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Abstract

Pulmonary hypertension (PH) covers a broad spectrum of diseases with a variety of
pathobiological mechanisms, phenotypes and aetiologies. The current clinical classification is
based on invasive haemodynamics and disease aetiology categorised by 5 groups, including
two treatable subtypes; pulmonary arterial hypertension (PAH) and chronic thromboembolic
pulmonary hypertension (CTEPH). Using microRNAs, small, non-coding molecules of RNA
previously shown to be dysregulated in PH, we investigate the molecular classification of PH
patients through machine learning models.

Initially, we applied four supervised machine learning methods to microRNA expression
profiles to distinguish between 64 patients with PAH and 43 disease and healthy controls.
Twenty microRNAs were identified as putative biomarkers by consensus from all four methods
and examined the targets of individual microRNAs. We identified two consensus microRNAs
(miR-636 and miR-187-5p) which predict PAH diagnosis with high accuracy (AUC 0.78 and
0.80 respectively).

We then applied these methods to a larger cohort of 1150 PH patients and 334 disease
controls, developing microRNA panels of nine miRNAs to distinguish both between PH
subtypes, and PH from disease controls. These panels compared favourably with the current
standard clinical biomarker, N-terminal pro-brain natriuretic peptide (NT-proBNP) in detecting
PH in a disease cohort, and outperformed NT-proBNP in identifying PAH and CTEPH from
other forms of PH. A microRNA signature for PAH, validated in the independent cohort,
appeared in patients diagnosed with PH-left heart disease (PH-LHD) and PH-lung, suggesting
overlapping pathology or misclassification. Unsupervised learning of microRNAs assigned to
a mixed cohort of PAH, PH-LHD and PH-lung patients identified six distinct molecular clusters
that displayed differences in survival, haemodynamics, NT-proBNP and 6-minute walking
distance, as well as different molecular pathway perturbation.

Circulating microRNAs offer greater insight into the heterogeneity of PH than clinical
phenotyping alone and may have potential in diagnosis and better targeting of treatments.
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Chapter 1: Introduction

1.1 Pulmonary Hypertension

Pulmonary Hypertension (PH) is a cardiopulmonary condition, characterised by a high mean
pulmonary arterial pressure (defined as 220 mm Hg as evaluated by right heart

catheterization), leading to failure of the right ventricle and premature death (Simonneau et al.

2019). Since 2004, the World Health Organisation (WHO) has categorised PH into five
subgroups, each with their own subcategories (Table 1.1); these remain the current clinical
classification guidelines (Simonneau et al. 2019).

Pulmonary arterial hypertension (PAH) is a subgroup of patients with PH, characterised
hemodynamically by the incidence of pre-capillary PH. PAH has a multifactorial pathobiology
including increased pulmonary vascular resistance caused by vasoconstriction and
thrombosis, endothelial cell dysfunction and vascular cell proliferation. PAH can be further
sub-categorised into four groups: Idiopathic PAH (IPAH), heritable PAH (HPAH), drug and
toxin induced, and PAH associated with other systemic diseases (APAH) (Simonneau et al.
2019). The pathogenesis of PAH involves the interplay of a predisposed genetic background,
and epigenetic state. Regardless of the cause, PH reduces life expectancy and impacts quality
of life.

Table 1.1: Updated clinical classification of pulmonary hypertension (PH). Adapted from
(Simonneau et al. 2019)
1 Pulmonary Arterial Hypertension (PAH)
1.1 Idiopathic PAH
1.2 Heritable PAH
1.3 Drug and toxin induced PAH
1.4 PAH associated with:
1.4.1 Connective tissue disease
1.4.2 HIV infection
1.4.3 Portal hypertension
1.4.4 Congenital heart disease
1.4.5 Schistosomiasis
1.5 PAH long-term responders to calcium channel blockers
1.6 PAH with overt features of venous/ capillaries (PVOD/PCH) involvement
1.7 Persistent PH of the newborn syndrome
2 PH due to left heart disease (PH-LHD)
2.1 PH due to heart failure with preserved LVEF
2.2 PH due to heart failure with reduced LVEF
2.3 Valvular heart disease
2.4 Congenital/acquired cardiovascular conditions leading to post capillary PH
3 PH due to lung disease and / or hypoxia (PH-lung)
3.1 Obstructive lung disease
3.2 Restrictive lung disease



3.3 Other lung disease with mixed restrictive/obstructive pattern
3.4 Hypoxia without lung disease
3.5 Developmental lung disease
4 PH due to pulmonary artery obstruction
4.1 Chronic thromboembolic PH
4.2 Other pulmonary artery obstructions
5 PH with unclear and/or multifactorial mechanisms
5.1 Haematological disorders
5.2 Systemic and metabolic disorders
5.3 Others
5.4 Complex congenital heart disease

1.1.1 Diagnosis of PH

A range of tests can be used to indicate a diagnosis of PH, including electrocardiogram (ECG),
chest X-rays, echocardiogram (‘echo’), lung function tests, ventilation-perfusion scanning,
high-resolution computed tomography (CT), MRI scanning or pulmonary angiography.
However, right heart catheterisation (RHC) is the ‘gold standard’ for diagnosing PH and is
essential to conclusively diagnose PAH (Rosenkranz and Preston 2015). ARHC is an invasive
procedure, involving a special catheter being guided to the right side of the heart, then passed
into the pulmonary artery, with pressure measurements taken along the way (Table 1.2).

Table 1.2: Haemodynamic definitions of pulmonary hypertension.

Pre / Post capillary PH | Classification mPAP PVR PAWP

Non-PH Non-PH < 20 mm Hg

Pre-capillary PH PAH >20mmHg [>3wuU < 15 mm Hg
PH-lung >20mmHg  [>3wU |<15mm Hg
CTEPH > 20 mm Hg >3 WU < 15 mm Hg
Miscellaneous >20mmHg [>3wuU < 15 mm Hg
PH

Isolated post-capillary PH-LHD >20mmHg |<3WU >15 mm Hg

PH
Miscellaneous >20mmHg |<3WU >15 mm Hg
PH

Combined pre- and post- | PH-LHD >20mmHg [>3wu > 15 mm Hg

capillary PH
Miscellaneous > 20 mm Hg >3 WU >15 mm Hg
PH




A recent study of PH patients in the UK found that for 48% of patients, it took over a year from
the onset of symptoms to a diagnosis (Armstrong et al. 2019), a result in keeping with previous
studies and seen worldwide. The typical journey a patient may go on can be seen in Figure
1.1, and highlights the roundabout patients can find themselves on along the way to diagnosis,
driven in part by the generic symptoms. Considering for example, the predominant symptom
of PAH is dyspnea on exertion. As PH is a life-limiting disease which deteriorates over time,
the faster a patient can be diagnosed and treatment started, the better the disease outcome.
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Figure 1.1: The clinical journey of a patient with PH, taken from symptom onset through to
living with the disease. Figure produced by PHA UK.

1.1.1.1 Risk assessment and progression monitoring in PH

There are a range of tools available to measure a patient's quality of life with PH, and to gauge
how a patient’'s symptoms affect their day-to-day life. Two such examples are the WHO
functional class, and the EmPHasis-10 questionnaire. EmPHasis-10 (EPH-10) questionnaire
is a tool developed to track how PH is affecting patient’s lives by measuring health-related
quality of life (Lewis et al. 2021).The WHO functional classes describe the severity of a
patient's PH symptoms. There are four classes:
e Class I: Symptom free when physically active or resting
e Class Il: No symptoms at rest, but normal activities may cause discomfort or shortness
of breath
e Class lll: Patient may be symptom free at rest, but normal chores around the house
are greatly limited due to shortness of breath or tiredness
e Class IV: Symptomatic at rest, and severe symptoms with activity

Walking tests are also used to evaluate functional exercise capacity and assess prognosis.
There are three commonly used exercises, the 6 minute walk test (6MWT), incremental shuttle
walk test (ISWT) and endurance shuttle walk test (ESWT), with all three found to be valid and
reliable (Singh et al. 2014). In the BMWT, patients walk as far as they can in 6 minutes along
a flat corridor, recording the distance in metres. In the ISWT, the participant must walk faster,
at a rate controlled by pre-recorded signals. The test continues until the participant cannot



keep up or can no longer continue, with a maximum duration of 20 mins. The ESWT is derived
from the ISWT, where patients walk as long as possible at a predetermined rate based on
performance in the ISWT. All three test measurements reflect treatment and rehabilitation of
patients.

The European Society of Cardiology (ESC) and the European Respiratory Society (ERS)
recommend the frequent use of risk assessment tools in PAH to inform treatment decisions
and potentially improve morbidity and mortality. The Registry to Evaluate Early and Long-Term
PAH Disease Management (REVEAL) risk calculator is a commonly used tool. The REVEAL
risk score has been shown to predict survival outcomes in PAH populations, as well as offering
sequential assessments. The recent version of this calculator, REVEAL 2.0, groups patients
into one of three risk groups: low, intermediate and high-risk. The REVEAL group takes
account of 12 variables; PAH subgroup, age and gender, comorbidities, WHO functional class,
vital signs, all-cause hospitalizations in the past 6 months, 6-minute walk test distance, BNP,
echocardiogram, pulmonary function test, and RHC findings (Benza et al. 2019)

1.1.2 Treatment in PH

Correctly diagnosing the sub-category of PH is especially important for patients with PAH or
CTEPH as there are targeted treatments available for patients with PAH, and a potentially
curable surgery as the gold standard of treatment for CTEPH patients. Treatments for PH-
LHD and PH-lung, where pulmonary hypertension is a secondary condition, consist of treating
the underlying disease. There is no standard treatment for Misc PH.

Aside from transplantation, there is no cure for PAH. However, a few medicines have been
approved to ease symptoms. These can be classed into prostacyclin analogues
(Epoprostenol, lloprost, Treprostinil, Beraprost), endothelin receptor antagonists (ERAs;
Bosentan, Macitentan, Ambrisentan), phosphodiesterase type 5 inhibitors (PDES; Sildenafil,
Tadalafil), and miscellaneous PH drugs (Riociguat) (Bazan and Fares 2015).

For CTEPH patients where an operation can be considered, a pulmonary endarterectomy
(PEA) surgery is considered the treatment of choice (Wilkens et al. 2018). However, surgery
is not an option for all patients; the thromboembolic obstruction may not be reachable through
surgery, or the patient may have a comorbidity which suggests surgery is too high a risk, or
patients may elect not to have the surgery. Additionally, up to one-third of patients who have
surgery may continue to have CTEPH following the procedure (Hoeper 2015). For these
groups of patients, current guidelines support the use of targeted therapies (Wilkens et al.
2018).

Medical management for CTEPH entails anticoagulants and diuretics, with continuing oxygen
therapy for patients with hypoxaemia. Anticoagulants are also recommended for life, even
following PEA (Galié et al. 2015). CTEPH patients with inoperable blockages as well as those
with enduring PH following a PEA have been the subject of several clinical trials looking at the
efficacy of PH-target medical therapy; however, Riociguat is the only PH drug licensed for use
in the UK.

PH is defined as a mean pulmonary arterial pressure (mPAP) > 20 mm Hg, compared with a
normal mPAP of 14 £ 3.3 mm Hg. The RHC also allows the PH classification to be divided into



pre-capillary (PAH, PH-lung, CTEPH and occasionally some Misc PH), with pulmonary
vascular resistance (PVR) = 3 wood units (WU) and pulmonary arterial wedge pressure
(PAWP) < 15 mm Hg, or post-capillary (PH-LHD and most Misc PH), where the PAWP is > 15
mm Hg.

1.2 Diagnostic Biomarkers

Biomarkers (an amalgamation of biological markers), can be described as ‘a defined
characteristic that is measured as an indicator of normal biological processes, pathogenic
processes, or biological responses to an exposure or intervention, including therapeutic
interventions.” (FDA-NIH Biomarker Working Group 2016). A further subcategory of
biomarkers, are diagnostic biomarkers, ‘used to detect or confirm presence of a disease or
condition of interest or to identify individuals with a subtype of the disease.” (FDA-NIH
Biomarker Working Group 2016)

As human technologies have advanced, biomarkers have become more specific and reliable.
Medical signs such as the pulse, and taste of urine have been used for thousands of years. In
more recent times, the term biomarker tends to refer to certain molecules, such as proteins,
detected across various bodily fluids, generally detected, and quantified under laboratory
conditions. Blood based biomarkers have been detected in a range of diseases, for example
including cardiovascular biomarkers in atrial fibrillation (Chua et al. 2019), proteins for tracking
disease progression in Parkinson’s Disease (Kitamura et al. 2018). Biomarkers come in a wide
variety of molecules, including proteins, hormones, and enzymes.

Biomarkers can play a role in both the diagnosis and prognosis of disease. For example,
troponin, a protein discovered in 1965 is used for the diagnosis of myocardial infarction, and
the prostate-specific antigen (PSA) can be used for prostate cancer screening. Low-density
lipoprotein (LDL) levels can be checked when cholesterol-lowering drugs are used, where it
performs a role as both a monitoring biomarker and a prognostic biomarker. Patients with
elevated LDL cholesterol are at a higher risk of both death or severe event and higher risk of
developing atherosclerosis. Another example of biomarkers as monitors are CD4 antigen
counts which are used in the monitoring of HIV infections.

As the shift away from the traditional one-size-fits-all approach continues towards precision
medicine, there is an opportunity for biomarkers to play a key role in diagnostics. However, as
the field of personalised medicine expands, new and accurate biomarkers must be
determined. An ideal biomarker must fulfil three particular criteria. Firstly, it must be detected
or measured through minimally invasive procedures so that it can be easily procured.
Secondly, it is ideally detectable before the onset of clinical symptoms and will fluctuate
depending on disease progression or treatment response. Finally, the biomarker should be
adaptable from research to the clinical environment (Condrat et al. 2020).

There are both advantages and drawbacks to different biomarker types. For example, proteins
have been found across a spectrum of biological fluids such as cerebrospinal fluid, blood and
urine. They have already successfully been used as biomarkers, for example in Alzheimer’s
disease, a highly sensitive assay was developed to identify and quantify trace quantities of the
proteins beta amyloid peptide, tau, and phosphorylated tau, accepted as potential biomarkers



for diagnosis (Chan et al. 2017). However, the cost of identifying novel proteins as biomarkers
has proven to be a costly and time-consuming process, owing to the complex structures of
proteins, which can include post-translational modifications. Additionally, there are low
numbers of clinically significant proteins, and they can be tricky to quantify (Condrat et al.
2020).

1.2.1 Standard biomarkers for PH

A group of hormones principally secreted from the heart, kidney and brain which can result in
vasodilation and natriuresis are known as natriuretic peptides. Brain-type natriuretic peptide
(BNP) and its N-terminal fragment (NT-proBNP) are examples of these. BNP was initially
described in 1988 after it was isolated from a porcine brain, however, it was soon discovered
to be a cardiac hormone as it originates primarily from the heart (Weber and Hamm 2006).

NT-proBNP and BNP are released from the heart in response to three important
characteristics of cardiac distress; myocardial hypoxia, myocyte stretch, and endocrine
activation. Both BNP and NT-proBNP have been shown to correlate with a range of
haemodynamic metrics linked to survival outcomes such as mPAP, PVR and RAP (Williams
et al. 2006). Additionally, higher BNP levels in blood plasma have been related to worse
survival outcomes in PAH patients. Subsequent falls in BNP levels correspond to the
commencement of treatments then associated with improved mortality rates.

A hypothetical ideal biomarker to identify early disease or treatment response has yet to
materialise for clinical use in PH (Hewes et al. 2020). At present, BNP and NT-proBNP, remain
the only blood-based biomarkers which guidelines recommend for routine clinical use in PH
(Galie et al. 2015). However, there are several drawbacks to using NT-proBNP as a biomarker
for PH. Firstly, NT-proBNP is not a PH specific biomarker but rather a marker of myocardial
stress. Additionally, NT-proBNP levels may be affected by a range of different factors outside
of the prevailing disease (Table 1.3).

The DETECT algorithm includes the biomarker NT-proBNP as part of the screening tool for
PAH in patients with systemic sclerosis (SSc). PAH-SSc is a common form of associated
PAH, with nearly one in five patients with SSc having associated PAH (Coghlan et al. 2014).



Table 1.3: Factors Influencing Natriuretic Peptide Levels Independent of Heart Failure.
Reproduced with permission from (Brunner-La Rocca and Sanders-van Wijk 2019).

Increase in natriuretic peptides

Cardiac

e Acute coronary syndrome

e Atrial fibrillation

e Valvular heart disease

e Cardiomyopathies

e Myocarditis

e Cardioversion

e Left ventricular hypertrophy

Noncardiac

o Age

e Female gender

e Renal impairment

e Pulmonary embolism

e Systemic bacterial infections (e.g. pneumonia, sepsis)

e Obstructive sleep apnea

e Critical lliness

e Severe burns

e Cancer chemotherapy

e Toxic and metabolic insults

Decrease in natriuretic peptides

e Obesity

1.3 Bioinformatic solutions for clinical diagnostics

Bioinformatics is an interdisciplinary field of biology and computational science, focusing on
applying extracting and analysing information from biomolecules using computational
methods. Proportions of bioinformatic analysis fall within the field of artificial intelligence (Al),
the aim of which is to imitate human cognitive functions. Powered by a snowballing
accumulation of healthcare and clinical data, as well as advances in analytic techniques, a
move towards Al assistance is happening in healthcare. If directed by the right clinical



questions, powerful Al techniques can reveal pertinent clinical information from within
substantial volumes of data, which in turn can aid the clinical decision process (Tekkesin
2019).

The growing accrual of healthcare data has gone hand in hand with an increase in our
understanding of genetics and genomics. Genetics is the study of genes, along with the part
they play in inheritance, and genomics, the study of a person’s genome and the way it interacts
with the greater environment. With greater understanding has come the launch of precision
medicine, starting with a focus on the fields of genetics and genomics, driven in part by the
falling costs in time and money to conduct genetic testing. Precision medicine aims to improve
personalised care by developing diagnostic and prognostic methods which take into account
individual variability.

Clinical management is increasingly incorporating multigene messenger ribonucleic acid
(mRNA) signature-based assays, with broad clinical applications in prognosis and diagnosis.
Genomic diagnostics are used widely in cancer in order to improve decisions on treatment
choices in the clinic, where patients presenting with similar symptoms but differing genomic
backgrounds may be treated differently. For example, the drug Trastuzumab is only effective
in tumours where the HER2 gene has been overexpressed, so a patient’s tumour can be
checked against a panel to determine if it could be used (Mao et al. 2021). Another example,
AlloMap is a panel of 20 genes, using ribonucleic acid (RNA) gene expression to identify
patients with lower probabilities of heart transplant rejection, which can be taken from a non-
invasive blood test and has been in clinical use since 2005 (Starling et al. 2006). Another
example is the Afirma gene expression classifier, which reduces unnecessary thyroid
surgeries compared to management without gene expression classifier testing (Chudova et
al. 2010).

1.4 Machine learning

There are several advantages to using Al within the medical field, which have been extensively
discussed (Tekkesin 2019; Murdoch and Detsky 2013). Machine learning (ML) approaches
assist in the push for advances in the expansion of the wider Al field. The relationship between
Al and ML can be seen in Figure 1.2. With the expansion of big data in the 21st century, the
fields of ML and data science have exploded. The methods developed in these fields provide
conceivable enhancements to both medical research as well as clinical care.



Artificial Intelligence

Figure 1.2: Relationship between artificial intelligence, machine learning and machine
learning subsets.

Two particular areas of the medical field which might find the use of ML methods
advantageous are diagnosis and prognosis. ML algorithms have recently been successfully
used to classify patients with breast cancer into triple negative and non-triple negative patients
using gene expression data (Wu and Hicks 2021), and to predict the long term mortality risk
in transcatheter aortic valve implantation (TAVI) patients (Wu and Hicks 2021; Penso et al.
2021). In this thesis | explore the application of ML to biomarker discovery in pulmonary
hypertension (PH).

Machine learning can be defined as ‘computational methods using experience to improve
performance or to make accurate predictions’ (Mohri, Rostamizadeh, and Talwalkar 2012).
ML is one of the most frequently utilised forms of Al, and can largely take one of four different
forms: supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning.

ML methods have been effectively used on a widespread assortment of genomics data sets,
overcoming the challenges of processing large dataset sizes and complex data with linear ML
models or traditional statistical methods.

1.4.1 Unsupervised machine learning

The aim of unsupervised ML is to discover previously unknown patterns in data. It is applied
without knowledge of the outcome variables. Unsupervised ML cannot be applied directly to
regression or classification problems because the values for the output data are unknown.
Unsupervised learning is best applied to exploring the underlying data structure instead. There
are two main types of unsupervised learning applications; clustering and association mining.
In clustering, objects are grouped together so that objects with the most similarities are in a
group, and those objects have fewer similarities with the objects in another group.
Commonalities between data objects are then used to categorise new objects. Association
mining identifies sets of objects that frequently together occur in the data. Three common
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methods in unsupervised clustering are k-means, hierarchical clustering, and spectral
clustering, explained in brief below.

K-means divides n points into k clusters, using the distance between points as the divisor so
that points with similar characteristics are clustered together. Initially, k points are randomly
assigned as centroids. For all of the other points, the distance between each point and the
centroids are measured, and the point assigned to whichever centroid is closer. Next, the
central point for the clusters is determined, and the centroid repositioned to that point. The
distances are then recalculated, using the new point as the centroid. The distance calculation
and subsequent relocation steps are continued until the centroid points do not require
repositioning and the clusters are stable.

Hierarchical clustering begins with each data point forming a cluster. The distance between
each cluster is computed, and then the clusters with the shortest distance between them are
combined to form a new cluster. Once a new cluster has been formed, the distances are again
computed and the next two closest clusters are combined into a new cluster. This continues
until all points have been combined into one large cluster containing all data points, and the
clusters can be represented in a dendogram.

Spectral clustering clusters points based on how connected the points are. This can be done
by constructing a distance matrix for the points, then calculating the Laplacian matrix. Using.
The eigenvectors are then converted to form a matrix, which is normalised and used for
clustering.

1.4.2 Supervised machine learning

Supervised learning involves providing the machine learning algorithm with labelled data. This
is data from a known dataset which incorporates the required inputs and outputs, so that the
algorithm can find a method to determine how to define both. The algorithm learns from the
inputted observations and then identifies different patterns within the data, as well as making
predictions based on the correct answers to the problem. Supervised learning can broadly be
sub-categorised into classification tasks, regression tasks and forecasting.

1.4.2.1 Classifiers

One of the sub-categories of supervised learning is classification. In these types of tasks, the
machine learning algorithm must use labelled values to draw conclusions, to determine the
correct label for new observations. The following are common machine classifiers.

