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Abstract 

This thesis reports on the findings of a qualitative study investigating how 

teachers of mathematics in English schools introduce differentiation in 

elementary calculus. Understanding how teachers introduce the derivative is 

crucial to uncovering more meaningful and effective ways for helping 

students understand differential calculus. The study adopts the 

commognitive framework and investigates the teaching of the derivative by 

examining the word use and narratives, the visual mediators and the 

routines in the teachers’ pedagogical calculus discourse. Interviews with the 

teachers and observation of their introductory lessons on the derivative were 

used to collect qualitative data for the study. For the analysis of the 

qualitative data, the study introduces a new approach that is described as a 

commognitive thematic discourse analysis, which is a combination of the 

commognitive framework and thematic analysis. The commognitive thematic 

discourse analysis was then used to deconstruct the teachers’ pedagogical 

calculus discourse on the derivative and to identify the overarching themes 

in the research data, which are presented as a narrative of the findings. The 

study found that teachers used multiple visual mediators such as numerical, 

algebraic and graphical representations in constructing the definition of the 

derivative. Using dynamic geometry software such as GeoGebra and 

Autograph enhanced the teachers’ construction and substantiation routines 

in teaching the definition of the derivative. The study also found that 

teachers were able to construct the definition of the derivative without using 

the formal definition of limits; instead, the teachers took what is described as 

a ‘quasi-limit’ approach. The study also uncovered some inconsistency and 

ambiguity with word use and calculus symbolism in the teachers’ 

pedagogical calculus discourse in the transition between gradient (for 

straight line graphs) and the gradient function (for curved line graphs). This 

study is aimed at contributing to research that seeks to understand and 

improve the teaching of elementary calculus. 
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Chapter 1   Introduction 

This study is an investigation into the teaching of elementary differential calculus at 

school, thus, researching the teaching of calculus to pre-university level students. 

The study explores how teachers of mathematics introduce differential calculus to 

secondary school students (16 to 18 years) in England. This study adopts a purely 

qualitative approach to research. In the following sections of this chapter, Section 1.1 

explains the background and my motivations for carrying out this study. In Section 

1.2 the research topic and context are explained. A definition of calculus, a brief 

history of the discovery of calculus, the significance of calculus and its place in the 

mathematics curricula are all explained in Section 1.2. The next Section 1.3 presents 

a justification for the study and explains the significance of investigating the teachers’ 

pedagogical calculus discourse. Section 1.4 gives the overall research aims and 

identifies the prima facie questions for the research. Finally, Section 1.5 gives an 

outline of the thesis. 

1.1  Background to the study 

My prime motivation for researching the teaching of differential calculus stems from 

my experience and observations over a period spanning at least two decades, as a 

scholar, teacher and lecturer in mathematics education. From my career as a 

teacher of mathematics, I taught elementary calculus at the Advanced level (A-level) 

to post-16 (high school) students at schools in England. Thus, I developed some 

knowledge and understanding of the curriculum arrangements (programme of study) 

and subject specifications for mathematics in the UK. As a lecturer and teacher 

educator at the university, I taught (worked with) pre-service trainee teachers on the 

Post Graduate Certificate Education (PGCE) programme. I also worked with in-

service teachers of mathematics on the Teaching Advanced Mathematics (TAM1) 

programme.  Both programmes, PGCE and TAM, involved teaching mathematics 

education to the student teachers and supporting their knowledge and skills 

development by observing the student teachers teach mathematics in their 

 

1 TAM course is designed to support the continued professional development of secondary teachers of 

mathematics in the UK, most particularly, teachers of GCSE Mathematics who wish to train to teach A level 

Mathematics, although some teachers with A level teaching experience do also enrol to broaden and 

deepen their mathematics subject knowledge and gain new teaching ideas. The TAM course is organised 

by the MEI and run-in conjunction with participating centres and universities in the UK.  For more 

information about the TAM course follow the link: https://amsp.org.uk/events/details/5200. 

https://amsp.org.uk/events/details/5200
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placement schools.  Thus, my epistemological stance in this qualitative research is 

influenced, not just by research on mathematics education, but also by my 

professional/academic practice and background as a teacher of mathematics and a 

teacher educator.  

During my academic career as a teacher educator, I taught elementary calculus to 

trainee teachers of mathematics on the PGCE programme. I observed that for many 

of my student teachers, their understanding of basic calculus concepts was often 

limited to some disjointed algebraic rules, which they could hardly explain. When 

asked to explain their understanding of the derivative, it was often the case that 

many of these student teachers would focus on the algorithmic rules of differentiating 

functions, the sort of standard rules for differentiation that have been required to 

pass their A-level mathematics examinations. The trainee teachers on the PGCE 

programme would have been taught some elementary calculus (at least) at school 

and/or at university, before enrolling on the PGCE programme. The vast majority of 

these trainee teachers were postgraduate students, whose undergraduate degrees 

were in mathematics. Nonetheless, the common denominator here is that all the 

trainee teachers would have had some A-level mathematics, and calculus is a core 

component of A-level mathematics in England.  

Klein (1908/1932 cited in Winslow and Gronbaek, 2014) had long described what he 

called a ‘double discontinuity’, referring to a gap in content knowledge between the 

transition from high school to university, and another gap between the teacher’s 

university knowledge and knowledge for high school teaching. The first discontinuity 

results from ways of learning and doing mathematics at school that do not apply to 

university, and the second discontinuity appears in the application of knowledge 

learnt from university to high school teaching. The latter can be explained in terms of 

a gap between being the student role (both at school and university) and the teacher 

role at high school.  

Facing what looked like Klein’s double discontinuity (Klein,1908/1932 cited in 

Winslow and Gronbaek, 2014), as the teacher educator I was concerned as to how 

the trainee teachers would explain the derivative to their students if they could not 

explain the definition of the derivative. I wondered how and why so many students 

who had gone through A-level mathematics and undergraduate-level calculus would 

struggle to demonstrate an adequate understanding of differentiation. I wondered if 

this was an isolated observation or a common problem with calculus. Thus, I 

undertook a preliminary review of the literature on students’ challenges with calculus.   

My preliminary review of literature on calculus education revealed that it was well 

established from a variety of studies (e.g. Orton, 1983a; 1983b; Tall, 1992; Ferrini-
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Mundy and Gaudard, 1992), that students had difficulties with calculus. Many studies 

in the 1980s (e.g. Dreyfus and Eisenberg, 1983; Even et al., 1988; Monk, 1989; 

Orton, 1983a; 1983b; Tall and Blackett, 1986; and Vinner, 1983; 1987) suggested 

that the students’ understanding of basic concepts in elementary calculus such as 

the limit, functions, the derivative, and integrals was inadequate. Calculus has been 

the subject of much debate and research for at least the last five decades. In a 

plenary presentation at the International Congress on Mathematical Education 

(ICME) conference in 1992 in Québec, Tall (1992) gave an extensive summary of 

the challenges that students encounter in learning calculus. Some of the difficulties 

in calculus that Tall (1992) talked about had earlier been highlighted by Orton’s 

(1983a; 1983b) study on students’ understanding of elementary calculus involving 16 

to 22 year-olds. Orton’s (1983a; 1983b) study shows that although the students’ 

routine performance on differentiation items was adequate, they lacked adequate 

intuition or understanding of the derivative concept. Eichler and Erens's (2014) study, 

which investigated teachers’ beliefs towards calculus, found that all the 29 teachers 

in their study had a shared view on calculus, as a set of rules for students to be 

memorised and used in solving routine problems.  

Similar to the observations I made about my trainee teachers’ knowledge and 

understanding of differential calculus, Berry and Nyman (2003) also report problems 

with students’ understanding of calculus. Berry and Nyman (2003, p.481) report that: 

Our experience is that the vast majority of students in introductory calculus 

courses do not develop an appreciation of the theoretical concepts or an 

intuitive ‘feel’ for the ideas…Successful students go away from the course 

knowing that they must ‘find where the derivative is zero’ without really 

understanding why it is important…Techniques of integration are little more 

than a ‘bag of tricks’. 

Berry and Nyman (2003) also worked with mathematics undergraduate students and 

postgraduate students training to be teachers over several years in the United 

Kingdom (UK) and the United States of America (USA). They reported similar 

observations to my experiences with trainee teachers as described above. They 

described the students’ understanding as ‘a set of loosely connected actions based 

on a set of algebraic rules that can be applied in restricted, often artificial, algebraic 

situations’ (Berry and Nyman, 2003, p.482).  

My observations about student teachers’ difficulties with calculus were, therefore, not 

an isolated case. There is strong evidence in the literature (e.g. Berry and Nyman, 

2003; Dreyfus and Eisenberg, 1983; Even et al., 1988; Monk, 1989; Orton, 1983a; 

1983b; Tall and Blackett, 1986; and Vinner, 1983; 1987) spanning over five decades 
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that confirms students’ challenges with calculus. The majority of the studies I 

reviewed focus on the learning of calculus. Of the few studies that looked at the 

teaching of calculus, I did not come across a study that focused primarily on the 

introduction of differential calculus at school. This was a gap in research. My study, 

therefore, sets to explore how teachers of mathematics introduce differential calculus 

at school to the 16 to 18 age range of students.  

1.2  Research context  

Calculus is the area of mathematics, which studies how things change. Simply put, 

calculus is the mathematical study of change. How do we determine the speed of a 

falling object at an instant in time, for instance, its speed when it hits the ground? 

Calculus was invented out of studying continuously changing quantities, and 

answers to such problems are what became known as a derivative. Calculus is 

broadly divided into differential calculus and integral calculus. Differential calculus 

also referred to as simply differentiation deals with the rates at which quantities 

change, finding the slope of a tangent to a curve or derivatives of functions. Integral 

calculus or simply integration, on the other hand, is concerned with the accumulation 

of quantities, finding the area under a curve, the volume of a geometric solid or 

integrals of functions. Simplistically, the process of integration is the inverse of 

differentiation.  

The discovery of calculus around the 1670s by Sir Isaac Newton (1642 - 1727) in 

England and Gottfried Wilhelm Leibniz (1646 - 1716) a German mathematician and 

philosopher, was one of the most famous breakthroughs in the history of 

mathematics. The two men, Sir Isaac Newton (1642 - 1727) and Gottfried Wilhelm 

Leibniz (1646 - 1716) independently invented calculus (Reyes, 2004; Rosenthal, 

1951). Although Leibniz was the first to publish his work on calculus in 1684, both 

these men deserve equal credit for independently creating calculus. For the rest of 

their lives, they accused each other of plagiarism. The dispute as to who discovered 

calculus first led to a rift in the European mathematical community lasting over a 

century. In spite of the dispute, the world largely adopted Leibniz's calculus 

symbols,  
𝑑𝑦

𝑑𝑥
 for example (Henle and Kleinberg, 1979). Newton’s physics principles, 

which remain sufficient to explain much in physics with excellent accuracy, were 

borne out of calculus. For example, Newton was trying to understand or make sense 

of why falling objects would constantly accelerate, i.e. the effect of gravity.   
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Calculus remains ‘one of the greatest achievements of the human intellect’ (NCTM, 

1989; Hughes-Hallett et al., 1994, p.vii). Commenting on the usefulness of calculus, 

Davidson (1991) said: 

By understanding derivatives, the student has at his or her disposal a very 

powerful tool for understanding the behaviour of mathematical functions. 

Importantly, this allows us to optimize functions, which means to find their 

maximum or minimum values, as well as to determine other valuable qualities 

describing functions. Real-world applications are endless, but some examples 

are maximizing profit, minimizing stress, maximizing efficiency, minimizing 

cost, finding the point of diminishing returns, and determining velocity and 

acceleration.  

Real-world applications of calculus are endless, including fields such as medicine, 

astronomy, business, economics and statistics. Giving a keynote speech in a 

meeting on calculus in the USA, the National Academy of Engineering president 

Robert M. White said the ‘national spotlight is on calculus’ because of the ‘linkage 

between mathematics and economic growth’. Calculus ‘must become a pump rather 

than a filter in the pipeline’, (Walsh, 1987, p.749). Calculus is fundamental to the 

study of mathematical sciences, all sciences: physics, chemistry and biology, and 

engineering (Douglas, 1986). Indeed, calculus has stood the test of time!  

Today, still, calculus remains an extremely important component of the mathematics 

curriculum, from upper secondary school to college or university in the English 

education system and many countries around the world. In England, calculus is part 

of the school mathematics programme for the 16 -18 age range, and this has been 

the case for over six decades. The mathematics content to be taught for the AS/A 

level mathematics syllabuses (16 -18 age range) is often outlined in the mathematics 

teaching specifications that are provided by the examination boards2, such as AQA, 

Edexcel and OCR. With a particular focus on the introduction to differentiation, the 

Edexcel Level 3 General Certificate of Education (GCE) in Mathematics for the Core 

Mathematics (C1)3 outlines what students need to learn on differentiation as follows: 

 

2 These are awarding bodies authorised by the Office of Qualifications and Examinations Regulation (Ofqual) 

with setting examinations and awarding qualifications, such as GCSEs and A levels, for students in state 

schools and colleges across the UK.  

 
3 C1 – Core Mathematics 1, is the first of four Core Mathematics modules (C1, C2, C3 & C4) that, together with 

two other modules from Mechanics or Statistics or Decision, make up the General Certificate of Education 

(GCE) Advanced Level Mathematics Qualification. For further information follow the link: 

https://nrich.maths.org/6147 

https://nrich.maths.org/6147
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The derivative of 𝑓(𝑥) as the gradient of the tangent to the graph of 𝑦 =  𝑓 (𝑥) at a 

point; the gradient of the tangent as a limit; interpretation as a rate of change; second 

order derivatives. For example, knowledge that 
𝑑𝑦

𝑑𝑥
 is the rate of change of 𝑦 with 

respect to 𝑥. Knowledge of the chain rule is not required. The notation 𝑓′(𝑥) may be 

used. 

Differentiation of 𝑥𝑛, and related sums and differences. For example, for 𝑛 ≠  1, the 

ability to differentiate expressions such as (2𝑥 +  5)(𝑥 –  1) and 
𝑥2+ 5𝑥−3

3𝑥
(

1
2)

 is expected.  

Applications of differentiation to gradients, tangents and normals. Use of 

differentiation to find equations of tangents and normals at specific points on a curve. 

(Pearson Education Limited, 2013, p.23)  

In 2016, the Department for Education (DfE) published revised content for teaching 

mathematics AS (and A) level and the new specification has been taught since 

September 2017. However, the introductory element to what students need to know 

about differentiation has not changed, except for the inclusion of differentiation from 

first principles, for small positive integer powers of 𝑥. DfE (2016, p.10): 

Understand and use the derivative of 𝑓(𝑥)as the gradient of the tangent to the graph 

of 𝑦 =  𝑓(𝑥) at a general point (𝑥, 𝑦); the gradient of the tangent as a limit; 
interpretation as a rate of change; sketching the gradient function for a given curve; 
second derivatives; differentiation from first principles for small positive integer 

powers of 𝑥; 
Understand and use the second derivative as the rate of change of gradient.  
Differentiate 𝑛𝑥 , for rational values of n, and related constant multiples, sums and 
differences. 

Although calculus is usually taught at A level (17 to 18 year-olds) in England, it is not 

as formal nor as rigorous as the university-level courses on calculus. Students in 

England, however, can study some elements of differential calculus at the GCSE 

level, from an optional qualification, Additional Mathematics.  

There are many other countries, apart from England, that teach calculus at school, to 

students in the 14 to 18 age range.  In Singapore, the teaching of calculus starts in 

upper secondary (Years 9 and 10) as part of the GCE O Level Additional 

Mathematics syllabus. Much of the calculus that is covered at the GCE O level in 

Singapore is a preserve for the Advanced level in England (Bressoud et al., 2016). In 

South Korea, calculus is introduced in the second year of high school (Grade 11) 

and is highly regarded as an essential part of secondary school mathematics 

(Bressoud et al., 2016). In France, the concept of limit and the derivative are 

introduced, but without formal definition, at Grade 11 and 12, just an intuitive 

approach is used. In Germany, calculus is taught at the Senior High School, though 
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not as formal as at the university level calculus; (Bressoud et al., 2016). In the United 

States of America, calculus was once a preserve of university courses, but it is now 

taught in high school as a preliminary course for University Calculus. In the United 

States, in 2014-15, 25% of high school seniors enrolled on calculus courses in 

school, and about 75% of all students who eventually study calculus at university, 

take their first calculus course in high school (Bressoud et al., 2016).  

Researching the teaching of calculus at the school level, i.e. pre-university stage is 

therefore of global relevance to mathematics education research and teachers of 

mathematics in many countries. My study investigates how teachers of mathematics 

teach elementary differential calculus, particularly, the introduction of the derivative.   

1.3  Significance of the study  

This study investigates the teaching of calculus, which may provide suggestive 

evidence for some of the students’ difficulties with calculus (as highlighted in Section 

1.1 above). Understanding how teachers teach the derivative and the challenges 

with teaching elementary differential calculus could provide useful research insights 

into some of the common students’ challenges with calculus.  

The study takes a discursive research approach rooted in the theory of 

commognition that conceptualises mathematics as a form of discourse, that is, a 

special type of communication with specific ways of saying and doing (Sfard, 2008) 

(see Chapter 3 for an explanation of the commognitive theoretical framework). Thus, 

the study offers an alternative research perspective (to most past studies) on 

researching teachers and their teaching of elementary differential calculus 

(mathematics) that does not focus on teacher knowledge but the teachers’ 

mathematical discourses (Sfard, 2008), herein referred to as the teachers’ 

pedagogical calculus discourse. Pedagogical calculus discourse in this study refers 

to the amalgam of the teachers’ mathematical and didactical discourse on calculus. 

The fundamental challenge for teaching the derivative, i.e. introducing differential 

calculus, is to construct the limit definition of the derivative and to substantiate the 

process of differentiation to students. It is often the challenge of explaining the 

instantaneous rate of change and giving a practical way of calculating it. It is, 

therefore, not only necessary but important to research, not just the learning, but 

also the teaching of calculus. This study investigates the teaching of the derivative 

by examining the calculus language, the calculus symbolism and visual mediators 

and representations in the teachers’ pedagogical calculus discourse. In this study, 

the term ‘representations’, which is regarded as a familiar term for the target 
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audience for this research (i.e. the teachers of mathematics), is used to refer to 

various forms of expressing mathematical objects, such as the geometrical, 

algebraic and numerical forms of expressing a function, for example.  

Researching the teachers' pedagogical calculus discourse means examining their 

communicative activity, i.e. the teachers’ forms of saying and doing in teaching 

calculus. Calculus is laden with specialised mathematical words, e.g. limit, derivative 

and word use matters in pedagogical calculus discourse. This study examines the 

teachers’ word use and narratives (Sfard, 2008) in constructing the definition of the 

derivative, which is crucial for illuminating meaningful language for calculus teaching 

and uncovering more effective ways of introducing the derivative. 

It is also important that this research investigates the teachers’ use of symbols in 

constructing the definition of the derivative. Symbolism can be a useful and powerful 

communication mediator (Sfard, 2008; Tall, 1994) in teaching differential calculus. 

However, symbolism is also reported as a source of students’ difficulties with 

calculus (Tall, 1992). Besides, there exists symbolic ambiguity in some calculus 

symbols, for example, the same symbol 𝑥 in the gradient formula (for straight line 

graphs) represents a ‘letter as specific unknown value’ whereas in the limit definition 

of the derivative represents a ‘letter as variable’ (Kuchemann, 1978, p.23). Exploring 

how teachers use symbolism in introducing the derivative is important to provide 

research insights into the challenges with calculus symbolism. 

Further, it is also important to investigate the representations and visual mediators 

that teachers use in introducing the derivative, for visual mediators are an integral 

part of the act of communication in literate mathematics discourse (Sfard, 2008). The 

representations and the visual mediators (e.g. the algebraic symbolic artefacts and 

graphical mediators) in the teachers’ pedagogical calculus discourse provide the 

images with which teachers and students can ‘identify the object of their talk and 

coordinate their communication’ (Sfard, 2008, p.145). Besides, the use of multiple 

visual mediators and representations in teaching can ‘broaden communicational 

possibilities’ (Sfard, 2008, p.156) and widen learning opportunities for the students. 

Overall, researching the teachers’ pedagogical calculus discourse to understand how 

teachers of mathematics introduce the derivative, is crucial to finding more 

meaningful and effective ways to uncover what students need to know to understand 

differential calculus. 
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1.4  Research aims 

This study aims to contribute to the existing knowledge base or research on calculus 

education, and to a growing body of knowledge that seeks to understand and 

improve the teaching and learning of calculus in schools. It is also aimed at raising 

awareness of, and drawing mathematics education research’s attention to the 

teaching of differential calculus at the pre-university stage.  

The study is intended to inform the teaching of differential calculus. As a teacher of 

mathematics, a teacher educator and a mathematics researcher, it is my hope and 

intention that this study would speak, not only to the mathematics education 

research community but to the teachers of mathematics, too. The study has 

relevance for teacher education and training, e.g. Initial Teacher Training (ITT) and 

Continued Professional Development (CPD) programmes. I also hope that this study 

will be invaluable for my professional learning and development as a researcher, a 

teacher and a mathematics teacher educator.    

This study seeks to understand what is said in the teacher’s differential pedagogical 

calculus discourse, and how it is said; what is used and how it is used; and what is 

done, and how it is done. The following prima facie research questions guided the 

initial review of literature.  In teaching differential calculus: 

• What mathematical language do teachers use and why?   

• What mediational means do teachers use and why? 

• How do teachers introduce the derivative?   

These preliminary questions were instrumental for the initial search for and engaging 

with literature. The resultant review of literature led to the discovery of the 

commognitive framework (Sfard, 2008) as an appropriate theoretical framework for 

the study (see Chapter 3) and to the formulation of the substantive research 

questions (see Section 4.2 on page 62), that then guided the ultimate design for the 

research  

1.5  Thesis outline 

The thesis is divided into 10 chapters as shown in Table 1.1 below. In Chapters 2 

and 3 a review of literature for the study is given. Chapter 2 primarily reviews 

literature on calculus education and research, whereas Chapter 3 explains the 

conceptual framework for the study - the commognitive theoretical framework (Sfard, 

2008), followed by a review of literature on commognitive studies. Chapters 4 and 5 

explain the research design, methods of data collection and methods of data 

analysis used for the study. Three chapters are reporting the findings of the study. 



- 22 - 

Chapters 6, 7 and 8 present and discuss the findings of the study. Chapter 9 

presents a discussion of selected findings and a critical evaluation of the 

commognitive methodology applied in this study. Finally, Chapter 10 presents the 

research conclusions, summarising the main findings and their implications for 

practice and research, highlights the main research contributions, explains the 

limitations of the research, and makes recommendations for future research. 

 

experiences ranging between three and ten years.  

Table 1.1  Thesis outline 

 

Introduction 

 

Chapter 1: Introduction 

Literature review & 

theoretical 

framework 

Chapter 2: Literature review 

Chapter 3: Commognitive theoretical framework 

Methodology 
Chapter 4: Research design 

Chapter 5: Qualitative data analysis 

Findings & 

Discussion 

Chapter 6: Mathematical language for calculus teaching 

Chapter 7: Symbolism for calculus teaching 

Chapter 8: Pedagogies on the derivative 

Chapter 9: Discussion 

 

Conclusion 

 

Chapter 10: Conclusions and implications 
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Chapter 2   Literature review 

2.1  Introduction 

My research is an investigation of the teaching of elementary differential calculus 

through the lens of the commognitive framework (Sfard, 2008). Thus, there are two 

broad strands to my literature review: a review of literature on calculus (presented in 

Chapter 2) and a review of literature on commognitive analyses (presented in 

Chapter 3). The review of literature on calculus (see Sections 2.2 to 2.4) will explore 

some historical and curriculum aspects of calculus education, define the derivative 

and analyse past research on the derivative and calculus education. The review of 

literature on commognitive analyses (see Section 3.6) will examine commognitive 

studies on teaching and learning calculus. More broadly, the latter review will include 

literature on discursive studies that have applied the commognitive framework in 

their analyses of teaching and learning. Research insights from such commognitive 

analyses could inform my broader interpretation of the commognition theory, my 

analysis of teaching and learning and the discussion of the findings of my study. For 

a more in-depth explanation and application of the commognition theory to this 

study, see Chapter 3. 

2.2  Calculus education  

Calculus is seen as a gatekeeper to the STEM subjects, i.e. science, technology, 

engineering, and mathematics at higher education and university. Reporting in the 

Mathematical Association of America (MAA)’s National Study of College Calculus of 

2015, Bressoud et al. (2015) identify the calculus entry requirement into STEM 

disciplines as a huge barrier, for too many students, to pursue further study or 

careers that require calculus and mathematics.  

In the UK, since the Jeffrey Report of 1944, school mathematics education in 

England saw numerous attempts to introduce elementary differentiation and 

integration to the 14 – 16 age range. The Jeffery Report of 1944 proposed that 

introducing calculus early would be beneficial to the more able 14 -16 year-olds. 

There was a strong case to introduce calculus to such students before the age of 16, 

the time at which some of them could decide not to study mathematics any further 

(Orton, 1986).  

A review of the mathematics national curricula (NC) from 1989 to 2013 for the 14 – 

16 age range (Key stage 4/GCSEs) shows that simple functions and drawing of 

graphs, rates of change in terms of speed, velocity, acceleration, ratio and gradient 
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(slope) of straight-line graphs have been part of the content to be covered. Thus, by 

the age of 16, pupils would have covered in some varying degrees, or at least been 

introduced to, some preliminary calculus ideas.  In 2014, a new mathematics 

curriculum for the 14-16 age range or Key stage 4 was launched. This is the first 

mathematics national curriculum in recent years to apply the Jeffery Report of 1944 

recommendation to introduce some elements of calculus to students of the14-16 age 

range. Although it does not mention calculus by the term, it is very clear that it allows 

for the teaching of elements of differentiation. The new NC programme of study DfE 

(2014, p.3) specifies the mathematical content that should be taught to all pupils, in 

standard type; and the additional mathematical content to be taught to more highly 

attaining pupils, in {braces}. Below are three extracts from the 2014 Mathematics 

programmes of study: key stage 4 of the National Curriculum in England (DfE, 2014, 

p.9, bold in original):  

Where appropriate, interpret simple expressions as functions with inputs and 

outputs; {interpret the reverse process as the ‘inverse function’; interpret 

the succession of two functions as a ‘composite function’} (p.7). 

{Calculate or estimate gradients of graphs and areas under graphs 

(including quadratic and other non-linear graphs) and interpret results in 

cases such as distance-time graphs, velocity-time graphs and graphs in 

financial contexts} (p.8). 

{Interpret the gradient at a point on a curve as the instantaneous rate of 

change; apply the concepts of instantaneous and average rate of change 

(gradients of tangents and chords) in numerical, algebraic and graphical 

contexts} (p.9). 

The teaching of functions and the functional notation (Lagrange’s notation) would lay 

a foundation for calculus, for example, Lagrange’s notation is used with calculus 

symbolism such as 𝑓′(𝑥). Estimating gradients with curves and applications to 

distance-time, velocity-time graphs would form the basis upon which the introduction 

of the concepts of differentiation (rate of change and gradients), and the concepts of 

integration (area under graphs and curves) could be developed.  Nevertheless, 

within these curricula, there has not been any direct link made (or implied) of any of 

these topics to post-16 calculus. Whether teachers have been able to identify and 

link these topics to calculus or whether they have used these topics or related 

concepts as a basis to introduce and develop the concept of the derivative is a 

subject for investigation.  

In the US, there was an apparent general atmosphere of dissatisfaction and crisis in 

teaching and learning calculus in the 1980s, which led to The Calculus Reform 
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Movement in the USA (Tall, 1994; Tucker and Leitzel, 1994) which instigated 

changes in the teaching of calculus. Even though concerted efforts had been made 

to highlight the importance of calculus and to draw attention to necessary 

educational reforms, e.g. the National Research Council report ‘Calculus for a New 

Century: A Pump not a Filter’ of 1988, and The Calculus Reform Movement,  

Bressoud et al. (2015, p.v) report that there was very little progress made with 

calculus education.  

Calculus is still a filter, but until 2010 we knew very little about who takes it, 

how it is taught, or what makes for effective calculus programs that promote 

rather than inhibit students’ continuation into successful careers in science and 

engineering. Existing knowledge on the effects of class size, placement 

procedures, use of technology, or pedagogical approaches [my italics] was 

either not specific to calculus or of a very local nature. 

It was after 2010 that the MAA undertook the first nationwide study on college-level 

Calculus in the USA, that combined large-scale survey data and in-depth case study 

analysis. The study investigated ‘who takes Calculus I and why, what their 

preparation has been, what they experience in the classroom, and how this affects 

their confidence, enjoyment of mathematics, and intention to persist in the study of 

mathematics’ (Bressoud et al., 2015, p.(v)). The MAA study also looked at 

institutional practices that promote the retention of STEM students.   

The American situation with calculus education described by Bressoud et al. (2015) 

above, appears to be similar to the English context. Calculus is yet to be a pump for 

the STEM disciplines; it is still a filter. There is little evidence of studies focusing on 

calculus education in the English education system context, i.e. there are not many 

studies that are specific to calculus education in England. In modern times, there has 

not been a similar large-scale study specifically on calculus education in the United 

Kingdom, similar to the Mathematical Association of America (MAA)’s ‘Insights and 

Recommendations from the MAA National Study of College Calculus’ of 2015.  My 

study, though on a limited scope, seeks to investigate pedagogical approaches 

including the use of technology specific to elementary differential calculus in English 

classrooms in England. This study is a contribution to research that seeks to 

understand and promote calculus education at the preliminary level.  

2.3  Defining the derivative  

There is a common recognition amongst many mathematics educators and 

researchers of the difficulties in introducing the concept of the derivative arising from 
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the idea of a limit (Hobbs and Relf, 1997; Tall, 1992; Thompson, 1994; Zandieh, 

2000). The derivative is often symbolically defined (represented), as follows:  

𝑓′(𝑥) =  lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
, where ℎ ≠ 0. 

The derivative 𝑓’(𝑥), is a function whose value at any point on the graph of the 

function 𝑓(𝑥) is defined as the limit of a ratio (the difference quotient). There are 

three aspects of the concept of derivative, the difference quotient ratio (
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
), 

the limit, and the function 𝑓’(𝑥), which Zandieh and Knapp (2006) refer to as the 

three ‘layers’ (p.4) of the derivative framework.  

Zandieh (2000) proposes a conceptual framework for the concept of derivative, 

which has two main components: multiple representations and layers of process–

object pairs, which relates to Sfard’s (1991, 1992) framework about mathematical 

objects resulting from the reification of processes. The concept of derivative, 

according to Zandieh and Knapp (2006), can be represented verbally, graphically, 

symbolically and physically. The derivative can be described, as the instantaneous 

rate of change or demonstrated, for example, as speed or velocity, acceleration and 

other similar physical examples of rates of change. In literate mathematical 

discourse, the derivative can often be presented symbolically,  as the limit of the 

difference quotient ratio, and explained graphically, as the gradient of the tangent to 

a curve at a given point or as the gradient of the line the curve tends to under 

magnification by or zooming in (i.e. local straightness). These forms of mediation for 

the derivative are not mutually exclusive as very often, one can depend on the other, 

for example, Zandieh and Knapp (2006, p.5):   

One domain such as the graphical representation of the derivative as slope 

may serve as the source for another domain such as the symbolic difference 

quotient. In this way students may come to understand the meaning of the 

difference quotient through their understanding of the derivative in the slope 

context. 

The thinking of the components of the concept of derivative, ratio, limit and function,  

as  ‘layers’ is drawn from Sfard’s (1991, 1992) notions of operational and structural 

conceptions, where processes can be based on previously reified objects, forming a 

chain of the process–object pairs (Zandieh, 2000; Zandieh and Knapp, 2006). 

Students’ difficulty with calculus, in particular, differential calculus stems from the 

very definition of derivative because it requires an understanding of functions, the 

difference quotient and the notion of limit (Thompson, 1994; Zandieh, 2000). 

Students have challenges understanding the derivative, which can result from the 

idea of limits and possible confusion caused by assuming that ℎ → 0 and that ℎ ≠ 0, 
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but then later on substituting ℎ =  0 (Range, 2011). There is extensive research 

focusing on students’ understanding of limits, for example, Tall and Vinner (1981); 

Williams (1991) and Oehrtman (2009) highlight the problems in students’ 

understanding of limit as a process and limit as a value. Range (2011) explains 

students’ difficulties with understanding the derivative as the limit as ℎ →  0, rather 

than evaluating at ℎ =  0, for example,  gives an example of how most students find 
it very difficult to understand that the expression lim

ℎ→0
(2𝑥 + ℎ) = 2𝑥 for the derivative 

of the function 𝑦 =  𝑥2.  Range (2011) suggests that the use of graphical mediation 

could be a useful complement to algebraic functions for explaining the limit definition 

of the derivative to students. 

Park (2016) explains four elements of the limit definition of the derivative, the 

function, the difference quotient  
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
, the limit, and derivative. Each of the four 

components of the limit definition of the derivative can be seen as both process and 

object (Gray and Tall, 1994; Sfard,1992; Zandieh, 2000; Zandieh and Knapp, 2006). 

For example, a function can represent a process of mapping each element of a 

domain to one, and only one, element of the range, but a function can also be seen 

as an object, the relation itself. The difference quotient could be, on one hand, a 

process comparing respective changes in the dependant variable 𝑥 and the 

independent variable 𝑦, and an object on the other, the ratio. The limit of the 

difference quotient as ℎ approaches zero can represent a process, and an object, the 

limiting value. The derivative can be seen as a process of computing or determining 

many successive values for the difference quotient as h approaches zero, and as the 

product of this process, the derivative as a function (Park, 2016). Such dualism 

inherent with derivative or the limit definition of the derivative is a source of potential 

challenges for students (Zandieh, 2000; Oehrtman et al., 2008).  

Park (2016) explains how the symbol  𝑓′(𝑥) =  lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 can be considered as a 

process and as an object, and this duality is often seen as a source of difficulty for 

realising the derivative symbol as an object (Sfard, 2008), upon which other 

processes (e.g. of the components parts to the definition of derivative) can be 

operated. 

It took mathematicians more than two centuries to fully understand limits, 

infinitesimals, and differential calculus, which students today are expected to 

understand in a very short space of time.  
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2.4  Educational research on the derivative 

The ongoing discussion and debate surrounding the teaching and students’ learning 

of calculus at school or college can be traced back to the beginning of the 20th 

century. Questions that were raised as part of a debate about the teaching 

programmes for elementary calculus in ‘public and secondary schools’ (Godfrey, 

1914, p.233) are equally applicable to the present-day debate. Here is an extract of 

the questions proposed by the International Commission on Mathematical Teaching, 

as reported by (Godfrey, 1914, p.233-234, my italics): 

How is the pupil introduced to the ideas of the Differential and Integral 

Calculus? 

(a) Does he receive a preliminary training in the lower classes of the school, 

based on the study of appropriate simple functions and their graphs, so that 

the matter appears to rise naturally out of the subjects already studied, and not 

to constitute a supplementary course? 

(b) Is Leibniz's Notation employed? If not, what symbols are used for the 

differential coefficient and integral? 

(c) Which is considered first, the Differential or the Integral Calculus, or are 

they taught simultaneously? 

(d) Is the integral introduced as the limit of a summation (definite integral), or 

as primitive function (inverse differential coefficient)? If in both senses, in what 

order and in what connection with one another are the two points of view 

considered? 

(e) Is a textbook used?  

Certainly, it has been more than a century since these questions were raised, and 

yet mathematics education researchers are still discussing and debating the same 

issues with regard to teaching and students’ learning of elementary calculus. The 

review of literature below will consider these questions except question (d) (Godfrey, 

1914, p.233) because this study is mainly focusing on differential calculus, although 

reference to integral calculus will be made indirectly. A simple answer to part (c) is 

given by Rosenthal (1951, p.75): 

In our courses on calculus, we usually begin with differentiation and then come later 

to integration. This is entirely justified since differentiation is simpler and easier than 

integration.  

As a matter of tradition, calculus courses teach or introduce differential calculus 

before integral calculus. 
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2.4.1  Students’ difficulties with calculus 

Students’ challenges with calculus and the idea of the derivative have long been 

reported in literature, (e.g. Berry and Nyman, 2003; Oehrtman et al., 2008; Tall 

(1992). Some studies on calculus, (e.g. Tall (1992); Thompson, 1994; 

Zandieh, 2000) have put the difficulties down to the complexity of the definition, 

symbolism and representation of the derivative (Park, 2016).  According to Orton 

(1983b), students’ difficulties with calculus were in understanding the derivative as a 

rate of change, which was linked to insufficient understanding of the limit concept, 

ratio and proportionality. He also found that the students had difficulty interpreting 

graphical representations for the derivative. Ferrini-Mundy and Graham (1994) found 

that students had difficulties in relating the symbolic representations and the 

geometrical representations, even though they could compute derivatives using 

standard rules for differentiation. Borgen and Manu (2002) report students’ 

challenges with relating the graph of a function and the graph of its gradient function. 

Baker et al. (2000) report on students’ lack of understanding of the derivative as a 

function. White and Mitchelmore (1996) report of students’ difficulties in differential 

calculus that have to do with understanding variables; a variable was seen as a 

symbol to be manipulated, and not as representing a varying quantity. 

There has been a lot of research highlighting students’ difficulties with calculus, as 

highlighted by Tall (1992). Godfrey (1914) had long before suggested that research 

on students learning calculus should be judged against or complemented with 

research which focuses on how the students are ‘introduced to the idea of 

Differential (…) Calculus’ (p.233). This calls for the research focus to shift onto the 

teacher since the responsibility at the point of delivery lies with the teacher.  I 

consider it highly important to investigate the teachers’ introductory lessons on 

differential calculus. Many years of teaching experience have taught me a valuable 

lesson that the way a teacher introduces a new concept to students has a lasting 

bearing on the students’ understanding of that concept. This understanding will in 

turn have a knock-on effect on the students’ understanding of other related concepts.  

Sofronas et al. (2011) carried out a study in the USA on students’ understanding of 

calculus in which they asked a brain trust of 24 nationally recognized authorities in 

the field of mathematics, and in particular calculus. All the 24 participant experts 

cited ‘student understanding of the derivative as a central concept and or a central 

skill that is fundamental to deep comprehension of the first-year calculus’ (Sofronas 

et al. 2011, p.136). How the concept of the derivative is introduced to students at 

upper secondary school needs careful consideration.  
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Part (a) of Godfrey (1914, p.233) highlights the importance of prior knowledge in the 

teaching and learning of calculus.  ‘Does he[she] receive a preliminary training in the 

lower classes of the school, based on the study of appropriate simple functions and 

their graphs, so that the matter appears to rise naturally out of the subjects already 

studied, and not to constitute a supplementary course?’(Godfrey, 1914, p.233). This 

calls for prior knowledge as a basis upon which the concept of the derivative can be 

developed. Teachers need to have an awareness of and pay attention to the prior 

knowledge required for the learners before they can be exposed to differentiation. 

Mathematics educators and school mathematics curriculum designers need to be 

cognisant of the prior knowledge required to build the foundation for teaching and 

learning differentiation.  As part of the Schools Council Project – The Mathematics 

Curriculum 11 – 16: a Critical Review, Neill and Shuard (1982) produced a book in 

which they discussed the development from children’s early graphical work to 

calculus ideas that children encounter before the age of 16 (Torner, 1985).  

Godfrey (1914) mentions simple functions and their graphs as preliminary content 

knowledge for the introduction of ideas of differential calculus. The concept of the 

derivative is multi-faceted (Roorda et al., 2009; Zandieh, 2000). It requires the 

teacher and student to understand other related concepts such as function, 

difference quotient, and limit (Thompson, 1994; Zandieh, 2000). Neill and Shuard 

(1982) also identified such facets to include the idea of the limit, the rate of change, 

the instantaneous rate of change, the gradient of a graph, functions and functional 

notation, notation and language.  Kendal and Stacey (2003) included procedures for 

calculating the rate of change and averages too, whilst Zandieh and Knapp (2006) 

highlighted the importance of language, words and terms such as slope, gradient, 

increase, velocity and acceleration.  

2.4.2  Multiple representations 

Hiebert and Carpenter (1992) argue that making connections between concepts, 

representations, procedures, and ideas is important for students’ understanding of 

the concept of the derivative. Whilst using different representations or contexts could 

be beneficial to the students, Zandieh (2000) and Roorda et al. (2009) further argue 

for making connections between the multiple representations - graphical, numerical, 

and symbolical representations. 

Calls for changes in the curriculum and a move away from the traditional ways 

calculus was taught have long been initiated both in the United States and Europe 

(Habre and Abboud, 2006). The Calculus Reform of the early 1990s emphasised the 

importance of and the inclusion of multiple representations, i.e. graphical, numerical 

and algebraic representations of derivatives in textbooks and most universities in the 
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USA (Bressoud et al., 2016). One notable major outcome of the reforms that 

followed was the ability to identify and use numerical, graphical and algebraic 

representations which was aimed at developing teaching guided by the principle of 

the ‘Rule of Three’ which would allow students to look at the same idea from three 

different angles, i.e. graphically, numerically, and symbolically (also described as 

analytically, Hughes-Hallett et al. (1994, p.121). Another outcome was the rise in the 

use of what Zimmermann (1991) called mathematical visualisation which saw the 

adoption of visual elements of calculus. He argued that visual thinking, which refers 

to pictorial and visual forms of representation, was very important for understanding 

calculus. Further outcomes included formal representations (Tall, 1996) and real 

data representation which would give the students real situations integrating practical 

activities in the learning of calculus. 

According to Verhoef et al. (2014) and Tall (2010), making sense of calculus calls for 

a more natural approach that blends together the dynamic embodied visualisation 

and the corresponding symbolic calculation. For example, the concept of the 

derivative is all about local straightness, whereby if we zoom in and take a close look 

at a magnified portion of a curve where the function is differentiable, the curve will 

look like a straight line. Zandieh (2000) argues for the use of multiple representations 

and levels of process-object duality, for example, a progression from an 

understanding of derivative at a point to an understanding of derivative as a function. 

Other studies on calculus (Kendal and Stacey, 2003; Orton, 1983b) have shown that 

although many students were able to deal with symbolic representations in 

elementary differentiation, they were unable to relate to other procedures. For 

example, Kendal and Stacey (2003) observed that many students could at most 

make connections between graphical and symbolic representations in calculus, but 

could not make graphic and numeric connections, or symbolic and numeric 

relationships. Berry and Nyman (2003) posit that students’ ability to make 

connections between mathematical ideas is an important indicator of understanding.  

Zandieh and Knapp's (2006) study highlights the importance of paying attention to 

metonymic statements for researchers and teachers of mathematics. Metonymic 

models, according to Zandieh and Knapp (2006) may serve as an affordance or a 

constraint for students in learning complex calculus concepts such as the derivative. 

For example, it takes less energy and time to use a metonymy than to explain an 

idea or narrative in full, but such a shorthand often becomes ‘more susceptible to 

misinterpretation’ (p.16).  

Zandieh and Knapp (2006) report of a student’s (Alex) inconsistent discourse about 

the derivative as resulting from a rather rigid focus on a graphical interpretation of 
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the tangent line for the ‘derivative picture’. Zandieh and Knapp (2006) acknowledge 

that teaching the derivative is a complex process, for example, describing the 

derivative at a point by graphical mediators. Two approaches are often adopted 

here, secant lines approaching the tangent line at a given point on a curve or 

zooming in on the point until the curve looks like a straight line. In both approaches, 

the derivative is the slope of that tangent (straight) line. However, as Zandieh and 

Knapp (2006) argue, ‘a student who has focused on this image may say that the 

derivative is (…) the most obvious image or endpoint of this graphical process, the 

tangent line’ (p.11).  

The slope is implicit in both graphical images, but the tangent line is explicit, visible, 

and thus more easily remembered. Even without the idea of a limiting process a 

student may remember a single image, a curve with a line tangent to it, when asked 

what a derivative is. Again, one might pick up on the tangent line as the explicit, 

visual representation of the derivative instead of remembering that the derivative is 

the slope of that line. (Zandieh and Knapp 2006, p.11) 

This understanding might explain the metonymic or colloquial utterance that ‘the 

derivative is the tangent line’, which, as Zandieh and Knapp (2006) explain, is the 

likely reason for students, ‘like Alex, making metonymic misstatements concerning 

the derivative as the tangent line’ (p.11). 

Furthermore, some studies, e.g. Roorda et al. (2007) have shown that students have 

difficulty in relating differential ideas learnt across subjects, for example, rate of 

change procedures from mathematics classes and physics classes (Roorda et al., 

2015). Reporting on the work of one high school teacher, Schwalbach and 

Dosemagen (2000) observed a teacher who used concrete examples from the 

students’ physics class as a context within which to teach calculus in a mathematics 

lesson. Scheja et al. (2008) argue that making connections between the properties of 

graphs of a function and that of its derived function would build a better 

understanding of the underlying graphical concepts of calculus. Whether students 

will be able to make connections between different representations depends to a 

greater extent on how the teacher would use different representations to teach 

calculus. Ferrini-Mundy and Graham (1991, p.630) report about a student from their 

study:  

When given a simple limit problem in this format with the appropriate graph 

displayed, most of the students in the study were able to solve the problem but 

showed very little geometric understanding. One of the students interviewed 

claimed "the graph can't help me find an answer." Further probing revealed 

that the notion of "approaching" was not part of her understanding of limit. She 
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saw limit problems as functions to be evaluated and wasn't sure about all the 

"extra" notation (the arrow, the word "lim").  

Nonetheless, an argument for using multiple representations in teaching is that it 

would appeal to the individual students’ preferred ways of learning; and very often, 

the representations do complement each other. The case reported by Ferrini-Mundy 

and Graham (1991) above calls for the need to investigate the teacher’s practice and 

gather empirical evidence on how teachers use numerical, graphical and algebraic 

representations in teaching differential calculus. 

2.4.3  Resources 

Teachers of mathematics draw on and use a wide range of resources, as well as 

adapt these resources for purposes of teaching and learning (Adler, 2012). Today, 

there is an increasing range and wide availability of textual resources such as 

textbooks, and digital technologies for teaching. The calculus reforms also led to 

applications-oriented and technology-intensive instruction, which saw the use of 

sophisticated hand-held calculators and microcomputer graphics packages (Heid, 

1988; Ferrini-Mundy and Graham, 1991; Ferrini-Mundy and Gaudard, 1992).  

One of the most important questions proposed by the International Commission on 

Mathematical Teaching back in 1914 was ‘Is a textbook used?’ (Godfrey, 1914, 

p.234). Out of the seven popular elementary calculus textbooks cited in Berry and 

Nyman (2003, p.481-497), only two take a slightly different approach to introducing 

calculus.  Ostebee and Zorn (1997) and Hughes–Hallet (1996) begin with ideas of 

rates of change, and average velocity before they get to the idea of the tangent line 

and slope of curves or functions. Ostebee and Zorn (1997) attempt to put the 

concept of the derivative in a real-life context and then develop the idea graphically.  

A report by Hobbs and Relf (1997) on the UK textbooks for school calculus shows 

that the majority of the textbooks concentrate on the algorithmic rules and tricks 

needed to differentiate and integrate (Berry and Nyman, 2003). Thus, it is very 

important to investigate how the teacher interacts with the textual and digital 

resources in teaching calculus. This could be described in terms of ‘documentation 

work’ which means ‘to work with documents’ (drawing from the French term 

“ingénierie documentaire”) (Gueudet and Trouche, 2012, p.24) which encompasses 

all the interactive ways in which the teacher work with resources. 

Reporting on a meeting on Calculus in the USA, Walsh (1987) said there was a 

strong mood of self-criticism with both the calculus curriculum and the quality of 

teaching. This is what Walsh (1987, p.749) had to say: 
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There appeared to be a consensus that the teaching of calculus has been 

focused for too long on routine problem solving. New approaches are needed, 

for example, to come to terms with the use of sophisticated hand-held 

calculators and computers and, particularly, to give students a better 

conceptual understanding of the subject  

It is clear in this report that technology was seen as a way to solve the problem of 

students’ difficulties with calculus (Orton, 1983a; 1983b; Tall, 1992). A scientific 

calculator is essentially a simple tool for exploring ideas of calculus (Hobbs and Relf, 

1997). Neill and Shuard (1982, p.3):  

It is more valuable for a student first to know from his own experience with a 

calculator that the derivative of 𝑓(𝑥) =  𝑥2 at 𝑥 = 𝑎 is 2𝑎, than it is for him to 

have seen, but not understood, the formal calculations involved in an algebraic 

treatment.  

Neill and Shuard (1982, p.3) argue that although complete understanding is not 

possible in the early stages, ‘a sound intuitive understanding based on a good deal 

of numerical and graphical experience is possible and should be the aim of the 

teacher’.  

Technology and digital artefacts 

Tall et al. (2008), explain the role of technology in teaching and learning calculus, “of 

all the areas in mathematics, calculus has received the most interest and investment 

in the use of Technology” (p.207). Tall argues that technology can be instrumental in 

helping students develop visualization skills and forming visual mental images of 

calculus concepts (Tall, 1986; 1990; 2003; 2013). More recently, Takaci et al. (2015) 

carried out a study on modern approaches to teaching calculus- for examining 

functions and drawing their graphs using a computer-based dynamic imagery 

program, GeoGebra. Takaci et al. (2015, p.421) reported that:  

GeoGebra can help those students having insufficient knowledge (necessary 

for solving those tasks) to improve it. We can say that our research shows that 

the students' learning achievement in examining functions and drawing their 

graphs is better when they use GeoGebra, working in collaborative groups 

than without using it. Also, GeoGebra enables creation of effective learning 

environment for examining functions and drawing their graphs.  

However, there has always been scepticism about the role of such technology in the 

teaching and learning of calculus, as expressed by Ferrini-Mundy and Gaudard 

(1992, p.58):  
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The procedural facility necessary in integration and differentiation will most 

likely be provided by sophisticated hand-held calculators, while the technical 

skill previously necessary in areas of curve-sketching will be deferred to 

accessible microcomputer graphics packages. 

In this case, the introduction of technology was viewed as counterproductive for 

students developing an understanding of calculus. Heid (1988) discusses some 

arguments for and against the introduction of graphing calculators and special 

computer software, but her study found that learning calculus with technological tools 

was no worse than the traditional ways of doing calculus with pen and paper 

methods. There is a lot of research (e.g. Tall, 1986; 1990; 2003; 2013; Takaci et al., 

2015; Walsh, 1987; Hobbs and Relf, 1997; Heid, 1988; Ferrini-Mundy and Graham, 

1991; Ferrini-Mundy and Gaudard, 1992 ) that suggest that graphical calculators and 

computer-based dynamic imagery software could be used to improve teaching and 

learning of calculus.  

The reformed calculus movement starting in the 1980s in the USA, as well as the 

academic discussion and debate in research literature on teaching and learning 

calculus in the recent decades, resulted in an extensive use of technology such as 

dynamic computer software (Habre and Abound, 2006). Technology was almost 

believed to be a panacea for the inadequacies in teaching and the perceived 

students’ challenges with understanding calculus. The main strength of technology 

was seen in its capability of facilitating greater and easier access to numerical, 

graphical, and symbolic representations of concepts (e.g. Fey, 1989; Goldenberg, 

1987; Kaput, 1992; Porzio, 1999; Tall, 2001). The challenges of students’ difficulties 

in calculus (Tall, 1992, 2019) remain; and this is of course a problem for teachers of 

mathematics.  

According to Laborde (2008), there are two levels of ‘instrumentation of technology 

by teachers’ (p.1), that is, levels of technology use by teachers. Technology can be 

used as a tool for carrying out a mathematical activity by the teacher and technology 

can be used as a tool for teaching mathematics and fostering students’ learning 

(Laborde, 2008). My study is interested in the second level of instrumentation of 

technology for teaching and fostering students’ learning of differential calculus, in 

particular, the mathematics-specific technologies that are designed primarily to 

improve the teaching and learning in mathematics, such as dynamic geometry 

software and computer algebra systems (CAS).  

According to Jesso and Kondratieva (2016), some of the advantages of dynamic 

geometry environment (DGE) is that it can be used to substantiate the limit definition 
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of the derivative with more elaborate functions such as 𝑓(𝑥) =  𝑎 sin(𝑏𝑥), (where a 

and b are real numbers). Further, with both graphical and algebraic windows, a DGE 

allows the students to see formulas corresponding to the graphs. DGE can be 

instrumental in constructing the definition of the derivative and substantiating the 

process of differentiation. How teachers, if ever, use such technologies (e.g. for 

instructional, visualisation and exploratory activities) in the teaching of calculus, 

particularly in introducing differential calculus is a focus of my research.   

2.4.4  Symbolism  

In the literature, symbolic representations and notations in differential calculus are 

shown as a source of challenges for teachers, let alone the students. Neill and 

Shuard (1982) point out the problems associated with the notation and language 

used such as 

𝑑𝑦

𝑑𝑥
; 

𝛿𝑦

𝛿𝑥
;  lim

𝛿𝑥→0

𝛿𝑦

𝛿𝑥
=

𝑑𝑦

𝑑𝑥
;  𝛿𝑥 

This is the Leibniz notation, which ‘proves to be almost indispensable in the calculus’ 

(Tall, 1992, p. 6). If students are to understand differential calculus, the use of such 

notation must be understood too; otherwise, the notation could be a barrier to 

learning. Is  
𝑑𝑦

𝑑𝑥
 a fraction; is it divisible or is it a single symbol? Do we make the same 

interpretations of 𝑑𝑥 in 
𝑑𝑦

𝑑𝑥
 as we do ∫ 𝑓(𝑥)𝑑𝑥, what is the relation between the 𝑑𝑥 in 

these two symbolic representations? How do we explain this  
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
.

𝑑𝑢

𝑑𝑥
 ? Can we 

cancel out the 𝑑𝑢?  
𝑑𝑦

𝑑𝑥
 is obtained from 

𝛿𝑦

𝛿𝑥
  but it does not represent a fraction. 

𝛿𝑦

𝛿𝑥
 is 

quotient or a fraction, and 
𝑑𝑦

𝑑𝑥
  is simply a reminder of  

𝛿𝑦

𝛿𝑥
 (Neill and Shuard, 1982).    

Whilst it is possible to give meaningful interpretations to these notations, it is 

important to know that failing to give consistent and coherent meaning to these 

symbols can cause serious conceptual problems and cognitive conflict (Tall, 1992, p. 

6).  

Symbolism in mathematics is a source of potential ambiguity since mathematical 

symbols could be representing either process or concept (Gray and Tall,1991; 

19944). The term procept was coined by Gray and Tall (1994) to capture and 

describe the dualism of the symbol, as process and concept. Tall et al. (1999) assert 

that procepts are present throughout most of mathematics. According to Gray and 

Tall (1991), a ‘procept’ is a conception or term which represents an ‘amalgam of a 

process and a concept’ (p.2).  Gray and Tall (1991, p.2) define a procept as ‘the 

amalgam of process and concept in which process and product are represented by 

the same symbolism’. However, Gray and Tall (1994) further elaborate their 

definition to include three components: ‘a process that produces a mathematical 
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object, and a symbol that represents either the process or the object’ (p.121). The 

symbol for a procept can evoke either process or concept.  

A procept has three constituent elements: the process, the product of the process 

and the symbolism or notation that denotes the process or the product. For instance, 

a symbol such as 4+3 is a procept since it can be seen as the process of addition 

and as the concept of sum; and the symbol 𝑦 = 𝑓(𝑥) represents the process of 

assignment and the concept of function (Gray and Tall, 1994; Tall, 2001).  Further 

examples from calculus procepts include  ‘the process of tending to a limit and the 

concept of the value of the limit, both represented by the same notation such as 

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)nd Tall, 1994,p.2). Similarly, the symbol  
𝑑𝑦

𝑑𝑥
 represents both the process of 

differentiation which produces the concept of derivative and thus, 
𝑑𝑦

𝑑𝑥
  is a calculus 

procept. Gray and Tall (1991) assert that by ‘using the same notation to represent 

both a process and the product of that process’ (p.2), it is possible for anything to ‘be 

a process and an object at the same time’ (p.2).  

Gray and Tall (1994) argue that the ambiguity with the notion of a procept ‘provides a 

more natural cognitive development which gives enormous power to the [student]’ 

(p.8). The existence of the ambiguity is a learning opportunity that has implications 

for the teacher. Gray and Tall (1991) argue for the use of notation to represent either 

a process or product in mathematics and that the ambiguity of symbolism (i.e. a 

procept) for process and concept is at the ‘root of successful mathematical thinking 

(p.2). To a proceptual thinker, proceptual known facts allow for flexibility and greater 

fluency in thinking, for example, using known proceptual facts to derive new 

proceptual known facts, e.g. where the procept 2 + 3 = 5 may be seen equivalently 

as 3 + 2 = 5, 5 – 3 = 2, 5 – 2 = 3, thus, new proceptual facts. However, Gray and 

Tall (1991) highlight that: 

What might be a simple combination of proceptual ideas for the [high attaining 

learners] becomes the coordination of several complex processes for the [low 

attaining learners], leading to intolerable difficulties and a high probability of 

failure (p.4).  

A proceptual known fact has a ‘rich inner structure which may be decomposed and 

recomposed to produce derived facts’ (Gray and Tall, 1991, p.3), thus it is not a 

merely memorised fact. Tall et al. (1999) identify some links between Gray and Tall 

(1991; 1994) notion of procepts and the earlier works of Sfard (1989; 1991) about 

operational and structural mathematics:  

The theory of Sfard (1991) formulates two ways of constructing mathematical 

conceptions through the complementary notions of operational and structural 
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activities as ‘two sides of the same coin’. It is the first of these that involves 

process-object construction. She makes the important observation that in any 

given mathematical context, it is usually possible to see both operational and 

structural elements (Tall et al., 1999, p.233). 

This suggests that Tall et al. (1999) see Sfard’s (1991) earlier conceptions of 

operational activities as constituting both process and object, whereby in Sfard’s 

(1991) stratification process, operations become reified as objects. Further, Tall et al. 

(1999) acknowledge that Sfard’s(1992) argument is consistent with Dubinsky's 

(1986, 1991) characterisation of the encapsulation of process into object, the APOS 

theory, in which Action is conceptualised as a total Process, then encapsulated as a 

mental Object, and finally transformed into a mental Schema (i.e. mental structures). 

Nevertheless, Gray and Tall (1994) argue for their procept theory as a perspective to 

explain the ambiguity with the duality of procept. For example, they cite the example 

of functions: 

The case of the function concept, where 𝑓(𝑥) in traditional mathematics 

represents both the process of calculating the value for a specific value of 𝑥 

and the concept of function for general 𝑥, is another example where the 

modern method of conceiving a function as an encapsulated object causes 

great difficulty (Sfard, 1989). (Tall and Gray, 1994, p.8). 

Tall and Gray (1994) concluded: ‘We, therefore, are confident that the notion of 

procept allows a more insightful analysis of the process of learning mathematics’ 

(p.8). My study investigates the teaching of elementary differential calculus. 

Symbolism and specialised language or terminology are at the core of calculus 

discourse. It is, therefore, necessary and important to explore the teachers’ use of 

calculus symbolism. Symbolism in mathematics and calculus is a source of potential 

ambiguity because mathematical symbols could be seen to represent either process 

or concept (Gray and Tall, 1991; 1994).  

Further criticism of the inconsistencies in interpreting notations and the use of 

Leibniz notation comes from Thurston (2000, p.262): 

The derivative 𝑓′ is defined by specifying its value 𝑓′(𝑥) as the well-known 

limit; 
𝑑𝑦

𝑑𝑥
 is then defined to be𝑓′(𝑥). But in 𝑓′(𝑥) the 𝑥 denotes a number. In 

𝑑𝑦

𝑑𝑥
 it 

doesn't. We never write 
𝑑𝑦

𝑑3
 . And 

𝑑𝑦

𝑑𝑥
 is not defined unless 𝑦 is a function of 𝑥. 

But implicit and parametric differentiation use 
𝑑𝑦

𝑑𝑥
 even where 𝑦 is not a function 

of 𝑥. 

The suggestion here is that the function notation is seemingly easier for the students 

when they are first introduced to the concept of the derivative. However, 
𝑑𝑦

𝑑𝑥
 notation 
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is inevitable, ‘it is almost universally employed by users of calculus’ Neill and Shuard 

(1982, p.15) and should not be delayed too long before it can be introduced to 

students. Teachers and their students alike need to be familiar with both the Leibniz 

and function notations. The two notations complement each other in the study of 

calculus. 

Furthermore, the idea of the limit with the associated notation deserves careful 

consideration in introducing the idea of the derivative. Neill and Shuard (1977) 

reported that ‘although the idea of a limit, and the notation for limits, lie at the heart of 

the differential calculus, they receive little attention in the introduction to 

differentiation in any of the texts reviewed’ (Neill and Shuard, 1977, p.72). It is not 

uncommon that many students first encounter the idea of the limit when they are 

introduced to differential calculus.  

For many teachers and students alike, doing calculus is equivalent to learning the 

skill of manipulating symbols and numbers (Hughes-Hallett, 1991). Eichler and 

Erens's (2014) study, which investigated teachers’ beliefs towards calculus, found 

that all the 29 teachers in their study had a shared view on calculus, as a set of rules 

for students to be memorised and use in solving routine problems. 

2.5  Conclusion 

The discussion and debate surrounding the teaching and students’ learning of 

calculus at school or college, which goes back to the start of the 20th century still 

rages on. Since then, there has been a lot of research highlighting students’ 

difficulties with calculus. To the present day, students’ challenges with calculus still 

prevail. How calculus is taught matters, more so, how calculus is first introduced to 

students at school is critical for students’ understanding of calculus. Research that 

focuses on the teaching of calculus can indeed contribute to the mathematics 

researchers and educators’ understanding of the students’ challenges with calculus. 

The teaching of calculus often starts with differential calculus and my study seeks to 

investigate the teaching of calculus by focusing on the introduction of differentiation 

at school.  

The next chapter will explain the commognitive theoretical framework as the 

conceptual lens guiding this research. Also, included in the next chapter is a further 

review of literature on relevant commognitive studies (refer to Section 3.6).   
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Chapter 3  The Commognitive theoretical framework 

3.1  Introduction  

For this qualitative research, theoretical constructs from the discursive theory of 

commognition (Sfard, 2008) were adopted to conceptualise and analyse the 

teachers’ classroom discourse on differential calculus. Miles and Huberman (1994) 

give a strong rationale for having a conceptual framework for qualitative designs. A 

conceptual framework, according to Miles and Huberman (1994) ‘explains the main 

things to be studied – the key factors, constructs or variables – and the presumed 

relationships amongst them’ (p.18). Thus, a conceptual framework enables the 

researcher to notice patterns of behaviours, thus providing the analytical lens and 

vocabulary to describe the patterns (Ioannou, 2018).  

