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ABSTRACT

Wide-spread flow regulations have modified rivers globally through changes in multiple
environmental stressors that regulate ecosystem processes such as metabolism. Despite
ubiquitous river regulation, current metabolism models do not include multiple stressor
influences. Additionally, these models were developed for estimation at reach-scale, thus
limiting our ability to predict metabolism across expansive river catchments. This thesis
aims to expand ecosystemmetabolism estimation to regulated rivers, which is achieved by
developing two river segment-scale models.

The first model, hourly QUESTOR (Quality Evaluation and Simulation Tool for River-
systems), supports metabolism estimation in multi-stressed lowland rivers with flow
and water quality regulation. Using a case study of the River Thames in England, I
demonstrated the model’s application for estimation of metabolism and of its controls
such as flow, water temperature, light availability, nutrients and biomass. Comparing
this model with statistical modelling provided insights into the multiple stressor controls
of metabolism in lowland, regulated rivers. The model also segregates biochemical
respiration pathways as well as estimates metabolism at sites without regular monitoring
and/or under changing climate-management conditions.

The second model, MUFT (Metabolism estimation in rivers with Unsteady Flow
conditions and Transient storage zones), was developed by coupling an unsteady flow
routing model and a solute transport model with the two-station metabolism model. I
applied themodel along a river stretchdownstreamof a hydropower plant in theRiverOtra
in Norway. The MUFT model presents a parsimonious approach to estimate metabolism
for the first time in hydropeaking environments and/or transient storage zones.

Comparing both models, I made recommendations for metabolism modelling in
regulated rivers and outlined directions for future research. The modelling approaches
presented here unlock new possibilities for broad-scale metabolism estimation across
diverse river environments, which in turn will help reduce uncertainties in our global
estimates of freshwater carbon fluxes.
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1
INTRODUCTION

ओ माझी रे, अपना ɟकनारा नɞदया कʏ धारा हैं.

O rower, our shore is the river’s flow.
- Gulzar

1.1 CONTEX T

Freshwater systems are not only home to an enormous diversity of life (Dudgeon et
al., 2006), but also support humankind through a wide range of ecosystem services
(MillenniumEcosystemAssessment, 2010). These ecosystem services include provision of
resources (food, water, wood) and delivery of cultural, aesthetic and recreational services
(Wantzen et al., 2016). Freshwater systems also provide inconspicuous benefits such as
regulation of water quality and microclimate, and maintenance of valuable ecosystem
processes such as photosynthesis and nutrient cycling that support the overall functioning
of the ecosystem (Reynaud and Lanzanova, 2017; Hanna et al., 2018). However,
while deriving benefits from these ecosystems, humans – through their ever-expanding
anthropogenic activities – have extensively degraded freshwater systems by modifying
their physical, chemical and biological properties (Meybeck, 2003).

River ecosystems are influenced by multiple human pressures (Grizzetti et al., 2017).
Flow regulation is the leading cause of river modification globally (Grill et al., 2019).
Water infrastructure developments such as dams and weirs, and water transfer practices
for agriculture, industrial and domestic purposes have degraded river ecosystem health
through alterations in natural flow regimes and river connectivity (Poff et al., 1997).
Catchment management activities such as urbanisation, industrialisation and land use
changes also directly threaten river ecosystem health (Malmqvist and Rundle, 2002),
which remain to be further affected by anthropogenic climate change (Vörösmarty
et al., 2010). These human pressures regulate multiple environmental stressors (e.g.
flow, light availability, nutrient loading, etc.) that interact with each other, and alter
river water quality and ecosystem functioning. The environmental stressors operate at
different spatial and temporal scale to influence river ecosystem health. Furthermore,
the response of river ecosystems to these multiple stressors is often non-linear, which
makes it challenging to investigate the causes and mechanisms of human impacts on river
ecosystem health (Allan, 2004).

This introduction provides a brief overview of (a) the need to understand river
regulation impacts on ecosystem health, (b) the utility of using ecosystem metabolism
as a river health indicator and (c) the need to improve existing metabolism modelling
approaches. This overview establishes the basis for four new analytical chapters focusing
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on modelling water quality and ecosystem metabolism in regulated rivers in the United
Kingdom (UK) and Norway.

1.2 R I V ER REGULAT ION AND ECOSYST EM HEALTH

River ecosystem health is usually evaluated based on two types of metrics, namely
structural indicators and functional indicators. Structural indicators reflect the existing
condition of the ecosystem and the river organisms through instantaneous measurements
(Von Schiller et al., 2017). Some examples of structural indicators include status of
channel morphology, pollutant concentrations, oxygen levels and biomonitoring indices
(community structure). Functional indicators reflect system dynamics through repeated
measurements that quantify ecosystem processes (Palmer and Febria, 2012) such as
nutrient cycling, ecosystem metabolism, organic matter breakdown, pollutant removal
rates, etc. (Young et al., 2008).

Flow (discharge) is a key driver of river ecological health because it regulates energy
cycling, water quality, physical habitat and biotic interactions in the river (Karr, 1991;
Poff et al., 1997). Balancing water availability whilst maintaining ecological health under
a growing demand is increasingly becoming a challenge for water managers (Hutchins
and Bowes, 2018). Previously, water allocation efforts were biased towards fulfilling
anthropogenic demands such as hydropower, irrigation and water supply rather than
preserving rivers’ health (Viers, 2017). However, in the recent past, the focus of river
regulation has expanded to incorporate the ecological needs of rivers along with human
demands through the development of the ‘environmental flows’ (E-flows) concept. E-
flows describe ”the quantity, timing, and quality of freshwater flows and levels necessary to sustain
aquatic ecosystems which, in turn, support human cultures, economies, sustainable livelihoods, and
well-being” (Arthington et al., 2018). Over time, E-flows approaches have progressed to
address a range of ecological, social and economic targets (Poff and Matthews, 2013). Yet,
a majority of the E-flows research to address ecological targets so far has been confined
to understanding the influence of a single stressor (i.e. flow) on structural indicators of
river health. Efforts are required to integrate a more diverse set of environmental stressors
and functional indicators in the E-flows research (Acreman et al., 2014), especially under
changing climate and water demands.

Functional indicators of river health respond to biotic and abiotic stressors (Palmer
and Febria, 2012), capture system dynamics (Bunn and Davies, 2000; Young et al., 2008)
and are able to detect even marginal changes in river health impairment or recovery, all
of which are challenging to achieve using structural indicators (Palmer et al., 2005). It
is also easier to compare river health and its regional controls across different biomes
using functional indicators since measurements of functional indicators do not rely on
specific species (Young et al., 2006). In addition to representing river health, functional
indicators also provide a direct measure of ecosystem services (regulating and supporting
services, Millennium Ecosystem Assessment, 2010) that support human needs (Rapport
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et al., 1998). Hence, functional indicators need to be included while assessing ecosystem
health response to human pressures.

In the context of environmental regulators of river health, the majority of research has
focused on managing only flow requirements in rivers since flow is often believed to be
the sole variable controlling ecosystem status (Davies et al., 2013). However, changes in
flow occur alongside changes in other variables such as temperature, morphology and
water quality (Acreman and Dunbar, 2004). Furthermore, in addition to flow regulation,
external pressures such as changes in climate, land use and water demand also affect
ecosystem processes through modifications in multiple stressors (Mulholland et al., 2001;
Acuña et al., 2004). Thus, we need a better understanding of how multiple stressors
act in concert with flow to impact ecosystem processes. Instead of limiting the research
to understanding flow-ecology linkages, it is equally important to study the response of
functional indicators of river health to multiple external stressors to be able to predict river
health response to restoration/management actions under a changing environment. The
development of conceptual models that integrate the effect of multiple stressors will help
diagnose the causes and mechanisms of ecosystem degradation and subsequently help
inform management decisions (Bunn et al., 2010).

1.3 ECOSYST EM METABOL I SM

Ecosystem metabolism regulates the incoming and outgoing energy fluxes in river
systems through gross primary production (GPP) and ecosystem respiration (ER). GPP
is the production of organic matter through conversion of solar energy into organic
energy, whereas ER indicates total consumption of organic matter derived from both
autochthonous and allochthonous sources. Therefore, ecosystem metabolism provides a
direct estimate of the food base and the way energy moves through the river food web
(Young et al., 2008), thus representing the life-sustaining capacity of rivers (Fisher and
Likens, 1973). Use of ecosystem metabolism as a functional measure of river health is
advantageous over other ecosystem processes such as nutrient uptake (Hall and Tank,
2003), denitrification (Bernhardt et al., 2002), microbial respiration (Hill et al., 2002), and
organic matter retention and breakdown (Young et al., 2008) because the measurement
of ecosystem metabolism is relatively easier and cheaper using automated, water quality
sensors.

1.4 METHODS OF METABOL I SM E ST IMAT ION

The history of measuring whole-stream (ecosystem) metabolism can be traced back to the
1950s. Odum (1956) introduced the open-channel method to estimate whole ecosystem
metabolism in lotic waters. The subsequent progress has been slow due to a lack of high-
resolution data and computational requirements. However, open-channel methods are
now becoming increasingly popular to estimate ecosystem metabolism in rivers (Demars
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et al., 2015) with the availability of affordable and robust water quality sensors (Rode et al.,
2016).

The open-channel methods estimate GPP and ER based on diel variation in dissolved
oxygen (DO) in thewater column. The rationale behind thismethod is that DO variation is
mainly controlled by biological processes including photosynthesis (GPP) and respiration
(ER), and a physical exchange of DO between the water column and the atmosphere
(reaeration). GPP and ER in the open-channel methods can be estimated either using an
accounting approach (e.g. Izagirre et al., 2008; Demars et al., 2015) or through an inverse
approach (e.g. Appling et al., 2018b). The majority of the metabolism models employ the
inverse approach of fittingDO curves (Jankowski et al., 2021) using the information of light
availability and temperature (Holtgrieve et al., 2010; Hall Jr and Hotchkiss, 2017; Appling
et al., 2018b), but in some cases also using information of barometric pressure (Grace et al.,
2015) or discharge (Izagirre et al., 2008; Demars et al., 2015; Payn et al., 2017).

Open-channel methods are implemented at a river-reach scale using DO measurements
at a single site (e.g. one-station method, Izagirre et al., 2007) or two sites over a reach
(e.g. two-station method, Hall Jr and Tank, 2005). To set baseline conditions for river
health management, we need to derive expected patterns of metabolismwithin and across
different biomes and river environments. The one-stationmetabolismmodels are generally
applied at a single site within a river, and estimates from a large number of such sites are
amalgamated to assess regional scale mechanisms of metabolism (Appling et al., 2018b;
Bernhardt et al., 2022). These one-station metabolism models, although quite robust for
homogeneous river reaches without additional influences, are not suitable for sites where
river reaches are influenced by water management infrastructures or pollution discharges
that could significantly alter river water quantity and quality dynamics. In such cases, two-
station models need to be used to estimate metabolism. However, two-station models are
only suitable in a limited range of situations, i.e. when certain assumptions regarding the
reach length (see Demars et al., 2015) and the positioning of the estimation location with
reference to the reservoir (see Reichert et al., 2009) are fulfilled. Furthermore, similar to the
one-station methods, two-station methods also do not account for biochemical processes
in the estimation of ecosystem metabolism and the estimation is limited to a river-reach
scale. To expand metabolism estimation to a broad range of river environments, there is a
need to develop river network-scale metabolism models.

In addition to expanding the spatial scale of modelling, it is also important to include the
influence of flow variability and biochemical processes in metabolism models since GPP
and ER may be sensitive to these processes in regulated rivers (Jankowski et al., 2021).
River regulation practices modify metabolism through changes in multiple stressors that
influence GPP and ER. For example, reservoir operations regulate GPP through changes
in flow, temperature, sediment and nutrient cycling in river stretches downstream of the
reservoir (Aristi et al., 2014). ER is shown to strongly respond to sewage discharges
(Arroita et al., 2019). Both GPP and ER are altered by disturbances in the flow regime
arising from water abstractions or diversions (Arroita et al., 2017). Eutrophication may
also influence GPP and ER, either directly or indirectly (Hill et al., 2009). The influence of
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multiple stressors on metabolism is usually evaluated using statistical methods (Dodds et
al., 2018; Bernhardt et al., 2022). Although statistical approaches derive useful information
about sensitivity of metabolism to external stressors, these interpretations are usually
limited to the environmental conditions for which the models are built, and carry high
uncertainties for predictions in response to change.

Only recently metabolism models have been developed to explicitly include some
of the aforementioned stressors such as the inclusion of diel flow variability (Payn et
al., 2017) and biomass dynamics (Segatto et al., 2020) in metabolism models. These
studies are notable developments inmetabolismmodelling inmulti-stressed river systems.
However, we still require network-scale models that integrate metabolic, biochemical and
hydrological processes in river system (Bernhardt et al., 2018).