Decision trees

A simple non-parametric supervised machine learning method for classification is a decision
tree. Decision trees are built from two different components: nodes and branches. Decision
trees are sequential. At a decision node, an individual feature is assessed, and the
observations split into two, mutually exclusive and collectively exhaustive decision branches.
These decision nodes are places where a choice must be completed. The final result of
combining these decisions and events are terminal nodes, found at the end of a branch.
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1. Begin the tree with the best attribute in the dataset, this is the root of the tree.

2. Partition the training set into subsets, such that each subset has the same value for
an attribute.

3. Repeat steps 1 and 2 on each subset until the class label (the leaf node) is found for
each branch of the tree.

These trees can be built recursively in R using the rpart package. The training data is
recursively split using the features which work best for the classification task, as measured by
a chosen metric, such as Gini index or entropy. This allows for clear indications of which
attribute should be at the root, and subsequent levels of the tree. The Gini Index calculates
the probability of a specific feature that is wrongly classified when randomly selected. If all
elements are connected with a single class, then the Gini Index is considered pure (Therneau
and Atkinson 2018). Entropy is the measure of randomness or impurity within the data.

Random Forest

A method which builds on these decision trees is Random Forest. Random forest has
previously successfully been used to diagnose PH from magnetic resonance imaging data
(Lungu et al. 2016). As the name suggests, random forest models consist of large numbers of
separate decision trees operating together. Each tree selects a class prediction, and the class
with the most votes across the random forest becomes the model's prediction. The steps can
be outlined as follows:

Randomly select “k” features from total “m” features, where k <m

Construct a decision tree for the selected features

Build the forest by repeating steps 1 and 2 to create ‘n’ number of trees

To use random forest as a classifier, use the each randomly created decision tree to
predict and store the outcome from each tree

5. Calculate the votes for each predicted target and take the target with the highest
number of votes as the final prediction.

N =

Each tree will have a random selection of variables, so each tree is different. As random forests
do not consider all features, dimensionality is less of a problem, additionally, as each tree is
created independently, code can be parallelised to speed up computational time.

The random forest classification can be complemented with the Boruta algorithm. Boruta is an
all-relevant feature selection wrapper algorithm.

1. Firstly, shuffled copies of all features (known as shadow features) are added to the
data set to create randomness

2. Arandom forest classifier is trained on the extended data set, with a feature importance
measure (Mean Decrease Accuracy as default) applied to evaluate the importance of
each feature. The higher the measure, the more important the feature.

3. At each iteration, each feature is checked to see if it has a higher Z score than the
maximum Z score of its shadow features. Alternatively, this can be thought of as testing
to see if the feature importance score is more than the highest of its shadow features.

4. Features which are consistently deemed unimportant are removed

5. The algorithm stops either when all features have been confirmed or rejected, or when
a specified limit of random forest runs is reached
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6. The selected features can then be fed into the random forest classifier.

Extreme gradient boosting

Another method which builds on decision trees is the gradient boosting method XGBoost,
which stands for eXtreme Gradient BOOSting. Boosting is an ensemble method, where
several predictions from different models are combined into one. XGBoost is also an example
of ensemble learning, combining the predictive power from multiple learners. Decision trees
are again built, but here they are built successively so that each tree aims to shrink the errors
of the preceding tree or trees. The residual errors are updated with each tree, so that the tree
following in the series is learning from an updated version of residuals. The base learner in
XGBoost is the weak learner decision tree. As in a random forest model, combining these
weak learners results in a stronger learning model, with smaller bias and variance (T. Chen
and Guestrin 2016). XGBoost has previously been utilised to develop a screening algorithm
to identify patients at high risk of IPAH using routinely collected clinical data (Lungu et al. 2016;
Kiely et al. 2019).

Least Absolute Shrinkage and Selection Operator

Least Absolute Shrinkage and Selection Operator (LASSO) is a regularisation technique for
estimating generalised linear models (GLM), and is a modified version of linear regression.
The linear regression equation can be expressed as Equation 1.

y = a + Bix1 + Baxy, + Pzxz+ ...+ Brx, (Equation 1)
Where:
y is the target variable
a is the intercept
B1, B2, B3, ---, Bn are the coefficients
X1, X2,X3,..., X, are the features

The parameters a and § are selected through the Ordinary least squares (OLS) method, which
minimises the sum of squares of residuals, selecting coefficients for each variable minimising
a loss function (Equation 2). Linear regression is not robust to outliers. Another drawback is
overfitting because all predictors are considered. LASSO, ridge, and elastic net models are
examples of regularised regression, which helps solve the problem of overfitting.

L = X (Yi-Yi)? (Equation 2)
Where:
L is the loss function
Yi are the predicted values
Yi are the actual values

LASSO assigns a penalty, A, to coefficients in the linear model (Equation 3). This penalty
reduces the value of many coefficients to O.

L =2X{i-Yi)? + AZ|B] (Equation 3)
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LASSO models have previously been used to develop diagnostic models for example using
an RNA-seq dataset to classify patients with idiopathic and heritable PAH from healthy
controls (Rhodes et al. 2020).

Support Vector Machine (SVM)

SVMs are generated by creating a hyperplane between two classes that allows for the
prediction of labels from one (or more) vectors. This decision boundary is orientated by
maximising the distance from the closest data point for each class. These nearest points in
turn are termed support vectors. Some advantages of SVM are the regularisation capabilities
of the model, which reduce the risks of over-fitting. SVMs are also very stable to small changes
in the data and can handle non-linear data efficiently. However, SVMs are also very complex
algorithms that require a lot of memory to compute and are very computationally expensive.
They are not easily interpreted and require scaling of variables before an SVM model can be
applied.

K-Nearest Neighbour (KNN)

The KNN algorithm works under the assumption that things which exist in close proximity to
each other are analogous. KNN utilises this idea of similarity (or distance) by calculating the
distance between points on a graph. KNN is a ‘lazy learner’; there is no training period, and
no functions are derived from the training data. The algorithm only learns once it makes a
prediction, so can be calculated very rapidly. This has the associated advantage that new data
can be added effortlessly, without affecting the accuracy. Finally, KNN is very easy to use as
there are only two parameters (the value of K, and the distance function). Conversely, KNNs
do not work well with large datasets, where the computational cost rises, as well as reducing
model performance and speed. Similarly, KNNs do not perform well in high dimensional data.
They are also sensitive to missing values, outliers and noise.

Comparing classification models

Deep learning techniques such as XGBoost present a specific challenge - although they are
often high performing models, they are far less interpretable, often referred to as ‘black box'.
For the end user, these complex interactions between variables can be difficult to understand.
Understanding this trade-off between accuracy and interpretability (Figure 1.3) is essential
when considering the most appropriate classification model.
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Figure 1.3: The accuracy versus interpretability trade-off when selecting a classification
method

Several tools for comparing classifications can be used to help compare the performance of
different models. Some of these use the binary measures of whether a subject is correctly
classified. Using the example of classifying subjects with PAH vs healthy controls (HC) as an
example, we can define:

e True positive (TP) - a patient with PAH is classified as having PAH

e True negative (TN) - a HC is classified as a HC

e False positive (FP) - a HC is incorrectly classified as having PAH

e False negative (FN) - a patient with PAH is incorrectly classified as a HC

With these definitions, we can further define performance metrics:

Specificity = TN / (TN + FP)

Sensitivity (aka Recall) = TP / (TP + FN)

Negative predicted value (NPV) = TN /(TN + FN)

Positive predictive value (PPV, aka Precision) = TP / (TP + FP)

Correct classification rate (aka accuracy) = (TP + TN) / (TP + TN + FP + FN)
Area under the receiver operator characteristic (ROC) curve (AUC); the
confidence interval calculated using the method by Delong et al (E. R.
DelLong, DeLong, and Clarke-Pearson 1988).

o O O O O ©O

Diagnostic testing is a vital element in evidence-based patient care. Clinicians must weigh the
risks and benefits of the test, as well as the diagnostic accuracy when deciding whether or not
to use a diagnostic test. A high sensitivity is important where the test is used to identify a
serious but treatable disease, for example cervical cancer. The cervical screening program is
highly sensitive, so very few cases are missed; however it is not particularly specific — a high
proportion of women with a positive smear are eventually found to have no underlying
pathology.

For many clinical models, the sensitivity and NPV are the important metrics. For example, the
Afirma test which uses an SVM classifier on mRNA expression data to reduce unnecessary
thyroid surgeries must have a high sensitivity and a high NPV (Chudova et al. 2010). These
metrics are again important in the PAM50 assay which uses 50 genes to create a risk model
using a multivariate Cox model using ridge regression fit for breast cancer subtypes (Parker
et al. 2009).



15

1.4.3 Feature selection

To reduce the computational burden of modelling, and or to improve the model’s performance,
the number of input variables used within a predictive model can be reduced. This is known
as feature selection (Cai et al. 2018), or dimension reduction. The aim is to derive a subset of
features from the original feature set, which retains the relevant features of the dataset.
Feature selection has been successfully used to improve the performance of transcriptomic
signatures in a range of classification problems, for example identifying a gene signature from
RNA-seq data for malignant prostate cancer (Alkhateeb et al. 2019), as well as a part of a
repeated cross-validated feature selection process to generate a 10 gene signature for
paediatric sepsis mortality (Abbas and El-Manzalawy 2020).

The use of feature selection has several benefits. Firstly, it can speed up the training time for
ML algorithms. Once the algorithm has been trained, the complexity is reduced due to the
smaller number of variables. This can also help reduce overfitting and improve the overall
accuracy of a model, provided the key important variables are selected.

1.4.4 Dealing with missing data

Missing data is a recurring problem across many fields of research (Raghunathan 2004), with
the danger in leaving these missing data untreated established in 2002 (Schafer and Graham
2002). As with most statistical methods, most ML models require the training set to be
complete, with no missing features. In order to perform statistical inference where data are
missing, the missing data mechanism must be identified. Missing data can be classified into
three categories relating to why the data are missing: missing completely at random (MCAR),
missing at random (MAR) and missing not at random (MNAR). When the data are MCAR,
missing data are independent of both the observed and unobserved data (Little and Rubin
2019). In MAR, the data which are missing are systematically related to the observed but not
the unobserved data (Little and Rubin 2019). When the data are MNAR, the missing data are
systematically related to the unobserved data. It is impossible to distinguish between MAR
and MNAR methods.

In medical literature, missing data is a common occurrence (Austin et al. 2021). The most
common approach for dealing with this problem in clinical research is to omit participants with
missing values. However this can have a large impact on analysis, potentially leading to
inappropriate conclusions (J. G. Ibrahim, Chu, and Chen 2012; Stavseth, Clausen, and
Raislien 2019; Jakobsen et al. 2017). This form of analysis is known as complete case analysis
(CCA).

Single imputation is another frequently used method, where missing values are replaced using
a particular rule. For example, the mean value for the variable, or to use the last observation.
Single imputation assumptions are often unrealistic and biased, and therefore should be
avoided in most instances.

Multiple imputation (Ml) is a commonly used method for tackling missing data, building on
single imputation. Multiple reasonable values for a particular variable are imputed for every
subject without a data point for that variable in MI, with the outcome variable included in the
imputation (Moons et al. 2006). As a result, multiple complete data sets are created. The
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results of statistical analyses carried out across each of these complete datasets are
combined, and the pooled results assessed (Austin et al. 2021).

However, Ml is computationally intensive, and will always be at best an approximation of the
true value. The process is often inaccurate where there are high proportions of missing values,
large numbers of variables, or too few observations (Sterne et al. 2009).

1.4.4.1 Multiple imputation using multivariate imputation by chained equations

Multiple imputation using multivariate imputation by chained equations (MICE) is a popular Ml
approach, the steps of which are summarised in Table 1.4.

Table 1.4: Multivariate imputation by chained equations (MICE) algorithm for multiple
imputation.
1. For each of the k variables missing data, select an imputation model, e.g. regression.

2. Initially replace the missing values at random by selecting from the observed values
for that variable. Alternatively, use another method, such as the mean of the present
values to replace missing values. Correlations are reduced but imputations can now
take account of all available data.

3. Remove the placeholder values for one variable with missing data:
a. Model the observed values using the other variables using the method
selected in 1).
b. Randomly perturb the estimated regression coefficients in order to reflect the
uncertainty in imputed values
c. Use the model fitted in (a) to with perturbed coefficients to predict the missing
values

4. Execute step 3 for each variable missing data.

5. Cycle through steps 3 and 4 (forming one cycle of the imputation process which
creates one imputed data set) your chosen number of times (5 - 20 cycles
suggested).

6. Create M imputed data sets by repeating steps 2-5 M times and updating the
imputations each time.

1.5 MicroRNAs

MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in
gene expression regulation and affect a range of biological processes (O’Brien et al. 2018).
The first miRNA was discovered in 1993 by the Ambros group (Lee, Feinbaum, and Ambros
1993). The majority of miRNAs have individual promoters and are transcribed by RNA
polymerase Il or Il into primary miRNAs. These primary miRNAs are then processed into
precursor miRNAs and finally into mature miRNAs. Most miRNAs prompt translational
repression and degradation by interacting with the 3’ untranslated region (3’ UTR) of their
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target mMRNAs, though miRNA interactions with other regions have also been reported (Xu et
al. 2014). MicroRNAs may also trigger translation or regulate transcription.

1.5.1 Measuring miRNAs

There are 3 main assays for in depth miRNA expression analysis: quantitative polymerase
chain reaction (QPCR), RNA-seq using next generation sequencing (NGS) technology and
microarrays. The high-throughput method of gPCR involves the amplification of deoxyribose
nucleic acid (DNA) by polymerase chain reaction, which is monitored in real time. The PCR
method uses an enzyme to amplify a short section of template DNA in cycles. In each cycle,
the number of DNA sections are doubled, leading to exponential amplification of these targets.
PCR is highly sensitive, rapid technique, and the quantitative nature allows for the
measurement of precise values (either relative or absolute) of amplified DNA in samples.

RNA-seq is another high-throughput method. The workflow can be generalised into five steps.
Firstly, the RNA is extracted, and then undergoes reverse transcription into complementary
DNA (cDNA). Next, this cDNA is fragmented, and adapters ligated to each end. These
adapters include functional elements which allow for sequencing, for example, elements which
allow for clonal amplification of the fragments. Amplification is next, as well as size selection
and quality control. Finally sequencing can occur by analysing the cDNA library with NGS,
resulting in short sequences corresponding with the original fragments. RNA-seq can identify
transcripts from organisms without a determined genomic sequence. RNA-seq experiments
can detect low background signals, as the cDNA sequences can be mapped to specific
regions, allowing for the removal of experimental noise, and are easily quantified.

Microchips designed to study the expression levels of multiple different genes concurrently
are called microarrays. The key principle underpinning microarrays is based on the binding of
complementary sequences. Messenger-RNA is isolated and converted into cDNA, a more
stable form of RNA. Restriction endonucleases then cut the DNA molecules into smaller
pieces. These fragments are then labelled with fluorescent dyes; Cy3 (green) and Cy5 (red).
The labelled cDNA is loaded onto the microarray, where thousands of single-stranded DAN
samples corresponding to a single gene are arranged in a grid. Where the fluorescence binds
to the complementary base pair in the sample spot, the gene can be seen to be active. DNA
fragments which do not bind to the probes are washed away. Scanning the microarray with a
laser allows the fluorescently labelled cDNA to ‘light up’, and the gene is identified. The
intensity of the light signals seen with the laser are then used to quantify the amount of original
mRNA. Microarrays are rapidly being replaced by sequencing technologies, as the data is only
ever displayed as values relative to other signals detected on the array. However, there are
still benefits to the method. Microarrays are a relatively inexpensive and robust way of looking
for differentially expressed genes across the transcriptome.

A drawback to utilising microarrays (or gqPCR) for quantifying miRNA expression levels stems
from the short length of mature miRNAs. There are also high levels of sequence homology
between miRNAs, and many miRNAs have large numbers of isoforms. These factors combine
to create difficulties in primer or probe design, as well as hybridisation.

A comparison of different sequencing types for miRNAs in 2014 determined that the type of
sequencing required should depend on the particular requirements of the experiment
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(Mestdagh et al. 2014). However, RNA-seq is generally regarded as the superior method
compared to microarrays for several reasons. Firstly, it is more quantifiable. Microarray values
are only relative to other signals on the microarray, whereas RNA-seq data is quantifiable.
RNA-seq is also more sensitive to high and low transcription levels, which microarrays can
struggle to detect accurately. Secondly, the RNA-seq allows for mapping of cDNA to specific
targeted regions on the genome, removing some experimental noise. Finally, RNA-seq can
detect transcripts from previously un-sequenced organisms, unlike hybridisation methods
which require species specific probes.

With any profiling method, there are systematic disparities and biases initiated during the
experimental process. Within NGS, the preferred profiling method in most cases, sources of
bias could be introduced from a range of sources, including RNA sample quality,
contamination with RNA during library preparation and reverse transcription. Additionally, total
read counts vary depending on the miRNA library used. Taking these systematic variations
into account is therefore important, and normalisation is a crucial step before abundances of
miRNAs may be compared. The goal of this normalisation is to distinguish between true
biological signal and random noise. Normalisation methods can largely be grouped into 2
categories; ones applying linear scaling, and a second category of methods which do not apply
linear scaling.

1.5.2 ldentifying targets and pathways

Predicting the interactions between miRNA and mRNA targets is challenging because each
miRNA can regulate from one to a large number of MRNAs, and each mRNA is targeted by
multiple miRNAs. The availability and quantity of both mRNA and the miRNAs targeting them
may also contribute to which genes are regulated. Measuring the changes in mRNA levels
after over- or under- expressing a miRNA may intuitively appear to be a straightforward way
to identify miRNA targets, however there are several drawbacks to this approach. For
example, there may be indirect signals reflected in downstream genes of the original miRNA
target. Additionally, the experimental set-up may not be representative of the workings within
an organism. Finally, the miRNA may restrict the efficiency of translation, which would not
necessarily be mirrored in mRNA levels.

The regulatory role of the miRNA varies between cell types, ie. some mMRNAs may respond
differently to miRNA regulation depending on the cell type (O’Brien et al. 2018). This problem
is typically tackled through the prediction of targets and followed up with experimental
validation of these interactions. There is a lack of experimental evidence to identify miRNA
targets, which has driven an increase in computational algorithms aiming to add to these
repertories. As miRNAs are short, and only require part of their sequence to be complementary
to their target, computational location of targets is extremely challenging. Adding to this, there
is a lack of understanding of the procedures which direct the targeting process for miRNAs
(Or, Ben Or, and Veksler-Lublinsky 2021). Nonetheless, bioinformatic tools have been
developed to try and predict these interactions, including the most popular algorithms,
TargetScan, miRanda and DIANA microT.
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1.5.3 miRNAs as biomarkers

MicroRNAs have the potential to be ideal biomarker candidates. MiRNAs can be found in a
range of different biological fluids, including saliva, breast milk, urine and blood - as well as
blood derivatives such as plasma and serum. They are also highly specific to their originating
cell or tissue type, and have been shown to vary according to disease progression.
Additionally, the technologies for detecting miRNAs are widely accessible. The development
of new assays for miRNAs are also faster and cheaper than comparatively producing new
antibodies for protein biomarkers (Condrat et al. 2020)

The first use of MiRNAs as biomarkers was in the field of cancer in 2008 (Lawrie et al. 2008),
and literature examining their use as potential biomarkers has rapidly expanded since then,
across a range of different diseases. Abnormal miRNA expression has been associated with
a number of diseases in humans (Peng and Croce 2016; Paul et al. 2018). However, miRNAs
have not yet made the leap from research to clinical use. This problem is not unique to
miRNAs; thousands of papers have been written suggesting biomarkers for a range of
diseases, however, only a handful of biomarkers with clinical application have been
successfully endorsed for clinical practice (Drucker and Krapfenbauer 2013).

There are a range of reasons the conversion from biomarker discovery to clinical utility has
been challenging. Firstly, in rare diseases, amassing a number of patients large enough that
a study aiming to uncover biomarkers has enough power can be difficult. Secondly, miRNAs
are expressed in different amounts in different tissues and organs, with many miRNAs
displaying tissue specific, or even cell specific expression profiles (Precazzini et al. 2021). In
complex diseases, such as pulmonary hypertension, it is unreasonable to expect a single
biomarker for stratification to be identified, at least in part because complex diseases often
affect multiple biological systems. There are of course exceptions, such as the anti-cancer
drug trastuzumab (Herceptin®), which can only be dispensed if the singular
pharmacogenomic biomarker HER2/neu receptor is overexpressed. However, these singular
biomarkers are only achievable under special circumstances (Frohlich et al. 2018). Multi-
biomarker signatures originating from complex high-throughput data are an alternative to the
single biomarkers, which allow for a more complete overview of the diseases under
investigation. This is the main area where ML can help in uncovering these relationships.

1.5.4 miRNAs in PAH

The first team to report dysregulation of miRs in developing PAH was (Caruso et al. 2010).
The team found miR-21 and let-7a down regulated in serum from patients with IPAH. MiR-22,
miR-30 and let-7f downregulated; miR-322 and miR-451 upregulated. This was followed by a
study by (Courboulin et al. 2011a) which found seven miRs significantly abnormally expressed
in patients with PAH compared with controls (miR-204, miR-450a, miR-145, miR-302b, miR-
27b, miR-367, and miR-138). There have since been a range of studies looking at miR levels
in different cell and tissue types, such as blood plasma and pulmonary artery smooth muscle
cells (Rhodes et al. 2013; Schlosser, White, and Stewart 2013; Courboulin et al. 2011b; F. Li
etal. 2017; Brock et al. 2009). MicroRNAs in PAH have been reviewed in (Alex M. K. Rothman,
Chico, and Lawrie 2014), and more recently been reviewed in (Santos-Ferreira et al. 2020),
where they highlighted four miRNAs of importance in PAH (miR-29, miR-124, miR-140, and
miR-204).
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The detected numbers of miRNAs related to PH pathobiology has increased in recent years,
but the additional definition of shared activity of miRNA across diseases may be useful for
forming molecular links underlying potentially surprising disease associations with PH.
Additionally, a grouping of convergent miRNAs as well as their downstream genes may be
more effective than a single miRNA target at improving, preventing or regressing the overall
manifestations of PH, an area in which machine learning might be able to help.

1.6 Aims and Objectives

| hypothesised that machine learning could enhance our understanding of pulmonary
hypertension by identifying novel miRNAs involved in the disease process and by uncovering
more complex relationships. | had 3 aims to aid in the investigation of this:

1. Explore some supervised machine learning methods to classify a small test cohort of
patients with PAH and disease and healthy controls using miRNAs.

