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Abstract

In this thesis we have explored a new class of measures νθ on configuration spaces

ΓX (of countable subsets of Euclidean space X = Rd), obtained as a push-forward of

“lattice” Gibbs measure θ on XZd . For these measures, we have proved the finiteness

of the first and second moments and the integration by parts formula. It has also

been proved that the generator of the Dirichlet form of νθ satisfies log-Sobolev

inequality, which is not typical for measures on configuration spaces. Stochastic

dynamics of a particle in random environment distributed according to the measure

νθ, is presented as an example of possible application of this construction. We

consider a toy model of a market, where this stochastic dynamics represents the

volatility process of certain European derivative security. We have derived the

“Black-Scholes type” pricing partial differential equation for this derivative security.
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Introduction

Interest to configuration spaces has grown because of their applications to classical

and quantum statistical mechanics, quantum field theory and representation

theory.

To fix basic notations, let X be a topological space then the configuration space

ΓX over X is the space of all countable subsets without accumulation points

(configurations) of X. Configuration spaces are most often attributed to the study

of classical mechanical systems consisting of infinitely many points describing

positions of labeled particles. The work in this field gave rise to the study of

interacting particle systems initiated by Ruelle and Dobrushin

[Rue99, Dob68, Dob69]. We refer the reader to [Geo11] and references there in for

some further results in this field. In all these works, distributions of interacting

particle systems are described by Gibbs measures on ΓX .

On the other hand Vershik, Gelfand, Graev [VGG75] used ΓX (with X a

Riemannian manifold) equipped with the Poisson measure in order to construct

representation of the group Diff0(X) (the group of diffeomorphisms of X with

compact support), see also [GSS64, Ism96] and references therein. They have also

discussed the construction of quasi-invariant measures over ΓX .

At the same time, the corresponding representations of the Lie algebra of

compactly supported smooth vector fields Vect0(X) were constructed and used in

Quantum Field Theory in [GGPS74], see also [AKR99, GM00].

In [AKR98a, AKR98b], configuration spaces were considered as infinite

dimensional manifolds. The development of geometry and analysis on ΓX required
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Introduction

existence of a measure µ on ΓX which is Diff0(X)-quasi-invariant and satisfies an

integration by parts formula. One of the significant results of these papers is the

construction of diffusion processes on ΓX with the help of associated Dirichlet

form. We refer the reader to [ADK07, KK02, Kun99] (see also references therein

for some further works on analysis and geometry of configuration spaces).

Different measures lead to different versions of such analysis (actually

corresponding to physical systems defined by these measures).

In [AKR98a, AKR98b] this programme has been realized for Poisson and certain

class of Gibbs measures on ΓX . In [BD09, BD10, BD11], authors have considered

the case of Poisson and Gibbs cluster measures (using a special projection

construction).

In the present work we explore the projection construction proposed in [BD09]

and use its version in order to study a completely different class of measures on

configuration spaces ΓX , obtained as a push-forward of “lattice” Gibbs measure in

XZd (throughout this work X represents a d-dimensional Euclidean space Rd).

These measures present interesting properties, including the Log-Sobolev

inequality, which is not typical for measures on ΓX (note that neither Poisson nor

Gibbs measure on ΓX satisfy Log-Sobolev inequality).

In Chapter 2 we introduce the push-forward construction of measures on

configuration spaces. We start with the case of finite configurations. For n ∈ Z+,

consider the space X(n) = {A ⊂ X, |A| = n} of n-point subsets of X, where | · |

denotes the cardinality of A. The space X(n) is called the space on n-point

configurations in X. Let us also consider the space defined by

X̃n = {(x1, x2, · · · , xn) ∈ Xn; xi 6= xj, ∀ i 6= j}.

We can identify X(n) with the quotient space X̃n/Sn where Sn is the symmetric

group acting on X̃n by permutations of the coordinates. Consider the natural
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projection map p : X̃n → X̃n/Sn = X(n). Now, given a probability measure θ on

X̃n, we can define a measure νθ on X(n) by the formula

νθ := p∗θ, that is, νθ(A) = θ(p−1(A)), A ⊂ X̃n.

We show that this construction cannot be directly extended to the case of infinite

configuration spaces (because the so obtained measure will be in general

concentrated on space of the configurations with accumulation points). Therefore

we give a modification of the projection construction above, using a special map,

p : XZd → ΓX given by the formula

p(x) = {xk + α(k)}k∈Zd ,

where α(k) = |k|d−1k and Zd is the d-dimensional integer lattice. Our next goal

is to construct a class of measures on ΓX , using this map. For this we use a

class of probability measures θ on XZd which, (a) have “off-diagonal” support (b)

are translation invariant with respect to the lattice shift Zd and (c) have finite

moments. The main example of such measures is given by Gibbs measures on XZd .

We introduce the framework of Gelfand triple for XZd and discuss main properties

of Gibbs measures on XZd (mainly following [AKR95]). Then we introduce the

corresponding push-forward measures νθ = p∗θ on ΓX . We prove the finiteness of

their moments and that they are supported on ΓX .

Chapter 3 addresses the integration by parts (IBP) formula, first for measures onXZd

and then for measures on ΓX . We start with recalling the IBP formula for general

probability measures in XZd with examples of Gaussian and Gibbs measures. The

first main result of this chapter is the extension of the IBP formula for a special

class of vector fields v̂ : XZd → XZd , defined as

v̂k(x) = v(xk + α(k))k∈Zd ,
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where v ∈ V ect0(X). Then we prove the main result of this chapter that is the

IBP formula for the push-forward measure νθ on ΓX .

The main aim in Chapter 4 is to discuss the Log-Sobolev inequality for the

push-forward νθ measures on ΓX . We start with collecting some background

material on Log-Sobolev inequality, giving examples and some known criteria for

Log-Sobolev inequality. Then we state and prove the main result, that is the

Log-Sobolev inequality for the push-forward measure νθ on ΓX such that θ satisfies

Log-Sobolev inequality on XZd .

In the last chapter we discuss an example of possible application of the

constructed measure. We consider stochastic dynamics of a particle in a random

environment, described by the measure νθ on ΓX and discuss conditions for

regularity of such dynamics. Then we give a “mathematical economics”

interpretation of this construction. We discuss a toy model in which this moving

particle represents a “traveling trade agent” and generates a stochastic volatility

process in a stock market. For this model, we derive the “Black-Scholes type”

pricing PDE.
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Chapter 1

Preliminaries

1.1 Measures on Hilbert spaces

Cylinder Measures and Week Distributions

In this section we mainly follow [Sko74] to explain the construction of generalized

measures on Hilbert spaces. Let H be a real separable Hilbert space with norm

| · |, scalar product (·, ·) and is equipped with Borel σ-algebra B(H). Let µ be a

probability measure on (H,B(H)). A standard way of describing µ is to first define

it on a family of “elementary” sets (cylinder sets) and then extend it to the minimal

σ-algebra containing these sets. Let us denote by F(H) the family of all finite
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dimensional subspaces of H. Let us consider K ∈ F(H) and let B(K) be the Borel

σ-algebra on K.

Let OK : H → K be the orthogonal projection operator. For any set A ∈ B(K),

the cylinder set with base A, is defined as

O−1
K (A) := {x ∈ H : OK(x) ∈ A} (1.1.1)

Let CK(H) be the collection of all cylinder sets with base in B(K). It is a σ-algebra

on H. Let us denote the union of all σ-algebras CK(H) by C(H) i.e.

∪
K
CK(H) = C(H).

It can be shown that σ-closure of C(H) coincides with B(H) [Sko74, Ch.1].

Let µ be a probability measure on (H,B(H)). For any K ∈ F(H), let us define the

measure µK on B(K), by the formula

µK(A) = µ
(
O−1
K (A)

)
.

The measure µK is called the projection of measure µ onto the subspace K. The

collection of all such projections µK , K ∈ F(H), is called the system of finite

dimensional distributions of measure µ.

Let us consider K1, K2 ∈ F(H) such that K1 ⊂ K2. Let B(K1) and B(K2) be the

Borel σ-algebras defined on them and consider A1 ∈ B(K1) and

A2 = O−1
K1

(A1) ∩K2 ∈ B(K2).

We define the consistency condition by the formula

µK1(A1) = µK2(A2). (1.1.2)

A family of measures µ′ = {µK} where each µK is a probability measure on

B(K), K ∈ F(H), is called a weak distribution if it satisfies consistency condition.

11
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It is clear that the system of finite dimensional projections of any probability

measure µ on H satisfies the consistency conditions (1.1.2) and is therefore a weak

distribution. In general we know that not every weak distribution defines a

measure on H, that is, coincides with the system of finite dimensional

distributions of some probability measure µ on H. The condition that a weak

distribution must satisfy in order to correspond a measure is given in the following

lemma.

Lemma 1.1.1. Let Br be the ball centered at zero and radius r, in H. The weak

distribution {µK} is generated by some measure µ on (H,B(H)) if and only if for

every ε > 0 there exists b > 0 such that for all K ∈ F(H),

µK(Br ∩K) > 1− ε, r > b.

Definition 1.1.2. A function φ : H → R is called cylinder if there exists a finite

dimensional subspace K ⊂ H such that φ is CK(H) measurable. Every cylinder

function has the form

φ(x) = φK(OK(x)), (1.1.3)

for some K ∈ F(H) and B(K) measurable function φK : K → R.

Let µ′ = {µK} be a weak distribution. Then for an arbitrary non-negative

cylinder function φ(x) we can define its integral with respect to the weak distribution

µ′ by the formula ∫
H

φ(x)µ′(dx) =

∫
K

φK(x)µK(dx), (1.1.4)

where φK is as in (1.1.3). Observe that the representation given in (1.1.3) is not

unique. So it must be shown that the expression on right hand side of (1.1.4) does

not depend on choice of K. Let K1, K2 ∈ F(H) such that K1 ⊂ K2 and

φ(x) = φK2(OK2(x)) = φK1(OK1(x)), x ∈ H.
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1.1. Measures on Hilbert spaces

Then for x ∈ K2

φK1(OK1(x)) = φK2(x).

Hence ∫
K2

φK2(x)µK2(dx) =

∫
K1

φK1(x)µK1(dx),

because of the consistency condition (1.1.2). This implies that the right hand side

of (1.1.4) is independent of choice of K so the integral on the left hand side is well

defined. Lemma 1.1.1 can also be stated in the form of integrals.

Lemma 1.1.3. The weak distribution {µK} is generated by some measure µ on

(H,B(H)) if and only if

lim
ε↓0

∫
exp{−ε(x, x)} µ′(dx) = 1.

Let us give an example of a weak distribution which does not correspond to

any measure on H.

Example 1.1.4. For any finite dimensional K ⊂ H, define a measure µK by the

formula

µK(A) = αK

∫
A

exp

(
−1

2
(x, x)

)
mK(dx), A ∈ B(K), (1.1.5)

where mK(dx) is the Lebesgue measure associated with a Euclidean structure on K,

which is generated by the Hilbert structure of H. Observe that mK(dx) does not

depend on the particular choice of orthonormal basis in K. Let us set αK = (2π)−n,

where 2n is the dimension of K.

Let us show that the collection µ′ = {µK} is a weak distribution. Let K1 and K2 be

two finite dimensional subspaces of H such that K1 ⊂ K2 and let K ′ is orthogonal

to K1 and K2 = K1 + K ′. Then for A1 ∈ B(K1) and A2 = O−1
K1

(A1) ∩K2 ∈ B(K2)
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1.1. Measures on Hilbert spaces

we can write

µK2(A2) = αK2

∫
A2

exp

(
−1

2
(x, x)

)
mK2(dx)

= αK1αK

∫
A1

exp

(
−1

2
(x1, x1)

)
mK1(dx)

∫
K

exp

(
−1

2
(x, x)

)
mK2(dx).

Using the fact that

αK

∫
K

exp

(
−1

2
(x, x)

)
mK(dx) = 1 for any K,

we get

µK2(A2) = µK1(A1).

It proves that the consistency condition is satisfied. So that the family {µK} forms

a weak distribution on H. Next step is to prove that (from Lemma 1.1.3)

lim
ε↓0

∫
φε(x) µ′(dx) 6= 1,

where φε(x) = exp{−ε(x, x)} and µ′ is the finite dimensional distributions under

consideration. We start with the following function. For an arbitrary ε > 0, and

K ∈ F(H) let us consider the cylinder function

φK,ε(x) := exp

(
−ε(OK(x),OK(x))

)
.

For this function we have∫
φK,ε(x)µ′(dx) = αK

∫
exp

(
−1

2
(1 + 2ε)(x, x)

)
mK(dx) = (1 + 2ε)−n/2,

where 2n is the dimension of K. Let us consider an increasing sequence of sets

{Kn}n∈N ⊂ F(H) such that ∪
n
Kn is dense in H. Now we approximate the integral

of φε(x) with the help of the sequence of functions φKn,ε(x) given by the formula

φKn,ε(x) = exp
(
−ε(OKn(x),OKn(x))

)
,
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1.1. Measures on Hilbert spaces

where OKn is projection operator onto Kn. Then we have∫
φKn,ε(x)µ′(dx) = (1 + 2ε)−

n
2 .

Observe that for an arbitrary sequence Kn we have φKn,ε(x) ↓ φε(x) as n→∞. So

we obtain,

lim
ε→0

∫
φε(x)µ′(dx) = lim

ε→0

{
lim
n→∞

∫
φKn,ε(x)µ′(dx)

}
(1.1.6)

= lim
ε→0

{
lim
n→∞

(1 + 2ε)−
n
2

}
= 0,

Therefore finite dimensional distributions µK defined by (1.1.5) do not correspond

a measure.

Similar to the case of measures on finite dimensional spaces, any probability

measure µ on H can be defined by its characteristic functional.

Definition 1.1.5. Characteristic functional

Let µ be a probability measure on (H,B(H)). Consider a function φz : H → C given

by the formula φz(x) := exp{ı(z, x)}, z ∈ H. The characteristic functional ψ of the

measure µ is defined as

ψ(z) =

∫
φz(x) µ(dx) , z ∈ H. (1.1.7)

Observe that φz is bounded and B(H)-measurable, so ψ(z) <∞ for all z ∈ H.

The characteristic functional has the following properties:

1. ψ(0) = 1.

2. ψ : H → C is continuous.

3. ψ is positive definite, in the sense that, for any N ∈ N an arbitrary set

z1, · · · , zN ∈ H
N∑

i,j=1

ψ(zi − zj)αi
−
αj > 0

for all α1, · · · , αN ∈ C.
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1.1. Measures on Hilbert spaces

In the infinite dimensional case, the properties (1) − (3) do not guarantee that ψ

is a characteristic functional of some measure on H. The Minlos-Sazonov theorem

gives necessary and sufficient conditions. To state this theorem we need the notion

of trace-class operators.

Definition 1.1.6. Trace-class operator

A symmetric operator T : H → H is called a trace-class operator if for any

orthonormal basis {gi}i∈N of H, it satisfies the condition

Tr(T) :=
∑
i

(Tgi, gi) <∞, where the series converges absolutely. The trace Tr(T)

is independent of the choice of the orthonormal basis.

Theorem 1.1.7. [Minlos-Sazonov Theorem] A complex valued function ψ(z),

defined on H, is the characteristic functional of a normalized measure on

(H,B(H)) if and only if it satisfies conditions (1) − (3), and for any ε > 0 there

exists a symmetric, positive and trace-class operator Tε such that

Re(ψ(0)− ψ(z)) < ε when (Tεz, z) < 1.

Gaussian Measures on Hilbert Spaces

A very important class of measures on Hilbert spaces is given by Gaussian measures.

There are variety of ways in literature to define Gaussian measure. We give the

following definition.

Definition 1.1.8. A measure ηα,A on (H,B(H)) is called Gaussian measure with

mean vector α and covariance operator A if its characteristics functional has the

form

ηα,A(ω) = eı〈α,ω〉−
1
2
〈Aω,ω〉, ω ∈ H. (1.1.8)

Here α ∈ H and A is a symmetric, bounded and non-negative operator in H.
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1.1. Measures on Hilbert spaces

Theorem 1.1.9. (See e.g. [DF91]) The weak distributions defined by the (1.1.8) is

σ-additive on H (that is, it defines a measure on H) if and only if, the operator A

is of trace-class.

Observe that Example 1.1.4 is concerned with a Gaussian measure with

correlation operator A = Id. Thus it is not concentrated on H. In fact, for general

A it is always possible to construct a bigger space (superset of H) such that, the

measure corresponding to the finite dimensional distributions µK , is concentrated

on it. This will be discussed in next section.