1.5 R E S EARCH A IM AND OB J EC T I V E S

Considering the ubiquitous presence of river management practices, it is important
to mechanistically relate multiple environmental stressors to metabolism in modelling
approaches (Bernhardt et al., 2018) to elucidate underlying mechanics of metabolic
regimes in rivers and consequently, to be able to accurately predict river metabolism
outside the range of the available observations. There is also a need to expand metabolism
models from reach-scale estimation to larger spatial scale (i.e. river segment/network
scale) estimation to derive regional predictors of metabolism as well to include the effect
of catchment-scale assemblages of influences (e.g. reservoir operations, water abstractions,
pollution loading) on downstream metabolism dynamics.

This thesis overcomes the aforementioned limitations in current practices of metabolism
modelling by developing twomodelling approaches that are suited for application in rivers
influenced by different sets of multiple stressors. Specifically, the model developments are
focused on two types of river environments, (1) where flow is regulated from locks and
weirs, and water quality is influenced by sewage discharges and land use practices and
(2) where flow is regulated by hydropower dams and solute transport is influenced by
transient storage zones.

The overall aim of the thesis is to expand metabolism estimation and prediction
to regulated rivers influenced by multiple stressors under changing climatic and
management conditions. To fulfil this aim, I outline the following research objectives:

1. Develop a high-resolution, process-based model for prediction of water quality and
ecosystem metabolism in regulated, lowland rivers

2. Identify multiple stressor controls on ecosystem metabolism in regulated, lowland
rivers

3. Predict ecosystem metabolism response under future climatic and management
conditions in regulated, lowland rivers

4. Develop a parsimonious process-based model to predict ecosystem metabolism in
rivers with unsteady flow conditions and transient storage zones
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1.6 THE S I S S T RUCTURE

In this thesis, I present two modelling approaches that facilitate metabolism estimation in
regulated rivers influenced by a set of multiple stressors (Figure 1.1). The first model is
called the hourly QUESTOR (Quality Evaluation and Simulation Tool for River-systems)
model, and is suited for applications in lowland rivers. In Chapters 2 and 3, I show the
model development and implementation using a case study of the lower River Thames in
England, where flow is extensively regulated through locks and weirs and water quality
is severely influenced by nutrient loading from agricultural runoff and sewage treatment
works that together cause issues of eutrophication and phytoplankton blooms in the
river. Chapter 2 shows the development and application of the hourly QUESTOR model
for prediction of phytoplankton biomass and focuses on deriving environmental bounds
within which phytoplankton blooms develop in the river. Chapter 3 demonstrates the
model application for ecosystem metabolism estimation in lowland rivers using the same
case study of the lower River Thames. In Chapter 3, I also evaluate sensitivity of the
modelled (using the hourly QUESTOR model) metabolism to multiple environmental
stressors using empirical modelling. In Chapter 4, I use the same model setup (of
Chapter 3) to predict river metabolism response to future climatic and management
conditions in the river.

Figure 1.1: Schematic diagram of thesis structure

The second model I developed in this thesis is called the MUFT (Metabolism estimation
in rivers with Unsteady Flow conditions and Transient storage zones) model, and is suited
for application in hydropeaking rivers. In Chapter 5, I show the model development and
application using a case study of the River Otra in Norway, where flow regulation from
a hydropower dam causes significant diel fluctuations in flow and excessive plant growth
in the river stretch influences dissolved oxygen transport. Chapter 6 provides a synthesis
of the work produced in this thesis, where the outputs of this thesis are discussed in the
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context of existing literature along with their advantages, limitations and directions for
future research.
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2
HOURLY PREDICTION OF PHYTOPLANKTON BIOMASS AND ITS
ENVIRONMENTAL CONTROLS IN LOWLAND RIVERS

2.1 IN TRODUCT ION

The biomass and composition of phytoplankton are important indicators of water quality
and the biological health of rivers (Villegas and Giner, 1973). Phytoplankton communities
are a major source of food for primary consumers through organic carbon production,
and act as the primary source of oxygen in many rivers (Köhler, 1995). However, rivers
also suffer if there is excessive phytoplankton growth since it may cause oxygen depletion
(Hilton et al., 2006), produce harmful toxins (e.g. cyanobacteria), increasewater treatment
costs (Whitehead and Hornberger, 1984), and interfere with fishing and other recreational
activities (Paerl and Huisman, 2009). Hence, it is vital to build an understanding of the
controls on phytoplankton, to predict and prevent harmful growth in rivers, especially
under the changing climate and environmental conditions (Read et al., 2014).

Phytoplankton growth in rivers is influenced by different environmental controls, and
their influence may vary depending upon the river characteristics and local conditions
(Reynolds, 2000). River phytoplankton development is often linked to increase in nutrient
concentrations (Dodds, 2006; Minaudo et al., 2018). However, a number of studies have
also highlighted the role of physical factors such as residence time (Reynolds, 2000),
light availability (Domingues et al., 2011) and temperature (Canale and Vogel, 1974) in
shaping river phytoplankton populations. These environmental controls generally act in
combination to control phytoplankton blooms in rivers such as the combination of flow
and light (Hardenbicker et al., 2014), flow, temperature and nutrients (Larroudé et al.,
2013), or flow, temperature and light (Balbi, 2000; Bowes et al., 2016).

Several studies have addressed environmental controls of phytoplankton growth in
lowland rivers around the world. Lowland rivers are heavily impacted by water
abstractions, artificial flow regulation, physical modifications of the channel as well as
substantial pollution load discharges from sewage and agricultural runoff (Hutchins et
al., 2018). These slow flowing rivers typically have long residence time, which provides
sufficient time for water quality to be sensitive to in-stream biogeochemical processes
and for phytoplankton to utilise nutrients and grow (Reynolds, 2000). For example,
River Thames (UK) exhibited high phytoplankton biomass only at low flows (Lack,
1971). River Meuse (Belgium) showed a combination of physical factors such as flow,
temperature and light as important biomass controls (Everbecq et al., 2001). Total
phosphorus in the Rideau (Canada) (Basu and Pick, 1997) and grazing in the Moselle
(France and Germany) (Descy et al., 2003) have also been found to be important biomass
controls. However, most previous studies examined changes in these multiple control
relationships at daily to monthly time scales, with higher resolution diel dynamics often
being overlooked. Phytoplankton biomass in rivers have shown to respond to rapid
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changes in its environmental controls (Bowes et al., 2016). Thus, it is crucial to understand
these shorter scale dynamics to predict phytoplankton growth and bloom timings more
accurately.

In the River Thames, a regulated lowland river in southern England, substantial
efforts have been made to understand phytoplankton response through process-based
modelling (e.g. Whitehead and Hornberger, 1984; Whitehead et al., 2015; Lázár et al.,
2016). These studies, however, have shown limited predictive ability in modelling large
and rapidly developing phytoplankton biomass, suggesting that there is still a need to
better understand process interactions (Bowes et al., 2016). For example, there has been
uncertainty as towhich phytoplankton groups dominate the response. Some studies found
green algae to be dominant during peaks in the summer (Lack, 1971; Ruse and Love, 1997)
yet subsequent studies have found cool water diatoms to predominate with peaks instead
during spring and autumn seasons (Read et al., 2014; Bowes et al., 2016). The daily
time-step QUESTOR (Quality Evaluation and Simulation Tool for River-systems) model
(Boorman, 2003a) has been developed to simulate phytoplankton (Hutchins et al., 2010)
and also been extensively applied in the River Thames (Waylett et al., 2013; Hutchins et
al., 2016; Hutchins and Bowes, 2018). However, consistent with other models, QUESTOR
applications have also had only limited success in simulating phytoplankton biomass with
over-estimation in mid-summer (Hutchins et al., 2016).

Various process-based river models (e.g. Brown and Barnwell, 1987; Everbecq et al.,
2001; Reichert et al., 2001) have been applied worldwide to understand phytoplankton
dynamics, but these models are rarely tested with high-frequency observations to explore
shorter scale dynamics. Phytoplankton modelling applications are generally limited to
weekly to daily time-steps. High-resolution modelling has been challenging because of
high computational requirements and a lack of high-frequency monitoring data. Even the
high-resolution hourly modelling studies done so far (Van Griensven and Bauwens, 2005;
Martin et al., 2013; Minaudo et al., 2018; Suarez et al., 2019) do not test the simulations
with high-frequency observations of all key variables (temperature, chlorophyll and
dissolved oxygen (DO)) and only report model testing against daily (or coarser scale)
observations. However, it is now easier to monitor water quality at higher temporal
resolutions with the development of low-cost, robust water quality sensors (Rode et al.,
2016). Models can utilise high-frequency data sets to understand phytoplankton growth
and its environmental controls at finer resolutions, thus ensuring earlywarnings of blooms
in river systems.

The present study was undertaken by modifying an existing water quality model,
QUESTOR, to run at shorter time-steps and testing against high-frequency (hourly) water
qualitymeasurements (chlorophyll-a (Chl-a), DO andwater temperature) at two locations
in the River Thames. The model testing was reinforced with testing against daily flow
observations and weekly water quality observations at other locations and for other
determinands. The overall aim of this study was to test the hypothesis that hourly time-
step modelling can improve prediction of phytoplankton biomass and to demonstrate the
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utility of the model to study phytoplankton dynamics and its controls in lowland rivers.
Specific objectives were to:

(1) develop a model to predict hourly variation and transport of in-stream flow,
temperature, nutrients, DO and phytoplankton biomass in the lower Thames,

(2) identify an accurate model structure that represents dominant phytoplankton
groups in the lower Thames using a model comparison and sensitivity analysis,

(3) illustrate the extent to which low-frequency water quality observations, used as
inputs to the model in the absence of high-frequency observations, can still provide a basis
for satisfactory explanation of phytoplankton dynamics in the catchment,

(4) identify favourable environmental conditions for photosynthetic production using
the hourly model outputs and evaluate association of phytoplankton biomass with
multiple environmental controls using boosted regression trees (BRT) technique.

2.2 METHODS

2.2.1 Model theory

QUESTOR is an in-stream, process-based water quality model that allows users to
represent rivers as a network of reaches. River reaches are modelled as a set of non-linear
reservoirs or well-mixed tanks in series (Figure 2.1). The hourly model is a pseudo 1-D
(strictly speaking 0-D) model and assumes fixed channel width with rectangular cross
section. The model simulates dynamic solute transport within the river network using
ordinary differential equations (ODEs) with a mass-balance approach. The numerical
solution of the ODEs is implemented using an explicit fourth-order Runge-Kutta-
Merson differential equation solver (DASCRU). This solver operates at variable temporal
resolution much finer than hourly reporting of results. The equations characterise major
processes affecting model determinands, but include empirical coefficients which need to
be calibrated (Boorman, 2003b). The Stephanodiscus hantzschiiversion (SHmodule,Waylett
et al., 2013) of the daily time-step QUESTOR model is modified to account for hourly
variations in physicochemical and biological water quality. The key determinands in the
model include flow, water temperature, photosynthetically-active radiation (PAR), Chl-a,
biochemical oxygen demand (BOD), DO, nitrate (NO−

3 ), ammonium (NH+
4 ), particulate

organic nitrogen (PON), as well as organic and inorganic phosphorus in the water column
(Figure 2.2). The equations for the new hourly model version of phytoplankton are
explained below and the remaining set of equations for other determinands are provided
in Appendix A. The model parameters are listed in Table B.2.

The growth of phytoplankton is estimated using a fixed stoichiometry model where
the ratios (by weight) Chl-a:C:N:P are 1:50:10:1 (Hutchins et al., 2010). The new version
required modifications in the phytoplankton growth rate parameters as,

𝑘𝑝ℎ𝑜 = 𝐶𝑝ℎ𝑦.𝑘𝑝ℎ𝑜
𝑟𝑒𝑓 .𝑒 ⎛⎜

⎝
−

(𝑇 − 𝑇𝑜𝑝𝑡)2

𝑎2
⎞⎟
⎠

.𝑓 (𝑁).𝑓 (𝐿) (2.1)
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Figure 2.1: Model structure. (a) represents the schematic of a typical reach in the model,
(b) represents the conceptualisation of reaches in the model and (c) shows the input and
output information in the hourly model. (a) and (b) are modified after Whitehead et
al. (1997a). In (b), V represents volume of water in a reach, C represents concentration
of water quality determinand, Qin and Qout are input and output flows, Cin and Cout are
input and output concentrations in a reach.
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Figure 2.2: In-stream water quality determinands and processes represented in the model
(modified after Eatherall et al., 1998).
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𝑘𝑝ℎ𝑜 is the photosynthetic rate (mg L-1 h-1), 𝐶𝑝ℎ𝑦 is the concentration of Chl-a (mg L-1),
𝑓 (𝑁) and 𝑓 (𝐿) are nutrient and light limitation factors each holding values between 0 and
1, 𝑇 is water temperature (°C), 𝑇𝑜𝑝𝑡 = 14°C and a = 8 °C (Descy et al., 2003) and 𝑘𝑝ℎ𝑜

𝑟𝑒𝑓 is the
maximum phytoplankton growth rate (h-1) at 𝑇𝑟𝑒𝑓 ; 𝑇𝑟𝑒𝑓 = 20°C.