2. Explore this signature in a much larger cohort of patients, expanding these analyses
to include signatures for PH and CTEPH

3. Investigate the application of unsupervised learning in the larger cohort
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Chapter 2: A diagnostic miRNA signature for
pulmonary arterial hypertension using a consensus
machine learning approach

As part of my PhD thesis, | am including work from my published paper ‘A diagnostic miRNA
signature for pulmonary arterial hypertension using a consensus machine learning approach’,
which was published in EbioMedicine, June 2021, DOl:
https://doi.org/10.1016/j.ebiom.2021.103444

Multiple reports exist on the expression and / or function of individual miRNAs in PAH, and
reports of miRNA signatures in other disease but when we searched PubMed database using
the terms [(“Pulmonary Arterial Hypertension” OR “PAH”) AND (“‘machine learning” OR
‘ensemble learning”) AND (“microRNA” OR “miRNA” OR “miR”)] for articles before February
20th 2021 0 results were returned. We hypothesised applying machine learning to microRNAs
in PAH may provide novel insights. This was the largest microRNA profiling of PAH patients
with 64 treatment naive patients (sampled at the time of diagnosis), and 43 disease and
healthy controls at the time. It is also the first machine learning assessment of microRNAs for
PAH.

| produced all figures in this paper, with the exceptions of Figure 2.11 (produced by Cai Davies)
and Figure 2.10 (Figure 6) which was produced by Dr Josephine Pickworth. Dr Pickworth
carried out the gPCR, as well as writing the methods and supplementary information on the
analysis. James Iremonger drafted the sections on plasma preparation and RNA isolation, as
well as microarray profiling and preprocessing. | drafted all other sections of the paper, after
which feedback was provided by all other authors. | was not involved in the collection or
processing of samples.

| have also expanded this chapter to include work done by Cai Davies, a Genomic medicine
MSc student | co-supervised. With his project, we aimed to build on the validation section by
investigating the added value of miRNA targets in classifying patients with PAH in RNA seq.
Tables 2.6, 2.12 and 2.13 are modified from his dissertation, | produced all other tables.

2.1 Introduction

Pulmonary arterial hypertension (PAH) is a rare but progressive cardiopulmonary disease
which can be sub-categorised into seven sub-groups: Idiopathic PAH (IPAH), heritable PAH
(HPAH), drug and toxin induced, PAH associated with other associated diseases, PAH long
term responders to calcium channel blockers, PAH with overt features of venous/capillary
involvement, and persistent PH of the newborn (Simonneau et al. 2019) (Table 1.1).

Often insidious at onset, PAH is usually rapidly progressive and patients frequently experience
significant delays between initial symptom onset, diagnosis (right heart catheter) and
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treatment, with little improvement to these delays over that past 20 years (Kiely, Lawrie, and
Humbert 2019; Brown et al. 2011). Screening for PAH in connective tissue diseases (CTDs),
including systemic sclerosis (SSc) where up to 10-15% of patients develop PAH has been
shown to be beneficial (Hachulla et al. 2005) with several screening tools now available
(reviewed in (Kiely, Lawrie, and Humbert 2019) recommended (Khanna et al. 2013)).
Screening for other forms of PAH is required, and the identification of blood-based biomarkers
may help identify patients at risk earlier and reveal drivers of disease (Bauer et al. 2020; Kiely,
Lawrie, and Humbert 2019). Current clinically used blood-based biomarkers are limited to
markers of cardiac stress e.g. N-terminal pro B-type Natriuretic Peptide (NT-proBNP) that
gives little insight into early disease, or the molecular drivers of disease.

MicroRNAs (miRNA) are small, non-coding RNA molecules found in tissues, blood and
plasma. They have been shown to be dysregulated in PAH, and contribute to the disease
process in animal models (Anwar et al. 2016; Rameh and Kossaify 2016; Miao, Chang, and
Zhang 2018). Blood based miRNA biomarkers can be collected without the need for invasive
tissue biopsy, and are present in plasma and serum in a stable form. However, with as many
as 2300 miRNAs regulating biological processes (Alles et al. 2019), identifying those relevant
for diagnosis of PAH can be computationally challenging.

Machine learning as a field has progressively improved our ability to find relevant features in
large and high-dimensional data sets collected from genomic studies (Toh, Dondelinger, and
Wang 2019). Supervised machine learning methods have been used successfully to develop
classifiers for disease diagnosis, as well as to identify potential disease biomarkers (Hira and
Gillies 2015). Specifically in PAH we have previously utilised machine learning approaches to
study molecular drivers of, and biomarkers for PAH (Kiely et al. 2019; Rhodes, Wharton, et al.
2017; Rhodes, Ghataorhe, et al. 2017; Bauer et al. 2020). In this study, we identify miRNA
biomarkers associated with PAH selected using a consensus of four different supervised
machine learning feature selection techniques. We assess the potential of miRNAs as a
diagnostic tool by creating binary predictive classification models and assessing the accuracy
of these models. Further insight into the role of miRNAs in the pathogenesis PAH and potential
candidates for therapeutic intervention is revealed through the analysis of miRNA target genes
and pathways in human lung and whole blood transcriptomes.

2.2 Methods

2.2.1 Cohort overview and sample collection

We collected 83 unique plasma samples from sequentially consented patients with suspected
pulmonary hypertension and controls, obtained according to the Declaration of Helsinki, with
local research ethics committee approval and informed written consent from all subjects from
the Sheffield Teaching Hospitals Observational study into Pulmonary Hypertension,
Cardiovascular and Lung disease Biobank (STH-Obs, UK REC 18/YH/0441). Patient samples
were obtained from the diagnostic right heart catheter and were PAH-treatment naive. From
the 83 samples, 18 patients with SSc-associated PAH (SSc-PAH) and 10 SSc patients without
PH (SSc-without PH) were incorporated into the PAH patient groups and controls respectively.
All patients with SSc were of the limited cutaneous subtype. The rest of the Sheffield samples
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were comprised of 34 IPAH patients and 21 healthy controls. An additional 24 patient and
healthy control samples were obtained from the Imperial College London Pulmonary
Hypertension sample collection (UK REC 17/LO/0563) and included in the study to remove a
single centre bias. All samples were collected between 2007 and 2013, then stored in plasma
at -80°C until the miRNA extraction. The cohort comprising all available samples meeting
these criteria at the time of miRNA extraction, was randomly assigned to training (two-thirds)
and validation (one-third) sets, matched for age, sex and WHO functional class, with
demographics seen in Table 2.1, and missing data for patients with PAH found in Table 2.2.
The training set was used to build models, which were evaluated in the validation set to
minimise overfitting bias.
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Table 2.1: Basic demographics for a cohort of healthy controls (HC) and patients with PAH
from Sheffield and Imperial, profiled for miRNA expression. Patients with systemic sclerosis
(SSc) were included in both the HC and PAH classification sets. Not all metrics were
available for all patients. Continuous variables described as mean (standard deviation). For
missing values, see Table 2.2.

Training Set Validation Set
HC +SSc | IPAH +SSc-| HC +SSc | IPAH + SSc-
without PAH PAH without PAH PAH
No. Sheffield samples 14+7 23 + 11 7+3 1M1+7
No. Imperial Samples 8+0 8+0 4+0 4+0
Total sample no. 29 42 14 22
Mean age at sampling in 54.1 (14.5) 56.5 (14.3) 51.6 (11.7) 57.4 (15.3)

years (years)

Female (%)

12 + 6 (58.1%)

18 + 6 (57.1%)

7 + 3 (71.4%)

8 + 6 (63.6%)

Alive 5 years follow up (%)| 28 (97%) 28 (65%) 14 (100%) 9 (43%)
WHO Functional class - (0,6,33,3) - (0,3,17,2)
(Y

Patients on 4 2 2 2
immunomodulatory agent

at sampling

Mean Pulmonary Arterial - 54.9 (15.6) - 49.4 (13.7)
Pressure (mm Hg)

Pulmonary vascular - 870 (488) - 753 (448)
resistance (dynes)

6 minute walk distance: - 202 (158) - 378 (59)
Imperial only (m)

ISWD: Sheffield only (m) - 214 (169) - 248 (246)
Cardiac Output (L/min) - 4.8 (1.4) - 5.0 (2.0)
Mean pulmonary arterial - 10.4 (3.8) - 10.8 (3.2)

wedge pressure (mm Hg)
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Table 2.2: Missing values for PAH patient’s data. 6MWD Imperial only, ISWD Sheffield only

Parameter No missing No missing Total no

training data (%) | validation data | missing (%)
(%)

Mean Pulmonary Arterial Pressure| 2 (5) 3 (14) 5(8)

Pulmonary vascular resistance 6 (14) 4 (19) 10 (16)

6-minute walk distance 2 (25) 2 (50) 4 (33)

ISWD 7 (20) 2(12) 9(17)

Cardiac Output 3(7) 4 (19) 7 (11)

Mean capillary wedge pressure 5(12) 5 (24) 10 (16)

2.2.1.1 Plasma preparation and RNA isolation

Total RNA was isolated from 1 ml of Citrate plasma using the Norgen total RNA slurry format
extraction kit (Norgen Biotek Corp. Canada). RNA was concentrated using the RNA Clean
and Concentrate-5 kit (Zymo Research Corp, U.S.A).

2.2.1.2 Microarray profiling and preprocessing

Agilent single colour miRNA arrays miRbase v.19 (Agilent Technologies, UK), which can
detect up to 2006 human miRNAs, were performed on purified and concentrated plasma RNA
in 2015. Raw microarray signals were normalised using the quantile method within the robust
mean array (RMA) method from the R package AgiMicrorna (v.2.14.0) (Lépez-Romero 2011),
correcting for the background signal. MiRNAs were then filtered, keeping only those expressed
in at least 10% of arrays, leaving 393 miRNAs. Expression levels were log2 transformed and
all subsequent calculations were performed on this value. Independent filtering increases
detection power in high-throughput experiments. Additionally, several of the feature selection
methods utilised below cannot account for multicollinearity. As such, we undertook two
subsequent filtration steps to reduce the starting number of miRNAs. MiRNAs were filtered
down to 179 by those which have been gPCR confirmed to exist by Exiqon, and therefore, we
can assume they can be accurately quantified by the Agilent array. We further eliminated
features with high mean absolute correlation, using a correlation matrix method. For each
feature, the mean absolute correlation based on pairwise correlations was calculated. If a pair-
wise correlation was > 0.7, the feature with the greater mean absolute correlation was
removed, using the caret package (v6.0-86) in R. Where two miRNAs are highly correlated
both with each other and disease status, and both are kept in the model, there is a danger that
both may be considered insignificant, potentially missing an important signal. We carried
forward our downstream analysis with 42 miRNAs after filtering. The workflow is described in
Figure 2.1.
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We used PCA and t-SNE analysis to visually explore the data. PCA analysis was carried out
using prcomp in R without scaling the data, and a t-SNE analysis was run using the Rtsne
package (version 0.15).

~ Microarray
Raw microarray signals normalised }—D[miRNAs quality controlled and fitered profiling and
- T pre-processing
r L 3
Filterad list of miRNAs (42 mIRNAs)
\
T }
Univariate [ Multivariable Feature Selection X
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Figure 2.1: Machine learning methodology for the identification of miRNAs which may play a
role in PAH, and the assessment of their target genes.

2.2.2 Statistical Analysis

2.2.2.1 Multivariable microRNA selection and model building

All statistical analyses were carried out using R (v4.0.0) (R Core Team 2013). We used both
a multivariable and univariable approach to selecting miRNAs. In the multivariable approach,
we used four separate feature selection methods simultaneously to identify candidate
biomarkers, with the intersection amongst the methods considered the significant miRNAs. In
each instance, parameters were tuned using 10-fold cross-validation (repeated 10 times) on
the training set. For each of the feature selection methods, we subsequently used a supervised
machine learning approach for binary classification to create predictive classification models,
based on features selected from the prospective cohort study. For further details on the
parameters used, see the code available on github at
https://github.com/niamherrington/microarray-miRNA. The guidelines of the transparent
reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD)
statement were followed.
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Random Forest using Boruta

Boruta is a feature selection random forest wrapper algorithm designed to identify all relevant
variables in a classification framework (Kursa and Rudnicki 2010). We performed 300
iterations of the random forest normalised permutation importance function to obtain attribute
importance, using default settings within Boruta package (v7.0.0) in R, including the
confidence level of 0.01. After the 300 runs were complete, miRNAs still not confidently
classified as important variables were rejected along with the miRNAs rejected by the
algorithm. This process was then repeated 100 times, with miRNAs selected on at least 10
occasions were carried forward.

We then combined the microRNAs selected by Boruta into a random forest model using the
randomForest package (v.4.6-14) (Liaw and Wiener 2002). We selected a random forest
model as they are generally robust to overfitting, and capable of learning non-linear
relationships. However, the results may not be easily interpretable. The caret package was
used to identify 1000 trees as being optimal among the 100, 250, 500, 750, 1000, 1250 and
1500 trees tested. The number of variables available for splitting at each tree node was
optimised next, with 1 variable per tree node the best out of a range from 1 to 4. A probability
threshold of > 0.5 was used to determine whether a subject was a PAH patient or no PH.

Regression partition tree

Classification trees were calculated using Rpart (v4.1-15) (Therneau and Atkinson 2018) and
caret in R. A major advantage of rpart is the interpretable output, that can be displayed
graphically. However, a disadvantage is that the trees tend to have a lower predictive
accuracy, due to the fact the trees are less robust. The trees were used by the greedy feature
selection algorithm, recursive binary splitting to return ordered features, from the root of the
tree down.

The fit of the model was controlled by setting the minimum number of observations that must
exist in a node for a split to be attempted to four, and the minimum number of observations in
any terminal node set to two. The trees were split by minimising the Gini index at each split.
This was then cross-validated using 10-fold, repeated cross-validation. We considered a
variable selected if it was present in the final tree. A probability threshold of > 0.5 was used to
determine whether a subject was a PAH patient or no PH.

LASSO

Least absolute shrinkage and selection operator (LASSO) on binomial logistic regression
using the glmnet package in R (v4.0) (Friedman, Hastie, and Tibshirani 2010) was used to
select relevant miRNAs, by eliminating parameters with a coefficient of 0. One of the
advantages to using a LASSO method is that coefficients are shrunk and removed, reducing
variance without substantially increasing the bias (Fonti and Belitser 2017). Additionally,
LASSO models allow for effectively interpretable output. However, a drawback to LASSO is a
lack of flexibility to fully capture non-linear relationships. We chose the regularisation
parameter, A, using 10-fold cross-validation with binomial deviance as the criterion. From the
cross validations, the value of A with the minimum binomial deviance (A-min = 0.0502) was
selected and used to refit the model. A probability threshold of > 0.5 was used to determine
whether a subject was a PAH patient or no PH. To ensure the models were not driven by age
and sex, we also attempted to classify patients using these characteristics in a LASSO model.
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XGBoost

The final model we used to fit miRNA features to disease diagnosis was the gradient boosting
method, using the XGBoost package in R (v1.0.0.1) (T. Chen and Guestrin 2016). We trialled
XGBoost as it has been used very effectively in a range of classification problems, consistently
winning machine learning competitions on Kaggle, as well as providing insights into biological
data sets. However, with many hyperparameters to tune, computational time is longer than
some of the other methods, additionally, the results can be difficult to interpret. XGBoost is an
extreme gradient boosting method which ranks the features from most to least important. To
decide on the regularisation parameter settings, we used a grid search over a range of values,
using 10-fold repeated cross-validation on the training set, selecting the optimal values for the
final model (Table 2.3). The optimisation ranges were selected by expanding grid searches
previously used by other teams on RNAseq data (Y. Li et al. 2017). The ability to fine-tune
these parameters in XGBoost means the model is more robust to overfitting. Features
contributing to more than a 5% improvement in accuracy to their branches were selected as
‘important’. A probability threshold of > 0.5 was used to determine whether a subject was a
PAH patient or no PH. Once features had been selected, the model was retrained over the
same parameter range, using just selected miRNAs.

Table 2.3: Parameters used to optimise an XGBoost classifier for PAH using miRNAs. a: the
range of each parameter tuned, b: the optimal parameter for the initial xgboost model, c: the
final parameter value used for an xgboost model trained on a reduced number of miRNAs.

Parameter Available | Optimisation range® Initial Optimal
Range value® | value®

No of trees 1-w 100 - 10 000 4300 200
Learning rate 0-1 0.01, 0.025, 0.05,0.1,0.2,0.3 | 0.025 0.025
Maximum tree depth | ., 1,2,3,4,5,6 1 1
gamma 0-w 0, 0.05,0.1,0.5,0.7,0.9, 1 0.05 1
Minimum child 0 - 1,2,3,4 2 1
weight
Subsample rate (row | 0 - 1 0.5,0.75,1.0 0.5 0.5
sampling)
% feature used in 0-1 0.4,0.6,0.8,1.0 0.4 0.4
each boost (column
sampling)

Ensemble

An ensemble of predictions from the above classifiers were generated by averaging the
predicted probabilities from each individual supervised machine learning approach, and then
using a threshold of > 0.5 to call subjects with PAH.
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Comparison with NT-proBNP

All patients, and healthy controls from Sheffield had routine clinical measurements of NT-
proBNP. This information was used to compare the accuracy of the miRNA models with NT-
proBNP as a classifier by retraining each of the models with NT-proBNP as an additional
variable. The performance of standalone NT-proBNP for the cohort was also measured.

Multivariable classifier performance assessment

We also used a leave-one-out cross validation approach (LOOCV) to compare miRNAs
selected when the entire dataset was used. All methods above were attempted across the
whole dataset, using a LOOCV approach instead of repeated cross validations. AUCs were
calculated using the average of the cross validations across the whole dataset, rather than
using training and validation sets.

Classification without SSc

Finally, we repeated the above machine learning methods to classify patients with IPAH or
healthy controls, using the same training and validation sets described above, without patients
with SSc.

2.2.2.2 Univariable analysis

Using a Shapiro-Wilk test (Shapiro and Wilk 1965) for the selected miRNAs, a normality
assumption for the majority of miRNAs is violated. As a result, for each miRNA, we performed
a non-parametric Wilcoxon rank-sum test, comparing expression levels between patients with
PAH and the no PH group, to find a single p-value for each miRNA. These p-values were then
adjusted using the Benjamini Hochberg multiple testing correction to control the false
discovery rate (FDR) with a cutoff of 0.05. We calculated the discriminatory power of each
individual miRNA, using the training set to find an optimal cutpoint by simultaneously
maximising sensitivity and specificity, then calculating the accuracy using the validation set.
We examined survival using the Kaplan-Meier method for each selected miRNA and
calculated the p-value for a log-rank test. All participants were followed up for five years after
the sample date, or date of death, with no participants lost to follow up. Cox proportional
hazard tests were done using the survival package (v2.44-1.1)

2.2.2.3 Classification performance of multivariable models

To compare classifiers, we looked at how accurately each classifier categorised each patient
in the validation set. We also looked at the performance of each feature selection method, by
comparing them using the following evaluation metrics, where TP represents true positive, FN
represents false negative, TN represents true negative, and FP represents false positive.
Sensitivity = TP / (TP + FN)

Specificity = TN / (TN + FP)

Positive predictive value = TP / (TP + FP)

Negative predicted value = TN/ (TN + FN)

Correct classification rate = (TP + TN) / (TP + TN + FP + FN)

Area under the receiver operator characteristic (ROC) curve (AUC); the confidence
interval calculated using the method by Delong et al (Elizabeth R. DeLong, DelLong,
and Clarke-Pearson 1988).
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2.2.3 Pathway Analysis

Gene targets were inferred using DIANA v5.0 microT-CDS (Paraskevopoulou et al. 2013) for
the miRNAs which appeared in all four features selection methods, with the threshold for target
prediction set to the default of 0.7. We then carried out a network analysis using WebGestalt
(Liao et al. 2019) and Cytoscape (v3.7.1) (Shannon et al. 2003). Pathway genes were
downloaded from KEGG (Kanehisa and Goto 2000).

2.2.4 External Validation in Whole Blood RNA seq

RNA sequencing was performed on whole-blood samples from 359 patients with PAH, and 72
controls, as previously described (Rhodes et al. 2020). 28 of the Sheffield samples, and two
Imperial healthy controls were also included in the miRNA cohort, so we excluded these to
ensure the validation set was independent. We split the cohort into the same training and
validation groups, and then used XGBoost to classify patients using the gene targets identified
using similar optimisation ranges as above. As this dataset is unbalanced due to a
comparatively small number of healthy controls, we incorporated a weighting parameter;
number of PAH cases / number of controls. The final parameters selected can be seen in
Table 2.4. The threshold value was calculated using Youden’s Index. We compared this model
to 3 additional models formed from randomly selecting 548 genes from all available genes in
the whole-blood set and training an XGBoost classifier on each of these sets. In order to select
these genes, the 548 gene targets were removed, then the ‘sample’ function was used 3
separate times to select 548 genes each time.

We also assessed the added value of the selected genes by comparing the Akaike Information
Criterion (AIC) of logistic regression models created by using the top 15 genes selected from
the gene targets to a random logistic regression model from 15 randomly selected genes.

Table 2.4: Parameters used to optimise an XGBoost classifier for PAH using mRNAs. a: the
range of each parameter tuned, b: the optimal parameter for each model

Parameter Available | Optimisatio | miRNA Random | Random | Random
Range n range® gene target | model 1° | model 2° | model 3°
model °
No of trees 1-w 100 - 10 550 800 5150 200
000
Learning rate 0-1 0.01, 0.025, | 0.05 0.05 0.025 0.05
0.05, 0.1,
0.2,0.3
Maximum tree 0-o 1,2,3,4,5, |3 2 3 4
depth 6
gamma 0 - 0, 0.05,0.1, [ 0.05 0.5 0 0.05
0.5,0.7,
0.9,1
Minimum child 0 - 0.2,0.5,1, 0.2 2 0.2 0.2
weight 2
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Subsample rate 0-1 0.5, 0.75, 0.5 1 0.5 1
(row sampling) 1.0

% feature used in 0-1 0.4, 0.6, 0.4 0.6 0.4 0.4
each boost 0.8,1.0

(column sampling)

2.2.5 External Validation in published lung tissue microarray studies

Two publicly available datasets profiling lung tissue from patients with PAH were used to
validate the gene target lists. In GEO accession GSE15197 (Rajkumar et al. 2010), differential
expression was measured in 13 normal lung tissue samples compared to 18 lung tissue
samples with PAH. We excluded seven samples where patients had PH secondary to
idiopathic pulmonary fibrosis (IPF). The original study found 13,899 genes differentially
expressed between patients with PAH and healthy controls. GEO accession GSE53408 (Zhao
et al. 2014) compared 12 samples of lung tissue from patients with PAH to 11 healthy lung
tissue samples. Basic characteristics of the two cohorts are described in Table 2.5.

Table 2.5: Characteristics of 2 GEO datasets, GSE15197 and GSE53408. *Information
missing for four patients and three controls

GSE15197 n Age, yr Sex (M/F) | PVRI, Wood MPAP,
units mmHg

GSE15197 PAH 18 44 + 10 7/11 20+ 9 55+7
GSE15197 13 60 + 11 5/8
Normal controls
GSE53408 PAH* 8 40+ 12 3/5 56 +9
GSE53408 8 47 + 15 4/4
Normal controls*

The GEOR?2 interface was used to import data into R using Biobase (v2.42.0) and GEOquery
(v2.50.5). The limma package (v3.38.3) used for differential expression analysis with a log2
transform. Gene targets were extracted and FDR corrected (<0.05) using the Benjamini
Hochberg correction.

