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ABSTRACT

Fluids subject to both thermal and compositional variations can undergo doubly dif-

fusive convection when these properties both affect the fluid density and diffuse at

different rates. This phenomenon can lead to the formation of a variety of patterns,

including salt fingers and thermohaline staircases, which have been identified through-

out the world’s oceans. In this thesis, we consider natural doubly diffusive convection

driven by opposing thermal and solutal gradients in the horizontal direction and aim to

determine how states in this system are affected by the physical parameters that char-

acterise the strength of the thermal gradients, the balance between thermal and solutal

gradients, and ratios between thermal, solutal and viscous diffusivities.

In the particular case when the imposed thermal and solutal gradients balance, a mo-

tionless conduction state exists but destabilises when the gradients are sufficiently large.

We determine the nature of the associated primary bifurcation using a weakly nonlinear

analysis and extend the resulting primary convection branches using numerical contin-

uation to find that large-amplitude steady convection states can coexist with the stable

conduction state for both sub- and supercritical bifurcations. We proceed by considering

vertically extended domains where spatially localised states, known as convectons, have

been found to lie on a pair of secondary branches that intertwine when the onset of

convection is subcritical. This process is known as homoclinic snaking and is usually as-

sociated with bistability. Here, we show that convectons persist into parameter regimes

where the primary bifurcation is supercritical and there is no bistability. We finally con-

sider how the system changes when the imposed thermal and solutal gradients do not

balance and the motionless conduction state does not exist. We focus on how the form

iii



of convectons change with increasing imbalance and how these localised states cease to

exist in sufficiently thermally dominated flows.
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1 | INTRODUCTION

1.1 DOUBLY DIFFUSIVE CONVECTION

Upon heating, fluids tend to expand and become less dense. This provides an upward

buoyancy force, which can lead to convective motion when the heating is sufficiently

strong. Such behaviour is widespread and occurs across a range of scales, from heating

a saucepan of water to controlling the motion of tectonic plates. Many natural fluids,

however, also exhibit variations in the concentration of a solute that affects the fluid

density and that diffuses at a different rate to temperature. This can lead to a range of

more complex fluid dynamics and instabilities, even when the fluid is stably stratified.

This phenomenon is known as doubly diffusive convection and has been the subject of

a vast number of studies over the past six decades, e.g., see the reviews [68, 87, 143, 158,

178, 179].

Doubly diffusive convection has perhaps been most widely studied in oceanography,

where the presence of icebergs, river and ocean outflows or evaporation at the ocean’s

surface, for example, can all lead to variations in both temperature and salinity. In-

deed, You [192] previously estimated that approximately 44% of the world’s oceans

could undergo this phenomenon based on data from the 1994 Levitus climatological

atlas [111, 112]. Despite this relatively high percentage, doubly diffusive convection has

recently been shown to only provide a small contribution to the global ocean circulation

energy budget [183]. However, this phenomenon can lead to pronounced regional ef-

fects [143] for fluid mixing [132, 156, 158] and heat, salt or nutrient transport [74, 97, 197].

These effects arise owing to the patterns that form as a direct result of doubly diffusive
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1.1. DOUBLY DIFFUSIVE CONVECTION

Figure 1.1: Experimental observation of the salt-fingering instability in fluid that has a
stable temperature stratification and salt solution poured on top. From [87].

convection and vary with both the strength and orientation of the driving temperature

and salinity gradients.

Tropical and subtropical oceans at low latitudes contain warm and salty waters overly-

ing colder and fresher waters. This configuration is prone to salt-fingering instabilities,

like that shown in figure 1.1(a), where many thin, vertical channels transport warm and

salty fluid downwards or cold and fresh fluid upwards. These oceans can also feature

thermohaline staircases [159, 160, 171, 183, 192, 197], where the flow is characterised by

well-mixed horizontal layers interspersed with interfaces displaying sharp variations in

temperature and salinity. These can be large-scale coherent structures that, in some lo-

cations, retain their identity over decadal time-scales. For example, staircases containing

mixed layers of up to 400m thick that extend over 150km in the horizontal have been

found in the Tyrrhenian Sea throughout a 40-year period [65, 197].

Polar oceans at high latitudes have a contrasting configuration, with cold and fresh wa-

ters overlying hotter and saltier waters. Nevertheless, these oceans can also admit large-

scale staircase structures that form via a type of doubly diffusive convection known as

diffusive layering [97, 136, 140]. The steps in these staircases tend to be smaller than

those in the previous configuration, however, owing to the smaller temperature differ-

ence [143]. Diffusive staircases, like that shown in figure 1.2(a), are widespread across

the central Arctic Ocean; for example, they have been found within 80% of the Canada

basin [164], and allow heat to be transported from the warm Atlantic waters below
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(b)(a)

Figure 1.2: (a) Temperature profile of a diffusive staircase in the Arctic Ocean. From
[133]. (b) Experimental observation of the diffusive layering in a stratified potassium
carbonate solution to model layering in a magma chamber. From [87].

the staircases upwards through the mixed layers towards the surface. Indeed, Turner

[180] considered this mechanism amongst others to explain the increased melting rate

of Arctic sea ice and found that it gave a substantial contribution.

Layering due to doubly diffusive processes can also occur in geological and astrophys-

ical flows: in magmas (e.g., see the experimental model in figure 1.2(b)), where the

additional process of crystallisation can increase the thermal and compositional gradi-

ents required for layering [85]; at the core-mantle boundary, where melting subducting

plates and minerals undergoing phase transitions can provide temperature and compo-

sitional variations between the core and mantle [77, 104]; and in stellar interiors [69, 168]

or in planetary interiors, where the thermal and compositional profiles resulting from

doubly diffusive convection may impact planet formation and cooling properties [105].

The systems of doubly diffusive convection described above tend to have thermal and

solutal gradients parallel to gravity, where the kinetic energy required to sustain fluid

motion can be extracted from the potential energy of the stably stratified field. However,

there are further systems where these gradients are either inclined to each other or to

gravity, which undergo different types of doubly diffusive convection.
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(b)(a) (c)

Figure 1.3: (a) Doubly diffusive intrusions between stratified sugar (left) and salt (right)
solutions. From [148]. (b) Formation of horizontal layers when ice melts in a stratified
salt solution. From [87]. (c) Doubly diffusive convection during the solidification of
ammonium chloride solution when the right sidewall is cooled. Light (dark) regions
mostly indicate fluid (solid), except for the upward plumes from the interface and the
nearly horizontal diffusive interface between convecting layers. From [18]

Within oceanography, lateral gradients exist near fronts between water masses with

different physical properties. This can lead to the formation of interleaving thermohaline

intrusions that may extend up to several hundred kilometres laterally (see [146] and

references therein). The laboratory experiment by Ruddick et al. [147, 148], shown in

figure 1.3(a), illustrates intrusions on a smaller scale when a barrier between stably

stratified sugar (left) and salt (right) solutions is removed. We see that interleaving

layers form and extend away from the centre, with the width and height of the layers

increasing with depth and lateral variation in sugar concentration, which Ruddick and

Turner [147] explained using the energetics of the system. One might also observe

similar upward-tilting intrusions that spread outwards into the surrounding fluid in the

vicinity of a melting ice-block [84, 86] (see figure 1.3(b)).

Solidification during crystal growth is another system where lateral gradients are im-

portant [17, 18, 31, 83, 181]. This process is illustrated in figure 1.3(c), which depicts

an experimental snapshot by Beckermann and Viskanta [18] of an ammonium chloride

solution that is cooled from the right. The solution solidifies near the colder right side-

wall to form solid dendrites with a higher ammonium chloride concentration than the

surrounding fluid. Water is rejected during this process, which results in the fluid in

the mushy layer—the multiphase porous media between the purely solid and liquid
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regions—being relatively less dense and rising upwards (see upward plumes in fig-

ure 1.3(c)). The fluid within the liquid region is subject to doubly diffusive convection,

which can lead to sharp interfaces separating distinct layers of convective motion. The

resulting convection may further affect the shape of the mushy layer since the local so-

lidification rates are influenced by the local fluid temperature and solute concentration.

This is particularly important since the shape of the interface can affect the trajectory of

convective jets (plumes), which affect where freckles, or defects, in the solid occur [48].

The configuration where both the thermal and solutal gradients are perpendicular to

the buoyancy force is typically referred to as natural doubly diffusive convection and is

the configuration of interest in this thesis. In particular, we will consider a domain that

is bounded in the horizontal direction and impose the driving gradients by fixing the

temperature and solutal concentration on the sidewalls.

1.2 GOVERNING EQUATIONS

One of the two key properties that allows a fluid to undergo doubly diffusive convection

is that both thermal and solutal variations affect the density of the fluid. We assume

that this dependence is linear in both temperature and solutal concentrations, so that

the fluid density satisfies

ρ∗ = ρ0 + ρT(T∗ − T0) + ρC(C∗ − C0), (1.1)

where ρ0 is the density of the fluid at temperature T0 and concentration C0 and ρT

(resp. ρC) is the thermal (resp. solutal) expansion coefficient, with ρT < 0 and ρC > 0.

The imposed thermal and solutal variations are also assumed to be sufficiently small

so that the Boussinesq approximation can be applied, whereby density variations are

neglected except when they appear in buoyancy terms.

Systems of doubly diffusive convection are governed by four equations: the Navier–

Stokes equation for fluid momentum, the incompressibility condition and advection-
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diffusion equations for both the temperature and the concentration. The governing

equations therefore read:

ρ0

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ + νρ0∇∗2u∗ + (ρ0 − ρ∗)gẑ, (1.2)

∇∗ · u∗ = 0, (1.3)

∂T∗

∂t∗
+ u∗ · ∇∗T∗ = κ∇∗2T∗, (1.4)

∂C∗

∂t∗
+ u∗ · ∇∗C∗ = D∇∗2C∗, (1.5)

where ẑ is the vertical ascending unit vector, κ is the rate of thermal diffusivity, D is

the rate of solutal diffusivity and ν is the kinematic viscosity. Cross-diffusion effects,

where either the solute concentration diffuses owing to a temperature gradient, in a

process known as the Soret effect, or temperature diffuses owing to a solutal concen-

tration gradient, in a process known as the Dufour effect, may also play a role in the

dynamics. However, their effect will be neglected here since a suitable linear transfor-

mation can transform the system into one equivalent to (1.2–1.5) without cross-diffusion

effects when suitable thermal and solutal boundary conditions are applied [98].

We introduce the non-dimensional quantities:

x =
x∗

L
, t =

t∗

L2/κ
, u =

u∗

κ/L
, T =

T∗ − T0

∆T
, C =

C∗ − C0

∆C
, p =

p∗

ρ0κν/L2 , (1.6)

where L is a relevant length scale and ∆T and ∆C are appropriate temperature and

solutal concentration differences within the system. The non-dimensional governing

equations for the fluid velocity u = ux̂ + vŷ + wẑ, the pressure p, the temperature T

6
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and the concentration C thus read:

1
Pr

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇2u + Ra (T + NC) ẑ, (1.7)

∇ · u = 0, (1.8)

∂T
∂t

+ u · ∇T = ∇2T, (1.9)

∂C
∂t

+ u · ∇C =
1
Le
∇2C, (1.10)

where we have introduced the following dimensionless parameters. The Prandtl num-

ber:

Pr =
ν

κ
, (1.11)

represents the ratio of momentum to thermal diffusivity and therefore quantifies inertial

effects; the Rayleigh number:

Ra =
gL3|ρT|∆T

ρ0νκ
, (1.12)

provides a measure of the imposed temperature difference; the buoyancy ratio:

N =
ρC∆C
ρT∆T

, (1.13)

represents the ratio of solutal to thermal contributions to the fluid density; and the Lewis

number:

Le =
κ

D
, (1.14)

represents the ratio of thermal to solutal diffusivities. Analogous non-

dimensionalisations, e.g., where the kinematic viscosity or the rate of solutal diffusivity

are used in place of the rate of thermal diffusivity, are possible and may introduce alter-
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native dimensionless parameters:

the Schmidt number Sc =
ν

D
= PrLe, (1.15)

the solutal Rayleigh number RaS =
gL3|ρC|∆C

ρ0νD
= Ra|N|Le, (1.16)

the Grashof number Gr =
gL3|ρT|∆T

ρ0ν2 =
Ra
Pr

, (1.17)

and the solutal Grashof number GrS =
gL3|ρC|∆C

ρ0ν2 =
Ra|N|

Pr
, (1.18)

into the formulation. These parameters will not be considered in this thesis, but have

been included in reference to other literature on doubly diffusive convection.

1.3 PHYSICAL PARAMETERS

Values for the physical parameters vary significantly across the astrophysical and geo-

physical flows in which doubly diffusive convection occurs. For example, variations

across Prandtl (1.11) and Lewis (1.14) numbers are summarised by the grey regions in

figure 1.4, which illustrate parameter values from Schmitt [157]. One might expect for

the behaviour of the system to differ between systems where the Prandtl number is large

(e.g., 0.4–5× 103 in magmas) and inertia is negligible meaning that an infinite-Prandtl

number approximation may be made [78], and those where the Prandtl number is small

(e.g., 10−6 in stellar interiors) and inertia plays an important role [68]. Despite this wide

range, early studies of natural doubly diffusive convection with opposing driving gra-

dients only considered a much smaller range of parameter values as evidenced by the

blue and red regions in figure 1.4, which represent parameter values used in numerical

and experimental studies respectively. In particular, we note the cluster of values shown

in the right panel, which are associated with horizontal crystal-growth processes that

frequently motivated these early studies.

The Lewis number (1.14) characterises the extent to which heat and solutal concentra-

tion have different rates of diffusion, with Le > 1 (Le < 1) indicating that temperature
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Physical Experimental Numerical

1Salt/sugar 1Copper sulphate solution [75] 1Han and Kuehn [76]
2Magmas 2Copper sulphate solution [92] 2Lee and Hyun, [88, 108]
3Oxide semiconductors 3Copper sulphate solution [90] 3Bennacer and Gobin, [20, 72]
4Heat/salt at 0◦C 4Salt-water solution [106] 4Xin et al. [191]
5Heat/salt at 30◦C 5Binary gases [189] 5Convectons [12, 14, 23, 24]
6Humidity/heat 6Beghein et al. [19]
7Liquid metals 7Bergman and Hyun [27]
8Stellar interiors

Figure 1.4: Parameter values of the Prandtl and Lewis numbers for a selection of physi-
cal (grey), numerical (blue) and experimental (red) systems of doubly diffusive convec-
tion. Physical values were taken from [157] and many of the experimental and numerical
results were taken from the summary in Ghorayeb and Mojtabi [70]. The green region,
line and point indicate the parameter values that we consider in Chapters 4, 5 and 6,
respectively.
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(solutal concentration) is the faster diffusing component. Taking Le 6= 1, i.e., impos-

ing that the rates of thermal and solutal diffusion differ, is essential for the system to

undergo doubly diffusive convection, since otherwise a transformation T̂ = T + NC re-

duces (1.7–1.10) to a system for single-component convection.

The buoyancy ratio (1.13) characterises the contributions of solutal variations to the total

fluid density compared to contributions from thermal variations. In particular, the sign

of this parameter indicates whether the imposed thermal and solutal gradients provide

cooperating (N > 0) or opposing (N < 0) effects on the total fluid density. It is also help-

ful to note the particular limits: N = −1, which indicates the balanced system where the

imposed thermal and solutal gradients balance; N = 0, which indicates purely thermal

convection; and N → ±∞, which represent the limits of purely solutal convection.

Early experimental works on natural doubly diffusive convection with opposing gra-

dients showed that the buoyancy ratio separates regimes of unicellular and multicel-

lular flow [106] or regimes where the flow is steady or exhibits oscillatory behaviour

[90, 92]. Later numerical studies considered the latter observation in more detail by

finding ranges of buoyancy ratios where the flow was steady, periodic, quasiperiodic

or chaotic [113, 114, 135, 196] and determining the difference between the associated

dynamics in two- and three-dimensional domains [162]. These studies, however, tended

to consider large Rayleigh numbers, well beyond the onset of convection, where one

typically expects a range of complicated dynamics [165].

1.4 BIFURCATION ANALYSIS

In the balanced system of natural doubly diffusive convection when N = −1, a motion-

less conduction state with linear temperature and solutal profiles exists for all Rayleigh

numbers. This trivial state is stable to all linear perturbations at sufficiently low Rayleigh

numbers but will destabilise to an increasing number of linear modes as the Rayleigh

number increases. The Rayleigh number at which the conduction state first destabilises

to a stationary mode, where the growth rate of the perturbation is purely real, is referred

10
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(a) Subcritical

pitchfork bifurcation

(b) Supercritical

pitchfork bifurcation
(c) Transcritical

bifurcation

Figure 1.5: Sketches depicting (a) subcritical and (b) supercritical pitchfork bifurcations
and (c) a transcritical bifurcation of the trivial state, together with typical nonlinear
behaviour. Thick (thin) lines indicate stable (unstable) steady solutions. The blue shaded
regions in (a) and (c) indicate the region of bistability between a pair of stable steady
states.

to as the critical Rayleigh number and its value depends on both the Lewis number and

the geometry of the domain; for example, Ghorayeb and Mojtabi [70] showed that in the

limit of infinite aspect ratio the critical Rayleigh number converges on the value it takes

when periodic boundary conditions are imposed in the vertical direction:

Rac ≈
6509
|1− Le| , (1.19)

which we note tends to infinity in the limit Le→ 1.

A pair of branches consisting of convection states bifurcate at each stationary instabil-

ity of the conduction state. The resulting branches are referred to as primary branches

and bifurcate either subcritically, towards lower values of the Rayleigh number as in

figure 1.5(a), or supercritically, towards higher Rayleigh numbers as in figure 1.5(b).

Both subcritical and supercritical branches have been found in closed domains of natu-

ral doubly diffusive convection since the conduction state can destabilise in transcritical

bifurcations, like that shown in figure 1.5(c), as well as pitchfork bifurcations [25, 70].

With periodic boundary conditions in the vertical direction, however, the conduction

state has only been found to destabilise in subcritical pitchfork bifurcations for the pa-

rameters values considered in previous studies [23, 24, 191].

Subcritical branches are of particular interest since, while these initially head towards

lower parameter values, they often turn around at a subcritical saddle-node bifurcation
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where they regain stability and proceed to extend towards larger parameter values, as

evidenced by the nonlinear behaviour in figures 1.5(a) and (c). This leads to a region

below the linear onset of convection where multiple steady states coexist with the stable

trivial state. Further, when the non-trivial steady states undergo no additional insta-

bilities, the system will exhibit a region of bistability where at least two stable states

coexist, which are indicated by the blue shading in figure 1.5. Bistability has often been

viewed as an important property for pattern formation, including for localised states,

which typically consist of a region of one stable pattern embedded within a background

of a second stable pattern and whose study across a range of physical systems has been

an active field of research over the past 15 years.

1.5 CONVECTONS

Ghorayeb and Mojtabi [70] first identified spatially localised states in natural doubly

diffusive convection at low Rayleigh numbers as one of a number of stable coexisting

states in sufficiently large domains. Bergeon and Knobloch [23, 24] later studied lo-

calised states in larger domains, where they found that these states consist of a number

of convection rolls within a background of quiescent fluid, as depicted in figure 1.6(b).

Such localised states are typically referred to as convectons, after Blanchflower [30] first

described similar states in magnetoconvection. Since then, convectons have been studied

across a range of other coupled convective systems, including: binary fluid convection

[7, 129, 130, 186, 187] (in a porous medium [116, 119]), where a solutal concentration

gradient develops from the Soret effect applied to an imposed temperature gradient;

and in rotating convection [11, 50] or magnetoconvection [30, 50, 54, 117, 118].

Bergeon and Knobloch [23, 24] were the first to elucidate the snaking structure of the

branches associated with convectons in two-dimensional natural doubly diffusive con-

vection, which we have depicted in figure 1.6(a). They found that a pair of secondary

branches, L1 and L2, bifurcate from the subcritical primary branch P1 when a small-

amplitude periodic state undergoes an Eckhaus, or modulational, instability, where the

12



CHAPTER 1. INTRODUCTION

6

4

2

8

1

3

5

7

1 2 3 4 5 6 7 8

(a) (b)

Figure 1.6: Convectons in a system of natural doubly diffusive convection in a two-
dimensional periodic vertical domain with period 30. (a) Bifurcation diagram showing
twice the kinetic energy E of the steady states as the Grashof number Gr varies. The
Grashof number is equivalent to the Rayleigh number here since Pr = 1. (b) Stream-
functions of convectons at successive saddle nodes on the branch of localised states L2.
Owing to the symmetry of the system, we have reflected each profile about the vertical
axis from [24] to illustrate the effects of the right sidewall having a higher temperature
and solute concentration than the left. Adapted from [24].
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state destabilises to a long-wave modulation [26]. These secondary branches extend

towards lower Grashof (equivalently Rayleigh) numbers while the convection states be-

come increasingly spatially modulated and fully localised by the first left saddle nodes,

so that they either contain a single strong convection roll on L1 (panel 1 in figure 1.6(b))

or a pair of rolls on L2. The two branches proceed to intertwine as they oscillate up-

wards over a finite range of parameter values, which is associated with a pair of outer

rolls strengthening between successive left or right saddle nodes (see alternate panels in

figure 1.6(b)). This oscillatory behaviour continues until convection rolls fill the domain

(panel 8 in figure 1.6(b)), at which point the rolls adjust their position and the branches

either turn over to terminate at an Eckhaus instability near the saddle node of a poten-

tially different primary branch (P2 in figure 1.6(a)) or extend towards larger parameter

values [26]. This behaviour is typically referred to as homoclinic snaking and was first

identified for the Swift–Hohenberg equation [190], but has since been observed across

many other systems exhibiting localised states (see the review by Knobloch [99]).

Bergeon and Knobloch [24] further computed the stability of the localised convection

states and found that those on branch segments between left and right saddle nodes

as the branches are followed upwards (e.g., between points 3 and 4 in figure 1.6(a))

were stable. There is therefore a region of parameter values over which multiple stable

localised convection states with different numbers of rolls coexist.

Later studies examined the nature of the snaking branches of convectons in different

configurations of natural doubly diffusive convection. For example, Beaume et al. [12]

showed these branches continued to undergo homoclinic snaking when no-slip bound-

ary conditions were applied despite the absence of primary branches of periodic states.

Similar behaviour has also been found in the Swift–Hohenberg equation with non-

Neumann boundary conditions [80] and in binary fluid convection [128, 129] and might

be expected since a localised state in a sufficiently large domain would be minimally

affected by conditions at the ends of the domain.

Beaume et al. [12, 13, 14] also considered convectons in three-dimensional domains,

where they showed that the third dimension enabled individual convection rolls to twist
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about the vertical axis, as was previously found in small-aspect-ratio domains [22]. The

authors showed that convectons with twisted rolls lie on secondary snaking branches

that bifurcate from branches of convectons with untwisted rolls (see figure 7 of [12]),

which they compared to behaviour observed in the two-dimensional Swift–Hohenberg

[115]. They found that this twist instability destabilises all steady states and results in

chaotic behaviour for supercritical Rayleigh numbers [12, 14] that originates from a crisis

bifurcation near the primary bifurcation [9].

The snaking of the branches of localised states seen in figure 1.6 is highly dependent

upon preserving symmetries within the system, which exist owing to the balance be-

tween thermal and solutal contributions to the fluid density obtained by fixing the buoy-

ancy ratio to be N = −1 and by imposing identical fixed temperature and solutal con-

centration boundary conditions on the sidewalls. Despite this, the former constraint has

yet to be relaxed for studies on convectons, while the latter has only recently been ad-

dressed by Lo Jacono et al. [120], who imposed Robin type boundary conditions on the

solutal concentration. They showed how increasingly breaking this symmetry resulted

in each of the steady states drifting vertically and a complex breakup of the snaking

branches, where the branches first broke into a stack of disconnected figure-of-eight

branch segments before later connecting with further branches of localised travelling

pulses of convection.

These studies of natural doubly diffusive convection have only considered an isolated

choice for parameter values, where N = −1, Le = 11 and Pr = 1 (see the point marked 5

in figure 1.4). In particular, this choice allows a motionless conduction state to exist

and provides both subcriticality and bistability when periodic boundary conditions are

applied in the vertical direction, as was seen in figure 1.6(a). These properties are fre-

quently associated with the existence of localised states and, thus, there is an open

question as to how the homoclinic snaking changes if the system ceases to exhibit each

of these properties when each of the physical parameters are varied.
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1.6 THESIS OVERVIEW

In this thesis, we aim to explore the effects that four physical parameters: the Prandtl

number, Pr; the Lewis number, Le; the Rayleigh number Ra; and the buoyancy ratio,

N, have on the system of natural doubly diffusive convection with opposing lateral

thermal and solutal gradients. To do so, we focus on the parameter regime marked

in green in figure 1.4, with the aim of extracting a general understanding as to how

each of the physical parameters affects both states and the structure of the bifurcation

diagram near the onset of convection. We are particularly interested in their impact on

convectons since such an analysis might help us to develop further insight into whether

localised states can exist in physical or experimental systems of natural doubly diffusive

convection, similarly to how they do in other convective systems, e.g., [35, 101, 134].

With these goals in mind, the thesis is organised in the following way.

In Chapter 2, we summarise the numerical methods that were used to generate the

results presented later in this thesis. This is followed, in Chapter 3, by reviewing a se-

lection of theoretical and numerical results related to localised states. We focus on the

one-dimensional Swift–Hohenberg equation as a prototypical model for spatial localisa-

tion, including convectons in natural doubly diffusive convection.

Motivated by understanding the parameter ranges where steady convection states exist,

in Chapter 4, we present the linear stability analysis and a weakly nonlinear analysis

for all Lewis and Prandtl numbers in the balanced system with N = −1, which enables

us to divide (Le, Pr) parameter space according to whether the primary bifurcation

was subcritical or supercritical (see figure 4.9). We numerically continue the resulting

primary branches to larger amplitudes in order to determine their structure and stability,

which allows us to obtain parameter regimes where the system exhibits coexistence

between steady convection and stable conduction states.

In Chapter 5, we extend the analysis to vertically extended domains by determining

how the structure of the snaking branches changes as the Prandtl number decreases and
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the primary bifurcation changes from being subcritical to supercritical. We characterise

this transition in five stages (see figure 5.3), which we interpret by considering how the

steady states change form as a result of increasing inertial effects.

In Chapter 6, we explore what happens when we vary the buoyancy ratio away from

N = −1, thereby breaking the restriction that the imposed thermal and solutal gradi-

ents balance. With this relaxation in a closed domain, the motionless conduction state

at low Rayleigh numbers is replaced by a large-scale flow consisting of either clock-

wise (N < −1) or anticlockwise (N > −1) flow and the primary bifurcations unfold. We

explore how the form of convectons, which have so far only been considered in the bal-

anced case with N = −1, are affected by the absence of the conduction state by varying

N into both thermally and solutally dominated regimes (see figure 6.11). We further

investigate how the structure of branches on which convectons lie changes before we

stop finding them in the thermally dominated regime with N > −1.

We end with conclusions and suggestions for future research in Chapter 7.
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In this chapter, we will outline the numerical schemes that were used to generate the

results presented in this thesis, including spectral methods (section 2.1), time-stepping

methods (section 2.2) and numerical continuation (section 2.3). Custom MATLAB codes

were written to numerically continue the Swift–Hohenberg equations and perform

the weakly nonlinear analysis of the system of doubly diffusive convection, while an

adapted version of code developed by A. Bergeon and C. Beaume, which was detailed

in [8], was used to numerically continue and time-step the coupled system for natural

doubly diffusive convection.

2.1 SPECTRAL METHODS

We employed spectral methods, e.g., as described by Boyd [33] and Trefethen [174], to

determine the spatial dependence of solutions to partial differential equations (PDEs).

Typically these methods involve approximating the true solution by a linear combina-

tion of smooth global basis functions. The coefficients in this expansion are initially

unknown, but can be found by substituting the approximate solution into the PDE and

solving the resulting equations using either collocation or numerical quadrature. Spec-

tral methods therefore reduce the infinite dimensional PDE to a finite number of coupled

nonlinear equations for the coefficients, which may then be solved using linear algebra

techniques. These methods additionally have exponential convergence, which means

that results with the same level of accuracy can be achieved using fewer nodes than

finite difference methods, for example.
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2.1.1 FOURIER APPROXIMATIONS

The optimal choice of basis functions in the approximation depends upon the boundary

conditions applied. In a periodic domain of length L, the functions are approximated

using the finite Fourier series:

f (x) ≈ a0 +
N

∑
n=1

(
aneiknx + āne−iknx

)
, where kn =

2πn
L

, (2.1)

where the overbar denotes complex conjugation and the coefficients an are defined:

a0 =
1
L

∫ L

0
f (x) dx, (2.2)

an =
1
L

∫ L

0
f (x)e−iknx dx, (2.3)

and approximated using the numerical quadrature schemes:

a0 ≈
1
L

N−1

∑
m=0

f (xm), (2.4)

an ≈
1
L

N−1

∑
m=0

f (xm)e−iknxm , (2.5)

where xm = mx
L are regularly spaced nodes within the domain [0, L]. By substituting

(2.4) and (2.5) back into the Fourier expansion (2.1), we see that an approximation for

f (x) may be constructed using the N values of the function evaluated at the nodes xm.

2.1.2 POLYNOMIAL APPROXIMATIONS

If fixed boundary conditions are instead applied on a finite closed domain [a, b], the

function f (x) may be more conveniently approximated using a linear combination of

orthogonal polynomials, such as Legendre polynomials (Pn(x)) or Chebyshev polyno-

mials (Tn(x)). Since both of these examples are defined over the closed interval [−1, 1],
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we first perform the linear transformation:

x 7→ −1 +
2

b− a
(x− a) . (2.6)

to map the PDE defined over the closed interval [a, b] onto the interval [−1, 1]. This

allows a unique polynomial of degree at most N to interpolate f (x) at either:

• Chebyshev points (xn = − cos
( nπ

N

)
for n = 0, 1, . . . , N) for Chebyshev polynomi-

als, or

• Gauss–Lobatto–Legendre points (x0 = −1, xN = 1 and the xi for i = 1, ..., N − 1

the N − 1 roots of dPN+1
dx ) for Legendre polynomials.

We used the MATLAB package Chebfun [64] to compute the Chebyshev polynomial

approximations.

In larger domains, it can be helpful to apply spectral element methods, where the do-

main is subdivided into a number of smaller parts, known as elements. Within each

element, the functions are approximated by a single polynomial that are coupled to

those in adjacent elements using continuity conditions at the interfacial points. These

methods allow polynomials of lower degree to be used, which is beneficial as entries in

the corresponding spectral differentiation matrices scale like N2 and thus become less

well-conditioned.

2.1.3 MATRIX-FREE METHODS

Approximating the functions using finite Fourier and/or polynomial approximations

enables the PDEs to be approximated by a finite linear system of the form:

Ax = b, (2.7)

where x is a vector containing the function values evaluated at the collocation points.

The matrix A incorporates the effects of the spatial derivatives on the functions and may
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be dense owing to the global nature of spectral methods, which means that inverting

the matrix A to solve (2.7) for x directly can be difficult. We instead choose to apply

matrix-free methods, which are so-called because one only needs to know the action

of the linear matrix A on vectors v rather than storing and inverting the full matrix A.

Such methods are particularly useful when A represents a linear operator that cannot

be inverted or whose matrix form is unknown.

Krylov subspace methods, including Generalized Minimum Residual Method (GMRES)

[151], Biconjugate Gradient Stabilized Method (BiCGstab) [166] and Induced Dimension

Reduction Method (IDRs) [167, 184], amongst others, are commonly used matrix-free

methods. Their implementation, however, varies with Krylov subspace method applied

and so we focus on a simple version of GMRES for simplicity and leave possible exten-

sions of this algorithm and details of other Krylov subspace methods to the review by

Saad [149].

Starting from an initial guess x0, where the residual vector is

r0 = b− Ax0, (2.8)

approximate solutions xm are iteratively found until the residual ‖b− Axm‖ lies below a

specified threshold. This is achieved by first applying Arnoldi’s method [2] to construct

an orthonormal basis {v1, v2, . . . , vm} of the Krylov subspace Km defined

Km(A, r0) = span{r0, Ar0, A2r0, . . . , Am−1r0}. (2.9)

This is an orthogonalisation process that starts from

v1 =
r0

‖r0‖
, (2.10)

and iteratively finds the next basis vector using the relation:

vj+1 =
Avj −∑

j
i=1 hijvi

hj+1,j
, (2.11)

21



2.1. SPECTRAL METHODS

where the entries hij of the (m + 1)×m upper Hessenberg matrix H̃m are defined

hij =


〈Avj, vi〉 for i 6 j,

‖Avj −∑
j
i=1 hijvi‖ for i = j + 1.

(2.12)

Rearranging (2.11), we find that the vector equations:

Avj =
j+1

∑
i=1

hijvi, (2.13)

are satisfied for j = 1, . . . , m, which are equivalent to the matrix equation:

AVm = Vm+1H̃m, (2.14)

where Vk is the matrix whose column vectors are v1, v2, . . . , vk. We then constrain the

approximate solution xm to lie within the subspace:

xm ∈ x0 +Km, (2.15)

which allows us to suppose that xm = x0 + ym, where ym ∈ Km.

This simplifies the minimisation of the residual ‖b− Axm‖ to one over the m-

dimensional Krylov subspace Km, which may be seen by re-expressing the residual

via the following steps. We can firstly note that

‖b− Axm‖ = ‖b− Ax0 − Aym‖, (2.16)

= ‖r0 − Aym‖. (2.17)

Since {v1, v2, . . . , vm} spans Km, we may write

ym = Vmỹm, (2.18)

where ỹm ∈ Rm and use this relation with (2.14) to simplify the right-hand side of (2.17)
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to

‖b− Axm‖ = ‖Vm+1
(
‖r0‖e1 − H̃mỹm

)
‖, (2.19)

where we have also used that K1 = span{r0} to write r0 = ‖r0‖e1, where e1 is the first

unit vector of Rm. We finally use the orthonormality of the basis {v1, . . . , vm+1} to find

that

‖b− Axm‖ = ‖‖r0‖e1 − H̃mỹm‖. (2.20)

Thus, finding the approximate solution xm subject to (2.15) at each iteration is equivalent

to solving the least-squares problem:

H̃mỹm = ‖r0‖e1, (2.21)

for ỹm, which is simple to solve via a QR factorisation of H̃m.

If the residual ‖b− Axm‖ lies above some specified threshold then one must continue

the algorithm to obtain the next approximation, xm+1. This process may not be compu-

tationally expensive, however, as the iterative nature of Krylov subspace methods means

that each additional iteration builds upon the previous in the following way. A single

iteration of Arnoldi’s method first extends the orthonormal basis of Km to one for Km+1

by the addition of a single vector vm+1. One then uses the upper Hessenberg matrix

H̃m+1, constructed via Arnoldi’s method, to define a least-squares problem, analogous

to (2.21), which is solved for ỹm+1 and hence xm+1. This process continues until the

residual ‖b− AxM‖ is sufficiently small. We should note that the final solution xM is

an approximation to the true solution of (2.7) and will only be exact when x ∈ x0 +KM.

Nevertheless, one can often achieve good accuracy with M � n, where n is the (poten-

tially large) dimension of our initial solution space.
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2.2 TIME-STEPPING SCHEMES

Having detailed how spectral methods have been used to solve the spatial dependence

of solutions to the PDEs, we will now introduce methods that can be used to solve the

temporal dynamics. To achieve this, we consider a general first-order in time PDE for a

variable u:
∂u
∂t

= F (u; x, t), (2.22)

for which it is convenient to write the right-hand side as a sum of linear and nonlinear

terms:
∂u
∂t

= Lu +N (u), (2.23)

where L is a linear operator and N is a nonlinear operator.

2.2.1 SEMI-IMPLICIT EULER SCHEME

One of the simplest time-stepping schemes that we can apply is a first-order semi-

implicit Euler scheme. In this method, we use a first-order approximation for the time-

derivative and we treat the linear operator implicitly, while treating the nonlinear oper-

ator explicitly. Thus, at time t + ∆t, we solve

ut+∆t − ut

∆t
= Lut+∆t +N (ut). (2.24)

Rearranging for ut+∆t, this becomes

(I − ∆tL)ut+∆t = ut + ∆tN (ut), (2.25)

=⇒ ut+∆t = (I − ∆tL)−1(ut + ∆tN (ut)). (2.26)

When the operator (I − ∆tL) is easily invertible, equation (2.26) may be solved directly

for ut+∆t. Otherwise, it may be more convenient to solve (2.25) using matrix-free meth-

ods.
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The order of the semi-implicit scheme can be improved, for example, by using

an implicit Adams–Moulton method to integrate the linear terms and an explicit

Adams–Bashforth method of the same order to integrate the nonlinear terms.

2.2.2 EXPONENTIAL TIME DIFFERENCING

Exponential time differencing (ETD) schemes are a family of higher order time-stepping

methods developed by Beylkin et al. [29] and extended by Cox and Matthews [51].

These methods have been shown to be more stable and have better accuracy than the

second-order semi-implicit scheme for several stiff systems [51] and are therefore a good

candidate for time-stepping the Swift–Hohenberg equation, which contains a term with

a fourth-order spatial derivative.

The schemes are derived by first multiplying (2.23) by an integrating factor e−∆tL for the

linear terms in (2.23) and then integrating the resultant equation over a single time-step

from t to t + ∆t. This enables us to derive the following expression for u at the later

time:

ut+∆t = e∆tLut + e∆tL
∫ ∆t

0
e−τLN (ut+τ) dτ, (2.27)

Here, we see that the linear terms have been integrated exactly, while an integral rep-

resentation has been used for the integration of the nonlinear terms. This integral may

be approximated in various ways, including using Runge–Kutta schemes, with each ap-

proximation corresponding to a different member of the family of ETD schemes. We

refer the reader to [51] for further details about how these schemes are formulated.
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2.2.3 SPLITTING SCHEME FOR NATURAL DOUBLY DIFFUSIVE CONVECTION

More sophisticated numerical schemes need to be employed to time-step the coupled

system for natural doubly diffusive convection:

1
Pr

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇2u + Ra (T + NC) ẑ, (2.28)

∇ · u = 0, (2.29)

∂T
∂t

+ u · ∇T = ∇2T, (2.30)

∂C
∂t

+ u · ∇C =
1
Le
∇2C, (2.31)

primarily because the incompressibility condition (2.29) needs to be satisfied everywhere

in space at each time-step. We proceed by following the derivation of the first-order

scheme that advances (2.28–2.31) detailed by Beaume [8], but note that the formulation

can be readily adapted to higher order schemes using different temporal discretisations

(e.g., see coefficients listed in Table IV of [94]).

The thermal (2.30) and solutal (2.31) fields are advanced using a semi-implicit method,

similar to that presented in section 2.2.1, where the diffusive terms and temporal deriva-

tives are treated implicitly, while the advective terms are treated explicitly. This leads to

the following first-order discretisation for the thermal evolution equation (2.30) between

the (n)th and (n + 1)th time steps:

T(n+1) − T(n)

∆t
+ u · ∇T(n) = ∇2T(n+1), (2.32)

which may be rearranged to

(I − ∆t∇2)T(n+1) = (T(n) − ∆t u · ∇T(n)), (2.33)

T(n+1) = (I − ∆t∇2)−1
(

T(n) − ∆t u · ∇T(n)
)

. (2.34)
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In practice, we express T(n+1) as

T(n+1) = −(∇2 + αTI)−1
(

1
∆t

T(n) − u · ∇T(n)
)

, (2.35)

where αT = −(∆t)−1. This equation, along with subsequent Helmholtz and Poisson

equations, is solved by inverting the Helmholtz operators using a Schur decomposition

and imposing suitable boundary conditions on the domain walls. The solutal concen-

tration at the (n + 1)th time step is similarly found by solving

C(n+1) = −(∇2 + αCI)−1
(

1
∆t

C(n) − u · ∇C(n)
)

, (2.36)

where αC = −Le(∆t)−1.

The velocity field is time-stepped using the splitting scheme by Karniadakis et al. [94],

which involves three substeps. An intermediate velocity û is introduced in the first step

by allowing the velocity field to evolve via inertia and buoyancy forcing:

û− u(n)

Pr∆t
= − 1

Pr
u · ∇u(n) + Ra(T(n) + NC(n))ẑ, (2.37)

=⇒ û = u(n) + ∆t
(
−u · ∇u(n) + RaPr(T(n) + NC(n))ẑ

)
. (2.38)

The second step involves correcting this intermediate velocity via the introduction of a

pressure term p̄(n+1) to ensure that the corrected intermediate velocity field ˆ̂u is incom-

pressible. The correction assumes the form:

ˆ̂u− û
Pr∆t

= −∇ p̄(n+1), (2.39)

where p̄(n+1) satisfies the Poisson equation:

∇2 p̄(n+1) = −∇ ·
( ˆ̂u

Pr∆t
− û

Pr∆t

)
(2.40)

= ∇ ·
(

u(n)

Pr∆t
− 1

Pr
u · ∇u(n) + Ra(T(n) + NC(n))ẑ

)
, (2.41)
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having assumed that both the velocity at the previous time step and ˆ̂u are incompress-

ible to within the order of the scheme. This Poisson equation is solved subject to the

following Neumann boundary conditions that are derived from the momentum equa-

tion (2.28):

∂p
∂n

= n̂ ·
(
− 1

Pr
u · ∇u + Ra(T − C)ẑ +∇(∇ · u)−∇× (∇× u)

)
, (2.42)

where n̂ is the outward normal and the viscous diffusion term has been decomposed

into irrotational and solenoidal contributions. The Neumann boundary conditions on

the pressure are applied numerically as

∂ p̄(n+1)

∂n
= n̂ ·

(
− 1

Pr
u · ∇u(n) + Ra(T(n) − C(n))ẑ−∇×

(
∇× u(n)

))
. (2.43)

where the irrotational contribution of the diffusive term, ∇(∇ · u), has been neglected

as it can lead to instabilities [94]. The Poisson equation (2.41) is then solved subject to

these boundary conditions (2.43) to first obtain p̄(n+1) and subsequently ˆ̂u via

ˆ̂u = u(n) + ∆t
(
−u · ∇u(n) + RaPr(T(n) − C(n))ẑ

)
− Pr∆t∇ p̄(n+1). (2.44)

The velocity field at the (n + 1)th step is obtained after the third step of the splitting

scheme, where the effects of viscous diffusion have been treated implicitly according to

u(n+1) − ˆ̂u
Pr∆t

= ∇2u(n+1). (2.45)

Using (2.44) and rearranging this expression, we find that u(n+1) satisfies

u(n+1) = (I − Pr∆t∇2)−1 ˆ̂u (2.46)

=
(
∇2 + αuI

)−1
(
− u(n)

Pr∆t
+

1
Pr

u · ∇u(n) − Ra(T(n) − C(n))ẑ +∇ p̄(n+1)

)
(2.47)

where αu = −(Pr∆t)−1. This equation is solved by inverting the Helmholtz operators

using a Schur decomposition and thereby imposes Dirichlet boundary conditions on the
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domain walls. We should note that while incompressibility of the velocity field is lost

during this final stage, in favour of satisfying the boundary conditions, the resulting

divergence of the velocity field was found to be negligible.

2.3 CONTINUATION METHOD

The majority of the results presented in the latter half of Chapter 4 and in Chapters 5 and

6 were obtained using numerical continuation. These methods have been widely applied

over the past four decades as they enable both stable and unstable solutions to a system

to be followed over parameter space and for bifurcations, where the nature of the system

changes, to be detected. These methods have been the subject of a number of reviews

that either explain the approach or detail some of its applications (e.g., [1, 62, 102, 103]).

We start the discussion of numerical continuation by focussing on one of the simplest

implementations where we track steady states u as a bifurcation parameter r varies.

These steady solutions satisfy

F (u(x); r) = 0, (2.48)

and are typically obtained via a two-stage process: a prediction stage, where an initial

guess for the solution u is generated; and a correction stage, where a Newton–Krylov

method is used to iteratively converge on a solution to (2.48) starting from this initial

guess.