Temperature limitation factor (𝑓 (𝑇)) is estimated as,

𝑓 (𝑇) = 𝑒 ⎛⎜
⎝

−
(𝑇 − 𝑇𝑜𝑝𝑡)2

𝑎2
⎞⎟
⎠

(2.2)

The calculation of nutrient limitation uses Michaelis-Menten kinetics,

𝑓 (𝑁) = 𝑚𝑖𝑛 ( 𝑁
𝑁 + 𝑘𝑁

, 𝑃
𝑃 + 𝑘𝑃

) (2.3)

𝑁 is nitrate-N plus Ammonium-N (mg L-1), 𝑃 is inorganic (soluble reactive phosphorus,
SRP) plus organic phosphorus (mg L-1), 𝑘𝑁 (mg N L-1) and 𝑘𝑃 (mg P L-1) are the half-
saturation constants for N and P, respectively.

To account for light limitation, attenuation with depth (𝛾, m-1) is described by the Beer-
Lambert Law,

𝛾 = 𝛾𝑏𝑎𝑠𝑒 + 𝐿𝑆𝑆.𝐶𝑆𝑆 + 𝐿𝑃ℎ𝑦.𝐶𝑝ℎ𝑦 (2.4)

𝛾𝑏𝑎𝑠𝑒 is the light extinction coefficient in clean water (m-1), 𝐶𝑆𝑆 is the concentration of
suspended sediment (mg L-1), 𝐿𝑠𝑠 is light attenuation with depth due to suspended
sediment (m-1 mg-1 L) and 𝐿𝑝ℎ𝑦 is light attenuation with depth due to phytoplankton (m-1

mg-1 L).
Estimation of photolimitation with respect to phytoplankton-specific optimum

intensities (Steele, 1962) in the model requires hourly inputs of incoming radiation and a
constant value of optimum light intensity,

𝑓 (𝐿) = 2.718
𝛾𝑧 . ⎡⎢

⎣
𝑒
− 𝑅𝑠𝐿1𝐿2

𝐿𝑜𝑝𝑡
𝑒−𝛾𝑧

− 𝑒
− 𝑅𝑠𝐿1𝐿2

𝐿𝑜𝑝𝑡 ⎤⎥
⎦

(2.5)

𝑧 is the water column depth (m), 𝑅𝑠 is the radiation at the surface not reflected (W m-2)
(i.e. raw data × 𝐿3), 𝐿1 is the fraction of incoming radiation that is visible light, 𝐿2 is the
fraction of visible light used for phytoplankton, 𝐿3 is the fraction of light reaching water
surface that is not reflected and 𝐿𝑜𝑝𝑡 is the optimum light intensity for phytoplankton (W
m-2).

Respiration calculation requires estimates of respiration fraction and maximum
phytoplankton growth rate,

𝑘𝑟𝑒𝑠 = 𝐶𝑝ℎ𝑦.𝑘𝑟𝑒𝑠
𝑟𝑒𝑓 .𝑘𝑝ℎ𝑜

𝑟𝑒𝑓 .𝜃(𝑇−𝑇𝑟𝑒𝑓 ) (2.6)

𝑘𝑟𝑒𝑠 is the phytoplankton respiration rate (mg L-1 h-1), 𝑘𝑟𝑒𝑠
𝑟𝑒𝑓 is the reference respiration

fraction for phytoplankton (as fraction of 𝑘𝑝ℎ𝑜
𝑟𝑒𝑓 ), 𝜃 is the Arrhenius factor for temperature

dependencies (𝜃 = 1.08) and 𝑇 is water temperature (°C); 𝑇𝑟𝑒𝑓 = 20°C.
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Caversham - Runnymede

Thames Catchment

Sonning

Figure 2.3: River Thames catchment with monitoring locations. Site 5: Caversham; Site 7:
Runnymede. (modified after Bowes et al., 2016).

The death of the autotrophs is a combination of grazing and non-predatorymortality. In
QUESTOR, death rate is estimated from algal growth limitation due to unsuitable nutrient
and light conditions, and the calibration of the death rate constant compensates for the
death from grazing,

𝑘𝑑𝑒𝑎𝑡ℎ = 𝐶𝑝ℎ𝑦.𝑘𝑑𝑒𝑎𝑡ℎ
𝑟𝑒𝑓 .𝑘𝑝ℎ𝑜

𝑟𝑒𝑓 .[1 − (𝑓 (𝑁).𝑓 (𝐿))].𝜃(𝑇−𝑇𝑟𝑒𝑓 ) (2.7)

𝑘𝑑𝑒𝑎𝑡ℎ is the phytoplankton death rate (mg L-1 h-1) and 𝑘𝑑𝑒𝑎𝑡ℎ
𝑟𝑒𝑓 is the reference death fraction

for phytoplankton (as fraction of 𝑘𝑝ℎ𝑜
𝑟𝑒𝑓 ).

2.2.2 Study area

TheThames catchment is situated in southern Englandwith an area of 9948 km2 at the tidal
limit (Waylett et al., 2013). The catchment has a population of around 15 million people
with its uplands characterised by arable and pasture, and the lowland areas coveredmainly
by urban land uses (Hutchins et al., 2018). Mean annual precipitation and mean daily
temperature in the catchment are 700 mm and 11°C, respectively (Crossman et al., 2013).
The catchment receives around 40% of its water supply from groundwater sources, which
are mainly characterised by Oolitic Limestone and Cretaceous Chalk aquifers (Crossman
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et al., 2013). The River Thames is a heavily regulated river with 45 locks and weirs along
its course. Catchment rivers that have extensive lock systems or are connected to canals
are characterised by higher phytoplankton biomass compared to the unconnected rivers
because of longer residence times (Bowes et al., 2012). In general, high phytoplankton
biomass is observed in the middle and lower reaches of the catchment and phytoplankton
blooms mainly occur during March to July (Bowes et al., 2012). This study focuses on a 62
km long stretch in the catchment from Caversham to Runnymede (Figure 2.3). The river
stretch receives inputs frommajor tributaries such as Kennet, Lodden, andWye rivers, and
sewage treatment works (STW) effluents. In-stream flows are regulated by 14 locks and
weirs along the stretch, sometimes resulting in long residence times from reduced flow
velocities.

2.2.3 Data source and model application

The River Thames is one of the most intensively studied and monitored rivers in the
UK (Bowes et al., 2018). The model development here makes use of a combination
of weekly to hourly scale existing flow and water quality data of 2 years (2013-2014)
(see Table 2.1). Gauged daily flow data were obtained from the NRFA (National River
Flow Archive) and were interpolated to hourly time-steps for this application. Nutrient
data at multiple sites along the Thames and its major tributaries, sampled at weekly
intervals, were obtained from theUKCentre for Ecology&Hydrology’s (UKCEH)Thames
Initiative research platform (Bowes et al., 2018). Hourly water temperature, DO and Chl-a
concentrations at Caversham, Taplow and Windsor sites (Figure 2.3) were generated by
the Environment Agency’s (EA) National Water Quality Instrumentation Service, using
YSI6600 sensors, calibrated every 3 weeks. The quality control procedure for the data
collection is provided by Waylett et al. (2013). Chl-a concentration provides a proxy for
phytoplankton concentration (Bowes et al., 2012). For chlorophyll observations, aside from
the hourly-frequency sensor data, the model uses UKCEH’s standard laboratory methanol
extraction-based weekly chlorophyll observations at Sonning and Runnymede sites.
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The model uses single hourly radiation time-series for the whole catchment obtained
from the British Atmospheric Data Centre (Mesoscale Improved Data Assimilations of
Scatterometer winds Landsat data, MIDAS) for Little Rissington near the River Windrush
in Gloucestershire (National Grid Reference 4299 2107). The hourly radiation time-
series was modified to account for canopy shading from riparian trees using a fraction
of potential solar radiation reaching the river surface as recommended by Waylett et al.
(2013). Weir height and type within the river stretch were adapted from the previous
model application in the River Thames (Whitehead and Hornberger, 1984). Flow-velocity
relationships were derived using a set of three linearised velocity equations that reflect the
river hydromorphology and the lock operations in the river (Whitehead and Hornberger,
1984; Waylett et al., 2013).

To establish confidence in the model calibration, testing of phytoplankton response
during bloom periods is crucial. Often only one bloom period occurs each year. The
hourlymodel was calibrated using the observed data of the year 2013, which encompassed
one large prolonged bloom and one medium-sized bloom, and the model setup was
validated using the observed data of the year 2014, which covered two distinct medium-
sized blooms. The whole study stretch was divided into 23 reaches (Table B.1), accounting
for the influence of tributaries, weir locations, abstractions and sewage treatment works.
The hourly model used data at the top of the modelled river stretch (here Caversham)
and at the influences as inputs (Figure 2.1, Figure 2.3). Model calibration was carried out
using observations at four sites (Sonning, Taplow, Windsor, Runnymede) in the stretch.
The calibrationwas performed using a sequential procedure determinand by determinand,
by modifying process-rate parameters, working downstream from site to site. The order
of this one by one parameter calibration and the list of sources and sinks of the variables
affected by each processes are explained in detail elsewhere (Waylett et al., 2013). The
model performance is judged using a combination of Nash and Sutcliffe Efficiency (NSE)
and percentage error in mean (PBIAS) statistics (Appendix A).

2.2.4 Sensitivity analysis

Previous studies have reported dominance of diatom populations in spring and autumn
seasons and green algal groups in summer periods (Lack, 1971; Ruse and Love, 1997;
Read et al., 2014). The difference in the timings of dominance can be attributed
to their different temperature requirements for growth. Green algae have a higher
optimum growth temperature that results in their abundance in summer due to higher
temperatures compared to spring/autumn. I tested the hourly model with three
algal group representations, namely, Stephanodiscus hantzschii (SH), Green algae (GA)
(including chlorophytes and cryptophytes) and small centric diatoms (SCD) (up to 15
µm diameter), differentiated based on their temperature preferences. The three models,
SH, GA and SCD, use optimum temperatures of 14°C, 24.5°C and 21°C and 𝑎 values
of 8°C, 14°C and 12°C, respectively (in Eq. 2.1) that have been optimised for another
lowland river (Descy et al., 2003). All three models were calibrated for growth, death
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and respiration rate parameters and were compared with observations to derive the best
model that represents phytoplankton populations in the River Thames. I also investigated
the temperature constraints on Thames phytoplankton by assessing the goodness of fit of
model outputs under a range of assumptions of optimum temperature for growth ranging
from 10°C to 26°C with an increment of 2°C.

To evaluate the model sensitivity to change in the temporal resolution of the input data,
I tested the hourly model setup with low-frequency water quality inputs. The model has
a requirement of hourly time-step input data, which may not be easier to fulfil at times
and require recourse to extensive interpolation of sparse data values. Data regarding
radiation and hydrology are often available from routine monitoring, but high-frequency
water quality information is still difficult to gather. The model setup here uses daily flow
data, and hourly water temperature, dissolved oxygen, and chlorophyll data as inputs at
Caversham. I filtered weekly data points (Monday, 11 am) from these high-frequency data
sets, and interpolated the weekly spot samples’ time-series to hourly time-steps to use as
inputs in the hourly model. This way I assessed model’s applicability both to generate
past conditions pre-2000 in the Thames before high-frequencymonitoring was established
and in other catchments where only low-frequency flow and water quality monitoring is
practiced.

2.2.5 Statistical analysis

The associations between chlorophyll and multiple environmental variables were
evaluated using the BRT machine learning technique. BRT can handle continuous,
collinear variables, support non-linear variables with missing data and help identify
interactions between explanatory variables (Elith et al., 2008). Recently, it has been
widely used to link biological water quality with multiple environmental variables
simulated from process-based models (Feld et al., 2016; Rankinen et al., 2019). Here,
the simulated/calculated environmental variables (flow, water temperature, nitrate, SRP,
PAR) from the hourlymodel were linkedwith continuous chlorophyll observations during
2013-2014 at Windsor. R packages gbm (Ridgeway, 2007) and dismo (Hijmans et al.,
2017) were used to run BRT analysis. I also used pair-wise boxplots at the Windsor site
to identify favourable environmental conditions within which phytoplankton blooms
develop. Hourly model outputs of controlling variables were divided in 10 equal quantile
groups, and were plotted against chlorophyll simulations to derive environmental bounds
of phytoplankton growth.

2.3 R E SULT S

Model results are presented in four main parts: (1) the hourly model performance
in simulating environmental controls and phytoplankton biomass, (2) temperature
preferences of the dominant phytoplankton species in the model, (3) model testing with
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lower temporal resolution of input data, and (4) identification of environmental controls
and their influence on phytoplankton biomass. The model performance is evaluated
according to the guidelines provided by Moriasi et al. (2007).

