . . , codim 𝛴, (2.94)

where codim 𝛴 := dim𝑀 − dim 𝛴 is the codimension of 𝛴 . The phase function 𝜑𝛴 is
non-degenerate and thus (see e.g. [84, (2.4.4), (5.1.2)])

R𝛴 ∈ 𝐼codim 𝛴/4 (
𝛴 × 𝑀, 𝛬′𝛴 ;𝛺1/2(𝑀𝛴 × 𝑀)

)
, (2.95a)

𝛬′𝛴 := {(𝑥′, 𝜉′; 𝑥, 𝜉) ∈ T∗𝑀𝛴 × ¤T∗𝑀 | 𝑥 = 𝜄𝛴 (𝑥′), 𝜉′ = 𝜉 � T𝑥 ′𝑀𝛴 }, (2.95b)

𝜎R𝛴
:= (2𝜋)− codim 𝛴/4

1𝛺1/2 (𝑀𝛴×𝑀)

√︃
|dv𝛬𝛴

| ⊗ l, (2.95c)

where |dv𝛬 | is the density on 𝛬𝛴 and l is a section of the Keller-Maslov bundle L → 𝛬𝛴 .
The canonical symplectic form σ on T∗𝑀 is given by (see Example A.1.2) σ = d𝑥𝑖 ∧ d𝜉𝑖 +
d𝑥 𝑗 ∧ d𝜉 𝑗 in the adapted coordinates and so |dv𝛬 | = |d𝑥′ ∧ d𝜉 | is the induced density on
𝛬𝛴 . L comprises global constant sections (cf. Example A.1.21) constructed from 𝜑𝛴 (see
e.g. [91]).

As observed in Example 2.1.11, scrutinising 𝛬𝛴 in the preceding example, one per-
ceives that 𝛬𝛴 is not homogeneous because elements

(
𝑦′, 0; 𝜄𝛴 (𝑦′), 𝜂

)
occur in 𝛬𝛴 := (2.95b)

whenever 𝜂 ∈ 𝛴⊥∗
𝜄𝛴 (𝑦′) where 𝛴⊥∗ is the conormal bundle (see Example A.1.7). Therefore,

𝜄∗
𝛴

is not a homogeneous Fourier integral operator. We will present a solution to this issue
for the bundle version of the restriction operator in Example 2.3.12.

2.3 Fourier Integral Operators on vector bundles

We will now describe the foremost technical tool of this thesis equipped with the prepa-
rations done in the last two sections. Let us begin with some rudimentary facts about
integral operators acting on vector bundles.
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2.3.1 Integral operators

Let E , 𝛺1/2𝑀 → 𝑀 (resp. F , 𝛺
1/2𝑁 → 𝑁) be a vector bundle and bundle of half-densities

over a 𝑑𝑀 (resp. 𝑑𝑁 )-dimensional manifold 𝑀 (resp. 𝑁). Recall, the set D′(𝑀; E ⊗𝛺1/2𝑀)
of half-density valued distributions on E is the 𝛺1/2𝑀-valued C-linear functionals on
𝐶∞c (𝑀; E ∗ ⊗ 𝛺1/2𝑀), and if pr

𝑀
: 𝑀 × 𝑁 → 𝑀, pr

𝑁
: 𝑀 × 𝑁 → 𝑁 are the Cartesian

projectors then the exterior tensor bundle between E and F is defined by

E �F := pr∗
𝑀

E ⊗ pr∗
𝑁

F → 𝑀 × 𝑁. (2.96)

Suppose that {(𝑈𝛼, 𝜅𝛼)}𝛼 (resp. {(𝑉𝛽, 𝜌𝛽)}𝛽) is an atlas for 𝑀 (resp. 𝑁) such that E (resp.
F ) admits a local trivialisation over𝑈𝛼 (resp. 𝑉𝛽) and that {(𝑈𝛼, χ𝛼)}𝛼 (resp. {(𝑉𝛽, τ𝛽)}𝛽)
is a bundle-atlas for E (resp. F ∗). Let |d𝑥 | (resp. |d𝑦 |) be an arbitrary but fixed nowhere-
vanishing global section (Section 2.2.1) of 𝛺1/2𝑀 (resp. 𝛺1/2𝑁) and let (E𝑟) (resp. (F𝑘 ))
be a frame for E (resp.F ). Locally, 𝜙 ∈ 𝐶∞c (𝑀; E ⊗ 𝛺1/2𝑀), 𝜓 ∈ 𝐶∞c (𝑁; F ⊗ 𝛺1/2𝑁),𝛶 ∈
𝐶∞c

(
𝑀 × 𝑁; (E ∗ �F ) ⊗ 𝛺1/2(𝑀 × 𝑁)

)
, 𝑢 ∈ D′(𝑀; E ⊗ 𝛺1/2𝑀), 𝑣 ∈ D′(𝑁; F ⊗ 𝛺1/2𝑁),T ∈

D′
(
𝑀 × 𝑁, (E �F ∗) ⊗ 𝛺1/2(𝑀 × 𝑁)

)
can be expressed as (see e.g. [9, Sec. 4.2], [72, pp.

148-150])

𝜙 = 𝜙𝑟E𝑟 ⊗
√︁
|d𝑥 |, 𝜙𝑟 ∈ 𝐶∞c (𝑈𝛼), (2.97a)

𝜓 = 𝜓𝑘F𝑘 ⊗
√︁
|d𝑦 |, 𝜓𝑘 ∈ 𝐶∞c (𝑉𝛽), (2.97b)

𝛶 = 𝛶𝑘𝑟 (E𝑟 � F𝑘 ) ⊗
√︁
|d𝑥 | |d𝑦 |, 𝛶𝑘𝑟 ∈ 𝐶∞c (𝑈𝛼 ×𝑉𝛽), (2.97c)

𝑢 = 𝑢𝑟E𝑟 ⊗
√︁
|d𝑥 |, 𝑢𝑟 ∈ D′(𝑈𝛼), (2.97d)

𝑣 = 𝑣𝑘F𝑘 ⊗
√︁
|d𝑦 |, 𝑣𝑘 ∈ D′(𝑉𝛽), (2.97e)

T = T𝑟𝑘 (E𝑟 � F𝑘 ) ⊗
√︁
|d𝑥 | |d𝑦 |, T𝑟𝑘 ∈ D

′(𝑈𝛼 ×𝑉𝛽), (2.97f)

where 𝑟 = 1, . . . , rk E and 𝑘 = 1, . . . , rk F . Thus, one has the bijections depending on the
choices of coordinate-charts and bundle-charts

𝐶∞(𝑈𝛼; E𝛼 ⊗ 𝛺
1/2
𝛼 ) �

(
𝐶∞(𝑈𝛼;𝛺

1/2
𝛼 )

)
rk E×1 �

(
𝐶∞

(
𝜅𝛼 (𝑈𝛼)

) )
rk E×1

, (2.98a)

D′(𝑈𝛼; E𝛼 ⊗ 𝛺
1/2
𝛼 ) �

(
D′(𝑈𝛼;𝛺

1/2
𝛼 )

)
rk E×1 �

(
D′

(
𝜅𝛼 (𝑈𝛼)

) )
rk E×1

, (2.98b)

𝐶∞(𝑉𝛽; F𝛽 ⊗ 𝛺
1/2
𝛽
) �

(
𝐶∞(𝑉𝛽;𝛺

1/2
𝛽
)
)
rk F×1 �

(
𝐶∞

(
𝜌𝛽 (𝑉𝛽)

) )
rk F×1

, (2.98c)

D′(𝑉𝛽; F𝛽 ⊗ 𝛺
1/2
𝛽
) �

(
D′(𝑉𝛽;𝛺

1/2
𝛽
)
)
rk F×1 �

(
D′

(
𝜌𝛽 (𝑉𝛽)

) )
rk E×1

. (2.98d)

According to the Schwartz kernel theorem (see e.g. [23, p. 93]), given a bidistribution
T ∈ D′

(
𝑀 × 𝑁, (E �F ∗) ⊗ 𝛺1/2(𝑀 × 𝑁)

)
, one has a unique continuous linear operator

𝑇 : 𝐶∞c (𝑁; F ⊗ 𝛺1/2𝑁) → D′(𝑀; E ⊗ 𝛺1/2𝑀), 𝑣 ↦→ (𝑇𝑣) (𝑥) :=
∫
𝑁

T(𝑥, 𝑦) 𝑣(𝑦) (2.99)

and vice-versa. One defines the restricted operator

𝑇𝛼𝛽 :=
(
𝑇 (𝜓 � 𝑉𝛽)

)
� 𝑈𝛼 : 𝐶∞c (𝑉𝛽; F𝛽 ⊗ 𝛺

1/2
𝛽
) → D′(𝑈𝛼; E𝛼 ⊗ 𝛺

1/2
𝛼 ), (2.100)
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which can be identified with a rk E × rk F -matrix of scalar operators (see e.g. [9, Sec.
4.3.1])

𝑇
𝛼,𝑟

𝛽,𝑘
:= χ𝛼∗ ◦ 𝑇𝛼𝛽 ◦ τ

∗
𝛽 : 𝐶∞c (𝑉𝛽;𝛺

1/2
𝛽
) → D′(𝑈𝛼;𝛺

1/2
𝛼 ). (2.101)

This can be further boiled down to the level of Euclidean spaces

𝑇
𝛼,𝑟,𝑖

𝛽,𝑘, 𝑗
:= 𝜅𝛼∗ ◦ 𝑇𝛼,𝑟𝛽,𝑘

◦ 𝜌∗𝛽 : 𝐶∞c
(
𝜌𝛽 (𝑉𝛽)

)
→ D′

(
𝜅𝛼 (𝑈𝛼)

)
, (2.102)

as depicted in the commutative diagram in Fig. 2.3.

𝐶∞c
(
𝜌𝛽 (𝑉𝛽)

)
D′

(
𝜅𝛼 (𝑈𝛼)

)
𝐶∞c (𝑉𝛽;𝛺

1/2
𝛽
) D′(𝑈𝛼;𝛺

1/2
𝛼 )

𝐶∞c (𝑉𝛽; F𝛽 ⊗ 𝛺
1/2
𝛽
) D′(𝑈𝛼; E𝛼 ⊗ 𝛺

1/2
𝛼 )

𝑇𝛼
𝛽

𝑇
𝛼,𝑟

𝛽,𝑘

𝑇
𝛼,𝑟,𝑖

𝛽,𝑘, 𝑗

τ∗
𝛽 χ𝛼∗

𝜌∗
𝛽 𝜅𝛼∗

Figure 2.3: Euclidean representative of an integral operator acting on vector bundles.

Therefore, we can always locally express an integral operator acting on half-density-
valued vector bundles as a system of scalar integral operators acting on functions on
subsets of Euclidean spaces:

𝑇 ↔
(
𝑇
𝛼,𝑟,𝑖

𝛽,𝑘, 𝑗

)
, 𝑟 = 1, . . . , rk E ; 𝑘 = 1, . . . , rk F ; 𝑖 = 1, . . . , 𝑑𝑀 ; 𝑗 = 1, . . . , 𝑑𝑁 . (2.103)

2.3.2 Pseudodifferential operators

The notion of the Besov space ∞𝐻−𝑚−𝑑/4loc (𝑀;𝛺1/2) introduced in Section 2.2.2 generalises

for a vector bundle E → 𝑀, ∞𝐻−𝑚−𝑑/4loc (𝑀; E ⊗ 𝛺1/2), in a straightforward way.

Definition 2.3.1. Let E , 𝛺1/2 → 𝑀 be a vector bundle and the half-density bundle over
a 𝑑-dimensional manifold 𝑀, respectively, and 𝑆 a closed submanifold of 𝑀. Then the
space 𝐼𝑚 (𝑀, 𝑆; E ⊗ 𝛺1/2) of half-density-valued distributions of E , conormal with re-
spect to 𝑆 and of degree (at most) 𝑚 ∈ R, is defined as the set of all half-density-valued
distributions 𝑢 ∈ D′(𝑀; E ⊗ 𝛺1/2) on E such that 𝐿1 . . . 𝐿𝑁𝑢 belongs in the Besov space
∞𝐻−𝑚−𝑑/4loc (𝑀; E ⊗ 𝛺1/2) for all 𝑁 ∈ N0 and for all 𝐿𝑖 ∈ PDO1(𝑀; E ⊗ 𝛺1/2) with smooth
coefficients tangential to 𝑆. Here the topology is the weakest one which makes the maps
𝑢 ↦→ 𝐿1 . . . 𝐿𝑁𝑢 ∈ ∞𝐻−𝑚−𝑑/4loc (𝑀; E ⊗ 𝛺1/2) continuous [77, Def. 18.2.6].
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Let F → 𝑀 be a vector bundle over a manifold 𝑀. We make use of the natural vector
bundle isomorphism

Hom(E ,F ) � E ∗ ⊗F → 𝑀 (2.104)

in the definition below.

Definition 2.3.2. Let E ,F , 𝛺
1/2 → 𝑀 be two vector bundles and the half-density bundle

over a manifold 𝑀, respectively. A pseudodifferential operator 𝑃 from E to F of order
(at most) 𝑚 ∈ R is a continuous linear map (see e.g. [77, p. 100])

𝑃 : 𝐶∞c (𝑀; E ⊗ 𝛺1/2) → 𝐶∞(𝑀; F ⊗ 𝛺1/2), 𝑢 ↦→ (𝑃𝑢) (𝑥) :=
∫
𝑀

P(𝑥, 𝑦) 𝑢(𝑦)

whose Schwartz kernel P belongs to the conormal distribution 𝐼𝑚
(
𝑀×𝑀, (𝛥𝑀)⊥∗; Hom(E ,

F ) ⊗ 𝛺1/2(𝑀 ×𝑀)
)

where 𝛥 : 𝑀 → 𝑀 ×𝑀 is the diagonal embedding. We denote the set
of all such operators by ΨDO𝑚 (𝑀; E ⊗ 𝛺1/2,F ⊗ 𝛺1/2).

As inscribed in Section 2.3.1, locally 𝑃 (resp. its Schwartz kernel P) are in a bijection
with a matrix of properly supported scalar pseudodifferential operators (𝑃𝑘𝑟 ) (resp. scalar
kernels (P𝑘𝑟 )) on respective Euclidean spaces up to a smoothing operator (resp. kernel);
cf. Proposition 2.1.2 (for details, see, for instance [77, Def. 18.1.32], [9, Sec. 1.5.3]):

𝑃↔ (𝑃𝑘𝑟 )rk F×rk E mod (𝛹 𝑘
𝑟 )rk F×rk E , 𝛹 𝑘

𝑟 ∈ ΨDO−∞(𝜅𝛼 (𝑈𝛼)),
P↔

(
P𝑘𝑟

)
rk F×rk E mod

(
Ψ𝑘
𝑟

)
rk F×rk E , Ψ𝑘

𝑟 ∈ 𝐼−∞
(
𝜅𝛼 (𝑈𝛼) × 𝜅𝛼 (𝑈𝛼)

)
(2.105)

where (cf. Theorem 2.1.3)

P𝑘𝑟 (𝒙, 𝒚) =
∫
R𝑑

d𝝃
(2𝜋)𝑑

ei(𝒙−𝒚)·𝝃𝜎tot
𝑃𝑘
𝑟
(𝒙, 𝝃), 𝜎tot

𝑃𝑘
𝑟
(𝒙, 𝝃) ∼

∑︁
𝛼∈N𝑑

0

1
𝛼!
(𝜕𝛼𝝃 D𝛼

𝒚p
𝑘
𝑟 ) (𝒙, 𝒙, 𝝃) (2.106)

for some proper p𝑘𝑟 ∈ 𝑆𝑚
(
𝜅𝛼 (𝑈𝛼) × 𝜅𝛼 (𝑈𝛼) × R𝑑

)
and d𝒙 is the Lebesgue measure at each

𝒙 := 𝜅(𝑥). Therefore, one sets

𝜎tot
[𝑃 ] (𝑥, 𝜉) ≡ 𝜎tot[ (

𝑃𝑘
𝑟

)
rk F×rk E

] (𝒙, 𝝃) ≡ (
𝜎tot
[𝑃𝑘

𝑟 ]
(𝒙, 𝝃)

)
rk F×rk E (2.107)

for the total symbol of 𝑃.

Definition 2.3.3. As in the terminologies of Definitions 2.3.2 and 2.2.6, let 𝜋 : T∗𝑀 → 𝑀

be the cotangent bundle over 𝑀 and 𝑆𝑚
(
T∗𝑀,Hom(E ,F )

)
the symbol space of Hom(E ,F )-

valued half-densities (see Appendix B.3) on T∗𝑀. Then the principal symbol is defined
by the isomorphism (see e.g. [77, p. 92])

𝜎 : ΨDO𝑚−[1] (𝑀; E ⊗ 𝛺1/2,F ⊗ 𝛺1/2) → 𝑆𝑚−[1]
(
T∗𝑀,Hom(E ,F )

)
, (2.108)

where ΨDO𝑚−[1] := ΨDO𝑚/ΨDO𝑚−1. The preceding map is locally given by

[𝑃] ↦→ 𝜎[𝑃 ] (𝑥, 𝜉) :=
(
𝜎[𝑃𝑘

𝑟 ]

)
rk F×rk E

√︁
|dvT∗𝑀 (𝑥, 𝜉) | mod 𝑆𝑚−[1] (·), (2.109)

where 𝜎[𝑃𝑘
𝑟 ] is the principal symbol of a Euclidean representative 𝑃𝑘𝑟 of 𝑃 in any homoge-

neous symplectic chart for ¤T∗𝑀 and any bundle-charts for E ,F .
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Definition 2.3.4. As in the terminologies of Definitions 2.3.2, 2.3.3 and 2.2.7, the sub-
principal symbol of 𝑃 ∈ ΨDO𝑚 (𝑀; E ⊗𝛺1/2,F ⊗𝛺1/2) is defined by the isomorphism [77,
Thm. 18.1.33])

𝜎sub : ΨDO𝑚−[2] (𝑀; E ⊗ 𝛺1/2,F ⊗ 𝛺1/2) → 𝑆𝑚−[2]
(
T∗𝑀,Hom(E ,F )

)
,

[𝑃] ↦→ 𝜎sub
[𝑃 ] (𝑥, 𝜉) :=

(
𝜎sub
[𝑃𝑘

𝑟 ]

)
rk F×rk E , (2.110)

where 𝜎sub
[𝑃𝑘

𝑟 ]
is the subprincipal symbol of 𝑃𝑘𝑟 .

Remark 2.3.5. The principal symbol is independent of the choice of trivialisations of
E ,F but the subprincipal symbol depends on the choice which has been explored in-
depth in Section 3.3.2. Therefore, combining with Remark 2.2.8 we summarise that the
subprincipal symbol is independent of local coordinates but depends on the chosen half-
density and bundle chart.

In order to purvey the notion of real principal type pseudodifferential operators in
the bundle setting, let G → 𝑀 be a vector bundle. Then there is the natural bilinear
mapping (see e.g. [90, Lem. 8.3.6], [9, p. 85])

· ◦ · : 𝑆𝑚
(
T∗𝑀,Hom(E ,G )

)
× 𝑆𝑚′

(
T∗𝑀,Hom(G ,F )

)
→ 𝑆𝑚+𝑚

′ (
T∗𝑀,Hom(E ,F )

)
,

(𝑝, 𝑝′) ↦→ (𝑝′ ◦ 𝑝) (𝑥, 𝜉) := 𝑝′(𝑥, 𝜉)
(
𝑝(𝑥, 𝜉)

)
. (2.111)

Besides, we note that 𝑆0 (
T∗𝑀,Hom(E ,F )

)
has a distinguished element I given by the

identity 1Hom(E ,F ) = 1Hom(𝜋∗E ,𝜋∗F ) homomorphism (𝜋∗E )(𝑥,𝜉) 3 𝑝 ↦→ 𝑝 ∈ (𝜋∗F )(𝑥,𝜉):

T∗𝑥𝑀 3 (𝑥, 𝜉) ↦→ I(𝑥, 𝜉) := 1Hom(E ,F ) (𝑥, 𝜉 ) ∈ Hom(𝜋∗E , 𝜋∗F ). (2.112)

Definition 2.3.6. As in the terminologies of Definitions 2.3.2 and 2.3.3, 𝑃 ∈ ΨDO𝑚 (𝑀; E ⊗
𝛺

1/2,F ⊗ 𝛺1/2) having principal symbol 𝑝 is of real principal type at (𝑥0, 𝜉
0) ∈ ¤T∗𝑀, if

there exists a symbol 𝑝 ∈ 𝑆0 (
U, (𝜋∗Hom(E ,F ))U

)
such that [45, Def. 3.1]

(𝑝 ◦ 𝑝) (𝑥, 𝜉) = 𝑞 1𝜋∗Hom(E ,F ) (𝑥, 𝜉 ) (2.113)

for any (𝑥, 𝜉) in an open conic neighbourhood U of (𝑥0, 𝜉
0) and where 𝑞 is the principal

symbol of a scalar real principal type operator 𝑄 ∈ ΨDO𝑚 (𝑀;𝛺1/2). We say that 𝑃 is of
real principal type in ¤T∗𝑀 if it is so at every (𝑥0, 𝜉

0) ∈ ¤T∗𝑀.

The Euclidean formulation (2.24) of the wavefront set generalises in bundle setting
in a straightforward way:

∀𝑢 ∈ D′(𝑀; E ⊗ 𝛺1/2) : WF 𝑢 :=
⋂

𝑃∈ΨDO𝑚 (𝑀;E ⊗𝛺1/2)
𝑃𝑢∈𝐶∞ (𝑀;E ⊗𝛺1/2)

Char 𝑃 (2.114)

except the characterisation of Char 𝑃 used in (2.24) is required to generalise as follows.
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Definition 2.3.7. As in the terminologies of Definitions 2.3.2 and 2.3.3, let 𝑃 ∈ ΨDO𝑚 (𝑀;
E ⊗ 𝛺1/2,F ⊗ 𝛺1/2) whose principal symbol is denoted by 𝑝. 𝑃 is said to be non-
characteristic at some point (𝑥0, 𝜉

0) ∈ ¤T∗𝑀 if 𝑝 ◦ 𝑝 − 1 ∈ 𝑆−1 (
U, (𝜋∗Hom(E ,F ))U

)
in a conic neighbourhood U of (𝑥0, 𝜉

0) for some 𝑝 ∈ 𝑆𝑚
(
U, (𝜋∗Hom(E ,F ))U

)
. The set

of all characteristic points of 𝑃 is denoted by Char 𝑃 (see e.g. [77, Def. 18.1.25], [90,
Sec. 8.4]).

This definition implies that the microlocal ellipticity condition is equivalent to

∀(𝑥, 𝜉) ∈ U : det 𝑝(𝑥, 𝜉) ≠ 0. (2.115)

It also follows that
WF 𝑢 =

⋃
𝑟=1,...,rk E

WF(𝑢𝑟) (2.116)

where 𝑢𝑟 ∈ D′(𝑈) is a component of 𝑢 with respect to a trivialisation of E over 𝑈 ⊂ 𝑀
for a chosen half-density.

To illustrate these concepts we present the wave operator as an example (see [39,
Prop. 4.2-4.4] for the scalar case together with [92, Prop. 2.1], [93, Sec. 2]).

Example 2.3.8. Let � be a normally hyperbolic operator (see Definition 3.2.1) on a vec-
tor bundle E → M over a globally hyperbolic spacetime (see Definition 3.1.3) (M , g).
By definition, the principal symbol is given by the spacetime metric g−1 on the cotangent
bundle T∗M times the identity endomorphism. Thus the condition for being a real prin-
cipal type differential operator on E is satisfied trivially because the scalar wave operator
(see Example 3.2.2) on (M , g) is of real principal type. The characteristic set of � is the
(co)lightcone bundle (see Section 3.1.1) Char� = ¤T∗0M →M over M and the integral
curves of the vector field 𝑋g generated by the Hamiltonian g−1 are the geodesic strips in
the punctured cotangent bundle T∗M whose projections on M are the geodesics.

2.3.3 Lagrangian distributions

The Lagrangian distribution on a vector bundle, its principal symbol and their compo-
sition are some of the indispensable concepts involved in this thesis. Definition 2.2.12
generalises to half-density-valued sections of a vector bundle in a straightforward fashion
yet presented for the sake of completeness.

Definition 2.3.9. Let E , 𝛺1/2, ¤T∗𝑀 → 𝑀 be a vector bundle, the half-density bundle,
and the punctured cotangent bundle over a 𝑑-dimensional manifold 𝑀, respectively, and
𝛬 ⊂ ¤T∗𝑀 a closed conic Lagrangian submanifold (see Definition A.1.5). Then the space
𝐼𝑚 (𝑀, 𝛬; E ⊗ 𝛺1/2) of half-density-valued Lagrangian distributional sections of E , of
order (at most) 𝑚 ∈ R, is defined as the set of all half-density-valued distributions 𝑢 ∈
D′(𝑀; E ⊗ 𝛺1/2) such that 𝑃1 . . . 𝑃𝑁𝑢 ∈ ∞𝐻−𝑚−𝑑/4loc (𝑀; E ⊗ 𝛺1/2) for all 𝑁 ∈ N0 and for all
properly supported 𝑃𝑖 ∈ ΨDO1(𝑀; E ⊗ 𝛺1/2) having vanishing principal symbols on 𝛬,
where ∞𝐻−𝑚−𝑑/4loc (𝑀; E ⊗ 𝛺1/2) denotes the Besov space (Section 2.3.2) [23, Def. 25.1.1].
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Let F , 𝛺
1/2𝑁 → 𝑁 be a vector bundle and the half-density bundle over a manifold

𝑁. On top of the replacements mentioned after Definition 2.2.12, we are compelled to
substitute E ⊗ 𝛺1/2𝑀 → 𝑀 by (E � F ∗) ⊗ 𝛺1/2(𝑀 × 𝑁) → 𝑀 × 𝑁 in order to define a
Fourier integral operator from F ⊗ 𝛺1/2𝑁 to E ⊗ 𝛺1/2𝑀. One makes use of the natural
bundle isomorphism

Hom(F , E ) � E �F ∗ → 𝑀 × 𝑁, (2.117)

where the homomorphism bundle Hom(F , E ) → 𝑀×𝑁 is the vector bundle whose fibres
Hom(F , E )(𝑥,𝑦) = Hom(F𝑦, E𝑥) over (𝑥, 𝑦) ∈ 𝑀 × 𝑁 are C-linear maps from the vector
space F𝑦 to the vector space E𝑥.

Definition 2.3.10. Let E , 𝛺1/2𝑀, ¤T∗𝑀 → 𝑀 (resp. F , 𝛺
1/2𝑁, ¤T∗𝑁 → 𝑁) be a vector bun-

dle, the half-density bundle, and the punctured cotangent bundle over a 𝑑𝑀 (resp. 𝑑𝑁 )-
dimensional manifold 𝑀 (resp. 𝑁) and 𝐶 a homogeneous canonical relation (see Defi-
nition A.1.12) from ¤T∗𝑁 to ¤T∗𝑀 of 𝑀, which is closed in ¤T∗(𝑀 × 𝑁). A linear continuous
operator [23, Def. 25.2.1]

𝐴 : 𝐶∞c (𝑁; F ⊗ 𝛺1/2𝑁) → D′(𝑀; E ⊗ 𝛺1/2𝑀), 𝑣 ↦→ (𝐴𝑣) (𝑥) :=
∫
𝑁

A(𝑥, 𝑦) 𝑣(𝑦) (2.118)

whose Schwartz kernel A is an element of the Lagrangian distribution 𝐼𝑚
(
𝑀×𝑁,𝐶′; Hom

(F , E ) ⊗ 𝛺1/2(𝑀 × 𝑁) is called a Fourier integral operator from F to E , of order (at
most) 𝑚 ∈ R associated with the canonical relation 𝐶. We will denote the set of all such
operators by FIO𝑚 (F ⊗ 𝛺1/2𝑁 → 𝑁, E ⊗ 𝛺1/2𝑀 → 𝑀;𝐶′).

The localisation (Lemma 2.2.14) of Lagrangian distributions on a manifold holds
true in the bundle scenario as well [23, Lem. 25.1.2]. Following the demonstration in
Section 2.3.1, it is evident that A ∈ 𝐼𝑚

(
𝑀 × 𝑁,𝐶′; Hom(F , E ) ⊗ 𝛺1/2(𝑀 × 𝑁)

)
can be

written as a matrix of scalar Lagrangian distributions on respective Euclidean spaces

A↔
(
A𝑟𝑘

)
rk E×rk F ∈

(
𝐼𝑚

(
𝜅𝛼 (𝑈𝛼) × 𝜌𝛽 (𝑉𝛽);𝐶′𝜑

) )
rk E×rk F

(2.119)

where 𝐶′𝜑 := 𝐶′
𝛼,𝛽

:= (2.87) is given by means of a phase function 𝜑 := 𝜑𝛼,𝛽 with excess
𝑒 := 𝑒𝛼,𝛽 as elucidated in Section 2.2. A𝑟

𝑘
is of the form (2.89) [23, Prop. 25.1.5’]

A𝑟𝑘 (𝒙, 𝒚) = (2𝜋)
−(𝑑𝑀+𝑑𝑁 +2𝑛−2𝑒)/4

∫
R𝑛

ei 𝜑(𝒙,𝒚;𝜃)a𝑟𝑘 (𝒙, 𝒚; 𝜃) d𝜃 mod 𝐶∞
(
𝜅𝛼 (𝑈𝛼) × 𝜌𝛽 (𝑉𝛽)

)
(2.120)

where a𝑟
𝑘
∈ 𝑆𝑚+(𝑑𝑀+𝑑𝑁−2𝑛−2𝑒)/4(R𝑑𝑀 × R𝑑𝑁 × R𝑛) having support in the interior of a suffi-

ciently small conic neighbourhood of the fibre-critical manifold (2.86) of 𝜑 contained in
the domain of definition of 𝜑.

Definition 2.3.11. As in the terminologies of Definition 2.3.10, let �Hom(F , E ), 𝛺1/2𝐶,M→
𝐶 be the pullback of Hom(F , E ) to ¤T∗𝑀× ¤T∗𝑁 restricted to 𝐶 (see (B.20)), the half-density
bundle (see Appendix A.1.6) and the Keller-Maslov bundle (see Definition A.1.19) over
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𝐶, respectively, and 𝑆𝑚+(𝑑𝑀+𝑑𝑁 )/4−[1]
(
𝐶;M⊗𝛺1/2𝐶⊗�Hom(F , E )

)
the space (see (B.14)) of

M⊗𝛺1/2𝐶⊗�Hom(F , E )-valued symbols on 𝐶. Then the principal symbol of a Lagrangian
distribution is defined by the isomorphism [23, Prop. 25.1.5’])

𝜎 : 𝐼𝑚−[1]
(
𝑀×𝑁,𝐶′; Hom(F , E )⊗𝛺1/2(𝑀×𝑁)

)
→ 𝑆𝑚+

𝑑𝑀 +𝑑𝑁
4 −[1] (𝐶;M⊗𝛺1/2𝐶⊗�Hom(F , E )

)
,

(2.121)
where 𝐼𝑚−[1] := 𝐼𝑚/𝐼𝑚−1. The preceding map is locally given by

[A] ↦→ 𝜎[A] (𝑥, 𝜉; 𝑦, 𝜂) :=
(∫
ℭ

d𝜃′′𝑎𝑟𝑘 (𝒙, 𝒚; 𝜃′, 𝜃′′)
)

rk E×rk F

m(𝑥, 𝜉; 𝑦, 𝜂) ⊗√︁
|dv𝐶 (𝑥, 𝜉; 𝑦, 𝜂) | mod 𝑆𝑚+

𝑑𝑀 +𝑑𝑁
4 −1(·), (2.122)

where 𝑎𝑟
𝑘

is the top-order homogeneous term of a𝑟
𝑘

in (2.120) and all other symbols are
as in Definition 2.1.9.

2.3.4 Adjoint of a Fourier integral operator

To describe the adjoint of a Fourier integral operator, let us recall some standard no-
tions from linear algebra. Let U and V be C-vector spaces. Then the set Hom(U ,V )
of C-linear maps 𝑇 : U → V is a vector space and End V := Hom(V ,V ) is an unital
algebra over C under the composition of endomorphisms. If V ∗ := Hom(V ,C) is the
algebraic dual of V then the set of algebraic dual maps 𝑇∗ ∈ Hom(V ∗,U ∗) is defined
by (𝑇∗𝜓) (𝑢) = 𝜓(𝑇𝑢) for all 𝜓 ∈ V ∗, 𝑢 ∈ U . The conjugate of V is the complex vector
space V̄ := {𝑣 | 𝑣 ∈ V } with an antilinear isomorphism C : V 3 𝑣 ↦→ 𝑣 ∈ V̄ where,
for any given 𝑣 ∈ V , V∗ 3 𝜓 ↦→ 𝑣(𝜓) := 𝜓(𝑣) ∈ C. In other words, V is identical to
V̄ := Iso(V ∗,C) as a set but not as a vector space because the latter is equipped with the
scalar multiplication λ • 𝑣 := λ̄𝑣 in contrast to λ · 𝑣 := λ𝑣 for the former for any λ ∈ C. If V
is equipped with a bilinear form 〈·, ·〉 then an intertwiner B ∈ Hom(V ,V ∗) is determined
by (B𝑣) (𝑢) := 〈𝑣, 𝑢〉 for any 𝑢 ∈ V . Analogously, for a given sesquilinear form (·|·) on V ,
another intertwiner A := B̄ ◦ C : V → V̄ ∗ is characterised by (A𝑣) (𝑢) := (𝑢 |𝑣). One has
the identifications (V̄ )∗ = V ∗ = V̄ ∗ and ¯̄V = V .

Since E is a vector bundle, the above description applies fibrewise E𝑥 and one has the
(anti)dual (Ē ∗ := t𝑥∈𝑀 Ē ∗𝑥 → 𝑀)E ∗ := t𝑥∈𝑀E ∗𝑥 → 𝑀 bundles over a manifold 𝑀 (see
e.g. [72, p. 22]). A Fourier integral operator (cf (2.39))

𝐴 : 𝐶∞c (𝑁; F ⊗ 𝛺1/2𝑁) → 𝐶∞(𝑀; E ⊗ 𝛺1/2𝑀) (2.123)

associated with a canonical relation 𝐶, has a unique formal adjoint in the following
sense. If 𝐶−1 denotes the inverse relation of 𝐶 obtained by interchanging T∗𝑀 and T∗𝑁
then there exists a unique Fourier integral operator

𝐴∗ : 𝐶∞c (𝑀; Ē ∗ ⊗ 𝛺1/2𝑀) → 𝐶∞(𝑁; F̄ ∗ ⊗ 𝛺1/2𝑁) (2.124)
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associated with 𝐶−1 such that [23, Thm. 25.2.2]∫
𝑁

(𝐴∗𝜙) (𝑦) 𝑣(𝑦) :=
∫
𝑀

(𝐴𝑣) (𝑥) 𝜙(𝑥) ⇔ Ā∗(𝑣 � 𝜙) := A(𝜙 � 𝑣) (2.125)

for any 𝜙 ∈ 𝐶∞c (𝑀; Ē ∗ ⊗ 𝛺1/2𝑀) and any 𝑣 ∈ 𝐶∞c (𝑁; F ⊗ 𝛺1/2𝑁). Its Schwartz kernel and
principal symbol are given by

Ā∗ ∈ 𝐼𝑚
(
𝑁 × 𝑀,𝐶−1′; Hom(Ē ∗, F̄ ∗) ⊗ 𝛺1/2(𝑁 × 𝑀)

)
, (2.126a)

𝜎[Ā∗ ] = s∗(𝜎[A]∗) ∈ 𝑆𝑚+
𝑑𝑀 +𝑑𝑁

4 −[1] (𝐶−1;𝛺1/2𝐶−1 ⊗M𝐶−1 ⊗ �Hom(Ē ∗, F̄ ∗)
)
, (2.126b)

where s : 𝑁 × 𝑀 → 𝑀 × 𝑁 is the interchanging (Schwartz) map and M𝐶−1 → 𝐶−1 is the
Keller-Maslov bundle over 𝐶−1.

Locally Ā∗(𝑦, 𝑥) is given by

A𝑘𝑟 (𝒚, 𝒙) ≡ (2𝜋)−(𝑑𝑀+𝑑𝑁 +2𝑛−2𝑒)/4
∫
R𝑛

e− i 𝜑(𝒚,𝒙;𝜽) ā𝑘𝑟 (𝒚, 𝒙; 𝜽) d𝜽 , (2.127a)

𝜎A𝑘
𝑟
(𝒚, 𝜼; 𝒙, 𝝃) =

√︁
|d𝜼 | |d𝝃 |

∫
s(ℭ)

ā𝑘𝑟 (𝒚, 𝒙; 𝜽′, 𝜽′′) e−i𝜋/4 sgn(Hess𝒚,𝒙;𝜽′ 𝜑)√︁
| det(Hess𝒚,𝒙;𝜽 ′ 𝜑) |

d𝜽′′ (2.127b)

whenever A is given by (2.120) and s(ℭ) is defined by interchanging 𝒙 and 𝒚 in (2.48).

2.3.5 Algebra of Fourier integral operators

A necessary assumption for the product (composition) of two Fourier integral opera-
tors to be well-defined is that the first operator must be properly supported. Then
the defined composition may, however, still fail to be a Fourier integral operator. For
instance, the composition of two canonical relations does not necessarily have the re-
quired properties to define another Fourier integral operator. To ensure a well-defined
product that is again a Fourier integral operator, we are obliged to assume that their
Schwartz kernels (Lagrangian distributions) are properly supported and the composi-
tion of canonical relations is clean, proper (see Definition A.1.18) and connected [94,
Sec. 4.1], [10, Thm. 5.4]. Given a vector bundle G → 𝑂 over a manifold 𝑂 be-
sides E → 𝑀 and F → 𝑁, if A ∈ 𝐼𝑚

(
𝑀 × 𝑂,𝐶′; Hom(G , E ) ⊗ 𝛺1/2(𝑀 × 𝑂)

)
and

B ∈ 𝐼𝑚′
(
𝑂 × 𝑁, 𝛬′; Hom(F ,G ) ⊗ 𝛺1/2(𝑂 × 𝑁)

)
with the required restrictions, then [23,

Thm. 25.2.3]

AB := A ◦ B ∈ 𝐼𝑚+𝑚′+𝑒/2
(
𝑀 × 𝑁, (𝐶 ◦ 𝛬)′; Hom(F , E ) ⊗ 𝛺1/2(𝑀 × 𝑁)

)
, (2.128)

where 𝑒 is the excess (see Definition A.1.18 and (A.40)) of the clean composition 𝐶 ◦𝑒 𝛬
and its principal symbol is given by

𝜎AB = 𝜎𝐴 �𝑒 𝜎𝐵. (2.129)
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The precise meaning of the right hand side of this equation demands a few new termi-
nologies which are detailed in Appendix A.2.3.

The space of Fourier integral operators is not an algebra unless the canonical relation
is symmetric and transitive [95, Ex. 1 and comment on it in the succeeding page].
In case the composition of the canonical relation 𝐶 by itself is clean with excess zero,
proper and connected the space of Fourier integral operators

(
𝐼•

(
𝑀×𝑀,𝐶′; Hom(E , E ) ⊗

𝛺
1/2(𝑀 × 𝑀)

)
, ◦

)
is an associative graded algebra over the field C. The algebra (2.129)

of principal symbols constitute an algebra which is commutative only the scalar case
but non-commutative in general. We remark that the product formula (2.129) becomes
simpler (see (2.156)) when both 𝐶 and 𝛬 are local canonical graphs and then the product
is always defined as detailed later in Section 2.3.6.

Example 2.3.12. Let E , 𝛺1/2𝑀 → 𝑀 be a vector bundle and the half-density bundle over
a manifold 𝑀, respectively, and 𝜄𝛴 : 𝛴 ↩→ 𝑀 an immersed submanifold. Given a fibrewise
isomorphism �̂�𝛴 : E𝛴𝑥′ � E𝜄𝛴 (𝑥 ′), the restriction map

𝜄∗
𝛴

: 𝐶∞c (𝑀; E ⊗ 𝛺1/2𝑀) → 𝐶∞(𝛴 ; E𝛴 ⊗ 𝛺1/2𝑀𝛴 ) (2.130)

is defined by the pullback of the morphism (𝜄𝛴 , �̂�𝛴 ). This boils down to Example 2.2.16
after trivialising E and thus its Schwartz kernel R𝛴 is a Lagrangian distribution of order
codim 𝛴/4 associated with the canonical relation 𝛬′

𝛴
defined in (2.95b). As commented

after Example 2.2.16, one discerns that 𝛬𝛴 ⊂ T∗𝑀𝛴 × ¤T∗𝑀 is not a homogeneous canon-
ical relation because it is not guaranteed that restriction of all elements in ¤T∗𝑀 to 𝛴 is
non-zero. Geometrically speaking, the complication arises due to the elements of the
conormal bundle (see Example A.1.7) 𝛴⊥∗ ⊂ T∗𝑀. To circumvent this difficulty, one
temporarily introduces a cutoff function 𝜒 on 𝛴⊥∗ and sets [91, Sec. 5.2]

R𝜒 (𝒙′, 𝒚) :=
∫
R𝑑

ei 𝜑𝛴
(
1 − 𝜒(𝑦, 𝜂)

) d𝜼
(2𝜋)𝑑

, 𝜑𝛴 := (𝜄𝛴 (𝒙′) − 𝒚) · 𝜼 (2.131)

so that such elements do not occur in the support of 1 − 𝜒. Then the respective operator
𝜄∗𝜒 is a homogeneous Fourier integral operator of order codim 𝛴/4 associated with the
homogeneous canonical relation 𝛬𝜒 ⊂ ¤T∗𝑀𝛴 × ¤T∗𝑀. Putting altogether:

R𝜒 ∈ 𝐼codim 𝛴/4 (
𝛴 × 𝑀, 𝛬′𝜒; Hom(E , E𝛴 ) ⊗ 𝛺1/2(𝑀𝛴 × 𝑀)

)
, (2.132a)

𝛬′𝜒 := {(𝑥′, 𝜉′; 𝑥, 𝜉) ∈ ¤T∗𝑀𝛴 × ¤T∗𝑀 | 𝑥 = 𝜄𝛴 (𝑥′), 𝜉′ = 𝜉 � T𝑥 ′𝑀𝛴 }, (2.132b)

𝜎R𝜒 |supp(1−𝜒) (𝑥′, 𝜉′; 𝑥,−𝜉) :=

√︁
|dv𝛬 (𝑥′, 𝜉′; 𝑥,−𝜉) |
(2𝜋)codim 𝛴/4 1Hom(E ,E𝛴 )⊗𝛺1/2 (𝑀𝛴×𝑀) ⊗l(𝑥

′, 𝜉′; 𝑥,−𝜉),

(2.132c)

where |dv𝛬 | is the density on 𝛬𝜒 and l is a section of the Keller-Maslov bundle L→ 𝛬𝜒 as
in Example 2.2.16.
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Equivalently, one can say that 𝜄∗
𝛴

is not a homogeneous Fourier integral operator due
to plausible occurrence of elements of 𝛴⊥∗ in its canonical relation and the cutoff above
can be emulated by composing with a 𝑃 ∈ ΨDO0(𝑀; E ⊗ 𝛺1/2𝑀) with ES 𝑃∩ ¤𝛴⊥∗ = ∅. The
principal symbol of R𝛴 is then (2𝜋)− codim 𝛴/4

1 |dv𝛬 |1/2 ⊗ l over WF 𝑃 (see e.g. [27, Lem.
8.3] for the scalar version).

Any distribution on E can be restricted to E𝛴 when its wavefront set is disjoint with
𝛴⊥∗. In particular, if Λ is such that the wavefront set of every 𝑢 ∈ 𝐼𝑚 (𝑀,Λ; E ⊗ 𝛺1/2𝑀)
is disjoint from the conormal bundle 𝛴⊥∗ of 𝛴 ⊂ M then the restriction operator can be
extended to a sequentially continuous linear operator

𝜄∗𝜒 : 𝐼𝑚 (𝑀,Λ; E ⊗ 𝛺1/2𝑀) → 𝐼𝑚+codim 𝛴/4(𝛴,Λ|T𝑀𝛴
; E𝛴 ⊗ 𝛺1/2𝛴), 𝑢 ↦→ 𝜄∗𝜒𝑢,

𝜎𝜄∗𝜒𝑢 (𝑥
′, 𝜉′) � (2𝜋)− codim 𝛴/4𝜎𝑢 (𝑥′, 𝜉′), (2.133a)

where the last equation is in the sense of modulo Keller-Maslov contribution.

Products of operators with vanishing principal symbol

By far, we have learned to compute the principal symbol of the product of Lagrangian
distributions given those of individual distributions. An innate question in this context
is that what if any of the principal symbols vanishes identically. We are going to address
a special case of this situation: product between a pseudodifferential operator and a
Lagrangian distribution whenever the principal symbol of the former vanishes. This is
motivated by its direct applicability at some later parts of this thesis. It turns out that the
Lie derivative plays an essential role in this regard, so we spell out a few rudimentary
formulae.

T∗𝑀 𝑀

𝜋∗E E

𝜋

�

𝐶∞(𝑀; E ⊗ 𝛺1/2) 𝐶∞(𝑀; E ⊗ 𝛺1/2)

𝐶∞(T∗𝑀; 𝜋∗E ) 𝐶∞(T∗𝑀; 𝜋∗E )

∇E
𝑋

∇Hom(𝜋∗E , 𝜋∗E )
𝑋𝑝

𝜋∗ (𝜋∗)−1

Figure 2.4: Pullback of a vector bundle E → 𝑀 via the canonical projection 𝜋 : T∗𝑀 → 𝑀

and the 𝑃-compatible connection on E .

Let (E → 𝑀,∇E
𝑋
) be a vector bundle over a manifold 𝑀, equipped with a covariant

derivative ∇E
𝑋

with respect to some vector field 𝑋 on 𝑀 and let 𝛯𝑠 : 𝑀 → 𝑀 be the flow
of 𝑋. This covariant derivative induces a parallel transport map

𝛯𝑠 (𝑥) : E𝑥 → E𝛯𝑠 (𝑥) (2.134)

along the integral curve 𝑐𝑥 (𝑠) = 𝛯𝑠 (𝑥) of 𝑋 passing through 𝑥 ∈ 𝑀. Then the Lie deriva-
tive £𝑋 along 𝑋 is defined by

£𝑋𝑢 := lim
𝑠→0

𝛯−𝑠
(
𝑢
(
𝛯𝑠 (𝑥)

) )
− 𝑢(𝑥)

𝑠
:=

d
d𝑠

���
𝑠=0
𝛯∗𝑠 𝑢, (2.135)
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where
𝛯∗𝑠 : 𝐶∞(𝑀; E ) → 𝐶∞(𝑀; E ), 𝑢 ↦→ 𝛯∗𝑠 𝑢 := 𝛯−𝑠 ◦ 𝑢 ◦ 𝛯𝑠 (2.136)

is the pullback map on E induced by 𝛯𝑠 and the linear isomorphism 𝛯𝑠. For convenience,
we set

L𝑋 := − i £𝑋 : 𝐶∞(𝑀; E ) → 𝐶∞(𝑀; E ) (2.137)

and call this first-order differential, the Lie derivative as well. Locally, 𝑋 = 𝑋 𝑖𝜕/𝜕𝑥𝑖, 𝐶∞(𝑀; E
⊗𝛺1/2) 3 𝑢 = 𝑢𝑟E𝑟 ⊗

√︁
|d𝑥 | and thus the Leibniz rule entails (see e.g. [96, p. 130], [23,

(25.2.11)], [85, (2.60) (p. 377)])

£𝑋𝑢 =
(
𝑋 𝑖
𝜕𝑢𝑟

𝜕𝑥𝑖
+ 1

2
div(𝑋) 𝑢𝑟

)
E𝑟 ⊗

√︁
|d𝑥 | + 𝑢𝑟£𝑋 (E𝑟) ⊗

√︁
|d𝑥 |. (2.138)

In what follows, we consider 𝑃 ∈ ΨDO𝑚 (𝑀; E ⊗ 𝛺1/2) having a scalar principal sym-
bol (Definition 2.3.3) 𝑝 and subprincipal symbol (Definition 2.3.4) 𝜎sub

𝑃
. Let 𝑋𝑝 be the

Hamiltonian vector field (see (A.3)) generated by 𝑝 and 𝛾 its integral curve (cf. Defi-
nition 2.2.9) on the cotangent bundle 𝜋 : T∗𝑀 → 𝑀. These data enables us to define
a natural covariant derivative in a geometric fashion as detailed in Section 3.3.2. The
so-called “𝑃-compatible covariant derivative” (see Definition 3.3.6) ∇Hom(𝜋∗E , 𝜋∗E )

𝑋𝑝
is a co-

variant derivative on the homomorphism bundle Hom(𝜋∗E , 𝜋∗E ) → T∗𝑀 over T∗𝑀 along
𝛾. The projection 𝑐 of 𝛾 on 𝑀 is the integral curve of the vector field 𝑋 := d𝜋(𝑋𝑝) on
𝑀 induced by 𝑋𝑝, where d𝜋 : T(T∗𝑀) → T𝑀 is the tangent map of 𝜋. Thus we have a
covariant derivative ∇E

𝑋
on E along 𝑐, as depicted in Figure 2.4.

The following result is closely related to [26, Thm. 5.9].

Theorem 2.3.13. As in the terminologies of Definition 2.3.10, let A ∈ 𝐼𝑚
(
𝑀×𝑁,𝐶′; Hom(F ,

E ) ⊗𝛺1/2(𝑀×𝑁)
)

and 𝑎 the principal symbol of A. Suppose that 𝑃 ∈ ΨDO𝑚′ (𝑀; E ⊗ 𝛺1/2𝑀)
is properly supported with a scalar principal symbol 𝑝 and a subprincipal symbol 𝜎sub

𝑃
,

and that 𝑝 vanishes identically on the projection of 𝐶 in ¤T∗𝑀. Then, 𝑃A ∈ 𝐼𝑚+𝑚′−1 (
𝑀 ×

𝑁,𝐶′; Hom(F , E ) ⊗ 𝛺1/2(𝑀 × 𝑁)
)

and its principal symbol is

𝜎𝑃A =

(
L𝑋𝑝
+ 𝜎sub

𝑃

)
𝑎, (2.139)

where L𝑋𝑝
is − i times the Lie derivative along the Hamiltonian vector field 𝑋𝑝 of 𝑝, lifted to

a function on ¤T∗𝑀 × ¤T∗𝑁, so 𝑋𝑝 is tangential to 𝐶.

Proof. Since the principal symbol is locally defined (Definition 2.3.11), our strategy is
to make use of the partition of unity to boil down the statements in the level of a ma-
trix of scalar operators as demonstrated in Section 2.3.2, 2.3.3 and then employ the
scalar-version of this statement [35, Thm. 5.3.1] (see also, e.g. [23, Thm. 25.2.4], [85,
pp. 451-454]). The differences in the proof between the scalar and the bundle versions
are essentially bookkeeping, yet we provide the details for completeness. Locally, the
transition functions of M are constant (see Section A.1.4) so the Maslov factor can be
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ignored while computing the Lie derivative. Moreover, 𝑎 is a matrix-valued density (Def-
inition 2.3.11) on 𝐶′ and thus the last term in (2.138) does not contribute. It is always
possible to choose a local coordinate (𝑥𝑖, 𝜉𝑖; 𝑦 𝑗 , 𝜂 𝑗 ) around (𝑥, 𝜉; 𝑦, 𝜂) ∈ ¤T∗𝑀 × ¤T∗𝑁 such
that (see (A.34)-(A.36)) 𝑥𝑖𝜉𝑖 + 𝑦 𝑗𝜂 𝑗 − 𝐻 is a non-degenerate phase function for 𝐶, where
𝐻 is a smooth positively homogeneous R-valued function of degree 1 on an open conic
neighbourhood of (𝜉, 𝜂) ∈ ¤T∗𝑥𝑀 × ¤T∗𝑦𝑁. Then (cf. (2.120) and see e.g. [23, Lem. 25.2.5]),

A𝑙𝑘 (𝒚, 𝒛) = (2𝜋)
−3(𝑑𝑀+𝑑𝑁 )/4

∫
R𝑑𝑀 +𝑑𝑁

ei(𝜼·𝒚+𝜻 ·𝒛−𝐻 (𝜼,𝜻)) a𝑙𝑘 (𝜼, 𝜻) d𝜼 d𝜻 , (2.140)

where a𝑙
𝑘
∈ 𝑆𝑚−(𝑑𝑀+𝑑𝑁 )/4(R𝑑𝑀+𝑑𝑁 ) having support in a conic neighbourhood of (𝒚 =

𝜕𝐻/𝜕𝜼, 𝒛 = 𝜕𝐻/𝜕𝜻). For any 𝑣 ∈ 𝐶∞c (𝑁; F ⊗ 𝛺1/2𝑁), by definition of Fourier transform:(
F (𝐴𝑙𝑘𝑣

𝑘 )
)
(𝝃) =

∫
R𝑑𝑀

d𝒚 e− i 𝒚·𝝃 (𝐴𝑙𝑘𝑣
𝑘 ) (𝒚)

=

∫
R𝑑𝑀

d𝒚 e− i 𝒚·𝝃
∫
R𝑑𝑁

A𝑙𝑘 (𝒚, 𝒛) 𝑣
𝑘 (𝒛) d𝒛

= (2𝜋)−3(𝑑𝑀+𝑑𝑁 )/4
∫
R𝑑𝑀

d𝒚
∫
R𝑑𝑁

d𝒛
∫
R𝑑𝑀 +𝑑𝑁

d𝜼 d𝜻

ei 𝒚·(𝜼−𝝃)+i 𝒛·𝜻−i𝐻 (𝜼,𝜻) a𝑙𝑘 (𝜼, 𝜻) 𝑣
𝑘 (𝒛)

= (2𝜋)𝑑𝑀− 3
4 (𝑑𝑀+𝑑𝑁 )

∫
R𝑑𝑁

e− i𝐻 (𝝃,𝜻)a𝑙𝑘 (𝝃, 𝜻) (F 𝑣
𝑘 ) (−𝜻) d𝜻 , (2.141)

where we have made use of the Fubini’s theorem for oscillatory integrals [78, (1.2.4)].
Since 𝑃 is properly supported, by an application of Theorem 2.1.3 we obtain

(𝑃𝑟𝑙 𝐴
𝑙
𝑘𝑣
𝑘 ) (𝒙) = 1

(2𝜋) 3
4 (𝑑𝑀+𝑑𝑁 )

∫
R𝑑𝑀

d𝝃
∫
R𝑑𝑁

d𝜻 ei 𝒙·𝝃−i𝐻 (𝝃,𝜻) (𝜎tot
𝑃
)𝑟𝑙 (𝒙, 𝝃) a

𝑙
𝑘 (𝝃, 𝜻) (F 𝑣

𝑘 ) (−𝜻),

(2.142)
where (𝜎tot

𝑃
)𝑟
𝑙

is the total symbol of 𝑃 in the chosen coordinate-charts and bundle-charts.
The preceding equation entails that the Schwartz kernel of 𝑃𝐴 is

(𝑃𝑟𝑙A
𝑙
𝑘 ) (𝒙, 𝒚) = (2𝜋)

− 3
4 (𝑑𝑀+𝑑𝑁 )

∫
R𝑑𝑀

d𝝃
∫
R𝑑𝑁

d𝜼 ei(𝒙·𝝃+𝒚·𝜼−𝐻) (𝜎tot
𝑃
)𝑟𝑙 (𝒙, 𝝃) a

𝑙
𝑘 (𝝃, 𝜼). (2.143)

One can decompose (𝜎tot
𝑃
)𝑟
𝑙
= 𝑝𝑟

𝑙
+ p̃𝑟

𝑙
as a combination of its principal part 𝑝𝑟

𝑙
and the

remainder terms p̃𝑟
𝑙

(cf. Definition B.1.6). We have assumed that 𝑝 = 0 on the projection
of 𝐶 on ¤T∗𝑀. By means of Taylor’s series one can write

𝑝𝑟𝑙 (𝒙, 𝝃) =
(
𝒙𝑖 − 𝜕𝐻

𝜕𝝃𝑖

)
𝑓 𝑟𝑙,𝑖 (𝒙, 𝝃, 𝜼) =

𝜕 (𝒙 · 𝝃 + 𝒚 · 𝜼 − 𝐻)
𝜕𝝃𝑖

𝑓 𝑟𝑙,𝑖 (𝒙, 𝝃, 𝜼), (2.144)

where 𝑓 𝑟
𝑙,𝑖

is homogeneous of degree 𝑚′ with respect to (𝝃, 𝜼), given by the mean value
theorem:

𝑓 𝑟𝑙,𝑖 (𝒙, 𝝃, 𝜼) =
∫ 1

0

𝜕𝑝𝑟
𝑙

𝜕𝒙𝑖

(
λ 𝒙 + (1 − λ) 𝜕𝐻

𝜕𝝃
, 𝝃

)
dλ. (2.145)
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In particular, 𝑓 𝑟
𝑙,𝑖
� 𝐶 = (𝜕𝒙𝑝𝑟𝑙 ) (𝜕𝝃𝐻, 𝝃). It is always possible to assume that a vanishes in

a neighbourhood of 0 and then an integration by parts gives for 𝑃A:

𝑃𝑟𝑙A
𝑙
𝑘 = (2𝜋)− 3

4 (𝑑𝑀+𝑑𝑁 )
∫
R𝑑𝑀 +𝑑𝑁

ei(𝒙·𝝃+𝒚·𝜼−𝐻) (p̃𝑟𝑙 + 𝑝
𝑟
𝑙 )a

𝑙
𝑘 d𝝃 d𝜼

= (2𝜋)− 3
4 (𝑑𝑀+𝑑𝑁 )

∫
R𝑑𝑀 +𝑑𝑁

ei(𝒙·𝝃+𝒚·𝜼−𝐻)
(
p̃𝑟𝑙 a

𝑙
𝑘 − D𝝃𝑖 ( 𝑓

𝑟
𝑙,𝑖a

𝑙
𝑘 )

)
d𝝃 d𝜼. (2.146)

Since 𝑎𝑙
𝑘
= a𝑙

𝑘
(𝝃, 𝜼)

√︁
|d𝝃 | |d𝜼 | is the principal symbol of A, hence

(𝜎𝑃A)𝑟𝑘 =

(
p̃𝑟𝑙 𝑎

𝑙
𝑘 − D𝝃𝑖 ( 𝑓

𝑟
𝑙,𝑖𝑎

𝑙
𝑘 )

)
𝒙=𝜕𝐻/𝜕𝝃

√︁
|d𝝃 | |d𝜼 |

=

(
p̃𝑟𝑙 𝑎

𝑙
𝑘 − D𝝃𝑖 ( 𝑓

𝑟
𝑙,𝑖)𝑎

𝑙
𝑘 − 𝑓

𝑟
𝑙,𝑖D𝝃𝑖 (𝑎

𝑙
𝑘 )

)
𝒙=𝜕𝐻/𝜕𝝃

√︁
|d𝝃 | |d𝜼 | (2.147)

whenever (𝝃, 𝜼) are taken as coordinates on 𝐶. We will suppress the bundle indices from
afterwords as there is no scope of confusion.