2.3.1 PREDICTION STAGE

To initiate the continuation process, one must obtain an appropriate initial guess of a

solution to (2.48) for some parameter value r0. This guess can be chosen in a number

of ways: for example, using an analytical approximation, time-stepping towards a sta-

ble solution, or using homotopy methods starting from a known solution of a simpler

system that is in some way close to the original system. The initial guess will then

be corrected during the correction stage, as we will explain in the following section,
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(a)

u

r

(b)

u

r

Figure 2.1: Sketches of (a) fixed parameter continuation and (b) pseudo-arclength con-
tinuation for the normal form of a saddle-node bifurcation: u̇ = r− u2. The dotted lines
indicate the linear extrapolation from previous iterations to reach the initial guess (open
circle) during the prediction stage. The solid arrow represents the correction stage via
Newton iterations to reach the converged solution (filled dot). Blue (green) dots and
lines in (a) indicate when a parameter (component value) is fixed during the continua-
tion step.

to compute the first numerical solution of (2.48). This computed solution will later be

used as the initial guess for the next continuation step, where the solution of (2.48) at

r1 = r0 + ∆r0 is obtained.

After the first two steps, there is a choice of continuation methods that can be applied,

which affects both how the initial guesses at later continuation steps are computed and

the system to solve during the correction stage. Figure 2.1 illustrates two common

methods: fixed parameter continuation (figure 2.1(a)) and pseudo-arclength continua-

tion (figure 2.1(b)).

FIXED PARAMETER CONTINUATION

In fixed parameter continuation, the bifurcation parameter r is fixed during each contin-

uation step. This is achieved by introducing ∆rn as a small variation in the bifurcation
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parameter and imposing that the bifurcation parameter at the (n + 1)th step satisfies

rn+1 = rn + ∆rn. (2.49)

We further constrain the bifurcation parameter of the initial guess r̃n+1 to satisfy

r̃n+1 = rn+1, which leads to us taking the initial guess at the (n + 1)th step as

(r̃n+1, ũn+1) =

(
rn+1, un + ∆rn

un − un−1

rn − rn−1

)
, (2.50)

since ũn+1 is obtained via linear extrapolation of the two previously computed solutions

of (2.48): (rn−1, un−1) and (rn, un). This linear extrapolation and the resulting initial

guess are depicted in figure 2.1(a) by the blue dotted lines and blue open circles, respec-

tively. The correction stage then aims to solve the equation:

F (u, rn+1) = 0, (2.51)

iteratively for u, starting from the initial guess (2.50) until the solution converges at

(rn+1, un+1). These corrections are depicted by the vertical blue arrows in figure 2.1(a)

as the value of r is fixed throughout.

Fixing the bifurcation parameter will fail, however, when the branch of solutions un-

dergoes a saddle-node bifurcation since one may impose a value of r for which there

are no steady states in the vicinity of the initial guess, as is the case for two leftmost

open green circles in figure 2.1(a). One approach for dealing with this potential failure

is to switch to fixed value continuation when one of the components of the solution u

changes sufficiently quickly with r. In doing so, we swap the roles of the bifurcation pa-

rameter r and the fastest growing component of u (uk, say) so that we fix the value of uk

during each continuation step and allow r to be solved for during the correction stage.

This process is illustrated in green in figure 2.1(a), where we note that the correction

stages are depicted by the horizontal green arrows. We may later switch back to fixed

parameter continuation when the component uk changes sufficiently slowly with r.
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PSEUDO-ARCLENGTH CONTINUATION

Pseudo-arclength continuation gives an alternative approach where we do not need to

change method in order to follow a branch of solutions around a saddle-node bifur-

cation. The method was first introduced by Keller [95] and relies on introducing an

approximate measure of the arc-length along the branch s, which is treated as a natural

continuation parameter.

At each continuation step, one first approximates the derivatives of both r and u with

respect to s using the solutions obtained during the previous steps. At the nth step, this

approximation is given by

(ṙn, u̇n) = N
(

rn − rn−1

∆sn−1
,

un − un−1

∆sn−1

)
, (2.52)

where ∆sn−1 is the step size in s used in the previous continuation step and N is a

normalisation constant. Following [63], this normalisation constant is fixed by satisfying

the relation: 〈
(ṙn, u̇n) , (ṙn, u̇n)

〉
= 1, (2.53)

where the inner product is defined

〈
(r1, u1) , (r2, u2)

〉
= θ2

r r1r2 + θ2
uuT

1 u2, (2.54)

for weights θr and θu that may either be fixed equal to θr = θu = 1 or chosen to treat the

parameter r and each component of u comparably.

The derivatives with respect to arc-length (2.52) are used to derive the initial guess for

the solution at the (n + 1)th step:

(r̃n+1, ũn+1) = (rn, un) + ∆sn(ṙn, u̇n), (2.55)

which are shown by the red open circles in figure 2.1(b). One then constrains iterates

in the correction stage to lie on a hyperplane that is orthogonal to this tangent, as is
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illustrated by the red arrows in figure 2.1(b). Numerically, this is achieved by solving

the extended system:

0 = F (u; r), (2.56)

0 = θ2
uu̇T

n (u− ũn+1) + θ2
r ṙn(r− r̃n+1), (2.57)

for both r and u. We note that the extra condition (2.57), which we refer to as the

orthogonality condition, is required as we need N + 1 equations to solve for both the

N components of u and the single component of r at each continuation step. Using the

expressions for ũn+1 and r̃n+1 in (2.55), the orthogonality condition can be reinterpreted

as the distance from the previous solution in the continuation process:

0 = θ2
uu̇T

n (u− un) + θ2
r ṙn(r− rn)− ∆sn. (2.58)

Thus, we may interpret ∆sn as the increase in arc-length between the nth and (n + 1)th

continuation steps.

STEP SIZE

Regardless of the continuation method used, one needs to appropriately choose the step

size ∆rn or ∆sn at each prediction step. If the steps are too small, then one requires a

large number of continuation steps in order to traverse each branch segment. In contrast,

if the steps are too large, then the initial guess lies far from the previous solution, which

may lead to the solution not converging at all during the correction stage, or to solutions

jumping onto a different nearby branch. In practice, we fix a lower and upper limit for

the step size and allow the step sizes to vary within this interval as each branch is

followed. The step sizes are varied according to the total number of Newton iterations

required during the correction stage: increasing when the number of iterations lies

below a specified threshold, while decreasing when the number of iterations exceeds an

upper limit.
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2.3.2 CORRECTION STAGE

In the correction stage, we apply Newton–Krylov methods to generate a sequence of

iterates that starts from the initial guess obtained during the prediction stage and con-

verges on a steady state of the system. For notational simplicity, we will consider fixed

parameter continuation and refer to the system to solve as

F (u; r) = 0, (2.59)

but note that this formulation can be easily amended to apply for pseudo-arclength

continuation by introducing an extended variable U = (u; r), expressing (2.56) and

(2.57) in terms of U and replacing r in (2.59) with the arc-length s.

To motivate how the corrections are made, suppose that we have found an initial guess

(ũn, rn) for the steady solution (un, rn) at the nth continuation step. Then, take the Taylor

expansion of F (un; rn) about this initial guess (ũn, rn):

F (un; rn) = F (ũn; rn) +Fu(ũn; rn)(un − ũn) +O((un − ũn)
2). (2.60)

The left-hand side vanishes since (un, rn) solves (2.59) and we may neglect the nonlinear

terms at leading order as ũn(x) is assumed to be sufficiently close to the true solution un.

If we additionally assume that Fu is invertible, then this expression can be rearranged

to give the following approximation for un as

un ≈ ũn −Fu(ũn; rn)
−1F (ũn; rn)︸ ︷︷ ︸

∆un

. (2.61)

Thus, we would expect to obtain a better approximation to the steady state by making

a correction ∆un to ũn.

In practice, we need to make multiple corrections to find un, which we achieve iteratively
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starting from ũ(0)
n = ũn. We first find a correction ∆u(i)

n by solving the linear system:

Fu(ũ
(i)
n ; rn)∆u(i)

n = F (ũ(i)
n ; rn), (2.62)

using a Krylov subspace method, as described in section 2.1.3, because they can be used

regardless of whether Fu is invertible. Once a correction ∆u(i)
n has been obtained, it is

then used to obtain the following iterate:

ũ(i+1)
n = ũ(i)

n − ∆u(i)
n . (2.63)

We repeat this two-stage process ((2.62) and (2.63)) until we find an iterate where

‖F (ũ(i)
n ; rn)‖ < τ, (2.64)

for a specified tolerance τ, and we say that the Newton–Krylov method has converged.

While Newton’s methods typically have quadratic convergence, here, the convergence

is subquadratic as we only found approximate solutions to (2.62) using Krylov subspace

methods [96].

CONTINUOUS SYMMETRIES

At this point it is helpful to comment on how we deal with a system that admits a

continuous symmetry, e.g., a translation symmetry, where Fu is singular. A typical

approach, but one that we do not take here, is to solve the non-singular extended sys-

tem that consists of (2.59) together with a phase condition that fixes the phase of the

solution. Instead, at each Newton iteration, we apply the Krylov subspace method to

(2.63), which returns one of infinitely many potential corrections ∆u(i)
n that are related

by this continuous symmetry. While convergence to this solution is not guaranteed in

singular systems [34], this was not found to be an issue here as we used appropriate

preconditioning (see below). Applying this process at each continuation step may result

in the phase of states changing along the branch, but this does not affect the bifurcation
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diagrams, which show global properties such as kinetic energy or L2 norms, as these

properties are invariant under the continuous symmetry.

PRECONDITIONER

The linear system (2.62) may be difficult to solve in its current form and require a large

number of Newton iterations in order to achieve convergence. We therefore introduce

an invertible preconditioner P that pre-multiplies both sides of (2.62) to derive the linear

system:

PFu(ũn; rn)∆un = PF (ũn; rn), (2.65)

after dropping superscripts, whose solutions are identical to those from (2.62), but typ-

ically require fewer iterations to obtain and are, therefore, easier to solve for. There

are a wide range of potential preconditioners and the preferred choice often depends

upon properties of the matrix representation of the linear operator (e.g., see reviews by

Benzi [21], Pearson and Pestana [139], Wathen [188]). However, using spectral methods

to solve (2.62) means that many of the traditional preconditioners will be unsuccessful

and we need to apply other approaches.

We consider the preconditioner that was first introduced by Mamun and Tuckerman

[123] in spherical Couette flow. This preconditioner can be derived from the first-order

semi-implicit Euler scheme considered in section 2.2.1 and therefore one of its advan-

tages is that it can be easily implemented from an existing time-stepping code [177].

Starting from the expression for ut+∆t in the Euler scheme (2.26) and subtracting ut from

both sides returns

ut+∆t − ut = (I − ∆tL)−1(ut + ∆tN (ut))− ut, (2.66)

= ∆t(I − ∆tL)−1(Lut +N (ut)). (2.67)

Comparing this expression to the preconditioned linear system (2.65) with
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P = ∆t(I − ∆tL)−1, we find that

∆t(I − ∆tL)−1(L+Nu(ũn; r))∆un = ∆t(I − ∆tL)−1(Lũn +N (ũn; rn)), (2.68)

where the left- and right-hand sides respectively correspond to the changes in solution

after integrating the linearised, Fu(ũn; rn), and fully nonlinear, F (ũn; rn), systems over

a single time-step.

Despite this preconditioner being derived from a time-stepping scheme, the parameter

∆t does not need to be small, but should rather be optimised for improved performance.

In particular, we can consider the two limits, ∆t� 1 and ∆t� 1. In the former case, we

have P ≈ ∆tI and (2.62) is solved without preconditioning. In contrast, taking the limit

∆t� 1 means that the preconditioner takes the form P ≈ −L−1, which was first con-

sidered in fluid systems by Carey et al. [43] who examined its effects in non-Newtonian

flows and referred to it as Stokes preconditioning. In this case, we solve the precondi-

tioned system:

(I + L−1Nu(ũn; rn))∆un = L−1F (ũn; rn). (2.69)

and thus it is particularly useful when contributions to the Jacobian from nonlinear

terms are small and L−1 is approximately the inverse of the Jacobian Fu(ũn; rn). In

practice, there are intermediate values of ∆t that provide optimal performance along

different branch segments. Beaume [8] investigated the effect of ∆t on the number of

conjugate gradient iterations the BiCGstab method needed for convergence along test

branch segments of the snaking in 3D natural doubly diffusive convection [12] and

found a minimal number of iterations around ∆t ≈ 0.1. We therefore used ∆t = 0.1 as

the default value in the preconditioner for the continuation of natural doubly diffusive

convection and only changed it within the range 0.1 6 ∆t 6 0.5 when convergence was

found to be slow.
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2.3.3 BIFURCATIONS

Applying the previously described prediction and correction steps allows us to track out

a path of steady states within parameter space. However, these steps can be extended

in order to determine the stability of the computed steady states and to detect bifur-

cations along the branch, which would allow us to ultimately obtain a more complete

bifurcation diagram containing additional branches.

STABILITY ANALYSIS

The stability of a steady state u0(x) to the PDE:

∂u
∂t

= F (u; r), (2.70)

may be determined by considering the evolution of the slightly perturbed state

u(x, t) = u0(x) + εũ(x, t), where ε� 1. Applying a Taylor expansion of F (u; r) about

u0(x), we find that the evolution of the small perturbation ũ is governed by

ε
∂ũ
∂t

= F (u0; r) + εFu(u0; r)ũ +O(ε2). (2.71)

Introducing J = Fu(u0; r) as the Jacobian of the nonlinear operator F , neglecting the

O(ε2) terms and noting that F (u0; r) = 0 since u0(x) is a steady state, we find that the

perturbation satisfies the linear equation:

∂ũ
∂t

= J ũ, (2.72)

which has the exact solution:

ũ(x, t) = eJ tũ(x, 0). (2.73)

Supposing that ũ is an eigenfunction of the Jacobian with eigenvalue λ, i.e., J ũ = λũ,

then ũ(x, t) = eλtũ(x, 0) and the perturbation grows (decays) if λ > 0 (λ < 0). Thus, to

determine the stability of the steady state u0(x), one needs to find the sign of the real
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parts of the eigenvalues of the Jacobian evaluated at this state.

Since the dimension of the discretised system can be large, it may be impractical to com-

pute the eigenvalues of the Jacobian directly and we instead choose to apply Arnoldi’s

method [2] to approximate the eigenvalues. The motivation behind such an approach

comes from applying the power iteration method to approximate eigenvalues of an

n× n matrix A. For simplicity in this discussion, we assume that A is diagonalisable,

but note that this property is not necessary to apply the method. With this assumption,

we may express an arbitrary state x0 as a linear combination of the eigenvectors of A:

x0 =
n

∑
i=1

aiwi, (2.74)

where wi is the normalised eigenvector with eigenvalue λi, which are ordered according

to |λ1| > |λ2| > · · · > |λn|. Repeatedly applying the matrix A on x0, for a total of k times,

we find that

Akx0 = a1λk
1

(
w1 +

n

∑
i=2

aiλ
k
i

a1λk
1

wi

)
. (2.75)

Supposing that λ1 is a dominant eigenvalue with |λ1| > |λ2|, then the summation term

in this expression is subdominant for large k, which allows us to obtain the following

approximation for the eigenvector:

w1 ≈
Akx0

‖Akx0‖
, (2.76)

with leading eigenvalue:

λ1 ≈
wT

1 Aw1

wT
1 w1

. (2.77)

Subdominant eigenvalues and the associated eigenvectors can be obtained by itera-

tively applying a similar approach on an initial state that is orthogonal to the subspace

spanned by the eigenvectors previously approximated.

Computing eigenvalues with Arnoldi’s method extends upon this approach by incorpo-

rating information from the previous iterates Aix0 for i = 0, . . . , k− 1 as well as Akx0,

which enables multiple leading eigenvalues and their associated eigenvectors to be ob-
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tained simultaneously. Letting m = k + 1, we first use Arnoldi’s method, as described in

section 2.1.3, to compute an orthonormal basis of the m-dimensional Krylov subspace:

Km(A, x0) = span{x0, Ax0, . . . , Ak−1x0}, (2.78)

together with the upper Hessenberg matrix H̃m that satisfies (2.14). Post-multiplying

(2.14) by an arbitrary vector x ∈ Rm and rearranging, we find that

AVmx = VmHmx + vm+1hm+1,meT
mx, (2.79)

where Hm is the m×m matrix obtained by taking the first m rows of the upper Hessen-

berg matrix H̃m. We can then use this relation to show that if x is an eigenfunction of Hm

with eigenvalue β, then Vmx is approximately an eigenfunction of A with eigenvalue β

through the following sequence of equalities:

‖AVmx− βVmx‖ = ‖AVmx−VmHmx‖, (2.80)

= ‖vm+1hm+1,meT
mx‖, (2.81)

= |hm+1,m||eT
mx|, (2.82)

where we first used that x is an eigenvector of Hm, then applied the relation (2.79) and

finally used the orthonormality of vm+1 to obtain (2.82). While the convergence of this

scheme is not immediately clear from (2.82), and we refer to [150] for further details, our

conclusion is that we can solve the simpler problem of finding eigenvalues of the up-

per Hessenberg matrix Hm to approximate leading eigenvalues of A. We implemented

this method using the ARPACK package [110] in Fortran and the eigs subroutine in

MATLAB.

In its current form, the Arnoldi method will pick out the eigenvalues of A with greatest

magnitude, but different subsets of eigenvalues can be obtained by constructing suit-

able operators from A. For example, one can use A−1 to find eigenvalues with smallest

magnitude or (A − σI)−1 to find eigenvalues close to σ. In our case, we wish to ex-

40



CHAPTER 2. NUMERICAL METHODS

tract eigenvalues of the Jacobian with greatest real part, which is achieved by applying

Arnoldi’s method to find the leading eigenvalues and associated eigenfunctions of eJ ∆t.

These may then be related back to those of J as an eigenfunction v of eJ ∆t with eigen-

value µ is also an eigenfunction of J with eigenvalue λ, where λ and µ are related

via

λ =
1

∆t
log µ. (2.83)

Implementing Arnoldi’s method on eJ ∆t is not straightforward, however, because we

do not have an explicit form of the operator eJ ∆t. Instead, we approximate the action of

this operator on a general vector y by integrating

∂y
∂t

= J y, (2.84)

over a single time-step since the exact solution is eJ ∆ty. For example, applying a first-

order semi-implicit Euler scheme to integrate (2.84) leads to

yt+∆t = (I − ∆tL)−1(I + ∆tNu)yt +O((∆t)2). (2.85)

When |∆t| � 1, the operator on the right-hand side gives a first-order approximation to

the exponential of the Jacobian, as

(I − ∆tL)−1(I + ∆tNu) = eJ ∆t +O((∆t)2). (2.86)

This implementation is convenient for doubly diffusive convection since it reuses the

semi-implicit first-order Euler scheme used for time-stepping.

Higher order numerical schemes, including Exponential Time Differencing Runge–Kutta

schemes [51], can be used in an equivalent way to derive higher-order approximations

for the action of eJ ∆t. Such methods can prove advantageous in simpler PDEs, such

as the Swift–Hohenberg equation, since they enable eigenvalues to be computed to the

same level of accuracy with larger ∆t. This is beneficial since power iteration methods
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on eJ ∆t converge with a rate
µ1

µ2
= e∆t(λ1−λ2), (2.87)

where the eigenvalues λi and µi are related via (2.83) Thus, smaller ∆t imply a slower

rate of convergence and a Krylov subspace of higher dimension might be required to

guarantee convergence.

BRANCH SWITCHING

We perform the above stability analysis to compute the leading eigenvalues of steady

states at regular intervals along the branch, which allows us to detect bifurcation points

when the real part of at least one of the eigenvalues of the Jacobian passes through

zero. The corresponding eigenfunctions at the bifurcation points are important as their

growth or decay is responsible for the gain or loss of stability of the steady solution.

Having detected when a branch undergoes a steady bifurcation between two states,

we may wish to numerically continue the bifurcating branch away from the bifurcation

point. To do so, we start by finding an initial guess for a state that lies on the new

branch using a grid-based search similar to that depicted in figure 2.2. We first find the

eigenfunction corresponding to the eigenvalue whose real part changes sign between

two points (black circles in figure 2.2) on the original branch. We then add or subtract

different positive multiples of this eigenfunction to each of the steady states, which gen-

erates a sequence of initial guesses (numbered blue open circles). These are considered

in turn as the starting iterate for the Newton iterations until the solution converges at

a steady state on the new branch, as indicated in figure 2.2 by the vertical blue arrow

from the fifth initial guess. The process stops at this point and we return to applying

the prediction and correction stages in order to follow this branch of solutions.

BIFURCATION TRACKING

We have so far focused on numerical continuation when a single parameter r is varied.

However, it is also possible to extend this method to track stationary bifurcations in a
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1 5

Figure 2.2: Grid-based search to find a steady state on a bifurcating branch. The original
branch (black) undergoes a stationary bifurcation between the two points marked by the
black dots. Blue open circles indicate initial guesses for the bifurcating branch (blue),
with the adjacent number indicating the order in which they are attempted. The fifth
initial guess is found to converge on the bifurcating branch during the correction stage,
which is indicated by the blue arrow that terminates at the blue circle.

two-dimensional parameter space since the Jacobian evaluated at a bifurcation point has

a non-trivial eigenvector with zero eigenvalue. We achieve this, by solving the extended

system:

0 = F (u; r, ν), (2.88)

0 = J v, (2.89)

0 = ‖v‖ − 1, (2.90)

0 = θ2
uu̇T

n (u− ũn+1) + θ2
v v̇T

n (v− ṽn+1) + θ2
r ṙn(r− r̃n+1) + θ2

ν ν̇n(ν− ν̃n+1), (2.91)

for u, v, r and ν. The first three equations in this extended system respectively cor-

respond to: u being a steady solution to the PDE with parameters r and ν (2.88) at

a steady bifurcation point with marginal eigenvector v (2.89) whose norm is equal to

one (2.90). The final equation (2.91) is an orthogonality condition required for pseudo-

arclength continuation and is an extension of the simpler condition (2.57) discussed in
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section 2.3.1. To be explicit, the terms in (2.91) are defined by

(ṙn, u̇n, v̇n, ν̇n) = N
(

rn − rn−1

∆sn−1
,

un − un−1

∆sn−1
,

vn − vn−1

∆sn−1
,

νn − νn−1

∆sn−1

)
, (2.92)

(r̃n+1, ũn+1, ṽn+1, ν̃n+1) = (rn, un, vn, νn) + ∆sn(ṙn, u̇n, v̇n, ν̇n), (2.93)

where ∆si+1 is the step size at the ith continuation step and the normalisation constant

N now ensures that

θ2
u‖u̇n‖2 + θ2

r ṙ2
n + θ2

v‖v̇n‖2 + θ2
ν ν̇2

n = 1. (2.94)

While bifurcation tracking is straightforward to implement for 1D Swift–Hohenberg

equations, it is significantly harder for the system of natural doubly diffusive convec-

tion primarily due to the increased system size owing to the coupled nature of the

system. Nevertheless, we mention the possibility of this approach here as there are

several instances where we have manually tracked bifurcations later in this thesis.

2.4 NUMERICAL VALIDATION

We end this chapter by briefly describing how we validated the numerical schemes

applied to both the Swift–Hohenberg equation and the system of doubly diffusive con-

vection. We first checked that our schemes generated results that are in qualitative

agreement with those from previous studies, which we achieved by reproducing se-

lected bifurcation diagrams using the same domains and parameter values as Burke

and Knobloch [37], Knobloch et al. [100] and Bergeon and Knobloch [22, 24].

We then ran some resolution tests in order to find the number of Fourier modes or

Gauss–Lobatto–Legendre points used in the computations. For the system of doubly

diffusive convection, this involved computing the kinetic energy for a number of steady

states using a range of resolutions. The value using the highest resolution was used

to compute the relative error for each resolution and we found the point at which the

error had stopped exponentially decreasing. This process was repeated over the range
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of parameter values considered in this thesis to confirm a suitable resolution. For the

Swift–Hohenberg equation, we generated wavenumber spectra for a number of steady

states and confirm that the contributions from the highest frequency modes lie below a

specified threshold.

We also ran some additional tests to confirm that there was quantitative agreement

between results obtained using different numerical methods. Firstly, we validated the

numerical computation of eigenvalues of the trivial states by comparing these with both

the rate of decay of small-amplitude non-trivial states obtained via time-stepping and

the eigenvalues obtained (semi-)analytically via a linear stability analysis. We also vali-

dated the kinetic energy of selected nonlinear steady stable states obtained via numeri-

cal continuation by comparing with those obtained after time-stepping a suitable initial

condition to convergence.
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Doubly diffusive convection is one of a number of dissipative systems across a wide

range of fields that admits spatially localised states as solutions, including: other sys-

tems of coupled convection [7, 11, 54, 117], shear flows [71, 161], cylindrical shell buck-

ling [81, 82], nonlinear optics [32, 66], optical data storage [49], vegetation models

[58, 195], mathematical biology [45] and phase-field crystals [145]. Despite the variety in

the underlying physical mechanisms, localised states across these systems exhibit simi-

larities both to those in other systems and to those in the much simpler Swift–Hohenberg

equation, as has been described in the reviews by Dawes [56] and Knobloch [99]. In this

chapter, we will review properties of localised states in the Swift–Hohenberg equation

and introduce further background that will help in understanding later results on con-

vectons in doubly diffusive convection.

3.1 SWIFT–HOHENBERG EQUATION

The Swift–Hohenberg equation, whose general form is

∂u
∂t

= ru− (1 +∇2)2u + f (u), (3.1)

where f (u) is a nonlinear term, is a canonical model that has often been used to illustrate

theory behind localised states, both theoretically and numerically. Swift and Hohenberg

[170] first derived this equation to model thermal fluctuations in Rayleigh–Bénard con-

vection. Since then, many studies have considered the rich variety of patterns that the

Swift–Hohenberg equation admits. These patterns include: rolls and hexagons [28],
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travelling waves [153], standing waves [152, 155] and labyrinth patterns [169]. Early

studies on localised states of (3.1), including those by Hilali et al. [79] and Sakaguchi and

Brand [154], identified the coexistence of localised states with varying widths across a

subcritical range of parameter values. Later studies have since identified further types of

localised states and studied the associated bifurcation structure geometrically [16, 121],

analytically [46, 59, 124] or numerically [3, 36–41, 100, 115].

3.1.1 BIFURCATION DIAGRAM

We start by reproducing selected results by Burke and Knobloch [37] who considered

the one-dimensional Swift–Hohenberg equation with quadratic-cubic nonlinearity:

∂u∗

∂t∗
= r∗u∗ − (q∗2c + ∂2

x∗)
2u∗ + ν∗u∗2 − g∗u∗3, (3.2)

with q∗c = 0.5, ν∗ = 0.41 and g∗ = 1. Rescaling (3.2) using:

x = q∗c x∗, t = q∗4c t∗, r =
r∗

q∗4c
, u =

√
g∗

q∗2c
u∗, ν =

1√
g∗q∗2c

ν∗, (3.3)

here, we consider the equivalent system:

∂u
∂t

= ru− (1 + ∂2
x)

2u + νu2 − u3, (3.4)

with ν = 1.64. We present the bifurcation diagram for a selection of steady states in a

periodic domain with period 32π in figure 3.1.

The trivial state, u = 0, first undergoes a subcritical bifurcation at r = 0, where a branch

of spatially periodic solutions, subsequently called P, bifurcates. This primary branch is

shown in black in figure 3.1 and is initially once unstable as it heads into r < 0. States

on P regain stability after the branch turns around at the left saddle-node bifurcation at

r ≈ −0.27 (figure 3.1(g)). Thus, as P extends into r > 0, there is a region of bistability

between P and the trivial state when −0.27 . r < 0.

Two branches of localised states, L0 (red) and Lπ (blue), bifurcate subcritically from
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 3.1: Steady solutions of the one-dimensional Swift–Hohenberg equation (3.4)
with ν = 1.64 in a periodic domain with period 32π. (a) Bifurcation diagram showing
the L2 norm of steady states on the branches of: periodic states P (black), symmetric
localised solutions L0 (red) and Lπ (blue) and asymmetric localised rung states (purple).
(b)–(m) Profiles of steady states on the different branches, with the colour indicating the
branch on which the state lies.
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P via an Eckhaus instability [26]. States on these secondary branches initially display

small-amplitude oscillations that are weakly spatially modulated, with those on the two

branches differing in the type of extrema they possess at x = 0; the state has a local

minimum (Lπ) or maximum (L0) at x = 0, as seen in figures 3.1(b) and (h), respectively.

The extent of spatial modulation and the maximum amplitude of the states both increase

as each of L0 and Lπ is followed towards more negative values of r. Thus, by the first

left saddle node on each branch, the states are fully localised and contain either one

(figure 3.1(i)) or two (figure 3.1(c)) central oscillations with amplitudes that resemble

those in states on the upper branch of P.

The two secondary branches, L0 and Lπ, enter what is referred to as a pinning region

between −0.234 . r . −0.199 and proceed to intertwine as they pass between left and

right saddle nodes in a process known as homoclinic snaking. The localised states

increase in length by a pair of outer oscillations strengthening between successive left

saddle nodes, as seen, for example, between figures 3.1(c) and (e). This process continues

until around ‖u‖2 & 0.58, where the localised states contain oscillations that nearly fill

the domain. At this point, the states undergo a process of wavelength readjustment

before reconnecting with P near the subcritical saddle node (figure 3.1(g)) in a second

Eckhaus instability [26].

Figure 3.2(a) indicates the stability of localised states along L0 (red in figure 3.1) by

showing eigenvalues of selected eigenmodes as a function of the arc-length along the

branch from the small-amplitude secondary bifurcation (s = 0) to where L0 reconnects

with P near the subcritical saddle node (s ≈ 14). There are three eigenmodes of partic-

ular interest: a translation mode (black), a symmetric amplitude mode (green) and an

antisymmetric phase mode (orange). All other eigenmodes remain stabilising over the

entire extent of the branch. While the translation mode (e.g., figure 3.2(b)) arising from

the periodic boundary conditions remains marginal (λ = 0) along L0, the amplitude and

phase eigenmodes repeatedly stabilise and destabilise over the branch.

The amplitude eigenmodes are responsible for the saddle-node bifurcations on the

snaking branch as they gain (lose) stability at left (right) saddle nodes, which are respec-
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(a)

(b)

(c)

(d)

Figure 3.2: (a) Eigenvalues corresponding to the translation (black), amplitude (green)
and phase (orange) modes for states on L0 as a function of the arc-length s. Eigenvalues
corresponding to the phase and amplitude modes are nearly indistinguishable on this
scale between s ≈ 3 and s ≈ 8.5. Left (right) saddle nodes are indicated by the vertical
dashed (dotted) black lines. (b)–(d) Profiles of the (b) marginal, (c) amplitude and (d)
phase eigenmodes for the state at the left saddle node (figure 3.1(k)), which is indicated
by the black cross at s ≈ 4.91.

tively indicated by the vertical dashed (dotted) lines in figure 3.2. Figure 3.2(c) depicts

the symmetric amplitude eigenmode associated with the left saddle node marked (k) in

figure 3.1, from which we see that the non-trivial behaviour is focussed at the fronts of

the localised state that connect the central oscillations to the trivial state. Such behaviour

may be expected since we saw that the strengthening of these outer oscillations was the

main change over a single snaking oscillation.

In contrast, the antisymmetric phase modes are responsible for the “rungs” (purple in

figure 3.1(a)) that connect the L0 and Lπ branches when the modes gain (lose) stability

shortly before (after) the left (right) saddle nodes. Similarly to the amplitude mode,

the non-trivial behaviour of the phase mode is also localised at the fronts of the steady

state, as seen in figure 3.2(d). However, we note that the eigenmode tends to strengthen

oscillations at one front but weaken the oscillations at the second front. This may also

be deduced by comparing states along a branch of asymmetric rung states; for example,

we see that the oscillations at the left front weaken between figures 3.1(d), (l) and (j),
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while the oscillations at the right front strengthen. This leads to a small translation of

the localised states following the rung branches, which we have not shown in figure 3.1

as we have applied the translation symmetry to centre the states in figures 3.1(d) and (j)

about x = 0.

The stability of states on Lπ is largely similar to that shown in figure 3.2(a) for L0. The

main difference between the two branches is that the phase eigenmode is initially unsta-

ble but stabilises prior to the first left saddle node (figure 3.1(c)), when the first branch

of rung states bifurcates from Lπ [37]. We consequently find a multiplicity of coexisting

stable localised states with different numbers of oscillations within the pinning region.

The Swift–Hohenberg equation also admits multipulse states, which, as the name sug-

gests, contain multiple localised pulses that are separated over the domain. While Sak-

aguchi and Brand [154] identified this type of state in their early study on this equa-

tion, Burke and Knobloch [40] only later determined the structure of the branches on

which they lie. They found that these multipulse states may lie on snaking branches

or on figure-of-eight isolas within the pinning region, depending upon the separation

between adjacent pulses. This type of state therefore also contributes to the multiplicity

of states found that can be within the subcritical pinning region.

3.1.2 SPATIAL DYNAMICS

One approach that can be used to provide insight into why the Swift–Hohenberg equa-

tion admits localised states and when it does so involves considering the spatial dy-

namics of the system. Typically, dynamical systems consider the temporal dynamics

of solutions by finding the spatial evolution of states in time. However, to understand

localised states, it has proved more helpful to view the system in terms of the evolution

of time-independent solutions through space.

For example, we can gain intuitive insight into why the Swift–Hohenberg equation ad-

mits localised states at small amplitude by considering the spatial dynamics of the lin-

earised system. Consider taking a small-amplitude, time-independent disturbance to

51



3.1. SWIFT–HOHENBERG EQUATION

kr

ki

r < 0

kr

ki

r = 0

kr

ki
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Figure 3.3: The Hamiltonian–Hopf bifurcation at r = 0 in the Swift–Hohenberg equation
(3.4). As the bifurcation parameter r increases through r = 0, two pairs of complex-
conjugate eigenvalues collide on the imaginary axis, before separating on the imaginary
axis.

the trivial state of the form u = ε u0 ekx, where ε� 1 and k is a spatial eigenvalue.

Substituting this disturbance into (3.4) and neglecting nonlinear terms, we obtain the

dispersion relation:

0 = r− (1 + k2)2, (3.5)

which may be rearranged to find that the spatial eigenvalues satisfy

k = ±
√
−1±

√
r. (3.6)

This form illustrates that the Swift–Hohenberg equation undergoes a Hamiltonian–Hopf

bifurcation at r = 0, as depicted in figure 3.3. Here, the spatial eigenvalues occur in two

complex conjugate pairs when r < 0, collide on the imaginary axis when r = 0 and

separate to give four, purely imaginary eigenvalues when r > 0. Since u = εu0ekrx+ikix,

spatial eigenmodes with kr > 0 (kr < 0) grow (decay) in space, while ki 6= 0 corresponds

to spatial oscillations. With this interpretation, one may view a localised state when

r < 0 as a connection between a spatially growing eigenmode and a spatially decaying

eigenmode. As these eigenmodes describe the dynamics along manifolds of the trivial

state, localised states can arise provided that the corresponding stable and unstable

manifolds of the trivial state intersect.

To clarify this idea of spatial dynamics, we consider the phase-space representations of
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(a)

(b)

(c)

(d) (e)

Figure 3.4: (a) Bifurcation diagram denoting the primary periodic branch (black) and Lπ

(blue) of the Swift–Hohenberg equation in a domain with Lz = 32π. (b)–(d) Profiles at
r ≈ −0.234 of the states marked (b) P, (c) L (d) O in (a). (e) Phase-space representation
of the states O, L and P in (u, ux) space. The different shades of blue in panels (c) and
(e) denote corresponding sections of the localised state.

different steady states of (3.4) by plotting their amplitude u against their first spatial

derivative ux. With such a representation, fixed points correspond to spatially homoge-

neous solutions (see O in figure 3.4(e)), periodic orbits correspond to spatially periodic

solutions (see P in figure 3.4(e)) and homoclinic orbits correspond to localised states (see

L in figure 3.4(e)).

To highlight the connection between localised states and the associated homoclinic orbit,

three sections of L in figure 3.4(c) and the associated segments of the phase-space tra-

jectory in figure 3.4(e) are marked using different shades of blue. The homoclinic orbit

starts near the homogeneous state O, while the localised state has small amplitude for

large negative x, but spirals outwards as the amplitude of oscillations increases with in-

creasing x, as seen in light blue. The orbit then approaches and follows the periodic orbit

associated with a periodic state P (thick black orbit) around a number of times, while

the localised states undergoes the same number of large-amplitude central oscillations,

as seen in mid-blue. The homoclinic orbit finally spirals back inwards towards the fixed

point corresponding to the trivial state O, while the amplitude of oscillations decreases

back to zero, as seen in dark blue. Hence, determining when the spatial system admits
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homoclinic orbits to the trivial state will help in understanding when localised states

can exist.

3.1.3 UNFOLDING OF HAMILTONIAN–HOPF BIFURCATION

Normal-form theory has been used to prove the existence of small-amplitude homoclinic

orbits to the origin in the unfolding of Hamiltonian–Hopf bifurcations [60, 89, 190]. Such

results have relevance in both the Swift–Hohenberg equation, which we have shown

undergoes a Hamiltonian–Hopf bifurcation (see figure 3.3), and natural doubly diffusive

convection, which also undergoes this type of bifurcation at the onset of convection [24].

In the following, we summarise results obtained by Woods and Champneys [190], who

presented a geometric argument as to why homoclinic orbits to the origin exist in the

integrable limit of the bifurcation. They considered the normal form:

dA
dt

= iωA + B + iAP
(

r; |A|2,
i
2
(

AB− AB
))

+ RA, (3.7)

dB
dt

= iωB + iBP
(

r; |A|2,
i
2
(

AB− AB
))

+ AQ
(

r; |A|2,
i
2
(

AB− AB
))

+ RB, (3.8)

for state variables A and B, where the overbar denotes complex conjugation, r is the

bifurcation parameter, ±iω are the eigenvalues of the bifurcation at r = 0, P and Q are

the following polynomials with real coefficients:

P(r; x, y) = p1r + p2x + p3y, Q(r; x, y) = −q1r + q2x + q3y + q4x2, (3.9)

and RA and RB are higher order terms. The sign of q2 in (3.9) is of particular interest as it

controls the criticality of the bifurcation, being subcritical when q2 < 0 and supercritical

when q2 > 0. We further assume that this normal form is reversible, in that there is a

reflection symmetry R that satisfies

R(A, B) =
(

A,−B
)

. (3.10)
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The normal form (3.7–3.9) is integrable when RA = RB = 0, where it admits the first

integrals:

K =
i
2
(

AB− AB
)

, (3.11)

H = |B|2 −
∫ |A|2

0
Q(r; s, K) ds. (3.12)

Defining x = |A|2 and after some algebraic manipulation using these first integrals, one

can show that x satisfies (
dx
dt

)2

= 4 f (x), (3.13)

where f (x) is the quartic polynomial:

f (x) =
1
3

q4x4 +
1
2

q2x3 + (q3K− q1µ)x2 + Hx− K2. (3.14)

We are particularly interested in using (3.13) and (3.14) to find homoclinic orbits to the

origin, where A = B = 0 and the first integrals evaluate as K = H = 0. These conditions

simplify the form of f (x) in (3.14) to

f (x) =
1
3

q4x4 +
1
2

q2x3 − q1µx2. (3.15)

Equation (3.13) is equivalent to

d2x
dt2 = − d

dx

(
− 2 f (x)

)
, (3.16)

and hence the system may be interpreted as a nonlinear oscillator equation with po-

tential −2 f (x). The equivalence between the normal form (3.7–3.9) and this oscillator

equation means that we may interpret a homoclinic orbit to the origin as a particle

trajectory where the particle starts from rest at x = 0, enters the region x > 0, since

x = |A|2 > 0, and reaches a maximum value x∗, before returning to x = 0. Using (3.13),

we find that such a trajectory is only possible when f (x) > 0, or equivalently when

the potential function −2 f (x) is negative. Further, we find that the maximum value
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q2

r

r = rD

(a) q4 > 0

q2

r

(b) q4 < 0

Figure 3.5: Regions of (r, q2) parameter space where homoclinic orbits of the origin exist
in the unfolding of the Hamiltonian–Hopf bifurcation are shaded in the two cases: (a)
q4 > 0 and (b) q4 < 0. When q4 > 0, this region is bounded between the negative q2 axis
and the line r = rD (3.17), whereas when q4 < 0, this region is bounded only by the q2
axis. Sketches of the potential function −2 f (x) for selected parameter values are also
illustrated, with the black dots indicating equilibrium states of the normal form and
thick red lines indicating the range of x related to homoclinic orbits. The number of
roots of f (x) changes across the dotted lines. Adapted from [190].

attained is governed by the constraint f (x∗) = 0 as this condition corresponds to zero

particle velocity.

Woods and Champneys [190] analysed the properties of f (x) for the two cases q4 > 0

and q4 < 0 to determine the parameter regimes in which the above conditions are sat-

isfied, which allowed them to determine when homoclinic orbits in the unfolding of

the Hamiltonian–Hopf bifurcation are admitted. We have presented their results in fig-

ure 3.5. When q4 < 0 (figure 3.5(b)), they found that this region is the half-plane with

negative r, whereas when q4 > 0 (figure 3.5(a)), they found that this region is instead

bounded on the right by the negative q2 axis and on the left by the curve:

rD =
−3q2

2
16q1q4

. (3.17)

As evidenced by the corresponding sketch of −2 f (x) on this curve, the maximum value

that the particle trajectory would attain satisfies both f (x∗) = 0 and f ′(x∗) = 0, where
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the prime indicates differentiation with respect to x, and therefore corresponds to a non-

trivial equilibrium of (3.13). The trajectory thus corresponds to the particle travelling

between the two equilibria and can be related to a heteroclinic connection between the

origin and a finite-amplitude periodic orbit of the normal form (3.7–3.9). As the normal

form is invariant under the symmetry:

(A, B)→
(

Aeiφ, Beiφ
)

, (3.18)

there is in fact a one-parameter family of heteroclinic connections that are parameterised

by the phase φ.

The integrable nature of the normal form (3.7–3.9) may be lost upon including non-

trivial higher-order terms RA and RB, which raises the question about whether the ho-

moclinic orbits found in the integrable case (see figure 3.5) persist. Iooss and Pérouème

[89] showed that the two homoclinic orbits associated with symmetric solutions with

phases φ = 0 and φ = π satisfying (3.10) persist for small r in both the subcritical

(q2 < 0) and supercritical (q2 > 0) regimes.

3.1.4 HETEROCLINIC TANGLE

The persistence of the heteroclinic connection between the trivial and periodic states

along the line r = rD displays more interesting behaviour, however, since the one-

parameter family of heteroclinic connections is structurally unstable. Woods and

Champneys [190] supposed that this family breaks up into a pair of heteroclinic tan-

gencies, as depicted in the left panel of figure 3.6. Here, the unstable manifold of the

origin, Wu(0), lies tangent to the stable manifold of the periodic state γ(φ), instead of

connecting as they would in the integrable system. The stable manifold of the origin,

Ws(0), similarly lies tangent to the unstable manifold of the periodic state, owing to the

reversibility of the system.

For parameter values r between the cases of tangency, the unstable (stable) manifold

of the origin intersects the stable (unstable) manifold of the periodic orbit transversely,
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Figure 3.6: Relationship between localised states, the snaking branch and intersections
between the stable and unstable manifolds of the trivial state u = 0 near the periodic
state γ(ϕ). From [16]. Copyright ©2009 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.

as seen in the top right panel of figure 3.6, which is accompanied by infinitely many

intersections between the stable and unstable manifolds of the origin (see [99] for an

explanation for this behaviour). As we noted in section 3.1.2, such intersections may

be related to homoclinic orbits to the origin and also localised states. The bottom right

panel of figure 3.6 indicates that the intersections can occur either on Fix R (red dot),

the set of all states that are invariant under the reflection symmetry (3.10), or away from

this set (purple dots). While the former correspond to symmetric localised states, like

those lying on the snaking branches L0 and Lπ in the Swift–Hohenberg equation (see

figure 3.1), the latter correspond to asymmetric localised states, like those found on the

rung branches in figure 3.1. The heteroclinic tangencies, therefore, correspond to the

left and right folds in the snaking branch, between which one can find infinitely may

localised states in an infinite domain. This behaviour is known as a heteroclinic tangle.