2.3.1 Model calibration and validation

2.3.1.1 Flow and water temperature prediction

The Thames catchment is characterised by high winter flows that decrease in early spring
and remain very lowduring summer and autumn. The hourlymodel successfully captures
this seasonality in flow at Windsor (Figure 2.4). The overall flow simulation indicates an
under-estimation of flow volume at Windsor with a percentage mean error (PBIAS) of -
9.88 and -11.58 for the calibration and validation periods, respectively (Table 2.2). In spite
of the under-estimation, the model satisfactorily simulates flow variation at Windsor with
very good NSE values of 0.96 and 0.95 for calibration and validation periods, respectively.

Water temperature in the model is controlled mainly by heat gain or loss from radiation,
canopy shading, and the temperature of flow volumes entering the main channel. The
average hourly temperature variation shows a clear cycle throughout the year, with
daily minimum temperature observed in the early morning hours (6:00-8:00) and daily
maximum temperature observed in the late afternoon (16:00-17:00). The temperature
simulations were comparedwith hourly observations at Taplow andWindsor (Figure 2.4),
and with weekly observations at Sonning and Runnymede sites (Table 2.2). This
comparison shows that the temperature model agrees strongly with the observations
throughout the study stretch, with NSE ≥ 0.98 and mean errors within ±4% at all
calibration sites (Table 2.2).

2.3.1.2 Water chemistry and DO prediction

The phosphorus model successfully captures the seasonal trend and magnitude of SRP
concentrations with NSE > 0.7 at Sonning and Runnymede (Figure 2.5). Mean error for
SRP modelling is around 16% at Runnymede, whereas Sonning shows lower errors (3-
6%). The nitrogen model shows relatively poorer fits for nitrate with NSE values ranging
from -0.07 to 0.46. As opposed to the SRP model, the nitrate model performs better at
Runnymede (NSE = 0.31, 0.46) compared to Sonning (NSE = 0.21, -0.07) for calibration
and validation periods. Sonning shows an overall under-estimation (up to 6%), and
Runnymede shows an overall over-estimation (up to 2%) of nitrate concentrations.

DO concentrations in the catchment begin increasing in spring, but drops to minimum
levels in mid-summer. DO shows high diel variability that coincides with increased
photosynthesis and respiration during phytoplankton blooms, both successfully captured
by the model (Figure 2.4). The magnitude of DO concentrations, during the bloom
period, is over-estimated. During the rest of the year, DO concentrations are generally
under-estimated. The calibration run shows satisfactory DO fits with NSE > 0.45 at all
calibration sites (Table 2.2). The validation run also shows satisfactory fits at Taplow and
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Figure 2.4: Modelled and observed hourly flow, water temperature (Temp), dissolved
oxygen (DO), and chlorophyll concentrations (Chl-a) at Taplow and Windsor for
calibration and validation runs. Note that observed flowdatawere not available at Taplow.

Table 2.2: Model performance statistics for calibration (2013) and validation periods
(2014). (DO, dissolved oxygen; NSE, Nash and Sutcliffe Efficiency; PBIAS, percentage
error in mean; SRP, soluble reactive phosphorus; Chl-a, chlorophyll; Temp, water
temperature; Calib, calibration; Valid, validation.)

Period Determinand Sonning Taplow Windsor Runnymede
NSE PBIAS NSE PBIAS NSE PBIAS NSE PBIAS
(-) (%) (-) (%) (-) (%) (-) (%)

Calib
(2013)

Flow 0.96 -9.88
Temp 0.99 -2.14 0.98 3.80 0.98 3.52 0.99 1.58
DO 0.52 12.22 0.49 -4.47 0.46 -0.93
Chl-a 0.81 -19.9 0.87 26.16 0.80 12.71 0.73 -34.64
Nitrate 0.21 -4.17 0.31 1.74
SRP 0.77 2.92 0.75 16.24

Valid
(2014)

Flow 0.95 -11.58
Temp 0.98 -3.87 0.98 3.61 0.99 2.35 0.99 -0.9
DO 0.25 14.99 0.43 -5.11 0.58 -4.29
Chl-a 0.78 -20.06 -0.19 60.93 0.20 76.73 0.77 -16.58
Nitrate -0.07 -5.97 0.46 1.55
SRP 0.80 5.47 0.71 16.11
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Figure 2.5: Hourly modelled and observed soluble reactive phosphorus (SRP) and nitrate
concentrations at Sonning and Runnymede for calibration and validation runs.

Windsor (NSE > 0.43). Model performance at Sonning, however, drops slightly in the
validation run (NSE = 0.25). The model satisfactorily captures the seasonal behaviour of
DO concentrations at all calibration sites (Figure 2.4, Table 2.2).

2.3.1.3 Phytoplankton prediction

Phytoplankton observations during the calibration period (2013) shows much higher
levels of peak blooms (up to 0.2mg L-1) compared to the validation period (2014)with less
than half themagnitude (up to 0.1mg L-1) of the 2013 blooms. Peak levels in the calibration
period are under-estimated, but are over-estimated for the validation period (Figure 2.4).
The phytoplankton model shows a good performance for the calibration run with NSE >
0.7 at all sites (Table 2.2). Mean errors, however, are relatively high (-35% to 26%) for
the calibration run. The calibration run indicates an overall under-estimation at Sonning
and Runnymede, and an over-estimation at Taplow and Windsor. For the validation run,
the model performs well (NSE > 0.7, PBIAS up to 20%) at Sonning and Runnymede, but
with relatively poorer fits at Windsor (NSE = 0.20, PBIAS = 77%) and Taplow (NSE
= -0.19, PBIAS = 61%). On average during the growing season, daily minimum and
maximum phytoplankton levels are modelled around 6:00 hours and 17:00-18:00 hours,
respectively (Figure 2.6a). Modelled diel variability of phytoplankton agrees well with the
observations, but the model under-estimates biomass magnitude. The model predicts an
increase in the bloom size and diel amplitude from upstream to downstream (Figure 2.6b).
Observations also show an increase in the bloom size from Taplow to Windsor, but show
reduction in the diel amplitude. Overall, the model identifies the timing of multiple
blooms and collapses during the growing season and successfully models phytoplankton
dynamics along the river stretch.

22



0 2 4 6 8 10 12 14 16 18 20 22 24
Time (UTC)

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Ch
lo

ro
ph

yl
l (

m
g 

L
1 )

(a)
Sonning Bridge
Taplow
Windsor
Runnymede

0.000 0.005 0.010 0.015 0.020
Average diurnal amplitude (mg L 1)

0.06

0.08

0.10

0.12

90
th

 p
er

ce
nt

ile
 c

hl
or

op
hy

ll 
(m

g 
L

1 )

Sonning Bridge

Taplow

Windsor

Runnymede

Taplow

Windsor

(b)

Figure 2.6: Spatial and temporal variation in phytoplankton biomass. (a) represents
average diel phytoplankton variation in the model during growing period (April–July)
at all calibration sites and (b) shows modelled (green markers) and observed (red
markers) spatial variation in 90th percentile chlorophyll concentration with its average
diel amplitude during growing period.

2.3.2 Optimum temperature representation for phytoplankton growth

All three models, SH, GA and SCD, simulate high biomass during April-September as
shown in Figure 2.7a, which is when the differences in model performances can be seen.
Although all three models perform well (NSE > 0.6) at Windsor during this period,
SH captures the high concentrations most accurately, which is crucial for water quality
management. Moreover, GA and SCD models over-estimate biomass from mid-July
to mid-September as opposed to the SH model that performs the best to capture low
concentrations as well. High optimum growth temperatures in GA (24.5°C, 𝑎 = 14°C)
and SCD (21°C, 𝑎 = 12°C) models prompt the algal growth after July with increasing
water temperature (Figure 2.7a). Growth rate in the SH model, on the other hand,
starts decreasing after an optimum temperature of 14°C (𝑎 = 8°C), which agrees well
with the observations. Sensitivity analysis with the SH model shows better performance
(Figure 2.7c) at low optimum temperatures (10–16°C) to simulate phytoplankton blooms
during May-June (Figure 2.7b). At higher temperatures (> 16°C), there is an over-
estimation of biomass after July. Lower temperatures (< 12°C), on the other hand, under-
estimate the blooms at the start of July. The best model fit (NSE = 0.77) is obtained for
T14 scenario at an optimum temperature of 14°C (Figure 2.7c).

23



2013-04 2013-05 2013-06 2013-07 2013-08 2013-09 2013-10
0.00

0.05

0.10

0.15

0.20

Ch
lo

ro
ph

yl
l (

m
g 

L
1 )

(a)
obs
SH
GA
SCD

5 10 15 20
Temperature (°C)

0.025
0.050
0.075

Gr
ow

th
 ra

te
 

 (h
1 )

Apr May Jun Jul Aug Sep Oct
Time (UTC)

observed
T10
T12
T14
T16
T18
T20
T22
T24
T26

mg L 1(b)

0.05

0.10

0.15

0.20

T10 T12 T14 T16 T18 T20 T22 T24 T26
Temperature scenarios

0.0

0.2

0.4

0.6

0.8

NS
E

(c)

Figure 2.7: Temperature preferences of phytoplankton populations. (a) shows a
comparison of modelled and observed chlorophyll concentrations for the April–
September, 2013 period for SH, GA, and SCD models at Windsor. (b) represents a
comparison ofmodel performance for a range of optimum temperatures from 10°C to 26°C
with an increment of 2°C atWindsor. T10 to T26 represent different optimum temperature
scenarios for phytoplankton growth. Red lines represent missing data periods. (c) shows
goodness of fit statistics (NSE) for all temperature scenarios from T10 to T26 at Windsor.
GA, Green algae; SCD, small centric diatoms; SH, Stephanodiscus hantzschii.

2.3.3 Model sensitivity

The distribution of the simulated chlorophyll concentrations in the weekly input run
does not change significantly from that of the hourly input run (Figure 2.8). Model
performance declines only marginally with weekly inputs (Table 2.3) and the model
captures the phytoplankton blooms. However, the weekly input run still shows a bigger
lag in simulating the timings of the development and collapse of blooms compared to the
hourly input run (Figure 2.8). The weekly input run also simulates higher phytoplankton
growth during September and October months, than the hourly input run, when no
blooms are seen in the observed data. In spite of this, the NSE statistics for the weekly
input run remain above 0.6 at all sites for the calibration period (Table 2.3). Even for the
validation period, the weekly input run shows NSE > 0.7 at Sonning and Runnymede.
Statistically, model performance at Taplow and Windsor is poor in both the runs for the
validation period, although timings of blooms are represented well.

Importantly the weekly input run still uses hourly radiation time-series; both runs use
single radiation time-series for the entire river stretch. The model is also tested with low-
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Figure 2.8: Comparison of modelled and observed chlorophyll concentrations for hourly
and weekly input runs at Windsor (a) and Sonning (b). Inset figures represent quantile-
quantile plots of model performances at Sonning and Windsor.

Table 2.3: Comparison of phytoplankton model performance for hourly and weekly input
runs for calibration and validation periods. (NSE, Nash and Sutcliffe Efficiency; PBIAS,
percentage error in mean; Calib, calibration; Valid, validation.)

Period Model Sonning Taplow Windsor Runnymede
NSE PBIAS NSE PBIAS NSE PBIAS NSE PBIAS
(-) (%) (-) (%) (-) (%) (-) (%)

Calib
(2013)

Hourly 0.81 -19.9 0.87 26.16 0.8 12.71 0.73 -34.64
Weekly 0.83 -12.78 0.76 38.32 0.73 23.46 0.64 -29.63

Valid
(2014)

Hourly 0.78 -20.06 -0.19 60.93 0.20 76.73 0.77 -16.58
Weekly 0.83 -5.85 -0.82 90.62 -0.19 104.81 0.70 -3.72
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Table 2.4: Seasonal average of limiting factors of phytoplankton growth at Windsor site as
calculated in the hourly model

Season Light Nitrogen Phosphorus Temperature
Spring 0.258 0.984 0.903 0.786
Summer 0.308 0.984 0.946 0.639
Autumn 0.130 0.986 0.954 0.850
Winter 0.097 0.984 0.924 0.431

frequency radiation inputs, but it led to a significant and much larger drop in the model
performance with NSE values changing from 0.87 (Taplow), 0.8 (Windsor), and 0.73
(Runnymede) to -2.57 (Taplow), -1.51 (Windsor), and 0.24 (Runnymede) with weekly
radiation inputs. Even the daily scale radiation inputs affected the model performance
heavily with NSE values of -2.46 (Taplow), -1.60 (Windsor), and 0.10 (Runnymede). This
explains the key role of radiation inputs in modelling phytoplankton dynamics. Therefore,
I conclude that the hourlymodel can successfully reproduce phytoplankton dynamicswith
low-frequency flow and water quality input data in the lower Thames, and the only input
necessary at high-resolution in the model is radiation.