2.2.6 qPCR validation of gene targets

Pulmonary artery smooth muscle cells (PASMCs) purchased from commercial suppliers
(Lonza catalogue # CC-2581) taken from healthy donors and PASMCs isolated from four
separate IPAH patients (donated from Prof. N Morrell of Cambridge University) as previously
described (Pickworth et al. 2017), were grown in culture before being quiesced (0.2% foetal
Calf Serum) for 48 hours, and lysed for the isolation of RNA using Trizol. Direct-zol RNA mini-
prep kits (Zymo research R2050), and Zymospin column were used to extract RNA as per
manufacturer’s instructions. RNA (n=3 for each condition) was reverse transcribed to cDNA
using RNA to cDNA kit (Applied Biosystems 4387406). Eight genes were selected for
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quantitative-PCR (gPCR) and TagMan probes for FER (Hs00245497_m1), UCR3
(Hs00419575_m1), MTUS1 (Hs00368183_m1), API5 (Hs00362482_m1), PELI1
(Hs00900505_m1), HGF (Hs00300159 _m1), GLMN (Hs00369634_m1), PARPS8
(Hs01065404_m1) were purchased from Thermo Fisher and run in duplicate. Human ATP5B
Hs00969569 _m1 was used as control. Relative quantity was calculated using the AACt
method. Analysis was performed using GraphPad Prism v 8.2.

2.2.7 Added value of miRNA gene targets for classification (Cai Davies)

There are 505 genes with differential RNA expression in patients with PAH compared with
controls in the validation cohort described above (Rhodes et al. 2020). To investigate the
potential added value of identifying miRNA targets, two further XGBoost models were
explored, with the final parameters shown in Table 2.6. The first examined the utility of these
505 genes to classify patients (model 1), and the second ran in parallel, examining
performance of a classifier built with both these 505 genes, and the gene targets present in
the RNA seq set (model 2).

Table 2.6: Final model best parameters from two XGBoost models in classifying PAH from
controls

Parameter Available Range | Model 1 final Model 2 Final
value value
No of trees 1-w 5650 8450
Learning rate 0-1 0.01 0.01
Maximum tree depth 0-w 3 3
gamma 0-o 0.9 0.9
Minimum child weight 0 - 2 2
Subsample rate (row 0-1 0.5 0.5
sampling)
% feature used in each 0-1 1 0.6
boost (column sampling)

These models were then examined to look for the top 20 genes with the highest importance
to the XGBoost models, as measured by the percentage gain, where gain is a measure of the
contribution of the feature to the model relative to each feature’s contribution for each tree in
the model. A higher value for one feature when compared to another infers it is of a higher
importance for generating a prediction.
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2.3 Results

We profiled the miRNAs from 64 patients with PAH and 43 combined SSc-without PH and
healthy controls (no PH). Initial t-Distributed Stochastic Neighbour Embedding (t-SNE) and
principal component analysis (PCA, Figure 2.2) showed some separation between groups.
Since several of the feature selection methods utilised later cannot account for
multicollinearity, we undertook two filtration steps to reduce the starting number of miRNAs.
Initially the miRNAs were filtered, removing those failing quality control, and miRNAs highly
correlated to each other, to leave 42 miRNAs (Figure 2.3). Next, we selected the miRNAs
most predictive of PAH vs no PH using four different supervised machine learning methods.
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£ - .
© o 0 = 9 o o
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Figure 2.2: A) t-SNE plot of subjects in both the training and validation sets. B) PCA plot of
subjects in both the training and validation sets, showing the first two principal components.
PC1 (27.1% of variance), and PC2 (21.4% of variance).
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Figure 2.3: Correlation plot of the miRNAs remaining after filtering out those with high

correlation (Spearman’s > 0.7)
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2.3.1 miRNAs selected using supervised machine learning approaches

The disease diagnosis (PAH vs no PH) of 72 individuals was described as a function of the 42
miRNAs using four different machine learning methods. Feature selection was used to
determine the miRNAs most relevant to the diagnosis. Four different machine learning
techniques were used to select miRNAs and model PAH diagnosis; Boruta (an embedded
random forest method), LASSO, regression partition trees, and XGBoost (an extreme gradient
boosting method). The features subsets selected by each method were all different, though
there were overlapping miRNAs in all (Figure 2.4). Two miRNAs were selected by all four
methods; miR-636 and miR-187-5p. These 2 miRNAs were the most consistently selected
when different discovery sets were utilised; a training and validation set approach, leave-one-
out cross validated approach, and a training and validation set approach without patients with

SSc (Figure 2.5).
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Figure 2.4: Absolute Expression correlation (Spearman) matrix between miRNAs selected
by machine learning methods (side-bar). Dendrogram orders miRNAs by hierarchical
clustering. XGBoost: Extreme gradient boosting method. Rpart: a regression patrtition tree
method. Boruta: a random forest wrapper method for feature selection.
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Figure 2.5: Heatmap of selected miRNAs using four different supervised machine learning
approaches across three different discovery sets: a) a training and validation cross validation
approach for IPAH and PAH-SSc vs healthy controls and PH-without SSc; b) leave-one-out cross
validation approach across the whole dataset for IPAH and PAH-SSc vs healthy controls and PH-
without SSc. c¢) training and validation cross validation approach for patients with IPAH and healthy
controls. Blue: miRNA was selected, white: miRNA was not selected

2.3.2 Performance of PAH classification using miRNAs

To compare the performance of each feature selection method, we looked at how each model
performed as a classifier on the validation set. The classification of each subject by each
model can be seen in Table 2.7. Boruta random forest had the highest overall accuracy, with
30 out of 35 subjects in the validation set correctly identified.
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Table 2.7: Model Classifications on the validation set for four different methods; regression
partition trees (Rpart), LASSO, random forest wrapper (Boruta), extreme gradient boosting
(XGBoost) and an ensemble prediction

Random
Patient Forest Rpart LASSO XGBoost | Ensemble
ID Diagnosis | prediction | prediction | prediction | prediction | prediction

Healthy

1 control PAH PAH PAH Control PAH
Healthy

2 control Control Control Control Control Control
Healthy

3 control Control Control Control Control Control
Healthy

4 control Control Control Control Control Control
Healthy

5 control Control Control Control Control Control
Healthy

6 control Control Control Control Control Control
Healthy

7 control Control Control Control Control Control
Healthy

8 control Control Control PAH Control Control
Healthy

9 control Control PAH Control Control PAH
Healthy

10 control PAH PAH PAH PAH PAH
Healthy

11 control Control Control Control PAH Control
SSc-without

12 PAH PAH PAH PAH PAH PAH
SSc-without

13 PAH PAH PAH PAH PAH PAH
SSc-without

14 PAH Control Control Control Control Control

15 SSc-PAH Control PAH PAH Control PAH

16 SSc-PAH PAH PAH PAH PAH PAH

17 SSc-PAH PAH PAH PAH PAH PAH

18 SSc-PAH PAH PAH Control PAH PAH

19 SSc-PAH PAH PAH PAH PAH PAH

20 SSc-PAH PAH PAH PAH PAH PAH

21 SSc-PAH PAH PAH PAH PAH PAH




38

Random

Patient Forest Rpart LASSO XGBoost Ensemble
ID Diagnosis [prediction |prediction |prediction |prediction [prediction
22 IPAH PAH PAH PAH PAH PAH

23 IPAH PAH PAH PAH PAH PAH

24 IPAH PAH PAH PAH PAH PAH

25 IPAH PAH PAH PAH PAH PAH

26 IPAH PAH PAH PAH PAH PAH

27 IPAH PAH PAH PAH PAH PAH

28 IPAH PAH PAH PAH PAH PAH

29 IPAH PAH Control PAH PAH PAH

30 IPAH PAH PAH PAH PAH PAH

31 IPAH PAH PAH PAH PAH PAH

32 IPAH PAH PAH Control PAH PAH

33 IPAH PAH Control Control PAH Control

34 IPAH PAH PAH PAH PAH PAH

35 IPAH Control PAH Control Control Control

36 IPAH Control PAH Control PAH PAH

The performance of each feature selection method on the validation set was also variable
(Table 2.8). The cross validated performance for the training set can be seen in Table 2.9.
The Random Forest model had the highest AUC (0.84), but the XGBoost model had a higher
accuracy (0.83). The LASSO model had the poorest performance, with an accuracy of 0.72.
The number of MIRNAs selected by each method also differed, with LASSO selecting the most
(13 miRNAs), and the Rpart model behaving more stringently by selecting just four miRNAs.
The AUCs for models trained using a leave-one-out cross-validation approach showed similar
results (Figure 2.6).
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Table 2.8: Model performance of four classifiers on the validation set; a random forest
wrapper method (Boruta), regression partition trees (Rpart), LASSO, and extreme gradient

boosting (XGBoost).

Random Rpart LASSO XGBoost Ensemble

forest
miRNAs selected | 10 4 13 8 20
by model, n
Sensitivity 0.86 (0.65- | 0.91 (0.71- | 0.77 (0.55- | 0.91(0.71- | 0.91 (0.71-
(95% CI) 0.97) 0.99) 0.92) 0.99) 0.99)
Specificity 0.71(0.42- | 0.64 (0.35- | 0.64 (0.35- | 0.71(0.42- | 0.64 (0.35-
(95% CI) 0.92) 0.87) 0.87) 0.92) 0.87)
Positive 0.83 (0.61- | 0.80 (0.59- | 0.77 (0.55- | 0.83 (0.63- | 0.80 (0.59-
predictive value 0.95) 0.93) 0.92) 0.95) 0.93)
(95% CI)
Negative 0.77 (0.46- | 0.82 (0.48- | 0.64 (0.35- | 0.83(0.52- | 0.82 (0.48-
predictive value 0.95) 0.92) 0.86) 0.98) 0.92)
(95% CI)
Correct 0.81 (0.64- | 0.81 (0.64- | 0.72 (0.55- | 0.83 (0.67- | 0.81 (0.64-
classification rate | 0.92) 0.92) 0.86) 0.94) 0.92)
(95% CI)
AUC 0.84 (0.69- | 0.79 (0.63- | 0.79 (0.63- | 0.82 (0.66- | 0.85 (0.70-
(95% CI) 1) 0.95) 0.94) 0.99) 1)

Table 2.9: Mean 10 fold cross-validated performance on the training set regression partition
trees (Rpart), a random forest wrapper method (boruta), LASSO, and extreme gradient

boosting (XGBoost).
Random forest Rpart LASSO XGBoost
Sensitivity 0.72 0.50 0.65 0.75
Specificity 0.93 0.64 0.83 0.88
Positive predictive value 0.91 0.53 0.79 0.85
Negative predictive value 0.85 0.66 0.79 0.86
Correct classification rate 0.85 0.58 0.76 0.83
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Figure 2.6: AUC for miRNA classifiers trained using LOOCYV approach, and training /
validation approach. Solid lines indicate ROC for the validation set (n = 35), where the model
was trained on a separate set. Dashed lines indicate miRNA models trained using a leave-
one-out cross validation approach across the whole data set. (A) extreme gradient boosting
(XGBoost) utilising eight miRNAs; (B) LASSO utilising 13 miRNAs; (C) regression partition
trees (Rpart) utilising four miRNAs; (D) a random forest wrapper method (Boruta) utilising 10
miRNAs; (E) Ensemble approach utilising 20 miRNAs; (F) Average cross validated ROC for
miRNA-187-5p and miRNA-636 on the training set.
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Figure 2.7: Solid lines indicate miRNA models, dashed lines indicate miRNA model + NT-
proBNP. ROC curves for all four machine learning classifiers on the validation set, and NT-
proBNP. (A) extreme gradient boosting (XGBoost) utilising eight miRNAs; (B) LASSO
utilising 13 miRNAs; (C) regression partition trees (Rpart) utilising four miRNAs; (D) a
random forest wrapper method (boruta) utilising 10 miRNAs; (E) Ensemble approach
utilising 20 miRNAs; (F) NT-proBNP alone.

As multivariable methods are known to select different candidate biomarkers, often with equal
accuracy (He and Yu 2010), we focused on the overlapping miRNAs selected by the four
different machine learning methods. From the 20 miRNAs selected across all four methods,
seven miRNAs are found in more than one model, of these, two were selected by every model;
miR-636 and miR-187-5p (Figure 2.5).

For a subset of patients from Sheffield, NT-proBNP levels were assayed at routine clinical
appointments. We then used these to compare the models’ performances when NT-proBNP
levels were included (Figure 2.7). Although the best performing miRNA model (Random
Forest) did not perform significantly different to the NT-proBNP classifier alone (miRNA AUC
95% CI =0.69 - 1 vs NT-proBNP AUC 95% CI = 0.84 - 1), all miRNA models with NT-proBNP
saw an improved performance with AUCs (Figure 2.7). Random forest increased from 0.84 to
0.97, rpart from 0.79 to 0.81, LASSO increased from 0.78 to 0.93, and the XGBoost model
increased from 0.82 to 0.95, though not significantly larger according to the DelLong test. A
clear association of miRNAs with PAH diagnosis may warrant future investigation of specific
miRNAs for therapeutic intervention.

2.3.3. Importance of individual miRNAs in PAH classification

To check whether individual miRNAs selected could be used for classification, a univariable
analysis was carried out on their expression values (Table 2.10). For each miRNA, the
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expression levels of patients and controls were compared using a wilcoxon signed-rank test,
then controlled for multiple testing using the Benjamini Hochberg correction (Benjamini and
Hochberg 1995) at 0.05. The mean centred expression values for miRNAs selected by at least
two feature selection methods can be seen in Figure 2.8a. Ten of the miRNAs identified in the
feature selection methods had an adjusted p- value <0.05. We also looked at the univariate
discriminatory power of each miRNA individually. MiR-187-5p had an accuracy of 0.78 on the
validation set, whereas miR-636 had an accuracy of 0.69. To assess the potential impact of
individual miRNAs on disease progression, we also looked at the survival difference in patients
when stratifying them based on the median fitted risk of different miRNAs. However, no miRNA
had a significant cox proportional hazard p-value (Table 2.11).

Table 2.10: Minimum, mean and maximum expression values for 43 miRNAs remaining
when correlating miRNAs have been filtered out for the validation set, grouped by patients
with pulmonary arterial hypertension, and healthy and disease controls. BH adjusted p-
values for wilcoxon-signed rank tests.

miRNA PAH patients Healthy and disease controls | Adjusted
Min Mean Max Min Mean Max p-value
let-7d-3p 2.726 3.442 7.135 2.752 3.132 4.537 0.5237

miR-122-5p 2.618 3.064 8.362 2.597 2.888 3.971 0.5307

miR-1237-3p 2.674 3.472 4.685 3.106 3.779 4.533 0.0289

miR-1246 2.595 3.909 6.123 2.649 4.067 13.529 0.1827

miR-125a-5p 2.608 2.876 5.046 2.626 2714 3.657 0.0428

miR-126-5p 2.654 2.956 3.686 2.713 2.911 3.354 0.7980

miR-1260a 5.628 7.489 9.274 5.949 7.532 8.466 0.9493

miR-1306-3p 2.585 2.976 4.329 2.581 2.806 3.545 0.0499

miR-148a-3p 2.581 2.829 3.771 2.612 2.691 2.998 0.3808

miR-148b-3p 2.589 2.782 3.579 2.585 2.69 3.143 0.1134

miR-150-5p 2.62 3.325 7.367 2.646 2972 5.987 0.1335

miR-151a-3p 2.577 2.806 4.406 2.593 2.657 3.215 0.0237

miR-187-5p 2.473 2.822 5.34 2.453 2.558 3.024 <0.0001

miR-18b-5p 2.576 2.635 2.787 2.586 2.631 2.684 0.1522

miR-2116-3p 2.758 3.121 4.053 2.852 3.255 4.597 0.1522

miR-29b-3p 2.639 2.812 3.285 2.638 2773 2.944 0.9493
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Adjusted
miRNA PAH patients Healthy and disease controls| p-value
Min Mean Max Min Mean Max
miR-300 2.65 2.896 3.5657 2.75 3.157 5.633 0.0057
miR-30c-5p 2.611 2.952 3.691 2.647 2.873 3.634 0.3808
miR-324-3p 2.931 3.712 4.997 2.816 3.517 4.56 0.1285
miR-326 2.624 2.809 3.209 2.654 2.781 3.353 0.4509
miR-33b-3p 2.728 3.169 4.454 2.898 3.324 4.471 0.1388
miR-34a-5p 2.682 2.892 3.478 2.649 2.798 3.087 0.1826
miR-3613-3p 2.882 3.881 8.708 3.455 4.394 6.831 0.0003
miR-374b-5p 2.545 2.769 3.496 2.6 2.701 3.565 0.1852
miR-376¢-3p 2.524 2.707 3.811 2.546 2.611 2.762 0.2802
miR-423-3p 2.52 2.622 3.06 2.531 2.601 2.782 0.1285
miR-451a 6.925 10.525 | 14.237 7.365 11.645 | 14.218 0.0237
miR-4707-5p 2.499 2.862 3.648 2.482 2.638 2.836 0.0105
miR-484 2.707 3.117 3.821 2.765 3.067 3.849 0.1243
miR-494 2.642 3.961 8.154 2.637 4.426 8.353 0.4509
miR-548am-5p| 2.688 2.997 4.141 2.701 2.908 3.563 0.9493
miR-550a-5p 2.567 2.804 3.454 2.66 2.861 3.473 0.5840
miR-572 2.541 4.645 7.474 2.62 4.203 5.936 0.0105
miR-574-5p 3.761 7.854 11.055 6.992 8.464 10.159 0.0946
miR-584-5p 2.606 3.487 4.924 2.66 3.839 5.977 0.8776
miR-636 2.721 3.269 4.954 2.737 3.95 5.509 <0.0001
miR-652-3p 2.498 2.627 3.596 2.506 2.543 2.737 0.0105
miR-664a-3p 2.759 3.283 5.719 2.869 3.294 3.693 0.1285
miR-671-3p 2.607 2.684 2.85 2.593 2.692 3.01 0.9493
miR-671-5p 2.492 4.682 9.917 2.538 3.699 9.023 0.0027
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Figure 2.8: (A) Comparison of mean centred expression values for both training and
validation groups (n = 107) of miRNAs for patients with pulmonary arterial hypertension
(PAH) and no PH controls (Control) selected by two or more feature selection methods. *
MicroRNAs with a significant difference between groups (adjusted p-value for Wilcoxon rank-
sum test < 0.05). (B) Variable importance scores for the miRNAs selected by the feature
selection methods, scaled between 0 - 100 per method.



Table 2.11: Cox proportional hazard for miRNAs selected by a feature selection method
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Regression beta P-value for| HR (95% CI for HR)
microRNA coefficient Wald statistic| miRNA

hsa-let-7d-3p -0.0691 0.05 0.816 0.933 (0.521-1.67)
hsa-miR-1306-3p 0.755 3.17 0.0749 2.13 (0.927-4.88)
hsa-miR-148a-3p -0.4 0.21 0.647 0.671 (0.121-3.71)
hsa-miR-187-5p -0.37 0.39 0.535 0.691 (0.215-2.22)
hsa-miR-34a-5p 1.3 2.2 0.138 3.67 (0.657-20.5)
hsa-miR-451a -0.0776 0.35 0.556 0.925 (0.715-1.2)
hsa-miR-4707-5p 0.257 0.21 0.646 1.29 (0.432-3.87)
hsa-miR-484 -1.53 2.16 0.142 0.216 (0.028-1.67)
hsa-miR-494 0.0832 0.26 0.608 1.09 (0.791-1.49)
hsa-miR-548am-5p 0.397 0.4 0.525 1.49 (0.437-5.06)
hsa-miR-572 0.167 0.57 0.451 1.18 (0.766-1.82)
hsa-miR-636 0.218 0.27 0.6 1.24 (0.551-2.81)
hsa-miR-671-5p -0.0273 0.08 0.782 0.973 (0.802-1.18)
hsa-miR-18b-5p -0.0098 0 0.998 0.99 (0.000646-1520)
hsa-miR-3613-3p -0.365 1.67 0.196 0.694 (0.399-1.21)
hsa-miR-652-3p -0.431 0.21 0.65 0.65 (0.101-4.18)
hsa-miR-933 -1.48 1.97 0.16 0.228 (0.029-1.79)
hsa-miR-151a-3p -0.493 0.57 0.45 0.611 (0.17-2.2)
hsa-miR-1246 0.266 1.53 0.216 1.31 (0.856-1.99)
hsa-miR-125a-5p -0.25 0.21 0.65 0.778 (0.264-2.3)

2.3.4 PAH classification performs similarly well using miRNA targets

Two miRNAs were identified by all four feature selection methods: miR-187-5p and miR-636.
These miRNA were also ranked highest in a variable importance analysis (Figure 4B). In order
to investigate the novel role these miRNAs play in PAH, we predicted their target genes. The
two miRNAs had 20 predicted gene targets in common (VAMP7, LMO3, DGKH, YTHDF3, DNAL1,
PPP2R2A, ZDHHC15, UBN2, CDKN1B, FAM63B, PARP15, SOCS5, ZNF844, HECTD2, RIMSS3,
ZNF720, FCHO2, CBX5, PALM2, GABRB?2), with 630 targets in total.

Feature selection methods can be unstable when there are few samples for training. To
counter this we verified the selected miRNAs gene targets in a previously published whole
blood RNA seq data set (Rhodes et al. 2020), as well as two independent expression studies
(Rajkumar et al. 2010; Zhao et al. 2014) .

The whole blood RNA seq data set contained 54 independent healthy controls and 347 PAH
patients. Utilising the miRNA target gene set in this RNA seq data set (of which 548 target
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genes were present), an XGBoost model was used to classify PAH from non-PH, using a cut-
off of 0.841. We used XGBoost as a classifier, as the XGBoost model had the highest correct
classification rate for the miRNA set. This produced a model with 0.86 AUC (95% CI 0.78-
0.94), and an accuracy of 0.89 for the validation set. This classification model also allowed us
to rank the genes contributing the most to the model. The top 15 gene targets are shown in
Figure 2.9.
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Figure 2.9: (A) Top 15 genes ranked with the highest importance in classifying patients in an
RNAseq dataset (n = 401), scaled between 0 and 100. (B) Mean centred gene expression
for top 15 genes (C) Significantly enriched KEGG pathways of the gene targets from miR-
636 and miR-187-5p present in the validation RNA seq dataset. Down regulated genes in
pink, up-regulated in blue.

Three randomly selected groups of gene panels produced similar results, with AUCs of 0.83,
0.92 and 0.81. However, large numbers of genes in the 3 random models had a high
correlation coefficient (> 0.7) with the top 15 genes driving the original XGBoost model (121,
269, and 254 genes) suggesting that a large volume of information was shared between
models.