3.1.5 MAXWELL POINT

The variational nature of the Swift–Hohenberg equation provides a more physical un-

derstanding into when localised states can exist by considering when particular states
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0 < Fp
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Figure 3.7: (a) Free energy of periodic states on P, Fp, using the following conventions
for the colour: states on the lower branch segment (black), states on the upper branch
segment with Fp > 0 (red) and states on the upper branch segment with Fp < 0 (blue).
The circled point indicates the Maxwell point at rMP ≈ −0.22 when Fp = 0. (b) Sketch of
an initial state where the trivial state is connected to a stable periodic state via a front.
The arrows indicate the direction in which the front is expected to move depending
upon the free energy of the periodic state, Fp.

are energetically favourable. We start by recasting (3.4) into variational form to find

∂u
∂t

= −δF
δu

, (3.19)

where the free energy F is defined by

F =
∫ L

0

(
−1

2
ru2 +

1
2
((

1 + ∂2
x
)

u
)2 − 1

3
νu3 +

1
4

u4
)

dx. (3.20)

While the free energy of the trivial state clearly satisfies F = 0 for all values of the bifur-

cation parameter r, the free energy of periodic states, Fp, varies along the primary branch

P. Figure 3.7(a) shows that Fp increases as P is followed from the primary bifurcation,

where Fp = 0, to the subcritical saddle node at r ≈ −0.27, where Fp attains its maximum

value of Fp ≈ 0.84, before decreasing as the upper primary branch is followed towards

larger values of r. In particular, we find that Fp passes through zero at the Maxwell

point, rMP ≈ −0.22, where the free energies of the trivial and periodic states are equal.

The variational formulation (3.19, 3.20) highlights that an arbitrary initial condition will

reduce its free energy to a local minimum as the state evolves in time and converges
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on a steady state. Thus, understanding the free energy of different steady states can

help in determining the temporal dynamics of the system. For example, we consider

the temporal evolution of a state where the stable trivial state is connected via a front

to a stable periodic solution of (3.4), as illustrated in figure 3.7(b), which would be

represented by a heteroclinic connection between the trivial and periodic states in phase

space. The temporal evolution of this state depends on the free energy of the periodic

state, Fp, in comparison to that of the trivial state: when r < rMP (red in figure 3.7(a)),

the free energy of the trivial state is lower than that of the periodic state, i.e., 0 < Fp, and

we would expect the front connecting the states in figure 3.7(b) to move to the right as

the trivial state invades the domain; when r > rMP (blue in figure 3.7(a)), the free energy

of the periodic state is less than that of the trivial state, i.e., Fp > 0, and we would expect

the front to move to the left as the periodic state invades the domain; and finally, when

r = rMP (circle in figure 3.7(a)) and the free energies of the stable periodic and trivial

states are equal, i.e., Fp = 0, we would expect the front to adjust slightly to provide a

stable coexistence between the two states.

The above description does not, however, account for the structured nature of periodic

states and their ability to adjust their wavelength in response to slight deviations away

from the Maxwell point. Pomeau [141] suggested that these properties can lead to a

“pinning” of the front onto the patterned structure that requires a finite disequilibrium

of the free energies between the states before the front can move. Consequently, both

steady fronts between the trivial and periodic states and localised states persist over

a range of r that includes the Maxwell point. This concept of pinning also applies in

non-conservative systems, such as natural doubly diffusive convection, where there is

neither a free energy nor a Maxwell point, and we find patterned localised states over a

range of parameter values, known as the pinning region.

3.1.6 WEAKLY NONLINEAR ANALYSIS

A complementary approach to understand parameter regimes in which small-amplitude

localised solutions of the Swift–Hohenberg equation can exist is to perform a weakly
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nonlinear analysis about the primary bifurcation of the trivial state at r = 0, which we

detail below. We will apply a similar analysis for the system of natural doubly diffusive

convection in Chapters 4 and 5.

We start by taking the small-amplitude solution u to be an asymptotic expansion in a

small parameter ε� 1:

u = εu1 + ε2u2 + ε3u3 + . . . , (3.21)

and rescale the bifurcation parameter r by setting r = ε2r2. The slow temporal

and spatial scales are obtained by considering the linear stability analysis of the

Swift–Hohenberg equation after supposing that the linear perturbation u1 is propor-

tional to eσteikx, which leads to the dispersion relation:

σ = r− (1 + k2)2. (3.22)

Balancing terms in this relation motivates a slow growth rate with σ = ε2σ2 and hence

rescaling time as t = T/ε2. Rearranging (3.22) for the wavenumber k:

k = ±1± ε
√

r2 − σ2, (3.23)

motivates the introduction of a slow spatial scale X = εx to govern the modulation of

steady states with wavenumber k = ±1 over larger periods. We initially treat this slow

spatial scale X independently of the fast spatial scale x.

We use the above scalings to rescale the Swift–Hohenberg equation (3.4) and solve the

resulting equation order-by-order in ε. The equation to solve at O(ε) is

(1 + ∂2
x)

2u1 = 0, (3.24)

which we note has real solutions of the form:

u1 = A1(X, T)eix + Ā1(X, T)e−ix. (3.25)
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At O(ε2), we find that

(1 + ∂2
x)

2u2 = −4∂xX(1 + ∂2
x)u1 + νu2

1, (3.26)

= ν(A2
1e2ix + 2|A1|2 + Ā1

2e−2ix), (3.27)

which has solution:

u2 = A2(X, T)eix + Ā2(X, T)e−ix +
ν

9
A2

1e2ix + 2ν|A1|2 +
ν

9
Ā1

2e−2ix, (3.28)

where A2 is currently undetermined.

At O(ε3), both the time dependence of the system and the deviation away from the

primary bifurcation are introduced, which leads to us solving

(1 + ∂2
x)

2u3 = −∂u1

∂T
+ r2u1 − 4∂xX(1 + ∂2

x)u2 − (4∂2
x∂2

X + 2(1 + ∂2
x)∂

2
X)u1 + 2νu1u2 − u3

1.

(3.29)

To avoid secular terms and ensure the existence of a solution, we must apply a solvability

condition to (3.29), which we achieve by imposing that coefficients of terms proportional

to eix and e−ix in (3.29) vanish since the linear system is self-adjoint. This is achieved

by substituting the previously determined forms for u1 (3.25) and u2 (3.28) into (3.29),

multiplying each side by e−ix and integrating over the interval x ∈ [0, 2π]. Doing so, we

recover the Ginzburg–Landau equation:

∂A1

∂T
= r2A1 + 4A1XX +

(
38
9

ν2 − 3
)
|A1|2A1, (3.30)

that the linear amplitude A1(X, T) must satisfy.

The Ginzburg–Landau equation admits three steady solutions that we have a particular

interest in. The first of these is the trivial solution:

A1 = 0, (3.31)

which is valid for all values of r2 and corresponds to the trivial solution u = 0 of the
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Swift–Hohenberg equation. The second is the spatially uniform solution:

A1 =

(
9r2

27− 38ν2

)1/2

eiχ (3.32)

for some phase χ, which corresponds to small-amplitude spatially periodic states of

(3.4). This solution is only valid provided that the fraction is positive, which restricts

the sign of r2 for given ν and demonstrates that the primary bifurcation of the trivial

state in the Swift–Hohenberg equation is subcritical for ν >
√

27/38 and supercritical for

ν <
√

27/38. The third type of steady solution of interest are small-amplitude spatially

localised states with

A1 =

( −18r2

38ν2 − 27

)1/2

sech
(√−r2X

2

)
eiχ, (3.33)

where the phase χ is determined to be either χ = 0 or χ = π by extending this analysis

to include beyond-all-orders effects [46, 59]. These correspond to the following small-

amplitude localised solutions of the Swift–Hohenberg equation:

u ≈ 2
( −9r

38ν2 − 27

)1/2

sech
(√−rx

2

)
cos(x + χ), (3.34)

which only exist for r < 0, corresponding to when the bifurcation is subcritical, and

lie on one of a pair of branches that are characterised by the phase χ. These branches

bifurcate directly from the origin in an infinite domain and thereafter exhibit similar

small-amplitude behaviour to the branches L+ and L− in finite domains (see figure 3.1).

While the weakly nonlinear analysis is only formally valid in the limit ε→ 0, previ-

ous studies have considered different approaches that extend this analysis away from

the primary bifurcation. Burke and Knobloch [37], for example, reduced both the

Swift–Hohenberg equation (3.2) and normal form (3.7–3.9) of the Hamiltonian–Hopf

bifurcation with RA = RB = 0 to fifth-order Ginzburg–Landau equations and compared

coefficients to determine which regime of the normal form theory in figure 3.5 applied.

Alternatively, Chapman and Kozyreff [46] extended the multiple-scales analysis to in-
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Figure 3.8: (a) Bifurcation tracking in (r, ν) parameter space using a domain with period
64π. The following lines are shown: (blue) the edges of the pinning region; (black) the
Maxwell point corresponding to when the free energy (3.20) of the trivial state equals
that for a state on the periodic branch P (see figure 3.7); and (green) the Maxwell point
corresponding to when the free energy (3.20) of the trivial state equals that for a state on
the spatially homogeneous branch. The blue open circle represents the end of snaking,
while the black cross indicates the codimension-two point where the criticality of the
primary bifurcation changes. (b)–(e) Bifurcation diagrams for (b) ν = 3, (c) ν = 2, (d)
ν = 1.5 and (e) ν = 1 in a domain with period 32π that show: a branch of periodic
states (black), the branch of homogeneous states (green) and branches of localised or
modulated states (blue and red), only one of which is shown in panels (b) and (e). The
branch of collapsed snaking in (b) was terminated to avoid connecting to a nearby isola.

corporate a beyond-all-orders analysis of front solutions near the Maxwell point, which

allowed them to obtain analytical expressions for both the pair of snaking branches and

the rungs connecting them.

3.1.7 BIFURCATION TRACKING

It is also of interest to consider how the structure of the bifurcation diagram changes

as the parameter ν is varied towards the codimension-two point (r, ν) = (0,
√

27/38),

where the criticality of the primary bifurcation changes, since we will consider a similar

question for the fluids system in Chapter 5. To do so, we replicate figure 18 of [37] in
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figure 3.8(a) by considering a domain with period 64π and tracking both the eleventh

right saddle node (of fifteen) on L0 and the preceding left saddle node in (r, ν) parameter

space to obtain a proxy for the extent of the pinning region. This pinning region is

delimited by the blue lines in figure 3.8(a) and we further plot bifurcation diagrams for

selected values of ν (figures 3.8(b)–(e)) to illustrate the main changes that arise.

The pinning region becomes smaller as the parameter ν decreases, which can be seen by

comparing figures 3.8(c) and (d) for ν = 2 and ν = 1.5, respectively. However, we note

that the region continues to contain the Maxwell point corresponding to when FP = 0

(black line). Indeed, the snaking would continue to exist in an exponentially thin region

around the Maxwell point if the codimension-two point was approached in an infinite

domain [46]. In finite domains, however, the snaking does not persist all the way to

the codimension-two point since pairs of left and right saddle nodes successively collide

in cusp bifurcations and disappear [37]. The blue circle in figure 3.8(a), for example,

indicates the parameter values where the tracked saddle nodes collide. Instead, we

might find non-snaking branches of spatially modulated states, as in figure 3.8(e) for

ν = 1, provided that the domain is sufficiently large for the primary branch to undergo

modulational instabilities given the proximity to the codimension-two point [55].

Burke and Knobloch [37] found that the typical homoclinic snaking breaks down around

ν ≈ 2.75 because other Maxwell points enter the pinning region, including the one cor-

responding to when the free energies of the trivial state and states on the branch of

spatially homogeneous states are equal (shown in green in figure 3.8(a)). They found a

variety of different snaking behaviour beyond this boundary, including what is known

as collapsed snaking, where the secondary branch extends vertically upwards as the

localised states increase in width, as illustrated in figure 3.8(b) when ν = 3. For further

discussion about this breakup process and examples of the corresponding secondary

branches, we refer the reader to [37].
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Figure 3.9: Bifurcation diagram illustrating the primary branch corresponding to states
with ten rolls P10 and slanted snaking of secondary branches of localised states L±10 in
rotating convection. Adapted from [11].

3.2 SNAKING WITHOUT BISTABILITY OR SUBCRITICALITY

Despite the previous subsections indicating that bistability and subcriticality are impor-

tant for spatial localisation, neither property is essential. For example, as we mentioned

in Chapter 1, localised states have been found in closed domains of binary fluid convec-

tion [129] and natural doubly diffusive convection [12], despite the absence of primary

branches of periodic states and hence also the bistability found in these systems with

periodic boundary conditions.

Alternatively, studies on systems involving a conserved quantity, including magneto-

convection [54, 117, 118], rotating convection [11], vibrating granular or fluid layers

[57, 142], optics [66] and phase-field crystal models [173], have shown that localised

states can lie on slanted snaking branches that may extend outside of the bistable re-

gion. Figure 3.9 illustrates slanted snaking in a subcritical system of rotating convection

described by Beaume et al. [11]. Here, we see that a pair of secondary branches L±10 bi-

furcate subcritically from the primary branch P10 and extend towards Rayleigh numbers
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3.9(a)

3.9(c)
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3.9(e)

3.9(g)

Figure 3.10: Bifurcation diagrams depicting the primary branch (black) and one of the
secondary snaking branches (blue) for the cubic-quintic-septic Swift–Hohenberg equa-
tion (3.35) with parameter values (a, b, c) equalling: (a) (−2,−1, 0), (b) (0, 1.05,−0.5) and
(c) (2, 3.1,−1). Thick (thin) black lines indicate stable (unstable) states on the primary
branch.

below the subcritical saddle node of P10, where the trivial conduction state is the only

stable state, before turning around at left saddle nodes and intertwining as they each

snake towards larger Rayleigh numbers and additional rolls nucleate on the localised

states. Consequently, the left saddle nodes are no longer vertically stacked as they were

in the Swift–Hohenberg equation (figure 3.1(a)), but rather slant upwards towards larger

Rayleigh numbers.

One of the explanations behind slanted snaking is that the conserved quantity provides

non-local effects and generates a positive feedback mechanism that can maintain the

localised states at lower parameter values than where domain-filling states can be found.

Further, these non-local effects can lead to these secondary branches bifurcating from

modulational instabilities of either subcritical or supercritical primary branches [11, 54].

The cubic-quintic-septic Swift–Hohenberg equation:

∂u
∂t

= ru− (1 + ∂2
x)

2u + au3 + bu5 + cu7, (3.35)

can also exhibit homoclinic snaking when the primary bifurcation is supercritical [100].

Figure 3.10 illustrates how such snaking develops from the typical subcritical snaking
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Figure 3.11: Solution profiles for states marked in figure 3.10(c) at (a)–(c) the left edge
of the pinning region at r ≈ −0.17 and (e)–(g) the right edge of the pinning region at
r ≈ 0.11. Phase-space representations of the depicted states at (d) r ≈ −0.17 and (h)
r ≈ 0.11.

seen in the cubic-quintic Swift–Hohenberg equation (figure 3.10(a)) by linearly interpo-

lating the parameters between (a, b, c) = (−2,−1, 0) [39] and (a, b, c) = (2, 3.1,−1) [100]

(figure 3.10(c)).

As the parameter a increases, the primary bifurcation becomes less subcritical and

changes criticality at a = 0 so that it is supercritical for a > 0. This impacts the loca-

tion of the secondary bifurcation, which we find occurs at increasingly large amplitudes

on the primary branch (figure 3.10(b)), before occurring near the first right saddle node

when the primary bifurcation is supercritical (figure 3.10(c)). The secondary branches

that bifurcate from these bifurcations continue to snake and terminate near the large-

amplitude subcritical saddle node as the parameter a increases.

The pinning region moves towards larger values of r as the parameter values change and

we find that it contains both positive and negative values of r when (a, b, c) = (2, 3.1,−1)

(figure 3.10(c)). This is notable since the spatial stability of the trivial state changes at

r = 0, owing to the Hamiltonian–Hopf bifurcation at r = 0 (see figure 3.3) and we conse-

quently find that the qualitative nature of the localised states changes over the snaking

branch (compare figures 3.11(b) and (f)). At the left saddle nodes (e.g., figure 3.11(b)),

the localised states resemble those found in the typical subcritical snaking seen in fig-

ure 3.1 as they contain a number of large-amplitude oscillations within a background
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of the trivial state. At the right saddle nodes (e.g., figure 3.11(f)), however, the large-

amplitude oscillations in the localised state now lie within a background of smaller

oscillations associated with states on the stable small-amplitude segment of the primary

branch (figure 3.11(g)). Thus, the spatial representation of localised states changes from

being an orbit that is homoclinic to the origin at the left saddle nodes (figure 3.11(d)) to

one that is homoclinic to the periodic orbit corresponding to the small-amplitude stable

periodic state at right saddle nodes (figure 3.11(h)).

3.3 MULTISTABILITY

Knobloch et al. [100] showed that the cubic-quintic-septic Swift–Hohenberg equation

(3.35) exhibits a rich variety of patterns, beyond those considered in figure 3.11. They

attributed such behaviour to multiple (i.e., more than two) stable states coexisting at

the same parameter values and the heteroclinic connections between them, which cor-

respond to localised states containing two distinct patterns that could be connected di-

rectly (as in figure 3.11(f)) or via a third stable state. Some of these localised states were

found to lie on branches that undergo more complicated snaking behaviour than the

typical subcritical snaking seen in figure 3.1 (see figure 6 of their paper) when the qual-

itative nature of these localised states changes over a single snaking oscillation. Gandhi

et al. [67] previously observed similar complex branch structures in a Gray–Scott model

admitting tristability, which suggests that complicated snaking behaviour is a generic

feature of systems admitting multistability.

The above studies considered bistability in systems with a supercritical primary bifurca-

tion or the multistability of states on different primary branches. However, it is also of

interest to consider how the typical snaking behaviour changes when a subcritical pri-

mary branch undergoes a cusp bifurcation and provides a region of tristability between

the stable trivial state and two types of stable periodic states since this is a simplified

scenario of behaviour found in the more complicated system of natural doubly diffusive

convection, as we will see in Chapter 5. To this end, we extend upon (3.35) and consider
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(a) a = 22 (b) a = 20.5 (c) a = 19

Figure 3.12: Primary branches of the Swift–Hohenberg equation (3.36) as it undergoes
a cusp bifurcation at a ≈ 21.7. Parameter values used: (a) a = 22, (b) a = 20.5 and (c)
a = 19 and b = −100, c = 180 and d = −100 in a domain with period L = 32π. Bold
(thin) lines indicate stable (unstable) branch segments.

the Swift–Hohenberg equation with ninth-order nonlinearity:

∂u
∂t

= ru− (1 + ∂2
x)

2u + au3 + bu5 + cu7 + du9, (3.36)

where a, b, c and d are real parameters. The choice of nonlinearity is somewhat arbi-

trary as we expect that using a fifth order polynomial with zero constant term for the

nonlinearity could also provide the desired behaviour.

The model system (3.36) admits the trivial solution u = 0 for all parameter values. This

state first destabilises at r = 0 to a primary branch P of spatially periodic states with

wavenumber 1 that bifurcates either subcritically (a > 0) or supercritically (a < 0). The

subsequent structure of the primary branch is sensitive to changes in parameter values.

We are particularly interested in the changes in the snaking branches when the primary

branch undergoes a cusp bifurcation and transitions from exhibiting a single subcritical

saddle node to three subcritical saddle nodes. Thus, to obtain relevant parameter values,

we first consider when the branch of non-trivial spatially homogeneous states has the

desired structure by considering when the polynomial:

r− 1 + au2 + bu4 + cu6 + du8 = 0, (3.37)
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transitions from having two positive real solutions for u when r < 0 to having four. After

further exploration around such regions, we fix b = −100, c = 180 and d = −100, while

allowing a to vary between a = 22 (figure 3.12(a)) and a = 19 (figure 3.12(c)), which

allows us to focus on the changes that arise near the cusp bifurcation at a ≈ 21.7 and

the widening of the stable segment between newly formed saddle nodes (figures 3.12(b)

and (c)).

When a = 22, the branch of spatially homogeneous states that bifurcates from the trivial

state at r = 1 extends towards low values of r, before turning around at a subcritical

saddle node at r ≈ −3.835. This leads to collapsed snaking [39] around r ≈ −1.673.

However, since our focus is on how the typical snaking changes, we consider our starting

point shortly after the cusp bifurcation at a = 20.5, where collapsed snaking was not

found.

Figure 3.13 depicts both the primary branch P (black) and one of the secondary branches

that bifurcates from P at r ≈ −0.0078 (blue) when a = 20.5. States on the secondary

branch become increasingly modulated as the branch is followed to more negative val-

ues of r so that the state at r ≈ −0.847 (figure 3.13(b)) is localised with a central peak

at x = 0 and two smaller troughs on either side. The branch then undergoes a single

small oscillation between r ≈ −1.08 (figure 3.13(c) and r ≈ −1.06 (figure 3.13(d)), where

the central peaks and troughs increase in amplitude to become comparable with those

in states on the stable middle segment on the primary branch (figure 3.13(l)).

The secondary branch proceeds towards more negative r before snaking upwards over

the wider region −2.28 . r . −1.13 in the typical way. This snaking is primarily asso-

ciated with the bistability between the trivial state and large-amplitude periodic states

on the upper branch segment of P, which may be deduced by the central oscillations

in localised states (figures 3.13(g)–(k)) having comparable amplitude to the periodic

states on the upper primary branch (figure 3.13(m)). The influence of the stable middle

branch segment is, however, observed near the right saddle nodes (figures 3.13(f), (h)

and (j)) where the outer oscillations between the trivial state and central large-amplitude

oscillations have comparable magnitude to states on this middle branch segment (fig-
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Figure 3.13: Bifurcation diagram and profiles for the Swift–Hohenberg equation (3.36)
with a = 20.5, b = −100, c = 180 and d = −100 in a domain with period L = 32π. (a)
The branches shown are: the trivial state at u = 0, the primary branch with wavenum-
ber one, P, (black) and the snaking secondary branch that terminates near the large-
amplitude saddle node of P (blue). Stable (unstable) states on the primary branch are
indicated by thick (thin) black lines. The small bounded region indicates the section
of the bifurcation diagram considered in figure 3.14(a). (b)–(k) Profiles of the localised
states marked on the snaking secondary branch. (l) and (m) Profiles of the domain-filling
periodic states on the stable segments of P.
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(a) a = 20.5 (b) a = 20 (c) a = 19.6 (c) a = 19.5 (d) a = 19.45

Figure 3.14: Bifurcation diagrams depicting the manner in which isolas (green) suc-
cessively connect to one of the snaking branches (blue) between (a) a = 20.5 and (e)
a = 19.45. To improve the visualisation of the stack of now-connected isolas, the branch
segment from the secondary bifurcation of P and traversing up the stack is shown in
light blue, the segment traversing down the stack is shown in dark blue and the segment
snaking towards large amplitude is shown in blue. A similar convention is used for the
isolas so that when they connect to the top of the stack dark (light) green segments con-
nect to dark (light) blue segments. The points at which the secondary branch changes
from traversing up to traversing down the stack of connected isolas are marked by the
black dots and the corresponding profiles are shown in the top row.

ure 3.13(l)). The localised state extends by a pair of central peaks over each snaking

oscillation until the pattern nearly fills the domain. At which point, the snaking stops

and the secondary branch terminates at an Eckhaus instability near the large-amplitude

saddle node of P at r ≈ −2.66.

As a decreases and the region of bistability between the two stable segments of the pri-

mary branch increases, the small-amplitude behaviour of the snaking branch changes

from that described for a = 20.5. This occurs by figure-of-eight isolas successively con-

necting first to the lower part of each snaking branch and later stacking upwards be-

tween a ≈ 20.5 and a ≈ 19.4, as evidenced in figure 3.14. The first isola connects between
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a = 20.5 (figure 3.14(a)) and a = 20 (figure 3.14(b)) near the right saddle node of the first

small oscillation of the secondary branch (marked in figure 3.14(a)). Afterwards, the sec-

ondary branch follows half of the isola (shown in light blue) upwards to the next right

saddle node as the amplitudes of the two outer peaks increase and become comparable

to that of the central peak (top panel in figure 3.14(b)). These outer oscillations reduce in

amplitude as the secondary branch follows the second half of the isola (shown in dark

blue) back down towards the right saddle node close to the point of initial connection.

After following this isola around, the secondary branch (now shown in blue) returns to

snaking upwards over the region −1.99 . r . −1.03.

Figure 3.14 shows the next three isolas to connect. These isolas originate after the onset

of bistability between the trivial state and middle primary branch segment and become

larger as a decreases prior to them connecting to the secondary branch near the right

saddle node at the top of the stack. With each isola that joins, the stack extends upwards

and the number of oscillations in the uppermost localised state increases, as seen in

the top row of figure 3.14. This process continues until the localised state contains

oscillations that almost fill the domain.

The up (light blue) and down (dark blue) segments of each stack later separate to

give two distinct pairs of snaking branches. Figures 3.15(a) and (h) show two of these

branches at a = 19, shortly after the separation at a ≈ 19.4. The first of these, which is

associated with the up segment of the stack, bifurcates from a secondary bifurcation of

P at small-amplitude, as seen in figure 3.14(a). This branch proceeds to snake over the

narrow region −0.885 < r < −0.802 where, over a single snaking oscillation, the outer

pair of peaks or troughs increase in amplitude, as seen in figures 3.14(b)–(f). This con-

tinues until oscillations fill the domain and the branch turns over to terminate at the

first left saddle node of P (figure 3.14(g)).

The down segment of the stack connects to the large-amplitude snaking branch seen

when a = 20.5 (figure 3.13) and exhibits the more complicated structure shown in fig-

ure 3.15(h). This branch bifurcates from P at the right saddle node (figure 3.15(n))

and initially follows the stable middle primary branch segment towards more negative
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Figure 3.15: Bifurcation diagram and profiles for the Swift–Hohenberg equation (3.36)
with a = 19, b = −100, c = 180 and d = −100 in a domain with period L = 32π. (a),
(h) Bifurcation diagram showing the primary branch P (black) together with (a) the
secondary branch that originated from the upward segments of the stack in figure 3.14
(light blue) or (h) the secondary branch that originated from the downward segments of
the stack (dark blue) and the large-amplitude snaking (blue). Stable (unstable) states on
the primary branch are indicated by thick (thin) black lines. (b)–(g) and (i)–(t) Profiles
of the steady states marked in (a) and (h). The colour of these plots indicates the branch
on which they lie.

75



3.3. MULTISTABILITY

values of r, before turning around near the first left saddle node of P and entering

the pinning region associated with the small-amplitude snaking described above. The

branch proceeds to snake downwards, with the localised states losing a pair of outer

peaks or troughs over a single snaking oscillation as was observed when the secondary

branch in figure 3.15(a) is followed downwards. By comparing the localised states in

figures 3.15(n)–(j) to those in figures 3.15(b)–(f), we notice that the main difference be-

tween the two branches is that the central peak of localised states on this second branch

(dark blue) has slightly larger amplitude than those on the first branch (light blue).

The downwards snaking continues until the localised state contains a main central peak

and two smaller troughs, as seen in figure 3.15(n). The branch subsequently heads to-

wards more negative values of r and snakes upwards (as shown in blue), in a similar, but

more complicated, way to the original large-amplitude snaking branch when a = 20..5

(figure 3.13). This complexity is evidenced by the small figure-of-eight branch segments

near the right saddle nodes (figures 3.15(p) and (r)), where a pair of oscillations in

each of the fronts that connect the large-amplitude oscillations at the centre of the lo-

calised state to the trivial state strengthen in a spatially modulated manner, before later

weakening. The net effect over a single of these larger snaking oscillations is that the

localised state has increased by a pair of peaks or troughs whose amplitude is compa-

rable to states on the stable upper primary branch. These snaking oscillations continue

until states on the secondary branch are domain-filling and the branch terminates at the

large-amplitude left saddle node of P (figure 3.15(t)).

Thus, we have shown how a secondary branch that exhibits typical homoclinic snaking

can vary as the primary branch starts to exhibit a region of tristability within the existing

pinning region. In particular, we found that this snaking branch broke into two separate

snaking branches after a number of smaller isolas successively connect onto the original

snaking branch at small amplitudes. This process therefore separates localised states

associated with the bistability between the trivial state and large-amplitude periodic

states, which remain on the snaking branch that extends towards large amplitude, and

those associated with the bistability between the trivial state and the smaller amplitude
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periodic state, which lie on the snaking branches at smaller amplitudes.
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We now return our attention to natural doubly diffusive convection, where, in spite

of the availability of a comprehensive linear stability analysis when the thermal and

solutal gradients exactly balance for more than two decades [70], little is known about

the nonlinear dynamics near the onset of convection in the balanced case. This makes it

difficult to extrapolate the system’s dynamics away from the parameter values used in

previous studies of natural doubly diffusive convection [12, 22–24, 70, 191].

In this chapter, we address the above problem by performing a comprehensive nonlinear

analysis of the system over a range of Prandtl and Lewis numbers. We present the math-

ematical framework associated with our case of natural doubly diffusive convection in

section 4.1, before reviewing and extending the linear stability analysis of the system

in section 4.2.1. Motivated by finding when natural doubly diffusive can admit spa-

tially localised states, we then perform a weakly nonlinear analysis to determine when

the system is subcritical in section 4.2.2, as we did for the Swift–Hohenberg equation

in Chapter 3. In section 4.3, we augment this analysis by numerically continuing the

resulting branches of spatially periodic states in a small-aspect-ratio domain into the

nonlinear regime and determine their stability to find regions of bistability and other

stable attracting states. We conclude with a short discussion in section 4.4.

4.1 MATHEMATICAL FORMULATION

We first consider the natural doubly diffusive convection of an incompressible binary

fluid in a two-dimensional domain with periodic boundary conditions in the vertical
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Figure 4.1: Sketch of the two-dimensional domain of natural doubly diffusive convec-
tion, together with the dimensional form of the boundary conditions.

direction. The sidewalls are rigid, impermeable and maintained at fixed temperatures

and solutal concentrations. The right wall is held at a higher temperature (T0 + ∆T) and

solutal concentration (C0 + ∆C) than the left wall, where the temperature is T0 and the

solutal concentration is C0. This configuration is depicted in figure 4.1.

The governing equations are non-dimensionalised as described in Chapter 1, which

results in the following set of equations:

1
Pr

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇2u + Ra (T + NC) ẑ, (4.1)

∇ · u = 0, (4.2)

∂T
∂t

+ u · ∇T = ∇2T, (4.3)

∂C
∂t

+ u · ∇C =
1
Le
∇2C. (4.4)

The associated boundary conditions read:

u = 0, w = 0, −∂p
∂x

+
∂2u
∂x2 = 0, T = 0, C = 0 on x = 0, (4.5)

u = 0, w = 0, −∂p
∂x

+
∂2u
∂x2 = 0, T = 1, C = 1 on x = 1, (4.6)

where the pressure boundary condition is the projection of the Navier–Stokes equation
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on the boundary. Each variable is periodic in the vertical direction.

In this chapter, we will restrict our attention to the case N = −1, where the full sys-

tem (4.1–4.4, 4.5, 4.6) admits the steady conduction state with linear temperature and

concentration profiles between the sidewalls:

u = 0, T = x, C = x, (4.7)

as a solution. We further introduce convective variables as the departures of the tem-

perature and concentration from the conduction state:

Θ = T − x, (4.8)

Φ = C− x. (4.9)

Using these new variables, the conduction state takes the form:

u = 0, Θ = 0, Φ = 0, (4.10)

and the system (4.1–4.4) can be written as:

1
Pr

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇2u + Ra (Θ−Φ) ẑ, (4.11)

∇ · u = 0, (4.12)

∂Θ
∂t

+ u · ∇Θ = −u +∇2Θ, (4.13)

∂Φ
∂t

+ u · ∇Φ = −u +
1
Le
∇2Φ, (4.14)

with homogeneous boundary conditions:

u = 0, w = 0, −∂p
∂x

+
∂2u
∂x2 = 0, Θ = 0, Φ = 0 on x = 0, 1. (4.15)

The formulation involving the convective variables allows two symmetries of the system
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to be identified. These are the reflection symmetry:

S∆ : (x, z) 7→ (1− x,−z), (u, w, Θ, Φ) 7→ −(u, w, Θ, Φ), (4.16)

and the continuous translation symmetry:

Tδ : (x, z) 7→ (x, z + δ), (u, w, Θ, Φ) 7→ (u, w, Θ, Φ). (4.17)

These generate the symmetry group O(2) and restrict the types of bifurcation that can

occur from the conduction state, as detailed by Crawford and Knobloch [52].

In many of the numerical computations that we performed both for this chapter and for

later ones, it proved helpful to manually impose the reflection symmetry S∆ on selected

states. This was achieved by first taking a single time-step of the governing equations

over the full domain (see details in Chapter 2). The solution with z > Lz/2, where Lz

is the vertical extent of the domain, was kept and used to generate the solution within

z < Lz/2 by applying the symmetry S∆. The resulting symmetric state was then used

as the starting point for the next time-step or Newton iteration, where the same process

occurs and we consequently end up with states that are invariant under S∆.

The geometry of the system (as depicted in figure 4.1) admits a further symmetry where

the roles of temperature and solutal concentration are exchanged owing to the formal

equivalence of associated equations and boundary conditions, which allows us to as-

sume that Le > 1 without loss of generality. To understand this, consider a solution

(u, w, p, Θ, Φ) to (4.11–4.15) when the physical parameters are (Ra, Le, Pr) and construct

the related solution:

(t′, x′, z′) =
(

t
Le

, 1− x, z
)

, (4.18)

(u′, w′, p′, Θ′, Φ′) = (−Le u, Le w, Le p,−Φ,−Θ), (4.19)

(Ra′, Le′, Pr′) =
(

Ra Le,
1
Le

, Pr Le
)

. (4.20)
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This solution satisfies

1
Pr′

(
∂u′

∂t′
+ u′ · ∇′u′

)
= −∇′p′ +∇′2u′ + Ra′(Θ′ −Φ′)ẑ, (4.21)

∇′ · u′ = 0, (4.22)

∂Θ′

∂t′
+ u′ · ∇′Θ′ = −u′ +∇′2Θ′, (4.23)

∂Φ′

∂t′
+ u′ · ∇′Φ′ = −u′ +

1
Le′
∇′2Φ′, (4.24)

together with boundary conditions:

u′ = 0, w′ = 0, −∂p′

∂x′
+

∂2u′

∂x′2
= 0, Θ′ = 0, Φ′ = 0 on x′ = 0, 1. (4.25)

This is the same system that would have been derived if the rate of solutal diffusivity, D,

had been used in initially non-dimensionalising (1.2–1.5), instead of thermal diffusivity,

κ. This transformation can also be generalised to hold for arbitrary N < 0, which means

that any solution of the full system (4.1–4.4) with Le < 1 is related to a second with

Le > 1.

4.2 WEAKLY NONLINEAR PREDICTIONS

To predict the pattern formation present in our system, we start by performing the

linear stability analysis of the conduction state (u, w, p, Θ, Φ) = (0, 0, 0, 0, 0), which was

previously computed by Ghorayeb and Mojtabi [70] and Xin et al. [191]. We briefly

rederive their results in the following subsection so that they can be applied in the later

weakly nonlinear analysis, where we derive Ginzburg–Landau equations to model the

small-amplitude behaviour close to the primary bifurcation for all Lewis and Prandtl

numbers.
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4.2.1 LINEAR STABILITY ANALYSIS

We first consider small-amplitude stationary normal mode perturbations to the conduc-

tion state:

(u, w, p, Θ, Φ)T = ε
(
(U1(x), W1(x), P1(x), Θ1(x), Φ1(x))T eikz + c.c.

)
+ O(ε2), (4.26)

where c.c. denotes the complex conjugate of the preceding term, ε � 1 and k is the

vertical wavenumber of the perturbation. Inserting the expansion (4.26) into the system

(4.11–4.14) and linearising the resulting equations yields the eigenvalue problem:

L(Ra)Ψ1 = 0, (4.27)

for Ra and Ψ1 where

Ψ1 = (U1, W1, P1, Θ1, Φ1)
T eikz + c.c., (4.28)

and

L(Ra) =



∇2 0 −∂x 0 0

0 ∇2 −∂z Ra −Ra

∂x ∂z 0 0 0

−1 0 0 ∇2 0

−1 0 0 0
1
Le
∇2


. (4.29)

The complex functions U1, W1, Θ1 and Φ1 satisfy Dirichlet boundary conditions on the

sidewalls:

U1(x) = W1(x) = Θ1(x) = Φ1(x) = 0 on x = 0, 1, (4.30)

while the complex function for the pressure perturbation, P1, satisfies a projection of the

Navier–Stokes equation onto the boundary:

0 = −∂P1

∂x
+

∂2U1

∂2x
on x = 0, 1. (4.31)
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Solutions to (4.27–4.31) are independent of Pr and satisfy Φ1 = Le Θ1. They are obtained

numerically using a Chebyshev–Legendre collocation method after posing the system

as the generalised eigenvalue problem:


D2 − k2 I 0 −D 0

0 D2 − k2 I −ikI 0

D ikI 0 0

−I 0 0 D2 − k2 I




U1

W1

P1

Θ1

 = Ra(Le− 1)


0 0 0 0

0 0 0 I

0 0 0 0

0 0 0 0




U1

W1

P1

Θ1

 ,

(4.32)

where D is the Chebyshev differentiation matrix obtained using the package Chebfun

[64] and U1, W1, P1 and Θ1 here denote vectors containing values of the corresponding

function at the Chebyshev collocation points. The Dirichlet boundary conditions for U1,

W1 and Θ1 (4.30) are applied directly to (4.32), using an approach suggested by Trefethen

[174], where the columns and rows that correspond to the boundaries x = 0 and x = 1

in these functions are removed.

The generalised eigenvalue problem (4.32) returns multiple eigenvalues for fixed

wavenumber that are associated with different horizontal dependencies. Since we are

interested in the primary bifurcation of the conduction state, we only consider the small-

est positive eigenvalue Rac(Le− 1) of (4.32) for a range of wavenumbers k. These are

subsequently used to form the marginal stability curve in figure 4.2. The minimum of

this curve at kc ≈ 2.5318 and Rac|Le − 1| ≈ 6509, which is consistent with the earlier

work by Ghorayeb and Mojtabi [70] and Xin et al. [191] on the primary instability of

the conduction state. The linear stability analysis highlights two notable points. Firstly,

the absolute value in the eigenvalue arises from the invariance of the system associated

with heating from the left sidewall compared to the right sidewall and secondly, there

is no net buoyancy forcing on the linear system when the rates of thermal and solutal

diffusion D are equal (Le = 1), which results in the conduction state being linearly stable

for all Rayleigh numbers.

Twenty Chebyshev nodes were used in these computations, which was motivated by

the convergence of both the eigenvalue Rac and wavenumber kc with N. In the absence
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Figure 4.2: Marginal stability curve for the onset of doubly diffusive convection. The
conduction state is stable to modes with wavenumber k below the curve, and unsta-
ble to them above the curve. The minimum of this curve is Rac|Le − 1| ≈ 6509 with
wavenumber kc ≈ 2.5318 and corresponds to the location of the primary bifurcation.

of exact values for these quantities, their computed value when N = 50 was used as a

proxy in determining the relative error for varying N. These convergence results are

presented in figure 4.3, where we see the exponential convergence in both quantities as

N increases to N ≈ 16, as expected owing to the use of a spectral method. The error

in the eigenvalue plateaus around 7× 10−12 for N > 20, while the error in wavenumber

fluctuates around 10−7 with a slight upward trend as N increases.

The eigenfunction associated with the critical Rayleigh number and wavenumber corre-

sponds to the marginal eigenmode at the primary bifurcation. Contour plots presenting

the profiles for the velocity components, streamfunction, temperature and concentration

of this eigenmode for Le = 11 are shown in figure 4.4. When Le > 1, the conduction

state is thus first unstable to a spatially periodic state constituted of counter-rotating

convection rolls that slant downwards from the hotter wall, filling the domain and ex-

tending to the cold wall. This form of the eigenvector may be understood using the

following fluid parcel argument by Xin et al. [191]. Initially suppose that a hotter, high-

solute fluid parcel near the right sidewall is displaced leftwards into colder, low-solute

fluid. This fluid parcel equilibrates its temperature faster than its solutal concentra-

tion so becomes denser than the surrounding fluid and sinks. An analogous argument

holds when a cold, low-solute fluid parcel is displaced to the right into hotter, high-

solute fluid as the parcel equilibrates its temperature but remains less dense than the
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(a) (b)

Figure 4.3: Relative error between the numerically computed quantities with N Cheby-
shev nodes and with N = 50 nodes for (a) the eigenvalue Rac|Le− 1| and (b) the critical
wavenumber kc.

(a) (b) (c) (d) (e)

Figure 4.4: Contour plots of a single wavelength of the real critical eigenvector Ψ1 for
Le = 11 (kc ≈ 2.53). The profiles show the perturbations in (a) horizontal velocity, (b)
vertical velocity, (c) velocity streamfunction where u = −ψz and w = ψx, (d) temperature
and (e) concentration. Black (grey, dotted) lines indicate positive (negative, zero) values
and are separated by 20% of the maximum absolute value.
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surrounding fluid and therefore rises. These motions together explain the inclination of

the streamlines seen in figure 4.4.

While it is not critical for the following weakly nonlinear analysis, we should also note

that the conduction state can also undergo Hopf bifurcations when the growth rate

of the normal mode perturbations is purely imaginary. To illustrate this, we consider

oscillatory normal mode perturbations of the form

(u, w, p, Θ, Φ)T = ε
(

a
(
(U1(x), W1(x), P1(x), Θ1(x), Φ1(x))T ei(kz+ωt) + c.c.

)
+
(

b (U2(x), W2(x), P2(x), Θ2(x), Φ2(x))T ei(−kz+ωt) + c.c.
))

+ O(ε2),

(4.33)

where ω ∈ R, a and b are real constants and the two normal modes are related via

(U1(x), W1(x),P1(x), Θ1(x), Φ1(x)) =

(U2(1− x), W2(1− x),−P2(1− x), Θ2(1− x), Φ2(1− x)). (4.34)

This form of perturbation admits two special cases: firstly, the perturbation is an upward

or downward travelling wave when exactly one of a and b is non-zero, and, secondly,

the perturbation is a standing wave when a and b are equal.

Inserting this perturbation into the full system (4.11–4.14) and linearising the resulting

equations yields the eigenvalue problem:

iω
Pr

U1 = −DP1 + (D2 − k2)U1, (4.35)

iω
Pr

W1 = −ikP1 + (D2 − k2)W1 + Ra(Θ1 −Φ1), (4.36)

0 = DU1 + ikW1, (4.37)

iωΘ1 = −U1 + (D2 − k2)Θ1, (4.38)

iωΦ1 = −U1 +
1
Le

(D2 − k2)Φ1, (4.39)

where D = d/dx and, for given k, Pr and Le, both the Rayleigh number and the fre-
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quency are unknowns to be solved for. The parameter dependence of the solutions

to this eigenvalue problem is more complicated than that for stationary perturbations,

where the obtained eigenvalue incorporates both the Lewis and Rayleigh numbers after

applying the transformation Φ1 = LeΘ1 and the solutions have no Prandtl number de-

pendence. Thus, the system (4.35–4.39) must be solved separately for different values of

these parameters.