2.3.4 Physicochemical controls on phytoplankton growth

A multiple stressor analysis using BRT technique shows maximum association of SRP
(58%) with chlorophyll followed by water temperature (21.6%), flow (11.6%), nitrate
(7.8%) and PAR (1.1%) (Figure C.4). The reduction in nutrients (SRP and nitrate)
with high chlorophyll levels suggests that nutrient levels during the growing season
are influenced by phytoplankton growth rather than the other way around. It is not
always clear which the dependent variable is since nutrients and chlorophyll relationships
are intertwined, and hence, SRP and nitrate were removed from the list of predictors.
The BRT model excluding the nutrient predictors highlights flow (55%) as the most
influencing control followed by water temperature (38%) and PAR (7%). PAR does not
represent a strong relationship with biomass variation in the BRT model (Figure 2.9c).
Phytoplankton biomass increases with increase in flow and temperature until a certain
limit of these controls is reached, and then shows a reversal of response with continued
increase in the controls (Figure 2.9a-b). These relationships are also supported by pair-
wise boxplots (Figure 2.9d-e), which I used to identify the environmental bounds of
flow and temperature within which phytoplankton blooms develop. High phytoplankton
populations > 0.03 mg L-1 develop with increase in temperature (11-18°C), but are not
sustained at higher temperatures. Similarly, blooms only develop at low to mid flows
between 30-63 m3 s-1 at Windsor. This suggests that there is an optimum window of these
controls where phytoplankton can bloom, and that outside this window, growth is not as
strong.

Seasonal variation in growth-limiting controls of phytoplankton was assessed using the
hourlymodel outputs. Table 2.4 represents how light, temperature andnutrient limitations
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Figure 2.9: Multiple environmental controls on phytoplankton growth. (a–c) represents
partial dependence plots for the modelled flow, water temperature and PAR with
normalised fitted values of observed chlorophyll concentrations at Windsor in the BRT
model. (d–e) represents boxplots of modelled hourly flow and water temperature against
modelled hourly chlorophyll concentrations at Windsor. The hinges represent 10th and
90th percentile, and the line within the box represents median chlorophyll concentration.
BRT, boosted regression trees; PAR, photosynthetically active radiation.

co-vary seasonally in the model. Note that higher values in Table 2.4 indicate fewer
limitations on phytoplankton growth. The hourly model shows light and temperature as
key controls that limit phytoplankton growth throughout the year. Seasonal light factor
varies from 0.1 to 0.31, and temperature factor varies from 0.43 to 0.85. Nitrogen does
not limit phytoplankton growth with its limiting coefficient always being > 0.98. Average
seasonal phosphorus coefficient is also higher than 0.9 in all seasons, and remain > 0.8
during the entire monitoring period (except for a few days in May, 2013). Chemical
controls do not show limitations on phytoplankton growth, but physical controls show
a significant influence.

2.4 D I S CU S S ION

The hourly model presented here successfully simulates phytoplankton biomass along
with other key determinands including flow, water temperature, nutrients and DO along
the lower Thames. High-frequency observations within the catchment are utilised as
model inputs as well as to support calibration of in-stream process-rate parameters that
influence river water quality. Moreover, a model with low-frequency flow and water
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quality inputs is also able to characterise phytoplankton dynamics in the catchment, but
still requires high-resolution light information. The model representation with dominant
species as Stephanodiscus hantzschii best explains the phytoplankton variability in the
catchment, which is also applicable for many lowland rivers worldwide. The lower River
Thames shows significant association of chlorophyll concentrations with residence time,
water temperature and light intensity. In the following sections, I discuss the model
results from the lower Thames application and review the model’s applicability as a
phytoplankton prediction and management tool for lowland rivers.

2.4.1 Hourly model performance

2.4.1.1 Modelling environmental controls

The hourly model successfully simulates the physicochemical and biological water quality
variation across the 62 km length of the River Thames. Flow simulations in the model
make use of the data of tributary inputs, abstraction volumes and sewage releases,
giving very good fits (NSE > 0.9) for flows. Minor differences between the simulations
and observations might be due to several reasons. Differences in the flow volume
estimation (PBIAS = -9.88, -11.58) could arise because QUESTOR does not include a
hydrological component to account for rainfall-runoff processes. Flow simulations highly
rely on the calibration of flow routing parameters and a correct representation of water
inputs and outputs in the river. The flow routing parameters, adapted from previous
studies in the River Thames (Whitehead and Hornberger, 1984; Waylett et al., 2013),
are well calibrated for this river. Errors might be attributable to additional influences
not currently represented in the model, but these cannot be identified with the available
information. Groundwater discharge into the floodplain/river might be important, but the
over-estimation of low flows suggests it is less likely. Additionally, sewer overflows from
STWs in urban areas close to the river are not specifically represented, which if included,
could boost simulated high flows. Nevertheless, the overall model performance for flow is
very good, and the model is able to capture the seasonal variability and flow magnitude.

For nutrients, the model performs better in simulating SRP (NSE > 0.7) compared
to nitrate (NSE < 0.5). Despite the good NSE fits for SRP concentrations, there is a
slight overestimation (Figure C.2). Due to this, phosphorus mineralisation process was
switched-off for the entire stretch (Table B.3) as there was already a sufficient pool of
inorganic phosphorus simulated from upstream transport, tributary and sewage works
inputs. For nitrate simulations, the model simulates a rapid increase in nitrification rate
downstream, with the process rate becoming more than twice the upstream rate after
merging of a heavily nutrient-enriched tributary, the River Wye (Bowes et al., 2012).
The over-estimation of the extreme low (< 5th percentile) and high (> 99th percentile)
nitrate concentrations (Figure C.2) might be because the nitrogen sources from incoming
tributaries are not well characterised. Currently, the model uses low-resolution time-series
of tributary nutrient inputs, and the nitrate fits may improve with higher resolution data
inputs.
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Diel variability in DO concentrations increases with biomass during growing season
because of the increase in autotrophic production and respiration. However, during
this period, the magnitude of DO is over-estimated in spite of the good simulation of
phytoplankton blooms. This may happen if one or more of the other processes influencing
DO variation such as reaeration, benthic oxygen demand, BOD decay, etc. are not
accurately represented in the model. However, measurements of these processes are often
scarce or absent in rivers and it is difficult to pin-point the processes influencing DO fits
in the lower Thames due to lack of data availability. Nevertheless, the model does not
show large errors in DO estimates and represents only aminor under-estimation at Taplow
(PBIAS = -4.47, -5.11) and Windsor (PBIAS = -0.93, -4.29) during both years. The overall
seasonality of DO concentrations is also satisfactorily (NSE > 0.45) captured by the hourly
model.

2.4.1.2 Modelling phytoplankton biomass

To reproduce phytoplankton dynamics, the model uses high-frequency sensor
measurements, which also support the calibration of phytoplankton growth, death and
respiration rate constants. Phytoplankton process-rates in rivers around the world have
been observed within ranges of 0.06-3 d-1 (growth) and 0.06-0.17 d-1 (death) (Bowie et al.,
1985; Everbecq et al., 2001; Reichert et al., 2001), whereas for the River Thames, studies
have reported 0.2-1.35 d-1 for growth rate and 0.05-0.23 d-1 for death rate (Waylett et al.,
2013; Whitehead et al., 2015; Hutchins et al., 2016). The maximum growth rate calibrated
for the lower Thames is higher (2.28 d-1), and the death and respiration fractions are
0.1 (Table B.3). The death constant in the model accounts for grazing and non-predatory
mortality. Although phytoplanktonmortality is a complex process and grazing rates in the
river may vary spatially and temporally, the lack of grazing abundance data requires the
model to be simple in its representation of mortality to avoid an over-parameterisedmodel.
The growth, respiration and death constants mainly control the timing and magnitude of
phytoplankton blooms, which the model is able to capture broadly.

High photosynthetic production and respiration is observed during April-July, when
the environmental conditions accommodate high phytoplankton growth. The model
simulates a clear diel cycle during the growing season, when autotrophic production is
maximum. The model successfully captures the timing and magnitude of major peaks
at all calibration sites. Previous phytoplankton modelling studies at daily to annual
scale in the River Thames have reported NSE values of -5.350 to 0.228 (Waylett et al.,
2013), 0.34 to 0.75 (Whitehead et al., 2015) and mean error values up to ±30% (Hutchins
et al., 2016; Hutchins and Bowes, 2018). A recent study (Hutchins et al., 2020) with
daily time-step QUESTOR model in the Thames for 2013-2014 reported NSE statistics for
chlorophyll between -0.17 to 0.22 in the lower Thames reaches. This study simulates hourly
phytoplankton variation for the same period, and reports NSE > 0.73 at all calibration
sites and mean errors ranging from -35% to 26%. Better performance of the hourly model,
compared to the previous modelling studies in the Thames, confirms the hypothesis
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that high-resolution modelling can improve the predictions of timing and magnitude of
phytoplankton blooms.

Model sensitivity testing with different algal groups derives SH model as the best
representing model of phytoplankton growth in the lower Thames. Although the
assumptions of green algae and small centric diatoms dominance also provide satisfactory
fits, these models do not capture the peak blooms as well as the SH model does and over-
estimate low concentrations. Previously, mixed-phytoplankton populations have been
reported to best represent phytoplankton biomass in the River Thames using the daily
time-step QUESTOR (Waylett et al., 2013), where phytoplankton groups were allowed
to thrive regardless of temperature. However, the hourly model, with better agreement
with observations, suggests that the phytoplankton in the river do not survive at higher
temperatures. Thus, modelling studies at coarser resolution can sometimes result in
misleading interpretations about the dominant algal communities and river processes.

Themodel performs the best with an optimum temperature of 14°C in the lower Thames,
which is also observed in other lowland rivers (Descy et al., 2003). Stephanodiscus hantzschii
is found to be dominant in many lowland, temperate rivers (Everbecq et al., 2001) offering
a wider applicability of the hourly model. Observational studies (Lack, 1971; Bowes et
al., 2012) including the flow cytometry analysis (Read et al., 2014) in the River Thames
showed dominance of diatoms in spring. However, during summer, a lower biomass
is observed in the river and smaller pico-chlorophytes dominate the community (Read
et al., 2014). Hence, the assumption about the dominant species in the river works
well for modelling phytoplankton seasonality. However, it is important to note that the
dominance of phytoplankton groups in rivers may change over a year. In reality, different
phytoplankton groups compete for resources and their dominance depends on multiple
environmental factors that are not just limited to temperature. The currentmodel structure
does not incorporate these processes, but future research on model development should
focus on including the interplay between different phytoplankton groups.

2.4.1.3 Model uncertainties

Process-based water quality models include uncertainties introduced from several sources
such as input data quality, conceptual simplifications causing structural uncertainty, and
limitations in process understanding of the modeller because of lack of sufficient data
(Abbaspour et al., 2015). This is especially a problem in large lowland catchments with
inputs from a considerable number of sources. The hourly model in this study is based on
the QUESTOR model, which has been widely applied in rivers across Europe. QUESTOR
has been tested and subjected to comprehensive sensitivity analysis elsewhere (Deflandre
et al., 2006; Hutchins and Hitt, 2019). Moreover, extensive QUESTOR applications in
the River Thames provide confidence in calibration of the hourly model parameters and
optimised values lie within similar ranges. This study addresses the importance of inputs
relative to that of in-stream processes for model predictions by testing the model with
low-frequency input data. Through this exercise, I find that the model outputs are not
sensitive to the time-scale of flow and water quality inputs, but are highly sensitive to
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the radiation inputs. The hourly model requires high-resolution radiation information
to estimate phytoplankton growth. Obtaining high-resolution radiation data is feasible
either directly or indirectly based on catchment location and sunshine hours, unlike high-
resolution river water quality data that are often difficult to obtain. High-frequency
inputs should reduce uncertainties in the model, but sparse data from tributaries may still
introduce some uncertainties. However, assessment of model uncertainty requires a much
more comprehensive analysis, and is out of the scope of this study. The hourly model
application in this study is a step forward in high-resolution phytoplankton modelling,
and demonstrates an efficient and skilful modelling tool for simulating hourly to annual
scale variation in phytoplankton biomass and its controls.

2.4.2 Environmental controls on phytoplankton biomass

BRT analysis provides an insight into the nature and importance of associations
of phytoplankton with multiple environmental variables, and the box-plots provide
information about environmental bounds of these variables that promote harmful algal
blooms. River Thames exhibits high nutrient availability throughout the year, and
nutrients are consumed by phytoplankton during high growth (Bowes et al., 2016).
Instead of nutrient concentrations influencing phytoplankton growth, I find that in fact, the
stronger control is the reverse, that of biomass on nutrient availability. Nitrate is present in
excess throughout both years due primarily to diffuse input of nitrate-rich groundwaters.
The delivery of nutrients to the Thames from diffuse agricultural sources is primarily
during winter and autumn high flows. In contrast, phosphorus addition from point
sources is constant throughout the year, resulting in high SRP levels during low summer
flows (Jarvie et al., 2002). Low flows and elevated SRP levels, in theory, should promote
algal growth in the river (Hilton et al., 2006). However, high chlorophyll concentrations
coinciding with low SRP levels and low flows (Figure C.4) in this study suggests that (i)
the residence time in the river is long enough for phosphorus uptake by phytoplankton
biomass for autotrophic production, and (ii) as blooms develop, phosphorus levels start
depleting in the river and become limiting.