Generalized Measures in Hilbert Spaces

If a weak distribution on H satisfies conditions of Minlos-Sazonov theorem then it

corresponds some measure on (H,B(H)). Lemma 1.1.3 and Example 1.1.4 show that

this is not always the case. If such measure fails to exist then the weak distribution

is generated by a so-called generalized measure constructed on some extension of

H. The theory of rigged Hilbert spaces, developed by I. Gelfand [GSS64], is used to

construct suitable extensions of H. The measures generated by weak distributions

in H, concentrate on these extensions. These are called generalized measures on H.

Let H0 be a Hilbert space and let 〈· , ·〉0 be the inner product and ‖ · ‖0 be the norm

defined on it. We use the same subscript for elements of that space, for example,

x0, y0 denote elements of H0. Let A : H0 → H0 be a bounded, linear, symmetric,

positive operator. Let us define another inner product on H0 by the formula

〈 x0, y0 〉− = 〈 Ax0, y0 〉0 (1.1.9)

and the norm ‖ · ‖− defined by the formula

‖ x0 ‖2
− = 〈 Ax0, x0 〉0.
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1.1. Measures on Hilbert spaces

Let us denote the completion of H0 in this norm by HA
−. To keep our notations

simple, we ignore A in HA
− for now and denote it as H−. We will use HA

− where

necessary. By construction H0 is everywhere dense in H− that is H0 ⊂ H−. The

positivity of the operator A implies that, there exists A1/2 such that A = A1/2A1/2.

We will use the notation A−1/2 := (A1/2)−1. Let us denote the domain of the

operator A−1/2 by H+. The continuity and positivity of A1/2 implies that H+ is

dense in H0. It can be equipped with the scalar product

〈 x+, y+ 〉+ = 〈 A−1x+, y+ 〉0.

The operator A can be extended to H− using the continuity argument. Therefore

we have the relations

A1/2H− = H0 , A1/2H0 = H+ , AH− = H+ (1.1.10)

Thus the space H− can be identified with the dual of H+ in the inner product of

H0, see e.g. [BK95]. It gives the triple H+ ⊂ H0 ⊂ H−, referred as Rigged Hilbert

space or Gelfand triple.

Lemma 1.1.10. If a symmetric, positive operator A is trace-class in H0 then it can

be extended to a symmetric, positive and trace-class operator in H−.

Proof. By definition of scalar product in H− we have

〈Ax−, y−〉− = 〈Ax−,Ay−〉0.

Thus, we can write

〈Ax−, y−〉− = 〈Ax−,Ay−〉0 = 〈x−,Ay−〉−

and

〈Ax−, x−〉− = 〈Ax−,Ax−〉0 > 0.

18



1.1. Measures on Hilbert spaces

It proves that A is symmetric and positive in H−. Now we prove that A is trace-

class in H−. Let us consider that A admits a system of eigenvectors λi that forms

an orthonormal basis {ei} in H0, that is

λi = 〈Aei, ei〉, where 〈ei, ei〉 = 1.

We will use the notation Tr(A)0 for the trace of A in H0. We have assumed that A

is trace-class in H0 so we have

Tr(A)0 =
∞∑
i=1

λi <∞.

Let us set

ki =
ei√
λi
.

The family {ki} forms an orthonormal basis in H−. The trace of A in H− is given

by

Tr(A)− =
∞∑
i=1

〈A ki , ki 〉− =
∞∑
i=1

〈A ki , A ki 〉0

=
∞∑
i=1

〈A2 ki , ki 〉0 =
∞∑
i=1

1

λi
〈A2 ei , ei 〉0

=
∞∑
i=1

λi = Tr(A)0 <∞.

�

Let µ be a probability measure on H− and consider that its characteristic

functional is given by the formula

ψ−(x−) =

∫
H−

eı〈x−,y−〉−µ(dx−).

Define a functional ψ on H+ by the formula

ψ(x+) =

∫
H−

eı〈x+,x−〉0µ(dx−).
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1.1. Measures on Hilbert spaces

From (1.1.10) we know that ψ− can be expressed in terms of ψ. Indeed, we have

ψ−(x−) = ψ(Ax−)

Thus ψ characterizes the measure µ. It turns out that any positive definite,

continuous functional on H0 defines a measure on certain extension of H0. We

have the following theorem.

Theorem 1.1.11. Let ψ be a continuous, positive definite functional on H0 such

that ψ(0) = 1 and assume that operator A is of trace-class in H0. Define

ψ− : HA
− → C by the formula

ψ−(x−) = ψ(Ax−) (1.1.11)

Then ψ− is the characteristic functional of some measure on H−.

Proof. We need to check that ψ− satisfies following conditions:

1. ψ−(0) = 1,

2. ψ− : HA
− → C is continuous,

3. ψ− is positive definite, in the sense that, for an arbitrary set x1
−, · · · , xN− ∈ H−

we have
N∑

i,j=1

ψ(xi− − x
j
−)αi

−
αj > 0

for all α1, · · · , αN ∈ C,

4. For every ε > 0 there exists a trace-class operator Aε in H− such that

Re(ψ−(0)− ψ−(x−)) 6 ε when 〈Aεx−, x−〉 6 1.

The first condition is obviously satisfied because ψ(0) = 1.

We know that ψ is a continuous functional and A is a continuous operator so by

20



1.1. Measures on Hilbert spaces

virtue of the relation (1.1.11) ψ− is also a continuous functional.

To prove positive definiteness let us proceed as follows. For an arbitrary set

x1
+, · · · , xN+ ∈ H+, we know from positive definiteness of ψ that,

N∑
i,j=1

ψ(xi+ − x
j
+)βi

−
βj > 0.

Setting xk+ = Axk−, k = 1, · · · , N , we can write

N∑
i,j=1

ψ(A(xi− − x
j
−))βi

−
βj > 0, (1.1.12)

which implies that
N∑

i,j=1

ψ−(xi− − x
j
−)βi

−
βj > 0,

which completes the proof of third condition.

Now for the last condition let us start with continuity of ψ(x+), which implies that,

for each ε > 0 there exists a δ > 0 such that,

Re(ψ(0)− ψ(x+)) 6 ε, when 〈x+, x+〉0 < δ.

We know that Ax− ∈ H+, therefore for x− ∈ H− we have

Re(ψ(A0)− ψ(Ax−)) 6 ε, when 〈Ax−,Ax−〉0 6 δ.

Or

Re(ψ−(0)− ψ−(x−)) 6 ε, when 〈1
δ
Ax−, x−〉0 6 1.

Let us denote Aε = 1
δ
A. From Lemma 1.1.10 we know that A is a trace-class

operator in H− which implies that Aε is a trace-class operators in H−. It completes

the proof. �

The measure corresponding to the characteristic functional ψ−(x−) is called

the generalized measure on H0.
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1.2. Configuration Spaces

1.2 Configuration Spaces

Definitions, Main Notations and Structures

In this section, we collect some known facts about configuration spaces of Euclidean

spaces, following [AKR98a, AKR98b, BD09].

Finite Configuration Spaces

Let X = Rd be a d-dimensional Euclidean space. Let B(X) denote the collection

of Borel sets in X and Bb(X) the collection of bounded sets in B(X). Let

Xn = X × X × · · · × X be the Cartesian product of n copies of X with the

corresponding Borel σ-algebra B (Xn) defined on it. We define, for each n ∈ Z+,

the space X(n) of n-point configurations (n-point subsets) in X, that is,

X(n) = {ξ ⊂ X, | ξ | = n }, n ∈ Z+ , (1.2.1)

where | A | denotes cardinality of the set A. Similarly, for each Λ ∈ Bb(X) we can

define X
(n)
Λ by the formula

X
(n)
Λ = {η ⊂ Λ, | η | = n }, n ∈ Z+.

We also define the space

X̃n = {(x1, x2, · · · , xn) ∈ Xn; xi 6= xj, ∀ i 6= j}. (1.2.2)

Let us consider the map p : X̃n −→ X(n) defined by the formula

p (x1, x2, · · · , xn) = {x1, x2, · · · , xn}. (1.2.3)

Observe that the space X(n) can be identified with the quotient space X̃n/Sn where

Sn is the symmetric group acting on X̃n by permutations of the coordinates. Under
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1.2. Configuration Spaces

this identification, the map p coincides with the canonical projection

X̃n → X̃n/Sn.

We equip X(n) with the topology induced by the map p. The corresponding

σ-algebra B(X(n)) coincides with the σ-algebra generated by the mappings

qΛ : X(n) → Z+ defined for every Λ ∈ Bb(X) by the formula

qΛ(ξ) = | ξ ∩ Λ |. (1.2.4)

Next we introduce the space of finite configurations X0 as the union

X0 =
⋃

n∈Z+

X(n). (1.2.5)

It is equipped with the topology of disjoint union of topologies and the

corresponding Borel σ-algebra is denoted by B(X0).

Infinite Configuration Spaces

A configuration space over X, denoted by ΓX , is defined as the set of all locally

finite subsets (configurations) in X:

ΓX := {γ ⊂ X, |γ ∩K| <∞ for eachK ∈ Bb(X)}.

Here |A| denotes the cardinality of set A. We can identify each γ ∈ ΓX with a

Radon measure

γ =
∑
x∈γ

δx,

on X. Here δx denotes the Dirac measure at x. Thus, ΓX becomes a subset of

the set M0(X) of all Radon measures on X. Recall that M0(X) has a standard
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1.2. Configuration Spaces

topology called the vague topology. It induces the relative topology O(ΓX) on ΓX

that is the minimal topology with respect to which each mapping of the form

ΓX 3 γ 7−→ 〈f, γ〉 :=
∑
x∈γ

f(x) ∈ R, f ∈ C0(X), (1.2.6)

is continuous. Here C0(X) denotes the set of all continuous functions on X with

compact support. The topology O(ΓX) is separable and completely metrizable, see

e.g. [KMM78]. Let us denote the corresponding Borel σ-algebra by B(ΓX). The

σ-algebra B(ΓX) coincides with the σ-algebra generated by the mappings of the

form

qΛ : ΓX → Z+ such that qΛ(γ) := | γ ∩ Λ |,

that is

B(ΓX) = σ(qΛ : Λ ∈ Bb(X)).

For every Λ ∈ Bb(X) let us define the configuration space ΓΛ by the formula

ΓΛ = {γ ∈ ΓX : γ ⊂ Λ}.

It is obvious that,

ΓΛ =
⋃
n∈Z+

X
(n)
Λ .

It can be shown [Oba87] that the restriction mappings hΛ : ΓX → ΓΛ defined by

hΛ(γ) = γ ∩ Λ , Λ ∈ Bb(X),

are B(ΓX)/B(ΓΛ)-measurable. Let ν be a positive measure on B(ΓX). Note that

the family of measures {νΛ} defined by

νΛ := ν ◦ h−1
Λ , Λ ∈ Bb(X),

is consistent, that is, for all Λ1,Λ2 ∈ Bb(X) such that Λ1 ⊂ Λ2

h∗Λ2,Λ1

(
νΛ2
)

= νΛ2 ◦ h−1
Λ2,Λ1

= νΛ1 .
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1.2. Configuration Spaces

Conversely, by a version of Kolmogorov’s extension theorem for projective limit

spaces, the consistent family of measures {νΛ} defines a unique measure ν ′ on ΓX

such that

νΛ = h∗Λ ν
′ , Λ ∈ Bb(X).

see e.g. [Par67].

Poisson Measures

Let µ be a non-atomic Radon measure on the measure space (X,B(X)), that is, for

all Λ ∈ Bb(X) we have µ(Λ) <∞. Let µ̂ = µ⊗µ⊗ · · · ⊗µ be the product measure

on Xn defined by the formula

µ̂n(A) =
n∏
i=1

µ(Ai); A = A1 × A2 × · · · × An, ∀ Ai ∈ B(X). (1.2.7)

The product measure µ̂ defines a finite measure on X̃n and we can define its image

measure νn on X(n) under the map pn : X̃n → Xn by the formula

νn(A) = p∗n µ̂n(A) = µ̂n
(
p−1
n (A)

)
, ∀ A ⊂ X(n). (1.2.8)

That is, νn is the push-forward measure of µ̂ under the map pn.

The Lebesgue-Poisson Measure Πµ on ΓΛ with the intensity measure µ is defined

by the formula

Πµ :=
∞∑
n=0

1

n!
νn.

The measure Πµ is a finite measure on B(ΓΛ) and for all Λ ∈ Bb(X) we have

Πµ(ΓΛ) = eµ(Λ).

Hence, we can define the probability measure πµ,Λ on B(ΓΛ) by the formula

πµ,Λ := e−µ(Λ)Πµ. (1.2.9)
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1.2. Configuration Spaces

For sets B1, · · · , Bk ∈ B(X) and n1, · · · , nk ∈ Z+, let us define the cylinder sets

Cn1,··· ,nk
B1,··· ,Bk by the formula

Cn1,··· ,nk
B1,··· ,Bk = {γ ∈ X0 : | γ ∩Bi | = ni , i = 1, · · · , k}.

Note that, for pairwise disjoint sets B1, · · · , Bk the measure πµ,Λ satisfies the

following property

πµ,Λ
(
Cn1,··· ,nk
B1,··· ,Bk

)
=

M∏
i=1

µ (Bi)
ni e−µ(Bi)

ni !
.

It implies that for sets Bi the values | γ ∩ Bi | are mutually independent random

variables with mean values µ(Bi) on the probability space (ΓΛ,B(ΓΛ), πµ,Λ). Using

definition of the measure Πµ,Λ and expression for Laplace transform of πµ,Λ, the

consistency property of the family {πµ,Λ : Λ ∈ Bb(X)} can be proved (See e.g.

[Oba87]). Hence, by a version of Kolmogorov’s extension theorem we can obtain a

unique probability measure πµ on B(ΓX) such that

πµ,Λ = p∗Λ πµ , Λ ∈ Bb(X). (1.2.10)

The measure πµ is called the Poisson measure on B(ΓX) with intensity measure µ.

We follow a standard procedure to compute Laplace transform of the measure πµ.

Let us consider the function f ∈ C0(X) and let γΛ := γ ∩ Λ for every Λ ∈ Bb(X).

For Λ = supp(f), we can write

〈f, γ〉 = 〈f, γΛ〉 , γ ∈ ΓX ,

and therefore ∫
ΓX

e〈f,γ〉πµ(dγ) =

∫
X0

e〈f,γΛ〉πµ,Λ(dγΛ).
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1.2. Configuration Spaces

Using definition of πµ,Λ we get

e−µ(Λ)

∞∑
n=0

1

n!

∫
X0

exp

(
n∑
k=0

f(xk)

)
µ(dx1) · · ·µ(dxn)

= e−µ(Λ)

∞∑
n=0

1

n!

∫
Λ

ef(x)µ(dx)

n

= exp

∫
X

(
ef(x) − 1

)
µ(dx)

 .

Hence for all f ∈ C0(X), the Laplace transform of the measure πµ can be written

as

Lπµ(f) :=

∫
ΓX

e〈f,γ〉πµ(dγ) = exp

∫
X

(
ef(x) − 1

)
µ(dx)

 . (1.2.11)

Differentiable Functions and Vector Fields

For each point x ∈ X = Rd, let us denote the tangent space at that point by TxX and

the associated tangent bundle would be denoted by the space T (X) =
⋃
x∈X TxX.

The gradient on X is denoted by ∇. Following [AKR98a], we define the tangent

space of the configuration space ΓX at γ ∈ ΓX as the Hilbert space

TγΓX := L2(X → TX; dγ),

or equivalently

TγΓX =
⊕
x∈γ

TxX.

The scalar product in TγΓX is denoted by 〈·, ·〉γ.

A vector field U over ΓX is a mapping

ΓX 3 γ 7→ U(γ) = (U(γ)x)x∈γ ∈ TγΓX .
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1.2. Configuration Spaces

Thus, for vector fields U1, U2 over ΓX we have

〈U1(γ), U2(γ)〉γ =
∑
x∈γ

U1(γ)x • U2(γ)x , γ ∈ ΓX .

For γ ∈ ΓX and x ∈ γ, denote by Oγ,x an arbitrary open neighborhood of x in

X such that Oγ,x ∩ γ = x. For any measurable function F : ΓX → R, define the

function Fx(γ, �) : Oγ,x → R by

Fx(γ, y) := F ((γ�x) ∪ y),

and set

∇xF (γ) := ∇Fx(γ, y)|y=x , x ∈ X,

provided Fx(γ, �) is differentiable at x. In what follows we will use the following

notations; C∞0 (X) for the set of all C∞-functions on X with compact support,

C∞b (X) for the set of all C∞-functions in X with bounded derivatives and V ect0(X)

for the space of compactly supported smooth vector fields on X.