A model derived from genes with a correlation coefficient < 0.7 was also derived, with an
AUC of 0.80 (95% CI 0.70-0.90). However, here again, connections can be drawn to the
original model, with several of the top genes driving the model included in pathways
enriched in the original model, such as prolactin signalling and rennin secretion.
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We also developed 2 logistic regression models, the first using the top 15 genes which
contributed the most to the XGBoost model of gene targets, and the second using 15
randomly selected genes which had a correlation coefficient < 0.7 to these 15 genes. The
AIC from the first model was 538, compared to an AIC of 198 for the second model.

From the list of 630 target genes, 592 were found in at least one lung tissue dataset.
GSE15197 contained 587 of the gene targets, with 281 found to be differentially expressed
(adjusted p-value <0.05). All133 predicted gene targets that were profiled in GSE53408 were
differentially expressed. Narrowing this down, 61 genes were differentially expressed in the
same direction in both datasets. Basic characteristics of the two cohorts are described in Table
2.5. A pathway analysis of all 630 gene targets showed four enriched KEGG pathways:
proteoglycans in cancer, rennin secretion, melanogenesis, and prolactin signalling pathway
(Figure 2.9C). Widening the network to include miRNAs selected by at least two feature
selection methods showed that of these miRNAs, miR-3613, miR-671 and miR-18b-5p also
targeted genes from all of these pathways, with miR-572 targeting genes in the proteoglycans
in cancer pathway.

From the pathways identified and putative links to PAH pathogenesis, seven gene targets
(FER, GLMN, PARP8, MTUS1, HGF, PELI1 and UBR3) were selected for gPCR validation
based on putative links to PAH pathogenesis using four control human pulmonary artery
smooth muscle cells (PASMC) and four with IPAH (Pickworth et al. 2017). Two genes in
particular, MTUS1 and UBR3 showed a significant increase in expression in patient derived
PASMCs compared to independent control cells (Figure 2.10). There were no significant
differences in expression for the other genes.
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Figure 2.10: qPCR RQ relative quantification box plots for (A) FER, (B) GLMN, (C) PARPS,
(D) MTUS1, (E) HGF, (F) PELI1, (G) UBR3

2.3.5 Added value of miRNA targets (Cai Davies)

1053 genes were filtered from the whole blood RNA seq data set described above, with a
starting set of well detected genes (described as genes with two or more reads in at least 95%
of control or patient samples, n = 25966). These genes were used to generate two models in
XGBoost. Model 1, contained 505 differentially expressed genes (described in (Rhodes et al.
2020). Model 2 contained genes from Model 1, and with the addition of the miRNA target
genes (n = 548) created a larger feature set of 1053 genes. Both models had high AUCs
(0.95) and a high sensitivity (Table 2.12).

Table 2.12: Performance of two XGBoost models classifying PAH from healthy controls in
RNAseq in the validation set.

Sensitivity Specificity AUC (95% CI)
Model 1 0.98 0.63 0.95 (0.91-0.99)
Model 2 0.99 0.54 0.95 (0.90-0.99)

These models were then examined to look for genes with the highest importance to the
XGBoost models, as measured by the percentage gain. The bar plot shows 144 genes with a
percentage gain above 5% (Figure 2.11). The top 20 genes for each model were compared
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against each other, with 12 of the same genes with the highest importance appearing in both
models (Table 2.13).

Figure 2.11: Genes with a percentage gain >5% (n = 144) in Model 2 XGBoost classification
model. Genes ordered by descending percentage gain. Plots in blue are RNA signatures
and plots in red are microRNA gene targets. Created in GraphPad Prism by Cai Davies.
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Table 2.13: Genes that appeared within the top 20 importance of both XGBoost models.
Their percentage gain (importance) is compared with genes showing an increase in gain
highlighted in green with an increase in gain are termed genes of interest.

50

Gene Model one gain Model two gain Difference of gain (%)
(%) (%)
MMP28 34.84 68.99 0.49
CPT1A 23.67 46.39 0.49
XKRX 41.82 64.30 0.35
ZNF763 22.62 33.67 0.33
RALA 17.42 25.36 0.31
NRG1 37.12 52.12 0.29
HLTF 25.51 32.67 0.22
KLF10 29.79 36.77 0.19
ANKRD34A 25.83 29.55 0.13
AC009299.4 100.00 100.00 0.00
FAM132B 28.38 23.74 -0.20
AC018890.6 26.41 21.85 -0.21

2.4 Discussion

There is increasing evidence that changes in miRNA expression levels are associated with
progression of PAH. Here, we used miRNA expression profiles and a consensus machine
learning approach to identify two consistently prioritised miRNAs with high accuracy at
identifying PAH from no PH controls, as candidates for further investigation. We subsequently
identified putative miRNA gene targets and integrated public lung tissue RNA datasets to
validate differential regulation of key miRNA targeted genes, again identifying candidates for
further investigation. An extreme gradient boosting method of classifying patients based on
the putative gene targets in an overlapping cohort had a similar AUC, providing further
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validation. This data suggests that combining different approaches for selecting miRNAs can
reveal diagnostic biomarkers and insights into regulators of disease.

Of the supervised machine learning approaches we tested, we found that a random forest
approach identified patients with PAH with the highest sensitivity, although an XGBoost
approach had a similarly high AUC. Adding NT-proBNP to the random forest model resulted
in a model with a higher classification accuracy compared to NT-proBNP alone. This shows
NT-proBNP and miRNAs may provide complementary phenotypic information and therefore
both should be incorporated in future prospective validation analyses.

It is important to consider whether the features selected at each point are true biomarkers or
false positives. Machine learning provides an unbiased approach to predicting patient status,
but also the potential to identify previously unknown interactions and identify novel biological
features (Lopez-Rincon et al. 2019; Neumann et al. 2016). Our approach of investigating the
biomarkers identified through multiple feature selection techniques increases confidence in
the generation of reproducible biomarker panels, and reduces the number of miRNAs for
potential clinical investigation. The selected miRNAs ranked highly in terms of variable
importance (Figure 2.8B).

Both miRNAs selected have previously been linked to PAH. MiR-187 has previously been
identified as significantly upregulated in endoarterial biopsy samples in a porcine model (A.
Rothman et al. 2017), and in human lung tissue (W. Chen and Li 2017), in concordance with
our findings. However, one study on cardiac tissue from the sugen5416 plus hypoxia rat model
found miR-187-5p to be significantly downregulated (Joshi et al. 2016). MiR-636 has been
reported to correlate with maximum change in pulmonary vascular resistance (PVR) in a small
study on a paediatric PAH population (Kheyfets et al. 2017). The above literature reports
support the evidence that miR-187-5p and miR-636, identified here as candidate biomarkers
may be associated with disease progression of PAH providing validation that our machine
learning approach identified miRNA biomarkers of relevance. Several other miRNAs identified
as having a high importance score by the feature selection methods have also previously been
seen in PAH, for example MiR-4707-5p has been identified as a potential target for PH (Jin et
al. 2020). Additionally, miR-34 has been seen to have decreased expression in PAH
(Alexander M. K. Rothman et al. 2016; K.-H. Chen et al. 2018), and let-7d, which has been
identified as a potential biomarker for the presence and severity of PH in patients with SSc
(Izumiya et al. 2015). Similarly, the target genes driving the classification in an independent
RNAseq dataset, TCF7L2, which ranked highest in importance has previously been seen to
be differentially expressed in the lung tissue of IPAH patients (Saygin et al. 2020) as well as
in the cardiac muscle tissue in a rat model (Hotda et al. 2020). Some of these target genes
also showed weak to moderate correlation with available clinical features, such as lung
function forced vital capacity (Table 2.14).
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Table 2.14: Spearman’s correlation coefficients for gene targets with sample demographics.
Highest correlation coefficient reported.

Absolute max
Clinical Variables Gene correlation coefficient

Demographics

Age at Sampling EFNA1 -0.3044634
Survival

Survival (years since sampling). BRWD1 -0.2952542
Died during Follow up KATZ2A -0.2616826
HLA-DPA1/DPB1 SNP (rs28568300) MSI2 -0.228825

Lung Function

Forced Vital Capacity (FVC, L) KDM6A -0.4217336
Forced Expiratory Volume in 1 second (FEV, L) KDM6A -0.3891385
Carbon monoxide transfer (KCO %Pred) NET1 0.2068199

Right Heart Catheter

Mean Right Atrial Pressure (mm Hg) HDGF 0.2827278
Pulmonary Arterial Wedge Pressure NDRG4 -0.2265114
Pulmonary Vascular Resistance BTBD3 -0.2398163
Cardiac Index BTBD3 0.2597571

Exercise Capacity

6 minute walk distance (6MWD,m) HDGF -0.2896662

Incremental Shuttle Walk Distance (ISWD,m) HDGF -0.2885012

Our main aim in this study was to investigate the relationship between miRNAs and clinical
classifications, not to develop a diagnostic tool. ML methods can capture more complex, non-
linear relationships, where a straightforward univariable analysis cannot. A limitation to this
study is the relatively small sample size used to both generate and validate the miRNAs as
classifiers. This may have resulted in some model overfitting and therefore a possible
overestimation of effect size. In order to mitigate this, we validated the gene targets in separate
published datasets, and used qPCR to validate potentially interesting genes. The target gene
data contained a far larger number of variables, with 548 genes for each of the 401 subjects,
necessitating our use of ML in this dataset. As a result, future studies based on larger
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retrospective and prospective clinical cohorts are warranted, and currently underway
(ClinicalTrials.gov NCT04193046) to corroborate the utility of these, and potentially other
miRNAs as classifiers and biomarkers. In such a small cohort, there was a danger the models
could have been driven by factors such as age and sex, but classification using only these
factors yielded an accuracy of 0.57 in the validation set. We also noted that the AUC
confidence intervals for males and females on the training and validation sets overlapped.
Additionally, both SSc and PAH, as individual diseases can be heterogeneous (Launay et al.
2017). As such within our cohorts of mixed IPAH and SSc-PAH there are likely to be variations
between patients, and equally, our control group included 10 disease controls and 33 healthy
controls. We also attempted a leave one out cross validation approach across the whole
dataset, which resulted in similar miRNAs being selected (Figure 2.5). These mixed groups
likely reduce the risk of overfitting to a specific patient phenotype, and increase the chance
that this analysis could be replicated in other PAH cohorts.

The two candidate miRNAs selected from the microarray study have not been further
quantified by PCR. However, correlations between miRNA microarray expression and PCR
have been shown to have very high correlation coefficients (Pradervand et al. 2009).
Consequently, further validation of the two miRNAs identified in a larger, independent cohort
are necessary before a clinical application can be considered.

In summary, our approach using four machine learning feature selection algorithms on miRNA
data from microarrays identified a two miR-signature for PAH from patient plasma. These
circulating miRNAs, and their target genes may provide a novel PAH signature, reveal novel
disease mechanisms and highlight future putative drug targets.
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Chapter 3: Diagnostic miRNA signatures for
treatable forms of pulmonary hypertension
highlight challenges with the current clinical
classification

Following the results of successfully classifying patients with PAH from controls using a small
panel of miRNAs from microarray profiling, | hypothesised that this classification approach
could scale up and | examined a large cohort of patients with all types of PH, along with
disease controls using a large panel of miRNAs profiled by gPCR. | became involved in a
miRNA biomarker profiling study with Janssen pharmaceuticals, in collaboration with MiRXES,
University of Sheffield, The Royal Papworth Hospital (Cambridge), and Imperial College
London. This study aimed to identify different microRNA signatures or biomarkers associated
with the different diseases profiled. It is the largest retrospective study of this kind laying the
groundwork for the prospective clinical trial CIPHER (ClinicalTrials.gov Identifier:
NCTO04193046) by identifying signatures that can predict disease types. Chapters 3 and 4
form a manuscript under preparation for submission to the European Heart Journal.

3.1 Introduction

The heterogenous cardiopulmonary condition pulmonary hypertension, as defined by an at
rest mPAP > 20mmHg. PH is associated with reduced life expectancy. Patients often present
with generic symptoms such as shortness of breath, and diagnosis along with referral to a
specialist is often delayed. Since 2004, the World Health Organisation (WHO) has categorised
PH into five subgroups, these remain the current clinical classifications (PAH, PH due to left
heart disease (PH-LHD), PH due to lung disease (PH-lung), CTEPH and miscellaneous PH)
(Simonneau et al. 2019) (Table 1.1). Although the diagnosis requires a right heart
catheterisation for confirmation, patients may be triaged with echocardiography and BNP or
NT-proBNP. An echocardiography requires specialist interpretation to offer an estimate of
mPAP. BNP plasma concentration levels offer a potential alternative. BNP or the prohormone
form (NT-proBNP) are the only circulating biomarkers adopted by ERS/ESC guidelines for
route clinical use. However, both BNP and NT-proBNP are measures of cardiac stress, and
neither differentiate between different underlying causes. As biomarkers, BNP and NT-
proBNP are not perfect, with limited sensitivity, even in heart failure (Shah 2022).

MicroRNAs have shown promise as biomarkers in a variety of diseases. MicroRNAs are well
preserved in blood plasma, and both more stable and more easily measured than some
alternatives, such as proteins (Pritchard, Cheng, and Tewari 2012). In Chapter 2, microarrays
were used to profile the miRNAs. Microarrays were one of the first approaches used to analyse
miRNAs in large numbers, with the advantage of being less expensive than some other
methods, whilst allowing for relatively large numbers to be measured in parallel. However, the
quantification of microarrays is restricted to a linear range, and the specificity can be low for
miRNAs with closely related sequences (Pritchard, Cheng, and Tewari 2012), and they are
sometimes unable to detect low levels of miRNAs. Here, MiIRXES’s gPCR miRNA assay
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technology was used to profile the miRNAs. gRT-PCR is known as the ‘gold standard’ for
nucleic acid quantification, with high sensitivity and specificity (Pritchard, Cheng, and Tewari
2012). MicroRNA levels change with disease and may offer an alternative or be additive to
BNP as a blood test to diagnose and risk stratify patients. Since miRNAs have a more diverse
cellular origin than BNP, we hypothesised that the distribution of circulating miRNAs across
the different presentations of PH would inform molecular endotypes in a PH cohort.

In the UK PAH diagnosis is made at specialist PH referral centres, where an important road-
block to rapid diagnosis is the identification of patients at highest-risk of PH. As such, the
primary objective of this study was to use the existing UK cohorts to identify circulating miRNA
as biomarkers using MiRXES’s gPCR miRNA assay technology, and investigate the potential
for developing miRNA signatures to identify PH and PAH from DC. Identifying patients with
PAH or CTEPH from other forms of PH would be of clinical use, so this study also aimed to
identify miRNA signatures to separate patients with PAH from other forms of PH, and patients
with CTEPH from other forms of PH.

3.2 Methods

3.2.1 Sample collection

This comprised 1150 patients with PH and 334 disease controls as summarised in Table 3.1.
Patients were recruited from 3 UK national PH referral centres at the Hammersmith Hospital
(Imperial), Royal Hallamshire Hospital (Sheffield) and Royal Papworth Hospital (Cambridge)
as summarised in Table 3.1. All cases were diagnosed between 2008 and 2019 using
contemporaneous diagnostic guidelines (Galié et al. 2015). All samples were obtained
following informed consent to one of three cohorts: the Imperial College Prospective Study of
Patients with Pulmonary Vascular Disease cohort (PPVD, UK REC Ref 17/LO/0563), the
Sheffield Teaching Hospitals observational study of pulmonary hypertension, cardiovascular
and other respiratory diseases (STH-ObS, UK REC Ref 18/YH/0441) or Papworth cohort. All
samples were collected as per local standard operating procedures and stored at -800C until
assayed. All cases/samples were pre-processed into training, interim and validation datasets
to balance age, sex, PH classification and recruitment site. The validation samples were
analysed separately.
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Table 3.1: Demographics for the training, interim and validation cohorts. Normally distributed
variables reported as mean (standard deviation), not normally distributed variables reported
as median [IQR]. Categorical variables reported as number (% from reported total of

column).

Clinical Variable Missing Training Interim Validation All

n 952 185 347 1484

Sex: Female 2 (0.1%) | 578 (60.7%) | 124 (67.0%) | 212 (61.4%) | 914 (61.7%)

Age (years) 5(0.3%) | 64.0[21.8] | 64.0[23.0] 65.5 [20.0] 64.0 [21.0]

Body Mass Index 106 27.8 [8.6] 27.4 [8.9] 28.0 [8.3] 27.8 [8.6]

(7.1%)

Blood pressure - 162 74 [14] 74 [16] 76 [16] 75[15]

diastolic (mm Hg) (10.9%)

Blood pressure - 0 (0%) 129 [28] 128 [30] 130 [29] 129 [29]

systolic (mm Hg)

Pulmonary 403 480 [640] 590 [560] 410 [549] 480 [621]

Vascular (27.2%)

Resistance (dynes)

Mean pulmonary 233 42.0[24.0] | 42.5[20.8] 37.0 [26.0] 41.0 [25.0]

artery pressure (15.7%)

(mm Hg)

Cardiac Output 295 4.1[21] 4.1[21] 4.3 [2.0] 4.11[2.1]

(L/min) (19.8%)

Cardiac Index 421 2.2[1.0] 22[11] 2.2[1.1] 2.2[1.0]

(28.4%)

Functional Class

I 34 (3.7%) 6 (3.3%) 13 (3.9%) 53 (3.7%)
41 (2.8%)

Il 185 (20.0%) | 35(19.3%) | 68 (20.4%) | 288 (20.0%)

1] 632 (68.1%) | 123 (68.0% | 230 (68.9%) | 985 (68.3%)

v 77 (8.3%) 17 (9.4%) 23 (6.9%) 117 (8.1%)

Plasma NT- 0 (0%) 9.414.0] 9.414.0] 9.0 [3.4] 9.2 [3.8]

proBNP (log2

pg/ml)

PH Treatment 0 (0%) 730 131 (70.8%) | 295 (85.0%) 1156

naive (76.7%) (77.9%)
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Symptomatic but
no PH

Idiopathic PAH

Heritable PAH

Drug and toxin
induced PAH

Associated PAH

PH-LHD

PH-Lung

CTEPH

Misc PH

Clinical Variable Missing Training Interim Validation All
Site

- 0 (0%) 0 0 0 0
Cambridge 295 (31.0%) | 39 (21.1%) | 104 (30.0%) | 438 (28.3%)
Imperial 440 (46.2%) | 95 (51.4%) | 141 (40.6%) | 676 (43.6%)
Sheffield 217 (22.8%) | 51 (27.6%) | 102 (29.4%) | 435 (28.1%)
Diagnosis 0 (0%)
CTED 53 (5.56%) | 11 (5.95%) 17 (4.90%) | 81 (5.46%)

154 (16.2%)

20 (10.8%)

79 (22.8%)

253 (17.0%)

188 (19.7%)

41 (22.1%)

51 (15.0%)

280 (18.9%)

8 (0.840%)

4 (2.16%)

6 (1.73%)

18 (1.21%)

4 (0.420%)

0 (0%)

1(0.288%)

5 (0.337%)

115 (12.1%)

34 (18.4%)

39 (11.2%)

188 (12.7%)

119 (12.5%)

18 (9.73%)

41 (11.8%)

178 (12.0%)

72 (7.56%)

11 (5.95%)

34 (9.80%)

117 (7.88%)

215 (22.6%)

43 (23.2%)

74 (21.3%)

332 (22.3%)

24 (2.62%)

3 (1.62%)

5 (1.44%)

32 (2.16%)

3.2.2 Quantification of serum NT-proBNP and miRNAs (Performed by

MiRXES)

Total RNA was extracted from 200 pl of serum or plasma using the Maxwell® RSC miRNA
Plasma and Serum Kit (Promega, Madison, USA) as per the manufacturer’s recommendations
with two modifications: (a) three proprietary spike-in controls (with 20 nucleotide unique RNA
sequences) signifying low, medium and high RNA levels (MiRXES, Singapore) were added to
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lysis buffer C prior to sample RNA isolation. These controls are used to track the effectiveness
of RNA isolation and normalise for technical variations; (b) bacteriophage MS2 RNA (Roche,
Basel, Switzerland) was added at 0.4ng per sample isolation to improve RNA isolation yield.
For biomarker discovery, a highly-controlled RT-qPCR workflow was used to quantify the
expression of miRNA in each sample. Isolated RNA was reverse transcribed using miRNA-
specific reverse transcription (RT) primers according to manufacturer’s instructions (ID3EAL
Customised Individual miRNA RT Primer, MiRXES) on QuantStudio™ 5 Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA).

3.2.3 Pre-processing of miRNA expression data (Performed by MiRXES
& Chris Rhodes)

We measured expression in 590 miRNAs for the discovery and interim cohorts and 359
detectable miRNAs were measured in the validation cohort. Data from 326 miRNAs that were
detected in no less than 90% of samples in both cohorts were combined. Missing values were
imputed separately in the combined discovery and interim, and validation sets , by replacing
missing values with miRNA mean — four standard deviations. miRNA data were further global
normalised (A novel and universal method for microRNA RT-gPCR data normalisation). The
pre-processing was carried out by MiRXES. Samples from Cambridge showed higher total
miRNA counts than the other centres. To correct for this batch effect, total miRNA counts were
modelled with a LASSO model composed of 11 miRNAs. A linear regression using this model
was then used to adjust the counts, retaining the mean miRNA levels.

3.2.4 Classification of patients into PH subtypes

We attempted seven different classifications, firstly PH vs DC, and PAH vs DC. Then each of
the PH subtypes vs the other PH groups (Table 1.1); PAH vs other PH types, PH-LDH vs other
PH types, PH-lung vs other PH types, CTEPH vs other PH types. Finally, we looked at PAH
vs CTEPH, the two treatable subtypes of PH. For each classification, the dataset was initially
split into predetermined training, interim and validation subsets. All statistical analyses were
carried out using R (v4.0.3). Following the approach used in Chapter 2, we used four different
machine learning feature selection methods, each fed forward to binary classifiers. For each
method, parameters were tuned using 10-fold cross validation (repeated 10 times). Weights
were also added to each classifier. Each patient was weighted as follows:

Control in each comparison: 1/(Number of controls) * 0.5
Targeted group in each comparison: 1/(Number of targets) * 0.5

Each classifier was then assessed for AUC using the interim set. The models with the best
cross-validated AUC on the discovery set, and highest AUC on the interim set were refined,
using the combined discovery and interim sets, with the best performing method (assessed
as the highest mean cross-validated AUC on the combined sets) was selected as the final
model. Final performance was then assessed on the validation set. Overview of classifier
training and testing is described in Figure 3.1.
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Figure 3.1: Method overview. Data set split was into predetermined training, interim and
validation sections. Four machine learning methods used to classify patients in the training
set, then refined using the combined training and interim. Final performance assessed on
validation cohort before pathway enrichment for miRNAs in signatures.