After excluding the nutrients from the list of controls, the BRT analysis shows highest
relative influence of flow (55%) followed bywater temperature (38%) and PAR (7%). PAR
is sufficiently available throughout the year accounting for the pattern in the relationship
between chlorophyll and PAR (Figure 2.9c). This contrasts with findings from the process-
based modelling exercise, where high-resolution light information is a crucial predictor
to model accurate timing and magnitude of phytoplankton blooms. Light is a complex
parameter to consider compared to the other environmental variables as the influence of
light on phytoplankton can be a function of past light information in terms of its timing,
periodicity and intensity over time (Bowes et al., 2016). Moreover, phytoplankton growth
is also influenced by seasonal changes in riparian shading (Hutchins et al., 2010), which
are hard to capture in the BRT model using only a simple measurement of PAR. Hourly
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Table 2.5: Comparison of environmental bounds (for chlorophyll-a > 0.03 mg L-1) along
the river. Thresholds at Caversham were reported by Bowes et al. (2016). (Temp, water
temperature)

Variable Observed Modelled
Caversham Windsor Sonning Windsor Runnymede

Flow (m3 s-1) < 30 32-68 28-51 30-63 21-54
Temp (°C) 9-19 10-17 11-18 11-18 11-18

process-based modelling, on the other hand, accounts for these details, albeit with specific
assumptions about incoming light information and riparian shading patterns.

Flow and temperature showed an important control on phytoplankton growth. The
interactions between flow versus temperature and PAR versus flow also showed significant
influences. High PAR promotes phytoplankton growth only at low-mid flows. Moreover,
large blooms are observed when temperature and flow interacts within specific ranges.
Phytoplankton growth at Caversham has been reported to respond to certain flow and
temperature thresholds (Bowes et al., 2016). Downstream of Caversham, lower and upper
flow bounds exist for phytoplankton growth (Table 2.5). Majority of high simulated
chlorophyll (> 0.03 mg L-1) concentrations only occur when flows are between 21–63 m3

s-1 in contrast to Bowes et al. (2016) who only found high concentrations below 30 m3

s-1 from analysing five years (2009-2013) of high-frequency measurements at Caversham.
Flow bounds identified from the observations at Windsor (32-68 m3 s-1) are in a similar
range to the modelled bounds (Table 2.5). Phytoplankton blooms only develop at low
flows (< 51-63 m3 s-1 here), when the residence time is long enough for phytoplankton
growth. However, the presence of a lower flow bound (> 21-30 m3 s-1 here), below which
high concentrations do not occur, also suggests that the phytoplankton biomass cannot
remain suspended when the flow becomes too low (< 20 m3 s-1), and settle in the river
(Balbi, 2000).

Due to the SH model assumption of an optimum temperature for growth of 14°C , a
consistent temperature range, within which high concentrations are simulated (11-18°C,
Table 2.5), is apparent throughout the stretch. Observed data show a temperature range
of 10-17°C atWindsor, whereas Bowes et al. (2016) reported a temperature range of 9-19°C
at Caversham. The slightly different bounds for temperature are likely indicative of a more
complex system than that represented in the model. These differences are likely to reflect
largely dominant cool water centric diatoms, but with secondary influences from other
groups, such as groups thriving in warmer conditions and attached algae mobilised under
turbulent conditions at lower temperatures. Important environmental controls found in
this study (flow, light, temperature) are consistent with the findings from other lowland
rivers around the world such as the Murray (Bormans and Webster, 1999), the Meuse
(Everbecq et al., 2001) and the Severn(Reynolds andGlaister, 1993). Some lowland studies
have also highlighted the importance of chemical (nutrients) and biological (grazing)
controls, but these are shown to become significant only when physical constraints are
reduced (Billen et al., 1994; Reynolds and Descy, 1996; Gosselain et al., 1998).

32



2.4.3 Flow regulation and water quality

Physical factors, such as river residence time and flow variability, play an important role
in controlling phytoplankton growth in lowland rivers (Reynolds, 2000). High flows
prevent growth by rapid flushing of phytoplankton biomass. The lower Thames reaches
are deeper than the upstream reaches with slow-moving water enriched by high floods
in the winter and consistent low flows during the rest of the year. Moreover, locks and
weirs for navigation throughout the river stretch slow the flow, resulting in increased
residence times (Hutchins and Bowes, 2018). Median residence time in the river stretch in
this study during 2013-2014 was 40 hours, which varied from 9 to 112 hours at very high
(90th percentile) and very low (10th percentile) flows, respectively. One possible solution
to avoid high phytoplankton growth in rivers could be via the maintenance of river flow
above critical thresholds (Wang et al., 2019), in linewith environmental flow concepts (Poff
and Zimmerman, 2010). Experimental flow releases have proved to facilitate maintenance
of chemical and biological water quality in regulated rivers elsewhere (Lind et al., 2007;
Gillespie et al., 2020). As discussed in the previous section, high phytoplankton biomass
in the lower Thames is only encountered at low flows below 60 m3 s-1. Although more
evidence is required to use this threshold as a minimum environmental flow in the river,
short pulses of high flow release could act as a measure to prevent large algal bloom
developments in regulated, lowland rivers like Thames.

2.5 CONCLUS ION

An hourly river model is developed for a 62 km stretch in the lower River Thames.
By including an hourly mass balance, the model successfully simulates flow, water
temperature, DO, nutrients and phytoplankton biomass in the river. The model
satisfactorily captures diel variation of phytoplankton dynamics as well as the magnitude
and timing of bloom events. The hourly model in this study represents better goodness
of fits compared to the previous daily time-step modelling studies in the Thames,
and thus, confirms the hypothesis that high temporal-resolution modelling improves
phytoplankton growth prediction. The model can predict phytoplankton dynamics
from low-resolution water flow and quality with hourly resolution data only needed
for solar radiation. This offers a possibility of model application in catchments where
high-frequency measurements are not available.

From a range of algal groups tested under sensitivity analysis, a model assuming
Stephanodiscus hantzschii with optimum growth at 14°C to predominate best represented
biomass variation. Stephanodiscus hantzschii is also predominant in many lowland rivers
worldwide. The model can easily be applied elsewhere and also be adapted in its
parameterisation to reflect dominance by different species if needed. Phytoplankton
growth in the lower Thames is mainly influenced by hydrological (residence time) and
physical controls (water temperature, light intensity), which is typically found in lowland
rivers worldwide. I observe that phytoplankton blooms only develop within specific flow
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bounds (21-63 m3 s-1). Identification of flow bounds is useful to prevent major bloom
developments and to maintain river water quality. Hence, short-term high-flow release
(here, above 60 m3 s-1), as experimented in other regulated rivers, could form a potential
management strategy in critical situations.

This is the first studywhere a high-resolution hourlymodel is validated against similarly
high-frequency biomass observations. To my knowledge, river modelling studies with all
environmental controls at such a temporal and spatial extent have not previously been
undertaken. It offers the following powerful possibilities:

(1) feasibility for hourly model application in any river with a single continuous water
quality monitoring site in the lower reaches,

(2) reconstruction of past long-term changes in hourly water quality dynamics before
continuous monitoring with sensors was widely available,

(3) application to provide earlywarnings of phytoplankton blooms aswell as to evaluate
management strategies using scenario analysis,

(4) hourly-scale DO curves and biomass information can be further interpreted to
evaluate ecosystem metabolism and to identify low night-time oxygen levels that may
threaten ecological health,

(5) the costs for high-frequency monitoring over multiple sites within the river network
can be reduced if a reliable modelling tool such as the one described in this study is
available.
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3
HIGH-RESOLUTION WATER-QUALITY AND
ECOSYSTEM-METABOLISM MODELLING IN LOWLAND RIVERS

3.1 IN TRODUCT ION

Assessments of river ecosystem health have traditionally relied on structural indicators
such as channel morphology, water quality or the composition of biological communities
(Von Schiller et al., 2017). However, with the advances in high-resolution monitoring
techniques (Rode et al., 2016), sensor networks and linked modelling tools are
gaining traction for prediction of functional indicators such as ecosystem metabolism.
Conventional methods of metabolism modelling, based on Odum (1956)’s open-channel
approach, estimate metabolism rates at a river-reach level using continuous dissolved
oxygen (DO) measurements at a single site (e.g. one-station method, Izagirre et al., 2007)
or two sites over a reach (e.g. two-station method, Hall Jr and Tank, 2005; Halbedel and
Büttner, 2014). These models do not account for the influence of upstream changes on the
downstreamDO advection and transformations within the river network. Moreover, these
models do not specifically account for changes in river hydrology and biogeochemistry
(exceptions include Payn et al., 2017; Segatto et al., 2020), which could have a critical
impact on DO dynamics in the river. Therefore, such models may provide biased
interpretations of metabolism estimates (Payn et al., 2017) if the metabolic regime is
sensitive to changes in these environmental stressors at the time-step of calculation.

Ecosystem metabolism characterises carbon fixation and mineralisation through gross
primary production (GPP) and ecosystem respiration (ER). GPP and ER are sensitive
to multiple stressors, which act independently or in combination with other stressors
(Heathwaite, 2010; Von Schiller et al., 2017) often presenting a complex interplay of
controls. ER is regulated by water temperature (Demars et al., 2011; Perkins et al., 2012)
and organic matter supply (Young et al., 2008). Often, light (Mulholland et al., 2001)
and in some cases, nutrient availability (Guasch et al., 1995) control GPP. Flow is also
an important regulator of GPP. Flooding disrupts GPP seasonality through scouring of
benthic producers and organic matter (Uehlinger, 2006) as well as by reducing light
availability in sediment-mobilized turbid waters (Aspray et al., 2017). Slow-flowing
rivers with clear waters are typically autotrophic due to high light availability and stable
flow regimes (Acuña et al., 2011) whilst faster-flowing rivers are typically heterotrophic.
Measuring these spatial and temporal dynamics can be difficult, since the spatial resolution
of sensor networks is largely limited by logistics of multi-site set up, maintenance and data
collection/validation.

GPP and ER estimates from conventional DO mass-balance models are usually
empirically related to different environmental stressors to evaluate their sensitivity to these
stressors (Izagirre et al., 2008; Beaulieu et al., 2013; Aspray et al., 2017). However, it is also
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important to associate these stressors mechanistically to GPP and ER to better understand
the underlying controls of metabolic regimes in rivers as well as to predict changes in river
metabolism outside the range of the available observations. Whereas several mechanistic
water quality models (e.g. Enhanced stream water quality model, Brown and Barnwell
(1987); River water quality model, Reichert et al. (2001)) include biochemical processes
that affect DO transformations in the water column, they are generally only tested at
daily to weekly time-steps. The coarse testing limits their use for metabolism estimation,
which is susceptible to sub-daily changes in hydrology and biochemical water quality
(Roberts et al., 2007; Izagirre et al., 2008). Therefore, here I combine DO and metabolism
modelling using an existing, hourly scale, mechanistic water quality model, the hourly
Quality Evaluation and Simulation Tool for River-systems (QUESTOR)model (Chapter 2,
Pathak et al., 2021). I implement this approach in a lowland river, the River Thames, in
southern England.

QUESTOR is a process-based, in-stream water quality model, which simulates hourly
scale variation and transport of river flows, water temperature, DO, nutrients, and
phytoplankton biomass in a river network. Themodel has been previously tested to predict
diel variation in physicochemical water quality and phytoplankton biomass in the lower
River Thames (Chapter 2, Pathak et al., 2021). I advance this work to estimate metabolism
rates from the DO mass-balance module. The hourly QUESTOR model simulates diel
changes in the environmental stressors (e.g. light, temperature, flow, nutrients) and their
resulting impact on ecosystem productivity and respiration. The model, however, has
a relatively more complex structure with many model parameters, thus carrying a risk
of attached uncertainties and parameter equifinality during the calibration. Nonetheless,
I reduce parameter uncertainties during the calibration process by making use of the
abundant literature on water quality modelling that exists for the River Thames catchment
(Whitehead and Hornberger, 1984; Waylett et al., 2013; Whitehead et al., 2015; Hutchins
et al., 2018)

Whilst process-based models realistically represent the sensitivities of the system to key
drivers (Hrachowitz et al., 2014) and capture the short term dynamics (Jankowski et al.,
2021), empirical models have long-standing pedigree in providing insight into ecosystems’
response to multiple stressors (Izagirre et al., 2008; Beaulieu et al., 2013). Specifically,
with the development of machine learning techniques, empirical models can utilise data
to learn and increasingly improve model performance (Elith et al., 2008; Feld et al., 2016).
Therefore, in addition to the process-based model, I also use an empirical approach to
assess the sensitivity of modelled metabolism rates to multiple stressors. A comparison
of both models is made to test if the empirical approach can provide accurate predictions
and substitute process-based modelling for rapid assessments of river ecosystem health.