Fixing values for the parameters Le, Pr, k and ω, the system (4.35–4.39) is solved as

a generalised eigenvalue problem to find consistent Rayleigh numbers using a Cheby-

shev–Legendre collocation method with 20 nodes. These eigenvalues typically assume

complex values as seen in figure 4.5(a), which are not physically significant. There are,

however, isolated values of the frequency ω where one of the obtained Rayleigh num-

bers is purely real: those with ω = 0, which correspond to a stationary bifurcation of the

conduction state, and others with non-trivial frequencies, which correspond to Hopf bi-

furcations of the conduction state. These two cases are illustrated in figure 4.5(a) by the

blue and red dots, which respectively correspond to the conduction state with Le = 11

and Pr = 1 first destabilising to a stationary mode with wavenumber k = 2 at Ra ≈ 678

and later to an oscillatory mode with wavenumber k = 2 and frequency ω ≈ 64.68 at

Ra ≈ 57 060.

Locations of these Hopf bifurcations can then be determined in a similar manner for

a range of wavenumbers k, while still fixing the values of Pr and Le. This allows us

to obtain marginal stability curves and identify the critical Rayleigh number when the

conduction state first destabilises to an oscillatory mode and the critical wavenumber

associated with this marginal mode. Figure 4.5(b) illustrates the marginal stability curve

for Pr = 1 and Le = 11, from which we conclude that the conduction state first desta-

bilises to an oscillatory mode with wavenumber kH ≈ 3.16 and frequency ωH ≈ 70.6 at

RaH ≈ 48 118 for these parameter values.

There are two states associated with this Hopf bifurcation that are of particular interest.

The first of these are travelling waves when one of a = 0 or b = 0 in (4.33). Figure 4.6 de-

picts the marginal mode associated with downward travelling waves (b = 0), with their
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(a) (b)

Figure 4.5: (a) Imaginary (top) and real (bottom) parts of the Rayleigh number
Ra = Rar ± iRai with smallest real part for different frequencies when k = 2, Pr = 1 and
Le = 11. The stationary and Hopf bifurcation are marked with the blue and red dots
respectively. (b) Marginal stability curve for the first Hopf bifurcation of the conduction
state when Pr = 1 and Le = 11. The minimum of this curve is located at RaH ≈ 48 118
and kH ≈ 3.16. The Hopf bifurcation shown in (a) when k = 2 is again marked by the
red dot.
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(e)(d)(c)(b)(a)

Figure 4.6: Contour plots of the critical eigenvector associated with the downward trav-
elling wave when Le = 11 and Pr = 1 (kH ≈ 3.16). The profiles show the perturbations
in (a) horizontal velocity, (b) vertical velocity, (c) velocity streamfunction where u = −ψz
and w = ψx, (d) temperature and (e) concentration. Black (grey, dotted) lines indicate
positive (negative, zero) values and are separated by 20% of the maximum absolute
value.

upward travelling counterparts (a = 0) being related to these via a centre-point rotation

of 180◦. The downward travelling state shown consists of counterrotating rolls that do

not extend across the full horizontal extent of the domain, but are instead centred closer

towards the colder left sidewall and slant downwards from this wall towards the hotter

right sidewall. While this differs from the eigenmode associated with the stationary bi-

furcation, we should note that the fluid parcel argument previously considered should

not be applied in this time-dependent case as streaklines, detailing trajectories of fluid

parcels, differ from the streamlines shown in panel (a). We also observe differences be-

tween the shape of contours and the phase of the perturbations to the thermal (d) and

solutal (e) fields, which is expected with the absence of a simple transformation relating

the two fields for oscillatory modes.

The second state of interest are the standing waves that occur when a = b in (4.33).

Figure 4.7 depicts streamfunctions over half a period of one such standing wave oscilla-

tion. The state at t = 0 consists of counterrotating rolls that incline downwards from the
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colder wall towards the hotter wall, similarly to the upward and downward travelling

states except that the rolls in this state are centred on the horizontal midline x = 0.5.

These rolls proceed to slowly turn in an anticlockwise direction, thereby reducing the

angle at which each roll inclines over the first quarter period of the oscillation until

t ≈ π/2ω, where we find that the centre of individual rolls inclines upward towards the

hotter wall. During the next stage of the oscillation (π/2ω < t < 2π/3ω), two local ex-

trema of the streamfunction appear within each roll, which affects the outer streamlines

of each roll and leads to each clockwise and anticlockwise roll splitting into two smaller

rolls, with one lying within x > 0.5 and the second within x < 0.5. These smaller rolls

do not persist for long as, shortly after forming, they merge with a second smaller roll

with the same sense of circulation on the other side of the domain. This leads to the

elongated negatively inclined rolls seen when t = 2π/3ω, which initially strengthen be-

fore once again slowly rotating in the anticlockwise direction and reducing their angle

of inclination.

While the above details for marginal stability and the form of travelling and standing

waves were specific to Le = 11 and Pr = 1, the conduction state was found to undergo

Hopf bifurcations for a range of Prandtl and Lewis numbers. However, for all the pa-

rameter values tested, these bifurcations occurred at Rayleigh numbers that were orders

of magnitude larger than the primary stationary bifurcation. The dynamics associated

with these oscillatory modes are therefore unlikely to affect the dynamics near the onset

of stationary convection and so we do not go into further details here.

4.2.2 WEAKLY NONLINEAR ANALYSIS

To investigate the weakly nonlinear regime around the primary stationary bifurcation,

we set Ra = Rac + ε2r with r = O(1) and ε� 1 and assume that the system evolves

on a slow temporal scale T1 = ε2t. We also introduce a long spatial scale, Z = εz, to

allow small-amplitude states with long spatial modulations. We emphasise that each of

the state variables of our system—u, w, p, Θ and Φ—depends upon the independent

variables: x, z, Z and T1. Using this multiple-scale approach, the partial derivatives
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Figure 4.7: Contour plots of the streamfunction over half a period of the marginal
standing wave oscillation when Le = 11 and Pr = 1 (kH ≈ 3.16, ωH ≈ 70.6). Profiles are
shown at time intervals t = π/12ω. Black (grey, dotted) lines indicate positive (negative,
zero) values and are separated by 20% of the maximum absolute value.
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become
∂

∂t
7→ ε2 ∂

∂T1
and

∂

∂z
7→ ∂

∂z
+ ε

∂

∂Z
. (4.40)

Introducing the notation Ψ = (u, w, p, Θ, Φ)T, we can express each of the variables as a

perturbation expansion in ε about the conduction state Ψ0 = (0, 0, 0, 0, 0)T, which is the

leading order solution:

Ψ = Ψ0 + εΨ1 + ε2Ψ2 + . . . , (4.41)

where Ψj = (uj, wj, pj, θj, φj)
T for j = 1, 2, . . . is the correction at O(εj) for j = 1, 2, ....

The corrections to the conduction state are periodic in z and satisfy the homogeneous

boundary conditions:

uj = wj = θj = φj = 0 on x = 0, 1, j = 1, 2, . . . , (4.42)

and the pressure boundary condition:

− ∂pj

∂x
+

∂2uj

∂x2 = 0 on x = 0, 1, j = 1, 2, . . . (4.43)

at each order in ε.

The expansion (4.41) is substituted into the full system (4.11–4.14) and the perturbations

are solved numerically order-by-order in ε using an extension of the aforementioned

collocation method. By further extracting the parameter dependence of the perturba-

tions at each order, we obtain a Ginzburg–Landau equation that can be applied for all

parameter values and will indicate the criticality of the primary bifurcation. We proceed

by detailing this formulation, which should be applied to the cases Le > 1 and Le < 1

separately, owing to the parameter combination Ra(1− Le) changing sign between the

two regimes. Since each system with Le < 1 can be related to a second with Le > 1 via

the transformation (4.18–4.20), the difference in the end result between the two cases is

minimal, as we shall see.
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ORDER ε

At O(ε), the correction is given by the solution to linear system (4.27):

Ψ1 = A1(Z, T1)

(
U1(x), W1(x), P1(x), Θ1(x), LeΘ1(x)

)T

eikcz + c.c., (4.44)

where kc is the critical wavenumber. The phase of the linear eigenfunction is not con-

strained at this point, but its amplitude is fixed using

〈U1 , U1〉+ 〈W1 , W1〉+ 〈P1 , P1〉+ 〈Θ1 , Θ1〉 = 1, (4.45)

with the inner product defined

〈 f , g〉 = 1
λc

∫ λc

0

∫ 1

0
f

T
g dx dz, (4.46)

where λc = 2π/kc is the wavelength of the critical eigenvector, the overbar denotes com-

plex conjugation and the superscript T denotes the transposition operation when f is

a vector. Since explicit expressions for the solutions to this perturbation problem are

not available, each inner product needs to be computed numerically, which we achieved

using a Clenshaw–Curtis quadrature on the collocation nodes used in section 4.2.1. The

amplitude of the linear correction, A1, evolves over both long spatial and temporal scales

according to an amplitude equation that will be determined at higher order.

ORDER ε2 AND THE ADJOINT SYSTEM

At O(ε2), the linear operator L acts on the second-order terms and is forced by both

the nonlinear terms between the O(ε) corrections and terms proportional to the slow
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fij
j

0 1 2

1 U1
dU1

dx
+ ikcW1U1 + c.c. −2ikcU1 U1

dU1

dx
+ ikcW1U1

2 U1
dW1

dx
+ ikcW1W1 + c.c. −2ikcW1 + P1 U1

dW1

dx
+ ikcW2

1

i 3 0 −W1 0

4 U1
dΘ1

dx
+ ikcW1Θ1 + c.c. −2ikcΘ1 U1

dΘ1

dx
+ ikcW1Θ1

Table 4.1: Functions fij (i = 1, 2, 3, 4, j = 0, 1, 2) in the nonlinear term N2 at O(ε2) in
(4.47). The overbar denotes complex conjugation.

spatial derivative of the O(ε) correction A1Z:

L(Rac)Ψ2 =



1
Pr

f10|A1|2 +
(

A1Z f11eikcz + c.c.
)
+

1
Pr

(
f12A2

1e2ikcz + c.c.
)

1
Pr

f20|A1|2 +
(

A1Z f21eikcz + c.c.
)
+

1
Pr

(
f22A2

1e2ikcz + c.c.
)

(
A1Z f31eikcz + c.c.

)
f40|A1|2 +

(
A1Z f41eikcz + c.c.

)
+
(

f42A2
1e2ikcz + c.c.

)
Le f40|A1|2 +

(
A1Z f41eikcz + c.c.

)
+ Le

(
f42A2

1e2ikcz + c.c.
)


︸ ︷︷ ︸

N2

, (4.47)

where the functions fij(x) for i = 1, 2, 3, 4 and j = 0, 1, 2 are independent of Pr and Le

and are given in table 4.1.

To ensure the existence of a unique solution at this order, we derive a solvability con-

dition using the Fredholm alternative theorem. This involves the adjoint operator to L,

L†, defined through the relationship:

〈 f , Lg〉 = 〈L† f , g〉, (4.48)

which holds for all vector functions f and g. Integrating the left-hand side by parts, we
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find that the adjoint operator takes the form:

L† =



∇2 0 −∂x −1 −1

0 ∇2 −∂z 0 0

∂x ∂z 0 0 0

0 Rac 0 ∇2 0

0 −Rac 0 0
1
Le
∇2


, (4.49)

together with the adjoint boundary conditions:

u† = 0, w† = 0, θ† = 0, φ† = 0 on x = 0, 1, (4.50)

−∂p†

∂x
+

∂2u†

∂x2 = 0 on x = 0, 1, (4.51)

and periodicity in the vertical direction.

The Fredholm alternative allows us to pose the adjoint problem:

L†Ψ† = 0, (4.52)

whose solution is unique up to a vertical translation and a multiplicative constant. This

solution may be written in the form:

Ψ† =

(
U†(x), W†(x), P†(x),

1
1− Le

Θ†(x),− Le
1− Le

Θ†(x)
)T

eikcz + c.c., (4.53)

where the parameter dependence of the components has been extracted. The amplitude

and phase are fixed by imposing the conditions:

〈U† , U†〉+ 〈W† , W†〉+ 〈P† , P†〉+ 〈Θ† , Θ†〉 = 1, (4.54)

and

Im
(
〈U† , U1〉

)
= 0, (4.55)

where Im represents the imaginary part, respectively.
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CHAPTER 4. NEAR-ONSET DYNAMICS

Using this adjoint solution, we then apply the O(ε2) solvability condition:

〈Ψ† , N2〉 = 0. (4.56)

Owing to the vertical wavenumber dependence of terms in N2, the only non-trivial

contributions come from those proportional to A1Z and their complex conjugates and

(4.56) reduces to

− 2ikc〈U†, U1〉 − 2ikc〈W†, W1〉+ 〈W†, P1〉 − 〈P†, W1〉 − 2ikc〈Θ†, Θ1〉 = 0, (4.57)

which may be further simplified to

〈
Ψ† ,

∂LΨ1

∂kc

〉
= 0. (4.58)

This solvability condition is automatically satisfied as the primary bifurcation occurs at

a quadratic minimum of the marginal stability curve (see figure 4.2).

The O(ε2) system (4.47) can be solved to find that the second-order correction to the

conduction state is

Ψ2 = |A1|2Ψ0
2 + ((A2Ψ1

1 + A1ZΨ1
2)e

ikcz + c.c.) + (A2
1Ψ2

2e2ikcz + c.c.), (4.59)

where Ψ2 = (u2, w2, p2, θ2, φ2)T and the functions Ψi
2 for i = 0, 1, 2 have the following

parameter dependence:

Ψ0
2 =

(
0,

1
Pr

w̃2 + (1 + Le)w̃3,
1

Pr
p̃2, θ̃3, Le2θ̃3

)T

, (4.60)

Ψ1
2 =

(
ũ7, w̃7, p̃7, θ̃7, Le θ̃7

)T

, (4.61)

Ψ2
2 =

(
1

Pr
(
ũ4, w̃4, p̃4, θ̃4, Leθ̃4

)
+ (1 + Le)(ũ5, w̃5, p̃5, 0, 0)

+ (0, 0, 0, θ̃5, Le2θ̃5) + Le(0, 0, 0, θ̃6, θ̃6)

)T

.
(4.62)
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4.2. WEAKLY NONLINEAR PREDICTIONS

The newly introduced functions ũi, w̃i, p̃i and θ̃i for i = 2, ..., 7 are independent of Le

and Pr and satisfy the forced linear systems:


−D 0 0 0

0 D2 0 0

0 0 D2 Rac(1− Le)

0 0 0 D2




p̃2

w̃2

w̃3

θ̃3

 =


f10

f20

0

f40

 , (4.63)


D2 − 4k2

c 0 −D 0

0 D2 − 4k2
c −2ikc Rac(1− Le)

D 2ikc 0 0

−1 0 0 D2 − 4k2
c




ũ4

w̃4

p̃4

θ̃4

 =


f12

f22

0

0

 , (4.64)



D2 − 4k2
c 0 −D 0 0

0 D2 − 4k2
c −2ikc Rac(1− Le) 0

D 2ikc 0 0 0

−1 0 0 D2 − 4k2
c 0

−1 0 0 0 D2 − 4k2
c





ũ5

w̃5

p̃5

θ̃5

θ̃6


=



0

0

0

f42

0


, (4.65)


D2 − k2

c 0 −D 0

0 D2 − k2
c −ikc Rac(1− Le)

D ikc 0 0

−1 0 0 D2 − k2
c




ũ7

w̃7

p̃7

θ̃7

 =


f11

f21

f31

f41

 , (4.66)

where D =
d

dx
, and ũi, w̃i and θ̃i satisfy homogeneous boundary conditions and the

pressure boundary conditions come from a projection of the Navier–Stokes equation

onto the sidewalls:

ũi = 0, w̃i = 0, −∂ p̃i

∂x
+

∂2ũi

∂x2 = 0 θ̃i = 0 on x = 0, 1 (4.67)
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ORDER ε3

Continuing to O(ε3), both the deviation away from the critical Rayleigh number and

the slow time dependence of the solution appear in the right-hand side of the resulting

system, in addition to nonlinear terms between first and second-order corrections and

terms with slow spatial derivatives. The system to solve at third order is

L(Rac)Ψ3 =



1
Pr

(
∂u1

∂T1

+ J(u, u)
)
− 2

∂2u2

∂z∂Z
− ∂2u1

∂Z2

1
Pr

(
∂w1

∂T1

+ J(u, w)

)
− r (θ1 − φ1)− 2

∂2w2

∂z∂Z
− ∂2w1

∂Z2 +
∂p2

∂Z

− ∂w2

∂Z(
∂θ1

∂T1

+ J(u, θ)

)
− 2

∂2θ2

∂z∂Z
− ∂2θ1

∂Z2(
∂φ1

∂T1

+ J(u, φ)

)
− 2

Le
∂2φ2

∂z∂Z
− 1

Le
∂2φ1

∂Z2


︸ ︷︷ ︸

N3

, (4.68)

where the advective terms are

J(u, f ) = u1 · ∇ f2 + u2 · ∇ f1 + w1∂Z f1, (4.69)

and f1 and f2, respectively, refer to the first- and second-order corrections of the variables

f = u, w, θ and φ.

The solvability condition at this order:

〈Ψ† , N3〉 = 0, (4.70)

is no longer trivially satisfied because some nonlinear terms contained in N3 have eikcz

dependence arising from terms proportional to A1, |A1|2A1, A1ZZ, A2Z and their com-

plex conjugates. However, the contributions to (4.70) from terms proportional to A2Z,

cancel for the same reason that the solvability condition at O(ε2) was satisfied. Conse-

quently, A2 remains arbitrary at this order. Collecting the remaining terms in (4.70) and
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4.2. WEAKLY NONLINEAR PREDICTIONS

dropping subscripts from A1 and T1, we obtain the Ginzburg–Landau equation holding

for both Le > 1 and Le < 1:

αAT = γrA + β|A|2A + δAZZ, (4.71)

where table 4.2 indicates which terms ofN3 contribute to each term above. This equation

is equivariant under the O(2) symmetry so we choose the phase of the O(ε) correction

so that these coefficients are real. The coefficient δ is independent of the physical pa-

rameters Pr and Le, while α, β and γ satisfy the relations:

α =
1

Pr

(
〈U†, U1〉+ 〈W†, W1〉

)
+

1
1− Le

〈Θ†, Θ1〉 −
Le2

1− Le
〈Θ†, Θ1〉, (4.72)

=
1

Pr
α1 + (1 + Le)α2, (4.73)

γ = 〈W†, Θ1 − LeΘ1〉, (4.74)

= (1− Le)γ1, (4.75)

β = −
(

1
Pr
〈U†,NU

3 〉+
1

Pr
〈W†,NW

3 〉+
1

1− Le
〈Θ†,N Θ

3 − LeN Φ
3 〉
)

, (4.76)

=
1

Pr2 β1 +
1 + Le

Pr
β2 + (1 + Le2)β3 + Leβ4, (4.77)

δ = 〈U†, U1〉+ 〈W†, W1〉+ 〈Θ†, Θ1〉

+ 2ikc

(
〈U†, ũ7〉+ 〈W†, W̃7〉+ 〈Θ†, θ̃7〉

)
+ 〈P†, w̃7〉 − 〈W†, p̃7〉,

(4.78)

where the nonlinear functions N F
3 for F = U, W, Θ, Φ in the expression for β are

N F
3 = U1

dF0
2

dx
+ Ū1

dF2
2

dx
+ U2

2
d f̄1

dx
+ 2ikcW̄1F2

2 + ikcW0
2 F1 − ikcW2

2 F̄1. (4.79)

The full expressions used to compute αi, βi, γ1 and δ are tabulated and numerically

evaluated in table 4.3. Finally, by dividing (4.71) through by α, the Ginzburg–Landau

equation is more conveniently written as

AT = a1rA + a2|A|2A + a3AZZ, (4.80)
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Term in Ginzburg–Landau equation (4.71)
αAT1 γrA β|A|2A δAZZ

Term in N3 proportional to
∂ f1

∂T1
r(θ1 − φ1)

u1 · ∇ f2,
∂2 f2

∂z∂Z
,

∂p2

∂Z
,

u2 · ∇ f1
∂2 f1

∂Z2 ,
∂w2

∂Z

Table 4.2: Terms from N3 (see (4.68)) contributing to each term in the Ginzburg–Landau
equation (4.71). The column in which these terms are placed informs on the term to
which they contribute. Here, f1 and f2, respectively refer to first- and second-order
corrections of the variables f = u, w, θ and φ.

where a1 = γ/α, a2 = β/α and a3 = δ/α.

SOLUTIONS OF THE GINZBURG–LANDAU EQUATION

The solutions to the Ginzburg–Landau equation (4.80) are good approximations of the

small-amplitude solutions of the full doubly diffusive system (4.11–4.14). Of particular

interest in this chapter are the two steady solutions that are invariant with respect to the

long spatial scale Z. The first of these solutions is the trivial solution:

A = 0. (4.81)

This solution is valid for all r and corresponds to the conduction state (4.10). The second

important solution is

A =

(
− a1r

a2

)1/2

eiχ, (4.82)

where χ is an arbitrary phase. This solution relates to states of small-amplitude spatially

periodic convection that can be found near the primary bifurcation. These fluid states

can then be approximated by

(u, w, p, Θ, Φ)T ≈
√
− a1(Ra− Rac)

a2
(U1(x), W1(x), P1(x), Θ1(x), LeΘ1(x))T eikcz + c.c.,

(4.83)
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Numerical value Expression

α1 1.11× 10−4 〈U† , U1〉+ 〈W† , W1〉

α2 2.27× 10−4 〈Θ† , Θ1〉

β1 −4.43× 10−9
−
〈

U†, U1
dũ4

dx
+ ũ4

dU1

dx
+ 2ikcũ4W1 + ikcw̃2U1 − ikcw̃4U1

〉
−
〈

W†, U1
dw̃2

dx
+ U1

dw̃4

dx
+ ũ4

dW1

dx
+ ikcW1w̃4 + ikcW1w̃2

〉

β2 −1.63× 10−8

−
〈

U†, U1
dũ5

dx
+ ũ5

dU1

dx
+ 2ikcũ5W1 + ikcw̃3U1 − ikcw̃5U1

〉
−
〈

W†, U1
dw̃3

dx
+ U1

dw̃5

dx
+ ũ5

dW1

dx
+ ikcW1w̃5 + ikcW1w̃3

〉

−
〈

Θ†, U1
dθ̃4

dx
+ ũ4

dΘ1

dx
+ 2ikcW1θ̃4 + ikcw̃2Θ1 − ikcw̃4Θ1

〉

β3 7.47× 10−8
−
〈

Θ†, U1
dθ̃3

dx
+ U1

dθ̃5

dx
+ ũ5

dΘ1

dx
+2ikcW1θ̃5 + ikcw̃3Θ1 − ikcw̃5Θ1

〉
β4 1.58× 10−7

−
〈

Θ†, U1
dθ̃3

dx
+ U1

(
dθ̃5

dx
+

dθ̃6

dx

)
+ 2ũ5

dΘ1

dx
+2ikc

(
W1

(
θ̃5 + θ̃6

)
+ w̃3Θ1 − w̃5Θ1

)〉
γ1

(Le > 1) − 8.85× 10−7
〈W†, Θ1〉(Le < 1) 8.85× 10−7

δ 7.38× 10−4

〈U† , U1〉+ 〈W† , W1〉+ 〈Θ† , Θ1〉
+2ikc

(
〈U† , ũ7〉+ 〈W† , w̃7〉+ 〈Θ† , θ̃7〉

)
+〈P† , w̃7〉 − 〈W† , p̃7〉

Table 4.3: Numerical values and expressions for the coefficients α1, α2, β1, β2, β3, β4, γ1
and δ in (4.71). The sign of γ1 depends upon whether Le > 1 or Le < 1 as γ > 0 for all
Le, while all other coefficients are independent of the parameters Le and Pr.
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where the phase χ has been absorbed into z via a vertical translation. These states only

exist at small amplitude for Rayleigh numbers that satisfy

a1

a2
(Rac − Ra) > 0. (4.84)

Consequently, the sign of the ratio a1/a2 determines the criticality of the primary bifur-

cation and the initial direction of branching.

The numerical values in table 4.3 allow the coefficients ai to be computed for all param-

eter values. The coefficients a1 and a3 are positive for all Pr provided Le 6= 1, whereas

the sign of a2 changes as these parameters are varied. This occurs when β = 0, which

we may find explicitly by taking the positive root of equation (4.77), to find

Prc =
−(1 + Le)β2 +

√
(1 + Le)2β2

2 − 4β1 [(1 + Le2)β3 + Leβ4]

2[(1 + Le2)β3 + Leβ4]
. (4.85)

As a result, there exists a boundary in parameter space that separates regions where the

primary bifurcation is subcritical (a2 > 0) from those where it is supercritical (a2 < 0).

This boundary is shown in figure 4.8 and implies that, for any value of the Lewis num-

ber, there exists a critical value of the Prandtl number, Prc(Le), expressed in (4.85),

above which the bifurcation is subcritical. This critical value tends to 0.376 for small

Lewis numbers while it approaches the asymptotic relation Prc ∼ 0.376/Le as the Lewis

number tends to infinity. We further note that the parameter values for physical dou-

bly diffusive systems from Schmitt [157] all lie within the region where the primary

bifurcation is subcritical. While we are unaware of further fluid systems lying within

the supercritical region of parameter space, we expect that they exist since some of the

physical systems identified in figure 4.8, including humidity/heat and stellar interiors

(marked (6) and (8), respectively), have parameter values that are within an order of

magnitude of the sub/supercritical boundary.

The numerical values of the ratio a1/a2 were validated by comparing the small-

amplitude behaviour of the linear approximation (4.83) against solutions obtained via
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Figure 4.8: Boundary a2 = 0 in (Le, Pr) parameter space separating the region where
the primary bifurcation from the conduction state is subcritical (above) from that where
it is supercritical (below). The conduction state is linearly stable for all Ra at Le = 11
and this point is indicated by the open circle. The grey regions indicate parameter
values from [157] for the physical doubly diffusive systems: (1) salt/sugar, (2) magmas,
(3) oxide semiconductors, (4) heat/salt 0◦C, (5) heat/salt 30◦C, (6) humidity/heat, (7)
liquid metals and (8) stellar interiors.

(a)

(b) (c)

(d) (e)(a)

(b) (c)

(d) (e)

Figure 4.9: Bifurcation diagrams comparing solutions obtained via numerical continua-
tion (solid line) with the linear approximation (4.83) derived from the weakly nonlinear
analysis (dotted line) using the parameter values: (a) Le = 11 with Pr = 1 (red), Pr = 0.1
(blue), Pr = 0.02 (purple) and Pr = 0.01 (green); (b) Pr = 0.1 and Le = 100, (c) Pr = 0.1
and Le = 11, (d) Pr = 0.1 and Le = 5 and (e) Pr = 0.1 and Le = 2.
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numerical continuation in a domain with Lz = λc. Figure 4.9 presents comparisons for

a selection of parameter values, including both instances when the primary bifurcation

is sub- and supercritical, by showing the kinetic energy:

E =
1
2

∫ λc

0

∫ 1

0

(
u2 + w2) dx dz, (4.86)

against Rayleigh number for both solutions. In each case, we see how the numerical

solution (solid lines) is initially tangent to the approximation (dotted lines) at the pri-

mary bifurcation but deviates from it at larger amplitudes, where higher order terms

in the approximation should be included. The numerical values of the ratio a3/a1 were

similarly validated against the numerical solutions. However, since the associated term

in the Ginzburg–Landau equation, AZZ, corresponds to long spatial modulations of the

amplitude, this validation required vertically extended domains and will be presented

in Chapter 5.

We can gain physical insight into the criticality of the primary bifurcation by examining

the contributions that each of the nonlinear terms from equations (4.1–4.4) make to a2,

using a similar approach to the one that Requilé et al. [144] applied to plane Poiseuille

and plane Couette flows with viscous dissipation. The expression of the coefficient

β (4.77) and the corresponding numerical values provided in table 4.3, show that the

inertial term u · ∇u (contributing to β1 and β2) provides a negative contribution to a2,

whereas thermal u · ∇T and solutal u · ∇C advective terms (mostly contributing to β3

and β4) provide a positive contribution to a2. This is further seen by introducing the

factors ζ1 and ζ2 that multiply the thermal and solutal advective terms, respectively,

and numerically perform the weakly nonlinear analysis for the modified system:

1
Pr

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇2u + Ra(T − C)ẑ, (4.87)

∇ · u = 0, (4.88)

∂T
∂t

+ ζ1u · ∇T = ∇2T, (4.89)

∂C
∂t

+ ζ2u · ∇C =
1
Le
∇2C, (4.90)
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Figure 4.10: Contours of the coefficient a2 as a function of ζ1 and ζ2, which respectively
multiply thermal and solutal advective nonlinearities in (4.87–4.90), for (a) Le = 11,
Pr = 1 and (b) Le = 1/11, Pr = 1. The contour a2 = 0, which marks the boundary be-
tween subcriticality and supercriticality, is shown in bold.

with ζ1, ζ2 ∈ [10−2, 104] and selected values of the Prandtl and Lewis numbers. The

coefficient a2 tends to increase when one of ζ1 or ζ2 increases, while keeping the other

fixed, as indicated by the contours in figure 4.10. Thus, both the advection of heat

and of solute enhance the subcriticality of the primary bifurcation, while inertial effects

drive the supercriticality. This means that reducing the Prandtl number reduces the

subcriticality of the bifurcation since the effects of inertia are strengthened.

The final term in the Ginzburg–Landau equation (4.80), a3AZZ, allows small-amplitude

solutions of the doubly diffusive system in vertically extended domains to exhibit long-

scale amplitude modulation. These solutions include phase-winding states that describe

patterns whose wavenumbers are close to the critical wavenumber kc [53], and spatially

modulated states that can develop into localised states away from the primary bifurca-

tion [23]. While the former are out of the scope of this thesis, we will consider the effect

of the term a3 AZZ on the origin of spatially localised states in the next chapter.
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4.3 FULLY NONLINEAR BEHAVIOUR

Having established the region of (Le, Pr) parameter space in which the bifurcation is

subcritical, we can now investigate the nonlinear behaviour of the system near the onset

of convection. In particular, we focus on the structure and stability of the primary branch

of spatially periodic convection states with wavenumber kc as it extends towards larger

amplitudes. For this, we consider a single-wavelength domain with Lz = λc = 2π/kc,

which precludes modulational instabilities arising in large domains that are captured by

our weakly nonlinear analysis through the AZZ term in (4.80).

We numerically continue the primary branch against the Rayleigh number across a range

of Lewis (Le ∈ [5, 100]) and Prandtl (Pr ∈ [2× 10−3, 10]) numbers. The solution branches

will be identified on bifurcation diagrams showing either the total kinetic energy of

steady states:

E =
1
2

∫ λc

0

∫ 1

0

(
u2 + w2) dx dz, (4.91)

or the average velocity ‖u‖2 =
√

2E/λc, against the Rayleigh number Ra.

Computations were carried out using a spectral element numerical method based on

a Gauss–Lobatto–Legendre discretisation and supplemented by Stokes preconditioning

with ∆t = 0.1, as detailed by Beaume [8]. Numerical results were validated against a

discretisation of up to 4 spectral elements with 29 nodes in both the x and z directions.

The stability of the steady states was computed using an Arnoldi method based on a

time-stepping scheme [123]. Further direct numerical simulations used a stiffly stable

second-order splitting scheme based on [94] with time-step ∆t = 10−3.

4.3.1 BIFURCATION STRUCTURE

The results can be summarised by dividing parameter space according to the qualitative

nature of the bifurcation diagram. Figure 4.11(a) indicates the four main regimes found.

Region (1) describes the moderate and large Pr behaviour for all Le. In this region, the

primary bifurcation is strongly subcritical and the primary branch has a single saddle
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(a)

(b) Region 1 (c) Region 2

(d) Region 3 (e) Region 4

Figure 4.11: (a) Enlargement of a subset of the parameter space shown in figure 4.8
showing four regions where the bifurcation diagrams exhibit qualitatively different be-
haviour. The thick line separates subcritical from supercritical branching, while the
additional region boundaries are identified with either dotted or dashed lines. (b–e)
Representative bifurcation diagrams for parameter values within each of the four re-
gions. The stability of the branch segments is also indicated using thick solid lines for
stable solutions, thin lines for solutions unstable to amplitude perturbations and dashed
lines for solutions unstable to drift. The location of bifurcations depend upon the spe-
cific parameter values used, so those used for each sketch have been marked in panel
(a).
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node, as shown in figure 4.11(b). Parameter values within this region have received the

most attention in previous studies focusing on subcritical pattern formation (e.g., see

[24, 191]). Region (2) occupies a small region of parameter space above the boundary

Pr = Prc, where the primary bifurcation is weakly subcritical, and separates the typical

subcritical behaviour in region (1) from the supercritical behaviour in regions (3) or (4).

The steady convection state branches typically have three saddle nodes in region (2), as

exemplified in figure 4.11(c). Regions (3) and (4) identify the two qualitatively different

types of bifurcation diagrams observable when the primary bifurcation is supercritical.

In both cases, the primary branch has two saddle nodes, with the first lying in the super-

critical region Ra > Rac. The difference between the regions is the location of the second

saddle node: in region (3), it is found for Ra < Rac (see figure 4.11(d)), whereas, in re-

gion (4), it is found in Ra > Rac (see figure 4.11(e)). Consequently, a large-amplitude

convection state may coexist with the stable conduction state when the primary bifur-

cation is supercritical, but, for sufficiently small Pr, steady convection states are found

entirely within the supercritical region, where the conduction state is unstable. There

may exist a fifth region, where the primary branch increases monotonically in both

Rayleigh number and in amplitude but we have not identified it in this study.

We now determine the structure of the primary branch as Pr decreases for a fixed value

of Le. To achieve this, we follow the locations of its three saddle nodes with respect

to Ra and Pr. In doing so, we observed two different scenarios according to whether

the pair of saddle nodes is created on the lower or upper part of the primary branch.

These are exemplified in figure 4.12 for Le = 11 (representative of 5 6 Le . 15) and

Le = 20 (representative of 19 . Le < 100). Since the transition between the two scenarios

occupies a small region of parameter space within region (2) for 15 . Le . 19, we did

not investigate it any further.

To help interpret the plots in figure 4.12, figure 4.13 demonstrates the evolution of the

bifurcation diagrams as Pr decreases for Le = 11 (panels (a–f)) and Le = 20 (panels (g–

l)). The structure of the bifurcation diagrams in region (1), for high Pr, remain similar, as

shown in figures 4.13(a) and 4.13(g). From the primary bifurcation, the primary branch
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4.13(a)

4.13(b)

4.13(c)

4.13(e)

4.13(f)

4.13(d)

(a)

4.13(g)

4.13(h)

4.13(k)

4.13(l)

4.13(i)

4.13(j)

(b)

Figure 4.12: Location of the three saddle-node bifurcations of the primary branch in
(Ra, Pr) parameter space for (a) Le = 11 and (b) Le = 20. The dashed line marks the
critical Rayleigh number at which the primary bifurcation is found, Rac, and the cross
marks the codimension-two point (Rac, Prc) explained in the text. The insets provide
enlargements of the area around Rac in each case. Arrows mark the bifurcation diagrams
shown in figure 4.13.

extends towards lower Rayleigh numbers and proceeds to turn around at a saddle node,

hereafter referred to as SN1, before heading towards large-amplitude convection states

at large Ra. Figure 4.12 suggests that, as Pr → ∞, the location of SN1 tends to a con-

stant Rayleigh number, dependent upon Le. This figure also shows that SN1 occurs at

larger Ra as the Prandtl number is decreased and the primary bifurcation becomes less

subcritical.

Upon decreasing the Prandtl number, the primary branch undergoes a cusp bifurcation

at Pr ≈ Prcusp(Le) > Prc(Le), while still subcritical, denoting the beginning of region (2).

The cusp produces two additional saddle nodes along the primary branch: SN2 and SN3.

The exact process by which this is achieved depends on the Lewis number. For Le . 15,

the cusp bifurcation occurs at smaller amplitude than SN1 and the saddle nodes are la-

belled SN3, SN2, SN1 as the branch is followed in the direction of increasing energy (see,

for example, figure 4.13(d) for Le = 11 and Pr = 0.032, near the cusp parameter value:

Prcusp ≈ 0.033). In contrast, for Le & 19, the cusp bifurcation occurs at higher amplitude
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.13: Bifurcation diagram showing the primary branch of steady convection and
the stability of the related states across the four regions, indicated in the top left cor-
ner. Thick solid lines indicate stable solutions, thin lines indicate solutions unstable to
amplitude perturbations and dashed lines indicate solutions unstable to drift. Saddle
nodes are marked by symbols: SN1 (filled circle), SN2 (asterisk) and SN3 (triangle). The
open circle corresponds to the destabilising drift bifurcation. The parameter values,
also indicated by the arrows in figure 4.12, are: Le = 11, and (a) Pr = 1, (b) Pr = 0.1,
(c) Pr = 0.042, (d) Pr = 0.032, (e) Pr = 0.01, (f) Pr = 0.005, as well as Le = 20, and (g)
Pr = 1, (h) Pr = 0.1, (i) Pr = 0.023, (j) Pr = 0.02, (k) Pr = 0.01 and (l) Pr = 0.005. For
Le = 11 (resp. Le = 20), Prc ≈ 0.031, Prcusp ≈ 0.033 (resp. Prc ≈ 0.018, Prcusp ≈ 0.023).
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than SN1 and saddle nodes are labelled SN1, SN2, SN3, as shown in figure 4.13(i) for

Le = 20, Pr = 0.023 ≈ Prcusp.

Continuing to reduce Pr across region (2) (from Prcusp to Prc), the Rayleigh number

associated with SN2 increases so that it reaches the supercritical region before Pr = Prc.

During this transition, the saddle node with smallest amplitude (SN3 for Le . 15; SN1

for Le & 19) moves to larger Rayleigh numbers but with decreasing amplitude until

it collides with the primary bifurcation at Pr = Prc and Ra = Rac, where the primary

bifurcation changes from subcritical to supercritical. This process is highlighted in the

insets of figure 4.12 and results in the primary branch possessing only two saddle nodes

in the supercritical regime (Pr < Prc).

The locations of the remaining two saddle nodes go toward larger Ra as Pr decreases and

are found in the supercritical region (Ra > Rac) in region (4), as shown in figure 4.11. It

is therefore clear that multiple steady convection states can exist for the same parameter

values near the onset of convection, regardless of the criticality of the primary bifurca-

tion. This result extends earlier observations on the number of saddle-node bifurcations

occurring along the primary branch in related systems [176].

More insight into these results can be obtained by representing, as in figure 4.14, the

location of the saddle nodes for various Lewis numbers as a function of the reduced

Prandtl number Pr/Prc and combined parameter Ra|Le − 1|. These transformed pa-

rameters allow us to identify the location where the criticality of the primary bifurca-

tion changes as the single coordinate point: Pr/Prc = 1, Ra|Le− 1| ≈ 6509. Figure 4.14

shows that, for Pr < Prc and the chosen values of the Lewis number, the location of the

first supercritical saddle node SN2 can be approximated by:

RaSN2 ≈
6460
|Le− 1|

(
Pr
Prc

)−0.24

. (4.92)

For Pr < 10−2 (not shown), the location of saddle node SN2 deviates from the relation

above, indicating a potentially different asymptotic regime. These results also illustrate

the large Pr behaviour of the subcritical saddle node SN1: RaSN1 |Le − 1| tends to a
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Figure 4.14: Locations of the saddle-node bifurcations in (Ra|Le− 1|, Pr/Prc) parameter
space for Le = 5 (green), Le = 11 (purple), Le = 20 (blue) and Le = 50 (red). The
black dashed line marks the location of the primary bifurcation and the red cross marks
the codimension-two point where the criticality of the primary bifurcation changes, at
Pr = Prc. The black dotted line represents relationship (4.92). The saddle nodes are
marked by circles for SN1, asterisks for SN2 and triangles for SN3.

constant as the Prandtl number tends to infinity. This constant increases with Le and

saturates for large values of the Lewis number. These results echo those obtained in

doubly diffusive convection in a 2D vertical porous enclosure, where Mamou et al. [122]

used a parallel flow approximation to demonstrate that the Rayleigh number at which

the subcritical saddle node occurs is proportional to 1/(1− Le) for large enough Lewis

numbers.

4.3.2 SOLUTION PROFILES

Despite the different scenarios obtained at different values of the Prandtl number (see

figure 4.11), the steady convection states undergo similar structural changes along their

branch, as evidenced in figure 4.15 for Le = 11 and Pr = 1, 0.032, 0.01 and 0.005.

The streamfunction profiles are similar near the primary bifurcation regardless of the

value of the Prandtl number (see second column of figure 4.15), which is in agreement

with the linear stability results from figure 4.4(c). Moving along the branches in the

direction of increasing energy, the first change that we observe is the strengthening of
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Figure 4.15: Streamfunctions of the steady states on the primary branch when Le = 11
for different values of the Prandtl number: top row Pr = 1, second row Pr = 0.032, third
row Pr = 0.01 and bottom row Pr = 0.005. The left column shows the respective bifur-
cation diagrams and indicates with a cross which solutions have been represented in
the subsequent panels. Black (grey, dotted) contours indicate positive (negative, zero)
values of the streamfunction. The following contour intervals are used: 10−4 (first col-
umn, top two rows); 10−5 (first column, third row); 2× 10−5 (first column, bottom row);
0.02 (second column, top two rows); 0.01 (second column, bottom two rows); 0.02 (third
column); 0.05 (fourth and fifth columns).
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(a) (b) (c) (d) (e)

Figure 4.16: Horizontal velocity and streamfunction of solutions from the upper seg-
ment of the primary branch at Ra = 700 for Pr = 1, 0.1, 0.032, 0.005 and Le = 11
represented via (a) the midline horizontal velocity (u(x = 0.5, z)) and streamfunction
contours plots for (b) Pr = 1, (c) Pr = 0.1, (d) Pr = 0.032 and (e) Pr = 0.005 with
contour intervals 0.1.

the anticlockwise roll, where fluid near the hotter wall moves upwards. This occurs in

both the subcritical and the supercritical regimes, as can be seen in the third column of

figure 4.15. Continuing the branches to the large-amplitude saddle node and beyond, the

amplitude of the weaker roll decreases, leaving room for the stronger roll to straighten.

At large enough amplitude, an anticlockwise roll occupies the domain, irrespective of

the value of Pr. Its amplitude grows as the upper branch is followed to larger values of

Ra, where the Prandtl number starts to impact the flow: the roll occupies a smaller area

at lower values of the Prandtl number, as seen within the final column of figure 4.15.

This resembles the fly-wheel convection, with nearly circular streamlines, seen in low-

Prandtl Rayleigh–Bénard convection as studied by Clever and Busse [47].

To characterise these observations in more detail, figure 4.16 reports the horizontal veloc-

ity profiles observed on the upper branch for Pr = 1, 0.1, 0.032 and 0.005. The decrease

in roll size is apparent when Pr is decreased. This is particularly evident for Pr = 0.005,

where the horizontal velocity remains small except within the range 0.6 . z . 1.9, in

such a way that the roll only occupies about half of the extent of the domain. Fig-

ure 4.16(a) additionally shows the transition to these states from the large rolls observed
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at O(1) Prandtl numbers. For Pr = 1, the maximum horizontal velocity is achieved far

from the centre of the roll, at z ≈ 0.44 and z ≈ 2.04, producing a region of strong shear

between the rolls and gentle quasi-linear velocity variations inside the rolls. As Pr is

lowered, these maxima move towards the centre of the roll by initially becoming less

pronounced and creating flatter extrema (see figure 4.16(c)), followed by the emergence

of peaks around z ≈ 1 and z ≈ 1.5. The maximum horizontal velocity does not change

significantly within this range of Prandtl number values in such a way that the low Pr

rolls represent narrow regions of strong shear surrounded by low amplitude flow.