3.2.4.1 Boruta and Random Forest

Boruta, a feature selection wrapper algorithm based on random forest was utilised to detect
potentially appropriate features within the classification framework. We implemented 300
repetitions with default settings of the normalised permutation importance function using
random forest to get variable importance, within the Boruta package (v.7.0.0). Once the 300
runs were completed, miRNAs not classified as important by the algorithm were rejected. This
implementation was carried out 100 times, selecting the miRNAs present in at least 99 of the
100 repetitions. These miRNAs were utilised to create a random forest model (randomForest
package v4.6-14). The caret package (v. 6.0-88) was used to identify the ideal number of
trees, from 1000, 1500, 2000 or 2500. The number of variables available for splitting at each
tree node was optimised next, across the range 1 to 15 (Table 3.2). Once a model was created,
if the original number of variables selected was greater than 10, the model was re-tuned by
removing the variables with the lowest contributed importance to the model.
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Table 3.2: Final Random forest model parameters for each comparison selected from cross
validated folds on the training and interim sets. *Random forest not the final model for this
comparison

Comparison Optimal number of trees Number of variables available
for splitting at each tree node

PH vs DC* 1000 1
PAH vs DC* 1000 9
PAH vs other PH* 1000 1
PH-LHD vs other PH 1000 5
PH-lung vs other PH 1000 3
CTEPH vs other PH* 1000 2
PAH vs CTEPH* 1000 1

3.2.4.2 Recursive partition trees

Classification trees were computed using Rpart (v4.1-15)(Therneau and Atkinson 2018) and
caret in R. Trees were generated from the root of the tree downwards, using a greedy feature
selection algorithm and recursive binary splitting to return features in order. The tree
construction was controlled by setting the minimum number of observations in a terminal node
to 5 and the minimum number of observations in a node for a split to occur set to 4. The Gini
index was minimised to create each split. A variable was deemed to be selected if it appeared
in the final model.

3.2.4.3 LASSO

Least absolute shrinkage and selection operator (LASSO) using the glmnet package in R
(v4.1-2) was used to choose pertinent miRNAs by eliminating variables with a coefficient
shrunk to 0. The regularisation parameter lambda, (A), was chosen using binomial deviance,
using repeated 10-fold cross-validations. The value of A with minimum binomial deviance was
selected and used to fit the final model.

3.2.4.4 XGBoost

Finally, we looked at XGBoost (v1.4.1.1), a gradient boosting method which ranks features in
order of importance. The parameters were tuned over previously described optimisation
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ranges for miRNAs (Errington et al. 2021). Once models had been trained, the variables were
ranked in terms of their importance. The top nine miRNAs were then selected, and the model
re-trained over the same parameter range using only the nine selected miRNAs. The optimal
values for these parameters for each model can be seen in Table 3.3 below.

Table 3.3: Final XGBoost model parameters for each comparison. *XGBoost not the final
model for this comparison

No Max | Learning | Gamma | % feature Min Subsample
Comparison | of tree | rate used in child | rate (row
trees | depth each boost | weight | sampling)
(column
sampling)
PH vs DC 150 | 6 0.05 0.1 1 1 1
PAH vs DC 1500 | 2 0.01 0 1 2 1
PAH vs other | 3950 | 1 0.025 0 1 1 1
PH
PH-LHD vs 1200 | 8 0.05 0.7 0.8 1 1
other PH*
PH-lung vs 2400 | 10 0.01 0 1 1 0.75
other PH*
CTEPH vs 200 3 0.1 0 1 5 1
other PH
PAH vs 2550 |1 0.01 0.05 0.6 2 0.75
CTEPH

3.2.4.5 NT-proBNP

We also investigated the performance of NT-proBNP as a standalone variable for
classification. The glm function and caret (v. 6.0-88) package in R were used to build logistic
regression models for each comparison, using log 2 values for NT-proBNP, setting the family
to binomial. Weights were added to each patient as above.

3.2.5 Pathway Enrichment Analysis

An over representation analysis was carried out for each miRNA panel using the GeneTrail
3.2 miRNomics platform. The gene pathway resources miRTarBase, REACTOME and
WIKIPATHWAYS from the miRPathDB 2.0 collection were selected as the databases on
which the enrichment analysis was performed. A significance level of 0.05 was used for FDR
adjusted results (Benjamini and Yetutieli 2001).



62

3.2.6 Validation in an external cohort

A separate validation dataset cohort of patients from the Brigham and Women’s Hospital
(BWH) in the US had miRNA plasma levels measured using the same MiRXES platform (Table
3.4). The cohort contained 158 disease controls and 55 patients with PAH. We compared
these to 118 samples from Sheffield who had also had plasma miRNA levels measured (76
patients with PH, 22 disease controls and 20 healthy controls). Correlation between serum
and plasma levels for matched samples were examined using a spearman’s correlation. Due
to poor correlation between serum and plasma in the matched samples from Sheffield, we
fitted logistic regression (LR) models using the same miRNAs selected by the XGBoost
models from our discovery cohort (training and interim) on mean centred data. Only the
distribution of PAH and DC patients were comparable in the discovery cohort and this external
cohort, so we assessed the models on differentiating PAH from DC using the same set of
mMiRNAs.

Table 3.4: Patient demographics for the Brigham and Women’s Hospital cohort. Normally
distributed variables are reported as mean (standard deviation), and non-normally distributed
variables are reported as median [IQR]. Categorical variables reported as number (% from
reported total of column). ERA, endothelin receptor antagonists; PDE5, phosphodiesterase-5
inhibitors.

Clinical Variable Missing Disease PAH
Controls
N 157 54
Sex: Female 0 (0%) 111 (70.7%) 37
(68.5%)
Age (years) 0 (0%) 56.0 [21.0] 67.5
[14.8]
Body mass index 5(2.4%) 25.0 [7.2] 31.3[8.3]
(kg/m2)
Systemic blood pressure - diastolic 0 (0%) 70.0 [16.0] 70.0
(mmHg) [18.0]
Systemic blood pressure - systolic 0 (0%) 124 [23.0] 137 [22.8]
(mmHg)
Mean pulmonary artery pressure (mmHg) 0 (0%) 15.0 [4.0] 33.0
[14.5]
Pulmonary Arterial Wedge Pressure 156 8 [2.75] 12.0
(mmHg) (72.9%) [7.50]
Cardiac output 0 (0%) 5.08 [1.28] 4.93

(L/min) [1.79]



Cardiac index 0 (0%)
(L/min/m2)
Pulmonary vascular  resistance 0 (0%)

(dynes.s.cm-5)

WHO functional class 20 (9.5%)
I
Il
0
\Y
NT-proBNP 124
(58.8%)
PH treatment-naive 0 (0%)
ERA
Prostanoid
PDE5

Other PH drug

3.2.7 Code availability

All methods and parameters used are described in the git repository available at

https://github.com/niamherrington/MiRXES-miRNA.

3.3 Results

3.3.1 Model performance
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For most comparisons, an XGBoost model had the highest cross-validated AUC across the
training and interim sets. Distinguishing PH-LHD and PH-lung from other forms of PH proved
to be an exception, with the random forest models performing best.

The performance, measured by area-under ROC (AUC), of miRNAs and NT-proBNP in
distinguishing PH from disease controls (DC), which includes all symptomatic patients
(including CTED) in which PH was excluded by cardiac catheterization, was first derived from
training and interim samples, then a final check made by evaluating the AUC in the validation

data set (Table 3.5, Figure 3.2).
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There was no significant difference in the overall performance between NT-proBNP and the
miRNA signature in distinguishing patients with PH or PAH from symptomatic disease controls
(AllPH vs DC, PAH vs DC, Table). However, the miRNAs showed superiority in distinguishing
between treatable subtypes of PH from other types. CTEPH vs other PH and PAH vs other
PAH had AUCs of 0.69 and 0.70 respectively (compared to 0.51 and 0.58 for NT-proBNP).
Additionally, the miRNAs also performed better than NT-proBNP at distinguishing PAH from
CTEPH (AUCs of 0.77 compared to 0.55 for NT-proBNP). No performance was analysed on
samples from patients with PH-miscellaneous due to the small sample size (n = 32 training,
interim and validation combined). ROC curves are shown in Figure 3.2.

Table 3.5: Performance of miRNA signatures in training and validation datasets. Mean cross
validated AUCs on discovery and interim datasets, and AUC on validation set for the best
performing models trained on miRNAs and NT-proBNP across five clinically defined classes
(Pulmonary Hypertension groups 1-4 and Disease Control). *P value for DeLong test of
miRNA and NT-proBNP models on the validation set.

Comparison | miRNA AUC | NT-proBNP | Validation Validation DelLong | Machine
mean CV AUC mean | miRNA AUC | NT-proBNP test p Learning
(sd) CV (sd) (95%Cl) AUC (95% CI) | value* Model
AllPH vs DC | 0.75 (0.05) 0.78 (0.05) | 0.70 (0.64- 0.78 (0.73- 0.00379 | XGBoost
0.76) 0.84)
PAH vs DC 0.82 (0.04) 0.76 (0.06) |0.73 (0.66— | 0.79 (0.72— 0.193 XGBoost
0.80) 0.85)
PAH vs other | 0.71 (0.06) 0.58 (0.05) | 0.69 (0.62- 0.51 (0.44- 1.33e- XGBoost
PH 0.75) 0.59) 04
PH-LHD vs 0.70 (0.06) 0.56 (0.06) | 0.67 (0.60— | 0.57 (0.49 - 0.0482 | RF
other PH 0.74) 0.64)
PH-lung vs 0.69 (0.06) 0.54 (0.05) |0.65(0.57- |0.53(0.45 - 0.0522 | RF
other PH 0.72) 0.61)
CTEPH vs 0.70 (0.06) 0.54 (0.04) | 0.70 (0.63- 0.58 (0.50- 0.0141 XGBoost
other PH 0.78) 0.66)
PAH vs 0.74 (0.06) 0.55(0.05) |0.77 (0.70- | 0.55 (0.46- 2.13e- XGBoost
CTEPH 0.84) 0.64) 07
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Figure 3.2: Performance of miRNA signatures in validation data set. Graphs show receiver

operator characteristic curves for the performance of miRAN signatures and NT-proBNP for
selected comparisons. Pink lines are XGBoost models from miRNAs, green shows a logistic
regression for NT-proBNP. Shaded areas show 95% confidence intervals
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Within each classifier, there appear to be groups of patients for which the miRNA signatures
are not able to accurately classify patients. We reasoned there may be a degree of overlapping
pathology within these patients, and examined the occurrence of the PAH miRNA signature
within other PH groups as an example. Using XGBoost, the PAH miRNA signature, detected
in 61% of patents clinically classified as PAH, is found in 5% of PH-LVD and 12% of PH-lung
and 10% of CTEPH patients (Figure 3.3). The other 3 machine learning models gave similar
results (Figure 3.4)

PH-LHD PH- Iunq
CTEPH Misc. PH PAH miR signature negative

. PAH miR signature positive

&

Figure 3.3: Percentage of each Dana Point Classification group identified by the PAH
miRNA signature. Each pie chart demonstrates the breakdown of the number of patients
incorrectly classified with the XGBoost derived PAH miR signature within each clinical PH
classification group, defined as the majority vote across all training and interim CV folds. In
the PAH cohort, the pink colour indicates the patient was correctly identified, and the blue
represents the patients who were incorrectly classified. For PH-LHD, PH-lung, CTEPH and
miscellaneous PH (Misc. PH), the pink represents the patients incorrectly classified as PAH
by the miRNA signature, and the blue indicates the miRNA signature correctly identified the
patient did not have PAH. Numbers represent patients within each classification group
identified by PAH miRNA signature, or not.
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[ Incorrect > 20 CV folds
Incorrect < 20 CV folds
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[ False Positive
True negative
True positive

PAH
PH-LHD

PH-lung
CTEPH
Misc PH

PH classification =
LASSO CV fold 1
LASSO CV fold 10
LASSOC
LASSOC
LASSOC
LASSOC
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Figure 3.4: Predictions for each ML classifier examined over the training and interim sets for
detecting PAH from other forms of PH. Each column represents a cross-validated fold, and
each row a patient. In the main body of the figure, where the model has made a correct
prediction, the corresponding square is grey, and then blue or pink for false negative or false
positive predictions respectively. On the far right hand side, the patients incorrectly classified
in more than half (>20) the cross validated folds across all four models are highlighted. RF:
Random Forest, rpart: recursive partitioning, LASSO: least absolute shrinkage and selection
operator. CV: cross validation

3.3.2 Model miRNAs

The miRNAs driving these models were investigated next. No miRNA appeared in each
classification model, and each classification contained miRNAs unique to that signature, with
miRNAs repeating across signatures contributing varying degrees of importance (Figure 3.5,
Figure 3.6). The signals that separate PH and PAH from disease controls share six miRNAs
(miR-RNA-151a-5p, miR-210-3p, miR-30a-5p, miR-193b-3p, miR-126-3p and miR-10b-
5p).Hsa-miR-34a-5p and hsa-miR-135a-5p appeared in most models distinguishing between
subtypes of PH. Additionally, miR-34a-5p had the highest importance in the model
distinguishing between CTEPH and other forms of PH, and the model looking at PAH versus
CTEPH. The relative abundance of miR-34a-5p features in discriminating PH-LHD, PH-lung
and CTEPH from PH, and CTEPH from PAH is of interest, with miR-34a previously reported
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to be dysregulated in PH (Rothman et al. 2016) and play a role in regulating mitochondrial
function (Chen et al. 2018). Similarly, we have previously reported changes in expression of
miR-150 (Rhodes et al. 2013) within an IPAH population, and miR-150 formed part of the
panel of miRNA that distinguishes PAH from other forms of PH (Figure 3.5).
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Figure 3.5: MicroRNA signatures and importance. A heatmap showing the variable
importance of each miRNA in differentiating clinical classes. Darker values indicate a higher
importance score for that miRNA, scaled to between 1-100.
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Figure 3.6: MicroRNA variable importance plots for XGBoost models
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3.3.3 Enriched Pathways

Following miRNA selection, we assessed the enriched pathways (FDR adjusted p-value <
0.05) in each comparison based on the derived signatures (Figure 3.7). Five pathways were
seen in more than one comparison. Three pathways were seen in both the PAH vs DC and
PH vs DC comparisons; signal attenuation, costimulation by the CD28 family, and rab
regulation of trafficking. Each comparison also saw pathways uniquely enriched within that
comparison. For example, the PAH vs PH signature saw an enrichment in the FGFR
signalling, not seen in the other comparisons. The involvement of FGFR signalling in PAH has
been seen in multiple other studies (Zheng et al. 2015).
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Figure 3.7: Top 10 (ranked by q-value) enriched pathways in miRNA signatures for five
comparisons. A) PH vs DC, B), PAH vs DC, C) CTEPH vs PH, D) PAH vs CTEPH, E) PAH
vs PH
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3.3.4 Validation of the PAH vs DC signature in an external cohort

Owing the poor correlation coefficients seen between serum and plasma in matched samples
from Sheffield (Table 3.6), LR models were developed from mean centred miRNA data (Figure
3.8), using the miRNAs selected by and XGBoost model to compare performance in a
separate cohort of patients from the Brigham and Women'’s Hospital in the United States who
had plasma samples taken using the same MIREXES platform. The largest difference in
median levels for a miRNA between the PAH and DC groups was miR-126-3p in the US cohort
(0.394 ACt and -0.519 ACt for PAH and DC respectively). The smallest median difference
between PAH and DC groups was miR-1226-3p in the UK validation cohort (0.0410 and 0.571
respectively).

Table 3.6: Spearman correlation coefficient between plasma and serum for miRNAs in the
PAH vs DC signature in matched patients from Sheffield.

miRNA Correlation coefficient | P-value
hsa-miR-210-3p 0.375 0.00244
hsa-miR-151a-5p | -0.0153 0.904
hsa-miR-193b-3p | 0.802 <2.2e-16
hsa-miR-30a-5p 0.804 1.32e-15
hsa-miR-126-3p 0.161 0.203
hsa-26a-2-3p 0.0948 0.474
hsa-miR-200c-3p 0.183 0.149
hsa-miR-10b-5p 0.869 <2.2e-16
hsa-miR-1226-3p | 0.163 0.206
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Figure 3.8: Mean centred expression profile of miRNAs forming a signature to classify
patients with PAH and DC across two separate cohorts of patients.

Although the coefficients for the miRNAs were not the same between the models (Figure 3.9),
similar AIC (20) and mean cross validated AUC (0.80) were seen between models (Table 3.6),
suggesting that the same combination of miRNAs can be used to differentiate PAH from DC
in both cohorts. A wilcoxon rank sum test of the patient scores showed significant differences
in the predicted scores for patients with PAH and DC in both cohorts (p-values 2.2e-16 and
7.22e-11 for UK and US cohorts respectively). The individual patients' scores for the Logistic
Regression models for classifying PAH from disease controls (DC) are shown in Figure 3.9B.
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Figure 3.9: Validation of PAH miRNA signature in both UK and US cohorts using the same
miRNAs as in the diagnostic signature. (A) Coefficients for each miRNA in the logistic
regression model used to classify PAH vs Disease Control (DC) in each cohort. (B)
Predicted score of each patient being PAH from the logistic regression models. P values for
Wilcoxon rank sum test between PAH patients and DC (C) ROC for both models
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3.4 Discussion

Targeting an early diagnosis of PH remains a key clinical aim. In this project, we derived a
panel of circulating miRNAs from a serum screen from an unbiased screen of over 600
miRNAs, with 1484 patients presenting at three expert UK clinics; the most comprehensive
screen to date. We compared the performance of this model with NT-proBNP in detecting PH
from disease controls. We identified small panels of miRNAs which distinguish two treatable
subtypes of PH from a population of patients at risk of the condition; PAH and CTEPH. These
panels could potentially be used independently or combined with NT-proBNP within the patient
investigation pathway. This provides the prospect of a point of care test earlier in the diagnosis
pathway, identifying prospective patients for treatment at an earlier date.

Changes in levels in circulating miRNAs are well recognised. As such, we expected that the
miRNA panel would out-perform the single marker NT-proBNP. However, NT-proBNP did not
appear to perform significantly better in the distinction of PH from other breathless controls.
The added value of the miRNAs appears to be in identifying the treatable subgroups (PAH
and CTEPH) from within the PH group, suggesting miRNAs may hold more disease specific
aetiological information, rather than the more generic cardiac stress marker NT-proBNP.
Previous studies have mostly focused on comparing smaller cohorts of patients with healthy
controls, limiting the utility of these findings. Here, we have compared patients across the
spectrum of PH with other patients of similar presentation, resulting in miRNA signatures with
a greater potential value.

A key limitation to this study was the validation in a separate cohort, due to the discrepancies
between miRNA concentrations in plasma and serum. Other commentators have noted results
may be significantly different depending on if serum or plasma is used (Saliminejad, Khorshid,
and Ghaffari 2019). We hope to address this in the upcoming CIPHER trial (ClinicalTrials.gov
Identifier: NCT04193046). Additionally, this study did not include miR-636 or miR-187-5p, the
two miRNAs identified in the previous chapter. Hsa-miR-34a was also identified as a potential
classifier for PAH in the previous chapter, building on other studies. Hsa-miR-34a-5p was one
of two miRNAs appearing in most models classifying between subtypes of PH, along with hsa-
135a-5p. In a study looking at PAH and disease controls (Alexander M. K. Rothman et al.
2016), both hsa-miR-135a-5p and hsa-miR-34a-5p were identified as dysregulated. A later
study looking at PAH and healthy controls (K.-H. Chen et al. 2018) also identified hsa-miR-
34a-3p as dysregulated. Interestingly, hsa-miR-34a-5p was identified in signatures for PH
subtypes versus other PH for all subtypes except PAH versus other PH, though this is perhaps
explained by the different make-up of the cohorts

The six miRNAs in both the signatures for PAH versus DC and PH versus DC (miR-RNA-
151a-5p, miR-210-3p, miR-30a-5p, mMiR-193b-3p, MiR-126-3p and miR-10b-5p) have all
previously been identified as dysregulated in PAH or cardiovascular disease, lending
confidence to our hypothesis that key miRNAs are being identified. The down regulation of
hsa-miR-126 has been shown to be associated with right ventricular failure (Potus et al. 2015).
Mir-151-5p identified in hypertension-induced cardiovascular disease (Amirlatifi et al. 2022).
MiR-193 and miR-210 were noted as down regulated in rats with PAH compared with controls
(Xiao et al. 2017). Previous studies have also identified the miR-30 family as decreased in
cardiovascular disease, with involvement in vascular remodelling (Zhang et al. 2019). Finally,
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miR-10, a miRNA associated with inflammation has also been identified in discriminating
patients who will reject heart transplantation (Duong Van Huyen et al. 2014) .

In the majority of cases, the XGBoost models achieved the highest AUCs. XGboost has been
effectively deployed in a range of clinical settings, for example in predicting mortality in
critically ill influenza patients (Hu et al. 2020), and chronic kidney disease diagnosis (Ogunleye
and Wang 2020). However, XGBoost models have several drawbacks for translation to clinical
use. Primarily, the XGBoost models are ‘black box’ models; they are difficult for a clinician to
unpick and understand. To try and add to the interpretability, we have included the feature
importance scores, which quantitatively represent the miRNA'’s contribution to the model, and
can be visualised (Figure 3.6). A future direction to explore in more depth the contribution of
miRNAs to the models could look at Shapley additive explanations, as used to aid clinicians
looking at mortality in influenza patients (Hu et al. 2020) and to predict acute myocardial
infarction (L. Ibrahim et al. 2020).

The miRNA panel derived to distinguish PAH from PH was also noted in some patients
clinically ascribed to the other diagnostic groups (Figure 3.3). An overlap of vascular histology
in patients with PAH and CTEPH has been documented extensively (Moser and Bloor 1993).
Vascular remodelling has more recently been noted in the lungs of patients with both PH-LHD
(Fayyaz et al. 2018) and PH-lung (Bunel et al. 2019). We suggest that the presence of the
PAH miRNA panel in other clinical groups could signal a common pathology. The potentially
shared pathology, particularly the incidence of pre- and post- capillary PH might have been a
limiting factor in the identification of these miRNA signatures. This led to the suggestion that
an examination of the distribution of miRNAs, agnostic to clinical classifications using
unsupervised learning might help inform the clinical presentation of patients from a mixed
cohort of PAH, PH-LHD and PH-lung and is investigated in the next chapter.
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Chapter 4: Clustering in PH

4 .1 Introduction

Pulmonary hypertension (PH) is a rare but often fatal disease, acknowledged to be
heterogeneous with a wide array of pathobiological mechanisms, phenotypes and aetiologies.
Current classification is based on clinical presentation and hemodynamics, which does not
allow for individualised treatment for distinct patient phenotypes. PH can be categorised into
five subgroups; PAH, PH due to left heart disease (PH-LHD), PH due to lung disease (PH-
lung), chronic thromboembolic disease (CTEPH) and miscellaneous PH (Simonneau et al.
2019) (Table 1.1). However, more than five phenotypes exist amongst patients with PH, and
unravelling the heterogeneity within each PH category is essential for the advancement of
treatment and individualised care.