 

The ‘social turn’ (Lerman, 2000) marked a turning point in mathematics education 

research, which saw a shift in research towards the participation perspective to 

learning, language and social practice. New conceptualisations and theories that 

explain participation in forms of social practice have since emerged, with more 

research examining language (e.g. Nardi, 2008; Morgan et al. 2014), classroom 

discourse (e.g. van Oers, 2001; Yackel and Cobb, 1996), mathematical discourse  

(Sfard, 2002; 2008) and their ‘role in mediation and participation’ (Xu and Clarke, 

2019, p.129). Nardi (2008) describes words, symbols or diagrams as three 

‘languages’ of mathematics (Nardi, 2008, p.145).  

Morgan et al. (2014), for example, in their review of research studies on language 

and communication in mathematics education (e.g. Arzarello et al., 2009; Bjuland et 

al., 2008; Maschietto and Bartolini Bussi, 2009; Radford, 2009), concluded that 

classroom communication involves more than just words and mathematical symbols. 

Thinking about language in mathematics education has broadened from considering 

primarily either words or mathematical symbolism towards a more comprehensive 

concern with a range of other means of communication. 

(Morgan et al., 2014, p.844).  

Morgan et al. (2014) review found that within mathematics education literature, the 

term language was used in various settings to refer to words, mathematical 

symbolism, diagrams, graphs and other non-verbal modes of mathematical 

communication, including gestures. This wide application of the term language is 

characteristic of what Sfard (2002; 2007; 2008; 2015) refers to as discourse, which 

encompasses more than just the common use of the term language.  
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Since that social turn (Lerman, 2000), the commognitive framework which 

emphasises the critical role of the social environment in the learning, teaching and 

doing of mathematics, has become an important theoretical framework in 

mathematics education research. 

Although there are many other theoretical frameworks found in mathematics 

education research, I found Sfard’s (2008) alternative perspective on 

communicational approach to research that shifts the focus onto analysing the 

discourses, e.g. mathematical discourse, the most appealing for my research. For 

example, by adopting the conceptual framework of commognition, I was able to 

circumvent the very often contentious topic of teacher knowledge by examining the 

teacher’s pedagogical calculus discourse, instead. Further affordances of the 

commognitive theoretical framework (CTF) (Sfard, 2007; 2008) were that it enabled 

my research to examine (and get insights into):  

i. the objects of instruction within the teachers’ pedagogical calculus discourse;  

ii. the processes of instruction by which the teachers introduced the concept of 

the derivative; and 

iii. the actions or behaviours of the teachers and observable outcomes of 

instruction.  

I choose the commognitive framework (Sfard 2008) as a befitting and appropriate 

conceptual framework for my study because my research sought to explore and 

investigate the teachers’ pedagogical calculus discourses: what is said (e.g. word 

use and narratives) and how; what is used (e.g. communication or visual mediators) 

and how; and what is done (e.g. routines) and how in teaching elementary 

differential calculus, in particular, in introducing the concept of the derivative.  

The following Sections 3.2 to 3.4 will introduce and explain the main epistemological 

tenets of the commognitive theoretical framework, the commognitive constructs, the 

commognitive conflict, and the commognitive terminology and key definitions that are 

relevant to this study. Section 3.5 argues for the use of the commognitive framework 

for this research. Section 3.6 is a further review of literature (in addition to Chapter 2) 

on commognitive studies relevant to this discursive study. It is a critical review of the 

literature on commognitive studies that have researched teaching and learning 

through the commognitive framework. Not all the studies reviewed here are 

specifically about calculus, but I see the analyses made of the word use, narratives, 

visual mediators and routines in these studies as comparable and transferable to my 

study. I regard the studies as relevant as they provide a wider knowledge base for 

my commognitive research into the teachers’ pedagogical calculus discourse. Since 
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the studies are based on the theory of commognition, for the convenience of the 

readers, I decided to put the review of their literature (in Section 3.6) after the 

commognitive theoretical framework has been explained (in Sections 3.2 - 3.5). 

In this chapter, the primary source on commognition theory is Sfard (2008; 2007), 

but I also draw from other commognitive studies to support my interpretation and 

explanation of the commognitive framework. Most importantly, I explain my 

interpretation and application of the commognitive framework to my study. 

3.2  The main epistemological tenets of CTF 

The key epistemological assumptions that underpin the commognitive theoretical 

framework include thinking as a form of communication, mathematics as a form of 

discourse and learning as a change in the discourse of the participants of the 

community discourse. 

 3.2.1  Thinking as a form of communication 

The CTF is a discursive framework for analysing and interpreting human activity, to 

understand the ‘intricacies of mathematical learning’ (Sfard, 2007, p.566). It is built 

on the premise that ‘thinking is a form of communication’ (p.565). Commognition 

encompasses ‘both thinking and interpersonal communication’ (Sfard, 2007, p.570) 

and follows rules rooted in historically established customs. Thinking is considered 

as individualisation of (interpersonal) communication. Thinking is conceptualised as 

a form of activity of communication with oneself, thus cognition + communication 

(interpersonal exchanges) = commognition (p. 570). Commognitivists reject any split 

between thinking and speech or thinking and communication. They see thinking and 

interpersonal communication as facets of the same phenomenon (Sfard, 2008).  

According to the commognitive perspective, communication (as well as learning and 

development) occur at two levels: first the interpersonal or societal or cultural level 

and then the intrapersonal level (individualisation). My study explores the teaching of 

elementary differential calculus, and thus it focuses on the interpersonal level of the 

communicational actions of the teachers. 

3.2.2  Mathematics as a form of discourse  

Discourse, from a commognitive perspective, is defined as the communicative 

activity typical of a certain community (Sfard, 2008). Mathematical discourse is a 

cultural activity (Sfard, 2008; Kim and Lim, 2017). Sfard (2007) likens commognition 

to games (Wittgenstein, 1953). There are a vast number of different games, each 

played according to certain rules and with diverse tools. Likewise, there are many 
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types of communicational activity each characterised and distinguishable by the 

rules and the mediational means they use, as well as their objects of communication. 

These distinctive types of communication are what Sfard (2008) calls ‘discourses’. 

Thus, there are different communities of discourse and different types of discourses 

distinguishable by their objects, the kinds of communication mediators used, and the 

rules followed by participants of the discourse (Sfard, 2008).  

One of the core tenets of the commognitive framework is that different academic 

disciplines are regarded as specific types of discourse, and in this study, 

mathematics is seen as a distinct form of discourse (Sfard, 2008). Mathematical 

discourse refers to acts of communication for constructing and substantiating 

mathematical meaning according to the shared rules of the discourse itself (Nardi et 

al., 2014). This study is built on the commognitive premise that mathematics is a 

specific form of discourse characterised by its own discursive objects, type of words, 

communication mediators, routines and endorsed narratives. Simply put, 

mathematics is regarded as a special type of communication with specific ways of 

saying and doing (Nachlieli and Tabach, 2018). Mathematics is a discourse and 

calculus is a mathematical discourse, and the teachers’ pedagogical calculus 

discourse is the core unit of analysis in this study. 

According to the commognitive perspective, discourses follow rules rooted in 

historically established customs (Sfard, 2008). Mathematics discourse is, thus, 

culturally and historically defined, and develops individually and collectively, through 

distinctive metadiscursive rules and discursive objects (Wing, 2011). There are two 

categories of rules that set discourses apart: the object level and the meta-level rules 

(also simply referred to as metarules) (Sfard, 2008). The object-level rules are 

narratives about the features and the behaviour of the objects of a discourse and the 

metarules are propositions about ‘patterns in the activity of the discursants trying to 

produce and substantiate object-level narratives’ (Sfard, 2008, p.201). Both the 

object-level and metarules in the teachers’ pedagogical calculus discourse are of 

interest in this study.  

3.2.3  Mathematical objects as discursive objects  

In the commognitive framework, discursive objects are very important tools for 

thinking and communicating about literate mathematical discourse. Whilst colloquial 

discourses, often mediated by images of concrete objects that pre-date the 

discourse (Ryve et al. 2012), are created for  ‘communication about physical reality, 

in [literate] mathematical discourses, [discursive] objects are created for the sake of 

communication’  (Sfard, 2008, p.193). Discursive objects are perceptually accessible 
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entities or realisations of a signifier in a discourse. To illustrate this notion of 

realisations, Sfard (2008) gives an example of what the number ‘5’ could signify to a 

child. The number ‘5’ is a signifier that could be thought of to mean five fingers, five 

beads on a string, or a position on a number line; and all these examples 

(perceptually accessible objects) are realisations of the signifier ‘5’, which Sfard 

(2008) describes as the realisation tree of the signifier ‘5’. 

Sfard (2008) defines signifiers as ‘words or symbols that function as nouns in 

utterances of the discourse of participants, whereas the term realisation of a signifier 

S refers to a perceptually accessible object that may be operated upon in the attempt 

to produce or substantiate narratives about S’ (p.154). The notion of discursive 

objects is liberating as it ‘effectively allows us to put aside centuries of dispute and 

unproductive controversy concerning the ontological status of mathematical objects, 

and importantly, to work in a classroom (once again) with observable phenomena’ 

(Wing, 2011, p.366).  

A mathematical ‘object’ can be defined as ‘a set of realisations’ (Park, 2016, p.399), 

and the realisations of the discursive objects are visual mediators in the discourse. 

The visual forms of realisations can be iconic, concrete, gestural or verbal (i.e. 

written words or algebraic symbols) (Sfard, 2008). These visual forms of realising 

signifiers are important in mathematical discourse, ‘because what we get in this 

process is most liable to investigation and manipulation and may thus lead to 

endorsed narratives in the immediate way’ (Sfard, 2008, p.155). Of particular interest 

to this study (and of relevance for teaching) is the fact that the same signifier can be 

realised in different ways by different individuals, and that ‘the same 

communicational action may refer different interlocutors to different objects’ (Sfard, 

2008, p.88). Thus, the mathematical and didactical routines and the visual mediators 

in the teachers’ pedagogical calculus discourse are of interest to this study. 

3.2.4  Learning as participation  

Commognitivists replace ‘the metaphor of learning-as-acquisition with learning-as-

participation’ (Sfard, 2008, p.92), and argue that learning is based on social 

foundations, which in turn can be traced back to Vygotsky (1978). The 

commognitivists break traditions with the behaviourist, cognitivist and acquisitionist 

perspectives on learning processes (Johnson, 2009). Unlike the cognitivists who 

view learning as the acquisition of information, storing of knowledge in some mental 

representations and refining existing mental schemes, the commognitivists view 

learning as a change in the discourse of the individual participants (e.g. the students) 

in the discourse (Sfard, 2008).  
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Mathematical discourse is a ‘historically established activity practised and extended 

by one generation after another’ (Sfard, 2008, p.203). Teaching mathematics in 

schools serves to further the continuation of the discourse. Therefore, learning 

mathematics means joining in this historically and culturally established 

communicational activity rather than inventing their own new discourse. Thus, to 

learn mathematics, a student should ‘individualize historically developed, well-

established, routines (Nachlieli and Tabach, 2018, p.256). How teachers facilitate 

this process, i.e. helping students participate in literate calculus discourse is a key 

focus of this study. 

3.2.5  Learning mathematics as a change in discourse 

Learning mathematics is seen as individualising mathematical discourse, thus, ‘the 

process of becoming able to have mathematical communication not only with others 

but also with oneself’ (Sfard, 2008, p.573). Learning is a change or a shift in 

discourse, thus, acquiring admission into the endorsed historically established 

framework of discourses. Such ‘admission into the discourse of those objects 

requires practises of communication in which an individual’s own framework 

effectively becomes transformed into the collectively endorsed framework’ (Johnson, 

2009, p.384). My study seeks to examine the role of teachers in those 

communicational activities aimed at promoting participation and admission of 

newcomers into the historically and collectively established calculus discourse.  

Just as there are two categories of rules (object level and metarules) that govern a 

discourse (see section 3.2.2 above), learning happens at two levels: object-level 

learning and meta-level learning (Sfard, 2008). Object level learning involves 

changes in the student’s existing mathematical objects. It is characterised by the 

expansion of the existing discourse through new vocabulary, new routines, and new 

narratives; thus, the participant gets to know better the existing mathematical objects 

(Sfard, 2008; Tabach and Nachlieli, 2016), e.g. realising that  
𝑑𝑦

𝑑𝑥
 and 𝑓′(𝑥) are both 

symbolism for differentiation. Whereas meta-level learning is expressed through a 

‘change in meta-rules of the discourse’ (Sfard, 2008, p.573), in which the 

transformations could be either horizontal or vertical development. Horizontal change 

involves combining two separate discourses into a new single discourse, e.g. when 

discourses about algebraic expressions, graphical and numerical approaches are 

subsumed in the discourse about functions (Tabach and Nachlieli, 2016). Vertical 

development involves combining the student’s existing mathematical discourse with 

a new rule, its own meta discourse (Tabach and Nachlieli, 2016), e.g. when a 

student’s existing discourse about gradient is then combined with discourse about 

derivatives and limits. Such change in discourse could result from a commognitive 
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conflict (see section 3.3) which can be resolved through meta-level discussions 

about words use with the teacher. How teachers facilitate learning as participation to 

promote object level and meta-level learning in calculus discourse is of interest to 

this study. 

The discursive development of individuals, i.e. learning, is explained by changes in 

the individuals’ ways of communicating in each of the four discursive characteristics 

of word use, visual mediators, endorsed narratives, and routines characteristic of the 

discourse (Sfard, 2007, 2008). This study will examine these four commognitive 

constructs in the teachers’ pedagogical calculus discourse. 

3.3  Commognitive theoretical constructs  

Mathematical discourse, according to CTF, is characterised by the following four 

commognitive constructs: word use, visual mediators, endorsed narratives, and 

routines (Sfard, 2008). It is therefore logical for a study that seeks to explore the 

teaching of the derivative to examine the type of words, visual mediators, routines 

and narratives in the teachers’ pedagogical calculus discourse. In the following four 

subsections, I will define each of these four commognitive constructs and explain 

their relevance and place in this study. 

3.3.1  Word use 

Word use simply refers to the type of words used, such as mathematical words and 

mathematical terminology, like those related to shape and quantities (Nardi et al., 

2014), as well as ordinary words used in everyday communication, but with special 

and specific meanings in mathematics, such as differentiation, limit, point, weight. 

Sfard (2007) regards word use as ‘an all-important matter because, being 

tantamount to what others call word meaning, ‘the meaning of a word is its use in 

language’ (Wittgenstein, 1953, p.20), it is responsible to a great extent for how the 

user sees the world.’ (p.571). Elaborating on the commognitive constructs that 

characterise a discourse, Güçler (2013) identifies three descriptive categories of 

word use: ‘colloquial (talking about mathematical concepts in the everyday sense); 

operational (talking about mathematical concepts as processes or actions); and 

objectified (talking about mathematical concepts as objects or object-like entities) 

word use’ (p.441, italics in original). This study will explore both colloquial and literate 

mathematical word use in the teachers’ pedagogical calculus discourse because 

calculus words (e.g. tangent, slope, gradient, differentiation, derivative, limit) in 

mathematical discourse signify mathematical objects (Park, 2016). Thus, this study 

will explore what type of words teachers use in introducing the derivative and 
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examine how they use the words in constructing and substantiating mathematical 

narratives about the derivative. 

Objectification is a key feature in Sfard's (1991, 1992, 2008) commognition 

framework on word use in mathematical discourse, which results from the process of 

reification and alienation. According to Sfard (1991) reification is the process through 

which mathematical operational modes of thinking such as ‘processes, algorithms 

and actions’ (p.4) are objectified into structural modes of thinking, which sees and 

treats mathematical concepts and notions (something abstract)  like objects 

(something concrete), i.e. discursive objects. Alienation is a process whereby 

statements about mathematical modes of thinking (operational or structural) are 

converted into impersonal discursive forms (Sfard, 2008). Reification and alienation 

are the processes whereby ‘statements about processes’ are turned into ‘impersonal 

statements about objects’ (Sfard, 2008, p.63). Objectification, thus, is a means of 

formalisation utilizing symbolic artefacts, and it increases the practical effectiveness 

of a discourse and enhances an individual’s capacity for mathematical 

communication (Sfard, 2008; Güçler, 2013). However, on operational conceptions 

(focusing on processes) and structural conceptions (focusing on objects), Sfard 

(1992) emphasises the process of reification and cautions that ‘the fact that a 

process has been interiorised and condensed into a compact, self-sustained entity, 

does not mean, by itself, that a person has acquired the ability to think about it 

structurally. Without reification, her or his approach will remain purely operational’ 

(p.65). Thus, examining word use can offer insights into the degree of objectification 

in the teachers’ pedagogical calculus discourse. 

3.3.2  Visual mediators 

Visual mediators in mathematical discourse are defined as ‘the means with which 

participants of discourse identify the object of their talk and coordinate their 

communication’ (Sfard, 2007, p. 571). In my study, visual mediators refer to all the 

non-verbal means of communication and the visible objects, involving symbolic 

artefacts like formulae, calculus symbolism, graphs, drawings and diagrams that are 

created and used in constructing or substantiating mathematical narratives (see 

Section 3.3.3 below on narratives).   

Visual mediators are an essential part of the thinking and communication process in 

mathematical learning (Sfard, 2008; Presmeg, 2006; Ioannou and Nardi, 2010). 

Visual mediators, in commognition theory, are viewed and thought of as integral to 

the act of communication. Thus, visual mediators are seen as integral in the thinking 

processes; they are not mere auxiliary means representing pre-existing thought 

(Park, 2016). Since mathematical objects are often intangible, visual mediators as 
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the means by which discursants identify the objects, are an important part of the 

communication and thinking process. A consideration of links between visual 

mediators and specialised mathematical words in the calculus discourse is important 

for my research. 

For the analysis of the teaching of the derivative, this study examines the visual 

mediators in the teachers’ pedagogical calculus discourse because visual mediators 

are the ‘providers of the images with which discursants identify the object of their talk 

and coordinate their communication’ (Sfard, 2008, p.145). Visual mediators are 

central to and critical for the analysis of mathematical literate discourses. 

The commognitive framework defines mathematical literate discourses ‘as visually 

mediated by symbolic artefacts and algebraic symbols’ (Sfard, 2008, p.146). In this 

study, the analysis of the teachers’ pedagogical calculus discourse will consider 

various forms of visual mediation, including both iconic and symbolic mediators, in 

mathematical communication. Exploring the visual mediators in the calculus 

discourse illuminates the numerical, graphical and algebraic mathematical 

representations in the teachers’ pedagogical calculus discourse. Symbolism, for 

example, is a core characteristic in literate mathematical discourses and indeed, in 

calculus discourse. 

3.3.3  Narratives 

Narratives are sequences of utterances within the discourse ‘framed as a description 

of objects, or of relations between objects or activities with or by objects, and that are 

subject to endorsement or rejection, that is, to being labelled true or false’ (Sfard, 

2007, p.572). In mathematical discourse, examples of endorsed narratives include 

mathematical theories, definitions, proofs and theorems (Sfard, 2008). In this study, 

the narratives are generally taken to refer to any utterances or propositions, written 

or spoken (including visual mediators), about discursive mathematical objects. The 

endorsed narratives are those utterances or propositions that the teachers (or 

students) consider as true in their calculus and mathematical discourses (Kim and 

Lim, 2017). In this study, an utterance is defined as ‘a single, continuous oral [or 

written] communication of any length by an individual or a group’ (Xu and Clarke, 

2019, p.135). Thus, simply put, narratives are made up of utterances, and utterances 

are made up of words. 

 

Mathematical narratives could be seen at either ‘object level’ or ‘metal level’ (Sfard, 

2008). Object level narratives are about mathematical objects, for example, If 𝑦 =

𝑥2;  then 
𝑑𝑦

𝑑𝑥
= 2𝑥  and the slope (gradient) of a straight line is constant. Meta-level 
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narratives are propositions about the discourse itself, and about the activities of the 

teachers (and the students), rather than about its objects, which say how 

mathematics is done, for example, to find the gradient at a point on a curve, find the 

slope of the tangent to the curve at that particular point. Both object-level and meta-

level calculus narratives are subject to analysis in this study. 

3.3.4  Routines 

According to the commognition theory, a routine is ‘a set of metarules [pattern-

defining rules] that describe a repetitive discursive action’ (Sfard, 2008, p.208). Thus, 

routines are the repetitive patterns in the teachers’ (or learners’) actions, 

characteristic of mathematical discourse (Sfard, 2007). In this study, routines are 

defined as the different ways of doing, characteristic of the mathematical and 

calculus discourse in the teacher’s actions. Thus, a routine describes a process 

carried out by teachers such as defining, estimating, or proving in the course of 

constructing or substantiating narratives about mathematics objects (Zayyadi et al., 

2019). Mathematical repetitive patterns can be seen in the teachers’ use of 

mathematical and calculus words and visual mediators in the processes of producing 

and substantiating narratives (Sfard, 2008) about, for example, the derivative. A 

routine explains the steps followed by the teachers to construct or substantiate a 

narrative about the definition of the derivative. 

There are two subsets to a routine, the how of the routine and when of the routine, 

and these are important considerations for analysing teaching or learning in 

mathematical discourse. The how of a routine is a set of metarules that determine 

the course of action or procedure, and the when of a routine determines the 

situations in which the course of action or procedure is appropriate (Sfard, 2008, 

p.208). Wing (2011) explains mathematical understanding in terms of the how and 

when of routines:  

Children learning to participate in contemporaneous mathematical discourse have 

two distinct tasks: learning how to carry out a routine and learning when. Once a 

child has mastered both the how and the when of routines, we would tend to say that 

she ‘understands’ (p.367; my italics). 

Sfard (2008) has advice for teaching mathematics: 

School teaching that focuses on the issue of how routines should be performed to 

the almost total neglect of the question of when this performance would be most 

appropriate, it is more likely to result in the discourse of rituals than of explorations” 

(p.223). 
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Teaching that focuses on standard rules of differentiation without adequate 

substantiation as to why those rules work, is more likely to produce students who 

cannot apply that knowledge to other situations. Rituals are not aimed at producing 

new narratives about the discourse. Rituals are discursive actions primarily aimed at 

pleasing others, for example, for a student to sustain a bond with the teacher (Sfard, 

2008). Explorations, however, are aimed at producing new endorsed narratives; new 

to the student (Sfard, 2008). Thus, an exploration routine is aimed at producing 

‘‘historical facts’ that are new to the learner or a new ‘truth’ about mathematical 

objects’ (Nachlieli and Tabach, 2018, p.255). For example, a student that endorses 

the limit definition of the derivative is endorsing a well-known historical mathematics 

narrative, a new narrative to the student. 

According to Sfard (2008), there are three categories of discursive routines: 

explorations, deeds and rituals. This study adopts Sfard’s (2008) explorations for 

they are aimed at producing endorsed narratives. This study is concerned with how 

teachers create and substantiate endorsed narratives about mathematical and 

calculus discursive objects. Exploration routines could either be construction, 

substantiation or recall (Sfard, 2008). Mathematical routines such as numerical 

calculations, equation solving, and routines of defining or proving are examples of 

mathematical explorations (Nachlieli and Tabach, 2018). 

Substantiation of a narrative is the process through which a narrative can be 

endorsed or rejected, for example, the production of proof,  which is ‘a sequence of 

endorsed narratives, each of which is deductively inferred from previous ones and 

the last of which is the narrative that is being endorsed’(Sfard, 2008, p.232). 

An example that demonstrates construction routines is given by Viirman (2013). 

Viirman (2013) elaborates on the construction routine of a definition of a function, 

which he breaks down into construction by stipulation, construction by exemplar and 

construction by contrast. Construction by stipulation is when the teacher introduces a 

new concept or new object by means of definition or by stating ‘a sufficient and 

necessary condition for an object to have a certain property’ (Nardi et al., 2014, 

p.191).  Construction by exemplar is when the teacher introduces a new object by 

illustrating its properties using an example. Construction by contrast, which could 

also be viewed as construction by exclusion is introducing an object using an 

example carrying a property, which should be excluded. Construction or definition by 

exemplar (Viirman, 2013) should not be confused with saming (Sfard, 2008, p.170);  

saming is when the interlocutor presents a series of examples, with the focus on the 

unifying common property in the examples (Nardi et al., 2014). 
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Nardi et al. (2014) explain the exploration routines - construction, substantiation and 

recall (Sfard, 2008) in the analysis of the construction of the function object. Nardi et 

al. (2014) elaborate on the construction of a definition of function further into 

‘construction by stipulation, by exemplar and by contrast’ (Nardi et al., 2014, p.195).  

Similar to Thoma and Nardi’s (2016) description of exploration routines, in this study 

construction routines in the teacher’s pedagogical calculus discourse are those 

aimed at producing new endorsable narratives (for example, teaching the limit 

definition of the derivative in elementary differential calculus); whilst the 

substantiation routines are those aimed at endorsing or rejecting previously 

constructed narratives (for example, differentiation from first principles); and recall 

routines are simply aimed at remembering endorsed narratives(for example, 

standard rules of differentiation).  

Of particular interest in the analysis of the exploration routines in the teachers’ 

pedagogical calculus discourse would be the study of the how of the routine, which 

explains the procedure or the course of action, and the when of the routine, which 

determines the situations when the procedure is necessary or applicable (Sfard, 

2008). 

3.4  Commognitive conflict and the learning-teaching agreement  

Sfard (2007) associates learning with what she termed commognitive conflict, which 

results from a learner’s encounter with new discourse governed by different ‘meta-

rules from those according to which a student has been acting so far’ (p.574). 

Commognitive conflict occurs when there are conflicting narratives coming from 

discourses that differ in their meta-rules, for example, from an expert (teacher) and a 

novice (student) in the discourse. This means that ‘different discursants are acting 

according to different meta-rules’ (p.574). An example that illustrates commognitive 

conflict is found in Nardi et al. (2014) study that reviewed nine commognitive studies. 

The study notes a commognitive conflict, a discrepancy between the ‘lecturer’s focus 

on the production, negotiation and ultimate endorsement of a certain narrative, and 

the student’s focus on eliciting approval for the course of action that would lead to an 

acceptable solution to the task’ (Nardi et al., 2014, p.195). Whereas the lecturer’s 

approach (routine) was explorative, the students’ approach (routine) was ritual. 

Although my study shall be focusing primarily on the teachers’ explorative routines, 

the analysis shall consider commognitive conflict, where possible. 

Commognitive conflict should not be confused with the acquisitionists’ notion of 

cognitive conflict. Cognitive conflict, unlike commognitive conflict, arises ‘in the 

encounter between one’s belief and the world’ (p.574). The notion of commognitive 
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conflict is based on the premise that learning results from social interactions with 

others (Sfard, 2008). Resolving commognitive conflict results in learning taking 

place, i.e. change in the discourse of the discursants (Sfard, 2008). The notion of 

commognitive conflict is of particular relevance to my study, for it is a source of 

mathematical learning.  

A ‘gradual mutual adjusting of discursive ways’ (Sfard, 2008, p.145) by the 

participants in the discourse is necessary for resolving the commognitive conflict. A 

resolution is conditional on a successful voluntary and mutual alignment of the 

discourses of the discursants, which Sfard (2008) describes as a learning–teaching 

agreement, often resulting in the student accepting and aligning with the discourse of 

the teacher as the more knowledgeable or the ultimate substantiator (Sfard, 2008). 

The problem ‘is resolved by choosing one of the two conflicting discourses and 

abandoning the other’ (Sfard, 2008, p.258).  

For meta-level learning to take place, there is a need for the learner’s exposure to 

the new discourse which will necessitate communicational conflict, ‘one that arises 

whenever interlocutors differ in their uses of words, in the manner of looking at visual 

mediators or in the ways they match discursive procedures with problems and 

situations’ (Sfard, 2015, p.136). Sfard (2015) acknowledges that how to create the 

unwritten learning-teaching agreement is a question for further empirical research. 

The notion of commognitive conflict and the learning-teaching agreement add, ‘a 

valuable new dimension to the discussion of the role of a teacher within dialogic 

teaching of mathematics (Wing, 2011, p.368), and my study explores how teachers 

teach the derivative and seeks to understand how they resolve commognitive 

conflicts in calculus discourse. 

3.5  Why the commognitive framework?  

The commognitive theory provides a theoretical and analytical perspective (Zayyadi 

et al., 2019) in understanding how teachers of mathematics teach elementary 

differential calculus. The commognitive framework was originally developed for the 

study of thinking and learning (Sfard, 2007). I adopted the commognitive framework 

for the study of teaching.  In this section, I will discuss the application of the 

commognitive framework for studying teaching. I argue that such a discursive 

framework allows for the study of, not only the discursive developments of individual 

students but also the discursive practices of the teachers. 

The commognitive theoretical framework has been applied in the analyses of 

students learning more than it has been applied in the analysis of teaching. Sfard 
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(2008) does not make a distinctive definition of teaching. A commognitive definition 

of teaching is given by Tabach and Nachlieli (2016), who takes Sfard’s (2008) view 

that communication is a form of activity and define pedagogy as ‘the 

communicational activity the motive of which is to bring the learners’ discourse closer 

to a canonic discourse’ (p.299). Teaching mathematics is a communicational activity 

aimed at promoting the participation of students in (and admission into) the 

historically and collectively established mathematics discourse. Resolving the 

commognitive conflict through the mechanism of the unwritten learning-teaching 

agreement (Sfard, 2008) means that the teacher’s and the learner’s roles in a 

discourse are sympatric and jointly collaborative (Roth and Radford, 2011). 

Therefore, the applicability of the commognitive framework to the study of teaching 

lies in the interconnectedness of teaching and learning. Thus, my research adopted 

the commognition theory as a conceptual framework for the study. 

My research explores the teaching of elementary differential calculus by examining 

the discursive patterns in the teachers’ pedagogical calculus discourse, and the 

‘quest for discursive patterns is the gist of commognitive research’ (Sfard, 2008, 

p.200). In my study, the commognitive framework provides the lens for noticing 

patterns of behaviour and communication in the teachers’ pedagogical calculus 

discourse, and the vocabulary to describe the patterns.  

Mathematical discourses are made distinct by their tools, that is, words and 

visual means, and by the form and outcomes of their processes, that is, the 

routines and endorsed narratives that they produce (Sfard, 2008, p.161). 

An analysis of mathematical discourse should focus on the tools, form and outcomes 

of their process. The words and the visual mediators, the routines and the endorsed 

narratives are what characterise mathematical discourses. These four commognitive 

theoretical constructs form the core of the conceptual and analytical framework for 

my study.  

Literate discourses (…) were defined as visually mediated mainly by symbolic 

artefacts. Along with algebraic symbols, symbolic artefacts include icons, such 

as conventional or individually designed diagrams, graphs, and other 

drawings. Students’ fluency in this kind of discourse is the goal of school 

learning (Sfard, 2008, p.146). 

Students achieving fluency in mathematical literate discourses is the object of school 

learning and teaching activities, and the commognition theory offers a framework for 

analysing not just learning, but teaching forms of doing. By drawing attention to the 

type of words, symbolic artefacts and algebraic symbols and the visually mediated 

narratives and routines in the discourse, the commognitive theoretical framework 
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offers a micro-level communicational analysis that ‘captures fine-grained aspects of 

interactions’ (Nardi et al., 2014, p.185) in the classroom, which generates 

mathematically rich accounts of data.  

I also chose the commognitive theoretical framework for its flexibility in application, 

which is aptly described by Presmeg (2016) who argues that the commognitive 

framework has unrealised potential. 

But embracing, as it does, both individual and collective learning of 

mathematics, and indeed its teaching too, the commognitive theoretical 

framework still has much unrealized potential to be useful in mathematics 

education research at all levels (Presmeg, 2016, p.430). 

Ioannou (2018) echoes Presmeg (2016) by acknowledging that although CTF has 

been used extensively within mathematics education, only part of it has so far been 

operationalised. The breadth and depth of the concepts and principles within CTF 

allow for a much wider application of the framework in various studies. Its potential 

as a theoretical framework goes beyond investigating issues of teaching and 

learning mathematics, to investigating issues of human development.  

The CTF is a communicational approach to research that can serve as ‘a conceptual 

as well as discourse analysis framework’ (Park, 2016, p.396). Other researchers, for 

example, Park (2013; 2015; 2016) in her studies on derivative has applied the CTF 

as a conceptual framework as well as an analytical framework. My study investigates 

how teachers of mathematics introduce differential calculus, i.e. the teaching of the 

derivative, thus, an analysis of the teachers’ mathematical discourse on the 

derivative. My study, therefore, applies Sfard’s (2008) communicational perspective 

as a theoretical lens for research and as a discursive analysis framework for 

analysing the teacher’s calculus discourse in terms of word use, visual mediators, 

narratives and routines.  

3.6  Commognitive studies and analyses  

In this section, I review the literature that informed my adoption and application of the 

commognitive framework for my study. There are two main reasons for my review of 

some of these studies: (i) to draw insights from their commognitive analyses of word 

use, narratives, communication mediators and routines, and (ii) to examine their 

findings relevant to my study, e.g. on the teaching and learning of differential 

calculus. My study explores the teaching of the derivative by examining the teachers’ 

pedagogical calculus discourse. 
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Since Sfard’s (2008) commognitive framework in mathematics education research, 

there are many studies (e.g. Ryve et al. (2012), Kim et al. (2012), Ioannou (2012), 

Güçler (2013; 2016), Park (2013; 2015; 2016), Morgan et al. (2014), (Nardi et al., 

2014), Viirman (2014; 2015), Sfard (2015), Heyd-Metzuyanim and Graven (2015), 

Ng (2015), Tabach and Nachlieli (2016), Presmeg (2016), Wood (2016), Ioannou 

(2018) and Xu and Clarke (2019)) that have adopted the theory of commognition and 

applied discursive approaches to researching mathematical discourse and 

classroom discourse. However, there have been more commognitive studies 

focusing on students’ discourses (i.e. learning) than there are on teaching 

discourses. For example, Nardi et al. (2014) review nine commognitive studies 

investigating the learning and teaching of mathematics at the university level. In this 

review, they investigate discursive shifts in the lecturers’ and students’ discursive 

practices, construction routines and resolving of commognitive conflicts. The 

discursive shifts refer to changes in the mathematical perspectives of the participants 

in the mathematical discourse, i.e. the lecturers and students. Out of the nine studies 

that Nardi et al. (2014) reviewed, six studies focus on learning, thus on the 

discourses of students (e.g. Bar-Tikva, 2009; Kjeldsen and  Blomhøj, 2012; 

Remillard, 2010; Ryve et al., 2013 and Ioannou, 2012), and two concern pedagogical 

discourses (e.g. Nardi, 2011, Viirman, 2013) and one looks at the interactions 

between the lecturers and students (e.g. Güçler, 2013). More recently, a study by 

Heyd-Metzuyamin and Shabtay (2019) examined identity narratives of good 

mathematics teaching by analysing Exploration Pedagogical Discourse (EPD) (which 

is aligned to ideas of learning as participation in explorations) and ‘the Acquisition 

Pedagogical Discourse (APD, akin to ‘traditional’ or ‘teacher-centred’ instruction’ 

(p.542). 

The commognitive studies focusing on mathematical and pedagogical discourses 

(e.g. Viirman, 2013; Nardi, 2011; Park, 2015) have all looked at the discourses of 

lecturers, thus at the university level. Although my study focuses on mathematical 

and pedagogical discourses, it explores the discourse of schoolteachers; it is an 

investigation of the teaching of elementary differential calculus by schoolteachers.  

Viirman (2015) examined the routines of the teaching, the pedagogical routines of 

‘explanation, motivation and question posing’ (p.1167) by university mathematics 

lecturers teaching functions in first-year mathematics courses in Swedish 

universities. With a particular focus on the discourse of mathematics teaching, 

Viirman (2015) makes an extension to Sfard’s (2008) types of routines by further 

categorising routines into mathematical routines (Viirman, 2014) and didactical 

routines (Viirman, 2015) for producing didactical narratives. This is an important 

https://www.tandfonline.com/doi/full/10.1080/14794802.2014.918338
https://www.tandfonline.com/doi/full/10.1080/14794802.2014.918338
https://www.tandfonline.com/doi/full/10.1080/14794802.2014.918338
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contribution by Viirman (2015) because the how of a teacher’s mathematical routine 

is dependent on the teacher’s didactical objectives. There is an interplay between a 

teacher’s mathematical routine and didactical routine. Research about didactical 

routines can provide means for analysing, and vocabulary for describing, the 

discursive practices of teachers. My analysis shall also consider and evaluate the 

teachers’ didactical routines (Viirman, 2015) as either pedagogical discourses 

of explorations or acquisition (Heyd-Metzuyanim et al., 2018). In my study, the 

mathematical and didactical routines of the teachers shall be examined as 

pedagogies on the derivative, primarily focusing on the exploration routines in the 

teachers’ calculus discourse.  

In their study on communication in group work in mathematics education Ryve et al. 

(2012) look at the commognitive constructs of visual mediators (Sfard, 2008) and 

technical terms (Mason, 1998; Ryve et al., 2012; Wertsch and Kazak, 2011). By a 

technical term, Ryve et al. (2012) mean a term that typically belongs to, and has a 

specific meaning within, a discourse, for example, mathematics discourse. Thus, 

mathematical technical terms are specialised mathematical words found in literate 

mathematical discourse. According to Mason (1998) quoted in Ryve et al. (2012), 

‘each technical term marks a particular way of seeing’ (p.252). The type of words 

used in a discourse, say mathematical discourse in the classroom, could potentially 

influence how students participate in the discourse, for example, the way the 

students perceive, talk about, or make sense of a phenomenon (Ryve et al., 2012). 

Ryve et al. (2012) found that ‘the critical evaluation of visual mediators and technical 

terms, and of links between them, is useful for researchers interested in analysing 

effective communication and designing environments providing opportunities for 

students to learn mathematics’ (p.497). My study will examine the type of words and 

the visual mediators in the teachers’ pedagogical calculus discourse.  

Güçler’s (2013) commognitive study looks at the mathematical discourses of both 

the lecturers and undergraduate students on elementary calculus). Güçler (2013)  

examines the development of trainees and practising teachers’ discourse on 

calculus.  Güçler (2013) examines the teaching of calculus that focuses on 

definitions of function to college students using the communicational framework of 

commognition. Güçler's (2013) study focuses mainly on the metalevel rules of 

discourse as the core element in its conceptual framework. In the study, the 

instructor explains the meta-rules for the discourse of calculus, and thus meta-level 

learning was expected. The study found out that explorative discussions on the 

construction of the definitions of function fostered meta-level learning, as well as 

object-level learning, which resulted in a change in the meta-rules governing the 
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teachers’ discourse on functions, for example, the teachers were observed using the 

word function whilst performing explorative activities. Güçler's (2013) study highlights 

some commognitive conflict between the discourses of the lecturers and the 

students, for example, about the narratives substantiating the limit as a number and 

limit as a process (Nardi et al., 2014). This study highlights the ‘learning as a change 

in discourse’ perspective (Sfard, 2008; 2015), that is, changes in students’ discourse 

on the definitions of function. Unlike Güçler (2013), my study examines the teaching 

of calculus that focuses on introducing the derivative to school students using 

elements of the commognition framework. Similar to Güçler (2013), how explorative 

the teachers' discussions on the construction of the definition of the derivative, is of 

interest to my research. 

Ng (2015), in her study, highlights the learning-as-participation perspective (Sfard, 

2008, 2015). Ng (2015) applies elements of the commognitive framework to studying 

bilingual high school students using dynamic geometry learning about derivatives 

and antiderivatives. The study investigates bilingual students’ verbal discourse about 

area accumulating functions. The study demonstrates the interdependence of 

gestures, verbal discourse and dragging with dynamic imagery activities in a 

dynamic geometry environment. In this study, the students are seen dragging visual 

objects, and such dragging activities are later used to explain conjectures. This 

demonstrates a shift in routines from deeds to exploration (Presmeg, 2016). Ng’s 

(2015) study highlights the need for my study to pay attention to the non-linguistic 

forms of communication in discursive research.  

Although Ng's (2015) study adopts the commognitive constructs of word use, visual 

mediators and routines (Sfard, 2008), the conceptual framework also includes 

communicational actions such as the use of gestures, dragging, and diagrams. 

Commenting on the merits and affordances of the commognitive framework in 

analysing learning activity, Presmeg (2016) praises Ng’s (2015) commognitive study: 

‘the power of the commognitive framework—including gestures and dragging as 

communicational acts—is amply illustrated in this study of bilingual learners 

(Presmeg, 2016, p.428). Unlike Ng’s (2015) study which focuses on students, my 

study focuses primarily on teachers. However, just like Ng’s (2015), my study seeks 

to harness ‘the power of the commognitive framework’ to explore how teachers 

introduce the derivative. My study will pay attention to the gestures and dragging 

actions in the teachers’ pedagogical calculus discourse, with a particular focus on 

their use of dynamic geometry. 

Park (2013) applied the commognitive framework in the analysis of students’ word 

use and use of visual mediators on the derivative. Park (2013) conducted a survey in 
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which twelve elementary calculus students explained their solution process during 

interviews. Park (2013) found inconsistencies in the students’ use of the word 

derivative for describing the derivative at a point and for describing the derivative 

function; most students used the word, ‘derivative’ for both ‘the derivative function’ 

and ‘the derivative at a point’ (p.624). According to Park (2013) such problematic 

word use for ‘derivative’ could be rooted in the English language:   

In English, the relation between ‘function’ and ‘function at a point’ is 

equivalent to the relation between ‘the derivative of a function’ and ‘the 

derivative at a point.’ This equivalency often allows ‘derivative’ without ‘of a 

function’ to be used as ‘the derivative of a function’ (e.g. ‘Is the derivative 

positive?’). However, in some other languages such as Korean and Japanese, 

the terms for these two concepts do not share a common word, and thus there 

is no confusion between the terms (p.624). 

The analysis also found students describing ‘the derivative as a tangent line’, which 

suggests that the students ‘considered the ‘derivative’ as a point-specific object but 

also a (linear) function defined on an interval’ (p.624). Studies (e.g. Monk, 1994; Tall 

and Vinner, 1981; Park (2013) on students’ learning calculus have shown that 

moving from (and between) the derivative at a given point on a curve to the 

derivative of a function is not simple for students. Studies by Tall and Vinner (1981) 

and Tall (1986) show how students’ discourses about the limit on the difference 

quotient and the tangent lines to a curve, can be inconsistent with mathematical 

literate discourse, for example, the thinking that 0.99999 . . . never reaches 1, is 

consistent with their thinking about local straightness and the tangent, for example, 

that the secant lines (as ℎ → 0) never reach the tangent line (Park, 2013, p.624). 

Park (2016) used Sfard’s (2008) communicational approach to explore how the 

derivative is introduced in calculus textbooks. Park (2016) examined the learning and 

teaching of the derivative at a point and derivative as a function and the connections 

between them in three widely used USA undergraduate calculus textbooks. Park’s 

(2016) study focused on the realisations of the derivative-at-a-point and realisations 

of the derivative-of-a-function and analysed how the derivative is realised as a point-

specific object and as a function in calculus textbooks, thus, by mathematics experts. 

Thus, the study investigated the mathematical discourse in written words rather than 

the spoken words since it is an analysis of textbooks. However, analysing the 

discourse, as expressed in a textbook, gives insights into the experts’ discourse 

about mathematical objects. The study found some inconsistencies in realisations of 

the limit process and the limit object, and the derivative process and the derivative 
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object. Park’s (2016) study highlights some ambiguity and inconsistencies in word 

use within some calculus textbooks, with words as limit and derivative.  

Realisations for the derivative as a constant and the derivative as a function were 

mediated with similar symbolism, which suggest some difficulty with understanding 

them as different objects (Park, 2016). The most commonly used visual mediators 

for the derivative were graphs of tangent lines for the derivative at a point and the 

symbolic - algebraic expression for the derivative of a function. However, Park 

(2016) observed a disconnect in the way the mediators were used for both situations 

and argues against the disjoint use of different visual mediators for a process/object, 

as the constant shift between the various forms of mediations could possibly present 

challenges to students as newcomers to the mathematical discourse. Thus, one 

wonders how the learners could possibly make the connections between the 

mediators if it is not explicit in the textbooks. Park (2016) goes on to argue that: 

For this reason, in the realisation of the derivative, the consistency between 

the mediation of process and the mediation of the object with one visual 

mediator, and the explicit transformation across multiple visual mediators that 

realize the process and object are both important (p.399). 

For meta-level learning to take place there is a need for consistency and clarity 

between the forms of mediation used for the process and the object realisations. The 

study demonstrates the affordances of a commognitive framework for analysing the 

discourse in a textbook. Through the commognitive constructs, Park was able to 

reveal subtle inconsistencies in various presentations of the derivative. 

In another study, Park (2015) investigated three calculus instructors’ 

classroom discourse on the derivative with the commognitive lens, and how 

they introduced the derivative as a point-specific value and as a function. Park 

(2015, p.233) made the following four observations: 

(a) the instructors frequently used secant lines and the tangent line on the 

graph of a curve to illustrate the symbolic notation for the derivative at a 

point without making explicit connections between the graphical illustration 

and the symbolic notations,  

(b) they made a transition from the point-specific view of the derivative to the 

interval view mainly by changing the literal symbol for a point to a variable 

rather than addressing how the quantity that the derivative shows, 

changes over an interval,  

(c) they quantified the derivative as a number using functions with limited 

graphical features, and  
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(d) they often justified the property of the derivative function with the slope of 

the tangent line at a point as an indication of the universality of the 

property.  

These findings show that lack of explicit connections between the features of the 

derivative at a point and as a function. Failure to make such connections would 

exacerbate students’ challenges with the derivative and calculus. Making explicit 

these aspects and connections through word use and visual mediators with 

symbolic, graphical, and algebraic notations in these three classrooms would help 

students to understand, for example, the graphical and symbolic mediation forms for 

the derivative as a limit. Park (2015) concludes:  

These results showing the instructors’ uses of various visual mediators without 

explicit connections between them, their limited discussion on how the 

derivative as a function varies, and their dependence on symbolic and 

algebraic notations, seems related to some well-known student difficulties with 

the derivative (p.248). 

Park’s (2015) study focused on the derivative of a function as an object and the 

transition in the teachers’ pedagogy between the derivative at a point and the 

derivative as a function. The study specifically looked at two research questions: ‘In 

what ways did the instructors [i] address the derivative as a point-specific value? [ii] 

address the derivative as a function on an interval?’ (Park, 2015, p.234), at the post-

secondary level in the USA. My study looks at how teachers introduce differential 

calculus to secondary school students, in English schools in the UK.  

Park’s (2015) study also highlights how differences in word use in different 

languages could be an important consideration in the analyses of teachers’ 

classroom discourse. Park suggests that the ambiguity of views between the 

derivative as a constant and derivative as a function could be coming from colloquial 

use of the word derivative in English (e.g. ‘Is the derivative positive?’). In languages 

such as French, Japanese, and Korean, the mathematical discourses do not use the 

same words for ‘the derivative at a point’ and ‘the derivative function’ (Park, 2015, 

p.249). Similarly, Kim and Lim (2017) compare the students’ use of the notion and 

word limit in Korean and English contexts. Unlike in the English language and 

context, where the word limit is used in both colloquial contexts and mathematical 

tasks,  ‘the mathematical word for limit is not commonly used as a colloquial word in 

Korean’ (Kim and Lim, 2017, p.1561).   

Similarly, Xu and Clarke’s (2019) study highlights the role of spoken mathematics 

and the need for a consideration of cultural contexts in research on both teaching 
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and learning. Xu and Clarke (2019) examined the effects of classroom dialogue on 

learning from nine classrooms situated in East Asia and argue that overemphasis on 

vocal communication could ‘undermine other forms of communication in classrooms 

(…) that could be generative of student learning’ (p.130). It is important for teaching 

and commognitive research to pay attention to the role of culture and non-verbal 

forms of communication in classroom discourse. My study will examine the visual 

and communication mediators, both vocal and verbal, including word types, 

narratives, and visual mediators in the teachers’ pedagogical calculus discourse. 

Although the studies reviewed here, use the commognitive theoretical framework 

(Sfard, 2008), they do not always adopt the theory in its entirety nor exclusively 

adhere to it, and my study is no exception in this regard. This is not an unusual 

approach in mathematics education research. Presmeg's (2016) review of the 

application of the commognitive framework by various researchers shows that 

although many researchers have adopted and applied the commognitive framework 

in their studies, there is evidence to show some digression from the framework in 

some parts of their study. For example, Güçler (2013) adopts the commognitive 

framework without its theoretical entailments and Wood (2016) also adopts the 

commognitive framework categories of routines (i.e. deeds, rituals, and explorations) 

for data analysis, but calls them categories of activity (Presmeg, 2016). In my study, 

combinations of the graphical, symbolic and numerical visual mediators, for example, 

in the teachers’ pedagogical calculus discourse are further described as multiple 

representations.  

3.7  Conclusion  

Using the commognitive analytic toolkit of word use, visual mediators, narratives and 

exploration routines, allows for a discursive analysis of the mathematical calculus 

discourse against the teachers’ pedagogical calculus discourse. Examining the word 

use and narratives, the mathematical and didactical routines, and the symbolism and 

visual mediators in the teachers’ pedagogical calculus discourse can help 

mathematics education researchers to understand how teachers teach calculus. The 

commognitive framework is a useful tool in communicational research. My study is 

an analysis of the teachers’ mathematical discourse on calculus. Hence, the 

commognitive framework (Sfard, 2008) was adopted as the conceptual framework 

for this study for investigating how teachers introduce differential calculus at school.  

The next chapter introduces and explains the research methodology adopted for this 

study. 
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Chapter 4   Research design 

4.1  Introduction 

My research is an exploratory qualitative study of the practice of teaching elementary 

differential calculus through the commognitive lens. It explores the teaching of the 

derivative by teachers of mathematics, engaging in pedagogical activities within the 

social context of their classes, schools and the education community at large. Two 

methods of collecting data are used: interviews and observations. Qualitative 

research is adopted for its naturalistic approach that prefers to study people, things 

and events in their natural settings (Denzin and Lincoln, 2011). Punch (2009) 

describes qualitative research methods as a ‘complex, changing and contested field – a 

site of multiple methodologies and research practices’ (p.115). Thus, qualitative research is 

very diverse and encompasses an enormous variety. Social scientists have always 

argued about the best research approach for social research (Denzin and Lincoln, 

2011) and education and applied social sciences are hugely varied and complex. 

The diversity, which has long been a dominant feature of qualitative research often 

concerns paradigms, designs, approaches to data and data analysis methods 

(Stake, 2006).  

My qualitative study follows the description by Creswell (2013) that qualitative 

research begins with assumptions (e.g. mathematics is a discourse; teaching and 

learning are social activities) and adopts a theoretical framework (i.e. the 

commognitive framework, see Chapter 3) that informs the study of the research 

problem. Data is collected in its natural settings relative to the objects, people and 

places under study (i.e. interviews with teachers and observations of their lessons in 

their classrooms and schools). Data analysis can take both inductive and deductive 

approaches to establish themes from the content of the data (see Chapter 5 for the 

qualitative data analysis for this study). The findings and the final written report 

‘includes the voices of participants, the reflexivity of the researcher, a complex 

description and interpretation of the problem, and its contribution to the literature or a 

call for change’ (Creswell, 2013, p. 44) (i.e. Chapters 6 to 10). 

The design for my research is predominantly interpretivism, which adopts the 

premise that there exist multiple and subjective realities and meanings or 

understandings, relative to, and dependant on the situation, context and time, which 

are co-constructed by the researcher and the participants (Stake, 1995, 2006; Yin, 

2014). This ontological and epistemological stance is consistent with the theoretical 

framework for the study, the commognitive framework (Sfard, 2008), which takes a 
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discursive and interpretative approach to research. From engaging with literature, 

the commognitive framework (Sfard, 2008) was identified as an appropriate guiding 

theory for my study (see Chapter 3 for an explanation of the framework).  

There are two chapters. Chapters 4 and 5, cover the methodology for this study. 

Chapter 4 is predominantly on data collection, whereas Chapter 5 focuses more 

specifically on data analysis. For this qualitative study, a single methodology chapter 

would have been rather too long. What follows in this Chapter 4, are six sections 

covering the revised research questions; the pilot study; the data collection methods; 

the recruitment of participants; the research ethical considerations and a summary of 

the research design. For the data analysis methods for this study, see Chapter 5.  

4.2  Research questions 

One of the main notable outcomes of my review of literature was that I was able to 

review my prime facie research questions (as stated in chapter 1) and align them 

with the commognitive terminology. The reformulated research questions that then 

guided the design for this research are given below. Note that the words in italics are 

the commognitive constructs from the commognition theory (Sfard, 2008). 

In teaching differential calculus: 

RQ.1 What word types and narratives do teachers use and why?   

RQ.2 What visual mediators do teachers use and why? 

RQ.3 What mathematical and pedagogical routines do teachers use and 

how?  

RQ1 calls for an examination of the teachers’ word use, utterances and language  on 

elementary differential calculus. RQ2 is an extension of RQ1 and seeks to 

investigate the teachers’ use of visual mediators and forms of mediation in teaching 

the derivative. RQ3 supplements RQ1 & RQ2 by drawing attention to the 

mathematical and pedagogical routines in the teachers’ calculus discourse. This 

study is primarily focusing on the exploration routines, thus, investigating the 

teachers’ various forms of doing in constructing and substantiating narratives about 

the definition of the derivative, by examining the teachers’ word use, utterances and 

narratives (RQ1) and visual mediators (RQ2) in their pedagogical calculus discourse 

on elementary differential calculus.  

Gathering data for the above research questions call for the need to talk to the 

teachers and to see them in action too. Data for the study was collected through 

interviews (more in Section 4.3.1) with teachers of mathematics and observations 

(more in Section 4.3.2) of their lessons on elementary differential calculus. 
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4.3  Pilot study  

I carried out a pilot study to trial the research design with the following objectives: to 

test and refine the data collection tools and procedures; to test access and 

recruitment of participants; and for personal development. The pilot study involved 

one participant teacher of mathematics. The study applied the data collection 

methods that had been designed for the study. A pre-lesson interview with the 

teacher was carried out. This was then followed by an observation of the teacher 

teaching a lesson on differential calculus. Another interview followed the lesson 

observation, in which the researcher and the teacher talked about the lesson. The 

interviews were audio recorded and the lesson was video recorded. Not only was a 

pilot study necessary, but imperative, as argues Roulston (2016, p.75), to ‘subject 

[my] own participation in research interviews to analytic consideration’ as this 

necessitates reflexivity allowing for a reflection and consideration of my role and 

actions in the data collection and the research process. 

Not all communication, even with interviews, is verbal. At the time of data collection 

for the pilot study, I did not realise the importance of noting non-verbal 

communication. For the main study, alongside audio recording the interview, I then 

planned to take some notes to capture the non-verbal communication or behaviour 

of the participants.   

During the interview, the teacher referred to one of the main textbooks he used for 

teaching calculus, and he pulled the book off the shelf to show me. With the 

teacher’s consent, I took a picture of the book using my smartphone. The interview 

was audio recorded and I had not anticipated the need for photography (or videos) 

for the interviews and so I had not planned for it. However, using my mobile phone 

was handy and Cohen et al. (2013) agree that a smartphone offers a potentially 

powerful tool for researchers.  

The pilot study exercise made me realise the resource implications in terms of time 

and training needs.  Although the data collected was from just one participant 

teacher, there was a lot of data from the interview audio recordings and the videos 

from lesson observations. I realised that I had gathered a substantial amount of data, 

enough data to write a research paper for publication. I realised how time-consuming 

was data preparation, processing and analysis in qualitative research. I spent at 

least a couple of weeks transcribing interview audio data into text, but I still had more 

audio files to complete. I started coding (open coding) the transcripts from the 

interview data, but the data analysis process could not be completed before the data 

collection phase for the main study, given that the pilot study data collection had 

been done in July. Thus, the pilot study data analysis was rather more of a training 
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exercise for data analysis. Nevertheless, the pilot study methods were instrumental 

in reshaping the research methodology for the main study.   

The pilot study made me realise my training needs in data analysis. Following the 

pilot study, I undertook some training courses in using Computer-Assisted 

Qualitative Data Analysis Software (CAQDAS) (Thomas 2013; Roulston, 2014), in 

particular, NVivo. I had always intended to use traditional methods - manual coding 

methods for data analysis. The pilot study data made me rethink my plans. Manually 

coding and analysing data from nine participants (the planned sample for the study) 

could be overwhelming. Knowing some CAQDAS could turn out to be an invaluable 

backup plan. 

The timing for participant recruitment is a very important issue in this study. 

Recruitment has to coincide with the autumn term, during which time many teachers 

tend to cover lessons on calculus. I had planned to carry out the pilot study in the 

spring term of 2015. However, my ethical review application took a lot of time to put 

together and that delayed my pilot study. Although the ethical review process for the 

pilot study was quite time-consuming, it was a successful exercise. The pilot study 

exercise was very helpful in that it enabled me to adapt the research methodology in 

light of the lessons from the study. 

4.4  Data collection   

Gathering data for the study involved talking to individual participant teachers about 

their teaching of calculus and observing the individual teachers’ lessons on 

introducing differentiation to 16 -18-year-olds at school. Thus, data collection for this 

study involved the use of both interviews (see Section 4.3.1) and observation (see 

section 4.3.2). Concurrent with the interview and observations, the researcher made 

fieldnotes to supplement the audio and video data from the interviews and 

observations, respectively. The interview would enable the researcher to ask 

questions and listen to and record the participant teacher’s answers in an in-depth 

manner (Jones, 1985). The observation would enable the researcher to observe and 

record the teaching activities within the social contexts of the individual teachers’ 

classrooms.  

Some critics raise issues about the validity of interview data, such as ‘the possibility 

of interviewer bias and effects, the accuracy of respondents’ memories, people’s 

response tendencies, dishonesty, self-deception and social desirability’ Punch (2009, 

p.153).  An even more difficult challenge with interview data relates to ‘the 

relationship between what people say, what they do and what they say they do, and 

the assumption that language is a good indicator of thought and action’ Punch (2009, 
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p.153). Fielding (1996) calls for careful research design and planning to counter such 

technical issues. Thus, a methodological triangulation (Denzin, 2005) was necessary 

for this research design. Advocates for methodological triangulation (e.g. Thomas, 

2013) argue for the need to have alternative kinds of evidence corroborating with 

each other. There are some critics though, (e.g. Fielding, 1986) who argue that 

triangulation does not necessarily increase validity or bring objectivity to research. 

Nonetheless, triangulation, according to Lincoln and Guba (1985), can be seen as a 

check on data. The methodological triangulation adopted for this study would enable 

the researcher to understand whether the teachers do what they say they do, and to 

corroborate the evidence from the interviews and the observations.   

What teachers say about their teaching and what they do whilst teaching in the 

classroom, do not always match up. In other words, what is taught is not always the 

same as what is to be taught.  From my personal experience in teaching which 

spans over two decades, both as a teacher and teacher educator, I have observed 

hundreds of lessons. Many teachers do not necessarily stick to their lesson plans in 

the actual lessons; the social context within the classroom controls how the teacher 

conducts the lesson. Various factors can constrain the teaching activity during a 

lesson in the classroom. It would be necessary, where possible, to discuss the 

observed lesson with the teacher. There are three phases to data collection in this 

research design, see Figure 4-2, which shows the sequencing of the phases, a pre-

teaching interview (Phase1) is followed by a lesson observation (Phase 2), which is 

in turn followed by a port-lesson interview (Phase 3) with the teacher.    

 

Figure 4.1 Phases of data collection 

Observing the teacher in action in the classroom, practically teaching an introduction 

to differential calculus lesson, would provide some significant data and evidence 

against which the teacher’s teaching claims can be examined. Thus, the data from 

the lesson observations were complemented with the data from the interviews with 
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the teacher.  Combining observational and interview data collection techniques is 

regarded as a good strategy in qualitative research for it can ‘lead to very rich, and 

high-quality data’ (Punch, 2009, p.156). 

 4.4.1  The teacher interviews 

The interview is regarded as the most commonly used (Roulston, 2014) and the 

most powerful data collection instrument (Punch, 2000) in qualitative research. 

Jones (1985) suggests that to understand other people, to access their perceptions, 

meanings, definitions of situations and construction of reality, it is best to ask them. 

Cohen (2018) argues for the flexibility with semi-structured interviews for capturing 

interviewees’ perspectives, opinions and attitudes. Data collection for this research 

included the use of the semi-structured interview. According to Thomas (2013), 

semi-structured interviews allow some standardisation to facilitate conformity 

between the participants and provide some structure for the interview whilst allowing 

the interviewee to give elaborated responses and the interviewer freedom to follow 

up points, as necessary. For this study, two interviews were planned for each 

participant teacher. The first interview aimed at gathering the participant teachers’ 

biographical data and background information, and discussing the teacher’s plans for 

introducing the derivative. The second interview was set to seek more insights into 

the teachers' approach to teaching the derivative. It was a follow-up interview on the 

lesson to discuss the observed teaching activity. Teachers are often very busy, and 

the interviews were scheduled to last for no more than an hour. The interviews were 

audio recorded. In addition to the audio data, the researcher made field (interview) 

notes to supplement the audio data. 

Pre-teaching (Phase1) semi-structured interviews with the individual participant 

teachers enabled the gathering of the participant teachers’ biographical data and 

background information, such as teaching experience, subject knowledge, teaching 

resources, school context, the school curriculum, and examination boards, their 

lesson planning and teaching practices. The interview focused primarily on the 

lesson to be taught, i.e. on the teacher’s plans for introducing the derivative, rather 

than merely talking about how the teacher teaches calculus in general. An interview 

schedule was designed for the pre-teaching interview (see Appendix C1). The 

interview schedule is a framework with a mix of the main questions to be asked, 

possible follow-up questions and probes. According to Rubin and Rubin (2005), such 

a mix helps to structure interviews that would ‘elicit depth, detail, vividness, nuances, 

and richness’ (p.134). Thus, an interview schedule is intended to remind the 

interviewer of the key issues and aims of the interview, and not to constrict the 

interviewer; it is not set in stone. The main questions focus on the research problem 
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deriving from the research questions. The probes are meant to help manage or 

direct the conversation as an encouragement to the interviewee (Thomas, 2013). 

Follow–up questions are important for getting more depth and understanding about 

an idea or concept or an issue suggested by the interviewee that is of interest to the 

research concerns (Rubin and Rubin, 2005). These are usually worked out during 

the interview and asked on the spot.  

A post-teaching (Phase 3) semi-structured interview followed the observed lesson to 

ask any follow-up questions on some issues arising from the lesson, as well as to 

capture the teacher’s thoughts and evaluation of their lesson. The observation 

schedule from Phase 2 served as the interview schedule for this post-teaching 

interview with the teacher. Thus, it guided the researcher in the follow-up dialogue 

with the teacher. Again, the post-teaching interviews were audio recorded.  

The interviews were carried out face-to-face and audio recorded. As Lincoln and 

Guba (1985) remind us, there is no consensus in the literature on the best way for 

recording interview data. Whether audio, video recording or note-taking is the best 

method for recording the interview, depends on what is the ‘best fit for purpose’ 

given the type of interview chosen and any practical constraints (Punch, 2009). A 

disadvantage of using the audio recording for the interviews is that it does not 

capture non-verbal communication. With a face-to-face interview, the researcher can 

‘watch and listen for nuances of their [interviewee] behaviour’ (Thomas, 2013, 

p.194),  which would give the researcher ‘important clues about how they feel about 

the topic’ Thomas (2013, p.194). In conjunction with the electronic audio recording, 

note-taking to record such non-verbal clues was used for the interviews.  