4.3.3 PHYSICAL INTERPRETATION OF CHANGING ROLL PROFILES

To interpret the changes in roll structure seen in figures 4.15 and 4.16 when the Prandtl

number decreases, we consider the vorticity equation:

1
Pr

(
∂ω

∂t
+ u · ∇ω

)
= ∇2ω− Ra

(
∂Θ
∂x
− ∂Φ

∂x

)
, (4.93)

where ω = ŷ · (∇× u) is the only non-zero component of the vorticity. Since our focus

here is on the steady states of the system, we may set the first term of (4.93) equal to

zero, which results in a three-way balance between inertia, I, viscous diffusion, D and

horizontal variations in the buoyancy force, B:

1
Pr

(u · ∇ω)︸ ︷︷ ︸
I

−∇2ω︸︷︷︸
D

+ Ra
(

∂Θ
∂x
− ∂Φ

∂x

)
︸ ︷︷ ︸

B

= 0. (4.94)

The contributions to (4.94) from each of these terms vary both spatially over the domain

and with the physical parameters.

Figure 4.17 presents the relative importance of the three terms across the domain for four

different Prandtl numbers using the steady states shown in figure 4.16. At Pr = 1 (top

row), the balance in the vorticity equation (4.94) is primarily between viscous dissipation

and buoyancy. Inertia plays a subdominant role across the domain, except within a

pair of thin, white ‘S’-shaped strips that follow the vertical sides of the roll and bend
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Pr = 1

Pr = 0.1

Pr = 0.032

Pr = 0.005

|D|
max{|I|,|D|,|B|}

|B|
max{|I|,|D|,|B|}

|I|
max{|I|,|D|,|B|}

Figure 4.17: Fraction of the dominant term (max{|I|, |D|, |B|}) that the viscous dissipa-
tion term |D| (first column), buoyancy term |B| (second column), and inertial term |I|
(third column) contribute to the vorticity equation (4.94) for the steady states shown in
figure 4.16 at Ra = 700 for Pr = 1 (top row), Pr = 0.1 (second row), Pr = 0.032 (third
row) and Pr = 0.005 (bottom row). The colour bar on the right indicates the logarithmic
scale used where white indicates a dominant term, while grey and black indicates a
subdominant term. Streamlines of the steady flow are superposed onto each subplot.
The dotted nature of these subplots comes from approximating the derivatives using a
finite discretisation.
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down (up) towards the colder (hotter) wall. However, the contribution of inertia to the

balance increases throughout the domain as the Prandtl number decreases. This change

is particularly seen by the white ‘S’-shaped strips widening by Pr = 0.1 (second row),

then curving and moving towards the centre of the domain as they continue to follow

the outer edges of the roll that becomes smaller with decreasing Prandtl number (e.g.,

Pr = 0.032 (third row)).

By Pr = 0.005 (bottom row), we find that the domain can be divided into three re-

gions according to both the balance within the vorticity equation and the magnitude

of individual terms: at the centre of the roll, inertia is subdominant, while there is a

balance between the dominant diffusive and buoyancy terms; towards the edges of the

roll, the main balance is between inertia and buoyancy with viscous dissipation provid-

ing a non-negligible contribution; outside the roll, where each of the terms are small

in (4.94), the primary balance is again between buoyancy and viscous dissipation. The

inertial term being small at the centre of the roll and outside the roll is consistent with

fly-wheel convection where the lines of constant vorticity become coincident with the

streamlines [47]. Thus, the roll structure changes with decreasing Prandtl number since

inertia changes from being subdominant at high Prandtl numbers to being dominant at

low Prandtl numbers.

4.3.4 STABILITY OF THE NONLINEAR STATES

The stability of states on the primary branch is controlled by two eigenmodes: an ampli-

tude mode that preserves the S∆ symmetry of the system and a drift mode that breaks

the S∆ symmetry. The translation mode (also known as the Goldstone mode) that is

associated with vertical translations due to the periodic boundary conditions, remains

marginal along the branch and none of the other eigenmodes become destabilising over

the range of parameters considered.

Close to the onset of convection, the amplitude mode is initially destabilising when the

bifurcation is subcritical (Pr > Prc), whereas it is stabilising when the bifurcation is
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(a) (b) (c) (d) (e)

Figure 4.18: Drift bifurcation and downward-travelling waves for Pr = 0.1, Le = 11, for
which Rad ≈ 638. (a) Bifurcation diagram showing the kinetic energy E as a function
of the Rayleigh number Ra for steady states and travelling waves. Thick lines indicate
stable solutions, thin lines indicate solutions unstable to amplitude perturbations and
dashed thick lines indicate solutions unstable to drift. The drift bifurcation is shown
by the open circle. (b) Stable convection state at Ra = 630 shown by contours of its
streamfunction with intervals 0.1 (first red cross on panel (a)). Further panels show
similar representations of stable travelling waves at: (c) Ra = 645 and (d) Ra = 700. (e)
Squared drift speed along the stable branch as a function of the Rayleigh number. The
dotted line shows the fitting law: vd ≈ 0.12

√
Ra− 640.

supercritical (Pr < Prc). This mode subsequently changes stability at successive saddle

nodes. In particular, it becomes stabilising at saddle nodes SN1 and SN3, where the

branch turns towards higher Ra, but becomes destabilising at SN2, where the branch

turns towards lower Ra. As a result, the upper branches of steady convection states are

always stable to amplitude perturbations for all Le and Pr.

The drift mode is stabilising near the primary bifurcation at Ra = Rac for all Pr, but be-

comes destabilising at a drift-pitchfork bifurcation further along the branch at Ra = Rad,

whose location depends upon both Le and Pr, as can be seen in figure 4.13. The marginal

mode is identical to the translation mode at this bifurcation and its destabilisation leads

to a pair of branches of travelling wave solutions, as shown in figure 4.18(a) for Pr = 0.1

and Le = 11. Close to their onset, these states take the form of a single large-amplitude

convection roll (see figure 4.18(c)) that slowly drifts either upwards or downwards. As

these branches are followed beyond the drift bifurcation, an asymmetric streaming flow

strengthens while the convection roll weakens and moves towards the wall where the
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streaming flow is the weakest. This transition is shown from figure 4.18(b) at Ra = 630

to figure 4.18(d) at Ra = 700. At the same time, the drift speed increases at a rate

approximately proportional to
√

Ra− Rad, as shown in figure 4.18(e). This result ex-

tends the findings obtained for Le = 1.2, Pr = 1 by Xin et al. [191] to a wider range of

parameter values.

The stability of the travelling waves is determined by the location of the drift bifurcation:

these states are initially stable when the bifurcation occurs on the upper branch of steady

convection states, whereas they are unstable when the bifurcation occurs along the lower

branch. Both cases can be achieved for a given Le when Pr is varied, as figure 4.13

illustrates for selected values of the Prandtl number with Le = 11 and Le = 20. For

large values of the Prandtl number, the drift bifurcation occurs on the upper branch at

large Rayleigh numbers. This location moves closer to the saddle node with decreasing

Prandtl numbers so that the two coincide at Pr = Pr∗ and Ra = Ra∗. For Le = 11, we

found that Pr∗ ≈ 0.042 and Ra∗ ≈ 614.9 (see figure 4.13(c) for a bifurcation diagram at

similar values of the parameters). For smaller values of the Prandtl number, the drift

bifurcation occurs along the lower branch of convection states and at a value of the

Rayleigh number that increases as Pr is decreased. For all the parameter values tested,

this bifurcation was found to occur at larger amplitude than saddle node SN2 and,

consequently, the small-amplitude steady convection states remain stable to drift.

4.3.5 DYNAMICAL ATTRACTORS

The temporal dynamics of the system change as the drift-pitchfork bifurcation passes

below the subcritical saddle node since the travelling wave states and the steady con-

vection states on the upper branch are destabilised in the process. While many initial

conditions will consequently decay towards the conduction state at low Pr and Ra, this

decay is not possible when the conduction state is unstable for Ra > Rac and we instead

find that the dynamics converge on time-dependent states. To gain insight into the

origin of these time-dependent states, we first consider the unfolding of a saddle node-

pitchfork bifurcation, which we expect to represent the dynamics of the full system in
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the vicinity of the codimension-two point (Ra∗, Pr∗) where the drift and saddle-node bi-

furcations coincide. This unfolding is a two-dimensional system of ordinary differential

equations for x, which represents the drift speed of the state, and z, which represents

the amplitude of the convection states, and involves the two unfolding parameters µ1

and µ2, which respectively represent the deviations Pr− Pr∗ and Ra− Ra∗ from the

codimension-two point. The governing equations for the variables x and z are deduced

by comparing the aforementioned results for the doubly diffusive system with those

from the possible unfoldings of the saddle node-pitchfork bifurcation detailed by Guck-

enheimer and Holmes [73] and are found to be

ẋ = −µ1x + b1xz, (4.95)

ż = µ2 − x2 − z2 + b2z3, (4.96)

where b1 > 0 and b2 < 0.

To validate the use of the unfolding (4.95, 4.96), particularly with regards to the signs

of b1 and b2, we proceed by following the analysis of Guckenheimer and Holmes [73]

to chart regions of (µ1, µ2) parameter space around this codimension-two point. The

normal form (4.95, 4.96) admits four fixed points in the vicinity of the bifurcation, which

are approximated as

(x, z) ≈


X±1 =

(
0,±√µ2

)
for µ2 > 0,

X±2 =

±√µ2 −
(

µ1

b1

)2

,
µ1

b1

 for µ2 >
(

µ1

b1

)2

.
(4.97)

The first of these pairs relate to the steady convection states in the doubly diffusive

system, while the second pair relate to the travelling wave states. We further see that

X±2 bifurcate from X+
1 when µ1 = b1

√
µ2 and X−1 when µ1 = −b1

√
µ2.

The stability of the fixed points are then obtained by evaluating the eigenvalues of the
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µ1 < −b1
√

µ2 −b1
√

µ2 < µ1 < 0 0 < µ1 < b1
√

µ2 b1
√

µ2 < µ1

X+
1 (+,−) (+,−) (+,−) (−,−)

X−1 (+,+) (−,+) (−,+) (−,+)
X±2 — (+,+) (−,−) —

Table 4.4: Stability of fixed points X±1 and X±2 in four regions of (µ1, µ2) parameter space
with µ2 > 0. Stability (instability) of the fixed point in the (x, z) directions are indicated
using − (+) symbols. Stability entries are not defined for X±2 and µ2 < µ2

1/b2
1, when

these states do not exist.

X+
1

X+
2

X−
1

µ1

0−b1√µ2 b1
√
µ2

Figure 4.19: Sketches of trajectories in four stability regimes of the normal form for
the saddle node-pitchfork bifurcation (4.95,4.96) in (x, z) parameter space with x > 0.
In each of these sketches, the fixed points on the vertical line (blue and black dots)
represent steady convection states X±1 , while the fixed point away from the vertical line
(red dot) represents the travelling wave state X+

2 .

Jacobian:

J(x, z) =

−µ1 + b1z b1x

−2x −2z + 3b2z2

 (4.98)

at each point. This leads to the four stability regimes when µ2 > 0, which are indicated

in table 4.4. The corresponding temporal dynamics are depicted visually in figure 4.19

and we can see that these results are analogous to the stability of the steady convection

states and travelling waves found in the previous subsection.

This stability analysis further shows that X±2 changes stability and undergoes a Hopf

bifurcation when µ1 = 0, which implies the existence of a limit cycle. However, it pro-
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vides neither the stability of the resulting periodic orbit, nor the region of parameter

space in which it may be found. To obtain these details, we determine when a hete-

roclinic connection with x > 0 between the two fixed points X±1 is possible, since this

is the limiting case for the existence of these periodic orbits. This is achieved by first

rescaling the variables in (4.95) and (4.96) via

t′ = εt, x′ = ε−1x, z′ = ε−1z, µ′1 = ε−2µ1, µ′2 = ε−2µ2, (4.99)

in order to make the leading order system integrable. After dropping the introduced

primed notation, the original ODEs (4.95) and (4.96) become

ẋ = b1xz− εµ1x, (4.100)

ż = µ2 − x2 − z2 + εb2z3. (4.101)

The leading order system with ε = 0 is

ẋ = b1xz, (4.102)

ż = µ2 − x2 − z2, (4.103)

which admits the first integral:

H(x, z) =
b1

2
x

2
b1

(
µ2 − z2 − x2

1 + b1

)
. (4.104)

where H satisfies
dH
dt

=
∂H
∂x

ẋ +
∂H
∂z

ż = 0. (4.105)

Thus, trajectories in the leading order system correspond to the integral curves

H(x, z) = c, where c is a constant, that are shown in figure 4.20. Of particular interest

is the curve H = 0 (shown in bold) that is comprised of the vertical axis x = 0 and the

curve x = ±
√
(1 + b1)(µ2 − z2), which connects the two fixed points (x, z) = (0,±√µ2).

The heteroclinic connection between the two fixed points in general breaks once the
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Figure 4.20: Integral curves for the leading order solution of the rescaled normal form
(4.100, 4.101) with parameter values µ2 = 1 and b1 = 1. The contours of H are labelled
and curves with H = 0 are shown in bold. Only the right half-plane x > 0 is shown,
owing to the symmetry x 7→ −x of the system.

higher order terms in ε of (4.100, 4.101) are considered. Consequently, we aim to derive

a condition on µ1 and µ2 such that this heteroclinic connection persists. Including the

O(ε) terms in the full system, the function (4.104) is no longer a first integral, but instead

evolves according to

dH
dt

= εx

2
b1
(
−µ1(µ2 − z2 − x2)− b1b2z4

)
. (4.106)

If we suppose that a heteroclinic connection H0 exists between (0,
√

µ2) and (0,−√µ2),

then (4.106) may be integrated along this curve to find

∫
H0

dH
dt

dt = ε
∫

H0

x

2
b1
(
−µ1(µ2 − z2 − x2)− b1b2z4

)
dt

= 0, (4.107)

since H = 0 at both fixed points. This integral may be transformed into one

over space using dt = dz/ż and the leading order approximation of x along H0:

x ≈
√
(1 + b1)(µ2 − z2). With these substitutions, (4.107) is approximately equivalent
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to

0 = ε
∫ −√µ2

√
µ2

(
(1 + b1)(µ2 − z2)

)1/b1

(
−µ1 +

b2z4

µ2 − z2

)
dz +O(ε2)

= ε(1 + b1)
1/b1 µ1/b1+1/2

2

∫ 1

−1

(
(1− ξ2)1/b1 µ1 − b2µ2ξ4(1− ξ2)1/b1−1

)
dξ +O(ε2),

(4.108)

which may be rearranged to find the relation:

µ1 ≈ b2µ2

∫ 1
−1 ξ4(1− ξ2)1/b1−1 dξ∫ 1
−1(1− ξ2)1/b1 dξ

, (4.109)

which controls whether such a heteroclinic connection exists. Thus, when b2 < 0, limit

cycles arise for µ1 within the interval

b2µ2

∫ 1
−1 ξ4(1− ξ2)1/b1−1 dξ∫ 1
−1(1− ξ2)1/b1 dξ

< µ1 < 0. (4.110)

Since X±2 are unstable for these parameter values (see table 4.4), the Hopf bifurcation at

µ1 = 0 is supercritical and the limit cycles are stable.

The above analysis of the unfolding of (4.95, 4.96) in the vicinity of the codimension-two

point is summarised in figure 4.21(a), using five observable phase portraits. Relating

the unfolding back to the system of natural doubly diffusive convection, the stable limit

cycles found in region III correspond to relative periodic orbits consisting of drifting

states that originate either from a travelling wave undergoing a Hopf bifurcation or

from a global bifurcation where two steady convection states connect heteroclinically.

Although the normal form (4.95, 4.96) only formally represents the dynamics of the full

system close to the codimension-two point, each of the regions shown in figure 4.21

continues to be observed an appreciable distance away from this point. Figures 4.21(b)

and (c) illustrate the extent of the corresponding regions in the doubly diffusive sys-

tem when Le = 11 and we anticipate that similar results will hold for other values of

the Lewis number. In this figure, the regions have been subdivided according to the
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µ1

µ2
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(a)

4.22(a)

4.22(b)

4.22(f)

(b)

4.22(c)

4.22(d)

4.22(e)

(c)

Figure 4.21: (a) Unfolding near the codimension-two saddle node-pitchfork bifurcation
at µ1 = µ2 = 0 given by system (4.95, 4.96), after [73]. The different phase portraits
are classified in five different regions labelled using Roman numerals and accompa-
nied with a sketch of the corresponding phase space. In each of these sketches, the
fixed points on the vertical line represent steady convection states. The vertical (resp.
horizontal) direction is the eigendirection related to the amplitude (resp. drift) mode.
(b) Analogy with the doubly diffusive convection problem is made by replacing µ1 by
Pr− Pr∗ and µ2 by Ra− Ra∗ and regions of the (Ra, Pr) parameter space are shown as a
function of the observed temporal behaviour for Le = 11. Arrows indicate the values of
Pr used to produce the bifurcation diagrams in figure 4.22. (c) Magnification of panel (b)
near (Ra∗, Pr∗). The bifurcations are represented by the vertical dashed lines (primary
stationary bifurcation of the conduction state), black, blue and red solid lines (saddle
nodes), blue dotted lines (drift bifurcation), red dotted lines (Hopf bifurcation) and red
dot-dashed lines (heteroclinic connection).
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Stable in region?
State Oa Ob Ia Ib IIa IIb IIIa IIIb IVa IVb IVc Va Vb

O x — x — x — x — x x — x —
SOCs — x — — — — — — — x x — x
SOCl — — x x — — — — — — — — —
TW — — — — x x — — — — — — —
PO — — — — — — x x — — — — —

Table 4.5: Stability of the states found in the system of natural doubly diffusive convec-
tion within each region of the parameter space from figure 4.21. The naming convention
used is as follows: O, conduction state; SOCs, small-amplitude stationary overturning
convection; SOCl , large-amplitude stationary overturning convection; TW, travelling
wave; and PO, relative periodic orbit. The regions Oa, ..., Vb refer to the regions intro-
duced in figure 4.21.

types of stable attracting states that they display. The subdivisions occur owing to the

instability of the conduction state at Rac and the creation of a pair of saddle nodes at

(Racusp, Prcusp), which enrich the previous unfolding. The resulting subregions, together

with their associated attracting states, are summarised in table 4.5 and on the bifurca-

tion diagrams in figure 4.22. As Pr varies, the system admits one of seven qualitatively

distinct bifurcation diagrams. Six of these are presented in figure 4.22, which also indi-

cate the range of kinetic energies achieved over each relative periodic orbit, which we

obtained via time-stepping. The seventh type of bifurcation diagram, where the primary

branch lies entirely within the supercritical regime, is not shown but possesses similar

features to that seen for Pr = 0.02 in figure 4.22(f), including stable small-amplitude

steady convection states and relative periodic orbits.

The three most relevant stable attracting states close to the primary bifurcation at high

Pr (Pr > Pr∗ here) are: the conduction state (O), the large-amplitude steady convection

states (SOCl) and the travelling wave states (TW). Below the onset of convection (region

Oa), all initial conditions decay towards the first of these. In region Ia, above subcrit-

ical onset but before the drift instability, initial conditions converge towards SOCl , as

evidenced by the energy-time and drift speed-time plot in figure 4.23(a). Increasing Ra

beyond the drift instability into region IIa, SOCl is now unstable and the flow converges

towards TW. Figure 4.23(b) shows that the former state may still be observed in the
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(a) (b) (c)

(d) (e) (f)

Figure 4.22: Bifurcation diagrams showing the primary branch and other stable at-
tracting states for Le = 11, and (a) Pr = 1, (b) Pr = 0.1, (c) Pr = 0.043, (d) Pr = 0.04,
(e) Pr = 0.032 and (f) Pr = 0.02. The solid circles mark the saddle nodes and open
circles indicate where the drift bifurcation occurs. Thick (thin) lines represent states
stable (unstable) to the amplitude mode, whilst solid (dashed) lines show those stable
(unstable) to the drift mode. Thick blue lines indicate the minimal and maximal ener-
gies achieved in the stable limit cycle, which starts in a Hopf bifurcation in (c) and in
a heteroclinic bifurcation in (d,e,f). The unstable branches of travelling waves are not
shown.
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temporal dynamics, however, as the initial condition first rapidly changes amplitude to

approach SOCl before it builds vertical drift and converges to TW.

The stable branch of travelling waves destabilises in a supercritical Hopf bifurcation

that leads to a stable relative periodic orbit, as shown in figure 4.22 for Pr = 0.043.

Figures 4.24(a)–(e) depict such an orbit shortly after the bifurcation at Ra = 650 and

Pr = 0.043, where we see that the states exhibit small oscillations about a drifting state.

The Hopf bifurcation moves towards lower Rayleigh numbers as Pr approaches Pr∗

from above, which reduces the extent over which stable TW are found. This continues

until Pr = Pr∗, when stable TW cease to exist and the relative periodic orbit bifurcates

directly from codimension-two bifurcation at the saddle node.

Upon further decrease of the Prandtl number, so that the drift bifurcation occurs on

the lower branch of steady convection, the system admits neither stable SOCl nor stable

TW. Instead, the bifurcation diagrams are similar to that shown for Pr = 0.04 in fig-

ure 4.22(d), where a branch of unstable TW extends from the drift bifurcation towards

higher Rayleigh numbers and stable relative periodic orbits exist after a global bifur-

cation, where the stable manifold of SOCl connects heteroclinically with the unstable

manifold of the convection state on the lower branch and vice versa.

The lack of stability of the nonlinear states before the heteroclinic connection lead all

initial conditions to decay down to the conduction state in regions IVa and Va. Fig-

ures 4.23(d) and (f) illustrate this tendency for Pr = 0.032 when Ra = 630 and Ra = 620,

respectively. In both cases, the amplitude of the initially imposed roll rapidly decreases

to approach that of SOCl rolls. Afterwards, the drift speed of the state increases, as

SOCl is unstable to drift, and reaches a maximum around t ≈ 50. The drift speed subse-

quently decays down to zero, due to the instability of TW, and the time-dependent state

converges on the conduction state, which is the only stable attractor in these regions.

Beyond the heteroclinic connection, initial conditions tend to converge towards the rel-

ative periodic orbit, as they invariably do in region IIIb, where the conduction state is

unstable. Figure 4.23(c) illustrates this convergence starting from a large-amplitude roll
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(a) (b)

(c) (d)

(e) (f)

Figure 4.23: Energy-time (black) and drift speed-time (red) plots illustrating regions I–V
in figure 4.21 with Le = 11. In each case, the initial state was the large-amplitude convec-
tion state at Ra = 700 for Pr = 0.1 that was perturbed in the direction of its unstable drift
eigenmode. States approached during the trajectory are labelled as follows: (a) region
Ia, convergence to SOCl when Pr = 0.1 and Ra = 630; (b) region IIb, convergence to TW
when Pr = 0.1 and Ra = 660; (c) region IIIb, convergence to PO when Pr = 0.032 and
Ra = 660, (d) region IVa, convergence to O when Pr = 0.032 and Ra = 630; (e) region
IVc, convergence to SOCs when Pr = 0.02 and Ra = 700; and (f) region Va, convergence
to O when Pr = 0.032 and Ra = 620.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.24: Temporal evolution of downward-travelling states across one cycle of two
relative periodic orbits at: (a)–(e) Ra = 650 with Pr = 0.043 and Le = 11 and (f)–(j)
Ra = 660 with Pr = 0.032 and Le = 11 (as in figure 4.23(c)). (a) and (f) Anticlockwise
trajectory of the periodic orbit in drift speed-energy phase space. Blue dots in (f) mark
the conduction and steady convection states. (b) and (g) Energy-time (top) and drift
speed-time (bottom) plots. (c)–(e) Streamfunctions of states along the orbit in (a) at (d)
t = 0, (d) t = 8 and (e) t = 20 with contour intervals 0.1. (h)–(j) Streamfunctions of states
along the orbit in (f) at (h) t = 26, (i) t = 52 and (j) t = 68, with contour intervals 0.05.
The streamfunctions have been translated vertically for better visual representation.

with Pr = 0.032 and Ra = 660 perturbed in the direction of its unstable drift eigenmode.

A single cycle of this orbit is shown in further detail in figures 4.24(f)–(j). This relative

periodic orbit cycles between the three states: SOCl , TW and a steady small-amplitude

convection state, in the following manner. The first stage of the orbit, from 15 . t . 40,

resembles the temporal behaviour seen in region IIa (figure 4.23(b)), where the solution

remains close to SOCl in profile (figure 4.24(c)) while the drift speed slowly increases in

magnitude. Following this, between t ≈ 40 and t ≈ 54, the drift speed and kinetic en-

ergy rapidly increase as the profile of the state exhibits properties of the travelling wave
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(a) (b) (c)

Figure 4.25: Relative periodic orbits for Le = 11, Pr = 0.032 where RaSN2 ≈ 650.82 (a)
Trajectories in (vd, E) phase space for Ra = 650.85 (blue), Ra = 660 (red) and Ra = 700
(black). For Ra = 700 and Ra = 660, a pair of relative periodic orbits associated with
either negative or positive drift velocity are shown, while for Ra = 650.85, a single pe-
riodic orbit with alternating negative and positive drift velocities is shown. (b) Period
tP of orbits for selected Ra > RaSN2 . The red dashed line shows that approximately
tP ∝ (Ra− RaSN2)

0.56. (c) Energy-time plots for Ra = 700 (top), Ra = 660 (middle) and
Ra = 650.85 (bottom).

(TW) solution (figure 4.24(d)). Between t ≈ 54 and t ≈ 68, both the drift speed and ki-

netic energy decrease as the state approaches a small-amplitude, non-drifting convection

state with inclined rolls (figure 4.24(e)). The final stage of this orbit is the transition from

the small-amplitude back to large-amplitude steady convection, which is indicated by

the monotonic increase in kinetic energy while maintaining vd ≈ 0 for t & 70 and t . 15

in figure 4.24(b).

The heteroclinic connection leading to these orbits moves towards higher Rayleigh num-

bers as Pr decreases and coincides with SN2 for Pr . 0.032 (see figures 4.22(e) and (f)).

This suggests that a saddle node infinite period (SNIPER) bifurcation explains the origin

of the relative periodic orbits at low Prandtl and high Rayleigh numbers. However, by

considering various properties of the relative periodic orbits for Pr = 0.032 and Le = 11

as Ra approaches RaSN2 from above (figure 4.25), we additionally find that a gluing

bifurcation occurs in the vicinity of the SNIPER bifurcation.
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At large Rayleigh numbers, a pair of relative periodic orbits with states drifting either

upwards or downwards are related by the reflection symmetry. The maximal energy

and drift speed attained along these orbits decrease with decreasing Rayleigh number

and the trajectories approach the stable and unstable manifolds of SOCl , as seen in

figure 4.25(a). This leads to the two relative periodic orbits connecting in a gluing

bifurcation around Ra ≈ 652 so that the trajectories become a single periodic orbit where

states alternately drift in opposite directions. This is reminiscent of the pulsating waves

seen in nonlinear magnetoconvection [125].

The resulting single periodic orbit persists until RaSN2 , where it terminates in the

SNIPER bifurcation. This is evidenced by the period of a single loop of the orbit scal-

ing like tP ∝ (Ra− RaSN2)
−0.56 as SN2 is approached, which is close to the expected

tP ≈ |Ra− RaSN2 |−0.5 scaling. The energy-time plots in figure 4.25(c) illustrate that the

predominant increase in duration occurs near the small-amplitude steady convection

state as the orbit approaches the steady state at SN2 in phase space. We also find that

the time spent near SOCl increases, whilst the time where the state has large drift speed

remains small, implying that the global bifurcation is due to the collision of the periodic

orbit with the stable manifold of SOCl .

The final attracting state that the flow may converge to is SOCs, as figure 4.23(e) illus-

trates for Pr = 0.02 and Ra = 700. This is possible for Pr < Prcusp in the supercritical

regions Ob, IVc and Vb, where it is the only stable attracting state, and in the subcritical

region IVb, where convergence towards the stable conduction state is also possible.

4.4 DISCUSSION

This chapter deals with natural doubly diffusive convection driven by horizontal gradi-

ents of temperature and concentration. We have extended the linear stability analysis of

Ghorayeb and Mojtabi [70] by performing a thorough weakly nonlinear analysis of the

system. This was complemented by a numerical exploration of the nonlinear regime,

thereby also extending the analysis of Xin et al. [191], who focussed on Pr = 1 and
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Le = 1.2. From this analysis, we unravelled the relationships between saddle nodes,

drift and global bifurcations.

We have identified regions where the resulting primary branch exhibits qualitatively

different behaviour. For large values of the Prandtl number, the bifurcation is subcritical

and hysteresis takes place between the conduction state and large-amplitude convection.

Whereas, for Prandtl numbers below a critical value, the primary bifurcation is super-

critical but this is preceded by the creation of two saddle nodes without affecting the

existence of large-amplitude convection. Despite this, we did not find any hysteresis in

the supercritical regime owing to the presence of a destabilising drift bifurcation along

the primary branch.

By determining the stability of steady convection states along the primary branch, we

identified a codimension-two point between a large-amplitude saddle node and a drift

bifurcation. We analysed the dynamics around this codimension-two point using its

normal form and numerical simulations by investigating new Hopf and heteroclinic

bifurcations that give rise to periodic orbits. Such time-dependent states are common

features of low Prandtl number doubly diffusive convection (see also Umbría and Net

[182]). Finally, we provided a classification of the various regions in (Ra, Pr) parameter

space according to the nature of their dynamical attractors for a representative value of

the Lewis number.

Lastly, the coexistence of steady overturning convection with the stable conduction state

when the primary bifurcation is supercritical has important dynamical implications. In

particular, it makes this system a candidate for spatially localised pattern formation in a

supercritical fluid system, owing to the similarity of the primary branch structure with

the Swift–Hohenberg equation considered by Knobloch et al. [100]. Exploration of this

phenomena forms the subject of the following chapter.
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In the previous chapter, we performed a weakly nonlinear analysis of the natural doubly

diffusive system to identify the criticality of the primary bifurcation of the conduction

state and used numerical continuation to determine the nonlinear behaviour of the bi-

furcating primary branch in small-aspect-ratio domains. We now wish to extend the

results to large-aspect-ratio domains, where spatially localised states, known as convec-

tons, have previously been found for the specific parameter values Pr = 1 and Le = 11

[12, 23, 24]. In this specific case, the primary bifurcation is subcritical and there is bista-

bility between the stable conduction state and states of spatially periodic convection,

which results in convectons being found on a pair of branches that undergo homoclinic

snaking, as was also found in the quadratic-cubic Swift–Hohenberg equation [37]. The

question that we wish to consider in this chapter is: what happens to this snaking as the

Prandtl number decreases and the primary bifurcation changes from being subcritical to

supercritical, whilst maintaining coexistence between different steady states? This is of

interest since our current knowledge of localised states when the primary bifurcation is

supercritical is limited to model systems, including the variational cubic-quintic-septic

Swift–Hohenberg equation [100], and to systems that additionally exhibit large-scale

modes, such as rotating convection [11] or magnetoconvection [54].

This chapter is organised as follows. In section 5.1, we detail the vertically extended

system under consideration. In section 5.2, we perform a linear stability analysis of the

spatially periodic states found via the weakly nonlinear theory in the previous chapter,

which allows us to identify secondary bifurcations of the primary branch, from which

branches of convectons bifurcate. In section 5.3, we detail the transition from typical
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snaking in the subcritical regime to the, previously unknown, structure of convecton

branches in the supercritical regime. This chapter is concluded in section 5.4 with a

discussion.

5.1 MATHEMATICAL FORMULATION

In this chapter, we again consider natural doubly diffusive convection within a vertical

slot with periodic boundary conditions imposed in the vertical direction. This time,

however, we consider vertically extended domains so that the system can admit spatially

localised states. We continue to consider the case N = −1, where the thermal and

solutal gradients imposed by the vertical sidewalls exactly balance so that a motionless

conduction state exists.

The non-dimensional governing equations remain unchanged from those described 4.1

in Chapter 4 and are repeated here for convenience. They read

1
Pr

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇2u + Ra (T − C) ẑ, (5.1)

∇ · u = 0, (5.2)

∂T
∂t

+ u · ∇T = ∇2T, (5.3)

∂C
∂t

+ u · ∇C =
1
Le
∇2C, (5.4)

and are solved together with non-dimensional boundary conditions:

u = 0, w = 0, −∂p
∂x

+
∂2u
∂x2 = 0, T = 0, C = 0 on x = 0, (5.5)

u = 0, w = 0, −∂p
∂x

+
∂2u
∂x2 = 0, T = 1, C = 1 on x = 1, (5.6)

where the pressure boundary condition is the projection of the Navier–Stokes equation

on the boundary and each variable is periodic in the z direction.

Numerical continuation of branches in the doubly diffusive system was carried out us-
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ing a spectral element numerical method based on a Gauss–Lobatto–Legendre discreti-

sation and supplemented by Stokes preconditioning, as detailed by [8, 22]. The domain

was discretised using 24 spectral elements with 25 nodes in both the x and z directions.

The results are presented using bifurcation diagrams showing the kinetic energy:

E =
∫ 1

0

∫ Lz

0

(
1
2
(
u2 + w2)) dx dz, (5.7)

of steady states as a function of the Rayleigh number, which is treated as the bifurcation

parameter. Profiles of these steady states are depicted primarily using the streamfunc-

tion ψ, where (u, w) = (−ψz, ψx). Relations between different steady states at the same

parameter values are shown using a phase-space representation that depicts the vertical

velocity of the states against their horizontal velocity along the vertical line x ≈ 0.746.

This value for x was chosen primarily so that the trajectories resemble those for localised

states in the Swift–Hohenberg equation, as seen in figure 3.4 in Chapter 3.

5.2 FINDING SECONDARY BIFURCATIONS OF THE PRIMARY BRANCH

Previous studies of convectons in doubly diffusive convection with periodic boundary

conditions and Le = 11, Pr = 1 [23, 24] found that a pair of secondary branches of con-

vectons bifurcate from a secondary bifurcation of the subcritical primary branch. We

start by deriving a general expression for the location of these small-amplitude sec-

ondary bifurcations, when they exist.

Our starting point for this analysis is the Ginzburg–Landau equation (4.80) that we

derived in Chapter 4 by performing a weakly nonlinear analysis of the full nonlinear

system (5.1–5.6) around the primary bifurcation of the conduction state. Introducing a

small parameter ε� 1 that was used to define the slow temporal scale, T = ε2t, the long

spatial scale, Z = εz, and to quantify the deviation away from the primary bifurcation

at Rac via Ra = Rac + ε2r, we obtained the equation:

AT = a1rA + a2|A|2A + a3AZZ, (5.8)
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for the long spatial and slow temporal evolutions of the amplitude A of the linear cor-

rection to the conduction state with wavenumber kc, where a1, a2 and a3 are the real

coefficients obtained in section 4.2.2.

In addition to the steady solutions of (5.8) that were previously found in Chapter 4,

namely:

A = 0, (5.9)

which is valid for all r and corresponds to the conduction state; and

A =

(
− a1r

a2

)1/2

eiχ, (5.10)

which is valid provided that a1r/a2 < 0 and corresponds to states of small-amplitude

spatially periodic convection; in infinite domains, the Ginzburg–Landau equation fur-

ther admits the solution:

A =

(
−2a1r

a2

)1/2

sech

((−a1r
a3

)1/2

Z

)
eiχ, (5.11)

which is valid provided that both a1r/a2 < 0 and a1r/a3 < 0. This solution corresponds

to small-amplitude convection states with long spatial modulation. While the phase χ

appears to be arbitrary in (5.11), including beyond-all-orders effects results in spatial

locking between the two spatial scales z and Z and fixes the phase to either χ = 0 or

χ = π in the Swift–Hohenberg equation [46], with the same likely being true in natural

doubly diffusive convection [23]. Similarly to the Swift–Hohenberg equation [37], the

two types of modulated states extend towards lower r and develop into fully localised

states.

In finite domains, however, the latter states do not exist and the two branches of localised

states are instead found to originate from an Eckhaus instability of the primary branch

[26]. By performing a linear stability analysis on the non-trivial, uniform solutions to the

Ginzburg–Landau equation (5.10), we can determine when this secondary bifurcation

occurs. We first move into the frame of reference of the non-trivial periodic state with
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χ = 0 and make a small, real perturbation b that is even in Z:

A(Z, T) =
(
− a1r

a2

)1/2

+ b(Z, T). (5.12)

for both simplicity and connection with the form of (5.11). In this frame of reference,

the Ginzburg–Landau equation becomes

bT = −2a1rb + 3 (−a1a2r)1/2 b2 + a2b3 + a3bZZ. (5.13)

Linearising this equation about a potential secondary bifurcation at r0, we find that the

leading-order deviation from the constant amplitude state satisfies

bT = −2a1r0b + a3bZZ +O(ε2), (5.14)

which has solution:

b = εB1eλT cos(lZ) +O(ε2), (5.15)

where B1 is the amplitude of the perturbation and where the wavenumber l, growth rate

λ and the location of a secondary bifurcation are related via

r0 ≈ −
λ + l2a3

2a1
. (5.16)

Since l is real, the relation (5.16) at a stationary bifurcation with λ = 0 requires that

a1r0/a3 < 0. When this condition is combined with a1r0/a2 < 0, which is necessary

for the existence of a uniform, steady, finite-amplitude solution A, we find that such

a small-amplitude secondary bifurcation can only occur when a2 and a3 take the same

sign, as depicted in figure 5.1. Thus, since a3 > 0 for all values of the Prandtl and Lewis

numbers, this linear stability theory predicts that the primary branch only undergoes a

small-amplitude secondary bifurcation when this branch is subcritical.

To determine the location of the first of the secondary bifurcations, we note that the peri-

odic boundary conditions in the vertical direction discretises the possible wavenumbers
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a2

a3

|A|2

|A|2 |A|2

|A|2

Figure 5.1: Sketches of the nature of the primary and secondary bifurcations of the
Ginzburg–Landau equation (5.8) in different regimes of (a2, a3) parameter space when
a1 > 0. The secondary bifurcation occurs at r = r0 and the direction of branching is
obtained numerically.
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to l = 2πn/(εLz) for n = 1, 2, ..., which means that the first of these secondary bifur-

cations occurs when l = 2π/(εLz). From (5.16), this wavenumber gives the expected

location of the first secondary bifurcation as

Ra ≈ Rac −
2π2

L2
z

a3

a1
. (5.17)

Using the parameter dependence of the coefficients a1 and a3 from Chapter 4, this loca-

tion may be expressed more generally as

Ra ≈ 1
|1− Le|

(
6509− 2π2

L2
z

δ

|γ1|

)
, (5.18)

which we see is independent of the Prandtl number.

The above analysis holds for sufficiently large domains away from the codimension-two

point (Rac, Prc), where the primary bifurcation changes criticality. Figure 5.2 confirms

this by comparing the theoretical location of the first secondary bifurcation (5.18) with

that obtained numerically for a range of domain sizes and Prandtl numbers. In the

domains with Lz = 12λc and Lz = 20λc, where λc = 2π/kc is the critical wavelength,

the stationary bifurcations approach the theoretical limit (dotted) as the Prandtl number

increases, which validates the numerical value of a3 obtained in Chapter 4. However,

decreasing the Prandtl number towards Prc in each domain, the stationary secondary

bifurcations move away from this theoretical limit and towards lower Rayleigh num-

bers. This bifurcation proceeds to collide with a second stationary bifurcation and be-

comes an oscillatory bifurcation before moving towards the primary bifurcation as the

codimension-two point is approached.

To capture the additional details in finite domains near the codimension-two point seen

in figure 5.2, an alternative rescaling that leads to a higher order Ginzburg–Landau

equation should be used, similarly to the analyses by Dawes [55] and Kao and Knobloch

[93]. However, we have not considered such analysis here, because the focus of the

subsequent results will be on the large-amplitude snaking behaviour. Nevertheless, the

results obtained via numerical continuation indicate that a supercritical primary branch
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Figure 5.2: Location of the first secondary bifurcation of the primary branch for dif-
ferent values of the Prandtl number when Le = 5 in domains with Lz = 20λc (blue),
Lz = 12λc (red) and Lz = 6λc (black). Stationary (Hopf) bifurcations are depicted us-
ing filled (open) circles. The vertical dotted lines indicate the theoretical location of the
secondary bifurcation (5.18) obtained via linear stability analysis. The vertical dashed
line at Ra ≈ 1627.26 denotes the location of the primary bifurcation and the black cross
on this line at Pr = Prc ≈ 0.062 indicates the Prandtl number for the codimension-two
point, below which the primary bifurcation is supercritical.
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does not undergo a small-amplitude secondary bifurcation.

5.3 TRANSITION FROM SUBCRITICAL TO SUPERCRITICAL

One of the main results that we obtained in Chapter 4 was the existence of parameter

regimes where the primary bifurcation is supercritical and the stable conduction state

coexists with states of spatially periodic convection. This coexistence arises as the by-

product of the evolution of the primary branch as it transitions from being subcritical

at high Prandtl numbers to supercritical at low Prandtl numbers and undergoes a cusp

bifurcation, where two new saddle nodes emerge. One of the three saddle nodes ter-

minates at the codimension-two point (Rac, Prc), resulting in the primary branch taking

an ‘S’-shape structure below the critical Prandtl number. In this regime, the primary

branch initially heads towards supercritical Rayleigh numbers, turns around at a sad-

dle node and heads back towards lower Rayleigh numbers, before turning around at

a second saddle node and proceeding to large Rayleigh numbers and amplitude. This

second saddle node lies in the subcritical region Ra < Rac for certain parameter val-

ues, which provides the coexistence between the stable conduction state and states of

spatially periodic convection.

Despite the primary branch not undergoing a small-amplitude secondary bifurcation in

the supercritical regime, we find that supercritical systems of natural doubly diffusive

can admit convectons that are supported by this coexistence. In the remainder of the

chapter, we are not only interested in details of these convectons in the supercritical

regime, but also in understanding their origin in relation to how the typical snaking

branches that exist in the subcritical regime develop as the Prandtl number decreases

and the primary bifurcation becomes supercritical.

The following numerical results consider a domain that is periodic in the vertical di-

rection with a period Lz ≈ 12λc, where λc ≈ 2.48 is the wavelength of the critical

eigenmode from the primary bifurcation of the conduction state for all values of the

Prandtl and Lewis numbers [70, 191]. We further fix the Lewis number to be Le = 5,
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where the primary bifurcation at Rac ≈ 1627.26 changes criticality at a critical Prandtl

number, Prc ≈ 0.062. These parameters are chosen so that the system can admit convec-

tons and that both the sub- and supercritical regimes are numerically accessible. This

allows us to explore how the structure of the snaking branches of convectons changes

as the Prandtl number varies between Pr = 1 and Pr = 0.06 and the primary bifurcation

changes from being subcritical to supercritical. This transition is characterised in five

stages, which are depicted using representative bifurcation diagrams in figure 5.3 and

briefly summarised in the following paragraph. Some of the branches shown either in

this figure or in others throughout this chapter have been manually terminated at points

represented by the marked dots. While the branches continue beyond these points, they

tend to exhibit complicated behaviour that is typically associated with states influenced

by the finite size of the domain (e.g., domain-filling states). As our focus is on localised

states that are unaffected by the period of the domain used, we have terminated these

branches to improve the readability of the figures.

The first of these stages is the subcritical regime for large Prandtl numbers (Pr & 0.15),

subsequently referred to as Stage 1, where we find that the convectons lie on a pair

of branches that undergo homoclinic snaking, similar to that found by Bergeon and

Knobloch [24]. The structure of the snaking branches becomes increasingly complex

during Stage 2 (0.11 . Pr . 0.15) as rolls in convectons change between buoyancy-

driven rolls, hereafter referred to as R1, like those in Stage 1, and rolls driven by a

balance between buoyancy and inertia, hereafter referred to as R2. Within Stage 3

(0.102 . Pr . 0.11), each snaking branch breaks up into a main branch containing

convectons with R2 rolls and a collection of isolas containing convectons with R1 rolls.

