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Abstract: 
Calcium (Ca2+) homeostasis is a tightly controlled mechanism by which adequate Ca2+ levels are 

maintained in the body. A G-protein coupled receptor known as the Calcium Sensing Receptor 

(CaSR) plays crucial role in Ca2+ homeostasis by sensing minute changes in extracellular Ca2+ and 

modulating the secretion of calciotropic hormones. It was shown that a group of accessory 

proteins known as Receptor Activity Modifying Proteins (RAMPs), specifically RAMP1 and 3 are 

responsible for cell-surface trafficking of the CaSR. Based on this, it was hypothesised that CaSR 

and RAMPs traffic to the cell-surface as high-order oligomers. FRET-based stoichiometry 

revealed equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, even though 

RAMP3 interacted more efficiently. Furthermore, a higher fraction of RAMP3 than RAMP1 was 

observed in the CaSR-complex on the cell-surface, suggesting a higher-order oligomer. Next, it 

was hypothesised that CaSR and RAMPs associate in an endogenous expression system and 

that RAMPs play a role in CaSR signalling. In medullary thyroid carcinoma TT cells, an 

attenuation of CaSR signalling by RAMP1 knock-down suggested an association between them. 

Also, blocking of RAMP1 using antibodies significantly attenuated CaSR-mediated signalling in 

these cells; consequently demonstrating its role in CaSR signalling. Finally it was hypothesised 

that RAMP expression is regulated by agents of Ca2+ homeostasis. However, no changes in 

RAMP mRNA expression were observed upon treatment with Ca2+ and calcitriol in TT cells; and 

with Ca2+ in human osteosarcoma cells.  

Furthermore, it was shown using FRET that RAMP1 associated and caused cell-surface 

trafficking of GPRC6A, a GPCR closely related to the CaSR. 

Taken together, it is demonstrated for the first time that RAMP plays a role in CaSR signalling 

and further research could establish the importance of RAMPs in Ca2+ homeostasis and 

subsequently as important drug targets against the pathologies of the CaSR. 
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AM ester Acetoxymethyl ester 

AMBP1 Adrenomedullin Binding Protein 1 

AMR1 Adrenomedullin receptor type-1 

AMR2 Adrenomedullin receptor type- 2 

AMR3 Adrenomedullin receptor type-3 

AMY Amylin 

AMYR1 Amylin receptor type 1 

AMYR2 Amylin receptor type 2 

AMYR3 Amylin receptor type 3 

ANOVA Analysis of Variance 

APS Ammonium per sulfate 

ATP Adenosine triphosphate 

BCA Bicinchoninic acid 

BLAST Basic local Alignment Search Tool 

Bmax Binding maximum 

BMM Bone marrow macrophages 

bp base pair 

BRET Bioluminsecence Resonance  Energy Transfer 

BSA Bovine serum albumin 

Ca[i] intracellular Ca2+ concentration 

cAMP Cyclic adenosine monophosphate 

CaSR Ca2+ Sensing Receptor 

cDNA complimentary deoxyribonucleic acid 

Cer Cerulean 

CFP Cyan Fluorescent Protein 

CGRP Calcitonin Gene Related Peptide 

CHO cells Chinese Hamster Ovary cells 
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Cit Citrine 

CLR Calcitonin Like Receptor 

CMV Cytomegalovirus 

CO2 Carbon dioxide 

CPM Counts-per-minute 

Ct Threshold cycle 

CT Calcitonin 

C-tail Carboxy-terminal tail 

CTR Calcitonin receptor 

Cys Cysteine 

DAG Diacylglycerol 

DEPC Diethyl Pyrocarbonate 

DMEM Dulbecco's Modified Eagle Medium 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleotide Triphosphate 

DTT Dithiothreitol 

Ec Characteristic FRET efficiency 

Ec50 Half maximal effective concentration 

ECD Extracellular domain 

ECL Enhanced chemi- luminescent 

EDTA Ethylenediaminetetraacetic Acid 

EGFR Epidermal growth factor receptor 

EGTA Ethylene glycol tetra acetic acid 

ER Endoplasmic reticulum 

ERE Oestrogen responsive elements 

ERK Extracellular signal-regulated kinase 

ESTs Expressed sequence tags 

Fa Fraction of acceptor in FRET complex 

FACS Fluorescence-activated cell sorting 

FCS Foetal Calf Serum 

Fd Fraction of donor in FRET complex 

fg femto-gram 

FHH Familial Hypocalciuric Hypercalcaemia  

fM femto molar 

FRET Förster Resonance Energy Transfer  

g Gram 

G12/13  G-protein subtype 12/13 

GABA gamma-Aminobutyric acid 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

Gd3+ Gadolinium ion 

GDP Guanosine diphosphate 

GFP Green fluorescent protein 
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GHRH Growth hormone-releasing hormone 

GLP Glucagon-like peptide 

Gluc Glucagon 

GPCR Guanine Nucleotide-binding protein-Coupled Receptor 

G-protein Guanine nucleotide-binding protein 

GRE Glucorticoid responsive elements 

GRK GPCR kinase 

GTP Guanosine-5'-triphosphate 

GTPγS  Guanosine-5'-O-[gamma-thio]triphosphate 

HCl Hydrochloric acid 

HEK-293 Human Embryonic Kidney 293 

HPRT1 Hypoxanthine phosphoribosyltransferase 1 

hr Hour 

IA Intensity of acceptor channel 

Ic50 half maximal inhibitory concentration 

ID Intensity of donor channel 

IF Intensity of FRET channel 

IGF Insulin-like growth factor 

IGF-1R Insulin-like growth factor type-1 receptor 

IgG Immunoglobulin 

IL Interleukin 

IP3 Inositol triphosphate 

JNK c-Jun NH(2)-terminal kinase 

Kbp Kilo base pairs 

Kd Dissociation constant 

KDa Kilo Dalton 

Ki inhibition constant 

KO Knock out 

kV Kilovolt 

LB Luria broth 

LPS Lipopolysaccharide 

LRP lipoprotein receptor related peptides  

Lys Lysine 

M3 receptor Muscarinic receptor type 3  

mAb monoclonal antibody 

MAPK Mitogen activated protein kinase 

MCSF Macrophage colony stimulating factor 

mg Milligram 

mGluR Metabotropic glutamate receptor 

min minute(s) 

ml Milliliter 
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mM milli molar 

mm Millimeter 

mRNA messenger ribonucleic acid 

ng nano-gram 

NHERF Na+/ H+ exchanger regulatory factor -1 

nm nano meter 

nM nano molar 

NSF N-ethylmaleimide sensitive factor 

NSHPT Neonatal Severe Hyperparathyroidism  

N-terminal Amino-terminal 

OD Optical density 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDGF Platelet-derived growth factor 

pg pico-gram 

PI Phosphoinositol 

PKA Protein kinase A 

PKC Protein kinase C 

PLA2 Phospholipase A 

PLC Phospholipase C 

PLD Phospholipase D 

pM pico molar 

Pro Proline 

PT Parathyroid 

PTH Parathyroid hormone 

PTH 1R Parathyroid hormone receptor  type 1 

PTH2R Parathyroid hormone receptor type 2 

PTHrP Parathyroid hormone-related peptide 

PVDF polyvinylidene chloride  

qPCR quantitative polymerase chain reaction 

R (in FRET) The molar ratio of acceptor to donor  

RAMP Receptor Activity Modifying Protein 

RANKL Receptor Activator for Nuclear Factor κ B Ligand 

RCP CGRP-receptor component protein  

RhoGEFs Ras homology guanine nucleotide exchange factors 

RNA Ribonucleic  acid 

ROI Region of interest 

rpm revolutions per minute 

RT PCR Reverse transciptase polymerase chain reaction 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
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sec second(s) 

SEM standard error of mean 

Ser-Lys Serine-Lysine 

siRNA small interfering RNA 

SNPs Single-nucleotide polymorphism 

SPA Scintillation Proximity Assay 

t1/2 Half-life 

TBS Tris-buffered saline 

TEMED N,N,N',N'-Tetramethylethylenediamine 

Tm Melting temperature 

TM Trans-membrane  

TRPV Transient receptor potential cation channel subfamily V 

Tyr Tyrosine 

v/v volume per volume 

VIP Vasoactive Intestinal Peptide 

VPAC1R 
Vasoactive Pituitary Adenylate Cyclase–activating  peptide 
receptor type-1 

w/v weight per volume 

xg centrifugal acceleration relative to g. 

YFP Yellow fluorescence protein 

α 
Proportionality constant relating acceptor fluorescence at the 
acceptor excitation to the donor excitation 

β 

Proportionality constant relating donor fluorescence detected 
at the acceptor emission relative to that detected at the donor 
emission 

γ 
Ratio of the extinction coefficient of the acceptor to the donor 
at the donor excitation. 

μg micro-gram 

μl micro-litre 

μM micro-molar 

ξ 
Proportionality constant relating the sensitized acceptor 
emission to the decrease in donor fluorescence due to FRET 
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1.1.  Calcium homeostasis: 
Calcium (Ca2+) is an extremely important element involved in numerous physiological 

processes. It also acts as an intracellular messenger as well as a co-factor for enzymes inside the 

cell [1]. Free intracellular Ca2+ concentrations in the cytoplasm is usually ~100nM which can go 

up to 1µM upon release from intracellular stores or influx of extracellular Ca2+ through channels 

[1], whereas extracellular Ca2+ concentrations are usually ~10,000 fold higher and are usually 

maintained at 2.2-2.6mM total and 1.1-1.4mM ionized concentration through a tightly 

regulated mechanism called Ca2+ homeostasis [1, 2].  

The parathyroid gland is the most important organ involved in Ca2+ homeostasis. Parathyroid 

chief cells sense minute decreases in extracellular Ca2+ concentration from the natural set point 

of 1-1.3mM, and subsequently cause rapid transient release of parathyroid hormone PTH 

(typically 2-3% decrease in extracellular Ca2+ can lead to 150-200 fold increase of serum PTH 

levels) [2, 3]. This mobilizes Ca2+ from the reserves by enhancing renal reabsorption of Ca2+ and 

excretion of phosphate as well as promoting bone resorption [2]; and so is classified as a 

hypercalcaemic hormone. Conversely, an increase in extracellular Ca2+ inhibits PTH release and 

its consequent actions [2, 3].  

Increase in serum Ca2+ levels also cause an increase in secretion of the hypocalcaemic hormone 

calcitonin from thyroid C-cells [2]. Calcitonin is a peptide hormone which potently lowers serum 

Ca2+ by decreasing osteoclastic bone resorption and increasing Ca2+ urinary secretion [4, 5]. The 

third calciotropic hormone involved in Ca2+ homeostasis is the active form of vitamin D- 

1,25(OH)2D (calcitriol), which is converted into mature form in the kidney by the effects of 

decreased Ca2+ as well as increased PTH levels [6]. Calcitriol increases intestinal Ca2+ absorption 

from dietary sources [2], enhances bone resorption [7], facilitates Ca2+ reabsorption in the 

kidneys [8] as well as inhibits the synthesis of PTH mRNA, thus completing the endocrine 

feedback loop [9]. 

So, as shown in the Figure 1.1 these hormones coordinate to facilitate the operation of Ca2+ 

homeostasis.  
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Figure 1.1: Schematic representation of Ca2+ homeostasis:  

A decrease in extracellular Ca2+ stimulates PTH production and secretion from the parathyroid glands, 

which acts on kidneys to enhance renal reabsorption of Ca2+ and stimulates the synthesis of vitamin D3 

into its active form (calcitriol) in case of a prolonged hypocalcaemia (few hours). It also enhances bone 

resorption causing release of Ca2+ and phosphorous. Calcitriol increases intestinal Ca2+ absorption and 

increases bone turnover. PTH also prevents retention of phosphate mobilized from bone and intestinal 

absorption. The consequent increased serum Ca2+ levels cause the normalization of the natural set point 

(1-1.3mM of free Ca2+ in mammals) and returns the secretion of PTH to basal. Hypocalcaemic hormone, 

calcitonin is secreted from the thyroid when Ca2+ levels are above the threshold which counteracts the 

action of the hypercalcaemic hormones. 

 

This robust mechanism can only be tightly regulated due to the ability of the cells to “sense 

Ca2+” in their environment. This function is rendered by a cell-surface receptor which is present 

on the cells involved in Ca2+ homeostasis like the parathyroid, kidney and bone cells. 

Accordingly, this receptor is called the Ca2+ Sensing Receptor (CaSR) and it belongs to the family 

of receptors known as the G-protein coupled receptors (GPCRs). CaSR was first isolated as a 

Ca2+-sensor from the bovine parathyroid cells, where it inhibited PTH secretion upon activation 

[10]. Before moving into the details on the Ca2+ sensing receptor, a brief introduction about the 

GPCR family is necessary. 
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1.2.  G-protein coupled receptors (GPCRs): 
The GPCR family is one of the largest families of cell-surface receptors in mammals (around 

800-1000 GPCRs in human genome, consisting of >2% of protein coding genome) [11]. They 

bind to a variety of targets and mediate their signaling through a pathway involving guanosine 

nucleotide-binding proteins (G proteins). They are involved in numerous vital functions like 

taste, odor, memory, response to light, action of hormones and neurotransmitters [11].  

GPCRs are characterized by seven hydrophobic stretches of amino acids (aa) that form 7 

transmembrane (TM) segments, connected by alternating extracellular and intracellular loops 

which form the N-terminal extracellular domain and C-terminal intracellular domain 

respectively (Figure 1.2). The first crystal structure of a GPCR was of bovine rhodopsin by 

Palczewski et al [12]. Recently the crystal structures of other GPCRs have also been discovered 

such as the β-adrenergic receptor [13-15], opioid receptor [16, 17], M3 muscarinic 

acetylcholine receptor [18] and nociception receptor [19]. These crystal structures have 

provided important structural information regarding the conformational changes in the 

structure of few GPCRs caused by their activation by ligands. It has been shown that this 

phenomenon involves an outward or inward movements of the TM segments three, five, six 

and seven which consequently facilitates G protein coupling to the receptor[20-22]. 

G-proteins are at the top in hierarchy of multiple signalling components activated by a GPCR. G-

proteins bind to specific regions on the C-tail or parts of trans-membrane loops in the 

cytoplasm upon activation of the receptor; consequently leading to rapid changes in the 

concentration of intracellular signaling molecules like cyclic AMP (cAMP), cyclic GMP (cGMP), 

inositol phosphates, diacylglycerol (DAG), arachidonic acid and cytosolic ions [23]. Apart from 

the G proteins, GPCRs can also couple to β-arrestins and GRKs which modify the 

phosphorylation status of the receptor (uncouple the G proteins) and thereby acting as safety 

mechanism to prevent overstimulation of GPCRs. In addition to this, β-arrestins can also couple 

GPCRs to kinase pathways [24]. 
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Figure 1.2: Structure of a GPCR: 

There are 7 trans-membrane (TM) domains connected by alternating extracellular and intracellular 

loops which form the extracellular and C-terminal intracellular domains respectively. 

G-proteins are hetero-trimeric composed of α, β and γ sub-units. The β and γ sub-units are 

tightly associated and can be regarded as a single functional sub-unit [23]. In an inactivated 

state of the receptor, GDP is bound to Gα subunit, which is replaced by GTP upon activation of 

the receptor. Binding of GTP causes dissociation of G-protein from the receptor into active α 

(GTP bound) and βγ sub-units. These activated sub-units stimulate different secondary 

messenger proteins [23]. This mechanism is described in detail in chapter 4, section 4.1.1. G 

proteins are divided into four families based on the similarities in their α-subunits as shown in 

table 1.1.  
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G-protein family  Subtype Function 

Gs    Gαs 

Gαolf 

Increases the activity of 
adenylate cyclase  (AC). 

    

Gi  Gαi1 

 
Gαi2 

Gαi3 

GαoA 

GαoB 

Gαz 

 
Gαt1 

Gαt2 

 
 
Gαg 

Decreases AC activity, 
Involved in phospholipase 
C (PLC), ERK activation 
 
 
 
Involved in Ca2+ & K+ 
channels 
Increases cGMP dependant 
phosphodiesterase activity 
 

Gq  Gαq 
 
Gα11 

Gα14 

Gα15 or 16 

Activates PLC 
 

G12  Gα12 , Gα13 Regulates Ras  homology  
guanine nucleotide  
exchange factors 
(RhoGEFs) 

Table 1.1: G-protein families, their subtypes and respective functions 

as reviewed in [23]. 

 

GPCRs are classified into different families in humans based on their structure and ligands [25, 

26]: 

 

Family A receptors (Rhodopsin family): 

The rhodopsin family constitutes the largest number of GPCRs present in the human genome. 

The members of this family possess several characteristics such as the Asn-Ser-X-X-Asn-Pro-X-X-

Tyr motif in the TM segment 7 of the receptor. This motif is involved in maintaining receptors in 

an inactive conformation. These receptors also possess the Asp/Glu-Arg-Tyr/Phe motif at the 
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interface of TM segment 3 and intracellular loop 2 that is involved in activation of G-proteins. 

Generally, the ligands to this family of receptors bind either to the extracellular domain or 

extracellular loops of the TM domain. The family is further classified into following groups:  

 Receptors for retinals, odorants, adenosines, etc. The ligand binding site is localized in 

the 7 TM domains. 

 Receptors for peptides, cytokines, thrombin, etc. The ligand binds to either to the 

extracellular loops or to the upper parts of the TM domain. 

 Receptors for glycoprotein hormones. Receptors have large extracellular domain where 

the ligands bind [25, 26].  

Family B receptors (Secretin receptor family): 

The N-terminus of family B receptors is ~60-80 aa long and contains conserved Cys residues 

which are particularly responsible for ligand binding. The ligands for this family are peptides. 

The receptors include secretin receptor, calcitonin receptor, calcitonin receptor like receptor, 

parathyroid hormone releasing receptor, vasoactive intestinal peptide receptor and others [25, 

26]. 

 

Frizzled/ Taste-2 receptor family: 

This family contains two groups of receptors clustered together to form a single family.   

 Frizzled receptors contain a 200 aa N-terminus with conserved Cys residues participating 

in ligand binding. They bind to a glycoprotein called Wnt as their ligand and require 

accessory proteins know as lipoprotein receptor related peptides (LRPs) for Wnt binding 

and signaling.  

 Taste-2 receptors have a very short N-terminal and the ligand binds to 7-TM domain. 

They are expressed in the tongue and palate epithelium and function as bitter taste 

receptors [25, 26]. 
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Family C receptors (Metabotropic glutamate receptor family): 

The N-terminus of these receptors is ~280 to 580 aa long which contains the ligand recognition 

domain. Family C receptors include 8 metabotropic glutamate receptors, 2 GABA receptors, 

CaSR, GPRC6A and 5 taste receptors [27]. The N-terminus forms two distinct lobes, separated 

by a cavity in which ligand binds, causing the lobes to close and thus form a “Venus fly trap” 

model (Figure 1.3). This two-lobed structure is separated from 7-TM domain by conserved 

cysteine residues that play multiple roles like maintaining receptor conformation and functional 

activation of receptor following stimulation by agonist. [25, 26].  

 

 

Figure 1.3: Schematic representation of structure of Family C GPCR. 

Two Family C GPCRs, CaSR and its closely related receptor GPRC6A were studied in this project. 

1.3. CaSR and its role in Ca2+ homeostasis: 
As mentioned earlier, CaSR is a GPCR which binds to Ca2+ and so the discovery of CaSR provided 

a link between changes in extracellular Ca2+ levels and changes in PTH secretion [10]. 

Pathologies related to the inherited mutations of CaSR have established that it is as an 

important regulator of systemic Ca2+ homeostasis, which will be described later in section 1.4. 

CaSR is a widely distributed cell-surface receptor and its role in Ca2+ homeostasis should be 

understood by studying its expression in the tissues involved in the mechanism.  
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1.3.1. Parathyroid cells: 

CaSR is very highly expressed in the parathyroid glands on the chief cells, where it senses 

increases in the levels of extracellular Ca2+ and inhibits the secretion of PTH to prevent its 

hypercalcaemic actions [10, 28, 29]. It also reduces the expression of PTH mRNA [30], and 

proliferation of parathyroid cells in culture [31] through an array of second messenger 

signalling. Recently, it has been shown that inhibition of PTH secretion is not a robust response 

to check against hypercalcaemia as mice lacking the PTH gene could defend against induced 

hypercalcaemia similar to wild type mice; whereas mice lacking both CaSR and PTH gene failed 

to do so [32]. This means that hypercalcemia can be defended by other mechanisms. So, the 

PTH secretion from chief cells to defend against hypocalcaemia is probably the primary but not 

robust function of parathyroid glands in Ca2+ homeostasis. 

1.3.2. Thyroid: 

CaSR is expressed on the thyroid parafollicular C-cells where upon sensing increase in serum 

Ca2+ levels, it facilitates the secretion of the hypocalcaemic calcitonin [33]. Accordingly, mice 

with a heterozygous mutation of CaSR have decreased secreted calcitonin levels under Ca2+ 

challenge, compared to wild-type mice and consequently exhibit a compromised response to 

hypercalcaemia, indicating the role of CaSR in calcitonin secretion [34]. The importance of 

calcitonin in Ca2+ homeostasis is demonstrated by a study where mice with a functional CaSR 

but lacking the PTH gene, defended against hypercalcaemia by secreting more calcitonin and 

increasing renal Ca2+ clearance compared to the double knock-out (Casr-/-. Pth-/-) mice [32]. 

1.3.3. Kidney: 

Kidney regulates the excretion/reabsorption of nutrients including divalent ions and hence 

plays an important role in divalent ion homeostasis. CaSR is widely expressed in different parts 

of kidney, where it facilitates the excretion of Ca2+ and reabsorption of phosphorus upon 

activation [32, 35-37]. Role of CaSR in renal Ca2+ homeostasis has been conclusively 

demonstrated and is shown to be independent of PTH regulation. It was shown that mice 

lacking both CaSR and PTH genes could not defend against hypercalcaemia as compared to wild 

type because of their reduced renal Ca2+ clearance [32, 35], and compromised calcitonin 

secretion [32]. In order to check whether these effects were due to the absence of PTH, mice 
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with a functional CaSR but lacking PTH gene were also tested under same hypercalcaemic 

challenges and it was found that they could defend similar to wild type. This shows the 

importance of renal Ca2+ homeostasis governed by CaSR. Accordingly, renal Ca2+ clearance 

along with the actions of hypocalcaemic calcitonin serves as a ‘ceiling’ to limit hypercalcaemia 

[32].  

Ca2+ reabsorption in the kidneys is caused by the action of Na2+/K+/Cl- co-transporter (NKCC2) 

and the K+ channel Kir 1.1. The actions of these channels cause reabsorption of NaCl, which 

creates a difference in the membrane potential favoring Ca2+ reabsorption [38]. It was shown 

that CaSR inhibits the action of Kir1.1 channel under hypercalcemia [38]. So, it is suggested that 

activation of CaSR leads to failure in generating membrane potential favorable for Ca2+ 

reabsorption. [38]. Further to this, 1,25-dihydroxyvitaminD3 also facilitates direct Ca2+ 

reabsorption in kidneys [8]. Activation of CaSR also inhibits the PTH mediated maturation of 25-

hydroxycholecalciferol to calcitriol as shown by experiments in the human proximal tubule cell 

line HKC-8 [39]. In vivo studies on Casr-/- mice have shown that CaSR dampens the response to 

1,25-dihydroxyvitaminD3 independently of PTH actions [40]. Thus CaSR exerts a tight control on 

circulating 1,25-dihydroxyvitaminD3 both at the level of its synthesis and in modulating its 

effects.  

 1.3.4. Bone: 

Bone is the largest reservoir of Ca2+ in the body and so is also intimately involved in systemic 

Ca2+ homeostasis. Bone constantly undergoes formation and break-down leading to changes in 

local Ca2+ concentrations. Sensing such changes becomes important to orchestrate the activity 

of different bone cells. CaSR is present in bone and plays a role in sensing local changes in Ca2+ 

concentrations. CaSR is expressed in bone cells such as osteoblasts [41, 42], chondrocytes [43], 

and osteoclasts [44-46]. Targeted deletion of CaSR (lacking exon 7 which codes for TM domain 

and intracellular loops) in osteoblasts in mice using type-1 collagen promoter resulted in 

significant reduction in body weight and severe under-mineralization of skull, ribs and long 

bones [43]. There was marked reduction in bone volume, bone mineral density and thickness of 

trabecular and cortical bone and increased apoptosis of osteoblasts [43]. There was an increase 
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in osteoclast numbers and osteoclast function promoting NF-κB signalling [47]. Also, expression 

of IGF-1 (anabolic in bone) was reduced [43]. Using a different promoter- osterix which is more 

specific for osteoblasts, similar results were obtained [43]. Co-cultures of osteoblasts and 

osteoclasts derived from these mice ex vivo exhibited delayed differentiation and reduced 

mineralization of osteoblasts and increased osteoclastogenesis, supporting the in vivo 

observations [47]. These results are also supported by in vitro studies which show that CaSR 

promotes primary osteoblast proliferation, expression of differentiation markers and 

mineralized nodule formation upon increase in concentration of extracellular Ca2+ via 

extracellular signal-regulated kinase 1/2 (ERK1/2), Akt or c-Jun NH(2)-terminal kinase (JNK) 

pathways [41, 42]. These results show a direct role of CaSR in bone and the pathology of the 

knock-out models is related to defective mineralization and paracrine Ca2+ sensing leading to 

imbalance in bone turnover [47]. 

CaSR deletion in chondrocytes in mouse model using type-2 collagen promoter caused 

embryonic lethality before E13 due to inhibition of early cartilage and bone mineralization [43]. 

Using tamoxifen inducible knockout, CaSR deletion after E13 resulted into viable litters but with 

severe defects in cartilage and bone mineralization and significant reductions in IGF-1 and IGF-

1R expression in growth plate [43]. This shows a definitive role of CaSR in cartilage. 

In the case of osteoclasts, CaSR, upon activation exhibits a regulatory role [44, 45]. In cultured 

rabbit osteoclasts, CaSR is responsible for regulation of osteoclast activity as measured by pit 

formation on dentine slices [44]. Decreased osteoclastogenesis was seen in immature 

osteoclasts (RAW 264.7 cells) expressing dominant negative CaSR mutant; and in osteoclasts 

derived from Casr-/- mice [45]. Also, CaSR activation by 20mM Ca2+ caused PLC-NF-κB 

dependent apoptosis of normal cultured rabbit osteoclasts [45]. This shows that CaSR plays an 

inhibitory role in osteoclast function. 

Taken together, CaSR plays a role in bone by sensing changes local Ca2+ concentrations within 

the bone microenvironment and possibly by orchestrating the function of bone cells, as shown 

in figure 1.4 below 
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Figure 1.4: Schematic model for the role of CaSR in bone remodelling, based on the evidence from in 

vitro studies:  

CaSR on pre-osteoclasts sense high local Ca2+ levels upon bone resorption causing decreased 

osteoclastogenesis and increased apoptosis, whereas CaSR on pre-osteoblasts is activated promoting 

proliferation and differentiation of osteoblasts. Adapted from [48]. 

 

1.3.5. Gut: 

Food digestion and nutrient absorption including that of Ca2+, takes place in the gut. CaSR 

expression has been established all along the gastrointestinal tract namely, the stomach [49], 

small intestine [50] and colon [50, 51]. Although it is known that calcitriol increases intestinal 

Ca2+ absorption from dietary sources [2] as a part of Ca2+ homoeostasis, a direct link between 

the role of CaSR and intestinal Ca2+ transport is yet to be identified. However, the expression of 

CaSR in the gut has been linked to facilitation of food digestion and nutrient sensing. CaSR is 

shown to be activated by aromatic L-aa in vitro in the presence of extracellular Ca2+ [52]. So, the 

aa serve as allosteric activators of CaSR. Indeed, it was shown that CaSR caused secretion of 

CCK upon activation by L-aa from intestinal mucosal cells isolated from mice, an effect which 

was blocked by CaSR antagonist [53]. Also, it was shown that in the G-cells of stomach, 

activation of CaSR leads to gastrin release, with a concurrent rise in intracellular Ca2+ [49]. This 

aids in further digestion of food and consequent increase in nutrient absorption. It has been 

hypothesised that as the demand for more Ca2+ rises, the level of extracellular Ca2+ in the 

stomach possibly modulates CaSR to cause more gastrin secretion, which causes more 

ionization of Ca2+ from food and consequently its absorption in the intestine [54].  
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Thus, CaSR is essential for Ca2+ homeostasis and acts like a ‘thermostat’ by modulating the 

hyper and hypo calcaemic activities of hormones involved in the mechanism.  

1.4. Pathological mutations and knock-out models of CaSR: 
The importance of CaSR in Ca2+ homeostasis is supported by the pathological conditions caused 

by its inactivating and activating mutations, as well as by the phenotypes of the knock-out mice 

models.  

Heterozygous inactivating mutations of CaSR cause Familial Hypocalciuric Hypercalcaemia 

(FHH), which is an autosomal dominant disorder characterized by mild, long and asymptomatic 

hypercalcaemia (serum Ca2+ concentration from ~2.75 to ~3.5 mmol/l), that significantly 

reduces the rates of urinary Ca2+ excretion [55]. Hypercalcaemia is caused due to the decrease 

in sensitivity for the extracellular Ca2+ because of loss-of-function mutations and consequently 

increased PTH levels [56]. Apart from the inactivating mutations, it has been reported in the 

clinical studies that in some patients with normal functioning CaSR, production of auto-

antibodies against the N-terminal of CaSR cause an acquired FHH like disorder [57, 58]. 

Homozygous loss-of-function mutations of CaSR cause life threatening- Neonatal Severe 

Hyperparathyroidism (NSPHT) [55, 59]. Accordingly, total parathyroidectomy must be 

performed in very early stage of life to prevent death. NSHPT is characterized by severe 

hypercalcaemia (~3-3.5mmol/l to 6.25-7.5mmol/l total Ca2+ levels), hyperparathyroidism, 

skeletal defects such as fractures of long bones and ribs that cause respiratory distress [60].  

In both cases defective CaSR results in impaired Ca2+ perception, and consequently leading to 

an increase in the Ca2+ sensing set point [61]. Accordingly, the parathyroid gland perceives the 

Ca2+ levels in the serum as low even though they are higher than normal, and continues to 

secrete PTH causing hypercalcaemia. Also, the Ca2+ levels in the kidneys are detected as low 

and so the excretion of Ca2+ is prevented by increasing renal reabsorption, causing 

hypercalcaemia. 
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On the other hand, activating mutations of CaSR cause Autosomal Dominant Hypocalcaemia 

(ADH), in which the Ca2+-set point is lowered by over-sensitive CaSR and consequently PTH 

secretion is inhibited and Ca2+ excretion is elevated even at low levels of Ca2+ [62].  

Approximately, a total of 253 mutations of CaSR have been associated with FHH, NSHPT and 

ADH according to the information on the Ca2+ Sensing Receptor database 

(http://www.casrdb.mcgill.ca/?Topic=MutationSearch&v=new&s=d); which includes missense, 

nonsense, deletion and or insertion, silent and splice variant mutations with a majority of them 

within the N-terminal domain of the receptor suggesting its importance. 

Evidence from CaSR knock-out animal studies also demonstrated the vital role of CaSR in 

systemic Ca2+ homeostasis. CaSR knock-out mouse model with targeted disruption of exon 5 

(which codes for the residues 460-536 of the N-terminal domain) exhibited similar phenotype 

to FHH and NSHPT in humans corresponding to heterozygous and homozygous deletions [63]. 

These exon 5-deficient Casr-/- mice exhibited impaired growth from post-natal day 2 compared 

to the wild type or Casr+/- mice. Also a high rate of mortality of the knock-out mice within day 7 

post-birth was observed [63]. The knock-out mice exhibited increased Ca2+ and PTH levels, 

modest increase in magnesium levels, parathyroid hyperplasia, impaired renal Ca2+ excretion 

and bone abnormalities [63]. However, this phenotype could be rescued by deleting the PTH 

gene -[35], or the gene responsible for the development of parathyroid glands known as Gcm-2 

(where the mice fail to develop parathyroid glands) [64]. These results indicate that the 

phenotype observed in exon-5 deficient Casr-/- mice was mainly due to hyperparathyroidism 

and a definitive role of CaSR in individual organs like bone could not be established. However, it 

was found that exon-5 CaSR knock-out is a hypomorph, which meant that the spliced receptor 

lacking 77 aa in the N-terminal domain was partially functional and could compensate for the 

absence of full length CaSR in cultured mouse keratinocyte [65], growth plate chondrocytes 

[66] and lungs [67]. Accordingly, an alternative CaSR knock-out murine model has been 

established with targeted deletions of exon 7 (codes for 7 TM domain and 4 intracellular loops) 

in specific tissues like parathyroid glands, bone or cartilage, as described earlier in 1.3.4 [43]. 

Accordingly, this model has shown that mice lacking CaSR in parathyroid glands have severe 

http://www.casrdb.mcgill.ca/?Topic=MutationSearch&v=new&s=d


32 
 
 

hyperparathyroidism, growth and bone defects [43]. The above evidences from the clinical and 

animal model studies thus demonstrate an essential role of CaSR in Ca2+ homeostasis. 

1.5. Ligands of CaSR: 
CaSR is a highly promiscuous receptor which binds a variety of natural and synthetic ligands. 

Although the primary ligand is considered to be Ca2+, many functional studies have helped to 

understand the affinities of various ligands activating the CaSR, which point its important role in 

physiology in different systems. Due to the absence of high affinity ligands of CaSR, the 

potencies of ligands have been determined using functional assays for signal transduction 

pathways, rather than the usual radioligand binding assay used for other GPCRs.  

1.5.1. Cations: 

CaSR was discovered as a Ca2+-sensor from the bovine parathyroid cells, where it inhibited PTH 

secretion upon activation [10]. The pharmacology of Ca2+ binding to the CaSR has been further 

understood by expressing CaSR in various cell systems and measuring the increases in 

intracellular Ca2+ concentrations and IP3 and PI-PLC activation. Accordingly, over-expressing the 

recombinant CaSR in various cell systems like Xenopus laevis oocytes [10], HEK-293 [28][68] 

have reported the potency for Ca2+ (Ec50 value) between 3-4 mM. The binding of Ca2+ to the 

CaSR is a highly synergistic event, where binding of one molecule facilitates the binding of more 

molecules, as indicated by the Hill’s co-efficient of ~3-4 [69-71]; suggesting multiple Ca2+ 

binding sites. This property enables the receptor to sense minute changes in extracellular Ca2+ 

levels, even though the Ec50 is between 3-4 mM.  

Apart from Ca2+, Mg2+ is also an agonist of the CaSR with an Ec50 of 4-7 mM depending on the 

concentration of extracellular Ca2+ [10, 72, 73]. Mg2+ is also considered to be a partial agonist of 

CaSR, with a Hill’s co-efficient of around 1 and eliciting 50-60% of maximum response 

compared to Ca2+ in IP activation [30], suggesting that at in vivo concentrations Ca2+ and Mg2+ 

might activate CaSR in additive fashion.  

Other cations with a higher potency than the above stated ligands as measured by CaSR-

mediated Ca2+ mobilization, IP3 activation; or PLA2 activation and pERK phosphorylation in CaSR 
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transfected cells, include: Gd3+ (~2.2 µM) [73-76], Zn2+ (~132µM), Ni2+ (~120µM) [77], Pb2+ 

(~140µM), Co2+ (~400µM) and Fe2+ (5mM elicits response, Ec50 not determined) [74]. Other 

divalent inorganic ion ligands of CaSR with potency in millimolar range like Ca2+ and Mg2+ 

include Ba2+ (<2 mM) and Mn2+ (2.8mM) [30] and Al3+ [75, 78]. While most of the divalent ions 

may be thought to be present in the body as co-factors for enzymes or for other purposes, their 

physiological concentration is much lower than that required to activate the CaSR and are 

unlikely to represent as physiological agonists of CaSR under normal conditions [74, 77]. 

However, they may contribute to heavy metal toxicity in the body like in the kidneys or liver, 

especially since they activate CaSR additively with Ca2+ and Mg2+ and bind at a high affinity [74, 

77].  

It is shown that strontium ranelate which is used as an anti-osteoporotic drug, exerts its effects 

on osteoblasts and osteoclasts via the CaSR [79, 80]. In rat primary osteoblasts, Sr2+ stimulated 

the proliferation of the cells by activating the CaSR [59], whereas in osteoclast Sr2+ induced 

apoptosis via CaSR-mediated PKCβ2-DAG pathway [80]. Its potency to activate the CaSR is 

positively related to the extracellualr Ca2+ concentrations. This effect of strontium ranelate on 

the CaSR in osteoblasts and osteoclasts may be directly implicated to its antiresorptive action in 

vivo.  

1.5.2. Polyamines: 

CaSR is allosterically activated by spermine (Ec50 ~500µM) and spermidine (Ec50 ~4mM) in the 

presence of 0.5mM extracellular Ca2+ concentration in CaSR-transfected HEK-293 cells [71]. The 

potencies of the polyamines are directly related to the number of positive charges on the 

molecule (spermine has 4 positive charges and spermidine has 2 positive charges), as well as to 

the extracellular Ca2+ concentration. The binding of polyamines is highly co-operative with a 

Hill’s co-efficient of >3 [71].  

1.5.3. Aminoglycoside  antibiotics: 

In cell systems like oocytes and HEK-293 overexpressing the CaSR, its has been shown that 

neomycin (Ec50 ~50µM) activates the CaSR [76, 81, 82]. In opossum kidney cells endogenously 

expressing CaSR other aminoglycoside antibiotics in addition to the neomycin, such as 
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gentamycin (Ec50 ~258µM) and tobramycin (Ec50 ~170µM) increased CaSR-mediated 

intracellular Ca2+
 levels and ERK-1,2 phosphorylation through PIP2-PLC dependent pathway [81]. 

The rank order of potencies of these antibiotics is directly proportional to the number of amino 

group present in their structures [82]. In transfected HEK-293 cells, the sensitivity of CaSR for 

aminoglycosides was shown to be pH mediated [82]. Accordingly lowering the extracellular pH 

from 7.4 to 6.9 to mimic the conditions in the proximal tubule enhanced the sensitivity of the 

CaSR towards the aminoglycoside antibiotics (left-shift in potency) without any change in the 

maximal response. This effect is thus related to the increase in ionization of the antibiotic [82]. 

Since the major site of aminoglycoside antibiotic toxicity is kidney, these studies suggested 

CaSR activation by the antibiotics could probably be the mode of action of this phenomenon 

[81, 82]. 

 1.5.4. Amino-acids and polypeptides: 

CaSR has been demonstrated to be a stereo-selective receptor for the L-aromatic aa. It was 

shown that L-phenylalanine (Ec50 ~2.2mM) and L-tryptophan function in an allosteric manner, in 

the presence of >1 mM extracellular Ca2+ to activate CaSR in transfected HEK-293 cells [52]. 

Furthermore, a mixture of L-aa at a concentration emulating the fasting serum levels activated 

the CaSR by increasing its sensitivity to Ca2+ by 20-40% compared to individual aa [52]. So it was 

hypothesised that in physiology, CaSR could also act as a nutrient-sensing receptor in the gut 

where differences in the levels of L-aa can modulate its sensitivity leading to changes in 

digestion responses [52]. Furthermore since CaSR is also expressed in the neurons, it is 

hypothesised to contribute towards the neurotoxicity caused by high phenylalanine levels in 

phenylketonuria [52]. 

Using CaSR transfected HEK-293 cells and cultured rat hippocampal pyramidal neurons lacking 

CaSR, it was demonstrated that amyloid β-peptide activated the CaSR at 1µM concentration, 

consequently eliciting Ca[i] responses via non-selective cation channel [83]. However, this effect 

at normal physiological levels has not been verified yet [83]. 
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 1.5.5. Phenylalkylamine derivatives 

Phenylalkylamine derivatives are small molecule, orally active compounds that modify the 

affinity of the CaSR for Ca2+. The compounds that increase the affinity of CaSR for Ca2+ are 

known as calcimimetics, whereas those inhibiting the activity of CaSR are known as calcilytics. 

Calcimimetics function only in the presence of extracellular Ca2+ (minimum 0.5 mM) and hence 

are positive allosteric modulators [29]. The first generation calcimimetics were NPS-467 and 

NPS-568 which increased the sensitivity of CaSR for Ca2+ in CaSR transfected HEK-293 cells and 

concurrently decreased the secretion of PTH in cultured bovine parathyroid cells [29]. NPS-568 

was tested for use in humans against secondary hyperparathyroidism (HPT) caused by end-

stage renal disease [84, 85]. The compound decreased the serum PTH concentrations, increased 

calcitonin secretion from thyroid C-cells and lowered ionized Ca2+ in the serum [84, 85]. 

However, NPS-568 was superseded by a second generation calcimimetic called Cinacalcet (NPS 

1493, AMG 073, Sensipar®) which has better bioavailability and pharmacodynamics [86, 87]. 

Cinacalcet is the first calcimimetic available as an FDA-approved drug for the treatment of 

secondary HPT and it efficiently reduces serum PTH, Ca2+ and Ca2+-phosphorous levels [88-91]. 

Interestingly, it has been shown that calcimimetic NPS-568 can act as a small-molecule 

chaperone for CaSR. CaSR like all GPCRs, exhibits a secretory pathway for cell-surface 

trafficking. Typically for GPCRs after synthesis the polypeptide is directed to the ER, where the 

receptor gets folded, anchored in the ER membrane and is core-glycosylated. It is here that a 

chaperone if any, couples to the receptor. Next, the receptor is transported to the Golgi 

apparatus where it is terminally glycosylated before delivery to the plasma membrane. It was 

observed in a study that overnight incubation with NPS-568 under normal cellular Ca2+ levels, 

rescued the loss-of function CaSR mutants from ER retention and increased their expression on 

the cell membrane in transfected HEK-293 cells [92]. Using 35[S]cysteine labeling strategy to 

mark the newly synthesized 35[S]CaSR, it was discovered that NPS-568 increased the plasma 

membrane CaSR population by inducing an active conformation of the CaSR which increased its 

co-translational stability and also increased the entry of maturely glycosylated CaSR into the 
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secretory pathway from ER to cell membrane [93]. This shows a conformational check point in 

the ER as a part of CaSR biosynthesis [93].  

NPS 2143 (Ic50 ~43nM) was the first calcilytic reported to inhibit the function of CaSR in 

transfected HEK-293 cells and increase the secretion of PTH in cultured bovine parathyroid cells 

[94]. However, its long half-life resulted into chronic PTH elevations causing increased bone 

turnover, but no change in the bone mineral density [95]. This study led to a novel approach for 

the development of treatment for osteoporosis, whereby short increases in endogenous PTH 

levels can result in bone formation [95].  

SB-423557, a calcilytic derived from NPS 2143, demonstrated 2-3 fold transient increase in PTH 

levels leading to increased bone mineral density along with normal tolerance in healthy human 

volunteers [96]. With recent advances other calcilytics with promising initial results in animals 

have been developed like compound 7h and 11m by Novartis and JTT-305 [97, 98] but their 

potency, efficacy and safety in clinical trials have not been reported yet. 

1.6. Structure-functional relationships of the CaSR: 
Brown et al were the first to clone the CaSR by functional screening of the Xenopus laevis 

oocytes transfected with bovine parathyroid-gland RNA library [10]. As described earlier, CaSR 

belongs to the Family C of GPRCs. The topological structure predicted from its nucleotide 

sequence consists of three main structural domains: (1) a large extracellular amino terminal 

domain (ECD) which is also called as the “Venus-flytrap” (VFT) domain of ~600 aa (2) a ~250 a.a 

TM domain and (3) ~200 aa C-terminal tail [10].  

 1.6.1. The extracellular domain (ECD): 

The large ECD of the Family C GPCRs shares a common topology of a bilobed “Venus-flytrap” 

structure. The structure of the ECD of Class C receptors was first identified by 3D modeling of 

the ligand binding ECD of the metabotropic glutamate receptor1, based on its homology with 

bacterial periplasmic binding protein observed by sequence identity analysis [99]. In the case of 

CaSR, structural homology using the solved crystal structures of the extracellular ligand-binding 

domains of mGluR1 [100], mGluR3 and mGluR7 [101], demonstrated that CaSR shares the bi-
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lobed Venus-flytrap (VFT) (~600 aa) domain followed by 62 residue of cysteine-rich domain 

[102].  

The N-terminal domain of the CaSR extends from the residues 20 to 536 and has 11 

glycosylation sites [10, 103]. N-linked glycosylation is shown to be important for the effective 

cell-surface delivery of CaSR [104]. Site-directed mutagenesis revealed that out of the 11 

putative N-glycosylation sites, 8 are effectively glycosylated and the glycosylation of at least 

three sites is critical for cell-surface expression of the receptor [105].  

ECD is the binding site for Ca2+ as was demonstrated by chimeric receptor approach using ECD 

of the CaSR and TM domain and C-tail of mGluR1 to measure PI-PLC responses to Ca2+. It was 

shown that the mutant receptor was not compromised for its Ca2+-sensing ability and could 

activate PI-PLC effectively, thus indicating that Ca2+ bound to the ECD [106, 107]. Recent studies 

by Huang et al have mapped at least 5 important separate residues on lobes 1 and 2 of the ECD 

and the hinge region connecting them as putative Ca2+ binding [108]. Here the ECD was divided 

and cloned into three functional subdomains containing putative Ca2+ binding sites predicted 

using homology modeling with mGluR1. The divalent binding characteristics of these proposed 

sites were tested using terbium-luminescence transfer analysis and intracellular Ca2+ increases. 

(Here, terbium ion- Tb3+, is used as a trivalent-analogue for Ca2+ as it has same ionic radius and 

it produces luminescence due to energy transfer from the aromatic residues in the binding 

pocket, and hence is used to probe Ca2+ sites. Additionally, terbium binding is competed with 

increasing concentration of Ca2+). Based on the results obtained, a two-state CaSR activation 

model was proposed [108] (Fig 1.5); according to which, under normal physiological Ca2+ levels 

(1.1-1.3mM), the receptor exists in a partially active form due to Ca2+ binding to only one high 

affinity site (site 1 shown in figure 1.5) and is responsible for sensing and maintenance of this 

balance (basal activity). At lower Ca2+ levels than 1.1-1.3mM, the conformation of the receptor 

changes to inactive form due to dissociation of Ca2+ from the high-affinity site 1. Such a change 

would facilitate secretion of PTH, which in turn elevates extracellular levels of Ca2+. On the 

contrary, under very high Ca2+ levels, the receptor changes to an active conformation, due to 

Ca2+ docking at all the binding sites; which in turn leads to inhibition of PTH secretion [108]. The 
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study also identified the known loss and gain-of-function mutations related to FHH and ADH 

respectively within the identified Ca2+ binding sites, which not only supports the results 

obtained, but also gives a physiological significance to them [108]. 

Also, the binding site for neomycin is localized to the ECD as reported by a study where a 

chimeric receptor, containing ECD of mGluR1 and TM domain and C-tail of CaSR, could not be 

activated by neomycin, whereas the reverse configuration of the chimeric receptor responded 

to neomycin [107]. 

 

Figure 1.5: Hypothesised two-state working model of CaSR: 

White circles represent empty sites and grey circles represent Ca2+ docked sites. LB=lobe. The active and 

inactive forms are in equilibrium, and the state of the receptor’s activity varies in response to the 

association or dissociation of Ca2+ ions in the predicted binding sites. High-affinity site 1 senses the 

normal range of extracellular Ca2+ levels (1.1-1.3mM). Under low-Ca2+ conditions, the Ca2+ binding sites 

are empty, and the CaSR exists in an inactive conformation. Under high-extracellular Ca2+ conditions, the 

binding of Ca2+ to all sites leads to conformational changes that favor activation of the receptor. Thus, 

deviation from the state of homeostasis can be restored by the sensing of extracellular Ca2+ by these 

putative Ca2+-binding sites and the resultant reversible conformational changes [108]. “Reprinted with 

kind permission from [108]. Copyright (2009) American Chemical Society”.  

 

In addition to the role as an orthosteric ligand binding domain, the ECD is also involved in CaSR 

dimer formation by harboring Cys-Cys covalent bond site [109], which is discussed further in 

section 1.6.4.  
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A separate cysteine-rich domain is attached to the end of ECD by non-covalent interactions 

[110], that consists of 9 highly conserved Cys residues which is responsible in activating the TM 

domain by the conformational changes due to agonist binding to the ECD [102].  

 1.6.2. The trans-membrane domain: 

The seven trans-membrane helices of the CaSR along with the extra and intracellular loops are 

involved in non-redundant roles such as processing and cell-surface trafficking of the receptor 

[111], maintaining normal conformation of the receptor [68, 112], binding of phenylalkamine-

derived allosteric modulators [113] and G-protein coupling [114].  

CaSR requires all the seven trans-membrane domains for core glycosylation and cell-surface 

expression of the receptor. It was shown that CaSR mutants with three or five trans-membrane 

domains expressed in HEK-293 cells were not core-glycosylated, failed to traffic to the cell-

surface and hence showed no activity in response to extracellular Ca2+  [111]. This can be due to 

improper folding and ER retention or faster degradation of these mutant receptors when 

compared to the wild-type receptors [111]. It has been shown that five important acidic 

residues (Glu-755, Glu-757, Asp-758, Glu-759 and Glu-767) on the extracellular loop 2 are 

responsible for cell-surface trafficking and response to Ca2+ [112]. 

In addition to this, the TM domain contains residues that prevent an increase in the sensitivity 

of the receptor towards ligand without changing its cell-surface trafficking. Alanine-substitution 

of three residues of TM domain which are conserved among the family C members (Asp-758, 

Glu-759 and Glu-767), increased the sensitivity of CaSR for Ca2+, leading to a speculation that 

these residues impose conformational limitations to the CaSR to reduce its basal activation 

[112]. Indeed the physiological importance of this is demonstrated by the presence of activating 

mutations of CaSR causing ADH, in the TM domain. Residues between Ile-819 and Glu-837 

present at the junction of TM helices 6 and 7 (includes extracellular loop 3) harbor these 

activating mutations, which increase the sensitivity of the receptor for Ca2+, without change in 

cell-surface expression levels in context to wild-type receptor [68]. This ‘hot-spot’ for ADH 

mutations was discovered by creating CaSR mutants using systematic alanine mutagenesis of 

these residues and measuring responses to Ca2+ in HEK-293 cells [68]. Also, an important 
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residue Pro-823 on TM6 of CaSR is responsible for switching of the receptor from an inactive to 

an active (functional) state upon Ca2+ binding. [68].  