 4.4.2  The lesson observations  

Observation is regarded (e.g. Thomas, 2013; Punch, 2009) as one of the most 

commonly used and important ways of data collection in social sciences and 

educational research. According to Foster (1996), two main practical issues need 

clarifying here: approaching observation and recording of observational data. 

Observation approaches can either be structured or unstructured; participatory or 

non-participatory. Thomas (2013) and Punch (2009) both point out that irrespective 

of such distinction often given in literature, some combinations of the two 

approaches are possible. For example, Thomas (2013) gives an illustration of such 

combinations, what he calls a ‘continuum observation and participation’ (p.221). 

Other examples include the framework of Adler and Adler (1994), which describes 

three membership roles for the observer, and that of Wolcott (1988) which 

distinguishes between a privileged observer and a limited one.  
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For this study, the lesson observations followed the pre-teaching interview. The 

researcher observed the participant teachers in action in their respective classrooms, 

teaching an introduction to differentiation lesson. The lesson observations were 

video recorded, to capture data on the teaching activity, the interaction of the 

teaching and learning material resources, teacher actions, and the curriculum 

context. The recording was done using a fixed video camera set in the classroom 

and a wireless microphone connected to the video camera and attached to the 

teacher. Plans were also in place to use the audio recording of lessons together with 

some snapshots from the lesson if ever needed. This was meant to cater for some 

participants, schools and teachers who might not be comfortable with the presence 

of a fixed video camera recording in the classroom. 

For this study, the observation combined elements of unstructured and participatory 

observation. Unlike structured observation in which the researcher has specific pre-

defined behaviours, predetermined categories and classification of data (Punch, 

2009; Thomas, 2013), with unstructured observation the researcher would observe 

and record the actions or behaviour and events as they unfold naturally. Punch 

(2009) argues that the logic here is that: 

… categories and concepts for describing and analysing the observational 

data will emerge later in the research, during the analysis, rather than be 

brought to the research, or imposed on the data, from the start (p.154).  

For this study, the observation schedule (see Appendix C2) was a blank template 

with three columns for recording time, some lesson observation notes, and points for 

discussion in the post-lesson interview. To complement the video data, the 

researcher made some fields/lesson notes on the observation schedule for further 

follow-up in the post-lesson interview. The researcher was guided, directly or 

subconsciously, by the research questions in identifying the focal points during the 

lesson observation. The notes on the observation schedule were then used as 

prompts for the discussion in the post-lesson interview.  

 

Observation need not be seen as one extreme end or the other, the degree of 

structure or participation could vary, depending on the purposes and context of the 

research.  Unstructured observation involves some participation by the researcher in 

the social situations in which they are collecting research data, though the degree of 

participation can vary. According to Burgess (1982), participant observation could 

involve talking to people, taking notes, watching and anything that helps the 

researcher to get a deep understanding of the situation.  
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4.5  Sampling  

A ‘purposive sampling’ (Punch, 2009, p.162) approach, guided by the aims and the 

research questions of the study was applied. Purposive sampling is a  non-

probability sampling in which the aim is to sample participants strategically, ‘selecting 

participants based on the kind of information they can provide, usually, because they 

have the right kind of life experience for the research in question or because they are 

expert in a certain field’ (Bryman et al., 2021, p.379). In this study, this involved 

looking for the most appropriate participants who were ‘best-fit’ for the required 

participants' characteristics for the research project (Bryman et al., 2021). To be 

eligible, one had to be a teacher of A-level mathematics who was going to teach 

elementary differential calculus, in particular, the introduction of the derivative. This 

latter requirement was particularly important so that the researcher could observe 

the participant teachers teach their introductory lessons on the derivative. 

The target population was all teachers of mathematics from colleges or secondary 

schools teaching A-level mathematics in England, although the research could be 

done with participants in any country where elementary calculus is taught at school. 

For convenience and feasibility, the participants for the study were drawn from 

teachers of A-level mathematics teaching elementary differential calculus in 

secondary schools or colleges in the north of England. This research project was 

carried out in England.  

The sampling plan was checked out against some of Miles and Huberman's (1994, 

p.34) six general questions about the qualitative sampling plan:     

Is the sampling relevant to your conceptual frame and research questions? 

Will the phenomena you are interested in, appear? In principle, can they 

appear?  

Does your plan enhance generalizability of your findings, either through 

conceptual power or representativeness? 

Can believable descriptions and explanations be produced, ones that are true 

to real life? 

Is the sampling plan feasible, in terms of time, money, access to people, and 

your own work style? 

Is the sampling plan ethical, in terms of such issues as informed consent, 

potential benefits and risks, and the relationship with informants? 

The sampling plan was to recruit a total of nine participant teachers with varying 

teaching experiences. Teaching experience here refers to the number of years the 

teacher has been teaching A-level mathematics. The plan was for the sample to 
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include three categories depending on the number of years of teaching post-16 

mathematics lessons, thus, teachers with less than 3 years, with 3 to 5 years and 

with more than 5 years of teaching A-level mathematics. For a purely qualitative 

research design, in which data collection would be done through interviews and 

lesson observations, a sample of nine participant teachers was considered neither 

too small nor too big a number.   

Headteachers are the gatekeepers to gaining access to their schools and teachers. 

Headteachers were approached initially via email introducing the research and the 

research project. At least a hundred emails were sent to secondary schools and 6th 

form colleges offering A-level mathematics across the north of England. Any positive 

response was then followed up with an email with the information sheet about the 

research and consent forms (see Appendix B1). If access was given by the 

gatekeepers, emails with the information sheets about the research and consent 

forms were then sent to the teachers inviting them to participate in the research 

project (see Appendix B2).  

Gaining access to schools and recruiting participants was so challenging that not 

enough teachers were recruited in the first year of data collection. This was a huge 

drawback to the project as I had to wait for the start of the next school year to collect 

the required data. I needed to recruit enough teachers willing to participate in my 

research project before the start of the school year by the beginning of September 

since differential calculus is one of the early topics to be taught at AS/A level 

mathematics. Thus, data collection took me two years, and yet it was still proving too 

difficult to get enough teachers to commit time to participate in my research project.  

As a teacher educator (on the PGCE and the Teaching Advanced Mathematics 

(TAM) programme I was part of a network of teachers and mathematics heads of 

departments from across England. To recruit more participants, snowball sampling 

(Bryman et al., 2021) (and purposive sampling) were adopted, whereby I directly 

reached out to a small number of teachers and mathematics heads of departments 

(BERA, 2018) and requested that they pass on my research information sheets to 

eligible teachers within their schools. Where a positive response was received from 

willing teachers, it was followed up with an email attached with the research 

information sheet and consent forms to the school gatekeepers (see Appendix B1). 

Upon receiving access from the gatekeepers, the participant teacher research 

information sheets and consent forms (see Appendix B2) were then sent to the 

respective teachers. Eventually, a total of eight teachers were effectively recruited for 

the research project.  
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Table 4.1 gives anonymised brief characterisations for each of the eight participants 

of the study. Two teachers have more than ten years experience of in teaching A-

level mathematics; two are novice teachers with less than three years and four have 

experiences ranging between three and ten years.  

Table 4.1 The participants 

Participant Gender Experience Qualifications/Training Highest school 
qualifications in maths 

T1 Male More than 30 years 
teaching A-level 
mathematics 

BSc Mathematics degree; and a 
PGCE (mathematics). 

Had done A-level 
mathematics as a 
student. 

T2 Female 2 years, with 2 years 
teaching A-level 
mathematics 

BSc Mathematics degree; 
Master’s degree in mathematics; 

PGCE(mathematics); and TAM4. 

Had done A-level 
mathematics and A-level 
Further Mathematics as 
a student. 

T3 Female 14 years; with more 
than 5 years 
teaching A-level 
mathematics 

BSc Mathematics degree; PGCE 
(mathematics); and TAM 

Had done A-level 
mathematics and A-level 
Further Mathematics as 
a student. 

T4 Male 2 years, with 2 years 
teaching A-level 
mathematics 

BA Law degree; PGCE 
(mathematics) through the 
5Teach First programme); and 

FMSP6 

Had done A-level 
mathematics and A-level 
Further Mathematics as 
a student. 

T5 Male 3 years, with 2 years 
teaching A-level 
mathematics.  

BA Mathematics and Education 
degree with QTS 

Had done A-level 
mathematics as a 
student. 

T6 Male 20 years, with 8 
years teaching A-
level mathematics 

BSc Chemistry degree; PGCE 
(mathematics); and FMSP 

Had done A-level 
mathematics as a 
student.  

 

4 Teaching Advanced Mathematics (TAM) is a one-year part-time course run by the MEI in England to 

support professional development of teachers by training teachers teach Advanced level 

mathematics. 

5 Teach First Programme offers on job teaching training to graduates. Graduates are placed directly 

into schools to work and learn how to teach on the job, mostly in challenging schools. 

6 Further Mathematics Support Programme (FMSP) was aimed at improving the teaching of A level 

Mathematics and Further Mathematics by providing professional development for the teachers 

and so increase student participation in A level Further Mathematics. The programme (now 

AMSP) is funded by the government and run by the MEI in England. 
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T7 Female At least 5 years, with 
more than 3 years 
teaching A-level 
mathematics 

BSc Mathematics degree; PGCE 
(mathematics) 

Had done A-level 
mathematics as a 
student. 

T8 Male 10 years, with 5 
years teaching A-
level mathematics. 

BSc Mathematics degree; PGCE 
(mathematics) 

Had done A-level 
mathematics as a 
student. 

 

4.6  Ethical considerations  

My empirical study inevitably carries ethical issues since it is about collecting data 

from people – the participant teachers in their schools. The responsibility, as O'Leary 

(2004) reminds us, for upholding the integrity of all aspects of the research process 

lies with the researcher. In line with the University of Leeds’ expectations, ethical 

considerations should include the psychological health and safety of subject 

participants, confidentiality and data protection. The ethical considerations as given 

here have been informed by Miles and Huberman's (1994) general framework of 

dealing with ethical issues and by BERA’s (2018) ethical guidelines for educational 

research.  

Consideration was given to ethical issues that arose in the early stages of the study; 

issues that arose as the study unfolded; and ethical issues that arose after the study 

(Punch, 2009). Figure 4.2 summarises the ethical issues that were taken into 

consideration in designing this study, which was covered in the ethical review forms 

as approved by the University of Leeds Research Ethics Committee (see Appendix 

A). 
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Figure 4.2  Ethical framework 

Educational research often interrogates the lived behaviours of others, which 

implicitly or explicitly brings up issues of power and status. As a teacher educator 

doing research with teachers, a consideration for the researcher position and 

researcher effect (BERA, 2018) was made for possible asymmetrical relationships 

between the researcher- the teacher educator and the subjects - the participant 

teachers. The researcher made sure that none of the participant teachers was 

current students of the researcher. The researcher, being a teacher of mathematics 

by profession, presented himself as a teacher of mathematics researching our 

practice for teaching the derivative. This struck a common interest with the 

participant teachers who also felt that not only was it necessary but important to 

research our teaching of the derivative. All conversations and correspondence 

between the researcher and the participants were reflective of a professional 

relationship between teachers. The participant information sheet explained that 

participation was entirely voluntary and that the participant had a right to withdraw at 

any stage during the project (see Appendix B2). Upon meeting with the participants, 

the researcher reiterated the message that participation in the research project was 

entirely voluntary and reminded the participants that they may withdraw at any time 

before the end of the study and their data would be deleted (BERA, 2018). 

Further, consideration was also made for the balance of risk and harm (BERA, 

2018). For some participants being observed teaching may subject them to undue 

stress caused by the feeling of being watched. So informed consent was obtained 

before any audio/video recording of the interviews or the observations. The 

participants were also informed that they could opt for just audio without video if they 

felt comfortable with the video recording of their teaching.  
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Interviews, observations and all the data collection tools for this research inevitably 

have an ethical dimension and for that reason, information sheets and consent forms 

(Cohen et al., 2013) were prepared for the school gatekeepers, the participant 

teachers and parents (see Appendices B1, B2 & B3). Informed consent was 

obtained from all participants and their relevant gatekeepers, where necessary. 

Children under 16 were not the focus of the research. However, as the research 

involved observing teachers teaching A-level mathematics lessons, children aged 

16-18 were likely to be encountered and could be audio recorded. Students were 

asked for their verbal consent as a minimum. Although no such requests were made 

by the schools, any steps required by the school such as asking students’ parents’ 

permission would be taken. The information sheets and consent forms for parents 

were readily available and copies had been given to the gatekeepers. The 

researcher obtained a DBS check before going into schools and permission from the 

schools was obtained before audio-recording.  

In terms of confidentiality and data protection, the University of Leeds’ guidance on 

research ethics and BERA’s (2018) ethical guidelines for educational research, in 

accordance with the Data Protection Act (1998) was adhered to. Participants were 

informed that their data will be kept strictly confidential with the researcher and that 

any publications, reports, lectures or conference presentations given as a result of 

the research will have their data anonymised so that they will not be able to be 

identified individually. During the data collection, only information necessary for the 

research was collected, any data which refers to a subject by name was kept under 

lock and key, e.g. audio recordings, or in a password-protected folder on the 

researcher’s university secure M-drive for any electronic data. Any data recorded, 

transcribed or summarised from the originals were made anonymous by using a 

code number rather than the participant’s name. Only the researcher had access to 

the list of corresponding numbers and names.          

Two ethical review applications were made to the University of Leeds Research 

Ethics Committee. The first was made for the pilot study and clearance was 

successfully obtained from the University of Leeds Research Ethics Committee (see 

Appendix A1). The second application was made in preparation for the main Study. 

This application was almost a duplicate of the pilot study ethics review application, 

with a few adaptations to reflect on the sample size and dates for data collection. 

The application received a favourable ethical opinion and clearance was successfully 

obtained from the University of Leeds Research Ethics Committee (see Appendix 

A2). Any ethical issues arising from the research were addressed as informed by the 
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University of Leeds ethical guidelines and following the BERA’s (2018) ethical 

guidelines for educational research. 

4.7  Summary of the research design 

A methodological triangulation (Denzin, 2005) of the interviews with teachers and the 

observations of their lessons produced 12 audio files from the pre-teaching 

interviews and the post-lesson interviews, six video files from the elementary 

calculus lessons, plus a set of observation notes. See Table 4.2 for the data sets. 

Eight different teachers originally participated in this study (see Table 4.1). However, 

the data sets from two of the teachers were incomplete, and so were excluded from 

the analysis. Table 4.2 is a summary of the research design for the study, listing the 

research questions, the methods for data collection, the data sets, and the methods 

for data analysis (more in chapter 5). 

Table 4.2 The research design 

 

Chapter 4 has presented the research design covering the recruitment of 

participants, data collection methods and the ethical considerations for the study. 

Chapter 5 will present a detailed explanation of the methods for analysing the 

qualitative data. 
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Chapter 5   Qualitative data analysis 

5.1  Introduction 

The diversity of qualitative research means there is a diversity in approaches to 

qualitative data analysis and so to ensure scholarly rigour, the methods adopted for 

data analysis ought to be systematic, disciplined and transparent (Coffey and 

Atkinson, 1996). Data analysis for this qualitative study follows an interpretivist 

research approach. Thematic analysis, which is a widely used practical and flexible 

data analysis approach for qualitative research (Braun and Clarke, 2006; Kiger and 

Varpio, 2020) is adopted. The thematic analysis is undergirded by the 

epistemological assumptions of commognition (the theory of commognition) (Sfard, 

2008), which is the theoretical framework underpinning this study (see chapter 3). 

There are two main sections in this chapter. Section 5.2 explains this analytical 

approach, which I shall call commognitive thematic discourse analysis. Section 5.3 

presents and explains a five-stage, but an iterative process of thematic analysis 

(Braun and Clarke, 2006; Nowell et al., 2017) that was followed in this study. Further, 

there are also subsections explaining the inductive and deductive approach to 

creating themes, transcription and data excerpts, coding, reliability in coding and 

tables covering coding schemes, themes and exemplar excepts. Given the variety in 

approaches to qualitative data analysis, the methods applied should be explained 

and transparent to ensure rigour (Coffey and Atkinson, 1996).  

5.2  The analytical approach  

The data analysis approach created for this study combines commognitive (Sfard, 

2008; Kim et al., 2017) and thematic (Braun and Clarke, 2006; Nowell et al., 2017) 

analyses; thus a commognitive thematic discourse analysis. The analytical approach 

was applied to identify what the participants talk about, the object of their talk, and 

what they do with the objects of their talk. It was used to identify and create a set of 

themes from the research data and to identify narrative excerpts from within the 

data, as evidence for each theme. The term ‘theme’ in qualitative research refers to 

some significant patterned response or meaning within the data set in relation to a 

specific research question (Braun and Clarke, 2006). The commognitive thematic 

discourse analysis here describes an iterative thematic and a discursive approach to 

qualitative data analysis.  

Braun and Clarke (2006) define thematic analysis as a process for identifying, 

analysing, and reporting patterns or themes within data, and is a widely used method 

of data analysis in qualitative research. The beauty of thematic analysis as an 
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approach to qualitative research lies in its flexibility in application and autonomy from 

any specific research paradigm, which means that thematic analysis can be tailored 

to the aims, research questions and the conceptual framework of the study (Nowell 

et al., 2017). The thematic analysis could either be descriptive, at the semantic level, 

primarily involving identifying patterns and labelling the data; or interpretative, at the 

latent level, which is about making meaning from the data (Boyatzis, 1998; Thomas, 

2013).  

At the latent (interpretative) level, thematic analysis overlaps with discourse analysis 

(Potter and Wetherell, 2001) or rather, according to Braun and Clarke (2006),  

‘thematic discourse analysis… where broader assumptions, structures and/or 

meanings are theorised as underpinning what is actually articulated in the data’ 

(p.13). At the latent level, thematic analysis as applied to this study is underpinned 

by the epistemological assumptions of the commognitive framework (Sfard, 2008) 

(see Section 3.2 on page 42). The analysis involves identifying and examining the 

‘underlying ideas, assumptions, and conceptualisations [of the commognitive 

theoretical framework] – and ideologies - that are theorised as shaping or informing 

the semantic content of the data’ (Braun and Clarke, 2006, p.12). When analysing or 

interpreting verbal data, be it in speech or written forms, or behavioural data, it is 

very important to refer to the context, since the same phenomenon can be described 

in several different ways depending on context. Practically, data analysis at the 

interpretative level involved relating the general ideas of the commognitive 

theoretical framework (see Chapter 3 for more information on the theoretical 

framework for the study), the research questions (see Chapter 4, Section 4.2) and 

prior literature (see Chapter 2) to the text, to theorise the importance of the themes 

and their broader meanings, and implications (Patton, 1990). 

Mathematics is a discourse, i.e. a form of communication, which is characterised by 

its word use, visual mediators, endorsed narrative and routines (Sfard, 2008). Kim et 

al. (2017) argue that since the commognition theory encapsulates both cognition and 

communication, commognitive discourse analysis ‘can explain the relationship 

between interpersonal communication and the cognitive process and how teachers 

and students move towards a meaningful discourse through participation’ (p.448). 

For this study, the analysis is on the teachers’ pedagogical calculus discourse. Word 

use and endorsed narratives account for language-dependent elements in the 

mathematical pedagogical calculus discourse, whilst visual mediators in the 

discourse act as tools for communication. By analysing routines we can understand 

the participants (teachers) behaviours and actions and could get insights into their 

‘thinking that is not so much strictly related to language’ (Kim et al., 2017, p.452). 
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Commognitive discourse analysis is, therefore, useful in interpreting language and 

non-language elements of mathematical discourses, and in examining ‘how these 

two interact and become a discourse’ (Kim et al., 2017, p.452). It is important to point 

out that the analysis here, is not concerned with syntax, such as the grammatical 

arrangement of words and phrases in a sentence or the sequencing of sentences, 

but with the teachers’ pedagogical calculus discourse, e.g. the content of what is 

said. 

To ensure rigour, a systematic approach of constant comparisons at all stages in the 

analysis process is essential for developing concepts or themes in qualitative data 

(Punch, 2009). Thomas (2013) describes this iterative nature of the process of 

qualitative data analysis as a ‘constant comparative method’ (p.235). The data 

analysis processes were conducted iteratively, although the activities are presented 

in sequential stages in the process of the thematic analysis presented in Section 5.2. 

5.2.1  Deductive or inductive approach 

In thematic analysis, themes within data can be created through, either an inductive 

(bottom-up) approach or a deductive (top-down) theoretical approach (Boyatzis, 

1998) or both. The choice between inductive and deductive or ‘theoretical thematic’ 

(Braun and Clarke, 2006, p.11) analysis can be explained in terms of how and why 

one is coding the data. Inductive analysis is data-driven, and unlike deductive 

analysis, the process of coding does not seek to fit the data into pre-existing themes, 

nor the researcher’s analytic preconceptions (Braun and Clarke, 2006). In an 

inductive data coding and analysis, themes derive from the content of the data. 

Whereas in a deductive approach, the researcher comes with predetermined ideas, 

concepts or topics that they apply in coding and interpreting the data (Braun and 

Clarke, 2012). For example, coding data for a specific research question lends itself 

to a more deductive approach (Braun and Clarke, 2006). Note how deductive 

analysis is described as ‘theoretical’, for example, Boyatzis (1998) describes 

deductive analysis as a ‘theoretical approach’ and Braun and Clarke (2006) p.11) 

describes it as a ‘theoretical thematic’ (p.11) analysis.  

In this study, coding and analysis used a combination of inductive and deductive 

approaches. For a more comprehensive generation of codes and themes, initial 

coding in this study started inductively on a set of data (i.e. the interview and lesson 

data transcripts) from one participant teacher, T1. I started by coding data inductively 

so that what was mapped during the analysis would be closely matched to the 

content of the data (Braun and Clarke, 2012), thus prioritising participant/data-based 

meanings over theory-based meanings. Besides, such an open coding of the data 
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would allow for new ideas and themes (that could have been outside of my pre-

conceived ideas) to derive from the content of the data themselves (Braun and 

Clarke, 2012; Patton, 1990). However, researchers ‘cannot free themselves of their 

theoretical and epistemological commitments, and data are not coded in an 

epistemological vacuum’ (Braun and Clarke, 2006, p.11), and this is true for my 

study. Braun and Clarke (2012) further argue that ‘it is impossible to be purely 

inductive, as we always bring something to the data when we analyse it’ (p.3). It 

would be inevitable that data coding and analysis in this study were influenced, not 

only by my epistemological commitments and theoretical interest in calculus 

discourse but also, at least implicitly, by my professional experiences as a teacher of 

mathematics and as a mathematics teacher educator. 

Following the initial inductive coding and analysis of data, the approach to coding 

and analysing the rest of the data sets progressively became more deductive. As the 

data coding and analysis progressed, the codes generated from initial coding were 

subsequently applied to coding new data sets. During this deductive thematic 

analysis process, the coding process was predominantly driven by my (the 

researcher) theoretical and analytic interest in the topic, i.e. by the research 

questions and the conceptual framework for the study (Boyatzis, 1998; Braun and 

Clarke, 2006; Nowell et al., 2017). This explains the commognitive thematic 

analytical approach introduced in Section 5.2 above, which is the method applied for 

analysing the qualitative data in this study.  

Even when the approach to data coding and analysis was predominantly deductive, 

it was not confined to purely deductive means. Braun and Clarke (2012) argue that 

‘we rarely completely ignore the data themselves when we code for a particular 

theoretical construct – at the very least, we have to know whether or not it’s worth 

coding the data for that construct’ (p.3) (italics in original). In reality, ‘deductive and 

inductive approaches are not necessarily mutually exclusive’ (Campbell et al., 2013, 

p.314). This argument applies to my study, in which a combination of deductive and 

inductive approaches to data coding and analysis was applied in deconstructing the 

teachers’ pedagogical calculus discourse. See Section 5.3 below, for a more in-

depth explanation of the generation of the initial codes for this study and how the 

process then progressed.  

5.3  The thematic analysis process  

The process of analysing data for this study followed a stepwise procedure as 

described by Braun and Clarke (2006) but was undergirded by the commognitive 

theoretical framework (Sfard, 2008). Simply put, thematic analysis describes a 
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process for identifying, analysing, and reporting patterns or themes within qualitative 

data (Braun and Clarke, 2006; Nowell et al., 2017; Kiger and Varpio, 2020). A five-

stage process of thematic analysis is applied and explained in the following 

subsections: 

5.3.1 Familiarising with the data 

5.3.2 Generating initial codes 

5.3.3 Searching for and reviewing themes 

5.3.4 Defining and naming themes 

5.3.5 Producing the report 

The activities across all these process stages are interwoven streams interacting 

with one another, throughout the analysis process (Miles and Huberman, 1994). 

Thus, the process of thematic analysis here follows an iterative and recursive 

process. 

5.3.1  Familiarising with the data  

The first stage in the analysis process was data preparation, which involved 

transcribing the interviews and lesson observation data, from the audio and video 

recordings into text. There are six different sets of data included in this analysis as 

shown in Table 5.1. To anonymise the participants of the study, the data sets were 

given reference codes as shown in Table 5.1. For example, reference codes for 

participant teacher 1 (T1) are T1I(i), T1LO and T1I(ii), for the pre-teaching interview, 

lesson observation and post-teaching interview, respectively. Besides serving for 

anonymity, these reference codes are used for referencing excerpts in the findings 

and discussion chapters.  

Table 5.1  Data sets and codes  

  

The interview audio files and lesson video files were all manually transcribed into 

unstructured texts by the researcher. Sample transcripts of the interview data and 

lesson observation data are shown in the two tables below: Table 5.2 and Table 5.3, 
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respectively, taken from the early parts of the pre-teaching interview with T1 and the 

early part of the observed lesson, T1LO.  

Table 5.2  Pre-lesson interview transcript (T1) 

 

Table 5.3  Lesson video transcript from (T1) 
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For an explanation of the transcription and presentation of Table 5.2 and Table 5.3, 

see Section 5.3.1.1, below. 

5.3.1.1  Transcription and data excerpts 

The transcription could either be everything or selected phases or relevant sections 

of the interactions, focussing on the content of what is said, rather than the speech 

patterns of the interaction (Roulston, 2014) between teacher and student. For this 

study, transcription sought to capture all interactions, i.e. the whole interview audio 

files or the whole lesson observation video files for each data set. The transcription 

involved replaying and listening to the interview audio recordings and watching the 

lesson videos numerous times, noting down initial ideas, and transcribing the audio 

and video files into text.  

Transcribing all the interactions in a data file would take a lot more time than what 

would be required if selective transcribing had been adopted (Roulston, 2014). 

However, this was the best option because at the time the researcher had not yet 

decided on a deductive or inductive approach to data analysis, thus no a priori set of 

constructs or themes for data analysis had been yet created to inform the selection 

of what parts of the interactions or sequences could be transcribed. Transcribing 

everything meant that there would be some information transcribed that will not be 

used nor relevant for data analysis. 
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The original transcription sought to capture as many verbal and non-verbal 

interactions as possible (Roulston, 2014), thus verbatim transcription was used. 

However, for this study, not all features of the talk were deemed necessary, thus, not 

much attention was paid to capturing features such as speed of talking or tone of 

voice, pauses, intonation, or hedges. The main focus was primarily on capturing 

what was said and done – verbal and non-verbal communication.  For the sake of 

readability, intelligent transcription has been used for excerpts, thus standard UK 

written English conventions have been applied, for example, grammar and spelling 

conventions. Thus, unconventional spellings such as gonna or ‘cause in the original 

transcripts would appear as going to and because in the excerpts. Also, discourse 

markers or verbal ‘gap-fillers’ such as, like, you know, umm, uh have been excluded 

from the excerpts used in reporting the finding of the study.  

There is no one standard layout for transcripts. The layout for the interview data 

transcript and lesson observation data transcript are shown in Tables 5.2 and Table 

5.3 above. The transcript for the video data has a column to add visual data to the 

text, e.g. snapshots from the video and for possible observer commentary. The 

transcripts had big margins (especially on paper) on the right-hand side for coding 

purposes, for writing comments and labels for codes. All the transcripts are 

numbered in the left-hand margins, numbered by turn, and not by line. The 

participants’ utterances are numbered by turns. Against each numbered turn is an 

initial to indicate the type of the participant.  

Below are a few more points about the structure of the transcripts and the notation 

used in transcripts, that will most likely feature in the excerpts used in reporting and 

discussing the findings of the study.  

(…) words or part of the utterance left out. These are parts that do not, in my opinion, 

add value to the excerpt or parts of the data that are not relevant to the point under 

consideration, which could be not relevant to the theme under discussion. 

Missing numbered turns/utterances in excerpts - The original transcription was 

verbatim, thus the transcription sought to capture all that was said. In-text excerpts, 

therefore, might leave out some irrelevant texts or words, that will be shown by (…), 

or numbered turns or utterances that do not add value to the theme or point under 

consideration.  

/ is used to denote overlapping speech; when two discursants speak at the same 

time, or one interrupts the other speaker. 

[ ] commentary by the researcher, for example, to describe the participant’s action or 

gesturing by the participants or the context of the utterance. 

Excerpts are indented and font size is reduced by one. 
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Mathematical symbols – as far as possible in the excerpts, mathematical notation is 

used in utterances describing mathematical objects, e.g. 𝑦 =  𝑥2 is used instead of ‘y 

is equal to x squared’. 

The transcripts are numbered by turn. Thus, the size (or length) of the numbered 

utterances shall not be uniform. Some utterances could be a word to a few 

sentences, whereas other larger utterances could be a paragraph or two.   

5.3.1.2  Data excerpts and anonymised codes  

Following the ethical principles for participants’ privacy, respect and anonymity, no 

participants’ names have been used in reporting this study. Instead, the following 

anonymised code names have been used: 

I – Interviewer (the researcher was the only interviewer, and so ‘I’ appears only in the 

interview transcripts);  

T – Teacher (participant teacher and this appears in both interview and lesson 

transcripts); and 

 S – Student (this appears only in the lesson transcripts). Where a student's name is 

mentioned in the teacher’s utterances, it is anonymised in the transcripts with a 

random initial, for example, Sxxx or Pxxx. 

 Data sets have been coded for anonymity too. Every excerpt used as evidence in 

reporting or discussing the findings will have reference to the respective data set. For 

example, if an excerpt is taken from the data transcripts of participant teacher T3, it 

will be prefixed with one of the three data code references:  

T3I(i) – a reference to the pre-teaching interview with participant teacher T3; 

T3LO – reference to the lesson observation of participant teacher T3; or 

T3I(ii) – a reference to the post-teaching interview with participant teacher T3. 

See Table 5.1, which shows the data sets and their respective reference codes for 

all the participants. Although, there are several verbal data analysis programmes 

available for analysing qualitative data, often referred to as Computer Assisted 

Qualitative Data Analysis Software (CAQDAS), such as NVivo (Thomas 2013), data 

processing was done manually.  I believe by immersing oneself in data processing, 

the researcher is more likely to make better sense of the findings and, to engage in a 

more meaningful discussion of the findings.  

5.3.2  Generating the initial codes  

This is the onset of the ‘data reduction’ (Miles and Huberman, 1994, p.4) process in 

qualitative analysis, which involves the coding phenomena in the data in a 

systematic fashion, collating data relevant to each code (Braun and Clarke, 2006). 
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Data reduction is central to the data analysis process and runs throughout the 

analysis process; the main activity here is coding. Coding helps the researcher with 

noticing ideas of interest relevant to the study, and more specifically, to the research 

questions, and involves systematically organising data into categories by attaching 

tags, names, colours or marks, abbreviations, or labels – the codes – against pieces 

of data such as words, utterances, phrases, lines, sentences and paragraphs 

(Corbin and Strauss, 1990; Punch, 2009; Thomas, 2013).  

In literature, there are many different descriptions as well as illustrations of levels of 

coding and types of coding (Coffey and Atkinson, 1996; Miles and Huberman, 1994; 

Richards, 2014), but codes can typically be classified into two main types, the low 

inference descriptive codes and higher inference pattern codes. Miles and 

Huberman's (1994) descriptive codes and pattern codes generally equate to what 

Richards (2014) describes as topic codes and analytic codes, respectively. 

Descriptive codes, as Punch (2009) explains, are about identifying and labelling what 

is in the data, whilst pattern/analytic codes ‘go further, interpreting or interconnecting 

or conceptualising data’ (p.179). 

The process of generating initial codes was initially approached inductively using a 

set of data transcripts for one participant teacher, T1 despite my prior theoretical and 

epistemological assumptions. Although Braun and Clarke (2006) remind us that data 

cannot effectively be coded in an epistemological vacuum, other theorists such as 

Glaser and Strauss (1967) argue that analysing data inductively allows for new ideas 

and themes to emerge from the data. There was nothing to lose by starting 

inductively with open coding of data. Using data sets for T1, some words, utterances, 

phrases, sentences and paragraphs within the transcribed interview (audio) and 

lesson (video) data were systematically identified and labelled as initial codes.  

The open coding on T1’s data generated the initial descriptive codes and the initial 

coding scheme for the data analysis process; see Table 5.6 in Section 5.3.2.2 below. 

In Table 5.6 there are about 70 descriptive codes listed as nine sets of codes, shown 

in the columns of the table. This coding scheme was then applied to all the other 

participant teachers’ data, one by one, each time updating the coding scheme in the 

process until no more new or different codes could be found.  

The coding was done manually, although Microsoft Word operations were used for 

electronic colouring and labelling during the coding process. The identified text and 

pieces of data were highlighted with some coloured pens and labelling with code 

names in the right margins of the transcribed scripts but using both hard copies and 

electronic files of the transcripts. Identifying codes involved paying attention to the 

statements as well as the actions of the teacher, also considering the structure and 
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context of the teacher’s utterances and actions, as far as possible (Charmaz, 2003). 

It is important to consider the context, for when codes are grouped together, the 

meaning of the story for which they were initially said, could be lost.  

5.3.2.1  Reliability in coding 

Not all qualitative researchers use the term reliability or inter-coder reliability, 

instead, it is the concept of rigour that is considered more important in qualitative 

research (Merriam, 2009). One of the most authoritative sources in the field of 

qualitative research is the Sage Handbook of Qualitative Research (Denzin & 

Lincoln, 2011), which has 43 chapters. Syed and Nelson (2015), noticed that the 

word reliability or inter-rater agreement does not feature in its index; ‘so what, if 

anything, serves as the parallel concept to reliability for qualitative researchers?’ 

(p.16); it is scholarly rigour. Rigour is more important than inter-rater reliability 

measures in qualitative research, and it is a product of the researcher, the research 

context and the research process (Syed and Nelson, 2015). Reliability in coding 

does not necessarily constitute validity, where it is used, it is a necessary but 

insufficient consideration for validity.  

For this study, rigour derives from, according to Merriam (2009), ‘the researcher’s 

presence, the nature of the interaction between researcher and participants, the 

triangulation of data, the interpretation of perceptions and rich, thick descriptions’ 

(p.165). Putting rigour before inter-coder reliability measures, Syed and Nelson 

(2015, p.17) argue that: 

The researchers have a deep and intimate knowledge of their participants that 

goes far beyond the words on paper that tends to be the product of more 

quantitative approaches. From the standpoint of these researchers, this 

closeness is what allows for rigour in the interpretative methods and renders 

trivial the idea that a two-digit coefficient in the Method section as the ultimate 

sign of rigour. 

This is true for my research, which takes an interpretative approach to study the 

teachers’ pedagogical discourse on the derivative, through the lens of the 

commognitive theoretical framework.  

Regardless of some of the criticism against coding reliability checks, I wanted to 

know if my coding of data transcripts would generally be comparable or consistent, 

with my supervisors’ coding, at least. A check for inter-coder agreement (Campbell 

et al., 2013) was undertaken involving the primary researcher (me) and my two 

research supervisors. Any reliability in coding here should be seen as a subjective 

consensus between my two supervisors and I, and ‘not [as] an ultimate 
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decontextualised “truth” that exists outside of the data’ (Syed and Nelson, 2015, 

p.17).   

This process was repeated twice using different data transcripts. Appendix D1 shows 

the interview data transcript that was used for the coding reliability checking 

exercise. I (primary researcher) coded a selected section of the interview data and 

produced a list of codes shown in Table 5.4 Coding scheme 1, which were then 

shared with the other two coders (the supervisors) (see the coding schemes in 

Section 5.3.2.2 below). A different section of the interview data transcripts i.e. 

paragraphs 14 to 32 (see Appendix D1) was selected for this task and the coding of 

the transcript was completed by all three coders, but independently. Upon comparing 

and discussing the coding, we immediately noticed that we had made quite a few 

different interpretations and applications for some of the codes. There was, 

therefore, some ambiguity within some of these codes. The other coders did not 

quite understand what was represented by the codes because I had not defined or 

explained the codes to the other coders.  

A different transcript was identified i.e. paragraphs 33 to 46 (see Appendix D1) for 

the second coding reliability checking exercise. I (primary researcher) prepared a set 

of codes, as shown in Table 5.5 Coding scheme 2. This time I (the primary 

researcher) explained the codes to the other two coders, before all three coders 

coded the data transcript, independently. Although not quantitatively rated, the level 

of agreement in the coding of all the three coders was very high. There were, 

however, a few areas for further standardisation, that were then discussed and 

agreed upon by all the three coders. Accordingly, further revisions were then made 

to the coding scheme.  

The degree of agreement for the coding reliability check was not quantitatively rated. 

Aiming for and settling for coding consensus or agreement, rather than reliability 

coefficient or percentage measure is a more preferred approach for qualitative 

studies such as this purely qualitative research. An example is Park (2016), Park 

does not make a quantitative rating of reliability in her discursive analysis. Instead, to 

check reliability, Park (2016) asked someone familiar with her study to code a 

section of the data set. The two researchers then discussed the different codes until 

reaching an agreement on the coding system. 

5.3.2.2  The coding schemes 

Three tables, Table 5.4, Table 5.5 and Table 5.6 below, represent subsequent 

coding schemes developed through the data analysis process for the study. The 

iterative coding process through the data sets of the study and subsequent review 
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and updating of the coding schemes continued from Table 5.4 through to Table 5.5 

and resulted in Table 5.6, which is the main coding scheme for data analysis. These 

three tables are central to the explanation of the data analysis process for the study, 

and extensive reference is made to these tables across Sections 5.3.2 to 5.3.5.  

Table 5.4  Coding scheme 1  

 

Table 5.5  Coding scheme 2 

 

 

Table 5.6  Coding scheme for data analysis  
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Tables 5.4, 5.5 and 5.6 show the coding scheme at three different stages, in 

progression. The structure of the coding scheme comprises two levels of codes, the 

descriptive codes and the pattern (analytic) codes. The descriptive codes are those 

listed in the columns of the coding scheme tables. The pattern codes are listed 

across the coding scheme table, along the first row as headings to the vertical lists of 

descriptive codes. The number of descriptive codes rose three-fold, from 25 (in 

Table 5.4) to more than 70 (in Tables 5.6), as the coding process progressed 

through the data sets. There are more than 70 descriptive codes and less than 10 

pattern codes in the main coding scheme, Table 5.6. The structure of this coding 

scheme represents the data reduction process, whereby the initial descriptive codes 

are categorised into data concepts (the pattern codes), leading toward the 

formulation of data themes. 

During this coding process, through the three coding schemes (Tables 5.4, 5.5  and 

5.6) some notable amendments to the labels for the pattern codes were made, and 

these are explained in the ensuing sections. The pattern code teaching and learning 

processes (P) in the coding schemes Tables 5.4 and 5.5 was later renamed the -ing 

words in the coding scheme Table 5.6. The pattern code -ing words here is used to 

capture and denote the human action process in doing mathematics with artefacts 

that were observed during the teaching of the derivative, such as zooming, 

sketching, plotting and dragging. The -ing words is a construct borrowed from the ‘-
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ing curriculum’ devised by Monaghan (1997) for the action process in doing 

mathematics such as classifying, drawing, estimating and graphing. Note the 

contrast between this analytic code -ing words and descriptive codes or words such 

as investigating, demonstrating and questioning, which are separated from the -ing 

words code and assigned a new code, teaching approach (TA).  

As the coding process progressed, it became difficult and, more and more difficult to 

categorise some of the teacher’s utterances as reflective of the teacher’s knowledge 

or the teacher’s beliefs. The pattern codes, teacher knowledge (TK) and teacher 

beliefs (TB) in coding schemes Tables 5.4 and 5.5 were later revised and collectively 

categorised as belief statements (BS) in the coding scheme Table 5.6. The belief 

statements (BS) analytic code here, encompasses the self-identity and belief 

statements about teacher knowledge and beliefs.  

What teachers believe about their work has long been a focus of research in 

mathematics education and social studies. To understand teachers’ beliefs, Pajares 

(1992) argues that researchers must first decide ‘what they wish belief to mean and 

how this meaning will differ from that of similar constructs’ (p.308). Similar 

conceptions such as knowledge, understanding, preferences, meanings, and 

perspectives could easily be interpreted as teachers’ beliefs. Other researchers have 

also conceptualised teachers’ beliefs as a ‘system of beliefs’ (Eisenhart et al.,1988; 

Pajares, 1992; Leatham, 2006; Lazim and Abu Osman, 2008).  Research on 

teachers’ beliefs has shown that there are often inconsistencies among what is 

termed teachers’ beliefs as well as inconsistencies between the teachers’ beliefs and 

their actions (Leatham, 2006). Leatham (2006) further argues that it is often very 

difficult for teachers to articulate their beliefs and that researchers’ interpretations of 

those teachers’ beliefs are often problematic. In the coding process, it became 

almost impossible to judge or establish the individual teachers’ beliefs about 

teaching differential calculus; hence pattern/analytic code belief statements(BS) was 

preferred over teacher beliefs. 

The primary aim of this study is to investigate how teachers teach elementary 

calculus, not necessarily to study teachers’ beliefs. However, it is inevitable in such a 

study, that beliefs must be inferred. Rokeach (1968) cited in Pajares (1992, p.315) 

suggested that inference to teachers’ beliefs should consider how the evidence of 

the beliefs is presented: ‘belief statements, intentionality to behave in a predisposed 

manner, and behaviour related to the belief in question’. This suggests that 

inferences to one’s beliefs can be made from one’s statements. This study assumes 

a broad conceptualisation of what constitutes teachers’ beliefs, as such, any 
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inference to what teachers say about their teaching of mathematics and calculus is 

simply coded as teacher’s belief statements, rather than teacher’s beliefs. 

Another pattern code that changed from the coding of Table 5.4 and 5.5 was 

curriculum school context (CC), which became the curriculum and assessment (CA) 

pattern/analytical code in the coding scheme of Table 5.6. The CA pattern code 

describes factors such as examinations, testing, curriculum changes, attainment 

levels and other school factors.  

Some pattern codes did not change through the coding process, such as the 

mediational tools and resources (MT), mathematical representations (MR) and Time 

codes; they remained the same over the three coding schemes. The mediational 

tools and resources (MT) pattern code, is used to denote artefacts, including digital 

artefacts whilst the mathematical representations (MR) pattern code describes visual 

mediators and types of mediation including geometric graphical, algebraic symbolic 

and numeric representations in the teachers’ pedagogical calculus discourse. The 

Time code relates to time constraints. During the coding and analysis process, any 

codes that could not be classified under any of these eight pattern codes, for 

example, age, history and affect, were classified under the miscellaneous code (See 

Table 5.6). 

The coding process continued iteratively and concurrently with the data analysis 

process until any subsequent coding of the data sets did not reveal nor add any 

more pattern codes beyond the nine in Table 5.6 coding scheme. At that point, the 

search for the main themes followed whereby the coding process then predominantly 

progressed from the descriptive open coding phase to an interpretative one, which 

involved interconnecting and conceptualising the data. 

5.3.3  Searching for and reviewing themes  

The coding scheme quickly developed into a dynamic document as the coding 

process continued iteratively, reviewing the codes and emerging themes against the 

data. Each iteration introduced some amendments, reassigning and re-

categorisations of some of the codes to the various emerging themes.  Nonetheless, 

the search for themes happened concurrently with the generation of initial codes, as 

explained in the preceding Section 5.3.2. This can be seen in the design of the 

coding scheme, with its pattern (analytic) codes outlined in the first row and the 

description codes listed in the columns. This design is similar to what Syed and 

Nelson (2015) describe as hierarchical coding schemes, ‘in which microcodes 

[description codes] are nested within macrocodes [pattern codes]’ (p.8). These 

patterns codes generated the preliminary themes for the coding system    
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Although the set of initial descriptive codes were inductively generated, the search 

for themes and the identification and naming of the nine themes were informed by 

the theoretical framework for study – the commognitive framework theoretical, the 

existing literature, and the research questions for the study. The initial broad 

classifications of pattern codes in the first row of the coding scheme Table 5.6: the 

mathematical terminology & notation, mathematical representations, mediational 

tools and resources, teaching approach and curriculum and assessment are 

informed by the researcher’s conceptualisation of research questions of the study. 

Therefore, this study adopted a ‘theoretically-driven inductive approach’ (Syed and 

Nelson, 2015, p.7) for the coding process and the development of a dynamic working 

coding scheme. Some studies have used a similar approach to develop a coding 

system, for example, in Syed et al. (2011) after inductively generating a large list of 

initial codes, the researchers then ‘searched for themes in the codes informed by the 

existing literature on the topic’ (Syed and Nelson, 2015, p.7).  

Unlike the initial open coding which breaks up data into concepts and categories, the 

reviewing of themes stage combines the data back together by eliminating 

repetitions and similarities, in a repeated and iterative process. The pattern codes, in 

the first row of the coding scheme Table 5.6 were reviewed for possible similarities 

or repetitions, and then collated into potential themes, gathering all data relevant to 

each potential theme (Braun and Clarke, 2006). The pattern codes of the coding 

scheme Table 5.6 were collated into six potential themes for the study, namely,  

language, symbolism, artefacts, representations, routines,  and the ‘why’ factors, 

displayed in Figure 5.1 thematic map. The thematic map (Figure 5.1) gives a 

graphical display of how these preliminary themes are linked and connected. 

An important decision any researcher must make in the development coding scheme 

is the number of codes or themes to be used. A large number could allow for more 

complexity but at the expense of reliability (Syed and Nelson, 2015). According to 

Campbell et al.(2013), there is no one standard way of deciding on the number of 

codes or themes. Syed and Nelson (2015) describe the process of developing a 

coding scheme as an act of ‘balancing of parsimony and nuance’(p.8). What matters 

more is the reliability and usefulness of the data. For this study, a set of anything 
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between five and ten overarching themes was considered appropriate, manageable 

and useful, given the scope of the study.  

 

Figure 5.1  Thematic map 

The thematic map in Figure 5.1 was borne out of the working coding scheme of 

Table 5.6. The mathematical terminology and notation (MTN) pattern code resulted 

in the creation of two separate categories, the language theme and the symbolism 

theme. The mediational tools and resources (MT) code became the artefacts theme 

and the mathematical representations (MR) code was simply reframed as the theme 

of the representation. What was previously coded teaching approach (TA) and -ing 

words were now collectively termed the pedagogies theme; and finally, the belief 

statements (BS) code, curriculum and assessment (CA) code, the time code and 

miscellaneous codes were all grouped to constitute the ‘why’ factors theme. 

As the data analysis process continued iteratively, the themes (coding categories) of 

Figure 5.1 were subsequently applied back in coding the original data sets ‘to ensure 

appropriate specificity and accuracy, which [would] lead to refinement of the 

categories [themes]’ (Syed and Nelson, 2015, p.8). This iterative approach to coding 

and data analysis is what Thomas (2013, p.235) described as a ‘constant 

comparative method’. It allowed for a systematic and constant making of 

comparisons across the codes, themes and between different levels of data analysis 

(Punch, 2009) and the refining of data continued beyond the generation of the six 

preliminary themes in Figure 5.1. 
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5.3.4  Defining and naming themes  

The review of preliminary themes as described in Section 5.3.3 above, was then 

aligned more closely to the general ideas, terminology and descriptions of the 

commognitive theoretical framework (Sfard, 2008) and the research questions for the 

study. There are three main research questions, which I shall repeat here to remind 

the reader. In teaching elementary differential calculus: 

RQ.1 What word types and narratives do teachers use and why?   

RQ.2 What visual mediators do teachers use and why? 

RQ.3 What mathematical and pedagogical routines do teachers use and 

how?  

As mentioned earlier in this chapter, the qualitative analysis for this study combines 

thematic analysis (Braun and Clarke, 2006; Nowell et al., 2017) and commognitive 

discourse analysis (Sfard, 2008; Kim et al., 2017), thus a combination of a thematic 

phase and a discursive phase. Whilst the thematic phase helped with identifying 

what the participants talked about, and the object of their talk, the discursive phase 

informed by the commognitive interpretive framework (Sfard, 2008) helped to 

deconstruct what the participant teachers did with the objects of their talk. These two 

analytic processes were conducted iteratively.  

At this stage, the commognitive constructs (i.e. word use, visual mediators, 

narratives and routines) (Sfard, 2008) were then added to the coding scheme that 

had so far been generated through the preceding stages of the thematic analysis 

process, as shown in the overarching themes of Table 5.7. Analysis of the teachers’ 

pedagogical calculus discourse on the derivative focuses on the words and visual 

mediators, routine and endorsed narratives of its processes. The description of the 

themes in the third column in Table 5.7 is a commognitive characterisation of the 

respective overarching themes for the analysis system. The description, here, 

derives from the commognitive constructs of the commognitive theoretical 

framework. Refer to Chapter 3 for a more in-depth explanation of the commognitive 

theoretical framework for this study. Note that these overarching themes in Table 5.7 

are an elaboration of the thematic map of Figure 5.1.  

The processes of searching, reviewing and defining themes involved developing and 

naming the main categories/themes and their sub-categories/themes, which resulted 

in six overarching themes presented in Table 5.7 below. The overarching themes 

have been reconfigured from the analytic/pattern codes of the Table 5.6 coding 

scheme. Likewise, the subthemes resulted from the reconfiguration of the descriptive 

codes of the Table 5.6 coding scheme, which involved selecting and re-categorising 
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codes from the coding scheme. Thus, refining ‘the specifics of each theme, and the 

overall story the analysis tells, [in order to] generate clear definitions and names for 

each theme’ (Braun and Clarke, 2006, p.35).  

Table 5.7  The overarching themes  

  

Together with their respective sub-themes, these six overarching themes represent 

the ultimate coding system that was then applied, deductively, in analysing the data 

transcripts for all the participant teachers in this study. According to Ryan and 

Bernard (2000);  Braun and Clarke (2006); Campbell et al. (2013), a  good coding 

scheme should include a description of each theme, a description of the inclusion 

and exclusion criteria for that theme, as well as exemplars of excerpts or of units 

coded as that theme. A description of each of the themes in Table 5.7 above, is 

given in Table 5.8 below. For illustrative exemplars of units or excerpts identifiable 

with each of the themes, see Table 5.9 below. The list of exemplar excerpts 

presented in Table 5.9 is not exhaustive, but illustrative of the data units for each of 

the themes.  
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Table 5.8  Describing the themes  

Overarching 

Themes 
Description of the themes Sub-themes 

Mathematical 
language for 
calculus teaching  

Word use; Narratives 

Mathematical language for calculus teaching resulted from the MTN group 
of codes. This theme applies to RQ1 and represents common and as well as 
specialised terminology used by the teachers in teaching differential calculus.  
Alternatively, it describes the commognitive constructs of word use and 
narratives in the teachers’ pedagogical calculus discourse. The theme has 
sub-themes that relate to calculus word use (both colloquial and literate 
discourse) and narratives (both object-level and meta-level narratives). 
Examples include words such as tangent, gradient, the instantaneous rate of 
change,  ‘gradient of a curve’, gradient function and the utterance ‘getting 
closer and closer’.  

Calculus terminology; 

The ‘gradient of a curve’; 
tangent; 

The ‘gradient’ and 
gradient function; 

The utterance ‘getting 
closer and closer’ 

Symbolism in 
calculus teaching 

Visual mediators 

Symbolism in calculus teaching also derives from the MTN group of codes 
because the MTN code captured the mathematical symbolism used in 
calculus discourse. The theme relates to RQ2 which is about visual mediators 
in the teachers’ pedagogical calculus discourse. Mathematical notation in 
calculus is a form of algebraic mediation and calculus symbols are visual 
mediators according to the commognitive conceptual framework. Examples of 

calculus symbolism include the Leibnitz notation – 
𝑑𝑦

𝑑𝑥
; Lagrange’s notation – 

𝑓′(𝑥). 

Calculus symbolism 

[Leibnitz notation – 
𝑑𝑦

𝑑𝑥
; 

Lagrange’s notation – 

𝑓’(𝑥)] 

Mathematical 
artefacts for 
calculus teaching 

Visual mediators 

Mathematical artefacts for calculus teaching stems from the MT code and 
relates, but not exclusively, to RQ2 and represents the visual mediator, for 
example, iconic graphical representations of functions and digital artefacts. 
This theme also relates to RQ3, which seeks to explain how teachers use 
mathematical artefacts in teaching differential calculus. This theme focuses 
mainly on digital artefacts or digital technologies used in calculus teaching 

Digital artefacts; 

 

Dynamic imagery 
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such as dynamic imagery. Digital artefacts refer to digital technologies used in 
calculus teaching such as dynamic imagery tools. 

Mathematical 
representations in 

calculus teaching  

Visual mediators 

Mathematical representations in calculus teaching result from the MR 
code and relates to RQ2, which specifically seeks to find out about the 
graphical, symbolic and numerical mathematical representations used by 
teachers in teaching differential calculus. In terms of the commognitive 
framework, this theme relates to visual mediators. The theme has three sub-
themes, and these are described as: Algebraic mediation for the gradient at 
any point on a curve refers to symbolic mediation. Graphical and dynamic 
mediation refers to both static and dynamic graphical imagery. Multiple 
representations refer to the use of more than one form of mediation and the 

shifts between forms of mediation. 

Algebraic mediation  

 

Graphical mediation  

  

Multiple representations 

Pedagogies on 

the derivative 
Routines 

Pedagogies on the derivative comes from the TA and –ing codes and 
relates to RQ3, which seeks to explain the type of words and the narratives as 
well as the visual mediators in the teachers’ pedagogical discourse in calculus 
teaching. In terms of the commognitive framework, this theme relates to 
mathematical and didactical routines in the teachers’ pedagogical calculus 
discourse. The theme has three sub-themes, and these are described as: 
Approximating (estimating) gradients by drawing tangents pertains to the use 
of tangents and curved graphs. 

Approximating (estimating) the derivative of a curve at a point, by using 
chords and tangents refers to using a secant line, or chord to estimate the 
gradient of a tangent at a given point on a curved graph. 

From approximating gradients to differentiation refers to explanations or 
illustrations that link calculating gradients to a curved graph at given points in 
the process of differentiation. 

Approximating gradients 

by drawing tangents; 

 

Approximating the 
derivative of a curve at a 
point, by using secant 
and tangent lines; 

 

From approximating 
gradients to 
differentiation. 

 

The ‘why’ factors The ‘why’ factors combines the BS, CA & Time codes and defines the 
determinants of the language, artefacts and representations teachers use for 

Teacher’s belief 
statements (self-identity); 
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calculus teaching. This theme applies to all three research questions.  The 
theme has three sub-themes, and these are: 

Teacher’s belief statements (self-identity) describes what could be thought of 
teachers’ beliefs. However, the use of ‘belief statements’ is a more 
appropriate way of representing the teachers’ statements about their beliefs.  

Time constraints refers to aspects of time for teaching and learning calculus. 

Curriculum and assessment issues refers to any factors related to the school, 
curriculum and examinations or assessment-related issues.  

This theme applies to all three research questions.  The theme describes the 
teacher’s belief statements (self-identity), which could be thought of as 
teachers’ beliefs. It is very difficult to read what teachers say as representing 
their beliefs. It is, therefore, more appropriate to refer to statements of what 
teachers say about their beliefs., as ‘belief statements’. Time constraints 
refers to aspects of time for teaching and learning calculus. Curriculum and 
assessment issues refers to any factors related to the school, curriculum and 
examinations or assessment-related issues. 

 

 

Time constraints; 

 

Curriculum and 
assessment issues 

 
 
 
 



- 100 - 

Table 5.9  Exemplar excerpts for the themes  
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To sum up this section, the process of data analysis progressed from the descriptive to the interpretative level; the latter of which 

sought to theorise the importance of the themes and their broader meanings, and implications in relation to the research questions, 

the commognitive theoretical framework and prior literature (Patton, 1990).  
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5.3.5  Producing the report  

According to Miles and Huberman (1994), this is the ‘drawing conclusions’ 

(p.4) stage, which Roulston (2014) refers to as the ‘interpreting and writing 

up findings’(p.305) phase. In this phase, explains Roulston (2014, p.305),  

Researchers consider assertions and propositions in light of prior research 

and theory in order to develop arguments. Researchers develop stories that 

convey the main ideas developed in data analysis and present data 

excerpts or stories to support assertions. 

The final stage of the data analysis involves selecting ‘vivid and compelling 

extract examples’ (Braun and Clarke, 2006, p.35), i.e. excerpts from the 

transcribed text for each theme. The selected excerpts were interpreted and 

analysed in light of the study’s research questions; the commognitive 

theoretical framework (Sfard, 2008) and existing research literature. This 

‘final opportunity for analysis’ (Braun and Clarke, 2006, p.35) is presented as 

a scholarly report of the analysis of the data in the findings in Chapters 6 to 

8.  

Although this is presented as the final stage of the data analysis process, in 

practice, it happens concurrently with the other stages of analysis. In these 

stages, data analysis activities are interwoven streams that interact with one 

another throughout the analysis process (Roulston, 2014; Punch, 2009). Up 

to this stage, it was necessary to treat the six themes of Table 5.7 (See 

section 5.3.4 on page 94) separately for coding purposes. At this final stage, 

the themes were then regrouped to correspond with each of the research 

questions of the study as shown in Table 5.10 below, which gives an 

overview of the respective research questions and themes, sub-themes and 

the respective findings chapters for this study. 

Table 5.10  Research questions, themes and linked chapters  

Research 
Questions  

Overarching 
Themes 

Sub-themes Findings 

In teaching 
differential 
calculus: 

RQ.1  

What word types 
and narratives 
do teachers use 
and why?  

Mathematical 
language for 
calculus 
teaching. 

 

Tangent and instantaneous 
rate of change 

The ‘gradient of a curve’; 

 ‘Gradient’ and gradient 
function; 

The utterance: ‘getting closer 
and closer’ 

Presented and 
discussed in 
Chapter 6. 
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RQ2.  

What visual 
mediators do 
teachers use 
and why? 

 

Symbolism and 
visual 
mediators for 
calculus 
teaching 

 

Calculus symbolism [Leibnitz 

notation – 
𝑑𝑦

𝑑𝑥
; Lagrange’s 

notation – 𝑓’(𝑥)] 

Algebraic, numeric and 
graphical mediation 

Digital artefacts and dynamic 
imagery  

Visual mediators and multiple 
representations 

Presented and 
discussed in 
Chapter 7. 

RQ3.  

What 
mathematical 
and pedagogical 
routines do 
teachers use 
and how?  

Pedagogies on 
the derivative 

Approximating gradients by 
drawing tangents; 

Approximating derivative at a 
given point of a curve, by using 
secant and tangent lines;  

From approximating gradients 
to differentiation. 

Presented and 
discussed in 
Chapter 8. 

RQs 1, 2 & 3  

The ‘Why’ 
question. 

The ‘why’ 
factors. 

Teacher’s belief statements 
(self-identity); Time constraints; 
Curriculum and assessment 
issues. 

Presented and 
discussed 
across all the 
findings 
chapters.  

5.4  Conclusion 

For reporting the findings in line with the research questions of the study the 

six themes from Table 5.7 (See Section 5.3.4 on page 94) were further 

regrouped into four overarching themes as described and shown in Table 

5.10 above. The findings under each of the first three overarching themes 

will be presented in the next three chapters; the ‘why’ factors are presented 

and discussed across all the findings chapters.  

In the following three findings chapters, evidence illustrative of each of the 

main overarching themes is presented and examined further, relative to the 

commognitive framework and the research questions of the study. A range 

of methods to represent data is used as evidence to support the findings, 

including brief quotations and excerpts from interview and lesson 

observation transcripts, descriptions, ‘diagrams and visual representations of 

key concepts; and narratives that represent participants' experiences and 

perspectives’ (Roulston, 2014, p.305). The excerpts in the findings Chapters 

6, 7 and 8 will present lived experiences of the participants, along with an in-

depth analysis of those excerpts, making a critical appraisal of the findings. 

The next three chapters report the findings of the study by telling stories 

about the participant teachers’ pedagogical calculus discourse.  
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Chapter 6   Mathematical language for calculus teaching 

6.1  Introduction  

This chapter is the first of three chapters reporting the findings of this study, 

which are henceforth presented according to the overarching themes of the 

research, namely: Mathematical language for calculus teaching (Chapter 6); 

Symbolism and visual mediators for calculus teaching (Chapter 7); and 

Pedagogies on the derivative (Chapter 8).  

This chapter will present evidence for and discuss the findings of the 

research under the mathematical language for calculus teaching theme (see 

Table 5.7 for the overarching themes). Undergirded by the commognitive 

theoretical framework, this chapter will report on, and discuss the word use 

or specialised mathematical terminology and endorsed narratives in the 

teachers’ calculus discourse, as well as ordinary words used in everyday 

communication, but with special and specific meanings in mathematics that 

were used by teachers in teaching calculus. Word use and visual mediators 

are the tools with which the participants of the discourse ‘identify the object 

of their talk and coordinate their communication’ (Sfard, 2008, p.145). I will 

report on visual mediators in Chapter 7. 

The excerpts presented for each subtheme in this chapter come from the 

participants’ data transcripts from both the interviews with teachers and the 

lesson observations on elementary differential calculus. The evidence is 

drawn from all the participant teachers of the study. For each subtheme, the 

coding process identified several excerpts from across the participants’ data 

sets. The excerpts presented and discussed for each subtheme are 

representative and should be seen as illustrative evidence for the findings 

presented. 

Chapter 6 will present and discuss the findings that address the first 

research question: 

 

Calculus discourse is characterised by many specialised mathematical 

words. Focusing on word use (Sfard, 2008) in the teacher’s utterances 

allows for an analysis of what was said against the intended meaning. In 

their introductory lessons on differential calculus, teachers in this study used 

many calculus words, including tangent, the instantaneous rate of change, 

In teaching differential calculus, what word types and narratives do 

teachers use and why?   
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gradient (slope), derivative, gradient formula, gradient function, differential 

and differentiation in describing and explaining the derivative at a point and 

the derived function, 𝑓’(𝑥) of a function 𝑓(𝑥). The evidence in Sections 6.2 

and 6.3 show that there exists some inconsistency in how some calculus 

words, for example, gradient, tangent and slope, are used in teaching 

differential calculus. This study found evidence of ambiguity with the use of 

some calculus keywords in the participant teachers’ pedagogical calculus 

discourse on elementary differential calculus.   