By definition, 𝑋𝑝 = 𝜕𝑝/𝜕𝝃𝑖𝜕/𝜕𝒙𝑖 − 𝜕𝑝/𝜕𝒙𝑖𝜕/𝜕𝝃𝑖. So, Char 𝑃 is a hypersurface near (𝑥, 𝜉)
and 𝑋𝑝 spans the symplectic-orthogonal (in ¤T∗𝑀) of its tangent space. Now we pullback
𝑝(𝑥, 𝜉) via the projector ¤T∗𝑀 × ¤T∗𝑁 → ¤T∗𝑀 to consider it as a function 𝑝(𝑥, 𝜉; 𝑦, 𝜂) on
¤T∗𝑀 × ¤T∗𝑁. The restriction of this function 𝑝(𝑥, 𝜉; 𝑦, 𝜂) on 𝐶′ is only a function of (𝜉, 𝜂) as
𝑥𝑖 = 𝜕𝐻/𝜕𝜉𝑖 and 𝑦 𝑗 = 𝜕𝐻/𝜕𝜂 𝑗 on 𝐶′. Thus, 𝑋𝑝 on 𝐶 must be of the form

− 𝜕

𝜕𝒙𝑖
(
𝑝(𝒙, 𝝃)

) 𝜕
𝜕𝝃𝑖

= − 𝑓𝑖 (𝒙, 𝝃, 𝜼)
𝜕

𝜕𝝃𝑖
, 𝒙 =

𝜕𝐻

𝜕𝝃
, (2.148)

in our chosen parametrisation of 𝐶 and it is pointwise tangent to 𝐶. We compute

L𝑋𝑝
𝑎 = − 𝑓𝑖

(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
) 𝜕𝑎
i 𝜕𝝃𝑖

− 1
2

𝜕

i 𝜕𝝃𝑖

(
𝑓𝑖

(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
))
𝑎

= − 𝑓𝑖
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)

D𝝃𝑖 (𝑎) − (D𝝃𝑖 𝑓𝑖)
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
𝑎

+(D𝝃𝑖 𝑓𝑖)
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
𝑎 + i

2
𝜕

𝜕𝝃𝑖

(
𝑓𝑖

(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
))
𝑎

= − 𝑓𝑖
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)

D𝝃𝑖 (𝑎) − (D𝝃𝑖 𝑓𝑖)
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
𝑎

− i
𝜕 𝑓𝑖

𝜕𝝃𝑖

(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
𝑎 + i

2
𝜕 𝑓𝑖

𝜕𝝃𝑖

(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
𝑎 + i

2
𝜕2𝐻

𝜕𝝃𝑖𝜕𝝃 𝑗

𝜕 𝑓𝑖

𝜕𝒙 𝑗

(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
𝑎

= − 𝑓𝑖
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)

D𝝃𝑖 (𝑎) − (D𝝃𝑖 𝑓𝑖)
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
𝑎

− i
2

(
𝜕 𝑓𝑖

𝜕𝝃𝑖

(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
− 𝜕2𝐻

𝜕𝝃𝑖𝜕𝝃 𝑗

𝜕 𝑓𝑖

𝜕𝒙 𝑗

(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
))
𝑎

= − 𝑓𝑖
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)

D𝝃𝑖 (𝑎) − (D𝝃𝑖 𝑓𝑖)
(𝜕𝐻
𝜕𝝃

, 𝝃, 𝜼
)
𝑎 − i

2
𝜕2𝑝

𝜕𝒙 𝑗𝜕𝝃 𝑗

(𝜕𝐻
𝜕𝝃

, 𝝃
)

(2.149)
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and insert this into the hindmost expression of 𝜎𝑃A to reach our goal:

𝜎𝑃A =

(
L𝑋𝑝
+p𝑚′−1

(𝜕𝐻
𝜕𝝃

, 𝝃
)
+ i

2
𝜕2𝑝

𝜕𝒙 𝑗𝝃 𝑗

(𝜕𝐻
𝜕𝝃

, 𝝃
))
𝑎 + . . . = (L𝑋𝑝

+𝜎sub
𝑃
)𝑎 mod 𝑆𝑚+𝑚

′−2(. . .).

(2.150)
Here p𝑚′−1 is the pullback of the next-to-leading order term in the asymptotic expression
of the total symbol of 𝑃 to 𝐶′ and we have used Definition 2.3.4 together with

𝜕2𝑝

𝜕𝒙 𝑗𝝃 𝑗
(𝒙, 𝝃) =

𝜕 𝑓 𝑗

𝜕𝝃 𝑗
(𝒙, 𝝃, 𝜼) − 𝜕2𝐻

𝜕𝝃 𝑗𝜕𝝃𝑖
(𝝃, 𝜼) 𝜕 𝑓𝑖

𝜕𝒙 𝑗
(𝒙, 𝝃, 𝜼) +

(
𝒙𝑖 − 𝜕𝐻

𝜕𝝃𝑖
(𝝃, 𝜼)

) 𝜕 𝑓𝑖

𝜕𝒙 𝑗𝜕𝝃 𝑗
(𝒙, 𝝃, 𝜼)

(2.151)
when evaluated at 𝒙 = 𝜕𝐻/𝜕𝝃. �

2.3.6 Lagrangian distributions defined by symplectomorphisms

The simplest canonical relation 𝛤′ ⊂ ¤T∗𝑀 × ¤T∗𝑁 is that defined as the twisted graph 𝛤′

of a homogeneous symplectomorphism (see (A.1) and (A.7)) from ¤T∗𝑁 to ¤T∗𝑀, which
enforces 𝑑 := dim𝑀 = dim 𝑁 (see Example A.1.10). In this case, it is always possible to
choose coordinates (𝒚𝑖0) on the image of 𝑦0 ∈ 𝑁 under some local chart such that (see
e.g. [23, Prop. 25.3.3])

𝛤𝜑 = {(𝒙0, d𝒙0𝜑; grad𝜼0 𝜑, 𝜼0)}, det
𝜕2𝜑

𝜕𝒙𝜕𝜼
(𝒙0, 𝜼

0) ≠ 0 (2.152)

in an open conic neighbourhood of (𝒙0, 𝝃
0; 𝒚0, 𝜼

0) ∈ (R𝑑 × ¤R𝑑) × (R𝑑 × ¤R𝑑) making use
of a non-degenerate R-valued phase function 𝜑(𝒙, 𝜼) on an open conic neighbourhood of
(𝒙0, 𝜼

0).

This class of Lagrangian submanifolds results in the simplest class of Fourier inte-
gral operators 𝐴 via the corresponding space of Lagrangian distributions A ∈ 𝐼𝑚

(
𝑀 ×

𝑁, 𝛤′; Hom(F , E ) ⊗ 𝛺1/2(𝑀 × 𝑁)
)

whose Euclidean representative is of the form [78, pp.
169-173] (see e.g. [23, (25.3.2)′], [97, (65.25)])

A𝑟𝑘 (𝒙, 𝒚) ≡
∫
R𝑑

ei(𝜑(𝒙,𝜼)−𝒚·𝜼)a𝑟𝑘 (𝒙, 𝒚; 𝜼) d𝜼
(2𝜋)𝑑

, (2.153)

where the total symbol a𝑟
𝑘

is of homogeneous of degree 𝑚, having support in the inte-
rior of a small conic neighbourhood of (𝒙0, 𝜼

0) contained in the domain of definition of 𝜑.

In order to describe the principal symbol 𝜎A of A we note that the natural half-
density dv𝛤 (see (A.70)) on 𝛤 can be factored out from 𝜎A(𝑥, 𝜉; 𝑦, 𝜂) ∈ 𝑆𝑚+(𝑑+𝑑)/4

(
𝛤;M ⊗�Hom(F , E ) ⊗ 𝛺1/2𝛤

)
so that the order 𝑚 + (𝑑 + 𝑑)/4 of the half-density-valued principal

symbol is reduced to 𝑚 as 𝛺1/2𝛤 is of order 𝑑/2. Therefore, the principal symbol map

𝜎 : 𝐼𝑚−[1]
(
𝑀 × 𝑁, 𝛤′;𝛺1/2(𝑀 × 𝑁) ⊗Hom(F , E )

)
→ 𝑆𝑚−[1]

(
𝛤;M ⊗�Hom(F , E )

)
(2.154)
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is locally given by (see e.g. [23, p. 27])

𝜎𝐴𝑟
𝑘
(𝒙, 𝜼) := 𝑎𝑟𝑘

(
𝒙,
𝜕𝜑

𝜕𝜼
; 𝜼

) ����det
𝜕2𝜑

𝜕𝒙𝜕𝜼

����−1/2
m mod 𝑆𝑚−1(·), (2.155)

where the Keller-Maslov bundle M is trivialised by the phase function in (2.153).

We remark that the composition AB ∈ 𝐼𝑚+𝑚′
(
𝑀×𝑁, (𝛤◦𝛬)′; Hom(F , E )⊗𝛺1/2(𝑀×𝑁)

)
between A ∈ 𝐼𝑚

(
𝑀 × 𝑂, 𝛤′,Hom(G , E ) ⊗ 𝛺1/2(𝑀 × 𝑂)

)
and a properly supported B ∈

𝐼𝑚
′ (
𝑂 × 𝑁, 𝛬′; Hom(F ,G ) ⊗ 𝛺1/2(𝑂 × 𝑁)

)
is always well-defined, where 𝛤 ◦ 𝛬 is the

graph of the composition of symplectomorphisms ¤T∗𝑁 3 (𝑦, 𝜂) ↦→ (𝑧, 𝜁) ↦→ (𝑥, 𝜉) ∈ ¤T∗𝑀.
Furthermore, the expression of 𝜎AB simplifies quite a bit compared to (2.129) and it is
given by the standard composition of homomorphisms [78, p. 180] (see also, e.g. [97,
Thm. 65.7], [85, (6.11) (p. 465)])

𝜎AB(𝑥, 𝜉; 𝑦, 𝜂) =
∑︁

(𝑧,𝜁) | (𝑥,𝜉;𝑧,𝜁)∈𝛤,(𝑧,𝜁 ;𝑦,𝜂)∈𝛬
𝜎A(𝑥, 𝜉; 𝑧, 𝜁)

(
𝜎B(𝑧, 𝜁 ; 𝑦, 𝜂)

)
. (2.156)

If the respective vector bundles are hermitian then the algebra of Lagrangian distribu-
tions is a ∗-algebra.

Parametrices and elliptic operators

We will now introduce the notion of ellipticity [35, p. 186] for a Fourier integral operator
and show that an approximate inverse always exists for such an operator.

Definition 2.3.14. As in the terminologies of Definitions 2.3.10 and 2.3.11, and (2.154),
let 𝛤 be the graph of a homogeneous symplectomorphism from ¤T∗𝑁 to ¤T∗𝑀. Then, a
Lagrangian distribution A ∈ 𝐼𝑚

(
𝑀 × 𝑁, 𝛤′; Hom(F , E ) ⊗ 𝛺1/2(𝑀 × 𝑁)

)
is called non-

characteristic at (𝑥0, 𝜉
0; 𝑦0, 𝜂

0) ∈ 𝛤 if its principal symbol has an inverse ∈ 𝑆−𝑚
(
𝛤;M−1 ⊗�Hom(E ,F )

)
in a conic neighbourhood of (𝑥0, 𝜉

0; 𝑦0, 𝜂
0). A is called elliptic if it is non-

characteristic at every point of 𝛤. The complement of non-characteristic points is called
the characteristic set CharA of A [23, Def. 25.3.4].

We note that (2.153) and (2.155) imply that the non-characteristic points belong to
WF′A. If 𝛤−1 is also a graph and A ∈ 𝐼𝑚

(
𝑀×𝑁, 𝛤′; Hom(F , E )⊗𝛺1/2(𝑀×𝑁)

)
is elliptic and

properly supported, then A has a unique parametrix E ∈ 𝐼−𝑚
(
𝑁 ×𝑀, 𝛤−1′; Hom(E ,F ) ⊗

𝛺
1/2(𝑁 × 𝑀)

)
, i.e.,

𝐸𝐴 − 𝐼F ∈ ΨDO−∞(𝑁; F ⊗ 𝛺1/2𝑁), 𝐴𝐸 − 𝐼E ∈ ΨDO−∞(𝑀; E ⊗ 𝛺1/2𝑀). (2.157)

A proof of the microlocal version of this claim is going to be presented shortly after one
devises a variant of Lagrangian distributions where the closedness assumption on the
Lagrangian submanifold has been relaxed.



52 CHAPTER 2. FOURIER INTEGRAL OPERATORS

Definition 2.3.15. As in the terminologies of Definition 2.3.9, let 𝐶 ⊂ ¤T∗𝑀 × ¤T∗𝑁 be a ho-
mogeneous canonical relation which is not necessarily closed in ¤T∗(𝑀 × 𝑁) and K ⊂ 𝐶 a
conic subset which is closed in ¤T∗(𝑀×𝑁). By 𝐼𝑚

(
𝑀×𝑁,K′; Hom(F , E )⊗𝛺1/2(𝑀×𝑁)

)
, one

denotes the set of all matrices with entries (2.120) together with the additional condi-
tion that, for each 𝛼, 𝛽 as in (2.89), the restriction of a 𝑟

𝛼,𝛽;𝑘 to some conic neighbourhood
in R𝑑𝑀 × R𝑑𝑁 × R𝑛𝛼,𝛽 of the pullback of 𝐶 \ K by the Lagrangian fibration (see (A.33))
𝚥 : C𝛼,𝛽 := (2.86)→ 𝐶′

𝛼,𝛽
:= (2.87), is in the class 𝑆−∞(·).

As in the terminologies of Definition 2.3.11, 𝑆𝑚
(
K,M ⊗ 𝛺1/2𝐶 ⊗�Hom(F , E )

)
denotes

the set of all 𝑎 ∈ 𝑆𝑚
(
𝐶,M ⊗ 𝛺1/2𝐶 ⊗ �Hom(F , E )

)
such that 𝑎 ∈ 𝑆−∞

(
𝐶 \ K,M ⊗ 𝛺1/2𝐶 ⊗�Hom(F , E )

)
[35, p. 187].

Note, the definition depends on both K and 𝐶 yet suppressed to lighten the notion.
The analogue of the principal symbol isomorphism (Definition 2.3.11) reads [35, p. 187]

𝐼𝑚−[1]
(
𝑀×𝑁,K′; Hom(F , E ) ⊗𝛺1/2(𝑀×𝑁)

)
� 𝑆𝑚+

𝑑𝑀 +𝑑𝑁
4 −[1] (K,M⊗𝛺1/2𝐶 ⊗�Hom(F , E )

)
.

(2.158)

Theorem 2.3.16. As in the terminologies of Definitions 2.3.10 and 2.3.15, suppose that 𝛤
is the graph of a homogeneous symplectomorphism 𝜘 from an open conic subset V ⊂ ¤T∗𝑁
into ¤T∗𝑀 and that K ⊂ 𝛤 is a conic subset which is closed in ¤T∗(𝑀 × 𝑁). Then, for any
conic subset U ⊂ V such that U (resp. 𝜘(U)) is closed in ¤T∗𝑁 (resp. ¤T∗𝑀), if A ∈
𝐼𝑚

(
𝑀 × 𝑁,K′; Hom(F , E ) ⊗ 𝛺1/2(𝑀 × 𝑁)

)
is non-characteristic on {

(
𝜘(U),U

)
} ⊂ 𝛤, then

there exists an elliptic E ∈ 𝐼−𝑚
(
𝑁 × 𝑀,K−1′; Hom(E ,F ) ⊗ 𝛺1/2(𝑁 × 𝑀)

)
such that

ES(𝐸𝐴 − 𝐼F ) ∩ U = ∅, ES(𝐴𝐸 − 𝐼E ) ∩ 𝜘(U) = ∅, (2.159)

where 𝐼E ∈ ΨDO0(𝑀; E ⊗ 𝛺1/2𝑀) and 𝐼F ∈ ΨDO0(𝑁; F ⊗ 𝛺1/2𝑁) are identity operators.
The parametrix E is unique in the sense that

(
U, 𝜘(U)

)
⊄ WF′(E − E′) for any other

parametrix E′ of A.

Proof. The arguments used to prove the scalar-version [35, Prop. 5.1.2] (see also,
e.g. [84, Thm. 4.2.5]) flows over the bundle case albeit provided here for complete-
ness. Let 𝑎 be a principal symbol of A in the sense of (2.158). By hypotheses, there
exists a 𝑏(·) ∈ 𝑆−𝑚

(
K,M−1 ⊗ �Hom(E ,F )

)
such that 𝑏𝑎 = 𝜎𝐼F

in a conic neighbourhood
of 𝛥U. By utilising appropriate microlocal partition of unities3𝛹 (resp. 𝛷) subordinated
to U (resp. 𝜘(U)), one chooses 𝑏 = 0 outside of a sufficiently small conic neighbour-
hood of {

(
𝜘(U),U

)
} where U is identified with 𝛥U (via projection). Then we have

3As in the terminologies of Definition 2.3.2, a family {𝛹𝛼}𝛼 of 𝛹𝛼 ∈ ΨDO0 (𝑀; E ⊗ 𝛺1/2) is called a
microlocal partition of unity if the supports of the Schwartz kernels of𝛹𝛼 ’s are locally finite, WF(𝛹𝛼) ⊂
U𝛼 and

∑
𝛹𝛼 = 𝐼. Here, (U𝛼)𝛼 is an open cover of the cosphere bundle S∗𝑀 such that both 𝛺

1/2 and E
admit trivialisations over its projection on 𝑀. A microlocal partition of unity always exists (see e.g. [98,
Lem. 6.10, 6.11] for a scalar version).
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a properly supported B0 ∈ 𝐼−𝑚
(
𝑁 × 𝑀,K−1′; Hom(E ,F ) ⊗ 𝛺1/2(𝑁 × 𝑀)

)
whose princi-

pal symbol is 𝜎𝛹 𝑏𝜎𝛷 ≡ 𝑏, and by the composition of Lagrangian distributions ((2.128)
and (2.129)), there exists a properly supported 𝑅 ∈ ΨDO−1(𝑁; F ⊗ 𝛺1/2𝑁) such that
𝐵0𝐴 = 𝐼F − 𝑅. Next, we want to invert 𝐼F − 𝑅 by making use of the Neumann series:
(𝐼F − 𝑅)−1 =

∑
𝑘∈N0

𝑅𝑘 . Set B𝑘 := 𝑅𝑘B0 ∈ 𝐼−𝑚−𝑘
(
𝑁 × 𝑀,K−1′; Hom(E ,F ) ⊗ 𝛺1/2(𝑁 × 𝑀)

)
and then

𝐼F = (𝐼F − 𝑅)
∞∑︁
𝑘=0

𝑅𝑘 =

𝑁−1∑︁
𝑘=0

𝑅𝑘 (𝐼F − 𝑅) +
∞∑︁
𝑘=𝑁

𝑅𝑘 (𝐼F − 𝑅) =
𝑁−1∑︁
𝑘=0

𝐵𝑘𝐴 + 𝑅𝑁 . (2.160)

Let E be defined by the asymptotic summation: E :∼ ∑
𝑘∈N0

B𝑘 , then inserting the last
equation one obtains

𝐸𝐴 − 𝐼F =

(
𝐸 −

𝑁−1∑︁
𝑘=0

𝐵𝑘

)
𝐴 − 𝑅𝑁 ∼

∞∑︁
𝑘=𝑁

𝐵𝑘𝐴 − 𝑅𝑁 ∈ ΨDO−𝑁 (𝑁; F ⊗ 𝛺1/2𝑁) (2.161)

for every 𝑁 ∈ N, which in turn proves the first part of the theorem as a right parametrix
can be constructed analogously.

To prove the uniqueness, we suppose that E′ is another right parametrix for A. Then{(
U, 𝜘(U)

)}
⊄ WF′ E = WF′(EAE′) = WF′ E′ (2.162)

and similarly for the left parametrix. �

Egorov’s theorem

We are now going to present a key theorem for microlocalisation (see Theorem 3.3.10)
related to the constructions presented in this section.

Theorem 2.3.17 (Egorov’s theorem). As in the terminologies of Definition 2.3.10, let 𝛤
be the graph of a homogeneous symplectomorphism 𝜘 : ¤T∗𝑁 → ¤T∗𝑀. Suppose that A ∈
𝐼𝑚

(
𝑀×𝑁, 𝛤′; Hom(F , E ) ⊗𝛺1/2(𝑀×𝑁)

)
,B ∈ 𝐼−𝑚

(
𝑁×𝑀, 𝛤−1′; Hom(E ,F ) ⊗𝛺1/2(𝑁×𝑀)

)
and that 𝑃 ∈ ΨDO𝑚′ (𝑀; E ⊗ 𝛺1/2𝑀) having a scalar principal symbol 𝜎𝑃. Then, B𝑃A ∈
ΨDO𝑚′ (𝑁; F ⊗ 𝛺1/2𝑁) is properly supported whose principal symbol is given by

𝜎B𝑃A = 𝜎BA(𝜘∗𝜎𝑃), (2.163)

where 𝜘∗ : 𝐶∞
( ¤T∗𝑀,Hom(E , E )

)
→ 𝐶∞

( ¤T∗𝑁,Hom(F ,F )
)

is the pullback map via 𝜘.

Proof. We will use the same strategy employed for proving the scalar version [23, Thm.
25.3.5]. By repeated applications of the composition of Lagrangian distributions, we
have 𝑃A ∈ 𝐼𝑚+𝑚′

(
𝑀×𝑁, 𝛤′; Hom(F , E ) ⊗𝛺1/2(𝑀×𝑁)

)
and B𝑃A ∈ ΨDO𝑚′ (𝑁; F ⊗ 𝛺1/2𝑁).

In order to compute 𝜎𝑃A, one lifts 𝜎𝑃 to 𝛤 via the pullbacks of the projector ¤T∗𝑀 × ¤T∗𝑁 →
¤T∗𝑀 followed by the inclusion 𝛤 ↩→ ¤T∗𝑀 × ¤T∗𝑁. Then 𝜎𝑃A = 𝜎𝑃𝜎A. Equivalently, one
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can lift 𝜘∗𝜎𝑃 to ¤T∗𝑀 × ¤T∗𝑁 via the projector ¤T∗𝑀 × ¤T∗𝑁 → ¤T∗𝑁 and then consider it as
a homomorphism on 𝛤 as before. Thus 𝑃A − A𝑅 ∈ 𝐼𝑚+𝑚′−1 (

𝑀 × 𝑁, 𝛤′; Hom(F , E ) ⊗
𝛺

1/2(𝑀 × 𝑁)
)

if 𝑅 ∈ ΨDO𝑚′ (𝑁; F ⊗ 𝛺1/2𝑁) having the principal symbol 𝜘∗𝜎𝑃. As 𝜎𝑃 is
scalar, therefore B𝑃A − BA𝑅 ∈ ΨDO𝑚′−1(𝑁; F ⊗ 𝛺1/2𝑁) which entails the claim. �

2.4 Literature

Historically, the theory pseudodifferential operators was developed from the theory of sin-
gular integral operators by Joseph J. KOHN and Louis NIRENBERG [99] and enriched, in
particular, by Lars HÖRMANDER [74].

Fourier integral operators are an enormous generalisation of pseudodifferential op-
erators, originated from the investigation of the singularities of solutions of hyperbolic
differential equations by Peter LAX [100] and in the study of asymptotic analysis in the
context of geometric optics and quantum mechanics by Victor MASLOV [101, Chap. 8].
Their somewhat local formulation was later systematically developed and globalised in
two seminal articles by Lars HÖRMANDER [78] and by Johannes J. DUISTERMAAT and
Lars HÖRMANDER [35] for scalar operators while the bundle version is available in the
fourth volume of Hörmander’s treatise [23].

Egorov’s theorem is named after Yu. V. EGOROV [102] who proved it at first. Since
then various generalisation of this result has been reported sporadically, e.g. [45], [103,
Thm. 3.2], [104, Thm. 1.7], [105, Thm. 6.1], [106, Prop. 3.3], [58, Prop. A.3]. The-
orem 2.3.17 is slightly general than the statements available in literature to the best of
our knowledge.

We refer, for instance, the monographs [8, 77, 85, 107] and the expository lecture
notes [87, 90, 98] for an in-depth discussion on pseudodifferential operators and mi-
crolocal analysis. For Fourier integral operators, the textbooks [11, 84, 85] are referred
for details.



Chapter 3

Feynman Propagators

The subject matter of this chapter is a microlocal construction of Feynman propagators for
normally hyperbolic operators and for Dirac-type operators on a globally hyperbolic spacetime.
These results are shown by constructing Feynman parametrices and by employing the well-posed
Cauchy problem. A vector bundle generalisation of the microlocalisation of a pseudodifferential
operator of real principal type is achieved in order to give the microlocal construction of Feynman
parametrices.

3.1 Lorentzian manifolds

By a Lorentzian manifold (M , g) we mean a Hausdorff, second countable, connected,
and smooth 𝑑 ≥ 2-dimensional manifold M endowed with a smooth Lorentzian metric
g of signature (+,− . . .−). The global existence of Lorentzian metrics depends on the
topology of M : they always exist on any non-compact M , whereas a compact M admits
a Lorentzian metric if and only if its Euler characteristic vanishes. Hausdorff condition
together with the existence of a Lorentzian metric entails that M is paracompact.

Since g is a (symmetric) non-degenerate bilinear map g : 𝐶∞(M ; TM ) ×𝐶∞(M ; TM )
→ 𝐶∞(M ,R), it induces a unique vector bundle (linear) isomorphism 𝐶∞(M ; TM ) 3
𝑋 ↦→ 𝑋♭ ∈ 𝐶∞(M ; T∗M ) defined pointwise via 𝑋♭𝑥 (·) := g𝑥 (𝑋𝑥 , ·) for any 𝑥 ∈ M .
Moreover, it induces another unique symmetric, non-degenerate, indefinite bilinear form
g−1 on T∗M , pointwise given by g−1

𝑥 (𝜉𝑥 , 𝜂𝑥) := g𝑥 (𝜉♯𝑥 , 𝜂♯𝑥) where ♯ : 𝐶∞(M ,T∗M ) →
𝐶∞(M ; TM ) is the inverse of ♭.

3.1.1 Causal structure

The causal structure is one of the drastic differences between a Lorentzian and a Rie-
mannian manfold. The signature of g allows one to make the following classification.

55
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Definition 3.1.1. A cotangent vector 𝜉 ∈ T∗𝑥M on any point 𝑥 in a Lorentzian manifold
(M , g) is called timelike if g−1

𝑥 (𝜉, 𝜉) > 0, spacelike if g−1
𝑥 (𝜉, 𝜉) < 0 or 𝜉 = 0, lightlike if

g−1
𝑥 (𝜉, 𝜉) = 0 whenever 𝜉 ≠ 0, and causal if 𝜉 is either timelike or lightlike.

The attribution of any covector according to this classification is called its causal char-
acter. The set ¤T∗0,𝑥M ⊂ ¤T∗𝑥M of all lightlike covectors at 𝑥 ∈ M is called the lightcone
at 𝑥 and it is an inner product space. One notices that, if 𝜉, 𝜂 ∈ ¤T∗𝑥M are timelike then
g−1
𝑥 (𝜉, 𝜂) ≶ 0. Thus, at each 𝑥 ∈ M , the cotangent vector space ¤T∗𝑥M has two possible

open convex cones of timelike covectors whose boundaries consist of the lightlike covec-
tors, and there is no intrinsic way to distinguish one from another albeit it is crucial to do
so for some purpose. ¤T∗𝑥M is called time-oriented if one makes a choice (termed future)
for one of these cones; the other cone is then termed as past. Whether such a designa-
tion of future and past is possible in a continuous fashion as 𝑥 varies over M gives the
notion of time-orientability of (M , g), which is logically independent of the topological
orientation of M . If 𝔱 is a smooth function on M that assigns to each 𝑥 ∈ M either a
future or equivalently a past cone, then it is called a time-orientation of (M , g). If M
admits a time-orientation then (M , g) is said to be time-orientable.

Definition 3.1.2. A time-oriented and orientated Lorentzian manifold is called a space-
time (M , g).

Note, a Lorentzian manifold is time-orientable if and only if it admits a smooth (highly
non-unique) global timelike vector field 𝑋. Let us pick a time-orientation once and for all
such that 𝑋 is future-directed at all points and then any causal 𝜉 ∈ ¤T∗𝑥M is future di-
rected if and only if g−1

𝑥 (𝜉, 𝑋♭) > 0. Therefore, we have a consistent notion of future
and past of any point in spacetime. To be precise, any differentiable curve 𝑐 : I →M is
called spacelike (resp. future/past directed causal) if its tangent d𝑐/d𝑠 is spacelike (resp.
future/past directed causal), where I ⊂ R is an interval and 𝑠 ∈ I.

We now introduce the causal structure of spacetime (M , g). If 𝑥, 𝑦 ∈M , then

• 𝑥 B 𝑦 means that there is a future directed timelike curve in M from 𝑥 to 𝑦;
• 𝑥 D 𝑦 means that either there is a future directed causal curve in M from 𝑥 to 𝑦,

or 𝑥 = 𝑦.

The causal future 𝐽+(𝑥) := {𝑦 ∈M | 𝑥 D 𝑦} of a point 𝑥 ∈M is defined as the set of
all points that can be reached by a future directed causal curve in M emanating from 𝑥

and 𝑥 itself. Analogously, 𝐽−(𝑥) := {𝑦 ∈ M | 𝑦 D 𝑥}. Then the causal future (past) of a
set 𝐾 ⊂M is defined by

𝐽±(𝐾) :=
⋃
𝑥∈𝐾

𝐽±(𝑥) (3.1)

and one also uses the notation

𝐽 (𝐾) := 𝐽+(𝐾) ∪ 𝐽−(𝐾). (3.2)

If one replaces causal curves with timelike curves then it yields chronological future/past.
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3.1.2 Globally hyperbolic spacetimes

A generic spacetime is too general to consider as it may contain pathological mathemat-
ical and physical properties. For instance, the initial-value problem for a wave equation
is not well-posed on an arbitrary spacetime. Also, there may exist closed causal curves
favouring the “grandfather paradox”. Therefore, we look for a subset of spacetimes ex-
cluding all such undesirable possibilities, as introduced below.

Definition 3.1.3. A spacetime (M , g) is called globally hyperbolic if and only if it is
causal and the diamonds 𝐽+(𝑥) ∩ 𝐽−(𝑦) are compact for all 𝑥, 𝑦 ∈M .

In what follows, any globally hyperbolic spacetime admits a specific global orthogonal
splitting. Such a characterisation is of utmost importance for our thesis and we introduce
the following terminologies in order to formulate the characterisation.

Definition 3.1.4. A Cauchy hypersurface 𝛴 in a Lorentzian manifold (M , g) is a subset
𝛴 ⊂M which is met exactly once by every inextensible timelike curve.

Definition 3.1.5. Any t ∈ 𝐶∞(M ,R) on a spacetime (M , g) is called a

• time function if t is strictly increasing along all future-directed causal curves;

• temporal function if t is smooth having a future-directed timelike gradient;

A (time and/or temporal) function is called Cauchy if its level sets 𝛴𝑡 := t−1(𝑡) are Cauchy
hypersurfaces for any 𝑡 ∈ R.

We now inscribe the global orthogonal splitting of a globally hyperbolic spacetime
following the survey article [108, Thm. 3.78].

Theorem 3.1.6 (Geroch [109]-Bernal-Sánchez [110] splitting theorem). Let (M , g) be
a spacetime. It is globally hyperbolic if and only if it admits a smooth spacelike Cauchy
hypersurface 𝛴 .

In this case, it allows a Cauchy temporal function t and, thus, it is isometrically diffeo-
morphic to the smooth product manifold

(M , g) � (R × 𝛴, βd𝑡2 − h𝑡), (3.3)

where β ∈ 𝐶∞(R × 𝛴,R+) is the lapse function, 𝑡 ∈ 𝐶∞(R × 𝛴,R) is the natural projection,
each level set 𝛴𝑡 of 𝑡 = cst is a spacelike Cauchy hypersurface, and h𝑡 is a Riemannian metric
on each 𝛴𝑡 , which varies smoothly with 𝑡.

Moreover, if Σ is a prescribed topological Cauchy hypersurface then there exists a smooth
Cauchy function t such that Σ is one of its level sets (Σ = Σ0). In addition, if Σ is

• acausal then t becomes a smooth Cauchy time function;
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• spacelike then t can be modified to obtain a Cauchy temporal function on M such that
Σ = t−1(0).

Furthermore, if 𝑆 ⊂M is a compact achronal set then it can be extended to a Cauchy hy-
persurface. Additionally, if 𝑆 is acausal and a smooth spacelike submanifold with boundary
then it can be extended to a spacelike Cauchy hypersurface 𝛴 ⊃ 𝑆.

Remark 3.1.7. Globally hyperbolic spacetimes (M , g) can always be foliated by a Cauchy
hypersurface 𝛴 , but the foliation is non-unique. Necessarily, 𝛴 is a closed subset and an
embedded topological submanifold of codimension 1.

Example 3.1.8. Let I ⊂ R be open and let (𝛴, h) be a connected Riemannian manifold.
Then (M := I×𝛴, g := d𝑡2 − 𝑓 2h) is a globally hyperbolic spacetime if and only if (𝛴, h)
is complete, where 𝑓 ∈ 𝐶∞(I,R+) (see e.g. [73, Lem. A.5.14]).

Physically speaking, our understanding of the physical universe is currently best ex-
plained by the “ΛCDM model” where the spacetime geometry is given by the Robertson-
Walker spacetime (see e.g. [111, Sec. 5.3], [89, Def. 7, p. 343]). This so-called standard
model of cosmology describes, for instance, the cosmic microwave background, expan-
sion of the universe and the cosmological Redshift pretty accurately (see e.g. [112]).
However, the standard model has a few limitations and the de Sitter spacetime (see
e.g. [111, Sec. 5.2], [89, p. 229]) offers a solution of some of these open problems.
The preceding example encompasses both these spacetimes together with, of course, the
Minkowski spacetime. Besides, a number of black hole solutions of Einstein equation are
globally hyperbolic, e.g., the interior and exterior of Schwarzschild spacetime, parts of re-
gions of the Reissner–Nordström and the Kerr spacetimes. There are, of course, solutions
of Einstein equation which are not globally hyperbolic at all. One of such spacetimes
received huge attention in the context of superstring theory is the anti-de Sitter solution
(see e.g. [111, Sec. 5.2], [89, p. 229]). Roughly speaking, globally hyperbolic space-
times are interesting because they offer prediction (or retrodiction) of the entire future
(or past) history of the universe from conditions at an instant of time.

Remark 3.1.9. If (M , g) is a globally hyperbolic spacetime then the set ¤T∗0M → M of
lightcones (lightlike geodesics on T∗M ) has a smooth bundle structure (see e.g. [92]).

3.2 Normally hyperbolic operators and parametrices

3.2.1 Normally hyperbolic operators (NHOs)

Definition 3.2.1. Let E →M be a vector bundle over a Lorentzian manifold (M , g). A
second-order linear differential operator (see e.g. [113, Def. 3.1], [73, Sec. 1.5])

� : 𝐶∞(M ; E ) → 𝐶∞(M ; E ) (3.4)
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is called a normally hyperbolic operator if its principal symbol

𝜎�(𝑥, 𝜉) := g−1
𝑥 (𝜉, 𝜉) 1(End E )𝑥 . (3.5)

is given by the spacetime metric g−1 on the cotangent bundle T∗M for all (𝑥, 𝜉) ∈
𝐶∞(M ; T∗M ).

In a local coordinate chart
(
𝑈, (𝑥𝑖)

)
of M , after trivialising E , � is given by

� � 𝑈 = −g𝑖 𝑗 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗
+ A𝑖 𝜕

i 𝜕𝑥𝑖
+ B, 𝑖, 𝑗 = 1, . . . , 𝑑, (3.6)

where A𝑖 ∈ 𝐶∞(𝑈; T𝑈 ⊗ End E𝑈), B ∈ 𝐶∞(𝑈, End E𝑈).

Normally hyperbolic operators arise naturally in the context of geometric analysis and
quantum field theories in curved spacetime, and we list below a few.

Example 3.2.2. Let E → M be a trivial-C-line bundle, that is, its sections are just C-
valued smooth functions 𝐶∞(M ) on (M , g). The covariant Klein-Gordon operator is
defined by (see e.g. [113, Sec. 3.1, Exm. 1], [73, Exm. 1.5.1])

� := −div ◦ grad−m2 − 𝜆 ric : 𝐶∞(M ) → 𝐶∞(M ), (3.7)

where m2 ∈ R+ is a parameter, physically interpreted as the mass-squared of a linear
Klein-Gordon field, 𝜆 is a coupling, ric is the Ricci scalar of M , grad 𝑓 := g♯ (d 𝑓 ) is the
gradient of a function 𝑓 ∈ 𝐶 (M ), and div(𝑋) := tr(∇LC𝑋) is the divergence of a vector
field 𝑋 ∈ 𝐶 (M ; TM ). Here ∇LC is the Levi-Civita connection of M and the endomor-
phism trace

tr : End E → C (3.8)

is the finite-dimensional trace on the fibres E𝑥 of any vector bundle E → 𝑀 over a generic
manifold 𝑀, defined by the composition of the canonical isomorphism End(E𝑥) � E ∗𝑥 ⊗ E𝑥
followed by the contraction mapping E ∗𝑥 ⊗ E𝑥 → C.

The particular case of the preceding expression of � when m, 𝜆 = 0 is called the
d’Alembertian or the relativistic wave operator which is locally given by

� = −g𝑖 𝑗∇LC
𝑖 ∇LC

𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑑. (3.9)

In case (M , g) := (R × 𝛴, d𝑡2 − h) is a ultrastatic manifold then

� = − 𝜕
2

𝜕𝑡2
− Δ (3.10)

is known as the wave operator of a Riemannian manifold (𝛴, h) where 𝑡 is the nat-
ural coordinate on R and Δ is the Laplace-Beltrami operator of (𝛴, h) in the geometers’
convention:

Δ := −divh ◦ grad = − 1
√

det h

𝜕

𝜕𝑥𝑖

(
h𝑖 𝑗
√

det h
𝜕

𝜕𝑥 𝑗

)
, 𝑖, 𝑗 = 2, . . . , 𝑑. (3.11)
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Example 3.2.3. Suppose that E →M be a trivial-C-line bundle over a 𝑑 ≥ 3-dimensional
Lorentzian manifold (M , g) and that � resp. ric are the d’Alembertian resp. the Ricci
scalar of (M , g). The Yamabe operator is defined by (see e.g. [113, Sec. 3.1, Exm.
2], [73, Def. 3.5.9])

Y := � + 𝑑 − 2
4(𝑑 − 1) ric : 𝐶∞(M ) → 𝐶∞(M ). (3.12)

Example 3.2.4. Let E := ∧𝑘T∗M be the bundle of 𝑘-forms over an oriented Lorentzian
manifold (M , g). The Hodge-d’Alembert operator is defined by (see e.g. [113, Sec.
3.1, Exm. 3], [73, Exm. 1.5.3])

� := d∗ ◦ d + d ◦ d∗ : 𝐶∞
(
M ;∧𝑘T∗M

)
→ 𝐶∞

(
M ;∧𝑘T∗M

)
, (3.13)

where d and d∗ are the exterior and the coexterior differentials, respectively.

Example 3.2.5. Let (E → M ,∇E ) be a vector bundle equipped with a connection ∇E

and (T∗M →M ,∇LC) is the cotangent bundle endowed with the Levi-CIvita connection
∇LC over a Lorentzian manifold (M , g). Then we have an induced connection

∇LC⊗E := ∇LC ⊗ 1E +1T∗M ⊗∇E (3.14)

on T∗M ⊗ E . The connection d’Alembertian is defined by the composition of the fol-
lowing three maps (see e.g. [73, Exm. 1.5.2])

𝐶∞(M ; E ) ∇
E

→ 𝐶∞(M ; T∗M ⊗ E ) ∇
LC⊗E
−−−−−→ 𝐶∞(M ; T∗M ⊗ T∗M ⊗ E )

trg ⊗𝐼−−−−→ 𝐶∞(M ; E )
(3.15)

where trg : 𝐶∞(M ; T∗M ⊗ T∗M ) → 𝐶∞(M ,R) denotes the metric trace:

trg
(
(𝑥, 𝜉) ⊗ (𝑥, 𝜂)

)
:= g−1

𝑥 (𝜉, 𝜂). (3.16)

The minus of a connection d’Alembertian,

� := − trg
(
∇LC⊗E ◦ ∇E

)
(3.17)

is a normally hyperbolic operator.

One observes that the scalar d’Alembertian (3.9) − trg (∇LC ◦d𝑢) is a special case of the
connection d’Alembertian when 𝑢 is a section of any trivial C-line bundle. Note that the
first two composition of (3.15)

Hess := ∇LC⊗E ◦ ∇E : 𝐶∞(M ; E ) → 𝐶∞(M ; T∗M ⊗ T∗M ⊗ E ) (3.18)

is called the Hessian and the corresponding differential operator Hess𝑋,𝑌 = ∇E
𝑋
∇E
𝑌
−∇E

∇LC
𝑋
𝑌

is called the second covariant derivative on E , where 𝑋,𝑌 are any tangent vectors on
M (see e.g. [114, p. 66]).
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Example 3.2.6. Let
(
E →M , (·|·),∇E

)
be a vector bundle equipped with a sesquilinear

form (·|·) and a connection ∇E whose dual is ∇E∗, over a Lorentzian manifold (M , g).
The Bochner-d’Alembertian, defined by

� := ∇E∗ ◦ ∇E : 𝐶∞(M ; E ) → 𝐶∞(M ; E ), (3.19)

differs from the corresponding connection d’Alembertian only by a minus sign: ∇E∗◦∇E =

− trg
(
∇LC⊗E ◦ ∇E

)
(see e.g. [114, Def. 2.4]). In any orthonormal frame {𝑒𝑖} of TM , it is

given by
� = −g𝑖 𝑗

(
∇E
𝑒𝑖
∇E
𝑒 𝑗
− ΓLC 𝑘

𝑖 𝑗 ∇E
𝑒𝑘

)
, 𝑖, 𝑗 , 𝑘 = 1, . . . , 𝑘, (3.20)

where ΓLC is the Levi-Civita connection 1-form with respect to 𝑒𝑖: ∇LC
𝑒𝑖
𝑒 𝑗 = Γ

LC 𝑘

𝑖 𝑗
𝑒𝑘 .

There are some operators which are not normally hyperbolic yet can be related with
a normally hyperbolic one with additional constraints.

Example 3.2.7. The Proca operator acting on covectors 𝜉 on M is defined as

P := d∗ ◦ d +m2 : 𝐶∞(M ; T∗M ) → 𝐶∞(M ; T∗M ), m ∈ ¤R, (3.21)

which is not normally hyperbolic. Nevertheless, this is equivalent to the normally hyper-
bolic operator d∗ ◦ d + d ◦ d +m2 whenever the Lorenz constraint d∗𝜉 = 0 is imposed.

It is evident from the preceding examples that � differs from some d’Alembertian only
by a smooth term. This is actually true in general.

Remark 3.2.8. By the Weitzenböck formula, given a normally hyperbolic operator � on
any vector bundle E → M over a Lorentzian manifold (M , g), there exists a unique
bundle connection ∇E , called the Weitzenböck connection and a unique potential 𝑉 ∈
𝐶∞(M ; End E ) such that (see e.g. [113, Prop. 3.1], [73, Lem. 1.5.5, 1.5.6]):

� = − trg
(
∇LC⊗E ◦ ∇E

)
+𝑉. (3.22)

Thus, in an orthonormal tangent frame {𝜕/𝜕𝑥𝑖} and a bundle frame {E𝑟}, a straight-
forward calculation using (3.20) and ∇E

𝑖
= 𝜕𝑖 + Γ𝑖, Γ being the Weitzenböck-connection

1-form with respect to 𝜕𝑖: ∇E
𝑖
E𝑟 = Γ𝑟

′
𝑖𝑟

E𝑟 ′ entails

(�𝑢)𝑟 = g𝑖 𝑗
(
− 𝜕2𝑢𝑟

𝜕𝑥𝑖𝜕𝑥 𝑗
−2Γ𝑟𝑖𝑟 ′

𝜕𝑢𝑟
′

𝜕𝑥 𝑗
+ΓLC 𝑘

𝑖 𝑗

𝜕𝑢𝑟

𝜕𝑥𝑘
−

(𝜕Γ𝑟
𝑗𝑟 ′

𝜕𝑥𝑖
−Γ𝑟𝑖𝑟 ′′Γ𝑟

′′
𝑗𝑟 ′ +Γ

LC,𝑘
𝑖 𝑗
Γ𝑟𝑘𝑟 ′

)
𝑢𝑟
′
)
+𝑉𝑢𝑟 , (3.23)

where 𝑖, 𝑗 , 𝑘 = 1, . . . , 𝑑 and 𝑟, 𝑟′, 𝑟′′ = 1, . . . , rk E , and ΓLC is the Levi-Civita connection
1-form with respect to 𝜕𝑖. Therefore, the subprincipal symbol of any normally hyperbolic
operator is given by

𝜎sub
� (𝑥, 𝜉)

(2.81)
= −2 i g𝑖 𝑗Γ𝑖𝜉 𝑗 + i g𝑖 𝑗ΓLC 𝑘

𝑖 𝑗 𝜉𝑘 +
i
2
𝜕2(g𝜇𝜈𝜉𝜇𝜉𝜈)
𝜕𝑥𝑖𝜕𝜉𝑖

+ i
2
Γ

LC 𝑗

𝑗𝑖

𝜕g𝜇𝜈𝜉𝜇𝜉𝜈

𝜕𝜉𝑖

= −2 i g𝑖 𝑗Γ𝑖𝜉 𝑗 + i
(
g𝑖 𝑗ΓLC 𝑘

𝑖 𝑗 +
𝜕g𝑖𝑘

𝜕𝑥𝑖
+ ΓLC 𝑗

𝑗𝑖
g𝑖𝑘

)
𝜉𝑘

= −2 i g𝑖 𝑗Γ𝑖𝜉 𝑗 , (3.24)
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because of the identities (see e.g. [115, (3.4.9)])

g𝑖 𝑗ΓLC 𝑘

𝑖 𝑗 = −
1√︁
| det g|

𝜕 (
√︁
| det g|g𝑖𝑘 )
𝜕𝑥𝑖

, Γ
LC 𝑗

𝑗𝑖
=

1
2

1
| det g|

𝜕 | det g|
𝜕𝑥𝑖

. (3.25)

If E carries a bundle metric (·|·) such that � is symmetric then ∇E is compatible with
(·|·) as well. We do not, however, assume this unless stated otherwise.

3.2.2 Green’s operators

Definition 3.2.9. Let E →M be a vector bundle over a time-oriented Lorentzian mani-
fold (M , g) and 𝐿 a differential operator on E . A Green’s operator 𝐺× for 𝐿 is a linear
mapping (see e.g. [73, Def. 3.4.1])

𝐺× : 𝐶∞c (M ; E ) → 𝐶∞(M ; E ) | 𝐿 ◦ 𝐺× = 𝐼, 𝐺× ◦ 𝐿 |𝐶∞c (M ;E ) = 𝐼 . (3.26)

A Green’s operator is called

• retarded 𝐺ret if supp(𝐺ret𝑢) ⊂ 𝐽+(supp 𝑢) and

• advanced 𝐺adv if supp(𝐺adv𝑢) ⊂ 𝐽−(supp 𝑢),

where 𝐽±(𝐾) denotes the causal future/past of a set 𝐾 ⊂M . The Jordan-Lichnerowicz-
Pauli or the causal Green’s operator is defined as the antisymmetric combination

𝐺 := 𝐺ret − 𝐺adv. (3.27)

In physics, Green’s operators are usually called propagators and we will use this termi-
nology as well. Propagators are closely related to the concept of fundamental solutions.

Definition 3.2.10. As in the terminologies of Definition 3.2.9, a fundamental solution
of 𝐿 at any 𝑥 ∈ M is an E ∗𝑥 -valued distribution on E (see e.g. [73, Def. 2.1.1], [72, Def.
3.1])

𝐹×𝑥 : 𝐶∞c (M ; E ∗) → E ∗𝑥 , 𝜙 ↦→ 𝐹×𝑥 (𝐿∗𝜙) = 𝜙(𝑥) (3.28)

where 𝐿∗ is the formal adjoint of 𝐿. In other words, 𝐹×𝑥 ∈ D′
(
M ; E ; E ∗𝑥

)
such that

𝐿𝐹×𝑥 = 𝛿𝑥 . (3.29)

A fundamental solution is called retarded 𝐹ret if supp 𝐹ret
𝑥 ⊂ 𝐽+(𝑥) and advanced 𝐹adv

if supp 𝐹adv
𝑥 ⊂ 𝐽−(𝑥). The antisymmetric combination of the preceding two defines the

Jordan-Lichnerowicz-Pauli or the causal fundamental solution 𝐹 := 𝐹ret − 𝐹adv.

To explain these concepts, let us look at the simplest non-trivial differential operator,
the partial derivative.
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Example 3.2.11. Let 𝑥 ∈ R𝑑 and we write it as 𝑥 = (𝑥1, 𝑥′) where 𝑥1 ∈ R and 𝑥′ =
(𝑥2, . . . , 𝑥𝑑) ∈ R𝑑−1. Since the distributional derivative of Heaviside step function1 Θ𝑥0 is
the Dirac delta distribution 𝛿𝑥0 concentrated at 𝑥0, the advanced, retarded, and causal
fundamental solutions of D1 := − i 𝜕/𝜕𝑥1 are

𝐹adv
1 (𝑥) = − iΘ(−𝑥1) ⊗ 𝛿(𝑥′), (3.30a)

𝐹ret
1 (𝑥) = − iΘ(𝑥1) ⊗ 𝛿(𝑥′), (3.30b)
𝐹1(𝑥′) = − i 𝛿(𝑥′). (3.30c)

Their Schwartz kernels are given by

Fadv
1 (𝑥 − 𝑦) = − iΘ(𝑦1 − 𝑥1) ⊗ 𝛿(𝑥′ − 𝑦′), (3.31a)

Fret
1 (𝑥 − 𝑦) = − iΘ(𝑥1 − 𝑦1) ⊗ 𝛿(𝑥′ − 𝑦′), (3.31b)

F1(𝑥′ − 𝑦′) = − i 𝛿(𝑥′ − 𝑦′) = − i
(2𝜋)𝑑−1

∫
R𝑑−1

ei(𝑥2−𝑦2)𝜃2+...+i(𝑥𝑑−𝑦𝑑)𝜃𝑑 d𝜃2 . . . d𝜃𝑑 .(3.31c)

One reads off the following facts from the Fourier integral representations of the
preceding fundamental solutions.

Proposition 3.2.12. As in the terminologies of Example 3.2.11, let 𝜒 be a smooth function
on R𝑑×R𝑑 vanishing near the diagonal. Then [35, Prop. 6.1.2] (see also [23, Prop. 26.1.2])

WF′ Fadv,ret
1 = 𝛥 ¤T∗R𝑑

⋃
𝐶

adv,ret
1 , (3.32)

𝐶
adv,ret
1 := {(𝑥, 𝜉; 𝑦, 𝜂) ∈ 𝐶1 | 𝑥1 ≶ 𝑦1}, (3.33)

𝐶1 := {(𝑥, 𝜉; 𝑦, 𝜂) ∈ T∗R𝑑 × T∗R𝑑 | 𝑥′ = 𝑦′, 𝜉′ = 𝜂′ ≠ 0, 𝜉1 = 0 = 𝜂1}, (3.34)
F1, 𝜒F

adv,ret
1 ∈ 𝐼−1/2(R𝑑 × R𝑑 , 𝐶′1), (3.35)

where 𝛥 ¤T∗R𝑑 is the diagonal in ¤T∗R𝑑 × ¤T∗R𝑑 and 𝐼−1/2(R𝑑 × R𝑑 , 𝐶′1) is the Lagrangian
distribution (Definition 2.1.8) on R𝑑 × R𝑑 associated with the canonical relation 𝐶1.

Suppose that 𝐹ret,adv
𝑥 is a family of retarded and advanced fundamental solutions for

the adjoint �∗ operator of a normally hyperbolic operator � on a vector bundle E →M

over a time-oriented Lorentzian manifold (M , g) and that 𝐹ret,adv
𝑥 depends smoothly on

𝑥 ∈ M in the sense that 𝑥 ↦→ 𝐹
ret,adv
𝑥 (𝜙) is smooth for any 𝜙 ∈ 𝐶∞c (M ; E ∗). If it satisfies

the differential equation �(𝐹ret,adv
· 𝜙) = 𝜙 then (see e.g. [73, Prop. 3.4.2])

(𝐺adv,ret𝜙) (𝑥) := 𝐹ret,adv
𝑥 (𝜙) (3.36)

defines advanced resp. retarded Green’s operators for �.