Definition 1.2.1. Denote by FC(ΓX) the class of functions on ΓX of the form

F (γ) = f
(
〈φ1, γ〉, · · · , 〈φk, γ〉

)
, γ ∈ ΓX , (1.2.12)

where k ∈ N, f ∈ C∞b (Rk), and φ1, · · · , φk ∈ C∞0 (X).

Each F ∈ FC(ΓX) is local, that is, there is a compact set K ⊂ X, which

depends on F such that F (γ) = F (γK) for all γ ∈ ΓX . Thus, for a fixed γ there are

only finitely many non-zero derivatives ∇xF (γ).

For a function F ∈ FC(ΓX), its Γ-gradient ∇ΓF is defined as follows:

∇ΓF (γ) := (∇xF (γ))x∈γ ∈ TγΓX , γ ∈ ΓX . (1.2.13)

The directional derivative of F along a vector field U is given by

∇Γ
UF (γ) := 〈∇ΓF (γ), U(γ)〉γ =

∑
x∈γ

∇xF (γ) • U(γ)x , γ ∈ ΓX (1.2.14)
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1.2. Configuration Spaces

Note that the sum on the right-hand side contains only finitely many non-zero terms.

Further let FU(ΓX) be the class of cylindrical vector fields U on ΓX of the form

U(γ)x =
k∑
i=1

Ai(γ)ui(x) ∈ TxX , x ∈ X, (1.2.15)

where Ai ∈ FC(ΓX) and ui ∈ V ect0(X), and i = 1, · · · , k (k ∈ N).

Any vector field u ∈ V ect0(X) generates a constant vector field U on ΓX defined

by V (γ)x := u(x). We shall preserve the notation u for it. Thus,

∇Γ
uF (γ) =

∑
x∈γ

∇xF (γ) � u(x) , γ ∈ ΓX (1.2.16)

Integration by Parts Formula

Now we give the integration by parts formula for the Poisson measure πµ on ΓX .

Let us start with the notion of logarithmic derivatives for a measure on X. Let

us consider a measure µ on X which is absolutely continuous with respect to the

Lebesgue measure and has density ρ > 0. The logarithmic derivative is given by

X 3 x 7→ βµ(x) :=
∇Xρ(x)

ρ(x)
∈ TxX. (1.2.17)

Here ∇X is the gradient on X. For all v ∈ V ect0(X) and f ∈ C∞0 (X) we define the

directional derivative ∇X
v f(x) of f(x) by the formula

(∇X
v f1)(x) := 〈∇Xf1(x), v(x)〉TxX .

Therefore, using (1.2.17), for f1, f2 ∈ C∞0 (X) we can write∫
X

(∇X
v f1(x)f2(x)µ(dx) = −

∫
X

f1(x)(∇X
v f2)(x)µ(dx)−

∫
X

f1(x)f2(x)βµv (x)µ(dx),

where βµv is called the vector logarithmic derivative of the measure µ along the vector

v and is given by

βµv (x) := 〈βµ(x), v(x)〉TxX + divXv(x), (1.2.18)
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where divX is the divergence on X. The following result is proved in [AKR98a]

Theorem 1.2.2. For the Poisson measure πµ, for all f, g ∈ FC(ΓX) and for any

v ∈ V ect0(X), the following integration by parts formula holds:∫
ΓX

(
∇Γ
vf
)

(γ) g(γ) πµ(dγ) (1.2.19)

= −
∫

ΓX

f(γ)∇Γ
vg(γ) πµ(dγ)−

∫
ΓX

f(γ) g(γ) βπµv (γ) πµ(dγ). (1.2.20)

where β
πµ
v is called the vector logarithmic derivative of πµ and is given by the formula

βπµv (γ) := 〈βµv , γ〉 =

∫
X

[
〈βµ(x), v(x)〉TxX + divXv(x)

]
γ(dx), (1.2.21)

where βµ is as given in (1.2.17).



Chapter 2

A class of Measures on

Configuration Spaces

2.1 Push-Forward Construction of Measures on

Configuration Spaces

2.1.1 Measures on Finite Configuration Spaces

Consider the n-point configuration space X(n). We can use the projection map

p : X̃n −→ X(n) (cf. (1.2.3)) in order to construct a probability measure on X(n).
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2.1. Push-Forward Construction of Measures on Configuration Spaces

Indeed for any probability measure θ on X̃n, we can define the push-forward measure

ν on X(n) by the formula

ν(A) = p∗ θ(A) = θ(p−1(A)) , A ∈ B(X(n)). (2.1.1)

The measure ν is a probability measure on X(n) because θ is probability measure

and the map p is measurable. A simple example of ν can be constructed as follows:

Let µ be a probability measure on X which is absolutely continuous with respect

to the Lebesgue measure m on R,

µ(dx) = m(x)dx,

where the density m(x) is continuous. Let us set

θ(dx1, · · · , dxn) ≡ µ̂(dx) :=
n
×
i=1
µ(dxi)

= m(x1) · · ·m(xn)dx1 · · · dxn. (2.1.2)

µ̂ has continuous density with respect to the Lebesgue measure and thus µ̂ (X̃n) = 1.

Thus ν is a probability measure on X(n). Let us consider a random configuration

γ ∈ X(n) distributed according to ν.

Lemma 2.1.1. Let B ∈ B(X). The average number of points of γ in B is given by

the formula

Eν (#(γ ∩B)) = nµ(B), (2.1.3)

where Eν is expectation with respect to measure ν.

Proof. We first prove that, for any f ∈ C0(X) the following equality holds:∫
X(n)

〈f, γ〉ν(dγ) = n

∫
Rd

f(x)µ(dx). (2.1.4)

Using the definition of the push-forward measure ν we can write the left hand side

of (2.1.4) as:
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∫
X(n)

〈f, γ〉ν(dγ) =

∫
Xn

〈f, p(x)〉 µ̂(dx).

Further using the definition of the product measure µ̂ (formula (1.2.7)) we obtain:

∫
Xn

〈f, p(x)〉 µ̂(dx) =

∫
Xn

[
n∑

k = 1

f(xk)

]
µ(dx1)µ(dx2) · · ·µ(dxn)

= n

∫
Rd

f(x)µ(dx).

Observe that,

Eν(#(γ ∩B)) =

∫
X(n)

〈1B, γ〉 ν(dγ),

where 1B is the indicator function of set B and Eν represents the expectation w.r.t.

the measure ν. Formula (2.1.4) implies that

Eν(#(γ ∩B)) = n

∫
B

µ(dx) = nµ(B).

�

Remark 2.1.2. Observe that lim
n → ∞

Eν(#(γ ∩B)) =∞

Let Γ\X be the space of all countable subsets (configurations) in X with

accumulation and multiple points, and let Γ̈X be the space of configurations in X

without accumulation but with multiple points. That is, Γ̈X is the set of all

Z+-valued Radon measures on X.

We can try to directly extend the construction above to the infinite setting in the

following way. Consider the infinite product space

X∞ =
∞
×
k=1

Xk , Xk = X ,

33
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and define a map by the formula

p ((x1, · · · , xn, · · · )) = {x1, · · · , xn, · · · }.

An attempt to use the map p in order to define a measure on ΓX meets several

problems first of which is the configuration so formed can have multiple and

accumulation points and thus does not belong to ΓX in general. The way to

overcome this difficulty is to use the approach suggested in [VGG75]. That is, we

can consider a measurable subset A of X∞ such that the image of A under p is the

space Γ̈X and then prove that (a) the set A has a full measure and (b) the map

p : A→ Γ̈X is a measurable map.

Moreover, we cannot expect this solution to work directly because of the Remark

2.1.2. Indeed, consider the product measure

µ̂∞ =
∞
×
k=1

µk, µk = µ

on X∞. Similar to the case of finite product,

µ̂∞(X̂∞) = 1,

where

X̂∞ = X∞\Diag(X∞)

and

Diag(X∞) = {x ∈ X∞ ; xk = xj, for some xk, xj ∈ Zd}

Now we can define a measure ν on Γ̈X by the formula

ν = p∗µ̂∞

It is clear however that the average number of points of a random configuration γ

distributed according to µ̂∞ in any bounded set B ⊂ X will be infinite. Indeed,
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similar to the proof of the Lemma 2.1.1,

E (#(γ ∩B)) =
∞∑
k=1

µk(B) = lim
n→∞

nµ(B) =∞.

Thus ν = p∗µ̂∞ is not concentrated on the space ΓX of locally finite

configurations. Therefore, we need to modify the map p.

2.1.2 Push-forward measures on Infinite Configuration

Spaces

As we have seen in the previous section that the construction on measure ν, in the

previous section, cannot be directly extended to infinite configuration spaces. In

order to be able to do that, we need to modify the projection map p.

We can modify the construction above in the following way. Consider the infinite

product space

XZd = ×
k∈Zd

Xk, Xk = X

where Zd is the d-dimensional integer lattice and the product is the Cartesian

product of identical copies of X. The elements of XZd will be denoted by

x = (xk)k∈Zd , xk ∈ X, for any k ∈ Zd. For k = (k1, · · · , kd) ∈ Zd we define

|k| =
d∑

m=1

|km|.

Let θ be a probability measure on XZd and p : XZd → Γ\X be a map defined in the

following way:

p :
(
xk
)
k∈Zd 7−→ {xk + η(|k|) k}k∈Zd , (2.1.5)

where η : N→ N is a function satisfying the estimate

η(m) > m
n
2
−1 ,m ∈ N and for some n ∈ N. (2.1.6)
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We can define the push-forward measure νθ = p∗ θ on Γ\X be the formula

νθ(A) = θ
(
p−1(A)

)
, ∀ A ⊂ ΓX . (2.1.7)

The correct choice of constant r in the formula (2.1.6) will guarentee that the

measure νθ is in fact concentrated on ΓX . It is known that the series
∑
k∈Zd

(1+ |k|r)−2

converges for r > d. In what follows, we set r = d just for simplicity. We set

η(m) = md−1, so that the map p obtains the form

p(x) = {xk + α(k)}k∈Zd , (2.1.8)

where

α(k) = |k|d−1k (2.1.9)

In what follows we study properties of so defined measure νθ for some important

classes of measures on XZd . We restrict ourselves to measures concentrated on

certain Hilbert subspaces of XZd .

2.2 Translation-Invariant Measures on XZd and

their Properties

In this section, we introduce a class of measures on XZd , which will be used for

construction of push-forward measures on ΓX .

2.2.1 Gelfand Triple Associated with XZd

Let XZd
0 be the subspace of XZd which consists of all finite sequences in XZd and is

equipped with the norm ‖ · ‖0 generated by the inner product

(u , v)0 =
∑
k∈Zd

uk vk, u = (uk)k∈Zd , v = (vk)k∈Zd ∈ XZd
0 .

36



2.2. Translation-Invariant Measures on XZd and their Properties

The completion of XZd
0 in the norm ‖·‖0 is a real Hilbert space which will be denoted

by H0 = l2(X). Thus we have

H0 = l2(X) =

{
x ∈ XZd , x = (xk)k∈Zd s.t.

∑
k∈Zd
|xk|2 <∞

}
.

We now have the following rigging of the Hilbert space H0:

XZd
0 ⊂ H0 ⊂ XZd ,

where the duality pairing of XZd
0 and XZd is given by the inner product in H0:

(u , w)0 =
∑
k∈Zd

uk wk, u ∈ XZd
0 , w ∈ XZd .

Let (u,v)+ be an inner product on XZd
0 defined by the formula

(u,v)+ :=
∑
k∈Zd

uk vk(1 + |k|d)2, u,v ∈ XZd
0 .

Let us consider the Hilbert space H+, which is the completion of XZd
0 with respect

to the norm ‖ · ‖+ generated by this inner product.

Now let (x,y)− be the inner product on H0 defined by the formula

(x,y)− =
∑
k∈Zd

xk yk(1 + |k|d)−2, x,y ∈ H0.

Let H− be the completion of H0 in the norm ‖ · ‖− which is generated by this inner

product. H− can be identified in a standard way with the dual space H′+ using the

inner product (·, ·)0, see [BK95]. Thus we have constructed the chain of spaces

XZd
0 ⊂ H+ ⊂ H0 ⊂ H− ⊂ XZd . (2.2.1)

Let K1 and K2 be real Hilbert spaces. We denote by Ck(K1, K2) the set of all

mappings from K1 to K2 that are k-times continuously differentiable in the sense
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of Fréchet (e.g. [BK95]) and by Ck
b (K1, K2) the set of all mappings g of the class

Ck(K1, K2) with global boundedness in the usual operator norms of the derivatives

g(l) : K1 → L(K1,L(K1, · · · ,L(K1, K2) · · · ) , l = 0, 1, · · · , k,

where L(K1, K2) denotes the space of bounded linear operators from K1 into K2.

For any function f ∈ C2(H−) := C2(H−,R) we will identify the derivatives

f ′(x) ∈ L(H−,R) and f ′′(x) ∈ L(H−,L(H−,R)) with the vector f̂ ′(x) ∈ H+ and

the operator f̂ ′′(x) ∈ L(H−,H+) respectively, by the following formulae:

f ′(x)y = (f̂ ′(x),y)0 , x,y ∈ H−

(f ′′(x)y)z = (f̂ ′′(x)y, z)0 , x,y, z ∈ H− (2.2.2)

Let us denote by BH−(y, r) an open ball in H− centered at y and of radius r. We

have the following result.

Lemma 2.2.1. For any y ∈ H− and R ∈ R+, there exists N ∈ N such that for all

x ∈ BH−(y, 1
4
) and for all k ∈ Zd with |k| > N , we have

|xk + α(k)| > R,

where α(k) is defined by the formula (2.1.9).

Proof. For any y ∈ H− we have∑
k∈Zd

y2
k(1 + |k|d)−2 <∞,

which implies that

εk := |yk|(1 + |k|d)−1 → 0, |k| → ∞.

Let us fix y ∈ H− and choose N1 ∈ N such that for all k ∈ Zd with |k| > N1, we

have εk <
1
4
, so that

|yk| = εk(1 + |k|d) < 1

4
(1 + |k|d).
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For any x ∈ BH−(y, 1
4
) and k ∈ Zd with |k| > N1, we have

|xk + α(k)| = |xk − yk + yk + |k|d−1k|

> |yk + |k|d−1k| − |xk − yk|,

> |k|d − |yk| −
1

4
(1 + |k|d)

= |k|d − εk(1 + |k|d)− 1

4
(1 + |k|d)

> |k|d − 1

2
(1 + |k|d) =

1

2
(|k|d − 1).

Here we have used the estimate |xk − yk|(1 + |k|d)−1 6 ‖x− y‖− 6 1
4
. Let N2 ∈ N

be such that

Nd
2 > 2R + 1, (2.2.3)

and set N = max(N1, N2). Then for k ∈ Zd with |k| > N , we have

|xk + α(k)| > R,

as required. �

Corollary 2.2.2. For the map p, defined in (2.1.5), we have

p(H−) ⊂ Γ̈X . (2.2.4)

Proof. Let us fix x ∈ H− and show that the configuration p(x) does not have

accumulation points. Let Λ ⊂ X be compact and choose R ∈ R+ such that

Λ ⊂ BX(0, R). By Lemma 2.2.1 (with y = x) there exists N ∈ N such that

|xk + α(k)| > R for all k ∈ Zd with |k| > N . It implies that |xk + α(k)| /∈ Λ, and

the result follows. �

We preserve the same notation for the restriction of p on H−.

Theorem 2.2.3. The map p : H− → Γ̈X is continuous.
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Proof. Recall that the topology in Γ̈X is defined as the weakest topology that

makes all mappings γ 7→ 〈γ, f〉, f ∈ C0(X), continuous. Therefore it is sufficient to

show that for any f ∈ C0(X) the map H− 3 x 7−→ 〈p(x), f〉 is continuous.

We fix f ∈ C0(X) and choose R ∈ R+ such that suppf ⊂ BX(0, R). Let x ∈ H−

be fixed and {x(n)}∞n=1 be a sequence of elements of H− that converges to x in H−

as n→∞. Without loss of generality we can assume that {x(n)}∞n=1 ⊂ BX(x, 1/4).

Lemma 2.2.1 implies that there exists N such that

|x(n)
k + α(k)| > R , |xk + α(k)| > R , |k| > N,

which in turn implies that

f(x
(n)
k + α(k)) = f(xk + α(k)) = 0 , for |k| > N.