What follows are four subsections covering the following sub-themes, 

namely:  tangent and instantaneous rate of change; gradient and ‘gradient of 

a curve’; and the utterance ‘getting closer and closer’. This will be followed 

by a discussion on the findings and a chapter summary.   

6.2  Tangent and ‘instantaneous rate of change’  

This section presents evidence of the teachers’ use of specialised calculus 

words. The evidence indicates some inconsistencies in word use in the 

teachers’ differential calculus discourse. For example, there are three 

different excerpts presented on the teachers’ use of the word tangent and a 

further two different excerpts are presented on the instantaneous rate of 

change to illustrate the finding. The other commonly used words were 

gradient, differentiation, calculus and utterances such as constant gradient 

and gradient function, The words ‘tangent’ and ‘gradient’ were central in all 

the introductions to differential calculus lessons, and special coverage on 

gradient and the utterance ‘gradient of a curve’ is presented in Section 6.2.   

There were different definitions and descriptions for the tangent to a curve in 

the teachers’ differential calculus discourse, and to illustrate the variation, 

three excerpts from different lessons [T5LO], [T1LO] and [T2LO] are 

presented here. T5 talks about a ‘tangent’ as going through a point, whilst T1 

talks about ‘instantaneous direction’ as the ‘tangent’ of the curve, whereas 

T2 talks about the ‘gradient of a tangent’ as the ‘gradient’ of the curve. 

The first is an excerpt from T5, which illustrates the construction of the 

definition for ‘tangent’, T5LO: 

166.T. A tangent, fantastic.  Just remind us, what a tangent is? 

169.S. Straight 

170.T. Straight! Thank you. Yes important, but people might not realise exactly how 

important.  A tangent is a straight line going through… 

171.S. that point. 
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172.T. Anywhere else?  No.  That point and that point only.  Touching the curve 
only once okay.  If I can very accurately draw that line, I can find the 
gradient on it and that will work absolutely perfectly.   

The teacher acknowledges the fact that a tangent is a straight line. However, 

the teacher’s utterances that ‘A tangent is a straight line going 

through…’[170] and ‘Touching the curve only once’[172] could imply or 

possibly be interpreted to mean that a tangent crosses the graph at the point 

of intersection. However, drawing a tangent at this moment gives an 

illustration of the ‘touching’ of the curve. Nonetheless, as much as it is 

important to pay attention to what is being said, it is also important to 

consider what is not being said; as can be drawn from the excerpt above.  

The second excerpt comes from [T1LO] and the teacher here is using the 

words ‘tangent’ and direction’ in describing ‘gradient’. Using the graph of the 

function 𝑦 = 𝑥2, T1 talks about the tangent. In [20] - [25] the T1 is defining 

and explaining ‘tangent’ by illustrating its key properties with the aid of a 

graph of the function  𝑦 = 𝑥2. [T1LO] 

20. T. Is there anywhere on that curve where you definitely, already know its 
gradient?  

21. S. 𝑥 − 𝑎𝑥𝑖𝑠. 

 

Figure 6.1  A sketch diagram for the graph of 𝐲 = 𝐱𝟐 

 
22.T. Good, would you all accept that the x-axis is a tangent to the curve? What is 

the gradient of the 𝑥 − 𝑎𝑥𝑖𝑠?  
23.S. Zero. 
24.T. Zero. A tangent, you did this in mechanics, is sort of the direction in which 

you are instantaneously travelling. 
25.T The direction in which you're going there [Teacher pointing at the graph on 

the board] is the instantaneous direction, the tangent of the curve.  

‘Instantaneous direction’ [25] is described here as ‘the tangent of the curve’ 

[25].  This observation is consistent with the teacher’s word use from the 
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pre-lesson interview. I asked T1 about how he was going to approach the 

lesson, and he said: [T1I(i)] 

38.T. Well, today I am going to ask them what we mean by the gradient of a curve 
[…] but what do we mean by gradient? And I will ask them, you know, what 
do you think the gradient is there? I'm hoping someone will tell me, urr it's 

the tangent, and I will say Ok. 

‘‘… urr it's the tangent, …’ [38]. Does this mean that the tangent is the 

gradient, one may ask. In literate mathematical discourse, the slope of the 

tangent describes the gradient at a given point on a curve. There are two 

mathematical objects of instruction here, i.e. ‘direction’ and ‘tangent’, and 

‘direction’ describes the slope of the tangent, rather than ‘tangent’. 

In contrast to [T1LO] description of tangent above, consider an example 

from [T2LO] with regards to the words, ‘tangent’ and ‘gradient’.  

40. T. So, we’re kind of confident we can draw on a tangent.  And maybe, 
especially because we’re on a graph plotter we could find out the equation, 
the gradient of this tangent which would give us the gradient at a point.  Do 
we agree with that so far?   

41. S. Yeah.   

What is described as ‘direction’ in [T1LO, 25], describes ‘the gradient’ of the 

tangent, instead. Thus, the utterance ‘the tangent of the curve’ [T1LO, 25], is 

inconsistent with the literate mathematical discourse, such as the utterance 

that ‘the gradient of this tangent which would give us the gradient at a point’ 

[T2LO, 40].  

There were some inconsistencies in word use with ‘instantaneous rate of 

change’ in introducing differential calculus. Two exemplar excerpts are given 

here to illustrate this finding. In the lesson [T1LO] shown above, the teacher 

talks of ‘instantaneous direction’ [25] in describing the tangent to a curve at a 

given point on the curve. In [T3LO], however, the teacher talks about ‘rates 

of change’ and describes differentiation to be ‘about the instantaneous rate 

of change, at that instant’ [328]. The teacher used an example of real-life 

situations to explain differentiation, by playing a video showing aspects of 

the history of calculus about the founders of calculus (Newton and Leibniz) 

and the 100m world record holder, Usain Bolt.  See Figure 6.2 for the video 

[T3LO]. 

326.T. Now I just want to play you a minute of this just to give you a little overview.  
If you want to, by all means, you can go on to YouTube and watch the whole 
thing, but these are three people who are very relevant to what we’re doing 
today. [https://www.youtube.com/watch?v=EKvHQc3QEow].   

https://www.youtube.com/watch?v=EKvHQc3QEow
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Figure 6.2  The founders of calculus 

328.T. But just, that gives you a feel for what we are doing.  Hxxx asked me what’s 
the point in this.  Why, what is differentiation about?  It is about 
instantaneous rates of change, at that instant.  So, for Usain Bolt how fast is 
he going at that moment, maybe as he crosses the finishing line?  Not 
necessarily just over the whole race, but at each instant. 

So obviously on a curve, we have instantaneous rates of change, that is 
what we’re dealing with when we’re working with differentiation. Now in the 
next lesson, I’m going to take you further into the algebra side of it, but 
hopefully, this has given you an overview of what differentiation is about and 

an introduction to differentiation.    

The teacher in [T3LO] links ‘differentiation’, ‘instantaneous rate of change’ 

and curved line graphs and describes the connection as ‘an overview of 

what differentiation is about and an introduction to differentiation’ [328]. The 

teacher’s utterance here ‘So obviously on a curve we have… instantaneous 

rates [my italics] of change, that is what we’re dealing with when we’re 

working with differentiation’[328] implies that there are ‘rates’ of change on a 

curve, unlike on a straight line, where there is a rate of change.  

Teachers used the word calculus freely but did not define it. This is 

exemplified in the excerpt [T3LO] below. When the teacher [T3] said “Hxxx 

asked me what’s the point in this. Why, what is differentiation about?” [328], 

she was referring to an earlier dialogue with a student during the lesson. In 

this dialogue, a student asks the teacher why they were learning about 

gradients [T3LO]:   

203.S. Why are we doing this?  Like why do we need to do this?  Why do/ 
204.T. Why do we do this topic? 
205.S. Yeah. 
206.T. Calculus is a really important part of maths.  You can use it in so many 

different ways.  Rates of change, so you can look at people’s speeds and 
accelerations when they’re running.  You can look at rates of change in 
biology when bacteria are growing.  There are lots of different applications. 
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Notice that the student described it as ‘this’ [203]. It was the teacher who 

then described ‘this’ to refer to the topic. This suggests the student’s 

unfamiliarity with the name of the topic, let alone calculus terminology. 

Calculus is explained as important for calculating rates of changes such as 

speed and acceleration and bacteria growth in biological studies [206]. The 

examples given in [T3LO] above describe differential calculus. Calculus as 

explained here [206] suggests differential calculus. The term calculus 

appears in the teacher’s utterance [206] was not defined. This was a 

common occurrence in most lessons observed, in which the term calculus 

was used. This example shows how the students’ initial experience with 

calculus here, could be seen as synonymous with differentiation.   

6.3  ‘Gradient’ and ‘gradient of a curve’   

The word ‘gradient’ was at the core of each lesson, but there are observable 

differences in how different teachers used this term, and to illustrate the 

differences in the teachers’ word use on ‘gradient’ and ‘gradient of a curve’, 

three excerpts from two different lessons, [T1LO] and [T4LO], will be 

examined. A further five excerpts from four different teachers, [T3LO], 

[T2LO], [T5LO] and [T4I(ii)], will be examined to illustrate the different 

(including some inconsistent) ways in which the words ‘constant gradient’ 

and ‘changing gradients’ were used by the teachers.   

The ‘gradient of a curve’, what could that possibly mean? Let us examine 

these (given below) three excerpts from two different lessons, by two 

different teachers, in which both teachers are introducing differentiation. T1 

in [T1LO] writes on the board ‘The gradient of a curve’ as the title of the 

lesson, see Figure 6.3 below. Whereas T4 in [T4LO] writes (and asks the 

students to write in their books) ‘Differentiation’ as the title for the lesson 

(see Figure 6.5 on page 116). 

In the first excerpt [T1LO] below, T1 is introducing the mathematical object 

of the lesson [T1LO]:    

4.T. I want to pose a problem to you, and the problem is this… [Teacher writing 
on the whiteboard – “The gradient of a curve”]. 

5.T. What do we mean by that? That's my first question to you. Now we all know, 
I hope what is meant by the gradient of a line.  

7.T. How do you measure the gradient of a line then? How do you measure the 
gradient? 

9.T. Right, so my question to you is what do we mean by the gradient of a 

curve?  
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Figure 6.3  The gradient of a curve 

The mathematical object of the teacher’s discourse is framed here as ‘the 

gradient of a curve’. The teacher begins by asking the ‘what’ gradient 

question and then he changed the question to the ‘how’ to measure the 

gradient of a [straight] line, and then asked about the ‘what’ ‘gradient of a 

curve’ [9].  The questioning suggests that understanding ‘how to’ measure 

the gradient of a line, would lead to understanding ‘what is’ the ‘gradient of a 

curve’; it does not say ‘at a point’. This utterance and the object (discursive), 

‘gradient of a curve’, mediated both verbally [4] and visually [Figure 6.3], is 

consistent with the teacher’s word use in the pre-lesson interview. I asked 

T1 how he was going to introduce differentiation, and he said: T1I(i) 

38.T. Well, today I am going to ask them what we mean by the gradient of a curve 
and I am going to see what sort of answers I will get. I don't even know if I 
would use the word derivative today. I may well don't use that.  I might use 
the word gradient function. We will see. I mean, it might just come out of my 
head, you know, but what do we mean by gradient? And I will ask them, you 
know, what do you think the gradient is there? I'm hoping someone will tell 
me, urr it's the tangent, and I will say Ok. 

The teacher’s utterance in this excerpt suggests that the teacher is referring 

to the same mathematical object by the gradient of a curve, derivative, and 

gradient function. Note that when the teacher talks about the gradient at a 

point, he refers to it as a tangent. What is described as the ‘gradient of a 

curve’ refers to the ‘gradient function’ or ‘derived function’. This utterance 

that describes differentiation as ‘the gradient of a curve’ or ‘gradient’ as the 

‘tangent’ is ambiguous.  

There is an implied association in these utterances, between the gradient of 

a straight line and the ‘gradient of a curve’. The utterance, ‘the gradient of a 

curve’ implies the derivative of the function as a constant. Note that the 

utterances do not specify any particular point on the curve. The graph of 𝑦 =

 𝑥2 has infinite points, thus infinite gradients of the tangents to the curve at 
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these infinite points. Thus, the utterance ‘gradient of a curve’ is inconsistent 

with the literate mathematical discourse about derivatives. Literate 

mathematical discourse describes the gradient of a tangent at a given point 

on the curve. 

A further look at the lesson, T1LO, shows that the words gradient and 

tangent were frequently in the classroom discourse for introducing the 

derivative. Consider these two object-level narratives regarding gradient 

from the teacher, T1, during the first lesson on differential calculus. 

99.T. The gradient of a curve is not constant, it would depend on 𝑥, and it's called 
the gradient function. 

119.T. What I want you to try to understand is that the gradient of a curve is the 
gradient of a tangent, that I do want you to appreciate, that's important. 

These two utterances are contradictory. The teacher’s utterance in [99] that 

the ‘gradient of a curve is not constant’ is inconsistent with his definition in 

[119] that ‘the gradient of a curve is the gradient of a tangent’. A tangent 

here is a straight line, and the gradient of a straight line is, indeed, constant. 

It follows, therefore, from the utterances above that the gradient of a curve 

[99] cannot be the gradient of a tangent [119]. In literate mathematical 

discourse, the gradient function describes the gradient of the tangent at any 

point on the curve. The word use ‘gradient’ in [99] is for the gradient (or 

derivative) function. However, the word use ‘gradient’ in [119] is for the 

gradient (or derivative) at a given point. Unlike the ‘gradient’ in [99], this 

gradient is not a function, but a constant, i.e. a number.  At any given point 

on a curve, the gradient (derivative) of a curve is, in fact, equal to the 

gradient (derivative) of the tangent to the curve at that given point. What 

should rather be important about this utterance [119] is in fact what is 

missing from the utterance, ‘at a given point’. The utterance in [119] is, 

therefore, a metonymic statement, a shortened phrase, which if students 

were to take as given, ‘it would be considered mathematically incorrect, a 

misstatement’ (Zandieh and Knapp, 2006, p.10). 

In the lesson, T1LO, the utterances ‘gradient of a curve’ by the teacher 

appeared eight times, four times within the first eight minutes, and again four 

times in the last eight minutes of the 60-minutes lesson. Analysing each of 

the utterances within its context reveals that by the ‘gradient of a curve’, the 

teacher was referring to the gradient (or derivative) function. For example, 

consider the following two episodes. The first one is an extract of the 

classroom discourse just before the teacher’s narrative in [99] above. The 

second one is an extract of the classroom discourse immediately after the 
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teacher’s utterance in [119] above. Following on the teacher’s explanation of 

the derivative of the function 𝑓(𝑥) = 𝑥3, which was visually mediated through 

the dynamic imagery of Autograph on the board (see Figure 6-10 below), the 

following dialogue with a student resulted: T1LO: 

 

88. S. What does the derivative mean?  

89. T. It means the gradient function, the gradient of the curve, is 2𝑥, of 𝑥2. It's not 
a constant, is it?  

90. S. No 
91. T. The gradient, a constant? 
92. S. No 
93. T. It's a function of 𝑥. 
94. S.  Yeah 
95. T.   We call it a gradient function. We call it the derivative. There are other 

names as well, is that ok? 

There is dualism in the meaning or application of words such as gradient 

and derivative is illustrated in the excerpt [88-91] from T1LO given in the 

preceding paragraphs above. By the gradient of the curve, the teacher is 

referring to the gradient function [89] and note that here ‘gradient function’ is 

synonymous with the ‘derivative’ [95]. Note, however, that the gradient 

function, the gradient of a curve [89] and the gradient [91] are all referring to 

the same mathematical object that is exemplified in [95].  An analysis of 

word use here, reveals that the utterances in [91] and [93] are contradictory; 

‘the gradient’ is indeed a ‘constant’! Thus, there are some inconsistencies in 

word use of calculus terminology.  

The mathematical object of the discourse here is the derivative as a function, 

certainly, not the derivative at a point. The teacher’s frequent use of the 

specialised mathematical words in his utterances above [89, 91 & 93 & 95] 

explains what the teacher was referring to by ‘gradient of a curve’ or 

derivative. Notice that the teacher followed up this episode with the 

utterance in [119] above, which implied that the ‘gradient of a curve’ was 

constant. This prompted another episode of questions from a student to the 

teacher. [T1LO] 
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Figure 6.4  Gradient function of 𝑓(𝑥) = 𝑥3  

121.S. If that curve like you found out from the red curve [function 𝑓(𝑥) = 𝑥3], do 
you find out that the gradient is in that blue curve [gradient function 𝑓′(𝑥) =
3𝑥2]? 

122.T. Yes/ 
123.S. But that's a curve, so the gradient changes a lot, doesn't it? 
124.T. Yes, that’s the whole point the gradient just changes; that’s exactly the point 

for a curve the gradient is changing all the time.  

The student’s questions and utterances [121; 123] could suggest that the 

graphical mediation (showing the graphs of both the function and its gradient 

function) used by the teacher helped the student in constructing the 

definition of gradient function.  

In a different lesson [T4LO] (see excerpt below), another teacher, T4, is 

introducing the mathematical object of the lesson, differentiation [T4LO]:  

 

Figure 6.5  Differentiation 

7. T. It [Gradient] changes at different points.  Gxxx could you just describe what 
happens to the gradient as we move from this point [(1, 1)] to that point [the 
other point shown on the curve in Figure 6-4]? 
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8. S. Yeah, the gradient increases. 
9. T. The gradient increases because the line is getting steeper.  So somehow, 

mathematicians ummed and aahed about this for a while.  We needed to 
come up with a way of working out the gradient of a curved line.  (...). Can 
you open your books please and put the title – Differentiation.  Okay.  Can 
you put the title – Differentiation? 

In contrast to lesson [T1LO] above, here [T4LO] both the calculus words 

‘gradient’ and ‘differentiation’, are used right from the start of the lesson. 

Describing the sketch diagram of the 𝑦 =  𝑥2 graph on the board, see Figure 

6.5, T4 draws the students’ attention to the variability of the derivative of a 

curved-line graph; thus, the changing ‘gradients’ at different points [7]. 

However, similar to [T1LO], the description ‘the gradient of a curved line’ in 

the utterance: ‘We needed to come up with a way of working out the gradient 

of a curved line’[9]  seems inconsistent with changing or increasing gradients 

[7 & 8]. What is the word ‘gradient’ in ‘the gradient of a curved line’ refer to? 

The utterance, ‘gradient of a curve’ is an ambiguous statement, and as we 

have seen in the two examples [T1LO] and [T4LO], there is evidence of this 

colloquial word use in introductory lessons on differentiation.   

It appears though, that the utterance ‘the gradient of a curve’ was not just a 

feature of the introductory part of the lesson, but a common word use. It was 

not a simple slip of the tongue. The excerpt below from [T4LO], shows this is 

an advanced stage of the lesson, where the teacher is assigning the 

students some mathematical problems/questions to solve. T4LO: 

565.T. Okay so Year 12, if a question asks us to find the gradient of a curve.  What 

is that clue to do first?  If a question asks us to find the gradient of a curve, 

what is that clue for us to do?  

[Student answers… ‘differentiate’]  

Differentiate, absolutely.  Because it’s asking us for the gradient at a 

particular point you know we need to find the gradient function because 

that’s the formula we’re going to use to try and find out the gradient.   

In the teacher’s utterance [565], the phrase ‘gradient of a curve’ is repeated 

twice. Twice, the teacher is asking for a clue [565], to associate with the 

phrase ‘the gradient of a curve’. This excerpt suggests that ‘the gradient of a 

curve’ is synonymous with ‘differentiation’ as explained in the second part of 

[565]. However, the teacher here goes on to substantiate what he is referring 

to as ‘the gradient of a curve’ to mean ‘the gradient at a point’. 

In an interview [T4I(ii)] with T4 after his lesson on introduction to 

differentiation, the teacher stated that students’ challenges with 

understanding variables were a contributing factor as to why they find 

differential calculus difficult. This teacher’s understanding of students’ 
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difficulties with learning calculus, could explain the approach as shown in the 

excerpt [7-9] above. 

6.3.1  Gradient and gradient function 

Further evidence of inconsistency in word use can be seen in the lessons, 

T3LO and T2LO. Both the teachers T3 and T2 are describing the same 

mathematical object, the derivative of a quadratic function 𝑦 = 𝑥2 and 𝑦 =

 𝑥2 − 𝑥 − 6, respectively), but use two different words. T3 describes the 

derivative of the function 𝑦 = 𝑥2 as: T3LO: 

178.T. The gradient is  2𝑥.  Let’s just have a look.  So 2𝑥, if we multiply each of 
these by 2, we seem to get the gradient.  So, we’re thinking on, if, you can 

fill your table in now for that first curve.  We’re thinking the gradient is 2𝑥 . 

The utterance ‘ gradient is 2𝑥’ [178] seems consistent with the utterance 

‘gradient of a curve’ [T1LO, 9; T4LO, 565]. The word gradient is used, for 

example in these three different lessons, to describe what in fact is a 

gradient function.  2𝑥 is not the ‘gradient’ but the ‘gradient function’ of the 

function 𝑦 = 𝑥2. In these lessons, the word gradient would describe a 

constant value for the gradient of a tangent at a given point on the curve.  In 

contrast to T3LO in which 2𝑥 is described as a gradient, in T2LO the term 

gradient function is used instead. T2LO: 

374.S. So, was the gradient 2𝑥 − 1 ? 

375.T. The gradient function was 2𝑥 − 1 , yeah, for any point 𝑥 

The student’s word use is gradient [374], but this teacher immediately 

responds using the words gradient function [375], the latter of which is 

consistent with literate mathematical discourse. The word gradient seems to 

have two uses or meanings here. It has been used to refer to the gradient of 

a tangent at a point on the curve and it has also been used to refer to the 

gradient function of a function f(x).  

Another example, to suggest some inconsistency in word use with the 

transition from gradient (for straight line graphs) to gradient function (for 

curved line graphs) is shown in the excerpt below from T4LO. This excerpt 

highlights the need for consistency with word use and symbolism in calculus 

discourse. T4LO: 

202.T. This is a general formula for the gradient at any point okay?  Now we’ve got 
a name for that.  We call it the gradient, we call this, we call this the gradient 
formula, okay.  And we’ve got a special…we’ve got some special notation 

for it.  Instead of saying 𝑚 = 2𝑥 we write 
𝑑𝑦

𝑑𝑥
= 2𝑥  and this is called the 

gradient formula, okay.  So 
𝑑𝑦

𝑑𝑥
= 2𝑥, that’s the gradient, that’s the gradient 

formula for which curve? 
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Consider these two utterances: (i) “We call it the gradient, we call this, we 

call this the gradient formula, okay” [202], and (ii) “So 
𝑑𝑦

𝑑𝑥
= 2𝑥, that’s the 

gradient, that’s the gradient formula for which curve?” [ 202]. Note the word 

use in both utterances,  
𝑑𝑦

𝑑𝑥
  is referred to as the gradient and as the gradient 

formula too. The visual mediation on the board work (See Section 6.4) 

shows both  
𝑑𝑦

𝑑𝑥
= 2𝑥  and   𝑚 = 2𝑥 labelled gradient function. Up until this 

stage, students would have known 𝑚 to be used to represent the gradient of 

a straight. The students would have learnt from their GCSE that 𝑦 =  𝑚𝑥 +

 𝑐 is the general form for the equation of any straight line, where 

𝑚 represents the gradient (slope) of the line. Thus,  
𝑑𝑦

𝑑𝑥
= 2𝑥  and   𝑚 = 2𝑥 

would imply that 
𝑑𝑦

𝑑𝑥
 and 𝑚 are signifiers for the same mathematical object, 

which they are not. 

There is also evidence showing teachers using the same word ‘gradient’ to 

describe a constant quantity and to describe a variable quantity. To illustrate 

this inconsistency in word use, five representative excerpts from four 

different lessons, [T3LO], [T2LO], [T5LO] and [T4I(ii)] will be examined 

below. Consider, the utterance ‘The gradient is 2𝑥’ in the first excerpt below, 

[T3LO]: 

178.T. The gradient is  2𝑥.  Let’s just have a look.  So 2𝑥, if we multiply each of 
these by 2, we seem to get the gradient.  So, we’re thinking on, if, you can 
fill your table in now for that first…curve.  We’re thinking the gradient is 2𝑋.   

 

Figure 6.6  The gradient function of 𝑦 = 𝑥2 

Note that this utterance, ’gradient is 2x’ [T3LO, 178] by T3, is consistent with 

the utterance ‘gradient of a curve’ [ T1LO, 9; T4LO, 565] by T1 and T4. 

Figure 6.6 is a visual mediation of the object of the teacher’s discourse here. 

It shows a table of values and a function ‘Gradient = 2𝑥’. This visual 

mediator is consistent with the utterance in [178], which seems to describe 
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2𝑥 as a constant (uses the word gradient instead of gradient formula) rather 

than a variable. 

Contrast the word use in [T3LO] above with the following [T2LO]. Whilst 

[T3LO] describes 2𝑥 as a gradient, T2’s utterance ‘gradient function is 2𝑥 −

1′ in [T2LO] is endorsable. Both teachers are describing the derivative of y = 

𝑥2 and 𝑦 =  𝑥2 − 𝑥 − 6, respectively. In [T2LO] the teacher talks of gradient 

function.  

374.S. So, was the gradient 2𝑥 − 1 ? 
375.T. The gradient function was 2𝑥 − 1 , yeah, for any point 𝑥. 

Compare the student and the teacher’s utterances on the derivative of 𝑦 =

 𝑥2 − 𝑥 − 6. Note that, like the teacher in [T3LO, 178] above, the student 

here (in a different lesson) uses the same word ‘gradient’ [T2LO, 374] to 

describe what the teacher [T2LO, 375] immediately substantiates as, 

‘gradient function’.  

6.3.2  Gradient and changing gradients 

Introducing the derivative developed from gradients of straight-line graphs to 

investigating curved-line graphs. The need to compare and distinguish 

between constant gradient and changing gradients was inevitable. There is 

evidence to suggest some inconsistency in the teachers’ utterances on 

constant gradient and variable gradient.  Two excerpts given below 

demonstrate this inconsistency.  These excerpts are from two different 

lessons by two different teachers. Teacher T3’s approach in [T3LO] is to use 

distance-time graphs, see Figure 6.7 and Figure 6.8, to introduce changing 

gradients. The other teacher’s (T5) approach in [T5LO], was to calculate the 

gradient of a straight line passing through two given coordinates, see Figure 

6.9. 
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Figure 6.7  Distance-time graph 

 

 

Figure 6.8  Curved-line graph 

The teacher [T3LO] presents a straight-line distance-time graph (Figure 6.7) 

and a curved-line distance-time graph (Figure 6.8). Both the diagrams show 

different gradients at different points marked on the graphs. The main 

difference here is that in one diagram there is a straight-line graph, and the 

other diagram is a curved-line graph. [T3LO] 

24.T. Now, what I want us to look at today is to look at finding the gradient of a 
curve.  What can anyone tell me about the gradients of these curves? 
[Points to Figure 6.8]. Can anyone tell me anything about those gradients?    

27.S. Does it vary? 

28.T. They vary good.  So, the gradient on the curve varies. Did it vary on this last 

graph? [Points to Figure 6.8]. 

29.S. Yeah. 
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30.T It did, but what’s the difference between the way that one [Points to Figure 
6.7] is changing and this one [Points to Figure 6.8] is changing? Can you tell 
the difference between the gradient changes on that [Points to Figure 6.7] 

graph and the gradient changes on this [Points to Figure 6.8] one? 

31.S. That [Pointing to Figure 6.8] one is always variable and it’s changing. 

32.T. Right, so this [Points to Figure 6.7] one stays at a constant gradient for a 
section and then changes for the gradient for another section.  Whereas 

here [Points to Figure 6.8] it keeps changing, the gradient keeps changing.    

Note, also, that in this utterance [24], there is yet more evidence of teachers 

using the words ‘the gradient of a curve’; which has been shown earlier in 

this Section 6.2 to be an ambiguous statement.  

The teacher’s utterance [32], shows changing gradients on a straight-line 

graph and changing gradients on a curved-line graph. What then, is the 

difference in the changes and what does this mean for introducing 

differentiation? Note that the teacher describes the curve-line graph as 

curves [Figure 6.8] in “What can anyone tell me about the gradients of these 

curves?” [24]. The teacher acknowledges that “the gradient on the curve 

varies” [28]. The teacher also acknowledges that the gradients of the lines in 

[Figure 6-6] also vary [30]. Note the teacher’s word use in the excerpt, the 

words ‘vary’ and ‘changing’ are being used interchangeably. Although an 

attempt was made to distinguish between constant gradient, which describes 

the gradient of a straight line and changing (or variable) gradients for a 

curved-line graph, the distinction between constant gradient and variable 

gradient is not clear. The teacher’s utterances in [28 – 32] together with the 

visual mediator of the two graphs [Figure 6.7 and Figure 6.8] suggest 

‘changing’ constant gradients and ‘changing’ variable gradients.   

In a different lesson, [T5LO], the teacher starts with a review of calculating 

the gradients of straight lines between two given sets of points, see Figure 

6.9 for the examples that were used in the lesson. Using the examples 

shown in Figure 6.9, the teacher T5 explains the difference between a 

constant gradient and variable gradient, [T5LO]: 
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Figure 6.9  Gradient of a straight line 

30.T. Okay, what is it then? [Referring to part (c) in Figure 6.9].  If it’s not constant 
it must be a …? 

31.S. Variable. 
32.T. Variable, thank you very much Kxxx, okay?  This is variable, okay?  What 

about these two gradients? [Referring to part (a) & (b) in Figure 6.9].  
33.S. Constant. 
34.T. They’re constant.  Okay, they’ve got constant values, therefore they’re 

constants okay.  We’re going to be spending a lot of this lesson calculating 
gradients. 

The students were tasked with calculating the gradients of lines between 

pairs of coordinates. Describing the gradient of a straight line between two 

points, the teacher says “Variable, thank you very much Kxxx, okay?  This is 

variable, okay” [32]. This utterance could potentially be confusing here 

because the gradient of a straight line is constant. Thus, every straight line 

passing through the given pairs of points in Figure 6.9 has a constant 

gradient. Therefore, talking of variable gradients here would require further 

substantiation, because as presented, the utterances are not consistent with 

the endorsed narratives in mathematical discourses.   

Students’ difficulty with algebra, in particular, in distinguishing between 

constants and variables [T4I(ii)] is said to be a factor that contributes to 

students’ difficulty with calculus. In a post-lesson interview with one of the 

participant teachers [T4I(ii)], he reveals his challenges of introducing 

differential calculus to his class, and his experiences in teaching Further 

Mathematics, in which more advanced elements of calculus are covered, 

[T4I(ii)]: 

58. T. I think there’s a real issue with the following – students have difficulty firstly 
distinguishing between constants and variables in algebra. So even when I 
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was teaching FP2 [Further (Pure) Mathematics 2] last year, one of my 
students still didn’t understand the difference between a, b, and c and x, y 
and z really. So, there’s that issue. Yeah. 

Notably, the teacher remarks “I think there’s a real issue with the following – 

students have difficulty, firstly distinguishing between constants and 

variables in algebra” [58]. Ambiguity with, or lack of understanding of the 

distinction between a constant or variable measure, for example, the 

inconsistency with word use, such as, ‘gradient’ to refer to both ‘constant 

gradient’ and ‘gradient function’, could potentially make it the learning of 

differential calculus more challenging.  

Talking to teachers in the interviews, there is evidence to suggest that some 

teachers were hesitant to use the words differential or derivative in the 

introduction lesson, even though they actually used these words in their 

lessons. For example, in T4LO, see how the teacher retracts his use of the 

word differential in the excerpt below. T4LO: 

416.T. And in maths we write the differential of 𝑓(𝑥)as 𝑓’(𝑥) okay.  So, you either 

call your equation 𝑦 =  𝑥3 in which case the differential is, the gradient 

function is  
𝑑𝑦

𝑑𝑥
.  But if you choose to call your curve 𝑓(𝑥), then your 

differential, your differential, sorry your gradient function is 𝑓’(𝑥).  … 

The teacher uses the word ‘differential’ four times in [416], but he quickly 

retracts it, and resorts to using the words ‘gradient function’. Reflecting on 

his word use in the post-lesson interview, T4 explains that he had not 

intended to use the word derivative, even though he was using terminology 

such as gradient function and differentiation. T4I(ii): 

160. I. In the second half, there was a point when you were using the word 
differential and then you’d quickly say the gradient function … 

161.T. Yeah, I wanted to say gradient function. 
163.T. Yeah, I kept remembering I was teaching somebody who had only just 

learnt it and I want to refer to it as the gradient function. 
167.T. Do you know I’m quite tempted, if I was doing that again, I’d be quite 

tempted to only ever say gradient function and keep using that and then 
only at a very late stage explain that ‘look, if you see find the derivative 
that’s just synonymous with find the gradient function’. I’d rather them 
intrinsically think of it as finding the gradient function as a reminder of what 
the gradient function, what differentiation tells you about it. 

These examples from interviews with teachers (e.g. T1I(i) and T4I(ii)) show 

that word use is a planning and teaching consideration for the teachers 

introducing differential calculus. The teachers preferred using the words 

gradient function to derivative and differential in the introductory lessons. 

Both the teachers said that they were hesitant to use the words derivative 

and differential in the introductory lessons, although they both indeed used 

these words in their first lesson. T4 was focusing more on the derivative as a 
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function [T4I(ii) - 167], which explains his insistence on using the words 

gradient function, instead of the word differential or derivative. For whatever 

other reasons the teachers, T1 and T4, might have, they both thought that 

they would rather use the terms derivative or differential at a later stage in 

teaching differential calculus. 

6.4  The utterance ‘getting closer and closer’  

In their pedagogical calculus discourse, teachers used the utterance ‘getting 

closer and closer’ in describing what appears to be the concept of limit, 

which is a key component of the ‘limit definition of the derivative’. The 

evidence suggests that all the teachers, except one [T7], avoided using the 

word ‘limit’ in their introduction and defining of the derivative. Instead, 

teachers used the utterance ‘getting closer and closer’ in explaining what 

appears to be the ‘limit definition of the derivative’, which I shall from now on 

refer to as the ’quasi-limit definition of the derivative’. ‘Quasi-limit definition of 

the derivative’ is a preferred object-level narrative to denote the informal or 

incomplete nature of the explanation given for the ‘limit definition of the 

derivative’ (more in Section 8.4 and Section 9.2.1). The concept of limit is a 

key component of the formal ‘limit definition of the derivative’, and this was 

missing or deliberately avoided. 

In introducing and explaining the derivative, the teachers used two points, 

e.g. points A and B on a curve (mostly the 𝑦 =  𝑥2 graph) to estimate the 

slope (gradient) of the tangent at one of the two points, say at point A. The 

procedure is then to move point B towards point A, in so doing, calculating 

the slope (gradient) of the successive secant joining point A to point B, until 

the gap between point A and point B is so infinitesimally small that the 

secant AB becomes almost the tangent of the curve at point A. This process 

would describe the tangent as the limit of the secant, but it was the words 

‘…closer and closer…’ that were used in explaining the process. Three 

representative excerpts from [T4LO], [T3LO] and [T5LO] are presented 

below to illustrate the finding.  

In the excerpt [T4LO], T4 is leading an investigation of the slope (gradient) of 

the tangent to the function 𝑦 =  𝑥2 at the point, 𝑥 = 1, and have computed 

three different gradients equal to 2.5, 2.1 and 2.01, by using 𝑥 = 1.5,

1.1 and 1.01, respectively. [T4LO]: 

75.T. That’s it, good stuff.  I think that’s going to be 0.0201 divided by 0.01.  What 

is dividing by 0.01 equivalent to year 12?  Gxxx, that’s it, times by a 

hundred.  So, the answer’s going to be 2.01.  Right year 12, have a moment 
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to think about our three answers.  Think about what’s happening to the 

value of the gradient as we get closer and closer and closer to our tangent 

which is what we want, okay?  Does anyone want to have a look at those 

three numbers and have a guess at what the, what the true gradient of the 

curve at (1, 1) might be?  Hxxx? 

76.S. 2. 
77.T. 2, why is that then? 
78.S. Cause it’s just getting closer and closer to… 
79.T. Exactly.  We’re getting closer and closer and closer to 2.  We’re getting 

closer and closer and closer to 2.  So, I think the real answer to this question 
is going to be the gradient is 2 but we need to try and prove that now.  We 
need to try and prove it, okay?   

The phrase ‘getting closer and closer’ is repeated four times in this short 

excerpt. The teacher’s question here: ‘what’s happening to the value of the 

gradient as we get closer and closer and closer to our tangent’ draws 

attention to the limit of the sequence of gradient values. Also, the question 

‘Does anyone want to have a look at those three numbers and have a guess 

at what the, what the true gradient of the curve at (1, 1) might be?’ [75], 

draws attention to the idea of approaching the limit value for the gradient at 

(1, 1) on the graph of the function. In the utterance [79], the phrase ‘getting 

closer and closer’ is twice repeated, and the word ‘closer’ is repeated three 

times in ‘We’re getting closer and closer and closer to 2. We’re getting closer 

and closer and closer to 2’ [79]. The teacher’s utterance [79], confirms that 

the mathematical object of the teacher’s talk, here, is the limit value, 

although there is no mention of the word ‘limit’. 

Similarly, T3, also uses the same words ‘getting closer and closer’ making 

the point that ‘getting closer and closer’ would give a better and better 

approximation, to the slope of the tangent. [T3LO]: 

190.T. Probably 12.  Right okay, do you want to try maybe on the back, try different 
points?  So, you want to get closer and closer.  Can use it even down here, 
get closer and closer and closer and try and get to a confident position on it. 

193.S. Yeah.  So is it basically because they’re just getting smaller and/ 
194.T. Yeah, well it’s a better and better approximation.  Every time you bring this 

point closer it’s a better approximation/ 
195.S. Oh, right okay. 
196.T. /to what the tangent would be. 
197.S. Oh, so doing it from this point? 
198.T. Yeah, because you want the gradient at the point negative 2. 
199.S. Oh, right okay. 
200.T. So, you would use that brilliant idea of using two points.  And then if we 

move those two points closer, we get a better, better approximation. 

This dialogue [T3LO] between a teacher and students suggests that it is not 

clear as to what the mathematical object of the teacher’s talk is here.  What 
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is getting closer and closer, and to what, and why? are potential questions 

that call for clarity here, as can be seen in the student’s questions [193; 197]. 

T3’s utterance ‘if we move those two points closer, we get a better, better 

approximation’ [200] does not seem clear enough to identify the 

mathematical discursive object here. The utterance in [200] could imply that 

both points are moving towards each other. Getting closer and closer for a 

better approximation, evidence in the excerpt above hardly identifies the 

object of the teacher’s talk.  

Another teacher [T5] had challenges trying to describe the same 

mathematical object, using the words ‘getting closer and closer together’. 

Late in the lesson, the teacher decided to demonstrate what he expected the 

students to do and how they should have done it. With the aid of visual 

mediation, see Figure 6.10, the teacher attempts to give further guidance. 

[T5LO]: 

229.T. Yes, please.  Okay whatever order that you’ve done them in, could you just 
take a very quick look at, at mine?  This could be an example of the five 
coordinates that I chose.  So, my original co-ordinate was (0,0).  And my 

other coordinates I’ve started with 𝑥 =  3 and gradually my 𝑥 −coordinate 
has gotten slightly less and less towards (0,0). 

 

Figure 6.10  Investigating gradients on a curve 

229.T. I’m going to ask you in a minute. I’m going to ask every group for their 
values for the gradients in that order okay?  Getting closer and closer 
towards your points so that your two points that you’re choosing are getting 
closer and closer okay?  So, if you could write your gradients as a list of five 

gradients for me, please.   
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It is not clear what the last part of the T5’s utterance [229] ‘getting closer and 

closer towards your points so that your two points that you’re choosing are 

getting closer and closer okay’ [229], is referring to. The visual mediation by 

the graph on the board did (does) not imply both points moving. The ‘two 

points that you are choosing are getting closer and close’, how and what 

point, was not clear. Following the explanation, some students struggled to 

understand what was required of them, as exemplified by a couple of 

excerpts given below. The first episode was with one group of students who 

were ‘doing them randomly’ [T5LO]: 

347.S. Just the random ones.  But then like that one goes up by 2, that one goes 
up by 2. 

348.T. Okay and is this, are these getting closer and closer to your value every 
time? 
349.S. No, we’re just doing them randomly... 
350.T. Okay I need them; I need them in order.  

Note that the students’ utterance in [349] that they were just doing them 

randomly; this suggests that these students still had not understood the 

teacher’s utterance “Getting closer and closer towards your points so that 

your two points that you’re choosing are getting closer and closer” [229]. In 

the second episode below, the teacher is talking to a different group of 

students, [T5LO]: 

354.T. But I need them in order getting closer and closer.  So, choose the 𝑥 𝑣𝑎𝑙𝑢𝑒 
that’s furthest away from 2, first. 

355.S. Yeah. 
356.T. And I need it from one side as well.  So, if you’re going to go above, I want 

the one that’s furthest away.  So, is it 3? So, (3,9) there yeah. 

The students had not understood the necessity of ordering the x values and 

the intended meaning of ‘getting closer and closer’.  The computation of the 

gradient (slope) of the tangent line, i.e. the instantaneous rate of change of a 

function f(x) at a particular point on the curve, requires the computation of 

the limit of f(x) as x approaches that point. It is this limit that is called the 

derivative of f(x), and the process of computing the derivative is called 

differentiation. Teachers avoided using the word ‘limit’ in their lessons on 

introducing differentiation but found it difficult to bypass the limit component 

of the definition of the derivative. Teachers did not use the word ‘limit’ even 

where they appeared to be describing the concept. Instead, the utterance 

‘getting closer and closer’ was used repeatedly to describe the process of 

approaching a point or a limiting value, and thus teachers described a 

‘quasi-definition of the derivative’.  
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6.5  Discussion 

The evidence, as presented in Chapter 6, (e.g. Section 6.2 and 6.3) shows 

that there exists some inconsistency in how some calculus words are used 

in teaching differential calculus. Word use in the teachers’ discourse about 

the derivative (at a point, and as a function) will now be discussed. 

Gradient and tangent    

This study found evidence of inconsistent word use in the teachers’ 

pedagogical calculus discourse, inconsistent with literate mathematical 

discourse (presented earlier in Section 6.2 and Section 6.3), examples 

include the ambiguous utterance ‘gradient of a curve’ and describing 

‘gradient’ as ‘tangent’ [T1I(i), 38], or ‘instantaneous direction’ as ‘the tangent 

of the curve’ [T1LO, 25]. These findings in the teacher’s use of tangent for 

the slope of the tangent were found in the students’ word use in Ng (2018). 

The students' utterances in Ng’s(2018) study included ‘tangent is increasing; 

tangent line is zero’(p.1183), but it was the slope that was increasing and it 

was the slope that was zero. 

The teacher’s utterances in my study could be seen as a slip of the tongue 

or could be thought of as metonymic statements. This finding also aligns 

with the findings of Zandieh and Knapp (2006), who reported metonymy use 

by students in calculus discourse; ‘the derivative is the tangent line’ and ‘the 

derivative is the change’ (p.10). Zandieh and Knapp (2006, p.7) examined 

the metonymic use of words or signifiers such as derivative and function in 

the students’ calculus discourse. My study, however, reveals metonymic 

misstatements in the teacher’s discourse, e.g. the utterance [T1LO - 25], 

which describes the ‘instantaneous rate of change as the tangent’. 

Zandieh and Knapp (2006) describe metonymic misstatement as the use of 

a ‘metonymic short-cut or part of the phrase to stand for the whole phrase’ 

(p.7). Although metonymic misstatements could simply be a slip of the 

tongue, they could also be an indication of an incorrect understanding of the 

object at that time, and worse still, if the student believes the metonymic 

misstatement to be true (Zandieh and Knapp, 2006), for example, if a 

student believes that the tangent line is the derivative. 

As shown in Zandieh and Knapp's (2006) study, such metonymy use ‘is not 

always mathematically valid, for example, the tangent line as the derivative’ 

(Park, 2016, p.398). Zandieh and Knapp (2006): 
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Consider the phrase “the derivative is the slope of the tangent line at 

a point.” This phrase can be shortened to “the derivative is the slope,” 

which is appropriate usage in the mathematical community. On the 

other hand, if a student shortens the phrase to “the derivative is the 

tangent line,” it would be considered mathematically incorrect, a 

misstatement (p.10). 

From my study, both statements describing the gradient as the tangent, and 

the instantaneous direction as the tangent, are both metonymic 

misstatements. It is natural to use shortened statements in everyday speech.  

These findings suggest that it is important to consider the possible 

challenges the use of metonymic misstatements can bring, for the students 

when it is coming from the teacher in a lesson, for example, the teacher 

describing gradient as tangent (see Section 6.2 page 109). Zandieh and 

Knapp (2006) report on two metonymic misstatements most commonly used 

misstatements by students in the interviews they conducted to investigate 

the students’ conception of the concept of derivative. The two misstatements 

are “the derivative is the tangent line” and “the derivative is the change” 

(p.10). Eight out of the nine students in a calculus class (who they 

interviewed three times) made at least one of these two misstatements. 

Zandieh and Knapp (2006) describe as a less extreme case if the use of a 

metonymic misstatement comes from a student who usually uses the correct 

phrase because the student might be focusing on a particular aspect of the 

concept in that shortened phrase. For example, Zandieh and Knapp (2006, 

p.10): 

A student might say “the derivative is the tangent line” while 

referencing a graph with a function and a tangent line drawn. The 

student may be focusing on the tangent line, because it is visually 

explicit, even though when questioned they can clarify that it is the 

slope of the tangent line. At first, this may simply look like a slip of the 

tongue, but for some students, it appears they may at that moment be 

mentally focusing on the tangent line as the “picture” of the derivative. 

Now, imagine if these metonymic misstatements are coming from the 

teacher in an introductory lesson on the derivative. To the teacher, it may be 

a slip of the tongue to say the gradient, direction or derivative is the tangent 

line, but it might not be seen or understood as such by all the students in the 

class. Such metonymic misstatements and colloquial word use ‘not only 

impacts the [students’] later use of mathematical words, but also other 

aspects of mathematical discourse such as endorsed narratives, routines, 

and visual mediators‘(Kim and Lim, 2017, p.1577). It is, therefore, important 

that research and practitioners pay attention to the language-specific nature 
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of discourse, as it can constrain or promote students’ participation in 

calculus discourse. 

The gradient of a curve 

The evidence in Section 6.1 and 6.2 show that there is some inconsistency 

in how some (calculus) words, for example, gradient and slope, are used in 

teaching differential calculus. In this study, the word ‘gradient’ is used to 

describe the ‘slope’ of a straight line. The word ‘slope’ describes the rate of 

change of a function with one independent variable, e.g. 𝑦 = 𝑓(𝑥). Thus, 

what is often referred to as ‘gradient’, could more specifically be described 

as ‘slope’, i.e. the slope of a straight line or the slope of a tangent line.  

For example, in introducing differential calculus, one teacher writes on the 

board ‘The gradient of a curve’ [T1LO] (see Figure 6-3) and the other 

teacher writes ‘Differentiation’ [T4LO] as the titles for their respective first 

lesson. What does the gradient of a curve mean? Could this be construed to 

mean differentiation? Scheja et al. (2008) argue that making connections 

between the properties of graphs of a function and that of its derived function 

would build a better understanding of the underlying graphical concepts of 

calculus. Students making connections between different representations 

depends largely on how the various forms of mediation are presented in the 

classroom discourse.     

The evidence in T1LO [121-124] in Section 6.1 could also suggest that the 

inconsistent use of the word ‘gradient’ for both “the gradient function” and 

“the gradient at a point” prompted the student in [121-124] above to dispute 

the teacher’s utterance in T1LO [119]. [T1LO] 

121.S. If that curve like you found out from the red curve [function 𝑓(𝑥) = 𝑥3], do 
you find out that the gradient is in that blue curve [gradient function 𝑓′(𝑥) =
3𝑥2]? 

122.T. Yes/ 
123.S. But that's a curve, so the gradient changes a lot, doesn't it? 
124.T. Yes, that’s the whole point the gradient just changes; that’s exactly the point 

for a curve the gradient is changing all the time.  

The student utterance in the excerpt [121 – 124] above, on one hand, 

substantiates the narrative that is visually mediated graphically showing the 

function 𝑓(𝑥) = 𝑥3 and its derived function, 𝑓′(𝑥) = 3𝑥2 . On the other hand, 

it illuminates the problems with the teacher’s metonymic statement that ‘the 

gradient of a curve is the gradient of a tangent’ [119]. Also, note the 

teacher’s utterance that  “the gradient just changes” [124]; the word 

‘gradient’ here is used as an irregular plural, which is consistent with the 
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colloquial use of the word ‘gradient’, for example, in his utterance ‘the 

gradient of a curve’ [99; 119]. Zandieh and Knapp (2006) identify another 

metonymic relationship that is often associated with the use of the word the 

derivative, which often causes difficulties for students in learning differential 

calculus, the ‘relationship, between a function value and the function itself’ 

(p.7).  

Zandieh and Knapp's (2006) study highlights similar theoretical issues in the 

metonymic use of calculus words or signifiers such as derivative and 

function, for example, the dual use of the word derivative to refer to either 

“the derivative value” or “the derivative function” (p.7). Zandieh and Knapp 

(2006) note that such use is common in colloquial discourse, but they argue 

that using such metonymic short-cuts is more likely to cause confusion than 

using full statements that are consistent with literate discourse.  Past 

research has shown that students struggle with dualism inherent in some 

calculus words, such as derivative, for example, Zandieh and Knapp (2006) 

report of students struggling to explain ‘the conflict between calling 

something a derivative that is a slope or limit value (…) with something that 

is a graph or equation of a function’ (p.7). 

Although it is consistent with literate mathematical discourse to talk of ‘the 

slope (gradient) of a straight-line graph’, it is rather colloquial or inconsistent 

with literate mathematical discourse to say, ‘the slope (gradient) of a curved 

line graph’. Instead, literate mathematical discourse describes the slope 

(gradient) of the tangent to a curve at a given point.  

Gradient and gradient function 

Studies on students’ learning calculus (e.g. Monk, 1994; Tall and Vinner, 

1981; Park, 2013) have shown that moving from (and between) the 

derivative at a given point on a curve, to the derivative as a function is not 

simple for students. The teachers’ calculus and pedagogical discourse in the 

classroom can facilitate such a transition for the students, by making an 

explicit distinction between gradient (derivative at a point) and gradient 

function (derivative as a function). The analysis of students’ discourse on the 

derivative by Park (2013), also found students describing ‘the derivative as a 

tangent line’, which suggests that the students ‘considered the ‘derivative’ as 

a point-specific object but also a (linear) function defined on an interval’ 

(p.624).  
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This study found evidence of dualism in the meaning or application of words 

such as gradient and derivative, e.g. in T1LO [88-91] and T2LO [374-375]; 

there is dualism in the use of the word gradient, thus, gradient as a constant 

and gradient as a function. The dualism in the application of the word 

gradient suggests the use of the word derivative.  Replacing the word 

gradient with the word derivative seems to explain the teachers’ use of the 

word gradient. The inconsistency and the ambiguity with ‘the gradient of a 

curve’ would be eliminated by substituting the word derivative for gradient, 

thus ‘the derivative of a curve’. For example, the derivative of the function 

𝑓(𝑥) = 𝑥2  would mean the derived function of 𝑓(𝑥) = 𝑥2. The ‘gradient is 2𝑥’ 

would become ‘the derivative is 2𝑥’.  

The derivative can be seen as a process of computing or determining many 

successive values for the difference quotient as h approaches zero, and as 

the product of this process, the derivative as a function (Park, 2016). Such 

dualism inherent with the word derivative is a source of potential challenges 

for students (Zandieh, 2000; Oehrtman et al., 2008). The word derivative has 

a dual meaning in calculus discourse. The word derivative is sometimes 

used to refer to the derivative as a constant, i.e. derivative of a function at a 

given point, and other times it is used to refer to the derivative as a function, 

i.e. the gradient function of a function (Zandieh and Knapp, 2006; Park, 

2016). This dualism was not substantiated in the observed lessons; it was 

not made explicit for the student. This could mean that students may not be 

able to understand the dual application of the terminology in calculus. Park 

(2013) conducted a survey with twelve elementary calculus university 

students to analyse students’ word use and use of visual mediators on the 

derivative. The study discovered inconsistencies in the students' use of the 

word derivative for describing the derivative at a point and for describing the 

derivative function. Park (2013) found that students did not understand the 

distinction between the derivative at a point as a constant and the derivative 

as a function.  

The teacher draws attention to the changing gradients at different points [7], 

which is important for understanding the derivative as a co-varying function 

(Park, 2016). Oehrtman et al. (2008), too, argue for the need to link and 

match the instantaneous rate of change with the corresponding continuous 

changes in the independent variable. Making a connection between the 

changing gradients and the corresponding changing independent variable is 

non-trivial for students. It is therefore important that teachers make this 

connection explicit in their instruction on the derivative, more so in 
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introducing the derivative to students, who might be learning about this 

complex idea for the first time.  

As noted by Park (2015) past research has since shown that ‘transitioning 

between the point-specific and interval views or viewing the derivative 

function as an object is non-trivial to students’ (p.234). As demonstrated by 

the T1LO above, there is a need for teachers to carefully consider their use 

of the word gradient or derivative in their introductory lessons on calculus. It 

is important to pay attention to the type of words teachers use to refer to the 

derivative at a point or the derivative as a function, to help students with the 

transitioning between the two uses of the word ‘the derivative’. Zandieh and 

Knapp's (2006) study shows that the two most commonly used metonymic 

misstatements are both associated with the word derivative: ‘the derivative is 

the tangent line’ and ‘the derivative is the change’ (p.10). Kim and Lim 

(2017) argue that students’ learning is also impacted by ‘the meanings of 

everyday language in mathematics learning … since some words have 

significantly different uses in mathematics’ ( p.1563). It is important to 

examine the teachers’ word use the students' difficulties with learning 

calculus could stem from metonymic misstatements and colloquial word use. 

6.6  Summary of findings 

The teachers in this study used many calculus words, including tangent, the 

instantaneous rate of change, gradient(slope), derivative, gradient formula, 

gradient function, differential and differentiation in describing and explaining 

the derivative at a point  and the derived function, 𝑓’(𝑥) of a function 𝑓(𝑥). 

The evidence, as presented in Chapter 6, (e.g. Section 6.2 and 6.3) shows 

that there exist some inconsistencies in word use with the transition from 

gradient (for straight line graphs) to gradient function (for curved line 

graphs). For example, in T1LO, where the title on the board read ‘The 

gradient of a curve’, or in T3LO - the utterance ‘the gradient is 2x’. Besides, 

the study found evidence of dualism (and so ambiguity) in the meaning or 

application of words such as gradient and derivative, e.g. in T1LO [88-91] 

and T2LO [374-375]; the word gradient and derivative were used to refer to 

both, gradient as a constant and gradient as a function. 

Further inconsistency was found in the use of calculus symbolism, for 

example, the transition from gradient (for straight line graphs) to gradient 

function (for curved line graphs). In particular, in the use of the visual 

mediator 𝑚 and  
𝑑𝑦

𝑑𝑥
 . For example, in [T4LO] (See Section 6.3.1 pages 118-
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9), where  
𝑑𝑦

𝑑𝑥
= 2𝑥  and   𝑚 = 2𝑥 would imply that 

𝑑𝑦

𝑑𝑥
 and 𝑚 are signifiers for 

the same mathematical object, which they are not. 

The study also found that when substantiating the definition of the derivative, 

the teachers avoided using the word ‘limit’ even where they appeared to be 

describing the limit component of the definition of derivative (see Section 6.4 

above).  Instead, the utterance ‘getting closer and closer’ was used 

repeatedly to describe the process of approaching a point or a limiting value 

(for more refer to Section 8.4 and Section 9.2.1 for discussion). 
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Chapter 7   Symbolism and visual mediators for calculus 

teaching 

7.1  Introduction  

Chapter 7 is the second of three chapters reporting the findings of the study, 

which are henceforth presented according to the overarching themes of the 

research, namely: mathematical language for calculus teaching (Chapter 6); 

symbolism and visual mediators for calculus teaching (Chapter 7); and 

pedagogies on the derivative (Chapter 8).  

This chapter presents evidence for and discusses the findings of the 

research under the symbolism and visual mediators for calculus teaching 

theme (see Table 5.7 for the overarching themes on page 94). The excerpts 

presented as evidence for the findings and discussed in this chapter (and 

indeed in the other two findings chapters) are exemplar excerpts from the 

interview and the lesson observation data transcripts from across all the 

participant teachers in this research. It is important to remember that in 

thematic qualitative analyses, the coding process often generates many 

codes for each theme (Ryan and Bernard, 2000; Braun and Clarke, 2006; 

Campbell et al., 2013). The exemplar excerpts are presented as 

representative and illustrative evidence for each subtheme and hence, for 

the findings of the research.  

This chapter presents and discusses the findings that address the second 

research question of the study. 

 

Chapter 7 is informed by the commognitive theoretical framework (Sfard, 

2008) and presents evidence on calculus symbolism and visual mediators in 

the teachers’ pedagogical calculus discourse. According to the 

commognitive theoretical perspective, visual mediators could be physical 

visible objects or symbolic artefacts such as algebraic notation and 

expressions, tables, graphs, diagrams or drawings that are used to mediate 

instruction (Sfard, 2008; Ryve et al., 2013). Visual mediators (and word use) 

are the tools with which the participants of a discourse ‘identify the object of 

their talk and coordinate their communication’ (Sfard, 2008, p.145).  Sfard 

(2008) further asserts that visual mediators are an integral part of the act of 

communication in literate mathematics discourse. Indeed, visual mediators 

In teaching differential calculus, what visual mediators do teachers use 

and why?   
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are an integral part of the teachers’ pedagogical calculus discourse. Not only 

is it necessary, therefore, but important in research that seeks to investigate 

the teachers’ pedagogical calculus discourse, to pay special attention to 

visual mediators and the teachers’ acts of mediation in their calculus 

discourse.  

Sfard (2015) describes symbolic artefacts referring to numerals, algebraic 

expressions and graphs, and that they serve as ‘representations of 

impalpable mathematics objects’ (p.132). What follows is a presentation of 

evidence under three subtheme/ sections: calculus symbolism and algebraic 

mediation; graphical mediation and digital artefacts; and visual mediators 

and multiple representations. These subthemes will be followed by a 

discussion on the findings and a chapter summary. Digital artefacts such as 

GeoGebra and Autograph were used mainly for graphical mediation, thus 

the subtheme: graphical mediation and digital artefacts.  

7.2  Algebraic mediation and calculus symbolism 

In this study, the evidence shows that teachers used both, Leibniz’s notation, 
𝑑𝑦

𝑑𝑥
 and Langrage’s notation, 𝑓′(𝑥), but the teachers were cautious not to 

introduce such calculus symbolism early in the introductory lesson. The 

evidence also shows the use of the same signifier or symbolic artefact for 

the derivative at a point and for the derivative as a function, for example, the 

use of 𝑚 in T4LO and T2LO. 

 

This section reports on the teachers’ use of algebraic symbolic mediation in 

teaching differentiation.  Presented here are examples of the algebraic 

symbolic representation, as visually mediated, from four different lessons by 

different teachers, [T4LO], [T2LO], [T1LO] and [T7LO]. T4LO is selected as 

an example that illustrates the transition from the derivative as a constant to 

the derivative as a function. In introducing the derivative, unlike all the other 

lessons that started with 𝑦 =  𝑥2 , T2LO started with y = 𝑥2 − 𝑥 − 6 , and it is 

chosen here, as an example to illustrate the algebraic manipulation of the 

quotient difference as ℎ → 0 in introducing the derivative. L7LO is the only 

lesson that used the word limit, so it is chosen to illustrate how (if so) the 

symbolism in this lesson compares to the other lessons. Collectively, this 

section presents five visual algebraic representations, i.e. board work 

snapshots, and four excerpts as evidence of the teachers’ algebraic 

symbolic mediation in introducing differentiation. 
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In the lesson [T4LO], the teacher used the function 𝑦 =  𝑥2 and a sketch 

diagram of the graph of 𝑦 =  𝑥2, see Figure 7.1 and Figure 7.2 below.  

Before this stage, the lesson had progressed from computing the gradient of 

a chord, by using two given points, (𝑥1, 𝑦1) and (𝑥2, 𝑦2)  with specific 

numerical coordinates on the graph. The teacher had used the formula 𝑚 =

 
(𝑦2−𝑦1)

(𝑥2−𝑥1)
 , where 𝑚 represents the gradient of a straight line passing through 

the two given points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) for computing the gradients of 

chords. Figure 7.1 and Figure 7.2 capture the stage when the lesson had 

moved away from numerical coordinates to general points (𝑥, 𝑥2) and 
[(𝑥 + ℎ), (𝑥 + ℎ)2]. Thus, the two snapshots show the algebraic 

computation for the gradient of a secant line passing through points (𝑥, 𝑥2) 

and [(𝑥 + ℎ), (𝑥 + ℎ)2].  These general coordinates are substituted into 

the formula 𝑚 =  
(𝑦2−𝑦1)

(𝑥2−𝑥1)
 and what is shown in Figure 7.1 and Figure 7.2 is 

the algebraic representation of the process of calculating the gradient of the 

function  𝑦 =  𝑥2 at the point (𝑥, 𝑥2). These two figures show the algebraic 

manipulations and simplification of the quotient 𝑚 =  
((x+h)2−x2)

((x + h)−x)
 culminating 

into 𝑚 = 2𝑥. 

Note the symbolic mediation  ℎ → 0 in Figure 7.2, depicts that as ℎ 

approaches zero, the gradient  𝑚 =  2𝑥, and this does not explain the 

gradient as a limit. Note that in the teacher’s utterance [192], there is no 

mention of the word limit. Instead, there are two signifiers in the teacher’s 

utterance, “as ℎ gets closer to 0” and “as this point gets close, close to the 

original”, both describe ℎ → 0  (as h approaches 0). [T4LO] 

192.T.  Okay.  Time to think again guys.  The gradient we found is that the gradient 
is equal to 2𝑥 + ℎ.  Same, same question as last time.  What happens as h 
gets closer to 0?  What happens is, in other words, what happens as this 
point gets close, close to the original, the original point as h gets close to 0?  
What is the gradient of that line? [Teacher pointing to the secant on the 

sketch diagram for the graph of 𝑦 = 2𝑥]   

193.S.  2𝑥 
 

The student’s answer [193] could be seen as evidence that the teacher’s 

narrative was effective in explaining the process of differentiation without 

resorting to the formal algebraic representation of the definition for 

differentiation, i.e. the limit definition of the derivative. [T4LO]: 
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Figure 7.1  The gradient of secant through (𝑥, 𝑥2) and 
[(𝑥 + ℎ), (𝑥 + ℎ)2].   