Making a correct sub-diagnosis of PH is problematic as PH may be multifactorial, symptoms
are non-specific and diagnostic tests can be problematic to unravel. Clinical classification
based mainly on haemodynamics can be challenging, and may impede identification of
treatment responders and new therapy development. PH-LHD and PH-lung can be
occasionally diagnosed and treated as PAH (Barnett and Selby 2015). Treatments which
target the vasculature in the lungs in patients with PH-LHD have all had negative results in
multicentric clinical trials (Fernandez et al. 2019). The distinction between PAH from PH-LHD
and PH-lung is a clinical challenge (Figure 3.4). Some commentators have even suggested a
pathology continuum between PAH and PH-LHD, embracing ‘atypical’ PAH (Opitz et al. 2016).

After demonstrating miRNAs repeated across panels of signatures discriminating between PH
subtypes in the previous chapter, we reasoned that these shared miRNAs may reflect
overlapping pathology. Previous studies have successfully used unsupervised clustering on
RNA-seq. For example, a group used unsupervised hierarchical clustering on ovarian low-
grade serous carcinomas from different locations to determine that fallopian tubes are likely
to be the cellular source of low-grade serous carcinomas (Qiu et al. 2017). A different study
used integrative non-negative matrix factorisation to cluster RNA-seq and methylation
datasets to identify heterogenous subtypes of Pancreatic Ductal Adenocarcinomas (Roy,
Singh, and Gupta 2021).

A recent study looked at transcriptomic heterogeneity in PAH (Kariotis et al. 2021). We
hypothesised that circulating miRNA may also inform molecular endotypes in a PH cohort. We
reasoned that the potential shared pathology might be a restrictive factor in the efficacy of
miRNA signatures for the current clinical classifications, and subsequently restrict the potential
of miRNAs to uncover underlying molecular drivers. As a result, we took an unsupervised
clustering approach to patients from PAH, PH-LHD and PH-lung to examine how the miRNA
expression levels, agnostic to clinical classification may group patients. Misc PH was
excluded from the analysis owing to a small number of patients. Additionally, we decided to
remove patients with CTEPH. Despite shared vascular pathology between PAH and CTEPH
patients, with imaging, the diagnosis of CTEPH in the clinic is relatively straightforward,
compared with the challenge present by confidently differentiating patients with PAH, PH-LHD
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and PH-lung based on clinical measurements. We also examined the heterogeneity within
each clinical classification group.

4.1.1 Aims

1.

To use unbiased partitioning of patients into distinct clusters within each WHO clinical
classification group

2. Cluster patients within the combined cohort of PAH, PH-LHD and PH-lung patients.
3. To examine the survival properties, miRNA, and clinical features which may help
distinguish these clusters.
4. To look at enriched pathways within each cluster.
4.2 Methods

The pre-processing steps and cohort overview can be found in Chapter 3, and the workflow
for this chapter in Figure 4.1.
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Figure 4.1: Method overview. The training and interim cohorts were combined before
undergoing unsupervised clustering. Once the clusters had been generated, clinical
associations between clusters and survival differences were analysed before the generation
of miRNA signatures and clinical signatures for each cluster.
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4.2.1 Unsupervised classification

We examined the utility of unsupervised clustering on both the individual WHO classification
groups for PH, and groups PAH, PH-LHD and PH-lung combined, utilising the same pipeline
for each grouping.

There are 4 key steps to the unsupervised clustering pipeline primarily developed by Sokratis
Kariotis (Kariotis et al. 2021), and executed by him, which can be broadly described as follows:
1. Clustering method selection
2. Sample set selection
3. k- estimation
4. Cluster generation

4.2.1.1 Clustering method selection

The first step aims to determine which clustering method best suits the data from three
methods (k-means, hierarchical and spectral clustering).

The consistency of which the different methods partition the data is used as the metric to
decide which algorithm is most suitable for the data set. This is a measure of robustness. The
clustering method was run multiple times with variations on the parameters used. If the runs
agreed on the data partitioning this is a sign data points have not been randomly assigned but
are revealing patterns in the underlying data structure. The intra-agreement was calculated
using the average of the adjusted Rand index (package fossil v0.3.7).

4.2.1.2 Sample set selection and k estimation

All three of the unsupervised clustering algorithms used are affected by high dimensional data,
both in an increase of computational cost and loss of performance from data noise. As a result,
the miRNAs were ranked in descending order of variance (stats v3.6.0 R package). Multiple
subsets were extracted, starting with the 50 most variable miRNAs and increasing in size by
50 each time. Multiple runs of spectral clustering were computed (for k = 2,3,4,5,6), and the
miRNA subset with the highest stability used as measured by a bootstrap approach (package
fpc v2.2-3).

An ensemble learning majority voting method was used to determine the most suitable number
of clusters (k). 14 machine learning indices were calculated for each k within the range [2,10],
and then averaged. The averages were compared with the ideal value for each index, and
used to determine which k was most suitable, according to that index.

4.2.2 Cluster analysis

4.2.2.1 Survival

Survival analysis was carried out (R packages survival v 3.2-13 and survminer v0.4.9) to
identify survival differences between clusters. Patients having undergone transplantation were
excluded from analysis, and no patients were lost to follow-up. Kaplan-Meier curves were
plotted for each cluster. Cox models and hazard ratios were subsequently fitted to the clusters,
adjusting for age and sex. Time was measured in days from sample to event date, or census
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date. All deaths were recorded as an event, with patients undergoing transplant removed from
the survival analysis. Survival was examined at 10 years, and cox models were also fitted for
functional class and REVEAL risk group.

4.2.2.2 Clinical associations

Frequency tables were created for sex, functional class, site, diagnosis, and comorbidities
within each cluster. Pairwise comparisons were made between the clusters in R, using
Fisher's exact test or chi squared test where appropriate, using a Benjamini Hochberg
correction for multiple test correction.

For the continuous variables, normality was assessed visually using box-plots and QQ-plots,
followed by a shapiro-wilk test for each cluster for each continuous variable. Where all clusters
were assessed to be normally distributed, an anova test was used. Where a group was not-
normally distributed, a Kruskall-Wallis test was used instead. Where these tests resulted in
significant p-values, they were followed up with appropriate post-hoc tests. P-values were
adjusted using the Benjamini-Hochberg method. The variance of each cluster was also
assessed. Where there were large differences in variance between groups, the data were log-
transformed.

4.2.2.3 Cluster signatures

After splitting the cohort into training and interim sets as described in Chapter 3, miRNA
signatures for each cluster were identified using LASSO classification models (gimnet v4.1-
2). Models were fitted for each cluster versus all the others to create six binary models. The
regularisation parameter, A, was selected for each model using 10-fold cross-validation across
the training set to select the value of A with the minimum binomial deviance in each instance.
Signature performance was then evaluated using the interim set. Pathway enrichment analysis
was performed using the method as described in Chapter 3 for each cluster using the miRNA
signatures.

4.2.2.4 Missingness assessment and imputation

In order to generate clinical signatures for the clusters in PAH, PH-LHD and PH-lung
combined, missing clinical variables were imputed. Prior to imputation, the data were
assessed both for missingness and patterns within the missingness within the training and
interim sets. The clinical variables with the highest percentage of missing data were ISWT
(75%), predicted transfer factor for carbon monoxide (TLco predicted, 49%) & 6-minute walk
distance (36%). Missing values were high for 6-minute walk distance and ISWT as only one
of these was available per site. Sheffield patients had ISWT recorded, and whereas patients
from Cambridge and Imperial had 6-minute walk tests. Missing percentages for variables can
be found in Table 3.1. Data was not imputed for ISWT, TLco predicted, or 6-minute walk
distance due to the high percentage of missing data. No participants were missing data for
disease classification, sample site, treatment naive status, sex, NT-proBNP or uric acid.

The MICE (Multivariate Imputation by Chained Equations) method was used to impute data in
R (mice R package, v3.13.0 ). TLco predicted had nearly 50% missing data so was excluded
from both the imputation and subsequent clinical signature. Ethnicity was also excluded due
to the low granularity of available data. The data were also assessed on missingness patterns.
56 patients with no available right heart catheter information were removed as these could not
be accurately imputed. Based on recommendations in the Ml literature (White, Royston, and
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Wood 2011), all the variables from the analysis model were included in the imputation model
to ensure relationships between the variables of interest were retained, as well as auxiliary
variables, such as the miRNAs. The number of imputations was set to 60, as ~45% of patients
had no missing variables once TLco, ethnicity, ISWT and 6-minute walk distance were
removed. The number of iterations was set to 50. The convergence of the algorithm was
checked along with the means and standard deviations of imputed values.

4.2.2.5 Cluster clinical signatures (Emmanuel Jammeh)

Emmanuel Jammeh derived clinical signatures from the available imputed clinical data using
support vector machines (SVM) as the estimator in a method previously described (Kariotis et
al. 2021). Briefly, The SVM model was combined with recursive feature elimination (RFE), a
method used to remove unrelated and superfluous features, retaining the most informative
features. The combined SVM-RFE (Guyon et al. 2002) was then used to identify clinical
signatures for each cluster. The robustness of the signatures were then evaluated using the
Kuncheva index (Kuncheva 2007), and the AUC was used for classification performance
evaluation. The contributions of each feature to the final model were measured using the
absolute value of the SVM coefficients.

For each cluster signature, k subsamples were taken from the dataset using random sampling
without replacement, such that each subsample contained slightly different samples, and
fewer samples than the original dataset.

Each of the k subsamples was then split into b bootstrap samples to minimise the effect of
variations within the feature selection. SVM-RFE was carried out on all bootstrap samples to
generate b feature rankings and b candidate signatures of variable sizes. Ten-fold cross-
validation with 10 repetitions was used to calculate the classification performance of each
signature.

4.2.3 Code availability

All methods and parameters for methods | have used are described in the git repository
available at https://github.com/niamherrington/MiRXES-miRNA.

4.3 Results

4.3.1 Clustering within each clinical classification group

Addressing the first aim within the chapter we examined the clustering within each clinical
classification group and identified two clusters as the optimal number within each (Table 4.1),
however the small number of patients with Misc PH led to the exclusion of this group from
further analysis.
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Table 4.1: Clustering analysis within each clinical classification group on the discovery and
interim sets combined. * Optimal miRNAs are defined as the number of miRNAs used for
clustering analysis, the most stable number for that comparison. ** 14 machine learning
indices votes for k clusters. Table produced by Sokratis Kariotis

. Clustering Optimal o
PH Group patients method miRNAs * K votes
K2: 7 K7: 3
PAH 394 spectral 55 K3:1 K8: 1
K6: 2
T
K2: 7 K5: 3
PH-LHD 137 spectral 185 K3: 2 K8 :2
T
K2: 6 K6: 1
PH-lung 84 spectral 70 K3: 3 K7: 4
T
K2: 7 K7: 2
CTEPH 258 spectral 75 K3: 1 KS: 4
T
K2: 7 K6: 2
Misc PH 27 spectral 55 K3: 1 K7: 3
K5: 1

We compared overall survival between clusters within each WHO group, and found no
significant differences within classification groups over all time (Figure 4.2). However, at the 5
year mark, Cluster B in PH-LHD had significantly worse survival (p-value 0.013).
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Figure 4.2: Kaplan-Meier curves showing survival profiles for two clusters within each WHO
clinical classification group. (A) PAH (B) PH-LHD (C) PH-lung (D) CTEPH

After comparing survival between clusters, we checked for enrichment of clinical variables
within the clusters (Table 4.2). Only one variable was significantly different; eGFR (estimated
glomerular filtration rate, adjusted p-value 0.0350) showed a significant difference between
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clusters A and B in CTEPH patients (Table 4.2). Despite this, some heterogeneity was seen
in the CTEPH patients, for example creatinine levels were higher in cluster A (adjusted p-value
0.0828, median values 98 and 87 for clusters A and B respectively). In the PAH clusters, some
differences were observed in predicted forced vital capacity (FVCP, mean values 89 and 94
for clusters A and B respectively) and predicted TLCO (median values 50.0 and 57.7 for
clusters A and B respectively).Several demographic variables did not show significant
differences between clusters. For instance sex had adjusted p-values of 0.540, 0.873, 1.00,
and 0.930 across PAH, PH-LHD, PH-lung and CTEPH respectively, and BMI had adjusted p-
values of 0.777, 0.888, 0.643, and 0.925 respectively.

Table 4.2: Adjusted p-values from enrichment tests for clinical parameters between two
clusters within each WHO group (Chi-squared or fisher exact test for categorical variables,
and t-test or wilcoxon for continuous variables). * p-value < 0.05

Clinical Parameter PAH PH-LHD PH-lung CTEPH
6MWD 0.540 0.593 1.0 0.925
Age 0.273 0.888 1.00 0.832
BMI 0.777 0.888 0.643 0.925
BPDIA 0.932 0.824 0.643 0.994
BPSYS 1.00 0.873 1.00 0.925
Cardiac Index 0.540 0.801 1.00 0.561
Cardiac Output 0.942 0.593 1.00 0.780
Comorbidity: Atrial Fibrillation 0.273 0.593 0.918 0.780
Comorbidity: COPD 0.965 0.873 0.643 0.780
Comorbidity: CTD 0.965 0.888 1.00 1.00
Comorbidity: Diabetes 0.486 0.593 0.500 0.336
Comorbidity: Ischaemic heart disease | 0.932 0.888 1.00 0.925
Comorbidity: Scleroderma 1.00 0.593 1.00 0.832
Comorbidity: Sleep Apnea 0.965 0.593 0.485 0.336
Comorbidity: Thyroid Disease 0.960 0.593 1.00 1.00
Creatinine 0.932 0.873 1.00 0.0828
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Clinical Parameter PAH PH-LHD PH-lung CTEPH
dPAP 0.960 0.693 1.00 0.780
eGFR 0.932 0.886 1.00 0.0350 *
Functional Class 1.00 0.705 1.00 0.780
Predicted forced vital capacity 0.273 0.888 1.00 0.780
ISWT 0.960 0.787 0.746 0.897
mPAP 0.932 0.593 1.00 0.780
mRAP 1.00 0.888 1.00 0.994
NT-proBNP 0.932 0.693 1.00 0.780
PAWP 0.540 0.888 0.500 0.925
Platelet Count 0.540 0.991 0.411 0.930
PVR 0.808 0.200 1.00 0.925
REVEAL risk group 0.960 0.969 0.715 0.127
Sex 0.540 0.873 1.00 0.930
Site 0.273 0.593 0.567 0.0828
sPAP 0.540 0.593 1.00 0.897
SvO2 0.614 0.200 1.00 0.930
TLCO predicted 0.273 0.873 1.00 0.925
Treatment 0.540 1.00 0.500 0.130
Uric Acid 0.540 0.991 1.00 0.897

4.3.2 Clustering of all patients with PAH, PH-LHD and PH-lung

After examining the heterogeneity within each of the current clinical classification groups, we
looked at combining PAH, PH-LHD and PH-lung, and the heterogeneity within the combined
groups. We reasoned that since we earlier demonstrated signatures for both PAH and CTEPH
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(from other forms of PH), but that the PAH signature was also seen in other classes of PH
(Figure 3.3) potentially due to shared pathology, particularly the incidence of pre- and post-
capillary PH, that the miRNA clustering approach might identify common endophenotypes of
PH across these three classification groups. We chose to exclude miscellaneous PH due to
the small patient numbers. Spectral clustering was again selected as the preferred clustering
method, with an optimal miRNA subset selection of 50 miRNAs, and six clusters selected as
the optimal number (Figure 4.3)
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Figure 4.3: Unsupervised clustering of patients across PAH, PH-LHD and PH-lung using

their miRNA profiles. Heatmap shows z-score scaled miRNA expression. Figure produced
by Sokratis Kariotis.

The traditional WHO clinical classification groups were spread between all six clusters, with
no cluster containing a single classification group (Figure 4.4). Cluster E had the highest
percentage of PAH patients (72.1%), cluster A had the highest percentage of PH-LHD patients
(23.7%), and cluster D had the highest percentage of PH-lung patients (15.5%). No cluster
contained a single classification.
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Figure 4.4: WHO clinical classification breakdown into six clusters. Cluster E had the highest
percentage of PAH patients, cluster A had the highest percentage of PH-LHD patients, and
cluster D had the highest percentage of PH-lung patients. No cluster contained a single
classification.

4.3.2.1 Clinical outcomes

By the end of the observation period, 12 patients had undergone transplants and were
excluded from further analysis. A further 257 patients had died (41.9%). Kaplan-Meier curves
were constructed and log-rank tests performed to compare survival distributions between
clusters (Figure 4.5). We also undertook Cox regression to test for any statistically significant
survival differences between the clusters. As expected, a higher percentage of deaths
occurred amongst men (107 of 209, 51.2%) compared to women (150 of 405, 37.0%), as well
as a higher percentage of deaths occurring above the median age (52.5%), compared with
the below median age bracket (32.1%). As such, we repeated the survival analysis using a
multivariate Cox regression which included the patients’ age at sampling and sex (Table 4.3).
Taking cluster A as the baseline, clusters C and F showed significantly worse survival with
hazard ratios of 1.61 and 1.56 respectively.
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Figure 4.5: Kaplan-Meier curves for each of the six clusters. Cluster C and F showed

significantly worse survival.
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Table 4.3: Cox proportional hazard ratios for sex, age, and cluster at 10 years (95%
Confidence Interval). HR = Hazard Ratio. * p-value < 0.05

Characteristic 10 year HR p-value
sex

F _ —

M 1.45(1.13 - 1.86) 3.56e-3 *
age 1.04 (1.03 - 1.05) 2.93e-13*
cluster

A — —

B 1.48 (0.96, 2.28) 0.0789

C 1.61 (1.05, 2.49) 0.0302 *

D 1.50 (0.93, 2.40) 0.0935

E 1.24(0.78, 2.00) 0.364

F 1.56 (1.01, 2.42) 0.0461*

90

For completeness, we also double checked survival curves when patients were stratified by
REVEAL risk group and functional class (Figure 4.6), which stratified mostly as expected.
Taking the high risk REVEAL group as baseline, there was no significant difference for the
intermediate risk group (p-value 0.238), however the low risk group had significantly better

survival (p-value 9.06e-10).
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Figure 4.6: Survival stratified by A) REVEAL risk group B) Functional class for PAH, PH-
LHD and PH-lung

Two risk stratification variables, REVEAL group and WHO functional class were also
examined alongside survival between clusters. Although the REVEAL risk groups did not show
significant differences between clusters, the two clusters with poor survival, C and F had the
two lowest percentage compositions of low risk group patients, 47.3% and 45.9 respectively%
(Figure 4.7). Similarly, WHO functional class again did not show significant differences
between groups; however, Cluster A had the lowest percentage of functional class IV patients
(9.2%). Clusters C and E had the highest percentage of functional class IV patients (14.4%
and 16.7% respectively) (Figure 4.8).
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Figure 4.7: REVEAL group breakdown by cluster. Cluster A had the best survival outcomes,
with the lowest percentage of high risk patients (6.5%) and the largest percentage of low risk
patients (63.9). Clusters C and E had the worst survival outcomes, with the smallest
percentage of low risk patients (47.3% and 45.9% respectively).
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Figure 4.8: WHO functional class breakdown by cluster. Cluster A had the best survival
outcomes, and the lowest percentage of functional class 4 patients (9.2%). Clusters C and E
had the worst survival outcomes and the highest percentage of functional class 4 patients
(14.4% and 16.7% respectively).

4.3.2.2 Biomarker Associations

Clinical measures as recorded for each patient at the time of sampling were assessed for
statistically significant differences between clusters (Table 4.4 and Table 4.5). There were no
significant differences between the clusters for demographic variables such as age, BMI and
sex (adjusted p-values of 0.931, 0.146 and 0.591 respectively). None of the comorbidities
noted were present in significantly different proportions between clusters. However, several of
the clusters showed significantly different levels of important clinical variables (Figure 4.9).
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NT-proBNP had a significantly higher median value (2066) in cluster C compared to all the
other clusters, with the exception of Cluster E which also had poor survival (adjusted p-value
4.97e-04). Cluster C also had significantly higher mRAP values compared to all other clusters
(adjusted p-value 1.18e-03). Cluster A, with the best survival, had significantly lower mPAP
and dPAP than clusters B, C, and E (adjusted p-values 1.89e-03 and 0.0215 respectively).

Table 4.4: P-values for clinical variable association to cluster groups for discovery & interim
sets. Post-hoc tests were carried out for continuous variables with a p-value < 0.05.

Adjusted
Clinical Parameter P-value |P-value Significant post-hoc tests
Treatment 4.54e-07 | 1.59e-05
NT-proBNP 2.84e-05 |4.97e-04 |A/C,B/C, C/D, C/F, DIE
mRAP 1.01e-04 |1.18e-03 |A/C, B/C, C/D, C/E, C/F
sPAP 1.36e-04 |1.19e-03 |A/B, A/C, A/ID, A/IE, E/F
Sv02 1.83e-04 |1.28e-03 |A/C, A/E, B/C, BIE, C/D, C/F, D/E, E/F
mPAP 3.24e-04 |1.89e-03 |A/B, A/C, AIE, E/F
Site 5.00e-04 |2.50e-03
PVR 4.99e-03 |0.0215 AIC, AJE, E/F
dPAP 5.52e-03 |0.0215 A/B, AIC, AIE
Creatinine 0.0116 0.0406 C/D
Uric Acid 0.0374 0.111 C/D
6MWD 0.0379 0.111 AJE, DIE, E/F
eGFR 0.0455 0.123 C/D
BMI 0.0582 0.146
REVEAL risk group 0.0685 0.160
Comorbidity: Atrial Fibrillation 0.115 0.231
Comorbidity: CTD 0.108 0.231
Comorbidity: Scleroderma 0.119 0.231
Comorbidity: Diabetes 0.153 0.283
TLCO predicted 0.169 0.296
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Adjusted

Clinical Parameter P-value |P-value Significant post-hoc tests
Cardiac Index 0.206 0.344
Comorbidity: COPD 0.225 0.358
Comorbidity: Ischaemic heart

disease 0.344 0.524
Comorbidity: Thyroid Disease |0.374 0.545
Predicted forced vital capacity | 0.394 0.552
Sex 0.473 0.591
PAWP 0.452 0.591
Cardiac Output 0.463 0.591
Functional Class 0.496 0.599
ISWT 0.570 0.665
BPSYS 0.625 0.685
Platelet Count 0.627 0.685
Age 0.931 0.931
BPDIA 0.925 0.931
Comorbidity: Sleep Apnea 0.916 0.931
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Figure 4.9: Clinical characteristics of the six miRNA clusters. Box and Whisker plots show
patients’ quantitative traits with outliers removed for A) Serum NT-proBNP levels, B) mean
PAP, C) PAWP, D) PVR, E) six-minute walk distance, and F) SvO2 within each miRNA
Cluster. * p<0.05, ** p<0.01 on specific comparisons. For H) $ p<0.05 compared to cluster
C, and # p<0.05 compared to cluster E following Kruskal-Wallis chi-squared followed by
Benjamini-Hochberg post-hoc analysis.