Therefore

∣∣〈p(x), f〉 − 〈p(x(n)), f〉
∣∣ 6 ∑

k∈Zd

∣∣∣f(x
(n)
k + α(k))− f(xk + α(k))

∣∣∣ (2.2.5)

=
∑
k∈Zd
|k|6N

∣∣∣f(x
(n)
k + α(k))− f(xk + α(k))

∣∣∣ (2.2.6)

−→ 0 , n→∞, (2.2.7)

because x
(n)
k → xk as n→∞, and f is continuous. �

Lemma 2.2.4. Let µ be a probability measure on X. Then for a bounded Borel set

Λ ⊂ X we have ∑
k∈Zd

µ(Λ− α(k)) <∞, (2.2.8)

where

Λ− α(k) := {y − α(k) : y ∈ Λ}.
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Proof. In order to prove that the series in (2.2.8) converges we cover the set Λ with

open balls. Let S(x) denote the open ball of radius 1
2

centered at x ∈ Λ. Define the

collection S of all open balls with centers in Λ:

S = {S(x) ; x ∈ Λ}.

S is an open cover for Λ. The compactness of Λ implies that there exists a finite

sub-cover T of S,

T = {Si = S(xi) ; i = 1, 2, · · · , n}, n ∈ N.

Let us define sets Λi in the following way:

Λi = Λ ∩ Si , Si ∈ T.

Clearly

Λ =
n⋃

i = 1

Λi and

Λ− α(k) =
n⋃

i = 1

(Λi − α(k)). (2.2.9)

Now we can write∑
k ∈ Zd

µ(Λ− α(k)) ≤
∑
k ∈ Zd

(
n∑

i = 1

µ(Λi − α(k))

)

=
n∑

i = 1

( ∑
k ∈ Zd

µ(Λi − α(k))

)
. (2.2.10)

As Si are open balls of radius 1
2
, for i = 1, · · · , n we have(

Λi − α(k)
)
∩
(
Λi − α(m)

)
= ∅ , for any k 6= m ∈ Zd.

Therefore ∑
k ∈ Zd

µ(Λi − α(k)) = µ

( ⋃
k∈Zd

(Λi − α(k))

)
6 µ(X)
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Thus ∑
k∈Zd

µ(Λ− α(k)) 6
n∑

i = 1

µ

(⋃
k∈Zd

(Λi − α(k))

)

≤
n∑

i = 1

µ(X) = n µ(X) <∞.

�

Theorem 2.2.5. Let µ be a probability measure on X, such that∫
X

|y|Sµ(dy) < ∞, for any S ∈ R+.

Then, for any bounded Borel set A ⊂ X and M,N ∈ N, we have∑
k∈Zd

µ(A− α(k))(1 + |k|M)N <∞.

Proof. The set A is bounded so, for am, bm ∈ X we can choose a d-dimensional

cube

Λ = ×
m=1,··· ,d

[am, bm]

such that A ⊂ Λ. Using arguments similar to the proof of Lemma 2.2.4, we can

assume that bm − am < 1/2, m = 1, · · · , d. Then the shifted sets Λ− α(k), k ∈ Zd

are mutually disjoint, that is (Λ − α(k)) ∩ (Λ + α(r)) = ∅ for k 6= r ∈ Zd. We

have ∑
k∈Zd

µ(A− α(k))(1 + |k|M)N 6
∑
k∈Zd

µ(Λ− α(k))(1 + |k|M)N

=
∑
k∈Zd

b1−α(k)1∫
a1−α(k)1

· · ·
bd−α(k)d∫

ad−α(k)d

(1 + |k|M)N µ(dx).

For any m = 1, · · · , d and for y = (y1, · · · , yd) ∈ Λ− α(k) we have

am − ym 6 α(k)m 6 bm − ym,
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where α(k)m is the m-th component of the multi-index α(k). Then

|α(k)m| 6 max ( |am − ym|, |bm − ym| ) ,

and

|k|d =
d∑

m=1

|α(k)m| 6 max

(
d∑

m=1

|am − ym|,
d∑

m=1

|bm − ym|

)

6 d max


√√√√ d∑

m=1

|am − ym|2,

√√√√ d∑
m=1

|bm − ym|2


= d max (‖a− y‖, ‖b− y‖ ) .

Then

(1 + |k|M)N 6

(
1 + dM/d max

(
‖a− y‖M/d, ‖b− y‖M/d

))N

6 C

(
1 + dMN/d max

(
‖a− y‖MN/d, ‖b− y‖MN/d

))

6 C

(
1 + dMN/d

(
‖a− y‖MN/d + ‖b− y‖MN/d

))
,

For some constant C > 0. So we have∑
k∈Zd

µ(A− α(k))(1 + |k|M)N

6
∑
k∈Zd

b1−α(k)1∫
a1−α(k)1

· · ·
bd−α(k)d∫

ad−α(k)d

C

(
1 + dMN/d

(
‖a− y‖MN/d + ‖b− y‖MN/d

))
µ(dy)

6 Cµ(X) + dMN/d

∫
X

(
‖a− y‖MN/d + ‖b− y‖MN/d

)
µ(dy) <∞,

because of our assumption on moments of the measure µ. Thus∑
k∈Zd

µ(A− α(k))(1 + |k|M)N <∞,
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as required. �

Theorem 2.2.6. Let µ be a probability measure on X, such that∫
X

|y|Sµ(dy) < ∞, y ∈ X, for any S ∈ R+.

Then, for any bounded Borel set A ⊂ X, and any numbers p,M,N ∈ N, we have

∑
k∈Zd

µ(A− α(k))1/p(1 + |k|M)N <∞.

Proof. Assume first that M > d and let q ∈ N such that
1

p
+

1

q
= 1. We can write

∑
k∈Zd

µ(A− α(k))1/p(1 + |k|M)N (2.2.11)

=
∑
k∈Zd

µ(A− α(k))1/p(1 + |k|M)N(1 + |k|M)2/q(1 + |k|M)−2/q. (2.2.12)

Using Holder’s Inequality, we get

∑
k∈Zd

µ(A− α(k))1/p(1 + |k|M)N(1 + |k|M)2/q(1 + |k|M)−2/q

6

[∑
k∈Zd

µ(A− α(k))(1 + |k|M)pN(1 + |k|M)2p/q

]1/p [∑
k∈Zd

(1 + |k|M)−2

]1/q

6

[∑
k∈Zd

µ(A− α(k))(1 + |k|M)N1

]1/p [∑
k∈Zd

(1 + |k|M)−2

]1/q

,

(2.2.13)

where N1 is the smallest integer such that N1 > (N + 2p)/q. We have

∑
k∈Zd

µ(A− α(k))(1 + |k|M)N1 <∞.
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by Theorem 2.2.5 and

(1 + |k|M)−2 <∞,

because M > d. Observe that, for M < d we have

∑
k∈Zd

µ(A− α(k))(1 + |k|M)N

<
∑
k∈Zd

µ(A− α(k))(1 + |k|d)N <∞, (2.2.14)

and the theorem is proved. �

2.2.2 Main Assumptions and Examples of Measures

Let θ be a Borel probability measure on H− satisfying the following conditions:

(1) θ (Diag(H−)) = 0, where

Diag(H−) = {x ∈ H− ; ∃ k, j ∈ Zd s.t. xk − xj ∈ Zd} (2.2.15)

(2) For every j ∈ Zd, θ is invariant under the map Sj : X Zd 7−→ X Zd defined by

the formula

Sj :
(
xk
)
k∈Zd 7−→

(
xk+j

)
k∈Zd , (2.2.16)

that is,

S∗j θ = θ , j ∈ Zd. (2.2.17)

(3) All moments of θ are finite, that is,∫
H−

|xk|pθ(dx) <∞ , p = 1, 2, · · · , k ∈ Zd. (2.2.18)

Now we present three examples of measures that satisfy conditions (1)− (3) above.
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Example: Product Measures

Let µ be a probability measure on X. We assume that the following conditions

hold.

(1) All moments of the measure µ are finite, that is∫
X

|x|pµ(dx) <∞ , p = 1, 2, · · · . (2.2.19)

(2) The measure µ is absolutely continuous with respect to the Lebesgue measure

on X.

Consider the product measure

θ = ⊗
k∈Zd

µk , k ∈ Zd , µk = µ. (2.2.20)

The measure θ is a probability measure on XZd , see e.g [Hal74].

Proposition 2.2.7. The measure θ is supported on H− and satisfies conditions

(1)− (3) of Section 2.2.2.

Proof. We first prove that θ(H−) = 1. We have∫
XZd

‖x‖2
−θ(dx) =

∫
XZd

∑
k∈Zd

|xk|2(1 + |k|d)−2θ(dx)

=
∑
k∈Zd

(1 + |k|d)−2

∫
X

|x|2µ(dx) <∞. (2.2.21)

Observe that ‖x‖2
− = ∞ for x ∈ Hc

−, where Hc
− = XZd\H−, which together with

above formula implies that θ(Hc
−) = 0. Thus θ(H−) = 1.

Now let us verify conditions (1)− (3).

Condition (1): For every k, j ∈ Zd, define the set

Dkj = {x ∈ XZd : xk − xj ∈ Zd}. (2.2.22)

46



2.2. Translation-Invariant Measures on XZd and their Properties

Obviously, Diag(H−) ⊂ ∪
k,j ∈Zd

Dkj. Due to the structure of the measure θ we have

θ(Dkj) = µ⊗ µ(Diag(X2)), for any k, j ∈ Zd,

where Diag(X2) = {(x, y) ∈ X2 : x − y ∈ Zd}. The measure µ ⊗ µ is absolutely

continuous with respect to the Lebesgue measure on X2, which implies that

µ⊗ µ(Diag(X2)) = 0. Therefore

θ(Diag(H−)) 6
∑
k,j∈Zd

µ⊗ µ(Diag(X2)) = 0.

Condition (2): It follows directly from formula (2.2.20) that

S∗j θ = ⊗
k∈Zd

µk+j = θ , j ∈ Zd.

So condition (2.2.15) is satisfied.

Condition (3): We have∫
XZd

|xk|pθ(dx) =

∫
X

|x|pµ(dx) <∞, for any k ∈ Zd,

because of the condition (2.2.19). �

Example: Gaussian Measures

Let A be a bounded, strictly positive, symmetric linear operator in H0. We assume

that A commutes with the map Sj (defined in (2.2.16)), that is

SjA = ASj , j ∈ Zd. (2.2.23)

Observe that the map Sj, j ∈ Zd preserves the space H0. Let θ0 be the Gaussian

measure on H− with zero mean and correlation operator A−1. It can be defined by

its characteristic functional by the formula∫
H−

exp( i (x,y)0 )θ0(dx) = exp(−1

2
(A−1y,y)0 ), y ∈ H+ , (2.2.24)

see e.g. [BK95, DF91].
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Proposition 2.2.8. The measure θ0 satisfies Conditions (1) - (3) of Section (2.2.2).

Proof. Condition (1): It is sufficient to show that θ0(Dkj) = 0 for any k, j ∈ Zd,

where the set Dkj is defined in (2.2.22). We have

θ0(Dkj) = θkj0 (Diag(X2)),

where θkj0 is the projection of θ0 on the space X2 = Xk ×Xj. It is known that all

finite dimensional projections of a Gaussian measure on a Hilbert space are Gaussian

(see [DF91]). Thus θkj0 is a Gaussian measure on X2, and is therefore absolutely

continuous with respect to the Lebesgue measure on X2, which implies that

θkj0 (Diag(X2)) = 0.

Condition (2) and (3): Condition (2) follows directly from the formula (2.2.23).

It is known ([DF91]) that θ0 satisfies Condition (3). �

Example: Gibbs Measures

Let θ0 be the Gaussian measure defined in the previous section. Consider the block

matrix representation of B in the decomposition

XZd = ×
k∈Zd

Xk , Xk = X

B = (Bkj)k,j ∈Zd , (2.2.25)

where Bkj : Xk → Xj is a linear bounded operator (which can be identified with a

d× d matrix). We assume that Bkj = 0 if |k − j| > N0 for some N0 ∈ N.

B is strictly positive, that is,

∃ CB > 0, ∀ y ∈ H−, 〈By,y〉 > CB|y|2. (2.2.26)
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Let P(t), t ∈ R be a polynomial of even order, that is

P(t) = a0 + a1t+ · · ·+ a2nt
2n, a2n > 0, (2.2.27)

and set P (x) = P(|x|), x ∈ X. For any finite Λ ⊂ Zd and ε > 0 we can define the

Gibbsian modification of the measure θ0 as

θΛ
ε (dx) =

1

M
exp

[
−ε
∑
k∈Λ

P (xk)

]
θ0(dx), (2.2.28)

where M is the normalization factor given by

M =

∫
XZd

exp

[
−ε
∑
k∈Λ

P (xk)

]
θ0(dx).

For ε sufficiently small, there exists the limit θε := limΛ→Zdθ
Λ
ε in the sense of week

convergence of finite dimensional distributions [MR00]. We will call θε the Gibbs

measure defined by B, P and ε.

Proposition 2.2.9. The measure θε is supported on H− and satisfies Conditions

(1) - (3) of Section 2.2.2.

Proof. We know from [AKR95] that θε is Sj-invariant for j ∈ Zd and∫
XZd

|xk|pθε(dx) <∞ , p = 1, 2, · · · .

So Conditions (2) and (3) are satisfied. In particular, we have∫
XZd

|xk|2θε(dx) := M <∞.

Therefore, similar to (2.2.21),∫
XZd

‖x‖2
−θε(dx) =

∫
XZd

∑
k∈Zd

|xk|2(1 + |k|d)−2θε

6M
∑
k∈Zd

(1 + |k|d)−2 <∞, (2.2.29)

49



2.3. Support and Finiteness of Moments of Push-Forward Measures

which implies that θε(H−) = 1.

Let us now prove condition (1). To prove this we use Dobrushin-Lanford-Ruelle

(DLR) equation for Gibbs measure. For all bounded Λ ⊂ Zd and f ∈ FC∞b (XZd)

let us define the measure ΠΛ(y, dx) by the formula∫
XZd

f(x)ΠΛ(y, dx) =
1

Z

∫
XZd

e−EΛ(x,y)f(xΛ × yΛc)θ(dxΛ) (2.2.30)

where xΛ = (xk)k∈Λ and

EΛ(x,y) =
∑
k∈Λ

P (xk)−
∑
k,j∈Λ

A(k − j)xk xj −
∑
k∈Λ
j∈Λc

A(k − j)xk xj

It is known that the measure θε satisfies the DLR-equation [Geo11], that is, for any

finite Λ, A ∈ Zd such that A ⊂ Λ we have

θε(A) =

∫
XZd

ΠΛ(y, A)θ0(dy) (2.2.31)

Now we can set A = Dkj and observe that

ΠΛ(y, Dkj) = 0,

for any Λ such that k, j 3 Λ. Then (2.2.31) implies that taε(Dkj) = 0. �

2.3 Support and Finiteness of Moments of Push-

Forward Measures

Let us consider a measure θ on XZd which satisfies conditions (1) − (3) of Section

2.2.2. Let us define the push-forward measure νθ on Γ̈X by the formula

νθ(A) = θ
(
p−1(A)

)
, ∀ A ⊂ ΓX , (2.3.1)
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where p is given by the formula {xk + α(k)}k∈Zd and α(k) = |k|d−1k (see (2.1.8)

for details). Theorem 2.2.3 implies that p : H− → Γ̈X is measurable (with respect

to the Borel σ-algebras B(H−) and B(Γ̈X)). Then the measure νθ is a probability

measure of Γ̈X .

Condition (1), stated in Section 2.2.2 (formula (2.2.15)) leads to the following

theorem:

Theorem 2.3.1. Measure νθ is supported on the space of configurations without

multiple points, that is,

νθ(ΓX) = 1.

Proof. It follows from the definition of the map p that the configuration

p(x),x ∈ H− has multiple points if and only if xk − xj = α(j) − α(k) for some

k, j ∈ Zd. Observe that α(j)− α(k) ∈ Zd. Therefore

p−1
(

Γ̈X�ΓX

)
⊂ Diag(H−).

Thus

νθ

(
Γ̈X�ΓX

)
= θ

(
p−1

(
Γ̈X�ΓX

))
6 θ ((Diag(H−))) = 0,

because of Condition (1) of Section 2.2.2. �

Definition 2.3.2. We say that a measure νθ on ΓX has finite n-th moments if

mn
νθ

(f) :=

∫
ΓX

|〈f, γ〉|n νθ(dγ) <∞ for any f ∈ C∞0 (X).