TM domain of the CaSR is also responsible for binding of its positive and negative allosteric 

modulators. A study using chimeric receptor approach with the amino-terminus of the 

rhodopsin receptor and the TM domain and C-tail of the CaSR demonstrated that the mutant 

receptor still retained biological activity towards NPS-568, an allosteric positive modulator 

[113]. Different approaches have been used to map the residues within the TM domain 

responsible for binding the allosteric modulators. These include using ECD deleted CaSR 

mutants [48]; mutation of specific residues of the TM domain [48][94]; using a homology model 

of CaSR TM domain made by sequence alignment with the rhodopsin receptor backbone [115]; 

as well as a three-dimensional model of the CaSR TM domain built via sequence alignment 

method based on the conserved residues obtained by using the crystal structure of bovine 

rhodopsin receptor as a template [116]. The results obtained by these studies have revealed 

overlapping and separate binding residues for NPS-568 (calcimimetic) and NPS 2143 (calcilytic) 

on the TM helices 2, 3, 5, 6 and 7 (double-lined and bold circles in figure 1.6) [68, 112, 115-117] 

(TM domain 3 and 5 residues- exclusively bind calcilytic; TM helices 6 and 7 shared residues for 

both). This suggests that the binding pockets of the positive and negative allosteric regulators 

are partially overlapping, but not identical.  

Also, using chimeric receptor containing ECD of mGluR1 and TM domain and C-tail of the CaSR, 

it was observed that Gd3+ could activate the mutant receptor transfected in Xenopus laevis 

oocytes, indicating the presence of its possible binding site in TM domain of the CaSR [107].  

The intracellular loops of CaSR are important for interaction of the receptor with Gq/11 proteins 

(broken circles in figure 1.6), which were discovered by testing the effect of alanine scanning 

mutagenesis on signalling of the bovine CaSR [114]. CaSR also couples to other G-proteins as 

described later but the mechanism by which it couples to other G-proteins is still unknown. 
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Figure 1.6: Schematic representation of CaSR TM domain: 

7 TM domains of CaSR are shown with alternating extracellular loops are shown in light grey and 

intracellular loops are shown in dark grey. Double-lined residues represent interacting sites for both 

calcimimetics and calcilytics. Bold circles are residues interacting with calcilytics only. Broken circles on 

intracellular loop 2 and 3 represent residues affecting Gq/11 mediated PI-PLC activation. Reprinted from 

[118] with kind permission from John Wiley and Sons. License number- 2777650617213. 

 

1.6.3. The C-terminal domain: 

C-terminal tail of the human CaSR is 216 aa long and is composed of residues 863-1078 [28]. 

Functional importance of the C-tail of CaSR is rendered by stretches of residues from 865-898 

which are shown to be involved in cell-surface trafficking and/or signalling of the receptor [69, 

93, 111].  

In the case of residues important for receptor trafficking, CaSR C–tail substitution or deletion 

mutants revealed that residues between 865-874 (double circles in figure 1.7) promoted cell-

surface receptor expression [111]. Recently, it has been demonstrated that residues between 

868 to 898 are responsible for ER retention, a property of the CaSR which acts as a quality 

control checkpoint [93]. They used 35[S]cysteine labeling pulse chase to monitor receptor 

synthesis and trafficking of wild type vs C-tail truncation CaSR mutants [93].  
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For normal signal transduction of the CaSR, residues 865-888 (grey circles in figure 1.7) are 

essential for PI-PLC activation [111]. Also, the residues between 868-886 (region indicated by 

broken line in figure 1.7), especially the residue 876; appears to be important for the Ca2+ 

sensitive activation of Gq-proteins [69].  

Activation of the CaSR can cause phosphorylation of protein kinase C (PKC), which disrupts the 

signalling of the receptor. PKC mediated phosphorylation of active CaSR causes inhibition of 

most of the PI-PLC mediated signalling [119, 120]. The CaSR C-tail as well as intracellular loops 

of the TM, contain five PKC phosphorylation sites, out of which T888 is the major site (inverted 

black triangle in figure 1.7) [119]. Hence, PKC-mediated CaSR phosphorylation serves as a 

negative feedback mechanism leading to oscillations of Ca[i] instead of constant elevated Ca[i] 

and thus protecting against the cytotoxic effects of the latter [120].  

There is evidence suggesting an involvement of GRK (GPCR kinase, regulating the activity of the 

receptor) and β-arrestins in PKC-mediated inhibition of CaSR signalling in HEK-293 cells over-

expressing GRK, PKC, β-arrestin and CaSR. It was initially reported that over-expressing GRK-2, 

GRK-4 and β-arrestin-2 in HEK 293-CaSR transfected cells caused agonist dependent inhibition 

of CaSR signalling via GRK-mediated PKC phosphorylation of the receptor and subsequent 

translocation of β-arrestin to the C-tail of the CaSR [121]. However, a more recent study using 

HEK-293 cells modified for stronger anchorage has suggested that an agonist dependent CaSR 

phosphorylation by PKC leads to β-arrestin mediated inactivation and desensitization; whereas 

GRK-2 and not 4 leads to agonist dependent CaSR inactivation and desensitization by inhibiting 

the Gαq proteins and not by PKC activation as previously reported [122]. In addition to these in 

vitro studies, β-arrestin-2 null-mouse exhibited increased sensitivity to Ca2+ [121]. This was 

demonstrated by lower PTH levels under normal conditions compared to the wild-type mice, 

and an attenuation of increase in PTH secretion in response to forced hypocalcaemia, hence 

further suggesting a possible role of β-arrestin in CaSR desensitization [121]. 

Slower desensitization following agonist stimulation is an important feature of CaSR in 

physiology which is attributed to the C-terminal tail. It was shown that the residues between 

868-886 (region indicated by broken line in figure 1.7), especially 876, was responsible for CaSR 
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desensitization [69]. This was done by measuring Ca2+ activation of various CaSR C-tail 

truncated-GFP fused mutants and then studying their desensitization by visualizing for GFP to 

assess their location and expression levels (post-activation) [69]. 

 

 

Figure 1.7: Schematic representation of CaSR C-tail: 

Double circles: Residues 863-874 supporting receptor expression and signal transduction. Grey circles: 

Residues responsible for PI-PLC signal transduction alone. Broken line circles: Responsible for co-

operativity and decreasing rate of de-sensitization. Inverted black triangle: T-888 PLC phosphorylation 

site. Black circles: Residues 960-990 binding site for filamin A (discussed in section 1.8.3). Reprinted from 

[118] with kind permission from John Wiley and Sons. License number- 2777650617213. 

 

1.6.4. Homo-dimerization of CaSR: 

Oligodimerization is a commonly observed phenomenon amongst GPCRs, especially with Family 

C receptors where it is a characteristic feature [123, 124]. CaSR exists as a homo-dimer on the 

cell-surface and it is shown that its glycosylation is essential for the formation of a dimer [109, 

125]. CaSR dimerization was discovered by reducing SDS-PAGE electrophoresis where shift in 

the pattern of bands compared to non-reducing conditions were observed [125]. It was shown 
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in transfected HEK-293 cells that the CaSR could exist in immature form being glycosylated with 

carbohydrates with high mannose content (130-140kDa immune-reactive band) which is 

present only intracellularly. On the cell-surface, it was present only in a mature state of 

glycosylation (150-160kDa immune-reactive band) [70, 104].  

CaSR was shown to mainly exists as a dimer on the cell-surface, at a size greater than 200kDa 

observed by non-reducing SDS-PAGE using HEK-293 CaSR-transfected cell sample. It was further 

shown that a proportion of 200kDa product got converted into a 160kDa band under reducing 

conditions. This shows that only the mature glycosylated disulphide-linked dimeric CaSR is 

present on the cell-surface [125]. These results were confirmed by co-immunoprecipitation 

experiments by transfecting separately-tagged CaSR monomers into HEK-293 cells [126]. Also, it 

was reported that cross-linking of the cell-surface proteins before SDS-PAGE produced bands 

for CaSR at a size greater than 280KDa suggesting its existence as a high-order oligomer on the 

cell-surface [125].  

The site for dimerization of CaSR has been mapped on the ECD of the receptor. It was shown 

using site-directed mutagenesis approach that Cys-129 and Cys-131 located within the region 

protruding from one lobe of the Venus fly-trap domain, are essential for forming covalent 

disulphide linkage for the dimer formation [109]. However, it was observed in a later study that 

mutating these residues could still facilitate the formation of a functional CaSR-dimer, via non-

covalent bonds between unrecognized residues possibly present in the TM domain [126]. 

The importance of CaSR dimerization was demonstrated by co-expression of two CaSR mutants- 

one with a subunit unable to bind the agonist (mutation in ECD) and another with subunit 

deficient for G-protein activation (mutation in intracellular loop). It was observed that both the 

mutants could still form dimers that led to signaling, thus uncovering the significance of 

dimerization of the CaSR to form a functional receptor unit [127]. This result also shows that 

the ECD and the COOH are two important functional domains for the activity of the CaSR, which 

may have compensatory role when either one of them is mutated [127].  
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1.7. Signalling of CaSR: 
Following the activation of CaSR, downstream signalling is complex and cell-type dependent. 

CaSR has been shown to activate various signalling pathways (figure 1.8) depending on the 

agonist or the cell type. Signalling of the CaSR is discussed in more detail in section 4.1.2 of 

chapter 4. 

1.7.1. Pleiotropic G-protein coupling and activation of phospholipases: 

CaSR is shown to couple to more than one G-protein by experiments in different cell types [128-

131]. The most characterized response upon activation of CaSR is increase in intracellular Ca2+ 

levels mediated via Gq/11 activated PLC-IP3 pathway, in both CaSR transfected HEK-293 and cell 

types endogenously expressing CaSR including bovine parathyroid cells. [132-135]. In CaSR 

transfected HEK-293 cells other phospholipases are also activated via Gq/11 pathway such as 

PLA2 which activates arachidonic acid and PLD which forms phosphatidic acid [132] 

Apart from Gq/11, CaSR can also couple to Gαi which inhibits adenylate cyclase activity by 

reducing cAMP stimulation [129]. In transfected canine kidney cells stably expressing CaSR, it 

was shown that CaSR signals via G12/13 proteins [130]. Interestingly, it has been shown that CaSR 

which couples to Gαi in normal breast epithelial cells, changes its G-protein preference to Gαs in 

two breast cancer cell lines, with a potential significance for pathogenesis of cancer via PTHrP 

secretion [131]. The mechanism for this is still unknown. 

1.7.2. Protein Kinases: 

CaSR activation has also been associated with activation of various MAPKs to induce mitogenic 

effects of extracellular Ca2+ on cells such as osteoblasts [136], ovarian surface epithelial cells 

[137], fibroblasts [138], opossum kidney and ovarian surface epithelial cells [81, 139, 140].  

ERK1/2 activation following Gq/11 and Gi activated PLC-PKC activation by CaSR has been 

demonstrated in transfected HEK-293 cells and cultured human parathyroid cells [141, 142]. 

ERK 1/2 activation has also been attributed to PI3-K-Akt pathway in various cell types such as 

opossum kidney and ovarian surface epithelial cells [81, 139, 140]. How these pathways are 

chosen or interact to cause ERK1/2 activation is not yet established. 
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Others MAPK activated by CaSR are p38 in HEK-293 transfected cells, murine osteoblasts like 

cells and Leydig cells [143-145] and JNK in H-500 Leydig cells and canine kidney cells line MDCK 

[145, 146]. However, the significance of activation of different MAPKs by CaSR is not fully 

understood in terms of its different biological actions via different ligands. Also, how various 

signal transduction pathways (i.e. different G-proteins to phospholipases to different MAPK 

activation) synchronize dependently, or chosen exclusively based on agonist/cell type is poorly 

understood.  

 

Figure 1.8: Schematic overview of signalling pathways activated by the CaSR. 

1.8. Interaction of CaSR with other receptors and proteins: 

 1.8.1. Family C GPCRs: 

Family-C GPCRs have a characteristic feature of forming homodimers or heterodimers. As 

already discussed, CaSR exists as homo-dimer on the cell-surface. Other family C receptors like 

GABA receptors are shown to form obligatory functional hetero-dimers containing GABA(B1) 

and GABA(B2) sub-units [147].  Also, it has been shown that Family C GPCRs can form high-

order oligomers/hetero-dimers amongst themselves. CaSR and mGluR1α were co-

immunoprecipitated from bovine brain and co-localized in hippocampal and cerebellar regions 

[148]. This interaction was confirmed in transfected HEK-293 cells where CaSR and mGluR1α or 
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mGluR5 formed disulphide linked dimers. Furthermore, CaSR and mGluR1α or mGluR5 

heterodimer complex, exhibited glutamate sensitivity and glutamate induced internalization, as 

well as enhanced cell-surface expression when co-transfected with mGluR binding partner 

homer 1c [148]. 

In cultured growth plate chondrocytes, CaSR forms heterodimers with GABA(B) receptor, as 

shown by co-immunoprecipitation [149]. Knock-down of GABA(B) blunted high Ca2+ mediated 

PLC and ERK1/2 activation, suppressed cell proliferation and increased apoptosis, suggesting a 

role of CaSR-GABA(B) heterodimer for Ca2+ sensitivity and normal functioning of growth plate 

chondrocytes [149]. In another study, CaSR+GABA(B1) and CaSR+GABA(B2) heterodimer was 

co-immunoprecipitated from co-transfected HEK 293 cells as well as from mouse whole brain 

and hippocampal neurons [150]. Although CaSR could traffic to the cell-surface on its own in 

transfected HEK-293 cells, GABA(B2) seemed to enhance the cell-surface population of CaSR as 

well as PLC activation following activation by Ca2+, an effect which was not observed with 

GABA(B1) [150]. It is noteworthy that in transfected HEK 293 cells, CaSR facilitated cell-surface 

expression of GABA (B1) subunit, which on its own was restricted inside the ER [150]. 

 1.8.2. Caveolae: 

Caveolae are microdomains present on the plasma-membrane, where multiple signaling 

molecules are concentrated. CaSR is found co-localized with caveolae, which contains Gαq/11, 

nitric oxide synthase and several PKC isoforms in bovine parathyroid cells [151]. Caveolin-1 is 

phosphorylated upon activation of the CaSR [151]. In addition to bovine parathyroid cells, 

caveolin-1 is also co-localized in human parathyroid cells in culture, where it negatively 

regulates the activity of ERK1/2 [152]. This was shown by observations where the localization of 

phosphorylated ERK1/2 was found in caveolin-1 in normal cultured bovine and human 

parathyroid cells. On the contrary, in parathyroid cells cultured from adenomas, decrease in 

caveolin-1 expression was co-related to hyperactivity of ERK1/2 localized in perinuclear and 

nuclear regions. This resulted in increased cell proliferation and reduced Ca2+ sensitivity [152]. 

This suggests a role of caveolae in normal functioning of Ca2+ sensing of parathyroid cells.  
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 1.8.3. Filamin A: 

Filamin acts as a scaffolding protein that crosslinks actin and can directly link the cell-surface 

receptors to the cytoskeleton. CaSR has been shown to interact with the scaffolding protein 

filamin A in transfected HEK-293 and melanoma cells; and bovine parathyroid cells [153-155]. 

Using yeast-two hybrid system and co-immunoprecipitation method, it was shown that the 

residues 907-997 (shown by black circles in figure 1.6 ) of CaSR C-tail are responsible for its 

interaction with filamin A [153, 154]. In absence of filamin A, CaSR failed to activate ERK1/2 in 

CaSR-transfected melanoma and HEK-293 cells [153, 154]. However, in a different study it was 

demonstrated that although the CaSR C-tail truncation mutants from 962-997 failed to establish 

high affinity interaction with filamin A, they could still activate ERK1/2 signalling [155]. The 

same mutants failed to activate ERK1/2 pathway in cells lacking filamin A, implying its presence 

but not necessarily high affinity interaction with CaSR, a prerequisite for ERK1/2 signalling 

[155]. This was further explained by the evidence in transfected HEK-293 cells showing that the 

essential residues for ERK1/2 activation lie between 868-879 of CaSR, which were still intact in 

the mutants [155]. The researchers suggested that the role of filamin A is to enhance cell-

surface expression of the CaSR by decreasing its degradation rate [155] (it is interesting to note 

that in the same study some CaSR reached the cell-surface in absence of filamin A, suggesting 

an alternate mechanism). Additionally, it binds and organizes components of MAPK signalling 

cascade [153-155].  

 

 1.8.4. Receptor Activity Modifying Proteins (RAMPs): 

RAMPs are type-1 TM accessory proteins with a single TM domain, originally discovered to 

confer ligand binding specificity to the family B Calcitonin-like receptor (CLR) [156]. There are 

three isoforms of RAMPs (RAMP 1, 2 and 3) in humans [156]. It was shown that RAMP1 and 3 

interact with CaSR in transfected cells to traffic the receptor to the cell-surface [157]. On 

studying the trafficking and surface expression of pH-sensitive green fluorescent-protein variant 

super ecliptic pHfluorin (SEP)-CaSR, it was observed that this phenomenon differed markedly in 

transfected HEK-293 cells and COS-7 cells. In COS-7 cells the SEP-CaSR could not exit ER where it 

was trapped in immature core glycosylated form, whereas it displayed robust expression on 



49 
 
 

plasma membrane in HEK-293 cells. Using immunocytochemistry, co-immunoprecipitation and 

siRNA approaches, it was discovered that in HEK-293 cells the endogenously expressed RAMP1 

facilitated the cell-surface trafficking of the CaSR [157]. It was subsequently discovered RAMP3 

was also a partner of CaSR with the same functional consequence [157]. On the other hand, 

expressing RAMP1 or 3 in RAMP-negative COS-7 cells, facilitate the cell–surface expression of 

the otherwise ER-trapped CaSR. So, interaction of CaSR with RAMP1 and RAMP3 but not 

RAMP2 is essential for its cell-surface trafficking in HEK-293 and co-transfected COS-7 cells 

[157]. It was shown that RAMPs facilitated glycosylation of CaSR, thereby trafficking it to the 

plasma membrane [157]. However, other functional consequences like signalling were not 

tested in this study. The proposed working model of this interaction is shown in the figure 1.9 

below:  

 

 Figure 1.9: Proposed model for RAMP regulation of CaSR trafficking:  

(A) In absence of RAMP1/3, CaSR is retained inside the ER in core-glycosylated form in COS-7 cells; 

whereas (B) in HEK-293 cells, expressing RAMP1 endogenously, or in COS-7 cells transfected with 

RAMP1/3, their association with CaSR bypasses the ER retention and reaches Golgi apparatus where it is 

terminally glycosylated, followed by cell-surface delivery of the receptor complex. Image 

reproduced/adapted with permission of “Journal of Cell Science” from the paper [157]. 
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Another family C GPCR known as the GPCR6A also showed a similar failure of cell-surface 

expression when transfected alone [158, 159]. Given below is the background information on 

the receptor.  

1.9. GPRC6A and its role in physiology: 
GPRC6A was identified using homology searches of all known family C GPCRs [158]. cDNA 

cloning using human kidney cDNA library revealed three isoforms of the receptor containing 6 

exons. Isoform 1 is 926 aa in size with 7 TM domains and a large 590 aa N-terminal domain, 

whereas isoforms 2 and 3 are smaller and naturally occurring splice variants of the receptor 

[158]. GPRC6A has 34% aa sequence identity to the CaSR, 28% aa identity to the taste receptor 

1, 24% aa identity to mGluR1 and 45% identity with odorant goldfish receptor 5.24 [158]. 

It has been observed using c-myc tagged hGPRC6A that the receptor is poorly expressed on the 

cell-surface of transfected HEK 293 cells when compared to GABABR, whereas there is no cell-

surface expression of the receptor in CHO and COS-7 cells [158, 159]. However, it has been 

reported that the mouse-GPRC6A trafficked to the cell-surface more efficiently than the 

human-GPRC6A in transfected HEK-293 cells [159]. 

GPRC6A is highly expressed in kidneys, heart, liver, skeletal muscle, testis, spleen, leucocytes 

and at comparatively lower levels in brain, pancreas, bone, calvaria, placenta and lung, 

suggesting its role in various physiological processes [158, 160, 161]. 

Nutrient sensing 

The role of GPRC6A in nutrient sensing has mainly been related to its promiscuity to sense L-aa 

and its expression in gut [159, 160]. GPRC6A along with CaSR have been localized in rat gastric 

somatostatin-secreting D cells [162]; and in the rat gastric antrum which contains gastrin 

secreting cells [163]. It was observed that mouse GPRC6A transfected in oocytes elicited inward 

current for intracellular Ca2+ activation on exposure to L-aa such as arginine, lysine, serine, 

alanine, glycine , ornithine, cysteine and histidine in the presence of 0.5mM extracellular Ca2+ 

[159, 160]. Similar results were obtained when a chimeric receptor containing human-GPRC6A 

ECD and TM domain and C-tail of closely related odorant receptor 5.24 from fish was expressed 
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in oocytes [159], which also indicate that the ECD of GPRC6A is sufficient for nutrient sensing. 

GPRC6A has also been reported to be present in type 1 taste cells along with CaSR in murine 

taste tissue; however the role of GPRC6A in taste perception is not yet elucidated [164]. 

 

Bone and bone-pancreas endocrine loop 

Apart from being an L-aa sensing receptor, GPRC6A also responds to cations including Ca2+; 

leading to speculations of it being an alternative CaSR [165]. It was shown in HEK-293 cells 

overexpressing GPRC6A that Ca2+, magnesium, gadolinium, aluminium and NPS-R568 (an 

allosteric activator of CaSR) caused ERK phosphorylation via a Gαq and Gαi-mediated pathway 

[165]. Furthermore, alignment of CaSR with GPRC6A has shown that the Ca2+ and NPS-R568 

binding sites are conserved in GPRC6A [165]. However, differences in affinities of these shared 

agonists exist between GPRC6A and CaSR. For example higher levels of extracellular Ca2+ were 

required to activate GPRC6A as observed by increased ERK phosphorylation (minimum 5mM) 

and intracellular Ca2+ (40mM), in comparison to ~3mM for CaSR. This strongly suggests lower 

affinity of GPRC6A for Ca2+, which is much higher than its circulating levels [165]. The role of 

GPRC6A in bone biology has been shown by deletion of the gene in mice. It was observed by Pi 

et al that Gprc6a-/- mice lacking exon 2 (codes for ECD) exhibit osteopenia and decreased bone 

mineral density (BMD), due to impaired bone mineralization [161, 166]. This is associated with 

reduced expression of osteoblast function markers like osteocalcin, alkaline phosphatase (ALP), 

Runx2 and osteoprotegerin [166]. Ex vivo cultures of the primary osteoblasts and bone marrow 

stromal cells derived from these  Gprc6a-/- mice, displayed an attenuated response to 

extracellular Ca2+-stimulated ERK activation, diminished ALP expression and impaired 

mineralization [166]. On the contrary, an earlier study by another group (Wellendorph et al) 

using TM domain and C-tail lacking Gprc6a-/- mice of the same strain, showed that there was no 

difference in bone phenotype between knock-out and wild type mice; consequently not 

suggesting a role of mGPRC6A in osteoblasts [167]. Although the reasons for these contrasting 

observations are currently unknown, the effects of different mutant mGPRC6A forms (TM+C-

tail deletion vs ECD deletion) might vary [166]. 
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In addition to the abnormal bone phenotype, the exon-2 lacking Gprc6a-/- mice also exhibit 

metabolic disorders such as hepatic steatosis (fatty liver), hyperglycaemia, glucose intolerance 

and insulin resistance as well as increased renal Ca2+ and phosphorous excretion [161]. These 

defects were linked to malfunctions in energy metabolism caused by aberrant osteocalcin 

function, which is a ligand of GPRC6A [161, 168]. Osteocalcin is an osteoblast-specific secreted 

molecule, which has been shown to be involved in the bone-pancreas endocrine loop. Insulin 

signalling in osteoblasts promotes osteocalcin production as well as maturation [169]. The 

matured osteocalcin acts on the β-cells of pancreas where it increases insulin secretion and 

consequently insulin sensitivity, thus forming a feed-forward loop integrating bone function 

and energy metabolism [169]. Recently it has been shown both in vitro and in vivo that 

osteocalcin activated mGPRC6A-mediated ERK activation in β cells of pancreas leading to 

increased insulin secretion [168]. Accordingly, the metabolic disorders in the exon-2 lacking 

Gprc6a-/- mice are largely associated with the disrupted osteocalcin-endocrine loop [161, 168]. 

Testosterone mediated physiological functions: 

GPRC6A is also linked to functions of testosterone as shown by in vitro and in vivo studies [161, 

170, 171]. The exon-2 lacking Gprc6a-/- male mice show decreased lean body mass, increased 

mammary pad fat mass, decreased weight and size of testes and seminal vesicles, increased 

circulating levels of estradiol and reduced levels of testosterone [161]. These mice exhibited 

decreased ERK activation in bone marrow and testis in response to testosterone [170]. 

These effects are supported by in vitro studies where hGPRC6A transfected in HEK-293 cells and 

natively expressing in mouse prostate cancer cell line 22Rv1, showed increased ERK 

phosphorylation and enhanced 22Rv1 cell proliferation in response to permeable and 

impermeable form of testosterone [170]. This effect was attenuated by GPRC6A siRNA-

mediated knock-down [170].  

Taken together it is suggested that, GPRC6A might coordinate the anabolic responses of various 

tissues through the sensing of extracellular aa, osteocalcin, divalent cations and androgen 

[161].  
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1.10. RAMPs and their interacting partners: 
RAMPs were discovered to engender ligand-binding specificity to a previously thought orphan 

Family B GPCR for Calcitonin Gene Related Peptide (CGRP) known as the Calcitonin Like 

Receptor (CLR) [156]. Three RAMPs – RAMP1, 2 and 3 have been discovered. RAMP1 was 

discovered first by measuring CGRP responses in oocytes transfected with cDNA of human 

neuroblastoma cell line- SK-N-MC. It was shown that when CLR interacted with RAMP1, it 

formed a functional receptor complex for CGRP. Subsequent database searches for RAMP1 ESTs 

discovered RAMP2 and 3 [156]. However, when CLR interacted with RAMP2 or RAMP3, it 

formed two pharmacologically distinct receptor phenotypes for another peptide hormone 

belonging to the calcitonin family known as Adrenomedullin (AM) [156]. RAMPs 1-3 are 

responsible for trafficking of CLR to the cell-surface, altering ligand binding specificity and signal 

transduction following receptor activation [156]. 

In addition to CLR, RAMPs are shown to associate with other GPCRs. Interacting partners of 

RAMPs discovered so far are summarized in the table below: 

GPCR RAMP Consequence 

CLR RAMP 1, 2, 3 
CLR+RAMP1= functional CGRP receptor 
CLR+RAMP2/3 = functional AM receptor 

CTR RAMP1,2,3 Each RAMP form distinct amylin receptors 

VPAC1 RAMP 1,2,3 VPAC1+RAMP2 show enhanced PI hydrolysis 

PTH1R RAMP2 unknown 

PTH2R RAMP3 unknown 

GlucR RAMP2 unknown 

Secretin RAMP3 No change in signalling and internalization of the receptor. 

CaSR RAMP1,3 Essential for cell-surface trafficking of the receptor. 
Table 1.2: GPCR interacting partners of RAMPs 

 

RAMPs associate with another Family-B GPCR known as Calcitonin receptor (CTR) and 

completely change the receptor phenotype to a receptor binding the hormone amylin [172]. 

Accordingly, RAMP 1-3 interact with CTR and bind amylin, giving rise to different amylin 

receptor phenotypes [172, 173]. Also, receptor derived by RAMP1 and 3 and CTR interaction 
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also shows moderate affinity for CGRP. However, binding of CT does not require association of 

CTR with any RAMPs [172, 173]. 

Other interacting partners of RAMPs from family B GPCRs have also been discovered using 

immunocytochemistry technique on overexpressed tagged RAMPs and receptors in COS-7 and 

HEK 293 cells [174]. It was found that Vasoactive Intestinal peptide/ Pituitary Adenylate 

Cyclase–activating peptide (VPAC-1) receptor interacts with all three RAMPs [174]. VPAC-

1R/RAMP2 complex displays enhanced agonist mediated PI hydrolysis without any change in 

cAMP stimulation compared with VPAC-1R alone, indicating alteration of signaling pathway by 

RAMP2 [174]. Parathyroid hormone -1 receptor (PTH 1R) and glucagon receptor interact only 

with RAMP-2, while PTH 2R with RAMP3, however functional consequences these interactions 

were not studied [174]. The same study also showed that VPAC2R, growth hormone releasing 

hormone (GHRH), glucagon-like peptide 1 (GLP1) and GLP2 receptors do not interact with 

RAMPs [174].  

Another study has shown using bioluminescence resonance energy transfer (BRET) that secretin 

receptor interacts specifically with RAMP3 via the TM6 and TM7 domain of the receptor and 

not RAMP1 and 2 in COS-7 and CHO cells [175]. Functionally, there was no change in signalling 

or internalization of the secretin receptor in presence of RAMP3 [175]. Also, RAMP3 could 

rescue a mutant secretin receptor that is normally trapped inside the cell, showing a chaperone 

role of RAMP3. The study also reported that increasing secretin receptor levels in cells already 

expressing RAMP3 and CLR (AM2 receptor), decreased functional AM2 receptors and increasing 

secretin-RAMP3 interaction, demonstrating the competition for RAMP by GPCRs to form other 

functional molecular interactions [175]. 

In the case of family C GPCRs, only CaSR has been identified as a receptor partner of RAMP1 

and RAMP3 [157] as discussed before in section 1.8.4.  

Since RAMPs are more widely distributed in the body than their known interacting partners 

(see section 1.14), there is a strong possibility that there are yet unidentified GPCR partners of 

RAMPs. 
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1.11. Structure of RAMPs: 
RAMPs are type-1 trans-membrane proteins and share 30% similarity in their primary aa 

sequence [156]. RAMP1 and 3 are 148 aa long while RAMP2 is 175 aa long [156] (Figure 1.10). 

Each RAMP has a short C-terminal domain of ~10 aa and a single TM domain of ~20 aa. The rest 

of the protein consists of an ECD with a signal peptide [176] . RAMP1 and RAMP3 have six 

conserved cysteine residues, four of which are common to RAMP2 [177] (Figure 1.10). In 2008, 

the crystal structure of RAMP1 ECD (figure 1.11) was reported, which suggested that RAMP1 

ECD consists of three α helices stabilized by 3 disulphide linkages formed by six cysteine 

residues [178] which is similar to recently reported ECD of RAMP2, which has 2 disulphide 

linkages instead [179]. There are consensus sites for N-glycosylation in RAMP-2 (one site) and 

RAMP-3 (three sites) which are glycosylated, whereas RAMP1 is unglycosylated [180, 

181](Figure 1.10). 

 

Figure 1.10: Structural comparison of RAMPs: 

RAMP 2 is the least conserved and is 26aa longer than RAMP1 and RAMP3. The conserved cysteine 

residues (C) in the extracellular domain are shown. N-terminal glycosylation sites (N) is shown in pink 

colour. Amino acids in trans-membrane domain are conserved. Conserved Ser-Lys (S,K;blue) are shown 

in intracellular region. Putative phosphorylation sites (threonine in RAMP 1 and 3, and serine in RAMP2) 
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are shown in brown; PDZ binding motif in RAMP3 is shown in green. Adapted from [176] and re-drawn 

by self. 

 

Various structural features of RAMPs contribute towards their specific functions. Majority of 

findings explaining molecular mechanisms of function of RAMPs are based on studies with the 

CLR and CTR. 

1.12. Interspecies variance: 
RAMP genes have been cloned and sequenced from the mouse, rat and human genomes [182, 

183]. Amino-acid sequence identity observed between mouse and human RAMP1, RAMP2 and 

RAMP3 is 70%, 68% and 84% respectively [182]. Mouse RAMPs show 90% sequence identity 

with their counterparts in rats.  

The effect of sequence differences between RAMPs was demonstrated using pharmacological 

studies on receptor complexes formed by RAMPs from one species and receptor from another 

and comparing the results with same-species combinations. It was shown that human 

RAMP2/rat CLR had a lower affinity for CGRP antagonist (CGRP8-37) and AM antagonist (AM22-52); 

than all-rat and all-human RAMP2/CLR complex, as measured by cAMP responses [184]. It was 

shown that hRAMP1 had a higher affinity to form complex with rCLR compared to hRAMP2 

[185]. This was shown when a AM binding to AM receptor formed by co-transfected hRAMP2 

and rCLR in rat osteoblasts UMR 106-06 cells, was reduced by 50% on co-transfection with 

hRAMP1 with a parallel increase in CGRP binding [185].  

In the case of mouse RAMPs, there is discrepancy between the affinity of RAMP3 compared to 

RAMP1/2 to form complex receptor with rCLR [182]. Co-expression of mRAMP1 and 2 with rCLR 

revealed distinct CGRP or AM receptors, with a similar level of interaction with rCLR. This 

suggests that structural difference does not have an effect on the functions of RAMP1 and 2 in 

mouse [182, 183]. Co-transfection of RAMP1 and 3 or RAMP2 and 3 into COS-7 cells with rCLR, 

led to similar levels of ligand binding as RAMP3 alone (with rCLR); suggesting that in these cells, 

RAMP3 has a greater affinity than other RAMPs to form a receptor-complex with the rCLR 

[182]. The physiological significance of these pharmacological differences due to species 
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variation of RAMPs is not explained yet. Detailed information regarding the differences in 

pharmacological profiles between human CGRP, RAMP and AMY receptors is given later.  

 

1.13. Molecular mechanisms of RAMP function: 

1.13.1. Receptor chaperones: 

As described earlier, RAMPs are essential for cell-surface trafficking of CLR in order to form 

CGRP receptor or AM1 and AM2 receptors as discovered by visualizing the internalization of 

tagged receptors following agonist treatment as well as performing signalling studies in 

transfected cells [156, 186]. The cell-surface trafficking property of RAMPs is related to the 

conserved cysteine residues on their N-terminal domain [181, 187]. The conserved cysteine 

residues of RAMPs are shown to form disulphide linkages suggesting common secondary 

structures of 3 helices like the crystal structure of RAMP1 ECD as mentioned earlier (Figure 

1.11). Mutational analyses have shown that loss of four conserved cysteine residues on RAMPs 

significantly compromised the cell-surface trafficking of the CLR [181, 187]. Further loss of two 

cysteine residues in RAMP1 which are conserved in RAMP3 but not RAMP2 do not affect the 

cell-surface trafficking efficiency of RAMP1 [188], whereas no study has been done to 

understand the loss of all the cysteine residues of RAMP3. Also, substitution of histidine 

residues 124 and 127 of RAMP2 with alanine, impaired the cell-surface delivery of CLR [189]. It 

was shown by studies in transfected HEK-239T cells, that RAMPs promoted fully-matured 

glycosylation of CLR that represented the functional CGRP/AM receptors on the cell-surface and 

which selectively bound their respective ligands; whereas the core-immature glycosylated 

forms were not ligand-bound [190]. 
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Figure 1.11: 3D ribbon structure of RAMP1 ECD: 

3 α helices (α1, α2 and α3) are shown in red and the disulphide linkages (C: cysteine residues) are shown 

in yellow [178]. Taken with permission from “John Wiley and Sons”. License number 2785851499230. 

 

In addition to the essential requirement of the N-terminal domain of RAMPs, studies have also 

shown the importance of C-tail in the function of receptor trafficking. It has been suggested 

using HEK-293 cells transfected with tagged RAMPs, that the C-tail of RAMP2 is important for 

cell-surface expression of CLR, as deletion of C-tail of RAMP2 (last 9 aa) led to disruption of CLR 

trafficking to the cell-surface and consequently receptor function, whereas the deletion of 

RAMP1 or 3 C-tail did not disrupt the trafficking of the CLR [191]. Interestingly exchanging the 

C-tails of RAMP2 and 3 with each other did not cause any change in cell-surface expression and 

agonist mediated internalization of the CLR RAMP complex indicating the importance of the 

conserved Ser-Lys residues present in the C-tail of RAMPs (figure 1.10), in cell-surface trafficking 

of the two AM receptors [191]. In stark contrast to this, another study showed that untagged-

RAMP2 C-tail deletion mutant lacking last 8 aa, showed responses similar to wild type RAMP2 

to AM when co-transfected with CLR in COS7 cells; whereas there was a slight decrease in 

efficacy for the same in HEK 293 cells. This indicates the differential behavior of RAMPs due to 

different cell backgrounds and possibly due to the number of aa deleted (9 vs 8) [192]. 
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Furthermore, cell-surface trafficking of RAMPs alone without any presence of a GPCR partner 

also varies amongst different isoforms [156, 193]. It has been shown that RAMP1 cannot traffic 

to the cell-surface on its own [156, 193], whereas RAMP2 and 3 can, with RAMP3 showing 

greater cell-surface expression levels [174, 180]. RAMP1 is present as a disulphide-linked 

homodimer inside the ER and the Golgi bodies in absence of an interacting receptor [156, 193]. 

RAMP1 contains QSKRT sequence adjacent to the TM domain which acts as an intracellular 

retention signal and prevents GPCR-independent cell-surface trafficking, as shown by co-

immunoprecipitation and immune-fluorescence techniques on tagged deletion mutants of 

RAMP1 [194]. Accordingly, it was shown that the deletion of last 8 aa of the C-tail of RAMP1 

containing the retention sequence increased receptor-independent cell-surface expression of c-

myc RAMP1 in HEK 293 cells compared to the wild-type RAMP1 [192].  

Mutational analyses have shown that N-glycosylation status of RAMP2 and 3 is responsible for 

their GPCR-independent trafficking [180]. It was also shown that by the introduction of N-

glycosylation sites in RAMP1 (which natively lacks any), caused its GPCR-independent cell 

surface expression, a characteristic which is not seen in wild type RAMP1 [180]. Studies using N-

tagged RAMP2 and 3 have shown their GPCR independent cell-surface expression, however the 

effect of the tag towards the phenomenon has not been addressed [174, 180]. It is not known 

yet whether RAMPs are able to form heterodimers. If they do, there can be an additional 

possible explanation to the differences in the pharmacology CLR receptor phenotypes resulting 

from RAMPs from different species, as discussed earlier (section 1.12). Accordingly, the 

difference in affinities to form complex receptors amongst RAMPs that is observed might not 

due to competition of the RAMP interaction with CLR, but competition of the interaction 

between the RAMPs themselves. 

1.13.2. Modulating receptor-ligand binding specificity and affinity: 

RAMPs are known to engender distinct pharmacological profiles to CLR or CTR on the basis of 

functional interaction of their different isoforms [156]. Thus, they provide a novel mechanism 

for modulating receptor specificity which is completely different from the classical one-

receptor-one ligand understanding.  
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Pharmacology of recombinant GPCR/RAMP receptor complexes: 

The receptor phenotypes formed by RAMPs are able to bind different ligands with varying 

affinities and potencies. This shows that RAMPs not only form distinct functional receptors, but 

also modulate their pharmacology. When RAMP1 associates with CLR it binds CGRP, whereas 

RAMP2 or 3 on association with CLR, form two distinct receptors for AM with similar potencies 

to activate cAMP (AMR1 and AMR2) [184][165]. Interestingly, AMR1 has ~100 fold higher 

affinity for AM than CGRP and so is specifically selective for AM binding only; whereas AMR2 

has a higher affinity for CGRP than AMR1 (by ~180% [165]) and so it binds AM preferentially. 

However, the pharmacology of these receptors does differ depending on the species and 

isoforms of CGRP (α and β) [184].  

The decreasing order of relative binding affinities for CGRP, AM and AMY for their respective 

receptor types, as determined using competitive inhibition experiments for radiolabelled-ligand 

binding in various studies, is shown in the table below: [156, 195]: 

 

 

 

Receptor 
subtype 

Receptor 
composition 

Pharmacology References 

CGRP CLR+RAMP1 βCGRP ≥ αCGRP > αCGRP (8-37) (antagonist) > AM >> 
AM (22-52) (antagonist)  

[156, 195] 

AMR1 CLR+RAMP2 AM > AM(22-52) > αCGRP(8-37) ≥ βCGRP > αCGRP  [156, 195, 196] 

AMR2 CLR+RAMP3 AM> AM(22-52) = αCGRP(8-37) = βCGRP > αCGRP  [164, 165] 

AMYR1 CTR+RAMP1 AMY > βCGRP > αCGRP > CT > AM  [172, 173, 197] 

AMYR2 CTR+RAMP2 AMY = CT > αCGRP   [172, 173] 

AMYR3 CTR+RAMP3 AMY > βCGRP > αCGRP > CT =AM  [172, 173, 197] 

Table 1.3: Decreasing order of relative binding affinities of ligands at different receptor complexes 

formed by RAMPs. 
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In the case of AMY receptors, AMYR1 and AMYR3 have a higher affinity for amylin than AMYR2 

(~3.5 fold vs AMYR1; ~4.6 fold vs AMYR3) [172, 197]. Human AMR1 has a higher affinity for 

αCGRP than βCGRP, whereas AM3R exhibits equal affinities [187]. However, it has been 

recently shown that rat AMR1 has a higher affinity towards αCGRP than βCGRP compared to 

human AMR1 and rat AMR3 has a higher affinity for α and β CGRP than CT compared to human 

AMR2 [198]. Also, rat AMR3 exhibits higher affinity towards αCGRP(8-37) than rat AMR1 [198]. 

This shows that species variation exist amongst AMY receptor phenotypes and so it is important 

not to assume that there will always be a direct translation of observations between different 

species. 

The molecular mechanisms for all the above stated interactions has not been deciphered yet, 

although there is more information on CGRP and AM binding to their receptors, through the 

recent advances in RAMP biology. 

Structural features of RAMPs responsible for ligand binding: 

Many studies have determined that the extracellular N-terminal domain of RAMPs is essential 

for ligand binding of the CLR [190, 196, 199]. In fact, recent studies have deciphered the crystal 

structures of RAMP1/2 ECD in complex with CLR ECD, hence giving a very detailed information 

about the residues important in forming the ligand binding pocket as described later [179, 200]. 

Initial work using immunoprecipitation of tagged CLR+RAMP complexes which were cross-

linked to their respective radio-labeled ligands showed that the radiolabelled CGRP was 

incorporated into RAMP1 whereas radiolabelled AM was incorporated into RAMP2 or RAMP3. 

This suggested that the RAMPs form or lie in close proximity of the ligand binding pocket in 

complex with CLR [190]. Further ligand binding and deglycosylation experiments using wild type 

and chimeric RAMP (N-terminal RAMP1/TM domain, C-tail RAMP2 and vice versa) constructs 

showed that the N-terminus of RAMPs, engendered specific ligand selectivity of CLR by 

modulating its glycosylation status from immature to mature glycosylated form [196].  

The importance of the ECD for ligand binding for RAMP1 was shown using chimeric receptor 

approaches, where the N-terminal domain of RAMP1 attached with the TM domain and C-tails 
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of PDGF receptor could form stable receptor complex with CLR and respond to cAMP upon 

stimulation with CGRP [201]. The cell-surface expression levels of CLR with this RAMP1 mutant 

were ~30% less than with the wild-type RAMP1; whereas they were decreased by 50% when 

expressed with RAMP ECD alone (with 21 aa removal containing TM domain and C-tail and no 

PDGF TM domain and C-tail attached) [201]. However, the affinity and potency of these 

chimeric mutants for CGRP binding were compromised significantly (~10 fold vs WT in the case 

of RAMP1-ECD+PDGF; and 4000 fold for RAMP1 ECD alone vs WT), suggesting that the ECD with 

the TM domain alone or with the C-tail is responsible for achieving full biological affinity and 

potency of CGRP binding [201]. These results were in contrast to an earlier report where 

deletion of 20 aa out of the total 22 aa of the TM domain along with the C-tail rendered non-

functional CGRP receptor [194]. Although the discrepancy between both results is not known, it 

was hypothesised that difference in sizes (shorter by one aa than in [201]) of mutant RAMP1 

constructs between both studies could have been the cause [201]. 

Subsequent studies using RAMP1 mutants with deletions in the ECD, identified regions 91-94, 

96-100 or 101-103 (in the α helix 3 according to the crystal structure) likely to be important for 

CGRP binding [199]. However, individual residue substitution with alanine did not effect CGRP 

binding indicating that these residues are not directly involved in CGRP binding but might 

contribute to forming ligand binding pocket [199]. Similar studies using deletion mutants of 

RAMP2 and RAMP3 identified aa 86-92 of RAMP2 and 59-65 of RAMP3 responsible for AM 

binding, without affecting cell-surface trafficking [202]. However, individual substitution of 

these aa in RAMP2 did not cause any change in AM binding and cAMP stimulation indicating 

that AM does not bind directly to these residues and so it is speculated that in both RAMP2 and 

RAMP3; these aa are conserved and might contribute in forming ligand binding pocket [202]. 

Recently, the crystal structure of RAMP1 ECD in complex with CLR ECD has been reported [200]. 

Accordingly, the α2 and α3 helices of RAMP1 form a complex with αC1 of CLR through 

electrostatic and hydrophobic interactions and this interaction does not cause a significant 

conformational change in the arrangement of the CLR ECD (figure 1.12 A) [200, 203]. It has 

been shown that out of the residues responsible for interaction between RAMP1 and CLR, 
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alanine substitutions of Y66, F93 and H97 residues of RAMP1 resulted in decreased CLR 

trafficking, whereas, F101 caused reduction in potency of CGRP, indicating that these residues 

are important in forming CGRP receptor [203]. It has also been demonstrated that the CGRP 

receptor antagonists olcegepant (BIBN4096BS) and telcagepant, form hydrophobic interactions 

with Trp 74 of α helix-2 of RAMP1, and Thr 122 and Trp 72 of CLR ECD, thus showing that the 

binding pocket is formed of shared residues from both RAMP1 and CLR (figure 1.12 B). [200]. 

 

Figure 1.12: 3D ribbon structure of CLR/RAMP1 ECD complex: 

 (A)CLR is shown in cyan and its single α helix is labeled as αC1. RAMP1 is shown in purple and the three 

α helices are labeled αR1, αR2 and αR3. Disulphide linkages are shown in yellow. (B) Binding of 

olcegepant (BIBN4096BS) (yellow) in the bonding pocket on CLR RAMP interface with residues Trp 74 on 

RAMP1 (purple) and Thr 122 and Trp 72 of CLR (cyan). Taken from [200]. License numbers: 

2844920493600 (A) & 2844930605496 (B). 

 

Precise information is now available for ligand binding pocket in case of CLR+RAMP2 receptor 

complex as well [179]. Crystal structure of CLR+RAMP2 ECD has shown that RAMP2 α2 and α3 

helices interact with CLR α1 helix through a number of hydrophobic interactions. Residues 

Trp72, Phe92 and Trp121 on CLR (loops 2, 3 and 5 respectively) interact with RAMP2 specific 

residues Glu101, Leu109 and Phe111 located on α2 helix and form pocket, not observed in 

RAMP1 (shown by dotted line in fig 1.13) and are likely to form ligand binding pocket for AM. 

So, due to this difference of interacting aa on the CLR and RAMP2 interface compared to 
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RAMP1; there is a change in shape of the ligand binding pocket due to RAMP2 specific residues 

which engenders ligand specificity [179].  

 

Figure 1.13: Putative AM ligand binding pocket on CLR+RAMP2 ECD: 

Molecular surface (L) and ribbon structure (R) representation of putative CLR+RAMP2 ligand binding 

pocket [179]. License number 2797640916031. 

 

Taken together, from both the crystal structures (CLR+RAMP1/2 ECD), a two domain model 

where both CLR and RAMP residues are involved applies for ligand binding specificity. 

It is interesting to note that the residue Trp 74 in RAMP1 is not involved in βCGRP binding as 

shown by substitution mutagenesis [204, 205]. On the other hand, the substitution increased 

the potency of the CLR+RAMP1 receptor for AM by about ~10 fold [204, 206]. Substitution of 

the corresponding conserved residue on RAMP3 Glu74 to Trp caused an attenuation of AM 

potency at AMR2 by ~9-10 fold without any change in βCGRP potency [204-206]. It has been 

explained that the Glu at this position in RAMP3 has a higher negative charge which probably 

creates favorable electrostatic or hydrogen interactions with AM, enhancing its binding [206]. 

Mutagenesis of the corresponding residue in RAMP2- Glu101 completely abolished the 

trafficking and consequent AM stimulation of the AMR1 [204]. These results suggested that 

position 74 in RAMP1 and RAMP3 and 101 in RAMP2 are important determinants of differential 

AM binding affinities for the CGRP and AM1/AM2 receptors. 

The importance of an aromatic residue at the position 84 in RAMP1 and 3 and 111 in RAMP2 is 

hypothesised to be responsible for the interaction of the RAMP-receptor complex with the 

peptide-ligand [207, 208]. The aromatic aa Trp located at position 84 on the loop joining α2 and 
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α3 helices of RAMP1, is shown to be important for the normal potency for cAMP response of 

CGRP, CGRP(8-37) and non-peptide CGRP antagonists at the CGRP receptor, as discovered using 

alanine mutagenesis [207]. This residue along with Trp 74 is shown to be a part of the 

hydrophobic binding pocket on the RAMP1 and CLR ECD interface [204]. This residue is 

conserved in RAMP3; whereas is replaced by another aromatic aa Phe at position 111 in 

RAMP2. Archbold et al, have hypothesised that these aromatic aa could be important for 

interaction with the C-terminus of the peptide ligands via pi-pi bonds for all CLR/RAMP receptor 

complexes [208]. Taken together, small but specific aa differences between different RAMPs 

might affect peptide affinity possibly by differentially interacting with the C-terminus of the 

peptide [208].  

 1.13.3. Role of RAMPs in receptor regulation: 

RAMPs play a role in regulation of the receptor complex following agonist stimulation [186, 

209]. Initial studies showed that CGRP receptor and AMR1 and 2 internalized with similar 

kinetics following agonist stimulation as observed by visualization of the tagged CLR co-

transfected with different RAMPs in HEK-293 cells using fluorescence microscopy; as well as by 

performing radiolabelled-ligand binding assays following agonist treatment to check for the 

number of remaining receptors on the cell-surface [186]. It was further shown that following 

agonist stimulation, CLR+RAMP complexes were internalized and targeted to lysosome 

mediated degradation mainly through clathrin-dependent pathway and sufficient recycling of 

any receptor combination complexes was not observed [186]. A separate study investigating 

the CLR+RAMP1 complex showed the same result and further reported that the internalization 

was probably β-arrestin and dynamin dependent [193].  