During Stage 4 (Prc . Pr . 0.102), the main branch further breaks up into a set of

disconnected branch segments, while the set of isolas connect together to give small-

amplitude snaking between primary branches. When the primary bifurcation is super-

critical in Stage 5 (Pr . Prc), this small-amplitude snaking no longer exists. However,

the disconnected branch segments from the previous stage persist and maintain their

organised structure, which results in finding convectons containing only R2 rolls in the
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Stage 1 Stage 2 R1 R2

Stage 3 Stage 4 Stage 5

Figure 5.3: Summary of the five different stages that are seen in the transition from the
primary bifurcation being subcritical to supercritical. Illustrative bifurcation diagrams
for the five stages: Stage 1 (Pr = 1); Stage 2 (Pr = 0.11); Stage 3 (Pr = 0.102); Stage
4 (Pr = 0.09); and Stage 5 (Pr = 0.06). Branches of convectons with an even number
of rolls are shown in blue and the branch segments predominantly corresponding to
the two types of rolls are separated by showing convectons with R1 rolls in dark blue
and R2 rolls in light blue. Blue dots indicate points at which the branches have been
terminated (see text for details). The primary branches PN, consisting of steady spatially
periodic states with N rolls, are shown in black with the following line styles: P12
(solid), P11 (dashed), P10 (dotted) and P9 (dash-dotted). Streamfunctions of convectons
distinguishing the two types of roll (R1 and R2) are shown in the top right. The smaller
panels show streamfunctions for a single convection roll of each type and have been
magnified so that the rolls are to-scale.
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supercritical regime.

5.3.1 STAGE 1: TYPICAL HOMOCLINIC SNAKING

We start by describing the large Prandtl number behaviour found within Stage 1

(Pr > 0.15), which is illustrated in figures 5.4 and 5.5. Here, we recover the homoclinic

snaking similar to that found in the Swift–Hohenberg equation (cf. Chapter 3), which

was first identified in this system by Bergeon and Knobloch [24]. For these large Prandtl

numbers, the stable conduction state first destabilises subcritically at Rac ≈ 1627 to an

eigenmode with twelve pairs of counterrotating rolls. The resulting primary branch,

named P12, extends towards lower Rayleigh numbers before regaining stability at a

subcritical saddle node (Ra ≈ 1269 for Pr = 1 in figure 5.4(a) or Ra ≈ 1364 for Pr = 0.2

in figure 5.5(a)). The stable upper branch (shown in bold in figures 5.4(a) and 5.5(a))

heads towards large Rayleigh numbers, but may later destabilise in a drift-pitchfork

bifurcation, like that seen at Ra ≈ 1491 for Pr = 0.2 (figure 5.5(a)).

The conduction state later destabilises to eigenmodes with N 6= 12 pairs of counterro-

tating rolls, where the primary branches PN bifurcate. These bifurcations may be either

sub- or supercritical, depending upon the number of rolls and the Prandtl number. The

subsequent structure and stability of these branches are highly variable and will not

be considered in detail here. However, we should note that following each of the pri-

mary branches towards larger amplitude, the anticlockwise rolls within the steady states

strengthen at the expense of the clockwise rolls. This results in states on PN that are

sufficiently far from the primary bifurcation consisting of N corotating anticlockwise

rolls (see figures 5.4(b), (e) and 5.5(b), (e) for N = 12, figures 5.4(c), (f) for N = 9 and

figures 5.5(c), (f) for N = 10).

Shortly after the primary bifurcation at Rac, two secondary branches, L− and L+, bi-

furcate subcritically from a modulational instability of P12 at Ra ≈ 1622.8, which is in

agreement with the theoretical result (5.18). As these secondary branches head towards

lower Rayleigh numbers, the steady states that lie on them become increasingly spatially
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P12

P9

L+

L−

(a)

(b) (c) (d)

(h)

(e) (f) (g)

(i)

Figure 5.4: Typical homoclinic snaking and steady states for Pr = 1. (a) Bifurcation
diagram showing P12 (black solid), P9 (black dash-dotted), L+ (red solid) and L− (blue
solid). Thick (thin) black lines indicate stable (unstable) spatially periodic states on the
primary branches, while the stability of the secondary branches is not indicated. (b)–(d)
Streamfunctions of states at Ra = 1299 on (b) P12, (c) P9, (d) L− and (e)–(g) states at
Ra = 1540 on (e) P12, (f) P9 and (g) L−. Phase-space representation of the marked states
at (h) Ra = 1299 and (i) Ra = 1540, where (b) and (e) are shown via the black solid lines,
(c) and (f) are shown via the black dash-dotted lines and (d) and (g) are shown via the
blue solid lines.
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P12

P10

L+

L−

(a)

(b) (c) (d)

(h)

(e) (f) (g)

(i)

Figure 5.5: Typical homoclinic snaking and steady states for Pr = 0.2. (a) Bifurcation
diagram showing P12 (black solid), P10 (black dotted), L+ (red solid) and L− (blue
solid). Thick (thin) black lines indicate stable (unstable) spatially periodic states on the
primary branches, while the stability of the secondary branches is not indicated. (b)–(d)
Streamfunctions of states at Ra = 1425 on (b) P12, (c) P10, (d) L− and (e)–(g) states at
Ra = 1550 on (e) P12, (f) P10 and (g) L−. Phase-space representation of the marked
states at (h) Ra = 1425 and (i) Ra = 1550, where (b) and (e) are shown via the black
solid lines, (c) and (f) are shown via the black dotted lines and (d) and (g) are shown via
the blue solid lines.
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modulated and exhibit the same strengthening of anticlockwise rolls and weakening of

clockwise rolls as states on the primary branches. This leads to states on L+ consisting

of a single anticlockwise roll and those on L− consisting of two anticlockwise rolls by

their respective first left saddle node. Both secondary branches proceed by undergoing

the following oscillatory behaviour, known as homoclinic snaking, over a finite range of

Rayleigh numbers: the interior rolls first strengthen as the branches go from left-to-right

saddle nodes; a roll nucleates on either side of the existing convecton rolls at the right

saddle nodes; and finally the outer rolls strengthen while the interior rolls weaken as the

branches go from right-to-left saddle nodes. The number of rolls in convectons there-

fore increases as the branches are followed towards larger amplitude until rolls nearly

fill the domain. When this point is reached, the secondary branches L+ and L− either

turn over and connect a primary branch of periodic states (e.g., P9 when Pr = 1 and

P10 when Pr = 0.2), or extend towards higher Rayleigh numbers, depending upon the

preferred wavelength of the localised state [26]. This preferred wavelength varies with

both the Rayleigh number and Prandtl number, which may be inferred from comparing

roll separation within the convectons shown in figures 5.4(d), (g) and 5.5(d), (g).

The central convecton rolls closely resemble those of individual rolls in a state at the

same Rayleigh number on the upper branch segment of one of the primary branches, es-

pecially near the right saddle nodes (e.g., compare figures 5.4(f) and (g) and figures 5.5(f)

and (g)). The flow near the centre of these rolls is approximately a vertical shear flow

that is nearly parallel to the sidewalls, whereas the flow is inclined upwards (resp.

downwards) towards the hotter (resp. colder) wall at the bottom (resp. top) of the roll.

These rolls are subsequently referred to as R1 and may be characterised by the inertial

term playing a subdominant role in the steady-state balance of the vorticity equation:

1
Pr

(u · ∇ω)︸ ︷︷ ︸
I

−∇2ω︸︷︷︸
D

+ Ra
(

∂T
∂x
− ∂C

∂x

)
︸ ︷︷ ︸

B

= 0, (5.19)

where ω = ŷ · ∇ × u. This is evidenced in figure 5.6, which shows the spatial depen-

dence of the fraction that each term of the vorticity equation contributes compared to
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|D|
|I|+|D|+|B|

|B|
|I|+|D|+|B|

|I|
|I|+|D|+|B|

(a) (b) (c) (d)

Figure 5.6: Vorticity balance (5.19) for the two central rolls of the six-roll convecton
with Pr = 1 and Ra = 1540 (figure 5.4(g)). Spatial dependence of the fraction that (a)
the viscous dissipation term |D|, (b) the buoyancy term |B| and (c) the inertial term |I|
contribute to the sum of terms |I|+ |D|+ |B| at each point. The colour bar on the right
indicates the logarithmic scale used: white indicates a dominant term, while grey and
black indicate a subdominant term. Streamlines of the steady flow are superposed onto
each plot. (d) Average fraction of each term in (a)–(c) over the domain shown.
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the sum of the absolute values of all terms at the same point, for the central two rolls

of the six-roll convecton at Ra = 1540 and Pr = 1, shown in figure 5.4(g). Panels (a) and

(b) illustrate that viscous dissipation, D, and buoyancy, B, provide the balance in (5.19),

while inertia, I, is subdominant, except in a pair of thin ‘S’ shaped white strips on both

sides of each roll. This is further observed in panel (d), where the domain-averaged frac-

tions for both viscous dissipation and buoyancy are 0.47 and 0.478, respectively, while

that for inertia is 0.05. Thus, at large Prandtl numbers, the anticlockwise convection rolls

arise primarily via a balance between viscous dissipation and the buoyancy forcing.

The similarity between rolls in convectons and periodic states can also be illustrated by

plotting different steady states at the same parameter values together in the phase space

defined by the velocity components of the state along the vertical line x ≈ 0.746. In this

phase-space representation, the conduction state becomes a single point located at the

origin, whereas the spatially periodic states on primary branches become closed periodic

orbits. Selected states on the upper primary branches are shown by the black curves

in figures 5.4(h), (i) and 5.5(h), (i), where the line-style corresponds to the associated

primary branch, i.e., black solid, dotted and dash-dotted orbits represent states on P12,

P10 and P9, respectively.

The spatial trajectories of the six-roll convectons (figures 5.4(d), (g), 5.5(d), (g)) are rep-

resented by the blue curves in these phase-space plots (figures 5.4(h), (i), 5.5(h), (i)).

Each of these trajectories starts near the origin, as the flow is almost motionless away

from the convecton rolls, and proceeds to spiral outwards as the weak rolls that con-

stitute the front connecting the conduction state to convection rolls are traversed. The

trajectory then approaches a periodic orbit corresponding to a state on the upper branch

of P9 (black dash-dotted) when Pr = 1 in figures 5.4(h), (i) or P10 (black dotted) when

Pr = 0.2 in figures 5.5(h), (i) and follows this periodic orbit around four times as the

four interior convecton rolls are traversed. The trajectory finally spirals back towards the

origin as the front connecting the convection rolls to the conduction state is traversed.

Convecton rolls continue to have the form of R1 rolls and appear in phase space as

trajectories that follow the periodic orbit for a state on the upper branch of P10 as
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the Prandtl number decreases through the remainder of Stage 1 (0.15 . Pr < 0.2). The

structure of the snaking branches prior to termination or large-amplitude behaviour also

remains qualitatively unchanged over this interval.

5.3.2 STAGE 2: CHANGING SNAKING

The structure of the snaking branches changes across Stage 2 (Pr ≈ 0.15 to Pr ≈ 0.11),

as P10 undergoes a cusp bifurcation on its upper branch segment at Pr ≈ 0.14 and

Ra ≈ 1547 (second column of figure 5.7). This bifurcation introduces a pair of addi-

tional saddle nodes and branch segments on the P10 branch, as can be seen in the final

three columns of figure 5.7. Of particular interest are the two branch segments with

positive gradient, which, in order of increasing kinetic energy, will hereafter be referred

to as the second and upper branch segments of P10. We shall see that the change in

snaking structure arises because the form of the convecton rolls changes from R1 to a

second form, referred to as R2, and that the homoclinic orbits associated with convec-

tons change from approaching periodic orbits corresponding to states on the second

branch segment at low Rayleigh numbers to those on the upper branch segment at

large Rayleigh numbers. This change occurs despite both the second and upper branch

segments being unstable to modulational and drift instabilities, respectively.
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The differences between the two types of rolls can be understood by considering how

terms in the vorticity balance (5.19) of steady convectons change both spatially and in

magnitude when the Rayleigh and Prandtl numbers are varied. Figure 5.8 presents

such a comparison when the central two rolls of a six-roll convecton with Pr = 0.12 are

considered between the left saddle node at Ra ≈ 1535 (panels (a)–(d)), where rolls are

R1, and the right saddle node at Ra ≈ 1575 (panels (e)–(h)), where rolls are R2.

At the left saddle node, the spatial dependence of terms in the vorticity equation (fig-

ures 5.8(a)–(c)) resemble those seen in figure 5.6. Dissipation and buoyancy are domi-

nant and respectively contribute approximately 42% and 46% of the domain-averaged

values (figure 5.8(d)), while the inertial term is subdominant and contributes approx-

imately 12% of the balance. The slight increase in inertial contributions between fig-

ures 5.6(c) and 5.8(c) is seen through the widening of the white strips in the top left and

bottom right regions of each roll and the overall decrease in intensity of the greyscale.

The inertial contribution increases further with increasing Rayleigh number along the

branch segment corresponding to six-roll convectons when Pr = 0.12, as can be seen in

figure 5.8(i). This increase has a near uniform rate until Ra ≈ 1555, as rolls strengthen

whilst maintaining the form of R1 rolls, and is accompanied by the contributions from

both buoyancy and dissipation decreasing at a lower rate. At Ra ≈ 1556, the fraction

that inertia (buoyancy, viscous dissipation) contributes to the balance rapidly increases

(decreases) to 0.20 (0.42, 0.38) and remains approximately at this level towards the right

saddle node at Ra ≈ 1575. The rapid change, which we will explore further in the

following paragraph, is associated with the central rolls in the convecton changing from

R1 to a second form R2, where inertia is not negligible.

Aside from the different proportions in the vorticity balance, the two types of rolls also

have qualitatively different structures, which are evidenced in the streamfunctions in

figure 5.8. Firstly, we find that R2 rolls (figures 5.8(e)–(g)) are smaller yet stronger than

R1 rolls (figures 5.8(a)–(c)) and secondly, we find that the long axis of the near elliptical

streamlines at the centre of the roll have different orientations. In R1 rolls, this axis

inclines upwards towards the hotter right sidewall, while the long axis at the centre of
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R2 rolls inclines upwards towards the colder left sidewall. The latter observation can

be clarified using the grey lines that originate from the centre of each roll in panels (c)

and (g), which correspond to |I| ≈ 0, where streamlines are parallel to lines of constant

vorticity. While these lines are approximately straight throughout the R1 roll, they have

bent in an anticlockwise direction in the centre of the R2 roll, owing to the increased

effects of inertia, which affects the orientation of this roll. We will subsequently use

these qualitative differences to classify the type of rolls that a convecton has by eye,

rather than compute the vorticity balance for individual states.

Having observed that the form of the convecton rolls changes along the snaking

branches when Pr = 0.12, we now want to understand how and why these changes oc-

cur by relating the convectons to the periodic convection states on the primary branches.

To do so, we present streamfunctions and phase-space representations of convectons

over a single snaking oscillation for Pr = 0.12 in figure 5.9. The form of individual

rolls varies across each convecton and we have therefore used different colours in the

phase-space plots to indicate their form separately.

As claimed above, the behaviour at the left saddle nodes (e.g., figures 5.9(e) and (e’)) re-

sembles that observed in Stage 1, where convectons consist of weak R1 rolls. These rolls

(indicated by the red and indistinguishable blue and purple trajectories in the phase-

space plot (e’)) most closely resemble those in states on the second branch segment of

P10 at the same Rayleigh number (thin black dotted trajectory). Rolls continue to have

this form as the branches are followed towards higher Rayleigh numbers. This changes,

however, around Ra ≈ 1555 where we see a near vertical increase in both the kinetic

energy of the states (figure 5.9(a)) and contribution from inertia in the vorticity equation

(figure 5.8(i)). This corresponds to a rapid strengthening of the central rolls, which also

change in form from R1 rolls close to those on the second primary branch segment, to

R2 rolls on the upper primary branch segments. This is seen in figures 5.9(c’) and (f’),

where the innermost rolls, represented by the blue trajectories, are similar to rolls in

states on one of the upper primary branches, represented by either the thick black dot-

ted or solid trajectories. Continuing to follow the branch segments to the right saddle
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(a)

(b) (c) (d) (e) (f) (g)

(b’) (c’)

(d’) (e’)

(f ’) (g’)

Figure 5.9: (a) Bifurcation diagrams when Pr = 0.12 showing: the conduction state
(thick black solid), P12 (thin black solid), P10 (black dotted), L+ (red solid) and L−

(blue solid). Stable (unstable) segments of the primary branches are indicated using
bold (thin) black lines, while the stability of the secondary branches is not indicated.
(b)–(g) Streamfunction profiles and (b’)–(g’) corresponding phase-space representations
of selected marked states on L−. Different types of rolls are represented using different
colours in the phase-space plots: strong interior rolls (blue), outer rolls that strengthen
to match interior rolls (purple), weak outermost rolls that strengthen over the oscillation
(red) and weak-amplitude background rolls (green). The bar to the left of panel (b)
relates these to the streamfunction profiles. Also shown in the phase-space plots are
states on the upper branch of P12 (thick black solid) and P10 (thick black dotted) and,
where applicable, on the second P10 branch segment (thin black dotted) at the same
value of the Rayleigh number. 157
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nodes (b,b’) and (g,g’), we find that the central rolls adjust their wavelength to become

closer together so that the trajectories, shown in blue, are nearly identical to those on

the upper branch of P12 (thick black line). Thus, towards the right edge of the pinning

region, when the second branch segment of P10 does not exist, the central rolls in the

convectons are R2 rolls. We further see that the homoclinic orbits of the stable conduc-

tion state associated with these localised states being homoclinic orbits between now

approach the periodic orbit of a state on an upper primary branch.

The near figure-of-eight loops seen along the L+ branch at large-amplitude correspond

to amplitude modulated convectons. However, the origin of these states on this branch

is currently unclear. They could have arisen when fronts on either side of the nearly

domain-filling convectons interact owing to the finite period of the domain, which could

have led to amplitude modulation of the rolls. Alternatively, they may have arisen as

an artefact of the numerical code switching between L+ and a neighbouring branch

containing these modulated states if too large a step size is used. Further numerical tests

using smaller step sizes, different discretisation or larger domains should be considered

in order to distinguish whether this is the true branch structure of L+ or one of the

above effects arose.

The steep branch segments near the right saddle nodes (e.g., near (b) and (g) in fig-

ure 5.9(a)) continue to steepen as the Prandtl number decreases until each segment

undergoes a cusp bifurcation just below Pr = 0.12. This leads to the additional sad-

dle nodes that provide the hook-like structure of the branches when Pr = 0.115 (fourth

column of figure 5.7). The newly formed left saddle node from each pair moves to-

wards lower Rayleigh numbers as the Prandtl number decreases, which increases the

multiplicity of convectons within the pinning region. This multiplicity is exhibited in

figure 5.10 for Pr = 0.11, where we see convectons consisting of weak R1 rolls and those

with stronger R2 rolls coexisting at the same Rayleigh number.

Transitioning between the two types of convectons contributes to the more complex

structure of a single snaking oscillation, like the one shown in bold in figure 5.10(a). To

interpret the structure of this snaking oscillation, one may consider the oscillation as a
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(a)

(b) (c) (d) (e) (f) (g)

(b’) (c’)

(d’) (e’)

(f ’) (g’)

Figure 5.10: (a) Bifurcation diagrams when Pr = 0.11, showing: the conduction state
(thick black solid), P12 (thin black solid), P11 (black dashed), P10 (black dotted), L+ (red
solid) and L− (blue solid). (b)–(g) Streamfunction profiles and (b’)–(g’) corresponding
phase-space representations of selected marked states on L−. Different types of rolls are
represented using different colours in the phase-space plots: strong interior rolls (blue),
outer rolls that strengthen to match interior rolls (purple), weak outermost rolls that
strengthen over the oscillation (red) and weak-amplitude background rolls (green). The
bar to the left of panel (b) relates these to the streamfunction profiles. Also shown in
the phase-space plots are states at the same value of the Rayleigh number on the upper
branch of P12 (thick black solid) and P10 (thick black dotted) and, where applicable, on
the upper branch of P11 (thick black dashed) and on the first and second P10 branch
segments (thin black dotted).
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combination of three sets of branch segments according to the form of convectons that

lie on them. The first set of branch segments, (b,b’)–(c,c’) and (f,f’)–(g,g’), originate from

the cusp bifurcations near the right edge of the pinning region and consequently contain

convectons with strong R2 central rolls. The form of these central rolls most closely

resembles rolls in states on the upper branch of P12, which is seen in the phase-space

representations at the right saddle nodes (b’) and (g’) by the blue trajectories (central

rolls) following the thick black solid trajectories (upper branch of P12). The preferred

wavelength of the central rolls increases as each branch segment is followed to either (c)

or (f). This is seen through the blue trajectories in phase space most closely resembling

trajectories that correspond to states on the upper branch of P11 (thick black dashed

lines in (c’) and (f’)). The branch segment (d,d’)–(e,e’) contains convectons with weak

R1 central rolls, which are most similar in form to rolls in states on the lower branch

segments of P10. This is evidenced in figures 5.10(d’) and (g’), by the small, nearly

elliptical trajectories associated with convectons that approach the thin black dotted

lines, which are associated with states on the second P10 branch segment. We should

note, however, that convectons containing these weak R1 rolls can be found at lower

Rayleigh numbers than the first left saddle node of P10 and thus coexistence between

states is not strictly necessary for the existence of homoclinic orbits associated with

localised states. The remaining pair of branch segments, (c,c’)–(d,d’) and (e,e’)–(f,f’),

correspond to convectons transitioning between the two regimes with convecton rolls

weakening and changing form from R2 to R1, or strengthening and changing form from

R1 to R2, respectively.

5.3.3 STAGE 3: SNAKING BREAKING INTO MAIN BRANCHES AND ISOLAS

The first two saddle nodes of P10 continue to move towards larger values of the Rayleigh

number as Pr decreases, as may be seen in figure 5.11. Indeed, by Pr = 0.102, the first

of these saddle nodes has moved past the right edge of the pinning region. This leads to

each of the snaking secondary branches breaking into a main branch and a number of

isolas. The two types of convectons—those with R1 rolls (e.g., figures 5.10(f) and (g)) and
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(a) Pr = 0.11 (b) Pr = 0.108 (c) Pr = 0.106 (d) Pr = 0.105

Figure 5.11: Bifurcation diagrams illustrating part of the breakup of the snaking
L− branch (blue) into a main branch (blue) and isolas (green) for (a) Pr = 0.11, (b)
Pr = 0.108, (c) Pr = 0.106 and (d) Pr = 0.105. The primary P12 (black solid) and P10
(black dotted) branches are also shown. The connected branch segment between the
right saddle nodes corresponding to two- or four-roll convectons and the segments that
it breaks into are marked in bold for clarity.
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those with R2 rolls (e.g., figures 5.10(b) and (j))—now lie on distinct branch segments

as a result of this disconnection. We characterise this transition between Pr ≈ 0.11 and

Pr ≈ 0.102 as Stage 3.

The panels in figure 5.11 detail this process by showing how L− breaks up between

the right saddle nodes corresponding to the two- and four-roll convectons. To aid the

reader in following the process, we have marked two points that approach each other,

connect and later separate as the Prandtl number decreases. Between Pr = 0.11 (fig-

ure 5.11(a)) and Pr ≈ 0.106 (figure 5.11(c)), the state at the marked left saddle node

increases in amplitude, while the second state approaches this saddle node as the near-

vertical return branch segment pinches away towards lower Rayleigh numbers (see inset

of figure 5.11(c)). These states proceed to connect at some point between Pr = 0.106 and

Pr = 0.105 in a transcritical bifurcation, before later separating as Pr decreases. This

imperfect bifurcation results in an isola (shown in green in figure 5.11(d)) disconnecting

from the main branch.

The forms of both the convectons that lie on this isola and those that remain on the main

branch may be deduced by first relating the isola and main branch when Pr = 0.105

(figure 5.11(d)) back to the corresponding segments of the following snaking oscillation

when Pr = 0.11 (figure 5.11(a)). In doing so, we find that convectons on the isola origi-

nated from states on the branch segment between the marked points, which corresponds

to convectons with R1 rolls and the transition between R1 and R2 rolls, as was seen be-

tween points (c,c’) and (f,f’) in figure 5.10. In contrast, convectons remaining on the

main branch originated from other sections of the Pr = 0.11 snaking oscillation, where

the central rolls resembled those on the upper primary branch segments. This breakup

process therefore separates convectons with R1 rolls, which now lie on the isola, from

convectons with smaller and stronger R2 rolls, which remain on the main branch.

The following snaking oscillations of L− and those on L+ undergo similar, albeit more

complicated, breakup processes. For each oscillation, analogous points to those marked

in figure 5.11 connect. However, this occurs in multiple stages and results in several iso-

las disconnecting from the main branch instead of the single one shown in figure 5.11(e),
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which we will not discuss here.

This breakup process ultimately leads to convectons lying on one of the two main

branches that display different snaking behaviour (e.g., see figure 5.12(a) for Pr = 0.102)

to that seen at higher Prandtl numbers or one of a number of isolas that are not shown

in figure 5.12(a), owing to their complexity. In describing the initial snaking behaviour

of these main branches, we first note that the isola seen in figure 5.11(e) when Pr = 0.105

reconnects to L− at small amplitude and is responsible for the initial excursion to E ≈ 12

that this branch exhibits before returning to small amplitudes.

The branch proceeds to snake upwards, with each snaking oscillation between the right

saddle nodes associated with convectons containing n and n + 2 rolls being composed

of two shorter parts: a smaller section between right saddle nodes like (b,b’) and (c,c’),

and a larger section between right saddle nodes like (c,c’) and (e,e’). The first part of the

oscillation (between (b,b’) and (c,c’)) is associated with the nucleation and strengthening

of a pair of outer R1 rolls, which are shown by the red trajectories in (b’) and (c’). Mean-

while, the outer central rolls (purple trajectories) strengthen to match the inner central

rolls (blue trajectories), so that the blue and purple trajectories are indistinguishable by

the right saddle node (c’). These central R2 rolls additionally change wavelength over

this small segment to go from resembling rolls in states on the upper branch of P11

(thick black dashed trajectory in (b’)) to resembling those on the upper branch of P10

(thick black dotted trajectory in (c’)). The second part of the oscillation (between (c,c’)

and (e,e’)) is predominantly associated with the outermost R1 rolls that nucleated in the

first part of the oscillation strengthening and transitioning to R2 rolls. The four central

rolls additionally adjust their wavelength and change from resembling P10 rolls at (c,c’)

to P12 rolls at the following left saddle node (d,d’) before returning to P11 rolls at the

right saddle node (e,e’). Consequently, the net effect of a complete snaking oscillation,

composed of these two parts, is for the convecton to extend in length by two central R2

rolls.

This kind of snaking stops when L+ reaches a five-roll state and L− reaches a six-roll

state, marked by the dots in figure 5.12(a). The branches instead exhibit different be-
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(a)

(b) (c) (d) (e)

(b’) (c’)

(d’) (e’)

Figure 5.12: (a) Bifurcation diagrams when Pr = 0.102 showing: the conduction state
(thick black solid), P12 (thin black solid), P11 (black dashed), P10 (black dotted), L+ (red
solid) and L− (blue solid). In the upper panel, L− and L+ are terminated at the blue
and red points, whereas they are terminated at E = 40 in the lower panel for clarity.
(b)–(g) Streamfunction profiles and (b’)–(g’) corresponding phase-space representations
of selected marked states on L−. In (b’)–(g’), different types of rolls are represented
using different colours in the phase-space plots: strong interior rolls (blue), outer rolls
that strengthen to match interior rolls (purple), weak outermost rolls that strengthen
over the oscillation (red) and weak-amplitude background rolls (green). The bar to the
left of panel (b) relates these to the streamfunction profiles. Also shown in the phase-
space plots are states on the upper segment of the primary branch whose rolls at the
same value of the Rayleigh number are most similar to the interior convecton rolls,
again using the convention: P12 (thick black solid), P11(thick black dashed) and P10
(thick black dotted).
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(a) Pr = 0.102 (b) Pr = 0.11 (c) Pr = 0.115 (d) (e) (f) (g)

Figure 5.13: Branch segments and profiles of non-uniform, domain-filling patterned
states. (a) Extension of the bifurcation diagram shown in figure 5.12(a) for Pr = 0.102,
again with branches terminated at the marked points for clarity. (b) Snaking L+ and
L− branches for Pr = 0.11 with four isolas, which correspond to states with two (lower
blue), three (lower red), four (upper blue) or five (upper red) stronger interior rolls in a
background of weaker rolls. (c) Similarly to (b), except for Pr = 0.115, where only the
isolas with three or four stronger central rolls are found. (d)–(g) Streamfunction profiles
for the marked states on the four strong roll isola when Pr = 0.11.

haviour, magnified in figure 5.13(a), that is bounded between Ra ≈ 1563 and Ra ≈ 1629,

which we note is close to the critical Rayleigh number Rac ≈ 1627. These oscillations

correspond to domain-filling patterned states with ten rolls, similar to those in fig-

ures 5.13(d)–(g), where central R2 rolls are embedded in a background of weaker R1

rolls. Tracking these states into higher Prandtl numbers, we find that they lie on isolas

that are disconnected from both each other and the main snaking branches (see fig-

ure 5.13(b)). Along an individual isola, the number of stronger central rolls remains the

same, while the background rolls change from having a near-uniform amplitude (e.g.,

figure 5.13(d)) to displaying a larger variation in amplitude (e.g., figure 5.13(g)). The

isolas become smaller as the Prandtl number increases, but at different rates, so that by

Pr = 0.115 (figure 5.13(c)), the isola containing the patterned states with two strong cen-

tral rolls no longer exists, while the one containing states with four central rolls persists

until about Pr ≈ 0.1191.

Figure 5.14 depicts how the isola with four stronger central rolls that was marked in
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(a) a = 0.107 (b) a = 0.106 (c) a = 0.105 (d) Pr = 0.104

Figure 5.14: Bifurcation diagrams showing how the isolas of domain-filling patterned
states with stronger central rolls connect to L− for (a) Pr = 0.107, (b) Pr = 0.106, (c)
Pr = 0.105 and (d) Pr = 0.104. The main branch L− is shown by the thick blue line. The
isolas originating from that marked in figure 5.13(b) are shown by the thin blue lines.
A second isola that connects to this isola at Pr ≈ 0.106 is shown in green. The red and
black dots mark points that successively connect as the Prandtl number decreases.

figure 5.13(b) connects to L− as the Prandtl number decreases from Pr = 0.107 (fig-

ure 5.14(a)) to Pr = 0.104 (figure 5.14(d)). We first find that this isola connects to the

top right section of a second isola (green in figure 5.14(a)) of lower energy states, whose

outer rolls are amplitude-modulated in a similar way to those shown in figure 5.13(g).

This connection is illustrated in figures 5.14(a) and (b) by the two red dots at Pr = 0.107

meeting by Pr = 0.106. The isola resulting from this merger proceeds to connect to L−

between Pr = 0.105 (figure 5.14(c)) and Pr = 0.104 (figure 5.14(d)). This is shown by the

black dots in figure 5.14, as the point that was originally a left saddle node of the lower

isola at Pr = 0.107 moves to lower energy and towards the pinch-off point of L− seen

at Pr = 0.105 (figure 5.14(c)). The two points connect by Pr = 0.104, so, after reaching

the six-roll convectons, the L− branch heads towards larger energy and follows the path

of the isola, before heading towards lower energy as it does at higher Prandtl num-

bers. At the lower-Pr limit of Stage 3, L+ and L− therefore contain both convectons and

domain-filling patterned states.

The subsequent behaviour of the branches L+ and L− after these oscillations, i.e., beyond

the blue and red dots in figure 5.14(a), is unclear. We found that they connected to

some of the later isolas that disconnected from the main branch between Pr = 0.11 and
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Pr = 0.105. However, the branches displayed no organised structure, nor could they be

followed to a point of termination.

5.3.4 STAGE 4: SNAKING BREAKING INTO DISCONNECTED SEGMENTS AND ORI-

GIN OF SMALL-AMPLITUDE SNAKING

In the previous stage, we saw how the pair of rolls that nucleate at the right saddle

nodes (e.g., (b) in figure 5.12) take similar form to R1 rolls in states on the lower branch

segments of P10. However, as the Prandtl number continues to decrease, the primary

bifurcation of the conduction state becomes increasingly supercritical and the first two

saddle nodes of the P10 branch continue to move towards higher Rayleigh numbers,

further away from the right edge of the pinning region. This impacts the snaking in two

main ways. Firstly, each snaking branch breaks up into two snaking branches: one with

small-amplitude convectons and one with large-amplitude convectons. Secondly, the

branch segments between convectons with n and n+ 2 rolls disconnect, with convectons

on these branches instead continuously transitioning into domain-filling states similar to

those discussed at the end of the previous section. We will consider these two changes

in this section and refer to them as Stage 4.

BIFURCATION DIAGRAM FOR Pr = 0.09

Figure 5.15 presents the bifurcation diagram for Pr = 0.09, which demonstrates the be-

haviour after the changes within this stage have occurred. In particular, we note that

there is a pair of small-amplitude snaking branches that bifurcate from P12 and termi-

nate on P11 and five disconnected branch segments of large-amplitude convectons. We

introduce the notation Li to label the branch of convectons with i rolls when Ra < Rac.

While these branches are now disconnected from each other, the organised nature of the

convecton branches for subcritical Rayleigh numbers persists and the left saddle nodes

vertically align around Ra ≈ 1520.

Changes along the organised branch segments can be understood by following each
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(a)

(b) (c) (d) (e) (f)

(c’) (d’)

(e’) (f ’)

Figure 5.15: (a) Bifurcation diagrams when Pr = 0.09. Top left: zoomed out bifurca-
tion diagram. Top right: magnification around the secondary bifurcation of P12. The
branches shown in (a) are: conduction state and P12 (black solid), P11 (black dashed),
P10 (black dotted) and Li, branch of convectons with i rolls (blue (red) when i is even
(odd)). The branches Li have been terminated at the marked cusp bifurcations and right
saddle nodes where they subsequently head back towards lower Rayleigh numbers, for
clarity. (b)–(f) Streamfunctions of the labelled states of L4 and (c’), (d’), (e’) and (f’)
corresponding phase-space representations for four of these states. The phase-space
plots show the convectons on L4 (blue) and the state on the upper branch of P11 (black
dashed) at the same value of the Rayleigh number.
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branch segment Li in the direction of increasing energy between Ra ≈ 1600 on the lower

and upper branch segments. Considering the branch of four-roll convectons L4, for

example, we find that the convecton at Ra ≈ 1600 on the lower branch segment (fig-

ure 5.15(c,c’)) contains two inner R2 rolls (blue trajectories in (c’)) whose form closely

follows those in states on the upper branch of P11 (thick black dashed trajectory in (c’))

and two outer R1 rolls (purple trajectories in (c’)). The inner convecton rolls continue

to follow those on the upper branch of P11 at the same Rayleigh number as L4 is fol-

lowed firstly towards the left saddle node at Ra ≈ 1520 (d,d’) and later towards higher

Rayleigh numbers (e,e’). We should note that differs from the results when Pr = 0.102,

where the inner rolls changed from resembling rolls on the upper branch segments of

P10 (figure 5.12(c’)) to P12 (figure 5.12(d’)) and P11 (figure 5.12(e’)) over the correspond-

ing oscillation. Meanwhile, the two outer rolls undergo a similar increase in amplitude

and change in structure to that seen when Pr = 0.102, in that they change from R1 rolls

on the lower branch segment (figure 5.15(c’)) to R2 rolls at the left saddle node (fig-

ure 5.15(d’)), before increasing in amplitude as the branch is followed towards higher

Rayleigh numbers (figure 5.15(e’)).

Continuing each upper branch segment of Li from Ra ≈ 1600 towards larger kinetic

energy (e.g., figure 5.15(e,e’) to (f) and beyond), we find that the background conduction

state fills with weak rolls that are uniform in amplitude, instead of nucleating a pair of

rolls outside of the existing convecton that was seen at higher Prandtl numbers. The

subsequent steady states are thus domain-filling states with i strong interior rolls within

a background of weaker rolls, as illustrated in figure 5.15(f). Following this background

nucleation, the branches exhibit a number of complex, non-structured oscillations that

appeared to be bounded between Ra ≈ 1520 and Ra ≈ 1650 for the duration over which

we extended them. These oscillations are not indicated in figure 5.15(a) as we truncated

each branch segment at a right saddle node, marked by the blue and red dots to improve

the readability of this figure.

Contrasting behaviour arises as each lower branch segment of Li is continued towards

higher Rayleigh numbers (e.g., figure 5.15(c,c’) to (b) and beyond), as we find that weak
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(a) Pr = 0.102 (b) Pr = 0.1013 (c) Pr = 0.1012 (d) Pr = 0.101

Figure 5.16: Magnification of bifurcation diagrams for (a) Pr = 0.102, (b) Pr = 0.1013,
(c) Pr = 0.1012 and (d) Pr = 0.101 showing how the isolas reconnect to the secondary
branch during Stage 4. The branches shown are: conduction state (black solid), P12
(black solid), P10 (black dotted), secondary branch L− that bifurcates from P12 (blue),
isolas that break from the snaking L− branch during Stage 3 (green), a secondary branch
containing states with an even number of rolls that bifurcates from a secondary bifurca-
tion of P10 and extends towards large-amplitude (purple) and the branch segment that
disconnects from L− and snakes at large-amplitude (light blue).

R1 rolls successively nucleate and strengthen outside of the stronger central R2 rolls.

This strengthening is non-uniform and rather occurs in a spatially modulated manner

so that the amplitude of these background rolls decreases outwards from the central

rolls, as seen in figure 5.15(b). Along L2, the branch of two-roll convectons (lowest blue

branch in figure 5.15(a)), this modulation is accompanied by the inner rolls changing to

resemble rolls on the second branch segment of P10 and the branch is seen to bifurcate

from a modulational instability of P10 around Ra ≈ 1658. We were unable to determine

the origin of the other branches of convectons seen in figure 5.15(a). However, we found

that they did not bifurcate from the first secondary bifurcation of P12, as was the case

when Pr = 0.102, since the pair of secondary branches that instead bifurcate from that

point undergo small-amplitude snaking over a narrow range of Rayleigh numbers and

terminate on P11.

SMALL-AMPLITUDE SNAKING

We now turn our attention to both the origin and properties of the small-amplitude

snaking that was seen in the top right panel of figure 5.15(a). Parts of the branch seg-
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ments involved in this snaking come from the lower part of the isolas that disconnected

from the main snaking branches in Stage 3. This is shown in figure 5.16, where the

isola containing states with six weak R1 rolls (marked in green) undergoes multiple

twists (figure 5.16(b)) before joining to the lower part of the secondary branch (marked

in blue) near the first of these crossing points. This leads to the small loop seen at

Pr = 0.1012 (figure 5.16(c)) and a subsequent excursion (not shown), where the branch

first follows the remaining section of the isola before heading to lower Rayleigh numbers

by continuing its original path and snaking at large-amplitude.

Between Pr = 0.1012 and Pr = 0.101 (figure 5.16(d)), the lower part of the secondary

branch that bifurcates from a modulational instability of P10 (marked in purple in fig-

ure 5.16(c)) connects with L−. This likely occurs by the former branch first twisting over

itself to form a second small loop between 1595 < Ra < 1597 with E ≈ 3. The lower

part of this twisted branch proceeds to merge with the secondary branch bifurcating

from P12 (shown in blue) to form the second small loop seen when Pr = 0.101 (fig-

ure 5.16(d)). This separates the secondary branch L− when Pr = 0.102 (shown in blue)

into two: a small-amplitude snaking branch that bifurcates from P12 and terminates on

P10 (blue in figure 5.16(d)); and a branch segment that continues to large amplitude and

contains fully localised states similar to those seen in figure 5.12 (shown in light blue in

figure 5.16(d)). In larger domains, we anticipate that the additional isolas formed during

Stage 3 undergo similar twists and connections to the secondary branch, which would

increase the number of small loops before the final separation occurs.

States evolve along the resulting narrow snaking branches (shown in figures 5.17(a) and

(b) for Pr = 0.101 and Pr = 0.1, respectively) in the typical way. After an initial spatial

modulation, states enter the small pinning region with either three or four weak R1

rolls, depending upon the secondary branch. Additional pairs of rolls nucleate outside

the existing state and proceed to grow in amplitude as the two secondary branches

intertwine whilst oscillating over a narrow range of Rayleigh numbers. The form of

rolls in these small-amplitude convectons appears to be controlled by the lower P10

branch, since the orbits for the two inner rolls (outer blue curves) in an established
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(a) Pr = 0.101 (b) Pr = 0.1

(c) Pr = 0.09 (d) Pr = 0.08

(e) (f) (g) (h)

Figure 5.17: Small-amplitude snaking secondary branches for (a) Pr = 0.101, (b)
Pr = 0.1, (c) Pr = 0.09 and (d) Pr = 0.08. The branches shown in the bifurcation dia-
grams are: conduction state (thick black solid), P12 (thin black solid), P11 (black dashed),
P10 (black dotted), L+ (red solid) and L− (blue solid). The pair of streamfunction pro-
files indicate the steady states marked on both of the secondary branches (left: L+, right:
L−). Contour intervals of 0.05 were used and grey (black) contours represent anticlock-
wise (clockwise) flow. (e)–(h) Phase-space plots of the marked small-amplitude states
on L− for (e) Pr = 0.101, (f) Pr = 0.1, (g) Pr = 0.09 and (h) Pr = 0.08. These plots show
the trajectories for the convecton on L− (blue), together with either states on the lower
P10 (black dotted in (e,f)) or P11 (black dashed in (g,h)) branch at the same value of the
Rayleigh number.
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convecton for Pr = 0.1 closely follow the orbit for weakest P10 rolls (black dotted curve)

in figure 5.17(f). When Pr > 0.1, this snaking is followed by an excursion to larger roll

amplitudes, before both secondary branches terminate at a modulational instability of

P10 prior to the first left saddle node.

Since the P10 branch becomes increasingly supercritical as the Prandtl number de-

creases, its first saddle node moves towards larger Rayleigh numbers. We find that

the thin snaking branches cease to terminate on P10 by Pr = 0.09 and they instead ter-

minate on P11 (see figures 5.17(c) and (d)). Continuing to decrease the Prandtl number

towards Prc, where the primary bifurcation transitions from being subcritical to super-

critical, we observe similar trends to those seen in other approaches to supercriticality

in finite domains (e.g., [37, 93]). These include the width of the snaking decreasing

until the branches become nearly indistinguishable by Pr = 0.08 (figure 5.17(d)), and

saddle nodes colliding in cusp bifurcations from the bottom of the snaking to increase

the number of rolls in the convectons. In an infinite domain, we might thus anticipate

that the pinning region for this small-amplitude snaking becomes exponentially thin

as Prc is approached and that these localised states persist up to this limit. However,

in the 12-wavelength domain considered here, finite-size effects result in the first sec-

ondary bifurcation of P12 changing from being stationary at Pr = 0.073 to oscillatory at

Pr = 0.072, as was seen by the red points in figure 5.2. This means that the amplitude-

modulated small-amplitude states seen in figure 5.17 become time-dependent and we

were unable to numerically continue the corresponding branches.

It is of interest to compare the origin of this small-amplitude snaking to the behaviour

observed in the Swift–Hohenberg equation with ninth-order nonlinearity (3.36) consid-

ered in Chapter 3:

∂u
∂t

= ru− (1 + ∂2
x)

2u + au3 + bu5 + cu7 + du9, (5.20)

with b = −100, c = 180, d = −100 and a varying between a = 20.5 and a = 19. In this

model system, we found that a single snaking branch when a = 20.5 (cf. figure 3.13)

173



5.3. TRANSITION FROM SUBCRITICAL TO SUPERCRITICAL

broke up into two separate snaking branches by a = 19 (cf. figure 3.15) after the sub-

critical primary branch underwent a cusp bifurcation and provided a region of trista-

bility between the trivial state and two periodic states of different amplitude within the

pinning region. We found that this breakup occurred after a number of smaller iso-

las, containing localised states associated with the new type of bistability, successively

connect to the original snaking branch at small amplitudes, much like in the doubly

diffusive system (cf. figure 5.16). This process separated localised states associated with

the bistability between the trivial state and large-amplitude periodic states (equivalent

to R2 rolls), which remain on the snaking branch that extends towards large amplitude,

and those associated with the bistability between the trivial state and the smaller am-

plitude periodic state (equivalent to R1 rolls), which were found to lie on the snaking

branches at smaller amplitudes.