1We recall that it is defined as Θ𝑥0 (𝑥) := 1 for 𝑥 > 𝑥0 and 𝛩𝑥0 (𝑥) := 0 for 𝑥 < 𝑥0.
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Remark 3.2.13. It is a classical result that any normally hyperbolic operator � on a vector
bundle E →M over a globally hyperbolic spacetime (M , g) admits unique retarded and
advanced Green’s operators (see e.g. [73, Cor. 3.4.3], [72, Prop. 4.1, Rem. 4.3 b]):

𝐺adv,ret : 𝐶∞c (M ; E ) → 𝐶∞sc (M ; E ) (3.37)

Furthermore, the Green’s operators (𝐺adv,ret)∗ for the formal adjoint �∗ of � are re-
lated to 𝐺adv,ret by (see e.g. [73, Lem. 3.4.4])

∀𝜙 ∈ 𝐶∞c (M ; E ∗),∀𝑢 ∈ 𝐶∞c (M ; E ) :
(
(𝐺adv,ret)∗𝜙

)
(𝑢) = 𝜙

(
𝐺ret,adv𝑢

)
. (3.38)

Hence, the causal propagator

𝐺 := 𝐺ret − 𝐺adv : 𝐶∞c (M ; E ) → 𝐶∞sc (M ; E ) (3.39)

satisfies
(𝐺∗𝜙) (𝑢) = −𝜙(𝐺𝑢). (3.40)

A natural question in this context is, are there more Green’s operators for a given �?
In what follows, the answer leads to a special kind of propagators which are uniquely
characterised in terms of their wavefront sets instead of their supports, in contrast to the
advanced and retarded propagators.

3.2.3 Parametrices

In order to investigate the preceding question, it is useful to introduce a weaker notion
of Green’s operator, as defined below.

Definition 3.2.14. Let E , 𝛺1/2 → 𝑀 be a vector bundle resp. the half-density bundle over
a manifold 𝑀 and 𝑃 a properly supported pseudodifferential operator (Definition 2.3.2
and Definition 2.1.1) on 𝛺1/2-valued sections of E . A right parametrix of 𝑃 is a continu-
ous operator

𝐸R : 𝐶∞c (𝑀; E ⊗ 𝛺1/2) → 𝐶∞(𝑀; E ⊗ 𝛺1/2) | 𝑃𝐸R = 𝐼 + 𝑅, (3.41)

where 𝐼 is the identity pseudodifferential operator and 𝑅 is a smoothing operator. Simi-
larly, a left parametrix is defined by 𝐸L𝑃 = 𝐼 + 𝐿 where 𝐿 is a smoothing operator and
one says 𝐸 is a parametrix of 𝑃 when it is both a right and a left parametrix.

Now, let E →M be a vector bundle over a globally hyperbolic spacetime (M , g) and
let 𝐸 be a parametrix of a normally hyperbolic operator � on E :

�𝐸 ≡ 𝐼, 𝐸
(
� � 𝐶∞c (M ; E )

)
≡ 𝐼, (3.42)

where ≡ means modulo smoothing operators. Remark 3.2.13 entails that � admits at
least two parametrices: the advanced 𝐸adv and the retarded 𝐸ret. We would like to know
whether there are more parametrices. This question has been investigated in a great
detail by Duistermaat and Hörmander [35, Sec. 6.5, 6.6] for any scalar pseudodifferen-
tial operator of real principal type (Definition 2.2.10). To translate their analysis in the
present context, we revisit Example 2.3.8 and consider the following relation.
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Definition 3.2.15. Let ¤T∗0M → M be the bundle of lightlike covectors over a globally
hyperbolic spacetime (M , g). The geodesic relation 𝐶 is defined as the set of all covector
pairs in the product manifold ¤T∗0M × ¤T∗0M lying on the same geodesic on ¤T∗0M [35,
(6.5.2)] (see also [23, (26.1.8)]):

𝐶 :=
{
(𝑥, 𝜉; 𝑦, 𝜂) ∈ ¤T∗0M × ¤T∗0M | ∃!𝑠 ∈ R : (𝑥, 𝜉) =𝛷𝑠 (𝑦, 𝜂)

}
. (3.43)

The forward (resp. backward) geodesic relations 𝐶± are defined as the set of all
(𝑥, 𝜉; 𝑦, 𝜂) such that (𝑥, 𝜉) lies after (resp. before) (𝑦, 𝜂) on a geodesic:

𝐶± :=
{
(𝑥, 𝜉; 𝑦, 𝜂) ∈ ¤T∗0M × ¤T∗0M | ∃!𝑠 ∈ R≷0 : (𝑥, 𝜉) =𝛷𝑠 (𝑦, 𝜂)

}
. (3.44)

Here,𝛷𝑠 is the geodesic flow on the cotangent bundle and 𝑠 ∈ R is the flow-parameter.

Remark 3.2.16. The geodesic relation is a conic Lagrangian submanifold (see Defini-
tion A.1.5) of ¤T∗0M × ¤T∗0M which is closed in ¤T∗0(M ×M ) and consequently a homo-
geneous canonical relation (see Definition A.1.12) from ¤T∗0M to ¤T∗0M [35, Prop. 6.5.2]
(see also [23, Prop. 26.1.13]).

With these terminologies in hand, the wavefront sets of the Schwartz kernels Eadv, Eret

are given by

WF′ Eadv ⊂ 𝛥 ¤T∗M ∪ 𝐶adv, 𝐶adv := {(𝑥, 𝜉, 𝑦, 𝜂) ∈ 𝐶 | 𝑥 ∈ 𝐽−(𝑦)} , (3.45)
WF′ Eret ⊂ 𝛥 ¤T∗M ∪ 𝐶ret, 𝐶ret :=

{
(𝑥, 𝜉, 𝑦, 𝜂) ∈ 𝐶 | 𝑥 ∈ 𝐽+(𝑦)

}
. (3.46)

Duistermaat-Hörmander’s [35, p. 218] groundbreaking analysis shows that, if 𝑑 ≥ 3
then there are two more parametrices of � whose wavefront sets are off-diagonally given
by the forward and backward geodesic relations. These parametrices are called the dis-
tinguished parametrices in pure mathematics, whereas they are known as the Feynman
parametrices in the theoretical physics literature.

Definition 3.2.17. Let E →M be a vector bundle over a globally hyperbolic spacetime
(M , g) and � a normally hyperbolic operator on E . The Feynman 𝐸Fyn and the anti-
Feynman 𝐸aFyn parametrices of � are those parametrices of � whose Schwartz kernels
satisfy [35, p. 229]

WF′ EFyn ⊂ 𝛥 ¤T∗M ∪ 𝐶+, WF′ EaFyn ⊂ 𝛥 ¤T∗M ∪ 𝐶−, (3.47)

where 𝛥 ¤T∗M is the diagonal to the punctured cotangent manifold ¤T∗M × ¤T∗M and 𝐶±

are the forward (resp. backward) geodesic relations.

Therefore, given � on 𝑑 ≥ 3, one has at most 4 independent parametrices 𝐸adv, 𝐸ret,
𝐸Fyn, 𝐸aFyn. Evidently, the hindmost two are characterised by their wavefront sets rather
supports.

Remark 3.2.18. There are 16 parametrices of � in 𝑑 = 2 because ¤T∗0M has 4 connected
components, whereas ¤T∗0,±M are the two connected components of ¤T∗0M in 𝑑 ≥ 3.
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𝜉

𝑥
𝑦

𝜂

¤T∗0,−M

¤T∗0,+M

Figure 3.1: Schematic illustration of 𝐶+, 𝐶ret, 𝐶adv, 𝐶− in spacetime dimensions 𝑑 ≥ 3.
In these diagrams 𝑦 is fixed at the vertices of the cones and only the directions of 𝜉 are
shown while those of 𝜂 being left undisplayed for simplicity except for the top left one
(redrawn from [39, Fig. 1]).

3.3 Feynman propagators for a NHO

3.3.1 Primary results

To begin with, we provide a bundle version of the classic result by Duistermaat-Hörmander
[35, Thm. 6.5.3] (see also [23, Thm. 26.1.14]) on the existence and uniqueness of Feyn-
man parametrices of a normally hyperbolic operator. Recall that 𝐻𝑠

loc(𝑀; E ⊗ 𝛺1/2) is the
space of 𝛺1/2-valued sections of E that are locally in the Sobolev space 𝐻𝑠 with respect to
any smooth chart and any smooth bundle chart. The space of sections in 𝐻𝑠

loc(𝑀; E ⊗𝛺1/2)
of compact support is denoted by 𝐻𝑠

c (𝑀; E ⊗ 𝛺1/2). As usual, the space 𝐻𝑠
loc(𝑀; E ⊗ 𝛺1/2)

is equipped with the locally convex topology of convergence locally in 𝐻𝑠 (𝑀; E ⊗ 𝛺1/2).
The space 𝐻𝑠

c (𝑀; E ⊗ 𝛺1/2) is the union
⋃
𝐾b𝑀 𝐻

𝑠
c (𝐾; E ⊗ 𝛺1/2) and it is equipped with

the inductive limit topology, where the union runs over all compact subset 𝐾 of 𝑀. For
details, we refer, for instance [77, App. B1].

Theorem 3.3.1 (Existence and uniqueness of Feynman parametrices). Let E →M be a
vector bundle over a globally hyperbolic spacetime (M , g) and � a normally hyperbolic op-
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erator on E . Then, there exist unique2 Feynman 𝐸Fyn and anti-Feynman 𝐸aFyn parametrices
(given by (3.96)) of �. Moreover, for every 𝑘 ∈ R, 𝐸Fyn and 𝐸aFyn extend to continuous
maps from 𝐻𝑘

c (M ; E ) to 𝐻𝑘+1
loc (M ; E ) and the difference of their Schwartz kernels

EFyn − EaFyn ∈ 𝐼−3/2 (
M ×M , 𝐶′; Hom(E , E )

)
, (3.48)

where 𝐼−3/2(. . .) is the space of Lagrangian distributions (Definition 2.3.9) associated to
the geodesic relation 𝐶 (Definition 3.2.15). Furthermore, EFyn − EaFyn is non-characteristic
(Definition 2.3.14) at every point of 𝐶.

A special case of this result for the massive Klein-Gordon operator (Example 3.2.2)
was given by Radzikowski [39, Prop. 4.2-4.4] as a direct consequence of [35, Thm.
6.5.3]. Employing the distinguished global phase function approach of Fourier integrals
operators [116], Capoferri et al. [69, Thm. 5.2] have constructed these parametrices
for scalar wave operators with time-independent smooth potential in spatially compact
globally hyperbolic ultrastatic spacetime. Recently, Lewandowski [40, Prop. 3.5] has
published a direct construction for a real vector bundle utilising the Hadamard series
expansion along with the presentation of [73]. In contrast to these literature, our proof
is purely microlocal as in the original treatment [35, Thm. 6.5.3]. This only requires a
bundle version of microlocalisation, as developed in due course (Theorem 3.3.10, 3.3.13)
which is along the lines of Dencker’s [45] proof of propagation of the polarization sets
albeit our presentation is more geometric.

The Feynman parametrix 𝐸Fyn can be turned into a Green’s operator 𝐺Fyn - the Feyn-
man propagator for �. As elucidated in Appendix C, a Feynman propagator is intimately
related to a quantum state and hence this is equivalent to construct a Hadamard 2-point
distribution provided certain positivity3 property (as described below) is satisfied. This
remarkable property was first observed by Duistermaat-Hörmander [35, Thm. 6.6.2] for
scalar operators. Namely, that one can modify 𝐸Fyn by a smoothing operator 𝑅 such that

�̂� + 𝑅 := − i(𝐸Fyn − 𝐺adv) + 𝑅 (3.49)

is non-negative in the sense that (Ŵ + R) (𝑢 ⊗ 𝑢) ≥ 0 for any 𝑢 ∈ 𝐶∞c (M ). This means,
of course, that there exists a Feynman parametrix that has this property with 𝑅 = 0.
Thus, there exists a Feynman parametrix that satisfies �̂� ≥ 0 in the above sense. Unlike
functions, there is no notion of a positive operator on a vector bundle unless the bundle
is hermitian. Hence, we equip E with a hermitian form and generalise this positivity
property in the case of vector bundles.

Proposition 3.3.2. Let E → M be a vector bundle over a globally hyperbolic spacetime
(M , g) and � a normally hyperbolic operator on E . We assume that E is endowed with a
(non-degenerate) sesquilinear form (·|·) ∈ 𝐶∞(Ē ∗⊗E ) such that � is symmetric. Then, there

2In the sense of parametrices, i.e., modulo smoothing operators.
3This is related to the positivity of Wightman distributions in quantum field theory.
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exists a Feynman parametrix 𝐸Fyn of � such that �̂� := − i(𝐸Fyn −𝐺adv) is symmetric, where
𝐺adv is the advanced propagator for �. Additionally, if (·|·) is hermitian (positive-definite)
then �̂� can be chosen non-negative.

Duistermaat-Hörmander have proven their version by deploying a refined microlo-
calisation of scalar pseudodifferential operators [35, Lem. 6.6.4]. We provide such a
microlocalisation for normally hyperbolic operators in (3.103).

Finally, we turn the Feynman parametrix 𝐸Fyn into a Feynman propagator 𝐺Fyn util-
ising the well-posedness of Cauchy problem for � on a globally hyperbolic spacetime,
which in turn gives the existence of Hadamard bisolutions of �.

Theorem 3.3.3 (Existence of Feynman propagators). As in the setup of Proposition 3.3.2,
there exists a Feynman propagator 𝐺Fyn for � on

(
E →M , (·|·)

)
such that 𝑊 := − i(𝐺Fyn −

𝐺adv) is symmetric with respect to the sesquilinear form (·|·). In addition, if (·|·) is hermitian
then 𝐺Fyn can be chosen such that W(𝑢∗ ⊗ 𝑢) ≥ 0 for any 𝑢 ∈ 𝐶∞c (M ; E ). Thus, W defines a
Hadamard state. Here 𝐶∞(M ; E ) 3 𝑢 ↦→ 𝑢∗ ∈ 𝐶∞(M ; Ē ∗) is the fibrewise linear mapping
induced by (·|·).

Since Duistermaat-Hörmander [35, p. 229] have considered a much wider class of
operators - scalar pseudodifferential operators of real principal type, the pivotal step of
determining the appropriate smoothing operators required to obtain Feynman propaga-
tors from respective parametrices was, however, left open. This indeterminacy can be
fixed in various ways on special spacetimes even in the absence of the timelike Killing
vector field. Such constructions have appeared in the literature on microlocal analysis.
For example, Gell-Redman et al. [44, Thm. 3.6] have treated the scalar wave operator
in spaces with non-trapping Lorentzian scattering matrices. Vasy has constructed Feyn-
man propagators by making assumptions on global dynamics for (i) scalar symmetric
operators with real principal symbol in closed manifolds [67, Thm. 1], and in spaces of
Lorentzian scattering matrices for (ii) wave operators in Melrose’s b-pseudodifferential
algebraic framework [67, Thm. 7] and (iii) Klein-Gordon operators in Melrose’s scat-
tering pseudodifferential algebraic formalism [67, Thm. 10, 12]. His idea is to identify
the appropriate spaces where these operators are invertible and then define the Feyn-
man propagators as the inverse of those operators satisfying the required properties - a
generalisation of Feynman’s original (see Example C.3.2 and the comment afterward)
"± i 𝜖" prescription. As a consequence, he has also achieved respective positivity property
for Feynman parametrices [67, Cor. 5, 9, 11, 13]. A special case of Theorem 3.3.3 for
the Klein-Gordon operator minimally coupled to a static electromagnetic potential on a
static spacetime has been proven by Dereziński and Siemssen [68, Thm. 7.7]. In the
spirit of the limiting absorption principle, they have shown that the Feynman propagator
can be considered as the boundary value of the resolvent of the Klein-Gordon operator.
Employing Proposition 3.3.2 and ideas from [58, Sec. 3.3], Lewandowski [40, Thm. 4.3]
has recently given a construction of Hadamard states on a Riemannian vector bundle.
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In order to proof these assertions, we need some preparation, as presented in the
next two subsections. Some of the results of the following sections are interesting in a
broader context, so we will work on a vector bundle E → 𝑀 over a generic manifold 𝑀

for greater generality and come back to the context of a globally hyperbolic spacetime
(M , g) afterward.

3.3.2 Connection 1-forms and subprincipal symbols

Let E , 𝛺1/2 → 𝑀 be a vector bundle resp. the half-density bundle, over a manifold
𝑀. This has been observed that the subprincipal symbol (Definition 2.3.4) 𝜎sub

𝑃
of

𝑃 ∈ ΨDO𝑚 (𝑀; E ⊗ 𝛺1/2), 𝑚 ∈ R with scalar principal symbol 𝑝 transforms like a par-
tial4- connection 1-form under change of bundle charts (see e.g. [106, Prop. 3.1]). This
is perhaps not surprising given that the subprincipal symbol appears as a constant term
in transport equations. Connections that are naturally defined from transport equations
have appeared first in the work of Dencker on propagation of polarisation sets. They
are often referred to as the Dencker connections [45, p. 365-366] in the mathematical
physics literature. For the Maxwell system, Dencker found that this connection equals
the Levi-Civita connection. For the spin-Dirac operator (see Example 3.4.4), it was veri-
fied, for example, in [56] that the Dencker connection is indeed the spin-connection. In
this section, we will systematically explain the precise relation between a geometrically
defined connection on E and the parallel transporter induced by 𝜎sub

𝑃
. As already Re-

marked 2.3.5, 𝜎sub
𝑃

depends on the choice of trivialisation of E and 𝛺
1/2. We are going

to see below that under a change of bundle frames, this matrix will transform like a con-
nection 1-form along the Hamiltonian vector field 𝑋𝑝 in the bundle 𝜋∗E → ¤T∗𝑀 where
𝜋 : ¤T∗𝑀 → 𝑀 is the punctured cotangent bundle of 𝑀.

To begin with, let us summarise the transformation properties of the subprincipal
symbol. In case 𝑃 has a scalar principal symbol 𝑝 and 𝑄 ∈ ΨDO𝑚′ (𝑀; E ⊗ 𝛺1/2), 𝑚′ ∈ R
properly supported with principal symbol 𝑞, we have the following multiplication for-
mula [10, (1.4)] (see also, e.g. [24, Prop. 2.1.13])

𝜎sub
𝑃𝑄

= 𝜎sub∑
𝑙 𝑃

𝑟
𝑙
𝑄𝑙
𝑘

=
∑︁
𝑙

𝜎sub
𝑃𝑟
𝑙
𝑄𝑙
𝑘

[10, (1.4)]
=

∑︁
𝑙

𝜎sub
𝑃𝑟
𝑙
𝑞𝑙𝑘 + 𝑝

𝑟
𝑙𝜎

sub
𝑄𝑙
𝑘

+ 1
2 i

{
𝑝𝑟𝑙 , 𝑞

𝑙
𝑘

}
= 𝜎sub

𝑃
𝑞 + 𝑝 𝜎sub

𝑄
+ 1

2 i
{𝑝, 𝑞}, (3.50)

where we have used the linearity of 𝜎sub in the second line and {·, ·} is the Poisson bracket
(see (A.5)). Consequently, we also have [10, (1.3)]

𝜎sub
𝑃𝑘 = 𝑘 𝑝𝑘−1 𝜎sub

𝑃
(3.51)

4We recall that the partial connection ∇E on a vector bundle E → 𝑀 over a manifold 𝑀 with respect to
a foliation 𝑁 of 𝑀 is defined by the covariant derivative ∇E

𝑋
satisfying the standard properties for any vector

field 𝑋 on 𝑁 (see e.g. [117, p. 24]. Note, not all partial connections arise as restrictions of some “full”
connection, for instance, the Bott connection associated with any involutive distribution of any manifold.
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for any 𝑘 ∈ N. In addition, if 𝑃 is elliptic (Definition 2.3.7) and 𝐸 is a parametrix
(Definition 3.2.14) of 𝑃 then

𝜎sub
𝐸

= − 𝑝−2 𝜎sub
𝑃
, (3.52)

and in this sense the above formula also holds for any negative integer 𝑘.

We will now show that the subprincipal symbol indeed has the claimed transforma-
tion property under a change of bundle charts. In fact, we show a microlocal version of
this statement (see also [118]).

Proposition 3.3.4. Let 𝛺1/2 → 𝑀 be the half-density bundle over a manifold 𝑀 and let
𝑚, 𝑚′ ∈ R, 𝑁 ∈ N. Assume 𝑃 ∈ ΨDO𝑚 (𝑀,C𝑁×𝑁 ⊗ 𝛺1/2) having a scalar principal symbol 𝑝.
Suppose that 𝑄 ∈ ΨDO𝑚′ (𝑀,C𝑁×𝑁 ⊗ 𝛺1/2) is non-characteristic at some (𝑥0, 𝜉

0) ∈ ¤T∗𝑀 and
that 𝐸 is a microlocal parametrix of 𝑄 in an open conic neighbourhood U of (𝑥0, 𝜉

0). Then
the subprincipal symbol of 𝐸𝑃𝑄 is

∀(𝑥, 𝜉) ∈ U : 𝜎sub
𝐸𝑃𝑄
(𝑥, 𝜉) = (𝑞−1𝜎sub

𝑃
𝑞) (𝑥, 𝜉) − i

(
𝑞−1𝑋𝑝 (𝑞)

)
(𝑥, 𝜉), (3.53)

where 𝑞 is the principal symbol of 𝑄 and 𝑋𝑝 is the Hamiltonian vector field generated by 𝑝.

Proof. Since 𝑃 has a scalar principal symbol, the order of the commutator [𝑃,𝑄]− is
𝑚 + 𝑚′ − 1 and the principal symbol of 𝐸𝑃𝑄 is microlocally that of 𝑃. These imply that
the order of 𝐸 [𝑃,𝑄]− is 𝑚−1 and that (𝑥0, 𝜉

0) ∉ ES(𝐸𝑃𝑄−𝑃−𝐸 [𝑃,𝑄]−). Thus, deploying
the order,

𝜎sub
𝐸𝑃𝑄

= 𝜎sub
𝑃
+ 𝜎𝐸 [𝑃,𝑄]− (3.54)

on U. It remains to compute the principal symbol of [𝑃,𝑄]−. Since the principal symbol
of 𝑃 is scalar-valued, we obtain the commutator relation (see e.g. [106, (14)])

𝜎[𝑃,𝑄]− = − i{𝑝, 𝑞} + [𝜎sub
𝑃
, 𝑞]−, (3.55)

as a consequence of the multiplication formula (3.50). Therefore, onU, we get 𝜎𝑄−1 [𝑃,𝑄]− =

𝑞−1𝜎[𝑃,𝑄]− = − i 𝑞−1{𝑝, 𝑞} + 𝑞−1𝜎sub
𝑃
𝑞 − 𝜎sub

𝑃
and the result follows. �

As a simple consequence of the above product formula we also have

Proposition 3.3.5. As in the terminologies of Proposition 3.3.4, let 𝑄 has a scalar principal
symbol 𝑞 and vanishing subprincipal symbol. If 𝑃 has a scalar principal symbol 𝑝 and a
subprincipal symbol 𝜎sub

𝑃
, then

𝜎sub
𝑄𝑃𝑄

= 𝑞2𝜎sub
𝑃
. (3.56)

With these preparations in hand, we introduce the following notion of a connection
1-form induced by the subprincipal symbol of a pseudodifferential operator.
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Definition 3.3.6. Let (E ,F → 𝑀;∇E ,∇F ) be two vector bundles over a manifold 𝑀,
equipped with their connections ∇E ,∇F and let 𝛺1/2 → 𝑀 be the half-density bun-
dle. A connection ∇E ⊗F on the tensor product bundle E ⊗ F → 𝑀 will be called
𝑃 ∈ ΨDO𝑚 (𝑀; E ⊗ 𝛺1/2,F ⊗ 𝛺1/2)-compatible if and only if

∀(𝑥, 𝜉) ∈ Char 𝑃 : Γ
(
(d𝑥𝜋)𝑋𝑝

)
(𝑥, 𝜉) = i𝜎sub

𝑃
(𝑥, 𝜉), (3.57)

where 𝜎sub
𝑃

resp. Char 𝑃 are the subprincipal symbol resp. the characteristic set of 𝑃, Γ
is the connection 1-form of ∇E ⊗F and 𝜋 : ¤T∗𝑀 → 𝑀 is the punctured cotangent bundle.
In other words, ∇E ⊗F indices the covariant derivative

∇𝜋∗Hom(E ,F )
𝑋𝑝

= 𝑋𝑝 + Γ
(
(d𝜋)𝑋𝑝

)
(3.58)

on the bundle 𝜋∗Hom(E ,F ) → ¤T∗𝑀 along the Hamiltonian vector field 𝑋𝑝 generated by
the principal symbol 𝑝 of 𝑃.

This definition makes sense because both quantities, Γ and 𝜎sub
𝑃

have the same trans-
formation law under change of bundle frame. Hence 𝑋𝑝+i𝜎sub

𝑃
has an invariant meaning.

Proposition 3.3.7. Let E , 𝛺1/2 → 𝑀 be a vector bundle resp. the half-density bundle
over a manifold 𝑀 and 𝑚, 𝑚′ ∈ R, 𝑁 ∈ N. Suppose that 𝑃 ∈ ΨDO𝑚 (𝑀; E ⊗ 𝛺1/2) has a
scalar principal symbol 𝑝 and that E admits a 𝑃-compatible connection ∇E . Assume that
𝑄 ∈ ΨDO𝑚′ (𝑀,C𝑁×𝑁 ⊗ 𝛺1/2) having a scalar principal symbol 𝑞 and vanishing subprincipal
symbol. Then ∇E is 𝑄𝑃𝑄-compatible.

Proof. We fix any bundle frame to check this. Then 𝑋𝑞𝑝𝑞 = {𝑞𝑝𝑞, ·} = {𝑞2𝑝, ·} = 𝑞2{𝑝, ·} +
2𝑝𝑞{𝑞, ·}. When restricted to Char 𝑃 this equals 𝑞2{𝑝, ·} = 𝑞2𝑋𝑝. Hence, on Char 𝑃 we
have

∇𝜋∗Hom(E ,E )
𝑋𝑞𝑝𝑞

− 𝑋𝑞𝑝𝑞 = 𝑞2
(
∇𝜋∗Hom(E ,E )
𝑋𝑝

− 𝑋𝑝
)
= 𝑞2𝜎sub

𝑃
= 𝜎sub

𝑄𝑃𝑄
. (3.59)

�

The primary observation is now that the Weitzenböck connection (Remark 3.2.8)
defined by a normally hyperbolic operator � is compatible with � in the above sense.

Theorem 3.3.8. Let E → M be a vector bundle over a Lorentzian manifold (M , g) and
� a normally hyperbolic operator on E . If ∇E is the corresponding Weitzenböck connection
then it is �-compatible.

Proof. Since the computation is local, we choose a coordinate basis {(𝑥𝑖, 𝜕𝑖)} of T𝑥M to
compute the Hamiltonian vector field 𝑋g generated by the principal symbol g−1 of �:

𝑋g (𝑥, 𝜉) =
𝜕 (g𝜇𝜈𝜉𝜇𝜉𝜈)

𝜕𝜉𝑖

𝜕

𝜕𝑥𝑖
−
𝜕 (g𝜇𝜈𝜉𝜇𝜉𝜈)

𝜕𝑥𝑖
𝜕

𝜕𝜉𝑖
= 2𝑔𝑖 𝑗𝜉 𝑗

𝜕

𝜕𝑥𝑖
− 𝜕g

𝜇𝜈

𝜕𝑥𝑖
𝜉𝜇𝜉𝜈

𝜕

𝜕𝜉𝑖
. (3.60)

Hence, (d𝑥𝜋)𝑋g = 2𝑔𝑖 𝑗𝜉 𝑗𝜕𝑖 and picking any bundle frame {E𝑟}, we can see that

Γ
(
(d𝑥𝜋)𝑋g

)
(𝑥, 𝜉) = 2𝑔𝑖 𝑗Γ𝑖𝜉 𝑗

(3.24)
= i𝜎sub

� (𝑥, 𝜉). (3.61)

�
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A straightforward application of this theorem and Proposition 3.3.7 yields

Corollary 3.3.9. As in the terminologies of Theorem 3.3.8, let 𝑁 ∈ N. Suppose that 𝑄 ∈
ΨDO−1/2(M ,C𝑁×𝑁 ) having a scalar principal symbol and vanishing subprincipal symbol.
Then ∇E is 𝑄�𝑄-compatible, i.e. the Weitzenböck connection is compatible with the first-
order operator 𝑄�𝑄.

3.3.3 Microlocal conjugate of a NHO

Two pseudodifferential operators are called microlocally conjugate if they can be con-
jugated to one another by an elliptic Fourier integral operator once they have been
appropriately localised in cotangent space. The key point is that under some natural
assumptions any first-order pseudodifferential operator can be microlocally conjugated
to a vector field. This is originally due to Duistermat and Hörmander [35, Prop. 6.1.4]
for scalar operators of real principal type (Definition 2.2.10), which has been extended
to vector bundles by Dencker [45] who formulated microlocal conjugate of a system
of classical pseudodifferential operators locally of real principal type (Definition 2.3.6).
More precisely, Dencker transformed the system of operators to a scalar pseudodiffer-
ential operator 𝑃 (modulo smoothing operators) with vanishing subprincipal symbol by
conjugating with a system of elliptic pseudodifferential operators. Then, he depicted the
microlocal conjugation of 𝑃 with D1 := − i1C𝑘×𝑘 𝜕1 by an elliptic Fourier integral operator
associated with a symplectomorphism connecting 𝜎𝑃 to 𝜎D1

.

In this section we will explain microlocalisation in an intrinsic geometric language
and formulate Dencker’s result in a slightly more general form. We are going to show
that any “appropriate”(as precisely given below) first-order pseudodifferential operator
𝑃 ∈ ΨDO𝑚 (𝑀; E ⊗ 𝛺1/2) having a scalar principal symbol is microlocally conjugate to D1
in the sense of (3.63c) in the theorem below.

Theorem 3.3.10 (Microlocalisation). Let E , 𝛺1/2 → 𝑀 be a vector bundle and the bun-
dle of half-densities over a 𝑑-dimensional manifold 𝑀, respectively. Suppose that 𝑃 ∈
ΨDO1(𝑀; E ⊗ 𝛺1/2) is a properly supported pseudodifferential operator on E with real
scalar principal symbol 𝑝 such that

(a) 𝑝(𝑥0, 𝜉
0) = 0 for some element (𝑥0, 𝜉

0) in the punctured cotangent bundle ¤T∗𝑀 of 𝑀;

(b) the Hamiltonian vector field 𝑋𝑝 of 𝑝 and the radial direction are linearly independent
at (𝑥0, 𝜉

0).

Then for any 𝑚 ∈ R, there exist

(i) a homogeneous symplectomorphism 𝜘 from an open conic neighbourhood Ũ of (0, 𝜂1
d𝑦1) in ¤T∗R𝑑 to an open conic coordinate chart

(
U, (𝑥𝑖, 𝜉𝑖)

)
of (𝑥0, 𝜉

0) in ¤T∗𝑀 such
that

𝜘∗𝑝 = 𝜉11Hom(E ,E ); (3.62)
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(ii) properly supported Lagrangian distributions B ∈ 𝐼𝑚
(
𝑀×R𝑑 , 𝛤′; Hom(C𝑘 , E )⊗𝛺1/2(𝑀×

R𝑑)
)

and B̃ ∈ 𝐼−𝑚
(
R𝑑 ×𝑀, 𝛤−1′; Hom(E ,C𝑘 ) ⊗ 𝛺1/2(R𝑑 ×𝑀)

)
so that 𝐵𝐵, 𝐵𝐵 both are

zero-order pseudodifferential operators and

WF′B ⊂ U(𝑥0,𝜉
0;0,𝜂1d𝑦1) , WF′ B̃ ⊂ Ũ(0,𝜂1d𝑦1;𝑥0,𝜉

0) , (3.63a)

(𝑥0, 𝜉
0) ∉ ES(𝐵𝐵 − 𝐼E ), (0, 𝜂1d𝑦1) ∉ ES(𝐵𝐵 − 𝐼), (3.63b)

(𝑥0, 𝜉
0) ∉ ES(𝐵D1𝐵 − 𝑃), (0, 𝜂1d𝑦1) ∉ ES(𝐵𝑃𝐵 − D1), (3.63c)

where 𝑘 := rk E , 𝛤 is the graph of 𝜘, D1 := − i1C𝑘×𝑘 𝜕/𝜕𝑦1 : 𝐶∞c (R𝑑 ,C𝑘 ) → 𝐶∞c (R𝑑 ,C𝑘 ),
and U(𝑥0,𝜉

0;0,𝜂1d𝑦1) resp. Ũ(0,𝜂1d𝑦1;𝑥0,𝜉
0) are small conic neighbourhoods of (𝑥0, 𝜉

0; 0,
𝜂1d𝑦1) ∈ ¤T∗𝑀 × ¤T∗R𝑑 resp. (0, 𝜂1d𝑦1; 𝑥0, 𝜉

0) ∈ ¤T∗R𝑑 × ¤T∗𝑀.

In additional, if there are more structures on E then the Fourier integral operators 𝐵, 𝐵 can
be simplified further as follows.

(A) If E → 𝑀 is endowed with a sesquilinear form (·|·) with respect to which 𝑃 is sym-
metric, then 𝐵 can be chosen as the formal adjoint of 𝐵 provided that C𝑘 is endowed
with a standard sesquilinear form of the same signature as (·|·).

(B) If E → 𝑀 is equipped with a 𝑃-compatible connection ∇E then the principal symbols
of B resp. B̃ can be chosen 1 near (𝑥0, 𝜉

0; 0, 𝜂1d𝑦1) resp. (0, 𝜂1d𝑦1; 𝑥0, 𝜉
0) with respect

to a frame that is parallel along 𝑋𝑝.

(C) On the vector bundle
(
E → 𝑀, (·|·),∇E

)
where ∇E is a 𝑃-compatible connection and

𝑃 is symmetric with respect to the sesquilinear form (·|·), we can choose B such that
its principal symbol equals 1 near (𝑥0, 𝜉

0; 0, 𝜂1d𝑦1) with respect to a frame that is
unitary and parallel along 𝑋𝑝, and B̃ = B∗.

A schematic of this notion has been portrayed in Figure 3.2.

U U′

𝜋∗Hom(E , E )U C𝑘×𝑘

𝜘

𝜎𝑃

𝜘

𝜎D1

𝐶∞c (𝑀; E ⊗ 𝛺1/2) 𝐶∞c (R𝑑 ,C𝑘 )

𝐶∞c (𝑀; E ⊗ 𝛺1/2) 𝐶∞c (R𝑛,C𝑘 )

𝐵

𝑃

𝐵

D1

Figure 3.2: A schematic diagram of microlocalisation. The diagram on the right com-
mutes in a microlocal sense (3.63c) and the map 𝜘 is defined by 𝜘(·) = 𝜎B(·)𝜎B̃ with all
other symbols as defined in Theorem 3.3.10.

Proof. We will prove the proposition imitating the strategy used for the scalar version [35,
Prop. 6.1.4, Lem. 6.6.4] (see also [23, Prop. 26.1.3]). The existence of 𝜘 satisfy-
ing (3.62) is guaranteed by the homogeneous Darboux Theorem A.1.4 which prerequi-
sites our hypotheses (a) and (b). Suppose that 𝑏 ∈ 𝑆𝑚

(
𝛤;M⊗�Hom(C𝑘 , E )

)
has an inverse
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in a conic neighbourhood of (𝑥0, 𝜉
0; 0, 𝜂1d𝑦1) ∈ 𝛤. Then we can obtain a properly sup-

ported B1 ∈ 𝐼𝑚
(
𝑀 ×R𝑑 , 𝛤′; Hom(C𝑘 , E ) ⊗ 𝛺1/2(𝑀 ×R𝑑)

)
such that WF′B1 ⊂ U(𝑥0,𝜉

0;0,𝜂1d𝑦1)
and B1 is non-characteristic (Definition 2.3.14) at (𝑥0, 𝜉

0; 0, 𝜂1d𝑦1) from the construction
given in Section 2.3.6.

By Theorem 2.3.16, there exists a unique microlocal parametrix B̃1 ∈ 𝐼−𝑚
(
R𝑑×𝑀, 𝛤−1′;

Hom(E ,C𝑘 )⊗𝛺1/2(R𝑑×𝑀)
)

such that (3.63b) is satisfied . Since B1 and B̃1 have reciprocal
principal symbols to each other onU(𝑥0,𝜉

0;0,𝜂1d𝑦1), 𝐵1𝑃𝐵1 has the principal symbol 𝜂1 1C𝑘×𝑘

on U′ due to (3.62) and the Egorov Theorem 2.3.17. Furthermore

(0, 𝜂1d𝑦1) ∉ ES(𝐵1𝑃𝐵1 − D1 −𝑄) (3.64)

for some 𝑄 ∈ ΨDO0(R𝑑 ,C𝑘×𝑘 ).

To find the operators 𝐵 and 𝐵 with the claimed properties, we construct properly
supported elliptic 𝐵2, 𝐵2 ∈ ΨDO0(R𝑑 ,C𝑘×𝑘 ) such that

𝐵2𝐵2 ≡ 𝐼 ⇔ 𝐵2𝐵2 = 𝐼 mod ΨDO−∞(R𝑑 ,C𝑘×𝑘 ), (3.65)
𝐵2(D1 +𝑄)𝐵2 ≡ D1 ⇔ 𝐵2(D1 +𝑄)𝐵2 = D1 mod ΨDO−∞(R𝑑 ,C𝑘×𝑘 ), (3.66)

and one sets 𝐵 := 𝐵1𝐵2 and 𝐵 := 𝐵2𝐵1. Then (3.65), (3.66) and (3.64) imply

(0, 𝜂1d𝑦1) ∉ ES
(
𝐵2(𝐵1𝐵1 − 𝐼)𝐵2

)
= ES(𝐵𝐵 − 𝐼), (3.67)

(0, 𝜂1d𝑦1) ∉ ES
(
𝐵2(𝐵1𝑃𝐵1 − 𝐷1 −𝑄)𝐵2

)
= ES(𝐵𝑃𝐵 − D1), (3.68)

which proves the second half of (3.63b) and (3.63c), and the first half follows immedi-
ately after we multiply from left and right by 𝐵 and by 𝐵.

It therefore remains to construct 𝐵2 and 𝐵2 such that (3.65) and (3.66) hold. By
the existence of a parametrix (see e.g. [77, Thm. 18.1.24]), for every elliptic 𝐵2 ∈
ΨDO0(R𝑑 ,C𝑘×𝑘 ) there exists 𝐵2 ∈ ΨDO0(R𝑑 ,C𝑘×𝑘 ) such that 𝐵2𝐵2 − 𝐼 and 𝐵2𝐵2 − 𝐼 are
smooth. Multiplying (3.66) by 𝐵2 from the left we arrive at the equivalent condition
for (3.66) that

[D1, 𝐵2]− +𝑄𝐵2 ≡ 0 (3.66′)

for some elliptic 𝐵2.

We will now construct a solution of (3.66′) order by order, starting with the principal
symbol. The principal symbol of (3.66′) vanishes provided

− i
{
𝜎D1

, 𝜎𝐵2

}
+ 𝜎𝑄𝜎𝐵2

= 0, (3.69)

as the the subprincipal symbol of D1 vanishes; cf. (3.55). If 𝑞 is the principal symbol of
𝑄, then the preceding equation yields

𝜕𝑏0

𝜕𝑦1
= − i 𝑞𝑏0 (3.70)
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for the principal symbol 𝑏0 of 𝐵2. This is a first-order differential equation, hence a
unique solution exists given the initial condition 𝑏0(𝑦1 = 0, ·) = 1C𝑘×𝑘 and this solution
depends smoothly on 𝑞. By construction 𝑏0(𝑦, 𝜂) is homogeneous of degree zero and
det(𝑏0(𝑦, 𝜂)) is non-vanishing. Therefore 𝑏−1

0 exists and is homogeneous of degree zero.
Defining a properly supported 𝐵2,0 ∈ ΨDO0(R𝑑 ,C𝑘×𝑘 ) with homogeneous principal sym-
bol 𝑏0, we now successively construct 𝐵2,𝑘 ∈ ΨDO−𝑘 (R𝑑 ,C𝑘×𝑘 ) so that, for every 𝑛 ∈ N:

[D1, 𝐵2,0 + . . . + 𝐵2,𝑛]− +𝑄(𝐵2,0 + . . . + 𝐵2,𝑛) = 𝑅𝑛+1 ∈ ΨDO−(𝑛+1) (R𝑑 ,C𝑘×𝑘 ). (3.71)

This is equivalent to the corresponding principal symbols 𝑏𝑛 of 𝐵2,𝑛 and 𝑟𝑛 of 𝑅𝑛 of degree
−𝑛, to satisfy

− i
𝜕𝑏𝑛

𝜕𝑦1
+ 𝑞𝑏𝑛 = −𝑟𝑛. (3.72)

This equation can be solved by the Duhamel principle and the solution reads

𝑏𝑛 (𝑦, 𝜂) = − i 𝑏0(𝑦, 𝜂)
∫ 𝑦1

0
𝑏−1

0 (𝑡, 𝑦
2, . . . , 𝑦𝑑; 𝜂) 𝑟𝑛 (𝑡, 𝑦2, . . . , 𝑦𝑑; 𝜂) d𝑡. (3.73)

Then, using asymptotic summation (see Definition B.1.4) of the symbols of 𝐵2,𝑛, we can
now construct an operator 𝐵2 satisfying (3.66′).

The case when 𝑃 is symmetric:
We are now going to prove that the operators 𝐵 and 𝐵 can be chosen microlocally unitary
in case 𝑃 is symmetric with respect to (·|·). We endow the space 𝐶∞c (R𝑑 ,C𝑘 ) with a
standard sesquilinear scalar product of the same signature as (·|·). The operator D1
is then symmetric. Furthermore, we make the choice 𝑚 = 0. Acting with B ∈ 𝐼0

(
𝑀 ×

R𝑑 , 𝛤′; Hom(C𝑘 , E )⊗𝛺1/2(𝑀×R𝑑)
)

from the left of (3.63c) gives the equivalent microlocal
conjugate relation

(𝑥0, 𝜉
0; 0, 𝜂1d𝑦1) ∉ WF′(𝑃B − BD1) (3.74)

between 𝑃 and D1. Taking its adjoint we have (0, 𝜂1d𝑦1; 𝑥0, 𝜉
0) ∉ WF′(B∗𝑃−D1B

∗) where
B∗ ∈ 𝐼0

(
R𝑑 × 𝑀, 𝛤−1′; Hom(E ∗,C𝑘 ) ⊗ 𝛺1/2(R𝑑 × 𝑀)

)
and consequently

(0, 𝜂1d𝑦1) ∉ ES(𝐵∗𝑃𝐵 − D1𝐵
∗𝐵), (3.75a)

(0, 𝜂1d𝑦1) ∉ ES(𝐵∗𝑃𝐵 − 𝐵∗𝐵D1). (3.75b)

Thus (0, 𝜂1d𝑦1) ∉ ES [𝐵∗𝐵,D1]− and 𝐵∗𝐵 is non-characteristic at (0, 𝜂1d𝑦1). Since 𝐵∗𝐵
is a pseudodifferential operator and i D1 is differentiation with respect to 𝑦1, the total
symbol of the commutator [𝐵∗𝐵,D1]− is the − i times the 𝑦1-derivative of the total symbol
of 𝐵∗𝐵. Thus, on the the level of symbols, the above implies that the total symbol of 𝐵∗𝐵
is the sum of a term independent of 𝑦1 and a term that is rapidly decaying in a conic
neighborhood U′ of (0, 𝜂1d𝑦1). It is bounded below on U′ because of the ellipticity of
𝐵∗𝐵 there. By Proposition 3.3.11 (presented immediately after this proof), one can find
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a properly supported symmetric𝛹 ∈ ΨDO0(𝑈′,C𝑘×𝑘 ) whose principal symbol is the same
as that of 𝐵∗𝐵 and such that

(0, 𝜂1d𝑦1) ∉ Char𝛹, (3.76a)
(0, 𝜂1d𝑦1) ∉ ES(𝛹 ∗𝛹 − 𝐵∗𝐵), (3.76b)
(0, 𝜂1d𝑦1) ∉ ES [𝛹,D1]−, (3.76c)

where𝑈′ is the projection ofU′ on R𝑑. Note that Proposition 3.3.11 (stated for operators
acting on the same bundle) can be used only in a local trivialisation of E by an orthonor-
mal frame that identifies the fibre of E with C𝑘 in such a way that the sesquilinear forms
are identified. It is at this stage that we must require the sesquilinear forms to have the
same signature.

Here the last property follows from the fact that the construction of the full symbol
of 𝛹 in Proposition 3.3.11 involves only multiplication and asymptotic summation of
symbols. The property of a symbol being a sum of two terms, one independent of 𝑦1
and another rapidly decaying in a conic neighborhood of U′, is preserved under these
operations. The full symbol of𝛹 is therefore also of this form.

The ellipticity (3.76a) entails a unique microlocal parametrix𝛷 for𝛹 . In other words,
there exists a properly supported𝛷 ∈ ΨDO0(𝑈′,C𝑘×𝑘 ) such that

(0, 𝜂1d𝑦1) ∉ Char𝛷, (3.77a)
(0, 𝜂1d𝑦1) ∉ ES(𝛷𝛹 − 𝐼) ⇔ (0, 𝜂1d𝑦1) ∉ ES(𝛹𝛷 − 𝐼). (3.77b)

Note, (3.77a), (3.76b) and (3.76c) imply that

(0, 𝜂1d𝑦1) ∉ ES(𝛷∗𝛹 ∗𝛹𝛷 −𝛷∗𝐵∗𝐵𝛷), (3.78a)
(0, 𝜂1d𝑦1) ∉ ES(𝛷[𝛹,D1]−𝛷). (3.78b)

This, accounting (3.77b) entails that

(0, 𝜂1d𝑦1) ∉ ES
(
𝐼 − (𝐵𝛷)∗𝐵𝛷

)
, (3.79a)

(0, 𝜂1d𝑦1) ∉ ES[𝛷,D1]−, (3.79b)

which completes the proof since (𝑥0, 𝜉
0; 0, 𝜂1d𝑦1) ∉ WF′(B[D1,𝛷]−) and therefore with

B8 := B𝛷 we have (𝑥0, 𝜉
0; 0, 𝜂1d𝑦1) ∉ WF′(𝑃B8 − B8D1).

The case of connection 𝑃-compatibility:
We assume that ∇E is 𝑃-compatible. Since the construction of the symbols of B and B̃ are
local, we can fix a local frame and local coordinates. We will reduce the general situation
to the case when the subprincipal symbol of 𝑃 vanishes near (𝑥0, 𝜉

0).
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(i) The case of vanishing subprincipal symbol: We assume that 𝑃 is given in local co-
ordinates with respect to some bundle frame and that in this frame 𝜎sub

𝑃
= 0 near

(𝑥0, 𝜉
0). Let 𝑃 be a scalar operator whose principal symbol is 𝑝 and subprincipal

symbol vanishes. Using Weyl-quantisation (see e.g. [77, Sec. 18.5]), 𝐵1 and 𝐵1 can
be constructed in such a way that Egorov’s theorem holds up to the subprincipal
symbol level [119, Thm. 1]. We can choose these operators in such a way that
their principal symbols are constant 1 and that the subprincipal symbol of 𝐵1𝑃𝐵1
(resp. 𝐵1D1𝐵1) vanishes near (0, 𝜂1d𝑦1) (resp. (𝑥0, 𝜉

0)). We will now use the same
construction as before starting with 𝐵1 and 𝐵1. Then the principal symbol 𝑞 of the
remainder term 𝑄 vanishes. The construction of 𝐵2 and 𝐵2 then yields operators
with total symbols that are scalar and constant principal symbols equal to 1. We
conclude that in case the subprincipal symbol of 𝑃 vanishes near (𝑥0, 𝜉

0) and 𝐵, 𝐵

can be chosen as scalar operators. The principal symbols that are constant along
the flow lines of 𝑋𝑝 and 𝑋𝜎D1

.

(ii) The case of non-vanishing subprincipal symbol: We will microlocally transform 𝑃 to
a scalar pseudodifferential operator 𝑃. To be specific, for any properly supported
𝑃 ∈ ΨDO1(𝑀;𝛺1/2), we want to have a 𝐵 ∈ ΨDO0(𝑀; E ⊗ 𝛺1/2) such that 𝐵 is non-
characteristic at (𝑥0, 𝜉

0) and (𝑥0, 𝜉
0) ∉ ES(𝑃𝐵 − 𝐵𝑃𝐼). We construct this operator

locally and hence fix a local frame of E near the point 𝑥0. In the pullbacked bundle
𝜋∗E → ¤T∗𝑀 where 𝜋 : ¤T∗𝑀 → 𝑀, we can also construct a local frame that is parallel
along 𝑋𝑝 with respect to ∇𝜋∗E

𝑋𝑝
. This local parallel frame is constructed by choos-

ing a local transverse to 𝑋𝑝 and use the original frame on this transverse. Parallel
transport along the flow lines of 𝑋𝑝 then gives the desired frame. The change of
frame matrix from the original frame to the parallel frame is then a local section 𝑏
of Hom(𝜋∗E , 𝜋∗E ) → ¤T∗𝑀. By construction, this frame is homogeneous of degree
zero. We now choose an elliptic zero-order pseudodifferential operator 𝐵 whose
principal symbol 𝜎𝐵 equals 𝑏 on U. Let 𝐵 be a parametrix of 𝐵. The subprincipal
symbol of 𝐵𝑃𝐵 is equal to − i 𝑋𝑝𝜎𝐵 + [𝜎sub

𝑃
, 𝜎𝐵]− on U, by an application of (3.55).

By 𝑃-compatibility, this is exactly the formula for the connection 1-form in the par-
allel local bundle frame and it therefore vanishes. Proposition 3.3.4 implies that
this is precisely the formula for the subprincipal symbol of 𝐵𝑃𝐵 on U and hence,
𝑃 ≡ 𝐵𝑃𝐵 has vanishing subprincipal symbol on U.

This reduces the problem to the case of vanishing subprincipal symbol discussed
in the hindmost paragraph and let 𝐵3 and 𝐵3 are the corresponding scalar Fourier
integral operators. This means 𝐵 and 𝐵 are of the form 𝐵 := 𝐵𝐵3 and 𝐵 := 𝐵3𝐵.
Since the principal symbol of B̂ is the transition function to a parallel frame and
𝐵3 is a scalar operator, these imply that the principal symbols of B and B̃ can be
chosen 1 with respect to a parallel frame along 𝑋𝑝.

The case of symmetric 𝑃 with connection 𝑃-compatibility:
Finally, suppose that 𝑃 is symmetric with respect to (·|·) and that ∇E is 𝑃-compatible. The
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above construction of 𝐵 can be repeated using an orthonormal frame of E and another
orthonormal frame of 𝜋∗E that is parallel along 𝑋𝑝. One obtains an operator that has
principal symbol 1 near (𝑥0, 𝜉

0) with respect to the parallel orthonormal frame. Now one
repeats the construction of𝛹 as before and note that the principal symbol can be kept as
1 in that way to turn 𝐵 into a microlocally unitary operator in the sense that 𝐵 = 𝐵∗ with
the desired properties. �

As a supplement of the preceding proof we present a variant of Hörmander’s square
root construction [78, Prop. 2.2.2] for vector bundles.

Proposition 3.3.11. Let
(
E → 𝑀, (·|·)

)
be a vector bundle over a manifold 𝑀, endowed

with a sesquilinear form (·|·), and 𝛺1/2 → 𝑀 the half-density bundle over 𝑀. Suppose that
𝑃 ∈ ΨDO𝑚 (𝑀; E ⊗𝛺1/2) is a properly supported pseudodifferential operator of order 𝑚 ∈ R+,
symmetric with respect to (·|·), elliptic in a conic neighbourhood U of (𝑥0, 𝜉

0) ∉ ES 𝑃 in the
punctured cotangent bundle ¤T∗𝑀 of 𝑀, and that its principal symbol is given by

𝑝 = 𝑞∗𝑞 (3.80)

for some 𝑞 ∈ 𝐶∞(U, End E ). Then, one can find a properly supported symmetric (with
respect to (·|·)) 𝑄 ∈ ΨDO𝑚/2(𝑈; E ⊗ 𝛺1/2) such that

(𝑥0, 𝜉
0) ∉ ES(𝑃 −𝑄∗𝑄), (𝑥0, 𝜉

0) ∉ ES𝑄, (3.81)

where 𝑈 is the base projection of U.

Proof. The hypothesis on 𝑝 implies that 𝑞 is homogeneous of degree 𝑚/2 which in turns
entails that 𝑞 ∈ 𝑆𝑚/2(U, End E ); see Definition B.1.6 and Appendix B.3. We define a
properly supported 𝑄0 ∈ ΨDO𝑚/2(𝑈; E ⊗ 𝛺1/2) whose principal symbol is 𝑞. Without lose
of generality𝑄0 can be taken symmetric, otherwise one can just replace𝑄0 by (𝑄0+𝑄∗0)/2
without changing the principal symbol. Then 𝑃 −𝑄∗0𝑄0 ∈ ΨDO𝑚−1(𝑈; E ⊗ 𝛺1/2).

Now we are left with estimations for lower order terms and will show that it is always
possible to obtain properly supported and symmetric 𝑄𝑘 ∈ ΨDO𝑚/2−𝑘 (𝑈; E ⊗ 𝛺1/2) for all
𝑘 ∈ N, such that

𝑅𝑘 := 𝑃 − (𝑄0 + . . . +𝑄𝑘 )∗(𝑄0 + . . . +𝑄𝑘 ) ∈ ΨDO𝑚−1−𝑘 (𝑈; E ⊗ 𝛺1/2). (3.82)

We proceed inductively. Clearly, 𝑘 = 1 has been checked. Observe that, if 𝑄𝑘s have been
chosen accordingly, then

𝑃− |𝑄0 + . . .+𝑄𝑘 |2 = 𝑅𝑘 − (𝑄∗𝑘𝑄0 +𝑄∗0𝑄𝑘 ) −𝑄∗𝑘𝑄𝑘 + . . . ∈ ΨDO𝑚−1−𝑘 (𝑈; E ⊗ 𝛺1/2). (3.83)

Since 𝑅𝑘 is symmetric, the principal symbol of 𝑅𝑘−𝑅∗𝑘 is 2 i=(𝜎𝑅𝑘
) modulo 𝑆𝑚−2−𝑘 (U, End

E ). Then the desired operators 𝐵𝑘 are achieved if we set

∀(𝑥, 𝜉) ∈ U : 𝜎𝑅𝑘
(𝑥, 𝜉) = 𝜎∗

𝑄𝑘
◦ 𝑞 (𝑥, 𝜉) + 𝑞∗ ◦ 𝜎𝑄𝑘

(𝑥, 𝜉), (3.84)

that is, in the region where 𝑞(𝑥, 𝜉) is invertible in End E𝑥 for each 𝑥 ∈ 𝑈 and 𝜉 := 𝜉/‖𝜉‖ ∈
Srk(E )−1. Finally, the result entails by constructing the total symbol of 𝑄 in the sense of
asymptotic summation; in other words: 𝑄 :∼ ∑∞

𝑘=0𝑄𝑘 . �
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Remark 3.3.12. The hypotheses of the preceding theorem are satisfied by any pseudod-
ifferential operator 𝑄 of real principal type by Remark 2.2.11, and hence Theorem 3.3.10
also holds for 𝑄 by a redefinition of 𝐵.

We will now show microlocalisation of a normally hyperbolic operator � as a conse-
quence of the preceding result by replacing the generic manifold 𝑀 by a Lorentzian (not
necessarily globally hyperbolic) spacetime (M , g). In particular, the role of the charac-
teristic points (𝑥0, 𝜉

0) of 𝑃 in Theorem 3.3.10 (a) will be played by any lightlike covector
on M and thus, the bicharacteristics of 𝑝 are actually the lightlike geodesics in T∗M .