The main aims of the study are:
(1) To develop a process-based approach for coupled modelling of in-stream hydrology,

biochemical water quality and ecosystem metabolism in lowland rivers.
(2) To analyse spatio-temporal variation in the metabolic regime within the modelled

river network (Thames, England).
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Figure 3.1: Model structure and processes (modified after Pathak et al., 2021). (a)
represents the schematic of a typical reach, (b) shows the conceptualization of reaches
(C, solute concentration; Q, flow; V, volume), and (c) describes the water quality
determinands and processes in the model. BOD, biochemical oxygen demand; PON,
particulate organic nitrogen; Porg, organic phosphorus; SRP, inorganic phosphorus; SS,
suspended sediment.

(3) To perform a sensitivity analysis of GPP and ER to physicochemical determinands
using random forest machine learning technique and generalised least squares (GLS)
regression modelling.

3.2 METHODS

3.2.1 Modelling approach

I use the process-based, hourly QUESTOR model tested in the lower Thames in Chapter 2
(Pathak et al., 2021). A detailed set of equations for all the key variables is provided in
Chapter 2 and Appendix A. Here, I summarise the flow and DO modules of the hourly
model, and describe the equations for ecosystem metabolism estimation.

3.2.1.1 Flow routing module

A simple mass-balance of incoming and outgoing flows is used. The incoming flow
in the reach is the balance of the upstream flows plus point-source discharges minus
abstractions. Flow inputs from the tributaries at the main channel confluence are scaled
upwards based on the location (often some distance upstream) of the gauging station
and the contributing catchment area (Hutchins et al., 2020). Therefore, this indirectly
includes groundwater contribution at the tributary confluences with the main Thames.
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Groundwater contribution to and from the main Thames is assumed to be in balance.
Outflow of water from a reach is calculated as,

𝑑𝑄𝑜𝑢𝑡
𝑑𝑡 = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡

𝜏(1 − 𝑐) (3.1)

where 𝑄𝑖𝑛 is the total flow into the reach (m3 s-1), 𝑄𝑜𝑢𝑡 is the flow out of the reach (m3

s-1), 𝑡 is the time-step (h), 𝜏 is the residence time (h) derived by 𝑙/𝑏𝑄𝑜𝑢𝑡
𝑐, 𝑙 is the length of

the reach (m), 𝑏 and 𝑐 are reach-specific constants. Constants 𝑏 and 𝑐 are calibrated from
flow-velocity relationships (𝑣 = 𝑏𝑄𝑜𝑢𝑡

𝑐), which characterise the hydromorphology and
lock operations in the river (Whitehead and Hornberger, 1984; Waylett et al., 2013). The
flow routing model facilitates modelling of river residence time, which allows inclusion of
the influence of hydrological variation on DO dynamics as discussed in the next section.

3.2.1.2 Dissolved oxygen module

The processes controlling DO concentrations within a reach include (a) DO advection, (b)
production of oxygen from GPP, (c) loss of oxygen from ER, and (d) oxygen change from
reaeration

𝑑𝐶𝐷𝑂,𝑜
𝑑𝑡 = 1

𝜏 (𝐶𝐷𝑂,𝑖 − 𝐶𝐷𝑂,𝑜 + 𝑊) + 𝑃𝐺𝑃𝑃 − 𝑅𝐸𝑅 + 𝐹 (3.2)

where 𝐶𝐷𝑂,𝑖 is the input DO concentration (mg L-1), 𝐶𝐷𝑂,𝑜 is the output DO concentration
(mg L-1), W is the aeration at weirs (mgO2 L-1), 𝑃𝐺𝑃𝑃 is the gross primary production (mg
O2 L-1 h-1), 𝑅𝐸𝑅 is the ecosystem respiration (mg O2 L-1 h-1) and F is the aeration at the
air-water surface (mg O2 L-1 h-1).

3.2.1.3 Ecosystem Metabolism

Oxygen production
Rate of oxygen production (𝑃𝐺𝑃𝑃, mg O2 L-1 h-1) in the river (Eq. 3.3) is given by,

𝑃𝐺𝑃𝑃 = 𝑃𝑃 + 𝑃𝑁 (3.3)

where 𝑃𝑃 is the photosynthetic production (mg O2 L-1 h-1) and 𝑃𝑁 is the oxygen produced
during nitrate assimilation by phytoplankton (mg O2 L-1 h-1). Although the hourly model
supports modelling of macrophytes and benthic algae, this study only includes modelling
of phytoplankton biomass, since it is the dominant driver of metabolism in the study
stretch (Whitehead and Hornberger, 1984; Lázár et al., 2012). The hourly model not only
includes the influence of phytoplankton biomass onDOvariation, but also accounts for the
influence of light, temperature and nutrient availability on photosynthesis. These details
are explained in the description of the phytoplankton model in Chapter 2. Here, I only
summarise the equations directly relevant to the DO model.
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𝑃𝑃 is a function of photosynthetic rate and phytoplankton concentration in the water
column,

𝑃𝑃 = 𝑘𝑝ℎ𝑜(32
12Δ) (3.4)

𝑘𝑝ℎ𝑜 is the gross photosynthetic rate of autotrophs representing increase in Chl-a during
photosynthesis (mg L-1 h-1) and Δ is the ratio of carbon to Chl-a in autotrophs (50, Bowie
et al., 1985). The ratio of 32/12 represents the mass of oxygen produced in photosynthesis
or consumed in respiration per unit mass of carbon fixed.

𝑃𝑁 is estimated as,

𝑃𝑁 = 𝑘𝑝ℎ𝑜(1 − 𝑛𝑝𝑟𝑒𝑓 )𝛼 (3.5)

𝑛𝑝𝑟𝑒𝑓 is the autotroph preference for ammonia and α is the ratio of nitrogen to Chl-a in
autotrophs (10, Bowie et al., 1985).

𝑛𝑝𝑟𝑒𝑓 =
𝑘𝑝𝑟𝑒𝑓 𝐶𝑁𝐻4,𝑜

𝑘𝑝𝑟𝑒𝑓 𝐶𝑁𝐻4,𝑜 + (1 − 𝑘𝑝𝑟𝑒𝑓 )𝐶𝑁𝑂3,𝑜
(3.6)

𝐶𝑁𝐻4,𝑜 is the NH+
4 concentration (mg L-1), 𝐶𝑁𝑂3,𝑜 is the NO−

3 concentration (mg L-1) and
𝑘𝑝𝑟𝑒𝑓 is the preference factor for ammonia over nitrate (Table B.2).

Oxygen depletion
Rate of oxygen depletion (𝑅𝐸𝑅, mg O2 L-1 h-1) in the river includes four pathways

𝑅𝐸𝑅 = 𝑅𝐴 + 𝑅𝑛𝑖𝑡𝑟𝑖 + 𝑅𝑏𝑒𝑛 + 𝑅𝑤𝑐 (3.7)

𝑅𝐴 is the autotrophic respiration (mg O2 L-1 h-1), 𝑅𝑛𝑖𝑡𝑟𝑖 is the assimilation of oxygen in
the process of nitrification of ammonium to nitrate (mg O2 L-1 h-1), 𝑅𝑏𝑒𝑛 is the sediment
oxygen demand (benthic respiration) (mg O2 L-1 h-1) and 𝑅𝑤𝑐 is the BOD in the water
column (mg O2 L-1 h-1). 𝑅𝐴 is a function of phytoplankton respiration rate (𝑘𝑟𝑒𝑠, mg O2
L-1 h-1) and temperature. 𝑘𝑟𝑒𝑠 is modelled in the phytoplankton model as described in
Chapter 2.

𝑅𝐴 = 𝑘𝑟𝑒𝑠(32
12Δ) (3.8)

𝑅𝑛𝑖𝑡𝑟𝑖 involves conversion of ammonium to nitrate and requires oxygen for this
conversion,

𝑅𝑛𝑖𝑡𝑟𝑖 = 4.57𝑘𝑛𝑖𝑡𝐶𝑁𝐻4,𝑜 (
𝐶𝐷𝑂,𝑜

𝐶𝐷𝑂,𝑜 + 𝑆𝑛𝑖𝑡𝑟𝑖
) (3.9)

𝑘𝑛𝑖𝑡 is the nitrification rate (h-1) and 𝑆𝑛𝑖𝑡𝑟𝑖 is the DO half-saturation concentration for
nitrification (mg L-1). The coefficient, 4.57 is derived from the stoichiometry of the
reactions and represents the oxygen required to convert ammonia to nitrate.
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𝑅𝑏𝑒𝑛 represents the transfer of oxygen between the overlying water and the sediments
(Cox, 2003b). The benthic respiration rate (𝑘𝑏𝑒𝑛, h-1) is simulated as a function of stream
depth and temperature, where the stream depth and water column oxygen concentration
represents the availability of oxygen to the bed.

𝑅𝑏𝑒𝑛 = 𝑘𝑏𝑒𝑛𝐶𝐷𝑂,𝑜 (3.10)

𝑘𝑏𝑒𝑛 = 𝑘𝑏𝑒𝑛20
𝑧 𝜃𝑇−𝑇𝑟𝑒𝑓 (3.11)

𝑘𝑏𝑒𝑛20 is a unitless coefficient provided by the user during the calibration, 𝑧 is the mean
water depth of the reach (m), 𝑇 is the water temperature (°C), 𝑇𝑟𝑒𝑓 is the reference
temperature (20°C) and 𝜃 is a temperature correction factor (1.08).

𝑅𝑤𝑐 represents carbonaceous deoxygenation where oxygen in the water column is
consumed by heterotrophic bacteria.

𝑅𝑤𝑐 = 𝑘𝑏𝑜𝑑𝐶𝐵𝑂𝐷,𝑜 (
𝐶𝐷𝑂,𝑜

𝐶𝐷𝑂,𝑜 + 𝑆𝑏𝑜𝑑
) (3.12)

𝑘𝑏𝑜𝑑 is the rate of loss of DO as BOD decays (h-1) and 𝑆𝑏𝑜𝑑 is the half-saturation
concentration for the use of DO to satisfy BOD (mg L-1). Note that sedimentation and
phytoplankton death also influence BOD as described in Appendix A.

Process rate coefficients for nitrification and BOD in the model are temperature-
dependent,

𝑘𝑇 = 𝑘𝑇𝑟𝑒𝑓 𝜃(𝑇−𝑇𝑟𝑒𝑓 ) (3.13)

𝑘𝑇 is the process rate at 𝑇 °C (h-1) and 𝑘𝑇𝑟𝑒𝑓 is the process rate (h-1) at a reference
temperature (20°C).

Reaeration
Reaeration estimation (𝐾) in the model accounts for reaeration at the water surface and

at weirs. Reaeration at the water surface represents the rate of change in DO concentration
(𝐹, mg O2 L-1 h-1) in the water column via the exchange at the air-water interface. 𝐹 is
represented by a transfer coefficient (𝑘𝑟𝑒𝑎, h-1, see Appendix A) and a DO deficit term,
which is the difference between the saturated DO concentration (𝑂𝑠𝑎𝑡, mg L-1) and the
actual DO concentration (𝐶𝐷𝑂,𝑜, mg L-1) in the water column,

𝐹 = 𝑘𝑟𝑒𝑎(𝑂𝑠𝑎𝑡 − 𝐶𝐷𝑂,𝑜) (3.14)

Weirs in the river create a head loss, which can aerate or deaerate water depending
upon the upstream DO concentrations, creating an instantaneous change in the DO
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concentrations. Hence, it is important to consider weirs, especially in a heavily regulated
river like the Thames. The aeration effect of weirs (𝑊, mg L-1) is calculated as,

𝑊 = 𝑂𝑠𝑎𝑡 − [
𝑂𝑠𝑎𝑡 − 𝐶𝐷𝑂,𝑜

𝑅𝑂𝐷𝑅
] (3.15)

𝑅𝑂𝐷𝑅 is the oxygen deficit ratio (Appendix A).

3.2.2 Empirical analysis

I performed site-wise (Sonning and Runnymede) GLS regression to examine the
sensitivity of GPP and ER to observations of multiple physicochemical determinands.
The observations of physicochemical determinands were available on a weekly basis
and comprised flow, PAR, water temperature, dissolved inorganic nitrogen (DIN),
SRP, dissolved organic carbon (DOC) and suspended sediment (SS) concentration.
Temperature observations were transformed to 1/(𝑘𝑏𝑇) as per the Metabolic Theory of
Ecology, where 𝑇 is the temperature in Kelvin and 𝑘𝑏 is the Boltzmann constant (8.62
×10-5 eV K-1). GLS was used to account for the residual autocorrelation using the nlme
package (Pinheiro et al., 2007). Selection of relevant predictors for GLS models was
carried out following Feld et al. (2016). All predictors were log-transformed followed by
variable centering (mean = 0) and standardisation (standard deviation = 1) to obtain
standardised effect sizes. Collinearity between the predictors was resolved based on a
variance inflation factor. A step-wise removal of collinear variables (with a threshold of
variance inflation factor > 3, Zuur et al., 2010) was performed with the usdm R package
(Naimi, 2015). In spite of the collinearity issue, I kept flow in the list of predictors because
of its biological relevance.