We denote byMn(ΓX) the class of all measures on ΓX with finite n-th moments.

Observe that, we have the inclusion

Mm(ΓX) ⊂Mn(ΓX) m < n , m, n ∈ N. (2.3.2)
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Indeed, by Holder’s inequality,

mm
νθ

(f) =

∫
ΓX

|〈f, γ〉|m νθ(dγ)

6

[ ∫
ΓX

|〈f, γ〉|n νθ(dγ)

]m/n
=
(
mn
νθ

(f)
)m/n

, (2.3.3)

which implies the inclusion.

In what follows, we prove that second moments of the measure νθ are finite. We

introduce the following notations. Let

X Zd \ j = ×
k∈Zd
k 6= j

Xk,

∨
xj =

(
xk
)
k∈Zd
k 6= j

∈ X Zd \ j , j ∈ Zd. (2.3.4)

Any element x ∈ XZd can be identified with the pair

x =
( ∨

xj , xj
)
, j ∈ Zd.

For any k ∈ Zd we introduce the projection θk of the measure θ onto Xk = X,

that is,

θk(A) =

∫
XZd \ k

θ
(
d
∨
xk , A

)
, A ∈ B(X). (2.3.5)

Proposition 2.3.3. For any k, j ∈ Zd we have

θk = θj. (2.3.6)

Proof. Using notations (2.3.4) we can write∫
X

f(x) θk(dx) =

∫
Xk

f(xk)

[ ∫
XZd \ k

θ
(
d
∨
xk , dxk

)]

=

∫
XZd

f(xk)θ(dx). (2.3.7)
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The measure θ is invariant under the map Sj for any j ∈ Zd (defined by the formula

(2.2.16)), so that (2.3.7) can be rewritten in the form∫
XZd

f(xk) θ(dx) =

∫
XZd

f(xk)S
∗
j−k θ(dx)

=

∫
XZd

f(Sj−k xk) θ(dx)

=

∫
XZd

f(xj) θ(dx)

=

∫
X

f(x) θj(dx), (2.3.8)

which implies that

θk = θj. (2.3.9)

�

In what follows, we will use the notation

θk = θj = θ(1) , j ∈ Zd (2.3.10)

. We have the following result.

Theorem 2.3.4. We have νθ ∈M2(ΓX).

Proof. For f ∈ C0(X), the second moment of the measure νθ may be written as

m2
νθ

(f) =

∫
ΓX

〈 f, γ 〉2 νθ(dγ)

=

∫
XZd

( ∑
k ∈ Zd

fk(xk)

)2

θ(dx),
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2.3. Support and Finiteness of Moments of Push-Forward Measures

where fk(xk) = f(xk + α(k)). Thus

m2
νθ

(f) =

∫
XZd

( ∑
k,j ∈ Zd

fk(xk)fj(xj)

)
θ(dx)

6
∫
XZd

( ∑
k,j ∈ Zd

|fk(xk)| |fj(xj)|

)
θ(dx)

=
∑

k,j ∈ Zd

∫
XZd

|fk(xk)| |fj(xj)| θ(dx). (2.3.11)

Here summation and integration are interchanged using Tonelli’s theorem (see e.g.

[AE09, Ch.6]). By Cauchy-Schwartz Inequality, we can write∫
XZd

|fk(xk)| |fj(xj)| θ(dx) 6

√√√√ ∫
XZd

f 2
k (xk)θ(dx)

∫
XZd

f 2
j (xj)θ(dx)

Therefore we have

m2
νθ

(f) 6
∑

k,j ∈ Zd

√√√√ ∫
XZd

f 2
k (xk)θ(dx)

∫
XZd

f 2
j (xj)θ(dx)

=

( ∑
k∈Zd

√√√√ ∫
XZd

f 2
k (xk)θ(dx)

)2

=

( ∑
k∈Zd

√√√√∫
X

f 2
k (x)θ(1)(dx)

)2

6 max
x∈X

f 2

( ∑
k∈Zd

√
θ(1) (supp(f)− α(k))

)2

(2.3.12)

The expression on the right hand side converges by the Theorem 2.2.6 with µ = θ(1).

It implies that second moment of the measure νθ is finite. �
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Corollary 2.3.5. Due to the inclusion (2.3.2) we have νθ ∈M1(ΓX).

Remark 2.3.6. For a fixed bounded set Λ ∈ B(x) the νθ-average number of elements

of a configuration γ ∈ ΓX is finite, that is,

Eνθ(#(γ ∩ Λ)) =

∫
ΓX

〈1λ, γ) νθ(dγ).

This together with the Corollary 2.3.5 gives an alternative proof of the fact that νθ

is concentrated on ΓX .

Remark 2.3.7. The n-th moment of the measure νθ can be expressed in the

following form

mn
νθ

=

∫
ΓX

〈 f, γ 〉n νθ(dγ) =

∫
XZd

( ∑
k ∈ Zd

fk(xk)

)n

θ(dx)

It can shown by the arguments similar to the proof of Theorem 2.3.4 that

νθ ∈Mn(ΓX).
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Chapter 3

Integration by Parts Formula for

Push-Forward Measures

3.1 Integration by Parts Formula on XZd

In this section, we recall main definitions related to the integration by parts (IBP)

formula on the space XZd following [AKR95]. Let us denote by FC∞b (XZd) the set

of functions f : XZd → R of the form

f(x) = fN(xm1 , · · · , xmN ) , x ∈ XZd , (3.1.1)
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3.1. Integration by Parts Formula on XZd

for some N ∈ N, m1, · · · ,mN ∈ Zd, and fN ∈ C∞b (XN) (which depend on f).

Similarly we can also define the set FCk
b (XZd) for any k ∈ N, assuming that

fN ∈ Ck
b (XN). For f ∈ FC∞b (XZd) let us define the gradient ∇f(x) by the

formula

XZd 3 x 7−→ ∇f(x) = (∇kf(x))k∈Zd ∈ X
Zd
0 ,

where

∇kf(x) =
∂

∂xk
fN(xm1 , · · · , xmN ).

Let us introduce the class M(H−) of all probability measures on H− possessing a

logarithmic derivative. That is, θ ∈ M(H−) if and only if the following formula

holds for any φ ∈ XZd
0 and f ∈ FC∞b (XZd) :∫

H−

(∇f(x), φ)0 θ(dx) = −
∫
H−

f(x) βφθ (x)θ(dx), (3.1.2)

where βφθ : H− → R is a measurable function. βφθ is called the logarithmic derivative

of the measure θ in the direction of φ. It can be represented in the form

βφθ (x) = (βθ(x), φ)0, (3.1.3)

for some map βθ : H− → H−. The map βθ is called the vector logarithmic derivative

of the measure θ. We assume that it satisfies the condition∫
H−

‖βθ(x)‖4
− θ(dx) <∞. (3.1.4)

Example 3.1.1. Let θ0 be the Gaussian measure defined by the formula (2.2.24).

The integration by parts formulae (3.1.2) and (3.1.3) holds for the measure θ0 with

βφθ (x) = βθ0(x) := −Ax. (3.1.5)

It is known [BK95, DF91] that∫
H−

‖βθ0(x)‖p− θ0(dx) <∞ , for any p = 1, 2, · · · .
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3.1. Integration by Parts Formula on XZd

Example 3.1.2. Let θε be the Gibbs measure defined in Section 2.2.2. The

integration by parts formula (3.1.2) and (3.1.3) hold for the measure θε with the

vector logarithmic derivative

βφθ (x) = βθε(x) = βθ0(x) +Q(x), x ∈ H− , (3.1.6)

and Q : H− → H− is a measurable map having the representation

Q(x) = (Qk(x))k∈Zd , Qk(x) = −P ′(xk) k ∈ Zd , x ∈ H−

It is known [AKR95] that∫
H−

‖βθε(x)‖p−θε(dx) <∞ for any p = 1, 2, · · · . (3.1.7)

For any θ ∈M(H−), the IBP formula (3.1.2) can be extended to non-constant vector

fields.

The following result is known [DF91]:

Theorem 3.1.3. Let us consider a vector field V ∈ C1
b (H−,H+) (cf. Section 2.2.1)

given by its components by V (x) =
(
Vk(x)

)
k∈Zd. The integration by parts formula

takes the form∫
H−

(∇f(x), V (x))0 θ(dx) = −
∫
H−

f(x) (βθ(x) , V (x))0 θ(dx)

−
∫
H−

f(x) divV (x)θ(dx), f , g ∈ FC∞b (H−), (3.1.8)

where

divV (x) = TrV ′(x) =
∑
k∈Zd

divk Vk(x),

and divk(Vk) is the divergence of Vk : H− → R with respect to xk.
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3.1. Integration by Parts Formula on XZd

Integration by Parts Formula for a Special Class of Vector

Fields

In what follows we would like to establish the integration by parts formula for

a special class of vector fields on H−. Let θ be a probability measure on XZd

satisfying conditions (1)− (3) of Section 2.2.2. Let v ∈ V ect0(X) and define a map

v̂ : XZd → XZd by setting

v̂k(x) = v(xk + α(k))k∈Zd ,

where α(k) = |k|d−1k. The following result shows that v̂ generates a vector field on

H−.

Proposition 3.1.4. We have the following:

1. v̂ : H− → XZd
0 and

∫
H−
‖v̂(x)‖2

+θ(dx) <∞,

2. div v̂(x) <∞ , x ∈ H−, and
∫
H−
|divv̂(x)| θ(dx) <∞.

Proof. (1): By the definition of the space H−, every x ∈ H− satisfies the estimate

∑
k∈Zd

x2
k(1 + |k|d)−2 <∞.

This implies that x2
k(1 + |k|d)−2 → 0 as |k| → ∞, and we have,

|xk| = o(1 + |k|d).

The latter formula together with the triangle inequality and the identity

|α(k)| = |k|d imply that

|xk + α(k)| > (|k|d − |xk|)→∞, |k| → ∞,
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3.1. Integration by Parts Formula on XZd

which in turn implies that, for any x ∈ H−, there exists N ∈ N such that for

|k| > N we have

xk + α(k) /∈ supp(v), k ∈ Zd.

Therefore, for any such k we have

v̂k(x) = v(xk + α(k)) = 0.

Therefore, for any x ∈ H−, only finite number of the elements of sequences v̂k(x)

are not equal to zero, which implies that v̂(x) ∈ XZd
0 .

Moreover, we can write∫
H−

‖v̂(x)‖2
+θ(dx) =

∫
H−

∑
k∈Zd
|v(xk + α(k))|2(1 + |k|d)2θ(dx).

Using the notation (2.3.10), we have

=
∑
k∈Zd

(1 + |k|d)2

∫
X

|v(x+ α(k))|2θ(1)(dx)

= sup
x∈X
|v(x)|

∑
k∈Zd

(1 + |k|d)2θ(1)(B − α(k)). (3.1.9)

Observe that sup
x∈X
|v(x)| < ∞ because v ∈ V ect0(X). Lemma 2.2.4 with µ = θ(1)

implies that the series in (3.1.9) converges. Thus∫
H−

‖v̂(x)‖2
+θ(dx) <∞.

(2): The first part of the statement follows directly from the fact that v̂k(x) = 0

for k big enough, so that it is only the finite number of non-zero terms in the right

hand side of the equality

div v̂(x) =
∑
k∈Zd

divkv̂k(xk).
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3.1. Integration by Parts Formula on XZd

In order to prove integrability of divv̂, we can write∫
H−

|divv̂(x)| θ(dx) =

∫
H−

∣∣∣∣∣∑
k∈Zd

divk v(xk + α(k))

∣∣∣∣∣ θ(dx),

=
∑
k∈Zd

∫
X

|div v(x+ α(k))| θ(1)(dx)

6 sup
x∈X
|div v(x)|

∑
k∈Zd

θ(1)(B − α(k)) <∞,

by Theorem 2.2.5 with µ = θ(1) (cf. proof of Part (1)). �

In the next theorem, we show that the integration by parts formula (3.1.8) can

be extended to the vector field v̂. Observe that we cannot apply Theorem 3.1.3

directly because v̂ /∈ C1
b (H−,H+), in general.

Theorem 3.1.5. For the vector field v̂(x), the integration by parts formula (3.1.8)

holds, that is,∫
H−

(∇f(x), v̂(x))0 θ(dx) = −
∫
H−

f(x) β v̂θ (x)θ(dx), f ∈ FC∞b (XZd) (3.1.10)

where the logarithmic derivative β v̂θ (x) of the measure θ in the direction of v̂ has the

form

β v̂θ (x) = (βθ(x), v̂(x))0 + divv̂(x). (3.1.11)

Moreover, β v̂θ ∈ L1(H−, θ).

Proof. We will use the following approximation arguments. Define a cut-off vector

field v̂(N) by setting 
v̂

(N)
k = v̂k , |k| 6 N,

v̂
(N)
k = 0 , otherwise.
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3.1. Integration by Parts Formula on XZd

Let us show that v̂(N) → v̂ in the space L2(H− → H+, θ) of square integrable maps

from H− to H+. Indeed,∫
H−

‖v̂(N)(x)− v̂(x)‖2
+θ(dx) =

∫
H−

∑
k∈Zd
|k|>N

|v(xk + α(k))|2(1 + |k|d)2θ(dx)

=
∑
k∈Zd
|k|>N

(1 + |k|d)2

∫
X

|v(x+ α(k))|2θ(1)(dx)

6 sup
x∈X
|v(x)|

∑
k∈Zd
|k|>N

(1 + |k|d)2θ(1)(B − α(k)).

We know that

sup
x∈X
|v(x)|

∑
k∈Zd

(1 + |k|d)2θ(1)(B − α(k)) <∞,

(cf. proof of Proposition 3.1.4, formula (3.1.9)), which implies that

sup
x∈X
|v(x)|

∑
k∈Zd
|k|>N

(1 + |k|d)2θ(1)(B − α(k)) −→ 0 , N →∞.

Therefore ∫
H−

‖v̂(N)(x)− v̂(x)‖2
+θ(dx) −→ 0, N →∞.

This convergence implies that

(βθ(·), v̂(N)(·))0 −→ (βθ(·), v̂(·))0 , N →∞, in L1(H−, θ).

It can be shown by similar arguments that

div v̂(N) → divv̂ , N →∞ , in L1(H−, θ),

and that

(∇f(·), v̂(N)(·))0 −→ (∇f(·), v̂(·))0 , N →∞, in L1(H−, θ).
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3.1. Integration by Parts Formula on XZd

Thus we have that

β v̂
(N)

θ −→ β v̂θ , N →∞, in L1(H−, θ), (3.1.12)

where

β v̂
(N)

θ (x) =
(
βvθ (x), v̂(N)(x)

)
0

+ divv̂(N)(x).

As a corollary of formula (3.1.12) we have that β v̂θ ∈ L1(H−, θ). It is clear that

v̂(N) ∈ C1
b (H−,H+) and therefore we have the following IBP formula∫

H−

(
∇f(x), v̂(N)(x)

)
0
θ(dx) = −

∫
H−

f(x) β v̂
(N)

θ (x)θ(dx), f ∈ FC∞b . (3.1.13)

The limit transition on both sides of the formula (3.1.13) implies the result of the

theorem. �

Next, we refine the integrability properties of the logarithmic derivative β v̂θ . Let

us introduce the Sobolev space H1,2(H−, θ) as a completion of the space FC∞b (XZd)

in the norm ‖ · ‖1,2 given by the formula

‖h‖2
1,2 =

∫
H−

|h(x)|2θ(dx) +

∫
H−

‖∇h(x)‖2
0θ(dx) (3.1.14)

Theorem 3.1.6. The IBP formula (3.1.10) holds for any f ∈ H1,2(H−, θ).

Proof. We will use the following approximation argument. Let {fn}∞n=1 be a

sequence of elements of FCb(XZd) that approximates f ∈ H1,2(H−, θ), that is,∫
H−

|f(x)− fn(x)|2θ(dx)→ 0 as n→∞, (3.1.15)

and ∫
H−

‖∇f(x)−∇fn(x)‖2
0θ(dx)→ 0 as n→∞, (3.1.16)
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For any fn , n = 1, 2, · · · , we have the IBP formula∫
H−

(∇fn(x), v̂(x))0θ(dx) = −
∫
H−

fn(x) β v̂θ (x)θ(dx). (3.1.17)

We can pass to the limit on both sides of the equality (3.1.17). Indeed, we have∫
H−

(∇
(
f(x)− fn(x)

)
, v̂(x))0θ(dx)

6

√√√√∫
H−

‖∇ (f(x)− fn(x)) ‖2
−θ(dx)

∫
H−

‖v̂(x)‖2
+θ(dx)

6

√√√√∫
H−

‖∇ (f(x)− fn(x)) ‖2
0θ(dx)

∫
H−

‖v̂(x)‖2
+θ(dx). (3.1.18)

Thus ∫
H−

(∇
(
f(x)− fn(x)

)
, v̂(x))0θ(dx) −→ 0, N →∞, (3.1.19)

because of the formula (3.1.16) and part (1) of the Proposition 3.1.4. The limit

transition in the right hand side of formula (3.1.17) is justified by (3.1.15) �

Proposition 3.1.7. The logarithmic derivative β v̂θ belongs to L2(H−, θ).