Theorem 3.3.13. Let E →M be a vector bundle of rank 𝑘 over a 𝑑-dimensional Lorentzian
manifold (M , g) and � : 𝐶∞c (M ; E ) → 𝐶∞c (M ; E ) a normally hyperbolic operator. Denote
by ∇E , the Weitzenböck connection associated with � and by 𝛤, the graph of a homogeneous
symplectomorphism from an open conic neighbourhoodU′ of (0, 𝜂1d𝑦1) in ¤T∗R𝑑 to an open
conic coordinate chart

(
U, (𝑥𝑖, 𝜉𝑖)

)
centered at any lightlike covector (𝑥0, 𝜉

0) on M . Then
for any 𝑚 ∈ R, one can find properly supported Lagrangian distributions A ∈ 𝐼−1/2+𝑚 (

M ×
R𝑑 , 𝛤′; Hom(C𝑘 , E )

)
and Ã ∈ 𝐼−1/2−𝑚 (

R𝑑 ×M , 𝛤−1′; Hom(E ,C𝑘 )
)

so that 𝐴𝐴, 𝐴𝐴 both are
pseudodifferential operators of order −1 and

WF′A ⊂ U(𝑥0,𝜉
0;0,𝜂1d𝑦1) , WF′ Ã ⊂ U′(0,𝜂1d𝑦1;𝑥0,𝜉

0) , (3.85a)

(𝑥0, 𝜉
0) ∉ ES(𝐴𝐴 − 𝐼E ), (0, 𝜂1d𝑦1) ∉ ES(𝐴𝐴 − 𝐼), (3.85b)

(𝑥0, 𝜉
0) ∉ ES(𝐴D1𝐴 − �), (0, 𝜂1d𝑦1) ∉ ES(𝐴�𝐴 − D1). (3.85c)

Here D1 = − i1C𝑘×𝑘 𝜕/𝜕𝑦1 : 𝐶∞c (R𝑑 ,C𝑘 ) → 𝐶∞c (R𝑑 ,C𝑘 ) andU(𝑥0,𝜉
0;0,𝜂1d𝑦1) resp. U′(0,𝜂1d𝑦1;𝑥0,𝜉

0)
are small conic neighbourhoods of (𝑥0, 𝜉

0; 0, 𝜂1d𝑦1) ∈ ¤T∗M × ¤𝑇∗R𝑛 resp. (0, 𝜂1d𝑦1; 𝑥0, 𝜉
0) ∈

¤𝑇∗R𝑛 × ¤T∗M .

In addition, if E → M is endowed with a sesquilinear form (·|·) with respect to which
� is symmetric, then 𝐴 can be chosen as a scalar operator with respect to a unitary bundle
frame that is parallel along the geodesic flow and microlocally 𝐴 = 𝐴∗ if C𝑘 is endowed with
a standard sesquilinear form of the same signature as (·|·).

Proof. The strategy is, as usual, to reduce � to a first-order operator so that Theo-
rem 3.3.10 can be applied. To do so, choose a properly supported elliptic symmetric
pseudodifferential operator 𝐿 on E of order −1/2 having a scalar principal symbol 𝑙 and
vanishing subprincipal symbol. Such an operator always exists, as it can be constructed
locally and then patched to a global operator using a suitable partition of unity. Then 𝐿�𝐿
is a first-order pseudodifferential operator whose principal symbol 𝑙2(𝑥, 𝜉) g−1

𝑥 (𝜉, 𝜉) 1End E

vanishes on (𝑥0, 𝜉
0). By Theorem 3.3.8 and Corollary 3.3.9, ∇𝐸 is compatible with both �

and 𝐿�𝐿, respectively. Therefore the hypotheses of Theorem 3.3.10 are satisfied and the
conclusion entails by putting A := 𝐿B, Ã := B̃𝐿 where B, B̃ are the Lagrangian distribu-
tions as constructed in Theorem 3.3.10. In case � is symmetric, we choose 𝐿 symmetric
as well. �
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Remark 3.3.14. We have microlocally conjugated � to D1 around a lightlike covector in
the preceding theorem. It is also possible to refine the construction as follows. Let I be a
compact interval in R and 𝛾 : I→ ¤T∗𝑀 an integral curve of 𝑋𝑝:

𝑝 ◦ 𝛾 = 0. (3.86)

If the composition of 𝛾 and the projection ¤T∗𝑀 → ¤T∗𝑀/R+ is injective, then one can find
a conic neighbourhoodV′ of I×{(0, 𝜂1d𝑦1)} and a smooth homogeneous symplectomor-
phism 𝜚 from V′ to an open conic neighbourhood 𝜚(V′) ⊂ ¤T∗𝑀 of 𝛾(I) such that [23,
Prop. 26.1.6]

𝜚
(
I×{(0, 𝜂1d𝑦1)}

)
= 𝛾(I), 𝜚∗𝑝 = 𝜉1 1End E . (3.87)

Imitating the proof of Theorem 3.3.10, one can microlocalise 𝑃 to D1 on 𝛾(I) (see [23,
Prop. 26.1.3′] for the scalar version).

As a consequence, if Γ is the graph of a homogeneous symplectomorphism from a
conic neighbourhood of I×{(0, 𝜂1d𝑦1)} in ¤T∗R𝑑 to a conic neighbourhood of lightlike
geodesic 𝛾(I) in ¤T∗M , then the proof of Theorem 3.3.13 shows that, for any 𝑚 ∈ R, there
exists Lagrangian distributions A ∈ 𝐼−1/2+𝑚 (

M ×R𝑑 , Γ′; Hom(C𝑘 , E )
)

and Ã ∈ 𝐼−1/2−𝑚 (
R𝑛×

M , Γ−1′; Hom(E ,C𝑁 )
)

so that 𝐴𝐴, 𝐴𝐴 both are pseudodifferential operators of order −1
and

WF′A ⊂ VΓ, WF′ Ã ⊂ V′
Γ−1 , (3.88a)

𝛾(I) ∩ ES(𝐴𝐴 − 𝐼𝐸 ) = ∅, I×{(0, 𝜂1d𝑦1)} ∩ ES(𝐴𝐴 − 𝐼) = ∅, (3.88b)
𝛾(I) ∩ ES(𝐴D1𝐴 − �) = ∅, I×{(0, 𝜂1d𝑦1)} ∩ ES(𝐴�𝐴 − D1) = ∅, (3.88c)

where VΓ,V′Γ−1 are small conic neighbourhoods of Γ restricted to 𝛾(I) and its inverse,
respectively.

We close this section by a simple application of Theorem 3.3.10 to derive a bundle
version of Hörmander’s propagation of singularity theorem [79], [35, Thm. 6.1.1’]. Since

𝐶∞(𝑀; E ⊗ 𝛺1/2) =
⋂
𝑠∈R

𝐻𝑠
loc(𝑀; E ⊗ 𝛺1/2), (3.89)

such a refinement of the usual notion of (smooth) wavefront set is captured by the
Sobolev wavefront set.

Definition 3.3.15. Let E , 𝛺1/2 → 𝑀 be a vector bundle resp. the half-density bundle
over a manifold 𝑀 and 𝑠 ∈ R. The Sobolev wavefront set WF𝑠 𝑢 of a distribution
𝑢 ∈ D′(𝑀; E ⊗𝛺1/2) relative to Sobolev space 𝐻𝑠

loc(𝑀; E ⊗𝛺1/2) is defined by [35, p. 201]

WF 𝑢 :=
⋂

𝑃∈ΨDO0 (𝑀;E ⊗𝛺1/2)
𝑃𝑢∈𝐻𝑠

loc (𝑀;E ⊗𝛺1/2)

Char 𝑃 =
⋂

𝑃∈ΨDO𝑠 (𝑀;E ⊗𝛺1/2)
𝑃𝑢∈𝐿2

loc (𝑀;E ⊗𝛺1/2)

Char 𝑃 (3.90)

where Char 𝑃 is the characteristic set of 𝑃 and the intersection is over all properly sup-
ported 𝑃.
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Locally this means, for any open set 𝑈 ⊂ R𝑑, (𝑥0, 𝜉
0) ∉ WF𝑠 𝑢 is not in the Sobolev

wavefront set of a distribution 𝑢 ∈ D′(𝑀; E ⊗ 𝛺1/2) if and only if there exists a com-
pactly supported section 𝑓 on 𝑈, non-vanishing at 𝑥0 ∈ 𝑈 such that the weighted Fourier
transform (1 + |𝜉 |2)𝑠 |F ( 𝑓 𝑢) (𝜉) |2 is integrable in a conic neighbourhood of 𝜉0. An ac-
cumulation of important properties of this finer wavefront set is available, for example,
in [120, App. B].

Hörmander’s theorem has been generalised for system of pseudodifferential operators
by Taylor [107, Thm. 4.1 (p. 135), 2.2 (p. 154)] (for the Sobolev wavefront set) and by
Dencker [45, Thm. 4.2] (for the polarisation set). Our result, as stated below is similar
to that of Taylor but formulated in a geometric fashion and proved in a different way
employing microlocalisation on vector bundles developed in Theorem 3.3.10.

Theorem 3.3.16 (Propagation of Sobolev regularity). Let E , 𝛺1/2 → 𝑀 be a vector bundle
resp. the half-density bundle over a manifold 𝑀 and 𝑢 ∈ D′(𝑀; E ⊗ 𝛺1/2). Suppose that, for
some 𝑚 ∈ R,𝛹 ∈ ΨDO𝑚 (𝑀; E ⊗ 𝛺1/2) satisfies the hypotheses (a) and (b) of Theorem 3.3.10
and that I is an interval on an integral curve of the Hamiltonian vector field generated by
the principal symbol of 𝛹 such that I ∩WF𝑠 (𝛹𝑢) = ∅. Then either I ∩WF𝑠+𝑚−1 𝑢 = ∅ or
I ⊂ WF𝑠+𝑚−1 𝑢.

Proof. Once Theorem 3.3.10 is at our disposal, the rest of the proof is the same as its
scalar version [35, Thm. 6.1.1’] (see also [23, Thm. 26.1.4]). For completeness we
give the details here. By conjugating 𝛹 with appropriate Fourier integral operators we
reduce the statement to the case 𝑚 = 1. In other words, one can just consider 𝑃 as in
Theorem 3.3.10 instead of𝛹 to conclude the assertion by utilising the Sobolev continuity
properties of pseudodifferential (see e.g. [77, p. 92]) and Fourier integral operators (see
e.g. [23, Cor. 25.3.2]). Via microlocalisation (Theorem 3.3.10), the analysis further
boils down to 𝑃 = D1, 𝑠 = 0 and (𝑥0, 𝜉

0) = (0, 𝜂1d𝑦1) by choosing the order of the Fourier
integral operator 𝐵 in Theorem 3.3.10 equals to −𝑠. Then the claim follows from the
form of the advanced and retarded fundamental solutions (Example 3.2.11) of D1 and
as these map from 𝐿2

c (R𝑑 ,C𝑘 ) to 𝐿2
loc(R

𝑑 ,C𝑘 ) (cf. Proposition 3.2.12). �

By Remark 3.3.12, the preceding theorem can be restated as

Theorem 3.3.17. Let E , 𝛺1/2 → 𝑀 be a vector bundle resp. the half-density bundle over
a manifold 𝑀 and 𝑢 ∈ D′(𝑀; E ⊗ 𝛺1/2). Suppose that 𝑃 is an 𝑚-order pseudodifferential
operator on E ⊗ 𝛺1/2 of real principal type and that I is an interval on an integral curve of
the Hamiltonian vector field generated by 𝑞 as in Definition 2.3.6 such that I∩WF𝑠 (𝑃𝑢) = ∅.
Then either I ∩WF𝑠+𝑚−1 𝑢 = ∅ or I ⊂ WF𝑠+𝑚−1 𝑢.

3.3.4 Proof of Theorem 3.3.1

To begin with, we show that the Feynman parametrix is unique, if it exists.
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Uniqueness of the Feynman parametrix

Suppose that 𝐸L (resp. 𝐸R) is a left (resp. right) Feynman parametrix of �, i.e., the off-
diagonal contribution of WF′(𝐸L, 𝐸R) is given by 𝐶+; cf. Definition 3.2.17. To prove that
𝐸L − 𝐸R is a smoothing operator, we would like to argue that 𝐸L�𝐸R is congruent both
to 𝐸L and to 𝐸R modulo smoothing operators. But 𝐸L and 𝐸R are not properly supported
which makes this a non-trivial task. To circumvent this difficulty, one employs the fact
that 𝐸L𝑄𝐸R is defined when 𝑄 is a pseudodifferential operator having Schwartz kernel
of compact support in M ×M and then 𝑄 : D′(M ; E ) → E′(M ; E ).

If (𝑥, 𝜉; 𝑦, 𝜂) ∈ WF′(EL𝑄ER) but (𝑥, 𝜉), (𝑦, 𝜂) are in the complement of ES𝑄, then
(𝑥, 𝜉; 𝑧, 𝜁), (𝑧, 𝜁 ; 𝑦, 𝜂) ∈ 𝐶+ for some (𝑧, 𝜁) ∈ ES𝑄. This follows from the behaviour of
wavefront sets under composition of kernels, as available in, for instance [76, Theorem
8.2.10], and the fact that WF′Q ⊂ 𝛥 ¤T∗M . This entails that (𝑥, 𝜉), (𝑦, 𝜂) and (𝑧, 𝜁) are on
the same lightlike geodesic (strip) 𝛾(𝑠) with (𝑧, 𝜁) in between the other two points.

Since M is assumed to be globally hyperbolic, 𝐽 (𝐾) is compact for any compact
𝐾 ⊂ M [111, Corollary of Prop. 6.6.1]. Therefore, if the projections of endpoints of 𝛾
on M are in 𝐾 then the projection 𝑐(𝑠) of 𝛾(𝑠) on M stays over 𝐽 (𝐾), i.e., 𝑐(𝑠) ∈ 𝐽 (𝐾),
as shown in Figure 3.3. Consequently, if singsupp𝑄 ∩ 𝐽 (𝐾) = ∅ then WF′(ELQER) cannot
have any point over 𝐾 × 𝐾. Let 𝜒 ∈ 𝐶∞c (M ; E ) such that 𝜒 is identically 1 on 𝐽 (𝐾)
and define M𝜒 be the corresponding multiplication operator. We observe that [M𝜒,�]−
vanishes identically on 𝐽 (𝐾). Thus WF′(EL [M𝜒,�]−ER) contains no point over 𝐾 × 𝐾 and
so it true for

( ¤T∗𝐾 × ¤T∗𝐾) ∩WF′(EL − ER) = ( ¤T∗𝐾 × ¤T∗𝐾) ∩WF′(ELM𝜒�ER − EL�M𝜒ER)
= ( ¤T∗𝐾 × ¤T∗𝐾) ∩WF′(EL [M𝜒,�]−ER)
= ∅. (3.91)

Since 𝐾 is arbitrary, we conclude that 𝐸L − 𝐸R is a smoothing operator and similarly for
the anti-Feynman parametrix.

𝐾

𝐽 (𝐾)

𝑐(𝑠) 𝜒

𝑐(𝑠)

1

Figure 3.3: A schematic visualisation of a consequence of the global hyperbolicity of
spacetime. Here time flows from left to right.
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Construction of the Feynman parametrix

Notice that �𝐸R = 𝐼 + 𝑅 is equivalent to (𝐸R)∗�∗ = 𝐼 + 𝑅∗ and, since the adjoint �∗ of �
is also a normally hyperbolic operator, the existence of left parametrices with the listed
properties in this theorem follows from the existence of right parametrices of �. It is
therefore sufficient to construct a right parametrix of � with the required regularities.

Lemma 3.3.18. As in the terminologies of Theorem 3.3.13: � and D1 are microlocally
conjugate to each other, A, Ã are the conjugating Lagrangian distributions with 𝑚 = 0, and
U is the conic neighbourhood of any lightlike covector (𝑥0, 𝜉

0) on M . Suppose that Fret,adv
1

are the Schwartz kernels of the retarded and advanced fundamental solutions of D1 and
that 𝜒 ∈ 𝐶∞c (R𝑑 × R𝑑 ,R) is identically 1 in a neighbourhood of the diagonal and vanishes
outside another sufficiently small neighbourhood of the diagonal. If 𝑇 ∈ ΨDO0(M ; E ) with
ES𝑇 ⊂ U and F± := A(𝜒Fret,adv

1 )Ã𝑇 , then

WF′ F± ⊂ 𝛥 ¤T∗M ∪ 𝐶±, (3.92a)
�F± = 𝑇 + R±, R± ∈ 𝐼−3/2 (

M ×M , 𝐶±′; Hom(E , E )
)
, (3.92b)

F+ − F− ∈ 𝐼−3/2 (
M ×M , 𝐶′; Hom(E , E )

)
. (3.92c)

Proof. The properties (3.32) and (3.35) immediately entail (3.92a) and (3.92c). To
show (3.92b), by definition:

�F± = (�A − AD1) (𝜒Fret,adv
1 )Ã𝑇 + AD1(𝜒Fret,adv

1 )Ã𝑇. (3.93)

Since � and D1 are microlocal conjugates to one another, (3.85c) can be re-expressed as

(𝑥0, 𝜉
0; 0, 𝜂1d𝑦1) ∉ WF′(�A − AD1). (3.85c′)

Then, there is a conic neighbourhood V of (0, 𝜂1d𝑦1) such that (�A − AD1)𝑣 is smooth
for any 𝑣 ∈ D′(R𝑑 ,C𝑘 ) when WF 𝑣 ⊂ V. Since WF′(𝜒Fret,adv

1 ) can be made arbitrary
close to the diagonal in ¤T∗R𝑑 × ¤T∗R𝑑 by choosing the support of 𝜒 close to the diagonal in
R𝑑 × R𝑑, we can pick an appropriate 𝜒 and a conic neighbourhoodW of (0, 𝜂1d𝑦1) such
that WF

(
(𝜒Fret,adv

1 )𝑣
)
⊂ V provided WF 𝑣 ⊂ W. If ES𝑇 ⊂ 𝜘(W) then the first term in the

right-hand side of (3.93) is smooth and we are left with the last term of that equation. By
definition: D1(𝜒Fret,adv

1 ) = 𝐼+R̃± where R̃± := D𝑥1
(
𝜒(𝑥, 𝑦)

)
Fadv,ret

1 ∈ 𝐼−1/2(R𝑑×R𝑑 , 𝐶′1;C𝑘×𝑘 )
(cf. Proposition 3.2.12). Since AÃ𝑇−𝑇 = (AÃ−𝐼)𝑇 is smooth as long as ES𝑇 is sufficiently
close to (𝑥0, 𝜉

0), it follows that �F±−𝑇 = R± where R±−AR̃±Ã𝑇 is smooth, which concludes
the proof. �

To end the proof of Theorem 3.3.1, we choose a locally finite covering {U𝛼} of ¤T∗M
by open cones U𝛼 such that Lemma 3.3.18 is applicable when ES𝑇𝛼 ⊂ U𝛼. Denoting the
projection of U𝛼 on M by 𝑈𝛼 and picking U𝛼 so that 𝑈𝛼 are also locally finite, we set

𝐼 =
∑︁
𝛼

𝑇𝛼, ES𝑇𝛼 ⊂ U𝛼, suppT𝛼 ⊂ 𝑈𝛼 ×𝑈𝛼 . (3.94)
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Then for every 𝛼, A(𝜒Fret,adv
1 )Ã𝑇𝛼 can be chosen according to the Lemma 3.3.18 with

supp
(
A(𝜒Fret,adv

1 )Ã𝑇𝛼
)
⊂ 𝑈𝛼 ×𝑈𝛼, and hence the sum

F± :=
∑︁
𝛼

A(𝜒Fret,adv
1 )Ã𝑇𝛼 (3.95)

is well-defined which satisfies the claimed properties (3.47) and (3.48) in the statement
of Theorem 3.3.1. Note that, if 𝜒 is taken as a function of 𝑦− 𝑧 then 𝜒Fret,adv

1 is a convolu-
tion by a measure of compact support and therefore it continuously maps 𝐻𝑠

c (R𝑑 ,C𝑘 ) to
𝐻𝑠

c (R𝑑 ,C𝑘 ). By the mapping properties of pseudodifferential and Fourier integral opera-
tors, [78, Thm. 4.3.1] (see also [23, Cor. 25.3.2]), the factors 𝐴, 𝐴, 𝑇𝛼 are continuous
maps from 𝐻𝑠

c to 𝐻𝑠
c. Since the sum of kernels is locally finite this shows that 𝐸Fyn,aFyn

continuously maps 𝐻𝑠
c (M ; E ) into 𝐻𝑠

loc(M ; E ) for all 𝑠 ∈ R.

Until now, we have just shown that �F± = 𝐼+R±. By Lemma 3.3.19 (stated and proven
just after the on going proof), we can choose G± ∈ 𝐼−3/2 (

M ×M , 𝐶±′; Hom(E , E )
)

so that
�G± − R± is smooth. Moreover, 𝐺± extend to continuous mappings from 𝐻𝑠

c (M ; E ) to
𝐻𝑠

loc(M ; E ) for every 𝑠 ∈ R. This follows from mapping properties of Fourier integral
operators, for example, Theorem 25.3.8 in [23], bearing in mind that the corank of the
symplectic form σ𝛤 (see (A.70)) on 𝛤 is two. Since locally a Fourier integral operator on
a bundle is a matrix of scalar Fourier integral operators (Section 2.3.3), this theorem can
be applied here directly. Hence,

𝐸Fyn,aFyn := 𝐹± − 𝐺± (3.96)

is a right parametrix which has this continuity property.

Furthermore, the construction shows that F+−F− and thus EFyn−EaFyn is non-characteri-
stic on 𝛥 ¤T∗0M , as can be seen from the integral representation (Example 3.2.11) of 𝐹1

and wavefront set properties of A, Ã. Since �(EFyn − EaFyn) is smooth, it follows that
its principal symbol satisfies a first-order homogeneous differential equation along the
lightlike geodesic strip by Theorem 2.3.13 and Remark 3.2.8. Therefore EFyn − EaFyn is
non-characteristic everywhere: WF′(EFyn − EaFyn) = 𝐶 and then it can be concluded that
WF′ EFyn,aFyn ⊃ 𝐶± because of WF′ EFyn,aFyn ⊂ 𝛥 ¤T∗M ∪ 𝐶±. Finally, the fact

𝛥 ¤T∗M = WF′ I = WF′(�EFyn,aFyn) ⊂ WF′ EFyn,aFyn (3.97)

together with Lemma 3.3.19 complete the proof.

Lemma 3.3.19. Let E →M be a vector bundle over a Lorentzian manifold (M , g) and �
a normally hyperbolic operator on E . Suppose that 𝐶± are the forward/backward geodesic
relations. If B ∈ 𝐼𝑚

(
M ×M , 𝐶±′; Hom(E , E )

)
then one can find a properly supported

A ∈ 𝐼𝑚
(
M ×M , 𝐶±′; Hom(E , E )

)
such that �A − B is smoothing.
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Proof. The assertion has been proven for scalar pseudodifferential operators [35, Thm.
5.3.2] (see also [23, Lem. 26.1.16]) which we tailor for normally hyperbolic operators.
Let A0 be a properly supported Lagrangian distribution of order 𝑚 on M ×M whose
principal symbol is a0 and that of B is b. Since the principal symbol of � vanishes on
lightlike covectors, Theorem 2.3.13 implies that �A0 − B is of order 𝑚 − 1 on lightlike
covectors on M , provided (

− i £𝑋g + 𝜎sub
�

)
a0 = b (3.98)

is satisfied. Identifying half-densities with functions according to Remark 2.2.1 (d) and
making use of the fact that the Keller-Maslov bundleM is a trivial complex vector bundle
(see Defining A.1.19), we write (cf. (B.10)) a0 = 𝑎0m and b = 𝑏m where m is a non-
vanishing section ofM and 𝑎0, 𝑏 are scalar symbols of degree 𝑚. The preceding equation
then reads (− i 𝑋g + 𝜎sub

� )𝑎0 = 𝑏 by (2.138). In other words, inserting (3.60) and (3.24)
yields (

−𝜕g
𝜇𝜈

𝜕𝑥𝑖
𝜉𝜇𝜉𝜈

𝜕

𝜕𝜉𝑖
+ 2g𝑖 𝑗𝜉 𝑗

𝜕

𝜕𝑥𝑖
+ 2𝑔𝑖 𝑗Γ𝑖𝑖𝜉 𝑗

)
𝑎0 = 𝑏. (3.99)

This equation has a unique solution for a given initial condition and the essential support
of the solution is contained in that of 𝑏, that is WF′A0 ⊂ 𝐶±. Now the conclusion follows
from applying the argument iteratively to construct Lagrangian distributions A𝑘 of order
𝑚 − 𝑘 such that �(A0 + . . . + A𝑘 ) − B ∈ 𝐼𝑚−𝑘−1 (

M ×M , 𝐶±′; Hom(E , E )
)

and setting
A :∼ A0 + . . . + A𝑘 + . . .. �

3.3.5 Proof of Proposition 3.3.2

Taking the adjoint EFyn∗� ≡ 𝐼 of the Feynman parametrix EFyn we find that WF′ EFyn∗ ⊂
𝛥 ¤T∗M ∪𝐶− by Definition 3.2.17. Thus EFyn∗−EaFyn is smooth and so is (EFyn−Gadv) (EFyn−
Gadv)∗. Since WF′

(
− i(EFyn − Gadv)

)
∩ WF′

(
i(EFyn − Gadv)∗

)
= ∅, each of these is in

𝐶∞
(
M ×M ; Hom(E , E )

)
. Therefore − i(EFyn − Gadv) can be normalised so that it is sym-

metric.

To address the positivity, first consider the operator D1 as in Section 3.3.3 and observe
that i 𝐹1 is positive as evident from Example 3.2.11:

iF1(𝑢∗ ⊗ 𝑢) ≥ 0. (3.100)

To account �̂� , one notes that the Lagrangian distributions A and A∗ in Theorem 3.3.13
preserve wave front sets and thus, one obtains (𝑥0, 𝜉

0; 0, 𝜂1d𝑦1) ∉ WF′(Ŵ − AF1A
∗) from

parametrix differences. But it is not sufficient to construct a positive Ŵ on a conic neigh-
bourhood in ¤T∗M × ¤T∗M of the inverse image in 𝐶 of a neighbourhood of any point in
¤T∗0M /𝐶. This compels a refined version microlocalisation and hence respective homoge-
neous Darboux theorem.
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The space of lightlike (unparametrised) geodesic strips is a 2𝑑−3-dimensional smooth
conic manifold which can be naturally identified with the cotangent unit sphere bundle
S∗𝛴 of any Cauchy hypersurface 𝛴 with respect to the induced metric h on 𝛴 [93].
We choose 𝐿, an elliptic symmetric operator of order −1/2 with scalar principal symbol
and vanishing subprincipal symbol as in Theorem 3.3.13. One can always choose the
principal symbol of 𝐿 such that 𝑋𝐿�𝐿 is a complete vector field [35, Thm. 6.4.3, p.
234] (see also [23, Lem. 26.1.11, 26.1.12] and [27, Prop. 2.1]). Since the bundle of
forward/backward lightlike covectors ¤T∗0,±M are connected components of the lightcone
bundle ¤T∗0M , there exists a homogeneous diffeomorphism ¤T∗0M → (S∗𝛴 ⊕ S∗𝛴) ×R×R+
such that 𝑋𝐿�𝐿 is mapped to the vector field 𝜕/𝜕𝑠 when the variables in S∗𝛴 × R × R+
are denoted by (·, 𝑠, ·). In this setting, a refined Darboux theorem yields that, for every
lightlike covector (𝑥0, 𝜉

0) on M , there is an open conic coordinate chart
(
U, (𝑥𝑖, 𝜉𝑖)

)
and

a homogeneous symplectomorphism

𝜅 : U →U′, (𝑥, 𝜉) ↦→ 𝜅(𝑥, 𝜉) :=
(
𝑦1(𝑥, 𝜉), . . . , 𝑦𝑑 (𝑥, 𝜉); 𝜂1(𝑥, 𝜉), . . . , 𝜂𝑑 (𝑥, 𝜉)

)
, (3.101)

bijectively mapping U to an open conic neighbourhood U′ of 𝜅(𝑥0, 𝜉
0) := (0, 𝜂1d𝑦1) in

¤T∗R𝑑 such that (
𝜅−1)∗𝑝 = 𝜉1 1End E , (3.102)

Char D1 := {(𝑦, 𝜂) ∈ R𝑑 × ¤R𝑑 | 𝑦1 = 0} is symmetric with respect to the plane 𝑦1 = 0 and
convex in the direction of 𝑦1-axis, and U′ ∩ Char D1 is invariant under the translation
along the 𝑦1-axis. Since d𝜅−1(𝑋𝐿∗�𝐿) = 1C𝑘×𝑘 𝜕/𝜕𝑦1, it follows thatU∩Char� is invariant
under 𝑋� [35, Lem. 6.6.3].

Suppose that V1,V2 are closed conic neighbourhoods of (𝑥0, 𝜉
0) such that V1 ⊂ U

and V2 ⊂ int(V1) while V𝜄 ∩ ¤T∗0M , 𝜄 = 1, 2 are invariant under the geodesic flow and
that V′𝜄 := 𝜅(V𝜄) are convex in the 𝑦1-direction and symmetric about the plane 𝑦1 = 0.
Remark 3.3.14 then entails that there exists a properly supported Lagrangian distribution
A ∈ 𝐼−1/2 (

M × R𝑑 , 𝛤′1; Hom(C𝑘 , E )
)

so that 𝐴∗𝐴 and 𝐴𝐴∗ both are pseudodifferential
operators of order −1 and

CharA ∩ 𝛤′2 = ∅, (3.103a)
ES(𝐴∗𝐴 − 𝐼) ∩ V′2 = ∅ ⇔ ES(𝐴𝐴∗ − 𝐼E ) ∩ V2 = ∅, (3.103b)
WF′(�A − AD1) ∩ 𝛤2 = ∅, (3.103c)

where 𝛤1 and 𝛤2 are the graphs of the restriction of 𝜅 to V1 and to V2, respectively.

It follows from Theorem 3.3.1 and (3.103) that we can microlocally conjugate Ŵ to
iF1 (see [35, p. 237] for the scalar version):

WF′(Ŵ − A iF1A
∗) ∩ (V2 ×V2) = ∅, V2 ∩ ¤T∗0M ⊂ { ¤T∗0,±M }. (3.104)
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Lemma 3.3.20. For a normally hyperbolic operator � as in Proposition 3.3.2 and La-
grangian distributions A given by (3.103), let 𝛹 ∈ ΨDO0(M ; E ) such that ES [𝛹,�]− ∩
¤T∗0M = ∅, ES𝛹 ⊂ V2 and ¤T∗0M ∩V2 ⊂ ¤T∗0,±M . Then

Ŵ𝛹𝛹 ∗ ≡𝛹A iF1A
∗𝛹 ∗ ⇔ Ŵ𝛹𝛹 ∗ =𝛹A iF1A

∗𝛹 ∗ mod 𝐶∞
(
M ×M ; Hom(E , E )

)
. (3.105)

Proof. The idea of the proof is to use microlocalisation to reduce this to the special case
D1. To reach the conclusion our main task is then to compute the relevant commuta-
tors which is straightforward and exactly analogous to the scalar counterpart [35, Lem.
6.6.5]. So, we only sketch the main steps for completeness. The ellipticity (3.103a) al-
lows one to relate any properly supported 𝛹 ∈ ΨDO0(M ; E ) and 𝛹 ′ ∈ ΨDO0(R𝑑 ,C𝑘×𝑘 )
with ES𝛹 ⊂ V2 and ES𝛹 ′ ⊂ V′2 by

𝛹 ′ = 𝐴∗𝛹 𝐴 mod ΨDO−∞(R𝑑 ,C𝑘×𝑘 ), 𝛹 = 𝐴𝛹 ′𝐴∗ mod ΨDO−∞(M ; E ). (3.106)

A direct computation shows ES [𝛹 ′,D1]− ∩ Char D1 = ∅ which implies that the derivative
of the symbol of 𝛹 ′ with respect to 𝑦1 is of order −∞ in a neighbourhood of Char D1.
Denoting the convolution by the Dirac measure at (ℎ, 0, . . . , 0) by 𝜏ℎ, we can rewrite F1
as F1 =

∫
𝜏ℎdℎ and observe that 𝜏ℎ𝛹 ′ −𝛹 ′𝜏ℎ is of order −∞ in a conic neighbourhood of

Char D1. Since Char D1 is invariant under translation in the 𝑦1-direction, one has

∀𝑣 ∈ E′(R𝑑 ,C𝑘 ) : WF( [𝜏ℎ,𝛹 ′]−𝑣) ∩ Char D1 = ∅. (3.107)

The result follows after the integration with respect to ℎ and a few straightforward alge-
braic manipulations. �

We observe that 𝛹A iF1A
∗𝛹 ∗ is non-negative by (3.100) since 𝐴𝐴∗ is non-negative

with respect to the hermitian form on E . Thus the only thing left to conclude Proposi-
tion 3.3.2 is that the identity can be expressed as a sum of operators of the form 𝛹𝛹 ∗

discussed in Lemma 3.3.20, provided the prerequisites in this lemma are satisfied. Aim-
ing to show this, we consider a closed conic neighbourhood V3 of any lightlike covector
(𝑥0, 𝜉

0) whereV3 ⊂ int(V2) andV3∩ ¤T∗0M is invariant under the geodesic flow. One can
prove that there exists𝛹 ∈ ΨDO0(M ; E ) with ES𝛹 ⊂ V2 such that𝛹 has a non-negative
principal symbol equals to 1 on V3 and ES [𝛹,�]− ∩ ¤T∗0M = ∅ [35, Lem. 6.6.6]. In other
words, the hypotheses in Lemma 3.3.20 can be satisfied for𝛹 . Taking a suitable cover of
¤T∗0M one can use these operators to construct a family of operators𝛹𝛼 ∈ ΨDO0(M ; E )
satisfying

ES𝛹𝛼
⋂
¤T∗0M ⊂ ¤T∗0,±M , (3.108a)

ES
(
𝐼 −

∑︁
𝛼

𝛹𝛼𝛹
∗
𝛼

) ⋂
¤T∗0,±M = ∅, (3.108b)

ES [�,𝛹𝛼]−
⋂
¤T∗0M = ∅. (3.108c)
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The construction of such a family that provides a microlocal partition of unity (see the
Footnote 2.3.6 in the proof of Theorem 2.3.16 for this concept) is carried out in detail
in [35, p. 238]. The proof follows the usual strategy of summing the operators and
multiplying from left and right by the root of a parametrix. One can verify that the
hypotheses in Lemma 3.3.20 are preserved under this construction. To finalise the proof
of Proposition 3.3.2 we simply write

Ŵ =
∑︁
𝛼

Ŵ𝛹𝛼𝛹
∗
𝛼 ≡

∑︁
𝛼

𝛹𝛼A𝛼 iF1A
∗
𝛼𝛹
∗
𝛼 , (3.109)

which terminates the proof as every term on the right hand side of (3.109) is non-
negative with respect to the hermitian form on E .

3.3.6 Feynman propagators from Feynman parametrices

We postpone to proof Theorem 3.3.3 in order to make the following observations. Let us
denote a point in M as (𝑡, 𝑥) ∈ R×𝛴 . Then we can define the distributions 𝑓1⊗𝛿𝛴 , 𝑓0⊗𝛿′𝛴 ∈
E′(M ; E ) by

𝑓1 ⊗ 𝛿𝛴 (𝜙) :=
∫
𝛴

𝜙(𝑥) 𝑓1(𝑥) dvh(𝑥), 𝑓0 ⊗ 𝛿′𝛴 (𝜙) :=
∫
𝛴

(𝜕N𝜙) (𝑥) 𝑓0(𝑥) dvh(𝑥), (3.110)

where 𝜙 ∈ 𝐶∞c (M ; Ē ∗), N is a future directed unit normal vector field on M along 𝛴 ,
and dvh is the Riemannian volume form. We denote by W𝛴 ⊂ E′(M ; E ), the span of
the set of distributions of this form. By a duality argument both retarded and advanced
Green’s operators extend to continuous maps E′(M ; E ) → D′(M ; E ), and if 𝐺 is the
causal propagator and 𝑓 := 𝑓0⊗ 𝛿′𝛴 + 𝑓1⊗ 𝛿𝛴 , then 𝑢 = 𝐺 ( 𝑓 ) is a smooth solution of �𝑢 = 0
with Cauchy data ( 𝑓0, 𝑓1) on 𝛴 (see e.g. [73, Lem 3.2.2], [121, Thm. 3.20]).

Assume that w� and �̄∗w are smooth for any bidistribution w ∈ D′(M ×M ; E �
Ē ∗). Let us denote by E′

𝛴⊥∗ (M ; E ), the set of compactly supported distributions with
wavefront set contained in the conormal bundle (see Example A.1.7) 𝛴⊥∗ of 𝛴 . This
space is endowed with a natural locally convex topology [78, p. 125] with respect to
which 𝐶∞c (M ; E ) is sequentially dense in E′

𝛴⊥∗ (M ; E ) (see e.g. [76, Thm. 8.2.3] or
the exposition [80, Sec. 4.3.1] for details). The bidistribution w can be defined as a
sequentially continuous bilinear form on E′

𝛴⊥∗ (M ; E ). Since W𝛴 ⊂ E′𝛴⊥∗ (M ; E ), the
form w is then also defined onW𝛴 .

Lemma 3.3.21. Let
(
E →M , (·|·)

)
be a hermitian vector bundle over a globally hyperbolic

manifold (𝑀, 𝑔) whose Cauchy hypersurface is 𝛴 . Suppose that � is a normally hyperbolic
operator on E and that w ∈ D′(M ×M , E �Ē ∗) is a bisolution of �. Then, w is non-negative
with respect to (·|·) if and only if w( 𝑓 ∗ ⊗ 𝑓 ) ≥ 0 for any 𝑓 ∈ W𝛴 , whereW𝛴 is the span of
the distribution Cauchy data (3.110) of �.
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Proof. We begin with the fact that w extends to a separately sequentially continuous bi-
linear form on E′

𝛴⊥∗ (M ; Ē ∗)×E′
𝛴⊥∗ (M ; E ) as it is a bisolution; let us denote the extension

by the same letter. As this form is a bisolution it vanishes on �̄∗𝐶∞c (M ; Ē ∗) × 𝐶∞c (M ; E )
and also on 𝐶∞c (M ; Ē ∗) × �𝐶∞c (M ; E ). By sequential continuity and sequential den-
sity of 𝐶∞c in E′

𝛴⊥∗, it follows that w vanishes on �̄∗E′
𝛴⊥∗ (M ; Ē ∗) × E′

𝛴⊥∗ (M ; E ) and on
E′
𝛴⊥∗ (M ; Ē ∗) × �E′

𝛴⊥∗ (M ; E ). We will show that any 𝑢 ∈ 𝐶∞c (M ; E ) can be written as
𝑢 = 𝑓 + �𝜙 for some 𝑓 ∈ W𝛴 and some 𝜙 ∈ E′

𝛴⊥∗ (M ; E ), and the analogous statement
holds for the conjugate-dual bundle and the conjugate-dual normally hyperbolic opera-
tor. This obviously implies the statement.

To see that this is indeed the case, observe that �(𝐺𝑢) = 0 and therefore, if ( 𝑓0, 𝑓1)
is the Cauchy data of 𝐺 (𝑢) on 𝛴 and 𝑓 the corresponding element inW𝛴 , then we have
𝐺 (𝑢) = 𝐺 ( 𝑓 ). This implies that

𝐺 (𝑢 − 𝑓 ) = 0⇔ 𝐺ret(𝑢 − 𝑓 ) = 𝐺adv(𝑢 − 𝑓 ). (3.111)

Thus 𝜙 := 𝐺ret(𝑢 − 𝑓 ) must be a compactly supported distribution because supp 𝜙 =

supp
(
𝐺ret(𝑢 − 𝑓 )

)
∩ supp

(
𝐺adv(𝑢 − 𝑓 )

)
⊂ 𝐽+

(
supp(𝑢 − 𝑓 )

)
∩ 𝐽−

(
supp(𝑢 − 𝑓 )

)
is compact

due to the global hyperbolicity of M . By propagation of singularities (Theorem 3.3.16)
this distribution must be again in E′

𝛴⊥∗ (M ; E ) and we have 𝑢 − 𝑓 = �𝜙. The same proof
works for the bundle Ē ∗ and the operator �̄∗. �

Finally, we are prepared to show the existence of Feynman propagators of �. More-
over, if there exists a hermitian form on E then Feynman propagators can be chosen
non-negative with respect to this form and hence implying existence of 2-point bidistri-
butions corresponding to Hadamard states.

Proof of Theorem 3.3.3. Let �̂� be the parametrix of � constructed in Proposition 3.3.2.
Since the wavefront set of Ŵ does not intersect with the conormal bundle 𝛴⊥∗ of any
Cauchy hypersurface 𝛴 in M , we fix a 𝛴 and restrict Ŵ and its normal derivative to
create distributional Cauchy data on 𝛴 × 𝛴 . Suppose that E is endowed with a hermitian
form (·|·) such that Ŵ is non-negative with respect to (·|·). Then the restriction Ŵ𝛴 of Ŵ
on 𝛴 is non-negative as well. Next we construct W ∈ D′(M ×M ; E � Ē ∗) employing the
solution operator of � with the same distributional Cauchy data as Ŵ on 𝛴 × 𝛴 . This will
be a bisolution of � with the property(

∀𝑢 ∈ E′𝛴⊥∗ (M ; E ) : W(𝑢∗ ⊗ 𝑢) ≥ 0
)
⇔ 𝑊 ≥ 0, (3.112)

by the sequential density of 𝐶∞c (𝛴 ; E𝛴 ) in E′
𝛴⊥∗ (M ; E ) and Lemma 3.3.21. Note that

R = W − Ŵ is smooth since it solves the inhomogeneous problem with zero Cauchy data,
which entails that

𝐺Fyn := 𝐸Fyn + i 𝑅 (3.113)

is the Feynman propagator with the required positivity property. �
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3.3.7 Causal propagator

In this section we will inscribe the causal propagator

𝐺 := 𝐺ret − 𝐺adv : 𝐶∞c (M ; E ) → 𝐶∞sc (M ; E ) (3.114)

of a normally hyperbolic operator � on a vector bundle E → M over a globally hyper-
bolic spacetime as a Fourier integral operator. The result has been proven by Duistermaat-
Hörmander [35, Thm. 6.6.1] for any scalar pseudodifferential operator of real principal
type, but a systematic derivation for the bundle version is not so easy to find.

Remark 3.3.22. There is a natural density dv𝐶 on the geodesic relation 𝐶 and hence
on the forward/backward geodesic relations 𝐶±, as originally due to Duistermaat and
Hörmander [35, p. 230] for a generic manifold 𝑀, which simplifies considerably for a
globally hyperbolic spacetime (M , g) as reported by Strohmaier and Zelditch [27, (52),
Rem. 7.1]. By Definition 3.2.15: for each (𝑥, 𝜉; 𝑦, 𝜂) ∈ 𝐶 there is a unique 𝑠 ∈ R such
that (𝑥, 𝜉) = 𝛷𝑠 (𝑦, 𝜂) so that 𝐶 can be identified with an open subset of R × ¤T∗0M , where
𝛷𝑠 is the geodesic flow on T∗M and 𝑠 ∈ R is the flow parameter. ¤T∗0M is a conic contact
manifold where the Hamiltonian

𝐻g : 𝐶∞(M ; T∗M ) → R, (𝑥, 𝜉) ↦→ 𝐻g (𝑥, 𝜉) :=
1
2
g−1
𝑥 (𝜉, 𝜉) (3.115)

induced by the spacetime metric g vanishes identically and its Hamiltonian reduction
is the the space of scaled-lightlike geodesics N [122, pp. 10-12], [123, Thm. 2.1].
Following Strohmaier-Zelditch, we have used the prefactor 1/2 in the preceding definition
so that the relativistic Hamiltonian flow is identical to the geodesic flow. Denoting by �̃�,
the dilation parameter on ¤T∗0M , the natural half-density on 𝐶 is given by√︁

|dv𝐶 | :=
√︁
|d𝑠 | ⊗

√︁
|d�̃� | ⊗

√︁
|dvN |. (3.116)

Note, this density differs from that by Duistermaat-Hörmander by a factor of 2 because
they used the Hamiltonian flow of g−1 to parametrise N , in contrast to the flow of the
Hamiltonian vector field 𝑋g/2 generated by 𝐻g. Moreover,

£𝑋gdv𝐶 = 0. (3.117)

The densities on 𝐶± follow from the fact ¤T∗0M = ¤T∗0,+M t ¤T∗0,−M in 𝑑 ≥ 3.

Employing Theorem 3.3.1, Definition 3.3.6, Remark 3.3.22 and Theorem 2.3.13, we
imitate the proof for the scalar version [35, Thm. 6.6.1] to obtain

Theorem 3.3.23. Let E →M resp. 𝜋 : ¤T∗M →M be a vector bundle resp. the punctured
cotangent bundle over a globally hyperbolic spacetime (M , g) and � a normally hyperbolic
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operator on E whose principal symbol is the spacetime metric g−1 on T∗M . Then, the
Schwartz kernel G of the causal propagator for � is the Lagrangian distribution

G ∈ 𝐼−3/2 (
M ×M , 𝐶′; Hom(E , E )

)
, (3.118a)

𝜎G =
i
2

√︁
2𝜋 |dv𝐶 | ⊗m𝑤, (3.118b)

CharG ∩ 𝐶 = ∅, (3.118c)

where dv𝐶 is the natural volume form on the geodesic relation 𝐶, m is a section of the Keller-
Maslov bundle M→ 𝐶 (as constructed in [35, pp. 231-232]), and 𝑤 is the unique element
of 𝐶∞

(
𝐶; 𝜋∗Hom(E , E )𝐶

)
that is diagonally the identity endomorphism and off-diagonally

covariantly constant
∇𝜋∗Hom(E ,E )
𝑋g/2

𝑤 = 0 (3.119)

with respect to the �-compatible Weitzenböck covariant derivative ∇𝜋∗Hom(E ,E )
𝑋g/2

along the
geodesic vector field 𝑋g/2.

Remark 3.3.24. By Definition 3.3.6, 𝑋g acts on 𝐶∞
(
T∗M ; 𝜋∗Hom(E , E )

)
. Thus (3.119)

must be interpreted in the sense of the induced Hamiltonian vector field on 𝐶 by the
vector field (𝑋g, 0) on (T∗M × T∗M ) [35, Rem. 1, p. 216] (see also [23, Rem. 1, p. 69]).

3.4 Feynman propagators for a Dirac operator

In this section we will extend our analysis for Dirac-type operators. These are the first-
order differential operators whose squares are normally hyperbolic, and arguably the
most fundamental first-order operators in geometric analysis as studied in the context of
the celebrated Atiyah-Singer index theorem.

3.4.1 Dirac-type operators

Definition 3.4.1. Let E →M be a vector bundle over a Lorentzian manifold (M , g). A
Dirac-type operator is a first-order differential operator

𝐷 : 𝐶∞(M ; E ) → 𝐶∞(M ; E ) (3.120)

whose principal symbol 𝜎𝐷 satisfies the Clifford relation (see e.g. [124, Def. 2.18])

𝜎𝐷 (𝑥, 𝜉)2 = g−1
𝑥 (𝜉, 𝜉) 1End E𝑥

(3.121)

for all (𝑥, 𝜉) ∈ 𝐶∞(M ; T∗M ).

In other words, 𝐷2 is a normally hyperbolic operator and by the polarisation identity
(see e.g. [124, Rem. 2.19])

[𝜎𝐷 (𝑥, 𝜉), 𝜎𝐷 (𝑥, 𝜂)]+ = 2 g−1
𝑥 (𝜉, 𝜂) 1End E𝑥

(3.122)
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for any (𝑥, 𝜉), (𝑥, 𝜂) ∈ 𝐶∞(M ; T∗M ) and where [·, ·]+ is the anticommutator bracket. The
principal symbol 𝜎𝐷 defines a Clifford action of T∗M on E by

∀ 𝑓 ∈ 𝐶∞(M ) : 𝜎𝐷 (d 𝑓 ) := i [𝐷, 𝑓 ]−, (3.123)

which is independent of any chosen element 𝑓 ∈ 𝐶∞(M ). This turns E → M into
a bundle of Clifford modules (E → M , 𝜎𝐷) over (M , g). Furthermore, the hindmost
equation yields the Leibniz rule for 𝐷:

𝐷 ( 𝑓 𝑢) = 𝜎𝐷 (d 𝑓 ) (𝑢) + 𝑓 𝐷 (𝑢) (3.124)

for any 𝑓 ∈ 𝐶∞(M ) and any 𝑢 ∈ 𝐶∞(M ; E ). The Clifford mapping (3.122) defines the
(pointwise) Clifford multiplication

c : 𝐶∞(M ; T∗M ⊗ E ) → 𝐶∞(M ; E ), (𝑥, 𝜉) ⊗ 𝑢 ↦→ c
(
(𝑥, 𝜉) ⊗ 𝑢

)
:= 𝜎𝐷 (𝑥, 𝜉) (𝑢). (3.125)

Assumption 3.4.2. We endow the vector bundle E → M over a Lorentzian manifold
(M , g) with a sesquilinear form (·|·) such that 𝐷 is symmetric.

Given any 𝐷, there exists a unique (·|·)-compatible Weitzenböck connection ∇E on E
and a unique potential 𝑉 ∈ 𝐶∞(M ; End E ) such that

𝐷2 = − trg (∇LC⊗E ◦ ∇E ) +𝑉, (3.126)

by the Weitzenböck formula (Remark 3.2.8).

The most general Dirac-type operator on the Clifford module bundle
(
E →M , (·|·), 𝜎𝐷

)
then differs from the composition of the following two maps

𝐶∞(M ; E ) ∇
E

→ 𝐶∞(M ; T∗M ⊗ E ) c→ 𝐶∞(M ; E ) (3.127)

only by a zero-order term, i.e.,

𝐷 = − i c ◦ ∇E +𝑈, (3.128)

where the potential term 𝑈 ∈ 𝐶∞(M ; End E ) is defined by the preceding equation. Note,
Assumption 3.4.2 entails that 𝑈 and − i∇E

𝑋
are symmetric with respect to (·|·) provided

that 𝑋 is divergence free.

The Weitzenböck connection ∇E induces a connection ∇Hom(E ,E ) on the vector bundle
Hom(E , E ) →M by

∇Hom(E ,E )
𝑋

(
𝜎𝐷 (𝑥, 𝜉)

)
(𝑢) := ∇E

𝑋

(
𝜎𝐷 (𝑥, 𝜉) (𝑢)

)
− 𝜎𝐷 (𝑥, 𝜉)

(
∇E
𝑋 (𝑢)

)
(3.129)

for all 𝑋 ∈ T𝑥M and all 𝜉 ∈ T∗𝑥M at any 𝑥 ∈ M . In general, ∇Hom(E ,E ) is not a Clifford
connection because using the Levi-Civita connection we have

𝑋
(
g−1
𝑥 (𝜉, 𝜂)

)
= g−1

𝑥

(
∇LC
𝑋 𝜉, 𝜂

)
+ g−1

𝑥

(
𝜉,∇LC

𝑋 𝜂
)

=
1
2
[
𝜎𝐷

(
𝑥,∇LC

𝑋 𝜉
)
, 𝜎𝐷 (𝑥, 𝜂)

]
+ +

1
2
[
𝜎𝐷 (𝑥, 𝜉), 𝜎𝐷

(
𝑥,∇LC

𝑋 𝜂
) ]
+, (3.130)
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and then by taking the covariant derivative of (3.122) we obtain[
∇Hom(E ,E )
𝑋

(
𝜎𝐷 (𝑥, 𝜉)

)
−𝜎𝐷

(
𝑥,∇LC

𝑋 𝜉
)
, 𝜎𝐷 (𝑥, 𝜂)

]
+ =

[
∇Hom(E ,E )
𝑋

(
𝜎𝐷 (𝑥, 𝜂)

)
−𝜎𝐷

(
𝑥,∇LC

𝑋 𝜂
)
, 𝜎𝐷 (𝑥, 𝜉)

]
+

(3.131)
for all 𝜂 ∈ T∗𝑥M and others as before. In particular, we can always locally choose an
orthonormal frame {𝑒𝑖} and its coframe {𝜀𝑖} on M and express

𝐷 = − i /∇E +𝑈, /∇E := 𝜎𝐷 (𝜀𝑖)∇E
𝑒𝑖
, (3.132)

where the Feynman-slash notation /∇E has been used, i.e., ∇E is composed with Clifford
multiplication and then traced over. A straightforward computation yields

𝐷2 = −/∇E /∇E − i /∇E (𝑈) +𝑈2 −
(
/∇Hom(E ,E ) (

𝜎𝐷 (𝜀 𝑗 )
)
+ i𝑈𝜎𝐷 (𝜀 𝑗 ) + i𝜎𝐷 (𝜀 𝑗 )𝑈

)
∇E
𝑒 𝑗
. (3.133)

But

/∇E /∇E
=

1
2
( /∇E /∇E + /∇E /∇E )

=
1
2
(
𝜎𝐷 (𝜀𝑖) 𝜎𝐷 (𝜀 𝑗 ) (∇E

𝑒𝑖
∇E
𝑒 𝑗
− Γ𝑘𝑖 𝑗∇E

𝑒𝑘
) + 𝜎𝐷 (𝜀 𝑗 ) 𝜎𝐷 (𝜀𝑖) (∇E

𝑒 𝑗
∇E
𝑒𝑖
− Γ𝑘𝑗𝑖∇E

𝑒𝑘
)
)
+ /Γ𝑘∇E

𝑒𝑘

=
1
2
(
𝜎𝐷 (𝜀𝑖) 𝜎𝐷 (𝜀 𝑗 )HessE

𝑒𝑖 ,𝑒 𝑗
+𝜎𝐷 (𝜀 𝑗 ) 𝜎𝐷 (𝜀𝑖)HessE

𝑒 𝑗 ,𝑒𝑖

)
+ /Γ𝑘∇E

𝑒𝑘

=
1
2
(
𝜎𝐷 (𝜀𝑖) 𝜎𝐷 (𝜀 𝑗 ) (HessE

𝑒 𝑗 ,𝑒𝑖
+R𝑒𝑖𝑒 𝑗 ) + 𝜎𝐷 (𝜀 𝑗 ) 𝜎𝐷 (𝜀𝑖)HessE

𝑒 𝑗 ,𝑒𝑖

)
+ /Γ𝑘∇E

𝑒𝑘

= g𝑖 𝑗 HessE
𝑒 𝑗 ,𝑒𝑖
+1

2
/R + /Γ𝑘∇E

𝑒𝑘
, (3.134)

where R resp. Γ are the curvature resp. connection 1-form of ∇E . Here, we have
used (3.20), (3.18), (3.122) and R𝑋,𝑌 = Hess𝑋,𝑌 −Hess𝑌,𝑋 . Inserting the preceding
equation into the last equation for 𝐷2 yields

𝐷2 = − trg (∇LC⊗E ◦ ∇E ) +ℜ +𝑈2 − i /∇E (𝑈)

−
(
/∇Hom(E ,E ) (

𝜎𝐷 (𝜀 𝑗 )
)
+ /Γ 𝑗 + i𝑈𝜎𝐷 (𝜀 𝑗 ) + i𝜎𝐷 (𝜀 𝑗 )𝑈

)
∇E
𝑒 𝑗
, (3.135)

where

ℜ : 𝐶∞(M ; E ) → 𝐶∞(M ; E ), 𝑢 ↦→ ℜ𝑢 := −1
2
(
𝜎𝐷 (𝑋♭) 𝜎𝐷 (𝑌 ♭)R𝑋,𝑌

)
𝑢. (3.136)

is the Weitzenböck curvature of ∇E . Since ∇E is a Weitzenböck connection, comparing
with (3.126) we equate the coefficients of ∇E

𝑒 𝑗
in the foregoing equation of 𝐷2 to zero to

obtain the covariant derivative of 𝜎𝐷:

/∇Hom(E ,E ) (
𝜎𝐷 (𝜀 𝑗 )

)
= −/Γ −

[
𝑈, 𝜎𝐷 (𝜀 𝑗 )

]
+, 𝑗 = 1, . . . , 𝑑. (3.137)
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Remark 3.4.3. A Clifford connection ∇̃Hom(E ,E ) , characterised by

∀(𝑥, 𝑋) ∈ 𝐶∞(M ; TM ),∀(𝑥, 𝜂) ∈ 𝐶∞(M ; T∗M ) :
[
∇̃Hom(E ,E )
𝑋

, 𝜎𝐷 (𝑥, 𝜂)
]
− = 𝜎𝐷

(
𝑥,∇LC

𝑋 𝜂
)
,

(3.138)
always exists and then the Clifford module bundle (E →M , 𝜎𝐷, ∇̃E ) is called the bundle
of Dirac modules, where the most general Dirac-type operator has the form

�̃� := − i c ◦ ∇̃E +𝑈 (3.139)

for all 𝑈 ∈ 𝐶∞
(
M ; End E

)
such that (cf. (3.137))

[𝑈, 𝜎𝐷 (·)]− = 0. (3.140)

The operator �̃� has the same principal symbol as 𝐷 so that they differ only by a smooth
term. Since ∇̃ is compatible with the Clifford multiplication (3.125), �̃� is sometimes
called compatible Dirac-type operator.