However, RAMP3 is unique in this regards than RAMP1 or 2. It contains a PDZ-binding motif on 

its C-tail, which can bind to a chaperone called N-ethylmaleimide sensitive factor (NSF); as 

determined by co-localization and overlay assay [209]. This results in recycling of the AMR2 

instead of degradation as measured by the recovery of cAMP generation and ligand binding 

following an initial drop post agonist stimulation in transfected HEK-293 cells; an effect not 

observed with AMR1 and CGRP receptors [209]. This effect was also confirmed in rat fibroblast 
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cells which natively express NSF and RAMPs, where RAMP3 siRNA knock-down or adding NSF-

inhibitor, prevented the recycling of the receptor complex [209]. Another such interacting 

partner to the PDZ-domain of RAMP3 is the Na+/ H+ exchanger regulatory factor -1 (NHERF-1), 

an adaptor protein that prevents the internalization of the receptor complex. It was observed in 

HEK-293 cells transfected with AMR2 components and NHERF-1, that following agonist 

stimulation, AMR2 was desensitized as measured by a decrease in cAMP activation; however 

radioligand binding studies showed that the number of binding sites did not change, which 

meant that the AMR2 did not undergo internalization [210]. Knock-down of RAMP3 or NHERF-1 

in human proximal tubule cells endogenously expressing these proteins, prevented the 

inhibition of internalization following agonist treatment as observed in the wild-type cells [210]. 

Such interactions were not observed for RAMP1 or 2 suggesting a functional difference 

between AM receptor 1 and 2. The C-tail of RAMPs also contains phosphorylation and 

ubiquitination sites (figure 1.10) but their role in receptor trafficking is not yet known [191]. 

 

1.13.4.  Role of RAMPs in receptor signalling: 

There is increasing evidence showing a role of RAMPs in signalling of some its GPCR partners 

[174, 192, 211]. The C-tail of RAMPs has been shown to play a significant role in signalling of the 

AMY receptors by probably involving direct G-protein coupling, as shown by studies COS-7 cells 

co-transfected with C-tail mutant RAMP and CTR [192, 211]. VPAC1 receptor signalling is also 

modulated by RAMPs. It was shown that VPAC1 receptor interacts with all RAMPs, however 

only its association with RAMP2 in COS-7 cells, causes augmentation in efficacy of PI hydrolysis 

by VIP with no change in efficacy for cAMP generation, ligand binding affinity and potency, 

when compared to VPAC1 receptor alone [174]. Our group has shown that there is a decrease 

in efficacy of Gαi and not Gαq activation when VPAC1 receptor is co-transfected with RAMP2 

[Roberts et al, unpublished data].  

In addition, our group has shown that RAMPs can modulate the G-protein activation profile of 

the PTH1/2R, VPAC1R and glucagon receptor. Although these receptors are capable of 

trafficking to the cell-surface and signalling on their own, presence of RAMP2 with PTH1R and 
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VPAC1R and RAMP3 with glucagon receptor; increased the efficacy of G-protein responses 

without any significant changes in binding affinities and potencies [Roberts et al, unpublished 

data]. These data show for the first time that RAMPs are involved in direct G-protein coupling 

of the VPAC1, PTH1/2 and glucagon receptors. 

Another intracellular peripheral membrane protein called CGRP-receptor component protein 

(RCP) has been found to couple with the CGRP and AMR1 and play a role in generating agonist-

induced cAMP response [212] by coupling the receptor to the cellular signal transduction 

pathway. 

Taken together, RAMPs play many functions during different stages of life cycle of a receptor 

which are summarized in the figure 1.14 below: 

 
 Figure 1.14: Summary of RAMP functions:  

(A) Molecular chaperone for trafficking CLR, CaSR to the cell-surface (B) Altering ligand specificity and 

hence receptor phenotype. Here, expression of RAMP1,2,3 with CTR changes the receptor phenotype to 

AMY receptor. (C) and (D) although some Family B GPCRs do not require RAMP for trafficking (VPAC1R, 

PTH1R,Gluc1R), RAMP interaction modulates signalling pattern of G-proteins. In D, we show that PTHrP 

causes increase in efficacy (big arrow -left) in Gαs at PTH1R with RAMP2 compared to receptor alone 

(smaller arrow-right), with no change in other G-proteins [Roberts et al, unpublished data]. 
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1.14. Expression of RAMPs in physiology: 
RAMPs are ubiquitously expressed throughout the body (table 1.4) [150][183, 213, 214].which 

indicates that they facilitate actions of various effectors on their GPCRs, and that more 

receptor-partners of RAMPs are yet to be discovered. There is also variation in levels of 

expression of different RAMP isoforms amongst different tissues as shown in the table 1.4, 

which summarizes the expression of RAMPs in physiology known so-far [183, 213]. RAMP1 gene 

is expressed in many tissues like the uterus, bladder, brain, pancreas, and gastro-intestinal 

tract. RAMP2 and RAMP3 show similar distribution pattern but are expressed more strongly in 

lung, breast, immune system and foetal tissues (table 1.4).Understanding the role of RAMPs in 

physiology is difficult given the numerous RAMP-receptor partners expressing in the same 

tissue. Also, most of the data showing expression of RAMPs in different tissues is based on 

mRNA expression of RAMPs, due to lack of good quality antibodies for RAMPs. 

Tissue RAMP1 RAMP2 RAMP3 

 Rata Mouseb Humanc Rat Mouse 
Huma

n 
Rat Mouse Human 

Adult brain *** **** ** * * * ** **** ** 

Embryo brain ND *** ND ND * ND ND **** ND 

Adult lung ** ** (-) 
***

* 
**** ** ** * *** 

Embryo lung ND *** ND ND **** ND ND * ND 

Adult heart * * *** ** ** *** * * **** 

Adult atria (-) ND ND ** ND ND (+/-) ND ND 

Adult ventricle (-) ND ND ** ND ND (-) ND ND 

Adult kidney (+/-) (+/-) (-) * * (+/-) *** ** *** 

Adult liver * * (-) * * (-) (-) (+/-) ** 

Embryo liver ND ** ND ND * ND ND (+/-) ND 

Adult spleen *** (+/-) ND *** *** ND * (+/-) ND 

Adult thymus **** *** ND * (-) ND * ND ND 

Adult aorta *** ND ND ** ND ND (-) ND ND 

Adult stomach * * ND * ** ND ND ** ND 

Embryo gut ND ** ND ND ** ND ND ** ND 
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Adult skeletal 

muscle 
*** *** *** ** * ** (+/-) (+/-) *** 

Adult testis *** * ND * * ND * *** ND 

Adult fat **** ND ND *** ND ND ** ND ND 

Adult vas 

deferens 
*** ND ND *** ND ND ** ND ND 

Placenta ND ND (-) ND ND *** ND ND *** 

Pancreas ND *** **** ND * ** ND ND *** 

* indicates the level of expression in arbitrary units. on the relative density of bands in each of the reviewed 

articles. ND indicates not determined. a compiled from [215] and [183]. b compiled from [182] and [214]. c 

compiled from [156]. 

Table 1.4: Tissue distribution of RAMP mRNA expression 

Adapted from [213]  

The expression patterns of RAMPs change in various pathological conditions. This may be to 

alter the function of AM, CGRP or other ligands of receptor-partner of RAMPs that may be 

upregulated or downregulated during those particular conditions. Most of the information on 

expression of RAMPs in physiology and its regulation by different 

interventions/pathophysiological conditions is based on work done on calcitonin family of 

receptors/peptides which is discussed in detail in section 5.1.2 of chapter 5. 

1.15. Animal models lacking RAMP gene: 
The importance of RAMPs in physiology is shown by the phenotype of the mice models lacking 

specific RAMP gene. 

RAMP1 and 3 genes have three exons and RAMP2 has four exons. In each RAMP gene, first 

exon codes the 5’ UTR sequence and a signal peptide, while exon 3 in RAMP1, 3 and exon 4 in 

RAMP-2 encodes all of the C-terminal and TM domain and the distal 464 aa of N-terminal 

domain. Ramp1-/- mice were generated by targeted deletion of exon 2 (ECD) [216] on the 

C57/BL6 strain. Ramp1-/- mice, showed hypertension with no changes in heart rate as vascular 

relaxant activity of both CGRP isoforms was suppressed in them [216]. This indicates that 

RAMP1 mediated CGRP signalling is essential for vasorelaxation and hence regulation of blood 

pressure. Additionally in these mice, LPS induced inflammatory responses increased serum 

levels of CGRP and proinflammatory cytokines, compared to wild-type mice [216]. This shows 

that CGRP signalling through RAMP1 is also responsible in regulation of proinflammatory 
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cytokines upon invasion of pathogens [216]. Serum levels of Ca2+, PTH, bone formation or 

resorption markers were not studied.  

Ramp2-/- mice were generated by deleting the 5’UTR along with exons 1 and 2 (coding for ECD), 

while Ramp3-/- were generated by deleting exons 2 and 3 (coding for ECD and TM domain and 

C-tail respectively) on the 129S6/SVEV strain [217]. In both the models, there was no 

measurable compensatory effect by other RAMP due to the absence of one. It was shown that 

out of RAMP2 and 3, RAMP2 was essential during embryonic development. It was shown that   

Ramp2-/- mice died during mid-gestation due to extreme hydrops foetalis and severe 

cardiovascular defects [217], which is linked to the defective AM signalling as shown by a 

similar phenotype in the Am-/- and Clr-/- mice [218, 219]. However, Ramp3-/- mice appear normal 

in their development until old age, where in comparison to the wild-type mice, they failed to 

increase body weight associated with increase in age. Thus, RAMP2 and RAMP3 gene has 

independent functions in vivo which cannot be compensated by the other [217].  

Recently, a sex-dependent, cardio-protective role of RAMP3 in the setting of chronic 

hypertension was demonstrated [220]. In order to understand the role of RAMP3 in 

cardiovascular diseases, Ramp3-/- mice were cross-bred with an angiotensin 2-mediated chronic 

hypertension murine model called as RenTgMK. It was observed that compared to that in 

RenTgMK:Ramp3-/- mice, RAMP3 was upregulated in RenTgMK mice and more strongly so in the 

females. To this effect, male RenTgMK had increased cardiac hypertrophy, pathological 

remodeling, and decreased survival compared to female RenTgMK mice or wild-type controls. 

In addition to this, in the male RenTgMK:Ramp3-/- mice there were increased measures of heart 

failure and cardiac apopotosis; a phenotype that was absent in female RenTgMK:Ramp3-/- mice. 

This study, for the first time showed sexually dimorphic cardioprotective role of RAMP3 [220].  

In Ramp2+/- female mice, fertility is reduced compared to wild type, Clr+/- and Ramp3-/- mice as 

indicated by a decrease in the litter size, foetal growth restriction, foetal demise and postnatal 

lethality, showing the importance of RAMP2 in fertility [217, 221]. Role of RAMP2 in endocrine 

homeostasis has also been demonstrated recently using Ramp2+/- female mice. Ramp2+/- 

female mice have hyperplastic anterior pituitary gland, accelerated mammary gland 



71 
 
 

development and exhibit hyperprolactinemia during pregnancy and in basal conditions [221]. 

These results suggests that signalling through RAMP2-receptor complexes formed by already 

identified and still unknown GPCRs is important for reproductive and endocrine functions [221]. 

It has been reported that Ramp2+/- mice show decreased bone mineral density and bone 

mineral content, indicating a role of RAMP2 in bone development [221]. Since, Ramp2-/- mice 

die during mid-gestation, it is only possible to study Ramp2+/- mice [218]. Preliminary data from 

our group suggests that RAMP3 KO mice show increased trabecular bone thickness and 

increased cortical bone thickness (Unpublished data, Pacharne et al). These results suggest that 

RAMPs play an important role in regulating bone formation by regulating the role of hormones 

like AM, PTH, AMY and others on bone.  

These diverse effects due to the absence of RAMPs in physiology cannot be linked only to the 

actions of the calcitonin family of peptides. Since RAMPs have a broader tissue distribution than 

CLR, it indicates that additional GPCRs require the RAMPs for their function. This idea is 

supported by the history of RAMP biology itself, where since their discovery as associating 

proteins to CLR [156], other GPCRs such as CTR [172], PTH1 and 2R, VPAC1R, GlucR [174], 

secretin [175] and CaSR [157] have been shown to associate with RAMPs, although the 

functional consequences for all are not completely elucidated yet. Because a large proportion 

of clinically available drugs target GPCRs [13], there is great interest in understanding 

pharmacological and biochemical properties of the RAMPs with the ultimate goal of 

manipulating the GPCR/RAMP interface for treatment of human disease. 

1.16. Hypotheses for the project: 
The project was based on the following hypotheses: 

Hypothesis 1: RAMP1 and 3 differentially interact with the CaSR in higher order RAMP/CaSR 

complexes on the cell-surface.  

Hypothesis 2: RAMPs interact with GPRC6A and are responsible for its cell-surface trafficking in 

transfected COS-7 cells which can be measured by FRET-based stoichiometry. 
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These hypotheses were tested using FRET-based stoichiometry analysis in transfected COS-7 

cells as described in detail in chapter 3.  

Hypothesis 3: RAMPs are involved in CaSR signalling and alter ligand induced CaSR signalling.  

This was tested in overexpressing system using antibody-capture SPA and in endogenous 

expression system using live-cell Ca2+ imaging, as described in detail in chapter 4. 

Hypothesis 4: RAMP mRNA is differentially regulated in human medullary thyroid carcinoma 

and human osteosarcoma cell line by agents involved in Ca2+ homeostasis.  

This hypothesis was tested by measuring the changes in mRNA expression levels of RAMPs 

upon different treatments using real-time quantitative PCR, as described in detail in chapter 5.  
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2.1. Maintainence of cell lines: 

Cell line Name of the culture medium used 

COS-7 (African Green Monkey Fibroblast like 
kidney cells) 

DMEM complete medium containing 4.5g/L glucose, 
GlutamaxTM (GIBCO) 

HEK-293 (Human embryonic kidney cells) 
DMEM complete medium containing 4.5g/L glucose, 
GlutamaxTM (GIBCO) 

TT (Human medullary thyroid carcinoma cells) 
F-12K  (Kaighn’s modification) complete medium 
containing (GIBCO) 

MG63 (Human osteosarcoma cells) 
DMEM complete medium containing  containing 
4.5g/L glucose, GlutamaxTM (GIBCO) 

SAOS-2 (Human osteosarcoma cells) 
DMEM complete medium containing  containing 
4.5g/L glucose, GlutamaxTM (GIBCO) 

TE85 (Human osteosarcoma cells) 
DMEM complete medium containing  containing 
4.5g/L glucose, GlutamaxTM (GIBCO) 

Table 2.1: List of cell lines and their respective culture medium used. 

Cell lines were maintained in T-175 cm2 flasks (Nunclon, Thermo scientific) in their respective 

media as shown in the table 2.1) at 37˚C in 5% CO2 incubator. The complete medium contained 

10% heat inactivated Foetal Calf Serum (FCS, GIBCO Paisley), 1mM Sodium Pyruvate (Sigma-

Aldrich) and 1% penicillin and streptomycin (Sigma-Aldrich. Thereafter, the media was changed 

twice a week until the cells were confluent. The cells were used in exponential growth phase. 

2.2: Passage of cells: 

To passage cells, they were washed twice with sterile Phosphate buffered saline (PBS, GIBCO) 

before addition of 10% trypsin solution (Sigma-Aldrich) and incubated for 5 to 10 minutes at 

37˚C in order to detach the cells from the bottom surface of the flask. The cells were pelleted 

by centrifuging at 170 xg for 5 minutes and were added to new flask with complete DMEM 

media in a ratio of 1:25 or 1:10 depending upon their requirement. These cells were maintained 

at 37˚C at 5% CO2 and the media was changed twice a week until they were confluent. 

2.3: Cell counting using haemocytometer: 

Cells were detached and collected as a pellet as described in the previous section. 1ml of 

medium was added to the cells and then the cell suspension was further diluted 1:10 using PBS 

and mixed thoroughly. 10µl of cell suspension was added onto a haemocytometer and cells in 

the four large corner squares were counted. The total number of cells counted was divided by 

four and the number of cells per ml was calculated by the given formula: 
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Number of cells/ml= Average number of cells counted x 104 x dilution factor.  

2.4: Trizol RNA extraction: 

RNA extraction from cells was performed using Trizol reagent (Invitrogen). Cells in monolayers 

were harvested in 1ml of Trizol reagent and incubated for 5 minutes at room temperature. 

0.2ml of chloroform was added and the tubes were shaken vigorously for 15 sec and incubated 

for 3 minutes at room temperature. Following centrifugation at 12,000xg for 15 min at 4˚C, the 

upper aqueous phase was transferred into a sterile RNase free tube. 0.5ml of isopropyl alcohol 

was added and the samples were incubated at room temperature for 20 min followed by 

centrifugation at 12,000xg for 10 minutes at 4˚C. The supernatant was removed and the pellet 

was washed twice with 1ml of 75% ethanol, followed by centrifuging at 12,000g for 5 min at 

4⁰C after every wash. The pellet was then air dried and resuspended in DEPC-treated water. 

RNA was quantified using Nanodrop® spectrophotometer. 

2.5: DNase 1 treatment: 

For the RT-PCR, RNA samples were treated with TURBO DNase (Ambion) enzyme to remove any 

contaminating DNA. 1µl TURBO DNase (2U) was used for up to 5µg of RNA in a 50µl reaction 

and incubated at 37⁰C for 20min. 0.1 volume of DNase inactivation reagent was added and the 

reaction was further incubated for 5 min at RT, flicking the tube 2-3 times during the 

incubation. The tubes were then centrifuged at 10,000g for 2 min and the supernatant 

containing the RNA was carefully transferred into a fresh RNase free tube and quantified using 

Nanodrop® spectrophotometer.  

2.6 Complimentary DNA (cDNA) synthesis: 

Post DNase treatment, cDNA was synthesized from RNA using high capacity RNA-to-cDNA kit 

(Applied Biosystems). The bench and pipettes were cleaned using RNase zap solution (Ambion) 

before starting cDNA synthesis. Autoclaved, UV sterilized 0.2ml tubes were used. 2µg of RNA 

was used for a 20µl reaction containing 10µl 2X RT buffer, 1µl 20x enzyme mix and nuclease-

free water to adjust the volume. For RT- controls, the enzyme mix was not added. The tubes 

were briefly centrifuged to spin down the contents and to eliminate any air bubbles and the 
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reaction was incubated at 37⁰C for 60min in a thermocycler (Mastercycler, Eppendorf). The 

cDNA synthesized was aliquoted into sterile 0.5ml tube (Eppendorf) and stored at -20˚C. 

2.7: Reverse transciptase (RT) PCR: 

To establish the expression of RAMPs in COS-7 cells, RT PCR was performed. RNA was extracted 

using Trizol reagent (Invitrogen) followed by DNase1 treatment and cDNA synthesis as 

described in the described before. 0.2ml PCR tubes were autoclaved and the bench and 

pipettes were cleaned using RNAse zap solution (Ambion). RT-PCR was performed on the cDNA, 

according to the recipe given in the table 2.2 using Go Taq Flexi DNA polymerase (Promega) for 

a 50µl reaction: 

 

Table 2.2: Recipe for PCR reaction using Go Taq polymerase. 

The sequence of primers (Eurofins, MWG Operon) is given in the table 2.3 below: 

 
Table 2.3: Sequences of primers for RAMP1,2,3 and HPRT1 

 

The reaction was run in a thermocycler (Mastercycler, Eppendorf) in the following cycle: 

Step 1: 94˚C for 3 min 

Step 2: 94˚C for 30 sec 

Step 3: x˚C for 30 sec 
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Step 4: 62˚C for 1 min  

Repeat steps 2 to 4 for 35 cycles 

2.8: Agarose gel electrophoresis: 

To separate and visualize the PCR products, agarose gel electrophoresis was performed. 1% 

agarose gel was prepared by dissolving 1g of agarose powder (Sigma Aldrich) in 100ml 1× TBE 

buffer (Fisher scientific) in a conical flask (Pyrex ®, Fisher) and dissolved in a microwave for 2.5 

min. 2µl of ethidium bromide (Sigma Aldrich, 500µg/ml) was added to the gel and the gel was 

poured into a gel-cast with a comb and was allowed to solidify for 20 min. The gel was placed in 

a tank containing 1x TBE buffer. The RT-PCR products were loaded into the wells after diluting 

with sample loading buffer, along with 10µl of DNA standards (Norgen). The gel was run at 

150V for 30 minutes. The separated DNA was visualized under UV light using a Molecular 

Imager Gel DocTM × RT with Image LabTM software (Bio-RAD), and the gel was photographed 

with a gel-Doc-It system. 

2.9: Real time PCR: 

To determine the relative amount of cDNA in the samples, quantitative real-time PCR analysis 

was performed using ABi 7900HT sequence detection system (Applied biosystems). Before 

starting each experiment, pipettes, tips, 384-well plate (Greiner bio one), plate sealer and DEPC 

treated water (Sigma Aldrich) were sterilized under UV light for 20 min in a PCR hood. A 

reaction was performed in a single well of a 384 well plate, containing 2μl cDNA diluted in 1:2 

ratio with DEPC treated water, 5μl of TaqMan® universal PCR master mix (Applied biosystems), 

0.5μl of Gene specific TaqMan® inventoried assay (Applied biosystems)(accession mumbers 

given in the appendix) and 2.5μl of DEPC-treated water to a final volume of 10μl. Each reaction 

was performed in duplicates at following conditions: 

Step 1: 50˚C for 2 min 

Step 2: 95˚C for 10 min 

Step 3: 95°C for 15sec 

Step 4: 60˚C for 1 min  

Step 3 and 4 were repeated for 40 cycles. 
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Actβ and HPRT1 were used as an endogenous control for normalizing the expression of target 

genes. Average threshold cycle (Ct) values were used for relative expression analysis. According 

to the ABi manual, a Ct value of more than 35 could be inaccurate and so the limit for analysis 

for this study was restricted to the Ct value of 34. 2-∆Ct method was used for relative 

quantitation, where the Ct value of test gene was normalized to Ct value of Actβ in the same 

sample (eg Ct RAMP-Ct Actβ) and the value obtained was called the ∆Ct value for that particular 

test gene. This value was converted into linear form by using the formula: 2-∆Ct.  These values 

were plotted on a graph using GraphPad Prism version 5.00 for Windows (GraphPad Software, 

San Diego California USA, www.graphpad.com). The data was represented as fold change in 

expression of the gene of interest, relative expression to the expression of Actβ.  

2.10: Protein sample preparation: 

Cells were washed with ice cold PBS, scrapped off using a cell scraper and spun at 1500g for 5 

min at 4⁰C. 1ml of ice cold cell lysis buffer was added to the cells and incubated for 1hr on a 

rotor at 4⁰C. If substantial amount of insoluble debris remained, it was homogenized using a 

Dounce homogenizer (Fisher scientific) on ice (20 strokes). The sample was then centrifuged for 

10min at 20,000g at 4⁰C and the supernatant was used for quantification. 

2.11: Bicinchoninic acid (BCA) protein assay: 

Protein was quantified using BCA assay kit (Pierce). 1mg/ml BSA fraction V (Sigma Aldrich) 

prepared in cell lysis buffer was used as a standard. 2µl to 20µl of 1mg/ml of BSA and 5μl and 

10μl of protein samples were added to 1.0 ml of the working reagent (50:1 bicinchoninic acid: 

CuSO4) and incubated at 65˚C for 30 minutes. Optical Density (OD) at 562 nm was obtained 

using a spectrophotometer (Eppendorf) and the concentration of the protein was calculated 

from the BSA standard curve. 

2.12: SDS-PAGE and Western blotting: 

2.12.1.  SDS-PAGE: 

SDS-PAGE gels were cast using 1.5mm width glass spacer plates (Bio-rad). First the spacer plate 

and the outer glass plate were washed with a detergent, dried and wiped with methanol. Next 

the separating gel of desired concentration was prepared in a 50ml tube using the recipe given 

http://www.graphpad.com/
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in the appendix and poured between the glass plates on the casting apparatus, immediately 

after which distilled water was added on the top. Once the separating gel was set, 5% stacking 

gel was prepared and poured using the recipe given in the appendix and appropriate sized 

comb was placed. 

After the stacking gel was set on top of the separating gel, it was allowed to equilibrate in 1x 

running buffer (recipe in appendix) for 45 min. Protein samples were diluted in 6x Laemmli 

buffer (recipe in appendix) and heated at 42°C for 10 min and the biotinylated protein standard 

(Cell signalling) was heated at 95°C for 5 min. Desired concentration of protein was carefully 

loaded using a pipette into the wells along with the biotinylated protein standards. Prestained 

protein standard (Biorad) was also loaded onto the gel to separate two different types of 

protein samples and to visualize the transfer of proteins on the PVDF membrane in western 

blotting. The gel was then electrophoresed at 90V till the samples were settled at the bottom of 

the stacking gel and then at 150V till the samples reached to the bottom of the separating gel 

as visualized by the bromophenol blue stained gel front. 

2.12.2: Western blotting: 

Transfer: 

The electrophoresed proteins were transferred to Hybond-P polyvinylidene chloride (PVDF) 

membrane (Amersham). The PVDF membrane was made permeable by soaking it in 100% 

methanol before use. The arrangement for transfer was as follows: 

The gel was placed on the PVDF (which was kept on cathode side), both of which were 

sandwiched from both the sides with sponge and 2 blotting papers (presoaked in transfer 

buffer). A 50ml tube was rolled on top to remove any air bubbles. The electro-blotting was 

allowed to occur in presence of ice-cold transfer buffer (recipe in appendix) at 100V for 80 min.  

Immuno-blotting: 

The presence of protein was detected by immuno-blotting. Following the transfer, PVDF 

membrane was incubated in blocking solution of 5% non-fat milk powder (Marvel) in TBS 

(recipe in appendix) for 1 hour. Primary antibodies against RAMP1,2,3 raised in goat (sc-8850, 

sc-8852 and sc-8854 respectively, Santacruz biotechnology, Autogenbioclear) were diluted 
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1/300 v/v from 0.2µg/µl stock concentration, the CaSR (ab-19347, Abcam) was diluted 1/500 

v/v from 1µg/µl stock concentration and Gα proteins [Gαq (C-19) sc-392, Gαs/olf (C-18) sc-383 and 

Gαi-3 (C-10) sc-262, Santacruz biotechnology, Autogenbioclear] were diluted 1/500 v/v from 

0.2µg/µl stock concentration in 1% milk solution in TBS and incubated with the PVDF overnight 

at 4°C on a roller. 

The next day, PVDF was washed 3 times for 5 minutes each with 0.05% Tween-20 (Fisher 

scientific) in TBS and incubated with secondary antibody (anti goat or anti mouse HRP 

conjugated IgG immunoglobulin, Sigma Aldrich) at 1:10,000 dilution or anti-biotin HRP 

conjugated antibody (1:1000) dilution in 1% milk solution for 1 hour with gentle agitation. The 

membrane was washed 5-7 times for 5min each with 0.05% Tween-20 in TBS.  

The PVDF was then soaked in Supersignal west dura ECL cocktail (Thermoscientific) for 15-30 

seconds and exposed to a chemiluminescence detecting film (Hyperfilm™ ECL, Amersham). The 

film was developed in the dark room by incubating first in the developer (Agfa), followed by 

fixer (Agfa) and finally water after which it was air dried. 

2.13: Immuno-cytochemistry: 

TT cells were seeded on 15x15mm #1 glass coverslips (Menzel-Glaser) which were previously 

baked for 90 min at 165⁰C. The cells were washed twice with PBS and fixed for 10min at room 

temperature using 4% PFA (Sigma Aldrich), 48hr post transfection. If total expression was to be 

checked, cells were permeabilized using 0.5% Tween-20 (Fisher scientific) for 10 min at room 

temperature followed by incubation with 10% rabbit serum (Vector labs) with 0.5% BSA (w/v) in 

PBS for 30min at room temperature in order to block non-specific binding of the secondary 

antibody. Primary antibodies (RAMP1 sc-8850- Santacruz biotech or Goat IgG- Vector labs) were 

then incubated overnight at 4⁰C in 1% rabbit serum with 0.5% BSA (w/v) in PBS at 1:50 v/v 

dilution of the 0.2µg/µl stock concentration. Next day, the coverslips were washed three to four 

times with 0.5% BSA (w/v) in PBS and then incubated with secondary antibody (Rabbit anti goat 

IgG conjugated with FITC, DAKO) for 45min in dark at room temperature in 1% rabbit serum 

with 0.5% BSA in PBS at 1:400 dilution of 2.5µg/µl stock concentration. Following the 

incubation, the coverslips were washed four times with 0.5% BSA (w/v) in PBS and incubated 
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with DAPI counterstain at 1:5000 dilution of 5mg/ml stock concentration for 3 min followed by 

further three washes with 0.5% BSA (w/v) in PBS. The coverslips were drained to remove excess 

liquid and mounted on a clean glass slide (VWR international) using Prolong Gold (Invitrogen) 

and stored in dark at room temperature overnight before imaging. 

Imaging conditions: 

HCX PL FLUOTAR L 40.0x0.60 dry objective on an Inverted widefield fluorescence microscope 

LeicaDMI4000B was used to capture images at 8-bit resolution and 1x1 binning at room 

temperature. Three channels were set each for FITC (exposure 1.5sec, gain 3.5, filter-L5), DAPI 

(exposure 150ms, gain 3.0, filter A4) and phase contrast (exposure 70ms, gain 2.2) to capture 

RAMP1 or control IgG staining, nuclear staining and a phase contrast image for TT cells. 

2.14: Statistical analysis: 

All data presented are either mean± SEM or mean ± SD, as specified in the results section. The 

graphs were plotted and the statistical analysis was done using GraphPad Prism version 5.00 for 

Windows (GraphPad Software, San Diego California USA, www.graphpad.com). All the data sets 

were assessed for Gaussian distribution (normality) using the widely recommended D’Agostino 

and Pearson omnibus normality test, as it first measures the skewness or asymmetry of the 

data from the normal distribution and then computes how far each value is from normal 

distribution. It subsequently creates a single p value from the sum of these discrepancies, and 

so is easy to interpret. It also works well when several values are identical. Kruskal-Wallis one-

way ANOVA test was used to compare the means when two or more experimental groups were 

involved along with a control group. This test was used as it is a non-parametric test, and hence 

could be used on the data which were not normally distributed. This was followed by 

comparing each data set with another, using Dunn’s multiple comparison post-test. Two-way 

ANOVA with Bonferroni post-test was used for multiple comparisons such as differences in 

FRET within the negative control FRET groups, the negative control vs test groups, and within 

the test groups (chapter 3), and also to compare the effects of both time and treatment on the 

mRNA expression levels of RAMPs or CaSR (chapter 5). Since the data were not normally 

distributed, Mann Whitney test was used as a non-parametric t-test to compare the differences 

http://www.graphpad.com/
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between two specific groups only, such as fraction of RAMP or GPCR between two specific pairs 

of combinations (chapter 3), and differences in expression of RAMP/CaSR in specific vs negative 

control siRNA transfected cells (chapter 4). The statistical tests performed for each particular 

experiment is mentioned in the relevant results section. p<0.05 was considered as statistically 

significant result.  
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CHAPTER 3:  MEASURING MOLECULAR 

INTERACTIONS BETWEEN CaSR /GPRC6A 

AND RAMPs USING FRET BASED 

STOICHIOMETRIC ANALYSIS 
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3.1. Introduction 
The interaction of RAMPs with CaSR was demonstrated by Bouschet et al [157] where they 

showed that RAMP1 and 3 are responsible for the cell-surface trafficking of the CaSR in 

transfected COS-7 and HEK-293 cells. There is no information yet regarding the differences in 

characteristics of interaction between RAMP1 and 3. Accordingly, it was aimed to characterize 

this molecular interaction in detail using förster resonance energy transfer (FRET) based 

techniques. Furthermore, the interaction of CaSR with RAMPs led to further hypothesis that, 

other family C GPCRs could also interact with RAMPs. In view of that, GPRC6A which shares 34% 

aa sequence identity with the CaSR [158] was chosen as a candidate and its interaction with 

RAMPs was tested using FRET technique. 

3.1.1. Förster Resonance Energy Transfer (FRET): 

Techniques such as co-localization by immunofluorescence and co-immunoprecipitation are 

widely used to study protein-protein interactions inside the cells, however their sensitivity is 

limited and chemicals used in the technique (eg detergents) might alter the native interactions 

[222]. Also, the resolution of a fluorescence microscope is several hundred nanometers, so 

unless robust calculations are carried out using more than one method, its sensitivity cannot be 

relied upon completely for analysis of co-localization [222]. Alternative approaches such as 

FRET have been developed which rely on measuring energy transfer between two fluorescent 

proteins labeled to proteins of interest [222-231].  

The principle of FRET relies on non-radiative transfer of energy from a fluorophore in excited 

state known as donor, to an acceptor fluorophore; thereby exciting it [222]. Successful FRET 

between two fluorophores can only occur if two essential conditions are met. First, the distance 

separating them must be less than 10nm; and the emission spectra of the donor fluorophore 

must overlap with the excitation spectra of the acceptor fluorophore for an efficient energy 

transfer to occur [222] (Fig 3.1.1).  
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Figure 3.1.1: Spectral overlap between donor and acceptor molecules: 

The emission spectrum of the donor (blue) is overlapping with the excitation spectrum of the acceptor 

(yellow). Adapted from [222]. 

 

FRET efficiency is inversely proportional to the sixth power of the distance (R) between two 

fluorophores [222, 232]: 

      
 

       
  

Here, R0 is the distance where FRET efficiency is 50%. R0 is dependent on the angle between the 

two fluorophores and the extent of spectral overlap between the two fluorophores [222, 232]. 

Effective R0 for GFP variants (the most widely used fluorophores in FRET) is limited between 4 

and 6nm with a range of up to and below 10nm and most FRET pairs have R0 of ~5nm [232, 

233]. Accordingly, when the distance between two interacting partners is greater than R0, the 

FRET efficiency is extremely low and is considered as close to nothing, whereas for distances 

greater than R0, FRET efficiency is the highest. Hence FRET can be used as a “molecular ruler” 

for distance calculation within this range [233]. Due to the steep dependence of FRET efficiency 

to R0, FRET can be used to measure accurate changes in protein-protein interaction caused by 

various factors [222].  

Apart from the above stated factors that affect the FRET efficiency, others such as the 

proportion of intensities of donor and acceptor molecules which depends on their relative 
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stoichiometry and brightness can limit the usefulness of FRET for certain interactions, as FRET 

occurring is proportionally very small compared to the very high background of fluorescent 

labels that are not undergoing FRET [222, 234].  

Most commonly used fluorescent proteins are GFP variants CFP and YFP [235] and their 

mutants Cerulean (Cer) [236] and Citrine (Cit) [237] respectively, because of their overlapping 

spectra. Development of Cer and citrine had advantages over parental CFP and YFP such as 

higher extinction coefficient and quantum yield, resistance to acid quenching and prevention of 

homo and hetero-dimerization of the fluorophores [236-238].  

3.1.2.  Method of FRET imaging used: 

Sensitized emission: 

Sensitized emission technique was used in this study to measure the specific interactions 

between the GPCRs and RAMPs. In this technique the donor fluorophore is excited at a 

particular wavelength and the energy transferred is measured as the emission of the acceptor 

[222-224] (Figure 3.1.2). Because of the spectral overlap between the two fluorophores, 

problem with bleed-through (spillage of donor and acceptor fluorescence into FRET channel 

detector) and cross-talk (excitation of acceptor at donor excitation wavelength) of fluorescence 

exists in this method; which requires corrections using appropriate controls [9, 10]. Two-

channel based approach using a confocal microscope is better than using a widefield 

fluorescence microscope, as decreased bleed-through and increased specific excitation of CFP 

can be achieved by using a laser [9]. However, the need for image processing amplifies the 

noise that is initially in the images and hence this method is not useful for small FRET signals 

where it can be difficult to differentiate between background noise and specific FRET signal 

[222]. 

Sensitized emission method can also be used to measure stoichiometry of the components 

involved in FRET which gives a deeper insight into the interaction [224] as explained below.  
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Figure 3.1.2: Principle of sensitized emission: 

Two interacting proteins (red and green) are tagged on their C-terminus with donor (CFP) and acceptor 

(YFP) respectively. When the proteins do not interact, FRET cannot occur, whereas in case of an 

interaction, the distance between the proteins is within 10nm and so energy is transferred from excited 

donor to the acceptor thereby exciting it and the emitted fluorescence by the acceptor is measured as 

the FRET between them. 

 

FRET-based stoichiometry in living cells: 

FRET stoichiometry is derived from the concept that the measure of FRET efficiency of a specific 

donor-acceptor complex, can allow stoichiometric discrimination of interacting components 

[224]. Basically, in sensitized emission the emission of acceptor due to FRET is influenced by 

four main components (Figure 3.1.3)- efficiency of energy transfer (E) between donor-acceptor 

pair, fraction of donor (Fd) involved FRET, fraction of acceptor (Fa) involved in FRET and the 

ratio of total acceptor to donor (R) (free and complexed). Hoppe et al [224] have developed a 

method of FRET stoichiometry that measures these at each pixel in an image. 
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Figure 3.1.3: Principle of FRET stoichiometry:  

Donor is shown in blue and acceptor is shown in yellow attached to their respective proteins. 

Interactions between donor, acceptor and donor-acceptor complexes influence the emission spectrum 

through four parameters: efficiency of energy transfer (E), fraction of donor (Fd) and acceptor (Fa) in 

complex and the ratio of total acceptor to donor (R). Adapted from [224]. 

 

The fractions of donor and acceptor in FRET complex are calculated based on information in 

three images namely: the donor image, the acceptor image and FRET image. So, as shown in 

the figure 3.1.3, the fraction of donor or acceptor in FRET complex is calculated by dividing the 

concentration of donor-acceptor complex by the total concentration of the donor or acceptor 

respectively (free plus complexed).  

Such measurements are complicated due to the presence of excess non-interacting donor or 

acceptor molecules which create high background fluorescence; making the specific 

measurements difficult. These problems are circumvented by using the equations derived by 

Hoppe et al [224], due to the correction factors used. Accordingly, in addition to correcting for 

bleed-through of donor or acceptor fluorescence into the FRET channel; this method also uses 

two additional correction factors γ and ξ which help in calculating the fraction of donor or 

acceptor in FRET complex accurately [224]. γ corrects for the excitation of acceptor at donor’s 

wavelength which is due to the overlapping fluorescent spectra of the fluorophores and helps 

in calculating Fa; whereas ξ is a proportionality constant used in measuring Fd by accounting for 

the increase in acceptor emission relative to a corresponding decrease in donor’s emission due 

to FRET. It was shown that this method could distinguish between the excess of donor or 

acceptor present and could determine correct fractions of the components present in the FRET 
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complex. This was done by keeping either Fa or Fd constant and varying the other component 

to measure its fraction in FRET complex. For example, by keeping the concentration of donor 

constant and increasing the concentration of the acceptor let to a concurrent linear increase in 

the fraction of acceptor in FRET complex. This shows that the method could distinguish 

between the excess donor present [224].  

Also R, measures the ratio of total concentration of acceptor to donor (free and complexed) 

present at each pixel of the image. R=1 indicates equal fractions of donors and acceptors in the 

given image pixel, R>1 or <1 indicate an excess of either acceptor or donor respectively. So, 

comparing Fa or Fd with R gives an idea about the relative local concentrations of free acceptor 

or donor molecules that do not participate in FRET [224]. Thus, FRET stoichiometry gives a 

measure of physical parameters which are transferrable from one molecular interaction to 

another. 

3.1.3.  Hypotheses and aims: 

It was hypothesised that RAMP1 and 3 differentially interact with the CaSR in higher order 

RAMP/CaSR complexes on the cell-surface.  

It was also hypothesised that RAMPs interact with GPRC6A in COS-7 cells and enable its cell-

surface trafficking. The specific aims were: 

 To optimize a FRET method to measure sensitized molecular interaction between GPCRs 

and RAMPs using positive and negative controls. 

 To measure FRET efficiency of interaction between CaSR as well as GPCR6A with RAMPs 

on the cell-surface; and determine the fraction of RAMPs and receptor present in the 

FRET complex on the cell-surface, using FRET-based stoichiometry analysis. 
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3.2: Methods and Materials: 

 3.2.1. cDNA constructs used: 

GPCRs were engineered into pcDNA 3.1 Citrine vector such that the citrine was tagged to the C-

terminal of the GPCR. RAMPs were engineered into pcDNA 3.1 Cerulean vector such that, that 

RAMP gene was followed by a linker sequence (at RAMP C-terminal) which was followed by the 

Cerulean gene. 

As a negative control, pcDNA 3.1 Citrine vector alone was used with pcDNA 3.1 RAMP Cerulean 

vector, whereas, as a positive control, pcDNA3.1 vector containing a fusion construct containing 

Cerulean cDNA followed by 18 aa linker sequence and then Citrine cDNA was created and will 

be referred to as Cerulean-citrine fusion. 

pcDNA 3.1 CaSR-citrine vector was engineered by me as described below; whereas the pcDNA 

3.1 CLR-citrine, pcDNA 3.1 GPRC6A-citrine, pcDNA 3.1 RAMPs-cerulean, pcDNA 3.1 cerulean-

citrine fusion, pcDNA 3.1 cerulean and pcDNA 3.1 citrine vectors were a kind gift by Dr. David 

Roberts of our group. The cloning sites for engineering the constructs used are shown in the 

table 3.2.1 below: 

Construct Cloning sites 

pcDNA 3.1-Citrine/Cerulean Not-1-Cit-Xho1 into pcDNA 3.1 

pcDNA 3.1 –RAMP-Cerulean Kpn1-RAMP-Not-1-Cerulean  

pcDNA 3.1-CaSR-Citrine HindIII-CaSR-Not1-Citrine 

pcDNA 3.1-GPRC6A-Citrine HindIII-GPRC6A-Not1-Citrine 

pcDNA 3.1-CLR-Citrine HindIII-CLR-Not1-Citrine 

Table 3.2.1: Cloning sites for the engineering the constructs used in FRET 
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3.2.2. Engineering CaSR gene into pcDNA 3.1-Citrine vector: 

 
Figure 3.2.1: Cloning strategy of CaSR cDNA from TOPO CaSR into pcDNA3.1-Citrine 

 

CaSR cDNA was cloned from TOPO vector (Geneservice) containing CaSR cDNA into pcDNA 3.1 

citrine vector. For this, HindIII and Not1 restriction enzyme recognition sites were introduced 

into the CaSR gene using PCR as shown in the figure 3.4 above. The amplified PCR product was 

then cloned into the pcDNA3.1 vector between the HindIII and Not1 sites such that citrine was 

at the C-terminal of CaSR. A step-by-step protocol is given below: 

(a) Culture of TOP10 E.Coli glycerol stocks containing TOPO CaSR or pcDNA3.1-Citrine: 

TOP10 E.Coli glycerol stocks containing TOPO CaSR or pcDNA 3.1-citrine vector were cultured in 

autoclaved LB broth (Sigma Aldrich) containing 0.1mg/ml ampicillin (Sigma Aldrich) at 37⁰C 

overnight in a shaking incubator at 200rpm.  

(b) Plasmid extraction: 

TOPO CaSR and pcDNA 3.1 citrine plasmid DNA were isolated using PureYieldTM Plasmid 

Midiprep System (Promega) according to the manufacturer’s protocol. Cells were pelleted by 

centrifuging at 2000g for 10 min and resuspended in 3ml cell resuspension solution and 

vortexed thoroughly. 3ml of cell lysis solution was added and the tubes were gently inverted 3-

5 times and incubated for 3 min after which 5ml of neutralizing solution was added and mixed 

gently by inverting 5 times. PureYieldTM clearing column was assembled into the top of a 

PureYieldTM binding column and the assembly was placed onto the vacuum manifold (Promega). 

The lysate was poured into a PureYieldTM clearing column and maximum vacuum was applied 
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till the lysate passed through. The PureYieldTM clearing column was removed and 5ml endotoxin 

removal wash solution was added and vacuum was applied to pull the solution through the 

column followed by a wash with 20ml of column wash solution. The membrane was dried by 

applying vacuum for further 60 seconds. PureYieldTM clearing column was removed from the 

vacuum manifold and placed in a clean 50ml tube. 600µl of nuclease-free water was added and 

the tube was centrifuged at 1500g for 5 min at room temperature to elute the plasmid DNA.  

(c) Polymerase chain reaction using TOPO CaSR vector to engineer restriction enzyme 

sites for cloning: 

HindIII and Not1 restriction enzyme sites were engineered on either sides of the CaSR gene in 

the TOPO vector by using primers with restriction site sequence (table 3.2.3). This amplified the 

entire CaSR gene from TOPO CaSR, excluding the stop codon, as the citrine was to be 

engineered to the C-terminal of the CaSR. This was achieved by PCR using KOD hot start DNA 

polymerase (Novagen). The reaction was set in a 0.2ml PCR tube in a final volume of 100µl 

using the following receipe: 

 

Component Final concentration 

10x buffer for KOD hot start polymerase 1X 

25mM MgSO4 1.5mM 

dNTPs 10mM each 0.2mM each 

Forward primer 2µM 

Reverse primer 2µM 

Go Taq polymerase 0.04U/µl 

Template cDNA :TOPO CaSR 100ng 

Table 3.2.2: Recipe for KOD hot start DNA polymerase PCR 
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Primer sequences (restriction enzyme recognition site is highlighted) 

Gene Sequence 5’ to 3’ 
Lengt

h 
Tm 
(°C) 

Annealin
g Temp 
(°C) 

CaSR 

F(HindIII):TATCAAGCTTGTCATGGCATTTTATAGC
TGCTGCTGGGTCCTC 

R(Not1): 
TATTCGGAAGCGGCCGCTGAATTCACTACGTT 
TTCTGTAACAGTGCTGCC 

43 

50 

62.41 

67.00 
55.0°C 

Table 3.2.3: Primer sequences for cloning CaSR in pcDNA 3.1 Citrine vector 

The reaction was run in a thermocycler (Mastercycler, Eppendorf) using the following cycling 

conditions: 

Step 1: 95˚C for 2 min 

Step 2: 95˚C for 30 sec 

Step 3: 55˚C for 30 sec        Repeat steps 2 to 4 for 35 cycles 

Step 4: 68˚C for 2 min 

Following the completion of PCR, 5µl of product was subjected to agarose gel electrophoresis 

as described in section 2.8 of chapter 2 to check the product length (expected size ~3300bp). 

(d) Precipitation of PCR product: 

PCR product was precipitated to remove the contents of the PCR reaction and purify the 

amplified DNA. PCR product was precipitated using isopropanol by adding 2 volumes of 

isopropanol to the PCR product and the reaction was incubated for 30min at -20⁰C. The tubes 

were then centrifuged at 20,000g for 30 min at 4⁰C and the supernatant was discarded. DNA 

pellets were allowed to air dry and were resuspended in 30μl nuclease-free water. 

(e) Restriction digestion of the CaSR PCR product and pcDNA 3.1 Citrine vector with 

HindIII and Not1: 

In order to clone the purified PCR product between the HindIII and Not1 sites of the pcDNA 3.1 

citrine vector; 10μg of PCR product and 10µg of pcDNA 3.1 Citrine vector were digested 

separately using 20units of HindIII and Not1 restriction enzymes (New England Biolabs) in the 
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presence of 1x NEbuffer 2 (New England Biolabs) and 1x BSA (10mg/ml stock) in a final volume 

of 100µl. The reaction was incubated at 37⁰C overnight. The next day, the restricted DNA were 

precipitated as described in section 3.2.2 (d) and resuspended into 50µl nuclease-free water. 

(f) Dephosphorylation of restricted pcDNA 3.1 Citrine vector: 

To prevent the self-ligation of the HindIII and Not1 restricted pcDNA3.1-citrine vector, 

dephosphorylation was carried out by incubating with 5units of Antarctic phosphatase enzyme 

(New England Biolabs) in presence of 1x Antarctic phosphatase buffer (New England Biolabs) 

and nuclease free water at 37⁰C overnight.  

The next day, reaction was stopped by precipitating the DNA as described in section 3.2.2 (d). 

DNA was quantified using BioPhotometer (Eppendorf) using 1 in 50 dilution in a plastic cuvette 

(Eppendorf) at 260nm. 

(g) Gel extraction of the restricted CaSR insert: 

In order to remove the impurities from the restriction enzyme reaction in the form of the salts 

from the buffer and restriction enzyme, CaSR insert was electrophoresed and the correct sized 

band was gel extracted. HindIII and Not1 restricted CaSR insert was subjected to agarose gel 

electrophoresis as described in section 2.8 of chapter 2, but without using ethidium bromide. 

After the electrophoresis, the gel was stained using 1% crystal violet (w/v) for 20min and then 

de-stained using distilled water. The band at the correct size was visualized under white light 

and was cut using a scalpel. The DNA was then extracted using ZymocleanTM gel DNA recovery 

kit (Zymo research). 3 volumes of ADB reagent were added to the agarose gel excised, and 

incubated at 37⁰C until the gel slice was completely dissolved. The molten agarose solution was 

transferred into zymo-spinTM I column in a collection tube and centrifuged at 10,00g for 30 sec. 

200µl of wash buffer was then added and the column was washed by centrifuging at 10,000g 

for 30 sec. 10µl of nuclease-free water was added directly to the column and the DNA was 

eluted in a clean 1.5ml tube by centrifuging at 10,000g for 30 sec. DNA was quantified using 

BioPhotometer as described before in (f). 

(h) Ligation of the CaSR insert into the dephosphorylated pcDNA3.1-citrine vector: 

1µg of the gel extracted CaSR insert and the dephosphorylated pcDNA 3.1 Citrine vector were 

ligated using 2000U of T4 DNA ligase enzyme (New England biolabs) in presence of 1x T4 DNA 
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ligase reaction buffer (New England biolabs) and nuclease-free water in a final volume of 100µl. 