 

Figure 7.2  From 𝑚 (gradient) to 
dy

dx
 (gradient function) 

The algebraic symbolic manipulation as shown in [192] in Figure 7.2 is the 

basis upon which the teacher introduces the derivative of the function 𝑦 =

 𝑥2, resulting in these two utterances,  “𝑚 =  2𝑥  is the gradient formula” of  

𝑦 =  𝑥2; and  “ 
𝑑𝑦

𝑑𝑥
= 2𝑥 is the gradient function of the function  𝑦 =  𝑥2” 

[Figure 7.2]. Here, it can be construed that these two utterances imply that 

𝑚 =
𝑑𝑦

𝑑𝑥
 .   

It was towards the end of the lesson, that the word differentiation was linked 

to 
𝑑𝑦

𝑑𝑥
 . In this excerpt, the teacher is referring to Figure 7.2, which shows the 

gradient function of  𝑦 = 𝑥2.  Note that according to the teacher’s utterances 

in the excerpt below, [T4LO]: 

194.T.  Yeah.  𝑚 = 2𝑥.  Okay, because as h approaches 0, h becomes 0 and we’re 
just left with 𝑚 = 2𝑥.  Now that looks a bit weird because we’ve now got a 
gradient that isn’t just a number, okay?  What’s gone on there?  Why have 
we, usually in GCSE we get 𝑚 = 1 or 𝑚 = 3?  Why have we got a bit of 
algebra for our gradient?   

202.T. That’s right because this is a general formula for the gradient.  This could 
tell us the gradient at any point we want.  It’s not just m = 10.  The gradient’s 
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not just 10, is it? Because Gxxx said right at the start of the lesson the 
gradient changes.  This is a general formula for the gradient at any point, 
okay?  Now we’ve got a name for that.  We call it the gradient, we call this, 
we call this the gradient formula, okay.  And we’ve got a special…we’ve got 

some special notation for it.  Instead of saying 𝑚 = 2𝑥 we write 
𝑑𝑦

𝑑𝑥
= 2𝑥  and 

this is called the gradient formula, okay.  So 
𝑑𝑦

𝑑𝑥
= 2𝑥, that’s the gradient, 

that’s the gradient formula for which curve? 

203.S. 𝑦 = 𝑥2 

204.T. 𝑦 = 𝑥2. This is always gonna be the gradient formula for the line 𝑦 = 𝑥2, 
okay and that’s it.  That’s differentiation, finding the gradient formula.   

 

Note in [194, 202] how the teacher [T4LO] moves from 𝑚 (gradient) to 
𝑑𝑦

𝑑𝑥
 

(gradient function), this is how the symbolism 
𝑑𝑦

𝑑𝑥
 is introduced. The teacher 

draws the students’ attention to the fact that this was no longer the constant 

(𝑚) gradient, but a variable, what the teacher describes as “a bit of algebra 

for our gradient” [202]. Note also that differentiation is defined as ‘finding the 

gradient formula’ [204], and this description is given after introducing the 
𝑑𝑦

𝑑𝑥
 

symbolism. In [T4LO]  
𝑑𝑦

𝑑𝑥
  was explained simply as “some special notation” 

[202] that is used instead of the 𝑚 (a symbolism for gradient). The teacher’s 

utterance here, suggests or implies that 
𝑑𝑦

𝑑𝑥
  is the same as 𝑚, only a special 

or different notation for the same representation. Note the utterance: ‘we’ve 

got some special notation for it.  Instead of saying 𝑚 = 2𝑥 we write 
𝑑𝑦

𝑑𝑥
= 2𝑥  

and this is called the gradient formula, okay’ [202]. Note that what is not 

done here, could be more important, a substantiation of the difference 

between 
𝑑𝑦

𝑑𝑥
  and  𝑚 . Consider these two utterances: (i) “We call it the 

gradient, we call this, we call this the gradient formula, okay” [202], and (ii) 

“So 
𝑑𝑦

𝑑𝑥
= 2𝑥, that’s the gradient, that’s the gradient formula for which curve?” 

[ 202]. Note that in both utterances the teacher gives  
𝑑𝑦

𝑑𝑥
  two names, i.e. he 

calls 
𝑑𝑦

𝑑𝑥
   gradient and gradient formula. See how this is clearly depicted on 

the board work in Figure 7.2. The teachers write  
𝑑𝑦

𝑑𝑥
= 2𝑥  and   𝑚 = 2𝑥, and 

both are labelled as gradient function. The  
𝑑𝑦

𝑑𝑥
  differential calculus 

symbolism was, thus introduced and from this point onwards, the class used 

the new symbolism. There were no questions from the students nor further 

explanation from the teacher in this lesson about this new symbolism, 
𝑑𝑦

𝑑𝑥
 . 

In contrast to [T4LO] (and all the other lessons), in which the introduction to 

differentiation was built on the function y = 𝑥2 , [T2LO] used the function y 

= 𝑥2 − 𝑥 − 6 instead. In fact, [T2LO] was the only lesson that did not start 

with the  y = 𝑥2. Figure 7.3 is a snapshot from the lesson showing the 

algebraic representation for calculating the gradient of a secant line through 
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the general points [(𝑥), (𝑥2 − 𝑥 − 6)] and [(𝑥 +  ℎ), (𝑥 + ℎ)2 − (𝑥 + ℎ) − 6]. 

This was the procedure used to estimate the gradient of the tangent to the 

graph of the function  y = 𝑥2 − 𝑥 − 6 at the point [(𝑥), (𝑥2 − 𝑥 − 6)]. Similar 

to [T4LO], the teacher in [T2LO] used the gradient quotient   
(𝑦2−𝑦1)

(𝑥2−𝑥1)
   to 

compute the gradient estimation for the tangent at [(𝑥), (𝑥2 − 𝑥 − 6)]. Similar 

to [T4LO], note the use of ℎ → 0 in Figure 7.3. However, even though this 

lesson [T2LO] also uses 𝑚 for the resultant gradient function, like [T4LO], it 

does not use the = sign. Note the symbolic representation here is 𝑚 → 2𝑥 −

1, not 𝑚 = 2𝑥 − 1. [T2LO]: 

 

Figure 7.3  The gradient of a secant line 

 

Figure 7.4  The gradient function of  y = 𝑥2 − 𝑥 − 6 

Unlike in [T4LO], the teacher in [T2LO] describes 
𝑑𝑦

𝑑𝑥
  as gradient function, 

rather than gradient, see the excerpt below. In concluding her lesson, the T2 

introduces the 
𝑑𝑦

𝑑𝑥
 symbolism to describe the gradient function for  𝑦 =  𝑥2 −

𝑥 − 6. The lesson concludes with the teacher using, and introducing new 

keywords, ‘gradient function’; and new symbolism, 
𝑑𝑦

𝑑𝑥
. The latter was simply 

introduced through Figure 7.4, which was displayed showing the gradient 

function for the function y = 𝑥2 − 𝑥 − 6 expressed as 
𝑑𝑦

𝑑𝑥
= 2𝑥 − 1. The 

excerpt below [T2LO] shows that there was a minimal explanation given 

about the new keywords or the new symbolism introduced. [T2LO]: 
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373.T. We know as ℎ gets smaller and smaller it goes to 0.  So, then our gradient 
function, let’s call it 𝑚 for now for the sake of it will go to 2𝑥 − 1 [my italics].   
Now some people at the start of a lesson were finding that out through the 
process of differentiation which they knew. … We found out the gradient 
function for this [Teacher pointing to the function].  It was through something 
called first principles.  Something we don’t use and asked, one of the girls 
asked, it isn’t tested on but it’s really nice to know.   
I thought it was nice to finish off with something like this [Teacher displays 
Figure 7.4] because I know you’ve seen this before.  We think about the 

distances there [Teacher pointing to the graph of the function], being like 
𝑑𝑦

𝑑𝑥
.  

Then we denote it like that [Teacher pointing to Figure 7.4].   
 

The teacher describes 2𝑥 − 1 as the ‘gradient function’, not the ‘gradient’. 

Note that even though, 𝑚 is used in the algebraic representation, the teacher 

describes it as “… it will go to 2𝑥 − 1”, which is consistent with the 

symbolism she displayed in Figure 7.4, that 𝑚 → 2𝑥 − 1. Compare this, to 

T4LO, Figure 7.3 and Figure 7.4 which says 𝑚 =  2𝑥, instead. The teacher’s 

[T2LO] utterance “as h gets smaller and smaller it goes to 0.  So, then our 

gradient function, let’s call it 𝑚 … will go to 2𝑥 − 1” [373] is consistent with 

the symbolic representation in Figure 7.3). Note that, similar to [T4LO], 𝑚 is 

used to denote gradient function. However, in contrast to [T4LO], see how 

the teacher [T2LO] substantiates the student’s narrative when a student 

describes 2𝑥 –  1 as the gradient [374].   

374.S. So, was the gradient 2𝑥 –  1? 

375.T. The gradient function was 2𝑥 –  1, yeah, for any point 𝑥. 

The teacher immediately corrects the student by using the endorsed 

narrative ‘gradient function … for any point 𝑥’ [375]. Thus, the point that 
𝑑𝑦

𝑑𝑥
=

2𝑥 − 1  is the gradient function (not gradient) of 𝑦 =  𝑥2 − 𝑥 − 6 is reinforced. 

Note, however, that the teacher [T2LO] here explains the gradient function, 

but not the symbolism, nor was there an attempt to explain its origin here. 

Even from the students, there were no questions asked about the symbolism 

or its origins. This, however, was not the case with [T1LO], in which the 

teacher used Lagrange’s differential notation, the  𝑓′(𝑥).  

Consider the teacher-student dialogue in the excerpt [T1LO] below, [T1LO]:  

85.T. So, let's make a note of this, [writing on the board] If 𝑓(𝑥) is 𝑥3, it means 

𝑓′(𝑥) is 3𝑥2. 
86.S. What is that dash mean?  
87.T. It means the derivative, the gradient function. That's the notation I have 

used here.  
88.S. What does the derivative mean?  

89.T. It means the gradient function, the gradient of the curve is 2𝑥, of 𝑥2. It's not 
a constant, is it?  

90.S. No 
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91.T. The gradient, a constant? 
92.S. No 
93.T. It's a function of x. 
95.T.  We call it a gradient function. We call it the derivative. There are other 

names as well, is that ok? 

The Lagrange’s symbolic representation of the derivative in [T1LO, 86 - 87] 

by the teacher, opens a dialogue with a student, which then leads to more 

calculus words. The question in [86] could suggest that the student is having 

some difficulties with the symbolism in the teacher’s utterance [85].  The 

word use - derivative [87] in response to the student’s question about 

symbolism, demonstrates the use of multiple visual mediators. The teacher 

switches between visual and vocal mediators, from symbolism [85] to 

specialised calculus terminology – derivative, gradient function [87]. 

However, these specialised calculus words appear to have added to the 

student’s difficulty with calculus – the meaning of the derivative [88].  

The teacher [T1] reiterates his earlier narrative [87] in [95], linking the words 

‘derivative’ and ‘gradient function’, and uses a specific example (presumably 

less complex) to illustrate the properties [89 – 94] of the object of instruction. 

Note, some contradiction in these utterances [91] and [93]; ‘the gradient’ is 

indeed a ‘constant’! Once again, as in the lesson [T4LO], note the ambiguity 

in the utterance: “It means the gradient function, the gradient of the curve is 

2𝑥, of 𝑥2. It's not a constant, is it?” [T1LO, 89], for it does not make a clear 

distinction between gradient and gradient function. The teacher’s utterance 

[T1LO, 89] implies that what is termed ‘the gradient of the curve’ is ‘gradient 

function’. In calculus lessons, specialised symbolism and specialised 

terminology can be sources of calculus challenges, for both teachers and 

students, alike.  

 

Unlike [T4LO] and [T2LO], where the introduction to differentiation was built 

on the gradient quotient  
(𝑦2−𝑦1)

(𝑥2−𝑥1)
 only, the teacher in [T7LO] presented the 

gradient quotient  
(𝑦2−𝑦1)

(𝑥2−𝑥1)
 and a partial limit definition of the derivative 

𝑓(𝑥+ℎ)−𝑓(𝑥)

𝑥+ℎ−𝑥
, see Figure 7.5 below. [T7LO] 
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Figure 7.5  The formula for the gradient of a secant line 

Lesson T7LO was an exception in that it was the only lesson where the word 

limit was used by the teacher, during a lesson. See the following excerpt in 

which the teacher is introducing some new symbolism. T7LO 

129.T. As ℎ goes towards zero so we’re looking at the limit as [ℎ] gets smaller and 
smaller and smaller, that point C, remember it was this graph up here [The 
teacher pointing at the graph in Figure 7.5] that point C gets closer and 
closer to point B because the triangle’s shrinking down and it’s becoming 
much more precise as a measure of gradient. The actual limit as [ℎ] gets 
really close to zero, the limit of that value getting smaller and smaller is 
actually the gradient, so it becomes a precise value when ℎ tends toward 
zero. 
So, this is one way in which we can find the gradient of a function, the 
gradient is found by substituting into this formula here, which won’t mean an 
awful lot to you at the moment but we’re going to practise doing this together 
in one of the questions in a moment. This bit you need to know so I’d 

highlight this bit for sure. we use the notation 𝑓′(𝑥) to stand for the gradient 
of the function 𝑦 =  𝑓(𝑥). You will use that a lot; it will become like second 

nature. Find 𝑓′(𝑥) means differentiate which means find the gradient.  
 

The teacher describes the ‘gradient’ as the limit of that value [quotient in 

Figure 7.5] “as h gets smaller and smaller and smaller” and “that point C 

gets closer and closer to point B”, i.e. “as h tends towards zero”[129]. The 

word limit is mentioned three times in the teacher’s utterance [129], but it 

was used here as an everyday word since no definition was specifically 

given for the word. However, there are at least three observations to point 

out here.  

The first one is the use of the word ‘gradient’ to refer to both 
(𝑦2−𝑦1)

(𝑥2−𝑥1)
 , which 

had been given as a formula for calculating the slope of straight-line graphs, 
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and ‘gradient’ =  
𝑓(𝑥+ℎ)−𝑓(𝑥)

𝑥+ℎ−𝑥
, which had specifically been identified for 

curved-line graphs. Even the whole utterance [129] talks about the gradient 

of a function. Thus, there is not a clear distinction, as to what appears to be 

implied by Figure 7.5, between the gradient for a straight line and gradients 

on a curve. The second one is that the teacher’s limit narrative as described 

in the utterances of [129] was not algebraically represented on the board. As 

can be seen from Figure 7.5, there is no symbolism or representation of the 

concept of limit.  

The third one, unlike with [T4LO] and [T2LO], the ‘gradient’ formula given in 

Figure 7.5 was not algebraically substantiated in the lesson. The lesson did 

not use two general points with the given gradient in Figure 7.5 to explain 

the process of differentiation. Instead, what followed was computing the 

gradients given numerical coordinates – “the gradient is found by 

substituting into this formula here, which won’t mean an awful lot to you at 

the moment but we’re going to practise doing this together in one of the 

questions in a moment” [129].  

Finally, the new symbolism, like with the other teachers’ lessons [T4LO] and 

[T2LO], was introduced and students were asked to take it as given. 

However, unlike the other lessons, this lesson [T7LO] did not start by using 

the 𝑚 or the 
𝑑𝑦

𝑑𝑥
 symbolism for the gradient. Instead, the teacher introduced 

the Langrage’s notation,  “we use the notation 𝑓′(𝑥) to stand for the gradient 

of the function 𝑦 =  𝑓(𝑥)”,  which she then used to signify differentiation 

“𝑓′(𝑥) means differentiate …”[129]. No further explanation was given by the 

teacher for this notation nor were any questions asked by the students.  

Summary 

In this study, the evidence shows that teachers used both, the Leibniz’s 

notation, 
𝑑𝑦

𝑑𝑥
 and the Langrage’s notation, 𝑓′(𝑥). The evidence also suggests 

that teachers were cautious not to introduce these forms of calculus 

symbolism early in the introductory lesson. For example, in T3LO, the 

teacher avoided the use of formal notation, the  
𝑑𝑦

𝑑𝑥
 and 𝑓′(𝑥)  symbolism in 

the first lesson. In a post-lesson interview, T3 said: T3I(ii): 

108.T. I didn’t want to really bring in any notation while they were getting the 
concepts. 

109. I. Yeah. 

110.T. So, in my next lesson I’m going to concentrate on notation and proof.   

Where the  
𝑑𝑦

𝑑𝑥
 and 𝑓′(𝑥)  symbolism was used, it was towards the end of the 

lesson, but the notation was barely explained. For example, in T1LO, after 
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the teacher had explained the derivative of the function 𝑦 =  𝑥3, he 

introduces a new symbolism: T1LO 

85.T. So, let's make a note of this, [writing on the board] If 𝑓(𝑥) is 𝑥3, it means 

𝑓′(𝑥) is 3𝑥2. 
86.S. What is that dash mean?    
87.T. It means the derivative, the gradient function. That's the notation I have 

used here.  
88.S. What does the derivative mean?  

‘That’s the notation I have used here’ [87] was the explanation given here. In 

a different lesson, T4LO, another teacher introduces a new notation 

following his explanation for the derivative of the function 𝑦 =  𝑥2; it is simply 

introduced as a special notation. T4LO: 

202.T. And we’ve got a special…we’ve got some special notation for it.  Instead of 

saying 𝑚 =  2𝑥 we write 
𝑑𝑦

𝑑𝑥
=  2𝑥 and this is called the gradient formula, 

okay.   

In T4LO,  
𝑑𝑦

𝑑𝑥
  was explained simply as “some special notation” [202] that is 

used instead of the 𝑚, which is a symbol usually used to represent the 

gradient (slope) of a straight line. This utterance implies that 
𝑑𝑦

𝑑𝑥
  is the same 

as 𝑚, only a special notation for the same representation. It would, therefore, 

be necessary to explain the difference in application between 
𝑑𝑦

𝑑𝑥
  and  𝑚  

symbolism. Later in the lesson, T4 introduces Lagrange’s notation. T4LO: 

416.T. Now you might remember there’s a second way that mathematicians like to 

define - 𝑦.  Does anyone know another way we can write  𝑦 in maths?  

Mxxx?  𝑓(𝑥).  Now that means, let’s say if 𝑓(𝑥) =  𝑥3, that means we need 
another version of this that involves 𝑓(𝑥).  And in maths, we write the 

differential of 𝑓(𝑥)as 𝑓’(𝑥) okay.  So, you either call your equation 𝑦 =  𝑥3 in 

which case the differential is, the gradient function is  
𝑑𝑦

𝑑𝑥
.  But if you choose 

to call your curve 𝑓(𝑥), then your differential, your differential, sorry your 
gradient function is 𝑓’(𝑥).  Either is fine, okay. 

The use of 𝑚 for the gradient function was common in other lessons too. In 

T2LO, too 𝑚 is used to represent the gradient function. T2LO:  

373.T. We know as h gets smaller and smaller; it goes to 0.  So, then our gradient 
function, let’s call it m for now for the sake of it will go to 2𝑥 –  1. 
We think about the distances there [Pointing to the vertical and horizontal 

distances on the graph displayed on the board], being like 
𝑑𝑦

𝑑𝑥
.  Then we 

denote it like that [Displays 
𝑑𝑦

𝑑𝑥
=  2𝑥 − 1 on the board].   

The use of the same signifier or symbolic artefact for the derivative at a point 

and for the derivative as a function, for example, the use of 𝑚 in T4LO and 
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T2LO above, could potentially contribute to students’ difficulties with the 

derivative.  

 

The algebraic symbolic representations such as 
𝑑𝑦

𝑑𝑥
  or 𝑓′(𝑥) as well as 

terminology such as gradient function and gradient formula, often supported 

by numerical and graphical means, formed the basis for defining and 

explaining the process of differentiation.  In principle, the teachers 

introduced differentiation as the limit of the derivative, but only used a partial 

representation of the formal limit definition of the derivative. Although all the 

teachers introduced the process of differentiation, only one used the term 

limit in the lesson and even then, no formal definition of the concept of limit 

was given (See Section 9.2.1 on page 218 for a discussion of this point). 

7.3  Graphical mediation and digital artefacts   

This section presents evidence of the constraints of static imagery and the 

affordances of digital artefacts for dynamic imagery in exploring tangents to 

a curve and estimating the gradients at given points on the curve. Graphical 

mediation took two forms, either static (e.g. sketch diagrams or drawings by 

hand) or dynamic graphical imagery by means of web-based digital artefacts 

(also downloadable) of GeoGebra, Autograph and Desmos.  

 

The constraints of the pen and paper method and the affordances of 

dynamic imagery artefacts of drawing tangents to a given graph are 

exemplified in excerpts from [T1LO], [T2LO], [T7LO], and [T3LO], which will 

be examined in this section. The approach of introducing the derivative by 

drawing tangents to curves relied heavily on iconic mediation, drawings and 

geometric mediation of functions, but it varied across the different lessons 

observed. The excerpts from T1LO and T2LO illustrate the iconic and visual 

mediation by dynamic graphical means through the use of digital artefacts 

such as Autograph and GeoGebra. In these, [T1LO] and [T2LO], teachers 

gave the students a pen and paper task, in which the students had to draw a 

tangent to a given curve at a given point and compute the gradient of the 

tangent. 

 

In [T1LO] the task was that students had to draw the tangent at the point 

where 𝑥 = 1 on the graph of 𝑦 =  𝑥2 by eye. [T1LO] 

27.T. We’ll all get slightly different results, so you're just drawing the tangent by 
eye. I want you to imagine… 
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31.T. I can't really do it very well on here [Teacher drawing a tangent to a curve on 
the board, by free hand]. Don't look at mine, it’s been aren’t right. I am trying 
to show you the sort of thing I want you to do. 

The students too, found it difficult to draw accurate tangents on graphs by 

hand, as shown by the range of values that they produced. After collating the 

students' answers that ranged from 1.4 to 2.6, the teacher said: [T1LO] 

54.T. My experience of teaching this, is that most students draw tangents that are 
too shallow or too steep and that is sort of indicated by the fact that we got 
more answers that go underneath the 2 and over the 2. 

Up to this point, the teacher had used a sketch diagram for the graph of the 

function 𝑦 =  𝑥2. The teacher then resorts to a more graphical approach to 

investigate the gradient function of  𝑦 =  𝑥2 and uses digital visual mediation. 

See Figure 7-6, which shows the graph of the function 𝑦 =  𝑥2, the tangent 

line having just passed the minimum point and moving up the curve onto the 

right-hand side, and also the emerging gradient function, simultaneously.   

Dynamic imagery is a ‘very powerful tool’ [T1LO, 62] for graphical mediation 

in teaching differential calculus. A ‘very powerful tool’ [62] were the words of 

T1 as he used Autograph for visual mediation in which he showed a tangent 

line travelling along the curve of the graph of 𝑦 =  𝑥2. [T1LO]: 

62.T.  Let me show you this now. This is a very powerful tool that Autograph has. I 
am going to show you the graph of the gradient function. What it is going to 
do is this, it's going to plot the gradient of that curve. It's going to travel down 
the curve and plot its gradient 

 

Figure 7.6   𝑦 =  𝑥2, the tangent and the gradient function 

63.T. Tell me what you can tell me about the gradient of the curve to start with, it's 
going to start from the left-hand side and travel that way. What can you tell 
me, I don't mean what values there are? What sort of gradients are these? 
[Students: Negative]. They are negative, right. 
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65.T. This point down here, which you can't see on the graph, the gradient was 
minus 1. Here, at this point here [Referring to the origin], the gradient is 
zero. If I continue this line going there [Referring to the right-hand side] we 
get a dotted line. 

The teacher is using dynamic imagery to explain the ‘process of obtaining 

the gradient function’ [68] using a digital graphing tool, Autograph, which he 

describes ‘very powerful tool’ [62]. Dynamic imagery, in Figure 7.6, is used 

here to show that the gradient varies as the tangent moves.  The tangent 

starts from the left-hand side of the graph of 𝑦 =  𝑥2 and ‘travel[s] down’ [62] 

along the curve, passing through the minimum turning point of the graph and 

continuing to the right-hand side. As the tangent line travels from the left-

hand side down the curve to the minimum turning point and over to the right-

hand side of the curve, the corresponding gradients are plotted on the same 

graph, mapping out the gradient function, simultaneously. See Figure 7.7 

below, which shows the resultant gradient function  𝑦 =  2𝑥 after the tangent 

line has passed the view. [T1LO]: 

 

Figure 7.7  The resultant gradient function 

67.T. Can anyone look at the equation of that dotted blue line and think? Can you 
look at that blue dotted line and tell me what its equation is? [S: 2𝑥, 𝑦 =
2𝑥]. It is indeed 𝑦 =  𝑥2. How did you know it's 2𝑥, how did you tell?  

[S: Because when you square along...] lovely, that's perfect, that's brilliant, 
Sxxx! 

68.T. The gradient is 2. You are happy it goes to the origin. Now, this 2𝑥 is called 

the gradient function of 𝑥2. The process of obtaining the gradient function in 
mathematics is called differentiating. 

Previously, the students had not been able to describe the gradient(s) as a 

function of x. Instead, they could only give a sequence of values ‘you say it 

goes 2, 4, 6, 8 ...that right?’ [61]. The visual mediation in which they could 

see the tangent travelling along the curve, and at the same time, the 

gradients being plotted, mapping out a function, enabled students to see the 
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gradients in terms of a function; a graph rather than a sequence of numbers.  

Note the teacher’s word use here - gradient function and equation, and the 

narrative that ‘Now, this 2𝑥 is called the gradient function of 𝑥2’ [68]. With the 

use of digital artefacts, graphical representation enabled the students to 

deduce the equation of the graph [68], i.e. the gradient function, and 

differentiation was effectively defined as the process of obtaining the 

gradient function.  

T1LO was the only lesson that showed dynamic imagery of a function 𝑓(𝑥) 

and the graph of its derivative function, 𝑓’(𝑥), simultaneously. The evidence 

suggests that iconic mediation allowed students to see certain features that 

they could otherwise have missed without the visualisation. This is illustrated 

by the following excerpt in which a student has made some important 

observations from Figure 7.8, which shows the graph of 𝑓(𝑥) = 𝑥3 and its 

gradient function, T1LO: 

121.S. If that curve like you found out from the red curve [function 𝑓(𝑥) = 𝑥3], do 
you find out that the gradient is in that blue curve [gradient function 𝑓′(𝑥) =
3𝑥2]? 

122.T. Yes/ 
123.S. But that's a curve, so the gradient changes a lot, doesn't it? 
124.T. Yes, that’s the whole point the gradient just changes; that’s exactly the point 

for a curve the gradient is changing all the time.  

 

Figure 7.8  The graph of 𝑓(𝑥) = 𝑥3 and its gradient function 

The teacher presented dynamic imagery of the graphs in Figure 7.8, 

whereby the students could see both graphs mapping out simultaneously. 

The student’s questions and utterances [121; 123] suggest that the graphical 

mediation (showing the graphs of both the function and its gradient function) 

used by the teacher helped the student in constructing the definition of 

gradient function.  

Autograph, in particular, the dynamic imagery of Figure 7.6 above 

demonstrates the changing slopes (gradients) on a curved line graph as 
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opposed to the constant slope (gradient) on a straight-line graph. It provides 

a dynamic visual graphical mediation of the gradient function 𝑓’(𝑥), i.e. 

𝑓’(𝑥) = 2𝑥, of the function 𝑓(𝑥), i.e. 𝑓(𝑥) =  𝑥2 in more ways than what could 

be possible without it or with static graphical representations. For example, 

compare the dynamic demonstration above (see Figure 7.6) with the 

metaphor of an ant travelling along the curve [T1LO] and a ruler moving 

around the curve [T7LO]. For example, here is an excerpt from earlier in the 

lesson, T1 introducing the idea of changing gradients of the tangents to a 

curve at various points along the curve. Here, the teacher was referring to a 

static visual mediator of a quadratic graph printed on handouts given to the 

students. [T1LO]: 

13.T.  Right okay you've now got in front of you the curve 𝑦 = 𝑥2 . I want to you 

imagine you are an ant. Can you imagine what it is like to be an ant and you are 

literally traveling along the graph? 

   
16.T. What do you think we mean by the gradient of the curve?  
17.T. Imagine the ant is there [pointing at a point on the graph], would you say the 

curve is steep there?  
18.S.  Quite steep, isn’t it? 

A similar explanation from a different lesson, T7LO, illustrates a moving 

tangent line by moving a ruler along the curve. T7LO: 

104.T. So, if we imagine that the ruler is the tangent at different points. 
105.S. Yeah. 
106.T. The tangent, the gradient of the tangent will tell us the gradient of the curve 

at that point.  This is what I’ve just done.  I’ve gone around different points 
on the curve, and you can see that the slope of the gradient, the ruler is 
changing, isn’t it?    

The metaphor of an ant travelling along the curve explanation [T1LO], rests 

on an individual student’s imagination. Its effectiveness depends on the 

students being able to make the correct realisations for the signified. The 

placing and moving of a ruler along the curve [T7LO] would be hardly 

accurate as it is often practically very difficult (if not impossible) to draw 

tangents to a curve accurately.  

Plotting both the function and the gradient function on the same axis as 𝑦 =

 𝑥2 and 𝑦 =  2𝑥, if not adequately explained, could be ambiguous to the 

newcomer to the discourse. The original function represents the 𝑦 −

“𝑣𝑎𝑙𝑢𝑒𝑠”  against the 𝑥 − “𝑣𝑎𝑙𝑢𝑒𝑠”. However, the gradient function represents 

not the 𝑦 −values, but the gradient values against the 𝑥 −values. It is 

important to substantiate and make explicit, this difference in the vertical axis 
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between 𝑓(𝑥) and 𝑓’(𝑥), for the graph of the original function and the 

gradient function, respectively. It is possible and reasonable in mathematics 

to plot several functions (such as  𝑦 = 𝑓(𝑥)and 𝑦 =  𝑓’(𝑥)) on the same 

axes, i.e. the 𝑥 − 𝑦 coordinate plane, when there are no units associated 

with the axes. This would be perfectly reasonable to the experienced 

discussants but may not be so reasonable to the newcomers to the 

discourse. Teachers should not assume that the learners would simply 

disregard what could be the units on the axes. It is important that the context 

in which such representations are used is made explicit for the learners. For 

example,  in mechanics or applied mathematics, the units on an axis specify 

the nature of the variable, and so it would be very important to use separate 

vertical axes for 𝑓 and 𝑓’ for they indeed measure different variables. 

Alternative representations could show the two graphs, the 𝑓(𝑥) above the  

𝑓’(𝑥), with the same horizontal 𝑥 − 𝑎𝑥𝑒𝑠 but differently labelled vertical axis. 

Another illustration of the affordances of digital artefacts and dynamic 

imagery is from [T2LO]. In [T2LO] the teacher uses GeoGebra to illustrate a 

quadratic graph and a tangent to the graph, as shown in Figure 7.9 and then 

gives the students a handout with the diagram shown in Figure 7.10.  

[T2LO]:  

 

Figure 7.9  GeoGebra: a tangent to a quadratic curve 
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Figure 7.10  The graph of y =  x2 − x − 6 

44.T. So, pick a point that’s definitely on the line, like you can see some.  Yeah, 
there’s one there.  So then just go for it cause it’s going to be an 
approximation anyway, isn’t it?  Yeah good.  So, the gradient we’ve got is 

the y-distance over the x-distance.  So, it’s like our 
(𝑦2−𝑦1)

(𝑥2−𝑥1)
.  But we don’t 

have to use that because we can just count. 

The students in [T2LO] were finding it difficult to draw the tangents and to 

work out the gradients. The teacher then tries to guide the students to 

choose points that would make it easier to compute the value for the 

gradients, “So, pick a point that’s definitely on the line” [44]. In this class, 

some students had done GCSE (Level 2) Further Mathematics, and so had 

met the process of differentiation in the past. [T2LO] 

53. T. No, we’re just drawing on tangents and working out the gradient.   
54. S. So, you can work out the gradient by differentiation, can’t you? 
55. T. Yeah, we can but we’re just approximating here. 
56. S. Oh right.  
57. T. No differentiation yet.  In fact, no differentiation for the whole lesson.  Not 

until the next lesson so don’t worry about that now.  [The teacher turns to 
another pair of students] What are we doing over here?  How are we doing?   

58. S. I can’t do it.  I can’t. 
59. T. Just have a guess.  It’s only an approximation.   

At this point, the teacher turns to the GeoGebra presentation (in Figure 7.9) 

and demonstrates the approximation for gradient by dragging the tangent 

and zooming on the point of tangency, by so doing showing the constraints 

of approximation by drawing tangents by manual or pen and paper means. 

[T2LO] 

93.T. And let’s have a look at what may be the issues with the tangent that was 
drawn here.  Oh wow, it’s nearly perfect.  So, what I’m looking at here [The 
teacher zooms in on the graph - Figure 7.9], this one doesn’t exactly touch.  
I thought maybe it had gone a bit over, but it doesn’t exactly touch.  So, it’s 
pretty hard to draw on, basically.  
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We already know that it’s hard to draw an accurate tangent, pretty much 
impossible.  Let’s have a look a little bit closer up [The teacher moving the 
GeoGebra sliders on the graph, see Figure 7.9]. Maybe at this one here and 
I’ll explain what on earth’s going on here.  So, I’ve zoomed in on part of our 
curve.  What’s happened is I’ve tried to draw a tangent, but it’s gone a little 
bit over even though Axxx’s [The previous diagram] was a little bit 
before[under].  

The teacher [T2LO] uses the dynamic imagery of GeoGebra to align a 

straight line as a tangent to the parabola using the sliders by dragging, as 

depicted in the snapshot of the action shown in Figure 7.9. The teacher then 

zooms on the graph, at the point of tangency, only to reveal that the straight 

line had crossed over the curve. The teacher demonstrated the limitations of 

the drawing of the tangent to a curve as a method for estimating or finding 

the gradient of a point on a curve. She explains “We already know that it’s 

hard to draw an accurate tangent, pretty much impossible” [93].  

Other teachers described the task of drawing a tangent to a curve as ‘very 

difficult’ [117], for example, in an excerpt from [T7LO] below. The teacher in 

[T7LO] avoided the activity altogether. [T7LO] 

117.T. So, if I’ve got a curve, what I could do to work out the gradient at this point B 

[Teacher pointing to a point on the graph of 𝑦 =  𝑥2 ] is I could draw the 
tangent to it. The only problem with that is it’s very difficult to draw a tangent 
accurately because it’s supposed to just touch the curve at one point, and it 
needs to be very precise. So, unless we’re coming up with an estimate it’s 
an inaccurate way of working out the gradient of a curve at a particular 
point. 

In lessons such as [T7LO], the teachers simply explained how drawing 

tangents to a curve would give an estimate of the gradient of the curve at the 

given point but did not set the students for a pen and paper exercise to 

investigate the activity.  

Although in [T3LO] the teacher used GeoGebra, it was in a limited sense. 

Explaining her planning in an interview with the researcher before the 

lesson, the T3 said: [T3I(i)]: 

42.T.  I’ve introduced a sort of diagram through GeoGebra, but then I’ve got some 
worksheets to work out the gradient between two points on a curve. 

43. R.  Yeah. 
44. T. And moving the two points closer together. 
45. R. Yeah. 
46. T. Trying to predict what the gradient of the tangent would be. 
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In contrast with the graphical mediation of [T2LO], which had the curve, the 

secant and the tangent, as well as the use of sliders in the graphics, T3LO 

used the visual representation shown in Figure 7.11 below. 

 

Figure 7.11  GeoGebra: y =  x2 and a secant 

Although it could show the graph of the function 𝑦 =  𝑥2 , the graphical 

imagery was not visually very clear on the secant (chord). It is difficult to see 

the secant (chord) from the curve itself. The secant line looks like a tangent 

line, but it is not a tangent because of the two points marked on the line and 

the curve. The two points on the curve are meant to illustrate that the points 

could be joined to find the gradient of the resulting chord. More so, where 

the graph meets the secant line, it looks more like a straight line than a 

curve. Visually, this could pose challenges for students, given the 

expectation that ‘getting closer and closer, should be giving successively 

better estimates of the gradient at a chosen point. Although digital artefacts 

were used here [T3LO], they were utilised in a limited sense, given the 

objective of the instruction. 

Talking about his use and students’ use of technology such as Desmos and 

GeoGebra in teaching introduction to differentiation, T4 thinks that it would 

be useful for both the teacher and the students to use digital artefacts such 

as Desmos and GeoGebra in the lesson.  T4I(ii) 

24.T. I’ve used, I don’t really use technology that much as you can probably tell 
from my heavily, yeah, all the drawing on the board, but I tried an iPad 
version of, I think it was Desmos. I haven’t really figured out how I might get 
the students to use that at the same time as me and make it useful. I find 
GeoGebra just nice because you can search for the exact slide that you 
want to explain a particular point and it’s quite versatile like that.  

The teacher expresses a favourable or positive opinion on GeoGebra, that 

he finds it nice, flexible and adaptable, even though he had decided against 
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using it in his lesson.  Indeed, there was minimal use of digital artefacts in 

his lesson. He used hand-drawn sketch graphs on the board to explain and 

define the derivative. However, he explains that for his plans for the 

introductory lesson on differentiation, he felt using GeoGebra would 

complicate his calculus lesson. T4I(ii): 

22.T. I mean I considered using GeoGebra and played around with some sliders 
that altered the chord length on a curve and what I found was what I didn’t 
like complicating it by considering points on either side of the point you 
wanted to find the gradient at. And I also didn’t like ones in which the point 
didn’t, one point didn’t stay constant. So, I quite liked setting the one point to 
(1;1) and then considering only points above (1;1) and what happens as the 
second point approaches (1;1). I just wanted to keep it, it might just be how I 
feel about Calculus, but I wanted to keep it as straightforward as possible, 
keep as many things as the same as possible and only change one 
particular thing with the x co-ordinate and get that closer and closer to the 
point at which we want to know the gradient. 

Availability of, access to and ease of use, are all factors that also influence 

teachers’ decisions on the choice and use of digital artefacts. In a post-

lesson interview, T5 explains his technology for teaching. The teacher is 

familiar with and said he used GeoGebra and Desmos with iPads, computer 

suites and mobile phones with his students.  However, the availability of 

iPads for students and the accessibility of ICT suites are factors that 

determined the frequency and extent to which the teacher incorporated 

these technologies in his lessons. T5I(ii) 

34.T. Yeah, absolutely. At some point last year, we used GeoGebra, and I like 
GeoGebra from a sense that most things that can be modelled even in 3-D 
you can do in GeoGebra. But in terms of graphing, I like to consistently use 
Desmos now. 

35. I. Desmos, yeah.  And do the students also use graphing calculators? 
36.T. Year 13 so at A2 they use it an awful lot because up until last year every 

student who came here was given an iPad but sadly this is the first Year 12 
cohort where we’ve not been able to do that for them. So, we don’t do it as 
much. Every, you know when the opportunity arises, I do book out ICT 
suites but with the Year 13s it’s just a matter of course that they’re there and 
they just pick up their iPads and get on with it really but with the Year 12s 
not, not as much, and I wouldn’t book an ICT suite out for the sake of using 

it for five minutes. 

‘We don’t do it as much’ [36], says the teacher because the students no 

longer received iPads from the school like in the previous years when the 

teacher would use digital artefacts with the students ‘an awful lot’.  With his 

Y12 class, the teacher was no longer using digital artefacts as much as he 

does with his Year 13 class who have iPads. ‘I wouldn’t book an ICT suite 

out for the sake of using it for five minutes’ [36], because of limited access to 

and use of digital artefacts. 
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Summary 

Teaching an introduction to differentiation was visually mediated by the 

iconic mediators such as the quadratic graphs and by the digital artefacts 

such as the dynamic imagery of GeoGebra, whose affordances include more 

accurate graphing of functions, drawing of the tangent utilizing sliders, 

dragging of variables, and zooming on the graph.  Thus, the graphical 

representations were complemented and supplemented by digital artefacts 

such as GeoGebra and Autograph, but also by verbal or visual signifiers in 

the teacher’s utterances. Visual mediation employing dynamic imagery 

digital tools such as GeoGebra and Autograph can be used to supplement 

and could enhance the traditional static graphical representation in 

constructing the definition of the derivative.  

7.4  Visual mediators and multiple representations   

Evidence from across the various lessons shows that in introducing 

differential calculus, teachers use combinations of, and constant shifts 

between numerical, algebraic and graphical mediation. To illustrate the 

findings, five exemplar excerpts from three different lessons, [T4LO], [T2LO] 

and [T3LO] are presented and examined.  They have been chosen because 

they are representative of the combinations of and shifts between 

representations witnessed in the teachers’ introductory lessons to 

differentiation. 

The first excerpt is from [T4LO] and involves the gradient of a constant, 

which combines graphical means and algebraic means. At this point in the 

lesson [T4LO], just before the utterance [481], the teacher had introduced 

the algebraic symbolism for differentiation, the 
𝑑𝑦

𝑑𝑥
  and the standard formula 

for differentiation, 
𝑑𝑦

𝑑𝑥
= 𝑛𝑥𝑛−1 for a function 𝑦 =  𝑥𝑛. The class had applied 

the standard method for differentiation for the function 𝑦 =  𝑥2.   [T4LO]    

481.T. The gradient at any point.  Okay, what about this one then?  𝑦 = 4, okay.  
Have a think, have a think for a moment, what do you think the gradient 
function of 𝑦 = 4 would be?   You may draw a diagram if you want, that’s a 

hint.  But, have a think about what you think the gradient function of 𝑦 = 4, 
would be.  Try drawing a diagram, try thinking, there are a couple, I think 
there are a couple of ways of thinking about this one.  Try and come up with 
an idea of what you think the gradient function would be. 

491.T. Okay Year 12 have a look at this [Teacher drawing the students’ attention to 
the diagram he’s drawing on the board – see Figure 7.12].  This is what 
Gxxx’s drawn on her axis.  And this is my favourite way of working it out.  
Gxxx started by drawing her axis and then she’s drawn the line 𝑦 = 4, okay.  
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So, that’s a line through 4 there.  Now the question is, what’s the gradient 
function of that line?  What’s the gradient function of that line?  What’s the 
gradient at any point on that line?  

 

 

Figure 7.12  The gradient function of a ‘constant’ 

492.S. 0. 
493.T. 0, because it’s a horizontal line.  The gradient function’s going to be 0.  

That’s one way of thinking about it.  Okay, that’s one way of thinking about 
it.  Now, there’s a second way of thinking about it which I quite like which 
uses the formula okay.  This one uses the formula.  Does anyone have an 
idea how to use a formula to work out what the gradient function of 4 [𝑦 = 4] 
is? 

 

In [481] the teacher T4LO asks students to find the gradient function of 𝑦 =

4. Note that the teacher insists on thinking, ‘… have a think, what you think 

the gradient function of 𝑦 = 4 would be’ [481]. In this [481] teacher’s 

utterance alone, he mentions the word ‘think(ing)’ nine times, of which eight 

of the nine times are directed at the students. Here the students are 

encouraged to think in multiple ways of solving the problem presented as 

shown by the teacher’s scaffolding instruction to the students in [481], ‘try 

drawing a diagram’, ‘there are a couple of ways of thinking about this one’.  

Shifting the attention to the algebraic approach to solving the problem of 

finding the gradient function of 𝑦 = 4, the teacher T4LO re-emphasises 

‘thinking’, which is mentioned a further three times in [493]. Here, the 

teacher directs the students to the standard formula for differentiation that 

the class had used for differentiating the function 𝑦 =  𝑥2. His question “Does 

anyone have an idea how to use a formula to work out what the gradient 

function of 4 [𝑦 = 4] is?” opened the teacher-student dialogue below, which 

explains the algebraic way of thinking about the problem. [T4LO] 

511.T.  Well, what are we missing that we usually have on all the other questions, 
that we don’t have here?  We don’t have an 𝑥.  Instead, we’ve got a number, 
okay?  So, let’s assume there’s a power of 𝑥 here [Teacher pointing next to 
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4 in the function 𝑦 = 4] that we can’t see.  What power would that X be 
raised to, for it to equal 𝑦 = 4?  What power of x would work, Mxxx? 

512.S. 0. 

513.T. 0, okay. Why is that the same as 𝑦 = 4, Gxxx?  Why is 4𝑥0 the same  
as 𝑦 = 4? 

514.S. 𝑥0 is 1 
515.T. That’s it! 
516.S. And 1 × 4 is 4. 

517.T. There you go!  So, 4 × 1 is 4.  So, 𝑦 = 4.  So, we could consider this 

instead, 4𝑥0.  Now can someone help me apply the rule now to work out 
what the gradient function is?  What would I do first?  Hxxx? 

518.S. Times 0 by 4… 
519.T. That’s right, you times by 0. 
520.S. And you’d have 4x to the power -1 
521.T. That’s right.  What’s that simplified to, Hxxx? 
522.S. x = 0. 
523.T. Exactly and that works doesn’t it?  So, there seem to be two ways of 

thinking about it.  Either you can think about, well, 𝑦 = any number will 
differentiate to 0 because its gradient’s always 0.  Or you can use a bit of 
fancy algebra to work out that it’s the same as this rule here.  Okay, right the 
next one. 

The graphical mediation of the gradient of a constant is substantiated 

algebraically in [511 - 523] above. By manipulating the algebraic laws of 

indices, what the teacher describes as using “a bit of fancy algebra to work 

out…”[523], he was able to demonstrate that the algebraic mediation, gave 

the same solution to the problem, as the graphical approach. This example, 

[T4LO], demonstrates the complementary application of graphical and 

algebraic mediation in substantiating the derivative of a constant function.  

The second illustration comes from [T2LO and is a more explicit example of 

multiple representations. Here the teacher used numerical, graphical and 

algebraic forms of mediation together, in substantiating the gradient of the 

tangent to the graph of function 𝑦 =  𝑥2 − 𝑥 −  6 at point P (4.6). See Figure 

7.13 showing the iconic mediator, which is a section of the graph together 

with the secant and tangent line.  Referring to the iconic mediator, the 

teacher started with a numerical approach – “I’m going to do this 

numerically” [97] - to estimate the gradient of the tangent to the curve at 

point P (4.6). [T2LO] 

97.T. And you’re all going to have a particular point.  Now you might notice my 
point was (4,6).  …  Now I’m going to pick another point, Q, which is 
definitely on my line, and I’m going to start trying to move it down [Teachers 
dragging point Q slightly, towards point P]. I’m going to do this numerically.  
Now can anyone tell me a point that this could be? Can someone give me a 
point Q which could be in that position? Think of an 𝑥 value.  𝑥 is 4 there 
[Teacher pointing at point P].  What could 𝑥  be here [Teacher pointing at 

the position of point Q]?  Maybe it could be 5.  Let’s do 5.  What’s my 𝑦 co-
ordinate gonna be?   
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Figure 7.13  Estimating the gradient of the tangent at P(4,6) 

 

107.T. Perfect, 8.  So, my gradient there [Teacher pointing at point P] is going to be 
8/1, which is 8.  Then I’m going to think about moving this Q a bit closer.  
How about instead, I do 4.5 and whatever my answer is? …   

 

This was a numerical approach to estimating the gradient of the function 𝑦 =

 𝑥2 − 𝑥 −  6 at the point P(4, 6). Note in Figure 7.13 that there is a table 

designed to scaffold and mediate instruction on the numerical approach. 

Students had been given a printout of the diagram and information printed in 

Figure 7.13, the graph and the table. The activity for estimating the gradient 

of the tangent at the point P(4, 6) progressed as shown in the table, starting 

with 𝑥 = 5,   𝑥 =  4.5, and so forth ‘getting closer and closer’ to point P(4, 6). 

Each time, computing the gradients of the secant passing through P and Q 

and recording the gradients in the table, e.g. for the gradient is 8 for the 

secant through P(4, 6) and Q(5, 14). Visual mediation here constantly shifts 

between graphical and numerical representations, back and forth; the two 

representations here are complementary.  

The routine for estimating the gradient of the function 𝑦 =  𝑥2 − 𝑥 −  6 at the 

point P (4, 6) progressed onto a more algebraic approach. Here, Q had 

taken the coordinates [(𝑥 + ℎ), (𝑥 + ℎ)2 − (𝑥 + ℎ) − 6]. Again, the mediation 

shifts back and forth between the two visual mediators – the graphical and 

algebraic representations. [T2LO] 

326.T. Yeah, so as P and Q get close together, so ℎ tends to, we’ve seen this 
before, ℎ tends to 0 because it’s going towards 0, isn’t it?  Then our gradient 
tends to 7.  So, that’s what we’ve done so far.  We’ve had a look graphically 
approximating it.  We’ve had a look algebraically.  And that is true, ℎ will 
eventually become 0 as they [P and Q] become the same point.  So, our 
gradient will be 7.   
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“We’ve had a look graphically approximating it.  We’ve had a look 

algebraically” [326]. Remember, the teacher had started on the same activity 

with a numerical approach to the investigation - “I’m going to do this 

numerically” [97]. The teacher [T2LO], in concluding [326] the activity, 

highlights the multiple approaches combining numerical, graphical and 

algebraic mediations she had used with the class to estimate the gradient of 

the tangent at the point P(4, 6) on the curve for the function 𝑦 =  𝑥2 − 𝑥 −  6. 

The third lesson [T3LO] is an example that depicts the numerical, tabular 

and algebraic visual mediators for the representation of gradient function. 

Visual mediation here is a combination of the iconic mediation (from tables) 

and the written symbolic mediation (from the numerals and the algebra), see 

Figure 7.14, which shows the gradient functions for 𝑦 =  𝑥2 and 𝑦 =  𝑥3, 

respectively.  [T3LO] 

 

Figure 7.14  Gradient function - numerical and algebraic representations 

Two exploratory activities for the gradients of the functions  𝑦 =  𝑥2 and 𝑦 =

 𝑥3 at the various points as shown in the tables in Figure 7.14 above, were 

carried and the respective gradients were recorded. The algebraic 

representations 2𝑥 and 3𝑥2 for the respective gradient functions for  𝑦 =  𝑥2 

and 𝑦 =  𝑥3, are dependent on their respective table of values. Figure 7.14 

shows the x- values and the corresponding gradients of the curve at the 

given point. The numerical and the algebraic mediation here, are 

supplementary, and together they combine to construct the narratives for 

gradient functions of the functions 𝑦 =  𝑥2 and 𝑦 =  𝑥3.  However, what is 

described as “Gradient = 2𝑥 and “Gradient = 3𝑥2”, is in fact the gradient 

formula or gradient function. In literate discourses, the gradient function of  
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𝑓(𝑥) =  𝑥2 is 𝑓′(𝑥) = 2𝑥; and the gradient function of 𝑔(𝑥) =  𝑥3 is 𝑔′(𝑥) =

3𝑥2. 

The mediation in [T3LO] is a combination of the iconic mediation (from 

tables) and the written symbolic mediation (from the numerals and the 

algebra) (see Figure 7-16). Here, the teacher combines the numerical, 

tabular and algebraic visual mediators in constructing and substantiating the 

gradient functions for 𝑦 =  𝑥2 and 𝑦 =  𝑥3, respectively.  

The exemplar excerpts from the three lessons [T4LO], [T2LO] and [T3LO] 

presented above are representative of the combinations of and shifts 

between forms of mediation witnessed in the teachers’ introductory lessons 

to differentiation.  All the teachers used some combinations of numerical, 

graphical and algebraic mediations in their lessons.   

In a post-lesson interview excerpt with T5 below, the teacher explains his 

lesson and the use of multiple representations.  T5I(ii) 

18.T. But the best thing that I found was on the Nrich website and that’s so the 
basis of what I did today, which was based on that really. An investigation 
that started looking at a combination of the graphs and the coordinates so 
that they had a visual representation and a sort of tangible numerical 
representation that they could look at as well.  

Explaining his reasons for taking an exploratory approach that uses 

graphical and numerical mediation, T5 referred to his first lesson on 

differentiation the previous year when he had used some power-points he 

had found online. T5I(ii) 

16.T. And one of the power-points particularly with this lesson just introduced, like 
you said the Algebra and they introduce the Algebra, so the formality behind 

the proof of this Algebra was more difficult than they went into at A level. 

Similarly, T3 talks of graphical investigation too. Talking about her lesson 

planning for introducing differentiation, she emphasises the visual 

representation through graphs. Graphical representation is seen as more 

visual than algebraic representation, which is described as abstract here. 

Below is an excerpt from the pre-lesson interview. T3I(i):  

138.T. I think it’s important for students to visualise what is happening.  And I could 
have gone to first principles in the sense that it’s still two points and that it 
would link but it would be a bigger jump.  I feel like it’s a smaller jump to go 
to the graphs first. 

139. I. Ok. 
140.T. And it also keeps linking back because we, they will have to link 

differentiation with graphs in the future.  So, I think it is useful to be talking 
about what’s happening in a graph.  And so, the visual side just gives a 
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different way of viewing the topic, sort of the visual side as well as the 
algebraic. 

141. I. Right. 
142.T. Rather than it feeling more abstract.  I think it can feel a bit more abstract if 

you go straight into algebra.  From speaking to the teachers, I’ve spoken to, 
one of the teachers misses out on doing any graphical investigation and 
goes straight to the differentiation from first principles.  Whereas the other 
teacher does spend time on working out the gradients of tangents from a 
graph.  And she felt that had a lot of value.  

The teacher here considers it more important to start with investigating the 

gradients of tangents to a graph at given points before taking a rather more 

algebraic approach to differentiating from first principles. T3 consulted two 

other teachers as she planned for her lesson.  Note that she reports that 

they were taking different starting points into introducing differentiation, but 

she favoured a more visual graphical approach.  

7.5  Discussion 

In this section, a discussion of the findings reported in the preceding three 

subsections above will be made. The discussion will focus on calculus 

symbolism, the use of digital artefacts such as dynamic imagery tools with 

graphical mediation and the use of multiple mediations in the teachers’ 

pedagogical calculus discourse.  

Calculus symbolism 

Symbolism is part and parcel of teaching differential calculus because 

symbols are integral to calculus. The use of the same visual mediators or 

symbolic artefacts for the derivative at a point and for the derivative as a 

function, for example, the use of 𝑚 in T4LO and T2LO ( see Section 7.2 

pages 137 to 141), could potentially contribute to students’ difficulties with 

the derivative. This observation is consistent with the findings from Park's 

(2016) examination of the calculus discourse of experts as reflected in the 

three most popular calculus textbooks in the US. Park (2016) found that the 

‘realisations of both the derivative at a point and the derivative of a function 

were mediated with nearly identical symbols suggesting a possible difficulty 

with understanding the difference between them’ (p.417). The teachers in 

this study, certainly do not have difficulty understanding the difference 

between 𝑚 and 
𝑑𝑦

𝑑𝑥
. However, the evidence in T4LO and T2LO above, 

suggests that their students could potentially have difficulties understanding 

the difference between the symbolic artefacts and their applications.  



- 166 - 

In the lessons observed in this study, the symbolism  
𝑑𝑦

𝑑𝑥
 and 𝑓’(𝑥) were given 

to signify the gradient function (or the derivative) of the function,  𝑦  or 𝑓(𝑥), 

respectively. However, apart from telling students that it is the notation to 

use for the gradient function, there was no explicit explanation for the 

meaning or origin of the symbols 𝑓’(𝑥) or 
𝑑𝑦

𝑑𝑥
, 𝑑𝑦 and 𝑑𝑥. Neither were there 

any questions from students about the symbolism nor about its origins, apart 

from one instance in T1LO [86] when a student asked about 𝑓’(𝑥). This 

suggests that the students accepted the calculus symbolism as presented by 

their teachers, as given facts.  Teachers introduced 𝑓’(𝑥) and  
𝑑𝑦

𝑑𝑥
 symbolism 

basically as the notation for the gradient function.   

According to the commognitive approach, mathematics is a form of 

discourse (Sfard, 2008) and learning and doing mathematics means 

becoming capable of participating in the literate discourse (Sfard, 2016). In 

mathematical discourse, the role of visual mediators is ‘fulfilled by symbolic 

artefacts such as numerals, algebraic expressions and graphs, created 

specifically to serve as ‘representations’ of impalpable mathematical objects’ 

(Sfard, 2015, p.132). According to the commognitive approach (Sfard, 2007; 

2008) symbolic artefacts, such as the 𝑓’(𝑥) and  
𝑑𝑦

𝑑𝑥
 in differential calculus, 

are an integral part to the thinking and communication process in 

mathematical discourse. Symbolic mediation brings ‘generative power’ 

(Sfard, 2008, p.159) to the discourse and offers ‘powerful manipulative 

ability’ (Tall. 1992a, p.9). However, calculus symbolism and calculus 

terminology can be a source of some difficulties with calculus, for both 

teachers and students, alike. How differential calculus symbolism is 

introduced matters as students need to learn the symbolism. 

 
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥)  have been defined as a gradient function, e.g. in T4LO ‘the 

gradient function is  
𝑑𝑦

𝑑𝑥
 … your gradient function is 𝑓’(𝑥)’ [417]; in T1LO, 

𝑓’(𝑥) is defined as ‘it means the derivative, the gradient function’ [87]; and in 

T2LO referring to the gradient function the teacher says ‘we denote it like 

this – 
𝑑𝑦

𝑑𝑥
 . However, in T4LO, not only does the teacher defines 

𝑑𝑦

𝑑𝑥
=  2𝑥  as 

the gradient function for 𝑦 =  𝑥2, but describes it as differentiation, too.  

204.T. 𝑦 = 𝑥2. This is always gonna be the gradient formula for the line 𝑦 = 𝑥2, 
okay and that’s it.  That’s differentiation, finding the gradient formula.   

Similarly, in T7LO, 𝑓’(𝑥) is defined as standing for gradient (referring to the 

gradient function) and has been linked to differentiation too. T7LO 
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129.T.  We use the notation 𝑓’(𝑥) to stand for the gradient of the function 𝑦 =  𝑓(𝑥). 
You will use that a lot; it will become like second nature. Find 𝑓’(𝑥)  means 

differentiate, which means find the gradient.  

T4LO [204] and T7LO [151] show that these symbolic mediators,  
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥)  

have a dual role in the calculus discourse.  On the one hand, 𝑓′(𝑥)  can be 

an object narrative for ‘the derivative of 𝑓(𝑥)’, and on the other hand, an 

operational narrative for ‘the process of differentiation’. The dual purpose of 

these calculus symbols,  
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥), if not made explicit, can be a source of 

confusion for students (Park, 2013). The symbolism 
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥)  is an 

example of what Gray and Tall (1994) call a ‘procept’ (Tall, 1992b, p.4), a 

signifier for both the process and product in the same symbolism. Gray and 

Tall (1994) define procept as ‘the amalgam of process and concept’ (p.4).  

A procept such as 
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥) can call up either a process (finding the 

derivative) or a concept (Gray and Tall, 1994) or a mathematical object 

(Sfard, 1992; 2008) or simply put the product of the process in the student’s 

mind. Flexible thinking is required in the face of a procept. A student needs 

to be able to tell whether the symbolism 
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥)  signifying the process of 

differentiating or the derivative, the product of differentiation. Unless the 

context makes it explicit, a student may find a procept ambiguous, failing to 

read whether it is signifying the process or the concept, i.e. the object (Sfard, 

1992). The “duality (as process or concept), flexibility (using whichever is 

appropriate at the time) and ambiguity (not always making it explicit which 

we are using)” (Tall, 1992a, p.4) in calculus procepts, are a source of 

challenges for many students and teachers. Given the flexibility and the 

duality of use of calculus procepts, it is essential that teachers make it 

explicit enough for students to develop the necessary flexible thinking and 

understanding to be able to deal with the possible ambiguity of use (Tall, 

1992b; Gray and Tall, 1994). 

Graphical mediation and dynamic imagery tools 

Sfard's (2008) view of visual mediation ‘does not distinguish between the 

static and the dynamic’ (Ng, 2018, 1177). Using digital artefacts such as 

Autograph, GeoGebra and Desmos allowed for a more accurate and 

dynamic demonstration of the object of instruction in real-time, which meant 

less time than what would be required when teaching with static graphical 

imagery. At the click of a button, for example, the teacher in T1LO (refer to 

Section 7.3 and see Figure 7.6 on page 128) was able to illustrate the 

relationship between the graph of the function 𝑦 =  𝑥2, its moving tangent 
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line and the gradient function, 𝑦 =  2𝑥  almost instantly;  thus, the versatility 

and the generative power of visual mediation  (Tall 1992; Sfard, 2008). 

However, in all the lessons observed, the students did not use the 

technology of GeoGebra, Autograph and Desmos that the teachers used, 

apart from one lesson [T2LO], in which some students were asked to come 

to the board (interactive whiteboard) to drag objects on the screen, for 

example, to demonstrate a tangent by dragging a straight-line to a tangency 

with a graph of a given function.  

Dynamic geometry learning and dynamic imagery activities with such 

programs as GeoGebra, Autograph and Desmos can be instrumental for 

exploratory learning in calculus. Tall (1986, 1990, 2003, 2013) has long been 

an advocate for technology in teaching and learning calculus. Tall (2013) 

argues that the use of digital artefacts can be instrumental in helping 

students develop visualisation skills and forming visual mental images of 

calculus concepts. Jesso and Kondratieva (2016) argue that a dynamic 

geometry environment (DGE) enables for the substantiation of the limit 

definition of the derivative with more elaborate functions than what would be 

possible by hand; more complex functions than the commonly used linear or 

quadratic functions). 

Ng’s (2015) commognitive study examined bilingual high school students 

using dynamic geometry to learn about derivatives and antiderivatives. In 

Ng’s study, the students are seen dragging visual objects and later use such 

dragging activities to explain conjectures (Presmeg, 2016). Ng’s (2015) 

study shows the importance of such activities for it demonstrates the 

interdependence of gestures, discourse and dragging with dynamic imagery 

activities in a dynamic geometry environment. In my study, even though 

dynamic imagery technology is available and accessible to teachers and 

students alike, not a single teacher set students a task to use any of these 

digital artefacts.  

‘Of all the areas in mathematics, calculus has received the most interest and 

investment in the use of technology’ (Tall et al., 2008, p. 207).  It is widely 

accepted that the main strength of technology is its capability of providing 

greater and easier access to multiple (numerical, graphical, and symbolic) 

representations of concepts (Tall, 2019; Fey, 1989; Goldenberg, 1987; 

Kaput, 1992; Porzio, 1999). The challenges of students’ difficulties in 

calculus (Biza, 2017; Winslow and Grobaek, 2014; Tall, 1992, 2019) still 

remain though; and this is of course a problem for the teachers of 

mathematics. In this study, the use of DGE such as GeoGebra, Autograph 
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and Desmos in teaching calculus varies amongst the teachers, with some 

teachers using the technology for drawing and showing the graphs of 

functions. Where it was put to better use, the teachers used DGE for 

instructional activities with students in an exploratory way to construct the 

definition of the derivative.  