Example 3.4.4. Let (M , g) be a 𝑑-dimensional spin-spacetime, i.e., a spacetime (M , g)
whose tangent bundle admits a spin-structure. This means, there exists a pair (P , 𝛩)
where (P , Spin0,M ) is a principal Spin0(1, 𝑑 − 1)-bundle and 𝛩 : P → Q is a twofold
covering of the bundle (Q, SO0,M ) of positively oriented and time-oriented tangent
frames, such that the following diagram commutes [125] (see also, e.g. [126])

P × Spin 0 P

Q × SO0 Q

M𝛩 × Ad 𝛩

Figure 3.4: Lorentzian spin-structure on a spacetime. The horizontal lines are the group
actions on the principal bundles.

Here, Spin0(1, 𝑑 − 1) resp. SO0(1, 𝑑 − 1) are the connected components to the identity of
the Lorentzian spin group Spin (1, 𝑑 − 1) resp. the special orthogonal group SO(1, 𝑑 − 1)
and Ad : Spin0(1, 𝑑 − 1) → SO0(1, 𝑑 − 1) is the twofold covering map.

A spin structure always exists locally but its global existence depends on the topology
of M . A necessary and sufficient condition is that the second Stieffel-Whitney class of M
vanishes [31] (Riemannian signature); see [125, 127–130] for the Lorentzian setting.
Under this topological restriction, the number of inequivalent spin structures on M is
equal to the number of elements in the cohomology H1(M ;Z2) [31, Lem.] (Riemannian
signature; see [131] for a 4-dimensional spacetime). Then, for a fixed spin-structure
(P , 𝛩), the spinor bundle is defined as the associated vector bundle

S := P ×γ̃ S𝑑 , (3.141)
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where S𝑑 is the complex spinor module. When 𝑑 is even, dimC S𝑑 = 2𝑑/2, the spinor
module decomposes S𝑑 = S+𝑑 ⊕S

−
𝑑

into the submodules S±
𝑑

of positive(negative) chirality
and

γ̃ = γ̃+ ⊕ γ̃− : Spin0(1, 𝑑 − 1) → AutS+𝑑 × AutS−𝑑 ⊂ AutS𝑑 (3.142)

is the spinor representation. For an odd 𝑑, dimC S𝑑 = 2(𝑑−1)/2 and

γ̃ : Spin0(1, 𝑑 − 1) → AutS𝑑 (3.143)

is the spinor representation. Sections of a spinor bundle are called the spinors. In other
words, for each 𝑥 ∈M , the fibre S𝑥 of the spinor bundle S over 𝑥 consists of equivalence
classes of pairs [𝑝, 𝑠] subject to the free left Spin0(1, 𝑑 − 1)-group action on P × S𝑑:

∀𝑝 ∈P ,∀𝑢 ∈ S𝑑 ,∀𝑔 ∈ Spin0(1, 𝑑 − 1) : 𝑔 • [𝑝, 𝑢] = [𝑝𝑔−1, γ̃(𝑔) 𝑢] . (3.144)

Since TM sets inside Spin0(1, 𝑑 − 1), γ̃ induces an EndS𝑑-valued map γ on TM :

γ(𝑥, 𝑋)2 := g𝑥 (𝑋, 𝑋) 1EndS𝑑 . (3.145)

This enables us to define the Clifford multiplication

c : 𝐶∞(M ; TM ⊗S ) → 𝐶∞(M ; S ), c
(
[𝛩(𝑝), 𝑋] ⊗ [𝑝, 𝑠]

)
:= [𝑝, γ(𝑋) 𝑠], (3.146)

where we have expressed TM = Q ×ρ R𝑑 as a real vector bundle associated to Q by the
standard representation ρ of SO0(1, 𝑑 − 1) on R𝑑.

Employing the Levi-Civita connection 1-from ΓLC on Q, we define the spinor con-
nection 1-form ΓS := Ad−1

∗ ◦𝛩∗(ΓLC) which induces a connection ∇S on S . This spin
connection is a metric and Clifford connection. Moreover, it leaves the positive-negative
chiral splitting invariant and satisfies the Leibniz rule. The massive spin-Dirac operator
is defined by [125, Def. 3.1]

𝐷 := − i c ◦ ∇S +m : 𝐶∞(M ; S ) → 𝐶∞(M ; S ), (3.147)

where m is a parameter which can be interpreted as the physical mass of a spinor in
appropriate spacetime geometry.

Remark 3.4.5. If (M , g) is a 4-dimensional non-compact spacetime then the sufficient
and necessary condition to admit a spin-structure entails the existence of a global system
of orthonormal tetrads [127, Thm.]. In particular, a number of exact solutions of Einstein
equation, e.g., the Schwartzschild, the Robertson-Walker, the Gödel, the plane waves,
and any globally hyperbolic spacetime admit at least a spin-structure [128]. Furthermore,
the spinor bundle is trivial yet there may exists inequivalent spin-structures (P , 𝛩) (given
by number of elements in H1(M ;Z2)) encoded in 𝛩 [131].
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3.4.2 Green’s operators

Since 𝐷2 is normally hyperbolic, it admits unique advanced 𝐺adv and retarded 𝐺ret

Green’s operators on any globally hyperbolic spacetime (M , g) [132, Thm. 1]. Hence

𝐹adv,ret := 𝐷𝐺adv,ret : 𝐶∞c (M ; E ) → 𝐶∞sc (M ; E ) (3.148)

are the unique advanced resp. retarded Green’s operators for 𝐷. As before,

𝐹 := 𝐹ret − 𝐹adv : 𝐶∞c (M ; E ) → 𝐶∞sc (M ; E ) (3.149)

defines the Pauli-Jordan-Lichnerowicz Green’s operator, also known as the causal propa-
gator for 𝐷. Assumption 3.4.2 and Remark 3.2.13 entail that

∀𝑢, 𝑣 ∈ 𝐶∞c (M ; E ) : (𝐹adv,ret𝑢 |𝑣) = (𝑢 |𝐹ret,adv𝑣), (𝐹𝑢 |𝑣) = −(𝑢 |𝐹𝑣). (3.150)

Lemma 3.4.6. Let E →M (resp. 𝜋 : ¤T∗M →M ) be a vector bundle (resp. the punctured
cotangent bundle) over a globally hyperbolic spacetime (M , g) and 𝐷 a Dirac-type opera-
tor on E whose principal symbol is denoted by 𝜎𝐷. The Schwartz kernel F of the causal
propagator of 𝐷 is then

F ∈ 𝐼−1/2 (
M ×M , 𝐶′; Hom(E , E )

)
, (3.151a)

𝜎F = i
√︂
𝜋

2
𝜎𝐷 ◦ 𝑤

√︁
|dv𝐶 | ⊗ l, (3.151b)

where dv𝐶 is the natural volume form on the geodesic relation (Definition 3.2.15) 𝐶, l is a
section of the Keller-Maslov bundle L𝐶 → 𝐶 (as constructed in [35, pp. 231-232]), and 𝑤 is
the unique element of 𝐶∞

(
𝐶; 𝜋∗Hom(E , E )𝐶

)
that is diagonally the identity endomorphism

and off-diagonally covariantly constant

∇𝜋∗Hom(E ,E )
𝑋g/2

𝑤 = 0 (3.152)

with respect to the 𝐷2-compatible Weitzenböck covariant derivative (Definition 3.3.6) ∇𝜋∗Hom(E ,E )
𝑋g/2

along the geodesic vector field 𝑋g/2 (Remark 3.3.24).

If (E → M , 𝜎𝐷, ∇̃E ) is a bundle of Dirac modules with the corresponding Dirac-type
operator �̃� then the preceding holds with the replacement of ∇𝜋∗Hom(E ,E ) in (3.152) by the
�̃�2-compatible connection ∇̃𝜋∗Hom(E ,E ) induced by the Clifford connection ∇̃E .

Proof. This follows from Theorem 3.3.23 and the facts that 𝐷 is a first-order differential
operator, Char𝐷 = ¤T∗0M , and F(𝑥, ·) = 𝐷𝑥G(𝑥, ·). �
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3.4.3 Cauchy problem

Since 𝐷2 is a normally hyperbolic operator and (M , g) is a globally hyperbolic spacetime,
the Cauchy problem for 𝐷 is well-posed [132, Thm. 2]. In other words, for an arbitrary
but fixed Cauchy hypersurface 𝛴𝑡 ⊂M , the mapping

R𝑡 : ker𝐷 → 𝐶∞c (𝛴𝑡; E𝛴𝑡 ), 𝑢 ↦→ R𝑡 (𝑢) := 𝑢 � 𝛴𝑡 , supp 𝑢 ⊂ 𝐽
(
supp(𝑢�𝛴𝑡)

)
(3.153)

is a homeomorphism, where 𝐽 is defined by (3.2). In order to endow ker𝐷 with a
hermitian inner product, we make use of the following

Assumption 3.4.7. Given an arbitrary but fixed future-directed unit normal covector
field (·, 𝜁) on a globally hyperbolic spacetime (M , g) along any Cauchy hypersurface 𝛴 ,

〈·|·〉 :=
(
𝜎𝐷 (·, 𝜁) ·

�� · ) (3.154)

is a fibrewise hermitian form on the bundle of Clifford modules
(
E →M , 𝜎𝐷, (·|·)

)
. The

hermitian form 〈·|·〉 depends on the choice of (·, 𝜁).

By global hyperbolicity (Section 3.1.2) of (M , g), there exists a (non-unique) global
Cauchy temporal function t such that each Cauchy hypersurface 𝛴𝑡 := t−1(𝑡) for any 𝑡 ∈ R
is a level set of t. Then

𝜁 :=
dt
‖dt‖ (3.155)

is a unit normal covector field on M along 𝛴𝑡 and we choose the time-orientation such
that 𝜁 is future-directed.

Employing the preceding topological isomorphism R𝑡 , ker𝐷 can be equipped with a
hermitian inner product (see e.g. [124, Lem. 3.17]):

〈𝑢 |𝑣〉 :=
∫
𝛴

(
c
(
(𝑥, 𝜁) ⊗ (𝑢�𝛴)

) ��𝑣 �𝛴 )
𝑥
dvh(𝑥), (3.156)

where dvh is the Riemannian volume element on 𝛴 . We remark that 〈· |· 〉 is independent
of the chosen Cauchy hypersurface 𝛴 due to the Green-Stokes formula (see (3.166)).
Therefore, (E →M , 〈·|·〉) is a hermitian vector bundle, of course depending on (·, 𝜁), but
independent of chosen 𝛴 .

We infer from the preceding equation that, given an initial data 𝑘 ∈ 𝐶∞c (𝛴 ; E𝛴 ), any
smooth solution 𝑢 of the Dirac equation (1.18) can be expressed as (see [133, Prop. 2.4
(b)] for a spin Dirac operator)

𝑢 = − i 𝐹 ◦ (𝜄∗
𝛴
)−1 c(𝜁 ⊗ 𝑘), (3.157)

where the restriction operator

𝜄∗
𝛴

: 𝐶∞c (M ; E ) → 𝐶∞c (𝛴 ; E𝛴 ) (3.158)
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has been discussed elaborately in Example 2.3.12 and we have taken into account Re-
mark 3.1.7. All the maps in the exact complex

0→ 𝐶∞c (M ; E ) 𝐷−−−→ 𝐶∞c (M ; E ) 𝐹−−→ 𝐶∞sc (M ; E ) 𝐷−−−→ 𝐶∞sc (M ; E ) (3.159)

are sequentially continuous as a consequence of 𝐷 being a local operator and the follow-
ing exact complex being sequentially continuous (see e.g. [73, Prop. 3.4.8])

0→ 𝐶∞c (M ; E ) 𝐷2

−−−→ 𝐶∞c (M ; E ) 𝐺−−→ 𝐶∞sc (M ; E ) 𝐷2

−−−→ 𝐶∞sc (M ; E ). (3.160)

3.4.4 Primary result

Since 𝐷2 is a normally hyperbolic operator and the first hypothesis in Theorem 3.3.3 is
satisfied by Assumption 3.4.2, one obtains Feynman propagator 𝐹Fyn for 𝐷 immediately
by setting

𝐹Fyn := 𝐷𝐺Fyn, (3.161)

where 𝐺Fyn is the Feynman propagator for 𝐷2. Since Char𝐷 = ¤T∗0M , one has

WF′(Fadv,ret,Fyn,aFyn) = WF′(Gadv,ret,Fyn,aFyn) = 𝛥 ¤T∗M
⋃

𝐶adv,ret,+,−, (3.162)

where the canonical relations are defined in (3.45) and in Definition 3.2.15. Neverthe-
less, the existence of Hadamard states cannot be deduced due to the positivity issue as
(·|·) is not definite. One may wish to consider symmetricness of 𝐷 with respect to some
hermitian form 〈·|·〉 so that the hypotheses of Theorem 3.3.3 are satisfied in such a way
that the existence of Hadamard states can be concluded. The natural inner product on
spinors on a spacetime is not positive-definite rather that is indefinite and therefore the
positivity property of Feynman propagators for a spin-Dirac operator (Example 3.4.4)
cannot be inferred directly deploying Theorem 3.3.3. In other words, the requirement
of symmetricness with respect to 〈·|·〉 turns out to be too restrictive to encompass all
Dirac-type operators on globally hyperbolic manifolds (see Section 3.5.5 and 3.5.6 for
concrete examples) and so we refrain to impose this condition.

Theorem 3.4.8. Let E → M be a vector bundle over a globally hyperbolic spacetime
(M , g), endowed with a non-degenerate sesquilinear form (·|·) and 𝐷 a Dirac-type oper-
ator on E whose principal symbol is given by 𝜎𝐷. Suppose that

(
E → M , 𝜎𝐷, (·|·)

)
is a

bundle of Clifford modules over (M , g) and that 𝐷 is symmetric with respect to (·|·). Then,
there exists a Feynman propagator 𝐹Fyn for 𝐷 such that 𝑊 := − i(𝐹Fyn − 𝐹adv) is symmet-
ric, where 𝐹adv is the advanced propagator for 𝐷. In addition, if there exists a hermitian
form 〈·|·〉 on E in the sense of Assumption 3.4.7, then 𝐹Fyn can be chosen such that 𝑊 is
non-negative with respect to (·|·) and hence defines a Hadamard bisolution of 𝐷.
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Proof. To begin with, recall that Char𝐷2 = ¤T∗0M has only two connected components
in three or higher spacetime dimensions5: the forward lightcone ¤T∗0,+M and the back-
ward lightcone ¤T∗0,−M . Therefore, 𝐶 has four different orientations6 [35, p. 218]
(see also [39, p. 540]): (𝐶+, 𝐶−), (𝐶−, 𝐶+), (𝐶adv, 𝐶ret), (𝐶ret, 𝐶adv) corresponding to
{ ¤T∗0M , ¤T∗0,+M , ¤T∗0,−M , ∅}. Th -is paves a way to have a (non-unique) microlocal de-
composition of the causal propagator 𝐺 for 𝐷2 as

G ≡ E+ − E−, (3.163a)
E±𝐷2 ≡ 𝐷2E± ≡ 0, (3.163b)
E± ∈ 𝐼−3/2 (

M ×M , 𝐶±′; Hom(E , E )
)
, (3.163c)

where ≡ means modulo smoothing kernels. Clearly, this is a slightly stronger version of
Theorem 3.3.1, which can be proven exactly in the same fashion; cf Theorem 3.3.23.

To achieve the analog of the proceeding results for 𝐷, we remember Char𝐷 = Char𝐷2

and decompose F as S+ + S− where

S± :=
∑︁
𝛼

𝑄±𝛼F𝑄
±
𝛼 (3.164)

and (𝑄±𝛼)∗𝑄±𝛼 are microlocal partition of unity such that 𝐷𝑄±𝛼 ≡ 𝑄±𝛼𝐷 and ES𝑄±𝛼 =

𝛥 ¤T∗0,±M . Consequently,

F ≡ S+ + S−, (3.165a)
S±𝐷 ≡ 𝐷S± ≡ 0, (3.165b)
S± ∈ 𝐼−1/2 (

M ×M , 𝐶±′; Hom(E , E )
)
, (3.165c)

by an application of (2.128). The operators 𝑄±𝛼 can be constructed by choosing any
q±𝛼 ∈ 𝑆0−[∞] ( ¤T∗M ,Hom(E , E )

)
as its left total symbol such that esssupp q±𝛼 = ¤T∗0,±M . In

other words q±𝛼 is of order −∞ near 𝑦 ∈ M and in a conic neighbourhood of 𝜂 for all
(𝑦, 𝜂) in the complement of esssupp q±. Furthermore, we pick supp q±𝛼 slightly away from
the projection of ES𝑄±𝛼 on 𝑀 so that [𝐷,𝑄±𝛼]− is smooth.

Lemma 3.4.9. As in the terminologies of Theorem 3.4.8, let 𝐹 be the causal propagator for
𝐷. Then i 𝐹 is non-negative with respect to (·|·).

Proof. Let 𝑢, 𝑣 ∈ 𝐶∞(M ; E ) having compact supp 𝑢 ∩ supp 𝑣 and let 𝐾 ⊂ M be a com-
pact set having smooth boundary 𝜕𝐾 with an outward unit normal covector field 𝜁 and
volume element dv. Then, the Green-Stokes formula yields (see e.g. [134, Prop. 9.1, (p.
178)]), [133, (1.7)])∫

𝑥∈𝐾

(
(𝐷𝑢 |𝑣)𝑥 − (𝑢 |𝐷𝑣)𝑥

)
dvg (𝑥) = − i

∫
𝑥 ′∈𝜕𝐾

(
𝜎𝐷 (·, 𝜁) 𝑢

��𝑣)
𝑥 ′dv(𝑥

′), (3.166)

5In two dimensions, ¤T∗0M has four connected components; cf. Remark 3.2.18.
6By an orientation of the geodesic relation 𝐶, it is meant that any splitting of 𝐶 \ 𝛥 ¤T∗0M into a disjoint

union of open 𝐶1, 𝐶2 ⊂ 𝐶 which are inverse relations [35, p. 218].
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where dvg is the Lorentzian volume (Remark 2.2.1 (d)) form on M . Setting 𝑢 := 𝐹ret𝑤

and 𝑣 := 𝐹𝑤 for any 𝑤 ∈ 𝐶∞c (M ; E ), the above formula entails (𝑤 | i 𝐹𝑤) ≥ 0 due to the
compactness of supp(𝐹ret𝑢) ⊂ 𝐽+(supp 𝑢). �

Therefore, (𝑢 | i 𝑆±𝑢) ≥ 0 by (3.165a). Note, 𝐶± = 𝐶 ∩ ( ¤T∗0,+M × ¤T∗0,+M ). Inspecting
the (twisted) wavefront sets of 𝐹Fyn and 𝐹adv as before in the proof of Proposition 3.3.2,
we have the analogue of Proposition 3.3.2 for Dirac-type operators:

(𝑢 |�̂�𝑢) ≥ 0, �̂� := i(𝐹adv − 𝐹Fyn). (3.167)

As in the proof of Theorem 3.3.3, in order to turn Ŵ into an exact distributional
bisolution W, we are going to employ the well-posedness of the Cauchy problem for 𝐷
on a globally hyperbolic spacetime [132, Thm. 2]. For any 𝑘 ∈ 𝐶∞c (𝛴 ; E𝛴 ), we define
distributional Cauchy data 𝑘 ⊗ 𝛿𝛴 by

𝑘 ⊗ 𝛿𝛴 (𝜙) :=
∫
𝑥∈𝛴

𝜙(𝑥) c(𝜁 ⊗ 𝑘)𝑥 dvh(𝑥) (3.168)

for any 𝜙 ∈ 𝐶∞(M ; E ∗). By Y𝛴 ⊂ E′𝛴⊥∗ (M ; E ), we denote the set of distributions of
the above form where E′

𝛴⊥∗ (M ; E ) is the set of compactly supported distributions whose
wavefront set is contained in the conormal bundle 𝛴⊥∗. Any bidistribution w ∈ D′(M ×
M ; E � Ē ∗) such that w𝐷 and 𝐷w are smooth in distributional sense, can be defined as
a sequential continuous bilinear form on Y𝛴 .

Lemma 3.4.10. As in the terminologies of Theorem 3.4.8, suppose that w ∈ D′(M×M ; E �
Ē ∗) is a bisolution of 𝐷. Then (𝑢 |𝑤𝑢) ≥ 0 if and only if w(𝑢∗ ⊗ 𝑢) ≥ 0 for all 𝑢 ∈ Y𝛴 , where
Y𝛴 is the span of the distributional Cauchy data (3.168) of 𝐷.

Proof. The proof carries over its analogue Lemma 3.3.21 after the obvious replace-
ment of 𝐷2(= �), its Cauchy data (3.110), and causal propagator 𝐺, by 𝐷, its Cauchy
data (3.168), and causal propagator 𝐹, respectively. �

�

3.5 Examples

We list below several operators arising in the context of quantum field theories in a
curved spacetime and discuss how they fit into our framework.

3.5.1 Covariant Klein-Gordon operator

As described in Example 3.2.2, the natural inner product on 𝐶∞(M ) is positive-definite
with respect to which � is symmetric. Therefore, Theorem 3.3.3 applies and positive
Feynman propagators can be constructed using this method.
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3.5.2 Connection d’Alembert operator

A Feynman propagate exists for � (Example 3.2.5) by Theorem 3.3.3. The positivity issue
depends on the positivity of the inner product with respect to which � is symmetric.

3.5.3 Hodge-d’Alembert operator

A Feynman propagator exists for this operator defined in Example 3.2.4 by Theorem 3.3.3.
Since the natural inner product with respect to which this operator is symmetric, is not
positive-definite unless 𝑘 = 0 or 𝑘 = 𝑑, we cannot conclude non-negativity in a straight-
forward way. For example, for 𝑘 = 1 non-negativity is only expected on a subset as is
usual for gauge theories.

3.5.4 Proca operator

As in the terminologies of Example 3.2.7, a Feynman propagator for d∗d + dd∗ +m2 can
be constructed by this method and the positivity issue is same as in Section 3.5.3.

3.5.5 Twisted spin-Dirac operator

Let (S →M ,∇S ) resp. (E →M ,∇E ) be a spinor (resp. vector) bundle endowed with
the spin ∇S (resp. bundle ∇E ) connection, over a globally hyperbolic spin-spacetime
(M , g) (Example 3.4.4 and Remark 3.4.5). These two connections induce another con-
nection ∇ := ∇S ⊗ 1E +1S ⊗∇E on the twisted spinor bundle S ⊗ E → M and the
twisted Dirac operator is defined by (see e.g. [125] for details)

/𝐷 := − i γ ◦ 𝑔−1 ◦ ∇ : 𝐶∞(M ; S ⊗ E ) → 𝐶∞(M ,S ⊗ E ), (3.169)

where γ : 𝐶∞(M ; TM ) → End S is the Clifford mapping such that

∀(𝑥, 𝑋), (𝑥,𝑌 ) ∈ 𝐶∞(M ; TM ) : γ(𝑋) γ(𝑌 ) + γ(𝑌 ) γ(𝑋) = 2g𝑥 (𝑋,𝑌 ) 1End S , (3.170)

and the Clifford multiplication is given by

𝐶∞(M ; TM ⊗S ⊗ E ) 3 (𝑥, 𝑋) ⊗ 𝜓 ⊗ 𝑢 ↦→ (γ(𝑋)𝜓) ⊗ 𝑢 ∈ 𝐶∞(M ; S ⊗ E ). (3.171)

The Schrödinger [135]-Lichnwerowicz [136] formula entails (see e.g. [132, Exm. 1])

/𝐷2
= ∇∗∇ + ℜ

4
+ 𝔉 (3.172)

where ℜ is the scalar curvature of M and 𝔉 is the Clifford multiplied curvature of ∇E .

Clearly, /𝐷2 is a normally hyperbolic operator and thus /𝐷 is of Dirac-type. This formula
also shows that the Weitzenböck connection is the twisted spin-connection ∇ on the twisted
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spinor bundle and therefore the induced connection on Hom(S ⊗ E ,S ⊗ E ) → ¤T∗M is
to be used for microlocalisation. Since /𝐷 is symmetric with respect to the natural inner
product (·|·) on S ⊗ E , a Feynman propagator for /𝐷 exists by Theorem 3.3.3 yet the
existence of Hadamard states cannot be concluded due to the fact that (·|·) is not positive-
definite unless (M , g) is a Riemannian manifold. However, (M , g) is globally hyperbolic
and thus, there exist a smooth spacelike Cauchy hypersurfaces 𝛴 and a future-directed
unit vector field N on M normal to 𝛴 so that γ(N)· defines the Clifford multiplication
to achieve the hermitian form 〈·|·〉 (cf. Assumption 3.4.7). Then, Theorem 3.4.8 is
applicable and we have Feynman propagators with the desired positivity with respect to
(·|·).

3.5.6 Rarita-Schwinger operator

As in the terminologies of Example 3.4.4, let S → M be a spinor bundle over a spin-
spacetime (M , g) and the Clifford multiplication is given by T∗M ⊗ S 3 (𝑥, 𝜉) ⊗ 𝑢 ↦→
γ
(
g♯𝑥 (𝜉)

)
𝑢 ∈ S . Then, we have the representation theoretic splitting

T∗M ⊗S = 𝜄(S ) ⊕S 3/2, (3.173)

where S 3/2 is defined as the kernel of the Clifford multiplication and the embedding 𝜄
of S into T∗M ⊗S is locally defined by

𝜄(𝑢) := −1
𝑑
𝑒𝑖 ⊗ γ(𝑒𝑖)𝑢, (3.174)

where {𝑒𝑖} is an orthonormal basis of TM . Suppose that

/𝐷 := i(1 ⊗γ) ◦ ∇ (3.175)

is the twisted Dirac operator on T∗M ⊗S , then the Rarita-Schwinger operator is defined
as [124, Def. 2.25]

R := (𝐼 − 𝜄 ◦ γ) ◦ /𝐷 : 𝐶∞(M ; S 3/2) → 𝐶∞(M ; S 3/2). (3.176)

The characteristic set Char R of R coincides with the set of lightlike covectors in dimen-
sions 𝑑 ≥ 3 (see e.g. [124, Lem. 2.26]) and R is a symmetric differential operator whose
Cauchy problem is well-posed when (M , g) is globally hyperbolic albeit R2 is not a nor-
mally hyperbolic operator (see e.g [124, Rem. 2.27]). Moreover, a hermitian form (4.17)
does not exist in 𝑑 ≥ 3 [124, Example 3.16].

Originally, Rarita and Schwinger (in Minkowski spacetime) considered the twisted
Dirac operator /𝐷 restricted to S 3/2 but not projected back to S 3/2 [137, (1)] (see
also [138, Sec. 2], [139, Prop. 2.7] for Riemannian and [124, Rem. 2.28] for Lorentzian
spin manifolds), that is,

/𝐷 � 𝐶∞(M ; S 3/2) : 𝐶∞(M ; S 3/2) → 𝐶∞(M ; T∗M ⊗S ), (3.177)
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in order to ensure the correct number of propagating degrees of freedom for spin-3/2
fields (see, for instance, the reviews [140, 141] for physical motivation and different
approaches used in Physics literature). The corresponding Rarita-Schwinger operator is
then an overdetermined system and this constrained system limits possible curvatures of
the spacetime [142] (see also, e.g. [138, p. 856], [143]):(

Ric−ric
𝑑
g
)∗
𝑢 = 0, (3.178)

where Ric resp. ric are the Ricci tensor resp. Ricci scalar curvature of M . In other
words, the corresponding Rarita-Schwinger field exists only in Einstein spin manifolds
in contrast to constraint Hodge-d’Alembert operator (Section 3.5.3) and Proca operator
(Section 3.5.4) discussed earlier. However, the Rarita-Schwinger operator correspond-
ing to the restricted twisted spin-Dirac operator (3.177) does not admit a Green’s opera-
tor [124, Rem. 2.28].

Since the Cauchy problem for R is well-posed on a globally hyperbolic spacetime
(M , g), the Rarita-Schwinger operator (3.176) admits unique advanced 𝑆adv and re-
tarded 𝑆ret Green’s operators. Moreover, it also admits Feynman 𝑆Fyn and anti-Feynman
𝑆aFyn Green’s operators as Char R = ¤T∗0M (entailing four possible orientations of the
geodesic relation). These can be constructed by assuming the construction of the causal
Green’s operator 𝑆 := 𝑆ret − 𝑆adv and following the same strategy (cf. the proof of The-
orem 3.4.8) as in the case of a Dirac-type operator. However, the positivity issue is
non-conclusive.

3.5.7 Higher spin operators

The straightforward attempts to generalise Dirac operator on Minkowski spacetime for
arbitrary spin [144] in curved spacetimes7 leads to difficulties (see e.g [145, p. 324] for
a panoramic view and the reviews [140, 141]). A crucial advancement came through
Buchdahl operator (in Riemannian manifold) [146] (for a Lorentzian formulation, see
[124, Exam. 2.24]) whose square turns out to be a normally hyperbolic operator [124,
p. 8], yet the minimum coupling principle seems to be violated and a "by hand" proposal
is required in the original idea of Buchdahl. These minor imperfections were cured by
Wünsch [147], by Illege [148, 149] and by Illege and Schimming [145] for the massive
case deploying the 2-spinor formalism in 4-dimensional curved spacetimes. In particular,
the square of Buchdahl operator (as modified by Wünsch and Illge) is a normally hyper-
bolic operator on certain twisted bundles. In contrast, there are a few open questions for
the massless case [150] (see also the reviews [140, 141] for the contemporary status and
other formulations used in Physics literature). Hence, the existence of a Feynman prop-
agator is evident either by Theorem 3.3.3 or Theorem 3.4.8 but the issue of positivity is
non-conclusive at this stage.

7Not necessarily be globally hyperbolic.
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3.6 Literature

The Lorentzian geometry of spacetime is quite well-studied and presented in great detail,
for instance, in the monographs [89, 111, 115, 151, 152]. The notion of global hyper-
bolicity was introduced by Jean LERAY [153] to ensure the well-posedness of the Cauchy
problem. Later, this class of spacetimes was emphasized in the context of Einstein’s
general relativity notably by Roger PENROSE [154] by means of his cosmic censorship
conjecture (see e.g. [115, pp. 200 - 209, 299 - 308]). The characterisation of a glob-
ally hyperbolic manifold in terms of a Cauchy hypersurface is originally due to Robert
GEROCH [109] who proved “a topological version” of Theorem 3.1.6. His topological
splitting theorem has been sharpened in a series of four articles by Antonio BERNAL and
Miguel SÁNCHEZ [110] who, in particular, have achieved an orthogonal smooth splitting
in the level of spacetime metric. We refer the survey articles [108, 155] for details.

Fundamental solutions of a normally hyperbolic operator have been constructed in
great generality by Jacques HADAMARD [156] and by Marcel RIESZ [157]. Contempo-
rary expositions include, for example [72, 73, 158].

The Feynman propagator was introduced by Richard FEYNMAN [159] propounding the
idea of Ernst STÜCKELBERG [160] that “particles propagate forward in time whereas an-
tiparticles propagate backward in time” in the context of quantum field theory by means
of the so-called time-ordered product (see Appendix C.3). His original definition was not
rigorous and can only be understood well in Minkowski spacetime as recalled in Exam-
ple C.3.2. The mathematical underpinning was given by Johannes J. DUISTERMAAT and
Lars HÖRMANDER [35, Sec. 6.6]. In fact, the notion of distinguished parametrices for
scalar pseudodifferential operators of real principal type was introduced in their seminal
article where they have identified a geometric notion of pseudoconvexity which allows
to prove the uniqueness of such parametrices. Although they were motivated and cer-
tainly aware of the developments in physics, it was realised only much later by Maciej
RADZIKOWSKI [39] that the expectation value of the time-ordered product with respect
to a state satisfying the Hadamard condition is the Feynman propagator.

The spin-Dirac operator is named after Paul DIRAC [161] who introduced this op-
erator in the context of quantum field theory to describe the dynamics of an electron
in Minkowski spacetime. The bundle language was not developed back then and so
a geometric formulation of Dirac operator was not available until the precise formula-
tion of spin-structure. Subsequently, Dirac-type operators appear in the work of Michael
ATIYAH, Vijay PATODI and Isadore SINGER [162] in their celebrated index theorem. We
refer [125, 126] for a discourse on Lorentzian spin-geometry and [114, 163] for a de-
tailed account of Riemannian Dirac-type operators.



Chapter 4

Gutzwiller trace formula

The Duistermaat-Guillemin trace formula of the time-flow on the kernel of a Dirac operator on
a spatially compact globally hyperbolic stationary spacetime has been derived in this chapter.

4.1 Trace of a smoothing operator

We recall that a trace on an associative algebra (A , ·) over C is a linear functional

Tr : A → C such that ∀𝐴, 𝐵 ∈ A : Tr( [𝐴, 𝐵]−) = 0, (4.1)

where [𝐴, 𝐵]− := 𝐴 · 𝐵 − 𝐵 · 𝐴 is the commutator defined by the product · structure on
A . In particular, let E𝛴 → 𝛴 be a vector bundle over a compact manifold 𝛴 without
boundary. Then ΨDO−∞(𝛴 ; E𝛴 ⊗ 𝛺1/2𝛴) is a Fréchet algebra of smoothing operators and

Tr : ΨDO−∞(𝛴 ; E𝛴 ⊗ 𝛺1/2𝛴) → C, 𝑃 ↦→ Tr 𝑃 :=
∫
𝑀

tr
(
P(𝑥, 𝑥)

)
, (4.2)

where P(𝑥, 𝑥) is the restriction of the Schwartz kernel P of 𝑃 to the diagonal in 𝛴 × 𝛴 and
tr is the endomorphism trace defined by (3.8). The traciality of this trace is the Fubini’s
theorem and this trace is the unique trace on ΨDO−∞(𝛴 ; E𝛴 ⊗ 𝛺1/2𝛴) (see e.g. [9, Sec.
1.1.7, 4.3.2]).

4.2 Stationary spacetimes

Definition 4.2.1. A spacetime (Definition 3.1.2) (M , g) is called stationary (M , g, 𝛯) if
it admits a global timelike Killing flow 𝛯.

A Killing flow 𝛯𝑠 : M →M , per se, keeps the spacetime metric g invariant:

𝛯T∗M×T∗M
𝑠 g = 0⇔ £𝑍g = 0 (4.3)

105
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for any 𝑠 ∈ R, where 𝑍 is the infinitesimal generator of 𝛯𝑠, called the Killing vector field.
In other words, the Killing flow 𝛯𝑠 is a spacetime isometry. In local coordinates (𝑥𝑖) on
M , 𝑍 = 𝑍 𝑖𝜕𝑖, and the preceding equation entails the Killing’s equation:

∇LC
𝑖 𝑍 𝑗 + ∇LC

𝑗 𝑍𝑖 = 0, 𝑖, 𝑗 = 1, . . . , 𝑑, (4.4)

where ∇LC
𝑋

is the Levi-Civita covariant derivative of (M , g).

Example 4.2.2. Let (M , g) = (R4, η) be the 4-dimensional Minkowski spacetime. The
set of all isometries of R4 consists of translations and Lorentz-transformations, and it has
a group structure - the Poincaré group. In inertial coordinates (𝑥𝑖) = (𝑡, 𝑥, 𝑦, 𝑧):

• (𝑍 𝑖) = (0, 0, 0, 1) is the Killing vector field generating the translations in the 𝑧-
direction.

• (𝑍 𝑖) = (0, 0,−𝑧, 𝑦) is the Killing vector field generating the rotations around the
𝑥-axis.

• (𝑍 𝑖) = (𝑥, 𝑡, 0, 0) is the Killing vector field generating the boosts along the 𝑥-axis.

The Killing flow is physically interpreted as the flow of time which allows a canonical
1 + (𝑑 − 1) dimensional non-unique topological (resp. local geometric) decomposition
of M (resp. g). This can be achieved either by the projection formalism [164] (see
also, e.g. [165, 166]) or by the Kaluza-Klein reduction (see e.g. [152, Sec. XIV.2]). In
what follows, we can (and at some point, will) consider a slightly specialised version of
stationary spacetimes.

Definition 4.2.3. Let (𝛴, h) be a Riemannian manifold. A standard stationary space-
time is defined as the triplet (M , g, 𝑍) where (see e.g. [155, (7.1)], [167, Def. 3.3])

M := R × 𝛴 (4.5)

is the spacetime manifold admitting a complete and timelike Killing vector field 𝑍 and a
local coordinate chart

(
𝑈, (𝑡, 𝑥𝑖)

)
such that 𝑍 � 𝑈 = 𝜕𝑡 and the spacetime metric

g � 𝑈 := β2 d𝑡2 − h𝑖 𝑗 (d𝑥𝑖 + α𝑖 d𝑡) (d𝑥 𝑗 + α 𝑗 d𝑡), 𝑖, 𝑗 = 2, . . . , 𝑑, (4.6)

where α is the shift vector field and β is the lapse function, both independent of 𝑡.

Not all standard stationary spacetimes are globally hyperbolic (Definition 3.1.3) and
as argued in Section 3.1.2, we are only interested in those which are. Our desired class is
achieved pertaining to the Fermat metric (see e.g. [155, Sec. 7] and references therein)

f :=
1

β2 − ‖α‖2
h

h𝑖 𝑗𝛼
𝑖d𝑥 𝑗 +

√√
1

β2 − ‖α‖2
h

h𝑖 𝑗d𝑥𝑖d𝑥 𝑗 +
(
h𝑖 𝑗α𝑖d𝑥 𝑗

β2 − ‖α‖2
h

)2

(4.7)
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on 𝛴 for a given splitting (4.6). This metric induces a (not necessarily symmetric) dis-
tance df on 𝛴 which in turn induces forward B̄+(𝑥, r) := {𝑦 ∈ M | df (𝑥, 𝑦) ≤ r} and
backward B̄−(𝑥, r) := {𝑦 ∈ M | df (𝑦, 𝑥) ≤ r} closed balls. Analogously, one has forward
(backward) Cauchy sequences and forward (backward) completeness. Moreover, one
defines the closed symmetrised balls B̄s(𝑥, r) corresponding to the symmetrised distance(
df (𝑥, 𝑦) + df (𝑦, 𝑥)

)
/2. In terms of these terminologies, the analysis of [168, Thm. 4.3b,

4.4, Cor. 5] can be summarised as

Theorem 4.2.4. The following properties are equivalent for a standard stationary spacetime
(M , g, 𝑍) (see e.g., the reviews [155, Thm. 7.2], [167, Thm. 3.1]).

• (M , g, 𝑍) is globally hyperbolic.

• The closed symmetrised balls B̄s of the Fermat metric (4.7) associated to one (and then
to any) standard stationary splitting of (M , g) are compact.

Furthermore, the slices associated to a standard stationary splitting are Cauchy hypersur-
faces if and only if the Fermat metric associated to that splitting is both forward and back-
ward complete.

A sufficient condition is given by

Corollary 4.2.5. Let (M , g, 𝑍) be a standard stationary spacetime. If h is complete and d0
is the distance function on (𝛴, h) to some (and then any) fixed point 𝑥0 ∈ 𝛴 such that

sup


‖α‖h
d0
(𝑥),

√︃
β2 − ‖α‖2h

d0
(𝑥) | 𝑥 ∈ 𝛴, d0(𝑥) > 1

 < ∞, (4.8)

then (M , g, 𝑍) is globally hyperbolic and all the slices 𝛴𝑡 are Cauchy hypersurfaces.

In particular, the preceding finite bound holds if α is sublinear: ‖α‖h < cst1 d0(𝑥) + cst2
and β is subquadratic: β(𝑥) < cst3 d0(𝑥) + cst4 for some constants (see e.g. [155, Cor. 7.1]).

Remark 4.2.6. As in the terminologies of Definition 4.2.1 and 4.2.3:

(a) The completeness means that the Killing flow is globally defined

𝛯 : R ×M →M , (𝑠, 𝑥) ↦→ 𝛯 (𝑠, 𝑥) =: 𝛯𝑠 (𝑥), d𝛯 (𝑠, 𝑥; 𝜕𝑠, 0) = 𝑍
(
𝛯 (𝑠, 𝑥)

)
, (4.9)

where 𝑍 is the global timelike Killing vector field, locally given by 𝜕𝑠. We remark
that some authors define stationary spacetimes without imposing the completeness
assumption but this is crucial for the thesis.

(b) If one of the timelike Killing vector fields of a globally hyperbolic stationary space-
time is complete then the spacetime is a standard stationary one [169, Thm. 2.3].
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(c) The splitting (4.6) is not unique.

(d) A globally hyperbolic stationary spacetime is called spatially compact if and only if
its Cauchy hypersurface is compact. Such spacetimes are geodesically complete [170,
Lem. 1.1].

(e) On a generic 𝑑 > 2-dimensional (standard) stationary spacetime the Killing vector
field (𝜕𝑡 =)𝑍 is not orthogonal to 𝛴𝑡 because the corresponding 1-form 𝑍♭ does not
satisfy the hypersurface-orthogonality condition:

𝑍♭ ∧ d𝑍♭ ≠ 0. (4.10)

In other words, the orthogonal geometric distribution of 𝑍 is non-involutive. Phys-
ically this means that the neighbouring orbits of 𝑍 can twist around each other.
In 𝑑 = 2 this cannot happen, i.e., every Killing vector field is at least locally
hypersurface-orthogonal because there is no freedom to rotate. If one imposes
the condition that 𝛴𝑡 is orthogonal to the orbits of the spacetime isometry, then
(M , g, 𝛯) is called a static spacetime and one has a canonical non-unique global
time-coordinate 𝑡. In this case, α vanishes identically so that there is no d𝑡 d𝑥𝑖-type
cross terms in (4.6). Additionally, if we demand that 𝑍 has a constant norm, then
a static spacetime is called an ultrastatic spacetime. This enforces β to be the
identity function (see e.g. [151, pp. 120-122] [115, (B.3.6) and App. C.3]).

(f) On a 𝑑-dimensional Lorentzian manifold, there can be at most 𝑑 (𝑑 + 1)/2 linearly
independent Killing vector fields. In our physical universe, currently 𝑑 = 4. Hence,
it can admit maximum 10 Killing vector fields and this maximally symmetric space-
time is known as the de Sitter spacetime.

4.3 Gutzwiller trace formula for Dirac operators

In order to get an intuition of the Gutzwiller trace formula for Dirac-type operators on a
stationary spacetime we begin with the simplest case.

4.3.1 Poisson summation formula on S

Since H1(S;Z2) = Z2 (cf. Example 3.4.4), a circle S admits two inequivalent spin-
structures as described below (see e.g. [171, Sec. 3]).

• Trivial spin-structure: One uses SO(1) = {1} and Spin (1) = Z2 = {+1,−1}. Then
the frame bundle (Q, SO(1), S) is trivial and so is the spin-structure

Ptriv = S × Spin (1), Striv := Ptriv × C, (4.11)
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where the double covering 𝛩 is the projection of the first factor. Hence, the spinors
on S are simply (C-valued) functions on S which are identified with 𝑇 -periodic
functions on R:

𝐶∞(S; Striv) = 𝐶∞(S) = {𝑢 ∈ 𝐶∞(R) | ∀𝑇 > 0 : 𝑢(𝑥 + 𝑇) = 𝑢(𝑥)}. (4.12)

The massless spin-Dirac operator on S is nothing but the derivative operator D𝑥:

/𝐷S := − i
d
d𝑥

= D𝑥 . (4.13)

Therefore Spec /𝐷S = Spec D𝑥 and the Poisson summation formula (1.4) is essen-
tially the Poisson summation formula for /𝐷S on S for the trivial spin-structure.

• Non-trivial spin-structure: In this case

Pntriv =
(
[0, 𝑇] × Spin (1)

)
/∼, ∀𝑇 > 0, (4.14)

where ∼ identifies 0 with 𝑇 while it interchanges two elements of Spin (1) =
{+1,−1}. Thus, sections of Sntriv are no longer 𝐶∞(S) rather they are anti-periodic:

𝐶∞(S; Sntriv) = {𝑢 ∈ 𝐶∞(R) | ∀𝑇 > 0 : 𝑢(𝑥 + 𝑇) = −𝑢(𝑥)}. (4.15)

In contrast to (1.3), the spectrum reads

Spec /𝐷S = {𝜆𝑛 |𝑛 ∈ Z}, 𝜆𝑛 :=
(
𝑛 + 1

2

)
𝜔, 𝜔 :=

2𝜋
𝑇

(4.16)

corresponding to the orthonormal eigenspinors ϕ𝑛 := ei𝜆𝑛𝑥/
√
𝑇 . One can obtain

a Poisson summation formula for non-trivial spin-structure analogously and it is
structurally similar to that of trivial spin-structure albeit not exactly the same.

In relativistic language, the Poisson summation formulae for trivial and non-trivial
spin-structures on S describe an exact trace formulae Tr𝑈𝑡 for𝑈𝑡 := e− i 𝑡 /𝐷S on the product
spin-manifold (R × S, d𝑡2 − d𝑥2). The thesis is devoted to an enormous generalisation
of this result in the sense that S in the preceding examples is replaced by a compact
Cauchy hypersurface 𝛴 and the role the product metric d𝑡2−d𝑥2 is played by a stationary
spacetime metric (cf. Definition 4.2.1, 4.2.3 and Remark 4.2.6 (b)).

4.3.2 Primary results

Let E → M be a vector bundle over a 𝑑 ≥ 2 dimensional spatially compact globally
hyperbolic stationary spacetime (Section 4.2) (M , g, 𝛯). That is, the spacetime manifold
M is homeomorphic to the product manifold R × 𝛴 where 𝛴 ⊂ 𝑀 is a spacelike and
compact Cauchy hypersurface, and (M , g) admits a complete timelike Killing vector field
𝑍 whose flow is 𝛯 (Remark 4.2.6 (a)).
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Assumption 4.3.1. We consider Dirac-type operators (Definition 3.4.1) 𝐷 on a vector
bundle E →M over a globally hyperbolic spacetime (M , g, 𝛯), subjected to the follow-
ing assumptions:

(a) E is endowed with a sesquilinear form (·|·) invariant under the Killing flow 𝛯∗𝑠 such
that 𝐷 is symmetric;

(b) Given an arbitrary but fixed future-directed unit normal covector field (·, 𝜁) on M
along any Cauchy hypersurface 𝛴 ,

〈·|·〉 :=
(
𝜎𝐷 (·, 𝜁) ·

�� · ) (4.17)

is a fibrewise hermitian form on the bundle of Clifford modules
(
E →M , 𝜎𝐷, (·|·)

)
,

where 𝜎𝐷 is the principal symbol of 𝐷;

(c) 𝐷 commutes with the induced Killing flow 𝛯∗𝑠 on E for all 𝑠 ∈ R.

Regarding the second assumption, we recall the comments after Assumption 3.4.7.
In the present setting, we use 𝑍 to fix the time-orientation and note that on a static
spacetime, one can choose the Killing covector field (𝜕𝑡)♭ (up to normalisation) for 𝜁 (see
Remark 4.2.6 (e) for details).

As noted before, the Clifford module bundle
(
E → 𝑀, 𝜎𝐷, (·|·)

)
is naturally furnished

with the unique Weitzenböck connection ∇E ((3.126)) induced by 𝐷 and g. This connec-
tion induces a parallel transport map 𝛯𝑠 : E· → E𝛯𝑠 (·) along the spacetime isometry 𝛯𝑠 (·).
Subsequently, the following diagram commutes:

M M

𝛯∗𝑠 E E

M

E

𝛯𝑠id

�𝛯𝑠

Figure 4.1: Pullback 𝛯∗𝑠 E of a bundle of Clifford modules
(
E → 𝑀, (·|·), 𝜎𝐷

)
over a

stationary spacetime (M , g, 𝛯) via a spacetime isometry 𝛯𝑠 : M →M .

Let £𝑍 be the Lie derivative (given by (2.135)) on E with respect to the Killing vector
field 𝑍 and

L := − i £𝑍 : 𝐶∞(M ; E ) → 𝐶∞(M ; E ) (4.18)

so that the induced Killing flow on 𝐶∞(M ; E ) is expressed as 𝛯∗𝑠 = ei 𝑠 L. By hypotheses,

[L, 𝐷]− = 0. (4.19)

Thus, on ker𝐷, the eigensections ψ𝑛 of L are the joint eigensections:

𝐷ψ𝑛 = 0, Lψ𝑛 = 𝜆𝑛ψ𝑛. (4.20)

We equip ker𝐷 with the hermitian inner product 〈· |· 〉 to have the Hilbert space (ker𝐷, 〈· |· 〉).
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Theorem 4.3.2. Under Assumption 4.3.1, the spectrum of L (4.18) on the Hilbert space
H := (ker𝐷, 〈·|·〉 := (3.156)) is purely discrete and comprises infinitely many real eigen-
values that grow polynomially and accumulate at ±∞.

Thus, we can restrict our attention entirely to smooth sections 𝐶∞(M ; E ) of E owing
to the elliptic regularity and trH ei 𝑡 L makes sense as a distribution with (cf. (1.21)) the
identification

Tr𝑈𝑡 = trH 𝛯∗𝑡 , (4.21)

where 𝑈𝑡 is the time evolution operator of the Dirac equation (1.18).

Since the classical dynamics is governed by the principal symbol 𝜎𝐷 of 𝐷, its char-
acteristic set Char𝐷 can be viewed as a classical limit of ker𝐷 as per se geometric
quantisation. Thus our classical phase space is the lightcone bundle ¤T∗0M → M over
(M , g, 𝛯) where the metric-Hamiltonian 𝐻g (3.115) vanishes and the reduced phase
space is the conic symplectic manifold N of scaled-lightlike geodesic strips [122] (see
also [123]). Being a globally hyperbolic spacetime, M does not admit any closed time-
like geodesic. Therefore, the notion of Lorentzian analogue of periodic trajectories is
defined by means of the spacetime isometry 𝛯𝑡 induced (reduced) symplectic flow 𝛯N

𝑡

on N , whose Hamiltonian is given by [27, Lem. 1.1]

𝐻 : N → R, 𝛾 ↦→ 𝐻 (𝛾) := g
(d𝑐
d𝑠
, 𝑍

)
, (4.22)

where R 3 𝑠 ↦→ 𝑐(𝑠) ∈ M is any lightlike geodesic on M and the value g(d𝑐/d𝑠, 𝑍) is
independent of the cotangent lift 𝛾 of 𝑐. This Hamiltonian is positive as 𝑍 is timelike. For
any E ∈ R+, we denote the constant E-energy surface by

NE := {𝛾 ∈ N | 𝐻 (𝛾) = E}. (4.23)

The set of periods resp. periodic lightlike geodesics of 𝛯N
𝑠 are then given by [27, (6)]

P := {𝑇 ∈ R+ | ∃𝛾 ∈ N : 𝛯N
𝑇 (𝛾) = 𝛾}, (4.24a)

P𝑇 := {𝛾 ∈ N | 𝛯N
𝑇 (𝛾) = 𝛾}. (4.24b)

Recall, the set of all lengths of periodic geodesics on a manifold counted with multiplici-
ties is called the length spectrum of the manifold. Our first finding is that Tr𝑈𝑡 determines
the Lorentzian length spectrum of N in the sense described below.

Proposition 4.3.3. Let E → M be a vector bundle over a spatially compact globally hy-
perbolic stationary spacetime (M , g, 𝛯), endowed with a sesquilinear form (·|·), and 𝐷 a
Dirac-type operator on E whose principal symbol is 𝜎𝐷 so that

(
E →M , 𝜎𝐷, (·|·)

)
is a bun-

dle of Clifford modules over (M , g, 𝛯). If 𝑈𝑡 is the time evolution operator of 𝐷 then under
Assumption 4.3.1, Tr𝑈𝑡 is a distribution on R and its singular support

singsupp Tr𝑈𝑡 ⊂ {0} ∪ P, (4.25)

where P is the set of periods of the induced Killing flow 𝛯N
𝑇

on the manifold of scaled-
lightlike geodesics N , given by (4.24a).
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Lagrangian distributions (Section 2.3.3) offer the elegant characterisation of Tr𝑈𝑡 , as
stated below.

Theorem 4.3.4. As in the set-up of Proposition 4.3.3, Tr𝑈𝑇 is the Lagrangian distribution
𝐼𝑑−7/4(R,Λ𝑇 ) where 𝑑 := dim M and

Λ𝑇 := {(𝑇, 𝜏) ∈ R × R− | ∃𝛾 ∈ N : 𝛯N
𝑇 (𝛾) = 𝛾, 𝜏 = −𝐻 (𝛾)}, (4.26)

is the Lagrangian manifold Λ𝑇 , where the Hamiltonian 𝐻 on N is given by (4.22). Fur-
thermore,

(Tr𝑈0) (𝑡) = 𝑢0(𝑡) + 𝑣0(𝑡), (4.27)

where 𝑣0 is a distribution on R which is smooth in the vicinity of 𝑡 = 0 and 𝑢0 is a Lagrangian
distribution admitting the following singularity expansion around 𝑡 = 0:

𝑢0(𝑡) ∼ 𝑟 (𝑑 − 1) vol(N𝐻≤1)
(2𝜋)𝑑−1

𝜇𝑑−1(𝑡) + c2 𝜇𝑑−2(𝑡) + . . . ,

𝑟 := rk E

∫
𝛴

g−1
𝑥 (𝜂, 𝜁) dvh(𝑥),

𝜇𝑑−𝑘 (𝑡) :=
∫
R≥0

e− i 𝑡𝜏𝜏𝑑−1−𝑘d𝜏, 𝑘 = 1, 2, . . . . (4.28)

Here, 𝜇𝑑−𝑘 is a distribution on R given by the preceding oscillatory integral, 𝜂 is any lightlike
covector on M and 𝜁 as in Assumption 4.3.1, both restricted to a Cauchy hypersurface 𝛴 of
M , c2 is some constant (Dirac-wave trace invariant), and vol N𝐻≤1 is the volume of N𝐻≤1.

As remarked in 4.2.6 (b), (M , g, 𝛯) can be considered as a (globally hyperbolic)
standard stationary spacetime since 𝑍 is complete. Then, we can use the spacetime
metric (4.6) without loss of generalities and the volume of N𝐻≤1 is given by [27, (15)]

vol N𝐻≤1 = vol(B𝑑−1)
∫
𝛴

β(𝑥)
(
β2(𝑥) − h𝑥 (α, α)

)−𝑑/2dvh(𝑥), (4.29)

where vol(B𝑑−1) is the volume of the unit ball B𝑑−1 ⊂ R𝑑−1, and β and α are the lapse
function and shift vector field, respectively, appearing in spacetime metric (4.6).

Since L has discrete eigenvalues, let us introduce its eigenvalue counting function1

N(𝜆) := #{𝑛 ∈ N | 0 ≤ 𝜆𝑛 ≤ 𝜆}. (4.30)

Corollary 4.3.5 (Weyl law). As in the terminologies of Theorems 4.3.2 and 4.3.4, the Weyl
eigenvalue counting function of L has the asymptotics

N(𝜆) =
( 𝜆
2𝜋

)𝑑−1
𝑟 vol(N𝐻≤1) +𝑂 (𝜆𝑑−2), as 𝜆→∞. (4.31)

1One can define it with negative eigenvalues as well.
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In order to describe Tr𝑈𝑇 for the non-trivial periods 𝑇 ≠ 0, we let ∇𝜋∗Hom(E ,E )
𝑋g/2

be the

𝐷2-compatible (Weitzenböck) covariant derivative (Definition 3.3.6) with respect to the
geodesic vector field 𝑋g/2 on the bundle 𝜋∗Hom(E , E ) → ¤T∗M where 𝜋 : T∗M → M is
the cotangent bundle. By Hol := 𝐶∞Hol

( ¤T∗M ; 𝜋∗Hom(E , E )
)

we will denote the set of all
sections of 𝜋∗Hom(E , E ) invariant under the holonomy group of the parallel transporter T
with respect to ∇𝜋∗Hom(E ,E )

𝑋g/2
.