96

Table 4.5: Main clinical characteristics for the 6 clusters across the training & interim cohorts
at the time of sampling. Values described as mean (standard deviation) for normally
distributed variables, or median [IQR] for variables which are not normally distributed.
Categorical variables described as number (percentage of available data).

Clinical Variable | A B C D E F All
patients
n 110 118 110 84 86 106 614
(17.9%) | (19.2%) | (17.9%) | (13.7%) | (14.0%) | (17.2%)
PH classification
PH1.1 43 49 34 35 34 34 229
(39.1%) | (41.5%) |(30.9%) | (41.7%) |(39.5%) |(32.1%) | (37.3%)
PH1.2 3(2.7%) | 1(0.9%) |4(3.6%) |2 (2.4%) | 1(1.2%) | 1(0.9%) | 12
(2.0%)
PH1.3 1(0.9%) | 2(1.7%) | 0 (0%) 1(1.2%) | 0 (0%) 0 (0%) 4(0.1%)
PH1.4 17 24 23 21 27 37 149
(16.5%) | (20.3%) | (20.9%) | (25.0% (31.4%) | (34.9%) | (24.3%)
PH2 36 24 29 12 13 23 137
(32.7%) | (20.3%) | (26.4%) | (14.3%) |(15.1%) | (21.7%) | (22.3%)
PH3 10 18 20 13 11 11 83
(9.1%) (16.3%) | (18.2%) | (15.5%) | (12.8%) |(10.4%) | (13.5%)
Sex: Female 80 79 67 54 53 72 405
(72.7%) | (66.9%) | (60.9%) | (64.3%) | (61.6%) | (67.9%) | (66.0%)
Functional Class
1 3(2.8%) |4(3.6%) | 0(0%) 0 (0%) 1(1.2%) | 1(1.0%) |9 (1.5%)
2 19 16 15 18 9 14 91
(17.4%) | (14.4%) | (14.4%) | (22.2%) |(10.7%) | (13.7%) | (15.4%)
3 77 77 74 55 60 77 420
(70.6%) | (69.4%) | (71.2%) | (67.9%) |(71.4%) | (71.4%) |(71.1%)
4 10 14 15 8(9.9%) | 14 10 71
(9.2%) (12.6%) | (14.4%) (16.7%) | (16.7%) | (12.0%)
REVEAL risk
group
High 7(6.5%) | 19 15 15 16 9(8.8%) | 81
(16.4%) | (13.6%) | (17.9%) | (18.8%) (13.3%)
Intermediate 32 35 43 22 30 37 199
(29.6%) | (30.2%) |(39.1%) | (26.2%) | (35.3%) | (36.3%) | (32.9%)
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Low 69 62 52 47 39 56 325
(63.9%) | (563.4%) | (47.3%) | (56.0%) | (45.9%) | (54.9%) | (53.7%)
Body Mass Index | 27.2 27.0 27.5 27.7 29.1 25.1 27.2
[8.8] [7.0] [11.0] [9.2] [7.8] [8.3] [9.0]
Age (years) 62.3 64.1 66.0 64.2 65.9 65.0 65.0
[21.0] [23.0] [15.8] [23.7] [19.8] [21.3] [21.1]
FVCP 89.6 92.5 85.3 86.9 85.8 86.8 88.0
(22.2) (24.6) (22.4) (21.7) (23.5) (22.1) (22.9)
NT-proBNP (log2 | 9.79 9.79 11.0 9.21 10.3 9.61 9.95
pg/mi) [3.48] [3.82] [2.79] [2.87] [3.25] [3.50] [3.49]
Uric Acid 7.0 7.0[4.0] 180/[3.0] |7.0[3.0] |7.0[3.0] |70 7.0 [3.0]
[3.75] [3.75]
6 minute walking | 296 255 240 314 186 268 265
distance (m) [233] [263] [220] [309] [218] [246] [249]
ISWT 220 160 200 150 150 150 170
[168] [265] [208] [210] [200] [190] [210]
Blood pressure - | 75.0 74.0 73.5 72.0 74.5 73.0 74.0
diastolic (mm Hg) | [16.0] [18.0] [15.3] [11.0] [14.0] [18.0] [16.0]
Blood pressure - | 126 127 128 127 125 132 127
systolic (mm Hg) | [29.5] [31.5] [27.5] [35.8] [30.0] [32.0] [31.0]
Pulmonary 414 610 642 640 751 519 589
Vascular [455] [754] [813] [813] [631] [631] [640]
Resistance
(dynes)
Mean pulmonary | 41.0 44.5 46.0 46.0 48.0 42.0 44.0
artery pressure [16.8] [18.0] [17.0] [20.0] [14.0] [20.8] [19.0]
(mm Hg)
SPAP (mm Hg) 64.5 73.0 74.0 74.0 78.0 68.0 72.0
[32.3] [34.0] [29.5] [36.5] [29.0] [33.3] [32.0]
dPAP (mm Hg) 24.0 30.0 30.0 28.0 29.0 26.0 27.0
[10.8] [13.0] [13.5] [14.0] [11.0] [16.3] [14.0]
Mean right atrial | 9.0 [6.5] | 10.0 13.0 9.0[6.0] |10[6.0] |9.0[7.5] |10.0
pressure (mm [8.0] [8.0] [8.0]
Hg)
SvO2 (%) 66.7 65.0 61.7 67.4 61.9 67.6 65.0
[11.2] [11.7] [16.6] [13.0] [8.95] [12.1] [12.6]
TLco predicted 58.0 54.0 48.0 51.0 47.0 55.0 53.0
[30.0] [30.7] [23.6] [29.5] [27.3] [29.5] [29.0]
Pulmonary 11.0 11.5 12.0 11.0 12.0 11.0 11.0
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arterial wedge [9.75] [6.25] [9.0] [6.75] [6.0] [7.0] [7.0]
pressure
Platelet Count 231 216 210 205 221 221 218
[103] [95.8] [97.3] [88.0] [113] [107] [101]
eGFR 69.0 70.5 55.7 72.0 66.3 69.0 68.0
[30.0] [37.3] [36.5] [29.0] [35.5] [31.0] [33.2]
Cardiac Output 4.05 4.20 3.73 3.93 3.90 4.21 3.97
(L/min) [2.02] [1.94] [2.12] [1.91] [2.0] [2.34] [2.14]
Cardiac Index 2.40 2.40 2.10 2.28 2.04 2.38 2.26
(L/min/m2) [1.08] [1.04] [1.15] [1.11] [1.04] [1.24] [1.15]
Creatinine 85.0 83.0 95.5 80.0 85.0 82.0 84.0
[30.0] [40.0] [65.5] [30.0] [42.0] [35.8] [39.3]
Comorbidity
COPD 11 16 21 6(7.1%) | 10 12 76
(10.0%) | (13.6%) | (19.1%) (11.6%) | (11.3%) | (12.4%)
Sleep Apnoea 6(5.5%) | 3(2.5%) | 5(4.5%) |4 (4.8%) |4 (4.7%) | 5(4.7%) | 27
(4.4%)
Atrial Fibrillation | 23 16 29 11 18 18 115
(20.9%) | (13.6%) | (26.4%) | (13.1%) |(20.9%) | (17.0%) | (18.7%)
Connective 13 6(5.1%) | 10 5(6.0%) | 14 9(8.5%) | 57
Tissue Disease (11.8%) (9.1%) (16.3%) (10.9%)
(excluding SSc)
Scleroderma 10 12 12 9 14 22 79
(9.1%) (10.2%) | (10.9%) | (10.7%) | (16.3%) | (20.8%) | (12.9%)
Type 2 diabetes | 13 16 9(8.2%) | 18 14 14 84
mellitus (11.8%) | (13.6%) (21.4%) | (16.3%) |(13.2%) | (13.7%)
Thyroid disease | 4(3.6%) | 1(0.8%) |3(2.7%) | 3(3.6%) | 0 (0%) 3(2.8%) | 14
(2.3%)
Ischaemic heart | 2 3(2.5%) | 5(4.5%) | 1(1.2%) | 6(7.0%) | 4 (3.8%) | 21
disease (3.4%)
Treatment
Treatment naive | 38 45 20 47 19 32 201
(34.5%) | (38.1%) |(18.2%) | (56.0%) | (22.1%) | (30.2%) | (32.7%)
ERA 26 32 10 24 11 24 127
(23.6%) | (27.1%) | (9.1%) (28.6%) | (12.8%) | (22.6%) | (20.7%)
Prostanoid 9(8.2%) |8(6.8%) | 5(4.5%) | 3(3.6%) | 3(3.5%) |7 (6.6%) |35

(5.7%)
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Other PHdrug | 4(3.6%) |3(2.5%) |0(0%) |1(1.2%) |1(1.2%) | 1(0.9%) | 10
(1.6%)

4.3.2.3 MicroRNA cluster signatures

LASSO models were fitted to the clusters to identify some key miRNAs for each cluster. After
training the models on the training data set, the performance was measured in the interim
dataset (Table 4.6). The signature for Cluster B showed a lower performance (AUC 0.592 in
the interim set), but the other five clusters all had high performance AUCs (0.87-0.97 in the
training set, and 0.80-0.96 in the interim set).

Table 4.6: Performance for six miRNA LASSO models classifying distinct clusters showing
mean cross validated (CV) AUC on the training set and an AUC for the interim set.

Cluster CV mean AUC (sd) Interim AUC (95% CI)
Cluster A 0.92 (0.034) 0.91 (0.82-0.99)
Cluster B 0.69 (0.084) 0.59 (0.45-0.74)
Cluster C 0.90 (0.048) 0.88 (0.80 - 0.95)
Cluster D 0.97 (0.020) 0.94 (0.89-0.98)
Cluster E 0.94 (0.031) 0.96 (0.93-1.0)
Cluster F 0.87 (0.046) 0.80 (0.72-0.88)

The combination of individual miRNA was unique to each cluster. However several signatures
selected the same miRNAs, albeit with different coefficient values, in many cases in opposite
directions (Figure 4.10). Each cluster was defined by between 7-12 miRNAs, with 38 miRNAs
selected in total. Cluster A had the largest absolute miRNA coefficient value, hsa-miR-4257 (-
0.805). Hsa-miR-761 was selected as a marker for all clusters except ClusterA. Hsa-miR-761
inhibits mitochondrial fission and commentators have suggested that modulation of their levels
may help tackle apoptosis and myocardial infarction (Long et al. 2013). The cluster with the
highest coefficient for miR-761 was cluster E, a cluster with poor survival outcomes. The
expression levels in the miRNA signatures across the clusters can be seen in Figure 4.11.




100

025

0.00
0.25

-0.50
0.75

Regression
coefficient

| dg-zzl-yw-esy
| dg-Ggg-yiw-esy
| dg-g0/-Yiw-esy
| /6Z-¥lw-esy

| dg-9¢L-yiw-esy
L dg-pgL-yiw-esy

de-ggp-yiw-esy

de-2/¢-yiw-esy

de-gep-yiw-esy

dg-1-9L-yiw-esy

_dg-e/gp-Hiw-esy

Ldg-q9/¢e-yiw-esy
L 19zZ1-ylw-esy

“ _dg-q59¢-yiw-esy
. 90Z-YIw-esy

L dg-gg Lg-Yiw-esy

| dg-gG-Yiw-esy
. | dg-6/¢£-Hw-esy

qe99-ylw-esy
66¢ L-dlw-esy

i
| dg-0gpG-yIw-esy
— | dg-zgg-yiw-esy
| G/e-¥lw-esy
| de-6/G-Yiw-esy

819-Ylw-esy
L de-q96L-Yiw-esy
-a%-mmﬁ-m_s-mm;
. dg-919-yiw-esy
- L dG-| L p-Yiw-esy
L dg-2ee-ylw-esy
L dg-| Lp-yiw-esy
L dg-egeL-yiw-esy
L /GZr-ylw-esy
| dg-gzl-yuw-esy
.am;m?m_s-mw:

dg-pGL-Hiw-esy
19/-¥w-esy

Cluster A

Cluster B-

.. |
o
3
@
2
)

Cluster D+
Cluster E
Cluster F -

uolssaldx3y

Figure 4.10: miRNA coefficients for individual LASSO models describing six clusters



101

Cluster B

uolssaldxy

Cluster C

v v
o w
-

uolssaldx3y

10+




102

Cluster D

L
o o)
-—

uoissaldx3y

10+

Cluster E

uoissaldx3y



103

Cluster F
30- .

Expression
N N
o (&]
L]

-
()]
1

10~
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the training and interim sets.

4.3.2.4 Clinical signatures for Clusters

Clinical signatures were derived for each cluster next by Emmanuel Jammeh, using imputed
values where data was unavailable. Signatures were derived for a range of signatures sizes.
Again, Cluster B showed the lowest AUC (Figure 4.12). NT-proBNP features in only one of
the clinical signatures, cluster C. Although there didn’t appear to be significant differences in
functional class between clusters in a univariable analysis, functional class was a driving factor
in the signature for Cluster A, along with creatinine and eGFR. In cluster C, with significantly
worse survival outcomes, the driving factors were mRAP, mPAP and PAH.
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Figure 4.12: Classification performance for signatures of different sizes for each cluster. The
results suggest that clinical signatures comprising 15 features may be sufficient to
adequately describe each cluster with acceptable classification performance with AUC of
0.8. Figure generated from data provided by Emmanuel Jammeh
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Figure 4.13: Selected clinical signatures and the coefficients of each feature in each
subgroup. Figure generated from data provided by Emmanuel Jammeh

4.3.2.5 Pathways

The miRNAs in the signatures for each cluster were linked to potential target genes and then
enriched for pathways. The analysis highlighted distinct pathways for each miRNA cluster
signature (Figure 4.14). Several of these have been previously found to be associated with
PH, such as leptin insulin overlap (Cluster B), focal adhesion (Cluster E) and interleukin
families (Clusters C, D and E).
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Figure 4.14: Enriched pathways for miRNA signatures for (A) Cluster A, (B) Cluster B and

(C) Cluster C
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Figure 4.14 cont: Enriched pathways for miRNA signatures for (D) Cluster D, (E) Cluster E,
and (F) Cluster F

4 .4 Discussion

We began our analysis by looking at the heterogeneity within each clinical classification, with
two clusters identified as the optimal number of clusters for each clinical classification group.
Although only 1 clinical variable was seen to be significantly different between clusters (eGFR
in CTEPH patients), there was a significant difference in survival seen at 5 years between
clusters A and B in patients with PH-LHD. This is a potential avenue for future research,
delving into further differences between the clusters which could lead to these survival
differences. For example, the distribution of vasodilator responders within the clusters, or
evidence of some pre-capillary involvement.
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Diagnostic challenges for patients with PAH, PH-LHD or PH-lung remain, which undermines
the ability to create clear diagnostic signatures. An unsupervised machine learning approach
identified six molecular clusters from the miRNAs assigned to the clinically defined PAH, PH-
LHD and PH-lung clinical groups. All three clinical groups were represented across the
clusters. A closer examination of clinical features showed that a range of variables showed
significant differences between clusters; including the haemodynamic variables (sPAP,
mRAP, mPAP, PVR & dPAP), as well as lung function (SvO2) and biochemical variables (NT-
proBNP). Most notably Cluster A was associated with the best survival, low mPAP, low PVR
but not the lowest NT-proBNP, while Clusters C and F were associated with the worst survival
but were associated with different clinical feature profiles. Cluster C was defined by high NT-
proBNP, mPAP and PVR while Cluster F was defined by significantly lower NT-pro BNP. The
characteristics highlight the challenges of using single biomarkers (e.g. NT-proBNP) or clinical
features (PVR) to attribute risk and molecular mechanisms.

All the clusters except for E also had some overlap in miRNAs with the signatures for
discriminating PH clinical classification groups seen in Chapter 3. Clusters C and D selected
miR-375 in their signatures, a miRNA found in the CTEPH vs other PH signature. Cluster D
and cluster F also selected miR-16-1-3p, a miRNA found in both the CTEPH vs other PH and
PAH vs CTEPH signatures. MiR-513b-5p, part of cluster B’s signature, was also found in the
PH-lung vs other PH groups signature. Finally, the miRNA signature for cluster A contained
miR-26a-2-3p, a miRNA found in the PAH vs DC signature. Although CTEPH patients were
excluded from this clustering analysis, the shared miRNAs in the signatures suggest there is
an element of shared molecular pathology between CTEPH and subgroups of other types of
PH, which could be explored in the future by expanding the range of patients clustered.

Several pathways of interest were found to be enriched within clusters. For example, a range
of cytokines have been associated with pulmonary hypertension as there is evidence in animal
models suggesting inflammation may contribute to the development of pulmonary
hypertension, especially PAH (Groth et al. 2014).

Leptin insulin overlap was shown to be enriched in cluster B. Leptin signalling has been shown
to be involved in a range of different cardiac pathologies, as well as the proliferation of
pulmonary arterial smooth muscle cells by activating extracellular signal-regulated kinase
(ERK), signal transducer and activator of transcription 3 (STAT3), and Akt pathways (Chai et
al. 2015). The association of leptin-insulin signalling within cluster B may offer a way of
selecting patients for further studies in this pathway, recognising that insulin resistance may
also be present as co-morbidity of PH-LHD and PH-lung.

Focal adhesion, a pathway enriched in cluster E, involves the regulation of cell migration.
Suppressing PASMC migration by inhibiting focal adhesion kinase has been shown to inhibit
the progression of PAH, and has been highlighted as a potential therapeutic target (Paulin et
al. 2014). Likewise, another enriched pathway in cluster E, IL-6 remains of interest in PAH
(Toshner and Rothman 2020), despite a recent report that IL-6 antagonists in an unselected
PAH population showed no benefit (Toshner et al. 2022), targeting a subgroup of PH based
on their miRNA signature remains an option.

Although appearing distinct, there is considerable overlap between supervised and
unsupervised machine learning. In the previous chapter, we used machine learning models
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to attempt to solve a classification problem. The unsupervised approach demonstrated that
the traditional clinical classifications are not fully representative of the underlying molecular
heterogeneity.

Looking forward, another consideration to make is whether miRNAs are the right medium to
examine heterogeneity within PH. When the methodology for unsupervised clustering was
applied to an RNAseq cohort of patients with IPAH and HPAH, six distinct clusters were
uncovered (Kariotis et al. 2021), with significant differences in survival and clinical
parameters. In this cohort, an examination of PAH patients alone denoted two clusters as
the optimal number. Although the make-up of patients differed slightly (with APAH patients
included here), it may be that RNAseq is better placed to provide more insights.
Alternatively, proteomics could be considered.
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Chapter 5: Conclusion

This thesis documents the use of miRNAs in classifying patients with Pulmonary Hypertension
in both a pilot study and a large cohort. | explore the use of four supervised machine learning
methods to create miRNA diagnostic signatures before examining the outputs from an
unsupervised approach.

In Chapter 2 | used a consensus of multiple machine learning approaches to identify two
miRNAs that were able to distinguish PAH from both disease and healthy controls. The study
was the largest microRNA profiling of PAH patients with 64 treatment naive patients, and 43
disease and healthy controls at the time. It was also the first machine learning assessment of
microRNAs for PAH.

The miRNAs identified (miR-636 and miR-187-5p) were not quantified by gPCR as part of the
study, and these were unavailable to sequence in the study in Chapter 3. Therefore, future
work could look to investigate and validate these miRNAs.

Chapter 3 built on the methods developed in Chapter 2, examining a much larger cohort of
patients, with 1150 patients with PH and 334 disease controls, examining circulating levels of
326 miRNAs. | used machine learning methods to derive panels of 9 miRNAs to detect PH
and PAH from disease controls, as well as signatures to detect subtypes of PH from the larger
PH cohort. This time, no healthy controls were included. The miRNA panels performed
favourably to the current clinical standard NT-proBNP at discriminating between subtypes of
PH.

We noted a superior performance of miRNAs compared to NT-proBNP in discriminating
between subtypes of PH. However, the AUCs of PH vs DC and PAH vs DC (0.78 and 0.79
respectively) may be too low for clinical application. One area in which these signatures could
add clinical value could be to integrate a circulating miRNA signature with the NT-proBNP
cutoffs into the workup of patients with suspected PH, to help differentiate the treatable
subtypes PAH and CTEPH. As the study was not set up to look at patients above and below
NT-proBNP thresholds, the patient numbers were too small to investigate signatures specific
to these groups, however this could be a future direction of investigation.

In Chapter 4 | explored the application of unsupervised machine learning to miRNAs to a
subset of the cohort of patients examined in Chapter 3, containing PAH, PH-LHD, and PH-
lung. This unsupervised approach identified six distinct molecular clusters that displayed
differences in survival, haemodynamics NT-proBNP and 6-minute walking distance, as well
as distinct molecular pathways. These circulating miRNAS may offer greater insight into the
heterogeneity of PH than clinical phenotyping alone. Each of the molecular subtypes had
unique pathways, some of which have previously been identified as potential therapeutic
targets. As such, investigating the longitudinal data from patients in the different clusters to
investigate treatment responses could also be a future direction.

Although not explored in this thesis, as part of the Janssen study, patients also had
metabolomic data profiled. This provides another avenue of investigation for the clusters
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described in Chapter 4 by performing a differential analysis of the metabolites between
clusters. Alternatively, investigating whether metabolomic signatures can be derived for the
clusters could provide a method to pull out metabolomic differences between clusters.

Despite many technological advances, the transferral of genetic biomarkers from the
computational identification stage to the clinic has been slow. Transferring the biomarkers
discovered into the clinical domain provides a challenge. The number of biomarkers with
approved clinical usage compared to those declared in research papers shows that the
majority of biomarker candidates have been discarded as possibilities or have yet to reach the
clinic (Deyati et al. 2013).

There are several challenges involved in expediting this process. For example, the integration
of multidisciplinary teams which contribute to clinical translation of personalised genomic
medicine across a range of disciplines such as bioinformatics, epidemiology and omics is
hampered by the compartmentalisation of research. An related issue may occur at the
evaluation stage of publication, where most reviewers do not have expertise in every discipline
included. Once a solution has reached the clinic, the implementation of a new technology or
test may necessitate extra training for the healthcare professionals involved in the roll out, as
well as new technologies.

This thesis provides a proof of principle that molecular classification of PH may be achieved.
Looking forward, the CIPHER clinical trial has recently finished recruiting, where the aim will
be to prospectively validate some of the miRNA signatures developed. The initial aim is to
investigate whether these signatures may be used as an early diagnostic signature, and hold
the potential to validate the cluster signatures.
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