The reaction was incubated overnight at room temperature. 

On the following day, the ligation mixture was precipitated as described in section 3.2.2 (d) and 

the DNA pellet was resuspended in 50µl of nuclease-free water. 

(i)  Gel extraction of the ligated product: 

In order to use the ligated product-only for the further procedure, it was gel extracted 

according to the expected band size. The ligated product was subjected to agarose gel 

electrophoresis without ethidium bromide and stained with 1% crystal violet (w/v) for 

visualisation at correct size of ~10kbp. The ligated product only was gel extracted as mentioned 

earlier in section 3.2.2 (g) and resuspended in 20µl nuclease-free water. 

(j) PCR for the ligated product and Dpn1 digestion: 

At the end of a ligation reaction, there will be presence of unligated insert and empty vector as 

well as successfully ligated product. In order to selectively obtain the CaSR ligated into the 

pcDNA3.1-citrine vector, the ligated product was amplified using primers specific for CaSR. For 

this, PCR was performed as described in section 3.2.2 (c) using KOD hot start DNA polymerase. 

The primers used were specific to the mid region of the CaSR gene: 

Gene Sequence 5’ to 3’ 
Lengt

h 
TM 
(°C) 

Annealin
g Temp 
(°C) 

CaSR 
F: CCCTTCTCCAACTGCAGCCGAGACTG 

R: CAGTCTCGGCTGCAGTTGGAGAAGGG 

26 

26 

69.5 

69.5 
60°C 

Table 3.2.4: Primer sequences for amplifying CaSR pcDNA 3.1 Citrine ligated product. 

The reaction was run in a thermocycler (Mastercycler, Eppendorf) in the following cycle 

Step 1: 95˚C for 2 min 

Step 2: 95˚C for 30 sec 

Step 3: 60˚C for 30 sec  

Step 4: 68˚C for 5 min  

Repeat steps 2 to 4 for 20 cycles 
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After the PCR, the contents of the tube were spun down briefly and incubated overnight at 

37⁰C with 20units of Dpn1 enzyme to cleave any methylated parental strands (to remove the 

vectors without CaSR insert). The following day, Dpn1 treated PCR product was precipitated as 

described in section 3.2.2(d) and the pellet was resuspended in 20µl of nuclease-free water. 

(k) Transformation of the ligated product into TOP10 E.Coli: 

A vial containing 50μl TOP10 chemically competent E.Coli (Invitrogen) was first thawed on ice; 

and then incubated for further 25min on ice after adding 100ng of the ligated product. TOP10 

E.Coli cells were then heat shocked for 40sec at 42⁰C and immediately transferred to ice and 

incubated for 2 min. 250µl of S.O.C. medium (Invitrogen) was added to the vial following 

incubation for 1hr at 37⁰C at 200rpm in a shaking incubator. After this, TOP10 E.Coli were 

spread on a pre-warmed LB agar (Sigma Aldrich) plate containing 100µg/ml ampicillin with a 

cell-spreader and incubated at 37⁰C overnight.  

(l) Colony selection, culture, plasmid isolation: 

Colonies were picked and cultured in 2ml LB broth containing 100µg/ml ampicillin overnight at 

37⁰C at 200rpm in a shaking incubator.  

Plasmid isolation was performed using Wizard plus SV Minipreps DNA Purification system 

(Promega) according to the manufacturer’s protocol. 1ml of culture medium was pelleted by 

centrifuging at 10,000g for 5 min and resuspended thoroughly in 250µl cell resuspension 

solution. 250µl of cell lysis solution was added to each sample and mixed by inverting 4 times. 

10µl of alkaline phosphatase was then added, mixed by inverting and incubated for 5 min at 

room temperature, following which 350µl of neutralization solution was added and mixed. The 

lysate was then centrifuged at 10,000g for 10 min at room temperature. The cleared lysate was 

decanted into a spin column- attached to an adapter on vacuum manifold, and passed through 

the column by applying vacuum. 750µl of wash solution was added and passed through the 

column by applying vacuum. This step was repeated using 250µl of wash solution. The column 

was transferred to a collection tube and centrifuged at 10,000g for 2 min in a table top 

centrifuge to remove any remaining ethanol from the wash solution. Plasmid DNA was eluted 



97 
 
 

by adding 100µl of nuclease-free water to the spin column and collected into a fresh 1.5ml tube 

by centrifuging at 10,000g for 1 min at room temperature. 

(m)  Restriction digestion screening of the pcDNA 3.1 CaSR-citrine clones for presence of 

CaSR using HindIII and Not1: 

The selected colonies were initially screened for the presence of CaSR insert by restriction 

digestion of the extracted plasmid DNA. 1µg of DNA isolated was subjected to restriction 

digestion with 10units of HindIII and Not1 as described section 3.2.2 (e) for 1hr at 37⁰C. The 

restricted clones were then separated using agarose gel electrophoresis and visualized under 

UV light for positive clones which showed a band for CaSR at ~3300bp. 

(n) Sequencing of positive clones and result analysis: 

The positive clones were cultured overnight and plasmid DNA was isolated as described in 

section 3.2.2 (l) and precipitated section 3.2.2 (d). Plasmid DNA for each positive clone were 

sequenced using ABi automated sequencer at the Genomics Core Facility in the Medical school, 

University of Sheffield using the following primers: CaSR engineered into the pcDNA 3.1 citrine 

was sequenced from bp 380-550and 1150-2850 to confirm the presence of CaSR (data not 

shown) 

Primer 
name 

Sequence 5’ to 3’ Length 

CMV 
primer 

CGCAAATGGGCGGTAGGCGTG 21 

1160+ TTGGCCTCAAACACCAGGAGGACACGGTT 29 

1950+ AACTGGCACCTCTCCCCAGAGGATGGCT 28 

Table 3.2.5: Primer sequence for CaSR sequencing in positive clones. 

The sequencing results were matched to the sequence of CaSR in TOPO CaSR vector using 

EMBOSS matcher and were also searched using nucleotide BLAST for aligning sequences. 

(o) Preparation of bacterial glycerol stock: 

30% (v/v) glycerol was added to the culture of bacteria of the positive clone in a 1.5ml tube and 

was flash frozen using liquid nitrogen. The tube was stored at -80⁰C for future usage. 
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3.2.3. Transfection of COS-7 cells with pcDNA 3.1 GPCR-Citrine and pcDNA 3.1 RAMP-

Cerulean: 

The following protocol was used for FRET analysis of CaSR/GPRC6A with RAMPs. 

Electroporation technique was used to co-transfect COS-7 cells with tagged GPCR and RAMP or 

positive and negative control vectors for FRET imaging. 

COS-7 cells were grown to confluency, after which they were detached using trypsin and 

collected as a pellet as described in section 2.2 of chapter 2. The cell pellet was resuspended in 

1ml of electroporation buffer (recipe in appendix) and the numbers of cells were counted as 

described in section 2.3 of chapter 2. The numbers of cells and the amount of DNA optimized 

for each transfection combination is given below: 

Transfection combination Amount of DNA Number of COS-7 cells 

Citrine alone/Cerulean alone 5µg 0.8 million 

Citrine alone+RAMPs-
cerulean 

3µg+15µg 1.5 million 

Citrine-cerulean fusion 5µg 0.8 million 

CLR-citrine+RAMPs-cerulean 3µg+3µg 1.5 million 

CaSR-citrine and GPRC6A 
alone 

10µg 1.5 million 

CaSR-citrine+RAMPs-
cerulean 

10µg+15µg 2.5 million 

GPRC6A-citrine+RAMPs-
cerulean 

10µg+10µg 2.5 million 

Table 3.2.6: Number of COS-7 cells and amount of DNA for FRET transfections 

After counting, the required numbers of cells were transferred into a 4mm gap electroporation 

cuvette (York biosciences) in a final volume of 0.4ml, adjusted using the electroporation buffer, 

followed by which the required amount of DNA was added. The cells were then electroporated 

using gene pulser (Biorad) at 960µF, 0.25kV. 1ml of culture medium was added to the cells and 

incubated for 5 min at room temperature. Cells were then gently seeded using a sterile plastic 
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dropper into a sterile 35mm glass-bottom plate (Ibidi) and left at room temperature for 20min 

before transferring into the cell culture incubator at 37⁰C, 5% CO2 for 48hr. Fresh medium was 

replaced the next day to remove the dead cells due to electroporation. 

 3.2.4. Cell fixation and mounting: 

Cells were washed twice with PBS 48hr post-transfection and fixed using 4% paraformaldehyde 

for 10min at room temperature, followed by 3 washes with PBS. Cells were then mounted by 

adding 500μl Mowiol mountant (recipe in appendix) and were left overnight before imaging. 

3.2.5.  FRET Imaging: 

Images were captured using a Zeiss Plan apo 63X/1.4 oil immersion lens on a Zeiss LSM 510 

inverted laser scanning confocal fluorescence microscope fitted with an argon laser at room 

temperature. Confocal images of the fluorescent proteins were acquired using an argon laser 

together with an HFT458/514nm dichroic, a NFT515nm beam splitter, pin hole set to 496µm, 

detector gain 550 and individually as a separate channel under the following conditions: 

Cerulean was excited using the 458nm laser line with a 100% laser intensity and a band pass 

BP480-520 emission filter; Citrine was excited using the 514nm laser line attenuated to 20% 

laser intensity and a band pass BP535-590 emission filter; FRET was excited using the 458nm 

laser line with a 100% laser intensity and a BP480-520 emission filter. All fluorescence channels 

were scanned and the collected together, line by line with a mean of 1. 

3.2.6.  FRET analysis: 

Bleed-through calculations: 

Cerulean and Citrine fluorescence bleed-through into the FRET channel were calculated using 

FRET and co-localization analyzer plugin for ImageJ [239]. pcDNA 3.1 Cerulean or pcDNA 3.1 

Citrine COS-7 cell images collected using either the CFP and FRET or YFP or FRET channels were 

used. At least 10 images were used to calculate the mean values of the bleed through constants 

β (bleed-through of donor fluorescence in FRET channel) and α (bleed-through of acceptor 

fluorescence in FRET channel). 
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Calculating FRET efficiency for sensitized emission (NFRET) using PixFRET: 

NFRET calculations for FRET efficiency for sensitized emission were done using pixel-by-pixel 

analysis by PixFRET plugin for ImageJ [239]. The resulting FRET images generated by the PixFRET 

plugin were used as representative images for a particular receptor/RAMP combination in the 

results section. The bleed-through values for CFP (β) and YFP (α) channel obtained from above 

were entered into the plugin. An ROI was drawn outside the cell, to calculate the background 

intensity for each channel and the threshold was set to 1.5; so that only pixels with value 

greater than 1.5 times the background intensity were used for analysis, in order to minimize 

background noise and mathematical errors. The following equation was selected to calculate 

FRET efficiency: 

       
     [     (     )] [     (      )]

√(        )
 

BT= bleed through 

The NFRET and FRET of stack images were saved for further analysis of membrane NFRET. 

 3.2.7. FRET based stoichiometric analysis: 

All FRET-based stoichiometric analysis was done as described in [224] using ImageJ software. 

Calculation of EC: 

Ec is the maximum achievable FRET between the fluorophores used (cerulean and citrine) using 

the positive control construct containing fusion of cerulean linked to citrine. EC was measured 

using sensitized emission for pcDNA3.1 cerulean-citrine construct transfected COS-7 cell 

images. First, the background fluorescence for each channel was subtracted from their 

respective images (CFP, YFP and FRET images). Next, 6-8 ROIs were drawn per image of a cell 

(avoiding the over-exposed regions) using ImageJ; and the intensities for CFP, FRET and YFP 

channel images were obtained. The values were used in the equation given above for NFRET 

and the calculation for mean and SEM for FRET efficiencies was done using Microsoft Excel.  
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Calculation of γ,ξ: 

Once β, α and EC were calculated, γ and ξ were calculated according to the formulae derived by 

Hoppe et al [224]. γ is the ratio of the extinction coefficient of the acceptor to the donor at the 

donor excitation. ξ is the proportionality constant relating the sensitized acceptor emission to 

the decrease in donor fluorescence due to FRET. 

  
  

[
      
   

  ]
 

  
     

(    )(          )
 

Here, IA= intensity of the acceptor channel; ID= intensity of the donor channel; IF= intensity of 

the FRET channel. 

Background corrected pcDNA 3.1 cerulean-citrine fusion COS-7 cell images were used for 

analysis in ImageJ. 6-8 ROIs were drawn per image of cell and the intensities for CFP, FRET and 

YFP channels were obtained, and used in the above equations to calculate mean and SEM 

values for γ and ξ using Microsoft Excel.  

Image processing and calculation of Fa, Fd and R: 

All the images were processed using ImageJ for pixel-by-pixel analysis. Macros were developed 

for image arithmetic to calculate Fa, Fd and R. First, the background for CFP, FRET and YFP 

images was calculated using the same ROI. Next, Gaussian blur of 2 was applied to the YFP or 

the acceptor image and the threshold was applied. This image generated a binary mask image, 

which was applied to the CFP and the FRET images. The images were inverted and converted 

into 16-bit format. Next, 1.5x background value for respective channel was subtracted from 

respective images to generate ID, IF and IA images (ID, IA and IF = Intensity of 

donor/acceptor/FRET channel). These images were then used to produce FRET stoichiometry 

images by image arithmetic using the equations [224]: 

    [
      
   

  ] (
 

  
) 
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Calculating NFRET, Fa, Fd and R on the cell membrane: 

In order to calculate the FRET efficiency and FRET based stoichiometry on the cell-surface, the 

raw acceptor image was opened in ImageJ. Using the selection tool, 50-pixel dots were drawn 

around the cell-surface of the acceptor image as shown in the results section. Each dot was 

taken as a ROI and the combined ROIs for each image was saved and applied to the NFRET, Fa, 

Fd and R images to measure the FRET efficiency and FRET based stoichiometry at the cell-

surface only. The average and SEM values corresponding to each ROI were calculated for all the 

images using Microsoft Excel. 
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3.3: Results 

3.3.1. Negative control for FRET: 

In order to determine the non-specific FRET occurring due to random interactions between the 

fluorophores, a negative control was used. Accordingly, citrine only (free in the cytosol) and 

cerulean-RAMPs were used. COS-7 cells were co-transfected with 5µg of pcDNA 3.1-citrine-and 

15µg of RAMPs-cerulean pcDNA 3.1. Figures 3.3.1, 3.3.2 and 3.3.3 show representative images 

for the expression of cerulean-RAMP (A), free citrine (B) and FRET (D) for different citrine+ 

cerulean-RAMP1/2/3 combinations respectively. It was observed that majority of citrine was 

expressed throughout the cell whereas, RAMP1 and 2-cerulean were mainly present in the 

perinuclear region, whereas RAMP3-cerulean expression could be seen ranging from the 

perinuclear region to the cell membrane. No FRET can be seen on the cell-surface in any 

combination (figure 3.3.1-3.3.3 D). Using a 50 pixel cell-surface ROI on the citrine image (C) the 

NFRET values obtained were 11.58 ± 2.8 for citrine + RAMP1-cerulean, 11.47 ± 2.92 for citrine 

+RAMP2-cerulean and 12.33 ± 1.6 for citrine + RAMP3-cerulean as shown in Fig 3.3.4 and table 

3.3.1. These values were set as threshold for considering NFRET values in calculation for all 

receptor + RAMP experiments as specific. The NFRET values are represented in all the results as 

% of the maximum NFRET value calculated using the citrine-cerulean fusion (Ec value), which 

was used as the positive control for the FRET method. The mean values calculated for the 

stoichiometric constants β (0.31), α (0.126), γ (0.30) and ξ (0.20); as well as Ec for the Cerulean-

citrine fusion positive control (~33%) are given in appendix table 7.1.  
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Figure 3.3.1: Representative image for FRET between free Citrine and RAMP1-cerulean in COS-7 cells:.  

COS-7 cells were transfected with 5µg pcDNA 3.1 Citrine and 15µg pcDNA3.1 cerulean-link-RAMP1 and 

were imaged using the confocal microscope 48hr post transfection. (A) Expression of RAMP1-cerulean 

(B) Expression of free Citrine (C) 50 pixel dot ROI around the cell membrane of Citrine only image. (D) 

FRET between citrine and Cer RAMP1. Scale bar 10µm 

  

Citrine + RAMP1 

RAMP1-cerulean (A) Citrine only (B) 

FRET image (D) 50 pixel dots ROI on citrine alone image (C) 
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Figure 3.3.2: Representative image for FRET between free Citrine and RAMP2-cerulean in COS-7 cells:  

COS-7 cells were transfected with 5µg pcDNA 3.1 Citrine and 15µg pcDNA3.1 cerulean-link-RAMP2 and 

were imaged using the confocal microscope 48hr post transfection. (A) Expression of RAMP2-cerulean 

(B) Expression of free Citrine (C) 50 pixel dot ROI around the cell membrane of Citrine only image to 

measure cell-surface FRET. (D) FRET between citrine and Cer RAMP2. Scale bar 10µm 

  

(C) 

(B) (A) 

Citrine + RAMP2 

Citrine alone RAMP2-cerulean 

50-pixel dot ROI on Citrine alone 
image 

FRET image (D) 
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Figure 3.3.3: Representative image for FRET between free Citrine and RAMP3-Cerin COS-7 cells: 

COS-7 cells were transfected with 5µg pcDNA 3.1 Citrine and 15µg pcDNA3.1 cerulean-link-RAMP3 and 

were imaged using the confocal microscope 48hr post transfection. (A) Expression of RAMP3-cerulean 

(B) Expression of free Citrine (C) 50 pixel dot ROI around the cell membrane of Citrine only image to 

measure cell-surface FRET. (D) FRET between citrine and Cer RAMP3. Scale bar 10µm.  

  

Citrine alone 

Citrine + RAMP3 

RAMP3-cerulean 

FRET image 

Citrine alone 

50pixel dot ROI on Citrine alone 
image 

(A) (B) 

(C) (D) 
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Figure 3.3.4: Graph for FRET negative control 

Graph comparing the values of cell-surface NFRET between free citrine and RAMP 1/2/3-cerulean co-

transfected in COS-7 cells, as a negative control. These values present background FRET and were used 

threshold to qualify a FRET interaction as specific for different combinations of GPCR and RAMPs in 

further experiments. 

 

Table 3.3.1: Cell-surface NFRET values of free citrine co-transfected with RAMPs-cerulean in COS-7 

cells, as a negative control. 

  

Cit +RAMPs-Cer 

Mean ± SEM of cell-surface NFRET  

(% of positive control) 

Cit + RAMP1-cerulean (n=25) 11.58±1.80 

Cit + RAMP2-cerulean (n=24) 11.47±2.92 

Cit + RAMP3-cerulean (n=29) 12.30 ±1.60 
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3.3.2. Receptor positive control for FRET:  Interaction of RAMPs with CLR. 

In order to determine if the optimization of the FRET technique was efficient, a known RAMP-

GPCR interaction was used to calculate the FRET efficiency on cell-surface. CLR was chosen as a 

positive control [156]. COS-7 cells were co-transfected with CLR-citrine pcDNA 3.1 (3µg) and 

RAMP-cerulean pcDNA 3.1 (3µg). As shown in the figures 3.3.5, 3.3.6, 3.3.7 specific areas of co-

localization of FRET complexes were seen between CLR and all RAMPs ranging from the peri-

nuclear region, cytoplasm and the cell membrane. Red arrows on (3.3.5-3.3.7 D) indicate region 

of co-localization between CLR and RAMPs on cell-surface. Colours from dark to bright indicate 

low to high levels of co-localization. So, blue areas represent less degree of co-localization; 

whereas brighter areas from pink to yellow represent higher co-localization. 

Using 50-pixel dot ROI on the acceptor image: panel (C) on images 3.3.5-3.3.7; the values for 

NFRET, fraction of CLR and RAMP in FRET complex on the cell-surface were calculated and are 

shown in Fig 3.3.8 and Table 3.3.2. Fig 3.3.8 (D) shows that there was no significant difference 

between the expression levels of individual RAMPs in combination with the CLR on the cell 

surface of the co-transfected cells. The cell-surface NFRET values for all CLR+RAMP 

combinations were significantly higher than their corresponding negative controls as 

determined by 2-way ANOVA, Bonferroni post-test (Fig 3.3.8 A ). Cell-surface NFRET efficiency 

of CLR+RAMP3 complex was statistically significantly higher than CLR+RAMP1, as analysed by 

Kruskal-Wallis test, Dunn’s multiple comparison post-test (Fig 3.3.8 A and Table 3.3.2). The total 

expression levels of RAMP1, RAMP2 and RAMP3 on cell-surface was ~2 times, ~1.6 times and 

~5 times higher than CLR respectively as calculated by the R value. Out of this total expression, 

the fraction of RAMP1 involved in cell-surface FRET complex was (in %) 10 ± 4.2, RAMP2 14.6 ± 

13.8 and RAMP3 9 ± 8.0 (Fig 3.3.8 B and Table 3.3.2). The fraction of CLR present in the FRET 

complex out of its total expression on cell-surface, was (in %) 50.2 ± 35 (with RAMP1), 46.7 ± 

27.4 (with RAMP2) and 46.0 ± 26.8 (with RAMP3) (Fig 3.3.8 C and Table 3.3.2). 
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Figure 3.3.5: Representative image for FRET between CLR-citrine and RAMP1-cerulean in COS-7 cells 

COS-7 cells were transfected with 3µg pcDNA 3.1 citrine-CLR and 3µg pcDNA3.1 cerulean-link-RAMP1 

and were imaged using the confocal microscope 48hr-post transfection. (A) Expression of RAMP1-

cerulean (donor) (B) Expression of CLR-citrine (acceptor) (C) 50 pixel dot ROI around the cell membrane 

of the CLR-citrine image to measure cell-surface FRET. (D) FRET between CLR-citrine and RAMP1-

cerulean. Blue areas represent less degree of co-localization; whereas brighter areas from pink to yellow 

represent higher co-localization. Red arrows indicate areas of co-localization between CLR and RAMP1 

on the cell-surface. Scale bar 10µm 

  

CLR+RAMP1 

(D) FRET image 50 pixel dots ROI on CLR-Cit (C) 

(A) RAMP1-cerulean (B) CLR-citrine 
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Figure 3.3.6: Representative image for FRET between CLR-citrine and RAMP2-cerulean in COS-7 cells: 

COS-7 cells were transfected with 3µg pcDNA 3.1 Citrine-CLR and 3µg pcDNA3.1 cerulean-link-RAMP2 

and were imaged using the confocal microscope 48hr post transfection. (A) Expression of RAMP2-

cerulean (donor) (B) Expression of CLR-citrine (acceptor) (C) 50 pixel dot ROI around the cell membrane 

of the CLR-citrine image to measure cell-surface FRET. (D) FRET between CLR-citrine and RAMP2-

cerulean. Red arrows indicate areas of co-localization between CLR and RAMP2 on the cell-surface. Scale 

bar 10µm 

  

CLR+RAMP2 

50 pixel dots ROI on CLR-Cit (C) FRET image (D) 

RAMP2-cerulean (A) CLR-citrine (B) 
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Figure 3.3.7: Representative image for FRET between CLR-citrine and RAMP3-cerulean in COS-7 cells:  

COS-7 cells were transfected with 3µg pcDNA 3.1 Citrine-CLR and 3µg pcDNA3.1 cerulean-link-RAMP3 

and were imaged using the confocal microscope 48hr post transfection. (A) Expression of RAMP3-

cerulean (donor) (B) Expression of CLR-citrine (acceptor) (C) 50 pixel dot ROI around the cell membrane 

of the CLR-citrine image to measure cell-surface FRET. (D) FRET between CLR-citrine and RAMP3-

cerulean. Red arrows indicate areas of co-localization between CLR and RAMP3 on the cell-surface. Scale 

bar 10µm 

  

CLR+RAMP3 

RAMP3-cerulean (A) CLR-citrine (B) 

50 pixel dots ROI on CLR-Cit (C) FRET image (D) 
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Figure 3.3.8: Cell-surface FRET efficiencies of CLR+RAMPs and fraction of receptor components 

involved in FRET complex: 

(A) Cell-surface FRET efficiencies of individual RAMPs with CLR (blue bars) compared among themselves 
and also with respective negative control citrine alone+RAMP-cerulean (red bars). *p<0.05 and 
***p<0.0001 as determined by 2-way ANOVA, Bonferroni post-test; # p<0.05 Kruskal-Wallis test, Dunn’s 
multiple comparison test. (B) and (C) Stoichiometric analysis of fraction of RAMP and CLR present in 
FRET complex on the cell-surface, respectively. Statistical test used was Kruskal-Wallis test, Dunn’s 
multiple comparison test. (D) Fluorescence intensity of the cerulean-tagged RAMPs on the cell surface of 
CLR + RAMP co-transfected cells (Kruskal-Walis test, Dunn’s multiple comparison test). Total cells 
analysed in 3 separate transfections: CLR+RAMP1 (n=8), CLR+RAMP2 (n=13), CLR+RAMP3 (n=13). Citrine 
+RAMP1 (n=4), citrine +RAMP2 (n=5), citrine +RAMP3 (n=7). The data was not normally distributed as 

analysed by D'Agostino & Pearson omnibus normality test.  



113 
 
 

CLR+RAMP 
NFRET % of 

positive control 
Fd(%) Fa (%) R 

CLR+RAMP1 

(n=8) 
24.2±2.2 10.0 ±1.5 50.2±12.37 0.5±0.13 

CLR+RAMP2 

(n=13) 
33.9±3.6 14.6±3.8 46.7±7.58 0.6±0.18 

CLR+RAMP3 

(n=13) 
33.8±2.58* 9.0 ± 2.2 46±7.42.8 0.2±0.03 

 

Table 3.3.2:  Mean and SEM values of cell membrane FRET efficiency and fraction of receptor 

components involved in FRET between the CLR and RAMPs: 

Significant difference in the NFRET value was observed between CLR+RAMP1 vs CLR+RAMP3 (* = p<0.05 

Kruskal-Wallis test, Dunn’s multiple comparison post-test). The fraction of RAMP and CLR in FRET did not 

differ significantly between the three complexes as analysed by Kruskal-Wallis test, Dunn’s multiple 

comparison post-test. Combined data of three separate transfections and the values in brackets indicate 

number of cells analysed. 
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3.3.3. Measuring interaction between CaSR and RAMPs using FRET-based 

stoichiometry: 

In order to determine if the FRET technique could measure CaSR and RAMP interaction, FRET-

based stoichiometric analysis was used on COS-7 cells co-transfected with pcDNA 3.1 CaSR-

citrine and pcDNA 3.1 RAMP-cerulean. As shown in the figure 3.3.9 when COS-7 cells were 

transfected with CaSR alone, majority of the receptor was localized within the peri-nuclear 

region which indicates failure of trafficking to the cell-surface. However, when RAMP1-cerulean 

or RAMP3-cerulean (Figure 3.3.10 and 3.3.12) were co-transfected, distinct regions of co-

localization of FRET complexes were seen ranging from the peri-nuclear region, cytoplasm and 

the cell membrane. Red arrows on the FRET figures (panel D; figures 3.3.10-12) indicate cell-

surface FRET complexes of CaSR+RAMP1/3. In case of RAMP2-cerulean co-localization with 

CaSR could be seen in the perinuclear region only with no or little cell-surface co-localization 

(Figure 3.3.11). 

Using 50 pixel-dot ROI on the acceptor image: panel (C) on images 3.3.10.-3.3.12; NFRET values, 

fraction of CaSR and RAMP in FRET complex were calculated as shown in Figure 3.3.13 and 

Table 3.3.3. As shown in the figure 3.3.13 (D), the cell surface levels of all RAMPs in 

combination with CaSR were not different from each other in co-transfected cells. The cell-

surface NFRET values for CaSR+RAMP1/3 combinations were significantly higher than their 

corresponding negative controls (p<0.0001, 2-way ANOVA, Bonferroni post-test) (Figure 3.3.13 

A) and CaSR+RAMP2 cell-surface FRET complex (Figure 3.3.13 A, Table 3.3.3), (p<0.0001, 

Kruskal-Wallis test, Dunn’s multiple comparison post-test). NFRET between CaSR and RAMP2 

was similar to the corresponding negative control-RAMP2-cerulean and citrine alone. Also 

CaSR+RAMP3 cell-surface FRET efficiency was found to be statistically significantly higher by 

~1.6 fold compared to CaSR+RAMP1 (p<0.0001, Kruskal-Wallis test, Dunn’s multiple comparison 

post-test) (Fig 3.3.13 A, Table 3.3.3). 

The total expression levels of RAMP1 and 3 on cell-surface were ~1.6 times higher than CaSR 

respectively (Table 3.3.3). Out of this, the fraction of RAMP1 (in %) involved in cell-surface FRET 

complex was 16 ± 1.4 and RAMP3 was 26.0 ± 4.3 (Fig 3.3.13 B and Table 3.3.3). So, the fraction 
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of RAMP3 was ~1.6 fold higher than RAMP1 in FRET complex with CaSR, which was statistically 

significant (p<0.05, Mann-Whitney two-tailed test). 

The fraction of CaSR present in the FRET complex on the cell-surface was 58.4 ± 7.1% (with 

RAMP1) and 67.00 ± 10.0% (with RAMP3) (Fig 3.2.13 C and Table 3.3.3); out of its total 

population. There was no statistically significant difference between the fraction of CaSR in 

RAMP1 and RAMP3 cell-surface FRET complexes. 

CaSR alone 

 

Figure 3.3.9:  Representative picture showing expression of CaSR-citrine alone in transfected COS7 

cell. Red circle represents the restriction of CaSR within the perinuclear region .  
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Figure 3.3.10: Representative image for FRET between CaSR-citrine and RAMP1-cerulean in COS-7 

cells: 

COS-7 cells were transfected with 10µg pcDNA 3.1 Citrine-CaSR and 15µg pcDNA3.1 cerulean-link-

RAMP1 and were imaged using the confocal microscope 48hr post transfection. (A) Expression of 

RAMP1-cerulean (donor) (B) Expression of CaSR-citrine (acceptor) (C) 50 pixel dot ROI around the cell 

membrane of the CaSR-citrine image to measure cell-surface FRET (D) FRET between CaSR-citrine and 

RAMP1-cerulean. Blue areas represent less degree of co-localization; whereas brighter areas from pink 

to yellow represent higher co-localization. Red arrows indicate areas of co-localization between CaSR 

and RAMP1 on the cell-surface. Scale bar 10µm. 

  

CaSR+RAMP1 

RAMP1-cerulean (A) CaSR-citrine (B) 

50 pixel dot ROI on CaSR-Cit (C) FRET Image (D) 
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CaSR+RAMP2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.11: Representative image for FRET between CaSR-citrine and RAMP2-cerulean in COS-7 

cells: 

COS-7 cells were transfected with 10µg pcDNA 3.1 citrine-CaSR and 15µg pcDNA3.1 cerulean-link-

RAMP2 and were imaged using the confocal microscope 48hr post transfection. (A) Expression of 

RAMP2-cerulean (donor) (B) Expression of CaSR-citrine (acceptor) (C) 50 pixel dot ROI around the cell 

membrane of the CaSR-citrine image to measure cell-surface FRET. (D) FRET between CaSR-citrine and 

RAMP2-cerulean. Scale bar 10µm.  

(A)         RAMP2-cerulean (B)         CaSR-citrine 

(C) 50 pixel dots ROI on CaSR-citrine image (D)         FRET image 
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Figure 3.3.12: Representative image for FRET between CaSR-citrine and RAMP3-cerulean in COS-7 

cells: 

COS-7 cells were transfected with 10µg pcDNA 3.1 Citrine-CaSR and 15µg pcDNA3.1 cerulean-link-

RAMP3 and were imaged using the confocal microscope 48hr post transfection. (A) Expression of 

RAMP3-cerulean (donor) (B) Expression of CaSR-citrine (acceptor) (C) 50 pixel dot ROI around the cell 

membrane of the CaSR-citrine image to measure cell-surface FRET. (D) FRET between CaSR-citrine and 

RAMP3-cerulean. . Red arrows indicate areas of co-localization between CaSR and RAMP3 on the cell-

surface. Scale bar 10µm. 

  

CaSR+RAMP3 

RAMP3-cerulean (A) CaSR-citrine (B) 

50 pixel dot ROI on CaSR-Cit (C) FRET Image (D) 
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Figure 3.3.13: Cell-surface FRET efficiencies of CaSR+RAMPs and fraction of receptor components 

involved in FRET complex 

(A) Cell-surface FRET efficiencies of individual RAMPs with CaSR (blue bars) compared among 

themselves and also with respective negative control citrine alone+RAMP (red bars). ^^^ p<0.0001 (2-way 

ANOVA, Bonferroni post-test) ***p<0.0001 (Kruskal-Wallis test, Dunn’s multiple comparison test) (B) and 

(C) Stoichiometirc analysis of fraction of RAMP and CaSR present in FRET complex on the cell-surface, 

respectively.* p<0.05 Mann Whitney test. (D) Fluorescence intensity of the cerulean-tagged RAMPs on 

the cell surface of CaSR + RAMP co-transfected cells (Kruskal-Walis test, Dunn’s multiple comparison 

test). Total cells analysed in 3 separate transfections for CaSR+RAMP1 (n=13), CaSR+RAMP2 (n=25), and 

2 transfections for CaSR+RAMP3 (n=9). Citrine +RAMP1 (n=4), citrine +RAMP2 (n=5), citrine +RAMP3 

(n=8). 
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CaSR+RAMP 
NFRET % of 

positive control 
Fa (%) Fd(%) R 

CaSR+RAMP1 

(n=13) 

a40.0 ± 3.4*** vs b 58.4 ± 7.1 16.0 ±1.4 0.6±0.09 

CaSR+RAMP2 

(n=25) 

b9.9 ± 1.5 - - 0.5 ±0.11 

CaSR+RAMP3 

(n=9) 
65.3 ± 4.4 *** vs a,b 67.00 ± 10.0 26.0 ± 4.3# 0.6±0.2 

 

Table 3.3.3: Mean and SEM values of cell membrane FRET efficiency and fraction of receptor 

components involved in FRET between the CaSR and RAMPs: 

Significant difference in the NFRET value was observed between CaSR+RAMP1 and 3 vs CaSR+RAMP2 

(a***p<0.0001, Kruskal-Wallis test, Dunn’s multiple comparison test) and between CaSR+RAMP1 vs CaSR 

+RAMP3 (b***p<0.0001, Kruskal-Wallis test, Dunn’s multiple comparison test). Significant differences 

were also observed in the fraction of RAMP3 and RAMP1 in cell-surface FRET complex (#p<0.05, Mann 

Whitney test). Combined data of three separate transfections for CaSR+RAMP1 and 2 and two separate 

transfections for CaSR+RAMP3 and the values in brackets indicate number of cells analysed. The data 

was not normally distributed as analysed by D'Agostino & Pearson omnibus normality test. 
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3.3.4. Measuring interaction between GPRC6A and RAMPs using FRET-based 

stoichiometry: 

This part of the work was carried out by Lan Zhu (MSc Molecular medicine student) under my 

supervision. The possibility of a molecular interaction between GPRC6A and RAMPs was tested 

using FRET stoichiometry. It was observed that GPRC6A-citrine expression when present on its 

own was mainly localized within the peri-nuclear region (Figure 3.3.14). Whereas in presence of 

RAMP1 but not RAMP2 or 3 (Figure 3.3.15; 3.3.16 and 3.3.17 respectively), specific regions of 

co-localization were observed on the cell-surface (as shown by red arrows in Figure 3.3.15 D). In 

case of GPRC6A+RAMP2 areas of co-localization were seen in the perinuclear regions which 

were not very evident with RAMP3 (Figure 3.3.16 D vs 3.3.17 D). 

To measure the cell-surface NFRET and the fractions of GPRC6A and RAMP in FRET complex; an 

ROI was created on the cell-surface of GPRC6A-citrine image using 50 pixel-dots (Figure 3.3.15-

3.3.17 panel C). Figure 3.3.18 (D) show that the expression of RAMP1 in GPRC6A+RAMP1 co-

transfected cells (blue bar) was higher than GPRC6A+RAMP2 (green bar) co-transfected cells, 

but similar to GPRC6A + RAMP3 (yellow bar) transfected cells (p<0.05, Kruskal-Wallis test, 

Dunn’s multiple comparison post-test). There was no significant difference between the 

expression of RAMP2 and 3 on the cell surface. Cell-surface NFRET values for GPRC6A with 

RAMP1 were significantly higher compared to the negative control (p<0.0001, 2 way ANOVA, 

Bonferroni post-test) (Figure 3.3.18 A). On the contrary, no statistical significance was observed 

for cell-surface NFRET values between GPRC6A+RAMP2 or 3 complexes and their corresponding 

negative controls (Figure 3.3.18 A). Figure 3.3.18 A and table 3.3.4 show statistically significant 

increases in cell-surface NFRET between GPRC6A+RAMP1 vs GPRC6A+RAMP2/3 (~3.5 fold vs 

GPRC6A+RAMP2), (~6 fold vs GPRC6A+RAMP3) (p<0.0001, Kruskal Wallis test, Dunn’s multiple 

comparison post-test), thus showing that RAMP1 is an interacting partner responsible for cell-

surface trafficking of the GPRC6A. 

A deeper insight into the interaction of GPRC6A and RAMPs was provided by FRET based 

stoichiometric analysis. An excess of total expression of RAMP1 by ~3 times to GPRC6A was 

measured by absolute concentration ratio R (Table 3.3.4). Out of that 19.72 ± 2.3 % of RAMP1 

was present in the FRET complex with the GPRC6A. The total expression of RAMP2 and 3 were 
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5 times than GPRC6A on the cell-surface where only 3.2± 1.28% and 0.8± 2.3% of RAMP3 and 3 

respectively, were measured as present in FRET complex (Figure 3.3.18 B, Table 3.3.4). 

The fraction of GPRC6A present in the FRET complex with RAMP1 was 68.4 ± 7.8% out of its 

total population on the cell-surface; whereas it was 8.56 ± 3.32% and 5% in case of FRET 

complex with RAMP2 and 3 respectively (Figure 3.3.18 C, Table 3.3.4). So, the fraction of 

GPRC6A in cell-surface FRET complex with RAMP1 was statistically significantly higher than with 

RAMP2 (~8 fold higher) and RAMP3 (~14 fold higher). Similarly, the fraction of RAMP1 in cell-

surface FRET complex with GPRC6A was  statistically significantly higher than RAMP2 with 

GPRC6A (~6 fold higher) and RAMP3 (~25 fold higher) [(Figure 3.3.18 B, C and Table 3.3.4) 

(p<0.0001, Kruskal Wallis test, Dunn’s multiple comparison post-test)]. 

GPRC6A alone 

 

Figure 3.3.14: Representative picture showing expression of GPRC6A-citrine alone in COS-7 cell.  
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GPRC6A+RAMP1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.15: Representative image for FRET between GPRC6A-citrine and RAMP1-cerulean in COS-7 

cells: 

COS-7 cells were transfected with 10µg pcDNA 3.1 citrine-GPRC6A and 10µg pcDNA3.1 cerulean-link-

RAMP1 and were imaged using the confocal microscope 48hr post transfection. (A) Expression of 

RAMP1-cerulean (donor) (B) Expression of GPRC6A-citrine (acceptor) (C) 50 pixel dot ROI around the cell 

membrane of the GPRC6A-citrine image to measure cell-surface FRET. (D) FRET between GPRC6A-citrine 

and RAMP1-cerulean. Blue areas represent less degree of co-localization; whereas brighter areas from 

pink to yellow represent higher co-localization. Red arrows indicate areas of co-localization between 

GPRC6A and RAMP1 on the cell-surface. Scale bar 10µm.  

RAMP1-cerulean (A) GPRC6A-citrine (B) 

FRET image 

 

(D) 50 pixel dots ROI on GPRC6A-cit (C) 
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50 pixel dots ROI on GPRC6A-Cit (C) FRET image (D) 

 

         

 

          

 

 

 

 

 

 

 

 

 

Figure 3.3.16: Representative image for FRET between GPRC6A-citrine and RAMP2-cerulean in COS-7 

cells: 

COS-7 cells were transfected with 10µg pcDNA 3.1 citrine-GPRC6A and 10µg pcDNA3.1 cerulean-link-

RAMP2 and were imaged using the confocal microscope 48hr post transfection. (A) Expression of 

RAMP2-cerulean (donor) (B) Expression of GPRC6A-citrine (acceptor) (C) 50 pixel dot ROI around the cell 

membrane of the GPRC6A-citrine image to measure cell-surface FRET. (D) FRET between GPRC6A-citrine 

and RAMP2-cerulean.  Scale bar 10µm. 

  

GPRC6A+RAMP2 

RAMP2-cerulean (A) 
GPRC6A-citrine (B) 
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RAMP3-cerulean (A) GPRC6A-citrine (B) 

FRET image (D) 50 pixel dots ROI on GPRC6A-Cit (C) 

GPRC6A+RAMP3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.17: Representative image for FRET between GPRC6A-citrine and RAMP3-cerulean in COS-7 

cells: 

COS-7 cells were transfected with 10µg pcDNA 3.1 citrine-GPRC6A and 10µg pcDNA3.1 cerulean-link-

RAMP3 and were imaged using the confocal microscope 48hr post transfection. (A) Expression of 

RAMP3-cerulean (donor) (B) Expression of GPRC6A-citrine (acceptor) (C) 50 pixel dot ROI around the cell 

membrane of the GPRC6A-citrine image to measure cell-surface FRET. (D) FRET between GPRC6A-citrine 

and RAMP3-cerulean. Scale bar 10µm  
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Figure 3.3.18: Cell-surface FRET efficiencies of GPRC6A+RAMPs and fraction of receptor components 

involved in FRET complex 

(A) Cell-surface FRET efficiencies of individual RAMPs with GPRC6A (blue bars) compared among 

themselves and also with respective negative control citrine alone+RAMP (red bars). ### p<0.0001 (2 way 

ANOVA , Bonferroni post-test), ***p<0.0001 (Kruskal Wallis test, Dunn’s multiple comparison post-test) 

33(B) and (C) Stoichiometric analysis of fraction of RAMP and GPRC6A present in FRET complex on the 

cell-surface, respectively. *** p<0.0001 (Kruskal Wallis test, Dunn’s multiple comparison test). (D) 

Fluorescence intensity of the cerulean-tagged RAMPs on the cell surface of GPRC6A + RAMP transfected 

cells (* p<0.05 Kruskal-Walis test, Dunn’s multiple comparison test).  Total cells analysed in 3 separate 

transfections are shown in brackets. The data was not normally distributed as analysed by D'Agostino & 

Pearson omnibus normality test.  
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GPRC6A+RAMP 
NFRET % of 

positive control 
Fa (%) Fd(%) R 

GPRC6A+RAMP1 

(n=10) 
36.4 ± 2.5** 68.4 ± 7.8*** 19.7 ± 2.36*** 0.34 ± 0.12 

GPRC6A+RAMP2 

(n=18) 
10.5 ± 3.02 8.56 ± 3.32 3.24 ± 1.28 0.2±0.37 

GPRC6A+RAMP3 

(n=18) 
6.14 ± 2.51 4.828 ± 3.32 0.8 ± 2.3 0.2±0.8 

 

Table 3.3.4: Mean and SEM values of cell membrane FRET efficiency and fraction of receptor 

components involved in FRET between the GPRC6A and RAMPs: 

Significant difference in the NFRET value was observed between GPRC6A+RAMP1 vs CLR+RAMP2 and 

CLR+RAMP3 The fraction of GPRC6A and RAMP1in FRET complex on the cell membrane is significantly 

higher than GPRC6A+RAMP2/3 combinations *** p<0.0001 (Kruskal Wallis test, Dunn’s multiple 

comparison test. Combined data of three separate transfections and the values in brackets indicate 

number of cells analysed. 
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3.4: Discussion 
The distribution of expression of RAMPs in the body exceeds the expression of its known 

partners, which means that there are yet unidentified interacting partners of RAMPs [213]. 

Most of the interacting GPCR partners of RAMPs belong to the family B [156, 172, 174, 175], 

until the interaction with CaSR was established by Bouschet et al [157]. Based on this it was 

hypothesised that further insights into this interaction can be gained using FRET-based 

stoichiometry analysis of the components. Furthermore, this finding leads to another 

hypothesis that other family C GPCRs may also interact with RAMPs.  

Sensitized FRET emission technique was used as it can only occur within a distance of 10nm and 

is more sensitive than the immunofluorescence approach [222-231]. Accordingly, cerulean and 

citrine which are enhanced mutants of CFP and YFP respectively [236-238], were chosen as the 

donor and acceptor fluorophores respectively to measure sensitized emission FRET. This 

technique also allows the measurements of FRET-based stoichiometry according to the method 

derived by Hoppe et al [224]. 

Choice of fluorophores, tagging strategy and cell line used: 

RAMPs were tagged with the donor cerulean, and the GPCRs were tagged with the acceptor 

citrine fluorophores. There are certain advantages of using these fluorophores over CFP and 

YFP. Cerulean is ~2.5 times brighter than CFP, more resistant to photobleaching, has a higher 

extinction coefficient, improved quantum yield and improved fluorescence lifetime and so it 

has improved signal to noise ratio [236]. Citrine is one of the longest wavelength mutants of 

YFP and is more resistant to acid quenching and easily expressible at 37°C [237]. Also, the 

mutation of alanine to lysine at position 206 of both cerulean and citrine prevents their homo 

and hetero-dimerization, making them useful for sensitized FRET experiments [236-238]. Using 

these fluorophores, the receptors and RAMPs were tagged at their C-terminal so that an 

artificial effect of cell-surface trafficking of the receptor/RAMP caused by signal peptide of the 

fluorophore tagged to the N-terminal could be avoided. Indeed, it has been shown that N-

tagged c-myc RAMP1 could express on the cell-surface in absence of a transfected receptor 

partner in HEK-293 cells, an effect attributed to signal peptide of c-myc [174]. Primers were 

designed so that the stop-codon of RAMPs was excluded, in order to avoid cleavage of the 
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fluorophore. Also, it was important to choose the cells which do not express the receptors and 

RAMPs endogenously, as it might result in cell-surface trafficking of the transfected receptor 

due to the expression of endogenous RAMP or vice versa and hence cause inaccurate FRET 

measurements. Accordingly, COS-7 cells were chosen for this study as they do not express 

RAMPs (appendix section 7.1, figure 7.1-7.3). We have also shown the absence of CaSR in 

native COS-7 cells (appendix section 7.4, figure 7.6 and qPCR data on empty COS-7 cells showed 

absence of any amplified product) Also, COS-7 cells have been widely used to study RAMP-

receptor biology due to this feature [156, 157, 174, 175, 198, 211] and have been shown not to 

express RAMPs.  

Negative and positive controls: 

A major problem of sensitized FRET is measuring specific FRET from a higher background of 

fluorescence signal created by over-expressing non-interacting fluorescent labels. So a negative 

control was used in order to measure basal level of FRET. Citrine alone with RAMP-cerulean 

constructs were used and FRET measured at cell membrane for each combinations were taken 

as minimum threshold when measuring GPCR-RAMP interactions (figure 3.3.1-3.3.4).  

As a positive control, a fusion protein was created by engineering cerulean protein followed by 

18aa linker sequence before the N-terminal domain of citrine, in order to achieve maximum 

FRET possible. The maximum FRET calculated was ~33%. It has been reported that the large size 

(~2.4nm in diameter and 4.2nm in length [240]) of the fluorescent proteins limits the useable 

FRET distance and hence the maximum FRET efficiency that can be measured is around 40% 

[222, 232]. 

Advantages of FRET-based stoichiometry: 

Methods measuring only FRET efficiency in arbitrary units cannot determine whether a low 

FRET signal is due to absence of interaction between the components or to local excesses of 

free donor or acceptor molecules [224]. Using FRET-stoichiometry one can calculate the 

fraction of acceptor molecules in complex with donor and the fraction of donor molecules in 

complex by estimating the donor fluorescence lost due to energy transfer [224]. The advantage 

of using this technique is that it eliminates the need for acceptor photobleaching to determine 
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total donor concentrations and allows for repeated measurements from the same cell. Also, the 

R value quantitates relative concentration of total acceptor to the total donor concentrations. 

This gives an idea about the relative local concentrations of GPCR and RAMPs that do not 

exhibit FRET. Also, as mentioned before, sensitized FRET emission suffers from drawbacks of 

cross-talk and bleed-through [9, 10] due to the spectral overlap of the fluorophores. The 

constants α and β correct for the bleed through of acceptor and donor fluorescence in the FRET 

channel respectively and an extra constant γ gives the ratio of extinction coefficients for 

acceptor and donor, excited at the donor’s excitation [224]. Also, ξ which is proportionality 

constant relating the sensitized acceptor emission to the decrease in donor fluorescence due to 

FRET, allows measurement of donor participation in FRET complexes, and eliminates the need 

for acceptor photobleaching to determine the fraction of energy lost from the donor [224]. So, 

in summary FRET stoichiometry has an added advantage as it measures the location and 

stoichiometry of molecular interactions inside a living cell along with essential corrections.  

Ec or FRET efficiency was calculated by sensitized emission using the cerulean-citrine fusion 

construct as opposed to acceptor photobleaching by Hoppe et al [224] as we observed small 

proportion of photobleaching of donor when acceptor was photobleached using the 514nm 

laser line, making this technique unusable. Having established the Ec, α, β, γ and ξ (appendix, 

table 7.1) using the cerulean-citrine fusion construct, an estimate of their stoichiometry 

revealed that the fraction of citrine in FRET complex determined by whole cell histogram was 

~100% whereas ~82% of cerulean was involved in FRET (data not shown in table 8.1). These 

values of course depend on the arrangement and spatial configuration of both molecules at the 

time of fixation of cells. It should be noted that the stoichiometry of the positive control is not 

1:1 (1:0.82 instead) and so any interpretation for the fraction of donor (RAMP) should be done 

carefully.  

CLR as a GPCR positive control: 

CLR which is a known partner of all the RAMPs [156], was used as a GPCR positive control to 

determine whether the calculated constants and the experimental conditions were efficient 

enough to detect a FRET interaction at the cell-surface. It can be seen in figure 3.3.5-3.3.7 (D) 
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that CLR and RAMPs are co-localised together from the cytoplasm to the cell membrane which 

indicates that they are packaged together in the ER and remain partners throughout the 

lifecycle of the receptor. Significant increases in FRET efficiencies observed between CLR and all 

RAMPs compared to the respective negative controls, asserts the fact that specific RAMP-

receptor interactions can be measured using this technique along with the quantification of the 

stoichiometry of the receptors. Interestingly, a significant increase in FRET efficiency was 

observed in the case of CLR and RAMP3 compared to CLR+RAMP1 (figure 3.3.8 A, table 3.3.2). 