We suppose P𝛾 is the (linearised) Poincaré map of a periodic geodesic 𝛾 (see e.g. [96,
Sec. 7.1], [27]). Then 𝛾 is called non-degenerate if 1 is not an eigenvalue of P𝛾.

With all these devises, the precise characterisation of Tr𝑈𝑇≠0 can be stated as follows.

Theorem 4.3.6. As in the set-ups of Proposition 4.3.3 and Theorem 4.3.4: if the periods 𝑇
are discrete and the set P𝑇 := (4.24b) of periodic lightlike geodesics of 𝛯N

𝑇
is a finite union

of non-degenerate periodic orbits 𝛾, then

(Tr𝑈𝑇 ) (𝑡) =
∑︁
𝛾∈P𝑇

𝑢𝛾 (𝑡) + 𝑣𝑇 (𝑡), (4.32)

where 𝑣𝑇 is a distribution on R that is smooth in the vicinity of 𝑡 = 𝑇 and 𝑢𝛾 (𝑡)’s are
Lagrangian distributions having singularities at 𝑡 = 𝑇𝛾 with the asymptotic expansion

lim
𝑡→𝑇
(𝑡 − 𝑇𝛾)𝑢𝛾 (𝑡) ∼

1
2𝜋

∫
𝔉𝑇𝛾

tr
(
𝜎𝐷 (𝛾) T𝛯N

𝑇𝛾
(𝛾)𝜎𝐷 (𝑥, 𝜁)

) e− i 𝜋𝔪(𝛾)/2 |d𝑇𝛾 |√︁
| det(𝐼 − P𝛾) |

𝜈 + . . . ,

𝜈 :=
∫
R≥0

e− i(𝑡−𝑇)𝜏
( 𝜏
2𝜋

)𝑑−2
d𝜏, (4.33)

where 𝔪(𝛾) resp. P𝛾 are the Maslov index resp. the (linearised) Poincaré map of 𝛾, T𝛾
is an element of the holonomy group Hol𝛾 with respect to the 𝐷2-compatible Weitzenböck
connection at base point 𝛾 ∈ N whose projection on M is 𝑥, and

𝔉𝑇𝛾 :=
{
𝛾 ∈ N | 𝜏 = −𝐻 (𝛾), 𝛯N

𝑇𝛾
(𝛾) = 𝛾

}
(4.34)

is the fixed point set of 𝛯N
𝑇𝛾

.

At this point we would like to comment on the issue of the parallel transporter raised
at the introduction (Section 1.1.3) and reproduce Sandoval’s result [26, Thm. 2.8] as
a special case of this theorem. We set α = 0 and β = 1 in (4.6) so that the Dirac
equation (1.18) on the ultrastatic spacetime becomes

− i 𝜕𝑡𝑢 = 𝐻𝐷𝑢, 𝐻𝐷 := c(d𝑡)
(
�̂� −𝑈

)
, (4.35)

where 𝐻𝐷 is the Dirac Hamiltonian, c = (3.125) is the Clifford multiplication, and 𝑈

is the potential in (3.128) allowed by the most general Dirac-type operator. Sandoval
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plumped for 𝑈 = 0 and used the parallel transporter Ť corresponding to �̌� instead of
�̂� and hence 𝑇 together with a “suitable average” of 𝑊 := �̂� − �̌� showed up under the
tr in (4.33) in her work. However, no such ad-hoc choices are necessary in our formu-
lation at all, rather T naturally induces the parallel transport T̂ for the preceding choices.

Note, the Maslov index 𝔪(𝛾) is essentially the Conley-Zehnder index of 𝛾 [172] and
the factor e− i 𝜋𝔪(𝛾)/2 is often known as the Maslov factor.

In the future, several generalisations have been planned. For instance, we intend to
address the spectral asymptotics on stationary black holes and explore the semi-classical
regime. We also wish to extend the study for Hodge-d’Alambertians and connect with
interesting applications on relativistic quantum chaos on curved spacetimes.

4.3.3 Proof strategy and novelty

We divide the description into several steps to give a panorama view.

𝑈𝑡 as a Fourier integral operator

This pivotal idea was originally due to Duistermaat and Guillemin [10] who worked
it out (modulo smoothing operators) in the context of scalar half-wave operators on
an ultrastatic (Remark 4.2.6 (e)) spacetime. We, however, have not followed their
approach directly, instead have expressed 𝑈𝑡 in terms of the Killing flow 𝛯∗𝑡 and the
causal propagator 𝐹 = (3.149) of 𝐷 by propounding Strohmaier and Zelditch’s work on
d’Alembertian [27]. More precisely, there exists unique advanced and retarded Green’s
operators (Section 3.4.2) for 𝐷 owing to the global hyperbolicity of (M , g) and hence 𝐹
together with the restriction operator 𝜄∗

𝛴
(Example 2.3.12) pave the way to construct the

Cauchy restriction operator R as described in Section 3.4.3. By Assumption 4.3.1 (c), the
time flow determines the time evolution of Cauchy data. Then the combination of these
facts allows us to express 𝑈𝑡 as a Lagrangian distribution as inscribed in Lemma 4.7.3.

𝐶∞(𝛴 ; E𝛴 ) 𝐶∞(𝛴𝑡; E𝛴𝑡 )

𝐶∞c
(
𝜄𝛴 (𝛴); E

)
𝐶∞c

(
𝜄𝛴𝑡 (𝛴𝑡); E

)
ker𝐷

𝑈𝑡

R R𝑡(𝜄∗
𝛴
)−1 (𝜄∗

𝛴𝑡
)−1

𝐺𝐺

𝛯∗𝑡

Figure 4.2: The time evolution map 𝑈𝑡 in terms of the causal propagator 𝐹 for 𝐷 and
the induced Killing flow 𝛯∗𝑡 . Here, R𝑡 denotes the Cauchy restriction map and 𝜄∗

𝛴𝑡
the

restriction map.
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In order to describe 𝑈𝑡 as a Fourier integral operator one requires to obtain such a
description of 𝐹 and 𝜄∗

𝛴
. Both are well-known for the scalar case and the bundle gener-

alisation is straightforward for the latter. But the former demands an intricate treatment
due to possible bundle curvature, which has been spelled out in Lemma 3.4.6. In fact,
this is precisely from where the expedient choice (as discussed in Section 1.1.3) in San-
doval’s work stems. We have computed 𝜎F in Lemma 3.4.6 deploying the 𝐷2-compatible
Weitzenböck connection in an intrinsically geometric fashion. As a consequence, it solves
the relevant leading-order transport equation concisely from where the holonomy group
shows up elegantly. Furthermore, it closes the ad-hoc consideration in Sandoval’s analy-
sis as explained after Theorem 4.3.6.

In contemporary of this work (after the submission of an arXiv-preprint based on this
work), Capoferri and Murro [173, Thm. 1.1] have obtained an oscillatory integral rep-
resentation of 𝑈𝑡 (modulo smoothing operators) for the reduced massless Dirac equation
(in the sense of Definition 3.5 of their paper) on a 4-dimensional spatially compact glob-
ally hyperbolic spin-spacetime using the global phase function approach [116] of Fourier
integral operators. An antecedent of this analysis can be traced back to Capoferri and
Vassiliev [174] who have constructed 𝑈𝑡 (�̌�) = (1.15) (modulo smoothing operators) as
a summation of two invariantly defined oscillatory integrals, global in space and in time,
with distinguished complex-valued phase functions, when �̌� is a massless spin-Dirac op-
erator on a 3-dimensional closed Riemannian manifold.

It is worthwhile to mention that one cannot deploy the algorithm used in [173, 174]
in a straightforward way to derive the Fourier integral description (Lemma 4.7.3) of 𝑈𝑡
in our setting. This is primarily because the Dirac Hamiltonian

𝐻𝐷 := − i
c(d𝑡)

(
h𝑖 𝑗c(d𝑥𝑖)∇E 𝑗 +𝑈

)
+ h𝑖 𝑗α𝑖∇E 𝑗

β2 − ‖α‖2
h
− h𝑖 𝑗α𝑖c(d𝑡)c(d𝑥 𝑗 )

(4.36)

on a stationary spacetime is not of Dirac-type (albeit can be written as a first-order elliptic
operator) which is one of the key assumptions of the hindmost literatures.

Principal symbol of Tr𝑈𝑡

If U𝑡 (𝑥, 𝑦) := U𝑡 (𝑥, 𝑦) d𝑡 ⊗
√︁
|dvh(𝑥) | ⊗

√︁
|dvh(𝑦) | denotes the Schwartz kernel of 𝑈𝑡 then

one considers the smoothed-out operator U𝜌 (cf. (1.9))

U𝜌 :=
∫
R
U𝑡 F −1(𝜌) d𝑡, (F −1𝜌) (𝑡) = 1

2𝜋

∫
Spec L

ei 𝑡𝜆𝜌(𝜆) d𝜆 (4.37)

for any Schwartz function 𝜌 ∈ S(R) on R such that supp(F −1𝜌) is compact. Let U𝜌 (𝑥, 𝑥)
be the diagonal embedding of U𝜌 (𝑥, 𝑦). The distributional trace Tr𝑈𝑡 is then obtained by

Tr𝑈𝜌 :=
∫
𝛴

tr
(
U𝜌 (𝑥, 𝑥)

)
dvh(𝑥), (4.38)

where tr is the endomorphism trace (3.8).
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In order to compute 𝜎Tr𝑈𝑡
we employ the bundle generalisation of Duistermaat and

Guillemin’s [10] idea, due to Sandoval [26]. One notices that the mapping U𝑡 (𝑥, 𝑦) ↦→
U𝑡 (𝑥, 𝑥) dvh(𝑥) can be viewed as the pullback

𝛥∗ : 𝐶∞c
(
R×𝛴 ×𝛴 ;𝛺R�

(
Hom(E𝛴 , E𝛴 ) ⊗𝛺1/2(𝛴 ×𝛴)

) )
→ 𝐶∞c

(
R×𝛴 ;𝛺R� (End E𝛴 ⊗𝛺𝛴)

)
(4.39)

of U𝑡 via the diagonal embedding

𝛥 : R × 𝛴 → R × 𝛴 × 𝛴 (4.40)

and the fibrewise isomorphism 𝛥 ∈ 𝐶∞
(
𝛴 ; Iso(E𝛴 , E𝛴 )

)
induced by the Weitzenböck con-

nection ∇E restricted to 𝛴 . It follows (cf. Example 2.1.11) that 𝛥∗ is a Fourier inte-
gral operator of order (𝑑 − 1)/4 associated to the canonical relation 𝐶𝛥∗ := {(𝑡, 𝜏; 𝑥, 𝜉 +
𝜂; 𝑡, 𝜏; 𝑥, 𝜉; 𝑥, 𝜂) ∈ ¤T∗R × T∗M𝛴 × ¤T∗R × ¤T∗M𝛴 × ¤T∗M𝛴 } [10, (1.20)]. Hence, for a fixed 𝑡,
tr(𝛥∗U𝑡) is density on 𝛴 which can be integrated. The integration over 𝛴 is the pushfor-
ward (see e.g. [175, pp. 103-104])

π∗ : 𝐶∞c (R × 𝛴 ;𝛺R � 𝛺𝛴) → 𝐶∞(R;𝛺R), tr(𝛥∗U𝑡) ↦→ π∗
(
tr(𝛥∗U𝑡)

)
(4.41)

of the Cartesian projection
π : R × 𝛴 → R, (4.42)

which is also a Fourier integral operator of order 1/2−(𝑑−1)/4 associated to the canonical
relation 𝐶π∗ := {(𝑡, 𝜏; 𝑡, 𝜏; 𝑥, 0) ∈ ¤T∗R × ¤T∗R × T∗M𝛴 } [10, (1.22)]. Therefore

Tr𝑈𝑡 = π∗ ◦ tr(𝛥∗U𝑡). (4.43)

Alternatively, one can also integrate 𝛥∗U𝑡 over 𝛴 so that π∗(𝛥∗U𝑡) is an End E𝛴 -valued
density on R by reckoning π∗ : 𝐶∞c

(
R × 𝛴 ;𝛺R � (End E𝛴 ⊗ 𝛺𝛴)

)
→ 𝐶∞(R;𝛺R � End E𝛴 ).

Then taking the endomorphism trace one arrives at

Tr𝑈𝑡 = tr(π∗ ◦ 𝛥∗U𝑡). (4.44)

Hence, in this sense
π∗ ◦ tr ◦𝛥∗ = tr ◦π∗ ◦ 𝛥∗ (4.45)

and one utilises the clean intersection (see Definition A.1.18) between π∗ ◦ 𝛥∗ and U𝑡 to
compute the principal symbol of Tr𝑈𝑡 .

Spectral theory

Albeit finite energy solutions of Dirac equation do not live in 𝐿2 sections of E , ker𝐷
can be naturally given a hermitian structure by equipping with a Killing flow invariant
hermitian form 〈· |· 〉 owing to Assumption 4.3.1 (b). It is noteworthy that the non-
definiteness of (·|·) is a characteristic feature of any Lorentzian spin-manifold: a positive-
definite (·|·) invariant under the spin group only exists for the Riemannian case.
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Weyl law

There are a number of approaches to deriving the Weyl law (see e.g. the review [28]).
Amongst those, we will use the Fourier-Tauberian argument [5] (see also, e.g. [24, App.
B], [176] and references therein). The key idea is to relate the Weyl counting func-
tion with Tr𝑈𝑡 via the distributional Fourier transform (1.8) dN/d𝜆 = F −1

𝑡 ↦→𝜆 (Tr𝑈𝑡) and
compute the right-hand side using the express for Tr𝑈0.

4.4 Dirac operator on a stationary spacetime

4.4.1 Lie derivative

On a stationary spacetime (M , g, 𝛯), the cotangent lift T∗𝛯𝑠 of the spacetime isometry
𝛯𝑠 : M →M naturally induces a R action on the cotangent bundle T∗M : T∗𝛯 (𝑠; 𝑦, 𝜂) :=
(T∗𝑥𝛯𝑠)𝜂. Furthermore, the pullback (restoring densities for clarity)

𝛯∗ : 𝐶∞c (M ; E ⊗ 𝛺1/2M ) → 𝐶∞
(
R ×M ;𝛺R � (E ⊗ 𝛺1/2M )

)
(4.46)

via the Killing flow 𝛯 : R×M →M and the fibrewise isomorphism 𝛯𝑠 ∈ 𝐶∞
(
M ; Iso(E , E )

)
as depicted in Figure 4.1, is a Fourier integral operator whose Schwartz kernel is given
by (cf. Example 2.1.11)

Ξ ∈ 𝐼−1/4
(
R ×M ×M , 𝛤′;𝛺R �

(
Hom(E , E ) ⊗ 𝛺1/2(M ×M )

) )
, (4.47a)

𝛤 :=
{(
𝑠, 𝜏; 𝑥, 𝜉; 𝑦,−𝜂

)
∈ ¤T∗R × ¤T∗M × ¤T∗M | 𝜏 = −𝜉 (𝑍), (𝑥, 𝜉) = (T∗𝑥𝛯𝑠) (𝑦, 𝜂)

}
, (4.47b)

𝜎Ξ := (2𝜋)1/4 1Hom(E ,E )
√︁
|dv𝛤 | ⊗ l, (4.47c)

where dv𝛤 is the volume form on the homogeneous canonical relation 𝛤 ⊂ ¤T∗(R ×M ) ×
¤T∗M and l is a section of the Keller-Maslov bundle L𝛤 → 𝛤 over 𝛤, constructed as below.
One observes that 𝛤 is the graph of T∗𝛯𝑠 and at 𝑠 = 0, 𝛤 is essentially the conormal bun-
dle 𝛤0 := {(0, 𝜏)} × (𝛥 ¤T∗M )′. Since ¤T∗M is a symplectic manifold (see Example A.1.2),
it admits the global volume induced by the canonical symplectic form on ¤T∗M . Then
dv𝛤0

is obtained via the pullback of the projector Pr : 𝛤0 → R × ¤T∗M , which is invariant
under the flow𝛹𝑠 of the Hamiltonian vector field generated by the extended Hamiltonian
𝜏 + 𝜉 (𝑍) and given by dv𝛤 = d𝑠 ⊗ d𝑥 ∧ d𝜉 in the parametrisation (4.47b). To construct
L𝛤 , we re-use the fact that𝛹𝑠 sweeps out {(0, 𝜏)} × (𝛥 ¤T∗𝑀)′ to 𝛤, and hence L𝛤 is con-
structed by parallelly transporting the sections of L0 along the orbits of𝛹𝑠, where L0 the
Keller-Maslov bundle (see Example A.1.21) over 𝛤0 consists of a global constant section.

More generally, 𝛯∗ can be extended to a sequentially continuous linear map on
𝐼𝑚 (M ,L ; E ) by

𝛯∗ : 𝐼𝑚 (M ,L ; E ) → 𝐼𝑚−1/4(R ×M , 𝛤′ ◦L ; E ), 𝜎𝛯∗𝑢 � 𝜎Ξ � 𝜎𝑢 (4.48)
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for any 𝑢 ∈ 𝐼𝑚 (M ,L ; E ). The composition � of principal symbols is presented in detail
in Appendix A.2.3 and the equation of 𝜎𝛯∗𝑢 is in the sense of modulo Keller-Maslov part.

The induced Killing flow 𝛯∗𝑠 paves the way to define the Lie derivative £𝑍 (2.135) on
E with respect to the Killing vector field 𝑍. Note, £𝑍 is essentially a generalisation of
the Lichnerowicz spinor Lie derivative [136, Sec. 6] for stationary spacetimes when one
does not necessarily have a spin-structure.

4.4.2 Classical dynamics

The primary tenet of the semiclassical analysis is to connect the relativistic trace formula
with its classical dynamics. In non-relativistic mechanics, the cotangent bundle T∗𝛴 mod-
els the classical phase space, whereas the Hilbert-space quantum dynamics takes place
in 𝐿2(𝛴). The naive expectation of using this pair or the pair

(
T∗M , 𝐿2(M ; E )

)
does

not work because the former depends on the choice of Cauchy hypersurface 𝛴 ⊂ M
and for the latter pair, the (Killing flow invariant) sesquilinear form (·|·) on E (Assump-
tion 4.3.1 (a)) does not induce any 𝐿2-norm. One can, of course, choose an arbitrary
hermitian form in order to have a 𝐿2 space on E , but then this 𝐿2-space will depend
on the particular choice of the hermitian form as M is non-compact. In pursuance of
defining the correct classical dynamics, one notes Char𝐷 is the lightcone bundle ¤T∗0M .
Since Char𝐷 and Char� are identical, the classical dynamics in this case coincides with
that in the Strohmaier-Zelditch trace formula (Section 1.1.5) and hence we adopt their
formulae. The metric-Hamiltonian 𝐻g is a homogeneous function of degree 2 in the
cotangent fibres. Referring to this as the dilation, let E be the Euler vector field which is
the generator of this action. On ¤T∗0M , clearly 𝐻g vanishes and we have [E, 𝑋g/2]− = 𝑋g/2
where 𝑋g/2 is the Hamiltonian vector field of 𝐻g. Then the Hamiltonian reduction of
¤T∗0M is the manifold of scaled-lightlike geodesics N . That is, if (M , g) is geodesically
complete then N is the quotient of ¤T∗0M by the R-group action generated by 𝑋g/2. Sim-
ilarly, by taking the quotient of N by the R+-group action generated by E we obtain the
space of unparametrised-lightlike geodesics Ñ . If (M , g) is a spatially compact globally
hyperbolic spacetime then Ñ is a conic compact contact manifold whose symplectisation
is the conic symplectic manifold N induced from the conic contact manifold ¤T∗0M [122,
pp. 10-12], [123, Thm. 2.1].

We remark that N is defined invariantly and [27, Prop. 2.1] (see also [92, 93])

𝜍 : N → ¤T∗𝛴 (4.49)

is a homogeneous symplectomorphism. Furthermore, the geodesic flow on any spatially
compact globally hyperbolic spacetime (M , g) does not necessarily have to be complete.
For instance, M := (−1, 1) × 𝛴 with the spacetime metric g := d𝑡2 − h where (𝛴, h) is a
compact Riemannian manifold [27, Rem. 2.2].
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As announced in Theorem 4.3.4 and 4.3.6, periodic geodesics 𝛾 on N play a vital role
in our investigation. Employing the symplectomorphism (4.49), these can be considered
periodic geodesics on ¤T∗𝛴 as well, which matches better with our intuitive expectation.
However, ¤T∗𝛴 depends heavily on the choice of Cauchy hypersurface 𝛴 and as discussed
in Section 4.2, there is no canonical choice for 𝛴 on a (globally hyperbolic) stationary
spacetime (M , g, 𝛯). Hence, N offers the natural and invariant manifold to describe the
classical dynamics in contrast to ¤T∗𝛴 . Recall that a geodesic 𝑐 : R→ R × 𝛴 in M can be
expressed as 𝑐(𝑠) =

(
𝑡 (𝑠), 𝑐𝛴 (𝑠)

)
, where 𝑐𝛴 is the base projection of 𝜍

(
𝛾(𝑠)

)
. A periodic

geodesic 𝑐 in M with period 𝑇 then means

∀𝑠 ∈ R : 𝑐𝛴 (𝑠 + 𝑇) = 𝑐𝛴 (𝑠). (4.50)

We note that the set of 𝑇 -periodic curves on N is precisely the length spectrum of (𝛴, h)
for an ultrastatic spacetime. For details, see, for instance [177–180].

𝑥 𝑦

𝑧

Figure 4.3: A periodic geodesic on (R × S, d𝑡2 − d𝑥2).

4.4.3 Time evolution operator

On a spatially compact globally hyperbolic spacetime this mapping is defined by

𝑈𝑡 ′,𝑡 := R𝑡 ◦ (R𝑡 ′)−1 : 𝐶∞
(
𝛴𝑡 ′; E𝛴𝑡 ′

)
→ 𝐶∞

(
𝛴𝑡; E𝛴𝑡

)
, (4.51)

which is a homeomorphism and extends to a unitary operator (denoted by the same
symbol) on the space of square integrable sections on Cauchy hypersurfaces, i.e.,

𝑈𝑡 ′,𝑡 : 𝐿2 (
𝛴𝑡 ′; E𝛴𝑡 ′

)
→ 𝐿2(𝛴𝑡; E𝛴𝑡 ) (4.52)

is an isometry.

4.5 Trace formula

In this section, we will work on the set-up in Section 4.3.2. That is, 𝛴 ⊂ M is an
embedded submanifold and 𝜄𝛴 : 𝛴 ↩→ M is proper (Remark 3.1.7). As a consequence,
𝜄∗
𝛴

: 𝐶∞c (M ; E ) → 𝐶∞c (𝛴 ; E𝛴 ) = 𝐶∞(𝛴 ; E𝛴 ).
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Theorem 4.5.1. As in the terminologies of Theorem 4.3.4, let F be the Schwartz kernel of
the causal propagator for 𝐷. The smoothed-out time evolution operator 𝑈𝜌 = (4.37) is a
trace-class operator on the Hilbert space H := (ker𝐷, (3.156)) and its trace is given by

Tr𝑈𝜌 = − i
∫
𝛴

tr
∫
R

(
𝛯∗−𝑡 ◦ F ◦ (𝜄∗𝛴 )−1 𝜎𝐷 (·, 𝜁)

)
(𝑥, 𝑦) (F −1𝜌) (𝑡) d𝑡 |𝑥=𝑦 dvh(𝑥), (4.53)

where 𝛯∗𝑡 : 𝐶∞c (M ; E ) → 𝐶∞c (M ; E ) is the induced Killing flow (Figure 4.1) and 𝜄∗
𝛴

:
𝐶∞c (M ; E ) → 𝐶∞(𝛴 ; E𝛴 ) is the restriction map. In this thesis, 𝛯∗−𝑡F is meant to be the
pullback of F(·, ) in the first argument via 𝛯−𝑡 .

Proof. By Assumption 4.3.1, the hermitian form (3.156), the retarded 𝐹ret and advanced
𝐹adv propagators, all are preserved under the action of 𝛯∗𝑡 . Hence 𝐹 is preserved as well.
In other words, if 𝑢 ∈ ker𝐷 having initial data on some 𝛴 then 𝛯∗𝑡 𝑢 ∈ ker𝐷 having
Cauchy data on some 𝛴𝑡 , which means that the time flow 𝛯𝑡 induces time evolution
of Cauchy data. Let us now choose an arbitrary but fixed 𝛴 . This picks a global time
coordinate 𝑡 on M and then the generator of the Killing flow 𝛯𝑡 is given by 𝜕𝑡 . Thus, 𝑈𝑡 is
identified with the evolution of Cauchy data via the induced Killing flow (see Figure 4.2
for a schematic illustration):

𝑈𝑡 = R ◦ 𝛯∗−𝑡 ◦ R−1. (4.54)

We read off R−1 = − i 𝐹 ◦ (𝜄∗
𝛴
)−1𝜎𝐷 (·, 𝜁) from (3.157) and observe that the twisted wave-

front set (Lemma 3.4.6) of F contains only lightlike covectors. Therefore, integration
over 𝑡 results in a smooth Schwartz kernel U𝜌 (𝑥, 𝑦) and the expression of Tr𝑈𝜌 entails
from (4.38). �

4.6 Spectral theory of L on ker𝐷

Recall that, a strongly continuous one-parameter unitary group is a family {𝑈𝑡 |𝑡 ∈ R}
of unitaries 𝑈𝑡 on a Hilbert space H such that

∀𝑡, 𝑠 ∈ R : 𝑈𝑡𝑈𝑠 = 𝑈𝑡+𝑠, (4.55a)
∀𝑢 ∈ H ,∀𝑡 ∈ R : lim

ℎ→0
𝑈𝑡+ℎ𝑢 = 𝑈𝑡𝑢. (4.55b)

In particular, this implies that
𝑈−𝑡 = 𝑈

−1
𝑡 = 𝑈∗𝑡 . (4.56)

By Stone’s theorem (see e.g. [181, Thm. VIII.8]), every 𝑈𝑡 has a unique generator 𝐴, i.e.,
𝑈𝑡 = e− i 𝑡𝐴. If

𝑈𝜌 :=
∫
R

e− i 𝑡𝐴 (F −1𝜌) (𝑡) d𝑡 (4.57)

is a compact operator for any 𝜌 ∈ S(R) on R such that supp(F −1𝜌) is compact, then the
spectrum of 𝐴 is discrete and consists of eigenvalues 𝜆𝑛 of finite algebraic multiplicities
𝑚𝑛. Moreover, whenever 𝑈𝜌 is trace-class then

Tr𝑈𝜌 =
∑︁
𝑛

𝑚𝑛 𝜌(𝜆𝑛). (4.58)
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Proof of Theorem 4.3.2. Since 𝐷 commutes with induced Killing flow 𝛯∗𝑡 for all 𝑡 ∈ R and
𝑈𝑡 is the time evolution operator of 𝐷, the discreteness of Spec L and the polynomial
growth of eigenvalues 𝜆𝑛 follow from the fact that U𝜌 = (4.37) is a trace-class operator
for 𝜌 ∈ S(R) such that supp(F −1𝜌) is compact. All 𝜆𝑛 are real as a consequence of the
selfadjointness of 𝐿 on ker𝐷. �

4.7 Proof of the main theorems

In order to implement the strategy outlined in Section 4.3.3, we recall that that

π∗ ◦ 𝛥∗ : 𝐶∞c
(
R × 𝛴 × 𝛴 ; Hom(E𝛴 , E𝛴 )

)
→ 𝐶∞(R; End E𝛴 ) (4.59)

is a zero-order Fourier integral operator whose Schwartz kernel K is that of an identity
map [26, Lem. 5.2] (see also [10, Lem. 6.2, 6.3]):

K ∈ 𝐼0
(
R × R × 𝛴 × 𝛴,𝐶π∗◦𝛥∗; Hom

(
Hom(E𝛴 , E𝛴 ), End E𝛴

) )
, (4.60a)

𝐶π∗◦𝛥∗ =
(
𝛥(R × 𝛴)

)⊥∗
, (4.60b)

𝜎K = Π
∗ ( |d𝑡 ∧ d𝜏 ∧ d𝑥 ∧ d𝜉 |1/2

)
1 . (4.60c)

Here the canonical relation 𝐶K = {(𝑡, 𝜏; 𝑡, 𝜏; 𝑥, 𝜉; 𝑥,−𝜉) ∈ ¤T∗R× ¤T∗R× ¤T∗𝛴 × ¤T∗𝛴} of π∗ ◦ 𝛥∗
has been identified with the cornormal bundle

(
𝛥(R×𝛴)

)⊥∗ to the diagonal in R×𝛴×R×𝛴 ,
Π is the projector 𝐶𝜋∗𝛥∗ 3 (𝑡, 𝜏; 𝑥, 𝜉; 𝑥,−𝜉; 𝑡,−𝜏) ↦→ (𝑡, 𝜏; 𝑥, 𝜉) ∈ ¤T∗R × ¤T∗𝛴 , and the Keller-
Maslov bundle T→

(
𝛥(R × 𝛴)

)⊥∗ is trivial (see Example A.1.21).

Theorem 4.5.1 implies that Tr𝑈𝑡 exists as a distribution in D′(R) and it can be re-
expressed as

Tr𝑈𝑡 =
∫
𝛴

tr
(
(𝛯∗−𝑡F) (𝑥, 𝑦) 𝜎𝐷 (𝑦, 𝜁)

) ��
𝑥=𝑦

dvh(𝑥). (4.61)

Since the geodesic relation (Definition 3.2.15) is disjoint with the conormal bundle 𝛴⊥∗,
restriction of 𝛯∗−𝑡F is well-defined. Then applying (4.44), the preceding equation can be
written as

Tr𝑈𝑡 = tr
(
π∗ ◦ 𝛥∗ ◦ (𝜄∗𝑥 � 𝜄∗𝑦)

(
(𝛯∗−𝑡F) (𝑥, 𝑦) 𝜎𝐷 (𝑦, 𝜁)

) )
(4.62)

for a fixed but arbitrary 𝑡 ∈ R and any 𝑥, 𝑦 ∈ M . Hence, our task is to compute the
principal symbol of

F𝑡 := (𝜄∗𝑥 � 𝜄∗𝑦)
(
(𝛯∗−𝑡F) (𝑥, 𝑦)

)
. (4.63)

We have worked out 𝜄∗
𝛴

in Example 2.3.12, so let us begin by describing 𝛯∗−𝑡F as a La-
grangian distribution. To begin with, one notes that 𝑤 appearing in the expression of 𝜎F

satisfies [35, Thm. 6.6.1]
(𝑋g±/2 ± i𝜎sub

𝐷2 ,±
)𝑤 = 0, (4.64)

by Lemma 3.4.6 and Definition 3.3.6, where g± resp. 𝜎sub
�,± are the lifts of g resp. 𝜎sub

�

to ¤T∗M × ¤T∗M via the projections on the first resp. second copies of ¤T∗M . This means
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that i(2𝜋)3/4𝜎𝐷 ◦ 𝑤
√︁
|d𝑡 | ⊗

√︁
|dv𝐶 |/2 is the principal symbol of 𝛯∗F on each 𝐶+ and 𝐶−.

Employing (4.47), (4.48), Lemma 3.4.6, and Appendix A.2.3, it is then straightforward
to obtain

Lemma 4.7.1. Suppose that (E →M , 𝜎𝐷) is a bundle of Clifford modules over a globally
hyperbolic stationary spacetime (M , g, 𝛯) and that F is the Schwartz kernel of the causal
propagator of any Dirac-type operator 𝐷 on E . Then the pullback (with respect to the first
argument) of F by the Killing flow,

𝛯∗F ∈ 𝐼−3/4 (
R ×M ×M , 𝛤′ ◦ 𝐶; Hom(E , E )

)
, (4.65a)

𝛤′ ◦ 𝐶 =
{(
𝑡,−𝜉 (𝑍); 𝑥, 𝜉; 𝑦, 𝜂

)
∈ ¤T∗R × ¤T∗0M × ¤T∗0M | (𝑥, 𝜉) = T∗𝛯𝑡 ◦𝛷𝑠 (𝑦, 𝜂)

}
, (4.65b)

𝜎𝛯∗F � i(2𝜋) 3
4𝜎𝐷 ◦ 𝑤

(
T∗𝛯𝑡 ◦𝛷𝑠 (𝑦, 𝜂), (𝑦, 𝜂)

)
|d𝑡 | 12 ⊗

��dv𝐶 (
T∗𝛯𝑡 ◦𝛷𝑠 (𝑦, 𝜂), (𝑦, 𝜂)

) �� 1
2 , (4.65c)

where the principal symbol is modulo Keller-Maslov part, 𝑍 is the infinitesimal generator of
𝛯 and all other symbols are as defined in Lemma 3.4.6 and (4.47b).

Next, we compute the restriction of 𝛯∗F on 𝛴𝑥 × 𝛴𝑦 by an application of Exam-
ple 2.3.12.

Lemma 4.7.2. As in the terminologies of Lemma 4.7.1, let 𝛴 be a Cauchy hypersurface of
M . Then the distribution (4.63)

F𝑡 ∈ 𝐼−1/4 (
R × 𝛴 × 𝛴, C𝑡; Hom(E𝛴 , E𝛴 )

) )
, (4.66a)

C𝑡 :=
{(
(𝑡,−𝜉 (𝑍)), (𝑥, 𝜉) |T𝛴 , (𝑦, 𝜂) |T𝛴

)
∈ ¤T∗R × T∗M𝛴 × T∗M𝛴 |

(𝑥, 𝜉) = T∗𝛯𝑡 ◦𝛷𝑠 (𝑦, 𝜂)
}
, (4.66b)

𝜎F𝑡 � i(2𝜋) 1
4𝜎𝐷 ◦ 𝑤

(
T∗𝛯𝑡 ◦𝛷𝑠 (𝑦, 𝜂) |T𝛴 , (𝑦, 𝜂) |T𝛴

)
|d𝑡 | 12 ⊗

��dv𝐶 (
T∗𝛯𝑡 ◦𝛷𝑠 (𝑦, 𝜂) |T𝛴 , (𝑦, 𝜂) |T𝛴

) �� 1
2 , (4.66c)

where the principal symbol is modulo the Keller-Maslov part.

Proof. The first two assertions are immediate from (2.132a), (2.132b), (4.65a) and (4.65b).
To compute the principal symbol one notes that dv ¤T∗0M (𝑦, 𝜂) induces a volume element
dv ¤T∗0M𝛴

(𝑦, 𝜂) := dv ¤T∗0M/d𝑦1 on ¤T∗0M𝛴 when 𝛴 is parametrised by 𝑦1 = cst and then
dv ¤T∗0M𝛴

(𝑦, 𝜂) = d𝜂1 ∧ d𝑦′ ∧ d𝜂′ in the adapted coordinates (𝑦1 = cst, 𝑦′, 𝜂1, 𝜂
′) on T∗M .

Finally, the claim follows from (2.132c), (4.65c), (2.132c) and transporting (𝑦, 𝜂) to
(𝑥, 𝜉) by the geodesic flow and the Killing flow. �

If the composition 𝐶′
π∗𝛥∗
◦ C𝑡 is clean then we can compute Tr𝑈𝑡 by the standard

composition of Fourier integral operators. But, in general,

𝐶′π∗𝛥∗ ◦ C𝑡 =
{
(𝑡, 𝜏) ∈ R × ¤R | 𝜏 = −𝜉 (𝑍), (𝑥, 𝜉) |T𝛴 =

(
T∗𝛯−𝑡 ◦𝛷𝑡 (𝑦, 𝜂)

)
|T𝛴

}
(4.67)

may not be clean because (see Appendix A.1.3: (A.38), (A.44), and (A.45) for the sym-
bol 9 and for further details) the fibres of 𝐶′

π∗𝛥∗
9C𝑡 → 𝐶′

𝜋∗𝛥∗
◦ C𝑡 can be identified with
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the fibres over 𝜏 ∈ ¤T∗𝑡R, i.e., the set {𝔉𝑡} := (4.34) of periodic geodesics, where we have
used (4.22) and (4.49). Then, even if {𝔉𝑡} happens to be manifolds, the chances of
dim𝔉𝑡 is a constant for all 𝑡 is very low; for instance, if all the orbits of 𝛯N

𝑡 are periodic
with the same period 𝑡 = 𝑇 , then the composition is clean (see e.g. [20, p. 289]). We re-
mark that this, however, is not an issue for the trivial period (𝑇 = 0) and the assumptions
made on classical dynamics in Theorem 4.3.6 ensures a clean intersection in the case of
non-trivial periods (𝑇 ≠ 0).

Let us record for the future computations that

dim M = 𝑑, dim(T∗M ) = 2𝑑, dim( ¤T∗0M ) = 2𝑑 − 1,

dim N = 2𝑑 − 2, dim Ñ = 2𝑑 − 3,
dim 𝛴 = 𝑑 − 1, dim(T∗𝛴) = 2𝑑 − 2 = dim( ¤T∗0M𝛴 ). (4.68)

4.7.1 Principal symbol of Tr𝑈𝑡 at 𝑡 = 0

We begin with the trivial periodic orbits where a big singularity is expected as 𝑈𝑡 reduces
to an identity operator in this situation. To describe 𝜎Tr𝑈0

, it is useful to have the notion
of the symplectic residue [182, Def. 6.1], introduced by Guillemin to derive Weyl’s law
in the context of Weyl algebra quantising a conic symplectic manifold. By construction
(cf. (4.22)), 𝐻1−𝑑 is a homogeneous function of degree 1− 𝑑. Then its symplectic residue
is defined by

res𝐻1−𝑑 :=
∫

˜N
𝜗𝐻1−𝑑 , 𝜗 := EydvN , (4.69)

where y denotes the interior multiplication by the Euler vector field (Section 4.4.2) E on
N and 𝜗𝐻1−𝑑 is the pull-back of 𝐻1−𝑑𝜗 on N . Homogeneity of 𝐻 entails (cf. [182, Proof
of Lemma 6.3])

res𝐻1−𝑑 = (𝑑 − 1) vol N𝐻≤1. (4.70)

On a globally hyperbolic standard stationary spacetime, vol N𝐻≤1 has been computed by
Strohmaier-Zelditch [27, (15)] and it is given by (4.29).

Lemma 4.7.3. As in the terminologies of Theorem 4.5.1 (and hence Theorem 4.3.4 as well),

U𝑡 ∈ 𝐼−1/4 (
R × 𝛴 × 𝛴, C𝑡; Hom(E𝛴 , E𝛴 )

)
(4.71)

associated with the canonical relation C𝑡 := (4.66b) and, modulo Keller-Maslov part, its
principal symbol is given by

𝜎U𝑡
(𝑥, 𝜉; 𝑦, 𝜂) � 𝜎F𝑡 (𝑥, 𝜉; 𝑦, 𝜂) 𝜎𝐷 (𝑦, 𝜂), (4.72)

where 𝜎F𝑡 is given by (4.66c).



124 CHAPTER 4. GUTZWILLER TRACE FORMULA

Furthermore, Tr𝑈𝑡 is a Lagrangian distribution on R of order 𝑑 − 7/4 associated with
the Lagrangian submanifold Λ𝑇 and its principal symbol at 𝑇 = 0 is given by

𝜎Tr𝑈0
(𝜏) � 𝑟 𝑑 − 1

(2𝜋)𝑑−1
vol(N𝐻≤1) |𝜏 |𝑑−2

√︁
|d𝜏 |. (4.73)

Proof. The first assertion simply follows from U𝑡 (𝑥, 𝑦) = F𝑡 (𝑥, 𝑦) 𝜎𝐷 (𝑦, 𝜁). We then use
identification of N with ¤T∗0M𝛴 so that |dvN | is identified with |dv ¤T∗0M𝛴

|. If E is a regular
value of 𝐻 then NE is a codimension one 𝑋𝐻 |NE invariant embedded submanifold of
N , which inherits a natural volume form dvNE from dvN , invariant under the action of
𝑋𝐻 |NE [96, Thm. 3.4.12]:

dvN = dvNE ∧
d𝐻

‖ grad𝐻‖ ⇔ dvNE (. . .) = dvN

(
grad𝐻
‖ grad𝐻‖ , . . .

)
. (4.74)

One observes that at 𝑇 = 0, T∗𝛯0
(
𝛷0(𝑦, 𝜂)

)
= (𝑦, 𝜂) and 𝐶 = 𝛥 ¤T∗0M so that C′0 ={(

0,−𝜉 (𝑍)
)}
× (𝛥 ¤T∗0M ) |T𝛴×T𝛴 and

��dv𝐶 (𝑦, 𝜂; 𝑦, 𝜂) |T𝛴×T𝛴
��1/2 = |dvN (𝑦, 𝜂) |. The excess of

𝐶′
π∗𝛥∗
◦ C0 is (see Appendix (A.43))

𝑒 = dim𝔉0 = 2𝑑 − 3. (4.75)

Hence, by the composition of Lagrangian distributions, Tr𝑈0 ∈ 𝐼𝑑−7/4(R,Λ𝑇 ). One ob-
serves [10, (6.6)] that 𝜑(𝑡, 𝜏) defined by (𝑡 − 𝑇)𝜏 (resp. 0) for 𝜏 < 0 (resp. 𝜏 ≥ 0),
is a phase function for Λ𝑇 . Obviously, 𝜑 is not smooth around 𝜏 = 0 but the required
modification will only reflect by some smooth terms in the oscillatory integral described
below, which we suppress notationally for brevity. Any element of this Lagrangian distri-
bution can be written as scalar multiples c1, c2, . . . of an oscillatory integral of the form
(cf. (2.34))

(Tr𝑈0) (𝑡) = (2𝜋)−3/4(2𝜋)𝑑−1
∫
R≥0

e− i 𝑡𝜏 (c1𝜏
𝑑−2 + c2𝜏

𝑑−3 + . . .)d𝜏, (4.76)

because 𝜎Tr𝑈0
must be of order 𝑑−2 (cf. Definition 2.1.9) as entailed by the order of Tr𝑈0.

Computation of 𝜎Tr𝑈0
involves the following four steps as detailed in Section A.2.3.

Briefly speaking, first one obtains the tensor product 𝜎K ⊗ 𝜎U0
followed by intersecting

with the diagonal. Then we integrate over 𝔉0 and take tr of the hindmost quantity.
Putting all these together and comparing with the last expression of Tr𝑈0 we obtain

𝜎Tr𝑈0
(0, 𝜏) = 𝑟 res(𝐻1−𝑑)

(2𝜋)𝑑−1
|𝜏 |𝑑−2

√︁
|d𝜏 |, (4.77)

where we have used Lemma 4.7.2 and Lemma 3.4.6 together with the identity

tr
(
𝜎𝐷 (𝑦, 𝜂) 𝜎𝐷 (𝑦, 𝜁)

)
= tr

𝜎𝐷 (𝑦, 𝜂) 𝜎𝐷 (𝑦, 𝜁) + 𝜎𝐷 (𝑦, 𝜁) 𝜎𝐷 (𝑦, 𝜂)
2

= g−1
𝑦 (𝜂, 𝜁) rk(E ) (4.78)

using the cyclicity of trace and (3.122). �
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4.7.2 Principal symbol of Tr𝑈𝑡 at 𝑡 = 𝑇 ∈ P
This is the scenario corresponding to the non-trivial periodic orbits when𝐶π∗𝛥∗◦C𝑇 is clean
or equivalently the set of fixed points 𝔉𝑇 is clean. Recall, the fixed point sets of 𝛯N

𝑇
are

the union of periodic orbits 𝛾 of 𝛯N
𝑇

which depends substantially on manifold (M , g) and
we are only concerned about non-degenerate orbits as briefly defined below (details are
available in [10, Sec. 4]). Let σ be the symplectic form on T∗M (see Example A.1.2). The
induced Killing flow 𝛯N

𝑠 preserves the level sets {𝐻 (𝑐) = 𝜏} since 𝛯N
𝑠 is the Hamiltonian

𝐻 = (4.22) flow on N . Then its restriction to V := T𝑐{𝐻 = E} for any E satisfies
σ|V (𝑋𝐻 , ·) = 0 and by the non-degeneracy [27, p. 44] of 𝛾, it is meant that the nullspace
of σ|V is spanned by 𝑋𝐻. This condition implies that ker(𝐼 − d𝛾𝛯V𝑠 ) = R𝑋𝐻 and img(𝐼 −
d𝛾𝛯V

𝑠 ) = V/R𝑋𝐻 where d𝛾𝛯N
𝑠 : V → V and ker(𝐼 − d𝛾𝛯N

𝑠 ) is to be understood as the
kernel of 𝐼 − d𝛾𝛯N

𝑠 on V. In this setting, the linearised Poincaré map P𝛾 is defined as

𝐼 − P𝛾 : V/ker(𝐼 − d𝛾𝛯N
𝑠 ) → V/ker(𝐼 − d𝛾𝛯N

𝑠 ) (4.79)

the linear symplectic quotient map induced by 𝐼 − d𝛾𝛯N
𝑠 .

Lemma 4.7.4. As in the terminologies of Theorem 4.3.6, the principal symbol of Tr𝑈𝑡 at
𝑡 = 𝑇 ∈ P is

𝜎Tr𝑈𝑇
(𝜏) = 𝜏𝑑−2

(2𝜋)𝑑−1

∫
𝔉𝑇

tr
(
𝜎𝐷 (𝛾) T𝛯N

𝑇
(𝛾)𝜎𝐷 (𝑥, 𝜁)

) e− i 𝜋𝔪(𝛾)/2 |d𝑇 | ⊗
√︁
|d𝜏 |√︁

| det(𝐼 − P𝛾) |
. (4.80)

Proof. We begin with the fact that non-degenerate 𝛾 belongs to a 2-dimensional cylinder,
transversally intersecting the energy hypersurfaces [96, p. 576] which implies that one
can use 𝜏 = −𝐻 (𝛾) as a coordinate for fibre over (𝑇, 𝜏). Then the half-density valued
density at (𝑇, 𝜏) is given by [10, pp. 60 - 61] (see also, e.g. [25, Thm. 6.1.1])

|d𝑇 | ⊗

√︄
|d𝜏 |

| det(𝐼 − P𝛾) |
(4.81)

where |d𝑇 | is the density on 𝛾 induced by the flow.

To compute 𝜎TrU𝑇 , we use identifications N = ¤T∗0M𝛴 , |dvN | = |dv ¤T∗0M𝛴
| once again.

For 𝑇 ≠ 0, 𝐶 is no more given by 𝛥 ¤T∗0M and so we read off the off-diagonal expression
of 𝜎F from Lemma 3.4.6 to obtain

𝜎U𝑇
(𝑥, 𝜉; 𝑦, 𝜂) � (2𝜋) 1

4 i𝜎𝐷 (𝑥, 𝜉) 𝑤(𝑥, 𝜉; 𝑦, 𝜂) |d𝑡 |
1
2 ⊗

��dv𝐶 (𝑥, 𝜉; 𝑦, 𝜂)�� 1
2 (4.82)

modulo the Keller-Maslov contribution, where (𝑥, 𝜉) = T∗𝛯𝑡◦𝛷𝑠 (𝑦8, 𝜂8) |T𝛴 , (𝑦, 𝜂) = (𝑦8, 𝜂8) |T𝛴
for (𝑦8, 𝜂8) ∈ ¤T∗0M . As before, 𝜎Tr𝑈𝑇

is computed employing (4.44) by performing the four
steps used in Lemma 4.7.3. These yield the claimed expression

𝜎Tr𝑈𝑇
(𝑇, 𝜏) � 𝜏𝑑−2

(2𝜋)𝑑−1

∫
𝔉𝑇

tr
(
𝜎𝐷 (𝛾) T𝛯N

𝑇
(𝛾)𝜎𝐷 (𝑥, 𝜁)

) |d𝑇 | ⊗ √︁
|d𝜏 |√︁

| det(𝐼 − P𝛾) |
(4.83)

modulo the contribution coming from the Keller-Maslov line bundle M→ Λ𝑇 .
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Thus, we are left with the computation of the M-part which has been calculated
in [10, (6.16)] (see also [172, Sec. 3]). For completeness, we briefly outline the main
steps. First, one constructs L→ C𝑇 from L𝐶 ,L𝛤 and L𝛬 following the procedure detailed
in Section A.1.4. Let 𝜑 resp. 𝜙 be generating functions of 𝐶π∗𝛥∗ resp. C𝑇 . Then 𝜓 := 𝜑 + 𝜙
locally generate Λ𝑇 . Suppose that we partition [0, 1] as 0 = 𝑠0 < 𝑠1 < . . . < 𝑠𝑁 = 1 such
that {L𝛼}𝑘=0,...,𝑁 be a conic covering of Λ𝑇 around 𝛾(𝑠𝛼) and that {𝜓𝛼} corresponding
generating functions. Then, following the steps explained in Section A.1.5 one obtains
that e− i 𝜋𝔪(𝛾)/2 is the Keller-Maslov contribution. �

4.8 Proof of Weyl law

As shown in Theorem 4.3.4 and 4.3.6 that Tr𝑈𝑡 has singularities at 𝑡 = 0, 𝑇 . Our aim is
to only cut the 𝑡 = 0 singularity. In order to do so, one introduces a Schwartz function
𝜒(𝜆) on R such that (see e.g. [11, p. 133], [8, Sec. 21.1-3], [183, Thm. 7.5])

(i) 𝜒(𝜆) > 0 for all 𝜆;

(ii) (F 𝜒) (0) = 1;

(iii) (F 𝜒) (𝑡) = (F 𝜒) (−𝑡);

(iv) supp(F𝜆 ↦→𝑡𝜒) ⊂ (−𝜀, 𝜀), where 𝜀 > 0 is sufficiently small.

Then employing expression of Tr𝑈0 from Theorem 4.3.4 and the aforementioned prop-
erties of 𝜒, we obtain

F −1
𝑡 ↦→𝜆

(
F·↦→𝑡 (𝜒) Tr𝑈𝑡

)
≈

∫
d𝜏 𝛿(𝜏 − 𝜆)𝑟 res(𝐻1−𝑑)

(2𝜋)𝑑−1
𝜏𝑑−2 + . . .

= 𝑟 (𝑑 − 1) vol(N𝐻≤1)
(2𝜋)𝑑−1

𝜆𝑑−2 + . . . , (4.84)

where 𝑓 ≈ 𝑔 means that 𝑓/𝑔→ 1 as 𝑡 → 0 for any functions 𝑓 (𝑡), 𝑔(𝑡). That means that

(𝜒 ∗ dN) (𝜆) = 𝑟 (𝑑 − 1) vol(N𝐻≤1)
(2𝜋)𝑑−1

𝜆𝑑−2 +𝑂 (𝜆𝑑−3), (4.85)

where ∗ denotes the convolution. Employing

(𝜒 ∗ N) (𝜆) =
∫ 𝜆

−∞
(𝜒 ∗ dN) (𝜇) d𝜇 = 𝑟 vol(N𝐻≤1)

(2𝜋)𝑑−1
𝜆𝑑−1 +𝑂 (𝜆𝑑−2). (4.86)

The Weyl law entails from

N(𝜆) = (N ∗ 𝜒) (𝜆) −
∫ (

N(𝜆 − 𝜇) − N(𝜆)
)
𝜒(𝜇) d𝜇 (4.87)

together with the facts N(𝜆 − 𝜇) − N(𝜆) / 〈𝜇〉𝑑−1〈𝜆〉𝑑−2 and
∫
𝜒(𝜇) d𝜇 = 1.
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4.9 Literature

The idea of the asymptotic trace formula was originally due to Martin GUTZWILLER [12]
in the context of quantum mechanics, which was given a rigour mathematical under-
pinning by Johannes J. DUISTERMAAT and Victor W. GUILLEMIN [10]. We refer to the
references mentioned before Section 1.1.2 for important chronological steps in between
and, for instance, the survey article [184] for a historical detour.

Jens BOLTE and Stefan KEPPELER [185, 186] have generalised Gutzwiller’s work for
spin Dirac operators on Minkowski spacetime (see also the elucidating articles [187,
188] and references therein for chronological developments). In contemporary to their
reports, mathematical rigour analysis has been reported by Mary R. SANDOVAL [26]
promoting the Duistermaat-Guillemin framework for Dirac-type operators on a closed
Riemannian manifold. Her result on Dirac-wave-trace invariants for trivial periods is
closely related to the evaluation of the residues of the eta-invariant (by Branson and
Gilkey [163]) and the behaviour of eigenfunctions in the high energy limit (by Jakobson
and Strohmaier [106]). In the particular case of a massless spin-Dirac operator on a
closed 3-Riemannian manifold, Capoferri and Vassiliev [174] have computed the third
local Weyl coefficients by advancing the framework by Chervova et al. [189] (see also
the review by Avetisyan et al. [29]) for asymptotic spectral analysis of a general elliptic
first-order system; see [189, Sec. 11] and [7, Chap. 3] for a bibliographic overview.
An in-depth investigation of different spectral coefficients of a selfadjoint Laplace-type
operator on a hermitian vector bundle over a closed Riemannian manifold has been
performed by Li and Strohmaier [30]. In particular, they have obtained the relevant
coefficients for Dirac-type operators with a more general bundle endomorphism than in
Sandoval [26] (identity endomorphism) and in Branson-Gilkey [163] (scalar endomor-
phism), and bridged the results by Chervova et al. [189] (and their follow up works as
mentioned in [30]) with the known heat-trace invariants.

The primary and common ingredient of [26, 174, 185, 186] is to determine the time
evolution operator (modulo smoothing operators) by solving the transport equations or-
der by order. Bolte-Keppeler have also identified terms responsible for spin-magnetic
and spin-orbit interactions in the semiclassical expression. However, they have finally
considered regularised truncated time evolution operator by introducing an energy lo-
calisation to deal with the continuous spectrum of Dirac Hamiltonian arising due to the
non-compact Minkowski spacetime. Such restrictions were absent in the hindmost ref-
erences as they considered closed Riemannian manifolds and utilised the full power of
Fourier integral operator theory in contrast to Bolte-Keppeler who have worked with
oscillatory integrals. A novel feature in the lines of research by Vassiliev and his collab-
orators [29, 189] is the second term of the Weyl law (see the references cited in these
papers for earlier works). Analogous results have been achieved by Li-Strohmaier [30]
employing a different spectral analysis. Specifically, the global phase function approach
of Fourier integral operators has been deployed in [174] to construct (modulo smooth-



128 CHAPTER 4. GUTZWILLER TRACE FORMULA

ing operators) the solution operator of a massless spin-Dirac operator on a 3-dimensional
closed Riemannian manifold. They have also provided a closed formula for the principal
symbol and an algorithm for computing the subprincipal symbol of this operator.

A general relativistic generalisation of Duistermaat-Guillemin-Gutzwiller trace for-
mula has been initiated by Strohmaier and Zelditch [27, 33] (see also the review [34])
who have studied the d’Alembertian on a globally hyperbolic spatially compact sta-
tionary spacetime as briefed in Section 1.1.5. Their crucial step was to set up a rel-
ativistic description of the classical and the quantum dynamics and advance the cele-
brated Duistermaat-Guillemin [10] framework accordingly. In particular, they have ex-
pressed the time evolution operator by means of the causal propagator of d’Alembertian
and Killing flow, and computed its principal symbol by utilising the symbolic calcu-
lus of Fourier integral operators based on Duistermaat and Hörmander’s [35] classic
work of distinguished parametrices. Subsequently, they employed Guillemin’s symplec-
tic residue [182] approach at trivial period and tailored the Duistermaat-Guillemin com-
putation for the non-trivial periods. Consequently, the Weyl law in the space of light-
like geodesics has been reported by them using the standard Fourier-Tauberian argu-
ment. Apart from this investigation, their work has been generalised in a bundle setting
for a d’Alembertian on a globally hyperbolic stationary Kaluza-Klein spacetime by Mc-
Cormick [32] who utilised some technical results of this thesis.



Appendix A

Canonical Relations & Compositions

In this chapter we will first briefly recall some standard notions of conic symplectic geometry and
then review canonical relations, their clean intersection, and the composition of bundle-valued
densities on the them.