In this study, where dynamic imagery tools were used most extensively to 

substantiate the definition of the derivative, e.g. in T2LO, it was used by the 

teacher (see Section 7.3, pages 151-3). In T2LO, the use of the dynamic 

imagery with GeoGebra allowed for active processes such as dragging 

points on the graph or dragging the image around on the interface, as well 

as zooming on the image or parts of the image. The dragging of points and 

zooming on the image allowed for a simultaneous demonstration of the 

secant line getting closer and closer to the tangent line as point Q 

approaches point P (See Figure 7.9 in Section 7.3 above). The difference in 

the use of DGE for teaching mathematics can be due to the teachers’ 

different aims when using technology, which could be ‘(1) visual 

demonstrations of mathematical facts; (2) experimentations, explorations, 

and search for new mathematical relations by students’ (Jesso and 

Kondratieva, 2016, p.218). 

A study by Takaci et al. (2015) on teaching calculus using a computer-based 

dynamic imagery program found that the use of GeoGebra had a positive 

impact on students in examining functions and drawing their graphs. Takaci 

et al. (2015) report improvements in knowledge and achievement in the 

students who used GeoGebra. Teachers should allow for and facilitate the 

use of dynamic imagery tools like GeoGebra by students if such benefits are 

to be realised. My study has shown evidence that there is a lack of student 

use of these technologies, which then raises questions for mathematics 

educators and opens a debate as to why that is the case. The use of digital 

artefacts can enhance visual mediation in teaching introduction to 

differentiation, for example, graphical mediation in constructing the definition 

of the derivative.  

Visual mediators and multiple representations 

The evidence in this study has shown that the teachers used multiple visual 

mediators in constructing the definition of the derivative. Teaching the quasi-

limit definition of the derivative was visually mediated by written symbols e.g. 

numerals, algebraic formulae and algebraic symbols, and graphs of 

functions. Visual mediators are the ‘providers of the images with which 
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discursants identify the object of their talk and coordinate their 

communication’ (Sfard, 2008, p.145). The findings of this study chime with 

other mathematics education researchers (e.g. Verhoef et al., 2014; Tall, 

2010), who call for a more natural approach that blends together the 

dynamic embodied visualisation and the corresponding symbolic calculation 

in teaching and learning calculus. Sfard (2008) argues that ‘the multiplicity of 

visual realisations broadens communicational possibilities’ (p.156) because 

‘a given narrative may be constructed and substantiated in a number of 

ways’ (p.156). 

In this study, teachers talked about taking an exploratory approach to 

introducing the derivative (e.g. T5 and T3) and explained using graphical, 

numerical and algebraic mediation. Graphical mediation was seen as more 

visual than algebraic mediation, the latter was described as abstract (e.g. by 

T3). T3 argued that ‘it’s important for students to visualise what is 

happening’ [138], and thus, teachers’ introduction to differentiation needs to 

include a geometric explanation for the differentiation as part of the multiple 

representations. In this study, multiple representations describe the various 

forms of mediation present in the teacher’s pedagogical calculus discourse. 

In their study, Ferrini-Mundy and Graham (1991) found that although most 

students could solve a simple problem about limits, they had little geometric 

understanding.   

One of the students interviewed claimed "the graph can't help me find 
an answer." Further probing revealed that the notion of "approaching" 
was not part of her understanding of limit. She saw limit problems as 
functions to be evaluated and wasn't sure about all the "extra" 
notation (the arrow, the word "lim") (Ferrini-Mundy and Graham, 
1991, p.630). 

This example emphasises the importance of using multiple visual mediators 

in teaching differential calculus but making clear links between the graphical 

and symbolic mediation. The student could not make use of the graph nor 
understand the symbolism, e.g. lim

ℎ →0
𝑓(𝑥).   

In this study, the teachers’ choice of lesson resources and activities was 

influenced by their desire for visual mediation with graphs to complement the 

usual algebraic mediation in explaining the first principles in differential 

calculus. This preference for multiple representations that include graphical 

mediation is consistent with the findings of Kendal and Stacey (2003) who 

observed that many students in calculus could at most make connections 

between graphical and symbolic representation but could not make graphic 

and numeric connections, or symbolic and numeric relationships. Kendal 
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and Stacey's (2003) study stresses the importance of graphical 

representations for students to make connections with algebraic 

representations. 

None of the teachers in this study went direct to an algebraic symbolism 

definition of the derivative. In all lessons, geometric (or graphical) 

representations underpinned all explanations for the introduction to 

differentiation. Numerical and algebraic explanations were based on 

graphical representations.  Like T3, all the teachers in this study were 

conscious of the abstract nature of calculus symbolism, in particular, the 

symbolism for an algebraic construction of the limit definition of the 

derivative.    

In this study, central to the teachers’ pedagogical discourse on introducing 

differential calculus, were multiple visual mediators, but more importantly, 

constant shifts between the different modes of mediation. This observation is 

consistent with Zandieh (2000) who argues for using multiple 

representations in teaching the derivative and process-object duality, for 

example, to explain the transition from the derivative at a point to the 

derivative as a function.  For introducing differentiation, T3 explains that ‘it 

can feel a bit more abstract if you go straight into the algebra’ [142]. It could 

feel very abstract for the students that are meeting differentiation for the first 
time to face such symbolism as lim

ℎ →0
𝑓(𝑥) without geometric nor numerical 

mediation to complement the instruction.  

Further, whilst using different representations or contexts is believed to 

widen learning opportunities for the students, making connections between 

the graphical, numerical, and symbolic-algebraic representations is even 

more important (Roorda et al., 2009; Zandieh, 2000). In her study on the 

derivative of a function as an object, and the transition in the teachers’ 

pedagogy between the derivative at a point and the derivative as a function, 

Park (2015) observed:  

These results showing the instructors’ uses of various visual 
mediators without explicit connections between them, their limited 
discussion on how the derivative as a function varies, and their 
dependence on symbolic and algebraic notations, seems related to 
some well-known student difficulties with the derivative (p.248). 

Note that the over-reliance of the teachers on the symbolic and algebraic 

notations, with minimal connections to other forms of mediation such as 

graphical means, could be behind some of the known students’ challenges 

with the derivative (Park, 2015). The evidence from the study, for example, 
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the three exemplar excerpts from [T4LO], [T3LO] and [T2LO] presented in 

Section 7.3 is in stark contrast with the findings of Park’s (2015) study. 

Teachers in this study (e.g. [T4LO], [T3LO] and [T2LO] presented in Section 

7.3) used some combinations of visual mediators and there were constant 

shifts between multiple representations in their introductory lessons to 

differentiation. For example, in [T4LO], there is an example of the gradient of 

a constant that combines graphical means and algebraic means, whereas 

[T2LO] combines numerical, graphical and algebraic means, in which the 

visual mediation constantly shifts back and forth between graphical and 

numerical representations. These findings are consistent with Sfard’s (2008) 

assertion that the same signifier may be realized visually in several ways, in 

different media. Sfard (2008) argues for the multiplicity of visual realisations, 

‘because each medium has its own discourse that supports its unique set of 

narratives, the multiplicity of visual realisations broadens communicational 

possibilities’ (p.156). The use of multiple forms of visual mediation can widen 

learning opportunities for the students. 

7.6  Summary of findings 

In this study, teachers used both the Leibniz’s notation, 
𝑑𝑦

𝑑𝑥
 and the 

Langrage’s notation, 𝑓′(𝑥). However, the evidence suggests that the 

teachers were generally cautious with or hesitant in using calculus 

symbolism such as  
𝑑𝑦

𝑑𝑥
 and 𝑓′(𝑥)  in their first lessons on differential calculus. 

This study found evidence of didactical ambiguity with some calculus 

symbolism in the teachers’ pedagogical calculus discourse on elementary 

differential calculus (See Section 7.2). This study revealed evidence of some 

ambiguity with symbolism used for or between the gradient for a straight line 

and the gradient function. There is evidence in this study to show that 

teachers used both 𝑚 and 
𝑑𝑦

𝑑𝑥
  to signify the gradient function, coupled with a 

lack of adequate substantiation as to the difference between 
𝑑𝑦

𝑑𝑥
  and  𝑚. The 

evidence also shows the use of the same signifier or symbolic artefact for 

the derivative at a point and for the derivative as a function, for example, the 

use of 𝑚 in T4LO and T2LO.  

 

In teaching differential calculus, algebraic symbolic artefacts are an 

important aspect of visual mediation, and so are graphical mediators. Every 

lesson introducing differentiation in this study started with some iconic 

graphical mediation. In line with Sfard's (2008) argument for the multiplicity 

of visual realisations, and consistent with Tall (1992a) for the teaching of 
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calculus, who argues for the need for versatile transitions between 

representations, graphics, numerics and symbolics (p.9), the teachers in this 

study used combinations of, and constant shifts between numerical, 

algebraic and graphical mediation in substantiating and constructing the 

definition of the derivative.  
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Chapter 8   Pedagogies on the derivative  

8.1  Introduction  

This chapter is the third of the three findings chapters of this study, which 

are henceforth presented according to the overarching themes of the 

research, namely: mathematical language for calculus teaching (Chapter 6); 

symbolism and visual mediators for calculus teaching (Chapter 7); and 

pedagogies on the derivative (Chapter 8).  

 

This chapter will present evidence for and discuss the findings of the 

research under the pedagogies on the derivative theme (see Table 5.7 for 

the overarching themes). The evidence is presented in the form of excerpts 

from both the interview and the lesson observation data transcripts from all 

the participant teachers in this research. Given the discursive nature of the 

qualitative analysis of this study, and for practical reasons, it is not possible 

to report on every individual story of the participant teachers. The exemplar 

excerpts are representative and illustrative of the evidence for the findings of 

the research.  

 

Chapter 8 will present and discuss the findings that address the third 

research question of the study. 

 

Chapter 8 will report on, and discuss the exploration routines (Sfard, 2008) 

in the teachers’ pedagogical calculus discourse. By pedagogy here, I am 

referring to the practice as well as the theory of teaching, thus, what 

teachers do and say and all the processes and strategies in their 

mathematical and classroom discourse. Pedagogies on the derivative in this 

study describe the mathematical and the didactical routines (Sfard, 2008; 

Viirman, 2015) in the teachers’ pedagogical calculus discourse.  

The commognitive framework provides the lens for noticing patterns of 

behaviour and communication in the teachers’ pedagogical calculus 

discourse, and for the vocabulary to describe the patterns. By examining the 

teachers’ use of mathematical words and visual mediators or by paying 

In teaching differential calculus: 

RQ.3 What mathematical and pedagogical routines do teachers 

use and how? 
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attention to the processes of ‘creating and substantiating narratives’ (Sfard, 

2007, p.572) about the derivative, we can notice the mathematical repetitive 

patterns in the teachers’ actions. The analysis of the pedagogies on the 

derivative focuses on the exploration routines in the teachers’ calculus 

discourse. Exploration routines are aimed at producing new narratives or 

substantiating endorsed narratives (Sfard, 2008; Thoma and Nardi, 2016). 

(See Chapter 3 for more on the types of routines and commognitive 

theoretical framework). 

Chapter 8 reports on the findings of the study, but draws evidence from all 

the participant teachers, focusing on the teachers’ pedagogical calculus 

discourse from estimating the gradient of a tangent to a curve, progressing 

to differentiating from first principles using a ‘quasi-limit’ definition of the 

derivative (refer to Section 6.4 on page 126) and finally culminating in 

differentiating polynomials using standard rules of differentiation. I describe 

the construction of the definition of the derivative by the teachers in this 

study as a ‘quasi-limit’ approach because the teachers do not use or explain 

the word ‘limit’ in their definition of the derivative. Nor do they explain the 

conditions for differentiability of the functions in their substantiation of the 

process of differentiation (more in Section 8.4 and Section 9.2.1).  

 

What follows is a presentation of the evidence excerpts from the interview 

and lesson observation data under the following four subthemes: 

approximating gradients by drawing tangents; approximating the derivative 

at a given point on the curve by using the secant and tangent line; and 

introducing the derivative: the gradient of the tangent as a limit; and 

pedagogies on the derivative: The Why factors. These subthemes are 

followed by a discussion (see Section 8.6) and a chapter summary of the 

finding. 

8.2  Approximating gradients by drawing tangents  

In a pre-teaching interview with the researcher, T3 explains her lesson 

planning for introducing the derivative and the why-factors for her approach, 

T3I(i): 

126.T. I want to link, I don’t want to come in with a concept that, the 
students are not familiar with.  So, I wanted to just start from 
somewhere they already know.  And they already know about 
straight lines.  We’ve done a lot of the straight lines recently.  They 
haven’t looked at gradients of curves, but we have done curve 
sketching.  So, it’s trying to tie that in, to begin with, so that we’re just 
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talking about gradients and that’s a familiar term.  …  So, I’m hoping 
that again when we go on to first principles, we’re still looking at two 
points albeit the algebra is more complex, but they are familiar with 
that.  So that should be okay.  And then start introducing different 
types of notations and highlighting different types of notations as, as 
they get more confident. 

The teacher is aware of the possible complexity of different notations and 

calculus symbolism. T3’s approach to the derivative is to base the lesson 

firmly on what the students already knew (assumed knowledge), straight 

lines and gradients of straight lines and then develop towards gradients of 

tangents to a curve at given points. T3’s approach is generally 

representative of the approach taken by all the teachers. Teachers 

developed their lessons on the gradient of a straight line but focusing on the 

tangents to curves.  By this stage (in the UK), at the AS level, students are 

expected to be familiar with the concept of a tangent, since it is part of the 

GCSE mathematics curriculum (e.g. circle geometry at GCSE includes 

theorems involving tangents). 

To illustrate the findings of this study on estimating gradients by drawing 

tangents, representative evidence from two different lessons, T1LO and 

T2LO, is presented and examined. These two lessons have been selected 

because they used different functions and graphs to teach the same idea, 

i.e. estimating the gradient of a tangent to a curve at a point by drawing 

tangents. T1LO used the function  𝑦 = 𝑥2, drawing tangents and Autograph. 

T2LO used a circle and a tangent, then the function 𝑦 = 𝑥2 − 𝑥 − 6, drawing 

tangents and GeoGebra. In both lessons, tangency and the gradient of the 

tangent formed the basis for introducing differentiation.  

In T1LO, the teacher introduces the object of the lesson as ‘the gradient of 

the curve’ [16] using a metaphor of an ant travelling along the curve; and 

being at a particular point. T1LO: 

13.T. Right okay you've now got in front of you the curve 𝑦 = 𝑥2 . I want 
you to imagine you are an ant. Can you imagine what it is like to be 
an ant and you are literally travelling along the graph? 

16.T.  What do you think we mean by the gradient of the curve?  
17.T. Imagine the ant is there [The teacher pointing at the point (1,1)], 

would you say the curve is steep there?  

The teacher then asks students to draw tangents to the curve at the point 

(1,1). The teacher demonstrates, in Figure 8.1 below, drawing a tangent to 

the graph of the function  𝑦 = 𝑥2 at the point (1,1). T1LO: 

26.T. Now I want you to locate the point on the graph where X equals one. 
Can you locate the point   𝑥 = 1? y will also be 1 as well, and I want 
you to draw with a ruler the tangent, I want the tangent to be as long 
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as you like. Straight line draw you think the tangent is. You’re doing 
this by eye, by no other way, by eye. 

27.T. We’ll all get slightly different results, so you're just drawing the 

tangent by eye. I want you to imagine… 

 

Figure 8.1  Sketching the tangent to the curve of y = x2 at (1,1) 

The teacher [T1LO] emphasises that the students draw the tangent ‘by eye’ 

[26], which is mentioned three times in the teacher’s utterance in [26-27]. 

This implies the process of approximating the gradient of the tangent to the 

curve at the given point. ‘We’ll all get slightly different results…’ [27] implies 

estimation.  

The students are then asked to calculate the gradient of the tangent by 

measuring the lengths for the base and the height of their triangle using a 

ruler and then dividing the height by the base. The results of the activity 

(investigation) were then collected by the teacher and recorded on the 

board, as shown in Figure 8.2.  T1LO: 
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Figure 8.2  Approximate gradients of the tangent to y = x2  at (1.1) 

46.T. So, our answers range from 2.6 top, who is the 2.6 person?  Who 
got the 2.6?  Down to, I think, was it you, at 1.4? So, we're going to 
try now to…  

47.T. See well, how you would actually do this properly. I'm going to try to 
show you on this graph here [Teacher opens an autograph file of 𝑦 =
𝑥2]. 

The students’ calculation resulted in a range of values for the gradient [46] 

for the tangent to 𝑦 = 𝑥2 at (1,1) as shown in Figure 8.2. The teacher shifts 

to a graphical approach by displaying an Autograph dynamic imagery of the 

graph of 𝑦 = 𝑥2. He then gives a demonstration using a ‘free’ point, i.e. an 

ant moving along the curve towards the (1,1). T1LO: 

50.T. What do you think it would be if I got the point even nearer, #T? The 
last point we drew for (1,1) was the point 1.001. If you hadn’t gotten 
that one, it didn't matter. If I had made it 1.000001 which is very 
close, too close that we can't, we can never see that distance what 
would you think this gradient would be approaching? 

51.S.  2 
52.T. Say it again/ [2]/ 2 and in fact 2 is the exact gradient of the tangent at 

that point. That's what some of you got to. 
53.T. I was a bit suspicious about some of those 2s if I will be honest with 

you, I think some of you might have seen this before. Well done to 
those who did get 2. 

54.T. My experience of teaching this, is that most students draw tangents 
that are too shallow or too steep and that is sort of indicated by the 
fact that we got more answers that go underneath the 2 and over the 
2. 

55.T. It really doesn't matter by the way how good or bad your tangent was 
that is irrelevant. All I want you to understand is that the gradient of 
the curve is the gradient of the tangent. So, what can we see, ... at 

x=1 the gradient of 𝑦 = 𝑥2 is 2?  
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56.T. But again, what does the gradient of 2 on a curve mean? It means 
the gradient of that tangent is 2 at that point; y is changing twice as 
fast as x. 

Note that the objective of the activity here was not about the accuracy of the 

students' sketch diagrams. The teacher explains that it did not matter how 

accurate the students’ tangents were, that some tangents would have been 

too steep (explained by the values greater than 2) and some tangents would 

have drawn too shallow (as explained by the values less than 2). The 

teacher [T1LO] here explains the mathematical object of the activity as ‘All I 

want you to understand is that the gradient of the curve is the gradient of the 

tangent’ [55]. The teacher’s utterance here implies that the ‘gradient of the 

curve’ preludes the gradient of the tangent, which appears contradictory to 

the ensuing sequence of the activity. The gradient of the tangent at the point 

(1,1) is used as an estimate for the derivative (instantaneous rate of change) 

of the function 𝑦 = 𝑥2  at the point (1,1)of the curve. The teacher explains an 

interpretation of the gradient of 2 at the point (1,1) in [56].   

The teacher, T1, extends the investigation activity by asking the students to 

find the gradients of the tangent at different points (2,4) and (3,9). The 

results are recorded on the board, as shown in Figure 8.3, which is a 

collection of the gradients of the function 𝑦 = 𝑥2 at various points on its graph. 

He then asks students to conjecture for the gradient at 𝑥 =  7. T1LO: 

57.T. Could you do the point (3,9), oh sorry, the point (2, 4). Who else did the 
point (2,4)? What would you expect the gradient here to approach?  [S: 4]  

Right, so [the gradient at] 𝑥 = 2, [for] 𝑦 = 𝑥2 is 4. You should begin to spot a 
pattern; it’s not rocket science. 

58.T. Who did the point (3,9)? Eh, what do you think...? [S: 6]  

𝑦 = 𝑥2 is 6, and 𝑥 =  4… 
59.T. What is it approaching? [S: 8].  

Ok, suppose you are given a different point they haven’t done. 
Suppose I say 𝑥 = 7, 

60.T. Without any of these calculations, could you make an intelligent stab on 
what is the gradient at 𝑥 = 7? 
 At 𝑥 = 1, the gradient is 2; at 𝑥 = 2 the gradient is …  

61.T. At 𝑥 = 2, what do you think the gradient would be? [S: 4]  
I was right; you say it goes 2, 4, 6, 8 ...that right? 
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Figure 8.3  Gradient of y = x2at various points 

The investigation was extended from point (1,1) to other points on the graph 

of 𝑦 = 𝑥2. However, the teacher did not insist on students using the original 

method of drawing tangents to the graph at each of these other given points. 

Instead, the teacher guided the students to deduce a rule, ‘Without any of 

these calculations, could you make an intelligent stab on what is the gradient 

at 𝑥 = 7?’[60] - from the sequence of the successive gradients – ‘you say it 

goes 2, 4, 6, 8 ...that right’[61]. The teacher immediately follows the pen and 

paper activity above with a dynamic imagery demonstration of the ‘gradient 

of a curve’, shown in Figure 8.4 below. T1LO 

 

Figure 8.4  Autograph image showing the function y = x2, the tangent line  
and the gradient function 
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62.T. Let me show you this.... now this is a very powerful tool that 
Autograph has ... I am going to show you the graph of the gradient 
function. What it is going to do is this, it's going to plot the gradient of 
that curve. It's going to travel down the curve and plot its gradient. 

63.T. Tell me, what can you tell me about the gradient of the curve to start 
with, it's going to start from the left-hand side and travel that way? 
What can you tell me, I don't mean what values there are, what sort 
of gradients are these? [negative]. They are [negative]/negative, 
right? 

Note T1’s word use in utterance [61] – ‘gradient function’.  This is the first 

instance the T1 had used this terminology. However, the T1 immediately 

reverts to using the word ‘gradient’ [62- 63] to describe what, indeed, is the 

gradient function. The teacher’s narrative here, suggests that ‘gradient of a 

curve’ is synonymous with ‘gradient function’. For more on word use in 

teachers’ pedagogical calculus discourse see Chapter 6. 

Note the teacher’s description of the idea of the ‘gradient of a curve’ by use 

of a metaphor – “I want you to imagine you are an ant. Can you imagine 

what it is like to be an ant and you are literally travelling along the graph” [13] 

and the reinforcement by use of dynamic imagery – “it's going to plot the 

gradient of that curve. It's going to travel down the curve and plot its 

gradient” [62].  The metaphor use here, is symbolic mediation, a form of 

visual mediation that could not be seen but imagined in the head. Whereas 

the use of the Autograph imagery is iconic mediation, a form of visual 

mediation through dynamic imagery. Symbolic and iconic mediators are 

used as complementary visual mediators in this lesson. The complementary 

use and shifts in forms of mediation are discussed in Section 7.4. 

In contrast to T1LO, in T2LO, the introduction to differentiation started with a 

diagram showing a tangent to a circle as shown in Figure 8.5, T2LO: 

34.T. I really like that.  Yeah, I like that thought.  So, boys, what Hxxx said 
is we know this point whatever it is [Pointing at the point of tangency, 
but the coordinates are not specified].  We also know this point, we 
know it’s (0;0).  And as Jxxx said, they are going to be perpendicular, 
that’s one of our circle theorems from GCSE.  Could we find, if we 
wanted, if we knew that point [Point of tangency] could we find the 
gradient of our tangent?  

35.S. Yeah. 
36.T. Yeah, we could, couldn’t we?  We’re not going to go into it, but we 

could do.   
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Figure 8.5 Tangent to a circle 

The coordinates of the point of intersection of the tangent and the circle in 

Figure 8.5 are not known, which explains why the gradient of the tangent to 

the circle was not calculated. It would require calculating the gradient of the 

radius and then taking the negative reciprocal of that gradient, to get the 

gradient for the tangent to the circle. This was implied by the teacher’s 

utterance: ‘And as Jxxx said, they are going to be perpendicular, that’s one 

of our circle theorems from GCSE’ [34]. The evidence here suggests that, 

and shows how, T2 is building her introduction to differentiation lesson on 

students’ previous learning of tangents, from GCSEs.  

Similar to T1LO however, T2 resorts to an interactive GeoGebra file, T2LO: 

36.T. Yeah, we could, couldn’t we?  We’re not going to go into it, but we 
could do.  What about, right, let’s go to this if it will open.  Oh, here 
we go.  What about something like this?  First of all, I want someone 
to come over here.  I’m going to pick you [laughs].  I had this done to 
me at University the other day.  What I would like you to do is to 
move these two sliders here Axxx, with my mouse.  See if you can 
make a tangent.  And I want everyone else to figure out what those 
two sliders mean when he is making it.  Yeah, it looks good, it looks 
good.  Right sit back down.  What do they mean?  What’s he moved 
there to make that tangent?  What’s going on?  Jxxx? 
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Figure 8.6  GeoGebra imagery of a tangent to a quadratic curve 

37.S. Is the top one got the gradient?  And then the bottom one is like; it’s 
transformed like where it is. 

38.T. Yeah absolutely.  So gradient up there.  Second one, not trans …, 
well, something we can’t see? 

39.S. y-intercept. 
40.T. Yeah, it’s the y-intercept, good.  So, we’re kind of confident we can 

draw on a tangent.  And maybe, especially cause we’re on a graph 
plotter we could find out the equation, the gradient of this tangent 
which would give us the gradient at a point.  Do we agree with that 
so far?  Yeah, okay. So maybe have a look for me on this sheet.  I’ve 
drawn you out a nice curve.  I’d like you, I’ve got some rulers here, to 
draw some tangents and see if you can work out the gradient at a 
few points of this curve.  So, you draw in tangents. Be careful of the 
scale.  The x-axis is a different scale if you like.   

  

In contrast to T1LO, in T2LO students are asked to interact with the 

GeoGebra applet graph plotter, which shows some sliders and values on the 

applet, see Figure 8.6. Once the teacher had demonstrated the tangent to a 

quadratic graph, she handed out a worksheet, see Figure 8.7, with a 

quadratic graph upon which the student had to draw tangents, by hand using 

a pen and a ruler, and measure the gradient. Note that GeoGebra was used 

for the demonstration on drawing tangents in Figure 8.6, but the students are 

having to use pen and paper; they are not using GeoGebra.  

Similar to lesson T1LO described above, what follows is an activity in which 

students are calculating the gradients of their drawn tangents to estimate the 

gradient of the graph at the chosen point of tangency. Further guidance is 

given as the students start to work out the gradients of their tangents. L2LO: 
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Figure 8.7  Worksheet: Graph of y = x2 − x − 6 

42.T. Does anyone need a ruler?  Yeah.  So, we’re not going to do this for 
long.  Pick a few points that are definitely on the curve because 
there’s some that are definitely on them.  We can see from where 
they cross.  Maybe check with the person next to you.  If you’ve 
picked one of the same points, check you’ve got the same gradient.    

The instruction here [42] suggests that the students were expected to select 

tangency points carefully, for example, by selecting the points that would 

allow them to count squares for the vertical and horizontal distances, instead 

of measuring with a ruler. In the excerpt below the teacher is talking to one 

of the students about the task,  T2LO: 

67.T. So, what you’re doing here is you’re assuming that they’re at right 
angles.  That’s at right angles to the origin.  The only, the only 
reason we assumed that last time, because it was the middle of a 
circle.  If you think about the centre of the circle and the radius, that’s 
at right angles to the tangent, but that isn’t.  So, all we’re doing here 
is counting along the squares to work out the gradient of that line.  
Yeah?  So again, you’re assuming that this is a circle, which it’s not.  
All we’re doing is counting.  So, we’ve got a line, if we count how 
many in the y-direction, yeah? 

68.S. Oh, that makes a good point. 

The evidence here suggests that the earlier definition of a tangent which was 

illustrated by means of a circle and a tangent might have confused some 

students. It appears that students found challenging the task set in Figure 

8.7. In the excerpt below, the teacher intervenes in a dialogue in which two 

students are talking to each other about the task [51-52]. L2LO: 

51.S. Can’t remember how you do it.   
52.S. Is it, are we supposed to be differentiated by now? 
53.T. No, no, we’re just drawing on tangents and working out the gradient.   
54.S. So again, you can work out the gradient by differentiation, can’t you? 
55.T. Yeah, we can, but we’re just approximating here. 
56.S. Oh right.  Yeah. 
57.T. No differentiation yet.  In fact, no differentiation for the whole lesson.  

Not until the next lesson. So, don’t worry about that now.   
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[Teacher moving on to the next pair of students] What are we doing 
over here?  How are we doing?   

58.S. I can’t do it.  I can’t. 
59.T. Just have a guess.  It’s only an approximation.   

Drawing tangents to a curve, measuring and computing the gradients, here 

clearly proved a difficult task.  One student argued for resorting to the 

methods of differentiation [54], which was turned down by the teacher. The 

teacher explained to the class that it was important for the student to 

develop some understanding of the process of differentiation before latching 

on to the standard methods of differentiation. For a consideration of the 

teacher’s reasons or motivation for their approach to introducing differential 

calculus, refer to the why-factors in Section 8.5. 

8.3  Approximating gradient of a tangent to a curve at a point 

by using secant and tangent lines 

The teachers in this study used some graphical mediation in constructing the 

definition of the derivative. Although the teachers in this study were 

observed using the secant and tangent lines for approximating the derivative 

at a point on the graph of a function (mostly, the graph for  𝑦 =  𝑥2), there 

are observable contrasting teaching approaches in their construction and 

substantiation of the definition of the derivative. This study further reveals 

that in their attempts to define the derivative, teachers did not directly use 

the word ‘limit’, instead they all used the utterance ‘getting closer and closer’  

(See Section 6.3). The data shows that when the teachers used the 

utterance getting closer and closer, they did not always describe the same 

mathematical object. I give three examples here (see Subsections 8.3.1 to 

8.3.3), to illustrate this finding. In Section 8.3.1, the didactical routine focus is 

on getting closer and closer to the ‘limiting value’ of the gradients of the 

secant lines, e.g. in T4LO. In Section 8.3.2, the didactical routine focuses on 

two points getting closer and closer ‘together’, e.g. in T3LO and T5LO. In 

both Section 8.3.1 and 8.3.2, the teachers used static graphical mediators of 

hand-drawn sketch diagrams for the graph of the function  𝑦 =  𝑥2. In 

Section 8.3.3, for example, T2LO, the didactical routine focuses not only on 

the points or the gradient values but also on the secant line (chord) getting 

closer and closer to the tangent line. T2LO is an illustration of the 

affordances of dynamic imagery artefacts in constructing and substantiating 

the definition of the derivative.  
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8.3.1  The gradients of secants getting closer and closer to a 

particular value  

Consider the excerpts below from [T4LO], which is an investigation activity 

of the slope (gradient) of the tangent to the graph of 𝑦 =  𝑥2 at the point 

(1; 1). In the excerpt below, the class has just calculated the gradient (𝑚 =

 2.5) for the chord connecting points (1,1) and (1.25, 2.25) on the graph of 

𝑦 =  𝑥2, see Figure 8.8, which shows the gradients of the secant lines.  Note 

that the class is using the standard method for calculating the gradient of a 

straight line – ‘the change in 𝑦’ divided by ‘the change in 𝑥’: 
𝑦2−𝑦1

𝑥2−𝑥1
. The title 

on the board is ‘Differentiation’ sets the objective of the lesson, thus all the 

activities of the lesson here constitute differentiation. The teacher T4LO 

explains: 

37.T. In fact, let’s think about this for a moment, guys.  We’ve just worked out that 
this red line [Chord between (1,1) and (1.25, 2.25)] has a gradient of 2.5 but 
remember our aim is to find the gradient of the green line [the tangent].  Is 
our answer too steep or too shallow?  Rxxx, go on?  Too steep.  So, we’re 
going to, this one’s a little bit too steep and we, remember we’re trying to, 
we’re trying to work out what this gradient is [tracing or pointing along the 
tangent line].  It’s a little bit too steep so we’re going to choose a point but 
it’s closer, it’s closer to that point there [pointing to the point (1,1)].  So why 
don’t we choose (1.1) [the point at which 𝑥 =  1.1]?  Okay, why don’t we 
choose (1.1)?  So, it’s going to be somewhere closer to here [marking a 
point on the curve].  So, this x-coordinate now is (1.1).  And I’ll just rub out 
the dotted lines.  Okay Gxxx, how do we work out the y-coordinate when we 

know that 𝑥 = 1.1? 

 

Figure 8.8  Successive gradients of secant lines 

Note how the teacher draws the students’ attention to the object of the 

classroom discourse, ‘remember our aim is to find the gradient of the green 

line [the tangent]?’ [37]. The teacher explains that by calculating the gradient 

of the chords, they are estimating the gradient of the tangent to the graph at 

(1,1). The teacher emphasises this point by asking the students to compare 
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the slopes of the chord and the tangent by looking at the diagram in Figure 

8-8 and he reinforces the point, ‘It’s a little bit too steep so we’re going to 

choose a point, but it’s closer to… (1,1)’ [37].  

The process is repeated for points at 𝑥 =  1.1, and 𝑥 =  1.01, thus taking 

points that are successively closer to the point of tangency, (1,1). See Figure 

8.8 for the calculations and graphical representations. Three gradients, 𝑚 =

 2.5, 𝑚 = 2.1, 𝑚 = 2.01 in Figure 8.8 were calculated, for 𝑥 =  1.25, 𝑥 =

 1.1, 𝑥 =  1.01, respectively. Note the use of 𝑚 for representing the different 

gradients of individual chords. Note that throughout this activity of calculating 

the gradients of the successive chords, see also the two selected excerpts 

[49] and [65] below, the teacher keeps linking and referring to two lines here 

– the chord and the tangent. The teacher is emphasising the point of 

interpreting the gradient of the chord with due reference to the gradient of 

the tangent. T4LO: 

49.T. So, we’re going to choose a point a bit closer on because then if we work 

out the gradient of that, it’s going to be a bit closer to our real answer, okay?  

I just picked 1.1 just cause it’s a number I thought of that’s a bit, a bit closer 

to 1, okay?  Now this time…this time…we’re going to work out this gradient 

here.  And I want you thinking, year 12, about how our estimate is getting 

closer and closer and closer to the true value.   

65.T. Okay, right we’re pretty close now.  Our lines, this line’s getting closer and 

closer and closer to the green line.  Let’s pick a point that’s even closer, 

okay?  Let’s pick somewhere, something that’s so incredibly close that it’s 

nearly exactly the same gradient.  Let’s go for 1.01.  And by the way year 12 

you can use these, you can use these numbers in your next example, if you 

want.  Alright some, 1.01 squared is going to be 1.02, okay?  So, we’re now 

working out the gradient of this. 

“Our lines, this line [chord] is getting closer and closer and closer to the 

green line [tangent]” [65]. Not only does the teacher keeps the students’ 

focus on what is happening with the chord and the tangent but keeps 

emphasising the point of “getting closer and closer and closer” to the ‘true’ 

value for the gradient of the tangent at (1,1).  “I want you thinking, Year 12, 

about how our estimate is getting closer and closer and closer to the true 

value” [49]. Note the teacher’s word use in this utterance: “Let’s pick 

somewhere, something that’s so incredibly close that it’s nearly exactly the 

same gradient” [65]. This explains the ultimate objective of the activity of 

selecting points successively getting closer and closer to (1,1), which is to 

estimate the gradient of the tangent by the gradient of the ‘closest’ chord. 

The teacher asks students to make a conjecture about a value (the ‘limit’) 

the gradients of the successive secants were approaching. However, the 
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teacher does not mention the word ‘limit’, instead, says “Think about what’s 

happening to the value of the gradient as we get closer and closer and 

closer to our tangent which is what we want”[75]. The teacher’s focus here is 

on the gradient values and the value that are converging to (the limit) 2. 

T4LO: 

75.T. Right, Year 12 have a moment to think about our three answers.  Think 

about what’s happening to the value of the gradient as we get closer and 

closer and closer to our tangent which is what we want, okay?  Does 

anyone want to have a look at those three numbers and have a guess at 

what the, what the true gradient of the curve at (1,1) might be?  Hxxx? 

76.S. 2. 

77.T. 2, why is that then? 

78.S. Cause it’s just getting closer and closer to… 

79.T. Exactly.  We’re getting closer and closer and closer to 2.  We’re getting 

closer and closer and closer to 2.  So, I think the real answer to this question 

is going to be the gradient is 2 but we need to try and prove that now.  We 

need to try and prove it, okay?  Here we go.  Here’s the clever bit.  This is 

the bit that, this is sort of an idea of what Leibniz and Newton came up with.  

Can you draw the same axis, maybe on your next page?  So, we’ve still got 

𝑦 =  𝑥2.  And actually, we’re still going to look at, we’re still going to consider 

𝑥 =  1.1. 

Note that the focus here is on the value that the difference quotients 

converge to, as ‘ℎ’ approaches zero. The teacher’s questions in [75] 

describe approaching the ‘true value’ of the gradient values. ‘Does anyone 

want to have a look at those three numbers and have a guess at what the, 

what the true gradient of the curve at (1; 1) might be? [75]; ‘What’s 

happening to the value of the gradient as we get closer and closer and 

closer to our tangent?’ [75]. ‘We’re getting closer and closer and closer to 2. 

We’re getting closer and closer and closer to 2’ [79]. This clearly explains 

that the teacher’s focus is on the value 2, which is, indeed, the limit value of 

the gradients of the successive secants. The utterance getting closer and 

closer and closer is used here to describe the idea of the limit. 

 

Note, also, the reference to Leibniz and Newton in the teacher’s utterance 

[79]. The lesson had started with a reference to the history of calculus, in 

which the teacher introduced the founders of calculus and talked about the 

‘big argument’ about the alleged plagiarism between the two men as to who 

had discovered the ideas of calculus first. 
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8.3.2  Two points getting closer and closer together  

In contrast to T4LO above, the focus in [T3LO] is on two points on a curve, 

and the utterance getting closer and closer is used to describe the two points 

getting closer together. T3LO uses a similar approach of using the chord and 

tangent to estimate the gradient of a tangent at a point on the graph of a 

quadratic function 𝑦 = 𝑥2. The investigation activity in T3LO builds on 

students’ ideas. The teacher-student dialogue in the excerpt below comes 

after the class had found it difficult to draw accurate tangents for calculating 

gradients at given points on a curve. T3LO 

64.T. I could work out a point on that curve which might be a useful thing to do to 

work out a point on that curve.  How could I work out the gradient there?  If I 

know that point is (2; 4), how can I work out the gradient with a point?  

Kxxx? 

65.S. Like you just find out like a different point as well. 

66.T. Right, so you might find out a different point.  What’s useful about having 

two points? 

67.S. … 

68.T. Right let’s have a look [Referring to Figure 8.9].  So Kxxx suggested…that I 

have…2 points.  So, I’ve got 2 points on the line.  So, I could say I want my 

gradient here, where I put a point at (2,4) there and then I’ll find another 

point.  Let’s find a point there.  Does that give me the gradient at this point?   

69.S. No. 

70.S. No. 

71.T. It’s a really, really good idea.  Does it give me the gradient at this point?  

Kxxx do you want to comment a bit further on it? 

72.S. No, it just gives you the gradient of the line between two points. 

73.T.   Okay. Is it similar to the gradient or is it a long way off of the gradient at that 

point?  Is it near to the gradient? 

74.S. Close. 

75.T. It’s close.  What would be better? 

76.S. If you get the two closer points. 

77.T. Two closer points would be better.  Why would two closer points be better? 

78.S. Just be more accurate. 

79.T. It would be more accurate if you bring those points closer together.  Right 

okay.  So, if I would have used [Referring to Figure 8.9] this point and that 

point…it’s looking more, more accurate.  Yes, Gxxx? 



- 190 - 

  

Figure 8.9  Tangent to the graph y = x2 

80.S. If you drew a tangent from your point and found the gradient of that. 

81.T. Fantastic.  If we could draw the tangent to the point.  So, if we actually had a 

graph that we could look at, we could draw a tangent … [Referring to Figure 

8.9] And we’ve just decreased that difference between the two points and 

basically brought the points together and it just touches at one point 

[Dragging the two points in Figure 8.9 closer together].  That would give us a 

way of working the gradient at that point. 

The two points on the curve have been selected rather randomly. Figure 

8.10 is a snapshot of a GeoGebra visual image used to illustrate the graph 

of  𝑦 = 𝑥2  and the tangent. The routine so far suggests moving or dragging 

the two points closer and closer to each other [79]. Here, the teacher T3LO 

seems to be making the point of drawing the two points together. There is no 

mention of a secant line (chord) nor any explicit reference to the relationship, 

in this case, between the secant and the tangent lines.  

The teacher then gives out a worksheet with the graph 𝑦 = 𝑥2, with five 

different points. The students are working in pairs and each pair is assigned 

one point. The task set is to estimate the gradient of a curve at a given point 

by getting points closer and closer to each other. What follows are all the 

instructions given. T3LO 

87.T. So, there are five different sheets around the room.  They are all the 𝑦 = 𝑥2 
graph, but you each have a different point you’re looking at.  So, some of 
you are looking at the gradient at point x = 2.  Some of you are looking at 
the gradient of 𝑥 =  1.  And I want you to look at 2 points at a time.  So, 
you’ve been given 2 points that you’re going to work out the gradient of that 
line.  And we’re going to do exactly as Sxxx mentioned, get the points closer 
and closer.  So, start off with two points and then get them closer and closer 
together as Sxxx suggested.  And see what we notice.  So, work on the 
sheet in your pairs, please. 

89.S. Miss, I don’t get what we’re doing. 
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90.T. You can use a calculator to help you with the calculation.  So, we’ve 
got…you know how you said we could find 2 points and join them together 
and work out the gradient, you’ve got your 2 points. 

The student’s utterance ‘I don’t get what we’re doing’ [89] could be referring 

to the utterance getting two points closer and closer [87], whether both 

points move and what would then be the point of tangency. Similar to the 

student’s utterance in [89], a student from T2LO working on a similar task 

said: T2LO 

58. S.  I can’t do it.  I can’t. 
59. T. Just have a guess.  It’s only an approximation.   

There is anecdotal evidence to suggest that, at least at some point, some 

students had difficulty with the activity of estimating gradients using tangents 

and chords.  

Further into the lesson [T3LO], T3 reiterates the idea of moving points 

together. [T3LO]:  

200.T. So, you would use that brilliant idea of using two points.  And then if we 
move those two points closer and closer, we get a better, better 

approximation. 

The focus here is on getting the two points closer and closer for a better 

approximation of the slope of the tangent.  However, the utterance [200] 

could imply both points move towards each other.  

Similarly, in a different lesson [T5LO], the focus here is again on pairs of 

points and computing gradients of tangents at given points on the graph of  

𝑦 = 𝑥2. The teacher required students to compute the gradient of a secant 

line between the two points. The students were asked to draw the graph of 

𝑦 = 𝑥2 and then  working in pairs, to investigate the gradients of the tangent 

at each of the points, 𝑥 =  − 2, − 1, 1, 2 on the graph of 𝑦 = 𝑥2.   T5LO: 

100.T. All I’m going to ask you to do, I’m not going to tell you how to do it for now 

because there’s, I think there are two main ways of doing this in my opinion.  

Just to give you a tiny little bit of a hint, I’d like you to find the gradients at 

some points for me, please. 

But can I have, Mxxx and Cxxx, could you investigate the gradient where 

𝑥 =  −2 for me, please?  Exxx and Jxxx, at -1.  Unlucky you don’t get 0, I 

would like you to investigate 1 for me, please.  And then could we have 2 

and 3? 

I’d like you to investigate the points, okay, the gradients at the point that I’ve 

given you.  So Oxxx, Cxxx and Mxxx are going to investigate the gradient at 

this point here [pointing at the graph].  Exxx and Jxxx that point there, okay 

and so on. … 
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I’m going to give you free rein for now.  Okay, what can you tell me about 

your gradient?  Anything at all so far? 

The students engaged with the investigation activity, but it was taking rather 

too long to get to the point the teacher was hoping for, so the teacher 

intervenes. In the excerpt below, the teacher demonstrates the routine for 

estimating the gradient of a tangent at a given point on a curve by using two 

points, T5LO:  

172.T. One that I didn’t give to anyone then was the (0,0).  So that’s the one that 

I’m going to use. I’m going to choose the coordinate (0,0) and I’m going to 

choose a coordinate somewhere else on the graph.  So, the first one that 

I’m going to choose is I’m going to choose this one up here. Why do you 

think I’ve chosen that one specifically rather than say here? 

173.S. Because it’s got an accurate point. 

174.T. Absolutely.  We know what it is, we’ve calculated it.  It’s a case of those are 

integer coordinates there of (3,9).  Then what I’d do is I’d find the gradient 

between those 2 points [Referring to points (0,0) and (3,9) in Figure 8.10]. 

 

Figure 8.10  Gradients of chords 

So, I’d be finding the gradient of this line here [The hand-drawn line 

connecting (0,0) to (3,9)].  Then I want to choose another point somewhere 

else.  This time I am going to challenge myself, okay?  I’d like to find one 

that’s just somewhere strange.  So, I’d go with something like thereabout, 

say 2.4.  Work out what the value for y, so (2.4, 2.4 squared). And I’ll find 

the gradient between those 2 points.  Next, I’ll go for quite an easy one 

again and what about (2,4)? And gradually I’d like you to take the gradient of 

say 3 or 4 points, each one getting closer to your point please, okay?  I’d 

like you to do it for your point though. So, if you guys could do it for minus 2, 

minus 1, 1, 2 and 3, okay? Does everyone understand what I’m asking them 

to do?  Are you sure? 
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The graph in Figure 8.10 is drawn using Desmos, which is a dynamic graph 

plotter, but the dynamic imagery affordances of Desmos were not exploited.  

Consider the teacher’s utterance “And gradually I’d like you to take the 

gradient of say 3 or 4 points, each one getting closer to your point please, 

okay” [174]. The implied gradients are indeed the gradients of chords as 

illustrated in Figure 8.10.  As the investigation activity continued, the teacher 

makes yet another intervention to give further guidance to the students. 

T5LO: 

229.T. Okay whatever order that you’ve done them in, could you just take a very 
quick look at, at mine?  This could be an example of the five coordinates 
that I chose.  So, my original co-ordinate was (0,0).  And my other co-

ordinates I’ve started with 𝑥 =  3 and gradually my 𝑥 −  𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 has got 
slightly less and less towards (0,0).   

Folks with the negative coordinates, if yours was originally negative (-1, -1), 
I want you to choose one from up here and you’ll approach from this side 
[Pointing on the left-hand side of the graph].  Okay, so your 𝑥 − 𝑣𝑎𝑙𝑢𝑒𝑠 will 
be gradually increasing towards negative one (-1), okay?   

I’m going to ask you in a minute, I’m going to ask every group for their 
values for the gradients in that order, okay?  Getting closer and closer 
towards your points so that your two points that you’re choosing are getting 
closer and closer, okay?  So, if you could write your gradients as a list of five 

gradients for me, please.      

The teacher’s utterance getting closer and closer was constantly repeated 

throughout the lesson as the teacher explained the task to the students. 

There is evidence [349] to show that even after the teacher’s reiteration in 

[229], some students had not understood the routine nor the object of the 

teacher’s talk, i.e. the object of the classroom discourse. T5LO: 

348.T. Okay and is this, are these getting closer and closer to your value every 
time? 

349.S. No, we’re just doing them randomly. 

350.T. Okay I need them; I need them in order. 

The evidence here suggests that the utterance getting closer and closer was 

not always clear that it meant gradually moving or dragging one point 

towards a fixed point, the latter being the point of tangency at which the 

gradient is required. These students [349] were calculating the gradient of 

lines connecting some random pairs of points. The teacher (T5) realised that 

the investigation was not getting the results he was expecting. The ultimate 

object of the whole activity is captured in the teacher’s utterance below, 

towards the end of the lesson. T5LO: 



- 194 - 

417.T. Okay so choose points that are even closer and closer and closer again.  
And see if you notice anything about, about that pattern.  So, what’s the, 
what have you noticed? 

Note that getting closer and closer here is describing the points, not the 

secant line and tangent line, nor the limit value (unlike in (a) above) of the 

computed gradients. The investigation activity took far more time than what 

had been anticipated because the majority of the class did not seem to 

understand what was expected of them. 

8.3.3  The secant line getting closer and closer to the tangent  

In contrast to the other teachers in Section 8.3.1 and Section 8.3.2 above, 

T2 uses dynamic graphical imagery and the utterance getting closer and 

closer to explain, not only the points but also the secant line (chord) 

approaching the tangent line, [T2LO]: 

93.T. And we’ve got two points here P and Q.  And they’re definitely on our curve.  
Yeah, we can see that.  And they’ve drawn something called a chord 
through.  We’ve all heard that word before, a chord.  We could kind of guess 
the gradient of this tangent here at P, this green tangent.  Kind of guess it by 
using the gradient of the blue one.  What do you think?  Kind of?  How could 
I make that a bit more accurate?  So, if I knew the gradient of the blue line 
because I’ve got my two points, how can I make it a little bit more accurate? 
How could I have done this more accurately?   

 

Figure 8.11  Estimating gradient-secant & tangent ((i) & (ii)) 
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Figure 8.12 Estimating gradient-secant & tangent ((iii) & (iv))   

94.S. No?  
95.T. How about…if I did this. [Dragging point Q toward point P] More accurate or 

less accurate?  More yeah?  Bit more?  Bit more?  If I get it all the way down 
there [Point Q reaches point P, see Figure 8.12(iv)] it’s pretty much the 
same thing as a tangent, isn’t it? This is a way we can try and use to may be 
estimate the gradient at the moment.  May be even find the gradient, we’ll 
see.  

Dynamic graphing imagery of GeoGebra allowed for the dragging of points 

or lines on the interactive whiteboard interface, as shown in Figures 8.11 

and Figure 8.12. As point Q is slowly dragged down along the curve ‘getting 

closer and closer’ to point P, simultaneously the secant line (chord) slowly 

rotates ‘closer and closer’ to the tangent line. As point Q approaches point P, 

the secant approaches the tangent. In Figure 8.12(iv), the secant line is 

approaching the tangent line.  Note that the focus here is on the secant and 

tangent line, and getting closer and closer here, describes point Q 

approaching point P and the secant line approaching the tangent line at P. 

This dynamic graphical imagery as sequenced in Figures 8.11 & 8.12 is an 

example of the generative power of visual mediation (Sfard, 2008), for it 

allows for multiple representations.   

Following on the above demonstration, the students were then tasked with 

finding the gradient of the tangent to the graph of the function 𝑦 =  𝑥2 − 𝑥 −

6  at different given points. They have all been given a worksheet with the 

graph of 𝑦 =  𝑥2 − 𝑥 − 6 . T2LO: 

97. T. So, what I’d want us to do is to really look at finding the gradient of this blue 
line [secant line], this chord.  And it’s going to help us approximate the 
gradient at that point there, P.  Are we okay so far?  All right let me explain 
how I want you to do that and you’re all going to do it a little bit differently. … 

And you’re all going to have a particular point.   

Now you might notice my point was (4,6).  Noone is going to get that point.  
And that’s going to be here [marking a point of the graph, Figure 8.13].  Now 



- 196 - 

I’m going to pick another point, Q, which is definitely on my line [graph].  
And I’m going to start trying to move it down.  

I’m going to do this numerically.  Now can anyone tell me a point that this 
[Q] could be?  Thinking about our equation which I haven’t really told you 

about yet, that’s our equation up there [𝑦 =  𝑥2 − 𝑥 − 6, see Figure 8.13].  

Can someone give me a point Q which could be in that position [marked on 
the graph, Figure 8.13]? Use your calculator if you want.   

Think of an x-value; x is 4 there [pointing at P].  What could x be here 
[pointing at Q]?  Maybe it could be 5.  Let’s do 5.  What’s my 𝑦 −coordinate 

going to be? … 

 

Figure 8.13  Estimating the gradient of the tangent to the graph of  y = x2 −
x − 6 at (4,6) 

101.T. Right, 14 yeah?  Do you agree?  Right, okay so I’m going to start at that 
point. I’m then going to think what is, what is this distance here [Referring to 
the vertical distance]?   

104.S. It would be 14 minus 6. 
105.T. Perfect. 
106.S. 8… 

The teacher continues to explain the routine for estimating the gradient at 

point P, by taking successive points for point Q that would gradually draw 

point Q towards point P, thus the secant line getting closer and closer to the 

tangent at point P. Note how the teacher asks the students to conjecture 

[110] thereby guiding them to the targeted anticipated result. T2LO: 

107.T. Perfect 8.  So, my gradient there [Filling up the table in Figure 8.13] is going 

to be 
8

1
 which is 8.  Then I’m going to think about moving this Q a bit closer.  

How about instead, I do 4.5 and whatever my answer is?   
109.S. 9.75. 
110.T. 9.75, okay.  So, I’d then work out my 𝑥1 − 𝑥2 which would be 0.5 yeah.  

We’d do the y [Pointing at the change in y; 𝑦1 − 𝑦2] that one there and I’d 
work out the gradient.   
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Do you think you know what’s going on so far?  So, if I give you a worksheet 
with a different point on it, can you try getting closer and closer?  And can 
anyone tell me, thinking about what we just did, what that might be getting 
closer and closer to as we move closer to the gradient?  We use that point 
for 6, someone has it? 

111.S. 7. 
112.T. 7.  It will get closer and closer to 7.  Right, I’m going to stop talking now.  

Can you move them along the row [Handing out worksheets]?  Do you all 
understand what’s going on? 

The students have different points on which they are having to draw the 

tangent and work out the gradient by following the same routine as 

demonstrated by the teacher of ‘moving closer and closer’. They have all 

been given a worksheet with the graph of 𝑦 = 𝑥2 − 𝑥 − 6. The teacher 

reiterates the routine to one of the students in the excerpt below. T2LO: 

210.S. Am I on the right track? 
211.T. Yeah absolutely.  So, what you’ve done is you’ve started at, started at 2 then 

you’ve moved a bit closer to 1.5.  Maybe a bit closer, 1.25.  Move a bit 
closer and your gradient will start changing from 2 to a different gradient.  
And it’ll start approaching something.   

The teacher's utterance ‘it’ll start approaching something’ [211] suggests 

looking for the limit of the emerging gradient values. Thus, computing the 

limit, without using the word limit. The routine of getting the two points closer 

and closer together, by moving point P closer and closer to point Q, if 

continued, implies that points P and Q would eventually be at the same 

point. A student appears to have conjectured this phenomenon. The 

dialogue below shows that the student had found a problem with the 

approach. How could the teacher explain the  𝑥1 − 𝑥2 approaching zero, not 

equal to zero divided by zero?  T2LO: 

107.T. So just keep going with it.  Right we’re going to stop in about one minute 
and see how far we’ve got.  Good.   

108.S. Miss. 
109.T. Yeah.  
110.S. What do you think about dividing zero by zero? 
111.T. What do I think about it?  Well, what do I think about any, dividing anything 

by zero? 
112.S. It’s 1 because you divide it by itself.  But also if you didn’t have any then it 

would still be 0. 
113.T. So, you divide it by itself so it’s 1 because you didn’t have any.  It should 

never be 1. 
114.S. Yeah. 
115.T. Yeah, I think dividing anything by 0 is something you should google first of 

all.  Think about that argument. 

The didactical routine of using tangents and chords to explain the process of 

differentiation seems to present conceptual challenges for students and 

teachers alike. The approach by which to ‘keep getting closer and closer and 



- 198 - 

closer’ or ‘as h approaches zero’ appears to lead to zero divided by zero. 

The answer given [115] to the student’s question was not adequately 

substantiated.  The question about 
0

0
 is indeed a difficult one to explain. 

Nonetheless, the teacher was determined to get the students to carry out the 

investigation which potentially led to such tricky questions. In the excerpt 

below, here the teacher reiterates and explains the importance for the 

students to build an understanding of the process of differentiation.  T2LO: 

246.T. Yeah.  Leave it there for now and we’ll talk about it.  Right, let’s stop there.  
Don’t worry if you’ve not finished.  Once again guys this is an investigation 
to try and develop a bit of understanding about where our differentiation 
comes from.  I know we’re not there yet, but it doesn’t matter if you’ve not 
finished.   

Let’s have a think once again about what all this meant and what you were 
doing there when I find this.  What you were doing is you had your point P.  
You had your point P and you picked a point Q and then you made it a bit 
nearer, a bit nearer, a bit nearer so eventually, if it was ever the same point 
it would have the same gradient.  Does anyone want to tell me what theirs 
was approaching?  Yeah? 

There is evidence from this lesson T2LO, to suggest a successful lesson 

outcome. When the teacher asked, T2LO:  

379.T. So, people at the front did, did we understand all that?  Is it nice to know 
where it came from? 

380.S. Yeah! Yeah! Yeah! 
381.T. Yeah, good. 
382.S. Probably the best!   
383.T. I wish someone had told me that at A-level, I do! 

The acknowledgement from the students was very positive, as highlighted 

by the student utterance ‘Probably the best!’ [382]. This was a lesson which 

made extensive use of dynamic imagery of GeoGebra, whose affordances 

include more accurate graphing of functions, drawing of the tangent by 

means of sliders, dragging of variables, and zooming on the graph. This was 

in a lesson by a teacher [T2] who explained her approach to introducing 

differentiation as one which aimed at students’ understanding of why 

differentiation works. 

Summary 

In conclusion to this section, I want to highlight a couple of observations that 

could raise questions or implications for teaching. The first one relates to 

estimating the gradient of a tangent at a point on a curve by a consideration 

of two points, the secant line (or chord) and the tangent line. The teachers 

repeatedly used the phrase getting closer and closer referring to different 

objects – the gradients, the points, or the chord and the tangent. For 
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example, in the lessons T3LO and T5LO, the teachers do not exclusively 

refer to the tangent as the goal of ‘getting the points closer and closer’ or 

explicitly mention the secant line; instead, their didactical routines focus 

primarily on two points. Whereas in T2LO, the teacher makes use of a 

colour-coded graph showing the curve, the secant line and the tangent, as 

well as the two points of reference. All three lines, the curve, the secant 

(chord) and the tangent are explicitly substantiated in the didactical routine.  

The second observation relates to how teachers treat the idea of limiting 

values, e.g. in  [T2LO, 110-112] as point Q gets closer and closer to point P, 

and the successive gradients approach a certain limiting value. This 

observation pertains to the didactical routine of ‘keep getting closer and 

closer and closer’, i.e. estimating the respective gradients of the tangents to 

the curve at given points, as ‘𝑥1 − 𝑥2’ approaches zero or ‘as ℎ approaches 

zero’ or the horizontal distance approaches zero. Does it lead to zero divided 

by zero? How do teachers explain the idea that ‘as ℎ approaches 0’, but not 

equal to zero divided by zero?  

8.4  Introducing the derivative: the gradient of the tangent as 

a limit  

All the lessons on introducing differentiation started from the definition of the 

tangent and then developed onto estimating the gradients of the tangents to 

the graphs of functions (e.g.  𝑦 =  𝑥2, 𝑦 =  𝑥2 +  𝑥 –  6 “𝑜𝑟” 𝑦 =  𝑥3) at given 

points. Estimating the gradient of the tangent to the graph of a function, 𝑓(𝑥) 

at the point (𝑥;  𝑓(𝑥)) involved using the difference quotient 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
   to 

compute the gradients of successive secant lines passing through the points 

(𝑥;  𝑓(𝑥)) 𝑎𝑛𝑑 (𝑥 + ℎ;  𝑓(𝑥 + ℎ)) as ℎ → 0, i.e. as the point (𝑥 + ℎ;  𝑓(𝑥 + ℎ)) 

gets closer and closer [italics for emphasis] to the point of tangency 

(𝑥;  𝑓(𝑥)). Taking the limit of the difference quotient as ℎ → 0 gives the slope 

of the tangent, which is the derivative of the function at the given point, and 

this explains the ‘the gradient of the tangent as a limit’ (Pearson Education 

Limited, 2013, p.23; DfE, 2016, p.10). Teachers in this study did not 

substantiate the word ‘limit’ in constructing the definition of the derivative as 

the gradient of the tangent as a limit. For an illustrative approach to 

constructing the definition of the derivative, data excerpts from T4LO are 

presented below. Further evidence will be drawn from the other teachers, 

T7, T5 and T2.  
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Following on from the excerpts [T4LO: 75 - 79] (on page 182 in Section 8.3.1 

above), the class concludes that the values of m, the gradients of successive 

chords are converging to 2. Even though the teacher knows the value for the 

gradient of the tangent to 𝑦 =  𝑥2 at (1,1), he does not confirm the result, 

instead, he says  “So, I think the real answer to this question is going to be, 

the gradient is 2” [79].  The conjectured value for the gradient here is an 

estimate and so the teacher proposes, “We need to try and prove it” [79]. 

The activity moves towards a more algebraic mediation, which the teacher 

describes as ‘the clever bit’ [79]. Figure 8.14 and the excerpts below give 

some insights into this utterance. T4LO: 

 

Figure 8.14  The gradient (m) of the tangent to 𝑦 =  𝑥2 at (1,1) 

91.T. Alright, so we’re mathematicians. We want to consider smaller and smaller 
numbers.  Why don’t we just consider a general number, and we can 
imagine what happens to that number as it gets closer and closer to 0, 
okay?  What I’m going to do is I’m going to imagine adding a number h onto 
our x-coordinate.  Now h can be any size we want but what we’re going to 
think about is what happens when h gets tiny, it gets really, really small, 
okay?  So, we’re going to add h to our 𝑥 −coordinate.  What is our new x-
coordinate going to be if we add h to it?  Mxxx?   

92.S. 𝑥 +  ℎ. 
93.T. 𝑥 +  ℎ brilliant Mxxx!  But in this case, we’re just going to look at (1,1) first of 

all.  You are right for the next bit.  So, actually, first, we’re going to look at 
1 +  ℎ, okay?  That’s our first co-ordinate.  So, we’re adding this number h 
on.  We don’t know what it is yet but all we know it’s going to be really, 
really, small and we’re going to make it smaller and smaller and smaller.  
Good stuff Year 12. If the 𝑥 −co-ordinate is 1 + h, how do we work out what 
the y-coordinate would be? 

94.S. 1 +  ℎ, squared. 
95.T. 1 +  ℎ, squared, all in brackets, okay.  Nice!  This time we’re going to do 

exactly what we did last time.  We’re still going to work out the gradient.  
Okay.  We’re still going to work out that gradient [drawing the dotted triangle 
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onto the graph, see Figure 8.14], alright.  Right this time…Gxxx could you 
help me substitute the values in this time for, to the formula? 

The excerpt above explains the ‘clever bit’ [79]. However, note the teacher’s 

word use in these utterances ‘as it gets closer and closer to 0’ [91]; ‘...when 

h gets tiny, it gets really, really small’[91]; ‘we know it’s going to be really, 

really small and we’re going to make it smaller and smaller and smaller’[93]. 

With reference to Figure 8.14, the teacher further explains what happens as 

h approaches zero (h → 0), and he describes this part as ‘the bit of 

inspiration’ [133]: T4LO: 

133.T.  It [Pointing to point {(1 + ℎ), (1 + ℎ)2}] gets lower and lower and lower and 
lower until it gets, imagine it gets incredibly close, incredibly close to this 
point here [Pointing at point (1,1)].  Now if we get, if we make h so small that 
those two points are touching, that will tell us the gradient of the tangent, 
okay?  We’re nearly there.  This is the bit of inspiration. 

134.S. Is ℎ the gradient we’re looking for? 

135.T. Is ℎ the gradient we’re looking for?  Actually, no Gxxx, we’re looking for what 
𝑚 is.  𝑚 is going to tell us the gradient, okay?  Now here’s the, here’s the 
tricky bit. 