However, there were no differences in the fraction of RAMP or CLR in the FRET-complex (table 

3.3.2), and so the results indicate that RAMP3 with CLR are spatially arranged together in a way 

that facilitates stronger interaction when compared to RAMP1. Even though the NFRET level of 

CLR+RAMP2 are similar to CLR+RAMP3, the absence of significant difference with CLR+RAMP1 

NFRET could be due to a higher standard error of mean (than CLR+RAMP3) (table 3.3.2). This 

observation needs to be confirmed by further studies and a strong conclusion cannot be drawn 

at present.  

Interactions with CaSR: 

Figure 3.3.9 shows that CaSR when present on its own is mainly localized in the peri-nuclear 

region which indicates failure of trafficking to the cell-surface. This is in agreement to the 

observation by Bouschet et al, where CaSR could not traffic to the cell-surface in RAMP-

negative COS-7 cells [157]. When CaSR was co-expressed with either RAMP1 or 3 in COS-7 cells, 

distinct regions of co-localization were observed ranging from the perinuclear region to the 

cytoplasm and cell membrane (Fig 3.3.10 and 3.3.12 D), which indicates that they are packaged 

together in the ER (perinuclear) and transported to the cell membrane by vesicles (cytoplasm). 

This pattern of co-localization agrees with the observation made by Bouschet et al, where using 

ER and Golgi apparatus markers revealed that CaSR was co-localized only with calnexin (ER 

marker) and not giantin (Golgi apparatus marker) in absence of a RAMP, whereas CaSR with 

RAMP3 was co-localized with both calnexin (ER) and giantin (Golgi apparatus) indicating that 

RAMP promotes trafficking from ER to the Golgi apparatus [157]. Following this, deglycosylation 

studies indicated that RAMP3 promoted immature to mature glycosylation of CaSR, which 

resulted in trafficking of the receptor to the cell-surface [157].  
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Cell-surface FRET efficiency analysis revealed that RAMP1 and RAMP3 interactions with CaSR 

were above the background FRET values whereas, NFRET values for CaSR+RAMP2 complex was 

similar to its corresponding negative control (fig 3.3.13). Hence, CaSR+RAMP2 is not a real 

interaction and was not included in stoichiometric analysis, which is supported by previous 

study [157]. Interestingly, RAMP3 showed 1.67 fold higher FRET efficiency than RAMP1 with 

CaSR on the cell-surface (table 3.3.3), which is a novel observation. The mechanism behind this 

effect was explained by FRET-stoichiometry analysis. Stoichiometric analysis revealed that the 

fraction of RAMP3 in FRET complex was ~1.6 fold higher than RAMP1 without any change in the 

fraction of CaSR involved (Table 3.6). This means that there are more donor molecules in FRET 

in case of CaSR+RAMP3 complexes compared to CaSR+RAMP1 without any change in the 

amount of acceptor molecules in FRET. This would result into a higher energy transfer between 

donor and acceptor fluorophores, leading to an increase in FRET. This observation also indicates 

that there is no change between efficiency of RAMP1 and 3 to traffic CaSR to cell-surface 

(reflected by no change in fraction of CaSR in both FRET complexes). Accordingly these results 

suggest for the first time, that a higher-oligomeric receptor complex in the case of 

CaSR+RAMP3 traffics to the cell-surface when compared to CaSR+RAMP1 complex. In view of 

that, since CaSR exists as a dimer in the cell [70, 104, 127] it can be hypothesised ~1.6 times 

more molecules of RAMP3 exist per dimer of CaSR than RAMP1, resulting into a higher-

oligomeric receptor complex. When using over expressing system it should be considered that 

such results can arise due to unequal expression levels of individual RAMPs, but this can be 

possibly ruled out in this case as the expression levels of all RAMPs were found to be equal at 

the cell surface (Figure 3.3.13 D). Also, it should be remembered that the stoichiometry of 

positive control using this system is not 1:1 (as noted above), and so this result should be 

confirmed using other independent approaches such as sequential FRET or co-

immunoprecipitation. 

Interactions with GPRC6A: 

It has been reported that c-myc tagged hGPRC6A expresses poorly at the cell-surface in HEK-

293 cells, whereas it fails to express on the cell-surface of COS-7 cells [158, 159]. It was 

observed in our study that GPRC6A was retained inside the cell in the peri-nuclear region when 
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expressed alone in COS-7 cells (fig 3.3.14). This shows absence of trafficking of the receptor to 

the cell-surface which is supported by the previous observations [158, 159]. Based on the 

findings of Boushcet et al [157], CaSR could traffic to the cell-surface in HEK-293 cells due to the 

presence of RAMP1, whereas it failed in the RAMP-negative COS-7 cells. Accordingly it was 

hypothesised in this study that GPRC6A requires an association with RAMP for efficient delivery 

to the cell-surface.  

Distinct regions of co-localization were observed between GPRC6A and RAMP1 but not RAMP 2 

or 3 ranging from the peri-nuclear region to the cell membrane, showing that they associate in 

the ER and Golgi and are transported together to the cell-surface (fig 3.3.15-3.3.17 panel D). 

This follows the typical pattern of cell-surface trafficking of GPCRs along with RAMPs as their 

partner [156, 157]. Hence, it is demonstrated that RAMP1 traffics GPRC6A to the cell-surface in 

COS-7 cells. This is a novel finding of this study as such an interaction of GPRC6A has not been 

reported yet. In the case of RAMP2, higher co-localization was observed in the peri-nuclear 

region than RAMP3 (fig 3.3.16 vs 3.3.17 panel D), which might suggest its interaction with the 

GPRC6A limited only to that region and its potential role in endo-cellular functions of GPRC6A, 

like binding testosterone [161, 170, 171]. An effect of over-expression of both the components 

can be accounted as one of the reasons for this observation. Accordingly, this needs to be 

tested further as accurate measurements cannot be made due to the over-expression of both 

the components in the peri-nuclear region. Alternative methods such as co-

immunoprecipitation can be used to test this interaction.  

Cell-surface stoichiometric analysis further revealed that a higher proportion of the GPRC6A 

(~69%) out of the total concentration is in FRET complex with RAMP1 (fig 3.3.18, table 3.3.4). A 

lower value for the fraction of RAMP1 in FRET complex (~20%) should not be confused with a 

lower number of RAMP1 molecules participating in FRET than GPRC6A, as it is ~18% of ~ 3 times 

higher total expression than GPRC6A at the cell-surface (as shown by R value of 0.34). It was 

seen that the cell surface expression levels of RAMP1 with GPRC6A were significantly higher 

than RAMP2, but not RAMP3 (fig 3.3.18 D). This could be because the expression levels of 

RAMP1 on the cell surface were enhanced due to its interaction with GPRC6A. However, since 
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the NFRET values for GPRC6A+RAMP2 and 3 were not significantly higher than their 

corresponding negative controls, the stoichiometric fractions can be considered as background 

or baseline values.  

It has been mentioned by Hoppe et al, that the measured quantities, fraction and efficiency 

from FRET stoichiometry calculations are transferable from one molecular interaction to 

another [224]. So, we can compare the stoichiometry data between CaSR+RAMP and 

GPRC6A+RAMP interactions. It was observed that that the total expression of RAMP1 on the 

cell-surface, as measured by the R ratio (which includes signal from RAMP1 involved and 

uninvolved in FRET) was ~3 times higher than GPRC6A (~6 RAMP1 per GPRC6A). This is different 

from the observations in the case of CaSR, where the total expression of RAMP1 was found to 

be~1.6 times higher than CaSR (~2 RAMP1 per CaSR). This means that the total RAMP1 on cell-

surface in presence of GPRC6A was 1.87 times higher than in the case of CaSR. Out of this 

higher pool of total RAMP1 on the cell-surface, ~20% was involved in FRET with GPRC6A, 

whereas ~16% of 1.87 times less total RAMP1 was involved in FRET with CaSR. This can be 

extrapolated to compare the fractions of RAMP1 involved in FRET complex with both receptors, 

by normalizing the fraction of RAMP1 involved with GPRC6A by 1.87 times, which would be 

~11%. So, the fraction of RAMP1 in FRET complex with CaSR is 1.45 fold more than with 

GPRC6A, indicating more molecules of RAMP1 interacting per CaSR dimer than with GPRC6A 

dimer. 

Limitations: 

One limitation of using this technique is the over-expression of both the fluorophores inside the 

cell as observed in the all the figures expressing either fluorescent-tagged GPCRs or RAMPs. 

Hence, FRET occurring inside the cell where the fluorophore intensity is saturated (represented 

by black areas in FRET images: panel D of 3.3.5-3.3.17) cannot be determined efficiently. 

Additionally, since the stoichiometry using the positive control was not 1:1 (but 1:0.82 instead), 

care should be taken while interpreting the fraction of RAMPs in FRET. Also, since the 

components are being overexpressed, it does not represent conditions in case of a physiological 
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interaction. Accordingly, the results obtained from this study represent initial 

information/observations and need to be confirmed by using alternative approaches. 

 

Other approaches tested: 

Sensitized FRET was the most robust technique useable in our hands. However, during the 

process, other techniques were also tested to establish the best technique that could be used. 

Accordingly, acceptor as well as donor photobleaching techniques were tested. The principle of 

acceptor photobleaching relies on the fact that when FRET occurs between two proteins, donor 

fluorescence is quenched as some of donor energy is used to excite acceptor. When acceptor is 

photobleached, the donor quenching is recovered and consequently its fluorescence increases 

[222, 231]. The advantage of this method is that the analysis is much simpler compared to 

other methods and it can be performed on a single sample at specific locus [222, 231]. 

However, as mentioned before, we found that the donor was also getting photobleached in the 

process and hence this technique could not be used. Also, it has been shown that due to higher 

excitation of cerulean at YFP laser wavelength, it is not recommended to be used in acceptor 

photobleaching technique, as it can lead to false positive results [241]. 

Donor photobleaching technique [230] was also used, which is based on the fact that FRET if 

present, has a protective effect on donor bleaching. In this approach, repetitive excitation of 

the donor fluorophore is followed by synchronous donor/acceptor detection. The rate of decay 

of donor fluorescence by increase in photobleaching by successive illumination, gives a 

measure of kinetics for all donor molecules. So a faster decay rate means that the donors is not 

involved in FRET, whereas a slower decay rate indicates that the donor photobleaching is being 

protected by FRET and hence the donor is involved in FRET. Also, the simultaneous decrease in 

acceptor sensitized emission detected, provides a measurement for the donors present only 

the FRET population [230]. So in theory, when measuring FRET between two molecules (eg 

RAMP and receptor) two decay rates, one for the donor alone and one for the donor FRET 

complex should be observed. However, we observed two decay rates for cerulean alone 

(appendix section 7.2, figure 7.4). This would complicate analysis of experimental FRET decay 
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curves, because in theory, four decay rates - two for cerulean alone and two for cerulean in 

FRET should be observed. Although a slower bleaching with the cerulean-citrine fusion was 

observed (appendix section 7.2, figure 7.4 B), it was not statistically significant and would be far 

too small to measure in the case of RAMP-receptor experimental data. Bi-exponential decay of 

cerulean has also been reported in the literature [241]. It was shown that although cerulean 

was initially reported to decay by mono-exponential kinetics, fitting the cerulean decay to bi-

exponential decay model improved the goodness of fit [236]. It has been speculated that like 

CFP, cerulean also possesses two conformations of chromophore due to interactions with 

nearby aa, which results into two distinct emitting species [241]. Due to these technical 

problems both acceptor and donor photobleaching techniques could not be used. 

In summary, a deeper insight into the interaction of CaSR and RAMPs was provided by FRET-

stoichiometry. It was demonstrated that both RAMP1 and 3 traffic the CaSR to the cell-surface 

with equal efficiencies; and a higher fraction of RAMP3 than RAMP1 is present in the CaSR 

receptor complex, suggesting higher stoichiometry of RAMP3 molecules interacting. Also, a 

novel interaction between GPRC6A and RAMP1 was discovered using this method, where 

RAMP1 enabled the cell-surface trafficking of the GPRC6A. Of note, since all these studies were 

done using overexpression system, other independent approaches should be used in both 

artificial and natively expressing cell systems to confirm these results.  
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CHAPTER 4: ROLE OF RAMPs IN CaSR 

SIGNALLING 
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 4.1. Introduction 
The classical understanding of GPCR signalling as either an “on” or “off” state, as well as one-

ligand-one-receptor model have undergone a paradigm shift. Growing evidence suggests that 

GPCRs can exist in various conformations which confer subtle signalling and ligand binding 

properties to the receptor. Apart from their function as chaperone proteins, a direct role of 

RAMPs in modulating the signalling of GPCRs is also known (described in detail in section 4.1.3). 

CaSR is a pleiotropic GPCR, activating various signalling pathways via more than one G-protein 

[128-131]. So far, the only known role of RAMPs in their interaction with CaSR is trafficking of 

receptor to the cell surface in transfected HEK-293 and COS-7 cells as shown by Bouschet et al 

[157]. Accordingly, we hypothesised that RAMPs play a role in CaSR signalling which could then 

lead to understanding of new mechanism by which CaSR activates multiple signalling pathways. 

4.1.1. GPCR signalling mechanism: 

Before reviewing the signalling of the and RAMP-mediated receptor signalling, the basic 

working model of GPCR signalling should be understood. The mechanism of action of GPCR is 

explained by the ternary complex model [242], which is simplified in the figure 4.1. In the 

absence of a bound ligand, the GPCR is said to be in an inactive state (R) (Fig 4.1.1 A). Also, a 

GPCR can exhibit basal activity in terms of signalling (R*) in the absence of a bound ligand. In 

this (R*) state, the GPCR can also be pre-coupled to G-protein and so exists in a so-called R*G 

state. So, in absence of a bound ligand (L), the receptor can exist in three states: L+R+G, 

L+R*+G, L+R*G. In the R* and R*G states of the receptor, the conformation of the receptor 

facilitates a higher affinity to bind a ligand than the R state which is a lower affinity state. 

Accordingly, the order of ligand binding affinity is R*G > R* > R. Accordingly, when the ligand 

binds to the receptor, conformational change in the structure of the receptor occurs, allowing 

its interaction with hetero-trimeric G-proteins and hence forming a ligand- receptor-G protein 

complex (Fig. 4.1.1 B). Normally the G-proteins are in an inactive state composed of a GDP 

bound α subunit, and a βγ subunit. When the GDP is exchanged by GTP (which is at a higher 

concentration inside cells), G-proteins are activated. So, as soon as the ligand-receptor-G-

protein complex is formed (fig 4.1.1 B), an immediate catalysis of GTP exchange on the α-
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subunit of the G-protein takes place which leads to the dissociation of the G-protein into active 

GTP bound α subunit and βγ subunit (Fig 4.1.1 B). These two sub-units (Gα-GTP and βγ) then 

activate different effector proteins sequentially causing signal transduction (Fig 4.1.1 C). Once 

the activated G-protein subunits leave the receptor, the activated receptor can bind to more G-

proteins, eventually leading to amplification in the number of activated G-protein subunits. The 

subunits remain activated for as long as the GTP is bound to α sub-unit. Once the GTP is 

hydrolysed back to GDP (Fig 4.1.1 D), the G-protein re-associates and receptor returns back to 

the basal state (Fig.4.1.1 E) [242]. 

 

Figure 4.1.1: GPCR signalling mechanism: 

GPCR signalling is shown by representation of the ternary complex model. (A) Receptor exists in ligand 

free state as inactive (R) or basal active (R*) state. (B) Upon ligand binding the GDP is exchanged to GTP 

which dissociates the G-protein into active α and βγ subunits that activate different effector molecules 

of signal transduction (C). (D) When GTP is hydrolyzed back to GDP, the receptor returns back to inactive 

or basal active state (E). 
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4.1.2: Signalling of the CaSR: 

CaSR has been shown to activate various signalling pathways depending on the agonist or the 

cell type as summarized in the figure 4.1.2. 

Promiscuous G-protein coupling: 

CaSR couples to more than one G-protein in different cell types [128-131]. The most-

characterized mechanism is the Gαq-mediated PLCβ activation. This causes IP3 activation which 

leads to subsequent release of intracellular Ca2+ from the internal stores. This PLC-mediated 

internal Ca2+ release by CaSR has been demonstrated in parathyroid cells and transfected HEK-

293 cells [132]. The specific activation of Gαq has been demonstrated by the use of pertussis 

toxin in the studies. Pertusis toxin is ineffective in preventing binding of labelled GTP into Gαq 

proteins, which otherwise inhibits this activity by other G-proteins like Gαi [128]. Apart from 

Gq/11, CaSR can also couple to Gαi which inhibits adenylate cyclase activity and thus reduces 

cAMP production [128]. Interestingly, it has been shown in CaSR transfected-HEK 293 cells, that 

in addition to the activation of Gαi, cAMP levels were also affected by a parallel increase in the 

intracellular Ca2+ concentrations (Ca[i]) [129]. It was shown that concurrent stimulation of cAMP 

and Ca2+ pathways initially led to increases in the Ca[i] oscillation frequency which eventually 

fused into a persistent Ca[i] plateau that effectively inhibited cAMP accumulation. So, cAMP 

machinery could function normally, without any disruptions of its cellular actions in case of 

transient Ca[i] increase by CaSR agonists; and was inhibited only after a certain length of time of 

Ca[i] increase [129]. In cells types endogenously expressing the CaSR, activation of Gαq and Gαi 

pathways has been demonstrated to be an important mechanism of action of CaSR. Examples 

of this includes the mouse proximal tubule cells [133], cytotrophoblasts from placenta [134], rat 

pancreatic cells [135], rat kidney cells [76], intestinal epithelium cells [243], human ovarian 

surface epithelial cells [244], rat fibroblasts [138].  

 

CaSR also activates G12/13 - G-protein sub-types as shown in CaSR-transfected canine kidney 

cells [130]. This was shown by measuring Rho-mediated PLD activation (a known target of 

G12/13) which was sensitive to the presence of specific inhibitor for G12/13 [130]. Interestingly, it 

was shown that CaSR which couples to Gαi in normal breast epithelial cells and inhibits PTHrP 
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secretion, changes its G-protein preference to Gαs in two breast cancer cell lines: Comma-D and 

MCF-7, and causes PTHrP secretion; an effect linked to hypercalcaemia in malignancies. This 

shows a role of CaSR in pathogenesis of cancer by causing PTHrP secretion due to changing 

signalling pathways [131]. The mechanism responsible for this G-protein switching is still 

unknown.  

Phospholipase activation: 

It has been shown that following G-protein activation, CaSR activates different phospholipases 

as the next step in signal transduction cascade. In HEK-293 transfected cells and in primary 

bovine parathyroid cells, CaSR agonists activated phospholipases C, A2 and D which form IP3 

and DAG; arachidonic acid; and phosphatidic acid respectively [130, 132]. This shows a co-

ordinated, receptor-mediated regulation of multiple signal transduction pathways [119, 120, 

245].  

 

PLC activation causes the cleavage of its substrate PIP2 which then forms IP3 and DAG. It has 

been reported that CaSR activating PLC also caused a parallel activation of PI4-kinase which is 

responsible for replenishment of PIP2 (substrate for PLC) in a Rho-dependent and Gq/11 

independent pathway, as shown by experiments in transfected HEK-293 cells [245]. The 

significance of this effect might contribute to the constant supply of PLC-substrate necessary 

for the signalling of CaSR at basal Ca2+ concentration (as a partially active receptor) [245]. It has 

been shown in transfected HEK 293 cells, that activation of Protein Kinase-C (PKC) causes 

inhibition of most of the PI-PLC mediated release of Ca[i] stores, following agonist activation 

[119]. The PKC-dependent phosphorylation of the C-tail of CaSR serves as a negative feedback 

mechanism, inhibiting constant Ca[i]  elevation and alternatively causing oscillations that might 

protect against cytotoxic effects of otherwise constant elevated Ca[i] [120].  

CaSR mediated PLA2 activation and consequent arachidonic acid (second messenger) activation 

has been reported in transfected HEK-293 cells. This has been linked to Gαq activation, since it 

was completely abolished by RGS4- a negative regulator of Gq/11 protein [246]. It has also been 

reported that PLA2 mediated arachidonic acid release in cultured parathyroid cells is dependent 

on PKC activation; as inhibition of PKC reduced arachidonic acid release [132]. CaSR also causes 



142 
 
 

G12/13-mediated activation of PLD [130, 132], which hydrolyses phospholipids to produce the 

second messenger- phosphatidic acid [132]. This is also shown to be activated in a PKC-

dependent mechanism in HEK-293 transfected cells [132]. So, it seems that PKC plays a role in 

co-ordinating the concert of signal transduction pathways of CaSR as it has a negative feedback 

effect of PLC and a positive feedback effect on PLA2 and PLD activation.  

Protein kinase activation: 

CaSR has been reported to activate various MAPKs that are responsible to trigger several 

cellular functions. Signal transduction from the activation of GPCR to MAPK is complex; 

involving interactions between various components of intracellular signalling pool of protein 

kinases, including cross-talk with tyrosine kinase-dependent signalling pathways [137, 139, 

247]. CaSR activates various MAPK to induce mitogenic effects of extracellular Ca2+ on cells such 

as osteoblasts [136], ovarian surface epithelial cells [137], fibroblasts [138]. 

CaSR activation by Ca2+ and calcimimetic NPS R-467 in bovine parathyroid cells and transfected 

HEK-293 cells has been shown to activate ERK1 (p44) and ERK2 (p42) [141, 142]. In transfected 

HEK-293 cells this response was partially sensitive to pertusis-toxin treatment as well as PLC 

inhibition, implicating Gαi and Gαq-dependent pathway [141]. It was also reported that inhibition 

of MEK - which phosphorylates ERK1/2, attenuated its activation in both transfected HEK-293 

cells as well as primary parathyroid cells [141, 142]. ERK1/2 activation has also been observed 

in cells like fibroblasts [138, 139], osteoblasts [136], ovarian surface epithelial cells [137, 139] 

and proximal tubule cells [81] linking the mitogenic effects of extracellular Ca2+ to CaSR induced 

MAPK activation. 

ERK1/2 activation pathway has been shown to depend on the cell type. In transfected HEK-293 

cells, ERK1/2 activation occurs in response to extracellular Ca2+ via Ras and PI3-K activation as 

shown using their specific inhibitors [139]. Interestingly, ERK activation in Rat-1 fibroblast cells 

was shown to be sensitive to Src-tyrosine kinase inhibitor [138], an effect not observed in 

transfected HEK-293 cells [139]. This shows that two separate pathways for ERK1/2 activation 

exist based on cell types. PI3-K mediated ERK1/2 activation has been reported in cells 

endogenously expressing CaSR like ovarian surface epithelial cells [139] and proximal tubule-
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derived opossum kidney cell line [81]. CaSR signal-specific, PI3-K mediated activation of another 

protein kinase – Akt has been reported in RAW 264.7 murine osteoclast precursor cells [46] and 

ovarian surface epithelial cells [140].  

Other MAPKs such as p38 and JNK are also activated by CaSR [143, 146] as shown by studies 

involving HEK-293 transfected cells where their activation by increasing Ca2+ and neomycin 

concentrations was inhibited by p38 inhibitor [143]. Similarly, increasing concentrations of CaSR 

agonists- Ca2+, neomycin, spermine and gadolinium caused p38 and ERK1/2 activation in murine 

osteoblasts like cells [144], whereas high Ca2+-stimulated PTHrP release from H-500 Leydig cells 

via p38, ERK1/2, and JNK pathways [145]. JNK was also activated by CaSR in response to Ca2+ 

and gadolinium in canine kidney cells line MDCK [146]. 

Activation of several MAPKs by CaSR has been speculated to trans-activate tyrosine kinase 

receptors [137]. It has been shown in PC3 cells that CaSR could trans-activate EGFR signalling 

pathway to activate ERK1/2 by Gq/11-Ras-mediated pathway and finally causing secretion of 

PTHrP [247]. This mechanism is mediated by activation of matrix-metalloproteinase which 

cleaves the EGF outside the cell into soluble form causing binding to EGFR [247].  

So, CaSR activates different MAPKs in various cell types, however the significance for this 

differential activation of MAPKs has not yet been fully understood in terms of its different 

biological actions via different ligands. Also, how different signal transduction mechanisms (eg 

IP3 and MAPK activation) synchronize inter-dependently or are chosen independently based on 

agonist/cell type is poorly understood. The figure below summarizes the signalling pathways 

known to be activated by the CaSR. 
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Figure 4.1.2: Overview of the signalling pathways activated by the CaSR. Numbers 1-5 represent 

different signalling pathways activated by the CaSR. 

 

It can be hypothesised that interaction of CaSR with its interacting partners can be involved in 

activating multiple signalling pathways. One of the partners of CaSR are RAMPs [157] as 

discussed in section 1.8.4, chapter 1. RAMPs are known to play role in mediating signalling of 

certain GPCRs as discussed below. 

4.1.3. Role of RAMPs in receptor signalling 

Increasing evidence for the role of RAMPs in signalling of family B GPCRs has emerged over the 

last few years, where RAMPs are either essential or modulate the signalling of the GPCR 

[33][174]. The C-tail of RAMPs has been shown to play a significant role in signalling of the AMY 

receptors. It was shown in transfected COS-7 cells that the C-tail truncation mutants of RAMP1, 

2 and 3 co-transfected with CTR, decreased the affinity for AMY binding and potency for cAMP 

activation on the AMYR1 (CTR+RAMP1) and AMYR2 (CTR+RAMP2), but did not for AMYR3 

(CTR+RAMP3) [192]. When Gαs was overexpressed in these cells, the defect in AMY binding was 

corrected. This suggests that RAMPs are probably involved in direct G-protein coupling to the 

AMY receptor [192]. Also, the same study reported that C-tail truncation mutants of RAMPs, did 

not make any difference in cAMP activation by AM and CGRP [192], indicating the role of C-tail 

of RAMPs in Gαs-mediated signalling, exclusively for AMY receptors. A deeper insight into the 
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role of RAMPs in AMY signalling was given by Morfis et al, who observed a marked induction of 

AMY potency at AMYR1 (CTR+RAMP1) and AMYR3 (CTR+RAMP3) for formation of cAMP and a 

weaker induction of AMY potency to activate intracellular Ca2+ and ERK1/2 signalling; compared 

to CTR expressed alone in HEK-293 and COS-7 cells [211]. This indicates a clear RAMP-mediated 

effect in the modulation of signalling of the CTR. The same study also showed that 

overexpression of Gα subunits led to a modulation in 125I-AMY binding. Gαs overexpression 

increased 125I-AMY binding at AMYR2 (CTR+RAMP2), both Gαs and Gαq increased 125I-AMY 

binding at AMYR3 (CTR+RAMP3); whereas there was no change for 125I-AMY binding at AM1R 

(CTR+RAMP1) [211]. This shows that RAMPs probably participate in modulating the direct G-

protein coupling efficiencies of AMY receptor [211]. 

VPAC1 receptor signalling is also modulated by RAMPs. VPAC1 receptor interacts with all 

RAMPs, but its association with RAMP2 in COS-7 cells caused augmentation in efficacy of PI 

hydrolysis by VIP with no change in efficacy for cAMP generation, ligand binding affinity and 

potency; when compared to VPAC1 receptor alone [174]. It was suggested that this effect can 

be attributed to a change in compartmentalization of the receptor in presence of RAMP2 [174]. 

However, our group using antibody-capture scintillation proximity assay for measuring specific 

G-protein activation has shown that there is a decrease in Gαi protein activation when VPAC1 

receptor is co-transfected with RAMP2, without any change in ligand binding affinity and 

potency for Gαi stimulation [Roberts DJ et al, unpublished data].  

In addition, we also observed changes at the PTH1R, PTH2R and Glucagon receptor signalling in 

the presence of RAMPs, where there was an increase in G-protein activation efficacy by the 

ligands, without any changes in the half maximal effective concentration (Ec50) and ligand 

binding affinity (Kd) of the ligand. We demonstrate that when compared to PTH1 receptor 

alone, PTH1R+RAMP2 increased the efficacy of PTH (1-34) to activate Gαs (2.3 fold) and Gαi (1.6 

fold) without any change in potency and ligand binding affinity. Also, the efficacy of PTHrP (1-

37) for Gαs activation was increased (by 2.5 fold) at PTH1R in complex with RAMP2 [Roberts et 

al, unpublished data]. We also observed that the efficacy of PTH(1-34) at PTH2R+RAMP3 

complex to stimulate Gαs was higher (by 1.8 fold) than PTH2R alone. Furthermore, RAMP2 co-
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expression with glucagon receptor reduced glucagon induced Gαi and Gαs stimulation (by ~0.3 

fold) when compared to the receptor alone [Roberts et al, unpublished data]. These 

observations show for the first time that RAMPs are involved in direct G-protein coupling of the 

VPAC1, PTH1/2 and Glucagon receptors. 

Another intracellular peripheral membrane protein is also involved in RAMP-CLR signalling. The 

CGRP-receptor component protein (RCP) couples to the AM1R and is involved in generating 

adrenomedullin-induced cAMP response [212]. It couples AM receptor to the cellular signal 

transduction pathway. RCP also couples to the CGRP receptor and is also involved in the cAMP 

stimulation following CGRP-mediated stimulation but does not affect CGRP binding [212]. 

Similar to the interaction of CaSR with tyrosine kinase pathway as described earlier, cross-talk 

between AMR/AMYR and IGF-1R has also been reported. It has been shown in rat osteoblasts 

that the mitogenic actions of amylin, adrenomedullin and IGF-1 are interdependent [248]. It 

was shown that amylin receptor activation caused Gαi-mediated ERK1/2 activation; and 

blocking of IGF-1R and not IGF-1, inhibited the action of amylin. Similarly, adrenomedullin also 

increased ERK1/2 activation sensitive to IGF-1R blocking [248]. Interestingly, the researchers 

discussed that they did not observe tyrosine phosphorylation of IGF-1R itself upon treatment 

with amylin, and so the complete mechanism for this cross-talk is yet to be elucidated. 

Surprisingly, blocking of amylin and adrenomedullin receptors by antagonists inhibited the 

mitogenic actions of IGF-1 on IGF-1R, suggesting essentially of a signalling complex consisting 

amylin/adrenomedullin receptor and IGF-1R where interruption of either, abrogates the actions 

of their respective ligands [248]. 

In order to study the role of RAMPs in CaSR signalling, two techniques were used in this project: 

antibody-capture scintillation proximity assay (SPA) and live cell imaging using Ca2+ indicator 

fluorescent dye. Brief introduction on SPA and Ca2+ indicators is given below: 

4.1.4.  Antibody-capture Scintillation proximity assay (SPA): 

This technique was used because, it is able to detect specific-G-protein activation and so 

multiple G-protein subtype activation by a GPCR can be measured. As discussed earlier (section 

4.1.1), a G-protein is activated when GDP is replaced by GTP, the reversal of which, brings it 
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back to an inactive state. In this assay, [35]S-labelled non-hydrolysable GTPγS (which has γ-

thiophosphate bond resistant to hydrolysis by the GTPase), is used to prevent reforming of an 

activated (and dissociated) hetero-trimeric G-protein into an inactivated state. G-protein 

specific antibodies towards the α-subunit are used which are subsequently detected by 

secondary antibody attached to a scintillant bead [249]. The energy transfer between the [35]S 

on the GTPγS to the scintillant in the bead causes luminescence which can be detected as a 

specific signal from an activated G-protein. Figure 4.1.3 below shows a schematic of the 

working of this technique.  

 

Figure 4.1.3: Schematic of principle for antibody capture SPA.  

Upon activation of GPCR, GDP is exchanged with non-hydrolyzable[35S]GTPγs. A specific G-protein is 

detected by its antibody which is detected by luminescence resulting from proximity between [35S]GTPγs 

and scintillant beads coated with secondary antibodies. 

 

Antibody-capture SPA has been used extensively to measure G-protein activation profiles of 

different GPCRs [249-254]. This technique was first shown to successfully measure Gαq/11 

activation in muscarinic receptor-transfected in CHO cells [249]. It displayed a higher 

background-to-signal ratio for Gαq/11 measurement (as there is a higher concentration of Gαi 

proteins compared to other G-protein subtypes) [249]. This technique was also employed to 

study the nature of novel compounds against the 5-HT receptor subtypes in transfected HEK-
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293 cell membranes and helped in classifying them as partial agonist that specifically activated 

Gαs and corresponding antagonists as the potential candidates for antipsychotics [250]. This 

technique was also successfully employed to measure Gαq/11 activation by endogenously 

expressing 5-HT receptor subtypes in rat frontal cortex membranes [251]. Sensitivity of this 

technique for Gαs was demonstrated by a study measuring D1 receptor-mediated activation of 

Gαs in transfected L-cells [254]; and by another study measuring both Gαq/11 and Gαs to 

characterise the signalling profiles of full agonist, partial agonist and antagonist in rat striatum 

and cortex membranes [252]. This shows the ability of the assay to measure differential 

coupling of receptor subtypes to individual or different G-proteins in native tissues. In 

conclusion, antibody-capture SPA provides a powerful tool for measuring GPCR coupling to 

specific G-proteins. 

Another technique used in this project was Ca2+ imaging technique, which uses Ca2+ indicator 

dyes in order to measure changes in intracellular Ca2+ levels upon CaSR activation by a live cell 

imaging system or a plate reader. This technique is used widely and brief information about the 

dyes used is given below: 

4.1.5. Ca2+ indicator dyes: 

Chemical Ca2+ indicators are widely used to study the change in Ca2+ concentrations (second 

messenger) inside the cells. Fluorescent dyes like Fluo-3, Fluo-4, Ca2+ orange, Oregon green, 

Fura-2 have been developed for cell based applications for Ca2+ imaging [255-257]. Most of 

these dyes are based on Ca2+ chelators - EGTA and BAPTA, modified to incorporate fluorescent 

reporter groups [257]. These chemical dyes have a broad range of Ca2+ binding affinities and 

can be selected based on the experiment of interest. Commercially, these hydrophilic dyes are 

widely sold conjugated with hydrophobic acetoxymethyl (AM) esters to make them membrane-

permeable for passive loading into the cells [258]. DMSO which is used to dissolve the dye 

protects the hydrolysis of esters in moist conditions preventing the loss of loading of dye into 

the cells. Once inside, intracellular membrane esterases cleave the AM ester group, thereby 

concentrating the dye inside the cells and inhibiting their leakage from the cells [259]. Organic 



149 
 
 

anion-inhibitor like probenecid can be used additionally to prevent the leaking of the dye from 

the cell [259].  

Since the temporal and spatial Ca2+ concentrations inside the cells vary greatly, various Ca2+ 

dyes have been synthesized covering a broad spectrum of Ca2+ binding affinities [255, 256, 258]. 

Widely used high affinity Ca2+ indicators include single wavelength dyes like Fluo-3 and Fluo4, 

Ca2+ green-1, Fura-2, Indo-1 [259]. Fluo-3 is easily excited using argon laser (488nm) and has 

fluorescein like spectral properties. Its binding affinity (Kd) is ~390nM, consequently gives less 

background at resting cell Ca2+ levels (~100nM) and gives ~100 times higher fluorescence upon 

binding to Ca2+ [256, 257]. Fluo-4 is an enhanced derivative of Fluo-3 synthesized by 

substituting two fluorine for the two chlorine substituents in Fluo-3, which results in greater 

absorbance using argon laser (488nm) and hence has greater fluorescence [252]. So, a lower 

concentration of dye can yield almost double fluorescence compared to Fluo-3 which is helpful 

to study small changes in intracellular Ca2+ concentrations [252, 257]. Fluo-4 also has a higher 

rate of cell permeation and a larger dynamic range for Ca2+ binding from 100nM to 1µM with a 

Kd of ~345nM [252]. Another advantage of Fluo-4 over Fluo-3 is its resistance to photobleaching 

(t1/2 339s vs 143s). Derivatives of Fluo-4 have been synthesized for usage as low affinity Ca2+ 

indicators like Fluo-5F (Kd ~2.3µM), Fluo-5Cl (Kd ~6.2µM), Mag-fluo-4 (Kd~ 22µM), Fluo-5N (Kd ~ 

90µM) [256].  

In addition to the single wavelengths dyes, ratiometric dyes excited at two-wavelengths are 

also used. Ratiometric dye Fura-2 is one of the most successful high affinity Ca2+ indicators. 

Peak absorption of the dye shifts from 340nm to 380nm when it binds to Ca2+ with the same 

emission peak at 510nm [258]. The ability to make ratio measurements with fura-2 at low 

concentrations, allows accurate measurements of the intracellular Ca2+ concentrations [258, 

259]. Ratio calculations considerably reduces the effects of uneven dye loading, leakage of dye, 

photobleaching, as well as problems associated with measuring Ca2+ in cells of unequal 

thickness. The Kd of Fura-2 is ~145nM which allows its use to measure very small changes in 

Ca2+ concentrations and has very limited sensitivity to Ca2+ concentrations above 1µM [258]. 

However, the dual excitation of the dye makes it unsuitable for use in live cell imaging. 
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Derivatives of Fura-2 are used as low affinity Ca2+ indicators like Mag-Fura 2 (Kd ~1.9mM), Mag-

Fura 5 (Kd ~28µM), Fura-2-FF (Kd ~ 35µM) and so along with Fura-2, these ratiometric dyes have 

a wide sensitivity range from ~100nM to ~100µM [259]. 

A major disadvantage of the chemical Ca2+ indicator dyes is that their cellular 

compartmentalization cannot be controlled. For example, a study comparing the properties of 

various Ca2+ indicator dyes reported that Fura-2 loaded HeLa cells showed marked 

mitochondrial and ER localization, whereas Fluo-3 or Fluo-4 loaded cells showed a uniform 

cytoplasmic fluorescence [255]. Also, the ratio of compartmentalization of dyes between 

cytoplasm and specific organelles is sensitive to temperature and time of incubation [255]. 

Fluorescent dyes also leak out from the cells at different rates when incubated for a longer time 

[255]. Another drawback of using fluorescent dyes is their susceptibility to photobleaching 

[255].  

4.1.6. Hypotheses and aims: 

It was hypothesised that RAMPs are involved in CaSR signalling and alter ligand induced CaSR 

signalling.  

Aims: 

The specific aims of this chapter are: 

 To differentially measure the G-protein activation profiles of RAMP1 or RAMP3 in 

complex with CaSR in transfected COS-7 cells using antibody-capture scintillation 

proximity assay (SPA) technique. 

 Study the role of RAMP in CaSR signalling in endogenously expressing thyroid medullary 

carcinoma cell line (TT) using Ca2+ imaging techniques. 
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4.2.  Methods: 

Measuring specific G-protein activation using antibody-capture 

scintillation proximity assay 

 4.2.1. cDNA constructs used: 

pcDNA 3.1 RAMP1, 2 and 3 and pcDNA 3.1 M3 cDNA constructs were purchased from UMR 

cDNA resource centre. pcDNA 3.1 vector was purchased from Invitrogen corp. 

4.2.2. Engineering CaSR gene into pcDNA 3.1 vector: 

CaSR was engineered into the pcDNA 3.1 vector from TOPO CaSR vector using the molecular 

cloning technique described in chapter 3 section 3.2.2 by introducing Hind3 and Xba1 

restriction enzyme sites on either ends of the CaSR gene using PCR and ligating it into the 

pcDNA 3.1 vector between these two sites in the multiple cloning region. 

The primers used to engineer Hind3 and Xba1 sites (highlighted) on CaSR are given below:  

Gene Sequence 5’ to 3’ Length 
Tm 
(°C) 

Annealing 
Temp (°C) 

CaSR 

F(Hind3):TATCAAGCTTGTCATGGCATTTTATAGCTGCT
GCTGGGTCCTC 

R(Xba1): TGAATCTAGATTATGAATTCACTACGTTTTC 
TGTAACAGTGCTGCC 

43 

50 

62.41 

61.07 
54.5°C 

Table 4.2.1: Primer sequences for cloning CaSR into pcDNA 3.1 vector. 

Sequences of all primers used for the sequencing CaSR in positive clones are given below: 

Primer 
name 

Sequence 5’ to 3’ Length 

CMV 
primer 

CGCAAATGGGCGGTAGGCGTG 21 

230-1540 
F: TGGTAGAGGTGATTCAAAATTC 
R: CTCTCAGAAAGGTGTCCACAGGT 

22 
23 

1160+ TTGGCCTCAAACACCAGGAGGACACGGTT 29 

1950+ AACTGGCACCTCTCCCCAGAGGATGGCT 28 

2590+ CATTCCAGCCTATGCCAGCACCT 23 

Table 4.2.2: Sequences of primers used for sequencing the engineered CaSR in the pcDNA3.1-CaSR 

positive clones 
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4.2.3. Transfecting COS-7 cells with GPCR and RAMP constructs: 

COS-7 cells were co-transfected using electroporation method described in section 3.2.3 of 

chapter 3. ~4 million cells per 0.4ml electroporation buffer were transfected with 5µg GPCR 

construct alone or with 15µg RAMP construct. 

4.2.4. Membrane preparation: 

Media was removed 48hr post-transfection and cells washed with PBS before removal of the 

cell layers using 2mm glass beads (Merck Chemicals). The cells were then spun at 300g for 5 

minutes and resuspended in 10 ml, ice cold, PBS. On ice, 50 strokes of a 15 ml Dounce 

homogeniser were used to lyse the cells, after which, the lysate, diluted to 40 ml, was spun at 

300g for 10 minutes at 4⁰C. The supernatant was then spun at 40,000g for 40 minutes at 4⁰C. 

The membranes were then resuspended in SPA buffer (100mM NaCl, 50mM HEPES, 5mM 

MgCl2, adjusted to pH 7.5 with KOH) aliquoted and fast frozen in liquid nitrogen before storage 

at -80⁰C. Membranes were thawed on ice fresh before use and not refrozen/reused.  

The protein concentration of the membranes was determined using BCA protein assay as 

described in section 2.11 of chapter 2 using 1mg/ml BSA fraction V in SPA buffer as standard. 

4.2.5. Western blotting for detection of G-proteins and CaSR on transfected 

membranes: 

To check for the presence of different G-proteins in membrane preparations, western blotting 

was used as described in section 2.12 of chapter 2. 10µg of CaSR+RAMP1 COS-7 transfected 

membranes were resolved on a 10% SDS-PAGE gel. In the case of detecting CaSR in transfected 

membranes, 40μg of transfected or COS-7 empty membranes were resolved in 8% SDS-PAGE 

gel according to the previously mentioned protocol (section 2.12, chapter 2) The concentrations 

of the antibodies used are given in section 2.12 of chapter 2. 
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4.2.6. Scintillation Proximity Assay (SPA): 

SPA using SPA-PVT glass beads: 

Scintillation proximity assays were carried out using a modified protocol based on Cussac et al 

[254]. Concentration response curves were constructed by incubating increasing agonist 

concentrations with receptor transfected cell-membranes and 0.1µM GDP (Sigma Aldrich) in 

SPA buffer in a total volume of 200µl in white Optiplates (Perkin Elmer). The assay was initiated 

by addition of 0.5nM [35S] GTPγS (Perkin Elmer) and incubated for 1 hour at 35⁰C. The assay was 

terminated by addition of 20µl 3% Nonidet P40 (Roche) in PBS and incubated at room 

temperature for 30 minutes on a plate shaker. 10µl of anti-G-protein antibody (Gs sc-383, Gi sc-

262, Gq sc-392 Santa Cruz Biotechnology) at a concentration of 0.2µg/µl, was then added, 

followed by a further 30 minutes at room temperature before addition of 75µl anti-rabbit PVT 

SPA beads (Perkin Elmer) reconstituted in 25ml PBS. The plate was then sealed, incubated at 

4⁰C for 20 hours, spun at 1300g for 10 minutes at 4⁰C before reading in a TopCount scintillation 

counter (Packard). Each well was counted for 2min and average CPM was used. 

 

Agonists used in SPA were: 

CaCl2 (Fisher scientific), Gadolinium trichloride (Sigma Aldrich), Neomycin (Bioline), Cinacalcet 

HCl (Selleck chem). 

 

SPA using Protein-A beads: 

In the case of using Protein-A beads, the protocol used was same as above except it was carried 

out in 1.5ml tubes and 50µl of Protein-A beads (Sigma Aldrich) were added instead of SPA PVT 

glass beads and incubated for 20hr at 4°C with gentle agitation. This was followed by three 

washes of 400μl SPA buffer with centrifugation at 10,000g for 5min between each wash. After 

the last wash, the contents of each tube were resuspended in 300μl of SPA buffer and then 

pipetted into a 5ml scintillation vial (Fisher scientific) and 1ml of liquid scintillant cocktail 

(Perkin Elmer) was added. The vials were then counted in LS 6500 multi-purpose scintillation 

counter (Beckman Coulter). Each vial was counted for 2min and an average CPM was used. 
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4.2.7. Testing effect of compounds on SPA PVT glass beads: 

In order to test the effects of various agonists on SPA beads, the reaction was incubated with 

the given concentration of agonist and 0.5nM [35S] GTPγS  in a volume of 200µl along with 75µl 

of anti-rabbit PVT SPA beads, for 20hr at 4⁰C. The plate was then sealed, incubated at 4⁰C for 20 

hours, spun at 1300g for 10 minutes at 4⁰C before reading in a TopCount scintillation counter 

(Packard). Each well was counted for 2min and average CPM was used. 

 

4.2.8. Statistical analysis: 

Log (agonist) vs response ordinary fit curves were created using GraphPad Prism version 5.00 

for Windows (GraphPad Software, San Diego California USA, www.graphpad.com) to get the 

top and the bottom of the curves. The bottom of the curve value was subtracted from all the 

values of the curve and a new Log (agonist) vs response ordinary fit curve was created to 

calculate the potency (Ec50) values. 

Ca2+ assay using Live Cell Imaging System: 

4.2.9. Seeding cells for imaging: 

TT cells were cultured under normal conditions as described in section 2.1 of chapter 2. For the 

assay, 100,000 TT cells were seeded into each well of a 24-well clear-bottom plate (Costar, 

Corning). After two days, the cells were used for intracellular Ca2+ measurement assay. 

4.2.10. Loading cells with Fluo-4 AM dye: 

Media was removed and cells were washed twice with PBS and loaded for 45min at 37⁰C with 

500µl of physiological salt solution containing 2mM CaCl2 (recipe in appendix) containing 5µM 

Fluo-4AM dye (5mM stock in DMSO) and 2.5mM water soluble probenecid. Dye was then 

removed and cells were washed three times with physiological salt solution and further 

incubated with 500µl of physiological salt solution containing 2mM CaCl2 for 45 min at 37⁰C. 

During this incubation, the cells were treated with antibodies or compounds according to the 

requirement of the experiment. After 45min, the buffer was replaced with 360µl of 
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physiological salt solution containing 1.5mM CaCl2 and the plate was taken to the live cell 

imaging system. 

4.2.11. Imaging cells: 

HCX PL FLUOTAR 10.0x0.30 dry objective on an Inverted wide field fluorescence microscope 

Leica AF6000 Time Lapse was used to image cells. The cells were imaged at 37⁰C in single 

channel fluorescence image using the L5 filter, with exposure of 1sec, at gain and intensity of 5. 

Images were taken at 12bit resolution at every 1.2sec with first 35 frames recorded as baseline 

after which 40µl of 10X solution of agonist was added carefully using a P200 pipette (Gilson) 

and images were recorded for further 3min.  

The compounds used in different experiments were: 

Cinacalcet HCl, Neomycin, RAMP1 mouse polyclonal antibody (ab 67151, product discontinued, 

Abcam), Mouse control IgG (Vector labs), RAMP1 goat polyclonal antibody (sc-8850, Santacruz 

biotech), Goat control IgG (Vector labs), Ionomycin (Sigma Aldrich), NPS 2390 (Sigma Aldrich), 

DMSO (Sigma Aldrich) and physiological salt solution (recipe in appendix). 

4.2.12. Knock-down of RAMP1 mRNA expression in TT cells using siRNA: 

In order to knock-down RAMP1 mRNA expression, TT cells were transfected with RAMP1 siRNA 

or scrambled (sc) siRNA using electroporation, with a slight change in protocol from described 

in section 3.2.3 of chapter 3. ~1.5 million TT cells were transfected with 1.5µg of RAMP1 or sc 

siRNA in 0.4ml final volume at 960µF and 0.22kV. After electroporation, TT cells were cultured 

in 24-well clear bottom plates in normal F-12K medium for 72hr, before using them for further 

experiments. 

4.2.13. Validating knockdown of RAMP1 mRNA expression: 

RNA extraction and cDNA synthesis: 

After 48hr from transfection, RNA was extracted using Trizol reagent as described in section 2.4 

of chapter 2. RNA pellet was resuspended in 12µl of Nuclease-free water. cDNA was 

synthesized from equal amounts of RNA for RAMP1 and siRNA transfected samples as 

described earlier in section 2.6 of chapter 2.  
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Real-time PCR to measure gene expression of CaSR and RAMPs in siRNA transfected TT cells: 

RAMP1 mRNA expression along with the expression of CaSR and RAMP2 and 3 was measured 

using Taqman probes in real-time PCR as described in section 2.9 of chapter 2.  

4.2.14. Data analysis for live cell imaging: 

Images from each well were exported in .tiff format and were analysed using ImageJ software. 

Series of images for a well were opened in ImageJ and converted into a stack. Next, ROIs were 

selected for a number of cells as well as for the background. Fluorescence intensity for each cell 

was measured and the background intensity value was subtracted from all the values using 

Microsoft Excel. A time-dependent response curve was plotted using GraphPad Prism version 

5.00 for Windows (GraphPad Software, San Diego California USA, www.graphpad.com) and 

peak value of response for each cell was calculated using AUC function. The peak value of 

response for each cell was then calculated as percentage change from baseline fluorescence 

and expressed in the graph as percentage above baseline. For calculating dose-response curves, 

these values were plotted against their respective doses and log agonist vs response curve was 

fitted using Graphpad prism 5 to obtain the Ec50 values. Normalcy test was done on each set of 

data using D’Agostino & Pearson omnibus normality test using Graphpad prism 5 software. 
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4.3: Results: 

 Part 1- Antibody-capture scintillation proximity assay 

4.3.1. M3 as a positive control for Gαq protein activation using SPA PVT beads in 

antibody-capture SPA. 