Proof. We need to prove that∫
H−

|β v̂θ (x)|2 θ(dx) <∞.

We have∫
H−

|β v̂θ (x)|2 θ(dx) =

∫
H−

∣∣(βθ(x), v̂(x)
)

0
+ divv̂(x)

∣∣2 θ(dx)

6 2

∫
H−

(
βθ(x), v̂(x)

)2

0
θ(dx) + 2

∫
H−

|divv̂(x)|2 θ(dx). (3.1.20)
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3.1. Integration by Parts Formula on XZd

Let us first prove that the second integral in (3.1.20) is finite. Indeed,

divv̂(x) =
∑
k∈Zd

ψ(xk + α(k)),

where ψ(x) = divv(x). Observe that ψ ∈ C0(X). We have∫
H−

|divv̂(x)|2 θ(dx) =

∫
H−

〈ψ, γ〉2νθ(dγ) <∞,

because νθ ∈M2(ΓX) (see Theorem (2.3.4)).

For the first integral in (3.1.20), using Cauchy-Schwartz and Hölder’s inequalities

we obtain∫
H−

(
βθ(x), v̂(x)

)2

0
θ(dx) 6

∫
H−

‖βθ(x)‖2
− ‖v̂(x)‖2

+ θ(dx)

6

√√√√∫
H−

‖βθ(x)‖4
− θ(dx)

√√√√∫
H+

‖v̂(x)‖4
+ θ(dx).

The first integral in the latter expression is finite by (3.1.4). Let us compute the

second integral. We have∫
H−

‖v̂(x)‖4
+ θ(dx) =

∫
H−

∣∣∣∣∣∑
k∈Zd

|v(xk + α(k))|2(1 + |k|d)2

∣∣∣∣∣
2

θ(dx)

=
∑

m,k∈Zd
DkDm

∫
H−

|v(xk + α(k))|2 |v(xm + α(m))|2θ(dx),

65



3.2. Integration by Parts Formula on ΓX

where Dk = (1 + |k|d)2 and Dm = (1 + |m|d)2. Using Hölder’s inequality we obtain∫
H−

‖v̂(x)‖4
+ θ(dx)

6
∑

k,m∈Zd
DkDm

√√√√∫
H−

|v(xk + α(k))|4θ(dx)

∫
H−

|v(xm + α(m))|4θ(dx)

6 sup
x∈X
|v(x)|4

∑
k,m∈Zd

DkDm

√
θ(1)(B − α(k))

√
θ(1)(B − α(m))

6 sup
x∈X

[∑
k∈Zd

(1 + |k|d)2
√
θ(1)(B − α(k))

]2

, (3.1.21)

where B = supp (v). The latter expression is finite by Theorem 2.2.6. �

3.2 Integration by Parts Formula on ΓX

The aim of this section is to prove an integration by parts formula for the measure

νθ on ΓX introduced in Section 2.3. First we need to introduce certain classes of

functions on ΓX . For a function F : ΓX → R, define the function IF := F ◦ p, that

is

IF (x) = F (p(x)) , x ∈ H−, (3.2.1)

where p : H− → ΓX is the projection map defined in (2.1.5). Clearly, IF is a

function on H−.

Lemma 3.2.1. The operator I defined above is an isometry from L2(ΓX , νθ) to

L2(H−, θ).
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Proof. By the formula (3.2.1), we have

‖F ‖2
L2(ΓX ,νθ) =

∫
ΓX

(F (γ))2νθ(dγ)

=

∫
H−

(IF (x))2 θ(dx)

= ‖ IF ‖2
L2(H−,θ) (3.2.2)

and the result is proved. �

Remark 3.2.2. The operator I is not an isomorphism. Indeed, the function IF (x)

is symmetric with respect to permutations of the components of x = (xk)k∈Zd, which

implies that I : L2(ΓX , νθ)→ L2(XZd , θ) is not surjective.

In what follows, we will use the notation F̂ = IF, F ∈ L2(ΓX , νθ).

Lemma 3.2.3. Let F ∈ FC(ΓX). Then we have F̂ ∈ H1,2(H−, θ).

Proof. According to the definition of the class FC(ΓX), F has the following form:

F (γ) = f
(
〈φ1, γ〉, · · · , 〈φm, γ〉

)
,

where m ∈ N, φj ∈ C∞0 (X) for j = 1, · · · ,m and f ∈ C∞b (Xm). We can write

F̂ (x) = IF (x) = F (p(x))

= f
(
〈φ1, p(x)〉, · · · , 〈φm, p(x)〉

)
, (3.2.3)

where

〈φj, p(x)〉 =
∑
k∈Zd

φj(xk + α(k))) , j = 1, · · · ,m ,

and α(k) = |k|d−1k. We will use the following notations:

φ̂j(x) := 〈φj, p(x)〉,

f
(
φ̂j(x)mj=1

)
:= f

(
φ̂1(x), · · · , φ̂m(x)

)
.
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3.2. Integration by Parts Formula on ΓX

So we have

φ̂j(x) =
∑
k∈Zd

φj(xk + α(k)))

and

F̂ (x) = f
(
φ̂j(x)mj=1

)
.

For any N ∈ N, let us set

φ̂Ni (x) =
∑
k∈Zd
|k|6N

φi(xk + α(k)),

and

F̂N(x) = f
(
φ̂Nj (x)

)m
j=1
.

According to formula (3.1.1),

F̂N ∈ FC∞b (XZd).

Formula (3.2.3) implies that

∇kF̂ (x) =
m∑
i=1

∂if
(
φ̂j(x)

)m
j=1
∇kφ̂i(x) , k ∈ Zd, (3.2.4)

and

∇kF̂
N(x) =

m∑
i=1

∂if
(
φ̂Nj (x)

)m
j=1
∇kφ̂

N
i (x) , k ∈ Zd, (3.2.5)

where ∂if is the i − th partial derivative of f . Observe that the expression (3.2.4)

is uniformly bounded, that is, ∃C ∈ R such that

|∇kF̂ (x)| 6 C , for all k ∈ Zd and x ∈ H−.

The estimate follows from the fact that f ∈ C∞b (Rm) and φi ∈ C∞0 (X).

Let us show that F̂N → F , N → ∞, in the norm of the space H1,2(H−, θ). We
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have to prove that∫
H−

(∣∣∣F̂N(x)− F̂ (x)
∣∣∣2 +

∥∥∥∇F̂N(x)−∇F̂ (x)
∥∥∥2

0

)
θ(dx)→ 0 , N →∞. (3.2.6)

We start with the first term in (3.2.6). We can write∣∣∣F̂N(x)− F̂ (x)
∣∣∣2 =

∣∣∣f( φ̂Nj (x)
)m
j=1
− f

(
φ̂j(x)

)m
j=1

∣∣∣2 .
We know that f ∈ C∞b (Rm) and is therefore globally Lipschitz. Thus, there exists

a constant C > 0 such that∣∣∣f( φ̂Nj (x)
)m
j=1
− f

(
φ̂j(x)

)m
j=1

∣∣∣2
6 C

m∑
i=1

∣∣∣φ̂Ni (x)− φ̂i(x)
∣∣∣2

= C
m∑
i=1

∣∣∣∣ ∑
k∈Zd
|k|>N

φi(xk + α(k))

∣∣∣∣2.
So we have∫

H−

∣∣∣F̂N(x)− F̂ (x)
∣∣∣2 θ(dx) 6 C

m∑
i=1

∫
H−

∣∣∣∣ ∑
k∈Zd
|k|>N

φi(xk + α(k))

∣∣∣∣2 θ(dx)

Observe that ∫
H−

∣∣∣∣∑
k∈Zd

φ(xk + α(k))

∣∣∣∣2 θ(dx) =

∫
ΓX

|〈φ, γ〉|2νθ(dγ) <∞,

because φi ∈ C∞0 (X), for i = 1, · · · ,m and νθ ∈ M2(ΓX) (Theorem 2.3.4). This

implies that ∫
H−

∣∣∣F̂N(x)− F̂ (x)
∣∣∣2 θ(dx)→ 0 , N →∞. (3.2.7)

Now let us consider the second integral in (3.2.6). Using formulae (3.2.4) and (3.2.5)

we can write∥∥∥∇F̂N(x)−∇F̂ (x)
∥∥∥2

0
=
∑
k∈Zd

∣∣∣∇kF̂
N(x)−∇kF̂ (x)

∣∣∣2
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6 2
∑
k∈Zd

m∑
i=1

∣∣∣∣∂if( φ̂Nj (x)
)m
j=1
∇kφ̂

N
i (x)− ∂if

(
φ̂j(x)

)m
j=1
∇kφ̂i(x)

∣∣∣∣2
6 2

∑
k∈Zd

m∑
i=1

∣∣∣∣∂if( φ̂Nj (x)
)m
j=1
∇kφ̂

N
i (x)− ∂if

(
φ̂j(x)

)m
j=1
∇kφ̂i(x)

+ ∂if
(
φ̂j(x)

)m
j=1
∇kφ̂

N
i (x)− ∂if

(
φ̂j(x)

)m
j=1
∇kφ̂

N
i (x)

∣∣∣∣2
6 2

∑
k∈Zd

m∑
i=1

∣∣∣∣(∂if( φ̂Nj (x)
)m
j=1
− ∂if

(
φ̂j(x)

)m
j=1

)
∇kφ̂

N
i (x)

+ ∂if
(
φ̂j(x)

)m
j=1

(
∇kφ̂

N
i (x)−∇kφ̂i(x)

)∣∣∣∣2
6 4

∑
k∈Zd

m∑
i=1

[∣∣∣∂if( φ̂Nj (x)
)m
j=1
− ∂if

(
φ̂j(x)

)m
j=1

∣∣∣2 ∣∣∣∇kφ̂
N
i (x)

∣∣∣2
+
∣∣∣∂if( φ̂j(x)

)m
j=1

∣∣∣2 ∣∣∣∇kφ̂
N
i (x)−∇kφ̂i(x)

∣∣∣2]
6 4(a1(x) + a2(x)), (3.2.8)

where

aN1 (x) = 4
∑
k∈Zd

m∑
i=1

[∣∣∣∂if( φ̂Nj (x)
)m
j=1
− ∂if

(
φ̂j(x)

)m
j=1

∣∣∣2 ∣∣∣∇kφ̂
N
i (x)

∣∣∣2]

aN2 (x) = 4
∑
k∈Zd

m∑
i=1

[∣∣∣∂if( φ̂j(x)
)m
j=1

∣∣∣2 ∣∣∣∇kφ̂
N
i (x)−∇kφ̂i(x)

∣∣∣2]. (3.2.9)

We will use the general form of Holder’s inequality. In our setting, it can be written

as,[ ∫
H−

m∑
i=1

|φi(x)ψi(x)|θ(dx)

]2

6
∫
H−

m∑
i=1

|φi(x)|2θ(dx)

∫
H−

m∑
i=1

|ψi(x)|2θ(dx) , φi , ψi ∈ C∞b (X) (3.2.10)
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Let us consider aN1 (x). Using (3.2.10) we obtain[ ∫
H−

aN1 (x)θ(dx)

]2

6 4

∫
H−

m∑
i=1

∣∣∣∂if( φ̂Nj (x)
)m
j=1
− ∂if

(
φ̂j(x)

)m
j=1

∣∣∣4 θ(dx)

∫
H−

m∑
i=1

[∑
k∈Zd

∣∣∣∇kφ̂
N
i (x)

∣∣∣2]2

θ(dx). (3.2.11)

We know that f ∈ C∞b (Rm), therefore the function ∂if is globally Lipschitz for any

i = 1, · · · ,m. Thus, there exists a constant C > 0 such that
m∑
i=1

∣∣∣∂if( φ̂Nj (x)
)m
j=1
− ∂if

(
φ̂j(x)

)m
j=1

∣∣∣4 (3.2.12)

6 C
m∑
i=1

∣∣∣φ̂Ni (x)− φ̂i(x)
∣∣∣4 (3.2.13)

= C
m∑
i=1

∣∣∣∣ ∑
k∈Zd
|k|>N

φi(xk + α(k))

∣∣∣∣4. (3.2.14)

So we have ∫
H−

m∑
i=1

∣∣∣∂if( φ̂Nj (x)
)m
j=1
− ∂if

(
φ̂j(x)

)m
j=1

∣∣∣4 θ(dx)

6 C
m∑
i=1

∫
H−

∣∣∣∣ ∑
k∈Zd
|k|>N

φi(xk + α(k))

∣∣∣∣4 θ(dx)

Observe that ∫
H−

∣∣∣∣∑
k∈Zd

φ(xk + α(k))

∣∣∣∣4 θ(dx) =

∫
ΓX

|〈φ, γ〉|4νθ(dγ) <∞,

because φi ∈ C∞0 (X), for i = 1, · · · ,m and νθ ∈ M4(ΓX) (Remark 2.3.7). This

implies that∫
H−

m∑
i=1

∣∣∣∂if( φ̂Nj (x)
)m
j=1
− ∂if

(
φ̂j(x)

)m
j=1

∣∣∣4 θ(dx)→ 0 , N →∞. (3.2.15)
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Now consider the second integral on the right hand side of the formula (3.2.11). We

have 
∣∣∣∇kφ̂

N
i (x)

∣∣∣2 = |∇φi(xk + α(k))|2 , |k| 6 N,

∣∣∣∇kφ̂
N
i (x)

∣∣∣2 = 0, |k| > N.

Let us denote

ψi(x) = |∇φi(xk + α(k))|2 .

We have ∫
H−

m∑
i=1

[∑
k∈Zd

ψi(x)

]2

θ(dx) =

∫
ΓX

|〈ψi, γ〉|2νθ(dγ) <∞, (3.2.16)

because ψi ∈ C∞0 (X), for i = 1, · · · ,m and νθ ∈ M2(ΓX) (Theorem 2.3.4).

Combining formulae (3.2.15) and (3.2.16) we obtain that∫
H−

aN1 (x)θ(dx)→ 0 asN →∞. (3.2.17)

Now we consider aN2 (x). We have

sup
x∈H−

∣∣∣∂if( φ̂j(x)
)m
j=1

∣∣∣ := C2 <∞

because ∂if ∈ C∞0 (Rm). By the arguments similar to the proof of convergence

(3.2.17) we can write∫
H−

a2(x)θ(dx) = 4C2

m∑
i=1

∫
H−

∑
k∈Zd
|k|>N

∣∣∣∣∇φ(xk + α(k))

∣∣∣∣2 θ(dx)

→ 0 as N →∞, (3.2.18)

This completes the proof. �

Let

I∗ : L2(XZd , θ)→ L2(ΓX , νθ) (3.2.19)
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be the adjoint operator of the isometry I. We are now in a position to prove the

main result of this section.

Theorem 3.2.4. Let v ∈ V ect0(X) and F ∈ FC(ΓX). Then the measure νθ on ΓX

given by (2.3.1) satisfies the integration by parts formula:∫
ΓX

∑
x∈γ

∇xF (γ) � v(x)νθ(dγ) =

∫
ΓX

F (γ)βvνθ(γ)νθ(dγ), (3.2.20)

where

βvνθ := I∗β v̂θ ∈ L2(ΓX , νθ). (3.2.21)

Proof. The left hand side of the formula (3.2.20) can be written in the form∫
ΓX

∑
x∈γ

∇xF (γ) � v(x)νθ(dγ) =

∫
XZd

∑
x∈p(x)

∇xF (p(x)) � v(x)θ(dx)

=

∫
XZd

∑
k∈Zd
∇kF̂ (x) � v(xk + α(k))θ(dx)

=

∫
XZd

(
∇F̂ (x) , v̂(x)

)
0

θ(dx) (3.2.22)

We know from Theorem 3.2.3 that F̂ ∈ H1,2(H−, θ). Thus we can apply the IBP

formula (3.1.10) to get∫
XZd

(
∇F̂ (x) , v̂(x)

)
0

θ(dx) =

∫
XZd

F̂ (x)β v̂θ (x) θ(dx) (3.2.23)

It has been shown in Proposition 3.1.7 that β v̂θ ∈ L2(XZd , θ). Therefore we can

rewrite the right hand side of (3.2.23) in the form∫
XZd

F̂ (x)β v̂θ (x) θ(dx) =

∫
ΓX

F (γ)

(
I∗β v̂θ

)
(γ) νθ(dγ). (3.2.24)
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Combining formulae (3.2.22), (3.2.23) and (3.2.24), we obtain the equality∫
ΓX

∑
x∈γ

∇xF (γ) � v(x)νθ(dγ) =

∫
ΓX

F (γ)βvνθ(γ)νθ(dγ), (3.2.25)

where

βvνθ = I∗β v̂θ ,

and the result follows. �
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Chapter 4

Logorathmic Sobolev Inequality of

Push-Forward Measures

4.1 What is Log-Sobolev Inequality

The purpose of this section is to prove the Logarithmic Sobolev Inequality (LSI)

for the measure νθ. We will derive it using the LSI for the measure θ. We need to

introduce suitable framework first.