Again, note the description in [133] ‘gets lower and lower and lower and 

lower until it gets, imagine it gets incredibly close, incredibly close to this 

point’ and the reference made to the tangent line as ℎ → 0. Note the 

teacher’s word use in [133], that even though he describes the two points as 

touching, his description is ‘if we make h so small that …’;ℎ does not equal 

zero and this is a critical point with far-reaching implications. The student’s 

question in [134] explains the importance of word use. The teacher’s 

utterance that ‘if we make h so small that those two points are touching, that 

will tell us the gradient of the tangent’ could be construed here to mean that 

ℎ gives the gradient. The teacher’s response, ‘Actually, no ….’ [135] 

suggests acknowledgement of this point. ‘Now here’s the, here’s the tricky 

bit’ [135]. At this point, the calculation on the board, see Figure 8.15 below, 

has reached 𝑚 =  2 +  ℎ. The teacher for the first time writes h → 0  on the 

board and poses the following question: T4LO: 

136.T. When ℎ gets really, really small, in other words, as ℎ approaches 0…okay 
when ℎ approaches 0, what do you think happens to the gradient?  As ℎ 
gets really, really small and it approaches 0, what do you think happens, 
happens to the gradient?   

137.S. It approaches 2. 
138.T. It approaches 2, brilliant.  That’s what we were, that’s what we were always 

hoping, wasn’t it?  We were, we were hoping that the gradient was going to 
be 2 because we sort of knew it would be.  And now what Rxxx is saying is 
as ℎ gets really, really small, well that ℎ is just going to go away, it’s going to 
be 0.  So, the gradient we’re left with…is 2. And that is differentiation.  
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As the teacher explains ‘as h gets really, really small, well that h is just going 

to go away, it’s going to be 0.  So, the gradient we’re left with…is 2’ [138], he 

circles ℎ on the board, see Figure 8.14. A critical condition here is that ℎ ≠

0. Indeed, ‘the tricky bit’ [135], ‘h is just going to go away, it’s going to be 0’ 

[137] did not pass without notice. The teacher, just after explaining that “this 

is differentiation”, a student immediately said that she did not understand it. 

T4LO: 

139.S.  I don’t understand it! 
140.T.  It’s difficult, it’s really difficult.  It’s really difficult. … So, this is really 

advanced stuff.  So, it’s fine if you find it difficult.  And what we’re going to 
do is we’re going to…I’m going to take you through one, one last step on 
this and then you’re going to have a go at doing exactly the same thing but 

with 𝑥3.  

‘It’s really difficult’ [139]. The teacher was quick to admit that “it is difficult”. 

Note that the phrase is repeated three times in a row. This suggests an 

acknowledgement by the teacher that students find understanding the 

explanation for differentiation ‘really difficult’. Further, later during the lesson 

T4LO, the teacher reiterated that differentiating from the first principles was 

difficult. Not once but several times the teacher acknowledges that the task 

was difficult, as can be seen in the selected excerpts below. T4LO 

287.S. I don’t like the way it’s set out. 
288.T. It’s difficult, it’s difficult, especially the ℎ thing.  Thinking about what ℎ 

means. 
289.S. I have to do 𝑎 + ℎ  
290.T. I think, just because we want 
291.S. and it’s a random 
292.T a random +ℎ because we want to see what happens as ℎ gets smaller and 

smaller and smaller.  Because you know how like algebra, ℎ can represent 
any value we want.  That means we can think about it representing a 
smaller and smaller number. 

By the ℎ −thing here, the teacher is referring to the ℎ in the quasi-limit 

definition of the derivative. ‘It’s difficult, it’s difficult’ [288], the teacher is 

describing differentiation from the first principles. The utterance ‘It’s difficult’ 

was repeated several times in the lesson. T4LO 

312.T. It’s difficult, isn’t it? 

366.T. It’s difficult, ‘isn’t it?  It’s difficult stuff.  

This study highlights some of the factors that contribute to students’ 

challenges with differential calculus such as the students’ difficulties with 

understanding limits, constants and variables as explained by T4 in the post-

lesson interview excerpt below. T4I(ii)   

51. I.  What do you think makes it difficult though? 
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52.T.  I mean really just that never before have you been told that 𝑚 =  2 + ℎ and 
you’ve never been asked before to ask what happens as ℎ approaches zero. 
It’s not something that, it’s not like related to solving equations really, it’s 
something completely new about limits I guess that they’d never come 
across before. 

57. I.  Why do you think the students, those students in there or in general, find 
that idea difficult? 

58.T.  I think there’s a real issue with the following – students have difficulty firstly 
distinguishing between constants and variables in Algebra. So, even when I 
was teaching FP21 last year one of my students still didn’t understand the 
difference between 𝑎, 𝑏, and 𝑐 and 𝑥, 𝑦 and 𝑧 really. So, there’s that issue.  

The teacher, T4, explains that the idea of limits is what makes differentiation 

from first principles really challenging for students. Referring to the gradient 

function of 𝑦 =  𝑥2, which the class had reached by differentiating from the 

first principles, 𝑚 =  2𝑥 + ℎ, T4 explains that he thought of what then 

happens as ℎ approaches zero can be daunting to the students. T4 cites two 

factors here, the idea of ℎ approaching 0, which is related to the concept of 

the limit, but also explains what he described as a real issue’ that ‘students 

have difficulty firstly, distinguishing between constants and variables’ [58]. 

This then calls for careful planning and teaching as reflected in the post-

lesson interview with another teacher, T5.  

T5 is reflecting on his lesson, T5LO, in which the students’ task was to find 

gradients of tangents at different points on the graph of 𝑦 =  𝑥2 and then to 

use the set of these gradients to deduce the gradient function for function 

𝑦 =  𝑥2. T5I(ii) 

89.T. Yeah, it was approaching but we needed to go a little bit further which is 
why I thought I need to focus everyone on one set of values here because 
whilst we were looking at 5 different values it was hard for me to get control 
of exactly what we were choosing. So that’s something that I didn’t really 
envisage ‘because this is the first time that I’ve tried teaching it this way. 

90.I. Right. 
91.T. And when you know about differentiation already it’s almost, I don’t think I 

cast my mind back to when I didn’t know anything about differentiation. … 
Once you’ve been taught you know, once you’ve been taught the formula 
because you sort of know what you’re looking for. But I can understand from 
their point of view, they don’t know what they’re looking for yet, so I just 
needed to be a little bit more controlled. On reflection, I perhaps should 
have asked everyone to look at (1;1) and another point that would have 

given me more information about just the one point to go from. 

Teaching arrangements can contribute to the student’s challenges with 

differential calculus. The teacher had given the class five different points for 

the investigation of the slopes of the tangents at the given points to the curve 

 

1 Further Mathematics 2 (FP2) is an advanced GCE course]  
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of 𝑦 =  𝑥2, and the lesson did not go well, prompting the teacher to 

reconvene the students to focus on just one point. It is very easy for a 

teacher to overlook some of the inherent complexities that learning calculus 

presents, especially to students facing calculus for the very first time. This 

teacher’s reflections above show that it is important for the teacher 

introducing calculus to realise that it could be the students’ first encounter 

with calculus and to plan carefully to facilitate the students' understanding of 

the topic.  

Talking to T4 in an interview after his lesson, in which he had said that 

differentiation from first principles was ‘really difficult’, he explains what he 

thinks makes it difficult. T4I(ii) 

52.T.  I mean really just that never before have you been told that 𝑚 =  2𝑥 + ℎ 
and you’ve never been asked before to ask what happens as ℎ approaches 
zero. It’s not something that, it’s not like related to solving equations really, 
it’s something completely new about limits I guess that they’d never come 
across before. 

Other teachers too, acknowledged that learning differentiation from first 

principles was often challenging for students, for example in T3I(ii) and 

T4LO, below. In the post-lesson interview with T3I(ii), the teacher explains 

that she had to extend the time because the students found differentiation 

from the first principles challenging, so she spent more time on the activity 

because she wanted the students to understand it. The teacher gives her 

reflections on the beginning part of the lesson.  T3I(ii) 

14.T. There were some, I think there was a few still counting squares.  So, I think 
they found it harder, but I think it did, this task definitely sort of got them 
thinking about the gradient as changing. 

15.I. Yeah. 
16.T. So that took longer than I thought.  Again, for some of my able students, like 

Bxxx is really able. I think it just took longer than I thought.  But I think I 
slowed down, but then felt like it needed to.  They needed to absorb it.  And 
I feel like by the end of the lesson they had a really good understanding. 

The teacher explains that it was not just the usual low-attaining students who 

struggled with the activity, but the high-attaining students too. She adjusted 

her lesson accordingly to allow her students enough to ‘absorb it’ [16], as 

she thinks it is important for the students to get the idea of changing 

gradients on a curve, i.e. gradient function. Nonetheless, she felt the 

students had a good understanding of changing gradients on a curve. 

Even though the teacher, T4, appreciates the challenges of understanding 

the ‘tricky bit’, he explains the main ideas that he wanted the students to 

understand from the activities. T4LO: 
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140.T. As long as you understand that all we’re doing is, well firstly that it’s really 
difficult.  Secondly that all we’re doing is we’re considering a point that’s a 
little bit further along than our first point [Pointing at the two points on the 
graph in Figure 8.15] and making that smaller and smaller and smaller 
[Pointing along the curve, tracing or ‘dragging’ the upper point down towards 
(1,1)] and thinking about the gradient.  That’s all you need to remember.  
Just remember it’s about that gradient.  Okay, finding the gradient at a 
tangent to a point.  Okay, right, now, that’s all very well and good.  We’ve 
found the gradient at that point [Pointing at (1,1), see Figure 8.15].   

What if we wanted to find the gradient at any point on the line [curve]?  
That’s the next step.  So, we’ve found the gradient at one point [Pointing at 

(1,1), see Figure 8.15], that’s 2 [Pointing at 𝑚 =  2].  We’ve proved it, 
brilliant.   

Now I’d like to work out what the gradient is at any point we wanted on the 
line [curve], okay?  So, you’re going to need the same diagram again but 
we’re not going to look at (1,1) now.  We’re going to think about every single 
point on the line.   

Note that the teacher claims the previous activity to have proved that the 

gradient of the tangent to the graph of the function 𝑦 =  𝑥2 at the point (1,1) 

is 2. However, the task now is ‘to find the gradient at any point on the line 

[curve]’ [140]. It is worth noticing the sequencing of the illustrative examples 

used by the teacher in the lesson activities this far.  The core activity has 

primarily been the same, ‘This time we’re going to do exactly what we did 

last time.  We’re still going to work out the gradient’ [95]; ‘So, you’re going to 

need the same diagram again but we’re not going to look at (1,1) now.  

We’re going to think about every single point on the line’ [140], but there is 

variation in the coordinates; changing one aspect at a time but maintaining 

the same activity. The first example used purely numerical coordinates. For 

the second example, when the teacher said, ‘we’re going to add h to our x-

coordinate’ [91], and a student said that would be ‘𝑥 + ℎ’ [92], but the teacher 

explained that ‘So, actually first we’re going to look at 1 +  ℎ okay’. Thus, 

before moving to use a general (symbolic) representation of the point 𝑥 + ℎ, 

the teacher wanted to use 1 + ℎ. Now, the same activity is repeated for the 

third time, but now using purely general points (𝑥, 𝑥2) and [(𝑥 + ℎ), (𝑥 + ℎ)^2] 

on the same graph of the function 𝑦 =  𝑥2.  The result of this third variation of 

the activity, which the teacher referred to as ‘I’m going to take you through 

one, one last step on this’[140]  is captured in Figure 8.15 below. T4LO: 
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Figure 8.15  Computing the derivative of the function 𝑦 =  𝑥2 

The gradients have been 𝑚 = 2, 𝑚 = 2 + ℎ for the first and second 

examples, respectively, but now it turned out as 𝑚 =  2𝑥 + ℎ. The same 

question as before is posed: ‘What happens as h gets closer to 0?’ [192]. 

T4LO: 

192.T. Okay.  Time to think again guys.  The gradient we found is that the gradient 
is equal to 2𝑥 + ℎ.  Same, same question as last time.  What happens as h 
gets closer to 0?  What happens? In other words, what happens as this 
point gets close, close to the original, the original point [Pointing along the 

curve, tracing or ‘dragging’ the upper point down towards (𝑥, 𝑥2) ] as h gets 
close to 0?  What is the gradient of that line [Pointing to the chord in Figure 
8.15]?  What do we think?  Rxxx?   

193.S. 2x. 

194.T. 2x.  Yeah, 𝑚 = 2𝑥.  Okay because as h approaches 0, h becomes 0 and 
we’re just left with 𝑚 = 2𝑥.  Now that looks a bit weird because we’ve now 
got a gradient that isn’t just a number, okay?  What’s going on there?  Why 
have we, usually in GCSE we get 𝑚 = 1 or 𝑚 =  −3?  Why have we got a 
bit of algebra for our gradient?  Gxxx what do you think? 

Again, note the explanation for h→ 0 in the teacher’s utterance here. The 

teacher explains that the gradient of the chord, 𝑚 =  2𝑥 +  ℎ becomes 𝑚 =

 2𝑥 ‘because as h approaches 0, h becomes 0 and we’re just left with 𝑚 =

2𝑥′ [194]. Up until this point in the lesson, the gradients computed have 

been represented by m, and the teacher draws attention to the fact that m 

usually represents constant gradient, where he says ‘usually in GCSE we 

get 𝑚 = 1 or 𝑚 = −3’ [194]. Now that m = 2x and not  ‘just a number’ [194], 

it is at this point in the lesson that the teacher introduces new calculus words 

and symbols to describe and represent this gradient ‘with a bit of algebra’ 

[194], 2𝑥.  The word use and symbolism are captured in Figure 8.16 below 

and the excerpts below. T4LO: 
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Figure 8.16  Symbolism for derivative 

A student answers the teacher’s question as to why the gradient was not just 

a number but has a bit of algebra. T4LO: 

201.S. Because it’s a general formula. 
202.T. That’s right because this is a general formula for the gradient.  This could 

tell us the gradient at any point we want.  It’s not just 𝑚 =  10.  The 
gradient’s not just 10, is it? Because Gxxx said right at the start of the 
lesson the gradient changes.  This is a general formula for the gradient at 
any point, okay?   
Now we’ve got a name for that.  We call it the gradient, we call this [Circling 
𝑚 = 2𝑥 as shown in Figure 8.16], we call this the gradient formula [Writing it 

on the board as shown in Figure 8.16], okay.   

And we’ve got some special notation for it.  Instead of saying 𝑚 =  2𝑥 we 

write  
𝑑𝑦

𝑑𝑥
= 2𝑥.  And this [Pointing at 

𝑑𝑦

𝑑𝑥
= 2𝑥  in Figure 8.16] is called the 

gradient formula, okay.  So 
𝑑𝑦

𝑑𝑥
= 2𝑥 , that’s the gradient, that’s the gradient 

formula for which curve? 

203.S. 𝑦 =  𝑥2 

204.T. 𝑦 =  𝑥2!  This is always going to be the gradient formula for the line 𝑦 =  𝑥2, 
okay.  And that’s it.  That’s differentiation, finding the gradient formula.  

Note how the teacher adopts the student’s ideas in the lesson. He combines 

the student’s word use ‘general formula’ [201] for the description of 𝑚 =  2𝑥  

and an earlier idea from another student that ‘gradient changes’ and 

explains 2𝑥 as ‘This is a general formula for the gradient at any point okay’ 

[202]. The teacher’s utterance describes the gradient formula which is then 

symbolised by  
𝑑𝑦

𝑑𝑥
. The teacher explains  

𝑑𝑦

𝑑𝑥
  simply as a ‘special 

notation’[202] for the gradient formula for the function 𝑦 =  𝑥2, and the 

‘differentiation’ is explained and defined as ‘finding the gradient 

formula’[204].  
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In the excerpt below, the teacher, T7 is describing the derivative at a point C. 

T7LO: 

129.T. As ℎ goes towards zero so we’re looking at the limit as [h] gets smaller and 
smaller and smaller, that point C, remember it was this graph up here [The 
teacher pointing a sketch graph on the board] that point C gets closer and 
closer to point B because the triangle’s shrinking down and it’s becoming 
much more precise as a measure of gradient. The actual limit as [ℎ] gets 
really close to zero, the limit of that value getting smaller and smaller is 
actually the gradient, so it becomes a precise value when [ℎ] tends towards 
zero. 

The teacher describes the ‘gradient’ as the limit of that value (referring to the 

quotient) [see Figure 7.5 on page 123] “as h gets smaller and smaller and 

smaller” and “that point C gets closer and closer to point B”, i.e. “as h tends 

towards zero”[129]. The word limit is mentioned three times in the teacher’s 

utterance [129], but it was used here as an everyday word since no definition 

was specifically given for the word, not as a process or object, anywhere in 

that lesson.  

During the interviews, teachers talked of and used the word ‘limit’ in their 

talk, not in their lessons. When talking about their teaching plans and their 

lessons, it is evident that the teachers planned to use the quasi-limit 

definition of derivative in introducing and explaining differentiation, even 

though in the actual lesson, they deliberately avoided using the word limit. 

For example, talking in an interview before the lesson about her teaching 

plans for introducing differentiation, T3 talks about the idea of limits and 

differentiation from the first principles. T3I(i): 

134.T. And moving towards 
𝑑𝑦

𝑑𝑥
 and the limits as the change in x decreases to zero; 

so, some first principles.  
138.T. And sort of starting with first principles and then moving quickly into actually 

differentiating using common rules. 

T5, talking about the derivative for the function 𝑓(𝑥) =  𝑥2, in an interview 

with me, explains: T5I(i) 

59.T. I’ll start talking about, ‘well let’s choose a general point (𝑥, 𝑦) and another 

point [(𝑥 + ℎ), (𝑥 + ℎ)2]’. I’ll talk about h decreasing and that’s fine, it 
requires a knowledge of limits to a certain extent, but no formal ideas of 
limits but the idea of h getting smaller and eventually becoming zero [my 
italics for emphasis]. And out you come with a gradient and then we’ll spot 
patterns. 

Note that T5 acknowledges that even though differentiating from first 

principles ‘requires a knowledge of limits to a certain extent’, he did not 

intend to include ‘formal ideas of limits but the idea of h getting smaller and 
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eventually becoming zero’ [59]. Reflecting on this lesson in a post-lesson 

interview, T5 again uses the word ‘limit’ but he had not used this word in his 

lesson. In the excerpt, T5 is referring to a class activity investigating the 

gradient of the tangent to the graph of 𝑓(𝑥) =  𝑥2  at the point (1;1).   T5I(ii) 

81.T. And the reason why I wanted to go a little bit further was because it didn’t 
quite show exactly what I was after at that point. It wasn’t getting to a limit 
and the rate at which we were approaching the gradient wasn’t yet 
decreasing sufficiently. 

84.I. Okay, so was this then to say these gradients were kind of approaching 2? 
85.T. Yeah, yeah it was yeah. 

T5 talks about ‘h getting smaller and eventually becoming zero’ [59]. 

Similarly, T4, explaining the quasi-limit definition of the derivative, says, 

T4LO 

194.T. 2x.  Yeah, 𝑚 = 2𝑥.  Okay because as h approaches 0, h becomes 0 [my 

italics for emphasis] and we’re just left with 𝑚 = 2𝑥.  

Also, T7 in explaining the quasi-limit definition of the derivative, for when ℎ →

0, says that ‘… in fact, it becomes zero’ [151]. T7LO 

151.T. We’re allowed to cancel the ℎ because we can divide the numerator and 

denominator by ℎ. That h is multiplied by that bracket, so I’m allowed to 
cancel it off. In this case, it’s a bit like saying I’ve got two lots of 3 divided by 
2, I’m allowed in that case to divide by 2 top and bottom. So, I’m left behind 
with ℎ +  6. Now I think, does it ask about what happens as ℎ tends to zero? 
When ℎ gets smaller and smaller and gets closer and closer to zero in fact it 

becomes zero, what will the gradient turn into? 

Note that although the teachers describe h as approaching zero, T5 [59], 

T4[194] and T7[151], also say that h becomes zero [my italics for emphasis]. 

What does it mean (and what happens) when h gets smaller and smaller 

and getting closer and closer to zero, i.e. when ℎ approaches zero? Does h 

‘eventually become zero’? The routine of getting h smaller and smaller, and 

getting closer and closer to zero (i.e. as ℎ approaches zero) if continued, 

implies that points (𝑥, 𝑓(𝑥))and (𝑥 + ℎ, 𝑓(𝑥 + ℎ)) would eventually be at the 

same point.  

A student from a different lesson [T2LO] by a different teacher [T2] appears 

to have conjectured the phenomenon above as suggested by his question to 

the teacher in the excerpt below.  T2LO 

110.S. What do you think about dividing 0 by 0? 
111.T. What do I think about it?  Well, what do I think about any, dividing anything 

by 0? 
112.S. It’s 1 because you divide it by itself.  But also if you didn’t have any then it 

would still be 0. 
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113.T. So, you divide it by itself so it’s 1 because you didn’t have any.  It should 
never be 1. 

114.S. Yeah. 
115.T. Yeah, I think dividing anything by 0 is something you should ‘google’ first of 

all.  Think about that argument. 

This dialogue suggests that the student had obviously discovered a problem 

with the explanation. As ℎ continues to approach zero, getting the two points 

closer and closer and together, implies that the two points could eventually 

be at the same point. If ‘ℎ becomes zero’ [T4LO; 194] or  ‘ℎ getting smaller 

and eventually becoming zero’ [T5LO; 56] that would mean that the 

difference quotient  
𝑓(𝑥+ℎ)−𝑓(𝑥)

(𝑥+ℎ)– 𝑥
 would be equal to  

0

0
, thus undefined. In other 

words, the derivative of 𝑓(𝑥) at (𝑥, 𝑓(𝑥)) would not exist.  

This poses challenges not only to students but to teachers too. T4I(ii) 

50.T. I think the concept of adding a general value onto x and considering what 
happens as that value decreases is quite a hard concept for students to get 
their head around, especially ‘because it’s quite novel the idea that h isn’t 
fixed, and we have to consider what happens as h changes. I find that a 

difficult idea to get my head around.  

‘I find that [the limit] a difficult idea to get my head round’ [50] explains T4 in 

an interview after his lesson on introducing the derivative. The students and 

the teacher alike find the idea of ‘limit’ here, confusing or difficult to 

comprehend as explained by T4 in the post-lesson interview. 

8.5  Pedagogies on the derivative: The why-factors 

In all lessons, introducing differentiation started with a consideration of 

drawing tangents to curves at given points and computing the gradients 

(slope) of the tangents. The activity gradually developed towards 

differentiation from first principles, which involves computing the difference 

quotient, 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 and finding the limit of that difference quotient as ℎ 

approaches 0 (ℎ → 0), for example, T2, T4 and T7 (refer to Section 8.3 and 

Section 8.4 above). 

It is necessary to look at the mathematics curriculum which stipulates the 

differential calculus that ought to be taught to post-16 students studying 

mathematics at school. The curriculum specifications for the GCE in 

Mathematics for the Core Mathematics C1 (AS) from 2014 to 2017 state that 

students need to learn ‘the gradient of the tangent as a limit [my italics for 

emphasis]’ (Pearson Education Limited, 2013, p.23). However, the syllabus 

specifications here, unlike the 2017 specifications, do not specify using 
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‘differentiation from first principles’ (DfE, 2016, p.10). If the teachers’ 

approach to introducing the derivative can be summarised as teaching 

differentiation from first principles, what are the teacher’s reasons for doing 

so? (Also, see Section 8.6, on page 212 for further discussion). 

There was a common understanding from the teachers that differentiation 

from first principles was not subject to testing in the examinations. Students 

asked how differentiation from the first principles would look like exams, for 

example in T4LO. Teacher [T4] explains that it would not be assessed in the 

examination. T4LO 

285.S. So how would this like be an exam question?  What would it be? 

286.T. It’s, it’s not going to strictly be on the exam.  It’s going to be on the exam for 
the people starting their GCE A-level next year.  But for you, it’s just a way 
for you to start understanding that differentiation is to do with gradient and it 
gives you the gradient at any point.  So, it’s quite shocking how many 
people forget that it’s, that it’s part of the gradient.  Because what you’ll see 
later on is, that we’ll learn a way of working out what the gradient function is.  
But you might forget that it’s to do with gradient unless, you know, you learn 
it this way. 

Similarly, from T7LO, the teacher actually assigned students a task to do on 

differentiating from first principles but explained that it would not be tested 

upon in the examinations. T7LO 

129.T. Okay so time for us to practice some questions. In the book can you turn to 
Exercise 7a? And you will notice when you turn to that page that these sorts 
of questions won’t be on the exam paper but it’s just giving you an 
understanding of the background behind where differentiation comes from.   

Teaching differentiation from principles is about promoting an understanding 

that differentiation is about gradients at given points and the gradient 

function. In T2LO, students also asked whether differentiation from first 

principles was tested in examinations. The teacher [T2] explains that finding 

the gradient function by differentiating from first principles was not even 

subject to testing. It is, the teacher argues, important for the students to 

understand why differentiation works. T2LO  

373.T.  We know as h gets smaller and smaller; it goes to 0.  So, then our gradient 
function, let’s call it m for now for the sake of it will go to 2𝑥 –  1[my italics].  
Now some people at the start of a lesson were finding that out through the 
process of differentiation which they knew. … We found out the gradient 

function for this [𝑦 =  𝑥2 + 3𝑥 − 6].  It was through something called first 
principles.  Something we don’t use and asked. One of the girls asked, it 
isn’t tested on but it’s really nice to know. 
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Similarly, T5 explained to his Year 12 class that the investigation of the 

gradient formula of a curve, something that the class spent about two hours 

doing, would not be examined. T5LO 

195.T. No, feel free to use your calculator to do this.  You won’t have a calculator in 
the exam, but you won’t be asked to do this kind of thing in the exam. 

Generally, as can be seen in the excepts above, the teachers’ core objective 

in the introductory lessons was to explain why the differentiation rules work, 

thereby helping students’ understanding of differentiation. For example, T2 

argues for the importance of explaining the meaning of differentiation as she 

refers to her experience as a student. In an interview with me, T2 said that 

she only got to learn the meaning of differentiation past her degree. T2I(i) 

106.T. I think the understanding is just as important as the process, the multiplying 
by the power thing because I never ever got the connection between the 
gradient.  I remember being at school myself and thinking oh right, that’s 
how I’ll find the gradient.  I don’t know why, why that is again, that’s just 
differentiating.  I knew differentiating as a process before I knew it was 
anything to do with the gradient, and I don’t like that I knew that, I’d rather it 
was the other way round.   

The experiences of teacher T2 here, are consistent with the explanation by 

teacher T4 in [286] above. T4 explained that the reason he wanted students 

to learn differentiation from first principles was so they could ‘understand that 

differentiation is to do with gradient and it gives you the gradient at any point’ 

[286].  

In her lesson [T2LO], T2 followed what she had said in the pre-teaching 

interview [T2I(i)]. She shares with her class, her own experience as a 

student when she was taught differential calculus. She explains why they 

were differentiating the function 𝑦 =  𝑥2 + 3𝑥 − 6 from first principles: ‘It’s 

about understanding why differentiating works’ [89].  In that class (Year 12) 

there were some students who had come across some differentiation in 

Further Mathematics2 in Year 11, but still, the teacher insisted on 

differentiating from first principles. T2LO 

89.T. I’ve had a few people trying to differentiate.  I’ll explain to you what this 
lesson’s really about.  It’s about understanding why differentiating works.  
Now we all know or a lot of us know, who did further maths, how to 
differentiate in the process of it. But I mean I’ve spoken to your past teacher.  

 

2 The Further Mathematics (level 2) is a GCSE qualification open as an optional course 

additional to the compulsory GCSE Mathematics course for 16-year-olds in England. The 

syllabus included elements of differentiation. 
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As far as I know, you’ve not learnt why it works.  So, that’s what this 
lesson’s about.  So, we won’t be differentiating at all today. 

And the reason why I want you to do it is that no one ever told me till I was 
way past my degree, why it works.  And I really wanted to know.  So, we’re 
starting off with this. … 

T2’s past experiences of learning calculus clearly influenced their approach 

to teaching differentiation, which focuses on promoting students’ 

understanding of the definition of calculus. This was not an isolated case. In 

an interview with T5, he explains that he, too, wished had been taught the 

proof for differentiation, i.e. differentiation from first principles. I asked him 

what the reasoning behind his approach was to introducing differentiation. 

T5I(ii) 

57.T. It came down to the way that I was taught differentiation and I was shown 
the algebra and then differentiated, got through the whole of my A level, got 
to University and sort of within the first few weeks went through the proof for 
the formula and thought ‘I wish I’d be shown really what it was talking about 
and the reasons why we were doing things’. So, I thought I want to introduce 
it with both because some approaches just use the between two points and 

the points getting closer … 

Reflecting on their experiences of learning introductory differential calculus 

at school, teachers explained the importance for students to understand and 

so be taught the principles behind the process of differentiation. It is for this 

reason, that they decided to take an investigatory approach in introducing 

the differentiation, in which they applied forms of differentiation from first 

principles.  As T4 explains below, many people forget or do not have an 

adequate understanding of differentiation is a process for finding the 

gradient function of a given function.  

286.T. So, it’s quite shocking how many people forget that it’s, that it’s part of the 
gradient.  Because what you’ll see later on is, that we’ll learn a way of 
working out what the gradient function is.  But you might forget that it’s to do 

with gradient unless, you know, you learn it this way. 

This study found that teaching differentiation from first principles is perceived 

as important and necessary by the teachers even if it is not subject to testing 

in the course examinations. There is evidence to show that although the 

students found the investigation activities not easy, they also enjoyed and 

appreciated understanding why the process of differentiation works. For 

example, a comment from a student in T2LO said ‘Probably the best …’ 

[382]. This was in a lesson by a teacher [T2] who explained her approach to 

introducing differentiation as one which aimed at students’ understanding of 

why differentiation works. She wanted to give the students an experience 
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that she felt she did not have when she was introduced to calculus at school. 

T2LO: 

379.T. So, people at the front did, did we understand all that?  Is it nice to know 
where it came from? 

380.S. Yeah! Yeah! Yeah! 
381.T. Yeah, good. 
382.S. Probably the best …   
383.T. I wish someone had told me that at A-level, I do! 

T2 is very satisfied with the lesson outcome as she got a positive 

confirmation from the students when she asked “Did we understand all that?  

Is it nice to know where it came from?” [379. The teacher wished she had 

been taught this part of mathematics when she had her A-levels on the topic; 

she had not been introduced to differentiation from the first principles. 

However, it can be said that at least she got an even more rewarding 

satisfaction from this lesson of her own design and teaching, with such 

feedback from the students: ‘Probably the best’! [382].  

 

T3, reflecting upon her introductory lesson, felt that what had started as a 

challenging task was eventually a success because she felt the students had 

a very good understanding by the end of the lesson. T3I(ii) 

16.T. So that took longer than I thought.  Again, for some of my able students, like 
Bxxx is really able. I think it just took longer than I thought.  But I think I 
slowed down, but then felt like it needed to.  They needed to absorb it.  And 
I feel like by the end of the lesson they had a really good understanding. 

Overall, what is remarkable in this study is that although differentiation from 

first principles was not an assessment requirement, and the limit definition of 

the derivative was not subject to testing in the course examinations, all the 

teachers made attempts to define differentiation by teaching differentiation 

from first principles. Teachers explained that it is important that students are 

taught not only the standard rules and applying the common rules of 

differentiation, but also why the rules work. Despite any known or possible 

complexities with calculus, the definition of the derivative can be taught 

effectively to post-16 students at school. In some countries, calculus is 

reserved for later years of education, e.g. university level. In England, 

calculus is first introduced at school or post-16 college. Based on the 

findings of this study, it can be argued that complex concepts such as the 

limit definition of the derivative can indeed be taught in simplified forms that 

make the mathematical discourse accessible to the students at school.  

 



- 215 - 

Formal algebraic proof or representation of differentiation can be very 

difficult for students at the A level. For example, T5 reflects and talks about 

his choice of the resources that informed his planning for the introduction to 

differentiation lesson. T5 wanted an ‘investigation’ approach. He starts 

talking about some PowerPoint resources he had used for teaching 

differentiation in the previous year: T5I(ii) 

16.T. And one of the power-points particularly with this lesson just introduced, 
they introduce the Algebra, so the formality behind the proof of this Algebra 
was more difficult than they went into at A level. 

17.I. Okay. 

18.T. And then that pretty much stopped the conversation, you just had to 
differentiate and which I thought was no good. So, I thought well, I want to 
go through it from an investigatory approach this year, so I narrowed it down 
to a few sources where I wanted to look at the… But the best thing that I 
found was on the Nrich website and that’s so the basis of what I did today, 
which was based on that really. An investigation that started looking at a 
combination of the graphs and the coordinates so that they had a visual 
representation and a sort of tangible numerical representation that they 
could look at as well.  

T1 explains his approach to introducing differentiation, that he would rather 

use an exploratory approach like a coursework project, but he has not been 

able to do so as much as he would like because of a lack of adequate time. 

T1I(i) 

13.T. Normally I give them more, I make it an investigation over a lesson. I don't 
have time for that now. I used to sort of really go to almost like a coursework 
activity like we are going to be investigating, work out the rule. I am going to 
have to lead them a little bit more now to give them a little bit less. I have 
given them all different points to work on today. Before everyone did 
everything, but time is an issue, time, time for those things. I have never yet 
resorted to telling them this is the answer, this is how you do it. I have 
always done something  

Most teachers talked about using an investigatory approach to introduce and 

substantiate the process of differentiation. By investigatory approach, the 

teachers were referring to activities whereby the students would work 

towards the standard rules for differentiation, rather than starting with a 

given rule for differentiation. None of the teachers went direct into teaching 

the standard rules for differentiation. It was clear from the teachers’ 

explanations that their approaches to introducing differentiation were to start 

with differentiation from first principles before moving on to using the 

standard rules.  
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8.6  Discussion 

The discussion here will focus mainly on the why factors and the perception 

that differentiation from first principles is difficult. Although the school 

syllabus specifications (for England) for the period leading up to September 

2017 state that students need to learn ‘the gradient of the tangent as a limit’ 

(Pearson Education Limited, 2013, p.23), unlike the 2017 specifications, it 

does not specify using ‘differentiation from first principles’ (DfE, 2016, p.10). 

The why factors 

Differentiation from first principles was not subject to examination (see the 

AS/A level Mathematics Specifications in Pearson Education Limited, 2013, 

p.23). Thus, in teaching differentiation, the teachers in this study could have 

started from the standard methods of differentiation. None of the teachers 

did that. All the teachers took an explorative approach to teaching the 

definition of the derivative (refer to Sections 8.2 - 8.5 above) by introducing 

differentiation from the first principles. Unlike the teachers in Heyd-

Metzuyanim et al. (2018) study, the teachers’ discourse about doing 

mathematics valued more exploring mathematical objects and relations than 

doing mere calculations using the standard methods of differentiation. This 

study found that the teachers were keen to teach some aspects of 

differentiation from first principles that would not feature in the assessment. 

The teachers felt that it was very important for students to be taught the 

principles behind the process of differentiation before they are introduced to 

the standard rules or standard algebraic results.  

Similar to the study by Heyd-Metzuyamin and Shabtay (2019) that found 

‘some relations between teachers’ descriptions of their past as learners, 

particularly those who described themselves as struggling with mathematics 

during their school years, and their current pedagogical discourses’ (p.553), 

the teachers in my study also referred to their past experiences of learning 

mathematics when asked about their choice for explorative instruction for 

introducing the derivative. Reflecting on their experiences of learning 

introductory calculus as students at the A-level, some of the teachers even 

explained their disappointment that they had not been taught why the rules 

of differentiation work. This finding is in contrast to the findings from 

Jennings et al. (2019) who report that several participant-teachers in their 

study about the Queensland and Australian school curriculum said that ‘the 

meaning of the limit definition of the derivative was no longer in the syllabus 

and therefore not taught anymore’ (p.112).  
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The teacher’s past experiences revealed in this study are indeed not isolated 

incidences. Evidence of the lack of a more in-depth understanding of the 

fundamental concepts of calculus has long been reported in the literature. 

For example, Orton (1983a, 1983b) in his study on students’ understanding 

of elementary calculus with 16–22-year-olds found that the student lacked 

understanding of differentiation, and Berry and Nyman (2003) reported 

similar problems with elementary calculus that they observed from working 

with undergraduate students and trainee teachers of mathematics.  The 

students’ challenges with calculus could be explained by their experiences 

with differential calculus when it was first taught or introduced to them. The 

findings of this study suggest that the problem could be traced back to the 

teaching of differentiation at school; some teachers explained that they were 

taught the standard algebraic rules for differentiation without adequate 

understanding of what was meant by differentiation nor why the rules 

worked.  

‘It’s difficult’ - differentiation from first principles 

A recent longitudinal study by Jennings et al. (2019) shows that teachers 

think that students would find the limit definition of the derivative hard. The 

study (Jennings et al., 2019)  also shows that high school students 

(Intermediate Mathematics (IM) and Intermediate and Advanced 

Mathematics (AM) find differentiation from first principles difficult. In the 

study, the researchers gave the students the definition of the derivative, 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
  and asked them to explain what the definition meant, 

and also, to determine the derivative 𝑓′(𝑥) of the function 𝑓(𝑥) = 𝑥2. Only 

2% of the IM students and 12% of AM explained the definition correctly,  and 

more than half the number of the teachers thought the students would find it 

hard to explain the definition. On the procedural part of the question, 13% 

(IM students) and 43% (AM students) were able to use the formula, 𝑓′(𝑥) =

lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
  to find 𝑓′(𝑥) , where 𝑓(𝑥) = 𝑥2. Again, less than half the 

number of the teachers thought it would be easy for the students to do.  

Zandieh and Knapp (2016) acknowledge that teaching the derivative is a 

complex process, for example, describing the derivative at a point by 

graphical mediators. There are many factors and examples in literature (e.g. 

Berry and Nyman, 2003; Oehrtman et al., 2008; Tall, 1993) on what makes 

calculus difficult to understand for students. Ferrini-Mundy and Graham 

(1994) report on students’ difficulties in relating the symbolic representations 

and the geometrical representations, even though the student could 
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compute derivatives using standard rules for differentiation. Teaching the 

derivative requires the use of multiple representations to include, not only 

geometric but the numeric and symbolic algebraic forms of mediation, 

otherwise as Zandieh and Knapp (2006) point out, ‘a student who has 

focused on this image [geometric representation] may say that the derivative 

is (…) the most obvious image or endpoint of this graphical process, the 

tangent line’ (p.11).  

In this study, teachers cited some of the factors contributing to students’ 

difficulties with calculus such as the idea of h approaching 0, which is related 

to the concept of the limit, but also what T4 described as a real issue –‘that 

‘students have difficulty firstly, distinguishing between constants and 

variables’ [T4I(ii), 58]. The teachers’ observations in this study are consistent 

with White and Mitchelmore (1996) who reported that students’ difficulties in 

differential calculus have to do with understanding variables. The students in 

White and Mitchelmore's (1996) study saw a variable as a symbol to be 

manipulated, and not as representing a varying quantity. 

 

At that point where (m), 
𝑑𝑦

𝑑𝑥
=  2𝑥 +  ℎ, it seems the explanation that ‘h 

becomes zero’ T4[194] intuitively makes sense, to give the gradient function 
𝑑𝑦

𝑑𝑥
=  2𝑥. However, h cannot become zero (ℎ ≠ 0). The difference quotient 

would be undefined if h = 0 and that would render the limit definition of the 

derivative void, thus the derivative would not exist. The components of the 

limit definition of the derivative, such as the meanings of limit, the difference 

quotient and the symbolism present a challenging task for teaching 

differential calculus (Bos et al., 2019; Zandieh, 2000). 

There appears to be a conundrum as far as the interpretation and 

explanation of ‘as h approaches zero: ℎ → 0’. Does ‘as h approaches zero’ 

mean that h eventually becomes zero? Or does ‘as h approaches zero’ 

mean that h will not eventually become zero? Research on students’ 

understanding of limits (e.g. Tall and Vinner, 1981; Williams, 1991 & 2001; 

Monaghan (1991); Oehrtman, 2009) highlights the problems in students’ 

understanding of limit as a process and limit as a value. Studies by Tall and 

Vinner (1981) and Tall (1986) show how students’ discourses about limits on 

the difference quotient and the tangent lines to a curve, can be inconsistent 

with mathematical literate discourse, for example, the thinking that 0.99999 . 

. . never reaches 1, is consistent with their thinking about local straightness 

and the tangent, for example, that the secant lines (as ℎ → 0) never reach 
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the tangent line. This poses challenges not only to students but to teachers 

too.  

‘I find that [the limit] a difficult idea to get my head round’ [50] explains T4 in 

an interview after his lesson on introducing the derivative. This complexity 

evolves around the idea of limits, which is the principle for the limit definition 

of the derivative. The difficulty in explaining the conundrum just explained 

seems to explain the seeming avoidance of the word use limit in most of the 

lessons observed in this study. 

This study found that the absence of the word ‘limit’ in the teachers’ 

discourse in their introductory lessons was not by chance nor mistake, but 

indeed by design and deliberate. Park (2015) found that teachers used 

graphical mediators and words such as ‘approaching’ and ‘getting smaller 

and smaller’ when teaching the limit as a process, but used symbolic 

mediators to equations of functions, and words such as ‘the limit is’ when 

teaching the limit as a number (p.242). In this study, teachers repeatedly 

used phrases such as getting closer and closer, as h gets closer and closer 

to zero, as h approaches zero, as h gets smaller and smaller, in explaining 

the slope (gradient) of the tangent as a limit, but the word ‘limit’ was rarely 

uttered in the lessons, and it was not defined. Past studies have shown the 

need for careful use of words and utterances that are often used to describe 

the limit. Monaghan (1991) found that the ‘everyday meaning of a limit as a 

boundary is clearly present’ (p.23) in the students’ descriptions. 

Monaghan (1991) highlights the ambiguities inherent in the four phrases - 

tends to, approaches, converges, and limits. Monaghan (1991) study found 

that these four phrases can generate colloquial meanings which could be at 

odds with the literate mathematical discourse on limits. For example, in the 

case of functions and sequences, tends to and approaches were interpreted 

to mean the same, unlike the converges to, but the limit was different from 

all three, as a noun. Asked about the limit of 0.999, one student said: 

Its limit is its final point that it will get to. I think the limit is 0.9̇ [0.9 recurring] 

and there again there the limit is 1 but it won't actually get to one, so you 

can't have 1 as its limit.” Monaghan (1991, p.23). 

Many students often view limit as a boundary point of a sequence, and 

Monaghan (1991) argues that ‘it must be stressed that students experience 

very real difficulties in the mystery of this jump to the infinite’ (p.24), and 

‘limits are hard’ (Monaghan, 2019, p.131).   
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Other studies on calculus (e.g. Tall,1992; Thompson, 1994; Zandieh, 2000;  

Park, 2016; Biza, 2017; Bos et al., 2019), have put the students’ difficulties 

with learning calculus down to the complexity with the definition (e.g. limit)  

symbolism and multiple representations of the derivative. Orton (1983b) 

found that students’ difficulties were in understanding the derivative as a rate 

of change and its related limit concept, ratio and proportionality. Borgen and 

Manu (2002) report students’ challenges with relating the graph of a function 

and the graph of its gradient function, whilst Baker et al. (2000) report of 

students’ lack of understanding of the derivative as a function.   

This study has found that teaching differentiation from first principles can be 

done without using the formal concept of the limit. Monaghan (1993, 2019) 

argues for the intuitive use of limit ideas in elementary differential calculus. 

Thus, using the ideas of limits, but without directly explaining or proving 

them. Monaghan (2019) gives a few reasons for this argument:  

But ‘limits are hard’ is only one of the grounds of my argument. Another 
ground is twofold: precalculus students have had very little exposure to 
limits; an introduction to differentiation gives plenty of opportunity for ‘limiting 

experiences’(p.131).   

Monaghan (1993, 2019) suggests that teaching introduction to the derivative 

could avoid explicit use of ‘limit as an object’  by talking about the limit of the 

secant or the limit ratio of the quotient difference. The approach bypasses 

the formal definition of limit (e.g. the 𝜀 − 𝛿 definitions), thus avoiding getting 

into technical details of evaluating limits. Further, Monaghan (2019), 

suggests teaching elementary differential calculus before limits, would afford 

many opportunities for teachers to talk, intuitively,  about limit ideas to their 

students.  

8.7  Summary of findings 

The introductory lesson to differential calculus, whose object was to find the 

gradient of a tangent, started with investigating the gradients of tangents at 

specific points on a curve, and progressed through differentiation from first 

principles to a ‘quasi-limit’ definition of the derivative; ‘quasi-limit’ since the 

formal limit definition of the derivative was not given. In principle, the 

teachers introduced differentiation as the limit of the derivative, but only used 

a partial representation of the formal limit definition of the derivative. 

Teachers described constructing the definition of the derivative by 

differentiating from first principles as very difficult. The teachers also 

described introducing differentiation by drawing tangents to curves as hard, 
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difficult, and an inaccurate way of working out the gradient of a curve at a 

particular point. Although differentiation from first principles was not a 

requirement of the syllabus nor subject to examination, this study found that 

teachers still wanted to and introduced differentiation from first principles. 

The teachers explained that it was important to substantiate the definition of 

the derivate for the students to learn the process of differentiation.  

The study also found evidence of teachers motivated to teach differentiation 

from first principles by their past school experiences whereby the process of 

differentiation had not been substantiated or taught to them. Although the 

teachers did not construct the limit definition of the derivative, they were able 

to substantiate the process of differentiation intuitively, using a quasi-limit 

definition of the derivative. Differentiation was defined, as the process of 

finding the gradient formula. The findings and the observations made in this 

study, though they cannot be generalised, do raise questions for further 

discussion. 
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Chapter 9   Discussion 

9.1  Introduction 

This thesis aims to explore the teaching of elementary differential calculus 

by examining how teachers of mathematics introduce the derivative. The 

research adopts the commognitive framework that sees mathematics as a 

discourse and the study is guided by the following research questions. In 

teaching differential calculus: 

RQ.1 What word types and narratives do teachers use and why?   

RQ.2 What visual mediators do teachers use and why? 

RQ.3 What mathematical and pedagogical routines do teachers use 

and how?  

In this chapter, a selection of the key findings will be discussed since most of 

the findings of the study have already been discussed in the three previous 

chapters. Note that the findings from the commognitive thematic discourse 

analysis of the teachers’ pedagogical calculus discourse have been reported 

in Chapters 6, 7 and 8, structured in accordance with the overarching 

themes of the study. To each of these three chapters, is a respective 

discussion of its findings. This arrangement was necessary to give a more 

coherent and complete commentary on the findings since the findings 

chapters are relatively very long. Readers are therefore referred to Sections 

6.4, 7.4 and 8.5, respectively, for more discussion of the findings from the 

study with respect to Chapters 6, 7 and 8.  

In this chapter, the discussion of findings will revolve mainly around the 

quasi-limit definition of the derivative and the calculus symbolism in the 

teachers’ pedagogical discourse (See Section 9.2). This discussion chapter 

will also reflect on the commognitive theoretical framework as applied in the 

analysis of data in this study (See Section 9.3). Also included in this 

discussion chapter is a reflection on myself as the researcher in the analysis 

process (See Section 9.4). Finally, a concluding remark to the discussion 

chapter.  

9.2  Discussion of the key findings 

The discussion in this section will focus on the quasi-limit definition of the 

derivative (with respect to Chapter 8, Section 8.3 and 8.4) and the dualism 
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and ambiguity in calculus symbolism in the teachers’ pedagogical calculus 

discourse (with respect to Chapter 7, Section 7.2). 

9.2.1  The quasi-limit definition of the derivative 

In this study, the teachers’ pedagogies on the derivative, i.e. their 

approaches to introducing the derivative constitute differentiating from first 

principles. Differentiation from first principles is the process of finding the 

gradient (slope) of the tangent to a curve at a given point, i.e.  the 

instantaneous rate of change of a function, 𝑓(𝑥). The process is based on 

using the gradient of the secant line of 𝑓(𝑥), given by the difference quotient,   
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 to estimate the gradient of the tangent. As ℎ → 0, the secant line 

becomes the tangent to the graph of the function, 𝑓(𝑥).  In other words, the 

limit of the gradients of the successive secant lines gives the gradient of the 

tangent. The gradient of the tangent (that limit) is called the derivative of the 

function, 𝑓(𝑥). The derivative of 𝑓(𝑥) (if it exists) is often represented 

symbolically as,  

𝑓′(𝑥) =  lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
, where ℎ ≠ 0.  

This formula describes the limit definition of the derivative, and the derivative 

is indeed the limit. The limit definition of the derivative is multi-faceted 

(Roorda et al., 2009; Zandieh, 2000) and learning the definition of the 

derivative requires an understanding of its various components including the 

function, the symbolism, keywords such as the instantaneous rate of 

change, the gradient (slope), the tangent, the difference quotient, and the 

limit (Thompson, 1994; Zandieh, 2000; Zandieh and Knapp, 2006; Biza, 

2017). Contrast the limit definition of the derivative with differentiating with 

standard rules, such as, for a function  𝑓(𝑥) = 𝑥𝑛, the derivative is given by 

𝑓′(𝑥) = 𝑛𝑥𝑛−1. 

In principle, finding the derivative, 𝑓’(𝑥) of function, 𝑓(𝑥) means computing 

the difference quotient 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 and finding the limit of that difference 

quotient as ℎ approaches zero (ℎ → 0). However, in introducing 

differentiation, the teachers (for example, T4, T2 and T7) avoided using the 

word ‘limit’ and the limit notation in the definition (formula) above. (Refer to 

Sections 7.2; 8.3 and 8.4 for evidence of this finding). This finding is 

consistent with the findings of Bos et al. (2019) who report that ‘introducing 

the slope of a curve in a point and the derivative of a function to students is a 

didactical challenge for teachers’ (p.75). 
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If the derivative is the limit, how can teaching that introduces differentiation 

bypass the limit? Monaghan (2019) claims that it is so unremarkable that 

‘people do this and have been doing this for centuries (p.132)’. Faced with a 

potentially complex routine of constructing and substantiating the limit 

definition of the derivative of a function, 𝑓(𝑥) which (if it exists) is given by 

𝑓′(𝑥) =  lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
, where ℎ ≠ 0, the teachers ‘paraphrased’ this object-

level narrative taking out the symbolism lim
ℎ→0

𝑓(𝑥) and the word limit. The 

teachers were conscious of the abstract nature of the differential calculus 
symbolism, in particular, the lim

ℎ→0
𝑓(𝑥) symbolism. In their calculus discourse 

during the interviews, most of the teachers used the word ‘limit’, but not 

during their teaching. The teachers introduced and explained the process of 

differentiation to students without the use of the formal definition of limit. 

In all the lessons observed in this study, the differentiability of functions was 

never discussed. A function is differentiable if we can compute its derivative 

everywhere (at each point) on its curve, that is, it must be continuous on its 

domain. Note the importance of the stated condition (above), ‘if it exists’ 

implies that not all functions are differentiable at every point in their domain. 

Examples of non-differentiable functions include functions like 𝑓(𝑥) =
1

𝑥
 (for it 

goes to infinity at 𝑥 = 0), 𝑓(𝑥) =  √𝑥3
 (although continuous, it has a vertical 

tangent at 𝑥 = 0;  thus not all continuous functions are differentiable) and 

𝑓(𝑥) = |𝑥| (for it has a cusp at 𝑥 = 0, creating a discontinuity in its 

derivative). In this study, all the teachers’ approaches in the limiting 

sequence did not raise any complications because they worked with graphs 

of quadratic functions, which meant that the secants approach the tangent in 

a visually predictable way. Quadratic functions dominate students’ early 

experiences with differentiation and such implicit assumptions about 

differentiability could also impact students' long-term understanding of the 

differentiability of functions.  However, if the teachers were to work with a 

general variable 𝑥 and a general function, differentiability could not be 

assumed without a defined domain and particular 𝑥 value. Tall (1992) argues 

against just ‘giving students simple experiences without giving them 

correspondingly simple long-term conceptions of the concepts being 

introduced’ (p.3). Thus elementary calculus students need to know that not 

all functions are differentiable, otherwise, the students could draw incorrect 

or partially correct conclusions about the differentiability of functions. It is 

therefore necessary and important for teachers to substantiate the property 

of differentiability in constructing the definition of the derivative. 
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By implicitly suggesting that all curves are differentiable and by partially 

applying the limit definition of the derivative, the teachers in this study used 

an informal limit approach to constructing the definition of the derivative. To 

describe these teachers’ approach, I propose and adopt a new narrative 

(object level) the ‘quasi-limit definition of the derivative’ instead of the limit 

definition of the derivative. Thus, a ‘quasi-limit definition of the derivative’ 

(quasi, for it was partial) was used to introduce differential calculus by the 

teachers. 

With the quasi-limit approach, the teachers used words and utterances such 

as ‘as ℎ approaches zero’, ‘as ℎ gets smaller and smaller’, ‘as ℎ gets closer 

and closer to zero’, to describe the behaviour of the difference quotient or 

the secant line approaching the tangent. However, when the teachers used 

the words getting closer and closer, they did not all describe the same 

mathematical object. Some teachers focused on the limit of the difference 

quotient, thus, referring to the limit of the slopes of the successive secant 

lines as ℎ → 0.  Others exclusively described two points where the secant 

line crosses the curve of the function, 𝑓(𝑥), thus, focusing on the point  

(𝑥 + ℎ;  𝑓(𝑥 + ℎ)) getting closer and closer  to (𝑥;  𝑓(𝑥)) as ℎ → 0. Yet, in 

some lessons, getting closer and closer described the secant line getting 

closer and closer to the tangent line, as ℎ → 0, thus, referring to the tangent 

as the limit of the secant lines. Although some teachers may have assumed 

that the students would make the connections between the three objects, 

teachers must make the connections explicit in substantiating the definition 

of the derivative. 

There were some inconsistencies in the interpretations made for ‘as ℎ 

approaches zero’, with some teachers saying that ℎ becomes zero. There 

was no explicit mention to say that ℎ does not equal zero. Learning is a 

change in discourse and is characterised by discursive changes in the words 

and visual mediators the students use as they participate in the 

mathematical discourses (Sfard, 2008). In explaining the quasi-limit 

definition of the derivative, teachers need to substantiate whether ℎ would 

equal zero or not, to eliminate what could be an ambiguous case of the 

difference quotient becoming 
0

0
 , thus giving a more rounded ‘quasi-limit’ 

explanation of the idea of limit. It is also important that teachers define and 

substantiate the literate words in their pedagogical discourse, such as limit 

and derivative. 
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In this study, it was remarkable the teachers taught differentiation from first 

principles, yet differentiation from first principles was not specified in the 

syllabus nor subject to testing in the examinations. The teachers argued that 

it was important for the students to learn, not just the standard methods of 

differentiation, but to understand why differentiation works. Some teachers 

explained they had left school without an understanding of why the process 

of differentiation works. Some said it was later during their studying at 

university that they first learnt about differentiating from first principles. They 

explained that because of their past experiences of learning calculus as 

students, they needed to explain the process of differentiation in their 

teaching. The teachers explained that it was, therefore, necessary and 

important to introduce differential calculus from first principles to help 

students understand the derivative and the meaning of the process of 

differentiation. 

9.2.2  Symbolism for gradient and gradient function; 𝒎 and 
𝒅𝒚

𝒅𝒙
 

In this study teachers used both the Leibniz’s notation, 
𝑑𝑦

𝑑𝑥
 and the 

Langrage’s notation, 𝑓′(𝑥), but the study found some ambiguity in the 

teachers’ use of calculus symbolism. This study found some evidence of 

teachers using the same visual mediators or symbolism for the derivative at 

a point and for the derivative as a function, in particular, 𝑚 (for 
𝑑𝑦

𝑑𝑥
). For 

example, T4 describes Leibniz’s notation 
𝑑𝑦

𝑑𝑥
 simply as “some special 

notation” [T4LO; 202] (Refer to Section 6.3.1 on page 118) that is used 

instead of the m.  This utterance implies that 
𝑑𝑦

𝑑𝑥
 is the same as 𝑚, only a 

special notation for the same signifier. The use of 𝑚 for the gradient function 

was common in other lessons too, for example, in T2LO, 𝑚 is used to 

represent the gradient function, 2𝑥 –  1. Such use of 𝑚 (e.g. in T4LO and 

T2LO; refer to Section 7.2 on pages 138-141), which is a symbol usually 

used to signify the slope of a straight line, to signify the gradient function, is 

similar to Park’s (2016) findings from an examination of the calculus 

discourse of experts as reflected in the three most popular calculus 

textbooks in the US. Park (2016) found that the ‘realisations of both the 

derivative at a point and the derivative of a function were mediated with 

nearly identical symbols suggesting a possible difficulty with understanding 

the difference between them’ (p.417). The teachers in this study, certainly do 

not have difficulty understanding the difference between 𝑚 and 
𝑑𝑦

𝑑𝑥
. However, 

the evidence (e.g. in T4LO and T2LO above) suggests that their students 
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could potentially have difficulties understanding the difference between 

these two symbolic artefacts and their applications.  

According to the commognitive theoretical framework (Sfard, 2007; 2008) 

symbolic artefacts, such as the 𝑓’(𝑥) and  
𝑑𝑦

𝑑𝑥
 in differential calculus, are an 

integral part to the thinking and communication process in mathematical 

discourse. Learning and doing mathematics means becoming capable of 

participating in the literate discourse (Sfard, 2008; 2016). How differential 

calculus symbolism is introduced matters if students are to become capable 

of participating in the calculus discourse. These symbolic artefacts, such as 

the 𝑓’(𝑥) and  
𝑑𝑦

𝑑𝑥
, fulfil the role of visual mediators in calculus discourse, to 

serve as ‘representations of impalpable mathematical objects’ (Sfard, 2015, 

p.132).  

 

Calculus symbolism is a useful and powerful communication mediator in 

calculus discourse. However, teachers need to be conscious of symbolic 

ambiguity inherent in some of the symbolic artefacts they use in teaching 

differential calculus, for example, when the same letter 𝑥 is used to stand for 

two different things in the straight-line gradient formula 
𝑦2−𝑦1

𝑥2− 𝑥1
  and in the limit 

definition of the derivative 𝑓’(𝑥) =  lim
ℎ→0

 
𝑓(𝑥+ℎ)−𝑓(𝑥)

𝑥+ℎ−𝑥
. The symbol 𝑥 in the 

gradient formula represents a ‘letter as specific unknown value’ and in the 

limit definition represents a ‘letter as variable’ (Kuchemann, 1978, p.23). This 

symbolic ambiguity, in fact, offers a ‘powerful manipulative ability’ (Tall, 

1992a, p.9), which Sfard (2008, p.159) describes as the ‘generative power’ 

of symbolic mediation as it allows the teachers and the students to move 

between these interpretations and use the symbol as needed, from the 

particular value to the general value and vice versa. Barwell (2003) in Foster 

(2011) argues that ambiguity in mathematics is ‘an important discursive 

resource in school mathematics discourse’ (p.4). Indeed, ambiguity can be 

helpful for learning mathematics, in the sense that it presents students with 

interesting tensions that could be opportunities for discussion and for 

exploring mathematics further.  

 

This study has shown that the symbolic mediators,  
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥)  have a dual 

role in the calculus discourse. For example, 
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥)  have been defined 

as the gradient function, e.g. in T4LO ‘the gradient function is  
𝑑𝑦

𝑑𝑥
 … your 

gradient function is 𝑓’(𝑥)’ [417]; in T1LO 𝑓’(𝑥) is defined as ‘it means the 

derivative, the gradient function’ [87]; and in T2LO referring to the gradient 
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function the teacher says ‘we denote it like this – 
𝑑𝑦

𝑑𝑥
 . However, in [T4LO; 

204], not only does the teacher defines 
𝑑𝑦

𝑑𝑥
=  2𝑥  as the gradient function for 

𝑦 =  𝑥2, but describes it as differentiation too. Similarly, in [T7LO; 129], 𝑓’(𝑥) 

is defined as standing for gradient (referring to the gradient function) and is 

also described to mean differentiation too.  

 

On the one hand, 𝑓′(𝑥) or  can be seen as an object narrative for the 

derivative of the function 𝑓(𝑥) 𝑜𝑟 𝑦, (respectively) and on the other hand, as 

an operational narrative for the process of differentiation. The symbolism 
𝑑𝑦

𝑑𝑥
 

or 𝑓′(𝑥)  is an example of what Gray and Tall (1994) describe as a ‘procept’, 

which is a signifier for both the process and product in the same symbolism; 

‘the amalgam of process and concept’ (p.4). To a student, 
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥) can 

call up or signify either the process (finding the derivative) or a concept 

(Gray and Tall, 1994), the product of the process (the derivative). Sfard 

(2008) argues that such ‘object–process duality of algebraic expressions’ 

(p.122) makes algebra particularly effective as a tool for enhancing other 

forms of communication and practical doing in teaching and learning 

mathematics. 

Whilst such duality could be put to good use to facilitate discussion in 

teaching calculus, if not adequately substantiated, the inherent ambiguity 

can be a source of students’ challenges with calculus. Sfard (2008) thinks it 

is outright counterintuitive that ‘a thing [can] be simultaneously 

a process and this process’s own result’(p.122) and acknowledges that such 

process-object duality is a source of students’ difficulties and failings with 

calculus, for example. Calculus symbolism is a well-documented source of 

students’ difficulties with calculus (Tall, 1992). A student needs to be able to 

tell whether the symbolism 
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥) is signifying the process of 

differentiating or the derivative, the product of differentiation. Tall (1992a, 

p.4) asserts that the ‘duality (as process or concept), flexibility (using 

whichever is appropriate at the time) and ambiguity (not always making it 

explicit which we are using)’ in calculus procepts are a source of challenges 

for many students.  

Given the flexibility and the duality of use of calculus procepts, e.g.  
𝑑𝑦

𝑑𝑥
 

or 𝑓′(𝑥), it is essential that teachers make it explicit enough for students to 

develop the necessary flexible thinking and understanding to be able to deal 

with the possible ambiguity of use (Tall, 1992b; Gray and Tall, 1994). In this 

study, the duality in interpretation and application of symbols, such as the 
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letter 𝑥 , 𝑓′(𝑥) and  (in the examples described above) in substantiating 

the definition of the derivative were not made explicit for the students. There 

was a lack of adequate clarity with procepts in the teachers’ pedagogical 

calculus discourse. Unless the teacher or the context makes the discursive 

object (Sfard, 1992) explicit, a student may find a procept ambiguous, failing 

to read whether it is signifying the process or the product. Indeed, the dual 

purpose of these calculus symbols,  
𝑑𝑦

𝑑𝑥
 or 𝑓′(𝑥), if not made explicit, can be a 

source of confusion for students as reported in Park’s (2013) study, students 

had difficulties with distinguishing between derivative at a point and as a 

function. 

9.3  A reflection on the commognitive theoretical framework 

For an explanation of the key tenets and the four commognitive constructs of 

the theory of commognition, see Chapter 3. Here, I make a brief reflection on 

the commognitive theoretical framework as applied in the analysis of the 

data for this research.  