Activation of Gαq protein is the most characterized signalling pathway of CaSR as described in 

section 4.1.2. To test if the conditions of SPA were optimized to measure Gαq activation, 

Muscarinic receptor type 3 (M3) which is a known Gαq protein-coupled receptor [249, 260, 261], 

was used as a positive control for the SPA. COS-7 cells were transfected with 5µg of M3 

receptor. 15µg of M3 COS-7 membranes were incubated with increasing doses of acetylcholine 

chloride ranging from 100pM to 1mM in presence of [35S]GTPγS . A dose-responsive activation 

of Gαq protein was observed as shown in Fig 4.3.1 and the potency (Ec50) calculated was 176 ± 

4.27 nM (n=3). The Y-axis on the graph shows counts per-minute (CPM) normalized to the 

baseline value of the graph. Thus, it was confirmed that Gαq protein activation could be 

detected using antibody-capture SPA in transfected COS-7 cell membranes. 
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Activation of Gq by Ach on M3 COS-7 membranes using SPA PVT beads
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Figure 4.3.1 Activation of Gαq by Acetylcholine chloride on M3 receptor transfected COS-7 membranes 

using SPA PVT beads:  

COS-7 cells were transfected with M3 receptor and the effect of acetylcholine chloride on the activation 

of Gαq was checked using antibody-capture SPA. 100pM to 1mM of acetylcholine chloride was incubated 

with 15µg of M3 transfected COS-7 membranes in separate wells to measure the Gαq activation at each 

dose. The CPM values shown are normalized to the bottom of the curve. Log agonist vs dose response 

curve was plotted which is shown above and the Ec50 value obtained was 176 ± 4.27 nM. This is a 

combined curve of three separate experiments performed in duplicates using the same batch of 

transfected membranes. 
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4.3.2. Effect of compounds on SPA PVT beads: 

Initial testing using CaCl2 indicated a possible non-specific effect of the ligand on the SPA-PVT 

beads. So in order to confirm that, increasing doses of CaCl2 ranging from 100nM to 100mM 

were incubated with 500pM of 35SGTPγS and 75µl of SPA PVT beads in the SPA buffer for 20 hr 

at 4⁰C. It was observed that doses higher than 1mM of CaCl2 artificially increased the signal (fig 

4.3.2 A), which resulted into false positive results in previous experiments, rendering those 

doses unusable.  

Similarly, the effect of gadolinium chloride on SPA PVT beads was tested by incubating a high 

dose of 200µM Gadolinium chloride and 10mM CaCl2 for comparison with 500pM of [35S]GTPγS 

and 75µl of SPA PVT beads for 20hr at 4⁰C. A slight increase from basal signal was observed in 

case of 200µM Gadolinium chloride (Fig 4.3.2 B), suggesting that this compound had less non-

specific effects on the SPA PVT beads as 10mM CaCl2.  
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Figure 4.3.2 Effect of increasing concentrations of CaCl2 on SPA-PVT beads: 

Given doses of ligands were incubated with 500pM of [35S]GTPγS for 1 hr without any membranes. (A) It 

was observed that there was an increase in CPM after 1mM CaCl2 indicating non-specific effect of the 

compound on SPA beads. (B) It was observed that CPM for 10mM CaCl2 was the highest over basal 

compared to the 200µM GdCl3 (A) n=1. (B) n=2 
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4.3.3:  Use of Protein-A beads instead of SPA PVT beads and M3 as a receptor positive 

control for Gαq protein activation: 

Due to the non-specific effects of CaCl2 on the SPA-PVT beads, Protein-A beads were used 

instead. In the experiment, 15µg of M3 COS-7 membranes were incubated with increasing 

doses of acetylcholine chloride ranging from 100pM to 1mM in presence of [35S]GTPγS . A dose 

responsive activation of Gαq protein was observed as shown in Fig 4.3.3 and the Ec50 value 

obtained was 147.7 ± 1.57 nM (n=3). The Y-axis on the graph shows CPM normalized to the 

baseline value of the graph. Thus, it was confirmed that Gαq protein activation could be 

detected using Protein-A beads in SPA. 

Activation of Gq by Ach on M3 COS-7 membranes using Protein A beads
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Figure 4.3.3: Activation of Gαq by Acetylcholine chloride on M3 receptor transfected COS-7 

membranes using Protein-A beads:  

COS-7 cells were transfected with M3 receptor and the effect of acetylcholine chloride on the activation 

of Gαq was checked using Protein-A beads. Acetylcholine chloride was incubated from 100pM to 1mM 

doses with 15µg of M3 transfected COS-7 membranes in separate wells to measure the Gαq activation at 

each dose. The CPM values shown are normalized to the bottom of the curve. Ec50 value obtained was 

147.7 ± 1.57 nM. This is a combined curve from three separate experiments performed in duplicates 

using the same batch of transfected membranes. 
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4.3.4: Use of Protein-A beads to measure Gαq activation by increasing doses of CaCl2 

on empty COS-7 and CaSR+RAMP1 membranes measured using Protein-A 

beads in SPA: 

Protein-A beads were used instead of SPA PVT beads in order to use higher doses of CaCl2 in 

SPA. First the negative control COS-7 membranes were incubated with 10nM to 10mM of CaCl2 

in order to measure Gαq activation (Fig 4.3.4 A). Log agonist vs response curves were plotted as 

shown in the Fig 4.3.4 A. The negative control COS-7 empty membranes exhibited Gαq 

activation responses with Ec50 values of 0.5 ± 0.18 mM. The maximal stimulation (efficacy) for 

COS-7 was 2315 ± 301 cpm (n=3). Expression of CaSR in CaSR+RAMP1/3 membranes was 

checked using western blotting as shown in appendix section 7.4, figure 7.6. CaSR+RAMP1 

membranes were also run in parallel to COS-7 membranes (figure 4.3.4 B) to see a change in 

response, it was observed that the Ec50 obtained was 41 ± 4 µM and the efficacy was 3290 ± 

418 cpm (n=2). However, as the negative control also showed a similar response; no 

comparisons were made with CaSR+RAMP1 membranes. 
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Figure 4.3.4:  Effect of CaCl2 doses on Gαq activation on empty COS-7 and CaSR+RAMP1 membranes 

measured using Protein-A beads in SPA:  

15µg of empty COS-7 (A) or CaSR+RAMP1 transfected membranes (B) were incubated with 10nM to 

10mM of CaCl2 in separate wells and SPA was performed using 50µl of Protein-A beads instead of SPA 

PVT beads, followed by addition of scintillation liquid before counting on top count plate reader. The 

graphs show combined data from three (A) and two (B) individual experiments performed in duplicates. 
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4.3.5:  Use of GdCl3 with SPA PVT beads to measure Gαq activation in empty COS-7 and 

CaSR+R1/3 membranes: 

GdCl3 was used instead of CaCl2 as an agonist, as CaCl2 but not GdCl3 showed non-specific 

effects on the SPA PVT beads as shown earlier. Accordingly, 20µg of empty COS-7 membranes 

(figure 4.3.5 A), CaSR+RAMP1 membranes (figure 4.3.5 B) and CaSR+RAMP3 membranes (figure 

4.3.5 C) were incubated with 0.1nM to 1mM GdCl3. However, Gαq activation was observed in 

the negative control COS-7 membranes with an Ec50 of 0.1mM. The Ec50 for the CaSR+RAMP1 

(B) and CaSR+RAMP3 (C) membranes were 0.12mM and 0.25mM respectively. Again, the 

comparisons cannot be made due the non-specific effect of GdCl3 on the negative control 

membranes.  
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Figure 4.3.5: Gαq activation by increasing doses of GdCl3 in empty COS-7 and CaSR+RAMP1/3 

membranes measured using SPA PVT beads:   

20µg of empty COS-7 (A) CaSR+RAMP1 (B) or CaSR+RAMP3 (C) membranes were incubated with 0.1nM 

to 1mM GdCl3 and Gαq responses were measured using SPA PVT beads. The Ec50 are shown in the table 

below each graphs. (A) n=2 (B) and (C) n=1. 
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4.3.6.:  Using Protein-A beads to measure Gαq responses to increasing GdCl3 doses on 

empty COS-7 and CaSR+RAMP1/3 membranes: 

Protein-A beads were used instead of SPA PVT beads to measure Gαq activation by GdCl3. So, 

20µg of empty COS-7 membranes (Fig 4.3.6 A, CaSR+RAMP1 (4.3.6 B), or CaSR+RAMP3 (figure 

4.3.6 C) were incubated with 0.1nM to 0.1mM of GdCl3 and Gαq responses were measured by 

pulling out Gαq antibodies using Protein-A beads. A dose dependent Gαq activation in response 

to GdCl3 was observed for both- negative control empty COS-7 membranes as well as 

CaSR+RAMP1 membranes (figure 4.3.6 A and B) with Ec50 of 1.2µM and 0.31 µM respectively. 

The curve for CaSR+RAMP3 was not converged as the top plateau was not obtained (figure 

4.3.6 C). 
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Figure 4.3.6: Gαq responses to increasing GdCl3 doses on empty COS-7 and CaSR+RAMP1/3 membranes 

measured using Protein-A beads in SPA:  

Empty COS-7 (A), CaSR+RAMP1 (B) CaSR+RAMP3 (C) membranes were incubated with 0.1nM to 0.1mM 

of GdCl3 and Gαq responses were measured. The Ec50 are given in the table below the graphs. (A) n=3 (B) 

and (C) n=1, all performed in duplicates.  
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4.3.7:  Using allosteric modulator Cinacalcet HCl to measure activation of Gαq proteins 

in CaSR+R1/3 and COS-7 empty membranes using SPA PVT beads: 

Due to the non-specific effects of the orthosteric ligands- CaCl2 and GdCl3; Cinacalcet 

hydrochloride, an allosteric activator of CaSR was used in presence of 0.5mM CaCl2 to measure 

G-protein activation in SPA. Accordingly, 20µg of COS-7 empty or CaSR+RAMP1/3 membranes 

were incubated with a high dose of 10µM Cinacalcet HCl in presence of 0.5mM CaCl2 to 

measure change in Gαq activation levels in different membranes using SPA PVT beads. As shown 

in figure 4.3.7, there was no activation of Gαq protein over basal in any combinations including 

the negative control. Also, the basal activity of Gαq was higher in CaSR+RAMP1 membranes than 

empty COS-7 membranes and highest in CaSR+RAMP3 membranes.  
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Figure 4.3.7: Gαq activation by 10µM Cinacalcet hydrochloride in presence of 0.5mM CaCl2 measured 

using SPA PVT beads:  

COS-7 empty or CaSR+RAMP1/3 membranes (20µg) were incubated 10µM of Cinacalcet HCl to measure 

Gαq activation differences. No activation of Gαq was observed in any membrane sets. n=3 performed in 

duplicates. 

  



165 
 
 

4.3.8: Effects of different cell backgrounds on the effect of 10µM Cinacalcet HCl on Gαq 

activation measured using SPA PVT beads: 

 

In order to determine whether using a different cell type would affect the response of Gαq 

activation; CaSR-transfected HEK-293 and TT cell membranes were used in SPA. As a negative 

control, empty HEK-293 membranes were used. It was observed that there was stimulation 

over basal in both HEK-293 empty and CaSR-transfected HEK-293 membranes and that the 

stimulation of Gαq was not different between either (figure 4.3.8 A). In the case of TT 

membranes which natively express CaSR and RAMP1, there was no stimulation of Gαq over 

basal (figure 4.3.8 B). 
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Figure 4.3.8: Activation of Gαq proteins in transfected HEK-293 and TT membranes by 10µM Cinacalcet 

HCl measured using SPA-PVT beads:  

30µg of HEK-293 non-transfected, CaSR-transfected or 40µg of TT cell membranes were incubated with 

10µM Cinacalcet HCl in presence of 0.5mM CaCl2 and Gαq activation was measured using SPA PVT. The 

graph shows Gαq activation as CPM for non-stimulated basal (white) and 10µM Cinacalcet HCl stimulated 

(red) membranes. (A) n=1 and (B) n=3.  
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Part 2 : Live cell imaging 

4.3.9: Testing for functionality of CaSR expressed in TT cells: 

 

Due to the technical problems associated with the SPA, live cell Ca2+ imaging was used to 

measure the signalling of the CaSR. TT cells were used for this which endogenously expressed 

CaSR RAMP1 and 2 but not 3 (please see appendix section 7.6, figure 7.8 for this result and its 

discussion). The activity of CaSR expressed on TT cells was studied using specific ligands of the 

CaSR like Cinacalcet HCl and Neomycin. Intracellular Ca2+ increase resulting due to activation of 

the CaSR was measured using a live cell imaging system. A typical trace obtained is shown in 

Figure 4.3.9 A where, following the baseline, an increase in fluorescence due to rise in 

intracellular Ca2+ concentration by 1µM Cinacalcet HCl is observed; followed by a sharp increase 

in intracellular Ca2+ concentration due the positive control 10µM ionomycin. Ionomycin was 

used as a positive control to check the viability of the cells, in the case of absence of a response 

(especially for the concentrations forming the bottom of the curve). Representative images of 

cells at different time points are shown in pictures above the graph.  

Figure 4.3.9 B shows response of the CaSR to increasing doses of Cinacalcet HCl from 10pM to 

100µM in presence of 1.5mM CaCl2 in buffer. A dose dependent increase in intracellular Ca2+ 

was observed and Ec50 calculated was 503 ± 1.29 nM. Neomycin was also used as a specific 

agonist of CaSR; and Figure 4.3.10 shows a dose dependent increase in intracellular Ca2+ by 

increasing doses of Neomycin from 5nM to 2mM. The Ec50 calculated was 91 ± 1.45 µM.  
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Figure 4.3.9:  Intracellular Ca2+ activation in TT cells by Cinacalcet HCl measured using Fluo-4 AM dye 

and live cell imaging system:  

(A) A representative response to 1µM Cinacalet HCl in presence of 1.5mM CaCl2 followed by response to 

10µM ionomycin. Representative images at different time points in the response curve are shown in 

inset. (B) Increase in intracellular Ca2+ in TT cells by increasing doses of Cinacalcet HCl from 10pM to 

100µM in presence of 1.5mM CaCl2 with an Ec50 of 503 ± 1.29 nM. The data is combined from two-three 

independent experiments with at least 20 cells or more analysed per dose.   

(A) 

(B) 
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Neomycin dose response on  TT cells
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Figure 4.3.10: Intracellular Ca2+ activation in TT cells by Neomycin measured using Fluo 4 AM dye and 

live cell imaging system:  

Increase in intracellular Ca2+ in TT cells by increasing doses of Neomycin from 5nM to 2mM. log agonist 

vs response curve was plotted using Graphpad prism 5 and the Ec50 calculated was 91 ± 1.45 µM. The 

data is combined from two independent experiments with at least 20 cells or more analysed per dose. 
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4.3.10: Determining the effect of RAMP1 siRNA-mediated knock-down on CaSR 

signalling in TT cells: 

In order to study the effect of RAMP1 mRNA knock-down on the CaSR signalling in TT cells, 

siRNA approach was used and its effect on the functional response of TT cells to Cinacalcet HCl 

was measured using live cell imaging. Figure 4.3.11 shows the mRNA expression levels of 

RAMP1 and 2 and CaSR in TT cells 72hr-post transfection with 1.5µg RAMP1 or scrambled or 

random siRNA (negative control). Expression of RAMP3 was not detected. The mRNA 

expression levels of the genes were normalized to Actβ and expressed as % relative to Actβ. At 

72hr after transfection, mRNA expression of RAMP1 was decreased by 80% in RAMP1 siRNA-

transfected cells compared to scrambled siRNA transfected cells, which was statistically 

significant (Figure 4.3.11) (p<0.05, two-tailed Mann-Whitney test). There was no effect of 

RAMP1 or scrambled siRNA transfection on the mRNA expression levels of other genes as 

shown in Figure 4.3.11. 
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Figure 4.3.11: mRNA expression levels of RAMPs and CaSR in TT cells 48hr post transfection with 

RAMP1 siRNA:   

TT cells were transfected with RAMP1 or scrambled siRNA (1.5µg per 1.5 million cells) using 

electroporation. 72hr post-transfection samples were collected to check the effect of RAMP1 siRNA on 

the mRNA levels of RAMP1 using real-time PCR. The mRNA expression levels of the genes of interest 

were normalized to Actβ and are presented as fold change relative to Actβ in %. The data is combined 

from five independent experiments. p<0.05 as analysed by two-tailed Mann-Whitney test.  
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Next, it was tested whether RAMP1 mRNA knock-down corresponded to a change in the 

functional of CaSR. For this CaSR was stimulated using 100µM Neomycin and 1µM Cinacalcet 

HCl and its signalling was tested by measuring increase in Ca[i] using live cell imaging system. 

Accordingly, 1.5µg RAMP1 or scrambled sequence siRNA was transfected in TT cells and 72hr-

post transfection, cells were loaded with Fluo-4AM dye to measure intracellular Ca2+ increase. 

As shown in figure 4.3.12 (A), there was ~50% decrease in the intracellular Ca2+ release in 

RAMP1 siRNA-transfected cells (red bar) compared to the negative control- scrambled 

sequence siRNA-transfected cells (green bar). This was statistically significant with p<0.0001 as 

analysed by Kruskal-Wallis test, Dunn’s multiple comparison post-test as data was not normally 

distributed according to D’Agostino & Pearson omnibus normality test. Also, there was no 

difference between the signalling of the scrambled siRNA transfected cells and the normal 

untransfected TT cells (white bar), thus excluding any non-specific effects due to the 

transfection procedure. Data is represented as % increase from basal fluorescence of the cells. 

As shown in figure 4.3.12 (B), 1µM Cinacalcet HCl response was attenuated by 42% in RAMP1 

siRNA-transfected cells compared to the negative control. This decrease was also statistically 

significant with p<0.0001 as analysed by Kruskal-Wallis test, Dunn’s multiple comparison post-

test, as data was not normally distributed according to D’Agostino & Pearson omnibus 

normality test. Again there was no difference between the signalling of the negative control 

and the normal non-transfected TT cells (white bar).  
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Figure 4.3.12: Effect of RAMP1 knock down on 100µM neomycin and 1µM Cinacaclet HCl signalling on 

TT cells:  

TT cells were transfected with 1.5µg RAMP1 or SC siRNA. 72hr post-transfection the cells were loaded 

with Fluo-4AM and treated with (A) 100µM Neomycin (B) 1µM Cinacalcet HCl which showed ~50% and 

~42% decrease respectively in Ca[i] increase in RAMP1 siRNA transfected cells compared to siRNA to 

scrambled sequence. Red bar represents cells transfected with RAMP1 siRNA, green -scrambled siRNA 

(negative control) and white- normal untransfected TT cells. The data is combined from three 

independent experiments for (A) and two independent experiments for (B) and the total number of cells 

were (A) 354 each (RAMP1 and SC siRNA transfected) and 120 normal TT cells (B) 241 (RAMP1 siRNA 

transfected); 231 (SC siRNA transfected) and 154 normal TT cells.  
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4.3.11: Studying the role of RAMP1 in CaSR signalling in TT cells using RAMP1 

antibodies: 

 

In order to test whether RAMP1 is involved in the signalling of CaSR in TT cells, the effect of 

RAMP1 blocking antibody on CaSR signalling was tested using live cell Ca2+ imaging. Different 

RAMP1 antibodies were tested for their effect on CaSR signalling. Figure 4.3.13 shows the effect 

of using RAMP1 polyclonal antibodies (poly Ab) raised in mouse (Ms) on 10µM Cinacalcet HCl 

signalling in TT cells. The data shows the peak of response represented as % increase of 

fluorescence from baseline fluorescence. White bar shows the response of 10µM Cinacaclet HCl 

which was 245% above basal. Blue bars show the effect of Mouse control IgG and the red bars 

show the effect of 5µg and 10µg of RAMP1 Ms poly Abs. Statistical comparisons were made for 

the RAMP1 antibodies against their respective doses of Control IgG. It was observed that 5µg 

and 10µg RAMP1 Ms poly Ab caused 57.5% and 76.2% decrease in 10μM Cinacalcet signalling 

compared to their respective Control IgG doses (p<0.0001 as analysed by Kruskal-Wallis test, 

Dunn’s multiple comparison post-test). So, a further significant attenuation by 19% was 

observed for 10µg RAMP1 Ab compared to 5µg dose (p<0.0001, as analysed by two-tailed 

Mann-Whitney test). 

RAMP1 poly Ab raised in goat (Gt) showed a dose-dependent attenuation of 1µM Cinacalcet 

signalling as shown in Figure 4.3.14. 5µg and 10µg of RAMP1 Gt poly Ab attenuated 1µM 

Cinacalcet signal by 35% and 57% respectively compared to their respective control IgG Ab. This 

decrease was statistically significant with p<0.0001, as analysed by Kruskal-Wallis test and 

Dunn’s multiple comparison post-test. Also the difference between the effect of 5µg and 10µg 

RAMP1 Ab (21%) was statistically significant (p<0.001, as analysed by two-tailed Mann-Whitney 

test). 
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Figure 4.3.13: Effect of mouse polyclonal RAMP1 antibodies on signalling of 10µM Cinacalcet HCl in TT 

cells:  

TT cells were incubated with the given concentrations of antibodies for 45 min at 37⁰C after Fluo 4 AM 

loading and the effect of 10µM Cinacalcet HCl in presence of 1.5mM CaCl2 on intracellular Ca2+ 

activation was measured using live cell imaging system. The attenuation effect by 5µg and 10µg of 

RAMP1 mouse polyclonal (Abcam) on the intracellular Ca2+ activation by 10µM Cinacalcet HCl are shown 

in the graph. The data is from single experiment and the numbers of cells analysed per set are shown in 

the legend on the graph. *** p<0.0001 analysed using Kruskal-Wallis test and Dunn’s multiple 

comparison post-test as the data was not normally distributed according to D’Agostino & Pearson 

omnibus normality test. ### p<0.0001 two-tailed Mann-Whitney test.  
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Figure 4.3.14: Attenuation of 1µM Cinacalcet response on TT cells by RAMP1 polyclonal Ab raised in 

goat:  

TT cells were treated with the given concentrations of RAMP1 goat Poly Ab (SantaCruz) or Control IgG 

for 45 min at 37⁰C after loading Fluo4 AM. A RAMP1 antibody dose dependant decrease in intracellular 

Ca2+ activation due to 1µM Cinacalcet HCl in presence of 1.5mM CaCl2 was observed (red bars). There 

was no attenuation of 1µM Cinacalcet response by control IgG (blue bars).  The data is combined from 5 

independent experiments and the total number of cells analysed is shown. The data is not normally 

distributed according to D’Agostino & Pearson omnibus normality test. *** p<0.0001 determined by 

Kruskal-Wallis test, Dunn’s multiple comparison post-test, ## p<0.001 two-tailed Mann-Whitney test. 
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4.3.12: Comparing the efficacy of RAMP1 goat Poly Ab to NPS 2390 in attenuating 

responses to 1µM Cinacalcet HCl, 100µM Neomycin and 5mM CaCl2 in TT cells: 

The effect of 10µg RAMP1 goat poly Ab on attenuation of CaSR signalling was compared with 

different concentrations of CaSR antagonist NPS 2390. The final bath concentration of the 

RAMP1 goat poly Ab in a single well was calculated to be 133.3nM using the typical molecular 

weight of IgG as 150kDa. Three CaSR agonists: Cinacalcet, Neomycin and Ca2+ were used to 

compare the effects of RAMP1 Ab and NPS 2390 on CaSR signalling in TT cells. 

Although there was a slight attenuation of 1μM Cinacalcet response by 1μM (~16%), 5μM 

(~16%) and 10μM NPS 2390 (~21%), it was not statistically significant (Figure 4.3.15). Whereas 

50µM NPS 2390 caused 68.5% decrease which was statistically significant (p<0.0001, analysed 

by Kruskal-Wallis test and Dunn’s multiple comparison post-test) (Figure 4.3.15). RAMP1 goat 

Poly Ab (133.3nM) caused a statistically significant attenuation of 1µM Cinacalcet HCl response 

by 46% (p<0.0001, analysed by Kruskal-Wallis test and Dunn’s multiple comparison post-test). 

So in comparison, 133.3nM RAMP1 Ab was 30% more effective in attenuating 1µM Cinacalcet 

response than 10µM NPS 2390 (p<0.001, two-tailed Mann-Whitney test); whereas there was no 

statistically significant difference between the effects of RAMP1 Ab and 50μM NPS 2390 (two-

tailed Mann-Whitney test).  

In the case of 100µM Neomycin, there was a dose-dependent decrease in 100µM Neomycin 

response by 10µM (44%) and 50µM (65.34%) NPS 2390 (p<0.0001, analysed by Kruskal-Wallis 

test, Dunn’s multiple comparison post-test). It was observed that 133.3nM RAMP1 poly Ab 

attenuated 100µM Neomycin response by ~48% compared to Control IgG (p<0.0001, Kruskal-

wallis test, Dunn’s multiple comparison post-test). There was no statistically significant 

difference between the effects 10µM/50µM NPS 2390 and 133.3nM RAMP1 Poly Ab (two tailed 

Mann-Whitney test) (Figure 4.2.16). 

There was no attenuation of 5mM CaCl2 response by 133.3nM RAMP1 Poly Ab or 10µM NPS 

2390; whereas 50µM NPS 2390 attenuated the response by 42% (p<0.0001, Kruskal-Wallis test, 

Dunn’s multiple comparison post-test) (Figure 4.3.17).  
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Figure 4.3.15: Comparison between NPS 2390 and RAMP1 goat antibody efficacy in attenuating 1µM 

cinacalcet response in TT cells:  

TT cells were pre-treated with 1, 5, 10 or 50µM of NPS 2390 or 10µg RAMP1 goat polyclonal antibody 

from SantaCruz for 45 min at 37°C, before measuring 1µM cinacalcet HCl response in presence of 

1.5mM CaCl2. The concentration of RAMP1 Ab was calculated to be 133.3nM based on typical weight of 

IgG as 150 kDa. ** p<0.001 and *** p< 0.0001 as determined by Kruskal-Wallis test using Dunn’s 

multiple comparison post-test. The data was not normally distributed according to D’Agostino & 

Pearson omnibus normality test. The data represented is combined from three independent 

experiments and total number of cells analysed are shown in the box. 
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Figure 4.3.16: Comparison between NPS 2390 and RAMP1 goat antibody efficacy in attenuating 

100µM Neomycin response in TT cells:  

TT cells were pre-treated with either 10µg of RAMP1 goat Poly Ab or 10 or 50µM of NPS 2390 for 45 min 

at 37°C, before measuring intracellular Ca2+ activation by 100µM Neomycin. * p<0.05 and *** p< 0.0001 

as determined by Kruskal-Wallis test using Dunn’s multiple comparison post-test. The data was not 

normally distributed according to D’Agostino & Pearson omnibus normality test. The data represented is 

combined from three independent experiments and total number of cells analysed are shown in the 

box. 
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Figure 4.3.17: Comparison between NPS 2390 and RAMP1 goat antibody efficacy in attenuating 5mM 

CaCl2 response in TT cells: 

TT cells were pre-treated with either 10µg of RAMP1 goat Poly Ab or 10 or 50µM of NPS 2390 for 45 min 

at 37°C, before measuring intracellular Ca2+ activation by 5mM CaCl2.  *** p < 0.0001 as determined by 

Kruskal-Wallis test using Dunn’s multiple comparison post-test. The data was not normally distributed 

according to D’Agostino & Pearson omnibus normality test. The data represented is combined from 

three independent experiments and total number of cells analysed are shown in the box. 
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4.4. Discussion. 
It was hypothesised that RAMPs play a role in CaSR signalling. CaSR is a pleiotropic GPCR which 

activates various signalling pathways via different G-proteins as discussed in detail in section 

4.1.2 in introduction to this chapter. Also, increasing evidence is suggesting a direct role of 

RAMPs in GPCR signalling (section 4.1.3, introduction to this chapter). So, direct and differential 

roles of RAMP1 and 3 on CaSR signalling were tested using antibody-capture SPA (section 4.1.4, 

introduction to this chapter) in transfected COS-7 cell membranes. 

Measuring differential signalling by CaSR+RAMP1/3 complexes using antibody-

capture SPA: 

Since G-protein activation is the top in the hierarchy of GPCR signalling, it would be important 

to differentially determine the G-protein activation profile of CaSR with each- RAMP1 and 3. For 

this, the use of antibody-capture SPA was proposed, as this technique can detect specific G-

protein activation and the need for immunoprecipitation steps involved in [35S]GTPγS binding 

assay is eliminated [249]. pcDNA3.1 CaSR and pcDNA 3.1 RAMP constructs were used to 

transfect COS-7 cells. pcDNA3.1 CaSR construct was engineered and sequencing of the cloned 

construct from bps 300-3220 out of 3300bps in total, was performed to ensure the absence of 

any mutations that may have risen during the cloning procedure (data not shown). The RAMP 

cDNA used were also present in pcDNA3.1, so that using the same vectors for both CaSR and 

RAMPs would ensure similar expression levels due to the activity of the same promoter. 

Since Gαq activation is the most common signalling pathway of the CaSR [119, 132, 141, 245, 

246], SPA was used to measure Gαq protein levels in CaSR+RAMP1/3 membrane preparations. 

The adequate optimization of the assay to detect Gαq was tested by using M3 receptor as a 

positive control (figure 4.3.1 and 4.3.3), since it is known to activate the Gαq protein [249, 260, 

261]. The results confirmed that the conditions for the experiment were optimized and that in 

our hands, Gαq/11 activation could be detected by SPA.  

Next the presence of G-proteins in COS-7 membrane preparations was tested using western 

blotting (Appendix section 7.3, figure 7.5) using the same antibodies used in the SPA. This 

would test the specificity of the antibodies and consequently ensure that the signal observed in 
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SPA, corresponded to the respective, specific G-protein activation. Comparing our results 

(appendix section 7.3, figure 7.5) with the information in the literature and [250, 251] and the 

results obtained for antibody testing by the manufacturers -Santacruz biotechnology Ltd, it was 

observed that the bands at ~42-45KDa correspond to specific G-protein of interest (appendix 

section 7.3, figure 7.5) whereas bands at ~22KDa correspond to non-specific binding of 

antibodies. However, the ability to detect dose-dependent Gαq activation by acetylcholine on 

M3 receptor (figure 4.3.1 and 4.3.3) shows that the antibody could specifically capture Gαq 

protein. In addition this, these anti-G-protein antibodies are well-characterized and have been 

used successfully in antibody-capture SPA by others as shown in the literature: anti-Gαs [250, 

253, 254], Gαi [249], Gαq [249-251, 253]; where it was also shown that anti-Gαs and Gαq 

antibodies are not cross-reactive to each other [250, 251]. 

The expression of CaSR was checked in the transfected CaSR+RAMP1 and CaSR+RAMP3 

membrane preparations; with COS-7 empty membranes as the negative control using western 

blotting (Appendix section 7.4, figure 7.6). This shows that the co-transfection efficiency was 

appropriate and that CaSR was trafficked to the cell-surface by RAMP1 or 3.  

Use of Ca2+ and Gd3+ in the SPA and technical problems associated: 

Since Ca2+ is the natural agonist of the CaSR, CaCl2 was used in SPA on CaSR+RAMP1/3 

transfected COS-7 membranes to measure differences in Gαq/11 activation. However, it was 

discovered that doses higher than 1mM exhibited non-specific effect by increasing the signal 

artificially, even in absence of any cell-membranes in the assay (figure 4.3.2 A). Since, the Ec50 

of Ca2+ is ~3mM [10][28][68], this non-specific effect prevented the use of CaCl2 in further 

experiments. There are no studies in the literature using this technique on CaSR or using Ca2+ in 

the assay. It should be tested if this can be attributed to the effect of Ca2+ or Cl- on the 

scintillant present in the beads.  

Accordingly, the protocol was modified to using Protein-A beads (as there is no scintillant in the 

beads) instead of SPA PVT beads. Protein-A beads immunoprecipitated the specific G-protein 

antibody and following the washes, radioactivity corresponding to the activated Gαq was 

measured. This modified protocol was tested for its ability to detect Gαq protein activation using 
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the same batch of M3 receptor transfected COS-7 membranes (Figure 4.3.3). However, on using 

this modified protocol to measure Gαq activation by CaCl2, it was observed that the negative 

control empty COS-7 membranes, which do not express CaSR (appendix section 7.4, figure 8.6), 

showed Gαq activation in response to higher doses of CaCl2 (figure 4.3.4 A). Even though a left-

ward shift to the curve (figure 4.3.4 B) was observed using CaSR+RAMP1 membranes, this result 

cannot be accepted for further interpretation due to the non-specific effects observed with the 

empty COS-7 membranes. Similar results were observed when Gadolinium (figures 4.3.5, 4.3.6) 

and neomycin (data not shown) were used as an agonist. This shows that probably the higher 

doses of these ligands cause non-specific activation of G-proteins. Such an effect was also 

hypothesised but not tested by Mamillapalli et al in their [35S]GTPγS binding assays using 

immunoprecipitation method on breast cancer cell line membranes [131]. Alternatively, 

increase of Gαq in negative control membranes might also suggest an alternative cation-sensing 

receptor in COS-7 cells which is not recognized using human CaSR Taqman® probes and CaSR 

Ab. GPRC6A mRNA expression was found to be absent in these cells (data not shown) which 

excludes its likelihood as an alternative cation-sensing receptor present in these cells.  

Using allosteric activator Cinacalcet HCl: 

Due to the technical problems associated with higher doses of the orthosteric agonists, an 

allosteric activator of the CaSR called Cinacalcet HCl [86] was used instead, as it requires much 

lower extracellular Ca2+ concentration (0.5mM) for its function. So, CaSR activation can be 

achieved with a low CaCl2 concentration in the assay, which does not have any non-specific 

effect on the SPA PVT beads (figure 4.3.2). Also, any non-specific activation of Gαq in COS-7 

empty membranes even at a very high dose of 10µM Cinacalcet HCl (figure 4.3.7) (reported Ec50 

is 51nM [86]) was not observed. This confirms that the non-specific effect on G-protein 

activation was limited to the orthosteric agonists. However, using Cinacaclet HCl, stimulation of 

Gαq could not be detected in either of CaSR+RAMP1/3 membranes (figure 4.3.7). This could 

either be due to the assay sensitivity towards the concentrations of the Gαq protein activated, 

or a low receptor number being expressed on the cell surface; or both. An activation of other G-

proteins was also tested and preliminary experiments using co-transfected COS-7 and TT cell-

membranes failed to detect any activation of Gαs and Gαi by Cinacalcet HCl (data not shown). So, 
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the possibility of activation of an alternative G-protein pathway could not be detected as well. 

This shows that the failure to detect the activation of Gαq was most likely due to the technical 

problems mentioned above.  

During my MSc project in the past, which involved the use of SPA on the adrenomedullin 

receptors, it was observed that this technique is very sensitive to the receptor number present 

in the transfected membranes. Initial testing of this protocol showed that Gαs activation by 

adrenomedullin was not recorded on CLR+RAMP3 membranes at receptor expression levels of 

3.1pM/mg of protein. But at high receptor expression levels of 11pM/mg of protein, dose-

dependent Gαs activation was observed (data not shown). It can be hypothesised that optimal 

receptor number necessary for G-protein detection by SPA in the batches of CaSR and RAMP 

co-transfected membranes was not achieved.  

It was postulated that the cell-background could be associated with the failure to detect 

specific G-protein activation in SPA. Differences in cell background have been shown to affect 

receptor phenotypes involving RAMPs. It was observed by Tilakaratne et al, that RAMP2 

induced a weak AMY receptor phenotype in transfected COS-7 cells, whereas a relatively 

stronger AMY receptor phenotype in transfected CHO cells; thus reflecting changes in G-protein 

coupling efficiencies between different cell types [262]. To test if a similar phenomenon existed 

with CaSR and RAMPs co-expression levels, CaSR-transfected HEK-293 cells were used, although 

they were initially not selected for use due to endogenous expression of RAMP1 [157], which 

would make the comparison with CaSR+RAMP3 difficult. Also, TT cells which endogenously 

express both CaSR and RAMP1 but not RAMP3, were chosen. However, there was no specific 

increase in Gαq activation in either of the cell-types (figure 4.3.8 A & B). As mentioned earlier, 

this could be due to low CaSR receptor number in these cells, especially in TT cells, relative to 

transfected cells, as the expression is endogenous. Consequently, the amount of Gαq protein 

activated by the activation of lower CaSR numbers could not be detected by the assay. 

Transfection efficiency and consequently receptor number can be improved by using alternate 

protein expression methods like MembraneProTM functional protein expression system from 

Life Science technologies, which co-transfects virus like particles along with the receptor of 



183 
 
 

interest inside the cells. Here, viral core proteins gag are transfected in the cells which bud from 

the cell under lipid rafts in the plasma membrane, capturing and displaying raft contents 

(receptors) in their native form as particles and secreting into culture medium, which can be 

easily collected. Alternatively, CHO cells could be used for this technique as they have been 

successfully used to study RAMP biology [175, 262], to test whether better co-transfection 

efficiency can be achieved. An alternative technique can be used incorporating antibodies 

against the active GTP-bound G-proteins (NewEast biosciences) [263] that are immobilized to 

fluorescent beads with distinct emission profiles and hence enabling multiple G-protein 

activation measurement from a single reaction. 

So to conclude, it is not recommended to use high concentrations of CaCl2, GdCl3 or Neomycin 

in antibody-capture SPA, as they have non-specific activation of Gαq protein in the assay. 

Another hypothesis suggests the presence of an alternative cation-sensing receptor in COS-7 

cells which could not be probed for using CaSR primers. No measurable Gαq activation by the 

allosteric modulator Cinacalcet HCl was achieved in transfected or natively expressing CaSR 

membranes. This problem was probably due to the receptor number in the membranes which 

do not cause sufficient Gαq activation within the sensitive-limit of the assay. 

Studying the role of RAMP1 in CaSR signalling in endogenous expression system 

using Ca2+ imaging techniques: 

Due to the inability to detect direct G-protein activation, intracellular Ca2+ release upon CaSR 

activation was studied as an alternative. Intracellular Ca2+ increase upon activation of the CaSR 

is a well-characterized pathway, where, IP3 activation which is shown to be mediated by Gαq (as 

shown by the inability of the pertusis-toxin to inhibit the response, a characteristic feature of 

Gαq) causes release of Ca2+ from the internal stores [52, 71, 81, 82, 86, 94, 145, 157, 264]. 

Measurement of intracellular Ca2+ levels has widely been done using Ca2+ indicator fluorescent 

dyes in live imaging system or plate reader [52, 71, 81, 82, 86, 94, 145, 157, 264].  

For this approach TT cells which express CaSR, RAMP1 and 2 but not 3 endogenously (result and 

its discussion in appendix section 7.6, figure 7.8); as well as stably co-transfected COS-7 cells 
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were used. COS-7 cells were stably transfected with different combinations of 

CaSR+RAMP1/2/3 whose mRNA expression levels are shown in appendix section 7.5, figure 7.7.  

Measuring intracellular Ca2+ release: 

Measuring intracellular Ca2+ release using live cell imaging system allows the real-time 

visualization of the cell signalling and also checks for sufficient dye loading, cell viability and 

morphology. Fluo-4AM dye was used for all the experiments and the recipe for physiological 

salt solution used in this study, has been successfully used before [264]. The concentration of 

CaCl2 was 1.5mM, which is less than Ec50 of Ca2+ for CaSR (3mM). Initially, plate reader with a 

dispensing system was used because compared to the live cell imaging system, it is relatively 

high-throughput, automated and the fluorescence from an entire well can be measured. Hence, 

it would give an average response of the entire cell population in the well (especially useful for 

transfected cells). However, technical problems associated with the machine prevented from 

getting useful and robust results and hence are not included in the thesis. Alternatively, live cell 

imaging using a fluorescent microscope was used. 

Initial experimentation using live cell imaging system revealed that COS-7 cells stably 

transfected with CaSR+RAMP1/3 did not react to doses of Cinacalcet lower than 100µM 

(reported Ec50 ~51nM in transfected HEK-293 cells [86]), indicating an absence of specific dose 

dependent functional response (data not shown). It is noteworthy that the cells were always 

kept under selection antibiotic G418; and so it was hypothesised that cells machinery might be 

stressed to produce more antibiotic-resistant protein, compromising on the production of other 

proteins like CaSR and RAMPs. Also, it is noteworthy to mention that G418 belongs to the same 

family of antibiotics as the CaSR agonists- neomycin and gentamycin; and has a similar structure 

to gentamycin. 500µM gentamycin has shown to elicit responses in opossum kidney cells [81]. 

So, it can be hypothesised that the failure of cells to respond to Cinacalcet activation could be 

due to desensitization of CaSR under constant exposure to high doses of G418 in the medium 

(1.44mM or 721µM). Although other studies have used G418 for selection of HEK-293 or other 

cells stably transfected with CaSR, the doses used to maintain the cell lines were lower- 433µM 

[138, 265]; 300µM (upto 3 days prior to experiment) [266]. Some studies which used G418 for 
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selection of stable cells do not mention if they decreased the antibiotic concentration after 

initial round of selection or exclude it completely from the culture medium, days/hours before 

the experiment. Lowering the doses in the experiments and completely removing the antibiotic 

24hr before experimentation did not produce any changes in the results. 

Due to the above stated problems associated with stable COS-7 cells, TT cells were used for 

further experiments as they express the CaSR as well as RAMP1 and 2, but not 3 endogenously 

(appendix, section 7.6) and hence could provide insight into their interaction at endogenous 

expression levels in contrast to much higher expression levels in transfected cells.  

Figures 4.3.9 and 4.3.10 show the presence of a functional CaSR expressed on TT cells and thus 

demonstrate that the technique used was sensitive to measuring changes in intracellular Ca2+ 

concentrations caused by increasing doses of Cinacalcet and Neomycin. The Ec50 recorded (500 

± 1.29 nM and 91 ± 1.45 µM respectively) are different from those reported in the literature for 

intracellular Ca2+ activation. In HEK-293 cells transfected with CaSR, an Ec50 of ~51nM was 

reported for Cinacalcet [86], whereas an Ec50 of ~41μM was recorded for neomycin [82]. The 

difference in cell-type and presumably higher receptor expression due to transfection could be 

one of the reasons for the differences in the potencies recorded. Another reason could be 

related to the fact that in both the studies a different dye-Fura-2AM (ratiometric dye) was used 

and the fluorescence was measured using different instruments (fluorescent plate reader [86] 

and an inverted fluorescence microscope [82] of a different make from the one used in this 

study). There are no studies yet showing a dose-response curve in TT cells for the same 

agonists, using intracellular Ca2+ release as a measure; so it is not possible to make exact 

comparisons. However, it was established in this study that the TT cells express a functional 

CaSR.  

The effect of RAMP1 mRNA knock-down on CaSR signalling in TT cells: 

It has been already shown by Bouschet et al using co-immunoprecipitation and 

immunofluorescence techniques [157]; and by the FRET results in this study that CaSR interacts 

with RAMP1 and 3 in over-expressing cells, an effect responsible for its cell-surface trafficking. 

However, there is no evidence showing this interaction in an endogenously expressing cell type. 
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Since TT cells express RAMP1 as the only RAMP partner of the CaSR; it was hypothesised that 

they interact in these cells and RAMP1 causes cell-surface trafficking of the receptor. 

Accordingly, RAMP1 mRNA expression was obstructed by siRNA to test for its effects on CaSR 

signalling. The sequences for siRNAs used have been published before by Bouschet et al [157]. 

The target specificity for RAMP1 siRNA, and an absence of homology with any known gene for 

the negative control siRNA were confirmed using BLAST search. mRNA knock-down ability of 

both the siRNAs used in this study have been successfully demonstrated and published by 

Bouschet et al [157] and were confirmed in this study as well (figure 4.3.11). Indeed as 

hypothesised, it was observed that in TT cells transiently transfected with RAMP1 siRNA, there 

was statistically significant reductions of CaSR signalling by Cinacalcet and Neomycin (figure 

4.3.12 A & B respectively); compared to negative control siRNA transfected cells. The most 

likely explanation for these results is that the siRNA specifically inhibited the expression of 

RAMP1 (figure 4.3.11), due to which there were lesser numbers of interacting RAMP1 partners 

with CaSR, which subsequently resulted into relatively less CaSR+RAMP1 complex on the cell-

surface. This was checked by measuring the response of the cells to CaSR specific agonists 

(figure 4.3.12). So, it is demonstrated for the first time that inhibition of RAMP1 expression 

leads to a decrease in CaSR signalling in TT cells, which probably indicates that they interact in 

TT cells and RAMP1 can be responsible for CaSR cell-surface trafficking.  

In order to test this explanation, immuno-staining should be performed for CaSR on RAMP1 

knocked-down TT cells to check for the localization of the receptor in the cell. If there is more 

CaSR trapped inside the cell (in the perinuclear region) as observed by Bouschet et al in 

transfected HEK-293 cells [157], then the explanation would hold true. Alternatively, co-

immunoprecipitation studies should be performed using CaSR or RAMP1 antibody to pull-out 

the receptor complex, and then probing for the other component on a western blot. This 

should confirm that CaSR interacts specifically with RAMP1 in endogenously expressing TT cells. 

Attempts to co-immunoprecipitate CaSR and RAMP1 using TT cells during this study failed to 

generate robust results. Even the CaSR-transfected HEK-293 as a positive control [157] (since 

HEK-293 cells express RAMP1), failed to show positive results. Since, the results produced were 

not robust enough and also lacked the inclusion of a control IgG as a negative control; they are 
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not included in the thesis. Further optimization of the conditions is required to achieve good 

quality results. 

Effect of RAMP1 blocking antibody on CaSR signalling: 

Since TT cells only express RAMP1 and not 3, they are a good model to study the role of RAMP1 

in CaSR signalling (appendix, section 7.6). Also, this study suggested an interaction between 

CaSR interacts with RAMP1 in TT cells, with an implication of RAMP1 being responsible for cell-

surface trafficking of CaSR. So, it was hypothesised that blocking RAMP1 using specific antibody 

would modify signalling of CaSR; which will be measured by intracellular Ca2+ increases. 

Different RAMP1 polyclonal antibodies were tested for their effects on CaSR signalling. Of 

these, RAMP1 polyclonal Ab raised in mouse from Abcam caused the maximum attenuation 

followed by RAMP1 Ab raised goat from Santacruz biotech (figures 4.3.13 and 4.3.14 

respectively). It was observed that although the RAMP1 Ab raised in rabbit caused significant 

attenuation of Cinacalcet response, the corresponding rabbit control IgG was non-specific and 

also caused attenuation similar to RAMP1 Ab (data not shown). So they were discontinued for 

use from future experiments. Control IgGs for the other two antibodies (mouse and goat) did 

not have an effect on CaSR signalling; indicating the absence of non-specific effects. Although 

the RAMP1 mouse Ab caused statistically significant attenuation of Cinacalcet response (figure 

4.3.13); the experiment could not be repeated because the company discontinued the 

production of that antibody.  

Accordingly, RAMP1 goat polyclonal Ab from Santacruz biotech was used for further 

experiments. The specificity of the Ab for RAMP1 was checked by western blotting for the 

protein using TT cell samples and performing immuno-cytochemistry on TT cells (appendix 

section 7.6, figure 7.8 C and G); which showed that the antibody could recognize both the 

linearized form (shown by western blotting) and natural conformation (shown by immuno-

staining) of RAMP1. Subsequent treatment of TT cells, with RAMP1 Ab showed repeatable, 

dose-dependent and statistically significant attenuation of 1μM Cinacalcet response (figure 

4.3.14). Thus, it is demonstrated for the first time that blocking RAMP1 attenuates CaSR 
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signalling in endogenously expressing cells indicating a possible role of RAMP1 in CaSR 

signalling.  

A causative mechanism behind the observed effect could be a conformational change of the 

CaSR induced by the antibody. This could subsequently affect ligand binding or coupling to the 

G-proteins, which would result in attenuated signal transduction. There is no information so far 

about the involvement of RAMP1 in forming a part of ligand binding epitope with CaSR; 

contrary to the case with CLR where it is involved in the same [200] (section 1.13.2, chapter 1). 

However based on the current information, the binding sites for Ca2+ [108] (ECD), neomycin 

(ECD) [107] and the calcimimetic Cinacalcet (TM domain) [113, 116] have all been mapped on 

the CaSR itself (as discussed in detail in section 1.5 of chapter 1). So based on this information it 

seems improbable that the RAMP1 antibody binding inhibits the ligand binding directly by 

blocking the epitope, a part of which could be present on the RAMP1 itself. So, a change in 

conformation of the CaSR compromising the G-protein coupling could be proposed as the 

mechanism of action of RAMP1 Ab.  

This hypothesis can primarily be tested by observing the change in FRET efficiency of 

CaSR+RAMP1 complex on the cell surface after treatment with RAMP1 antibody. If a change in 

FRET efficiency between CaSR and RAMP1 is observed, then it indicates a change in 

conformation of the receptor complex, which changed the distance and hence the efficiency of 

energy transfer between CaSR and RAMP1. Similar approaches have demonstrated the effects 

of antagonists and agonists on melatonin receptor; and monoclonal antibody on CCR5 receptor 

using Bioluminescence energy transfer (BRET) [267, 268].  

The effect of RAMP1 antibody on CaSR signalling can be further confirmed by heterologous 

competition experiments in TT cells using increasing doses of RAMP1 Ab against a single dose of 

Cinacalcet; as well as dose-response curve shift assays studying the effect of a single dose of 

RAMP1 Ab on a dose-response of Cinacalcet. The effect of RAMP1 antibody on the binding 

kinetics of Cinacalcet can be tested using radioligand binding assay incorporating GTPγS and 

compared to the effect of CaSR antagonist on Cinacalcet binding. These experiments would give 

further information on the action of the antibody by providing the binding affinity and 
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effectiveness in inhibiting CaSR signalling (Ic50) of the antibody. It would be interesting to 

observe any change in binding affinities in presence/absence of GTPγS (which should bring all 

the receptors to the basal state – R), as it would indicate conformational bias of the antibody 

(R*/R*G vs R; antagonists are not biased towards conformation of a receptor) and 

consequently give an estimate of the number of receptors actually affected by antibody 

binding. 