A.1 Canonical relations

A.1.1 Preliminaries on conic symplectic geometry

We recall that a symplectic manifold is a pair (M, σ) where M is a smooth manifold
and σ is a smooth, non-degenerate, closed 2-form. Symplectic manifolds must be even
dimensional and are always orientable because they admit the Liouville form dvM defined
in (2.63). If (M, σ𝑑𝑀

), (N, σN) are two symplectic manifolds and 𝜘 : N → M is a smooth
map (resp. diffeomorphism - in this case dimM = dimN) with

𝜘∗σM = σN (A.1)

then 𝜘 is called a symplectic map (resp. symplectomorphism). The latter is known as
a canonical transformation in Physics literature. If dimM = dimN then any symplectic
map 𝜘 is a volume preserving 𝜘∗vM = vN local diffeomorphism. Stated differently, the
total volume of a symplectic manifold is a global symplectic invariant. By the Darboux
theorem, every 2𝑑-dimensional symplectic manifold (M, σ) is locally symplectomorphic to
(R2𝑑 , σ0) where σ0 is the standard symplectic form on R2𝑑. This implies that

σ�𝑈 = d𝑥𝑖 ∧ d𝜉𝑖, 𝑖 = 1, . . . , 𝑑, v𝑀 �𝑈 = d𝑥1 ∧ . . . ∧ d𝑥𝑑 ∧ d𝜉1 ∧ . . . ∧ d𝜉𝑑 = d𝑥d𝜉 (A.2)

on any symplectic chart
(
𝑈, (𝑥𝑖, 𝜉𝑖)

)
for (M, σ).

We recall σ induces a vertical vector bundle isomorphism σ♭ : TM → T∗M whose
inverse is denoted by σ♯ : T∗M→ TM. Let 𝑓 ∈ 𝐶∞(M,R). Then the vector field

𝑋 𝑓 := (d 𝑓 )♯ (A.3)

129



130 APPENDIX A. CANONICAL RELATIONS & COMPOSITIONS

is called the Hamiltonian vector field generated by 𝑓 , which is locally given by

𝑋 𝑓 (𝑥, 𝜉) =
𝜕 𝑓

𝜕𝜉𝑖
(𝑥, 𝜉) 𝜕

𝜕𝑥𝑖
(𝑥, 𝜉) − 𝜕 𝑓

𝜕𝑥𝑖
(𝑥, 𝜉) 𝜕

𝜕𝜉𝑖
(𝑥, 𝜉). (A.4)

The Poisson bracket is defined by

{ 𝑓 , 𝑔} := σ(𝑋 𝑓 , 𝑋𝑔) = 𝑋 𝑓 (𝑔) (A.5)

for any 𝑓 , 𝑔 ∈ 𝐶∞(M,R). Locally it reads

{ 𝑓 , 𝑔}(𝑥, 𝜉) = 𝜕 𝑓

𝜕𝜉𝑖
(𝑥, 𝜉) 𝜕𝑔

𝜕𝑥𝑖
(𝑥, 𝜉) − 𝜕 𝑓

𝜕𝑥𝑖
(𝑥, 𝜉) 𝜕𝑔

𝜕𝜉𝑖
(𝑥, 𝜉). (A.6)

Definition A.1.1. A 𝑑-dimensional manifold (M,mλ) is called conic if there is a given
smooth map R+ × M 3 (λ, 𝑥) ↦→ mλ(𝑥) := m(λ, 𝑥) ∈ M and for every 𝑥 ∈ M, there is
an open neighbourhood 𝑈 with mR+ (𝑈) = 𝑈 and a diffeomorphism 𝜅 : 𝑈 → U such that
λ𝜅 = 𝜅mλ, where U is an open cone in ¤R𝑑.

If a conic manifold (M,mλ) is also symplectic (M, σ) with the property

m∗
λ
σ = λσ, (A.7)

then (M,m, σ) is called a conic symplectic manifold (see e.g. [77, Definition 21.1.8]).

Since mλ ◦ mλ′ = mλλ′ holds true in ¤R𝑑, succinctly speaking, a conic manifold (M,m)
is a manifold endowed with a free, proper, and smooth R+-multiplicative group action m
onM (see e.g. [84, Def. 2.1.1]). If 𝑓 ∈ 𝐶∞(M) then a radial vector field is defined by

X ( 𝑓 ) :=
d(m∗

λ
𝑓 )

dλ
(1) (A.8)

and locally this means X = 𝜉𝑖𝜕/𝜕𝜉𝑖.

Example A.1.2. If 𝑀 is a 𝑑-dimensional manifold then its cotangent bundle T∗𝑀 can
naturally be seen as a symplectic manifold because it carries a canonical 1-form, also
known as the Liouville 1-form θ whose negative differential is canonical symplectic
form σ := −dθ on T∗𝑀. In symplectic coordinates (𝑥𝑖, 𝜉𝑖) on T∗𝑀,

θ = 𝜉𝑖 d𝑥𝑖, σ = d𝑥𝑖 ∧ d𝜉𝑖 . (A.9)

Whilst (T∗𝑀, σ) is a symplectic manifold, the punctured cotangent bundle ( ¤T∗𝑀, σ) is
naturally a conic symplectic manifold where

mλ(𝑥, 𝜉) := (𝑥, λ 𝜉), 𝜅(𝑥, 𝜉) :=
(
( |𝜉1 | + . . . + |𝜉𝑑 |) (𝑥1, . . . , 𝑥𝑑), (𝜉1, . . . , 𝜉𝑑)

)
. (A.10)
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Example A.1.3. Let V → 𝑀 be a R-vector bundle of rank 𝑛 over a manifold 𝑀. Then
( ¤V ,mλ) is a conic manifold with respect to the multiplication mλ defined as all dilations
in its fibres:

mλ : ¤V𝑥 → ¤V𝑥 , 𝑣(𝑥) ↦→ mλ

(
𝑣(𝑥)

)
:= (λ𝑣) (𝑥) (A.11)

for any λ ∈ R+. Locally V � 𝑈 × R𝑛 and ¤V � 𝑈 × ¤R𝑛 for some open set 𝑈 ⊂ 𝑀 (see
e.g. [84, p. 27]). ¤V being a conic then locally translates

(𝑥; 𝜃) ∈ 𝑈 × ¤R𝑛 ⇒ mλ(𝑥; 𝜃) = (𝑥; λ𝜃) ∈ 𝑈 × ¤R𝑛. (A.12)

A set U := {(𝑥; 𝜃) ∈ 𝑈 × R𝑛} is called a conic subset of 𝑈 × R𝑛 if it is stable under all
dilation (A.12): (𝑥; 𝜃) ↦→ (𝑥; λ𝜃). Thereby, a positively homogeneous function 𝑎 of degree
𝑠 on U means (cf. Definition A.1.1)

𝑎(𝑥; λ𝜃) = λ𝑠𝑎(𝑥; 𝜃). (A.13)

Theorem A.1.4 (Homogeneous Darboux Theorem). Let (M,mλ, σ) be a 2𝑑-dimensional
conic symplectic manifold. Suppose that 𝐼 and 𝐽 are subsets of {1, . . . , 𝑑} and that (𝑥𝑖)𝑖∈𝐼
and (𝜉 𝑗 ) 𝑗∈𝐽 are smooth functions on a conic neighbourhood of any (𝑥, 𝜉) ∈ M such that [35,
Prop. 6.1.3] (see also [23, Thm. 21.1.9])

(a) 𝑥𝑖 and 𝜉 𝑗 are homogeneous of degree 0 and 1, respectively,

(b) 𝑥𝑖 Poisson commutes with 𝑥 𝑗 for all 𝑖, 𝑗 ∈ 𝐼 and so does 𝜉𝑖 with 𝜉 𝑗 for all 𝑖, 𝑗 ∈ 𝐽 whilst
{𝜉 𝑗 , 𝑥𝑖} = 𝛿𝑖𝑗 for all 𝑖 ∈ 𝐼 and for all 𝑗 ∈ 𝐽,

(c) the Hamiltonian vector fields 𝑋𝑥𝑖 , 𝑋𝜉 𝑗 and the radial vector field X are linearly inde-
pendent at (𝑥, 𝜉),

(d) there are arbitrary real numbers 𝒙𝑖 and 𝝃 𝑗 so that 𝑥𝑖 (𝑥, 𝜉) = 𝒙𝑖 and 𝜉 𝑗 (𝑥, 𝜉) = 𝝃 𝑗 with
the assumption that 𝝃 𝑘 ≠ 0 for some 𝑘 ∉ 𝐼.

Then there exists smooth functions (𝑥𝑖′)𝑖′∉𝐼 and (𝜉 𝑗 ′) 𝑗 ′∉𝐽 in a conic neighbourhood of (𝑥, 𝜉)
such that (a), (b) and (d) hold true for indices running from 1 to 𝑑, and (c) remains valid
if 𝑖′ ≠ 𝑘. In particular, (𝑥𝑖; 𝜉𝑖) defines a homogeneous1 symplectomorphism

𝜘 : U → 𝜘(U), m∗
λ
𝜘 = λ 𝜘 (A.14)

of degree 1 from an open conic neighbourhoodU of (𝑥, 𝜉) in M to an open conic neighbour-
hood 𝜘(U) of (𝒙, 𝝃) ∈ ¤T∗R𝑑.

1Cf. (A.7).
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A.1.2 Lagrangian submanifolds

Definition A.1.5. Let (M, σ) be a symplectic manifold. An immersion 𝜄 : 𝛬 ↩→ M is called
Lagrangian if and only if 𝜄∗σ = 0 and dim 𝛬 = dimM/2.

Example A.1.6. Let 𝑀 be a manifold. Then the zero covector and the image ξ(𝑀) of an
exact 1-form ξ on 𝑀 are Lagrangian submanifolds of T∗𝑀.

Example A.1.7. Let (𝛴, 𝜄) be a submanifold of a manifold 𝑀. The quotient vector bundle
𝛴⊥ := T𝑀𝛴/T𝛴 is called the normal bundle whose algebraic dual

𝛴⊥∗ := T∗𝑀𝛴/T∗𝛴, T∗𝑀𝛴 := T∗𝑀 � 𝛴 (A.15)

is called the conormal bundle of (𝛴, 𝜄). It is a R-vector bundle over 𝛴 of rk 𝛴⊥∗ =
codim 𝛴 so dim 𝛴⊥∗ = dim𝑀, and is naturally isomorphic to the annihilator of d𝜄 in
T𝑀𝛴 , which is a Lagrangian submanifold of T∗𝑀 (see e.g. [190, p. 374]).

If we assume that (𝛴, 𝜄) is embedded then its conormal bundle is characterised as

𝛴⊥∗ :=
{
(𝑦, 𝜂) ∈ T∗𝑀 | 𝑦 ∈ 𝛴, 𝜂 � T𝑦𝑀𝛴 = 0

}
. (A.16)

Note, ¤𝛴⊥∗ ⊂ ¤T∗𝑀 is a conic Lagrangian manifold (see e.g. [84, Prop. 3.7.2]).

For any exact 1-form ξ on a manifold 𝑀, we can write ξ = d𝜑 for some 𝜑 ∈ 𝐶∞(𝑀,R).
The 𝜑 is an example of the so-called generating function for the Lagrangian submanifold
ξ(𝑀) = d𝜑 (𝑀). This is an archetypal result for any Lagrangian immersion of a generic
symplectic manifold because σ vanishes identically on 𝛬 and so the Poincaré lemma
implies that locally σ = d𝜗 for some potential 𝜗 on 𝑀. Applying this lemma once again
yields an open subset L ⊂ 𝛬 and a 𝜑 ∈ 𝐶∞(L,R) depending on 𝜗, such that (𝜄∗𝜗) � L =
d𝜑. If we consider the particular class of Lagrangian immersions 𝛬 of 𝜋 : T∗𝑀 → 𝑀 then
the set Σ(𝛬) of all critical points of

Π : 𝜋 ◦ 𝜄 : 𝛬→ 𝑀, (𝑥, 𝜉) ↦→ Π(𝑥, 𝜉) := 𝑥 (A.17)

is called the singular set and its projection on 𝑀 is called the caustic of 𝛬. Σ(𝛬) com-
prises the points where 𝛬 is not transversal to cotangent fibration and in its complement
𝛬 can be always locally represented as the graph of an exact 1-form d𝜑 defined on some
open subset of 𝑀. We will see below that this construction can be carried over all 𝛬 by
introducing some auxiliary parameter 𝜃 ∈ R𝑛 (see e.g. [20], [190, Rem. 8.8.2]).

The primary objective of introducing this specific class of submanifolds is to comple-
ment the theory of Fourier integral operators (Section 2.1.3, 2.2, 2.3.3) where we only
require the conic Lagrangian manifolds 𝛬. We remark that such Lagrangian manifolds
are precisely those where the canonical 1-form θ vanishes identically and vice-versa [78,
(3.1.3)] (see also, e.g. [84, Prop. 3.7.1]).

We are now going to systematically describe the parametrisation of a conic Lagrangian
manifold 𝛬 ⊂ ¤T∗𝑀 by means of a generating function, also known as a phase function.
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Definition A.1.8. Let 𝑀 be a 𝑑-dimensional manifold andU ⊂ 𝑀 × ¤R𝑛 an open conic set
where 𝑛 is not necessarily equal to 𝑑. A 𝜑 ∈ 𝐶∞(U,R) is called a clean phase function
with excess 0 ≤ 𝑒 ≤ 𝑛 if [10, Sec. 7] (see also, e.g. [77, Def. 21.2.15], [20, Def. 1])

(a) it is positive-homogeneous of degree 1 in the ¤R𝑛-variable 𝜃,

(b) its differential d𝜑 ≠ 0 is non-vanishing,

(c) its fibre-critical set

C := (grad𝜃 𝜑)−1(0) :=
{
(𝑥0; 𝜃0) ∈ U

��� ( 𝜕𝜑
𝜕𝜃𝑘

)
𝑘=1,...,𝑛

(𝑥0; 𝜃0) = 0
}

(A.18)

is a 𝑑 + 𝑒-dimensional smooth conic submanifold of 𝑀 × ¤R𝑛, whose tangent space is

T(𝑥;𝜃)C := ker
(
d
( 𝜕𝜑
𝜕𝜃𝑘

)
𝑘=1,...,𝑛

(𝑥; 𝜃)
)
. (A.19)

If 𝑒 = 0 then 𝜑 is called a non-degenerate phase function.

Given a clean 𝜑, the differentials d(𝜕𝜑/𝜕𝜃𝑘 ) at any point of C span a linear space of
dimension 𝑛 − 𝑒 and the map [10, Lem. 7.1]

𝚥𝜑 : C → 𝛬𝜑 ⊂ ¤T∗𝑀, (𝑥; 𝜃) ↦→ 𝚥 (𝑥; 𝜃) := (𝑥, d𝑥𝜑) (A.20)

is locally a homogeneous fibration of fibre dimension 𝑒 and its image is an immersed
conic Lagrangian submanifold 𝛬𝜑. If 𝑒 = 0 then

(
d(𝜕𝜑/𝜕𝜃1), . . . , d(𝜕𝜑/𝜕𝜃𝑛)

)
are linearly

independent at (𝑥; 𝜃) ∈ C and (A.20) is a homogeneous immersion [78, p. 134] (see
also, e.g. [20]).

We remark that 𝛬 ⊂ ¤T∗𝑀 is a conic Lagrangian manifold if and only if, there exists a
conic neighbourhood L for every (𝑥, 𝜉) ∈ 𝛬 such that

𝛬 ∩ L = 𝛬𝜑 ⇔ {(𝑥, 𝜉)} = {(𝑥, d𝑥𝜑)} (A.21)

for some non-degenerate phase function 𝜑 on L (see e.g. [84, Prop. 3.7.3], [191, Thm.,
p. 26]). In this situation, we say that 𝜑 locally generates 𝛬 (see e.g. [190, p. 668]).
Such a local generating function always exists and has a canonical form, i.e., every (conic)
Lagrangian submanifold is locally generated by a non-degenerate phase function. For any
(𝑥, 𝜉) ∈ 𝛬, local coordinates (𝑥𝑖) at 𝑥 ∈ 𝑀 can be chosen such that with the correspond-
ing homogeneous symplectic coordinates (𝑥𝑖, 𝜉𝑖) on ¤T∗𝑀, the Lagrangian plane 𝜉𝑖 = cst
through (𝑥, 𝜉) is transversal to 𝛬. Furthermore, there exists a non-degenerate phase func-
tion 𝜑 in an open conic subset of 𝑀 × ¤R𝑑 having the unique form [78, Thm. 3.1.3] (see
also, e.g. [77, Thm. 21.2.16, 21.2.18], [85, Prop. 1.4, Cor. 1.1, Rem 1.1 (pp. 418-419)])

𝜑 = 𝑥𝑖𝜉𝑖 − 𝐻, so that 𝛬𝜑 = 𝛬𝐻 =

{𝜕𝐻
𝜕𝜉𝑖

, 𝜉𝑖

}
, (A.22)
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where 𝐻 is a smooth positively homogeneous R-valued function of degree 1 on an open
conic neighbourhood of 𝜉 ∈ ¤T∗𝑥𝑀. We remark that the homogeneous immersion (A.20)
is the identity map in this case.

The fascinating existence result immediately provokes

• Are local phase functions unique?

• Is it possible to achieve a global parametrisation of a Lagrange manifold utilising a
phase function?

• How the number 𝑛 of fibre variables are chosen?

The first question rises the notion of an equivalence class of phase functions. Technically
speaking, let Ũ ⊂ 𝑀 × ¤R𝑛 be an open conic set such that there exists a diffeomorphism

𝜐 : U → Ũ, (𝑥; 𝜃) ↦→ 𝜐(𝑥; 𝜃) := (𝑥; 𝜃), (A.23)

where 𝜃 is a smooth function of (𝑥; 𝜃), which is homogeneous with respect to 𝜃 of degree
1 and fibre-preserving P̃r ◦ 𝜐 = Pr where Pr, P̃r : U, Ũ → 𝑀 are projection operators.
Then 𝜑 is said to be (locally) equivalent to a phase function 𝜑 on Ũ if [78, p. 134] (see
also, e.g. [191, p. 27])

𝜐∗𝜑 = 𝜑. (A.24)

Given any (𝑥0, 𝜉
0) ∈ 𝛬 we would like to know the necessary and sufficient conditions for

the existence of equivalent phase functions. Let 𝜑 and 𝜑 be phase functions for 𝛬 with
the same excess 𝑒 on some open conic subsets 𝑈 × ¤R𝑛 and 𝑈 × ¤R𝑛, respectively, such that
𝑥0 ∈ 𝑈 ⊂ 𝑀. Then 𝜑 and 𝜑 are equivalent on any open conic neighbourhoods U and
Ũ of 𝑥 in 𝑈 × ¤R𝑛 and 𝑈 × ¤R𝑛, respectively, if and only if [85, Prop. 1.5 (p. 421)] (see
also [20, Prop. 1])

C𝜑 3 (𝑥0; 𝜃0) ↦→ (𝑥0, d𝑥0𝜑) = (𝑥0, d𝑥0𝜑) ←� (𝑥0; 𝜃) ∈ C𝜑, (A.25a)
𝑛 = 𝑛, (A.25b)

sgn
(
Hess𝜃 𝜑 (𝑥0; 𝜃0)

)
= sgn

(
Hess𝜃 𝜑 (𝑥0; 𝜃0)

)
, (A.25c)

where C𝜑 resp. C𝜑 are fibre-critical manifolds of 𝜑 resp. 𝜑 and sgn denotes the signature
of the Hessian ((3.18)) matrix Hess𝜃 𝜑 of 𝜑 with respect to its fibre-variable 𝜃 ∈ ¤R𝑛. These
constraints can be alternatively given an operational viewpoint.

Remark A.1.9. Let 𝔐(𝛬) be the class of equivalent phase functions for 𝛬. Given 𝜑 ∈
𝔐(𝛬), the following operations produce another element of 𝔐(𝛬) [86, p. 48] (see also,
e.g. [190, p. 671]):

(i) Addition: 𝜑 := 𝜑 + λ ∈ 𝔐(𝛬) for any λ ∈ R;

(ii) Composition: 𝜑 = (A.24) ∈ 𝔐(𝛬) for any fibre-preserving diffeomorphism (A.23);
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(iii) Suspension: For any non-degenerate bilinear form q on ¤R𝑛, 𝜑 := Pr∗U 𝜑 + Pr∗¤R�̃� q on
Ũ := 𝑈 × ¤R𝑛 is an element of 𝔐(𝛬).

(iv) Restriction: If 𝜑 is a phase function on 𝑀 × ¤R𝑛 then 𝜑 := 𝜑 � Ũ ∈ 𝔐(𝛬) where
Ũ ⊂ 𝑀 × ¤R𝑛 is an open conic subset containing the preimage of 𝚥𝜑 (𝑥, 𝜉).

These four operations generate an equivalence relation among phase functions called
stable equivalence. So, we conclude that a phase function is not unique yet it is so up to
stable equivalence.

The parametrisation of a Lagrangian submanifold by means of an equivalent class of
phase functions cannot be performed globally due to topological restrictions. When 𝑀 is
compact, these obstructions require cohomological and 𝑘-theoretic language to formu-
late, which are somehow tangential to the subject matter, so we refrain those precise
formulae and refer [192, 193] together with the earlier references cited therein. The
non-compact case is still an open issue to the best of our knowledge. Notwithstanding, a
global parametrisation can be achieved, for instance, by an equivalence class of C-valued
non-degenerate phase functions in the particular case whenever conic Lagrangian sub-
manifolds are given by the graphs of homogeneous symplectomorphisms [116, Lem. 1.2,
1.7].

Finally, the fibre-dimension is bounded from below by [85, Prop. 1.3, p. 417]

𝑛 ≥ 𝑑 − rk(d(𝑥,𝜉)Π) + 𝑒 (A.26)

for any (𝑥, 𝜉) ∈ 𝛬, where dΠ is the differential of (A.17).

If (M, σM) and (N, σN) are two symplectic manifolds then their product manifold M×N
can be naturally equipped with the symplectic forms

σM � σN := pr∗M σM + pr∗N σN, σM � σN := pr∗M σM − pr∗N σN, (A.27)

where prM, prN : M × N → M,N are the Cartesian projectors. In symplectic coordinates
(𝑥𝑖, 𝜉𝑖; 𝑦 𝑗 , 𝜂 𝑗 ) for M × N, these read d𝑥𝑖 ∧ d𝜉𝑖 � d𝑦 𝑗 ∧ d𝜂 𝑗 resp. d𝑥𝑖 ∧ d𝜉𝑖 � d𝑦 𝑗 ∧ d𝜂 𝑗 .

Example A.1.10. Let (M, σM), (N, σN) be 2𝑑-dimensional symplectic manifolds and 𝜘 :
N→ M a symplectomorphism. Then its graph

𝛤 =
{(
𝜘(𝑦, 𝜂); (𝑦, 𝜂)

)
| (𝑦, 𝜂) ∈ N

}
⊂ (M × N, σM � σN) (A.28)

is a Lagrangian submanifold whereas the twisted graph 𝛤′ =
{(
𝜘(𝑦, 𝜂); (𝑦,−𝜂)

)}
is a

Lagrangian submanifold with respect to the product symplectic form σM � σN. Note, any
diffeomorphism 𝜘 is a symplectomorphism if and only if its graph 𝛤 ⊂ (M × N, σM � σN) is a
Lagrangian submanifold.

A special case of the preceding example for the identity symplectomorphism has some
interesting consequences as presented below.
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Example A.1.11. Let 𝑀 be a manifold whose punctured cotangent bundle ( ¤T∗𝑀, σ𝑀 ) is
considered as a conic symplectic manifold as in Example A.1.2 and let id : 𝑀 → 𝑀 be
the identity diffeomorphism. Then its cotangent lift

T∗ id : ¤T∗𝑀 → ¤T∗𝑀, (𝑥, 𝜉) ↦→ (T∗𝑥id) (𝜉) (𝑋) := 𝜉
(
d𝑥id (𝑋)

)
= 𝜉 (𝑋) (A.29)

for any 𝑋 ∈ T𝑥𝑀, is the identity homogeneous symplectomorphism preserving the Liou-
ville form. Its twisted graph

𝛤′ = {(𝑥, 𝜉; 𝑥,−𝜉) ∈ ¤T∗𝑀 × ¤T∗𝑀} = (𝛥𝑀𝑀)⊥∗ = (𝛥 ¤T∗𝑀)′ ⊂ ( ¤T∗𝑀 × ¤T∗𝑀, σ𝑀 � σ𝑀 ) (A.30)

is a Lagrangian submanifold and it is nothing but the conormal bundle (Example A.1.7)
(𝛥𝑀𝑀)⊥∗ of the diagonal embedding 𝛥𝑀 : 𝑀 → 𝑀 × 𝑀. Equivalently, this is the twisted
diagonal embedding (𝛥 ¤T∗𝑀)′ ↩→ ¤T∗𝑀 × ¤T∗𝑀 � ¤T∗(𝑀 × 𝑀) of the product punctured
cotangent bundle. 𝛤′ parametrisation by the non-degenerate phase function 𝜑 := (𝑥𝑖 −
𝑦𝑖)𝜉𝑖 for any coordinates (𝑥𝑖) (resp. (𝑦𝑖)) around 𝑥 (resp. 𝑦) in 𝑀 and 𝜉 ∈ ¤R𝑑 (see e.g. [85,
Exm. 5.2, 5.3 (pp. 455-456)]).

Example A.1.10 exhibits that the standard recipe to construct a Lagrangian submani-
fold 𝛬 ⊂ (M×N, σM �σN) as the graph of a symplectomorphism only works provided that
dimM = dimN which cannot be guaranteed a priori and relaxing this condition leads to
the notion of a canonical relation.

Definition A.1.12. If (M, σM) and (N, σN) are two symplectic manifolds then an immersed
Lagrangian submanifold (𝐶, 𝜄) of (M×N, σM�σN := (A.27)) is called a canonical relation
from N to M. If M,N, and 𝐶 all are conic, then we call the relation homogeneous [78,
Def. 4.1.2] (see also [77, Def. 21.2.12]).

Example A.1.13. Let (M, σM) be a symplectic manifold and let (T∗R × M, σR � σM, 𝐻)
be a time-dependent Hamiltonian system. The twisted graph (see e.g. [190, pp. 441 -
442], [20, Sec. 4.2] for details)

𝛤′ = {(𝑡, 𝜏; 𝑥, 𝜉; 𝑦,−𝜂) ∈ T∗R ×M ×M | (𝑥, 𝜉) =𝛷𝑡 (𝑦, 𝜂), 𝜏 + 𝐻 (𝑥, 𝜉) = 0} (A.31)

of 𝐻-flow𝛷𝑡 which is assumed to be complete, is a canonical relation of T∗R ×M ×M.

Remark A.1.14. By Definition A.1.12, 𝐶 ⊂ M × N is a Lagrangian submanifold with
respect to σM � σN, then it follows that the twisted canonical relation 𝐶′ ⊂ M × N is a
Lagrangian submanifold with respect to the product symplectic form σM � σN.

Let 𝐶 be a homogeneous canonical relation from 𝜋𝑁 : ¤T∗𝑁 → 𝑁 to 𝜋𝑀 : ¤T∗𝑀 →
𝑀. Being a Lagrangian submanifold, it can also be uniquely parametrised by the stable
equivalence class [𝜑] of phase functions 𝜑 defined on an open conic subset of 𝑀 × 𝑁
as described below. For each (𝑥0, 𝜉

0; 𝑦0, 𝜂
0) ∈ 𝐶, there exists a homogeneous symplectic

coordinate neighbourhoodU×V on ¤T∗𝑀× ¤T∗𝑁 and a clean phase function 𝜑 on 𝜋𝑀 (U)×
𝜋𝑁 (V) × ¤R𝑛 such that

C𝜑 := {(𝑥0, 𝑦0; 𝜃0) ∈ 𝜋𝑀 (U) × 𝜋𝑁 (V) × ¤R𝑛 | grad𝜃 𝜑 (𝑥0, 𝑦0; 𝜃0) = 0} ⊂ 𝑀 ×𝑁 × ¤R𝑛 (A.32)
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is a 𝑑𝑀 + 𝑑𝑁 + 𝑒-dimensional submanifold for some 𝜃0 ∈ ¤R𝑛. Then, 𝐶 is locally obtained
by the homogeneous fibration

𝚥𝜑 : C𝜑 → 𝐶𝜑, (𝑥0, 𝑦0; 𝜃0) ↦→ 𝚥 (𝑥0, 𝑦0; 𝜃0) := (𝑥0, d𝑥0𝜑; 𝑦0, d𝑦0𝜑) (A.33)

of fibre-dimension 𝑒. Obviously, one can opt 𝑒 = 0 so that the preceding mapping is a
homogeneous immersion. Alternatively, the non-degenerate phase function

𝜓 := 𝑥𝑖0𝜉
0
𝑖 + 𝑦

𝑗

0𝜂
0
𝑗 − 𝐻 (A.34)

for 𝐶 can be chosen on any homogeneous symplectic chart
(
U×V, (𝑥𝑖0, 𝜉

0
𝑖
; 𝑦 𝑗0, 𝜂

0
𝑗
)
)

where
𝐻 is a smooth positively homogeneous R-valued function of degree 1 on an open conic
neighbourhood of (𝜉0, 𝜂0) ∈ ¤T∗𝑥0

𝑀 × ¤T∗𝑦0
𝑁. The corresponding homogeneous immersion

𝚥𝐻 : C𝐻 → 𝐶𝐻 , (𝑥0, 𝜉
0; 𝑦0, 𝜂

0) ↦→
(
𝜕𝐻

𝜕𝜉0
𝑖

, 𝜉0
𝑖 ;
𝜕𝐻

𝜕𝜂0
𝑗

, 𝜂0
𝑗

)
(A.35)

is then actually the identity map. Complying with Remark A.1.14, this means

𝐶′𝜑 = {(𝑥0, d𝑥0𝜑; 𝑦0,−d𝑦0𝜑)} and 𝐶′𝐻 =
{( 𝜕𝐻
𝜕𝜉0

𝑖

, 𝜉0
𝑖 ;
𝜕𝐻

𝜕𝜂0
𝑗

,−𝜂0
𝑗

)}
. (A.36)

are canonical relations with respect to σ𝑀 � σ𝑁 (see e.g. [77, (21.2.9)]).

A.1.3 Clean composition

A relation maps a set to another set, thus, if 𝑆 is a subset of a symplectic manifold
(O, σO) and 𝐶 ⊂ (M × O, σM � σO) is a canonical relation then 𝐶 (𝑆) = {𝜉 ∈ M | (𝜉, 𝜁) ∈
𝐶, for some 𝜁 ∈ 𝑆} can be expressed as 𝐶 (𝑆) = prM

(
𝐶 ∩ pr−1

O 𝑆
)

where prM, prO : M ×O→
M,O are the Cartesian projectors. The composition of 𝐶 with another canonical relation
𝛬 ⊂ (O × N, σO � σN) then reads (see e.g. [77, p. 290])

𝐶 ◦ 𝛬 := {(𝜉, 𝜂) ∈ M × N | (𝜉, 𝜁) ∈ 𝐶, (𝜁, 𝜂) ∈ 𝛬, for some 𝜁 ∈ O} = 𝛱 (𝐶9𝛬), (A.37)

where we have used
𝐶9𝛬 := (𝐶 × 𝛬)

⋂
(M × 𝛥O × N) (A.38)

and the Cartesian projector 𝛱 : M × 𝛥O × N→ M × N.

But, in general, 𝐶 ◦ 𝛬 is not a manifold and one requires to know “how” 𝐶 × 𝛬
intersects with M × 𝛥O × N for which we introduce the terminology of clean intersection
(see e.g. [10, Sec. 5]).
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Definition A.1.15. Let 𝑆 and 𝛴 be two submanifolds of a manifold 𝑀. If their intersection
𝑆 ∩ 𝛴 is a submanifold satisfying (see e.g. [77, Def. C.3.2], [86, Def. 5.9])

∀𝑥 ∈ 𝑆 ∩ 𝛴 : T𝑥 (𝑆 ∩ 𝛴) = T𝑥𝑆 ∩ T𝑥𝛴 (A.39)

then the intersection is said to be clean, denoted by 𝑆 t𝑒 𝛴 , with excess 𝑒 ∈ N0 given by

𝑒 := codim 𝑆 + codim 𝛴 − codim(𝑆 ∩ 𝛴). (A.40)

If 𝑒 = 0 then 𝑆 and 𝛴 are said to intersect transversally, symbolically 𝑆 t 𝛴 .

The criterion that 𝑆 t 𝛴 at any 𝑥 ∈ 𝑆 ∩ 𝛴 can be restarted as

T𝑥𝑆 + T𝑥𝛴 = T𝑥𝑀 ⇔ 𝑆⊥𝑥 ∩ 𝛴⊥𝑥 = {0}. (A.41)

Example A.1.16. Let (𝑥, 𝑦, 𝑧) ∈ R3. Then {𝑧 = 0} t {𝑧 = 𝑥} but {𝑧 = 0} 6t {𝑧 = 𝑥𝑦}.

Intuitively speaking, 𝑆 t 𝛴 means they intersect “as little as possible”. Thus, 𝑆∩𝛴 = ∅
is trivially 𝑆 t 𝛴 .

Example A.1.17. The 𝑥-axis intersects with the 𝑦-axis in R3 cleanly with 𝑒 = 2+2−3 = 1.
In R2, the 𝑥-axis and {𝑦 = 𝑥2} do not intersect cleanly.

If (𝐶 × 𝛬) t𝑒 (M × 𝛥O × N) then (see e.g. [77, Thm. 21.2.14], [86, Prop. 5.28])

rk𝛱 =
dimM + dimN

2
(A.42)

and the range 𝐶◦𝛬 of 𝛱 is locally an immersed Lagrangian submanifold of (M×N, σM�σN).
Furthermore, if 𝑈 is an open set in M ×N and 𝛱 � 𝛱−1(𝑈) is proper then 𝛱 (𝛱−1𝑈) is an
immersed closed Lagrangian submanifold of 𝑈 and 𝛱−1𝑈 is a fibre space with compact
fibres over it (see e.g. [77, Rem. p. 291]).

Definition A.1.18. Let (M, σM), (O, σO) and (N, σN) be symplectic manifolds and let 𝐶 ⊂
(M×O, σM�σO) and 𝛬 ⊂ (O×N, σO�σN) be closed canonical relations. Then 𝐶 and 𝛬 is said
to have a clean composition 𝐶 ◦𝑒 𝛬 with excess 𝑒 ∈ N0 if 𝐶×𝛬 and M×𝛥O×N intersects
cleanly with excess 𝑒. The composition is called proper if the Cartesian projector 𝛱 :
M × 𝛥O × N→ M × N is proper (see e.g. [77, Thm. 21.2.14], [85, Def. 5.2 (p. 458)]).

We remark that (see e.g. [25, Thm. 4.2.2])

𝑒 = dim𝔉 (A.43)

where

𝔉 := {𝔉(𝜉,𝜂) | (𝜉, 𝜂) ∈ 𝐶 ◦𝑒 𝛬},
𝔉(𝜉,𝜂) := {(𝜉, 𝜁 , 𝜁 , 𝜂) ∈ 𝐶9𝛬 | 𝛱 (𝜉, 𝜁 , 𝜁 , 𝜂) = (𝜉, 𝜂) ∈ 𝐶 ◦𝑒 𝛬} (A.44)
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is the set of compact connected fibres 𝔉𝜉,𝜂 of the smooth fibration

𝛱 : 𝐶9𝛬→ 𝐶 ◦𝑒 𝛬. (A.45)

In terms of generating functions, if 𝜑(𝑥, 𝑧; 𝜃) and 𝜙(𝑧, 𝑦; 𝜗) are non-degenerate phase
functions for homogeneous canonical relations 𝐶 ⊂ ¤T∗𝑀× ¤T∗𝑂 and 𝛬 ⊂ ¤T∗𝑂× ¤T∗𝑁 in open
conic neighbourhoods of (𝑥0, 𝑧0; 𝜃0) ∈ 𝑀×𝑂× ¤R𝑛𝑀 and (𝑧0, 𝑦0; 𝜗0) ∈ 𝑂×𝑁× ¤R𝑛𝑁 such that
(𝑥0, 𝑧0; 𝜃0) ∈ C𝜑 and (𝑧0, 𝑦0; 𝜗0) ∈ C𝜙, respectively, with d𝑧𝜑 (𝑥0, 𝑧0; 𝜃0) +d𝑧𝜙 (𝑧0, 𝑦0; 𝜗0) =
0, then (see e.g. [77, Prop. 21.2.19])

𝜓(𝑥, 𝑧, 𝑦; 𝜃, 𝜗) := 𝜑(𝑥, 𝑧; 𝜃) + 𝜙(𝑧, 𝑦; 𝜗) (A.46)

is a clean phase function with excess 𝑒 parametrising 𝐶 ◦𝑒 𝛬. In addition, if 𝜓 is non-
degenerate in (𝑧′; 𝜃′, 𝜗′) then the 𝑒 variables (𝑧′′; 𝜃′′, 𝜗′′) parametrise 𝔉; the meaning of
the splitting 𝑧 = (𝑧′, 𝑧′′) has been explained in Definition 2.1.9.

A.1.4 Keller-Maslov bundle

Given a Lagrangian submanifold 𝛬, one can associate a number of bundle structures over
𝛬 such that these bundles encode information about how the local pieces of 𝛬 generated
by phase functions are glued together.

Definition A.1.19. Let ¤T∗𝑀 → 𝑀 be the punctured cotangent bundle over a manifold 𝑀
and 𝛬 ⊂ ¤T∗𝑀 a conic Lagrangian submanifold. The Keller-Maslov bundle M → 𝛬 over
𝛬 is a complex line bundle obtained from some principal bundle with structure group
Z/4Z, which is trivial as a vector bundle [78, p. 148].

Remark A.1.20. Having a discrete structure group, M carries a natural flat connection
with holonomy in Z/4Z (see e.g. [86, p. 56]).

We are now going to present a construction of M which is an integral part of the
principal symbol (Definition 2.3.11) of a Lagrangian distribution and consequently has
played a pivotal part in the non-zero periodic contribution (Theorem 4.3.6) of the Duis-
termaat-Guillemin-Gutzwiller trace formula. Let 𝜑 be a non-degenerate phase function
for 𝛬. Then employing the Hessian of 𝜑 one has the integer-valued map: C𝜑 3 (𝑥; 𝜃) ↦→
sgn

(
Hess𝜃 𝜑 (𝑥; 𝜃)

)
∈ Z. Note, this function can be somewhat discontinuous as the Hes-

sian can be singular at some elements of C𝜑. We now consider an open conic (Leray2-)
covering {L𝛼} of 𝛬, indexed by a countable set with the corresponding non-degenerate
phase functions 𝜑𝛼 and the fibre-critical manifolds C𝛼. It follows from (A.25) that the
mapping [78, (3.2.15)] (see also, e.g. [20], [25, Sec. 5. 13], [190, pp. 686-687])

𝔰𝛼𝛽 : C𝛼 ∩ C𝛽 → Z, (𝑥; 𝜃𝛼, 𝜃𝛽) ↦→

𝔰𝛼𝛽 (𝑥; 𝜃𝛼, 𝜃𝛽) :=
1
2

(
sgn

(
Hess𝜃 𝜑𝛽 (𝑥; 𝜃𝛽)

)
− 𝑛𝛽 − sgn

(
Hess𝜃 𝜑𝛼 (𝑥; 𝜃𝛼)

)
+ 𝑛𝛼

)
(A.47)

2This means that finite intersection of L𝛼 ’s are either empty or diffeomorphic to the open ball.
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is constant for all connected intersections C𝛼 ∩ C𝛽. Thereby,

𝑔𝛼𝛽 := e
i/2𝜋𝔰𝛼𝛽◦ 𝚥−1

𝛼𝛽 : L𝛼 ∩ L𝛽 → ¤C (A.48)

clearly satisfies the cocycle property: 𝑔𝛼𝛽′𝑔𝛽′𝛽 = 𝑔𝛼𝛽 whenever L𝛼 ∩ L𝛽′ ∩ L𝛽 ≠ ∅ with
|𝑔𝛼𝛽 | = 1. Hence, the collection of non-zero complex numbers {𝑔𝛼𝛽} for all 𝛼 and 𝛽 such
that 𝛬𝛼 and 𝛬𝛽 are not disjoint, defines our transition function and the global construc-
tion of M is achieved by taking the disjoint union

M :=
⊔
𝛼

(L𝛼 × C)/∼ (A.49)

modulo the equivalence relation(
(𝑥, 𝜉𝛼), 𝑐𝛼

)
∼

(
(𝑥, 𝜉𝛽), 𝑐𝛽

)
⇔ (𝑥, 𝜉𝛼) = (𝑥, 𝜉𝛽) ∈ L𝛼 ∩ L𝛽, 𝑐𝛼 = 𝑔𝛼𝛽𝑐𝛽. (A.50)

The constant functions from L𝛼 to 1C form flat local sections of M:

e𝛼 : L𝛼 → M, (𝑥, 𝜉) ↦→
[ (
(𝑥, 𝜉), 1C

) ]
(A.51)

and hence manufacture M into a line bundle with flat connection over 𝛬. Any section m

of M→ L𝛼 then can be written as m =
∑
m
𝛼e𝛼.

Alternatively, one can define a 8
√

1C-valued mapping

m𝛼 := ei/4𝜋 sgn(Hess𝜃 𝜑)◦ 𝚥−1
: L𝛼 → ¤C (A.52)

and declare this as the flat section ofM � L𝛼. ThenM is constructed employing transition
functions 𝑔𝛼𝛽 valued in the structure group Z/4Z = {±1,± i}, which are locally constant on
each disjoint covering of 𝛬 and absolute value 1 so that m𝛼 = 𝑔𝛼𝛽m𝛽.

Since 𝜑 is unique only up to the stable equivalence, the above construction must be
examined under the four constituent operations mentioned in Remark A.1.9. Clearly
sgn(Hess𝜃 𝜑𝛼) is invariant under all those except suspension for which sgn(Hess𝜃 𝜑𝛼) =
sgn(Hess𝜃 𝜑𝛼) + sgn q - ensuring the construction for the equivalence class [𝜑𝛼] rather
than just a representative 𝜑𝛼.

So far, the construction has been given for a non-degenerate phase function but it
can be well adopted for a clean phase function 𝜓(𝑥; 𝜃) on 𝑈 × ¤R𝑛 as discussed be-
low. Let rk

(
Hess𝜃 𝜓 (𝑥0; 𝜃0)

)
= 𝑒 for some 0 < 𝑒 ≤ 𝑛 on the fibre-critical manifold

C𝜓 3 (𝑥0; 𝜃0). We can split (cf. Definition 2.1.9) ¤R𝑛 3 𝜃 = (𝜃′, 𝜃′′) ∈ ¤R𝑛−𝑒 × ¤R𝑒 the
fibre-variable 𝜃 in two groups and perform a linear change of 𝜃-coordinates such that
the matrix Hess𝜃 ′ 𝜓 (𝑥0; 𝜃′0, 𝜃′′0) is non-degenerate for a fixed 𝜃′′0 ∈ ¤R𝑒 and that the fibra-
tion [10] (see also, e.g. [25, Thm. 5.8.2, p. 119, 128])

𝜍 : 𝑈 × ¤R𝑛 → 𝑈 × ¤R𝑒, (𝑥; 𝜃′, 𝜃′′) ↦→ (𝑥; 𝜃′′) (A.53)
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produces a non-degenerate phase function 𝜙(𝑥; 𝜃′, 𝜃′′0) on 𝑈 × ¤R𝑛−𝑒 for 𝛬:

𝜓 = 𝜍∗𝜙. (A.54)

Consequently, the 𝜃-variable can be reduced so that Hess𝜃 ′′ 𝜓 (𝑥0; 𝜃′0, 𝜃′′0) = 0. Evidently,
C𝜓 = 𝜍−1C𝜙 and the signature map sgn

(
Hess𝜃 𝜓 (𝑥0; 𝜃0)

)
is simply the pullback of the

signature map C𝜑 → Z associated with 𝜙. In addition, the immersion 𝚥𝜙 : C𝜑 → 𝛬 lifts to
a fibre-preserving fibration 𝚥𝜓 : C𝜓 → 𝛬 and hence the construction of M→ 𝛬 by means
of 𝜓 proceeds analogously.

Example A.1.21 (Keller-Maslov bundle L0 → (𝛥𝑀)⊥∗ over the conormal bundle (𝛥𝑀)⊥∗).
As in the terminologies of Example A.1.11, the non-degenerate phase function 𝜑 :=
(𝑥𝑖 − 𝑦𝑖)𝜉𝑖 parametrises (𝛥𝑀)⊥∗ globally. Then Hess𝜉 𝜑 = 0 and thus we have a global
transition function 𝑔𝛼𝛽 = 1 resp. a global constant section m𝛼 = 1 by (A.48) resp. (A.52).

A.1.5 Maslov index

The exponent in (A.52) has a beautiful topological interpretation for which let us recall
some notions from symplectic topology. Let (V , σ) be a 2𝑑-dimensional real symplectic
vector space and we choose a σ-compatible complex structure J on V . A choice of J
defines a positive-definite hermitian form (·|·) := σ(·, J·) + i σ(·, ·) on the complex vector
space V . Then the set L (V ) of all Lagrangian subspaces of (V , σ) is manifold of dimen-
sion 𝑑 (𝑑 + 1)/2, called the Lagrange-Graßmann manifold of (V , σ). Let us denote by
O(𝛬), the isometry group of a given 𝛬 ∈ L (V ) with respect to the scalar product on 𝛬

induced by (·|·). It follows that O(𝛬) ⊂ U(V ) = U(V , (·|·)) as a Lie group (see e.g. [190,
Prop. 7.5.3/3]) when one makes the identification O(𝛬) = {𝑔 ∈ U(V ) |𝑔𝛬 = 𝛬}. Then,
the mapping U(V ) 3 𝑔 ↦→ det 𝑔 ∈ S ⊂ C values ±1 on O(𝛬) and every element of a
Lagrangian-Graßmannian defines the isomorphism U(V )/O(𝛬) 3 [𝑔] ↦→ 𝑔𝛬 ∈ L (V )
(see e.g. [190, Prop. 7.6.1]). Thus, we have an induced mapping

det2
𝛬 : L (V ) → S ⊂ C. (A.55)

Definition A.1.22. Let L (V ) be a Lagrangian Graßmannian of a symplectic vector space
(V , σ). The Maslov index 𝔫(𝛾) of a closed curve 𝛾 : S → L (V ) is defined to be the
degree of the mapping det2

𝛬 ◦𝛾 : S → S where det2
𝛬 is defined by (A.55) [194, Sec.

1.3-1.4] (see also, e.g. [190, Def. 7.7.1]).

Proposition A.1.23. The Maslov index is an integer-valued homotopy invariant quan-
tity and it is independent of the choice of Lagrangian subspace or complex structure (see
e.g. [190, Prop. 7.7.2]).

In order to define this index for closed curves on a Lagrangian immersion, let

χ : 𝜄∗(TT∗𝑀) → 𝛬 × R2𝑑 (A.56)
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be a trivialisation of the vertical geometric distribution to {0} × R𝑑, i.e., χ(T𝜄(𝑥,𝜉)T∗𝑥𝑀) =
{0} × R𝑑 for any (𝑥, 𝜉) ∈ 𝛬. Then, the image of d(𝑥,𝜉) 𝜄 : T(𝑥,𝜉)𝛬 → T𝜄(𝑥,𝜉)T∗𝑀 is identified
with a Lagrangian subspace in R2𝑑 via χ and one obtains the following mapping (see
e.g. [190, (12.6.3)])

𝔩 : 𝛬→ L (R2𝑑), (𝑥, 𝜉) ↦→ 𝔩(𝑥, 𝜉) := χ
(
d(𝑥,𝜉) 𝜄 (T(𝑥,𝜉)𝛬)

)
. (A.57)

Definition A.1.24. Let 𝛬 be a Lagrangian submanifold of a symplectic manifold of di-
mension 2𝑑 and 𝔫 the Maslov index for closed curves in the Lagrangian-Graßmannian
L (R2𝑑) of the symplectic vector space R2𝑑. Then the Maslov index 𝔪(𝛾) of any closed
curve 𝛾 in 𝛬 is defined by (see e.g. [190, p. 678])

𝔪(𝛾) := 𝔫(𝔩 ◦ 𝛾), (A.58)

where 𝔫 is the Maslov index of the closed curve 𝔩◦𝛾 in L (R2𝑑) and 𝔩 is defined by (A.57).

It turns out that 𝔪 is equal to the so-called “Maslov intersection index” [194, Thm.
1.5] (see also, e.g. [190, Prop. 12.6.6]). The formal definition (see e.g. [190, Def.
12.6.5]) and details of the intersection index are tangential to the ongoing discussion
so we abstain from that detour and instead remark that this index is an integer-valued
homotopy invariant quantity with fixed end points [194, Thm. 2.2] and it can be computed
by means of phase functions as explained below. For our purpose, it is sufficient to
consider the situation when 𝛾 : [0, 1] → 𝛬 is a closed curve with end points in the set
Σ0(𝛬) ⊂ 𝛬 defined by the points where the differential of (A.17) has rank 𝑑. Suppose
that we have picked a partition of [0, 1] by the numbers 0 = 𝑠0 < 𝑠1 < . . . < . . . < 𝑠𝑁 = 1
such that there exist open conic subsets L1, . . . ,L𝑁 of 𝛬 so that 𝛾( [𝑠𝛼−1, 𝑠𝛼]) ⊂ L𝛼 and
L𝛼 ∩ L𝛽 are connected and that the immersions L𝛼 ↩→ ¤T∗𝑀 and (A.20) are equivalent.
Then the Maslov index is given by (see e.g. [20, (5)], [190, Cor. 12.6.12])

𝔪(𝛾) =
𝑁−1∑︁
𝛼=1

𝔰𝛼𝛼+1. (A.59)

This reveals that M → 𝛬 is essentially defined by the representation ei 𝜋𝔪(𝛾)/2 = i𝔪(𝛾) of
π1(𝛬). In other words, sections m of M can be identified with functions on the universal
cover of 𝛬 satisfying the equivalence relation (see e.g. [195, (1.3.3)])

m
(
𝛾 · (𝑥, 𝜉)

)
= i−𝔪(𝛾)m(𝑥, 𝜉). (A.60)

We close this section by two simple examples to give an intuitive understanding of
the abstract formulae.

Example A.1.25. Let R2 be equipped with the canonical symplectic structure and (𝑥, 𝜉)
its symplectic coordinates. Suppose that 𝛬 := {𝑥2 + 𝜉2 = 1} ↩→ R2 and that its orientation
is assumed clockwise. 𝛬 is an embedded Lagrangian submanifold for dimensional rea-
sons and we consider a closed curve R 3 𝑠 ↦→ 𝛾(𝑠) running clockwise through 𝛬 exactly
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once. An element �̌� of the flow parameter is called a crossing of 𝛾 if 𝛾( �̌�) ∈ Σ(𝛬) and
𝜕𝑥
𝜕𝜉

(
𝛾( �̌�)

)
= 0 whilst − sgn 𝜕𝑥

𝜕𝜉
equals to the signature of the Hessian of the phase func-

tion with respect to 𝜉 outside of 𝛾( �̌�). Hence, the coorientation points from the lower
half-plane to the upper half-plane at the critical point (−1, 0), whereas at (1, 0), the oth-
erwise, yielding 𝔪(𝛾) = 2.

The figure eight immersion in R2 can be worked out analogously where it turns out
that the Maslov index vanishes (see e.g. [190, Exm. 12.6.13] for details).

A.1.6 Natural volume form

Let 𝜑 be a non-degenerate phase function for 𝐶 whose fibre-critical manifold is C . Then
the map

𝑀 × 𝑁 × ¤R𝑛 3 (𝑥, 𝑦; 𝜃) ↦→
(
𝜕𝜑

𝜕𝜃1
(𝑥, 𝑦; 𝜃), . . . , 𝜕𝜑

𝜕𝜃𝑛
(𝑥, 𝑦; 𝜃)

)
∈ ¤R𝑛 (A.61)

is surjective because

∀(𝑥0, 𝑦0; 𝜃0) ∈ C : rk
(
d
( 𝜕𝜑
𝜕𝜃𝑘

)
(𝑥0, 𝑦0; 𝜃0)

)
= 𝑛, 𝑘 = 1, . . . , 𝑛, (A.62)

by Definition A.1.8, forbye, T(𝑥0,𝑦0;𝜃0)C = ker
(
(d 𝜕𝜑

𝜕𝜃𝑘
) (𝑥0, 𝑦0; 𝜃0)

)
. Thus, C can be en-

dowed with the volume form (see e.g. [84, (4.1.1)]):

dvC (𝑋,𝑌 )
(
d
𝜕𝜑

𝜕𝜃1
∧ . . . ∧ d

𝜕𝜑

𝜕𝜃𝑛

)
(𝑍1, . . . , 𝑍𝑛) = (d𝑥 ⊗ d𝑦 ⊗ d𝜃) (𝑋,𝑌 ; 𝑍) (A.63)

for any vector fields 𝑋,𝑌, 𝑍 = (𝑍1, . . . , 𝑍𝑛) on 𝑀, 𝑁, ¤R𝑛, respectively. In other words,

dvC := 𝛿(grad𝜃 𝜑) (A.64)

is the quotient of the measure d𝑥 ⊗ d𝑦 ⊗ d𝜃 on 𝑀 × 𝑁 × ¤R𝑛 by the pullback of the delta-
distribution 𝛿 in ¤R𝑛 under the mapping (A.61). If (𝜆𝑙) = (𝜆1, . . . , 𝜆𝑑𝑀+𝑑𝑁 ) denotes arbi-
trary local coordinates of 𝜆 ∈ C and we extend them to a neighbourhood in 𝑀 × 𝑁 × ¤R𝑛
then dvC (𝜆) locally3 means [78, p. 143, Prop. 4.1.3] (see e.g. [11, p. 123])

dvC (𝜆) =

��������det
©«

𝜕𝜆𝑙

𝜕𝑥𝑖
𝜕𝜆𝑙

𝜕𝑦 𝑗
𝜕𝜆𝑙

𝜕𝜃𝑘
𝜕2𝜑

𝜕𝑥𝑖𝜕𝜃𝑘

𝜕2𝜑

𝜕𝑦 𝑗𝜕𝜃𝑘

𝜕2𝜑

𝜕𝜃𝑘𝜕𝜃𝑘 ′

ª®®®¬
��������
−1

|d𝜆 |, (A.65)

where |d𝜆 | is the Lebesgue density on C . This expression is independent of (𝜆𝑙) but
depends on the choice of (𝑥𝑖, 𝑦 𝑗 ) which we keep aside for the moment. Thereby

dv𝐶 :=
(
(d 𝚥)−1)∗dvC (A.66)

3For instance, see [76, (6.1.1)] for the local definition of pullback of a distribution.
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is a natural measure on 𝐶 defined by transferring dvC via the immersion 𝚥 := (A.33) and
hence (A.65) can be identified as the local expression of dv𝐶 (𝜆) when 𝜆 is considered as
an element in 𝐶. Since 𝜑 is non-degenerate one can pick its canonical form 𝜓 := (A.34)
so that 𝐶 is parametrised by (A.35) and (𝜆𝑙) = (𝜉𝑖 = 𝜕𝜓/𝜕𝑥𝑖, 𝜂 𝑗 = 𝜕𝜓/𝜕𝑦 𝑗 ) can be chosen
as local coordinates on 𝐶, yielding

dv𝐶 (𝑥, 𝜉; 𝑦, 𝜂) =
����det

(
𝜕2𝜓

𝜕𝑥𝑖𝜕𝜉𝑖

𝜕2𝜓

𝜕𝑦 𝑗𝜕𝜂 𝑗

𝜕2𝜓

𝜕𝜉𝑖𝜕𝜂 𝑗

)����−1

|d𝜉 | |d𝜂 |. (A.67)

Had we insisted a generic 𝜑 instead of the canonical form 𝜓, 𝐶 would be parametrised
by (A.33). Then, one can go for the natural choice of coordinates (𝜆𝑙) = (𝜉𝑖 = 𝜕𝜑/𝜕𝑥𝑖, 𝜂 𝑗 =
𝜕𝜑/𝜕𝑦 𝑗 ) on 𝐶 and obtains

dv𝐶 (𝑥, 𝜉; 𝑦, 𝜂) = | det(Hess 𝜑) |−1 |d𝜉 | |d𝜂 |. (A.68)

By far, an arbitrary but fixed non-degenerate phase function 𝜑 has been used to con-
struct dv𝐶. However, as noted before 𝜑 is only unique up to the stable equivalence. So
we consider another element 𝜑 = (A.24) of this equivalence class and then the corre-
sponding Jacobian J(𝜆, grad𝜃 𝜑; 𝑥, 𝜃) is related to that in (A.65) by (see e.g. [85, p. 440])

J(𝜆, grad𝜃 𝜑; 𝑥, 𝜃) =
(
J(𝜃; 𝜃)

)2 J(𝜆, grad𝜃 𝜑; 𝑥, 𝜃), (A.69)

where 𝜆 ◦ 𝜐 = 𝜆 ∈ C𝜑 for a fibre-preserving diffeomorphism 𝜐 = (A.23).