To introduce the notion of LSI we state some known facts. Let (Y,B(Y ), µ) be a
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4.1. What is Log-Sobolev Inequality

probability space and H be a positive self-adjoint operator in L2(Y, µ) that is

〈Hf, f〉 > 0 for all f ∈ D(H), (4.1.1)

where 〈·, ·〉 denotes the inner product in L2 and D(H) denotes the domain of the

operator H. We will write Lp for Lp(Y, µ) in this subsection. Let Tt := exp(−tH)

be the corresponding semigroup in L2. For p, q ∈ [1,∞] we will write

‖Tt‖q→p := sup
{
‖Ttf‖p : f ∈ L2 ∩ Lq , ‖f‖q 6 1

}
,

where ‖ · ‖q denotes the Lq norm. The semigroup Tt is called contractive from Lq

to Lp if ‖Tt‖q→p 6 1. For all t > 0 the semigroup Tt is contractive in L2 if and only

if (4.1.1) holds for all f ∈ D(H) (See e.g. [Gro75])

The semigroup Tt is called positivity preserving if for all Borel measurable functions

f > 0 and for all t > 0 we have Ttf > 0. The semigroup Tt is positivity preserving

contractive semigroup if and only if

〈Hf, (f − 1)+〉 > 0 for all f ∈ D(H), (4.1.2)

where f+(x) = max{f(x), 0} (See e.g. [Gro75]).

Let µ be the symmetrizing measure for Tt, that is, all operators Tt, t > 0, are

symmetric in L2.

Definition 4.1.1. Log-Sobolev Inequality

We say that the measure µ satisfies the Logarithmic Sobolev Inequality with constant

CLS > 0 iff

CLS µ (f(Hf)) > µ(f 2 log(f))− ‖f‖2 log(‖f‖), (4.1.3)

for all f ∈ D(H). Here we use the notation

µ(g) =

∫
g(x)µ(dx), g : X → R1.
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4.1. What is Log-Sobolev Inequality

It is proved by Rothaus and Simon [Rot85, Sim76] in their famous mass gap

theorem that the Logarithmic Sobolev inequality (LSI) implies the Poincaré (or

Spectral-gap) inequality with CSG > CLS, that is,

1

CSG
µ(f(Hf)) > µ(f 2)− ‖f‖2,

for any f ∈ D(H). The Poincaré inequality implies that the spectrum of the operator

H has the gap (0, CSG). The following criteria of LSI are known:

Bakry-Emery criterion [BE84]:

Let us consider the function valued bilinear forms associated with the operator H,

Γ1(f, g) =
1

2

(
H(fg)− fHg − gHf

)
and

Γ2(f, g) =
1

2

(
H(Γ1(f, g))− Γ1(f,Hg)− Γ1(Hf, g).

)
,

where f, g ∈ D(H). The forms Γ1 and Γ2 are also referred as carré du champ and

carré du champ itéré, respectively. The operator H satisfies Bakry-Emery condition

if there exist a constant C such that

Γ2(f, g) >
1

C
Γ1(f, g).

Let us assume that the semigroup Tt is ergodic, that is,

lim
t→∞

Ttf(w) = µ(f), µ− a.s.,

for any bounded continuous function f . Then Bakry-Emery criterion states that µ

satisfies LSI with CLS = C.

Perturbation result of Holley and Stroock [HS87]: Let µ be a probability

measure that satisfies LSI with the constant CLS(µ) and let
−
µ be another probability
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measure which is absolutely continuous with respect to µ with density e−U(x), that

is
−
µ(x) := e−U(x)µ(x),

where U : R→ R is a bounded function. Then
−
µ satisfies LSI with the constant

CLS(
−
µ) > CLS(µ) · e−2OscU ,

where

OscU = sup
x∈X

U(x)− inf
x∈X

U(x).

Below are the examples of some measures satisfying LSI:

Example 4.1.2. Gaussian Measure

The Gaussian Measure on Rn satisfies Log Sobolev inequality (see e.g. [Gro75]),

with the constant CLS = 1.

Example 4.1.3. Product Measure

Let µk, k = 1, · · · , n be the probability measures defined on a Hilbert space H such

that they satisfy LSI with the constants CLS(µk) for k = 1, · · · , n. Then the product

measure given by the formula

−
µ(×Nk=1dx) := ×Nk=1µk(dxk)

satisfies LSI (see e.g. [Gro75]), with the constant

CLS
−
µ > min

16k6N
CLS(µk).

Example 4.1.4. Gibbs Measure

It has been shown in [AKR95] that the Gibbs measure θε on XZd given by (2.2.28),

satisfies LSI with constant CLS, provided that the condition given below, in (4.1.4)

holds. Let ε be as in (2.2.28) and for κ > 0 let us choose κ1 ∈ (0, κ0] such that

∀ ε ∈ [0, κ1] , we have CB > −ε 2Cp, (4.1.4)
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where CB is as given in (2.2.26) and Cp is given by

Cp = inf
t∈R

P ′′(t) > −∞

for the polynomials P (t) defined in (2.2.27).

Theorem 4.1.5. Let κ1 satisfies (4.1.4). Then for any ε ∈ [0, κ1] the measure

θε satisfies the log-Sobolev inequality given in (4.2.9) with the Sobolev coefficient

CLS = 2C−1
B .

Example 4.1.6. Log-concave measure

To explain this important result we need definitions of log-concavity and ergodicity

and we also recall the framework of rigged Hilbert spaces given in the Section 2.2.1.

Let X be a dense linear subset of H+ and let φ, ψ ∈ X . Let us denote by A(H−)

the family of measures µ on H− for which the logarithmic derivative β exists and

is differentiable and square integrable (see Section 3.1 for details). According to the

notations introduced in Section 2.2.1 its derivative is identified with the bounded

operator β′(x) ∈ L(H−,H+). The measure µ is said to be uniformly log-concave if

for all φ ∈ X there exist a c > 0 such that

〈−β′(x)φ, φ〉 > c|φ|2 µ− a.e.

To define ergodicity, let A ∈ B(H−) and for all z ∈ X let us define

Az = A+ z = {x+ z|x ∈ A}.

We say that A is X -invariant if A = Az for all z ∈ X . Then measure µ is said to

be X -ergodic if either µ(A) = 0 or µ(A) = 1 for all X -invariant sets A.

In [AKR95], it is proved that measures from the family A(H−) satisfy LSI if they

are uniformly log-concave and X -ergodic.
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4.2 Logarithmic Sobolev Inequality on

Configuration Spaces

Let θ be a probability measure on H− such that θ ∈ M(H−) and it satisfies

conditions (1)− (3) of Section 2.2.2. Let us introduce the pre-Dirichlet form Eθ on

XZd :

Eθ(f, f) =

∫
XZd

‖∇f(x)‖2
0 θ(dx), (4.2.1)

where f ∈ FC(XZd). It has been proved in [AKR95] that (Eθ,FC(XZd)) is closable.

We denote its closure by (Eθ, D(Eθ)). By the definition, D(Eθ) is the completion of

FC(XZd) in the norm ‖ · ‖Eθ given by the formulae

‖f‖2
Eθ :=

∫
H−

f 2(x)θ(dx) +

∫
H−

‖∇f(x)‖2
0θ(dx)

= ‖f‖2
H1,2(H−,θ), (4.2.2)

and therefore

D(Eθ) = H1,2(H−, θ). (4.2.3)

Let us introduce a pre-Dirichlet form Eνθ associated with the measure νθ, defined

on functions F1, F2 ∈ FC(ΓX) ⊂ L2(ΓX , νθ) by the expression

Eνθ(F1, F2) =

∫
ΓX

〈∇ΓF1(γ),∇ΓF2(γ)〉γνθ(dγ). (4.2.4)

Theorem 4.2.1. We have

I(D(Eνθ)) ⊂ D(Eθ), (4.2.5)

and moreover

Eνθ(F, F ) = Eθ(F̂ , F̂ ), F ∈ D(Eνθ), (4.2.6)
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where F̂ = IF = F ◦ p, see (3.2.1) for a detailed construction.

Proof. It follows from Lemma 3.2.3 and formula (4.2.2) that

I(FC(ΓX)) ⊂ D(Eθ).

By definition D(Eνθ) is the completion of FC(ΓX) in the norm ‖·‖Eνθ , where

‖F‖2
Eνθ

:= Eνθ(F, F ) +

∫
ΓX

F 2(γ)νθ(dγ).

Observe that, for F ∈ FC(ΓX),

‖F‖2
Eνθ

= Eθ(F̂ , F̂ ) +

∫
XZd

F̂ 2(x)θ(dx)

=: ‖F̂‖2
Eθ . (4.2.7)

Therefore, approximating any F ∈ D(Eνθ) by a sequence {Fn}∞n=1 ⊂ FC(ΓX),

we obtain that the sequence F̂n converges to an element of D(Eθ), and we have

F̂ = limn→∞ F̂n ∈ D(Eθ). This convergence also implies that

Eνθ(F, F ) = lim
n→∞

Eνθ(Fn, Fn)

= lim
n→∞

Eθ(F̂n, F̂n) = Eθ(F̂ , F̂ ). (4.2.8)

�

The LSI for the measure θ takes the form

CLS Eθ(f, f) >
∫
H−

|f(x)|2 log|f(x)|θ(dx)− ‖f‖2
L2(H−,θ) log‖f‖L2(H−,θ), (4.2.9)

for some constant CLS > 0 and any f ∈ D(Eθ).
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Theorem 4.2.2. Let us assume that θ satisfies the LSI (4.2.9). Then the measure

νθ satisfies the LSI with the same constant CLS, that is, for F ∈ D(Eνθ),

CLS Eνθ(F, F ) >
∫

ΓX

|F (γ)|2 log|F (γ)|νθ(dγ)−‖F‖2
L2(ΓX ,νθ) log‖F‖L2(ΓX ,νθ), (4.2.10)

Proof. We have

CLS Eνθ(F, F ) = cLS Eθ(F̂ , F̂ )

>
∫
H−

|F̂ (x)|2 log|F̂ (x)|θ(dx)− ‖F̂‖2
L2(H−,θ) log‖F̂‖L2(H−,θ)

=

∫
ΓX

|F (γ)|2 log|F (γ)|νθ(dγ)− ‖F‖2
L2(ΓX ,νθ) log‖F‖L2(ΓX ,νθ),

(4.2.11)

because of the formula (4.2.9) and the fact that I : L2(ΓX , νθ) → L2(H−, θ) is an

isometry. �
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Chapter 5

Motion in Random Media and

Stochastic Volatility

5.1 Stochastic Dynamics in Random

Environment

The aim of this section is to study random motion of a particle in X = Rd which

interacts with configuration of particles distributed according to the measure νθ.

The motion is given by a random process satisfying the following stochastic
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differential equation:

dZ(t) = a(Z(t), γ)dt+ dW (t), z ∈ X. (5.1.1)

Here W (t) is a standard Wiener process in X and the drift coefficient a has the

following form

a(x, γ) =
∑
y∈γ

ζ(x− y), (5.1.2)

for some map ζ : X → X. We need to establish certain regularity properties of the

drift coefficient a, which will guarantee the existence of solution of (5.1.1).

We denote by CLip
0 (X) the class of functions f : X → R which satisfy the following

conditions:

(i) Lipschitz condition:

|f(x)− f(x′)| 6 Cf |x− x′|,

for any x, x′ ∈ X and some constant Cf > 0.

(ii) Compact support: There exist rf > 0 such that supp(f) ⊂ BX(0, rf ).

We need the following technical results.

Recall that the map p : H− → Γ̈X is defined as p(x) = {xk + α(k)}k∈Zd where

α(k) = |k|d−1k.

Lemma 5.1.1. For all y ∈ H− there exists a constant C = C(y) such that

sup
x∈BH− (y, 1

4
)

|p(x) ∩BX(0, R)| 6 C(y)R,

For all x ∈ BH−(y, 1
4
) and R > 1

2
.

Proof. Let y ∈ H− be fixed. Similar to the proof of Lemma 2.2.1, for any

x ∈ BH−(y, 1
4
) there exists a constant N1 = N1(y) ∈ N such that |xk + α(k)| > R

for all k ∈ Zd satisfying the inequality |k| > N where N = max{N1,
d
√

2R + 1}.
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Then

|p(x) ∩BX(0, R)| = # {k ∈ Zd : |xk + k| 6 R}

6 # {k ∈ Zd : |k| 6 N} = 4 dN

6 4d max(N1, 2R + 1)

6 8 dN1(y) (R +
1

2
) 6 16 dN1(y)R,

provided R > 1
2
. It proves the statement with C(y) = 16 dN1(y). �

Lemma 5.1.2. For νθ-a.a. γ ∈ ΓX , there exists a constant C = C(γ) ∈ R such that

|γ ∩BX(0, R)| 6 C(γ)R, R >
1

2
.

Proof. It follows from Lemma 5.1.1 that

|p(y) ∩BX(0, R)| 6 C(y)R, R >
1

2
.

Recall that the set p(H−) has full νθ-measure, that is, νθ(p(H−)) = θ(H−) = 1.

This implies the result with C(γ) = C(y). �

Corollary 5.1.3. For νθ-a.a. γ ∈ ΓX and any R > 1
2

and x ∈ X we have

|γ ∩BX(x,R)| 6 C(γ)(|x|+R).

Proof. The statement follows from Lemma 5.1.2 and the inclusion

BX(x,R) ⊂ BX(0, |x|+R). �

Now we can study regularity properties of the map a(·, γ).

Theorem 5.1.4. Let ζ ∈ CLip
0 (X). Then for νθ-a.a. γ ∈ ΓX the function a(·, γ) is

locally Lipschitz with linear growth, that is, it satisfies the following conditions:

(i) for any R > 0, there exists a constant CR > 0 such that

|a(x, γ)− a(x′, γ)| 6 CR|x− x′|, x, x′ ∈ BX(0, R)
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(ii) there exist constants C1, C2 > 0 such that |a(x, γ)| 6 C1|x|+C2, x ∈ X. The

constants C1, C2, CR may depend on γ.

Proof. (i): Let x, x′ ∈ BX(0, R), R > 0. Then

|a(x, γ)− a(x′, γ)| 6
∑
y∈γ

|ζ(x− y)− ζ(x′ − y)|. (5.1.3)

Observe that ζ(x − y) = 0 for any y such that x − y /∈ BX(0, rζ) or equivalently

y /∈ BX(x, rζ). In particular, ζ(x− y) = 0 if x ∈ BX(0, R) and

y /∈
⋃

x∈BX(0,R)

BX(x, rζ) ⊂ BX(0, R′),

where R′ = R+rζ . Therefore the number of non-zero terms in (5.1.3) cannot exceed

the number of elements of γ in BX(0, R′), and we have the following inequality:

|a(x, γ)− a(x′, γ)| 6
∑

y∈BX(0,R′)

Cζ |(x− y)− (x′ − y)|

6 |γ ∩BX(0, R′)|Cζ |x− x′| = CR|x− x′|,

where

CR = C(a,R, γ) = |γ ∩BX(0, R + rζ)|Cζ <∞,

for νθ-a.a. γ ∈ Γ. Thus the local Lipschitz property of a(·, γ) is proved.

(ii): We have

|a(x, γ)| 6
∑
y∈γ

|ζ(x− y)|.

Recall that ζ(x− y) = 0 for y /∈ BX(x, rζ). Moreover it follows from the definition

of the class CLip
0 (X) that,

supz∈X |ζ(z)| 6 Cζrζ .