The functional changes in the downstream of signalling caused by RAMP1 Ab can be studied by 

measuring the change in calcitonin secretion in the medium. As CaSR activation stimulates 

calcitonin secretion from TT cells [5], attenuation of its signalling by RAMP1 Ab would cause a 

decrease in calcitonin secretion. So, this would further confirm the effect observed by RAMP1 

Ab on CaSR signalling. 

Although there are no studies showing the effects of RAMP1 blocking antibody on the signalling 

of any of its GPCR partners, CGRP antagonist BIBN4096BS, which binds to the pocket formed by 

both CLR and RAMP1 residues, has been developed as an anti-migraine drug [200]. This 

competes for ligand (CGRP) binding and consequently reduces the signalling of CGRP [269, 270]. 

So, targeting RAMP1 has been shown to be successful for inhibition of receptor’s activity, 

supporting the results in this study. CaSR antagonists are available that bind to their sites in the 

TM domain and inhibit the signalling of the receptor [94-96]. Consequently, the efficiencies of 

CaSR antagonist NPS 2390 and RAMP1 antibody in attenuating CaSR signalling were compared.  

Comparison between the effects of RAMP1 antibody and NPS 2390 on CaSR signalling: 

NPS 2390 is an inhibitor of CaSR [94] and other family C GPCRs like mGluR1 and mGluR5 [94, 

271]. It has been shown to inhibit effects of CaSR in various cell types such as human adipocytes 

(20µM)[272]; mouse mesenglial cells (5µM, 10µM) [273]; rat liver cell line (10µM) [274]; 

osteosarcoma cells (1mM, 10mM) [275]. So, in order to compare the ability of RAMP1 Ab to a 

known CaSR antagonist in attenuating CaSR signalling, NPS 2390 was used. It was observed that 

133nM RAMP1 antibody was more efficient than 10μM NPS 2390 and equally efficient as 50μM 

NPS 2390 in attenuating 1µM Cinacalcet response (Figure 4.3.15). It has been shown that 

calcimimetics and calcilytics bind to the same regions of the TM domain of CaSR at exclusive yet 
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some overlapping sites [115, 117]. So, it is possible that for NPS 2390 and Cinacalcet a 

competition for the same binding residues or pocket exists, requiring higher dose (50µM) of 

NPS 2390 to cause an immediate decrease in response to Cinacalcet. Another possibility is that 

Cinacalcet has a higher binding affinity than NPS 2390 for CaSR. On the other hand, RAMP1 Ab 

used was a polyclonal Ab which can bind to different binding sites on the ECD of RAMP1 and 

hence does not compete with NPS 2390; and may even have higher affinity for binding.  

Interestingly, differential effects were observed for the attenuation of Ca2+ and neomycin 

signalling by RAMP1 Ab vs NPS 2390. It was observed that 100µM neomycin response was 

statistically significantly attenuated by RAMP1 Ab (46%), 10µM NPS 2390 (44%) and 50µM NPS 

2390 (65%) (figure 4.3.16). On the other hand, 133.3nM RAMP1 Ab and 10μM NPS 2390 did not 

cause any attenuation of 5mM CaCl2 signalling, whereas 50µM NPS 2390 caused ~42% decrease 

(figure 4.3.17). These different effects observed, might suggest a possible change in 

conformation of CaSR caused by RAMP1 Ab binding that inhibits efficient binding of neomycin, 

but not Ca2+; probably because Ca2+ has multiple binding sites on the CaSR ECD [108]. The 

effects of decreasing the dose of Ca2+ or increasing the dose of RAMP1 Ab remain to be tested.  

It is also interesting to note that NPS 2390 showed differential effects on neomycin and 

Cinacalcet (10µM caused attenuation of neomycin signalling but not Cinacalcet: figures 4.3.15 

and 4.3.16); whereas RAMP1 Ab caused equal attenuation for both agonists (~46% Cinacalcet 

and ~48% Neomycin). As already mentioned before, there might be competition for binding or 

differences in binding affinities (not reported yet) between Cinacalcet and NPS 2390 on the TM 

domain of the CaSR. Whereas, since neomycin binds to the N-terminal region of CaSR, it 

probably doesn’t compete with NPS 2390 and so 10μM NPS 2390 could cause significant 

attenuation of neomycin. On the other hand, RAMP1 Ab which is polyclonal, can bind to 

different sites and too not on the CaSR; hence precluding any competition for binding with the 

agonists. Taken together, the attenuation of CaSR response to specific agonists Cinacalcet and 

neomycin by RAMP1 Ab shows that RAMP1 plays a role in signalling of CaSR in TT cells and 

could probably be more effective than NPS 2390. 
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In order to test whether a combined treatment consisting of RAMP1 Ab and NPS 2390 together 

would produce a greater inhibitory effect than either of the treatments alone; TT cells were 

pre-treated with 10µg RAMP1 Gt poly Ab together with 10µM NPS 2390 (appendix section 7.7, 

figure 7.9). Although it appeared that the combined treatment had a greater inhibitory effect 

on 100µM neomycin signalling, it was discovered to be caused by non-specific effect of DMSO 

(solvent for NPS 2390). Accordingly, when the RAMP1 antibody was incubated with 0.1 or 0.5% 

DMSO (corresponding to the v/v addition of NPS 2390 stock into buffer to prepare desired 

concentration) as a vehicle control, similar attenuation of 100µM neomycin signalling was 

observed. It has been reported that DMSO at concentrations between 0.1-5% can cause protein 

denaturation, aggregation, or degradation; thus changing the properties of protein in the 

solution [276]. DMSO can also change apparent binding properties of the protein [276]. The 

effect of DMSO on the binding affinity for antibody was demonstrated using column 

chromatography experiments, where buffers with low DMSO content (2%) resulted in 

irreversible binding of the antibody; whereas buffers with high DMSO content (30%) destroyed 

the antibody interaction [277]. These evidences support our observation of a non-specific effect 

of DMSO by modulating RAMP1 Ab activity. As a result of this, successful combinatorial 

treatments with RAMP1 Ab were not possible using NPS 2390 dissolved in DMSO.  

Since there were technical issues regarding the use of DMSO, ethanol or cyclodextrin could be 

used as a solvent for dissolving the compound. Also in future, specific CaSR antagonists, like SB-

423557 [96], compound 7h and 11m, JTT-305 [97, 98] could be used instead for both 

comparative and combined effect in attenuating CaSR signalling with RAMP1 Ab. This would be 

interesting to study and might provide a new insight into development of calcilytics. 

 

Limitations: 

In this study the activity of RAMP1 antibodies were compared to a small molecule antagonist in 

inhibiting the activity of the CaSR. However, it should be noted that there are two epitope-

binding sites per antibody compared to one for a small molecule. So, the comparison may not 

be equal. Also, since polyclonal antibodies raised against RAMP1 were used, there was a mixed 

population of antibodies having varying pharmacological profiles and binding sites. Antibodies 
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have been used in GPCR studies [268, 278], but usually monoclonal Abs are preferred as they 

have a known binding site; and being clonal, have same binding characteristics such as affinity 

and avidity. On the other hand, the binding affinity and avidity of the RAMP1 polyclonal 

antibodies was not characterised and hence their pharmacological profile is unknown. Due to 

these reasons care should be taken in interpreting the data for comparing RAMP1 polyclonal 

antibody activity to the inhibitory action of NPS 2390, as it is not an equal comparison. 

However, they do support and strengthen the observation that RAMP1 plays an inhibitory role 

in CaSR signalling. In future, monoclonal antibodies or single chain variable fragments against 

RAMP1 should be used. In addition to this, a final concentration of 1μM Cinacalcet used in the 

experiments is a higher dose of the compound. So, there is a possibility that it could lead to 

non-specific effects, which were not addressed in this study. However, in a study by Davey et al 

[279], 1μM Cinacalcet in presence of increasing concentration of extracellular Ca2+ (0-3mM) 

was successfully used to study CaSR signalling. Nevertheless, in future, lower doses should be 

used and as suggested earlier the effect of RAMP1 Ab on Cinacalcet dose-response should be 

tested in this context. 

 

Conclusions: 

The study reports a novel discovery using an endogenous expression system of TT cells, which 

showed that inhibiting RAMP1 expression using siRNA reduced CaSR signalling, indicating an 

interaction between the two that is responsible for the cell-surface expression of the CaSR. 

Moreover, it was demonstrated that blocking RAMP1 by Ab caused attenuation of Cinacalcet 

and Neomycin-mediated signalling of the CaSR. These results provide the first evidence for a 

potential role of RAMPs in CaSR signalling. It was also observed that the RAMP1 Ab attenuated 

Cinacalcet and neomycin-mediated signalling at a lower dose, when compared to NPS 2390. 

This might suggest that RAMP1 Ab could be more efficacious than NPS 2390 in inhibiting CaSR 

signalling, although care should be taken while interpreting this data (as discussed above). It 

was also demonstrated that antibody-capture SPA could not be used to measure specific G-

protein activation of CaSR+RAMP1/3 combinations, due to unwanted non-specific effects of 

Ca2+, gadolinium and neomycin on G-protein activation and consequently the technique 

probably needs further optimization in the sense of higher receptor expression levels.   
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CHAPTER 5: GENE EXPRESSION ANALYSIS 

OF CaSR AND RAMPs UPON 

INTERVENTION BY THE AGENTS OF Ca2+ 

HOMEOSTASIS. 
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5.1. Introduction: 
CaSR is an essential cell surface receptor involved in Ca2+ homeostasis, where it plays important 

roles of sensing minute changes in extracellular Ca2+ concentrations to regulate PTH secretion 

as well as sensing Ca2+ in bone microenvironment to modulate the activity of bone cells. 

Accordingly, its abnormal expression is related to the pathophysiological conditions of Ca2+ 

homeostasis, as discussed in detail below. Since, RAMPs 1 and 3 are required for cell-surface 

trafficking of the CaSR [157] (and section 3.3.3, chapter 3), it is important to study whether 

RAMP expression is modulated by agents of Ca2+ homeostasis, as this could affect the cell-

surface expression and hence population of the CaSR. This could provide more information on 

the nature of the physiological interaction of CaSR and RAMPs as well as indicate a role of 

RAMPs in Ca2+ homeostasis.  

The following sections give a brief background on regulation of CaSR and RAMP expression in 

physiology, based on existing information from the literature: 

5.1.1: Regulation of CaSR expression: 

CaSR gene is located on chromosome 3 (3q21-q24) in humans [280]. It contains seven exons 

[281]-six of which encode the ECD and its upstream untranslated regions, while a single exon 

codes for the TMDs and C-tail [55, 281]. Studies have demonstrated that regulation of CaSR 

expression occurs under a variety of circumstances, although the mechanisms responsible are 

not well understood.  

In primary parathyroid cell culture from bovine parathyroid gland, reduced sensitivity to 

extracellular Ca2+ with progression of days in culture was observed [282, 283]. This reduced 

sensitivity has been associated with a marked and rapid decrease in CaSR expression. It has 

been reported that CaSR mRNA and protein expression decreased by 70% within 4hr and 85% 

within 24hr in parathyroid cell suspensions; and by 75% within 24hr in monolayer cultures, 

which was not recoverable at later time points [283]. The decrease in CaSR expression was also 

not sensitive to changes in media serum, Ca2+ and 1,25-dihydroxyvitamin D3 concentration 

[283]. However, it is interesting to note that, bovine parathyroid cells when grown in collagen 

coalesce into an organoid (“pseudogland”) with stable Ca2+ responsiveness, where the initial 
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drop in expression of CaSR after 24hr is recovered significantly compared to no recovery in 

monolayer cultures as mentioned above; thus illustrating the importance of 3D cellular 

architecture in parathyroid gland function [284].  

Ca2+ is the key component in mediating the function of CaSR for regulating PTH secretion and 

enabling divalent ion excretion. Therefore, extracellular Ca2+ has been widely hypothesised to 

be potentially an important regulator of CaSR gene expression in physiology. However, studies 

have failed to demonstrate an effect of extracellular Ca2+ on CaSR mRNA expression in the rat 

parathyroid cells and osteoblasts in vitro [285] and parathyroid and kidney CaSR mRNA 

expression in vivo [286, 287]. In view of that, it has been hypothesised that, since CaSR acts as a 

sensitive calciostat in these tissues, a change in CaSR synthesis corresponding to changes in 

extracellular Ca2+ could have unwanted effects on Ca2+ homeostasis [288].  

Another important component of Ca2+ homeostasis is the active form of vitamin D3- calcitriol. 

Interaction between 1,25-dihydroxyvitaminD3 and CaSR expression has been well 

demonstrated by different studies. Primary rat parathyroid cell in vitro cultures and in vivo 

mRNA expression studies in rat thyroid and kidney, have reported an increase in CaSR mRNA 

expression by ~2 fold upon treatment with 1,25-dihydroxyvitamin D3 [285, 286]. Also, in the 

medullary thyroid cell line TT and the kidney proximal tubule cells (HKC), CaSR gene 

transcription increased ~2-fold at 8 and 12 h after 1,25-dihydroxyvitamin D3 treatment [288]. 

The same study further identified the presence of functional 1,25-dihydroxyvitamin D3 response 

elements in both promoters -P1 and P2 of the human CaSR gene, thus uncovering the 

mechanism behind the observed effect [288]. The relevance of this effect was speculated on a 

physiological level by the authors at different sites of Ca2+ homeostasis. Accordingly, an 

increase in CaSR expression in parathyroid and kidneys by 1,25-dihydroxyvitamin D3 could 

increase the sensitivity of the organ to detect extracellular Ca2+ and to reduce PTH secretion 

and facilitate divalent ion excretion respectively [288]. This would work as an auto regulatory 

feed-back loop as an initial increase in the systemic PTH levels due to release from parathyroid, 

would facilitate vitamin D3 maturation in the kidneys, which would consequently inhibit PTH 

secretion.  
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There is also evidence in the literature showing that in chronic kidney disease patients suffering 

from secondary hyperparathyroidism, decreased CaSR expression is associated with an increase 

in the set-point for Ca2+ sensing and consequently increased PTH secretion [289, 290]. In these 

patients hyperplasticity of parathyroid gland is observed and the resulting proliferation of 

parathyroid cells is associated with decreasing CaSR expression [289]. A study using 

calcimimetic NPS R-568 (which increases the sensitivity of CaSR to Ca2+), successfully reversed 

the reduced parathyroid CaSR expression without any changes in vitamin D levels and 

decreased parathyroid cell proliferation in experimental rat models of chronic kidney disease 

suffering from hyperparathyroidism at 8 weeks from nephrectomy [291]. This confirms the 

above stated observations of association of reduced CaSR expression to this pathology. 

Regulation of CaSR expression is also observed during foetal development. Significant 

developmental increases in CaSR expression in kidney [292] and brain [293] of the rat have 

been observed. It has been reported that in rats, the perinatal expression of CaSR was very low; 

whereas it increased immediately postnatally during the first week and stayed constant after 

postnatal day 14 through to adulthood [292]. This regulation is thought to be related to 

changes in renal handling of divalent ions and water from perinatal to post-natal conditions 

[292]. On the other hand, in the rat brain, CaSR was expressed at low levels until 5 days 

postnatally, then increasing markedly at 10th day until 30 days, when it gradually decreased by 

3-fold to reach the adult level of expression [293].  

Hypocalcaemia related with the increased proinflammatory cytokine levels in critically ill 

patients has been associated with altered CaSR expression [294, 295]. It was shown in vivo in 

the rat parathyroid, thyroid and kidney; and in vitro in TT and kidney proximal tubule (HKC) 

cells, that the CaSR mRNA and protein expression increased after injection of interleukin-1β. 

This was associated with decreased circulating parathyroid hormone, Ca2+, and 1,25-

dihydroxyvitamin D3 levels. The mechanism behind this effect was uncovered by the discovery 

of functional elements in CaSR promoter that mediate its upregulation [294]. 

So taken together, altered CaSR expression has been associated to different conditions such as 

harmful pathological effects and even organ development.  
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5.1.2: RAMP gene regulation: 

In humans, the gene for RAMP1 is present on chromosome 2 (2q36-q37.1), RAMP2 on 

chromosome 17 (17q12-q21.1) and RAMP3 on chromosome 7 (7p13-p12) [296]. RAMPs are 

essential for the CGRP, AM, and AMY receptor functioning, and so it is implicative that changes 

in RAMP expression due to pathological conditions would influence the expression of these 

receptors and consequently the sensitivity of cells and tissues to CGRP, AM, and AMY; in 

addition to any drugs that may be targeted to a specific RAMP/receptor complex.  

Studies using disease models have demonstrated that pathologies related to the hormones of 

calcitonin peptide family are associated with regulation of RAMP expression. Since AM and 

CGRP are vasodilators, cardiac pathology has been shown to alter RAMP expression, 

consequently altering the functioning/signalling of these hormones. In a rat model of chronic 

cardiac failure induced by aortic stenosis, it was observed that RAMP1 and 3 mRNA and protein 

expression levels were upregulated after 6 months of surgery, whereas RAMP2 expression was 

unchanged [297]. This upregulation is speculated to support the protective role of CGRP and 

AM during heart failure. In addition to myocardial infarction, RAMP regulation is also modified 

in the cases of hypertension. In rat malignant models of hypertension induced using 

hypertensive aldosterone precursor (deoxycorticosterone acetate) loading, as well as salt 

loading, it was observed that after 3 weeks of loading, RAMP2, RAMP3 and CLR mRNA 

expression levels were upregulated in the left-ventricle, with increased AM levels in circulation 

[298]. Similar results were observed in a spontaneously hypertensive rat model in a different 

study where they also observed increased RAMP1 expression levels in heart in addition to the 

components of AM receptors [299]. So, the AM and CGRP functioning in these cardiovascular 

pathologies has been related to altered RAMP expression.  

RAMP expression is also modulated in kidneys, which is not only a site of action of 

adrenomedullin, but also a major site of Ca2+ homeostasis. However, studies have only 

demonstrated the change in expression of RAMPs in terms of the actions of adrenomedullin or 

CGRP. The models of hypertension induced using aldosterone precursor (deoxycorticosterone 

acetate) loading, as well as salt loading; demonstrated increased RAMP1, 2 and 3 expression in 

kidneys along with increased AM levels; indicating a role of AM in maintaining water/ion 
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balance and counteracting hypertension via its hypotensive, natriuretic and diuretic functions 

[300, 301]. RAMP1 and 3 mRNA expression was also upregulated in rat kidneys with obstructive 

nephropathy (kidney failure [183]. Since AM has protective role in kidney it has been 

hypothesised that upregulation of RAMPs may favour this protective effect against fibrotic 

changes or proliferative effect during obstructive nephropathy [183]. There are no studies till 

date studying RAMP expression regulation by any agents involved in Ca2+ homeostasis in the 

kidneys. 

There is further evidence of RAMP expression regulation at sites of action of calcitonin family of 

peptides such as lungs. In lungs, AM is responsible for pulmonary circulation mainly through 

AM1 receptor [214]. However, in case of lung sepsis induced by LPS in mouse, RAMP2 and CLR 

mRNA expression was down-regulated, whereas RAMP3 mRNA expression was upregulated. 

Accordingly, it is revealed that the distributions of receptor or binding sites of AM are changed 

in sepsis, and it is suggested that AM plays distinct roles in the clinical course of this syndrome 

[214]. This also points to a pathological role of RAMP3 mediated receptor signalling. As in case 

of hypoxic rat lungs, RAMP1 and RAMP3 mRNA were upregulated without any change in 

RAMP2 and CLR expression, again indicating a change in AM receptor distribution [302].  

Regulation of RAMP expression by other steroids (in addition to aldosterone as mentioned 

above) is also studied in context to the role of adrenomedullin and CGRP in conditions like 

pregnancy [303, 304]. RAMPs are regulated by oestrogen and progesterone, where oestrogen 

downregulates the expression of RAMPs in rat uterus, whereas progesterone upregulates their 

expression [303, 304]. It has been demonstrated using mouse uterine cDNA that oestrogen  

responsive element (ERE) motif is found in the 1st intron of RAMP3 gene where the activated 

oestrogen  receptor binds and regulates the transcription of these genes [305]. Since estradiol 

is increased at time of labour, it is speculated that it probably counters vasoldilatory effects of 

CGRP and AM in order to prevent blood loss during delivery [303, 304]. Glucocorticoids like 

dexamethasone which is used as an anti-inflammatory or immunosuppressant agent also 

affects RAMP expression. It is reported that dexamethasone treatment on mouse primary 

osteoblasts down-regulated the expression of CLR and increased the expression of RAMP1 and 



199 
 
 

RAMP2 both at mRNA and protein levels [306]. Since it is known that AM stimulates 

osteoblastic proliferation and promotes bone growth both in vitro and in vivo [307], 

dexamethasone might prevent its effect by altering AM receptor level.  

Although caution must be applied when extrapolating to protein expression using mRNA 

expression levels alone as shown by a lot of studies mentioned above, the data definitely 

demonstrates regulation of RAMP expression physiologically in context to the functions of the 

calcitonin family of peptides. However, there are no studies so far demonstrating the changes 

in RAMP expression by agents of Ca2+ homeostasis. 

5.1.3: Hypothesis and aims: 

It was hypothesised that RAMP mRNA is differentially regulated in human medullary thyroid 

carcinoma and human osteosarcoma cell line by agents involved in Ca2+ homeostasis.  

The specific aims were: 

 To measure the effect of extracellular Ca2+ and 1,25-dihyroxyvitamin D3 on the 

expression levels of CaSR and RAMPs in the TT cell line (medullary thyroid carcinoma cell 

line). 

 To measure the changes in the expression levels of CaSR and RAMPs in MG63, SAOS-2 

and TE85 osteosarcoma cell lines upon treatment with extracellular Ca2+. 

 To measure the effect of differentiation of osteosarcoma cell lines into mature 

osteoblasts on the expression levels of CaSR and RAMPs. 
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5.2.  Materials and Methods 

 5.2.1. Culture of TT and osteosarcoma cell lines: 

TT, MG63, SAOS-2 and TE85 cell lines were cultured under normal conditions as described in 

section 2.1 and 2.2 of chapter 2. 

5.2.2. Treatment of TT cells: 

TT, MG63, SAOS-2 and TE85 cells were cultured under normal conditions and grown until 60-

70% confluency in T-25cm2 flasks (Nunclon, Thermo scientific). TT cells were then treated with 

different compounds (10mM CaCl2 (pH 7.4) or 1µM 1,25-dihydroxyvitamin D3 (Sigma Aldrich)) 

dissolved in F-12K complete medium. Osteosarcoma cells were treated with 30mM CaCl2 (pH 

7.4) dissolved in complete DMEM medium. In the untreated controls flasks, fresh medium was 

replaced instead. The treated and untreated cells were harvested in Trizol reagent using a cell 

scraper, following two washes with sterile-PBS at each time point: 

For TT- 0hr, 5min, 15min, 30min, 1hr, 2hr, 5hr, 24hr and 48hr and  

For osteosarcoma cells-  0hr, 1hr, 2hr, 5hr, 12hr, 24hr and 48hr  

The harvested samples were stored in a sterile 1.5ml tube and snap frozen using liquid nitrogen 

and kept at -80°C until use. 

5.2.3. Differentiation of osteosarcoma cell lines into mature osteoblasts: 

Osteosarcoma cell lines were cultured under normal conditions in 6cm2 peri-dishes (Iwaki) until 

the dishes reach confluency as described in section 2.1 of chapter 2, following which they were 

treated with differentiation medium (recipe in appendix) for 21 days. Fresh differentiation 

medium was replaced twice-a-week. Treated and untreated cells were harvested in Trizol 

reagent using a cell scraper at each time point (0hr, day 5, day 10, day 15, day 21) in a sterile 

1.5ml tube and snap frozen using liquid nitrogen. 

5.2.4. Gene expression analysis: 

In order to study the change in gene expression of CaSR and RAMPs in TT and osteosarcoma 

cells by various interventions, real time PCR was used. RNA was extracted from TT cells using 

Trizol reagent as described in section 2.4 of chapter 2 and cDNA was synthesized using 2µg of 

RNA using high capacity RNA-to-cDNA kit as described in section 2.6 of chapter 2. 
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Real time PCR was performed using Taqman® probes to measure CaSR and RAMPs mRNA 

expression using ΔCt analysis as described in section 2.9 of chapter 2. According to the ABi 

manual, a Ct value of more than 35 could be inaccurate and so the limit for analysis for this 

study was restricted to the Ct value of 34. 

Validation experiments for real-time PCR: 

For validation experiments checking the efficiency of the PCR reaction, pcDNA 3.1 RAMP/CaSR 

vectors were used containing cDNA of the gene. 6 dilutions were prepared with 10-fold 

difference in concentrations and were run in the PCR reaction as described in section 2.9 of 

chapter 2. The Ct values were plotted on a graph using GraphPad Prism version 5.00 for 

Windows (GraphPad Software, San Diego California USA, www.graphpad.com) and regression 

analysis was performed to obtain the R2 value and the value of the slope. 

 

In order to validate the relative expression analysis, the equal amplifying efficiencies of the 

primers for the genes of interest and house-keeping gene were tested as shown in [308]. For 

this, cDNA sample of TT cells was used. Dilutions of the cDNA were prepared as -[(µg of input 

RNA): 1, 0.5, 0.2, 0.1 0.05, 0.02, 0.01.] and the reaction was carried out as mentioned in section 

2.9 of chapter 2 for 40 cycles. The ΔCt value was calculated (Ctgene-Ctβ-actin) and plotted on a 

graph using GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego 

California USA, www.graphpad.com) against its respective cDNA dilution and linear regression 

analysis was performed to obtain the value of the slope. 

  

http://www.graphpad.com/
http://www.graphpad.com/
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5.3. Results 

5.3.1. . Validation of efficiency of CaSR, RAMP1, 2 and 3 TaqMan® probes in PCR 

reaction and their usage for relative quantification method: 

To check the efficiency of the TaqMan® probes to amplify their respective targets in the PCR 

reaction, pcDNA 3.1 vectors containing the gene of interest were used as a positive control. 

Accordingly, serial dilutions of pcDNA 3.1 CaSR and pcDNA 3.1 RAMP vectors were prepared 

and real time PCR was performed. Figure 5.3.1 shows graph plotted for Ct values against cDNA 

concentrations and the goodness of fit was analysed by linear regression analysis calculating 

the R2 values of 0.99 for CaSR (Figure 5.3.1 A), 0.98 for RAMP1 (Figure 5.3.1 B), 0.98 for RAMP2 

(Figure 5.3.1 C) and 0.95 for RAMP3 (Figure 5.3.1 D). The slopes of the standard curves were 

approximately -2.7, -3.0, -3.3 and -3.5 for CaSR, RAMP1, RAMP2 and RAMP3 respectively.  
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Figure 5.3.1: Validation of TaqMan® probes using serial dilutions of pcDNA 3.1 CaSR and pcDNA 3.1 

RAMP vectors:  

 Serial dilutions from 1fg to 1µg of TOPO CaSR and 1pg to 1µg for pcDNA 3.1 RAMP vector DNA were 

prepared and real-time PCR was performed. The graphs show linear regression analysis for pcDNA 3.1 

CaSR (A), pcDNA 3.1 RAMP1 (B), pcDNA 3.1 RAMP2 (C) and pcDNA 3.1 RAMP3 (D).  
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For all experiments, Actβ and HPRT1 were used as house-keeping genes. The expression of Actβ 

was less variable by different treatments in experiments compared to HPRT1 (Appendix section 

7.8, figure 7.10) and so was used as an endogenous control gene to normalize the expression of 

genes of interest. To validate the use of TaqMan® probes for relative quantification method, 

the efficiencies of all TaqMan® probes were tested using a serial dilution of TT cell cDNA. Figure 

5.3.2 shows graphs with the ΔCt values normalized to Actβ on the Y-axis, plotted against the 

cDNA dilutions on the X-axis. The value of the slope for CaSR TaqMan® probe was ~0.03 (Figure 

5.3.2 A), RAMP1 TaqMan® probe was ~0.078 (Figure 5.3.2 B) and RAMP2 was ~0.072 (Figure 

5.3.2 C); all of which are within the acceptable limit of <0.1 as mentioned in the user’s manual 

of ABI. RAMP3 was not detected at any concentrations within 40 cycles. 
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Figure 5.3.2: Validation of the TaqMan® probes for the usage of relative quantification method 

TT cell cDNA was prepared using 1µg of total RNA and then serially diluted to achieve the concentrations 

(µg)- 0.5, 0.2, 0.1, 0.05 0.02, 0.01. ΔCt for each gene was calculated by normalizing against Actβ for 

respective concentration of cDNA. The slopes for (A) CaSR (B) RAMP1 and (C) RAMP2 are shown.   
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 5.3.2. Measuring the effect of 10mM CaCl2 on mRNA expression levels of CaSR and 

RAMPs in TT cells at different time points using real-time PCR: 

 

Different interventions were used to study the change in CaSR and RAMP mRNA expression in 

TT cells. The first intervention used was 10mM CaCl2 and a time-course study was done to 

measure the consequent changes in mRNA expression levels of CaSR and RAMP by TaqMan® 

probes using real time PCR. In figure 5.3.3 mRNA expression levels of CaSR (A), RAMP1 (B) and 

RAMP2 (C) are shown in control (white bars) and treated samples (blue bars) at different time 

points as fold change to the expression of Actβ as the mRNA expression of each gene was 

normalized to the expression of Actβ. There was no statistical significant change of CaSR (figure 

5.3.3 A), RAMP1 (figure 5.3.3 B) and RAMP2 (figure 5.3.3 C) in TT cells treated with 10mM CaCl2 

compared to untreated cells as analysed using 2-way ANOVA and Bonferroni post-test. The 

expression of RAMP3 mRNA could not be determined by the given TaqMan® probes in these 

cells and within 40 cycles in either group (control or treatment). 

The average ± SD Ct values for CaSR were 23.90 ± 1.05 (control) and 23.9 ± 1.21 (treated), for 

RAMP1 were 26.59 ± 1.08 (control) and 26.63 ± 0.87 (treated) and for RAMP2 were 27.48 ± 

1.19 (control) and 27.46 ± 1.41 (treated). So, amongst the measured genes in TT cells; the 

average normalized expression (to Actβ) was highest for CaSR, followed by RAMP1 (~8.5 fold 

lower than CaSR) and then RAMP2 (~14 fold lower than CaSR and ~ 1.7 fold less than RAMP1) 

(as measured at 0min time point). 
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Expression of CaSR in TT cells treated with 10mM CaCl 2
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Figure 5.3.3: mRNA expression profile of CaSR and RAMPs in TT cells treated with 10mM CaCl2 at 

different time points measured using real time PCR:  

TT cells were cultured normally to 60-70% confluency and then treated with 10mM CaCl2 for the given 

time points. mRNA expression levels were determined using real-time PCR using TaqMan® probes. The 

graph shows expression levels of CaSR (A), RAMP1 (B) and RAMP2 (C) at different time points for 

untreated (white bars) and treated (blue bars) samples; relative to expression of Actβ. The graph shows 

combined data from three independent experiments. Statistical test performed was 2-way ANOVA, 

Bonferroni post-test. NS = differences are not statistically significant.  
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5.3.3. Measuring the effect of 1µM 1,25-dihydroxyvitamin D3 on mRNA expression 

levels of CaSR and RAMPs in TT cells at different time points using real time PCR: 

 

Treating TT cells with 1µM 1,25-dihydroxyvitamin D3 (blue bars, figure 5.3.4) did not cause a 

statistically significant change in the expression of CaSR, RAMP1 or RAMP2 compared to 

untreated control (white bars, figure 5.3.4) as detected using TaqMan® probes in real time PCR, 

shown in Figure 5.3.4 A,B and C  respectively and as analysed using 2-way ANOVA and 

Bonferroni post-test. The mRNA expression of each gene was normalized to the expression of 

Actβ and is shown in the graph as fold change to the expression of Actβ. Expression of RAMP3 

was not detected using the given TaqMan® probes within 40 cycles; even upon treatment.  

The average ± SD Ct values were 23.21 ± 0.96 (control) and 23.37 ± 0.95 (treated) for CaSR, 

26.61 ± 0.90 (control) and 26.54 ± 0.94 (treated) for RAMP1 and 27.24 ± 0.46 (control) and 

27.37 ± 0.49 (treated) for RAMP2. Accordingly, the average normalized expression levels of the 

genes in descending order were same as mentioned in section 5.3.2. 
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Expression of CaSR in TT cells treated with 1 M 1,25(OH)2D3
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Figure 5.3.4: mRNA expression profile of CaSR and RAMPs in TT cells treated with 1µM 1,25-

dihydroxyvitamin D3 at different time points measured using real time PCR 

TT cells were cultured normally to 60-70% confluency and then treated with 1µM 1,25-dihyrodxyvitamin 

D3 for the given time points. mRNA expression levels were determined using real-time PCR using 

TaqMan® probes. The graph shows expression levels of CaSR (A), RAMP1 (B) and RAMP2 (C) at different 

time points for untreated (white bars) and treated (blue bars) samples, relative to expression at Actβ. 

The graph shows combined data from three independent experiments. Statistical test performed was 2-

way ANOVA, Bonferroni post-test. NS = differences are statistically non-significant.  
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5.3.4. Measuring the changes in gene expression of CaSR and RAMPs by 30mM CaCl2 

in MG63, SAOS-2 and TE85 osteosarcoma cell lines using real time PCR: 

 

To study the effect of high concentrations of extracellular Ca2+ on the gene expression of CaSR 

and RAMPs, three osteosarcoma cell lines were used: MG63, SAOS-2 and TE85. 

MG63 cells were treated with 30mM CaCl2 for different time lengths up to 48hr. The mRNA 

expression levels for RAMP1 and 2 are shown in figure 5.3.5 A and B respectively; quantified 

using TaqMan® probes in real time PCR for control (white bars) and treated (blue bars) samples. 

The levels of mRNA expression of these genes were normalized to the expression of Actβ and 

are expressed on the graph as fold change to the expression of Actβ. The mRNA expression of 

RAMP1 and 2 were not altered statistically significantly by 30mM CaCl2 treatment at any given 

time point when compared to untreated samples (2-way ANOVA, Bonferroni post-test). 

Although the expression of RAMP1 at 1hr in treated group (blue bar, figure 5.3.5 A) was ~3.2 

fold higher than in untreated group, the difference was not statistically significant as analysed 

by 2-way ANOVA and Bonferroni post-test. mRNA expression levels of CaSR and RAMP3 were 

not detected using the given TaqMan® probes, within 40 cycles.  

The average ± SD Ct values were 27.31 ± 0.8 (control) and 27.51 ± 0.73 (treated) for RAMP1, 

31.9 ± 0.85 (control) and 32.4 ± 0.99 (treated) for RAMP2. Accordingly, the average expression 

of RAMP1 was ~16 fold higher than RAMP2 after normalization with Actβ (as measured at 0hr 

time point). 
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Figure 5.3.5: mRNA expression profile of RAMP1 and 2 in MG63 cells treated with 30mM CaCl2 at 

different time points measured using real time PCR:  

MG63 cells were cultured normally to 60-70% confluency and then treated with 30mM CaCl2 for the 

given time points. mRNA expression levels were determined using TaqMan® probes in real time PCR. 

The graph shows expression levels of RAMP1 (A) and RAMP2 (B) at different time points relative to 

expression at Actβ. The graph shows combined data from three independent experiments. Statistical 

used 2-way ANOVA, Bonferroni post-test. NS = differences are not statistically significant. 
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The second osteosarcoma cell line - SAOS-2 was also treated with 30mM CaCl2 for up to 48hr 

and the mRNA expression levels of CaSR and RAMPs were measured using TaqMan® probes in 

real time PCR. The mRNA expression levels for RAMP1 and 2 are shown in Figure 5.3.6 A and B 

respectively and there were no statistically significant differences in their expression levels after 

treatment with 30mM CaCl2 (blue bars) at any time point compared to untreated samples 

(white bars) as analysed by 2-way ANOVA and Bonferroni post-test. mRNA expression levels of 

CaSR and RAMP3 were not detected using the given TaqMan® probes within 40 cycles. The 

expression levels of RAMP2 were decreased in both control and treatment groups after 1hr, 

however this effect was not statistically significant as measured by Bonferroni post-test. The 

average normalized expression of RAMP1 was ~2.5 fold higher than RAMP2 in SAOS-2 cells (as 

measured at 0hr time point). 

The average ± SD Ct values were 32.56 ± 1.77 (control) and 32.43 ± 1.94 (treated) for RAMP1, 

33.16 ± 1.64 (control) and 33.43 ± 1.49 (treated) for RAMP2.  
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Figure 5.3.6: mRNA expression profile of RAMP1 and 2 in SAOS-2 cells treated with 30mM CaCl2 at 

different time points measured using real time PCR: 

 SAOS-2 cells were cultured normally till 60-70% confluency and then treated with 30mM CaCl2 for the 

given time points. mRNA expression levels were determined using TaqMan® probes in real time PCR. 

The graph shows expression levels of RAMP1 (A) and RAMP2 (B) at different time points relative to 

expression at Actβ. The graph shows combined data from three independent experiments. Statistical 

test performed: 2-way ANOVA, Bonferroni post-test. NS = differences are not statistically significant. 
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The third cell osteosarcoma cell line- TE85 were also treated with 30mM CaCl2 for up to 48hr to 

measure any change in mRNA expression levels of CaSR and RAMPs using TaqMan® probes in 

real time PCR. The mRNA expression levels for RAMP1 and 2 are shown in Figure 5.3.7 A and B 

respectively and there was no statistically significant change in their expression after treatment 

with 30mM CaCl2 (blue bars) at any time point compared to control samples (white bars) as 

measured using 2-way ANOVA and Bonferroni post-test. mRNA expression levels of CaSR and 

RAMP3 were not detected using the given TaqMan® probes within 40 cycles.  

The average ± SD Ct values were 28.35 ± 0.99 (control) and 28.32 ± 1.09 (treated) for RAMP1, 

30.80 ± 0.91 (control) and 31.04 ± 1.14 (treated) for RAMP2. The average normalized 

expression of RAMP1 was ~3.8 fold higher than RAMP2 (as measured at 0hr time point). 
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Figure 5.3.7: mRNA expression profile of RAMP1 and 2 in TE85 cells treated with 30mM CaCl2 at 

different time points measured using real time PCR:  

TE85 cells were cultured normally till 60-70% confluency and then treated with 30mM CaCl2 for the 

given time points. mRNA expression levels were determined using TaqMan® probes in real time PCR. 

The graph shows expression levels of RAMP1 (A) and RAMP2 (B) at different time points relative to 

expression at Actβ. The graph shows combined data from three independent experiments. Statistical 

test performed was 2-way ANOVA, Bonferroni post-test. NS = differences are statistically non-significant. 

  



214 
 
 

5.3.5.  Measuring the changes in mRNA expression levels of CaSR and RAMPs during 

the differentiation of MG63, SAOS-2 and TE85 cell lines measured using real time 

PCR: 

The immature osteoblasts like osteosarcoma cell lines - MG63, SAOS-2 and TE85 were treated 

with osteoblast differentiation medium and the changes in gene expression of CaSR and RAMPs 

was measured at different time points of maturation until 21 days. mRNA expression of CaSR 

and RAMPs was checked using TaqMan® probes in real time PCR at Days 5, 10, 15 and 21. 

Figures 5.3.8, 5.3.9 and 5.3.10 illustrate the expression of RAMP1 (A) and RAMP2 (B) at 

different time points in MG63, SAOS-2 and TE85 cells respectively treated with differentiation 

(blue bars) or normal DMEM (white bars) medium. The expressions of genes of interest were 

normalized to Actβ and are expressed as fold change to its expression on the graphs. The 

expression of CaSR and RAMP3 were not detected in any cell line using the given TaqMan® 

probes within 40 cycles; even after treatment with differentiation medium for 21 days. 

There was no statistically significant change in the expression of RAMP1 or 2 in any cell line 

treated with the differentiation medium (blue bars) compared to the untreated controls (white 

bars) as analysed by 2-way ANOVA, Bonferroni post-test.  

However, as seen in figure 5.3.9 A, there was an increase in expression of RAMP1 in SAOS-2 

cells in both control and treated groups from day 5 onwards. Also, there was an increase in 

RAMP1 expression in treated samples compared to control samples during the same time 

range. However, these effects were not statistically significant as determined by Bonferroni 

post-test. 

The average ± SD Ct values were:  

MG63 cells: 24.10 ± 1.05 (control) and 23.84 ± 0.79 (treated) for RAMP1 and 30.26 ± 0.87 

(control) and 29.72 ± 0.77 (treated) for RAMP2. 

SAOS-2 cells: 31.24 ± 1.27 (control) and 29.87 ± 1.60 (treated) for RAMP1 and 32.07 ± 0.91 

(control) and 32.13 ± 1.6 (treated) for RAMP2. 

TE85 cells:  26.68 ± 0.87 (control) and 26.09 ± 0.98 (treated) for RAMP1 and 28.63 ± 0.51 

(control) and 28.41 ± 0.54 (treated) for RAMP 2.  
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Figure 5.3.8: Change in mRNA expression of RAMP 1 and 2 during differentiation of MG63 cells:  

MG63 cells were grown till 100% confluency under normal conditions and then treated with 

differentiation medium for 21 days. mRNA expression levels of CaSR and RAMPs was measured at 

different time points as shown in the graph using TaqMan® probes in qPCR. The graphs show the mRNA 

expression of RAMP 1 (A) and RAMP 2 (B) in cells treated with differentiation medium (blue) and normal 

DMEM (white) at different time points, relative to the respective expression levels of Actβ. The data 

shown is combined from three separate experiments. Statistical test used: 2-way ANOVA, Bonferroni 

post-test. NS = differences are not statistically significant.  
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Figure 5.3.9: Change in mRNA expression of RAMP 1 and 2 during differentiation of SAOS-2 cells:  

SAOS-2 cells were grown till 100% confluency under normal conditions and then treated with 

differentiation medium for 21 days. mRNA expression levels of CaSR and RAMPs was measured at 

different time points as shown in the graph using TaqMan® probes in qPCR. The graphs show the mRNA 

expression of RAMP 1 (A) and RAMP 2 (B) in cells treated with differentiation medium (blue) and normal 

DMEM (white) at different time points, relative to the respective expression levels of Actβ. The data 

shown is combined from three separate experiments. Statistical test used: 2-way ANOVA, Bonferroni 

post-test. NS = differences are not statistically significant.  
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Figure 5.3.10: Change in mRNA expression of RAMP 1 and 2 during differentiation of TE85 cells:  

TE85 cells were grown till 100% confluency under normal conditions and then treated with 

differentiation medium till 21 days. mRNA expression levels of CaSR and RAMPs was measured at 

different time points as shown in the graph using TaqMan® probes in qPCR. The graphs show the mRNA 

expression of RAMP1 (A) and RAMP2 (B) in cells treated with differentiation medium (blue) and normal 

DMEM (white) at different time points, relative to the respective expression levels of Actβ. The data 

shown is combined from two separate experiments. Statistical test used: 2-way ANOVA, Bonferroni 

post- test. NS = differences are not statistically significant.  
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5.4.  Discussion 
 

It is known that the expression of CaSR and RAMPs is regulated under various physiological 

circumstances as described in detail in section 5.1 of this chapter. So, it was hypothesised that 

the agents involved in Ca2+ homeostasis will alter the expression levels of CaSR and RAMPs 1-3 

in cells natively expressing these proteins. There is no information regarding the regulation of 

RAMPs by such components, and the results could point towards a role of RAMPs in CaSR-

mediated Ca2+ homeostasis. Accordingly, TT cells and osteoblast-like osteosarcoma cell lines 

were chosen for the interventional experiments. 

Cell lines used: 

It was proposed to measure the changes in expression of CaSR and RAMPs by agents of Ca2+ 

homeostasis and so it was important to select the cells which represented the tissues involved 

in Ca2+ homeostasis. TT cells were chosen as they are differentiated medullary thyroid 

carcinoma cells from human [5]. They express CaSR which mediates the calcitonin secretion 

when activated by 3mM extracellular Ca2+ [5]. Accordingly, they represent medullary thyroid, 

which is a major site for CaSR-mediated Ca2+ homeostasis because it secretes the 

hypocalcaemic hormone calcitonin in response to increasing levels of Ca2+. TT cells have been 

used previously as a model of thyroid C-cells to study the regulation of CaSR expression by 1,25-

dihydroxyvitaminD3 [288] and have been accepted as an appropriate model for functional 

studies. 

Another site for Ca2+ homeostasis is bone. MG63, SAOS-2 and TE85 are human osteosarcoma 

cell lines derived from human malignant bone tumours; and evidence from the literature show 

that they possess the characteristics of osteoblasts. A study measuring mRNA expression levels 

of a total of 58 cytokines, growth factors, and their corresponding receptors and bone matrix 

proteins showed that the similarity in expression profiles between MG63, SAOS-2, TE85 cells 

and human primary osteoblast cells were highly comparable [309]. Also, 1,25-

dihydroxyvitaminD3 increased alkaline phosphatase levels in SAOS-2 and TE85 cells which  
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is a typical characteristic of osteoblasts [310]. In addition to this, the advantages of using these 

cell lines were their easier availability, relative ease of culture, quicker and longer growth in 

cultures and provision of extensive cellular material.  

Use of real-time PCR: 

Quantitative real-time PCR technique was used in order to accurately measure any changes in 

mRNA expression levels by various interventions of the genes of interest. Real-time PCR allows 

the detection of products during the early phases of the reaction as opposed to semi-

quantitative PCR where quantitation is based on the band intensity of the end product on an 

agarose gel. Accordingly, real-time PCR detects the accumulation of amplicon during the 

reaction and the data is then measured at the exponential phase of the PCR reaction. The 

TaqMan® probes used were inventoried by Applied Biosystems and designed such that they 

span exon-exon junctions for the particular gene of interest (this prevents the amplification of 

genomic DNA). Also, the detection is fluorescence based due to the presence of reporter dye at 

the 5’ end, and a low-energy molecule- ‘quencher’ at the 3’ end of the probe; and hence works 

on the principle of FRET (when the probe is cleaved by the 5’ exonuclease activity of the 

polymerase enzyme, it produces reporter dye signal which is quenched in absence of 

polymerase activity). Due to this property, accurate data corresponding to the cycle number of 

a gene at which the specific fluorescence corresponding to its amplification above the 

background fluorescence in the reaction (Ct value) is used for quantification.  

In order to check if the inventoried TaqMan® probes worked efficiently in our hands, pcDNA 3.1 

CaSR or RAMP1-3 cDNA doses were prepared to check for the linearity of target amplification 

by the probes (Figure 5.3.1). According to the guidelines provided by Applied Biosystems a 

standard curve slope of -3.3 indicates a PCR reaction with 100% efficiency. The results show 

that reaction efficiencies for all the TaqMan® probes were very high and could be used to 

accurately detect changes in gene expression. Next, the variability in expression of the 

endogenous controls (Actβ and HPRT1) was checked in all the cell lines used (Appendix figure 

7.10), where it was found that Actβ expression was less variable than HPRT1, upon treatment 

and between different experiments. Accordingly, the expression of test genes was normalized 
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by the expression of Actβ for relative quantification in all experiments. For a valid relative 

quantification calculation, the efficiency of the target amplification and the efficiency of the 

reference amplification must be approximately equal [308]. So, the amplification reaction 

efficiencies of the TaqMan® probes were checked by comparing ΔCt values (normalized to Actβ) 

against serial dilutions of TT cell cDNA (figure 5.3.2) and it was found that according to the 

accepted standard [308], the values of the slope of the line was <0.1 for CaSR, RAMP1 and 

RAMP2; indicating that the TaqMan® probes and the reaction conditions were appropriate for 

performing relative quantification calculations. 

 

Measuring changes in the expression levels of CaSR and RAMP mRNA in TT cells by various 

interventions: 

The expression of CaSR was confirmed at both mRNA and protein levels (as shown in figure 7.8 

in section 7.6 of appendix), along with the expression of RAMP1 and RAMP2 genes. We 

hypothesised to study the effect of Ca2+ and Ca2+-regulators on the expression levels of CaSR 

and RAMPs in TT cells. TT cells were cultured in F-12K medium containing 0.9mM CaCl2 which is 

below the Ec50 of CaSR (~3mM). Earlier time points were included in this study to check for an 

immediate change in expression levels; and 24 and 48hr time-points were included to check for 

chronic changes in expression levels. A high dose of 10mM CaCl2, ~3 times higher than Ec50 was 

used to induce an effect on the expression levels of the genes for up to 48hr. This dose was 

selected because it is higher than Ec50 and could exhibit a stronger effect, or in other words it 

could be more efficacious. No statistical significant changes in expression of CaSR and RAMPs 

were observed (Fig 5.3.3) upon treatment. This might suggest that changes in CaSR expression 

are robustly maintained against changing extracellular Ca2+ levels because of its essential role of 

secreting calcitonin; and any changes in its expression levels might produce undesirable effects 

in Ca2+ homeostasis.  

No measurable effect of 1µM 1,25-dihyroxyvitamin D3 was observed on the expression levels of 

CaSR and RAMP1-3 at any time points (Figure 5.3.4). In contrast to these results, 1,25-

dihydroxyvitamin D3 has been shown to upregulate CaSR mRNA by ~2.3 fold in vivo in thyroid 
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gland (dose of 250pmol/100g body weight) and in vitro in TT cells (10nM) [288] using 

ribonuclease protection assay. However, they observed statistically significant upregulation of 

CaSR mRNA at 8hr and 12hr post-treatment, followed by a decrease to basal levels of 

expression by 24hr in case of in vivo experiments; and upregulation at 8hr in vitro in TT cells 

[288]. They only used the 8hr time point for in vitro experiments using TT cells and the effect on 

CaSR mRNA expression at time points earlier or later were not studied. However, in this study, 

it is possible to have missed the time-frame where a possible effect could have been observed.  

TT cells modulate calcitonin secretion levels upon treatment with 10mM CaCl2 and 1,25-

dihyrdoxyvitamin D3 [5, 311]. Accordingly, the calcitonin secretion in the medium by TT cells 

upon treatment with these compounds could have been measured to confirm their definite 

effect on these cells at the given conditions. In both the interventions, the expression of RAMP3 

was undetectable, which is discussed later in the chapter.  