9.3.1  Relevance of the commognitive theoretical framework  

My research investigates how teachers of mathematics introduce the 

derivative, by studying teachers’ pedagogical calculus discourse. The 

commognitive theoretical framework tells us that mathematics is a discourse 

(Sfard, 2008). Mathematics as a discourse is identifiable by its word use, 

visual mediators, narratives and routines (Sfard, 2008). These four 

commognitive constructs characterise mathematical discourses, and thus 

offer a general framework for looking at or researching teaching and learning 

in mathematics. Although the theory of commognition (Sfard, 2008) was 

initially developed for the study of learning (Sfard, 2007), I applied aspects of 

the commognitive framework for the study of teaching, as did other 

researchers such as Viirman (2015) and Park (2016). Analysing the 

mathematical discourse of the teacher through the commognitive constructs 

of word use, visual mediators, routines and narratives allowed for an 

investigation of how teachers of mathematics introduce differential calculus. 

According to the commognitive perspective, learning is defined as a change 

in the discursive practices of the newcomer (student). Learning entails 

participation in the community discourse (Sfard, 2008), thus, it becomes 

clear that ‘teaching is also a form of participating in this discourse, only from 

a different role—that of the leader rather than the learner’ (Heyd-Metzuyamin 

and Shabtay, 2019, p.552). The commognitive definition of learning 



- 230 - 

describes the sympatric nature of teaching and learning in the classroom 

discourse. Besides, learning results from the commognitive conflict, 

teaching-learning agreement and the resolving of the commognitive conflict, 

resulting with the newcomer abandoning their discourse for the expert’s 

(teacher’s)  narratives (Sfard, 2008; 2015). Hence, the commognitive 

framework was adapted and applied for the study of teaching elementary 

calculus at school.  

Although my study focuses primarily on the teaching of differential calculus, 

the discussion of the teachers’ classroom discourse refers to research on 

students learning of calculus too, where necessary. However, any such 

reference to existing research on students’ learning of calculus should not be 

interpreted to mean a direct causal relationship between the teachers’ 

pedagogical discourse on differential calculus and the student’s difficulties 

with calculus. However, the commognitive perspective on learning sees 

similarities between individual learning and historical societal discursive 

development of mathematical discourses (Sfard, 2008). As Park (2015) 

notes ‘the difficulties that past mathematicians had with writing a rigorous 

definition of the derivative that includes the limit component and works for 

any 𝑥 implies that these aspects of the derivative cannot be considered as 

trivial to today’s students’ (p.248).  

To investigate how teachers of mathematics introduce differential calculus, I 

needed to find out what the teachers say; what they do; how and why. By 

focusing on the keywords (word use) and narratives (Sfard, 2008) in the 

teachers’ pedagogical calculus discourse, I was able to gather data on what 

the teachers say. Whereas, a focus on the visual mediators (Sfard, 2008) in 

the teachers’ pedagogical calculus discourse allowed for an investigation of 

what the teachers do and what they use. Further, by focusing on the how 

and when of the routines (Sfard, 2008), I was able to gather data about what 

the teachers do (and how), in teaching the derivative. I found that the 

commognitive framework offered well-defined constructs that described the 

categories for my prima-facie questions above. Thus, a commognitive 

conceptual framework was established and applied in my study.  

Conceptualising mathematics as a form of discourse, that is, a special type 

of communication with specific ways of saying and doing (Sfard, 2008; 

Nachlieli and Tabach, 2018), I revised and reframed my prime facie research 

questions through the lens of the commognitive framework. Thus, the 
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research questions were reformulated as follows: In teaching differential 

calculus, 

RQ.1 What word types and narratives do teachers use and why?   

RQ.2 What visual mediators do teachers use and why? 

RQ.3 What mathematical and pedagogical routines do teachers use 
and how?  

Note that the statement of the research questions of the study is 

commognitive in the sense that they seek to investigate the word use and 

narratives, the visual mediators and the routines in the teachers’ 

pedagogical calculus discourse.  

Note that within the mathematics discourse as an academic discipline, there 

are sub-discourses. Others (e.g. Gee, 2014 and Shabtay and Heyd-

Metzuyanim, 2017) have attempted to distinguish between Discourse (of a 

community) and discourse (of individual interlocutors). For example, Shabtay 

and Heyd-Metzuyanim (2017) differentiate between discourse, denoting 

individual teachers’ communication and Discourse, denoting pre-existing 

historically established texts. However, the discrete acts of communication 

(discourses) of specific people belonging to the community of a Discourse 

make up the Discourses. Sfard (2008) describes mathematics as a distinct 

form of discourse but also talks of mathematical discourses. In my study, 

although I talk of mathematical discourse (i.e. Discourse, according to 

Shabtay and Heyd-Metzuyanim, 2017), the primary focus is on calculus 

discourse.  

There are many uses of the term pedagogical or pedagogic discourse (e.g.  

Heyd-Metzuyamin and Shabtay, 2019). My study, similar to that of Heyd-

Metzuyamin and Shabtay (2019) is concerned with the content dimension of 

discourse characterised by word use, visual mediators, narratives and 

routines (Sfard, 2008) in the teachers’ calculus discourse. To capture and 

encapsulate the content dimension, I propose and use the term the 

teachers’ pedagogical calculus discourse.  

9.3.2  Representations and realisations 

Sfard (2008) compares what she calls some deceptive similarity between 

the signifier and the realisations of the signifier, on one hand, and 

representation and the represented object, on the other.  

The difference is in the implied ontology of the component terms. 

Whereas in the case of mathematics, representation is to be 

understood as but a material “incarnation” of a basically intangible 

abstract entity (mathematical object), realisation belongs to the same 
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ontological category as signifier – the category of perceptually 

accessible entities (Sfard, 2008, p.155). 

Mathematical objects are ‘realised with perceptually tangible entities such as 

words and visual mediators’ (Park, 2016, p.398), which Sfard (2008) refer to 

as realisations of the signifier. In this study, symbolic-algebraic and 

geometrical realisations of the signifier derivative, for example, are also 

described as multiple representations. The representations in my study, are 

what Park (2016) describes as the visual mediation of realisations (Sfard, 

2008) in a communicational approach. My study found that the teachers 

used multiple symbolic artefacts, namely graphs, numerals and algebraic 

expressions as representations of mathematical objects (Sfard, 2015) in 

explaining the derivative. The word ‘representations’ is preferred in my study 

for it is a more usual term than ‘realisations’ to the target audience for this 

research, the teachers of mathematics. It is used to refer to various forms of 

expressing mathematical objects, such as the geometrical, algebraic and 

numerical forms of expressing, a function, for example. In terms of Sfard’s 

(2008) commognitive framework, such forms of expression (the 

representations) could be thought of as realisations of the signifier.  

9.3.3  Methods used and data generated 

My study took a qualitative approach in which interviews with teachers of 

mathematics and observations of their introductory lessons on the derivative 

were used to generate qualitative data on the teachers’ pedagogical calculus 

discourse. For a detailed explanation of the choice of methods and the data 

generated, see Chapter 4. There was a good mix of interviews with the 

teachers and observation of their lessons on introduction to differentiation, 

but only the first lessons (I will address this latter part in Section 9.4). There 

was methodological (or data) triangulation from the audio recordings of 

interviews with seven different teachers, (both pre-teaching and post-

teaching interviews) and video recordings of their lessons on elementary 

differential calculus. The triangulation allowed for the analysis of how 

teachers talk about the objects of their calculus discourse in and outside of 

their lessons. The triangulation proved useful in the analysis of the teacher’s 

pedagogical calculus discourse. By analysing the teachers’ word use in their 

calculus discourse during the interviews and during their teaching activity, 

my study found that the teachers’ word use and narratives about some of the 

discursive objects, e.g. limit, during the interviews (e.g. T4 and T5; refer to 

Section 8.4 pages 204-206) with the researcher was different in their 

classroom discourse about the notion of limit. All the teachers, except one 
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(refer to Section 7.2 pages 142-144), did not want to use the word limit in 

their introductory lessons on differential calculus.  

9.3.4  The commognitive thematic discourse analysis 

The overall analysis of the qualitative data was undergirded by my 

conceptualisation of the epistemological tenets of the theory of 

commognition and its four theoretical constructs of word use, visual 

mediators, narratives and routine (Sfard, 2008). However, for a systematic 

approach to analysing the huge amounts of transcribed interview (audio) and 

lesson observation (video) qualitative data, I adopted and followed a 

thematic analysis process as described by Braun and Clarke (2006). Thus, 

the analysis of the qualitative data followed a combination of thematic 

analysis (Braun and Clarke, 2006) and the commognitive theoretical 

framework (Sfard, 2008). See Section 5.2 for a detailed description of the 

process and stages followed.  

Faced with the vast amount of qualitative data, there was a need for a 

systematic approach to qualitative data analysis. I needed a systematic 

process for identifying, analysing, and reporting patterns or themes within 

the data; thus, thematic analysis (Braun and Clarke, 2006). Thematic 

analysis is not a theory, but an established method or an iterative process 

for analysing qualitative data. I chose thematic analysis for its flexibility and 

autonomy from any specific research paradigm, which allows thematic 

analysis to be tailored to the aims, research questions and theoretical 

framework of the study (Nowell et al., 2017).  

The analytical approach to the qualitative data in this study happened at two 

main levels: the semantic level and the latent level. At the semantic level, 

thematic analysis is descriptive, primarily involving identifying patterns and 

labelling the data; whereas at the latent level, analysis is interpretative, and 

is all about making meaning from the data (Boyatzis, 1998; Thomas, 2013), 

‘interpreting or interconnecting or conceptualising data’ (Punch, 2009, 

p.179). At the latent (interpretative) level, thematic analysis involves 

identifying and examining the ‘underlying ideas, assumptions, and 

conceptualisations [of the commognitive theoretical framework] – and 

ideologies - that are theorised as shaping or informing the semantic content 

of the data’ (Braun and Clarke, 2006, p.12). It was at this latent level, that 

the epistemological assumptions of the commognitive framework were 

applied to the thematic analysis process (Sfard, 2008), and a commognitive 

thematic analysis was then adopted and applied to the analysis of the data. 

Note that at the latent (interpretative) level, thematic analysis overlaps with 
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discourse analysis (Potter and Wetherell, 2001), and Braun and Clarke 

(2006) then describe analysis as  ‘thematic discourse analysis… where 

broader assumptions, structures and/or meanings are theorised as 

underpinning what is actually articulated in the data’ (p.13). Hence, the term 

commognitive thematic discourse analysis was used to capture a new 

analytical approach adapted for my study. Indeed, the commognitive 

framework can serve as ‘a conceptual as well as discourse analysis 

framework’ (Park, 2016, p.396) in research. 

The interviews and lesson observations gathered qualitative data. The 

qualitative analysis of data was in two phases. The first phase of the 

analysis, i.e. at the semantic level -  followed a descriptive thematic process 

(refer to Section 5.3), which allowed for the categorisation of data into 

themes. The second phase – i.e. at the latent level -  applied the 

commognitive theoretical constructs to the categories from the thematic 

analysis process. The themes were then matched with the four 

commognitive constructs (refer to Table 5.7 on page 94). From this point, 

subsequent interpretation and explanation of the data were informed by the 

commognitive framework, as can be seen in reporting the findings of the 

study in Chapters 6 to 8.  

  

The systematic process of thematic analysis adopted in the commognitive 

thematic discourse analytical approach, enabled a systematic generation of 

initial codes, searching for, reviewing and categorisation of codes. The 

theoretical lens of the four commognitive constructs of word use, visual 

mediators, narratives and routines allowed (enabled) for defining and 

naming of the overarching themes, and for producing of the report/ the three 

findings chapters of the research. Each of the three findings Chapters, 6, 7 

and 8 addressed the research questions of the study, RQ1, RQ2 and RQ3, 

respectively. The analysis and the interpretation of the data excerpts in the 

findings focus on all the four elements in the teachers’ pedagogical calculus 

discourse; thus, informed by the theory of commognition. The commognitive 

theory provided a theoretical and analytical perspective for examining and 

explaining how teachers construct and substantiate the notion of a derivative 

and the derivative function in introducing differential calculus.  

The commognitive constructs of word use and narratives, visual mediators 

and routines were instrumental in analysing the teachers’ pedagogical 

calculus discourse, particularly, in addressing the what and the how parts of 

the research questions, but not the why part. By examining the following 
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parts of the research questions of the study, I was able to explore and 

examine how teachers of mathematics teach differential calculus, through 

the theoretical lens of the commognitive constructs: What word types and 

narratives do teachers use? What visual mediators do teachers use? What 

mathematical and pedagogical routines do teachers use and how? However, 

an analysis of the four commognitive constructs alone, cannot address the 

why part of the research questions. This shortfall was counteracted by the 

use of an inductive approach to the initial coding of the data.  

Analysing data inductively allows for new ideas and themes to derive from 

the content of the data (Braun and Clarke, 2012). The why factors theme 

emerged from the inductive approach to coding (Refer to Section 5.2 which 

explains the inductive and deductive approaches of the analysis) at the 

semantic level of the thematic analysis process. The why factors identify the 

evidence that would explain the teachers’ decisions and choices of 

keywords, narratives, visual mediators and routines. For example, this study 

found that teachers wanted to teach differentiation from the first principles 

although it was not specifically required by the mathematics curriculum nor 

subject to examination. By focusing on the why factors, the study found that 

the teachers believed it important that differentiation from the first principles 

was useful for the realisation of the derivative and the learning of 

differentiation. Another finding of the study explained earlier, is that although 

the teachers were at liberty to use the word limit in talking about their 

teaching plans during the pre-teaching interviews, they (deliberately) 

avoided using the word limit in their classroom calculus discourse. By 

focusing on the why factors, the study found that the teachers believed the 

notion of the limit to be very difficult for teachers to teach and for students to 

learn.  

9.4  A reflection on self – the researcher  

It was inevitable that the coding processes in the data analysis for my study 

were influenced, at least implicitly, by my professional experiences as a 

teacher of mathematics and as a mathematics teacher educator. Before I 

became a teacher educator at the University Leeds in 2012, I had taught 

elementary calculus to AS and A level students as a teacher of mathematics 

in schools in England. As a teacher educator, I taught calculus to trainee 

teachers as part of the mathematics subject content element of the PGCE 

programme in England. Further, I also taught in-service teachers on the 

TAM programme; these were teachers already working in various schools, 



- 236 - 

but training to teach post-16 (AS/A level) mathematics. Again, calculus was 

a significant element of the subject content of the course. Not only was I 

involved in the university-based teaching activities, but also, travelling to 

various schools to observe both trainee and in-service teachers teach 

mathematics, including calculus. I have been a mathematics educator for at 

least 15 years, and the professional and academic experience, in part, 

informed my epistemological assumptions and influenced my interpretation 

and analysis of data in this study.  

 

Braun and Clarke (2006) argue that the data coding process in qualitative 

research does not happen in an ‘epistemological vacuum’ and that the 

researchers ‘cannot free themselves of their theoretical and epistemological 

commitments’ (p.11). Overall, the data coding and the analysis in this study 

were driven by my theoretical interest in the pedagogical calculus discourse, 

the research questions of the study and the commognitive conceptual 

framework (Boyatzis, 1998; Braun and Clarke, 2006; Nowell et al., 2017).  

Initial coding in this study started inductively, to allow for a more 

comprehensive generation of codes. Braun and Clarke (2006) argue that 

such coding does not seek to fit the data into pre-existing themes, or the 

researcher’s analytic preconceptions, is data-driven instead. This open 

coding allowed for new ideas and themes, for example, the why factors, to 

derive from the data (Braun and Clarke, 2012; Patton, 1990) that were 

outside of my pre-conceived codes of the four commognitive constructs of 

word use, visual mediators, narratives and routines. (Refer to Section 5.3 for 

a more in-depth explanation of the generation of the initial codes for this 

study and how the process then progressed).  

Scholarly rigour is considered more important in qualitative research than 

the concept of reliability or inter-rater reliability measure (Merriam, 2009; 

Denzin and Lincoln, 2011; Syed and Nelson, 2015). Rigour is a product of 

the researcher, the research context and the research process (Syed and 

Nelson, 2015). For this study, rigour derives from, ‘the researcher’s 

presence, the nature of the interaction between researcher and participants, 

the triangulation of data, the interpretation of perceptions and rich, thick 

descriptions’ (Merriam, 2009, p.165). For this study, the researcher is a 

teacher of mathematics and a mathematics teacher educator and the 

participants are teachers of mathematics, which allows for, in Syed and 

Nelson’s (2015) words, ‘a deep and intimate knowledge of the participants’ 

(p.17). The research process and data gathering involved both interviews 
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with the teachers and observations of their mathematics lessons, in their 

natural settings – in their schools and mathematics classrooms. Syed and 

Nelson (2015) argue that this ‘closeness is what allows for rigour in the 

interpretative methods’ (p.17). This is true for my study, which takes an 

interpretative approach to research the teachers’ pedagogical discourse on 

the derivative, through the lens of the commognitive theoretical framework.  

Although reliability in coding does not necessarily constitute validity, it is a 

necessary consideration for validity. To ensure that my coding of data 

transcripts was consistent and comparable to other researchers, a check for 

inter-coder agreement (Campbell et al., 2013) was carried out during the 

early stages of the coding process, involving my two research supervisors 

and I (the researcher). After two rounds of independent coding activities 

(refer to Section 5.3.2.1 on page 85), we had a very strong consensus in our 

coding; this informed the rest of the coding process. As with interpretative 

methods, any reliability in coding in my study should be seen as a subjective 

consensus between my two supervisors and I, and ‘not [as] an ultimate 

decontextualised “truth” that exists outside of the data’ (Syed and Nelson, 

2015, p.17). 

9.5  Conclusion  

Before I conclude this discussion chapter, a note of self-reflection is in order, 

about my analysis and evaluation of the teachers’ pedagogical calculus 

discourse with respect to literate mathematical discourse. I am aware that 

such interpretations may be understood as subjective or limited to my 

epistemological stance. I acknowledge this bias and accept that consistency 

with literate mathematical discourse is a matter of judgement and context; 

other interpretations may exist too. 

Although the findings cannot be generalised, this study draws attention to 

important questions and findings from this research. The study is wholly 

qualitative and contributes to research on mathematics education by 

providing lived experiences of teachers with, and of teaching elementary 

differential calculus. Following on the foregoing discussion, the conclusions 

and implications of the findings, and a discussion of the limitations of the 

study are presented in the next chapter, marking the final chapter for this 

thesis.  
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Chapter 10   Conclusions and implications 

10.1  Introduction   

This concluding chapter presents a summary of the findings and their 

implications for mathematics education and research, highlights the main 

contributions to mathematics education and research, discusses the main 

limitations of the study and makes some recommendations for further 

research. My research sought to explore the teaching of elementary 

differential calculus at schools or colleges, by studying the teachers’ 

pedagogical calculus discourse on the derivative. The investigation 

examined the word use, narratives, and visual mediators such as calculus 

symbolism in the teachers’ calculus and pedagogical discourse, as well as 

their mathematical and pedagogical, i.e. didactical routines on the derivative.  

10.2  Summary and implications of the findings 

Here, I summarise what I regard to be the main findings of my research 

under the following five subheadings: symbolism for gradient and gradient 

function; graphical mediation with digital artefacts; the quasi-limit definition 

approach; multiple representations with visual mediators; and inconsistency 

and ambiguity in calculus word use.  

10.2.1  Inconsistency and ambiguity in calculus word use 

Learning is highly word-dependent (Kim and Lim, 2017) and word use in 

differential calculus teaching matters, indeed. My research (see Chapter 6) 

uncovered some inconsistency with word use in the teachers’ pedagogical 

calculus discourse. My research found evidence of dualism (and so 

ambiguity) in meaning and the teachers’ application of some calculus words 

such as gradient and derivative, e.g. in T1LO [88-91] and T2LO [374-375] 

where the word gradient is used to signify both constant gradient and 

gradient as a function. The word derivative was used to refer to the 

derivative of a function at a given point, and the gradient function of a 

function. These findings highlight the implicit ambiguity with such word use 

and call for teachers to clarify the context of their word use and explain the 

transition from one use to the other. My research highlights the dual 

meaning of the word derivative in calculus discourse. 

My research has also drawn attention to some ambiguous word use in the 

teachers’ pedagogical calculus discourse, in particular, the gradient of a 

curve [italics for emphasis] (See Section 6.3). Although it is correct to say 
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the ‘gradient of a straight line’, the utterance the ‘gradient of a curve’ is 

inconsistent with literate mathematics, even though the word gradient is 

characteristic of mathematical calculus discourse. A curve does not have a 

constant gradient and so, the utterance gradient of a curve is an ambiguous 

object-level narrative. Based on these findings, inconsistent word use of 

gradient could make it difficult for students to ‘appreciate the derivative at a 

point as a number and the derivative’ as a function (Park, 2013, p.624). My 

research, therefore, highlights the importance for teachers to pay attention to 

word use in their calculus discourse, ensuring that a clear distinction is made 

between gradient at a point and gradient function.  

10.2.2  Symbolism for gradient and gradient function 

My research (see Chapter 7) found that the calculus notation used in 

introducing the derivative, e.g. the Leibniz notation 
𝑑𝑦

𝑑𝑥
 (for the derivative of 

the function 𝑦) and the Langrage’s notation 𝑓’(𝑥) (for the derivative of the 

function  𝑓(𝑥)), was not explicitly substantiated by the teachers. On the face 

of it, this finding would suggest that unsubstantiated calculus symbolism may 

be a critical factor for students’ difficulties with calculus symbolism, which in 

turn could imply a long-term impact on the students’ understanding of 

differential calculus. Beyond the introduction to calculus, the notation 

becomes standard symbolism. The symbolism becomes part and parcel of 

the calculus discourse and the process of communication. If the differential 

calculus symbolism used is not explained at this introduction stage, when 

will it be explained? Besides, higher-level courses in calculus (may) assume 

prior knowledge of the differential calculus symbolism. If this happens, it 

creates a gap in the teaching of, and in the students’ learning experience 

with differential calculus symbolism. In turn, this could result in yet another 

gap in students’ understanding of differential calculus. 

My research (see Chapter 7) found some inconsistency with symbolism in 

the teachers’ pedagogical calculus discourse with the transition from 

gradient (for straight line graphs) to gradient function (for curved line 

graphs), in particular, in the use of the visual mediators 
𝑑𝑦

𝑑𝑥
  and  𝑚 to signify 

the same mathematical object, which they are not (See Section 7.2). The 

visual mediator 𝑚 was used to signify both the gradient of a straight line and 

the gradient function, by the teachers, and this could potentially contribute to 

students’ difficulties with the derivative. These findings are broadly similar to 

findings from Park (2016) who reported the use of identical representations 

for the derivative at a point and the derivative of a function. My research, 
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therefore, highlights the need for teachers to pay attention to calculus 

symbolism and to explain the difference in application between 
𝑑𝑦

𝑑𝑥
  and  𝑚  

symbolism when constructing the definition of the derivative.  

10.2.3  The quasi-limit definition approach 

My research (see Chapter 8) found that introducing differentiation developed 

from approximating the gradient of the tangent to a quadratic graph at a 

given point, through to constructing a ‘quasi-limit definition of the derivative’. 

This study found that teachers were able to construct a definition of the 

derivative without having to use the formal definition of limit (refer to 

Sections 8.3 and 8.4). The teachers were able to substantiate the definition 

of the derivative using the function, the graph of the function, the tangent as 

the limit of the secant line and the difference quotient for computing the 

gradients of the successive secant lines as ℎ approaches zero (ℎ → 0). 

These findings imply that teachers can construct the definition of the 

derivative and substantiate the process of differentiating without the use of 

the complex formal definition of limits. These findings suggest that the quasi-

limit approach may be instrumental in introducing and explaining 

differentiation to students without the complexities of the formal definition of 

limits. 

10.2.4  Multiple representations with visual mediators 

The evidence (see Chapters 7 and 8) has shown that the teachers in this 

study used multiple visual mediators and multiple forms of representation in 

constructing the definition of the derivative and so introducing differentiation. 

Teaching the quasi-limit definition of the derivative was visually mediated by 

written symbols e.g. numerals, algebraic formulas and algebraic symbols, 

and by symbolic artefacts such as diagrams and dynamic graphs of 

functions by digital artefacts such as Autograph, GeoGebra and Desmos 

(refer to Sections 7.3; 7.4 and 8.3). These findings resonate with Sfard 

(2008) who argues for the multiplicity of visual realisations because they 

‘broaden communicational possibilities’ (p.156). These findings imply that 

the use of multiple visual mediators in constructing and substantiating the 

definition of the derivative would allow for multiple realisations of the same 

signifier (Sfard, 2008). The use of numerical, graphical and algebraic 

representations in teaching elementary differential calculus can also appeal 

to the individual students’ preferred ways of learning.  
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10.2.5  Construction and substantiation of the derivative with 

dynamic geometry software  

My research (see Chapters 7 and 8) found that construction of the definition 

of the derivative and the substantiation of differentiation in teaching 

elementary calculus was enhanced by a supplementary application of 

dynamic graphical imagery. The dynamic imagery and visualisation 

affordances of dynamic geometry software were instrumental in mediating 

instruction in the substantiation of the gradient of the tangent as the limit of 

the secant, i.e. in explaining or proving the teacher’s quasi-limit narrative on 

the derivative (refer to Sections 7.3 and 8.3).  GeoGebra, Autograph and 

Desmos were used for dynamic geometry and imagery of graphical 

representations of functions in substantiating the differentiation from first 

principles narrative and in constructing the definition of the derivative, i.e. the 

quasi-limit definition of the derivative.  These digital artefacts allowed for 

interactive graphical imagery of dragging points on the graph and zooming in 

and out on parts of the graphical representations (refer to Section 8.3), 

which in turn allowed for a dynamic visual graphical demonstration that the 

slope of the tangent at various points on a curved-line graph constantly 

changes. For example, Autograph allowed for a demonstration of a dynamic 

tangent line to the graph of the function 𝑓(𝑥) = 𝑥2 moving along the curve, 

and simultaneously, mapping out the graph of the gradient function 𝑓′(𝑥) =

 2𝑥. GeoGebra allowed for a visual mediation of the slope of the tangent line 

to the graph of a function 𝑓(𝑥) at (𝑥;  𝑓(𝑥)), as the limit of the slope of the 

secant line as ℎ gets closer and closer to zero (ℎ → 0). GeoGebra allowed 

for simultaneous dynamic graphical imagery of the moving point and the 

rotating secant line, and ℎ getting smaller and smaller and getting closer and 

closer to zero. These findings suggest that the constraints of static iconic 

mediators such as the pen and paper graphical representations can be 

mitigated through the use of digital artefacts, such as dynamic geometry and 

graphing  

10.3  Contributions to mathematics education and research  

I should make clear that the findings of my study are restricted to the 

teachers’ pedagogical calculus discourse in general, but particularly on 

elementary differential calculus. In this section, I would like to highlight what I 

regard to be the main contributions of my research to the existing body of 

knowledge on mathematics education and research, such as the new 
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knowledge advanced, a new application of theory and originality of the 

research.  

  

By focusing on, and examining the teachers’ word use, my study revealed 

some inconsistency and ambiguity in word use in the teachers’ pedagogical 

calculus discourse. Of particular interest is the utterance, ‘gradient of a 

curve’ referring to the gradient function. My study has brought to light that 

‘gradient of a curve’ is an ambiguous narrative that is indeed inconsistent 

with literate mathematics. To the best of my knowledge, no previous 

research has drawn attention to the ambiguity of the utterance, the gradient 

of a curve, or reported its inconsistency with the literate calculus discourse. 

Thus, my research draws attention to, and raises questions as to, the 

potential impact of such inconsistent word use on the learning of calculus, 

given the past research reporting students’ challenges with differential 

calculus.  

This study has highlighted an exploration routine for constructing the 

definition of the derivative which avoids the use of a formal definition of limit, 

the ‘quasi-limit definition of the derivative’. ‘Quasi-limit definition of the 

derivative’ is a new object-level narrative emerging from this study; it is, 

therefore, a contribution to mathematics education research discourse.   

This study has demonstrated an approach to researching teachers and 

teaching mathematics that does not focus on teacher knowledge but 

teachers’ mathematical discourses (Sfard, 2008), hereby referred to as the 

teachers’ pedagogical calculus discourse, a type of mathematical discourse. 

Pedagogical calculus discourse is a new term coined in this study to refer to 

the amalgam of the teachers’ mathematical and didactical discourse on 

calculus. Thus, this study set out to investigate the teaching of elementary 

differential calculus by examining the word types, narratives, visual 

mediators and exploration routines in the teacher’s pedagogical calculus 

discourse. Researching teachers' pedagogical calculus discourse means 

examining their communicative activity, i.e. the teachers’ forms of saying 

(word use, narratives, visual mediators) and doing (routines) in teaching 

calculus, and not the teachers’ subject knowledge. 

For my study on the teachers’ pedagogical discourse on the derivative, I 

adopted the theory of commognition and developed a conceptual framework 

for analysing interviews and lessons by focusing on and analysing the four 

commognitive constructs of word use, visual mediators, narratives and 
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routines in the teachers’ calculus discourse. In doing so, I introduced a new 

application of theory for the analysis of the teachers’ pedagogical calculus 

discourse, the commognitive thematic discourse analysis. The commognitive 

thematic discourse analysis is a new analytic framework that combines the 

process of thematic analysis and commognitive discourse analysis for 

analysing qualitative data. Although the methodology of my research was 

informed by the commognitive theoretical framework, analysing the huge 

amounts of qualitative data required a systematic approach, and so the 

process of thematic analysis was effectively combined with the theory of 

commognition to form the commognitive thematic discourse analytic 

approach. This creative application of theory resulted in a new analytical 

framework, i.e. the commognitive thematic discourse analysis, that can be 

extended to other studies seeking to analyse discourse and qualitative data.  

Many studies on calculus have focused on students’ learning of calculus 

reporting students’ difficulties with calculus, and not so much on the 

teachers’ teaching of calculus. My study draws attention to teaching, thus 

contributing to the existing and ongoing research on calculus education.  It 

presents evidence and provides a perspective on some of the questions that 

teachers, teacher educators and mathematics education researchers might 

have on calculus education. There seems to be less appetite to investigate 

the teachers’ teaching of calculus.  There could be various reasons to 

explain the limited number of studies that investigate the teachers’ teaching 

of calculus, but as a teacher of mathematics and teacher educator, I was 

interested to explore the teaching of calculus at schools and colleges. 

10.4  Limitations of the research  

There are, to my knowledge, three main limitations identifiable with this 

study, the focus of the study primarily on the teacher, challenges with access 

to classroom and teachers: and generalisability of a qualitative study given a 

relatively small sample size in comparison to quantitative studies. I now 

consider them further. 

10.4.1  Teacher data and student data  

I should stress that my study has been primarily concerned with teacher 

data, not student data. Although there was data triangulation from interviews 

with the teachers and observations of their lessons on elementary differential 

calculus, only the first introductory lessons were observed. Thus, the 

findings of my study are restricted to data from the introductory lessons on 
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differentiation. Observations of more lessons were not possible due to 

limitations in access, time and cost. There is no denying that more 

observations, for example, of subsequent lessons could provide additional 

data on the teachers’ pedagogical calculus discourse.   

The aim of this study was to investigate the teaching of elementary 

differential calculus. The study was researching teaching but reference to 

some student data was inevitable. Although there are some references 

made to students in this study, the primary focus was on the teacher and the 

teaching. A focus on teaching and researching the teachers and not 

primarily on learning would limit any learning claims that can be drawn from 

this study. Future research, therefore, can look at the impact on student 

learning of teaching elementary differential calculus. Similar studies in the 

classroom could focus primarily on the impact on student learning of 

teaching elementary differentiation from first principles, and the impact of 

teaching with (and without dynamic) dynamic graphical imager. Furthermore, 

the studies could include interviews with mathematics graduates about their 

experiences with calculus at school and their experiences with calculus at 

the undergraduate level.  

10.4.2  Recruitment of participants  

It is very difficult to gain access to and consent from schools, teachers, 

parents and students to carry out research in the classroom, let alone to 

observe and video-record lessons. Getting schools and teachers willing to 

participate in this study was very slow and required patience.  This was 

made even more difficult by the fact that there was a limited window within 

which to collect data. Very often introduction to differentiation is often taught 

in the early parts of the autumn term, and this meant perfect timing was 

required.  Data collection took two years to complete. The first year’s window 

passed before I had collected enough data, so I had to plan for a second 

year-round of data collection, but still, the numbers of willing participants 

were very small. Changes in the teacher’s programme or disruptions from 

the weather such as snow days meant that some lessons did not take place 

and when they could be rescheduled, it was not possible to meet the 

timetable. Some lessons from two teachers who had agreed to participate 

were cancelled due to disruption from snow days, even though I had 

managed to visit the school. 

Furthermore, it was often very difficult for teachers to spare time for a face-

to-face pre-lesson interview, lesson observation and post-lesson interview. 
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The study had initially planned for a sample size of nine teachers, a total of 

eight different teachers finally participated in this study. However, data from 

two participant teachers were excluded because it was deemed incomplete 

for the requirements of the study. It turned out that the two lessons, although 

on differential calculus, were not on the introduction to differentiation. 

Providing the availability of more resources and time, larger studies could be 

developed with a similar focus on teaching differential calculus. Given the 

scope of this study and given the difficulty of gaining access to classrooms, 

this study provides useful insights into the teaching of introduction to 

differential calculus, and a basis upon which to develop more longitudinal 

studies on the teaching of differential calculus and maybe not just the 

introduction. Sample sizes for qualitative studies are generally small and this 

is true for this study, which is qualitative research. However, the small scale 

in sample size is compensated by an in-depth analysis of the data. 

10.4.3  Generalisability and transferability of findings  

Miles and Huberman (1994) on sampling questions to consider, ask  ‘Does 

your plan enhance generalisability of your findings, either through 

conceptual power or representativeness?’ (p.34). The findings from this 

study are not generalisable given the small sample size of the research. 

There is, however, a case for transferability, instead, on the basis of the 

conceptual power of the study. The hybridisation of the commognition theory 

and thematic analysis, to form the commognitive thematic discourse 

analytical framework for analysing the teachers’ pedagogical calculus 

discourse, can be extended to, and applied in similar qualitative 

communicational studies investigating teaching and learning on other 

mathematical discourses. 

10.5  Recommendations  

This research has expounded evidence of ambiguity and inconsistency with 

word use and symbolism in the teachers’ pedagogical calculus discourse. 

On the face of it, it can be argued that my study offers suggestive evidence 

for factors that contribute to students’ difficulties with calculus. Without 

further research into the effect on students’ learning of differential calculus of 

such ambiguity and inconsistency with word use and with calculus 

symbolism, it will not be possible to attribute or ascertain the impact of these 

findings on students learning. However, the findings of this study suggest 

that difficulties with calculus persist for students and teachers alike. Thus, 
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further research should include investigating the teachers’ pedagogical 

calculus discourse together with the students’ learning of calculus. Of 

particular interest following on this study would be more research into the 

teachers’ word use and narratives on differential calculus and its impact on 

student learning, and also exploring how inconsistency in word use and 

narratives influence students’ learning of differential calculus.  

Based on the application of the commognitive framework in this study, i.e. 

analysing teaching, I would suggest that a framework borne out of, or one 

that includes the four commognitive constructs, would be an invaluable 

analytical lens for mathematics teachers and mathematics teacher educators 

for the purposes of observing and analysing teaching and learning of 

mathematics. The four commognitive constructs could be applied as a 

framework, providing a basis and structure, for reflecting on and evaluating 

mathematics lessons. Thus, I would recommend further research into the 

commognitive framework, or an adaptation of the theory, for use in 

mathematics teacher education and teacher development.   

One of the main limitations of my research was its primary focus on teacher 

data, which meant that there was limited student data. Thus, the findings of 

my research, being based on a relatively small sample of teachers, are only 

tentative. Nonetheless, I believe that this current study with its methodology, 

the commognitive thematic discourse analysis, of examining teachers’ 

pedagogical calculus discourse may form a basis for further studies. Further 

research with a larger sample involving both teachers and students, is 

needed to substantiate the findings of this study. For example, without 

further research into the impact of teachers’ use of dynamic graphical 

mediation on students’ understanding of differential calculus, it is not 

possible to generalise the findings from this study on the affordances of 

dynamic geometry and graphing software. It is important, therefore, for 

further research to investigate the impact of students’ use of dynamic 

imagery software on students’ understanding of the derivative and calculus. 

10.6  Concluding remarks 

Past research (e.g. Berry and Nyman, 2003; Oehrtman et al., 2008; Tall, 

1992; Thompson, 1994; Zandieh, 2000; Park, 2016) report students’ 

challenges with calculus. This study set to investigate the teaching of 

elementary differential calculus and, so offer a different perspective to 
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research seeking to explain the students’ challenges with differential 

calculus.  

Cobb (2009) describes the commognitive framework as having the capacity 

to attend to ‘the macro-level of historically established mathematical 

discourse, the meso-level of local discourse practices jointly established by 

the teacher and students (…) and the micro-level of individual students’ 

developing mathematical discourses (p. 207)’. My study has demonstrated 

that the commognitive framework provides an adaptable conceptual 

framework and an analytical lens through which we can examine, on a 

micro-level, how teachers teach mathematics. I would, therefore, refine 

Cobb’s (2009) comment and further argue that the commognitive framework 

can attend to the micro level, not only of the individual students’ developing 

mathematical discourse but also of the individual teachers’ mathematical 

discourse. Using the commognitive analytic toolkit of word use, visual 

mediators, narratives and routines enabled the examination of the teachers’ 

mathematical and pedagogical calculus discourse on differential calculus. 

As a final remark to this thesis, it is important to remember that in such a 

purely qualitative research analysis, as with all forms of qualitative analysis, 

the purpose of the analysis is to offer interpretations about the data; not 

uncovering truths about the world (Syed and Nelson, 2015). Thus, I do 

acknowledge and would remind my readers that data analysis in an 

interpretative (qualitative) study can never be regarded as absolute or 

complete (Roulston, 2014), as it is subject to various perspectives and 

different purposes. Whilst the findings from this qualitative research cannot 

be generalised to represent the population of teachers of mathematics, the 

value of the research is in learning from the methods, findings, observations, 

and questions from this research. Readers and other researchers have the 

option to apply these methods, findings, observations, and questions to 

other contexts. 
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for audit purposes. You will be given a two-week notice period if your project is to be 
audited. There is a checklist listing examples of documents to be kept which is 
available at http://ris.leeds.ac.uk/EthicsAudits.  
 
We welcome feedback on your experience of the ethical review process and 
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suggestions for improvement. Please email any comments to 
ResearchEthics@leeds.ac.uk.  
 
Yours sincerely 
 
Jennifer Blaikie 
Senior Research Ethics Administrator, Research & Innovation Service 
On behalf of Dr Andrew Evans, Chair, AREA Faculty Research Ethics Committee 
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Appendix B 

Informed Consent Forms 

There are two parts to the Informed Consent Form, Part 1: Information Sheet 

and Part 2: Certificate of Consent for each of the following groups- the 

schools’ gatekeepers, the participating teachers and the parents. 

B.1  School Gatekeepers  

There are two parts to the Informed Consent Form, Part 1: Information Sheet 

and Part 2: Certificate of Consent for the school’s gatekeepers. 

B.1.1  Information Sheet   

 

 

School of Education: 
 Faculty of Education, Social Sciences and Law. 

 
Informed Consent Form: Teaching Observations  

 
Research Project Title: How do teachers of mathematics introduce calculus? 
Researcher: Innocent Tasara  

 
This Informed Consent Form has two parts:  

• Information Sheet (to share information about the study with you)  
• Certificate of Consent (for signatures if you choose to participate)  

 
Part I: Information Sheet  
 
Introduction  
I am Innocent Tasara, a Lecturer in Mathematics Education, Lead Tutor PGCE Secondary 
Mathematics and a PhD student at the University of Leeds. I am researching into how 
secondary school teachers of mathematics teach calculus. This study will look into how 
teachers of mathematics in England teach calculus (post 16), with a particular focus on 
differentiation. You are being invited to give consent for your school participation in this 
research project to take place with secondary school teachers of mathematics. Before 
you decide it is important for you to understand why the research is being done and what 
it will involve. Please take time to read the following information carefully and discuss it 
with others if you wish. Please ask if there is anything that is not clear or if you would like 
more information.  
 
What is the purpose of the research?  
The purpose of my research is to investigate aspects of teacher knowledge and practice 
for calculus teaching with the aim to contribute to the knowledge base for improving the 
teaching and learning of calculus in secondary schools, as well as the teaching and 
learning of mathematics teaching (teacher training).  
 
Why have my school been chosen? Do I have to give consent? 
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Your school has been asked to participate in this research project because you have 
post 16 mathematics teaching classes. If you do decide to give consent, you will be 
given a copy of this information sheet to keep (and be asked to sign a consent form).  
 
What will happen if I give consent?  
If you give consent, then a teacher of mathematics in your school will be asked to 
participate in this research project. It is up to the individual teacher to decide whether or 
not to consent to participating in this research project. If a teacher decides to give 
consent, he/she will be given a copy of the information sheet for participating teachers 
to keep (and be asked to sign a consent form).  He/she can still withdraw their consent 
at any time and their data will be deleted.  
  
What will happen if a teacher of mathematics gives consent?  
If a teacher gives consent, then he/she will take part in an individual pre-teaching 
interview, and then be observed teaching a lesson on calculus with one of your post 16 
classes, followed by an individual post-teaching interview, all by the researcher. The 
interviews will only be audio recorded.  Only one lesson will be observed, and it will be 
video and audio recorded. The video is for capturing only the teacher’s actions; thus, the 
camera will be directly focusing on the teacher. Copies of any work produced for the 
lesson such as lesson plans, worksheets and other resources will also be collected for 
the research. The interviews will be no more than one hour long and no one else but the 
researcher will be present unless the participant teacher would like someone else to be 
there. The information recorded is anonymised and no one else except the researcher 
will have access to the information documented during the interviews. The interviews 
will be audio-recorded, but the audio file will have a number rather than the participant’s 
name on it. The audio file will be copied onto the researcher’s university computer and 
saved within a password-protected folder. The files will be destroyed 3 years after the 
research project has ended.   
 
What type of information will be sought?  
Audio recordings of pre-teaching and post-teaching interviews with the teacher; audio 
and video recordings of the observed lesson will be collected for this research project. 
The camera will focus primarily on the teacher and not the students. However, as 
research will involve observing a teacher in a post 16 classroom environment, children 
aged 16-18 are likely to be encountered and may be audio recorded. Nevertheless, their 
contributions will not be directly quoted. Lesson-plans and post-lesson evaluations will 
also be copied, and any other materials produced for your lesson. The email address of 
the participating teacher will be collected for the purposes of contacting them with a 
summary of the research results and any correspondence directly related to the 
research or future research. They will only be contacted by the researcher. 
 
Why is the collection of this information relevant for achieving the research 
project’s objectives? 
The audio and video data will be analysed by the researcher  to provide useful insights 
into teachers’ knowledge and practice on calculus teaching,  insights which would 
contribute to the knowledge base for improving the teaching and learning of calculus in 
secondary schools, as well as the teaching and learning of mathematics teaching 
(teacher training). 
  
What are the possible disadvantages and risks of taking part?  
There are no expected disadvantages or risks to taking part. However, a teacher may 
feel inconvenienced by the presence of a camera in the room, or by the time taken for 
interviews, though the research has been designed to minimise the amount of time 
taken.      

Benefits  
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Teachers may benefit directly from the study as they engage in reflective practice about 
their lesson planning and teaching. The pre-teaching and post-teaching interviews may 
feed into their lesson evaluation. Participation is likely to help us find out more about how 
teachers plan lesson, what resources they use and how they teach lessons on calculus. 
 
Reimbursements 
The researcher will visit the teachers at their school. The pre-teaching interview, the 
lesson observation and the post-teaching interview will all take place in your school. 
Therefore, no cost reimbursements will be necessary. 
 
Will taking part in this project be kept confidential?  
All the information that the researcher will collect about the institution and its participant 
teachers during the course of the research will be kept strictly anonymous. Any 
information collected about the participants will not be attributable by name. The 
information will have a number on it instead of their name. If names are mentioned in the 
audio recordings, any transcription made will be anonymised. Only the researcher will 
know about that number. This means that the participants will not be able to be identified 
in any reports or publications.  
 
What will happen to the results of the research project?  
The knowledge that the researcher get from this research will be shared with the 
participants before it is made available to the public. The participant teacher will receive 
a summary of the results. Results of the research may be published or presented at 
conferences or in lectures to the public so that other interested people may learn from the 
research. However, participants will not be able to be identified in any reports, 
publications, lectures, or conferences. 
Contact for further information  
If you would like any further information or have any questions at any point during or 
after the research, you can contact the principal researcher: 
 
Innocent Tasara  
(Supervisors: John Monaghan: J.D.Monaghan@education.leeds.ac.uk & Michael Inglis: 
M.Inglis@leeds.ac.uk ) 
Lecturer in Mathematics Education 
Centre for Studies in Science and Mathematics Education 
School of Education  
University of Leeds, Leeds, LS2 9JT 
Office phone:  0113 34 34622 
Email I.Tasara@leeds.ac.uk  
Office: EC Stoner 8.76    
 
 
 

You will be given a full copy of this information sheet to keep. 
Thank you for taking the time to read through the information. 

 

 

 

mailto:J.D.Monaghan@education.leeds.ac.uk
mailto:%20M.Inglis@leeds.ac.uk
mailto:%20M.Inglis@leeds.ac.uk
mailto:I.Tasara@leeds.ac.uk
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B.1.2  Certificate of Consent – school gatekeepers  

 

School of Education:  

Faculty of Education, Social Sciences and Law 

Part 2: Certificate of Consent  

 

Consent to take part in the research project:  “How do teachers of 

mathematics introduce calculus?” 

 Add your 
initials next to 

the 
statements 
you agree 

with  

I confirm that I have read and understand the information sheet 

dated 24/08/15 explaining the above research project and I have 

had the opportunity to ask questions about the project. 

 

I understand that my consent for my institution participation is 

voluntary and that I am free to withdraw my consent at any time 

without giving any reason and without there being any negative 

consequences. (If you would like to withdraw, please email the 

researcher: Innocent Tasara, i.tasara@leeds.ac.uk ) 

 

I give permission for the researcher to have access to 

participants’ responses. I understand that the name of my 

institution or individual participant teachers will not be linked with 

the research materials and will not be identified or identifiable in 

the report(s) or publication(s) that result from the research or in 

any lecture(s) or conference presentation(s). 

I understand that responses will be kept strictly confidential.  

 

I agree for research in the above research project to be carried 

out and will inform the researcher should my contact details 

change. 

 

I understand that a summary of results will be e-mailed (please 

provide an e-mail address below) to the participant teachers 

before the final report is shared with others; and that this e-mail 

address will only be used to contact me about the research. Only 

the researcher will contact me. I will inform the researcher should 

the e-mail address change.  

 

mailto:i.tasara@leeds.ac.uk
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Name   

Position  

Signature  

e-mail address  

Date  

Name of researcher Innocent Tasara 

Signature  

Date  

 

B.2  Informed Consent Forms: participant teachers  

There are two parts to the Informed Consent Form, Part 1: Information Sheet 

and Part 2: Certificate of Consent for the participating teachers. 

B.2.1  Information Sheet   

 

 

 

 

School of Education: 

 Faculty of Education, Social Sciences and Law 

 

Research Project Title: How do teachers of mathematics introduce calculus? 
Researcher: Innocent Tasara  

 
This Informed Consent Form has two parts:  

• Information Sheet (to share information about the study with you)  
• Certificate of Consent (for signatures if you choose to participate)  

 
Part I: Information Sheet  
 
Introduction  
I am Innocent Tasara, a Lecturer in Mathematics Education, Lead Tutor PGCE Secondary 
Mathematics and a PhD student at the University of Leeds. I am researching into how 
secondary school teachers of mathematics teach calculus. This study will look into how 
teachers of mathematics in England teach calculus (post 16), with a particular focus on 
differentiation. You are being invited to give consent for your participation in this research 
project to take place with secondary school teachers of mathematics. Before you decide 
it is important for you to understand why the research is being done and what it will 
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involve. Please take time to read the following information carefully and discuss it with 
others if you wish. Please ask if there is anything that is not clear or if you would like more 
information.  
 
What is the purpose of the research?  
The purpose of my research is to investigate aspects of teacher knowledge and practice 
for calculus teaching with the aim to contribute to the knowledge base for improving the 
teaching and learning of calculus in secondary schools, as well as the teaching and 
learning of mathematics teaching (teacher training).  
 
Why have I been chosen? Do I have to give consent? 
You have been asked to participate in this research project because you are a teacher 
of mathematics with post 16 teaching classes. It is up to you to decide whether or not to 
consent to participate in this research project. If you do decide to give consent, you will 
be given a copy of this information sheet to keep (and be asked to sign a consent form). 
You can still withdraw your consent at any time and your data will be deleted. You do 
not have to give a reason.  
  
What will happen if I give consent?  
If you give consent then you will take part in an individual pre-teaching interview, and 
then observed teaching a lesson on calculus with one of your post 16 classes, followed 
by an individual post-teaching interview, all by the researcher. The interviews will only 
be audio recorded. Only one lesson will be observed, and it will be video and audio 
recorded. The video is for capturing only the teacher’s actions; thus, the camera will be 
directly focusing on the teacher. Copies of any work you produce for the lesson such as 
lesson plans, worksheets and other resources will also be collected for the research.     
 
The interviews will be approximately one hour long and no one else but the researcher 
will be present unless you would like someone else to be there. The information 
recorded is confidential, and no one else except the researcher will have access to the 
information documented during the interviews. The interviews will be audio-recorded, 
but the audio file will have a number rather than your name on it. If names are 
mentioned on the file, any transcription made will be anonymised. The audio file will be 
copied onto the researcher’s university computer and saved within a password-
protected folder. The files will be destroyed 3 years after the research project has 
ended.   
 
What type of information will be sought?  
Audio recordings of pre-teaching and post-teaching interviews; audio and video 
recordings of your lesson and field-notes will be collected for this research project. The 
video camera will be focused primarily on the teacher and not the students. 
 
Lesson-plans and post-lesson evaluations will also be copied, and any other materials 
produced for your lesson. Your email addresses will be collected for the purposes of 
contacting you with a summary of the research results and any correspondence directly 
related to the research or future research. You will only be contacted by the researcher. 
 
Why is the collection of this information relevant for achieving the research 
project’s objectives? 
The audio and video data will be analysed by the researcher  to provide useful insights 
into teachers’ knowledge and practice on calculus teaching,  insights which would 
contribute to the knowledge base for improving the teaching and learning of calculus in 
secondary schools, as well the teaching and learning of mathematics teaching (teacher 
training). 
 
What are the possible disadvantages and risks of taking part?  
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There are no expected disadvantages or risks to taking part. However, you may feel 
inconvenienced by the presence of a camera in the room, or by the time taken for 
interviews and collecting copies of your work, though the research has been designed to 

minimise the amount of time taken.      

Benefits  
You may benefit directly from the study as you engage in reflective practice about your 
lesson planning and teaching. The pre-teaching and post-teaching interviews may feed 
into your lesson evaluation. Participation is likely to help us find out more about how 
teachers plan lessons on calculus, what resources they use and how they teach lessons 
on calculus 
 
Reimbursements 
The researcher will visit you at school. The pre-teaching interview, the lesson 
observation and the post-teaching interview will all take place in your school. Therefore, 
no cost reimbursements will be necessary. 
 
Will my taking part in this project be kept confidential?  
All the information that the researcher will collect about you during the research will be 
kept strictly anonymous. You will not be able to be identified in any reports, publications, 
lectures, or conferences. Any information about you will have a number on it instead of 
your name. Only the researcher will know what this number is. This means that you will 
not be able to be identified in any reports or publications.  
 
What will happen to the results of the research project? 
The knowledge that the researcher get from this research will be shared with you before 
it is made available to the public. You will receive a summary of the results. Any 
information collected about you will not be attributable to you by name. Results of the 
research may be published or presented at conferences or in lectures to the public so that 
other interested people may learn from the research. However, participants will not be 
able to be identified in any reports, publications, lectures, or conferences. 
 
Contact for further information  
If you would like any further information or have any questions at any point during or 
after the research, you can contact the principal researcher: 
 
Innocent Tasara   
(Supervisors: John Monaghan: J.D.Monaghan@education.leeds.ac.uk & Michael Inglis: 
M.Inglis@leeds.ac.uk ) 
Lecturer in Mathematics Education 
Centre for Studies in Science and Mathematics Education 
School of Education  
University of Leeds, Leeds, LS2 9JT 
Office phone:  0113 34 34622 
Email I.Tasara@leeds.ac.uk  
Office: EC Stoner 8.7 

 
You will be given a full copy of this information sheet to keep. 

 
Thank you for taking the time to read through the information. 

 
 
 
 

mailto:J.D.Monaghan@education.leeds.ac.uk
mailto:%20M.Inglis@leeds.ac.uk
mailto:%20M.Inglis@leeds.ac.uk
mailto:I.Tasara@leeds.ac.uk
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B.2.2  Certificate of Consent – participant teachers  

 

 

 

 

School of Education, 

Faculty of Education, Social Sciences and Law. 

 

Part 2: Certificate of Consent  

 

Consent to take part in the research project:  “How do teachers of 

mathematics introduce calculus?” 

 

 Add your 
initials next 

to the 
statements 
you agree 

with  

I confirm that I have read and understand the information sheet 

dated 24/08/15 explaining the above research project and I have 

had the opportunity to ask questions about the project. 

 

I understand that my consent for participation is voluntary and that I 

am free to withdraw my consent at any time without giving any 

reason and without there being any negative consequences.  

(If you would like to withdraw, please email the researcher: 

Innocent Tasara, i.tasara@leeds.ac.uk ) 

 

I give permission for the researcher to have access to my 

anonymised responses. I understand that the name of my institution 

or individual students will not be linked with the research materials 

and will not be identified or identifiable in the report(s) or 

publication(s) that result from the research or in any lecture(s) or 

conference presentation(s). 

I understand that responses will be kept strictly confidential.  

 

I agree for research in the above research project to be carried out 

and will inform the researcher should my contact details change. 
 

I understand that a summary of results will be e-mailed (please 

provide an e-mail address below) to me before the final report is 

shared with others; and that this e-mail address will only be used to 

contact me about the research. Only the researcher will contact me. 

I will inform the researcher should the e-mail address change.  

 

 

Name   

Position  

Signature  

mailto:i.tasara@leeds.ac.uk


- 281 - 

e-mail address  

Date  

Name of researcher Innocent Tasara 

Signature  

Date  

 

B.3  Informed Consent Forms: Parents  

There are two parts to the Informed Consent Form, Part 1: Information Sheet 

and Part 2: Certificate of Consent for the participating parents.  

B.3.1  Information Sheet  

 

 

 

School of Education: 

 Faculty of Education, Social Sciences and Law. 

 

Informed Consent Form: Teaching Observations  

 

Research Project Title: How do teachers of mathematics introduce calculus? 

Researcher: Innocent Tasara  

 

This Informed Consent Form has two parts:  

• Information Sheet (to share information about the study with you)  

• Certificate of Consent (for signatures if you choose to participate)  

 

Part I: Information Sheet  

 

Introduction  

I am Innocent Tasara, a Lecturer in Mathematics Education, Lead Tutor PGCE Secondary 

Mathematics and a PhD student at the University of Leeds. I am researching into how 

secondary school teachers of mathematics teach calculus. This study will look into how 

teachers of mathematics in England teach calculus (post 16), with a particular focus on 

differentiation. You are being invited to give consent for your child’s participation in this 

research project to take place with secondary school teachers of mathematics. Before 

you decide it is important for you to understand why the research is being done and what 

it will involve. Please take time to read the following information carefully and discuss it 

with others if you wish. Please ask if there is anything that is not clear or if you would like 

more information.  

 

What is the purpose of the research?  

The purpose of my research is to investigate aspects of teacher knowledge and practice 

for calculus teaching with the aim to contribute to the knowledge base for improving the 
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teaching and learning of calculus in secondary schools, as well as the teaching and 

learning of mathematics teaching (teacher training).  

 

Why has my child been chosen? 

This research mainly focuses on the teacher teaching a lesson to a class of post 16 

students. Data collected is about the teacher and how he/she teaches calculus. Your 

child’s participation in the research project is by the mere fact that he/she belongs to the 

class of the participating teacher. For my research to be successful I need to observe 

participating teachers of mathematics teaching post 16 mathematics lessons. Your school 

is taking part in this research project, and your child is in the class whose teacher is taking 

part in this research project. 

 

Do I have to give consent? 

It is up to you to decide whether or not to consent to your child participating in this research 

project. If you do decide to give consent, you will be given a copy of this information sheet 

to keep (and be asked to sign a consent form). You can still withdraw your consent at any 

time and any data that may have been collected from your child will be deleted. 

 

What will happen if I give consent?  

If you give consent, then your child will be part of the class that will take part in a lesson 

on calculus to be taught by their teacher. This lesson will be observed by the 

researcher. Only one lesson will be observed, and it will be video and audio recorded.  

The video is for capturing only the teacher’s actions; thus, the camera will be directly 

focusing on the teacher.  However, as this research will involve observing a teacher in a 

classroom environment, children (aged 16-18) are likely to be encountered and may be 

audio recorded. Nevertheless, their contributions will not be directly quoted. 

 

What are the possible disadvantages and risks of taking part?  

There are no expected disadvantages or risks to taking part. However, some students 

may feel a little nervous about the presence of a camera in the classroom. 

 

What are the benefits of taking part? 

The audio and video data will be analysed by the researcher  to provide useful insights 

into teachers’ knowledge and practice on calculus teaching,  insights which would 

contribute to the knowledge base for improving the teaching and learning of calculus in 

secondary schools, as well as the teaching and learning of mathematics teaching 

(teacher training). 

 

Results of the research may be published or presented at conferences or in lectures to 

the public so that other interested people may learn from the research. However, 

participants will not be able to be identified in any reports, publications, lectures, or 

conferences. 

 

Will taking part in this project be kept confidential?  

All the information that the researcher will collect about the institution and its participants 

during the research will be kept strictly anonymous. Any information collected about the 

participants will not be attributable by name. Such information will have a number on it 

instead of any participants’ names. Only the researcher will know about that number. If 

names are mentioned in the audio recordings, any transcription made will be anonymised. 
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This means that the participants will not be able to be identified in any reports or 

publications.  

 

Contact for further information  

If you would like any further information or have any questions at any point during or 

after the research, you can contact the principal researcher: 

 

Innocent Tasara   

(Supervisors: John Monaghan: J.D.Monaghan@education.leeds.ac.uk & Michael Inglis: 

M.Inglis@leeds.ac.uk ) 

Lecturer in Mathematics Education 

Centre for Studies in Science and Mathematics Education 

School of Education  

University of Leeds, Leeds, LS2 9JT 

Office phone:  0113 34 34622 

Email I.Tasara@leeds.ac.uk  

Office: EC Stoner 8.76    

 

You will be given a full copy of this information sheet to keep. 

Thank you for taking the time to read through the information. 

 

 

B.3.2  Certificate of Consent - Parents  

 

 

 

 

School of Education 

Faculty of Education, Social Sciences and Law. 

 

 

Part 2: Certificate of Consent  

 

Consent to take part in the research project:  “How do teachers of 

mathematics introduce calculus?” 

 Add your 
initials next 

to the 
statements 
you agree 

with  

I confirm that I have read and understand the information sheet 

dated 24/08/15 explaining the above research project and I have 

had the opportunity to ask questions about the project. 

 

mailto:J.D.Monaghan@education.leeds.ac.uk
mailto:%20M.Inglis@leeds.ac.uk
mailto:%20M.Inglis@leeds.ac.uk
mailto:I.Tasara@leeds.ac.uk
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I understand that my child’s participation is voluntary and that I am 

free to withdraw my child at any time without giving any reason and 

without there being any negative consequences.  

If I wish to withdraw my child at any point then I can email the 

researcher: Innocent Tasara, i.tasara@leeds.ac.uk. If I decide to 

withdraw my child from this project, then any data collected from 

them prior to their withdrawal will be destroyed. 

 

I give permission for the researcher to have access to my child’s 

anonymised responses. I understand that their name will not be 

linked with the research materials and will not be identified or 

identifiable in the report(s) or publication(s) that result from the 

research or in any lecture(s) or conference presentation(s). 

I understand that their responses will be kept strictly confidential. 

 

I agree for the data collected from my child to be used in relevant 

future research in an anonymised form. 
 

I give permission for my child to take part in the above research 

project and will inform the lead researcher should our contact 

details change. 

 

 

Name of Participant  

Signature of 

Parent/Guardian 
 

Date  

Name of researcher Innocent Tasara 

Signature  

Date  

 

mailto:i.tasara@leeds.ac.uk
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Appendix C 

Data Collection Instruments 

C.1  Interview Schedule 

 
Issue/topic Interview Questions Possible follow up questions 

1. 
Teacher 
knowledge 
and  

experience 

Can you tell me about your 
teaching qualifications and 
any other training or in-
service training for teaching 
mathematics that you have 
received? 

Can you tell me about your 
experience of teaching post -
16 mathematics and 
calculus? 

Did you study A level 
maths? 

 

What was your first degree? 

 

For how long? 

 

2 
Resources/ 

Mediational 
tools 

 

Can you tell me about the 
resources and technology that 
you use to plan and teach 
differentiation/calculus? 

How is the AS/A level 
mathematics curriculum 
structured and delivered in 
your department? 

What textbooks do you 
use? 

What digital or web-based 
resources do you use?  

Do you use or follow SOW? 

Which Exam board do you 
use?  

3 
Teaching – 
the concept 
of the 
derivative 

Can you tell me about your 
approach to introducing the 

concept of the derivative? 

How did you plan the learning 
activities and the 
mathematical tasks for the 

lesson? 

What is the reasoning 
behind your approach? 

What factors influence your 
choice? 

Did you consult any 
colleagues? 

4 
Next lesson 
(Post-lesson 
focus) 

Can you tell me about your 

plans for the next lesson? 

Moving on from the first 
lesson, what will be the 
focus of your next lesson?  

How do you plan to teach 
that next lesson? Why?   
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C.2  Observation Schedule 

 

 

 

Date:  School Code: Participant teacher code: 

Class context 
 Year Group:                   Number of students: Female: 
 Male: 
 
Lesson Context 
Period/time: 
 
Topic/Content: 
 

Time Focus points of the lesson observation Points for discussion in 
the post-lesson 
interview 

 •   

 

•    

 

•    

 

•    
 
 
 
 
 

•   
 
 
 
 

•  
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Appendix D 

Pre-teaching Interview Transcript 

This is an example of the pre-teaching interview data transcripts. This is the 

transcript for the interview with T1. This transcript was used for the inter-

coder reliability check exercise.   

D.1 Interview Transcript [T1I(i)]  

I – The Interviewer (Researcher) 

R – The Respondent (Teacher) 
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