Then similar to the proof of (i), we have,

|a(x, γ)| 6
∑
y∈γ

|ζ(x− y)| 6 |γ ∩BX(x, rζ)|Cζrζ .
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Corollary 5.1.3 implies that

|γ ∩BX(x, rζ)| 6 CR(γ)(|x|+ r),

for some constant CR(γ) > 0, where r = max(rζ ,
1
2
) and the result follows. �

Theorem 5.1.5. Let ζ ∈ CLip
0 (X). Then, for νθ-a.a. γ ∈ ΓX , the stochastic

differential equation (5.1.1) has a unique solution for any initial value x(0) ∈ X

and any time t ∈ R.

Proof. Follows from Theorem 5.1.4 and general theory of stochastic differential

equations, see e.g. [Øks03]. �

Our next gaol is to establish certain continuity and smoothness properties of the

map a(·, γ).

Theorem 5.1.6. 1. Let ζ ∈ C1(X,X). Then a(·, γ) ∈ C1(X,X) for νθ-a.a.

γ ∈ Γ.

2. Let ζ ∈ Ck(X,X) for some k = 1, 2, · · · . Then a(·, γ) ∈ Ck(X,X).

Proof. We proved that for any R ∈ R+, any x ∈ BX(0, R), there exists R′ ∈ R+

such that

|a(x, γ)| =
∑

y∈γ∩BX(0,R′)

ζ(x− y),

provided ζ has compact support. This sum contains only finite number of non-zero

terms (for νθ-a.a. γ ∈ Γ).

This implies that a(·, γ) ∈ C1(X,X) (resp. Ck(X,X)) provided ζ(·−y) ∈ C1(X,X)

(resp. ζ(· − y) ∈ Ck(X,X)) for any y ∈ X. This implies the result of the theorem.

�
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5.2 Stochastic Volatility Models

5.2.1 Preliminaries

Derivative securities are contracts with their prices based on the price of another

asset called the primary asset or underlaying asset. In this section we are interested

in European options. A European option is a contract which can only be exercised

at the time of maturity. Let us consider, for example, European call option. It

gives its buyer the right, but not the obligation, to buy the the agreed units of

the underlaying asset at the predefined time, called the expiration date or maturity

date, for a predefined price, called the strike price. Let the strike price be K and

let the price of the asset at the expiry time T is ST then the value of the contract

at maturity, that is pay-off, can be expressed as

h(ST ) = (ST −K)+ =


ST −K if ST > K

0 if ST < K.

(5.2.1)

If the price at maturity is higher than the strike price than the holder will exercise

the option to make a profit. The European options in their standard form, are path

independent because the function h(ST ) depends only on the price of the stock at

maturity, that is, ST . The question of derivative pricing involves finding the pricing

function V (t, St) which gives price at any time t.

Let us consider a filtered probability space (Ω,B(Ω),Ft,P), where {Ft}t>0 is the

filtration generated by the asset prices up to time t < T . Let price of the stock is

given by the process St satisfying following stochastic differential equation (SDE)

dSt = µSt dt+ σSt dWt, (5.2.2)

where Wt is the standard Brownian motion, µ and σ are constants representing

rate of return and volatility respectively. Black-Scholes-Merton took a root that
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assures the elimination of risk by adjusting between the risk-less (e.g. bonds, bank

accounts) and risky assets (e.g. options). The strategy they use is called dynamic

hedging strategy, because it allows continuous trading and ‘hedging’ means reduction

in risk. The portfolio of risky and risk-less asset, they consider, assumes following

properties; replicating (value of portfolio is almost surely equal to that of the security

at time T ), self-financing (variations in the value of portfolio are only due the change

in prices of assets) and there is no-arbitrage opportunity (to make a profit with no

cost). They derived their benchmark Black-Scholes PDE

LBS(V ) = 0,

where

LBS =
∂

∂t
+

1

2
σ2s2 ∂

2

∂s2
+ r

(
s
∂

∂s
− ·
)
.

This equation holds for s > 0 and t < T and is solved backward in time with the

final value condition V (T, s) = h(s). The solution of the final value PDE exists and

is unique. This solution is called Black-Scholes formula and gives price of the call

option given the current price of the stock, time of maturity of the option, the strike

price of the option, the volatility of the underlaying asset and the interest rate of

the risk-less asset.

The same formula may also be derived with the equivalent martingale measures

approach. The discounted stock price S̃t = e−rt St satisfies

dS̃t = (µ− r)S̃tdt+ σS̃tdWt, (5.2.3)

which implies that the discounted stock price is not a martingale because above

expression contains a non-zero drift term if µ 6= r. We can construct another

measure P∗, equivalent to P, with respect to which the discounted stock price

becomes a martingale and assures no-arbitrage opportunity. The relation between

between martingales and no-arbitrage is explained after construction of this
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measure. This measure is constructed using Girsanov Theorem.

Let Wt be the Brownian motion defined on the filtered probability space

(Ω,B(Ω),Ft,P) with P(W0 = 0) = 1. Let Ut be a P-measurable and Ft-adapted

process, satisfying the condition (Novikov condition)

EP

exp

1

2

T∫
0

U2
t dt

 <∞.
The stochastic integral

t∫
0

UtdWt

is well defined and is a continuous, local martingale. Let us set

Mt = exp

 t∫
0

UsdWs −
1

2

t∫
0

S2
sds

 .
Then Mt is also a continuous local martingale. Let us define the equivalent

martingale measure P∗ by the formula

dP∗ = MT dP.

Here P∗ is a probability measure on (Ω,B(Ω)).

Theorem 5.2.1 (Girsanov theorem). (see e.g. [KS91]) Define the process W ∗
t

by the formula

W ∗
t = Wt +

t∫
0

Usds, 0 6 t <∞.

The process W ∗
t is a Brownian motion under the probability measure P∗.

Now we apply Girsanov theorem to change the drift coefficient in (5.2.3) into a

non-degenerate diffusion coefficient. Let us re-write (5.2.3) as

dS̃t = σ S̃t

[(
µ− r
σ

)
dt+ dWt

]
,
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Let us set

Ut = $ :=
µ− r
σ

.

In this case we set W ∗
t with Ut = $ which becomes W ∗

t = Wt +$t and then define

the probability measure P∗ with HT = MT by the formula

dP∗ = HTP.

By Girsanov theorem, the process W ∗
t is a Brownian motion under the probability

P∗. The discounted price process S̃t satisfies

dS̃t = σ S̃t dW
∗
t . (5.2.4)

Let us consider the portfolio

Vt = atSt + bte
rt,

where V(t) denotes the value of the portfolio at time t, St is the price process for the

risky asset (stock) and ert is the price of risk-less asset (bond) at time t. The pair

(at, bt) is called the trading strategy and at, bt are adapted processes with respect to

the filtration {Ft} and satisfy

E


T∫

0

a2
tdt

 < ∞ ,

T∫
0

btdt < ∞.

The self-financing of the portfolio means that the only change in the value is because

of the change in the market. It is expressed as

dVt = at dSt + r bt e
rtdt

This implies that the discounted value of the portfolio dṼt = e−rtVt is a martingale

under the probability measure P∗ and is a self-financing strategy itself. The proof

is simple,

dṼt = −re−rtVtdt+ e−rtdVt
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using values of Vt and dVt from above, we get

dṼt = −re−rtatStdt+ e−rtatdSt

= atd(e−rtSt)

= atdS̃t, (5.2.5)

using (5.2.4), we get

dṼt = σ atS̃t dW
∗
t . (5.2.6)

Last equation proves that Ṽt is a martingale with respect to P∗ and dṼt = atdS̃t

shows that the portfolio is self-financing.

The relation between no-arbitrage opportunity and the martingale property of the

price process (or the value of the portfolio) is very important to elaborate. Let

us prove this by contradiction and for that matter let us consider that the trading

strategy pair (at, bt)t>0 is a self-financing but an arbitrage strategy. It means that

the value of the portfolio is always higher than the money in the bank, that is,

VT > ertV0, (5.2.7)

with

P(VT ≥ ertV0) > 0. (5.2.8)

But we know from the martingale property that

E∗(VT ) = erTV0.

Because P and P∗ are equivalent measures so (5.2.7) and (5.2.8) cannot hold. It

completes the proof.

The pay-off of the derivative security is the function of the price of underlying asset

at time T . Let us denote that function by H := h(ST ). The portfolio Vt we have
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considered, will replicate the derivative security if value of portfolio is a.s. equal to

the pay-off at the time of maturity T , that is,

aTST + bT e
rT = H.

As we have proved above that Ṽt is a martingale under P∗ so we have

Ṽt = E∗
{
ṼT | Ft

}
.

Using replicating property and re-introducing the discounting factor, we get

Ṽt = E∗
{
e−r(T−t)H | Ft

}
.

The Markov property of the price process St says that the expectation with respect

to the past Ft is same as with respect to the process St. The value of the portfolio

may be written as

Ṽt = E∗
{
e−r(T−t)H(ST ) | St

}
.

Let P (t, x) represents the price of the derivative security at time t with observed

price of the stock St = s then the pricing formula becomes

P (t, x) = E∗
{
e−r(T−t)H(ST ) | St = s

}
.

The pricing formula for the price of European derivative security calculated

with equivalent martingale measures gives the same value as Black-Scholes

formula.

There are many important characteristics of stock return variability observed from

Empirical data. First, the implied volatility when plotted against strike price of

the asset, gives a convex curve often called “volatility smile” i.e. it changes

randomly with jumps of price movements with a tendency to revert to the mean.

Second, the volatility of the stock and the spot price are correlated. Wide variety
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of research literature is available addressing problem of stock return variability

(stochastic volatility models) with volatility satisfying different stochastic

processes.

For the purpose of literature review let us fix some notations. Let us consider the

following SDE

dSt = µStdt+ f(Yt)StdWt,

where µ is drift, Wt is standard Brownian motion and f(Yt) gives volatility

process. In 1987, [HW87] gave their pioneering work considering non-correlated

case of stochastic volatility model with f(y) =
√
y. Later in [Hes93] a closed form

solution was presented for the correlated case with Yt satisfying CIR model. It was

further extended to jump, exponential-OU and Lévy processes (for correlated case)

in [Sco02, FPS00, CGMY03] and [PSM08]. Recently, [AS09] gave power series

solution with volatility satisfying general Itô diffusion process with f ∈ C∞(R).

5.2.2 The Model

Let us consider model of a market with single risky asset St with price evolution

described by the SDE

dSt = µ St dt+ σt St dWt, (5.2.9)

where Wt is a 1-dimensional Brownian motion, µ ∈ R is the drift of the asset, and

σt is a volatility process given by the formula

σt = f(Zt), t > 0.

Here f : Rd → R+ is a bounded continuous function such that

f(z) > C > 0,∀ z ∈ Rd and Zt is a d-dimensional stochastic process given by

(5.1.1). We restate (5.1.1) for quick reference

dZt = a(Zt, γ)dt+ dBt, z ∈ Rd, (5.2.10)
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where Bt is a d-dimensional Brownian motion. We suppose that Wt and Bt are

independent. Theorem 5.1.5 implies that solution of equation (5.1.1) exists for any

initial value and hence the system of equations (5.2.9) and (5.1.1) has a unique

solution for any initial data. We need the following class of functions.

Definition 5.2.2. We denote by K (Rk) for k ∈ Z+ the class of continuous and

bounded functions z : Rk → R satisfying the following conditions,

1. Lipschitz and linear growth conditions, that is,

|z(y)− z(ȳ)| 6 K1|y − ȳ|

|z(y)| 6 K2(1 + |y|),

where y, ȳ ∈ Rk and K1, K2 are constants.

2. bound on first and second derivatives, that is

|∂ky z(y)| 6 C(1 + |y|m),

where ∂ky z denotes k-th partial derivative of z with respect to y for k = 1, 2

and m and C are positive constants.

5.2.3 Pricing Partial Differential Equation

We denote by Ω the space of trajectories of the process (St, Zt)t>0 and by P the

corresponding distribution which is a probability measure on Ω. Let D be a

European derivative security with payoff h(ST ) at time T > 0. According to the

general approach to pricing theory (see e.g. [FPS00]), the no-arbitrage price Dt of

the derivative security D is given by the formula

Dt = EQ (h(ST )|Ft) e−r(T−t), (5.2.11)
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where (Ft)t>0 is the filtration generated by the price process St, and Q is an

equivalent martingale measure of St, that is, a probability measure on the space Ω

which is equivalent to P and such that the process St is a Q-martingale.

Let u(Zt) be a Ft-adapted process defined by the formula

u(Zt) =
µ− r
f(Zt)

, (5.2.12)

where r is the risk-free rate of return. To construct the equivalent martingale

measures we set

Mt = exp

− t∫
0

{u(Zτ )dWτ + χ(Sτ , Zτ )dBτ} −
1

2

t∫
0

{u2(Zτ )dτ + χ2(Sτ , Zτ )dτ}

 ,
where χ : R1 × Rd → Rd is a mapping that satisfies the following condition

EP

exp

1

2

T∫
0

(
χ(Sτ , Zτ )

)2
dτ

 <∞. (5.2.13)

Because f(Zt) > C > 0 therefore u(Zt) also satisfies a similar condition, that is

EP

exp

1

2

T∫
0

u(Zτ )
2dτ

 <∞. (5.2.14)

Let us define the processes W ∗
t and B∗t by the formulae

W ∗
t = Wt +

t∫
0

u(Zτ )dτ

B∗t = Bt +

t∫
0

χ(Sτ , Zτ )dτ (5.2.15)

and the probability measure Q on Ω as

dQ
dP

= MT . (5.2.16)
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Then by Girsanov theorem the processes B∗t and W ∗
t are Brownian motions under

Q. The system of SDEs (5.2.9) and (5.1.1) takes the form

dSt = rStdt+ f(Zt)StdW
∗
t (5.2.17)

dZt = g(t, St, Zt)dt+ dB∗t (5.2.18)

where

g(t, St, Zt) = a(Zt) + χ(St, Zt)

Proposition 5.2.3. The process (1 + r)−tSt is a Q-martingale.

Proof. The proof is standard. An application of the Girsanov theorem shows that

the process W ∗
t is a standard Brownian motion under Q. In particular, equation

(5.2.17) implies that (1 + r)−tSt is a martingale. �

Now we come back to the problem of derivative security D considered at the

start of this section. In the light of general theory of derivative pricing we remark

that the price process of the derivative security D is given by the formula (5.2.11),

where Q is defined by formula (5.2.16). Let us consider the terminal value problem

∂V

∂t
+

1

2
s2f 2(z)

∂2V

∂s2
+

1

2

d∑
k=1

∂2V

∂z2
k

+ r

(
s
∂V

∂s
− V

)
+g(t, s, z)

d∑
k=1

∂V

∂zk
= 0, (5.2.19)

together with the terminal condition

V (T, s, z) = h(s).

Theorem 5.2.4. Assume that f ∈ K (Rd), h ∈ K (R) and g(t, ·) ∈ K (Rd+1)

uniformly in t ∈ [0, T ] then the price Dt is given by the formula

Dt = V (t, St, Zt),

where St and Zt are the stock price and the volatility process respectively and the

function V (t, s, z) is the solution to terminal value problem (5.2.19).

97



5.2. Stochastic Volatility Models

Proof. Recall that, because of the Markov property of the process (St, Zt), formula

(5.2.11) can be re-written in the form

Dt = V (t, St, Zt),

where V (t, s, z) = e−r(T−t)Es,z (h(ST−t)) and Es,z is the expectation with respect to

the solution of (5.2.17) and (5.2.18) with the initial condition

S0 = s, Z0 = z.

Let U be a differentiable operator defined by the formula

Uf(s, z) =
1

2
s2f(z)2 ∂

2

∂s2
+

1

2

d∑
k=1

∂2

∂z2
k

+ rs
∂

∂s
+ g(t, s, z)

d∑
k=1

∂

∂zk
. (5.2.20)

Consider the initial value problem(
∂

∂t
+ U

)
v̂(t, s, z) = 0, (5.2.21)

v̂(0, s, z) = h(s).

Operator U is the Markov generator of the process (St, Zt) that solves the system

(5.2.17) and (5.2.18). Under the conditions assumed on functions f, h and g in the

statement of the theorem, there is a unique solution to (5.2.21) given by the formula

[Fri75]

v̂(t, s, z) = Es,z (h(St)) . (5.2.22)

Making change of time t 7→ T − t we see that the function

v(t, s, z) = Es,z (h(ST−t))

satisfies the terminal condition problem

∂ v

∂t
= Uv , v(T, s, z) = h(s) (5.2.23)

and thus the pricing function V (t, s, z) satisfies the terminal value problem (5.2.19).

�
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