Measuring changes in the mRNA expression levels of CaSR and RAMPs mRNA in 

osteosarcoma cell lines by 30mM CaCl2 treatment: 

In osteosarcoma cells- MG63, SAOS-2 and TE85 CaSR transcripts were not detected within 40 

cycles using the given TaqMan® probes. High extracellular Ca2+ via CaSR, has been shown to 

exhibit mitogenic actions on mouse-derived primary osteoblast and enhance their 

differentiation [41]. Osteoclastic bone resorption can generate very high levels of Ca2+ within a 

range of 8-40 mM [312] and so it has been suggested that in the bone microenvironment where 

bone resorption occurs, osteoblasts sense high Ca2+ generated within the immediate 

microenvironment of resorbing osteoclasts within the same range [41]. Accordingly, it was 

hypothesised, that high extracellular Ca2+ (30mM) in media will induce expression of CaSR in 

osteosarcoma cell lines. The dose was chosen based on the above stated information and 

secondly because it is a ~10 fold higher dose than Ec50 of Ca2+ for CaSR (~3mM) and should 

represent the top-plateau of a dose-response curve. However, no CaSR mRNA expression could 

be detected within 48hr of treatment in either of the osteosarcoma cell lines, indicating a 

failure of ligand (Ca2+) induced expression. The changes in RAMP1 and 2 mRNA expression 

levels upon treatment were not statistically significant; whereas RAMP3 mRNA expression was 
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not detected (figure 5.3.5, 5.3.6 and 5.3.7). This shows that RAMP expression is not affected by 

increasing extracellular Ca2+ concentrations, probably because maintaining robust RAMP 

expression might be important for functioning of other GPCR partners of RAMPs. 

There has been a debate in the literature regarding the presence of CaSR expression in the 

clonal osteoblast-like osteosarcoma cell lines. There are studies showing the expression of CaSR 

mRNA and protein (similar to parathyroid transcript) in MG63, SAOS-2, UMR-106 and MC3T3 

cells [313-315]. However, differences in band-size for CaSR protein were observed between 

CaSR and MC3T3 compared to CaSR-transfected HEK-293 cells in one study [315]; whereas very 

low expression of CaSR with a presence of multiple bands at lower size (incorrect sizes) than 

expected (representing degradation product according to the authors) were observed in MG63 

and SAOS-2 protein samples (pre-adsorption of CaSR antisera abolished all bands) [313, 314]. 

The mRNA transcript reported using RT-PCR in MG63 cells by Yamaguchi et al, shared sequence 

identity to known parathyroid derived CaSR transcript [313]. Using the same CaSR antisera as 

[313, 314] but different primers for PCR, a different group failed to detect CaSR mRNA and 

protein expression in MG63 and SAOS-2 cell lines, compared to the positive controls - CaSR-

transfected HEK-293 cells, mouse kidney cells and human parathyroid cells [316]. However, the 

authors could detect specific CaSR bands in their positive controls only, upon using a different 

and more specific CaSR antibody; in contrast to the CaSR antisera. They observed multiple 

cross-reacting bands in both their positive controls and negative control- HEK-293 non-

transfected cells, using the CaSR antisera used in [313, 314]. The authors [316] confidently 

suggested that none of the non-specific bands observed congruent to [313, 314] represent 

either the dimeric or differentially glycosylated forms of CaSR, according to the suggestions 

made in [313, 314]. They reasoned that pre-adsorption to a blocking peptide does not 

necessarily suggest the specificity of the antibody; as hybridization to a cross-reacting (non-

specific) protein would also be eliminated by such pre-adsorption. There was another study by 

the same group as [316]; showing the absence of CaSR expression in MC3T3 cells which showed 

normal maturation and display of osteoblast like characteristics [317].  
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Our results using the same TaqMan ® probes show successful detection of CaSR mRNA in TT 

cells. This shows that the absence of CaSR in these osteosarcoma cell lines is not due to a 

technical error. Accordingly, it can also be speculated that CaSR expression in our osteosarcoma 

cell lines was beyond the detection limit of the assay. As shown in figure 5.3.1 (A), the Ct value 

of 34.1 was obtained for TOPO CaSR cDNA concentration of 1fg. Accordingly it can be 

speculated that the MG63, SAOS-2 or TE85 cDNA concentration of CaSR in the reaction was at 

least less than 1fg, as a Ct value 34 was not accepted for analysis (however, the output at the 

end of the reaction showed ‘undetermined’ and gave no Ct value). Even doubling the amount of 

cDNA in the reaction failed to detect any expression of CaSR in these samples. Interestingly, it 

has been shown using cultured primary mouse calvarial osteoblasts from Casr-/-, that CaSR 

agonists like Ca2+, Gd3+ and Al3+ could induce similar responses in these cells compared to wild 

type [318]. This suggests a novel cation-sensing mechanism in osteoblasts. Accordingly 

functional response such as increase in intracellular Ca2+ by CaSR specific agonists should be 

tested in these cells, in order to study if an alternative cation-sensing mechanism exists. 

Measuring changes in mRNA expression of CaSR and RAMPs upon differentiation of 

osteosarcoma cell lines: 

MG63, SAOS-2 and TE85 cell lines are immature osteoblast-like cells, derived from human 

osteosarcoma [309, 319]. It was hypothesised that inducing differentiation in these cells to 

force them into a more mature osteoblast phenotype, might change expression profiles of CaSR 

and RAMPs. The differentiation medium recipe has been used in previous studies [320, 321]. 

There was still no expression of CaSR and RAMP3 upon differentiation of osteosarcoma cell 

lines. This shows that even differentiated osteosarcoma cells are not a good model to study 

CaSR biology. The expression levels of RAMP1 and 2 did not show a statistically significant 

change in expression during differentiation (figure 5.3.8, 5.3.9 and 5.3.10). However, the 

expression levels of RAMP1 mRNA when compared to day 0, increased in both control and 

treatment groups from day 5 up to day 21 in SAOS-2 cells, with an apparent increase in the 

treatment group compared the control at each time point. However, this change between the 

control and treatment groups at individual time points was not significant statistically, meaning 

that differentiation does not have an effect at all values of time. Evidence from the literature 
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show a presence of CaSR and RAMPs in cultured primary osteoblasts [41, 42, 307, 322] and so 

they should be used for future experiments to study the hypothesis of change in expression 

patterns of CaSR and RAMPs by different interventions. 

As mentioned earlier, there are speculations of a novel cation-sensing mechanism in 

osteoblasts derived from Casr-/-  mice [318]. Similarly, it can be hypothesised that MG63, SAOS-

2 and TE85 cells might have an alternative Ca2+/cation-sensing mechanism such as presence of 

GPRC6A which is an alternative cation-sensing receptor [165]. 

Undetermined RAMP3 mRNA expression in all the cell lines used: 

In none of the cell lines studied, was the expression of RAMP3 mRNA detected within 40 cycles 

using the given TaqMan® probes. There is currently no evidence using TaqMan® probes or any 

other techniques, showing the presence of RAMP3 in any of these cell lines studied. According 

to the Applied Biosystem’s manual, a Ct value of more than 35 could be inaccurate and so the 

limit for analysis for this study was restricted to the Ct value of 34. However, for all the samples, 

RAMP3 Ct value was undetermined, i.e. not assigned a Ct number. This indicates that either 

RAMP3 is completely absent or expressed at extremely low levels at outside the detection 

limits of the reaction using this assay at given conditions. Figure 5.3.1 D using pcDNA3.1 RAMP3 

cDNA provides the evidence that the TaqMan® probes could definitely detect RAMP3. Also two 

other evidences- detection of RAMP3 expression in COS-7 CaSR+RAMP3 transfected cells 

(appendix section 7.5, figure 7.7) and Ct value of 32 obtained for 0.5ng lung cDNA sample from 

Ambion (data not shown) using same conditions; confirm that RAMP3 expression could be 

detected by the given Taqman® probe.  

 

Also, using the information from figure 5.3.1 D, the lowest concentration of pcDNA3.1 RAMP3 

used was 12pg corresponding to the Ct value of 25. Now, if we extrapolate this, Ct value of 34.9 

may correspond to ~ 1fg (10-15
 g), (as 3.3 cycles = 10 fold difference in expression level, 

according to the Applied Biosystem’s manual). Given that the efficiency of the TaqMan® probe 

will not be 100%, it can still be roughly speculated that the concentrations of RAMP3 transcripts 

in the samples in the reaction were probably less than ~10-14.5 to 10-15 g. The efficiency of the 
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reverse-transcription reaction, oligo- dT primers in the cDNA synthesis kit and the presence of 

any secondary structures of mRNA that can inhibit efficient cDNA conversion remain unknown; 

which could lead to loss of already extremely low levels of mRNA transcripts.  

 

An additional control can be included in the reaction to check for any inhibitors present that 

can lead to a loss in mRNA transcripts from extraction to the PCR stages. This information 

would be useful especially, when considering that the copies of gene of interest (RAMP3 in all 

cell lines or CaSR in osteosarcoma cells) are very low, and that they are diluted during the 

processing of the sample at several stages: extraction of RNA, preparing cDNA (only an aliquote 

of RNA used), preparing qPCR reaction (only an aliquote of the total cDNA used per reaction in 

a well). Accordingly, a known quantity of exogenous, unrelated RNA can be spiked into the cell 

sample before the RNA extraction process. The qPCR reaction performed for the gene of the 

exogenous RNA using the cDNA sample processed is then compared to the qPCR results from 

cDNA synthesized directly from exogenous RNA sample (without going-through extraction 

procedure). This would measure for the loss of transcripts caused by the processing or presence 

of inhibitors of reaction.  

 

Differential RAMP expression between the osteosarcoma cell lines: 

Within the three osteosarcoma cell lines, the normal (untreated) expression levels of RAMP1 

and 2 were found to be different (figure 5.3.5, 5.3.6 and 5.3.7). The expression of RAMP1 was 

highest in MG63 cells (4% of Actβ expression), followed by TE85 cells (1.7% of Actβ expression) 

and lowest in SAOS-2 cells (0.1% of Actβ expression). In case of RAMP2, TE85 expressed its 

highest levels (0.4% of Actβ), followed by MG63 (0.2% of Actβ) and the lowest expression was 

observed in SAOS-2 cells (0.04% of Actβ). The significance of this observation is not known yet, 

but might suggest a role of individual RAMP-specific receptor partners in these cells. It is also 

noteworthy that the expression levels of RAMP1 were higher than RAMP2 in TT, MG63, SAOS-2 

and TE85 cell lines; suggesting a higher presence of RAMP1 GPCR partners in these cells. 

Presence of a RAMP1 has been reported in MG63 cells by studies showing presence of distinct 
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CGRP receptor phenotype in these cells [323]. Whereas, TT cells express CTR [324], which is a 

partner for both RAMP1 and 2 to form amylin receptors.  

 

In summary, it was found that there was no change in mRNA expression levels of CaSR, RAMP1 

and 2 with 10mM CaCl2 or 1µM calcitriol treatment in TT cells at any of the time points studied, 

which probably leads to the hypothesis that major changes in gene expression levels of CaSR or 

RAMPS can lead to unwanted changes in Ca2+ homeostasis. However, this remains to be tested 

and also the corresponding protein levels remain to be detected. CaSR mRNA expression was 

undetected in MG63, SAOS-2 and TE85 osteosarcoma cell lines and treatment with 30mM CaCl2 

or differentiation into mature osteoblasts did not induce detectable levels of CaSR mRNA 

expression. Also, the expression of RAMP1 and 2 was not altered by interventions in these cells. 

Expression of RAMP3 was undetected in all the cell lines. The results also show that 

osteosarcoma cell lines are not a good model to study CaSR biology. 
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CHAPTER 6:  GENERAL DISCUSSION 
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CaSR is a pleiotropic GPCR that plays an important role in Ca2+ homeostasis. It was discovered 

that an association with RAMPs is essential for its cell-surface trafficking in transfected cells 

[157]. This was the first reported interaction of RAMPs with a family C GPCR. The mechanisms 

behind the characteristics of CaSR such as binding multiple ligands, and activation of multiple 

signalling pathways are not fully understood. RAMPs are promiscuous proteins that engender 

different receptor phenotypes, ligand binding affinities, and signalling patterns to family B 

GPCRs [156, 172, 174, 175]. Based on this information, it was hypothesised that RAMPs 

contribute to more than just the cell surface trafficking of the CaSR. Accordingly, this project 

was based to characterize this interaction further, and was divided into three parts relating to 

different aspects of the interaction:  

 To get a deeper insight into the molecular interaction between CaSR and RAMPs  

 To identify a possible role of RAMPs in signalling of CaSR  

 To measure the regulation of expression of RAMPs along with CaSR by agents involved 

in Ca2+ homeostasis; which can point towards a possible role of RAMPs in Ca2+ 

homeostasis. 

 

Additionally, it was hypothesised that RAMPs interact with GPRC6A, a family C GPCR closely 

related to the CaSR [158]. This is because like CaSR [157], it fails to traffic to the cell surface in 

certain transfected cell-types [158, 159]. So, it was hypothesised that RAMPs function as 

chaperones for GPRC6A and enable its cell-surface expression.  

Hetero-oligomerization of CaSR with RAMPs: 

The molecular interaction of CaSR and RAMPs was studied in detail using FRET-based 

stoichiometry. Firstly the interaction of CaSR with RAMP1 or 3 was examined for efficiency of 

cell-surface trafficking using sensitized FRET emission (section 3.3.3, chapter 3). Using FRET 

stoichiometry it was observed that equal fractions of CaSR were present on the cell surface in 

the FRET complex with either RAMP1 or 3. This indicates that both RAMP1 and 3 had equal 

efficiencies in trafficking the receptor to the cell surface. However, it was found that the 

fraction of RAMP3 was ~1.6 fold higher than RAMP1 (Table 3.3.3, chapter 3) in the CaSR-FRET 
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complex. Now, it is already known from the literature that CaSR exists as a dimer on the cell 

surface [105, 325]. So, the FRET stoichiometry data suggests that for every dimer of CaSR there 

is ~1.6 times more RAMP3 than RAMP1 (figure 6.1) in respective complexes. Also, it should be 

noted that this defines a single unit of the CaSR-complex, and so it is still unknown as to how 

many of such units can heteromerize to form a larger oligomeric complex on the cell surface. In 

summary, results from FRET stoichiometry suggest the presence of a higher oligomeric receptor 

complex in the case of CaSR and RAMP interaction, where more molecules of RAMP3 than 

RAMP1 can be associated with a dimer of CaSR. 

 

Figure 6.1: Possible stoichiometry of CaSR and RAMP complexes: 

(A) CaSR homodimer (blue) with RAMP1 (red) in complex probably has a lower RAMP:CaSR molecules 

number than with (B) in complex with RAMP3 (orange). The numbers represented here are only to aid 

understanding and do not represent the actual number of molecules of either RAMP present in complex 

with CaSR. 

FRET based approaches have been successfully utilized to determine the stoichiometry of 

GPCRs involved in homo or hetero-oligomerization [240, 326-328]. These approaches are based 

on sequential FRET using three different fluorophores, where the signal resulting from 

successful FRET between the first two components of the complex, results into FRET with the 

third component. This approach has been used successfully in detecting hetero-oligomerization 

between homodimer of CLR and monomer of RAMP1, where FRET occurring between two CLRs 
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tagged with two different fluorophores, transfers the energy to cause excitation of another 

fluorophore tagged to the third interacting protein (RAMP) [328]. So a similar approach can be 

used to identify the exact stoichiometry of RAMP molecules associating with CaSR homodimer.  

In addition to the FRET results which are obtained using an artificial expression system, RAMP1 

knock-down in TT cells showed significant attenuation of CaSR signalling, which most likely 

means that they interact in these cells, and that RAMP1 is probably involved in cell-surface 

trafficking of the CaSR (section 4.3.10, chapter 4). Accordingly, this points towards a possible 

interaction of CaSR with RAMPs in a physiological setting, although its stoichiometry is not yet 

determined.  

In addition to the interaction studies, this study has also discovered that RAMP1 plays a role in 

the signalling of the CaSR (chapter 4, section 4.3.11). Based on information from the literature 

on the effects of hetero and oligomerization of GPCRs [329-331], the findings from the FRET 

stoichiometry (hetero-oligomerization) and signalling studies (role of RAMP1 in CaSR signalling), 

lead to new hypotheses as briefly noted below. 

It can be hypothesised that the promiscuity of the CaSR to bind different ligands [10, 29, 52, 69-

74, 76, 81, 82, 86, 87, 94] can be influenced by its differential interaction with either RAMP1 or 

3. This is supported by the fact that RAMPs can alter the ligand binding specificity for the CLR 

and CTR and consequently forming distinct receptor phenotypes [156, 172]. Secondly, CaSR has 

been shown to exhibit ligand-dependent functional selectivity, by preferentially activating 

either Gi/o or ERK pathways when binding specific orthosteric agonists in transfected HEK-293 

cells [332] (expressing RAMP1 [157]). The authors suggested that this could occur because 

different agonists cause different yet specific conformational changes in the receptor structure 

which lead to the activation of a specific signalling pathway [332]. However, in addition to this it 

will be interesting to test whether there is a direct involvement of RAMP to this effect at any 

level from ligand binding to coupling G proteins. (as RAMP1 affects CaSR signalling-chapter 4, 

section 4.3.11). We have shown (in a different study) using the antibody-capture SPA 

technique, that the presence of a RAMP can modulate the specific G-protein signalling pattern 

of the family B GPCRs like the PTH1R, VPAC1R and Glucagon receptors (figure 6.2) (Roberts et 
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al, unpublished data). We demonstrated that although these receptors are capable of 

trafficking to the cell-surface and signalling on their own, presence of RAMP2 with PTH1R and 

VPAC1R, and RAMP3 with glucagon receptor; increased the efficacy of G-protein responses 

without any changes in ligand binding affinities and potencies. This data thus conclusively 

shows that RAMPs are involved in direct G-protein coupling of the VPAC1, PTH1/2 and glucagon 

receptors (Roberts et al, unpublished data), and so it will be interesting to test whether a 

similar effect is observed with a different GPCR partner of RAMPs such as the CaSR.  

PTH1R alone
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Figure 6.2: RAMPs modulate specific G-protein signalling profile of the PTH1R: 

It is seen that in presence of RAMP2, there is an increase in efficacy of Gαs (140%) and Gαi (60%) 

activation by PTH (1-34) on the PTH1R. Roberts et al, unpublished data. 

 

In addition to the implications on signalling, the interaction of CaSR with RAMPs can also have 

an effect on the internalization and recycling of the receptor post-stimulation. RAMP3, which is 

an interacting partner of CaSR (section 3.3.3, chapter 3) contains a PDZ-binding motif that 

interacts with NSF or NHERF-1 to affect internalization and recycling of the CLR [209, 210]. 

Accordingly, it can be hypothesised that similar consequences may lead to differences in 

regulation of the CaSR following agonist stimulation.  

Although the observations of receptor interactions and signalling from this project were based 

on in vitro studies, they can be expanded onto a physiological level in future, an idea which was 

also proposed by Bouschet et al [157]. Accordingly, apart from confirming the interaction of 
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CaSR and RAMPs in physiology, it will be interesting to test whether the variation in the 

physiological expression of RAMPs [156, 182, 183, 214, 215] can alter their availability and 

consequently cell surface trafficking and signalling of the CaSR. This will help in determining 

whether RAMPs play a role in Ca2+ homeostasis. Although further studies need to be done to 

confirm the role of RAMP1 in CaSR signalling, it will be very interesting to study whether 

RAMP1 can be used as a target to develop calcilytics - which have a potential to treat disorders 

like osteoporosis. The precedent for RAMP as drug targets has already been provided by studies 

for conditions such as migraine (involving CGRP receptor) [333], and cancer (anti-RAMP3 

antibodies significantly reduce tumour burden in mice, Richards GO unpublished data).  

Future work: 

Further work elucidating the residues of the CaSR and RAMPs responsible for the interaction 

will be important. This information will help in providing key structural information of this 

receptor complex. FRET-based approaches have been used by other researchers in this regard. 

An approach measuring bioluminescence resonance energy transfer (BRET) signal between 

different TM domain mutants of the secretin receptor and RAMP3 has helped to identify TM6 

and TM7 responsible for the interaction [175]. A similar approach using sensitized emission 

FRET can be used to identify whether the TM domain of CaSR is involved in the interaction with 

the RAMPs. ECD mutants of CaSR cannot be used since the ECD is responsible for the formation 

of dimer (obligatory for its function), and so RAMP ECD chimeras can be created instead by 

swapping RAMP1 or RAMP3 ECD with RAMP2 ECD; since RAMP2 does not interact with CaSR. 

Once the domains responsible are identified, the effect of point mutations of certain residues 

on change in cell surface FRET can be tested to identify the exact residues responsible for 

complex formation. It is also essential to study the role of RAMP3 in CaSR signalling. Further 

characterization of the signalling pathway in presence of either RAMP1 or RAMP3 should be 

done at both G-protein and downstream levels. To differentiate the signalling at the G-protein 

level, techniques incorporating antibodies against the active GTP-bound G-proteins (NewEast 

biosciences) [263] can be used. These antibodies can be immobilized to fluorescent beads with 

distinct emission profiles and subsequently enabling multiple G-protein activation 

measurement from a single reaction. Alternatively, high-throughput label-free technique using 
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cellular dielectric spectroscopy technology [334] could be used in future. This technique 

identifies the specific G-protein activation based on the impedance measurements of the 

applied electric current as it flows through a cell monolayer. Next, the difference in activation 

of downstream effectors by the CaSR-complex in presence of either RAMP (1 or 3) should be 

deciphered by measuring intracellular Ca2+ activation, cAMP activation and ERK 

phosphorylation in presence of inhibitors of signalling molecules like U73122 (PLCβ inhibitor), 

Wortmannin (PIP2 inhibitor), thapsigargin (inhibitor of ER Ca2+ pumps), PTX (inhibitor of Gi 

protein), PMA (PKC inhibitor) and ERK 1/2 inhibitor.  

First evidence for association of RAMP with GPRC6A: 

This study also identified a novel interaction of RAMP with another family C GPCR using FRET. 

GPRC6A is a recently identified member of family C GPCRs and shares maximum homology with 

CaSR (34% aa sequence identity) [158]. Studies using c-myc tagged hGPRC6A have reported 

poor or no cell surface expression of GPRC6A based on cell types [158, 159]. This situation is 

similar to that observed for CaSR, where no cell surface expression was observed in COS-7 cells 

by us (chapter 3, figure 3.3.14) and Bouschet et al [157]. Having already established the 

interaction of RAMPs with CaSR using FRET technique (section 3.3.3, chapter 3), it was 

hypothesised that RAMPs may also facilitate the cell surface expression of GPRC6A. It was 

observed conclusively that RAMP1 but not 2 and 3 could traffic GPRC6A to the cell surface in 

COS-7 cells using this technique (chapter 3, section 3.3.4). It is known that RAMP1 cannot reach 

the cell surface on its own [156, 193]. This evidence supports the observation that FRET 

measured is because of the specific interaction with GPRC6A, and is not an artefact of RAMP1 

trafficking to the cell surface independently. There is an ER retention motif on the C-tail of 

GPRC6A, and attempts of co-expressing GABAB2 or T1R3 receptors have proved to be futile to 

facilitate the cell surface expression of GPRC6A [159]. The presence of an ER retention motif on 

the CaSR also prevents the dimer from escaping the ER [93]. It is known in the case of CaSR that 

the core-glycosylated form of the receptor which is trapped inside the ER interacts with RAMP1, 

which then causes its exit to the Golgi apparatus where it is terminally glycosylated and is finally 

transported to the cell-surface in the form of a receptor complex [157]. Similarly, it can be 

hypothesised that the interaction with RAMP1 facilitates the exit of the GPRC6A from the ER to 
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the Golgi, where it is terminally glycosylated and then delivered to the cell-surface as observed 

by FRET (chapter 3, section 3.3.4), possibly in the form of a mature glycosylated receptor 

complex.  

Interestingly, it was observed that the FRET efficiency between GPRC6A and RAMP1; and CaSR 

and RAMP1 was not significantly different, however the fraction of RAMP1 involved in FRET 

complex with CaSR was ~1.45 fold higher than with GPRC6A (table 3.3.3 vs table 3.3.4, chapter 

3). This comparison probably suggests a lower number of RAMP1 molecules in the FRET 

complex with GPRC6A than with the CaSR. This means that less molecules of RAMP1 are 

required for cell-surface trafficking of GPRC6A than for the CaSR.  

An observation from this study indicating an interaction of CaSR with RAMP1 in an endogenous 

expression system (section 4.3.10, chapter 4), certainly encourages a similar possibility in the 

case of GPRC6A and RAMP1 interaction. It is known that GPRC6A binds various ligands such as 

L-aa [159, 160], divalent ions and calcimimetic [165], osteocalcin (in presence of Ca2+) [165, 

168] and testosterone [170]. The alignment of CaSR with GPRC6A has shown that the Ca2+ and 

calcimimetic binding sites of CaSR are conserved in GPRC6A [165]. Since, RAMP1 is 

characteristically involved in the ligand binding of other GPCRs (CGRP receptor-CLR+RAMP1) 

[200], it should be tested whether it aids ligand binding selectivity of GPRC6A. Additionally, as 

discovered in this project in case of the CaSR, it will be important to test whether RAMP1 is 

involved in the signalling of GPRC6A. Of note, two different GPRC6A knock-out mice models- 

global exon-2 (coding ECD) and exon-6 (coding TMD and C-tail) null mice have provided 

interesting evidence on the functions of these segments of the receptor. Gprc6a-/- mice lacking 

exon-2 (ECD) exhibited osteopenia, hepatic steatosis (fatty liver), hyperglycaemia, glucose 

intolerance and insulin resistance as well as increased renal Ca2+ and phosphorous excretion 

[161, 166]. In contrast, Gprc6a-/- mice lacking exon 6 (TMD and C-tail), exhibited no difference in 

phenotype from wild-type [167]. Accordingly, it can be hypothesised that the ECD of GPRC6A is 

essential for ligand-sensing for metabolic signals, where the presence of the TMD and C-tail is 

not essential. One hypothesis that can be proposed is that GPRC6A interacts with an accessory 

protein like RAMP1, which can play a role in its signalling. Also, the effects of various RAMP1 
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mutants on the effect of GPRC6A trafficking and signalling should be studied in order to 

establish which residues are responsible for the interaction and also establish a role of RAMP1 

in the signalling of the GPRC6A. This approach has already been used successfully with the CLR 

[201].  

Conclusions: 

In conclusion, a deeper insight into the interaction of CaSR and RAMPs has been provided by 

this study which points towards the presence of a higher oligomeric receptor-complex with 

more than one RAMP3 molecule participating in the interaction. Furthermore, the results 

indicate for the first time that RAMP1 possibly traffics the CaSR to the cell-surface at 

endogenous expression levels demonstrating a physiological interaction. Another novel finding 

from this study is that RAMP1 plays a role in CaSR signalling in TT cells. Further confirmation of 

this effect might lead to evidences regarding role of RAMPs contributing towards the 

pleiotropic nature of ligand binding and signalling of the CaSR and its subsequent functioning in 

Ca2+ homeostasis. Consequently, RAMP1 may be proven as an important target for 

development of calcilytics and drugs targeting both CaSR and RAMP1 might prove to be more 

efficacious than current strategies.  

Furthermore, a novel interaction between GPRC6A and RAMP1 has been discovered using FRET 

technique. This discovery opens areas of further research regarding the role of RAMPs in 

GPRC6A function of processing a variety of nutritional and hormonal anabolic signals and co-

ordinating the functions of multiple organs in response to changes of the signals.  
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Part-1: Appendix for materials and methods: 

 

 

DNA loading buffer: 

23.54mM xylene or 3.73mM bromophenol blue 

1.16M sucrose 

 

TaqMan® gene specific inventoried assay accession numbers 

Gene Assay accession number 

Human RAMP1 Hs00195288_m1 

Human RAMP2 Hs00359352_m1 

Human RAMP3 Hs00234665_m1 

Human CaSR Hs01047795_m1 

Human β-actin Hs99999903_m1 

Human HPRT1 Hs01003267_m1 

 

5X Tris-borate EDTA (TBE) recipe: 

0.45M Tris-Borate 

0.01 M EDTA; pH 8.3 

 

Cell lysis buffer: 

150mM NaCl  

10mM Tris Cl  

2mM EDTA  

100mM Iodoacetamide  

1% Triton X-100  

1% NP-40 (Roche),  

1X Protease inhibitor cocktail  

pH 7.4 at 25⁰C. 
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Recipe for 10ml 8% SDS-PAGE separating gel: 

Component Volume added for 10ml gel 

Distilled H20 4.6ml 

Tris Cl (pH 8.8) 2.5ml 

SDS 10% (w/v) 100µl 

A/bis A (30%:0.8%) 2.67ml 

APS (10%) (made fresh) 100µl 

TEMED 10µl 

 

Recipe for 10ml 10% SDS-PAGE separating gel: 

Component Volume added for 10ml gel 

Distilled H20 4.0ml 

Tris Cl (pH 8.8) 2.5ml 

SDS 10% (w/v) 100µl 

A/bis A (30%:0.8%) 3.33ml 

APS (10%) (made fresh) 100µl 

TEMED 10µl 

 

  Recipe for 10ml 12% SDS-PAGE separating gel: 

Component Volume added for 10ml gel 

Distilled H20 3.3ml 

Tris Cl (pH 8.8) 2.5ml 

SDS 10% (w/v) 100µl 

A/bis A (30%:0.8%) 4.0ml 

APS (10%) (made fresh) 100µl 

TEMED 10µl 
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Recipe for 10ml 5% SDS-PAGE stacking gel: 

Component Volume added for 10ml gel 

Distilled H20 5.67ml 

Tris Cl (pH 6.8) 2.5ml 

SDS 10% (w/v) 100µl 

A/bis A (30%:0.8%) 1.67ml 

APS (10%) 50µl 

TEMED 20µl 

 

Running buffer recipe: 

0.2M Glycine, 

 26mM Tris base,  

4% SDS 

 

6X Laemmli buffer recipe: 

375mM Tris HCl  

9% SDS 

50% glycerol 

0.03% bromophenol blue 

600mM DTT 

pH 6.8 at 25⁰C. 

Transfer buffer recipe: 

25mM Tris base 

200mM glycine 

20% (v/v) methanol 

Tris-buffered saline (TBS): 

0.136M NaCl 

2.68mM KCl 

24.7mM Tris base 

pH 7.4 using HCl at 25⁰C. 

 

NEbuffer 2 composition: 

50mM NaCl 

10mM Tris HCl 

 10mM MgCl2 
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1mM DTT 

pH 7.9 at 25⁰C 

 

Antarctic phosphatase buffer composition: 

50mM Bis-Tris-propane HCl 

1mM MgCl2 

0.1mM ZnCl2 

pH 6.0 at 25⁰C 

 

T4 DNA ligase reaction buffer: 

50mM Tris-HCl, 

10mM MgCl2  

1mM ATP  

10mM DTT 

pH 7.5 at 25⁰C 

 

Electroporation buffer recipe: 

20mM HEPES 

135mM KCl 

2mM MgCl2  

0.5% Ficoll 400 (Sigma Aldrich) 

2mM ATP (added before use) 

5mM glutathione (added before use) 

pH 7.6 using KOH at 25⁰C. 

Mowiol recipe 

2.4g Mowiol (Sigma Aldrich), 6ml glycerol and 6ml water were mixed for 2hr and then 12ml of 

200mM Tris-HCl, pH 8.5 was added with a further incubation for 5-6hr at 50⁰C. The solution 

was then centrifuged at 2000g for 10min at room temperature and then aliquoted in 1.5ml 

tubes and stored at -20⁰C. 

 

Physiological Salt Solution recipe: 

100mM NaCl  

5.4mM KCl  

1.2mM MgSO4  

1.5mM / 2mM CaCl2 
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5.5mM Glucose  

6mM NaHCO3  

1.2mM Na2HPO4 

20mM HEPES  

pH  7.4 at 25⁰C. 

 

1x NEBuffer Ssp1: 

50mM NaCl 

100mM Tris-HCl 

10mM MgCl2 

0.025% Triton X-100 

pH 7.5 at 25⁰C. 

Differentiation medium recipe: 

Complete DMEM containing: 

10nM Dexamethasone (Sigma Aldrich) 

2mM β-glycerolphosphate (Sigma-Aldrich) 

50µg/ml L-ascorbic acid (Sigma Aldrich) 

Sodium Citrate buffer recipe: 

135mM KCl 

15mM Sodium citrate dehydrate 

pH 7.5 at 25⁰C 
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Part:2. Appendix for results: 

 
7.1 Determining the expression of RAMPs in COS-7 cell line: 

To check for presence of RAMPs in COS-7 cells, RT-PCR was performed as described in section 

2.7, chapter 2. pcDNA 3.1 RAMP vectors were used as positive controls and HPRT1 was used as 

an endogenous control. Figure 7.1-7.3 show the absence of RAMP1, 2 and 3 respectively in 

COS-7 samples (Lane 2,3). Lane 1 in figure 7.1 and 7.2 show the correct sized amplicon for the 

pcDNA3.1 RAMP 1 and 2 positive control cDNA samples. However, pcDNA 3.1 RAMP3 (Lane1, 

figure 7.3) did not give correct sized product. This was because the reverse primer was 

complimentary to the region of exon 3 which was not present in the RAMP3 sequence of 

pcDNA 3.1 RAMP3. Database search revealed that the corresponding sequence was 3’UTR and 

so was not present in the pcDNA3.1 RAMP3 vector. However, the absence of RAMP3 along with 

other RAMPs in COS-7 cells was confirmed using real-time PCR where its expression remained 

undetermined; whereas a Ct value of 32 was obtained for 0.5ng of human lung cDNA sample.  
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Figure 7.1: Expression of RAMP1 in COS-7 cell determined by RT-PCR: 

COS-7 cDNA and pcDNA3.1 RAMP1 vector DNA were amplified using RAMP1 primers for 35 cycles in 

thermocycler and the products were separated on 1% agarose gel containing and visualized under UV 

light. (L0) 100bp DNA ladder Amplified products by lane (L1) pcDNA3.1 RAMP1 vector (L2) COS-7 RT+ 

(L3) COS-7 RT- (L4) H2O control (L5) HPRT1 RT+ (L6) HPRT1 RT-. The expected product size for RAMP1 is 

445bp and HPRT1 is 213bp. 

 

 

 

 

 

 

 

Figure 7.2: Expression of RAMP2 in COS-7 cell determined by RT-PCR 

COS-7 cDNA and pcDNA3.1 RAMP2 vector DNA were amplified using RAMP2 primers for 35 cycles in 

thermocycler and the products were separated on 1% agarose gel containing and visualized under UV 

light. (L0) 100bp DNA ladder Amplified products by lane (L1) pcDNA3.1 RAMP2 vector (L2) COS-7 RT+ 

(L3) COS-7 RT- (L4) H2O control (L5) HPRT1 RT+ (L6) HPRT1 RT-. The expected product size for RAMP2 is 

282bp and HPRT1 is 213bp. 

 

 

  

L0          L1         L2          L3        L4         L5        L6 

213b

L0       L1         L2     L3     L4       L5            L6 

213

bp 
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Figure 7.3:: Expression of RAMP3 in COS-7 cell determined by RT-PCR. 

COS-7 cDNA and pcDNA3.1 RAMP3 vector DNA were amplified using RAMP3 primers for 35 cycles in 

thermocycler and the products were separated on 1% agarose gel containing ethidium bromide and 

visualized under UV light. (L0) 100bp DNA ladder Amplified products by lane (L1) pcDNA3.1 RAMP3 

vector (L2) COS-7 RT+ (L3) COS-7 RT- (L4) H2O control (L5) HPRT1 RT+ (L6) HPRT1 RT-. The expected 

product size for RAMP3 is 693bp and HPRT1 is 213bp. 

 

7.2. Donor bleaching technique: 

Donor bleaching technique was used in order to establish FRET methodology according to 

[230]. Cerulean pcDNA3.1 and Cerulean-citrine fusion pcDNA3.1 were transfected in COS-7 cells 

and their bleaching kinetics is shown in figure 7.4 (A) and (B) respectively. It can be seen that 

cerulean exhibited bi-exponential decay. Kfast and K slow (sec-1) for cerulean alone were 0.9 

and 0.0088 and for cerulean in cerulean-citrine fusion were 1.96 and 0.0188 respectively. There 

was no statistical difference between the decay rates between (A) and (B) as shown by graph in 

(C) as analysed by unpaired t-test.  

  L0         L1           L2           L3            L4            L5             

L6 

213bp 
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Figure 7.4: Donor bleaching technique: 

Cerulean alone or Cerulean-citrine fusion construct were excited sequentially 50 times at donor 

wavelength and images were collected. Whole cell intensity was calculated (A) bleaching curve of 

cerulean alone (B) bleaching curve for cerulean in Cerulean-citrine fusion (C) comparison between decay 

constants between (A) and (B). number of cells analysed for cer alone were 9 and for cerulean-citrine 

fusion were 6. 
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Values of FRET stoichiometric constants: 

 

Table 7.1: Calculated mean/ ± SD values of FRET stoichiometric constants:   

β and α were calculated by Bleed through calc plugin in ImageJ using Cer only and citrine only 

transfected COS-7 cell images. γ, ξ and Ec were calculated using the equations given in the section 3.2.6 

and 3.2.7 of methods using the donor, acceptor and the FRET intensities measured by drawing ROIs on 

the positive control citrine-cerulean fusion images. The table shows the mean ± SD values of the 

constants calculated and the number of ROIs and cells used in analysis 

 

7.3. Detecting the presence of Gα proteins in COS7 transfected membranes: 

To detect the presence of specific subtypes of Gα proteins in COS-7 transfected membranes 

preparations, CaSR+RAMP1 membranes were subjected to western blotting as described in 

section 2.12, chapter 2 using the same antibodies used in the SPA for Gα proteins. Bands were 

observed for Gαs at ~22 KDa, ~25 KDa, ~30-40 KDa, and 2 bands between 40-50KDa (Figure 7.5, 

Lane 1). For Gαi (Figure 7.5, lane 2) bands were observed at ~22 KDa, ~40KDa and ~45 KDa and 

for Gαq bands were observed at ~22 KDa and ~42 KDa. 

Constant Mean /± SD Number of ROIs 
Number of cells 

analysed 

β 0.31 - 8-10 

α 0.126 - 8-10 

γ 0.30 ± 0.02 41 9 

ξ 0.20 ± 0.03 27 6 

Ec 32.80 ± 2.9 27 6 
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Figure 7.5: Presence of Gα-proteins in membrane preparations 

CaSR+RAMP1 COS7 membrane preparation were immunoblotted to check the presence of G proteins. 

10µg/well CaSR+RAMP1 COS7 membranes were separated on a -10% gel by SDS-PAGE and transferred 

on a PVDF membrane. Specific G-proteins were detected using specific antibodies and were revealed 

using an HRP conjugated secondary antibody on a hyperfilm. Lane 1, Gαs, Lane 2 Gαi, Lane 3 shows Gαq . 

Lane 4 shows background by the secondary antibody alone. 

 

7.4. Expression of CaSR in CaSR+RAMP1/3 membranes: 

To check for the expression of CaSR in CaSR+RAMP1/3 membranes, 80µg of protein sample was 

separated on 8% SDS-PAGE gel and probed for the presence of CaSR. Empty COS-7 membranes 

were used as a negative control. Figure 7.6 shows specific band for CaSR in CasR+RAMP1 and 3 

membranes (Lanes 2 and 3 respectively) which is not present in empty COS-7 membranes (Lane 

1).  



248 
 
 

 

Figure 7.6: Presence of CaSR in membrane preparations 

Empty COS-7 (lane 1), CaSR+RAMP1 and 3 (lane 2 and 3 respectively) membranes were immunoblotted 

to check the presence of CaSR. 80µg/well membranes were separated on 8% gel by SDS-PAGE and 

transferred on a PVDF membrane. CaSR protein was detected using monoclonal antibodies against CaSR 

and was revealed using an HRP conjugated secondary antibody on a hyperfilm.  
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7.5. Validation of COS-7 stable cell lines for mRNA expression of receptor components: 

In order to study the role of RAMPs in CaSR signalling, COS-7 cells were stably transfected with 

CaSR, RAMP1, 2, and 3. mRNA expression of the transfected receptor components were 

measured by real time PCR using Taqman® probes. Expression of CaSR and RAMPs was 

normalized to ActB which was used as a house keeping gene and are shown on Y axis as fold 

change in %. The average Ct values for each gene in all the stable COS-7 cells are shown in the 

table (figure 7.7). CaSR mRNA expression was not detectable in COS-7 empty cells. 
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Figure 7.7: Validation of COS-7 stable cell lines for mRNA expression of receptor components 

Real time PCR data showing expression of mRNA of the receptor components as fold change to 

expression ActB which was used to normalize the differences in cDNA loading. The table shows the 

average Ct values of different genes expressed in CaSR+RAMPs COS-7 stable cell lines. n=1 performed in 

duplicates.  
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7.6. Expression of CaSR and RAMPs in TT cells: 

mRNA expression: 

Expression of CaSR and RAMPs in TT cells was determined using real time PCR and western 

blotting as described in sections 2.9 and 2.12, chapter 2. Figure 7.8 (A) shows the mRNA 

expression profile of TT cells determined using Taqman probes in real time PCR. The Ct values 

observed were 21.5 (CaSR), 26.1 (RAMP1) and 27.1 (RAMP2) and the expression of RAMP3 was 

not determined. The graph shows the expression of CaSR, RAMP1 and 2 relative to the 

expression of HPRT1, normalized to Actb.  

Protein expression: 

CaSR: (Figure 7.8 B) Lane 1 shows specific bands at ~60KDa ~135-140KDa, ~160-170KDa, above 

200KDa and fainter bands at ~70 and ~80 KDa for CaSR. There was no background by the 

secondary antibody alone as shown in Lane 2. CaSR can exist in immature form glycosylated 

with carbohydrates with high mannose content (130-140kDa immune-reactive band) present 

intracellularly, as well as in mature form glycosylated with complex carbohydrates (150-160kDa 

immune-reactive band) located on the cell surface [70, 104]. Accordingly, the band at ~140KDa 

represents core glycosylated form whereas the 150-160kDa bands correspond to the mature 

glycosylated form of the CaSR. In HEK-293 CaSR transfected cells, non-reducing SDS-PAGE 

showed dimeric CaSR at a size greater than 200kDa, a proportion of which got converted into a 

160kDa band under reducing conditions. Also, higher oligomeric forms at 280kDa were also 

observed using cell surface crosslinking [125]. This explains that the higher band at >200kDa 

observed in figure 7.8 B corresponds to the oligomeric form of the receptor. 

RAMP1: (Figure 7.8 C).  Bright bands were observed at ~14kDa and ~19KDa both of which have 

been reported as monomeric bands in the literature [180, 335, 336]. Bands were also seen at  

~40 and ~50KDa which have also been reported in literature likely to represent multimeric form 

[156, 193, 335] as RAMP1 is present in multimeric form inside the cell [156, 193]. 

RAMP2: (Figure 7.8 D) Multiple bands were observed for RAMP2 with brighter bands at 

~22KDa, ~40 and ~65KDa and fainter bands at ~10KDa, ~30KDa, ~50, ~60 and ~70KDa (Figure 

7.8 D). Bands at ~22 kDa have been reported for monomers which are possibly glycosylated 
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[211]. Bands at ~35kDa, ~42kDa, ~50kDa, ~73kDa, have been reported [211, 337, 338]. Based 

on the reported observations and their inferences by other researchers, it can be suggested 

that these bands represent unglycosylated/glycosylated dimeric form (35-50kDa) and GPCR 

complexed forms (~73kDa) [337].  

However, it has also been shown that commercially available RAMP antibodies raised against 

same epitope as the antibodies used in this study but in rabbit instead, are not very specific to 

RAMPs exclusively and they can detect non-specific targets at ~40kDa, ~50ka and ~35kDa [336]. 

So, it cannot be disregarded that the bands observed at higher molecular weight could be non-

specific targets. However, a study using antibody adsorption method has shown that bands at 

~35kDa, ~50kDa and ~73KDa for RAMP2 were specific for RAMP2 [337]. Since, a control peptide 

to pre-adsorb antibody was not used, a definitive answer for the higher molecular weight bands 

cannot be given. 

RAMP3: (Figure 7.8 E,F) Multiple bands are observed for RAMP3. Brighter bands were seen at 

~40, ~42, ~50 and ~60 KDa and three faint bands between 20 and 30 KDa, a faint bands at ~30 

and ~35 KDa (Figure 7.8 E). As a positive control for RAMP3, rat brain sample was used (Figure 

7.8 F) which shows specific bands at ~18KDa, ~28KDa ad ~33 KDa respectively. Since RAMP3 

mRNA was not detected using real-time PCR, the presence of multiple bands on western blot is 

both surprising and inconclusive. As described earlier in detail in chapter 5, the observation that 

RAMP3 mRNA was undetectable is convincing, as regression analysis using pcDNA3.1 RAMP3 

cDNA construct has shown a linear relationship with a R2 value of 0.95 (figure 5.3.1, chapter 5). 

Also transfected COS-7 cells stably expressing CaSR and RAMP3 also show a Ct value of 18.2 for 

RAMP3, which was not observed for COS-7 non-transfected cells (appendix, figure 7.7). So, rat 

brain sample was used as a positive control for RAMP3, since it is shown to express RAMP3 at 

both mRNA and protein levels [337]. Band observed at ~18kDa represents RAMP3 monomer 

[337], whereas ~28KDa band has been reported to represent fully glycosylated RAMP3 [181] 

and ~33KDa could represent a RAMP3 dimer (figure 7.8 F). Taken together it suggests that 

bands observed for RAMP3 are non-specific.  
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In order to check whether the RAMP1 Ab could bind to RAMP1 in its native conformation in 

contrast to linearized protein in western blots, immuno-cytochemistry was performed on the 

TT cells as described in section 2.13, chapter 2. Figure 7.8 (G) shows the staining for RAMP1 in 

non-permeabilized (top panel) and permeabilized (bottom panel) TT cells. The pattern of 

staining on the cell membrane can be seen in the non-permeabilized cells, whereas in 

permeabilized cells, the staining intensity is stronger and staining for RAMP1 protein is seen in 

the cytoplasm as well. Negligible background staining was observed with control IgG, as a 

negative control. This result shows that RAMP1 antibody gave specific binding pattern in TT 

cells, corresponding to RAMP1 expression.  
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(A) 

Figure 7.8: Expression of CaSR and RAMPs in TT cells: 

(A) mRNA expression of CaSR and RAMPs in TT cells was determined using Taqman probes in real-time 

PCR. The expression of the genes was normalized to ActB and the expression of CaSR, RAMP1 and 2 is 

shown as relative to the expression of HPRT1 using the ΔΔCt method. The Ct values are shown in the 

box. Expression of RAMP3 was undetermined.  
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Figure 7.8: Expression of CaSR and RAMPs in TT cells: 

 Representative western blots for the expression of CaSR (B), RAMP1 (C), RAMP2 (D) and RAMP3 (E) 

proteins in TT cells and (F) shows the expression of RAMP3 in rat brain as a positive control. 8% 

polyacrylamide gel for (B) and 12% for (C), (D), (E) and (F) were used to separate 30µg of TT protein by 

SDS-PAGE and then transferred to PVDF and probed for CaSR and RAMPs using specific antibodies as 

described in detail in section 2.12 of chapter 2.  
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(G) 

 

Figure 7.8: Expression of CaSR and RAMPs in TT cells: 

(G) Two representative images (1) and (2) for expression of RAMP1 in non-permeabilized (top panel) and 

permeabilized (bottom panel) TT cells, shown using immunocytochemistry. Column 3 in both panels 

show background staining by control IgG. In all the images, the nuclei are counter-stained in blue.  

 

7.7. Effect of DMSO on RAMP1 Ab in experiments to study the effects of combined treatment 

of RAMP1 Ab and NPS 2390 on CaSR signalling: 

In order to test whether combined treatment with 10µg RAMP1 Gt poly Ab and CaSR antagonist 

NPS 2390 would create a greater effect than the individual treatments, Fluo-4 loaded cells were 

treated with either 10µg RAMP1 Gt poly Ab/ goat IgG, 10µM or 50 µM of NPS 2390 or both 

10µg RAMP1 Gt poly Ab and 10µM NPS 2390 for 45min at 37°C. The effect of CaSR agonist 

100µM Neomycin was tested on these cells using live cell imaging system. As shown in figure 



255 
 
 

7.9 (A) it seemed that the combinatorial treatment was more effective than either 10 or 50µM 

NPS 2390 or 10µg RAMP1 Gt poly Ab. 

However, when the effect of DMSO, which was the solvent for NPS 2390 was tested (vehicle 

control), shown in figure 7.9 B, similar effect as (A) was seen. This shows that the results 

observed for combined treatment was due to the non-specific effect of DMSO; giving false 

positive result. The concentrations of DMSO used: 0.1% and 0.5% corresponded to the v/v 

addition of NPS 2390 stock into buffer to prepare the desired concentrations used in the 

experiment. 
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Figure 7.9: Effect of DMSO on RAMP1 Ab in combined treatment of NPS 2390 and RAMP1 Ab 

TT cells were pre-treated with either 10µg of RAMP1 goat Poly Ab, 10µM or 50µM NPS 2390 alone or in 

combination with 10µg RAMP1 Ab or control IgG (A) or 0.1% or 0.5% DMSO with 10µg RAMP1 Ab or 

control IgG for 45 min at 37°C, before measuring intracellular Ca2+ activation by 100µM neomycin. 

Representative graph for three experiments performed separately.  
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7.8. Expression of house-keeping genes in cell lines 
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Figure 7.10: Expression levels of ActB and HPRT1 in TT cells and osteosarcoma cell lines: 

mRNA expression of ActB and HPRT1 house-keeping genes were analysed in TT cells and osteosarcoma 

cell lines- MG63, SAOS-2 and TE85 to check the variation in their expression levels using TaqMan® 

probes in real time PCR. (A) Pooled Ct values for ActB and HPRT1 from all the experiments on TT cells 

and it appears that ActB is less variable than HPRT1. (B) Pooled Ct values for ActB and HPRT1 from all the 

experiments on MG63, SAOS-2 and TE85 cells and ActB was found to be less variable in expression than 

HPRT1. 
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