The Swift–Hohenberg model further motivates why the branch of large-amplitude two-

roll convectons (L2) when Pr = 0.09 and the branch of small-amplitude snaking of R1

convectons when Pr = 0.101 bifurcate at modulational instabilities prior to the first right

(figure 5.15(a)) and left (figure 5.17(a)) saddle nodes of P10, respectively, owing to where

the corresponding large- and small-amplitude snaking branches of the model system

bifurcate and accounting for the preferred wavelength of convectons. The model sys-

tem does not, however, explain why the main snaking branch breaks into disconnected

branch segments between Pr = 0.102 and Pr = 0.09, which suggests that additional be-

haviour should be incorporated. The parameter values used in (5.20) could also be

optimised in order to better model the changes in the doubly diffusive system between

stages 2 and 4. For example, we might aim to find those that enable the primary branch

to undergo a cusp bifurcation on its upper branch, as was found for P10 when Pr ≈ 0.14,

and for the first two saddle nodes to move through the pinning region and into supercrit-

ical parameter values. However, we should note that this optimisation may be difficult,

since we wish to avoid the branch of homogeneous states leading to collapsed snaking

in the regions of interest.
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5.3.5 STAGE 5: SUPERCRITICAL CONVECTONS

We now return to the system of natural doubly diffusive convection and consider

Prandtl numbers with Pr < Prc ≈ 0.062, where the primary bifurcation is supercritical.

Within this supercritical regime, the primary branch no longer undergoes an Eckhaus

instability shortly after onset, as we showed in section 5.2 via the linear stability analysis,

and we cease finding the small-amplitude snaking seen in figure 5.17 that was associ-

ated with convectons containing R1 rolls. However, the large-amplitude convectons that

developed in Stage 2 persist into this regime and continue to lie on an organised set

of disconnected branches (Li for i = 1, ..., 6) within subcritical Rayleigh numbers, as

evidenced when Pr = 0.06 in figure 5.18(a).

Figures 5.18(b,b’)–(g,g’) indicate the changes that the steady states on L2 undergo as

the branch is followed away from where it bifurcates at a modulational instability of

P11 at Ra ≈ 1577, along with L1. States on L2 initially contain eleven rolls, whose form

resemble rolls on states on the middle segment of P11. As the branch is followed away

from the secondary bifurcation towards larger Rayleigh numbers, the two central rolls

strengthen, whilst the nine background rolls weaken in line with the middle P11 state to

give states like the one shown in (b) and (b’). The background rolls continue to weaken

as the branch turns around to lower Rayleigh numbers at Ra ≈ 1663, so that when

L2 re-enters the subcritical region Ra < Rac, around the point marked (c), convectons

contain two stronger rolls within a nearly quiescent background. These stronger rolls

(blue trajectories in the phase-space plots) resemble those on the middle portion of P11

(thin black dashed trajectory), albeit with larger amplitude, as seen in (c’). These central

rolls strengthen and adjust their profile to resemble rolls in states on the upper P11

branch (thick black dashed trajectory) as L2 is followed towards the left saddle node at

Ra ≈ 1467 (d,d’) and back to Ra ≈ Rac on the following upper branch segment (e,e’).

As the branch re-enters supercritical Rayleigh numbers and heads towards the saddle

node marked (f), nine weak rolls strengthen uniformly outside the two central rolls,

thereby replacing the now-unstable conduction state, which resembles behaviour found
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L1

L2

L3

L4

L5

L6

(a)

(b) (c) (d) (e) (f) (g)

(b’) (c’)

(d’) (e’)

(f ’) (g’)

Figure 5.18: (a) Bifurcation diagrams when Pr = 0.06, showing: the conduction state,
P12 (black solid), P11 (black dashed) and Li, branch of convectons with i rolls (blue
(red) when i is even (odd)). The branches Li have been terminated either at Ra = 1700,
or at the marked points, for clarity. (b)–(g) Streamfunction profiles of the labelled states
of L2 and (b’)–(g’) corresponding phase-space representations of these states. The phase-
space plots show orbits representing the convectons on L2 (blue), states on the upper
(thick black dashed) and middle (thin black dashed) branch segments of P11 at the same
value of the Rayleigh number.
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in the cubic-quintic-septic Swift–Hohenberg equation [100] (cf. figure 3.11). The back-

ground rolls increase in amplitude as the Rayleigh number increases and ultimately re-

semble rolls in states on the unstable middle segment of the P11 branch, which can also

be seen by the purple and green trajectories in the phase-space plots (f’) and (g’), which

represent these background rolls, following the thin black dashed trajectory, which rep-

resent states on the P11 branch. The branch L2 continues after the saddle node near

(g); however, the subsequent behaviour is not considered here as the background rolls

become non-uniform. This can lead to states, for example, becoming two-pulsed, where

they consist of two distinct regions of strong convection rolls that are separated either

by weak rolls or conduction state.

States on L1 display analogous behaviour across the branch segment shown in fig-

ure 5.18(a), except with a single central roll instead of a pair of rolls. In contrast, on

the other convecton branches (Li for i = 3, ..., 6), only the outer two rolls adjust their

shape along segments analogous to (c,c’)–(e,e’) on L2, while the interior rolls continue

to follow the form of states on the upper P11 branch. The background conduction state

continues to fill with rolls as the branches cross into supercritical Rayleigh numbers

(Ra > Rac), which may be deduced from figure 5.18(a) as the branches change gradient

when they cross Ra = Rac.

There remains the outstanding question as to what happens to these convectons and

the branches on which they lie as the Prandtl number decreases beyond Pr = 0.06. We

were unable to address this here owing to the numerical difficulties associated with thin

viscous boundary layers at small Prandtl numbers, but we will briefly speculate on the

anticipated behaviour. The primary bifurcation will become increasingly supercritical

and the large-amplitude subcritical saddle nodes of P11 and P12 will move towards

higher Rayleigh numbers. These saddle nodes will ultimately move beyond the primary

bifurcation at Ra = Rac so that the primary branches lie entirely within the supercrit-

ical regime Ra > Rac, as we found for parameter values in Region 4 in Chapter 4 (cf.

figure 4.11). We suspect that the organised structure of the disconnected convecton

branches will persist during this change, but will shift towards larger Rayleigh numbers
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so that these branches continue to lie to the right of the large-amplitude saddle nodes of

the primary branches. This would mean that, within Region 4, the convecton branches

will also entirely lie within supercritical Rayleigh numbers and convectons might appear

as domain-filling patterned states where large-amplitude rolls lie within a background

of small-amplitude rolls, as in figure 5.18(f) for Pr = 0.06.

5.4 DISCUSSION

In this chapter, we characterised how the structure of snaking secondary branches of

convectons in a system of natural doubly diffusive convection changed as the Prandtl

number was varied. We found that the typical snaking found by Bergeon and Knobloch

[24] persists over a range of large Prandtl numbers. However, this snaking can become

more complicated at lower Prandtl numbers. We attributed much of the complexity to

the transition between convectons containing buoyancy-driven rolls (R1 rolls) and those

containing a second type of roll driven by a balance between inertia and buoyancy (R2

rolls). Spatially periodic states with both types of rolls coexist with the stable conduction

states over a small range of Prandtl numbers and thus our results may be of interest to

other systems that exhibit tristability [67, 100].

Decreasing the Prandtl number below Pr = 0.11, we found that the snaking branches

undergo a series of disconnections that separates convectons with R1 rolls, which now

lie on isolas, from those with R2 rolls, which continue to lie on the main snaking branch.

The isolas later reconnect with others and a pair of secondary branches from P12 to

produce a pair of branches that exhibit snaking at small-amplitude. These snaking

branches persist until just prior to the codimension-two point where the criticality of

the primary bifurcation changes. Meanwhile, the main snaking branches were found to

break up into a series of disconnected branch segments. These maintained an organised

stacked structure within subcritical Rayleigh numbers as the Prandtl number decreased

and the primary bifurcation becomes supercritical. Hence, natural doubly diffusive

convection provides an example of a non-variational system that admits localised states
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when the primary bifurcation is supercritical, which is a property that has only recently

been observed in one-dimensional systems without a conserved quantity in the simpler

variational cubic-quintic-septic Swift–Hohenberg equation [100].

While we have not discussed the stability of the primary and secondary branches in

much detail here, we should emphasise that each primary branch destabilises in a

drift-pitchfork bifurcation, which notably occurs on the lower segments of the primary

branches when Pr < 0.11. Thus, we found that convectons can exist in low Prandtl

number regimes despite the lack of bistability between the conduction state and large-

amplitude periodic states. While this observation can be explained by restricting to the

centro-symmetric subspace, where the primary branches cannot destabilise to drift and

the system exhibits bistability, it raises the interesting question about whether convec-

tons inherit this drift instability and, if so, what the properties of the instability are.
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So far in this thesis, we have only considered systems where the horizontal thermal

and solutal gradients imposed via the sidewall boundary conditions provide equal but

opposite effects on the total fluid density. This has been achieved by fixing the value of

the buoyancy ratio, defined

N =
ρC∆C
ρT∆T

, (6.1)

where ρC (ρT) is the solutal (thermal) expansion coefficient and ∆C (∆T) is the con-

centration (temperature) difference between sidewalls, to be N = −1. While this choice

has important dynamical implications, most notably in the existence of a steady quies-

cent conduction state for all Rayleigh numbers, this balance is unlikely to be achieved in

physical or experimental systems where, for example, the imposed solutal concentration

may be hard to control (e.g., [92]). It is therefore compelling to understand how sensi-

tive convectons are to changes in the buoyancy ratio and the absence of the conduction

state, particularly since convectons have only been studied in balanced systems of natu-

ral doubly diffusive convection [9, 12, 14, 23, 24, 120], where the motionless conduction

state forms the background of these localised states.

In this chapter, we will study the effects that breaking the balance has on the natu-

ral doubly diffusive convection in a closed vertical cavity. This configuration will be

introduced in section 6.1. We will summarise the key results of the balanced system

(N = −1) in section 6.2 since they differ from those with periodic boundary conditions.

This summary is followed by discussing four aspects of the unbalanced systems with

N 6= −1: the large-scale flow that develops (section 6.3.1); the small-amplitude unfold-

ing of primary bifurcations (section 6.3.2); the form of convectons in both thermally and
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solutally dominated regimes (section 6.3.3); and how the structure of anticonvectons

changes and its impact on the existence of convectons in thermally dominated regimes

(section 6.3.4).

6.1 DOUBLY DIFFUSIVE CONVECTION IN A CLOSED CAVITY

6.1.1 MOTIVATION FOR BOUNDARY CONDITIONS

We have so far considered domains with periodic boundary conditions in the vertical

direction and systems where the imposed horizontal temperature and solutal gradients

provide exactly balancing effects on the total fluid density (N = −1). These conditions

allow a motionless conduction state to exist for all Rayleigh numbers and for this triv-

ial base state to destabilise in pitchfork bifurcations that lead to primary branches of

periodic states, as has been discussed in the previous chapters.

However, when the buoyancy ratio is varied away from the balanced case, the imposed

horizontal temperature and solute gradients generate a vertical shear flow of the form

(e.g., modified from [163]):

w =
1
6

Ra(1 + N)x(1− x2) for 0 6 x 6 1, (6.2)

which replaces the motionless conduction state as the base state for the system. This

base flow clearly breaks the reflection symmetry about the centre of the domain and we

consequently expect for the steady states to drift vertically. For example, we find that

branches of periodic convection when N = −1 become branches of periodic travelling

waves when N 6= −1, while steady convectons become pulses of convection that travel

vertically in the base shear flow. However, accurate study of these travelling states

proved to be numerically challenging because time-stepping only allows us to obtain

stable states and extending the numerical continuation code to follow travelling states

and periodic orbits (e.g., [120, 182]) would have been difficult in the limited time frame

for this project.
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g

T = 0.5,
C = 0.5,
u = 0,
w = 0.

u = w = 0
∂T
∂z

= ∂C
∂z

= 0

T = −0.5,
C = −0.5,
u = 0,
w = 0.

u = w = 0
∂T
∂z

= ∂C
∂z

= 0

Figure 6.1: Representation of the non-dimensional closed cavity with no-slip boundary
conditions.

6.1.2 NO-SLIP BOUNDARY CONDITIONS

Hence, for this chapter, we decided to study the effects of the buoyancy ratio in a closed

domain with no-slip boundary conditions on each wall. With this choice, the base flow

is a large-scale recirculating flow for N 6= −1 and stationary convectons exist and can

be numerically continued. The governing equations for the system of doubly diffusive

convection remain as

1
Pr

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇2u + Ra (T + NC) ẑ, (6.3)

∇ · u = 0, (6.4)

∂T
∂t

+ u · ∇T = ∇2T, (6.5)

∂C
∂t

+ u · ∇C =
1
Le
∇2C, (6.6)

where we fix Le = 5 and Pr = 1, allow the buoyancy ratio N to vary and treat the

Rayleigh number Ra as a bifurcation parameter. The system (6.3)–(6.6) is now considered

in the closed cavity that is bounded by the vertical sidewalls at x = ±0.5 and horizontal

end walls at z = 0, Lz, as depicted in figure 6.1. Here, Lz is the vertical length of the
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domain and assumes one of Lz = 4λc, 5λc or 12λc, where λc is the critical wavelength

of the primary bifurcation with periodic boundary conditions. The following boundary

conditions are imposed on the sidewalls:

u = 0, w = 0, −∂p
∂x

+
∂2u
∂x2 = 0, T = −0.5, C = −0.5 on x = −0.5, (6.7)

u = 0, w = 0, −∂p
∂x

+
∂2u
∂x2 = 0, T = 0.5, C = 0.5 on x = 0.5, (6.8)

u = 0, w = 0, −∂p
∂x

+
∂2u
∂x2 = 0,

∂T
∂z

= 0,
∂C
∂z

= 0 on z = 0, Lz, (6.9)

where, in addition to the fluid velocity vanishing on the four sidewalls owing to the

no-slip boundary conditions, the domain allows no thermal or solutal flux through the

horizontal end walls.

This choice of domain removes the translational symmetry that was seen with the pe-

riodic boundary conditions and thereby also removes the possibility of the conduction

state when N = −1 undergoing a circle of pitchfork bifurcations, found by Xin et al.

[191], and the presence of domain-filling periodic states. These effects thus influence

both where the branches of convectons bifurcate from and where they terminate, as

will be seen in sections 6.2.1 and 6.2.2. The reflection symmetry about the centre of the

domain is preserved, however, and may be expressed as

S∆ : (x, z) 7→ (−x,−z), (u, w, T, C) 7→ −(u, w, T, C). (6.10)

While this system admits states that break this reflection symmetry (for example, the

two-dimensional equivalent to the two-roll wall-attached state found by Beaume et al.

[14]), in this initial study, we will only consider states that preserve this symmetry.

Again, the results in this chapter were obtained via numerical continuation of branches

using a spectral element numerical method based on a Gauss–Lobatto–Legendre dis-

cretisation and supplemented by Stokes preconditioning. Each element of the numerical

domain was discretised using 25 nodes in both the x and z directions, while the number

of spectral elements depends upon the vertical extent of the cavity and are detailed in
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Lz nex nx nz

4λc 8 25 25
5λc 10 25 25
12λc 24 25 25

Table 6.1: Discretisations used in the spectral element code for the numerical continua-
tion of the system of doubly diffusive convection for the three domain sizes considered.
The domain is discretised using nex spectral elements, with each element containing nx
nodes in the x−direction and nz nodes in the z−direction.

table 6.1. Results are typically presented using bifurcation diagrams that, unless other-

wise stated, present the total kinetic energy:

E =
∫ 1

0

∫ Lz

0

(
1
2
(
u2 + w2)) dz dx, (6.11)

of the steady state as a function of the Rayleigh number, or using streamfunctions of

the steady states. In contrast to the previous notation for plotting streamfunctions, two

scales will be used to depict both weak and strong flows in the same figure. A logarith-

mic scale is shown using black (clockwise flow) and grey (anticlockwise flow) stream-

lines, while a linear scale is shown using red (clockwise flow) and blue (anticlockwise

flow) streamlines.

6.2 BALANCED SYSTEM WHEN N = −1

We begin by detailing key properties of the balanced system with no-slip boundary

conditions in a bounded domain as there are some differences compared to applying

periodic boundary conditions. The system is reviewed in three parts: initially, we con-

sider primary bifurcations of the conduction state; then, we consider the structure of the

convecton branches; finally, we introduce some of the anticonvectons that are found.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

L+

L−

L+

L−

Figure 6.2: First primary pitchfork and transcritical bifurcations of the conduction state
in domains with vertical extent: (a)–(e) Lz = 4λc and (f)–(j) Lz = 5λc. The bifurcation
diagrams (a) and (f) show the vertical velocity of states at the point marked by the
black crosses in the streamfunction plots against the Rayleigh number. The follow-
ing branches are shown: conduction state (black), L+ (red), L− (blue) and branches of
asymmetric states that bifurcate from the pitchfork bifurcation (purple). The insets pro-
vide a magnification of the first transcritical bifurcation. The remaining panels present
the streamfunction of states marked in the bifurcation diagrams using contour values:
[−10−3,−10−2,−10−1] (grey); and [10−3, 10−2, 10−1] (black).

6.2.1 PRIMARY BIFURCATIONS OF THE CONDUCTION STATE

With these no-slip boundary conditions in the balanced case (N = −1), the conduction

state can destabilise in either transcritical or pitchfork bifurcations [70, 191] when the

buoyancy force driven by the sidewall heating overcomes the viscous dissipation asso-

ciated with fluid motion. Transcritical bifurcations arise when centro-symmetric eigen-

modes, which have a roll centred in the middle of the domain, destabilise, while pitch-

fork bifurcations arise when anti-centro-symmetric eigenmodes destabilise. By varying

the size of the domain, Ghorayeb and Mojtabi [70] found that the ordering of the first set

of transcritical and pitchfork bifurcations switches and that the two bifurcations occur

in quicker succession in larger domains. Thus, we start by illustrating these primary bi-

furcations in small domains (Lz = 4λc ≈ 9.93 and Lz = 5λc ≈ 12.4), before considering

them in the larger domain with Lz = 12λc ≈ 29.8, which will later be used to investigate

the effects of taking N 6= −1 on spatially localised states.

Figure 6.2 presents the bifurcation diagrams showing the first two bifurcations of
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(a) (b) (c) (d) (e)

Figure 6.3: First two transcritical bifurcations for N = −1, Le = 5 and Pr = 1 in a do-
main with Lz = 12λc and no-slip boundary conditions. (a) Bifurcation diagram showing
the branches that originate from these bifurcations. (b)–(e) Streamfunctions along the
four main branches: (b) L+, (c) L−, (d) L+

2 and (e) L−2 . The contour values used were:
[−10−3,−10−2,−10−1] (grey); and [10−3, 10−2, 10−1] (black).

the conduction state when Lz = 4λc (figure 6.2(a)–(e)) and Lz = 5λc Lz = 4λc (fig-

ure 6.2(f)–(j)). In both of these domains, the conduction state first destabilises in a

pitchfork bifurcation and the resulting pair of branches consist of asymmetric states like

those shown in figures 6.2(d), (e), (i) and (j). These branches terminate on L+ (red), the

branch containing spatially modulated states with an anticlockwise central roll that bi-

furcates from the following transcritical bifurcation, together with L− (blue), the branch

containing spatially modulated states with a clockwise central roll. The insets in fig-

ures 6.2(a) and (f) highlight the transcritical nature of this primary bifurcation and how

the supercritical branch undergoes a saddle-node bifurcation shortly after onset, in an

analogous manner to the three-dimensional behaviour observed by Beaume et al. [14].

The initially supercritical branch then proceeds to head towards lower Rayleigh num-

bers so that the behaviour on a larger scale resembles that of a pitchfork bifurcation.

Which of the primary branches L+ and L− is initially supercritical depends on the do-

main size and we find that L− (blue) bifurcates supercritically when Lz = 4λc while L+

(red) bifurcates supercritically when Lz = 5λc. The streamfunction panels (c) and (g)

indicate that such dependence arises because states on these branches have clockwise

rolls in the top left and bottom right of the domain, whereas the corresponding rolls are
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anticlockwise in states on the subcritical branch (see panels (b) and (h)).

Figure 6.3 presents the branches bifurcating from the first two transcritical bifurcations

of the conduction state in the larger domain with Lz = 12λc ≈ 29.8. The conduction

state first destabilises in a pitchfork bifurcation (not shown owing to the short extent of

the bifurcating branches) and shortly after in a transcritical bifurcation at Ra ≈ 1629.6,

where the branches L+ and L− bifurcate subcritically and supercritically, respectively.

These branches remain indistinguishable at small amplitude on the scale shown in fig-

ure 6.3(a) owing to the supercritical branch turning around at a saddle node shortly

after onset.

Since the no-slip boundary conditions on the horizontal end walls lead to enhanced

viscous dissipation, the critical eigenmodes associated with this transcritical bifurcation

weaken towards the ends of the domain. They also differ through the flow direction

of the central convection roll in that the roll is anticlockwise on L+ (figure 6.3(b)) and

clockwise on L− (figure 6.3(c)). Thus, owing to both the amplitude modulation and

the nonlinear mechanism that favours anticlockwise convection rolls as the branches are

followed towards lower Rayleigh numbers and larger amplitudes, this difference leads

to convectons with an odd number of localised rolls lying on L+ and those with an even

number of localised rolls lying on L−, as was previously found with periodic boundary

conditions [24].

Beyond this first transcritical bifurcation, the conduction state undergoes further bifur-

cations associated with modes of different wavelengths destabilising. For example, the

conduction state undergoes a further transcritical bifurcation at Ra ≈ 1636.5, where the

branches of two-pulse states (L+
2 and L−2 ) bifurcate. Like their single-pulse counterparts,

states on these branches become amplitude modulated as each branch is followed to-

wards larger amplitudes (see figures 6.3(d) and (e)). However, the primary bifurcation

of the conduction state at Ra ≈ 1629.6 means that these multi-pulse states are more

unstable than the single pulse states on L+ or L−.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 6.4: Convecton branches and streamfunction profiles for N = −1, Pr = 1 and
Le = 5. (a) and (g) Bifurcation diagram showing branches corresponding to convectons
with an odd (L+) and even (L−) number of strong anticlockwise central rolls, which
are shown in red and blue, respectively. (b)–(e) Streamfunction profiles of the first
four saddle nodes along L−1 . (f) Streamfunction profile of large-amplitude state on L+.
(h)–(k) Streamfunction profiles of the first four saddle nodes along L+

1 . (l) Streamfunc-
tion profile of large-amplitude state on L−. Contours are shown using linear (blue) and
logarithmic (black and grey) scales and take the values: [−10−3,−10−2,−10−1] (grey);
[10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue).

6.2.2 CONVECTONS

The convecton branches, L+ and L−, head away from the primary transcritical bifurca-

tion of the conduction state and towards lower Rayleigh numbers before first turning

around at a left saddle node located at Ra ≈ 1305 for L+ (figure 6.4(b)) or Ra ≈ 1292 for

L− (figure 6.4(h)). The amplitude modulation of the states increases along these branch

segments, which results in the convective motion occupying a smaller proportion of the

domain, as may be seen by comparing figures 6.3(b) and (c) with figures 6.4(b) and (h),

respectively. The central anticlockwise rolls also strengthen faster than the clockwise

rolls, which maintain flow with a similar order of magnitude along these low-energy

branch segments.

After the first left saddle nodes, the two convecton branches proceed to undergo homo-

clinic snaking over the interval 1291 < Ra < 1540, as seen in figures 6.4(a) and (g), which

is the same pinning region as when periodic boundary conditions are imposed in the
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vertical direction with the same Prandtl and Lewis numbers. The convecton rolls also

exhibit similar strengthening and nucleation behaviour as the branches are followed to

large amplitude, as shown by the changes in the streamfunction plots between convec-

tons at the first four saddle nodes on L+ (figures 6.4(b)–(e)) and L− (figures 6.4(h)–(k)).

Between the left and right saddle nodes, the anticlockwise rolls strengthen and become

larger. This reduces the distance between adjacent anticlockwise rolls as the dividing

weak clockwise rolls are squashed so that by the right saddle node they split into two

smaller rolls, which are pushed towards either sidewall. Outside of these central rolls,

weak counterrotating rolls strengthen with increasing Rayleigh number, but since the

growth occurs in an amplitude-modulated manner, fluid velocities near the end walls

remain small. Only the anticlockwise rolls adjacent to the strong central rolls strengthen

as the convecton branches proceed towards the following left saddle node, with both

the strong central rolls and the weak counterrotating rolls decaying, which results in the

number of strong central anticlockwise rolls increasing by two between successive left

saddle nodes.

This type of snaking behaviour continues until anticlockwise rolls almost fill the domain,

as was also previously found with periodic boundary conditions. In this case, however,

there are no domain-filling spatially periodic states that the convecton branches can ter-

minate on and they instead extend towards large amplitudes as defect states [26, 80],

like those in figures 6.4(f) and (l). For example, on L+, after reaching a nine-roll state at

a left saddle node around Ra ≈ 1302 and E ≈ 17.4, the central roll decays as the branch

continues towards higher Rayleigh numbers while the remaining eight anticlockwise

rolls strengthen, as seen in figure 6.4(f). The other convecton branch, L−, exhibits alter-

native behaviour, where an eight-roll state, like figure 6.4(l), strengthens with increasing

Rayleigh number until Ra ≈ 2210, where the end anticlockwise rolls split into two pairs

of anticlockwise rolls and the branch returns to lower Rayleigh numbers as a ten-roll

state (not shown). The specific details of this large-amplitude behaviour depends on

the domain size, so will not be considered any further here, although we will note that

behaviour in systems with non-periodic boundary conditions is typically more compli-
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cated than with periodic boundary conditions. Indeed, Houghton and Knobloch [80]

found complex behaviour in the Swift–Hohenberg equation in a finite domain, where

branches repeatedly snaked up and down the pinning region with what they called

“far” from Neumann boundary conditions.

6.2.3 ANTICONVECTONS

Branches of anticonvectons—localised states where rolls are attached to both end walls

and separated by a void region—are a distinguishing feature of the system with no-

slip boundary conditions. Mercader et al. [130] first found these states in binary fluid

convection and attributed their presence to the breaking of the translational invariance

associated with periodic boundary conditions, thereby separating branches that corre-

spond to convectons centred half a domain apart. Owing to this similarity, branches of

anticonvectons also undergo homoclinic snaking within the same pinning region as the

convectons. Anticonvectons also exist in this system of natural doubly diffusive convec-

tion but their properties tend to be more complex than those in binary fluid convection

because of the nonlinear mechanism that favours anticlockwise rolls.

Figure 6.5 shows two types of anticonvectons that lie on snaking branches that we refer

to as A (shown in black) and Ã (shown in purple). These branches appear to connect on

the lowest branch segment, although this could not be confirmed owing to numerical

difficulties that most likely arose because of the multitude of anticonvectons with similar

roll positions in close proximity to each other. Nevertheless, we believe the two branches

to connect since the corresponding branches when N 6= −1 do connect and could be

numerically continued without difficulty (see figure 6.16). Both anticonvecton branches

proceed to snake upwards within the interval 1291 < Ra < 1541, with both types of

anticonvectons extending by a pair of anticlockwise rolls on the interior side of the

existing rolls over a single snaking oscillation (e.g., compare panels (b), (d) and (f) or

(h), (j) and (l)). The oscillations continue until 6-roll states (shown in figures 6.5(f) and

(l)) are obtained and the oscillations are subsequently affected by finite domain effects,

as was seen for the convecton branches in figure 6.4.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 6.5: Anticonvecton branches and streamfunction profiles for N = −1, Pr = 1
and Le = 5. (a) and (g) Bifurcation diagrams corresponding to branches with two types
of anticonvectons A (black) and Ã (purple) when N = −1. (b)–(f) Streamfunctions of
steady states at the saddle nodes of the snaking anticonvecton branch A. (h)–(l) Stream-
functions of steady states at the saddle nodes of the snaking anticonvecton branch Ã.
Contours are shown using linear (blue) and logarithmic (black and grey) scales and take
the values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...]
(blue).

The form of the anticonvectons differ between the two branches. In states lying on the

branch A (figures 6.5(b)–(f)), the anticlockwise rolls attached to the end walls are not

elliptical like those in convectons, but rather appear to be squashed towards either the

top or the bottom wall, with the flow being nearly horizontal along these end walls. The

end rolls weaken as the branch A passes from the right saddle nodes (e.g., (b), (d) and

(f)) to the following left saddle node (e.g., (c) and (e)). This pushes the anticlockwise rolls

away from the top left and bottom right corners of the domain, thereby leaving space

for the weak clockwise rolls in these corners to strengthen and grow. The anticlockwise

rolls that strengthen within the interior of the domain are not affected by the horizontal

end walls, however, and display similar forms to the rolls that nucleate in the convectons

seen in figure 6.4.

Anticonvectons along the second branch, Ã, similarly extend by anticlockwise rolls

strengthening on the interior side of the state between right and left saddle nodes.

However, this branch additionally exhibits a more complex series of changes than those
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along the first anticonvecton branch, A. The strong anticlockwise end rolls are no longer

squashed against the horizontal walls, but rather separated from them by weaker rolls.

These weak rolls exhibit new behaviour that is responsible for the vertical translation of

the strong anticlockwise rolls that occurs over a single snaking oscillation of Ã, as seen

in figures 6.5(h)–(l). Following Ã between a right saddle node and the next left saddle

node, we see how the small, weak anticlockwise corner rolls weaken and disappear (e.g.,

between (h) and (i)). The clockwise rolls between each weak corner roll and the adjacent

strong anticlockwise roll also weaken as the Rayleigh number decreases and become

smaller to occupy only a small triangular region in the top left and bottom right corners

of the domain instead of the full horizontal extent of the domain as they do at the right

saddle nodes. The weakening of this pair of rolls results in the strong anticlockwise rolls

translating towards the end walls as seen in figure 6.5. This process occurs in reverse

between each left saddle node and the following right saddle node, which leads to the

weak end rolls strengthening and the strong anticlockwise rolls translating back towards

the centre of the domain.

6.3 UNBALANCED SYSTEMS

6.3.1 LARGE-SCALE FLOW

We now turn our attention to considering what happens to these states and branches as

the buoyancy ratio varies away from N = −1 and we enter unbalanced regimes. The first

notable difference that we find in these systems is that they do not admit the conduction

state as a steady solution. Instead, the basic state consists of a large-scale recirculating

flow that develops from low Rayleigh numbers. Basic properties of this large-scale flow

can be ascertained by considering a parallel flow approximation similar to those applied

in natural convection (e.g., [6]) or binary fluid convection in porous media (e.g., [4]).

To achieve this, we consider the centre of a sufficiently long domain and assume that

the horizontal end walls have negligible impact on the flow and that there is purely
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conductive heat and solute transport between the sidewalls, i.e., T = C = x. The latter

assumption means that the fluid density, generally defined

ρ = ρ0 + ρT∆T(T + NC), (6.12)

where ρ0 is the reference density of the fluid at x = 0, is approximated by

ρ ≈ ρ0 + ρT∆T(1 + N)x. (6.13)

Thus, the fluid density is uniform when N = −1, but exhibits linear horizontal depen-

dence when N 6= −1. Noting that ρT < 0, i.e., that density decreases with increasing

temperature, this approximate density profile shows that when N > −1 (N < −1), fluid

at the right sidewall is less dense (more dense) than fluid at the left sidewall and that

this density difference increases with increasingly imbalanced systems.

These horizontal density gradients are a source of vorticity, which may be seen from the

vorticity equation:

1
Pr

(
∂ω

∂t
+ u · ∇ω

)
= ∇2ω− Ra

(
∂Θ
∂x

+ N
∂Φ
∂x

)
− Ra(1 + N), (6.14)

where ω = ŷ · ∇ × u is the vorticity and Θ = T − x, Φ = C− x are the deviations from

the linear profiles for temperature and solutal concentration. Assuming steady unidirec-

tional flow in the vertical direction with Θ = Φ = 0, we find that the vorticity satisfies

∇2ω = Ra(1 + N), (6.15)

and that the vertical velocity profile may be approximated by

w(x, z) ≈ − 1
24

Ra(1 + N) x(2x− 1)(2x + 1), (6.16)

which we see resembles that found in natural convection [6], except with a Rayleigh

number that has been modified by the deviation of the buoyancy ratio away from
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6.6: Development of the anticlockwise large-scale flow with Ra until the first right
saddle node at Ra ≈ 1257 when N = −0.9. (a)–(h) Streamfunctions of the large-scale
flow at the Rayleigh numbers marked in (i). Contours are shown using linear (blue)
and logarithmic (black and grey) scales and take the values: [−10−3,−10−2,−10−1]
(grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue). (i) Plot showing Iw (6.17)
for the large-scale flow at different Rayleigh numbers. The blue dashed line indicates
the relationship Iw = 1

384 Ra(1 + N), obtained from the analytical approximation (6.16).

N = −1.

Figures 6.6(a)–(h) illustrate this vertical shear flow within the centre of the domain at

low Rayleigh numbers for N = −0.9. We see that the strength of the flow increases

with Rayleigh number, as is expected from the approximation (6.16). This is further

evidenced by panel (i), which shows that the quantity

Iw =
∫ 0.5

0
w
(

x, z =
Lz

2

)
dx, (6.17)

initially increases linearly with Rayleigh number, which is in agreement with the ana-

lytical approximation (6.16) where Iw = 1
384 Ra(1 + N).

The approximation given in (6.16) is not valid near the horizontal end walls of the do-

main since the vertical shear flow is incompatible with the associated no-slip boundary

conditions. Instead, we find that the vertical flow is forced sideways near the end walls

to generate a domain-filling recirculating flow with anticlockwise circulation in ther-
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mally dominated flows (N > −1) or clockwise circulation in solutally dominated flows

(N < −1).

The approximation (6.16) further breaks down towards larger Rayleigh numbers, but

the manner in which this occurs depends on the value of the buoyancy ratio as we will

see throughout the remainder of this chapter. When N = −0.9, for example, we see

that this breakdown first occurs via the formation of secondary rolls near the horizontal

end walls, as seen in figures 6.6(d)–(g). The origin of these rolls is doubly diffusive in

nature, which can be seen through the following argument in weakly thermally dom-

inated flows. As the fluid flows in an anticlockwise direction alongside the horizontal

end walls, hotter and solute-rich fluid is drawn from the top right corner of the domain

to the left. This leftward moving flow is denser than the ambient fluid owing to the

higher solute concentration, so will sink and flow down the left sidewall according to

(6.16). This fluid motion enhances the horizontal density gradient between sidewalls

and generates negative vorticity, which, when sufficiently large, leads to an anticlock-

wise secondary roll at the top of the domain. An analogous secondary roll forms in the

bottom left corner of the domain owing to the large-scale flow preserves the S∆ symme-

try. These rolls strengthen with increasing Rayleigh number and we see the formation

of further secondary rolls near the first right saddle node of the branch (figure 6.5(h)).

These rolls influence the vertical velocity profile along the horizontal midline and ex-

plain the deviation of Iw away from the linear relationship when Ra > 1230.

We finally note that the formation of these secondary rolls, via doubly diffusive effects,

differs from the initial formation of secondary rolls in natural convection [185], which

occur via inertial effects. We also found inertia-driven secondary rolls in this system;

however, these were at considerably higher Rayleigh numbers so will not be discussed

in this thesis.
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6.3.2 SMALL-AMPLITUDE UNFOLDING

In the balanced system we saw that the two branches of convectons, L+ and L−, bifur-

cate from a primary transcritical bifurcation of the conduction state at Ra ≈ 1629.6 in

figure 6.3. This does not occur in the unbalanced systems as the primary transcritical

bifurcation unfolds when N 6= −1 since the large-scale flow enhances one of the eigen-

modes of the transcritical bifurcation, while diminishing the other. To understand what

happens to convectons at large amplitude, we therefore start by exploring this unfolding

at small amplitude and extend earlier results by Bardan et al. [5], who considered the

unfolding for two choices of N in small domains.

SMALL DOMAINS

As in the balanced case with N = −1, we first investigate the unfolding in smaller do-

mains whose vertical extent is either Lz = 4λc ≈ 9.93 (left set of columns in figure 6.7) or

Lz = 5λc ≈ 12.4 (right set of columns in figure 6.7), both for the simplicity of interpret-

ing the results and to determine how the branches bifurcating from the first pitchfork

bifurcation change under small variations to N. Regardless of the buoyancy ratio and

domain size, the branches containing states with a clockwise central roll (black in the

streamfunction plots in figure 6.7) extend to large amplitude as the L− branch (blue),

while those with an anticlockwise central roll extend to larger amplitudes as L+ (red).

Figure 6.7 indicates how the unfolding of the primary transcritical bifurcation varies

with both domain size and buoyancy ratio. In particular, when N = −0.9999, we find

that the branch of large-scale flow developing from Ra = 0 connects to the branch ini-

tially associated with the states containing weak clockwise rolls in the top left and bot-

tom right corners of the domain, i.e., L− when Lz = 4λc (figure 6.7(b)) and L+ when

Lz = 5λc (figure 6.7(e)). Such behaviour likely arises because the anticlockwise roll in-

clined downwards from the top right corner of the domain (or the symmetry-related

roll in the bottom left corner) reinforces the large-scale flow with the same sense of rota-

tion, while the weaker clockwise corner rolls form via viscous effects. Since the number
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Lz = 4λc Lz = 5λc

N
=

−
0
.9
9
9
9
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=

−
1
.0
0
0
1

L+

L−

L+

L−

L+

L−

L+

L−

Figure 6.7: Unfolding of the primary transcritical bifurcation in small domains of
length Lz = 4λc ≈ 9.93 (left set of panels) and Lz = 5λc ≈ 12.4 (right set of panels) for
N = −0.9999 (top row) and N = −1.0001 (bottom row). (a), (d), (g), (j) Bifurcation dia-
grams showing the vertical velocity of states at the point marked by black crosses in the
streamfunction plots against Rayleigh number for branches with N = −1 (dotted lines)
and either (a), (d) N = −0.9999 or (g), (j) N = −1.0001 (solid lines). The colours red,
blue and purple indicate L+, L− and branches of asymmetric states, respectively. The
streamfunction plots are shown at the marked points in the bifurcation diagrams. The
horizontal midline is shown using a red or blue dotted line to indicate whether the state
lies on L− (blue) or L+ (red). The contour values used were: [−10−3,−10−2,−10−1]
(grey); and [10−3, 10−2, 10−1] (black).
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of pairs of rolls in the eigenmode associated with the transcritical bifurcation when

N = −1 varies with the domain size, the branch containing states with these clockwise

corner rolls also changes and consequently so does the unfolding of the transcritical

bifurcation. The results when N = −1.0001 are analogous and we find that the branch

of large-scale flow developing from Ra = 0 now connects to the branch initially asso-

ciated with states containing weak anticlockwise rolls in the top left and bottom right

corners of the domain, i.e., L+ when Lz = 4λc (figure 6.7(h)) and L− when Lz = 5λc

(figure 6.7(k)).

In figure 6.2, we saw that when N = −1 the conduction state undergoes a pitchfork bi-

furcation prior to the transcritical bifurcation and the resulting branches (purple dotted

lines in figure 6.7) terminate at a pitchfork bifurcation on L+ (red) for both Lz ≈ 4λc and

Lz ≈ 5λc. Unlike the transcritical bifurcation considered above, this pitchfork bifurcation

does not unfold as the buoyancy ratio varies away from N = −1 because the large-scale

flow preserves the S∆ symmetry of the system [5]. Nevertheless, this bifurcation and

the bifurcating branches are affected both by the buoyancy ratio and the domain size, as

illustrated by the presence or absence of purple lines in figure 6.7.

Under small variations in N, the destabilising pitchfork bifurcation of the conduc-

tion state instead occurs on the branch that originates from Ra = 0 (i.e., L− (blue)

when Lz = 4λc, N > −1 or Lz = 5λc, N < −1 and L+ (red) when Lz = 4λc, N < −1

or Lz = 5λc, N > −1), but the bifurcating branches continue to terminate on L+ for both

domain sizes. This leads to short branch segments that either connect L− to L+ or con-

nect L+ to itself. The former connections persist as N is varied away from the balanced

case, as evidenced in figures 6.7(a) and (j). Whereas in the latter case, the two pitchfork

bifurcations approach each other on L+ and ultimately collide (at N ≈ −0.999902 when

Lz = 5λc or N ≈ −1.0009 when Lz = 4λc), so that the connections are not found in the

bifurcation diagrams presented in figures 6.7(d) and (g).
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N = −0.997

(a)

N = −0.999

(b)

N = −1

(c)

N = −1.001

(d)

N = −1.003

(e)

L+
2 L+

2 L−
2 L−

2

Figure 6.8: Unfolding of the primary bifurcation in a domain with Lz ≈ 29.8 for N
between (a) N = −0.997 and (e) N = −1.003. The branch segments shown include the
conduction state or large-scale flow (black), L− (blue), L+ (red) and the branch of two-
pulse states, L+

2 (red dashed) or L−2 (blue dashed), that connects to one of the convecton
branches.

LARGE DOMAINS

Since we are primarily interested in how convectons are affected by variations in the

buoyancy ratio, we proceed by determining the unfolding of the primary transcritical

bifurcation in a larger domain of Lz = 12λc ≈ 29.8, as this will indicate the origin of

these localised states. This unfolding is illustrated in figure 6.8, where we see similarities

to the unfolding in the smaller domain with Lz = 4λc ≈ 9.93 (figures 6.7(a) and(g)). In

particular, we find that the branch of large-scale flow originating from low Rayleigh

numbers connects to L− when N > −1 and to L+ when N < −1. As with the smaller

domains, the second convecton branch connects at small amplitude to the branch of

large-scale flow states following the primary transcritical bifurcation. However, this

behaviour is only clearly seen over a small range of Rayleigh numbers in figure 6.8 since

this branch segment proceeds to connect to a branch of two-pulse convectons after the

unfolding of the second transcritical bifurcation. Here, we find that L+ connects to L+
2

when N > −1, while L− connects to L−2 when N < −1. We should note that this result

is likely to be sensitive to the domain size, however.

Details of the unfolding are further seen in figure 6.9, which shows an enlargement of
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the bifurcation diagram for N = −0.999 (figure 6.8(b)), together with streamfunctions

of a small amplitude along each branch segment. As the branch of weak anticlockwise

base flow states (e.g., figure 6.9(b)) is followed towards larger Rayleigh numbers, the

single large roll breaks up into a series of weak counterrotating rolls with a clockwise

roll in the centre of the domain (figure 6.9(c)). The central rolls proceed to strengthen

along L−, while the outer rolls weaken and are replaced by a pair of weak anticlockwise

flows that extend vertically from the central rolls to either vertical end of the domain

(figure 6.9(d)).

Convectons on L+ at small amplitude assume a similar form with a central anticlockwise

roll being immediately surrounded by weak counterrotating rolls and then by a pair

of large anticlockwise rolls that fill the remainder of the domain (figure 6.9(e)). The

large outer rolls break up as the branch is followed towards states with lower kinetic

energy that originated from the conduction state (figure 6.9(f)). The central rolls weaken

during this period and continue to do so while other interior rolls strengthen to give

multi-pulse states on L+
2 as this branch turns back towards lower Rayleigh numbers

(figure 6.9(g)). The subsequent behaviour of this two-pulse convecton branch appears to

be sensitive to the domain size considered here since we find that the branch turns back

on itself and re-enters the parameter regime depicted in figure 6.9(a), before leaving by

following the branch segment associated with the second two-pulse convecton branch,

L−2 , (figure 6.9(h)). This process is associated with repositioning of rolls within the states

and occurs several times, as can be seen from the three saddle-nodes within the range

1590 < Ra < 1600 in figure 6.9. The branch finally exits this small-amplitude region and

snakes towards larger amplitude states at lower Rayleigh numbers following L−2 .