The situation becomes much simpler when the canonical relation 𝛤 is the graph of
a symplectomorphism from ¤T∗𝑁 to ¤T∗𝑀. In this case 𝛤 is a symplectic manifold with
respect to the symplectic form (see e.g. [23, p. 25])

σ𝛤 := pr∗
𝑀
σ𝑀 = pr∗

𝑁
σ𝑁 (A.70)

and we have the corresponding Liouville volume form v𝛤 := (2.63).

Therefore, one has the bundle 𝛺
1/2𝐶 → 𝐶 of half-densities over a homogeneous

canonical relation 𝐶, whose local sections are
√︁
|dv𝐶 |.

A.2 Composition of densities on canonical relations

A.2.1 Half-densities

To define a half-density on the canonical relation 𝐶 ◦𝑒 𝛬 ⊂ ¤T∗𝑀 × ¤T∗𝑁 (Definition A.1.18),
given half-densities on closed conic canonical relations 𝐶 ⊂ ¤T∗𝑀× ¤T∗𝑂 and 𝛬 ⊂ ¤T∗𝑂× ¤T∗𝑁,
we note that [10, Lem. 5.2] (see also, e.g. [25, Thm. 7.1.1, (7.4)], [77, Thm. 21.6.7])

𝛺
1/2
(𝑥,𝜉;𝑧,𝜁)𝐶 ⊗ 𝛺

1/2
(𝑧,𝜁 ;𝑦,𝜂)𝛬 � 𝛺

1/2
(𝑥,𝜉;𝑧,𝜁 ;𝑦,𝜂)𝔉 ⊗ 𝛺

1/2
(𝑥,𝜉;𝑦,𝜂) (𝐶 ◦𝑒 𝛬), (A.71)
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where 𝔉 is the set of fibres 𝔉(𝑥,𝜉;𝑦,𝜂) := (A.44) of the fibration 𝛱 := (A.45). This entails
that by taking tensor product between half-densities on 𝐶 and 𝛬 followed by intersecting
with the diagonal gives a half-density on 𝔉 times a half-density on 𝐶 ◦𝑒 𝛬, and therefore,
integrating over the fibre 𝔉(𝑥,𝜉;𝑦,𝜂) we achieve the desired composition of half-densities
on canonical relations [10, p. 64]:

· �𝑒 · : 𝐶∞
(
𝐶;𝛺1/2𝐶

)
× 𝐶∞

(
𝛬;𝛺1/2𝛬

)
→ 𝐶∞

(
𝐶 ◦𝑒 𝛬;𝛺1/2(𝐶 ◦𝑒 𝛬)

)
,

(𝜇, 𝜈) ↦→ 𝜇 �𝑒 𝜈 (𝑥, 𝜉; 𝑦, 𝜂) :=
∫
𝔉(𝑥, 𝜉 ;𝑦,𝜂)

(𝜇 ⊗ 𝜈)
(
𝛱−1(𝑥, 𝜉; 𝑦, 𝜂)

)
. (A.72)

If 𝑒 = 0 then the isomorphism (A.71) reduces to [78, p. 179] (see also, e.g. [25, (7.3)])

𝛺
1/2𝐶 ⊗ 𝛺1/2𝛬 � 𝛺

1/2(𝐶 ◦ 𝛬) (A.73)

and hence (A.72) simply becomes the pointwise evaluation (see e.g. [84, Thm. 4.2.2])

𝜇 � 𝜈 (𝑥, 𝜉; 𝑦, 𝜂) =
∑︁

(𝑧,𝜁) | (𝑥,𝜉;𝑧,𝜁)∈𝐶,(𝑧,𝜁 ;𝑦,𝜂)∈𝛬
𝜇(𝑥, 𝜉; 𝑧, 𝜁) 𝜈(𝑧, 𝜁 ; 𝑦, 𝜂). (A.74)

We call the pairs (𝑥, 𝜉), (𝑦, 𝜂) (resp. (𝑧, 𝜁)) in the preceding equation as the output (rep.
input) variables of the composition following the terminology from [27, Lem. 8.4].

A.2.2 Keller-Maslov bundle-valued half-densities

The principal symbol (Definition 2.2.15) of a scalar Lagrangian distribution associated
with a canonical relation 𝐶 is a Keller-Maslov bundle L→ 𝐶 valued density on 𝐶. Hence,
we are compelled to extend the composition (A.72) on sections of L ⊗ 𝛺1/2𝐶. The first
step, thus is to construct the Keller-Maslov bundle M→ 𝐶 ◦𝑒 𝛬 given L→ 𝐶 and T→ 𝛬.
This is achieved by utilising the phase function 𝜓 := (A.46) into (A.52) and (A.48), as
it is locally constant on 𝔉. Next, one employs the isomorphism [10, (5.7)] (see also,
e.g. [25, (5.29)])

L � T := 𝛱 ∗
𝐶
L ⊗ 𝛱 ∗

𝛬
T � 𝛱 ∗M, (A.75)

where 𝛱𝐶 , 𝛱𝛬 : 𝐶9𝛬→ 𝐶, 𝛬 are the projections, in order to make the identification

(𝛱 ∗m) (𝑥, 𝜉; 𝑧, 𝜁 ; 𝑧, 𝜁 ; 𝑦, 𝜂) = (𝛱 ∗
𝐶
l ⊗ 𝛱 ∗

𝛬
t) (𝑥, 𝜉; 𝑧, 𝜁 ; 𝑧, 𝜁 ; 𝑦, 𝜂) (A.76)

for any given sections l resp. t of L resp. T with a section m ofM. The desired extension
of (A.72) is then

𝐶∞
(
𝐶;L⊗𝛺 1

2𝐶
)
×𝐶∞

(
𝛬;T⊗𝛺 1

2𝛬
)
→ 𝐶∞

(
𝐶◦𝑒𝛬;M⊗𝛺 1

2 (𝐶◦𝑒𝛬)
)
, (l⊗𝜇, t⊗𝜈) ↦→ m⊗(𝜇�𝑒𝜈).

(A.77)
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A.2.3 Homomorphism bundle-valued half-densities

Finally, as in the set-up of Section 2.3.5 we consider any vector bundles E → 𝑀,G →
𝑂,F → 𝑁 and so Hom(G , E ) → 𝑀×𝑂 is a homomorphism bundle, forbye, �Hom(G , E ) →
𝐶 represents the pullback of Hom(G , E ) to T∗(𝑀 × 𝑂) followed by restriction to 𝐶. One
then extends (A.77) by tensoring with �Hom(G , E ), �Hom(F ,G ), �Hom(F , E ), respectively
to achieve our final composition rule [23, (25.2.10)]

𝐶∞
(
𝐶;L ⊗ 𝛺1/2𝐶 ⊗ �Hom(G , E )

)
× 𝐶∞

(
𝛬;T ⊗ 𝛺1/2𝛬 ⊗ �Hom(F ,G )

)
→ 𝐶∞

(
𝐶 ◦𝑒 𝛬;M ⊗ 𝛺1/2(𝐶 ◦𝑒 𝛬) ⊗ �Hom(F , E )

)
,

(l ⊗ 𝑎, t ⊗ 𝑏) ↦→ m ⊗ (𝑎 �𝑒 𝑏),

(𝑎 �𝑒 𝑏) (𝑥, 𝜉; 𝑦, 𝜂) :=
∫
𝔉(𝑥, 𝜉 ;𝑦,𝜂)

(𝑎 � 𝑏)
(
𝛱−1(𝑥, 𝜉; 𝑦, 𝜂)

)
. (A.78)

As before, the hindmost expression reduces to standard composition of homomorphisms
when 𝑒 = 0:

(𝑎 � 𝑏) (𝑥, 𝜉; 𝑦, 𝜂) =
∑︁

(𝑧,𝜁) | (𝑥,𝜉;𝑧,𝜁)∈𝐶,(𝑧,𝜁 ;𝑦,𝜂)∈𝛬
𝑎(𝑥, 𝜉; 𝑧, 𝜁)

(
𝑏(𝑧, 𝜁 ; 𝑦, 𝜂)

)
. (A.79)

A.3 Literature

The notions of Maslov index [101, §7] and Lagrangian submanifold [101, Def. 4.25] are
originally due to Victor MASLOV who also studied the local generating functions [101,
Thm. 4.20] for a Lagrangian manifold in some special cases. Vladimir ARNOL’D put for-
warded the former in the modern mathematical footing [194] while Lars HÖRMANDER

generalised the latter ideas by introducing the canonical relation [78, Def. 4.1.2] and the
non-degenerate phase function [78, p. 91]. He gave the systematic route to locally gener-
ate a generic Lagrangian manifold by means of a phase function and obtained the neces-
sarily and sufficient conditions [78, Thm. 3.1.16] for two phase functions to parametrise
the same Lagrangian manifold. Moreover, he advanced the works by Keller [196] and by
Maslov [101, §10] to give complete analytic description of the Keller-Maslov bundle [78,
Sec. 3.3]. Furthermore, the composition of Keller-Maslov bundle-valued half-densities
on transversally intersecting canonical relations was achieved by him [78, Thm. 4.2.2].
Subsequently, Johannes DUISTERMAAT and Victor GUILLEMIN envisaged the clean phase
function [10, p. 71] and propounded Hörmader’s composition formula for cleanly in-
tersecting canonical relations. In contemporary of these developments a more geometric
formulation was offered by Alan WEINSTEIN in a series of papers [94, 191, 197] (see also,
e.g. [20]) where the terms Lagrangian correspondence, Morse family and stable equiva-
lence were coined for canonical relation, phase function and equivalent class of phase
functions for a given Lagrangian manifold, respectively. An in-depth discussion on these
aspects of symplectic geometry is available, for instance, in the textbooks [96, 190] and
we refer Hörmader’s treatises [23, 77] together with the expositions [25, 84, 85] for the
conic symplectic geometry.



Appendix B

Symbols

We accumulate the background materials on a vector bundle-valued classical symbols on a conic
manifold as required for this thesis.

Throughout this chapter, we have assumed that 𝑑 ∈ N0 := N ∪ {0}, 𝑛 ∈ N, 𝑚 ∈ R
and used multi-indices 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ N𝑛0, 𝛽 = (𝛽1, . . . , 𝛽𝑑) ∈ N𝑑0 together with the
multi-index notion for partial derivatives:

𝜕𝛼𝜃 :=
𝜕 |𝛼 |

𝜕𝜃
𝛼1
1 . . . 𝜕𝜃

𝛼𝑛
𝑛

, D𝛽
𝑥 := (− i) |𝛽 | 𝜕 |𝛽 |

𝜕 (𝑥1)𝛽1 . . . 𝜕 (𝑥𝑑)𝛽𝑑
(B.1)

where |𝛼 | := |𝛼1 | + . . . + |𝛼𝑛 | and so on for |𝛽 |. Recall, the Japanese bracket is defined by

〈𝜃〉 :=
√

1 + 𝜃 · 𝜃, (B.2)

where · is the Euclidean inner product.

B.1 Symbols on a Euclidean space

Definition B.1.1. Let𝑈 be an open subset of the Euclidean space R𝑑. The set 𝑆𝑚1,0(𝑈×R
𝑛)

of Kohn-Nirenberg symbols of order (at most) 𝑚 on 𝑈 × R𝑛 is defined as the set of all
C-valued smooth functions 𝑎 ∈ 𝐶∞(𝑈 × R𝑛) on 𝑈 × R𝑛 such that, for every compact set
𝐾 ⊂ 𝑈, the estimation (see e.g. [77, (18.1.1)′])

∀𝑥 ∈ 𝐾,∀𝜃 ∈ R𝑛,∀𝛼 ∈ N𝑛0,∀𝛽 ∈ N
𝑑
0 :

��(D𝛽
𝑥 𝜕

𝛼
𝜃 𝑎) (𝑥; 𝜃)

�� ≤ cst𝛼,𝛽;𝐾 〈𝜃〉𝑚−|𝛼 | (B.3)

holds true for some constant cst𝛼,𝛽;𝐾 .

One sets
𝑆∞• :=

⋃
𝑚∈R

𝑆𝑚• , 𝑆−∞• :=
⋂
𝑚∈R

𝑆𝑚• , 𝑆
𝑚−[𝑘]
• := 𝑆𝑚• /𝑆𝑚−𝑘• . (B.4)

147
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Example B.1.2. The set of all positively homogeneous smooth functions ((A.13)) on
𝑈 × R𝑛 of order 𝑚 is automatically 𝑆𝑚1,0(𝑈 × R

𝑛).

We equip the set 𝑆𝑚1,0(𝑈×R
𝑛) with the seminorm separating points defined as the best

constant in (B.3):

|||·|||𝑚,𝑁 : 𝑆𝑚1,0(𝑈 × R
𝑛) → R≥0, 𝑎 ↦→ |||𝑎 |||𝑚,𝑁 := sup

(𝑥;𝜃)∈𝐾×R𝑛
max
|𝛼 |+|𝛽 |≤𝑁

��(D𝛽
𝑥 𝜕

𝛼
𝜃
𝑎) (𝑥; 𝜃)

��
〈𝜃〉𝑚−|𝛼 |

, (B.5)

which induces the metric

d𝑚 : 𝑆𝑚1,0(𝑈×R
𝑛)×𝑆𝑚1,0(𝑈×R

𝑛) → R≥0, (𝑎, 𝑏) ↦→ d𝑚 (𝑎, 𝑏) :=
∑︁
𝑁∈N0

1
2𝑁

|||𝑎 − 𝑏 |||𝑚,𝑁
1 + |||𝑎 − 𝑏 |||𝑚,𝑁

, (B.6)

yielding

Proposition B.1.3. As in the terminologies of Definition B.1.1,
(
𝑆𝑚1,0(𝑈 ×R

𝑛), d𝑚 := (B.6)
)

and
(
𝑆±∞1,0 (𝑈 × R

𝑛), d±∞
)

are Fréchet spaces. Furthermore, 𝑆𝑚1,0(𝑈 × R
𝑛) ↩→ 𝑆𝑚

′

1,0(𝑈 × R
𝑛) is a

continuous inclusion for all 𝑚 ≤ 𝑚′, which is never dense if 𝑚 < 𝑚′ [78, Prop. 1.1.11].

The above symbol class is too general for the thesis, and it turns out that the “clas-
sical symbol” class, a subclass of 𝑆𝑚1,0, is sufficient for our purpose. To introduce this
subclass, we recall a notion related to the following completeness property of the space
of symbols [198, Thm. 2.7]

Definition B.1.4. As in the terminologies of Definition B.1.1, suppose that (𝑎𝑘 )𝑘∈N0 ∈
𝑆
𝑚𝑘

1,0(𝑈 × R
𝑛) with 𝑚0 > 𝑚1 > . . . and 𝑚𝑘 → −∞ as 𝑘 → ∞, and that 𝑎 ∈ 𝑆𝜇0

1,0(𝑈 × R
𝑛)

where 𝜇𝑁 := max𝑘≥𝑁 𝑚𝑘 . Then 𝑎 is called the asymptotic summation of 𝑎𝑘 :

𝑎 ∼
∑︁
𝑘∈N0

𝑎𝑘 ⇔ supp 𝑎 ⊂
⋃
𝑘∈N0

supp(𝑎𝑘 ), ∀𝑁 ∈ N :

(
𝑎 −

𝑁−1∑︁
𝑘=0

𝑎𝑘

)
∈ 𝑆𝜇𝑁1,0 (𝑈 × R

𝑛). (B.7)

Remark B.1.5. Asymptotic summation always exists. Furthermore, it is unique modulo
𝑆−∞1,0 (𝑈×R

𝑛) and independent of any rearrangement of the series
∑
𝑎𝑘 (see e.g. [77, Prop.

18.1.3]).

Now, our desired symbol class is formulated as follows.

Definition B.1.6. Let 𝑈 be an open subset of the Euclidean space R𝑑. The set 𝑆𝑚 (𝑈 ×R𝑛)
of polyhomogeneous symbols of order (at most) 𝑚 on 𝑈 × R𝑛 is defined as the set of
all 𝑎 ∈ 𝑆𝑚1,0(𝑈 × R

𝑛) which can be expressed as (see e.g. [77, Def. 18.1.5])

𝑎 ∼
∑︁
𝑘∈N0

𝑎𝑘 𝜒𝑘 (B.8)

where, for each 𝑘, 𝑎𝑘 is positively homogeneous of degree 𝑚 − 𝑘 when |𝜃 | > 1, ∼ denotes
the asymptotic summation and 𝜒𝑘 ∈ 𝐶∞(R𝑛) vanishing identically near 𝜃 = 0 with 𝜒𝑘 = 1
if |𝜃 | ≥ 1.
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As a subspace 𝑆𝑚 (𝑈 ×R𝑛) ⊂ 𝑆𝑚1,0(𝑈 ×R
𝑛) is dense but not closed whereas the residual

symbol space 𝑆−∞1,0 (𝑈 × R
𝑛) = 𝑆−∞(𝑈 × R𝑛) ⊂ 𝑆𝑚 (𝑈 × R𝑛) is closed for any 𝑚. Apart from

the subspace topology, 𝑆𝑚 (𝑈 × R𝑛) can be endowed with a seminorm for each 𝑎𝑘 and a
seminorm (cf. (B.5)) ensuring asymptotic summability��� (D𝛽

𝑥 𝜕
𝛼
𝜃 (𝑎 −

𝑁−1∑︁
𝑘=0

𝑎𝑘 )
)
(𝑥; 𝜃)

��� ≤ cst𝛼,𝛽;𝑁 〈𝜃〉𝜇𝑁−|𝛼 | . (B.7’)

Thus, 𝑆𝑚 (𝑈 × R𝑛) is equipped with a countable number of seminorms and it becomes
a Fréchet space with respect to the metric induced by these seminorms (cf. (B.6)) (see
e.g. [87, Sec. 2.16]).

We observe, D𝛽
𝑥 𝜕

𝛼
𝜃
𝑎𝑘 is of degree 𝑚 − 𝑘 − |𝛼 | entailing 𝑎𝑘 ∈ 𝑆𝑚−𝑘 (𝑈 ×R𝑛) provided that

𝑎 ∈ 𝐶∞(𝑈 ×R𝑛) and vanishes for large 𝑥. Therefore, away from 𝜃 = 0, attributed by large
𝜃, polyhomogeneous symbols are essentially smooth functions with boundary.

In order to formulate the principal symbol (Definition 2.1.9) of a Fourier integral
operator we are compelled to extend the notion of symbols on a conic set.

Definition B.1.7. Let 𝑈 ⊂ R𝑑 be an open set. The set 𝑆𝑚1,0(U) of Kohn-Nirenberg
symbols of order (at most) 𝑚 on a conic set U ⊂ 𝑈 × R𝑛 is defined as the set of all
𝑎 ∈ 𝐶∞(U) such that for every compact K ⊂ U the estimation (B.3) holds true in
{(𝑥; λ𝜃) | (𝑥; 𝜃) ∈ K} where λ ≥ 1 (see e.g. [77, p. 83]).

Remark B.1.8. Definition B.1.7 reproduces Definition B.1.1 by making the choice K :=
𝐾×{𝜃 | |𝜃 | ≤ 1} where 𝐾 is as in the later definition (see e.g. [77, p. 84]). The asymptotic
summability carries over 𝑆𝑚1,0(U) and so we can define and topolise the corresponding
polyhomogeneous class 𝑆𝑚 (U) analogously. Also, by construction:

D𝛽
𝑥 : 𝑆𝑚 (𝑈 × R𝑛) → 𝑆𝑚 (𝑈 × R𝑛), 𝜕𝛼𝜃 : 𝑆𝑚 (𝑈 × R𝑛) → 𝑆𝑚−|𝛼 | (𝑈 × R𝑛). (B.9)

B.2 Symbols on manifolds

The principal symbol (Definition 2.2.6) and the subprincipal symbol (Definition 2.2.7) of
a pseudodifferential operator acting on a half-density bundle (Section 2.2.1) 𝛺1/2 → 𝑀

over a manifold 𝑀 are invariantly defined homogeneous functions on the punctured
cotangent bundle ¤T∗𝑀 as Remarked in 2.2.5 and 2.2.8. Moreover, the principal sym-
bol (Definition 2.2.15) of a Lagrangian distribution is a half-density on a homogeneous
canonical relation (Definition A.1.12) 𝐶 ⊂ ¤T∗𝑀 × ¤T∗𝑁 where 𝑁 is a manifold whose di-
mension 𝑑𝑁 is not necessarily equal to that 𝑑𝑀 := 𝑑 of 𝑀. As evident from the local
case, it is sufficient to consider only the smooth functions on ¤T∗𝑀 for large covectors.
Therefore, guided by the fact that ¤T∗𝑀 (Example A.1.2) and 𝐶 both are examples of a
conic manifold (Definition A.1.1), together with Remark B.1.8, we are going to describe
symbols on the following class of conic manifolds.
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Definition B.2.1. Let ( ¤V ,mλ) be the conic manifold as described in Example A.1.3. The
set 𝑆𝑚1,0( ¤V ) of Kohn-Nirenberg symbols of order (at most) 𝑚 on this conic manifold
is defined as the set of all 𝑎 ∈ 𝐶∞( ¤V ) such that the functions λ−𝑚m∗

λ
𝑎 are uniformly

bounded in 𝐶∞( ¤V ) when λ ≥ 1 (see e.g. [23, p. 13], [84, Def. 2.1.2]).

One of the advantages of this definition is that it is well applicable for densities. In
particular, if 𝜇 is a fixed positive half-density on ¤V having degree of homogeneity 𝑚′

(Definition A.1.1) then every element a ∈ 𝑆𝑚 ( ¤V ;𝛺1/2 ¤V ) can be written in the form

a = 𝑎𝜇 (B.10)

for some scalar 𝑎 ∈ 𝑆𝑚−𝑚′ ( ¤V ). See Example 2.2.2 for an illustration of this concept.

Equivalently, a bottom-up approach can be adapted for which let us consider an atlas
{(𝑈𝛼, 𝜅𝛼)}𝛼 for 𝑀 and a homogeneous symplectic atlas A := {(U𝛼, 𝜘𝛼)}𝛼 for ¤T∗𝑀 such
that 𝜘𝛼 : U𝛼 � 𝜅𝛼 (𝑈𝛼) × ¤R𝑑, as considered in Remark 2.2.5. Then

𝑆𝑚1,0(U𝛼) =
{
𝑎 ∈ 𝐶∞(U𝛼) | ∀(U𝛼, 𝜘𝛼) ∈ A : (𝜘∗𝛼)−1𝑎 ∈ 𝑆𝑚1,0

(
𝜅𝛼 (𝑈𝛼) × ¤R𝑑

)}
(B.11)

and consequently, 𝑆𝑚1,0( ¤T
∗𝑀) is constructed utilising the partition of unity. We remark

that it is sufficient to satisfy these requirements for an atlas due to

Lemma B.2.2. Let𝑈 ⊂ R𝑑𝑈 , 𝑉 ⊂ R𝑑𝑉 be open sets. Suppose thatU ⊂ 𝑈× ¤R𝑛𝑈 ,V ⊂ 𝑉 × ¤R𝑛𝑉
are open and conic sets, and that κ : U → V is a smooth proper map commuting with
multiplication by positive scalars in the second variable. If 𝑎 ∈ 𝑆𝑚 (𝑉 × R𝑛𝑉 ) has support in
the interior of a compactly based conic subset of V then 𝑎 ◦ κ ∈ 𝑆𝑚 (𝑈 × R𝑛𝑈 ) provided the
composition is defined as 0 outside U (see e.g. [77, Lem. 25.1.6], [84, Def. 2.1.2]).

The asymptotic summability carries over 𝑆𝑚1,0( ¤T
∗𝑀) (see e.g. [84, Prop. 2.1.2]) and so

we define 𝑆𝑚 ( ¤T∗𝑀) analogously. It is now straightforward to extend the construction for
the product manifold ¤T∗𝑀 × ¤T∗𝑁 � ¤T∗(𝑀 × 𝑁). Given a homogeneous canonical relation
(𝐶, 𝜄) of ¤T∗𝑀 × ¤T∗𝑁, one achieves

𝑆𝑚 (𝐶) := 𝜄∗ 𝑆𝑚 ( ¤T∗𝑀 × ¤T∗𝑁). (B.12)

Since any open conic cover {𝐶𝛼,𝛽} of 𝐶 is locally generated as elucidated in Section A.1.2

U𝛼 ×V𝛽
ker grad𝜉 ,𝜂 𝜓−−−−−−−−−−→ C𝛼,𝛽

(A.35)−−−−−→ 𝐶𝛼,𝛽 (B.13)

by a non-degenerate phase function 𝜓 (A.34) on a homogeneous symplectic neighbour-
hood U𝛼 ×V𝛽 on ¤T∗𝑀 × ¤T∗𝑁, locally (B.12) means to obtain 𝑆𝑚 (𝐶𝛼,𝛽) from 𝑆𝑚 (U𝛼 ×V𝛽)
via appropriate pullbacks of the preceding mapping. Finally, we incorporate 𝛺1/2𝐶 ⊗ M-
valued symbols a ∈ 𝑆𝑚+(𝑑𝑀+𝑑𝑁 )/4(𝐶;𝛺1/2𝐶 ⊗M) simply by using (B.10) (see e.g. [77, Def.
18.2.10]):

a = 𝑎 |dv𝐶 |1/2 ⊗m, 𝑎 ∈ 𝑆𝑚+(𝑑𝑀+𝑑𝑁−2𝑛)/4(𝐶) (B.14)

where dv𝐶 is the natural volume form on 𝐶, as constructed in Section A.1.6, and m is
a section of the Keller-Maslov bundle M → 𝐶 as detailed in Section A.1.4. The former
resp. latter are of homogeneous of degree 𝑛 resp. 0, as explained in Example 2.2.2.
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B.3 Symbols on vector bundles

One of the primary tools to address the subject matter of this thesis is the symbol calculus
on vector bundles. Loosely speaking, this is achieved by replacing the C-valued smooth
maps by a bundle-valued smooth maps in the discussion of Section B.2 yet we spell out
the details to supplement the theory of Fourier integral operators on vector bundles.

Definition B.3.1. Let ( ¤V ,mλ) be a conic manifold as described in Example A.1.3 and let
C𝑟×𝑘 denotes the set of all 𝑟 by 𝑘 matrices over C. The set 𝑆𝑚1,0( ¤V ,C

𝑟×𝑘 ) of C𝑟×𝑘 -valued
Kohn-Nirenberg symbols on ¤V of order 𝑚 is defined as the set of all 𝑎 ∈ 𝐶∞( ¤V ,C𝑟×𝑘 )
such that the functions λ−𝑚m∗

λ
𝑎 are uniformly bounded in 𝐶∞( ¤V ,C𝑟×𝑘 ) whenever λ ≥ 1.

This means that for any 𝑎 ∈ 𝐶∞(U,C𝑟×𝑘 ), for every compact set K ⊂ U, the estima-
tion (D𝛽

𝑥 𝜕
𝛼
𝜃 𝑎) (𝑥; 𝜃)

 ≤ cst𝛼,𝛽;K;‖·‖ 〈𝜃〉𝑚−|𝛼 | (B.15)

is valid for all (𝑥; 𝜃) ∈ {(𝑥; λ𝜃) | (𝑥; 𝜃) ∈ K} when λ ≥ 1, for any 𝛼 ∈ N𝑛0, 𝛽 ∈ N
𝑑
0 and for

some constant cst𝛼,𝛽;K;‖·‖. Here ‖ · ‖ is some choice of norm on C𝑟×𝑘 and this particular
choice does not matter (see e.g. [9, (1.5.1.3)]).

Since 𝐶∞(U,C𝑟×𝑘 ) is isomorphic to the 𝑟 × 𝑘 matrix of elements 𝐶∞(U), we have
𝑆𝑚1,0(U,C

𝑟×𝑘 ) �
(
𝑆𝑚1,0(U)

)
𝑟×𝑘 for any 𝑚 and any 𝑟, 𝑘 ∈ N. As in the scalar case, one can

equip 𝑆𝑚1,0(U,C
𝑟×𝑘 ) with the Fréchet topology and the asymptotic completeness can be

shown. Consequently, we obtain the polyhomogeneous symbol class 𝑆𝑚 (U,C𝑟×𝑘 ) and
(see e.g. [9, Sec. 1.5.2])

∀𝑚 ∈ R,∀𝑟, 𝑘 ∈ N : 𝑆𝑚 (U,C𝑟×𝑘 ) �
(
𝑆𝑚 (U)

)
𝑟×𝑘 . (B.16)

Our quintessential example is the homomorphism bundle Hom(F , E ) → 𝑀 ×𝑁 (Sec-
tion 2.3.3), given a vector bundle E → 𝑀 (resp. F → 𝑁) over a manifold 𝑀 (resp.
𝑁), where neither 𝑟 := rk E and 𝑘 := rk F nor 𝑑𝑀 and 𝑑𝑁 are necessarily equal. Em-
ploying the canonical projections 𝜋𝑀 : T∗𝑀 → 𝑀, 𝜋𝑁 : T∗𝑁 → 𝑁, one has the induced
homomorphism bundle (𝜋𝑀�𝜋𝑁 )∗Hom(F , E ) → T∗𝑀×T∗𝑁 and the natural isomorphism

𝐶∞
(
T∗𝑀 × T∗𝑁,Hom(F , E )

)
� 𝐶∞

(
T∗𝑀 × T∗𝑁; (𝜋𝑀 � 𝜋𝑁 )∗Hom(F , E )

)
, (B.17)

which will be often exploited without further comments.

Let A := {(U𝛼, 𝜘𝛼)}𝛼 (resp. B := {(V𝛽, 𝜚𝛽)}𝛽) be a homogeneous symplectic atlas for
¤T∗𝑀 (resp. ¤T∗𝑁) where (𝜋𝑀 � 𝜋𝑁 )∗Hom(F , E ) admits an atlas 𝔄 := {(U𝛼 ×V𝛽, 𝜗𝛼,𝛽)}𝛼,𝛽,
i.e.,

𝜗𝛼,𝛽 :
(
(𝜋𝑀 � 𝜋𝑁 )∗Hom(F , E )

)
𝛼,𝛽
→U𝛼 ×V𝛽 ⊗ C𝑟×𝑘 (B.18)
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is the induced trivialisation of (𝜋𝑀 � 𝜋𝑁 )∗Hom(F , E ) over U𝛼 ×V𝛽. Thereby

𝑆𝑚
(
U𝛼 ×V𝛽;

(
(𝜋𝑀 � 𝜋𝑁 )∗Hom(F , E )

)
𝛼,𝛽

)
:=

{
𝑎 ∈ 𝐶∞

( (
(𝜋𝑀 � 𝜋𝑁 )∗Hom(F , E )

)
𝛼,𝛽

) ���
∀(U𝛼 ×V𝛽, 𝜗𝛼,𝛽) ∈ 𝔄 :

(𝜗∗𝛼,𝛽)−1𝑎 ∈ 𝑆𝑚
(
U𝛼 ×V𝛽,C𝑟×𝑘

)}
�

(
𝑆𝑚 (U𝛼 ×V𝛽)

)
𝑟×𝑘 . (B.19)

Assembling these local pieces together deploying the partition of unity one then achieves
𝑆𝑚

( ¤T∗𝑀 × ¤T∗𝑁,Hom(F , E )
)
.

For a canonical relation 𝜄 : 𝐶 → ¤T∗𝑀 × ¤T∗𝑁, one sets

𝑆𝑚
(
𝐶; �Hom(F , E )

)
:= 𝜄∗𝑆𝑚

(
T∗𝑀 × T∗𝑁,Hom(F , E )

)
,�Hom(F , E ) := 𝜄∗

(
(𝜋𝑀 � 𝜋𝑁 )∗Hom(F , E )

)
. (B.20)

To end, 𝑆𝑚
(
𝐶;𝛺1/2𝐶 ⊗M ⊗ �Hom(F , E )

)
is constructed as in (B.14).

B.4 Literature

The symbol class 𝑆𝑚1,0 was named after Joseph J. KOHN and Louis NIRENBERG who in-
troduced the class in their study of pseudodifferential operators [99]. At any rate, this
is not the most general possibility, for instance, the Hörmander symbol class [198] is a
vast generalisation of it, originated in the investigation of fundamental solutions of hy-
poelliptic1 operators of constant strength. We refer the monographs [8, 9, 77] and the
expository lecture notes [87, 90] for details.

1A differential operator 𝑃 with smooth coefficients is called hypoelliptic if the equation 𝑃𝑢 = 𝑓 only
has smooth solutions 𝑢 when 𝑓 is smooth.



Appendix C

Hadamard States

A bare minimum introduction of Feynman propagators by means of the time-ordered product
is presented to bridge the quantum field theoretic approach and the microlocal formalism.

In this chapter we will consider quantum field theory in a classical curved spacetime
(Definition 3.1.2), also known as semi-classical gravity in the physics community. Ac-
cording to Einstein’s general theory of relativity - the best experimentally tested theory
of gravity by far, our universe is some 4-dimensional Lorentzian manifold. On the other
hand, quantum field theory in Minkowski spacetime has proven extremely successful
by most experimental outcomes. Therefore, semi-classical gravity stems from the urge
to extend the standard quantum field theoretic framework to a Lorentzian manifold, in
physics terms, to include gravitational effects on quantum fields. It should be possible
to derive semi-classical gravity by taking a suitable limit of a more fundamental theory
wherein the spacetime metric is treated in accord with the principle of quantum physics.
However, this has not been done - except in formal and heuristic ways - simply because
no present quantum theory of gravity has been developed to the point where such a
well-defined limit can be taken.

Quantum field theory in curved spacetime is expected to provide an accurate descrip-
tion of quantum phenomena in a regime where the effects of spacetime curvature is signif-
icant yet the effects of quantum gravity may be neglected. In particular, it is anticipated
that this formalism should be applicable to the quantum phenomenology in the early
universe and near (and inside of) black holes - provided that one does not attempt to de-
scribe phenomena occurring so near to the singularities that the curvature reaches some
extreme scale and the quantum nature of spacetime metric must be taken into account
(see e.g. the review [199] and references therein).

There are numerous ways to define a quantum theory and each approach comes with
its merits and demerits; we refer the reviews [199–201] for compendia of quantisation
schemes and related aspects. In this thesis, we will use the locally covariant frame-
work [202] as it offers a mathematically precise and conceptually sound formulation of

153
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quantum field theory in curved spacetime. Loosely speaking, the essential idea is to take
quantum observables as the fundamental object to define a quantum theory through the
association of some appropriate algebra to every extended bounded open region of the
spacetime, satisfying general covariance, Einstein causality and time-slice axiom. These
postulates are motivated on physical ground and can be interpreted as follows. The first
requirement is a ramification of general relativity which tells that quantum fields should
transform “nicely” under any coordinate change of spacetime geometry. Einstein causal-
ity ensures finite propagation speed to any physical information and the last demand
provides the dynamics of the theory. To formulate all these notions precisely, it requires
to introduce quite a bit of terminologies from operator algebra and Lorentzian geom-
etry, which are beyond the scope of this thesis, and is not essential to comprehending
the idea of Hadamard states and time-ordered products. Thus, we refer the exposi-
tions [199, 201, 203] for interested readers. For us, it is sufficient to keep in mind some
unital ∗-algebra A which satisfies these “postulates”. Concrete characterisation of such
an algebra actually defines a quantum field theory, as briefly discussed below.

C.1 Algebra of quantum fields

Let E → M be a vector bundle over a globally hyperbolic spacetime (Definition 3.1.3)
(M , g) and let Ē ∗ be the conjugate algebraic-dual bundle (Section 2.3.4) of E . A linear
quantum field is some algebra (called the field algebra) F (M ; E )-valued distribution

Φ : 𝐶∞c (M ; E ) → F (M ; E ), 𝑢 ↦→ Φ(𝑢), (C.1)

where F (M ; E ) can be taken as the algebra CCR (M ; E ) (resp. CAR (M ; E )) of canon-
ical commutation (resp. anticommutation) relations, as defined below. CCR (M ; E )
(resp. CAR (M ; E )) is a unital ∗ (resp. 𝐶∗)-algebra generated over C by the symbols
1− := 1CCR (resp. 1+ := 1CAR), Φ(𝑢) and its conjugate algebraic-dual Φ̄∗(𝜙), modulo the
relations

Φ(𝑐𝑢) = 𝑐Φ(𝑢), Φ̄∗(𝑐𝜙) = 𝑐Φ∗(𝜙), (C.2a)
Φ(𝐿𝑢) = 0 = Φ̄∗( �̄�∗𝜙), (C.2b)
[Φ( [𝑢]), Φ̄∗( [𝜙])]∓ = i ℏG( [𝜙] � [𝑢]) 1∓ (C.2c)

for any [𝑢] ∈ 𝐶∞c (M ; E )/img (𝐿) and [𝜙] ∈ 𝐶∞c (M ; Ē ∗)/img
(
�̄�∗

)
. Here ℏ is the reduced

Planck constant and it is ℏ = 1 in the natural units which we use throughout the thesis.
The brackets [·, ·]∓ are the commutator and the anticommutator, respectively:

[Φ(𝑢), Φ̄∗(𝜙)]∓ := Φ(𝑢) Φ̄∗(𝜙) ∓ Φ̄∗(𝜙)Φ(𝑢) (C.3)

and G ∈ D′(M ×M ; E � Ē ∗) is the Schwartz kernel of the causal propagator (Defini-
tion 3.2.9) for the differential operator 𝐿 depending on the specific model of Φ, as listed
in Table C.1. Quantum fields are called Bosonic (resp. Fermionic) if F is CCR (resp.
CAR).
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Spin of a quantum field Equation of motion Quantisation
0 Klein-Gordon (Example 3.2.2) [204, 205]

1/2 Dirac (Example 3.4.4) [37, 52, 124, 133, 206]
1

Abelian massive Proca (Example 3.2.7) [207]
Abelian massless Maxwell [208–210]

Non-abelian massless Yang-Mills [51, 211]
2 Einstein

3/2 Rarita-Schwinger (Section 3.5.6) [143]

Table C.1: Models of generally covariant quantum field theories. Although we have not
discussed Maxwell equation and Yang-Mills equation in this thesis but they can be related
with the Hodge-d’Alembertian (Example 3.2.4) by a suitable “gauge choice”.

The field algebra is not necessarily the observable algebra because not all quantum
fields are necessarily observables, for example, the Fermi fields, as they do not commute
for spacelike separated regions in M . Nevertheless, their appropriate bilinear combi-
nations are observables. We will denote the algebra of observables by A (M ; E ). For
instance, CAR ⊄ A but CCR ⊂ A .

C.2 Quantum states and Hadamard condition

Definition C.2.1. Let E → M be a vector bundle over a globally hyperbolic spacetime
and A (M ; E ) an algebra of quantum observables. An algebraic state 𝜔 of A (M ; E )
is a continuous (in a suitable topology) linear functional 𝜔 : A (M ; E ) → C which is
positive: 𝜔(𝐴∗𝐴) ≥ 0 for all 𝐴 ∈ A (M ; E ) and normalised: 𝜔(1) = 1.

The standard Hilbert space states used in physics literature are related to algebraic
states via the Gelfand-Najmark-Segal (GNS) theorem - stating that (see e.g. [212, Thm.
2]), given an algebraic state 𝜔 of any unital ∗-algebra A (M ; E ) there exists a quadruple
(H𝜔,D𝜔, 𝜋𝜔, 𝛺𝜔) where D𝜔 is a dense subspace of the GNS-Hilbert space (H𝜔, 〈· |· 〉),
𝜋𝜔 is an unital algebra representation of A (M ; E ) on D𝜔 with the property 𝜋𝜔 (𝐴∗) ⊂(
𝜋𝜔 (𝐴)

)†, † being the adjoint with respect to 〈· |· 〉, and 𝛺𝜔 is the GNS-vector such that
D𝜔 = 𝜋𝜔

(
A (M ; E )

)
𝛺𝜔 and

∀𝐴 ∈ A (M ; E ) : 𝜔(𝐴) = 〈𝛺𝜔 |𝜋𝜔 (𝐴)𝛺𝜔 〉 . (C.4)

By definition, a state is specified by a collection of Wightman 𝑛-point distributions

W𝑛 : 𝐶∞c (M ; E )⊗𝑛 ⊗ 𝐶∞c (M ; Ē ∗)⊗𝑛 → C, 𝑢1 ⊗ . . . ⊗ 𝑢𝑛 ⊗ 𝜙1 ⊗ . . . 𝜙𝑛 ↦→
W𝑛 (𝑢1, . . . , 𝑢𝑛, 𝜙1, . . . , 𝜙𝑛) := 𝜔

(
Φ(𝑢1) . . .Φ(𝑢𝑛) Φ̄∗(𝜙1) . . . Φ̄∗(𝜙𝑛)

)
. (C.5)
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By construction, the field equation (C.2b), the canonical commutation (resp. anticom-
mutation) relation (C.2c), and positivity requirement of a state entail

W
(
𝐿 (𝑢), 𝜙

)
= 0 = W

(
𝑢, �̄�∗(𝜙)

)
, (C.6a)

W(𝑢, 𝜙) −W(𝜙, 𝑢) = iG(𝜙 � 𝑢), (C.6b)
W(𝑢∗, 𝑢) ≥ 0 (C.6c)

for the 2-point Wightman distribution.

If (M , g) admits a non-trivial isometry group Iso M preserving the orientation and
the time-orientation, then A (M ; E ) induces a representation of Iso M by elements 𝛼𝛯 ∈
Aut

(
A (M ; E )

)
. As a consequence, one has an induced automorphism 𝛼∗

𝛯
on the states

of A (M ; E ). A state 𝜔 is called Iso M -invariant if

∀𝛼𝛯 ∈ Aut
(
A (M ; E )

)
: 𝛼∗𝛯𝜔 = 𝜔. (C.7)

Example C.2.2. If (R4, η) is the 4-dimensional Minkowski spacetime then the proper
orthochronous Poincaré group P↑0 is the spacetime isometry group (Example 4.2.2). Let
E → R4 be a trivial R-line bundle and set 𝐿 in (C.2b) to be the Klein-Gordon operator

� := − 𝜕
2

𝜕𝑥2
−m2, m2 ∈ R+ (C.8)

with the mass-squared term m2 (cf. Example 3.2.2). In physics language, this is called a
massive real scalar quantum field theory on Minkowski spacetime whose dynamics
is governed by the Klein-Gordon equation. Since (R4, η) is globally hyperbolic, there exist
unique retarded Gret and advanced Gadv Green’s Schwartz kernels for � and hence the
causal propagator is given by (see e.g. [76, Thm. 6.2.3], [80, Sec. 4.3.4]):

G𝑥−𝑦 = − i(F 𝜇+ − F 𝜇−) (𝑥 − 𝑦), (C.9a)

𝜇±(𝜉) := θ(±𝜉1) 𝛿
(
η(𝜉, 𝜉) −m2) , (C.9b)

Gret,adv
𝑥−𝑦 = ±θ

(
± (𝑥1 − 𝑦1)

)
G𝑥−𝑦, (C.9c)

Gadv
𝑥−𝑦 = Gret

−(𝑥−𝑦) , (C.9d)

where 𝜇±(𝜉) are the unique (up to constant multiples) measures on the mass-hyperboloids
{𝜉 ∈ R4 | η(𝜉, 𝜉) = m2, 𝜉1 ≷ 0} invariant under the proper orthochronous Lorentz group
(see e.g. [213, Thm. IX. 33, IX. 37]) and the multiplication by the Heaviside step func-
tion θ is well-defined due to the wavefront set (see (C.12b)) of G. In standard physics
literature, these measures are expressed as

∫
R4 𝛿

(
η(𝜉, 𝜉)−m2) θ(𝜉1 ≷ 0) d𝜉/(2𝜋)4 and pre-

ceding equations are presented as the formal1 expressions (see e.g. [214, Sec. 1-3-1])

1These integrals do not converge, so they must be understood as Fourier transforms of Schwartz distri-
butions.
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Gret
𝑥−𝑦 = − i θ(𝑥1 − 𝑦1)

∫
R3

(
e− i E(𝑥1−𝑦1) − ei E(𝑥1−𝑦1)

)
ei 𝜉 ′·(𝑥 ′−𝑦′) d𝜉′

(2𝜋)32E
, (C.10a)

Gadv
𝑥−𝑦 = − i θ(𝑦1 − 𝑥1)

∫
R3

(
e− i E(𝑦1−𝑥1) − ei E(𝑦1−𝑥1)

)
ei 𝜉 ′·(𝑦′−𝑥 ′) d𝜉′

(2𝜋)32E
, (C.10b)

G𝑥−𝑦 = − i
∫
R3

(
e− i E(𝑥1−𝑦1) − ei E(𝑥1−𝑦1)

)
ei 𝜉 ′·(𝑥 ′−𝑦′) d𝜉′

(2𝜋)32E
, (C.10c)

where we have used the notation 𝑥 = (𝑥1, 𝑥′), 𝜉 = (𝜉1, 𝜉
′) ∈ R × R3 and E :=

√︁
𝜉′ · 𝜉′ +m2

is the energy where · denotes the Euclidean inner product on R3.

In the Minkowski spacetime, there exists a unique P↑0-invariant state, the vacuum 𝜔0
whose 2-point Wightman distribution W0 is given by (see e.g. [213, Thm. IX. 34])

W0(𝑥 − 𝑦) = − i(F 𝜇) (𝑥 − 𝑦) =
∫
R3

e− i E(𝑥1−𝑦1)ei 𝜉 ′·(𝑥 ′−𝑦′) d𝜉′

(2𝜋)32E
. (C.11)

Evidently, the singularities of the Green’s operators and W0 are (see e.g [80, p. 118])

WF′G
ret
adv =

{
(𝑥, 𝜉; 𝑥, 𝜉) ∈ ¤T∗R4 × ¤T∗R4} ⋃ {

(𝑥, 𝜉; 𝑦, 𝜉) ∈ ¤R4 × ¤R4 × ¤R4 × ¤R4 |
η(𝑥 − 𝑦, 𝑥 − 𝑦) = 0, 𝑥1 ≷ 𝑦1, 𝜉 = λ(𝑥 − 𝑦), λ ∈ R

}
, (C.12a)

WF′G =
{
(𝑥, 𝜉; 𝑦, 𝜂) ∈ ¤T∗R4 × ¤T∗R4 | η(𝜉, 𝜉) = 0, 𝑥 − 𝑦 = λ𝜉, λ ∈ R

}
, (C.12b)

WF′W0 =
{
(𝑥, 𝜉; 𝑦, 𝜂) ∈ ¤T∗R4 × ¤T∗R4 | η(𝜉, 𝜉) = 0, 𝑥 − 𝑦 = λ𝜉, λ ∈ R, 𝜉1 > 0

}
. (C.12c)

However, there is no analog of a vacuum state or even any other preferred state in a
generic globally hyperbolic spacetime due to the lack of any non-trivial spacetime sym-
metry. There were numerous attempts to get around this problem and all suffered from
significant limitations; see, for instance, the review [201] for a summary. In fact, under
a few natural hypotheses, it has been proven that it is impossible to find any preferred
state of a non-trivial locally covariant QFT in a globally hyperbolic spacetime [215, Thm.
6.13] (see also the review [216, Thm. 1]). On the other hand, a generic algebraic state
can be too singular to perform all the desired operations of a quantum field theory, e.g.,
defining non-linear observables like the quantum stress-energy tensor. Therefore, we
utilise the preceding example as our guiding principle to select a physical state.

Since the tangent space of every spacetime is locally Minkowski and the singularity
of a distribution is “locally” determined, we embrace the condition

WFW = WFW0 (C.13)

as a plausible criterion to select physical quantum states in any curved spacetime.
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Definition C.2.3. As in the terminologies of Definition C.2.1, a state 𝜔 of A (M ; E ) is
called a Hadamard state if its 2-point Wightman distribution has the following wave-
front set [39]

WF′W = {(𝑥, 𝜉; 𝑦, 𝜂) ∈ ¤T∗0M × ¤T∗0M | ∃!𝑠 ∈ R≷0 : (𝑥, 𝜉) =𝛷𝑠 (𝑦, 𝜂), 𝜉 B 0}, (C.14)

where ¤T∗0M → M is the lightcone bundle over M , 𝛷𝑠 is the geodesic flow on the
cotangent bundle and 𝜉 B 0 means that 𝜉 is future-directed2.

We note that Hadamard states are necessary and sufficient to define covariant non-
linear quantum observables in any globally hyperbolic spacetime [36–38, 217] (see also,
the reviews [199, 201]). Therefore, only Hadamard states have been considered in this
thesis.

Remark C.2.4. Hadamard states are never unique as we have the freedom to add appro-
priate smooth terms.

C.3 Time-ordered product

In order to construct non-linear quantum observables perturbatively one requires the no-
tion of the time-ordered product between classical observables. Geometrically speaking,
a classical field φ is a smooth section of E . A time-ordered product T is a linear map
from local and covariant polynomial expressions in φ to F (M ; E )-valued distribution
satisfying a number of postulates. The precise characterisation of those properties re-
quires several new terminologies and, more importantly, the details are not essential to
understand the subject matter of the ongoing discussion. Therefore, we abstain from pro-
viding the formal definition and refer [37] (see also, the reviews [199, 218] for details
with earlier developments). It is sufficient for our purpose to note that

T
(
φ(𝑥) ⊗ φ̄∗(𝑦)

)
=

{
Φ𝑥 Φ̄

∗
𝑦, 𝑥 ∉ 𝐽−(𝑦),

±Φ̄∗𝑦 Φ𝑥 , 𝑥 ∉ 𝐽+(𝑦) , (C.15a)

T
(
𝐿φ(𝑥) ⊗ φ̄∗(𝑦)

)
= i ℏ𝛿𝑥,𝑦 = T

(
φ(𝑥) ⊗ �̄�∗φ̄∗(𝑦)

)
, (C.15b)

WT
𝑥,𝑦 := 𝜔

(
T
(
φ(𝑥) ⊗ φ̄∗(𝑦)

) )
, (C.15c)

WF′WT = 𝐶+, (C.15d)

where WT is called the time-ordered 2-point Wightman distribution, 𝐶+ is the forward
geodesic relation (Definition 3.2.15) and ± is for Bosonic (resp. Fermionic) observables.
The preceding two equations therefore entail that [39]

GFyn(𝑢 � 𝜙) := − iWT(𝑢 � 𝜙) (C.16)

is the Feynman propagator (Definition 3.2.10 and 3.2.17).

2That is, 𝜉 (𝑋) ≥ 0 for any futue-directed 𝑋 ∈ T𝑥M .
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Remark C.3.1. The Feynman propagator depends on the chosen quantum state in con-
trast to the retarded, advanced and causal propagators.

To comprehend this new propagator better, let us look again at the simplest case: the
Klein-Gordon quantum field theory in Minkowski spacetime.

Example C.3.2. In the terminologies and notations introduced in Example C.2.2: there
is a unique Feynman propagator GFyn

0 corresponding to the Minkowski vacuum:

G
Fyn
0,𝑥−𝑦 = − i

(
θ(𝑥1 − 𝑦1) (F 𝜇+) (𝑥 − 𝑦) + θ(𝑦1 − 𝑥1) (F 𝜇−) (𝑥 − 𝑦)

)
, (C.17)

which is presented in the standard physics textbooks by3 (see e.g. [214, Sec. 1-3-1])

G
Fyn
0,𝑥−𝑦 = − i

∫
R3

(
θ(𝑥1 − 𝑦1) e− i E(𝑥1−𝑦1) + θ(𝑦1 − 𝑥1) ei E(𝑥1−𝑦1)

)
ei 𝜉 ′·(𝑥 ′−𝑦′) d𝜉′

(2𝜋)32E
(C.18)

and its singularity structure is given by (see e.g. [80, p. 118])

WF′GFyn
0 =

{
(𝑥, 𝜉; 𝑥, 𝜉) ∈ ¤T∗R4 × ¤T∗R4} ⋃ {

(𝑥, 𝜉; 𝑦, 𝜉) ∈ ¤R4 × ¤R4 × ¤R4 × ¤R4 |
η(𝑥 − 𝑦, 𝑥 − 𝑦) = 0, 𝜉 = λ(𝑥 − 𝑦), λ ≷ 0

}
. (C.19)

These propagators have the following physical interpretation:

• The retarded propagator (C.10a) propagates positive (e− i E(𝑥1−𝑦1)) and negative
(ei E(𝑥1−𝑦1)) frequencies forward in time,

• The advanced propagator (C.10b) propagates positive and negative frequencies
backward in time,

• The Feynman propagator (C.18) propagates positive frequencies forward and neg-
ative frequencies backward in time,

This formal expression of GFyn
0 by means of the Fourier transform of lim𝜀→0 1/

(
η(𝜉, 𝜉) −

m2 + i 𝜀
)

is often used in physics textbooks as the starting point to construct the Feynman
propagator. However, neither the Fourier transformation nor the notation of a particle
are available in an arbitrary globally hyperbolic spacetime. Thus, one cannot use this ap-
proach in a generic situation. Nevertheless, time-ordered product is well-defined in any
globally hyperbolic spacetime and hence this can be used to define the Feynman propa-
gators satisfactorily. One then needs to prove positivity of GFyn

𝜔 (cf. Proposition 3.3.2) in
order to construct a Hadamard state 𝜔. Note, Feynman propagators are now no longer
unique as one has the freedom to add suitable smoothing terms without changing 𝐶+.
In other words, 𝐺Fyn

𝜔 is unique only up to those smoothing terms, that is, there exists the
notion of a unique Feynman parametrix 𝐸Fyn independent of any chosen 𝜔.

3See Footnote C.2.2
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We can also view the one-to-one correspondence between 𝜔 and G
Fyn
𝜔 the way around.

Since, all Hadamard states have the same wavefront set, one can characterise the Feyn-
man propagators in terms of the wavefront set as have been done in Definition 3.2.17.
The microlocal viewpoint has been adapted because it offers an intrinsic definition of the
Feynman parametrix which has applications beyond quantum field theories as mentioned
in Section 1.2.

C.4 Literature

The idea of using the category of Hadamard states as an appropriate replacement for the
Minkowski vacuum and a crucial structural ingredient of any quantum field theory in
curved spacetime was proposed by Bernard KAY [219, Sec. 1.1] and by Rudolf HAAG,
Heide NARNHOFER and Ulrich STEIN [220]. Bernard KAY and Robert WALD [205] were
the first to characterise these states precisely in terms of the short-distance behaviour
of the 2-point Wightman distribution. They had actually defined a local and a global
Hadamard conditions. Recently, Valter MORETTI [221] located and closed a technical
gap in their global condition. The modern definition of Hadamard states in the microlo-
cal framework is due to Maciej RADZIKOWSKI [39]. Most of the earlier literature on
Hadamard states was for scalar quantum field theories and the vector bundle generali-
sation developed subsequently [49, 51, 56, 206, 222, 223]. We refer, for instance, the
exposition [224] for details.

A mathematically precise formalism of the time-ordered product in curved spacetime
was initiated by Romeo BRUNETTI and Klaus FREDENHAGEN [36], but there were a few
ambiguities in their work. Employing the idea of local covariance of quantum observ-
ables, Stefan HOLLANDS and Robert WALD have fixed those issues [37] and have proven
the existence of time-ordered product for scalar quantum field theory [38]. Later, the
seminal result was extended by Stefan HOLLANDS [51] for quantum Yang-Mills theory.
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