6.3.3 CONVECTONS WITH VARYING BUOYANCY RATIO

In these weakly unbalanced systems, the branches involved in the above unfolding (fig-

ure 6.8) proceed to undergo homoclinic snaking as they extend towards larger ampli-

tudes. This behaviour is illustrated in figure 6.10 for N = −0.999, where we see the

close resemblance of the snaking branches to those in the balanced system for N = −1
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6.9: (a) Extension of the bifurcation diagram for N = −0.999 in a domain
with Lz = 12λc ≈ 29.8 shown in figure 6.8(b). (b)–(h) Streamfunctions of the small-
amplitude profiles along the different branch segments. The contour values used were:
[−10−3,−10−2,−10−1] (grey); and [10−3, 10−2, 10−1] (black).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 6.10: Convecton branches and streamfunction profiles for N = −0.999, Pr = 1
and Le = 5. (a) and (g) Bifurcation diagram showing the convecton branches L+ (red)
and L− (blue) and a branch of two-pulse states (red dashed) that is terminated at small-
amplitude at the black dot. (b)–(f), (h)–(l) Streamfunctions of: (b)–(e) convectons at four
saddle nodes of L+ that are marked in (a); (f) the domain-filling state on L+ marked in
(a); (h)–(k) convectons at four saddle nodes of L− marked in (g); (l) the domain-filling
state on L− marked in (g). Contours are shown using linear (blue) and logarithmic (black
and grey) scales and take the values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1]
(black); [−0.2,−0.4,−0.6, ...] (blue).
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(figure 6.4). The strong central anticlockwise rolls in the convectons (figures 6.10(b)–(e),

6.10(h)–(k)) and the domain-filling states (figures 6.10(f), (l)) that lie on these branches

are also minimally affected by the small change to the buoyancy ratio.

The imbalance in the system can, however, be seen in the large, weak rolls that fill the

domain outside of the central rolls. Their origin is similar to the large-scale flow consid-

ered in section 6.3.1, in that they are driven by the horizontal density gradient imposed

by the boundary conditions. These rolls are sensitive to increases in the Rayleigh num-

ber, with each of them breaking up into smaller counterrotating rolls between successive

left and right saddle nodes (e.g., compare figures 6.10(d) and (e)) as they cannot over-

come the strengthening of the rolls that contribute to the front of the convecton with

increasing Rayleigh number. This breakup allows the pair of weak anticlockwise rolls

closest to the central rolls to strengthen between right and left saddle nodes (e.g., fig-

ures 6.10(c)–(d) and (i)–(j)), which increases the number of strong anticlockwise rolls by

two over each snaking oscillation.

The background rolls also strengthen as the buoyancy ratio varies further away from

N = −1 and the form of convectons undergo significant changes, particularly as N

is decreased into the solutally dominated regime N < −1. To explore these changes,

we tracked a four-roll convecton at Ra = 1350 from N = −1 into both the thermally

and solutally dominated regimes and present the streamfunctions of these states from

N = −0.98 to N = −1.2 in figure 6.11. The changes that the convectons exhibit differ

between regimes, which may be expected since the large-scale recirculating flow either

opposes the anticlockwise flow of the central convecton rolls when N < −1, or has the

same sense of circulation as these central rolls when N > −1. We will therefore consider

the two regimes separately.
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Upon increasing N into the thermally dominated regime, we find that the central con-

vecton rolls undergo similar changes to when the Rayleigh number was increased in the

balanced (figure 6.4) and weakly imbalanced (figure 6.10) regimes. Starting from the

balanced case N = −1 (third panel of figure 6.11) and increasing N, the weak clockwise

rolls that separate the four strong anticlockwise rolls weaken. These rolls addition-

ally narrow in the centre and develop a stagnation point by N = −0.98 (first panel),

which splits each clockwise roll into two smaller rolls and reduces the distance between

adjacent anticlockwise rolls. The other clockwise rolls that separate the four central

rolls from the background state (conduction state or large weak anticlockwise rolls) also

weaken with increasing N and become smaller so that, by N = −0.98, a single streamline

encircles one of the background rolls together with the adjacent anticlockwise convecton

roll on both sides of the domain.

The four-roll convecton at Ra = 1350 could not be tracked to N = −0.97. We instead

use the state found for N = −0.98 (first panel in figure 6.11) as an initial condition

for time-stepping to gain insight into why this steady localised state stops being found.

The temporal evolution is depicted in figure 6.12, where we observe two main changes

before the time-dependent state converges. Firstly, we notice that as the rolls in each

pair of weak central clockwise rolls separate onto their respective sidewall by t = 2

(figure 6.12(c)), a single streamline is able to extend across the entire domain and encircle

all of the anticlockwise rolls. Secondly, we find that the secondary anticlockwise rolls

at the ends of the domain strengthen over time to ultimately resemble the end rolls on

anticonvectons on branch A by t = 20 (figure 6.12(e)). This latter observation motivates

using anticonvectons in explaining why we cease finding convectons in the thermally

dominated regime in the following section.

Upon decreasing N into the solutally dominated regime from N = −1 (third panel of

figure 6.11), a pair of weak clockwise rolls develop and occupy the domain to either

side of the central convecton rolls (fourth panel of figure 6.11). Both these large outer

rolls and the weak clockwise rolls between strong anticlockwise rolls strengthen as N

decreases. The strengthening of the central clockwise rolls forces the adjacent strong
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(a) (b) (c) (d) (e)

Figure 6.12: Temporal evolution of four-roll convecton at Ra = 1350 when N = −0.97
using the convecton at Ra = 1350 and N = −0.98 (first panel of figure 6.11) as the
initial condition. (a) Energy-time plot for the temporal dynamics. (b)–(e) Stream-
functions of the states at (b) t = 0, (c) t = 2, (d) t = 6 and (e) t = 20. Contours are
shown using linear (blue) and logarithmic (black and grey) scales and take the values:
[−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue).

anticlockwise rolls to move further apart, which reduces the vertical extent of the outer-

most clockwise rolls. This process continues until N ≈ −1.13, when the state consists of

five strong clockwise rolls that are approximately uniform and separated by four anti-

clockwise rolls of comparable magnitude. The nine rolls maintain these positions as N

decreases to N = −1.2, despite the clockwise rolls continuing to strengthen. A similar

transition to domain-filling patterned states with alternating clockwise and anticlock-

wise rolls is also observed as N decreases into the solutally dominated regime starting

from convectons with different numbers of central rolls. However, the rates of these

transitions depend on the number of anticlockwise rolls as patterned states with more

(fewer) anticlockwise rolls are first identified at larger (smaller) values of the buoyancy

ratio.

Despite the state at Ra = 1350 changing from a localised state when N = −0.98 to a

domain-filling patterned state when N = −1.2, the four strong anticlockwise rolls main-

tain a similar amplitude throughout. This observation is quantified in figure 6.13, which

highlights how the total kinetic energy (black) of the steady states in figure 6.11 and
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Figure 6.13: Total kinetic energy (black) of the states shown in figure 6.11 from
N = −0.98 to N = −1.2, together with contributions from the clockwise flow (red) and
the anticlockwise flow (blue).

contributions from both clockwise (red) and anticlockwise flow (blue) vary with N. At

N = −0.98, the total kinetic energy (E ≈ 14.2) is dominated by the anticlockwise flow

of the four central rolls and the two background rolls, which contributes to 99.8% of the

total kinetic energy. The contribution from anticlockwise flow decreases to a minimum

of E ≈ 12.1 at N ≈ −1.1, which may be explained by the competition between anticlock-

wise rolls and the opposing sense of circulation that is driven by the horizontal density

gradient, which weakens the anticlockwise background flow for −0.98 > N > −1. The

contribution from anticlockwise flow proceeds to increase to E ≈ 13.1 at N = −1.2,

which likely arises from the shear between counterrotating rolls strengthening anti-

clockwise rolls. Meanwhile, we find that the clockwise flow strengthens monotonically

with decreasing N and forms the dominant sense of circulation for N 6 −1.17.

6.3.4 EFFECT OF ANTICONVECTON BRANCH ON CONVECTONS

The results of the previous section naturally lead to asking the question: why do we

stop finding convectons in the thermally dominated regime? The answer to this ques-
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(a) N = −1 (b) N = −0.99 (c) N = −0.975 (d) N = −0.95 (e) N = −0.93 (f) N = −0.89

Figure 6.14: The anticonvecton branch for: (a) N = −1, (b) N − 0.99, (c) N = −0.975,
(d) N = −0.95, (e) N = −0.93 and (f) N = −0.89. The anticonvecton pinning region is
shaded in light purple, while the convecton pinning region is hatched in blue when it
exists. The black arrow in (a) indicates the direction in which the anticonvecton branch
continues when N = −1 (cf. figure 6.5).

tion relates to how the convecton pinning region depends upon the structure of the

anticonvecton branch. This dependence is illustrated in figure 6.14, where the bifurca-

tion diagrams for selected N show the anticonvecton branch (black) and the pinning

region associated with its large-amplitude snaking (light purple), together with the con-

vecton pinning region (blue hatched). This figure shows that the convecton pinning

region, when it exists, is always bounded on the left by the lower edge of the anti-

convecton pinning region. In contrast, the right edge of the convecton pinning region

changes with increasing N, owing to the formation of a small-amplitude right saddle

node at N ≈ −0.9904, when the anticonvecton branch connects to the branch of large-

scale flow originating from Ra = 0, and its subsequent motion towards lower Rayleigh

numbers. Initially, the right edge of the convecton pinning region coincides with the

upper edge of the anticonvecton pinning region (figures 6.14(a) and (b)), but changes

to being bounded by the first right saddle node of the anticonvecton branch when this

saddle node is located within the anticonvecton pinning region (figure 6.14(c)). Con-

sequently, the convecton pinning region disappears (e.g., figures 6.14(d)–(f)) when this

right saddle node passes through the left edge of the anticonvecton pinning region.
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6.14(f)

6.14(e)

6.14(d)

6.14(c)

6.14(b)

6.14(a)

(A2) (A) (L)

Figure 6.15: Regions of (Ra, N) parameter space in which two-roll anticonvectons (A2),
snaking anticonvectons (A), shaded in light purple, and convectons (L), hatched in blue,
can be found. The boundaries between regions are given by: the first left and right sad-
dle nodes of the anticonvecton branch (black) and the pinning region of the snaking an-
ticonvectons (purple). Five codimension-two points where the boundaries intersect are
labelled and marked by the black circles. The red cross marks the primary bifurcation
of the conduction state when N = −1. The three panels on the right give representative
examples of the three types of states. Arrows indicate the values of N used to produce
the bifurcation diagrams in figure 6.14.
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Figure 6.15 summarises the above changes in (Ra, N) parameter space by tracking the

following over a range of N: the convecton pinning region (blue hatched), in which

convectons (L) exist; the anticonvecton pinning region (light purple), in which anticon-

vectons (A) exist; the first left saddle node of the anticonvecton branch and, when it

exists, the first right saddle node of the anticonvecton branch, which together bound

the region where two-roll anticonvectons (A2) exist. From this figure, we identify five

codimension-two points where saddle nodes corresponding to the boundaries either

originate (I), cross through each other (II) and (III) or collide and disappear (IV) and (V).

The qualitative structure of the bifurcation diagrams change near these points, as seen

in figure 6.14, and these changes will be discussed in the remainder of this section.

(I): CHANGES AT SMALL-AMPLITUDE

The small-amplitude structure of the bifurcation diagrams is the first to change as the

buoyancy ratio is increased into the thermally dominated regime. We find that the

behaviour changes from the unfolding discussed in figure 6.8, where the branch of large-

scale flow originating from the origin connects to L− before extending towards larger

amplitudes, to involve branches of states with weak anticlockwise rolls at both ends of

the domain. This occurs in several stages and involves intermediate branches of states

that we will not consider in detail. Hence, for simplicity, we focus on two aspects of

the small-amplitude reconnections around N ≈ −0.9904 (point (I) in figure 6.15): firstly,

how the anticonvecton branch connects to the branch of large-scale flow (figure 6.16)

and, secondly, which branch L− connects to instead (figure 6.17).

Figure 6.16 depicts how the lower sections of the anticonvecton branches change when N

is increased from N = −1 (figure 6.16(a)) to N = −0.99 (figure 6.16(e)). This branch seg-

ment undergoes a cusp bifurcation near where A (black) and Ã (pink) connect when

N ≈ −0.996, which leads to the two new saddle nodes seen in figure 6.16(c) when

N = −0.994. The right saddle node of this pair extends towards lower energies and

larger Rayleigh numbers as N increases and approaches the left saddle node that an in-

termediate branch (grey in figure 6.16(d)) undergoes before snaking towards larger am-
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(a) N = −1 (b) N = −0.996 (c) N = −0.994 (d) N = −0.99045 (e) N = −0.99

Figure 6.16: Bifurcation diagrams showing how the anticonvecton branch A (black)
disconnects from Ã (purple) and instead connects to the branch of base flow between
N = −1 and N = −0.99. Arrows indicate the direction in which the branches continue.
The purple vertical dashed lines indicate the limits of the anticonvecton pinning region.
The grey vertical dashed lines in (c)–(e) indicate the location of the lower right saddle
node of the anticonvecton branch.

plitudes, which is indicated by the upward-pointing grey arrow. The two saddle nodes

connect in a transcritical bifurcation around N ≈ −0.9904 and the two branches of anti-

convectons separate as this bifurcation unfolds. This results in the branch of large-scale

flow connecting to A when N = −0.99, while Ã connects with the intermediate branch

and continues towards larger amplitudes (figure 6.16(e)).

Other branches also extend towards smaller amplitudes as the buoyancy ratio in-

creases, including branches of hybrid convectons that consist of states containing central

rolls (like convectons) and an anticlockwise roll at either end of the domain (see fig-

ures 6.18(b.ii)–(b.v) and (c.ii)–(c.v) for examples). Figure 6.17 illustrates this behaviour

for the branch of even hybrid convectons L̃− (green dotted) and how this leads to the

branch connecting with L− (blue) by N = −0.99 (figure 6.17(e)). In the balanced sys-

tem with N = −1 (figure 6.17(a)), this branch of hybrid convectons snakes upwards in

both directions from the left saddle node at E ≈ 6, as indicated by the thick and thin

green dotted lines. As N increases, this lower left saddle node moves towards lower

energies and each of the adjacent branch segments undergoes a cusp bifurcation around

N ≈ −0.996, which leads to the additional saddle nodes seen on the lower part of L̃− by
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(a) N = −1 (b) N = −0.996 (c) N = −0.994 (d) N = −0.99045 (e) N = −0.99

Figure 6.17: Bifurcation diagrams showing how the convecton branch L− (blue) connects
to the branch of hybrid convectons L̃− (green dotted) between N = −1 and N = −0.99.
Arrows indicate the direction in which the branches continue. As in figure 6.16, the
purple vertical dashed lines indicate the limits of the anticonvecton pinning region,
while the grey vertical dashed lines in (c)–(e) indicate the location of the lower right
saddle node of the anticonvecton branch.

N = −0.994 (figure 6.17(c)). The newly formed right saddle nodes are located at similar

values of the Rayleigh number as the right saddle node that forms on the anticonvecton

branch in figure 6.16, as evidenced by the dashed vertical grey lines in both figures, and

this continues to be the case as N increases to N = −0.99045 (figure 6.17(d)). Meanwhile,

we find that L− disconnects from the branch of large-scale flow between N = −0.996 and

N = −0.994 and instead continues by snaking upwards (see blue arrows in figure 6.17).

Similarly to the intermediate branch previously discussed, L− exhibits a left saddle node

that approaches the right saddle node of L̃− when N = −0.99045 (figure 6.17(d)), before

they connect around N ≈ −0.9904. This leads to the convecton branch L− smoothly

connecting to the branch of even hybrid convectons L̃− by N = −0.99 (figure 6.17(e)).

The branch of odd hybrid convectons L̃+ exhibits analogous changes and connects to

L+ by N = −0.99.

Figure 6.18 depicts sections of the bifurcation diagrams and streamfunctions of states

along the branches for N = −0.99 after these reconnections have occurred and the

branch of anticonvectons connects to the branch of large-scale flow (top row), while

each branch of convectons connects to the corresponding branch of hybrid convec-
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(a) (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii)

(b) (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

(c) (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Figure 6.18: Bifurcation diagrams and streamfunctions for steady states when
N = −0.99. Top row: (a) Branch of anticonvectons A (black) and (i)–(xiii) selected pro-
files of anticonvectons. Middle row: (b) Branch of even convectons L− (blue) and even
hybrid convectons L̃− (green); (i) State at the saddle node where L− and L̃− join; States at
the first four saddle nodes of (ii)–(v) L− and (vi)–(ix) L̃− Bottom row: (b) Branch of odd
convectons L+ (red) and odd hybrid convectons L̃+ (orange); (i) State at the saddle node
where L+ and L̃+ join; States at the first four saddle nodes of (ii)–(v) L+ and (vi)–(ix) L̃+.
Contours are shown using linear (blue) and logarithmic (black and grey) scales and take
the values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...]
(blue).
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tons (bottom two rows). The initial behaviour of the anticonvecton branch is similar

to that previously seen when N = −0.9 (figure 6.6), as a domain-filling anticlockwise

flow develops across the domain and strengthens with increasing Rayleigh number (fig-

ures 6.18(a.i) and (a.ii)). This branch turns around at the right saddle node marked (iii),

where the state has a pair of secondary anticlockwise rolls at either end of the domain.

These rolls strengthen as the branch is followed towards the following left saddle node

marked (vi) and separate from the weak domain-filling flow as the small clockwise rolls,

first seen in (a.iii), strengthen and extend across the full horizontal extent of the domain

(figures 6.18(a.iii)–(a.vi)). The subsequent behaviour of this anticonvecton branch closely

resembles that when N = −1 (figure 6.5), where the anticonvectons extend by a pair of

strong anticlockwise rolls across each oscillation as the branch snakes upwards until the

domain has nearly filled (a.xiii). The main difference, however, is the presence of the

weak anticlockwise flow that fills the region between the two sets of stronger rolls.

As a result of the reconnection process illustrated in figure 6.17 and the corresponding

one for L+ and L̃+, we find that each branch of convectons (blue and red solid lines)

connects with the corresponding branch of hybrid convectons (green and orange dotted

lines) at a small-amplitude right saddle node, as shown in figures 6.18(b) and (c). Fig-

ures 6.18(b.i) and (c.i) depict the associated state, which we see contain either one (c.i) or

two (b.i) weak central anticlockwise roll(s) separated by a pair of weak clockwise rolls

from the larger anticlockwise rolls, which each contain a secondary anticlockwise end

roll with amplitude comparable to the central roll(s).

After these right saddle nodes, each of the convecton and hybrid convecton branches

proceed to snake upwards within the anticonvecton pinning region before finite do-

main effects become important at large amplitudes. During this upwards snaking pro-

cess, the central rolls of both types of states develop in similar ways (compare fig-

ures 6.18(b.ii)–(b.v) to (b.vi)–(b.ix) and (c.ii)–(c.v) to (c.vi)–(c.ix)). As the branches are

followed between successive left and right saddle nodes, the central anticlockwise rolls

strengthen and a secondary roll develops on the interior side of each of the large, weak

anticlockwise rolls. The central rolls proceed to weaken while the secondary rolls con-
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tinue to strengthen and disconnect from the background flow as each branch is followed

towards the following left saddle node. This process therefore increases the number of

central rolls by two over a single snaking oscillation in both types of states.

Differences between convectons and hybrid convectons, however, are observed by the

presence or absence of strong anticlockwise rolls located at either end of the domain.

Starting from the right saddle nodes where the corresponding branches meet ((i) in fig-

ures 6.18(b) and (c)) and heading towards lower Rayleigh numbers along either convec-

ton branch, the pair of anticlockwise end rolls seen in figures 6.18(b.i) and (c.i) weaken.

This leads to each of the large background rolls extending from the central rolls to one

end of the domain and the absence of stronger anticlockwise end rolls in convectons.

In contrast, as each hybrid convecton branch is followed from its small-amplitude right

saddle node, marked (i) in figures 6.18(b) and (c), towards lower Rayleigh numbers, the

secondary anticlockwise end rolls strengthen and separate from the large background

rolls, as seen in figures 6.18(b.vi) and (c.vi). The strength of these end rolls are governed

by the segment (iv)–(v) on the anticonvecton branch, as can be seen by comparing these

end rolls at the left saddle nodes ((b.vi), (b.viii), (c.vi) and (c.viii)) to (a.v) and those at

the right saddle nodes ((b.vii), (b.ix), (c.vii) and (c.ix)) to (a.iv). Thus, in contrast to the

central rolls of both convectons and hybrid convectons that strengthen (weaken) with

increasing (decreasing) Rayleigh number, the end rolls in the hybrid convectons weaken

(strengthen) with increasing (decreasing) Rayleigh number.

(II): FROM SNAKING TO ISOLAS

The snaking of the connected branches of convectons and hybrid convectons seen in

figure 6.18 persists until N ≈ −0.9866 (point (II) in figure 6.15), when the first right

saddle node of the anticonvecton branch (figure 6.18(a.iii)) coincides with the right edge

of the convecton and anticonvecton pinning regions. As this right saddle node passes

into the anticonvecton pinning region for larger values of the buoyancy ratio, the snaking

branches break up into a set of vertically stacked isolas that are bounded between this

saddle node and the left edge of the anticonvecton pinning region, as exemplified in
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figures 6.20(a) and (b). This is the same process that was termed ‘Snake death II: Isola

formation’ by Yulin and Champneys [194], who first observed it in a model of a discrete

optical cavity with detuning and a linear loss term. Champneys et al. [44] later presented

a theoretical argument explaining how such behaviour can arise from the unfolding of

a saddle-centre bifurcation when a fold in a branch of homogeneous states coincides

with an edge of the pinning region. This appears to also be the case here in the doubly

diffusive system, where the anticonvecton branch at small amplitude acts as the branch

of homogeneous states.

The manner in which the snaking branches break up into a set of vertically stacked

isolas can be understood by considering the unfolding of transcritical bifurcations that

occur between the convecton and hybrid convecton branches. Figure 6.19 depicts one

such example near the right saddle nodes associated with convectons and hybrid con-

vectons with four central rolls. The right saddle nodes of L− and L̃− approach as the

buoyancy ratio increases between N = −0.98664 (figure 6.19(a)) and N = −0.98663 (fig-

ure 6.19(b)), before connecting in a transcritical bifurcation between N = −0.98663 and

N = −0.98662 (figure 6.19(c)). As this bifurcation unfolds upon further increase of the

buoyancy ratio, the upper and lower branch segments of L− separate and respectively

connect to the upper and lower branch segments of L̃−, as seen in figures 6.19(c) and

(d). This leads to a pair of branches on which states transition between convectons and

hybrid convectons as the branches are traversed. While it has not been confirmed here,

it is likely that right saddle nodes associated with convectons with different number

of central rolls reconnect over a small range of buoyancy ratios, which would result in

an intermediate combination of isolas and snaking, similar to behaviour that Yulin and

Champneys [194] found.

Figures 6.20(a) and (b) present the bifurcation diagram for N = −0.975 after the breakup

process has finished and all convectons lie on one of the vertically stacked isolas. Each

isola is ‘C-shaped’ and most are bounded between the left edge of the anticonvecton

pinning region at Ra ≈ 1288 and the first right saddle node of the anticonvecton branch

at Ra ≈ 1314. We find that exceptions arise, however, both for the isolas containing
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(a) N = −0.98664 (b) N = −0.98663 (c) N = −0.98662 (d) N = −0.98661

Figure 6.19: Bifurcation diagrams showing the unfolding around a transcritical bifur-
cation between L− (blue solid) and L̃− (green dotted) at N ≈ −0.98662 (near (II) in
figure 6.15). The branch segments show convectons and hybrid convectons with four
central rolls close to the right edge of the pinning region.

convectons with one or two central rolls and those containing nearly domain-filling

states, which are found to lie within different ranges of Rayleigh numbers, but note that

this may be anticipated as the saddle nodes of the original snaking branches can differ

from the edges of the pinning region at both small and large amplitudes (see figure 6.18).

Figures 6.20(c)–(j) illustrate the typical manner in which the form of convectons changes

as a single isola is traversed. Starting at the lower right saddle node (c) and following the

lower branch segment (originally L−, blue) towards the following left saddle node, the

pair of outer central rolls strengthen, while the inner central rolls and end rolls weaken

(figures 6.20(c)–(e)). All six rolls of the convecton proceed to strengthen as this branch

segment is followed to the upper right saddle node (figures 6.20(e)–(g)). The remaining

two segments of the isola (green dotted) originated from the hybrid convecton branch,

L̃− and, as such, we see that the end rolls of the convectons are stronger on these branch

segments and have maximal strength at the left saddle node (i). Following these hybrid

branch segments from right saddle node (g) back to (c), we see how the central rolls vary

in the reverse order to that just described, with the four central rolls first weakening

towards the left saddle node (i). The outer pair of central rolls continue to weaken from

the left saddle node (i) towards the right saddle node (c), while the inner central rolls

strengthen again. This behaviour is expected as in figure 6.18 we previously saw that

the central rolls within a hybrid state varied over a single snaking oscillation in the same
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6.20: (a), (b) Bifurcation diagram for N = −0.975 showing the branch of anticon-
vectons (black) and stacked isolas of convectons (red/orange dotted and blue/green dot-
ted). (b) Magnification of the vertically stacked isolas. (c)–(j) Streamfunctions of selected
convectons along the isola with four central rolls. Contours are shown using linear (blue)
and logarithmic (black and grey) scales and take the values: [−10−3,−10−2,−10−1]
(grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue).

way as convecton rolls.

(III): END OF CONVECTONS

The first right saddle node of the anticonvecton branch continues towards lower

Rayleigh numbers as the buoyancy ratio increases and ultimately passes through the

left edge of the anticonvecton pinning region, as seen in figure 6.14. The isolas of

convectons are bounded by this saddle node and the left edge of the anticonvecton pin-

ning region, as evidenced in figure 6.21. Thus, as the buoyancy ratio increases between

N ≈ −0.9866 (II) and N ≈ −0.972 (III), the right saddle nodes of the isolas move to-

wards lower Rayleigh numbers. Meanwhile, the left saddle nodes only undergo small

changes in location, as seen in the left panel of figure 6.21. The isolas therefore become

smaller until they disappear around N ≈ −0.972 (III), when the first right saddle node

of the anticonvecton branch coincides with the left edge of the anticonvecton pinning

region. This behaviour explains why we were unable to track the four-roll convecton in

figure 6.11 to N = −0.97.
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Figure 6.21: Isolas of convectons with four central rolls as N increases to point (III)
in figure 6.15 showing N = −0.985 (black), N = −0.98 (blue), N = −0.975 (red) and
N = −0.9725 (purple). The faint solid lines present the anticonvecton branch at the
corresponding parameter values, while the vertical dashed lines mark the Rayleigh
numbers of the first right saddle node of each branch. The panel on the left shows
a magnification of the region near the left saddle nodes of the isolas.

(IV) AND (V): END OF ANTICONVECTONS

The snaking structure of the anticonvecton branch persists over a wider range of buoy-

ancy ratios; its existence, however, still depends upon there being competition be-

tween thermal and solutal buoyancy effects and we cease to find anticonvectons when

N > −0.91 (point (V) in figure 6.15).

The two-roll anticonvectons (A2) are the first anticonvectons to stop existing. This oc-

curs by the first right saddle node of the anticonvecton branch moving towards lower

Rayleigh numbers at a faster rate than the following left saddle node, as seen in fig-

ure 6.15. The two saddle nodes then coincide and disappear in a cusp bifurcation

around N ≈ −0.93 (point (IV)). Figure 6.22(a) depicts the anticonvecton branch for

N = −0.93, shortly after the cusp bifurcation, where we see that states on this branch in-

crease monotonically in both energy and Rayleigh number until the start of the snaking

around Ra ≈ 1281. This branch segment corresponds to the large-scale anticlockwise

flow strengthening and developing stronger secondary rolls at both ends of the domain

(figures 6.22(b)–(d)). Since these end rolls remain as secondary rolls of the domain-filling
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(a) N = −0.93 (b) (c) (d) (e) (f) (g) (h)

(i) N = −0.85 (j) (k) (l) (m) (n) (o) (p)

Figure 6.22: Anticonvecton branches and streamfunctions for selected states along the
branch when N = −0.93 (top row) and N = −0.85 (bottom row). These represent the be-
haviour either side of point (V) in figure 6.15, where the anticonvecton branch snakes for
N < −0.91 and does not snake for N > −0.91. Contours are shown using linear (blue)
and logarithmic (black and grey) scales and take the values: [−10−3,−10−2,−10−1]
(grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue).
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flow, rather than separating from the weaker flow, these states differ from the two-roll

anticonvectons (A2) illustrated in figure 6.15.

The anticonvecton pinning region becomes smaller as the buoyancy ratio increases, as

evidenced in figures 6.14 and 6.15. This continues until N ≈ −0.91 (point (V) in fig-

ure 6.15), when the anticonvecton branch stops snaking. This transition occurs via left

and right saddle nodes of the snaking branch disappearing in successive cusp bifurca-

tions, which is similar to how localised states in the quadratic-cubic Swift–Hohenberg

equation disappear in the approach to the codimension-two point where the criticality

of the primary bifurcation changes [37].

Figure 6.22 illustrates the differences in how states transition along the snaking anti-

convecton branch when N = −0.93 (top row) and how they transition along the non-

snaking branch when N = −0.85 (bottom row). In both cases, states first change by a

roll adjacent to each end wall strengthening and later by rolls nucleating and strength-

ening within the interior of the domain. When N = −0.93, this nucleation occurs pair-

wise inwards from the ends of the domain between successive left saddle nodes (fig-

ures 6.22(d)–(f)). This continues until a domain-filling ten-roll state is reached (fig-

ure 6.22(g)), whose rolls proceed to strengthen with increasing Rayleigh number (fig-

ure 6.22(h)). However, when N = −0.85, while we see initial strengthening of rolls

adjacent to the end rolls (figure 6.22(m)), further interior rolls proceed to strengthen in a

spatially modulated manner to reach an eleven-roll domain-filling state (figure 6.22(n)).

Again, the interior rolls strengthen with Rayleigh number to achieve nearly uniform

amplitude by Ra = 1500 (figures 6.22(o) and (p)).

A weak anticlockwise flow surrounds each of the domain-filling states in figure 6.22.

This flow strengthens with increasing N, as can be seen by comparing figures 6.22(h) and

(p), while the secondary interior rolls weaken. While we have not studied these states

further into the thermally dominated regime, we would expect the trend to continue

until a single domain-filling anticlockwise roll, driven primarily by thermal buoyancy

force, is achieved at these relatively low Rayleigh numbers.

220



CHAPTER 6. UNBALANCED BUOYANCY EFFECTS

6.4 DISCUSSION

In this chapter, we have considered how breaking the balance between opposing thermal

and solutal gradients affects the natural doubly diffusive convection within a closed

vertical cavity. These imbalanced systems do not admit the steady conduction state,

which is instead replaced at low Rayleigh numbers by a large-scale recirculating flow

that strengthens with both increasing Rayleigh number and variation of N away from

N = −1. The primary bifurcations of the conduction state, from which branches of

convectons bifurcate when N = −1, unfold as a result of this large-scale flow. These

small-amplitude changes are found to be the main structural differences between the

bifurcation diagrams for the balanced and weakly imbalanced systems.

Further differences developed as the buoyancy ratio increased into the thermally dom-

inated regime as anticlockwise rolls at the ends of the domain tend to strengthen. This

strengthening enabled the branch of anticonvectons to connect with the branch of large-

scale flow originating from Ra = 0 by N ≈ −0.9904. The subsequent positioning of

the first right saddle node of this branch was found to be critical both in understand-

ing why the snaking branches of convectons and hybrid convectons broke up into a

stack of isolas and when we ceased to find these isolas containing convectons. The

branches maintain an organised structure despite variations in the buoyancy ratio since

the centro-symmetry was preserved. This differs from related systems with a broken

symmetry, including [120, 131], where the structure of the snaking branches become

increasingly complex as the degree of symmetry breaking increases.

Anticonvectons persist over a wider range of buoyancy ratios with N > −1 than con-

vectons. We found their existence to be limited by a value of the buoyancy ratio for

which the anticonvecton branch stopped snaking. This separates states where interior

rolls grow successively inwards from the ends of the domain (with snaking), from those

where interior rolls strengthen simultaneously (without snaking). This resembles the

transition from successive to simultaneous roll formation found in laterally heated sta-

bly stratified systems of doubly diffusive convection, where Lee et al. [107] used exper-
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imental data to divide (RaT, RaS) parameter space into regimes corresponding to these

two types of behaviour together with stagnant and unicellular flows. They found that

the boundaries between regimes occurred at approximately constant buoyancy ratios

between N ≈ 10 and N ≈ 55, which Lee and Hyun [109] later validated numerically

and Dijkstra and Kranenborg [61] related to paths of bifurcation points. We should

note, however, that in these studies, the buoyancy ratio was defined using the initial

vertical solutal stratification for ∆C and hence we should not try to directly compare the

numerical values.

We obtained contrasting behaviour when the buoyancy ratio decreased into the solutally

dominated regime compared to increasing the buoyancy ratio into the thermally domi-

nated regime. Instead of convectons ceasing to exist, we found that convectons smoothly

transitioned into domain-filling patterned states consisting of alternating clockwise and

anticlockwise convection rolls. We have not yet considered these states in detail; how-

ever, investigating further details about these states, including where they are found and

the structure of the branches on which they lie could be considered in future work.
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7.1 OVERVIEW

Motivated by the wide variety of physical fluids that undergo doubly diffusive convec-

tion, the primary aim of this thesis was to determine how the four physical parame-

ters—the Rayleigh number (Ra), the Prandtl number (Pr), the Lewis number (Le) and

the buoyancy ratio (N)—affect properties of states in this system, including spatially

localised states known as convectons, and the structure of the branches on which they

lie.

We began by investigating the Prandtl and Lewis number dependence of natural dou-

bly diffusive convection in Chapter 4. This involved first performing a weakly nonlinear

analysis to determine the criticality of the primary bifurcation of the conduction state,

during which we showed that inertial effects, which are enhanced at low Prandtl num-

bers, increase the supercriticality of the bifurcation. We then numerically continued a

selection of both subcritical and supercritical primary branches towards larger ampli-

tudes. Of particular note is that we found that the supercritical branches exhibited an

‘S’-shaped structure, where large-amplitude steady convection states coexist with either

the stable conduction state or small-amplitude states. These states do not exhibit bista-

bility, however, as we showed that the large-amplitude states are unstable to drift at low

Prandtl numbers.

In Chapter 5, we considered how the coexistence between steady states allows convec-

tons in large-aspect-ratio domains, even when the primary bifurcation is supercritical.
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In particular, we focussed on understanding the transition from the typical subcritical

snaking behaviour at large Prandtl numbers [24] to a stack of disconnected branches of

convectons at low Prandtl numbers. This transition involved a number of complex steps,

including branches breaking up into isolas or disconnected branch segments, which we

interpreted, using phase-space representations of convecton rolls, as the inertial contri-

butions to the rolls change from being subdominant at high Prandtl numbers to becom-

ing significant at low Prandtl numbers.

In Chapter 6, we investigated the effects of varying the buoyancy ratio away from the

balanced case N = −1. Relaxing this condition introduces a horizontal density gradi-

ent from the imposed sidewall boundary conditions, which tends to drive anticlockwise

flows in thermally dominated regimes (N > −1) and clockwise flows in solutally dom-

inated regimes (N < −1). We found that this difference in preferred circulation leads

to contrasting behaviour in what happens to convectons as the buoyancy ratio is var-

ied into the two regimes. While convectons smoothly transitioned into domain-filling

patterned states consisting of counterrotating rolls in solutally dominated regimes, con-

vectons ceased to exist in sufficiently thermally dominated regimes, which we related

to the manner in which the snaking branch of anticonvectons changed structure with

increasing buoyancy ratio.

In summary, we were able to show that convectons persist over a range of parameter

values, including those for which the horizontally imposed thermal and solutal con-

centration gradients do not exactly balance. This robustness of convectons to changes

in parameter values suggests that it may not be infeasible to find evidence of localised

states within experiments performed in vertically extended domains, particularly since

experimentally relevant parameter values all lie within the regime in which the primary

bifurcation is subcritical (see figure 4.8), where coexistence between the stable conduc-

tion state and periodic convection states is predicted.

Our results also provide further insight into spatially localised states. Most notably, we

have demonstrated that natural doubly diffusive convection is a non-variational system

that admits localised states even when the primary bifurcation is supercritical. We found
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that the transition towards this behaviour from the typical snaking in the subcritical

regime was more complicated than in the variational Swift–Hohenberg equation (see

figure 3.10), which we attributed to the periodic state associated with localised states

changing when the physical parameters in the fluids system were varied. Thus, the

results presented in Chapter 5 may be of interest when studying other systems that

admit tristability.

Breaking the balance between thermal and solutal buoyancy contributions in Chap-

ter 6 allowed us to consider ways in which localised states are affected by non-trivial

background states. In thermally dominated systems, we saw that snaking branches of

convectons and hybrid convectons connected to form a vertical stack of C-shaped isolas

when a fold in the branch of weak background flow entered the pinning region. This

differs from similar previously observed transitions, which occurred when a fold in the

patterned branch entered the pinning region [44, 194].

7.2 DIRECTIONS FOR FURTHER RESEARCH

The results presented in this thesis suggest a number of potential future research direc-

tions, both to improve our understanding of localised states and fundamental properties

of doubly diffusive convection. We end by discussing two potential areas.

7.2.1 CONVECTON STABILITY AND TEMPORAL DYNAMICS

One important consideration that we have not discussed is the stability of the spatially

localised states that we identified in Chapters 5 and 6. Such an analysis could help de-

termine whether it would be possible to observe convectons experimentally and would

further help understand the temporal dynamics of the system at large Rayleigh num-

bers. Previous analyses of this kind have been undertaken by Beaume [9], who was

able to explain how the spatio-temporal chaos for supercritical Rayleigh numbers in

three-dimensional natural doubly diffusive convection [14] arises after undergoing twist
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(a) (b) (c)

Figure 7.1: Selected depinning behaviour starting from a two-roll convecton with (a)
Pr = 0.2 and Ra = 1650, (b) Pr = 0.12 and Ra = 1600 and (c) Pr = 0.12 and Ra = 1650.
The top row shows energy-time plots, while the bottom row shows space-time plots of
the convective amplitude, Aconv (7.1), where red indicates the centre of a roll and dark
blue represents the conduction state.

instabilities [12], and by Watanabe et al. [187], who determined the ultimate trajectory

of a time-dependent state from the underlying connections between stable and unstable

manifolds of steady localised states in binary fluid convection, and indicate the potential

value of such a study.

Bergeon and Knobloch [24] previously showed that the snaking secondary branches of

convectons for large Prandtl numbers and N = −1 exhibited similar stability properties

to the branches in the Swift–Hohenberg equation [37]: namely, that the branch seg-

ments stabilise (destabilise) near the left (right) saddle nodes. While we might expect

this behaviour to persist over a wide range of Lewis numbers and large Prandtl num-

bers when inertia is subdominant in the dynamics, the stability of convectons at lower

Prandtl numbers is less obvious. For example, they may exhibit oscillatory and chaotic

temporal behaviour as was found in similar systems of natural convection [91, 127] or

binary fluid convection [126] at low Prandtl numbers. Alternatively, we may find that,

like the primary branches of periodic states (cf. Chapter 4), the secondary branches of

convectons destabilise in a drift instability, which would lead to branches of localised

travelling pulses, similar to those found in related studies [120, 186, 187].

The drift instability of the primary branch will impact the temporal dynamics when the
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system is initialised with a localised state at a Rayleigh number that lies to the right of

the pinning region and allowed to evolve in time, in a process known as depinning. At

large Prandtl numbers, when the steady domain-filling periodic states are stable to drift,

pairs of rolls successively nucleate on the outside of existing convecton rolls until the do-

main is full and the time-dependent state converges on this stable state [24]. However,

convergence to a steady periodic state will not always be possible when these states

are unstable to drift and we would instead expect different dynamics. Figure 7.1 de-

picts some of the preliminary results from investigations into this depinning behaviour

by presenting energy-time plots on the top row, together with space-time plots of the

convective amplitude:

Aconv =

√∫ 1

0
w2dx, (7.1)

on the bottom row, for three sets of parameter values. These initial simulations have in-

dicated a variety of complex dynamics including: convergence to stable domain-filling

drifting states (figure 7.1(a)) when the drift instability occurs on the upper segment of

the corresponding primary branch; and convergence to periodic orbits (figure 7.1(b)) or

chaotic attractors (figure 7.1(c)) when the drift instabilities occur on lower segments of

the primary branches. Characterising parameter regimes in which we find each type

of depinning dynamics would help us to understand the combined impact of the drift

instability and localised states on the temporal dynamics of this system. Further, mod-

elling the results using a simple Swift–Hohenberg-like equation could prove insight-

ful into understanding temporal dynamics associated with other systems admitting lo-

calised states that undergo an instability on the primary branch.

A further avenue for future research concerns the temporal dynamics associated with

varying the buoyancy ratio. Previous studies on this matter have observed a range

of steady, periodic, quasi-periodic or chaotic behaviour [113, 114, 135, 162], but have

typically been limited to high Rayleigh numbers and within domains of small vertical

extent. We might therefore be interested in determining whether this range of complex

dynamics persists at lower Rayleigh numbers and whether they are affected, in any way,

by the presence of convectons or anticonvectons.
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7.2.2 DOUBLY DIFFUSIVE CONVECTION

The configuration of natural doubly diffusive convection that we considered in this

study—a two-dimensional domain with laterally imposed thermal and solutal concen-

tration gradients on the sidewalls—is highly idealised. Thus, a natural extension to

this research would be to extend the model by incorporating more physically realistic

aspects of the phenomenon.

Firstly, we would want to extend the results into a three-dimensional domain since

using a two-dimensional domain suppresses any transverse fluid motion that might

develop owing to buoyancy ratios with N 6= −1 [162, 193], low Prandtl numbers [42]

or rolls twisting in small- [22] or large- [12] aspect-ratio domains. Thus, in a three-

dimensional domain, we would anticipate finding a wider variety of localised states

and more complex temporal behaviour owing to these additional instabilities.

A second extension would be to consider the effects of the buoyancy force not being par-

allel to the driving thermal or solutal gradients. The first way that this could be achieved

would be to incline the domain, similarly to the studies [25, 137, 138, 172]. When this

inclination is combined with variations in the buoyancy ratio, we would expect that the

inclination will either enhance or oppose the base flow and we might observe similar

trends to those seen in Chapter 6, except with adjusted values of the Rayleigh number

and buoyancy ratio. This type of study would also allow us to make a connection be-

tween convectons that we have considered here with those found in a horizontal layer,

where thermal and solutal gradients are parallel with the buoyancy force [10]. Alter-

natively, we could consider lateral heating with stable solutal stratification, which has

previously been shown to exhibit a multiplicity of steady states, including some that are

localised, lying on a single branch with numerous saddle nodes [175, 176]. It could be of

interest to explore the connection between this second configuration and that considered

in Chapter 6 by introducing a homotopy between them.

Finally, while we were able to make progress in understanding the effects of breaking

the symmetry between the roles of temperature and solutal concentration by varying the
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buoyancy ratio in Chapter 6, the system maintained a centro-symmetry. This symmetry

preserves the snaking structure of branches of convectons, which raises the compelling

question about what the complexity of the branches is when this symmetry is broken.

Such an analysis could be achieved, for example, by using periodic boundary conditions

with N 6= −1, or adapting the sidewall boundary conditions like Lo Jacono et al. [120],

and would likely make this model system of localised states in natural doubly diffusive

convection more realistic.
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