I performed an exploratory analysis using the random forest (Breiman, 2001) machine
learning technique (randomForestSRC package, Ishwaran and Kogalur, 2017) to derive
the hierarchy of the most influential stressors and interactions that explain GPP and ER
dynamics. Random forest analysis aggregates predictions made by multiple decision
trees that are trained on bootstrapped data subsets and tested against the remaining
observations (Feld et al., 2016). Important stressors and interactions derived fromvariance
inflation factor and random forest analyses were included in the GLS models for the
sensitivity analysis. I also added seasonality effect in the GLS models using sine and
cosine functions to the week of the year (j), as 𝑠𝑖𝑛(2𝜋𝑗/52) and 𝑐𝑜𝑠(2𝜋𝑗/52) (Watson et al.,
2001). Based on Akaike (1973) information criterion, I tested three types of GLS models
by including (1) only seasonality predictors, (2) only environmental predictors, and
(3) seasonality plus environmental predictors. The best predictors and autocorrelation
structurewere selected by comparingAkaike information criterion values of all participant
models. I selected the final model using a multi-model inference procedure (Grueber
et al., 2011). This process includes supplying a global model with the best predictors
and autocorrelation structure, and running all possible combinations of models using the
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dredge() function in the MuMIn package (Barton, 2016). The best approximating model
with the highest Akaike weight was chosen as the final model.

I also used river water fluorescence observations (collected at weekly resolution from
January to July in 2013 and less frequently at other times during 2013-2014 at Sonning and
Runnymede sites: for details see Old et al., 2019) to explore whether ER prediction could
be improved by adding water fluorescence information in the GLS models. Fluorescence
signals contain information about organic matter composition. Specifically, tryptophan-
like fluorescence represents degradable organic matter from farm wastes and sewage
discharges and hence, can be related to river BOD (here, 𝑅𝑤𝑐) (Hudson et al., 2008).
Therefore, my goal was to check if the modelled 𝑅𝑤𝑐 could be explained in terms of
tryptophan-like fluorescence.

3.3 R E SULT S

3.3.1 Model performance

The model satisfactorily reproduced flow, physicochemical water quality and biomass
variation along the river stretch (Table 2.2, Figure 2.4,2.5) (details in Chapter 2, Pathak
et al., 2021). High diel fluctuations in DO coincided with high phytoplankton blooms
and low flows (Figure 2.4). DO levels were slightly over-estimated in spring and under-
estimated during the rest of year. Seasonality and timings of high diel fluctuations were
well-captured by the model with Nash and Sutcliffe Efficiency > 0.47 and percentage error
in mean up to 11% (Table B.4). Sonning showed overall over-estimation (up to 14%) of
DO concentrations as opposed to Taplow and Windsor, which showed slightly under-
estimated (up to 8%) DO concentrations (Table B.4). Overall, the model satisfactorily
captured the seasonality of DO concentrations along the river stretch.

3.3.2 Spatio-temporal variation in ecosystem metabolism

GPP followed phytoplankton seasonality showing maximum productivity during the
biomass growing season and lowproductivity during the rest of the year (Figure 3.2). Peak
GPP was higher in 2013 (up to 21 mg O2 L-1 d-1) compared to 2014 (> 10 mg O2 L-1 d-1)
due to relative inter-annual magnitudes of phytoplankton blooms (Figure 2.4). Increase in
nutrient concentrations did not result in increase in GPP. In contrast, primary production
during the growing season reduced nutrient concentrations through uptake (Figure C.10).
During the growing season, ER was dominated by autotrophic respiration and more or
less mirrored the GPP trend, although with a lesser magnitude (< 10 mg O2 L-1 d-1). In
comparison to Runnymede (downstream end), Sonning (upstream site) was characterised
by higher nitrification loss throughout the year and higher 𝑅𝐴 during the growing season,
resulting in generally higher ER upstream.
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Figure 3.2: River Thames catchment and time-series ofmodelled gross primary production
(GPP), ecosystem respiration (ER), and reaeration (K) aggregated at daily scale at
Sonning, Taplow, Windsor, and Runnymede sites during 2013–2014. The catchment map
at the top left corner is adapted from Bowes et al. (2016)

Values of 𝑘𝑟𝑒𝑎 varied from 0.2-1.1 d-1 to 0.3-2.6 d-1 at the upstream (Sonning) and
downstream (Runnymede) site, respectively. Higher 𝑘𝑟𝑒𝑎 values at the downstream site
were due to shallower depths (mean depth = 1.7 m) and faster velocities (mean velocity
= 0.73 m s-1) compared to the upstream site, which showed mean depth and velocity
of 2.3 m and 0.49 m s-1 as calculated in the model. Total estimated reaeration ranged
from -1.6 to +1.1 g O2 L-1 d-1 and -4.6 to +2.2 g O2 L-1 d-1 at Sonning and Runnymede,
respectively. Runnymede showed higher reaeration during the biomass growing season
when DO saturation went up to 130-150% (Figure C.5). On average over a day during the
growing season, 𝑂𝑠𝑎𝑡 at Sonning and Runnymede varied by 14% and 18%, respectively.
During the two years modelling period, DO at Sonning was super-saturated for around
40% of the time (more frequently than at Runnymede, 20%), as reflected by the negative
reaeration at Sonning during most of the modelling period (Figure 3.2).

The lower River Thames, particularly in the downstream reaches, was dominantly
autotrophic during April-June with GPP/ER > 1 and mainly heterotrophic (GPP/ER <
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Figure 3.3: Box plot of monthly variation in GPP/ER ratio (a) and time-series of average
hourly variation in GPP (b) and ER (c) at all calibration sites during 2013–2014. ER,
ecosystem respiration; GPP, gross primary production.

1) during the rest of the year (Figure 3.3). GPP increased up to four times as high as ER
during April-June due to large algal blooms. Annual net ecosystem productivity (= GPP
– ER) estimates were -192 mg O2 L-1 year-1 and 87 mg O2 L-1 year-1, and annual GPP/ER
ratios were 0.8 and 1.1 at Sonning and Runnymede, respectively. Mid-reaches showed both
overall autotrophy at Taplow (net ecosystem productivity = 102 mg O2 L-1 year-1, GPP/ER
= 1.2) and heterotrophy (net ecosystem productivity = -14 mg O2 L-1 year-1, GPP/ER = 1)
at Windsor. Excluding the upstream reaches, annual GPP/ER ratio along the channel was
close to 1 in the lower Thames.

Downstream reaches showed a lag of up to 4 h for GPP to peak from the upstream
site, Sonning. Hourly GPP increased downstream, but ER variation showed no such
trend. Average annual hourly ER increased in response to temperature increase during
the day and subsided during the night with temperature decrease, showing a hysteresis
effect (Figure C.6). Average annual hourly GPP also showed a hysteresis effect with
PAR (Figure C.6). Mean daily GPP and ER at upstream (Sonning) and downstream
(Runnymede) sites during the two-year period varied from 1.7±3.2 to 2.0±3.8 mg O2 L-1

d-1, and 2.2±1.2 to 1.5±1.2 mg O2 L-1 d-1, respectively.
Relative contribution of autotrophic primary production and respiration was maximum

during April-June (Figure 3.4). The rest of the year was characterised by low oxygen
production and 𝑅𝐴 throughout the river stretch. These months, however, showed another
oxygen source through diffusion from air at all sites except Sonning, where diffusion
was mainly into the atmosphere (DO sink). During autumn and winter at Windsor and
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Figure 3.4: Average monthly metabolic source and sink pathways at calibration sites (a)
Sonning, (b) Taplow, (c) Windsor, and (d) Runnymede during 2013–2014. K, reaeration;
PN, oxygen produced during nitrate assimilation by phytoplankton; PP, autotrophic
production; RA, autotrophic respiration; Rben, benthic oxygen demand; Rwc, DO loss due
to BOD decay; Rnitri, DO loss from nitrification.

Runnymede, oxygen addition from reaeration exceeded oxygen production fromGPP. 𝑅𝑤𝑐
and 𝑅𝑛𝑖𝑡𝑟𝑖 at Sonning (total 79% of ER) and Taplow (total 70% of ER) mainly governed
ER. At Windsor and Runnymede, ER also included significant contribution from benthic
communities (17-19%) in addition to the aforementioned processes (60%).

3.3.3 Sensitivity of river metabolism to multiple stressors

The variables retained in the best approximating GLSmodels of GPP included PAR, 1/𝑘𝑏𝑇,
SRP, flow and seasonality components. For ER, the best approximating GLS models
included SRP, flow, SS and seasonality components. Inclusion of seasonality components
(sine/cosine terms) improved GLSmodel performance in all cases. For GPP at Sonning for
example, a model with seasonality plus physicochemical predictors (Akaike information
criterion = 75.58) performed better than the model with either only seasonality predictors
(Akaike information criterion = 136.77) or only physicochemical predictors (Akaike
information criterion = 82.61). Final GLS models at both sites showed a good agreement
between observed and fitted values with r > 0.8 (Table 3.1). However, high values were
under-estimated by these models, especially for ER (Figure 3.5). Under-estimation of ER,
when investigated using a comparison of 𝑅𝑤𝑐 and tryptophan-like fluorescence component
(Figure C.12), revealed a positive relationship at Sonning (r= 0.45, p< 0.05). Runnymede,
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Figure 3.5: Fitted vs. observed values of standardised gross primary production (GPP)
and ecosystem respiration (ER) in generalised least squares models at Sonning (a, b) and
Runnymede (c, d) sites. The black line in the plots is the y = x line.

however, did not show a significant relationship between 𝑅𝑤𝑐 and the tryptophan-like
fluorescence component.

Significant interaction effects between 1/𝑘𝑏𝑇 × SRP and PAR × 1/𝑘𝑏𝑇 were found at
Sonning for GPP variation (Table 3.1). The interaction between 1/𝑘𝑏𝑇 and SRP at Sonning
(Figure 3.6a) is an opposing interaction i.e. the effect of one variable is reversed above a
certain limit of another variable. Another significant interaction between PAR and 1/𝑘𝑏𝑇
is observed to be antagonistic i.e. one variable attenuates the effect of the other variable
(Figure 3.6b). Similar to Sonning, Runnymede also showed an opposing interaction
between 1/𝑘𝑏𝑇 and SRP (Figure 3.6c). The final GLS models of ER did not include any
interaction effects.

3.4 D I S CU S S ION

3.4.1 Estimating metabolism with process-based modelling

The model presented here has several advantages over conventional open-channel
methods. The hourly model supports network-scale prediction of metabolism rates
unlike open-channel methods that are generally applied at a river-reach scale. Network-
scale modelling allows us to translate the influence of what is happening upstream
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Table 3.1: Summaries for best approximating generalised least squares models for gross
primary production (GPP) and ecosystem respiration (ER) with autoregressive structure
of order 1 including standardised effect size (SES), standard error of the estimate (SE),
t-test value of the coefficient and its associated p value and the Pearson’s product moment
correlation coefficient (r) for the model fits.
Variable SES SE t value p r
GPP-Sonning
(intercept) 0.132 0.118 1.124 0.264 0.89
PAR 0.369 0.052 7.088 0.000
1/𝑘𝑏𝑇 -0.223 0.140 -1.599 0.114
SRP -0.048 0.074 -0.647 0.520
Flow 0.370 0.107 3.445 0.001
sine component -0.063 0.173 -0.363 0.718
cosine component -0.540 0.159 -3.395 0.001
1/𝑘𝑏𝑇 × SRP 0.273 0.093 2.950 0.004
PAR × 1/𝑘𝑏𝑇 0.071 0.044 1.615 0.110
GPP-Runnymede
(intercept) 0.078 0.171 0.453 0.651 0.81
PAR 0.416 0.058 7.175 0.000
1/𝑘𝑏𝑇 0.136 0.180 0.752 0.454
SRP -0.102 0.085 -1.195 0.235
Flow 0.497 0.126 3.950 0.000
sine component -0.304 0.230 -1.321 0.190
cosine component -0.667 0.209 -3.194 0.002
1/𝑘𝑏𝑇 × SRP 0.259 0.107 2.428 0.017
ER-Sonning
(intercept) -0.005 0.109 -0.047 0.963 0.87
cosine component -0.640 0.130 -4.932 0.000
sine component 0.067 0.172 0.389 0.698
SRP -0.385 0.069 -5.540 0.000
SS 0.147 0.068 2.163 0.033
Flow -0.255 0.163 -1.570 0.120
ER-Runnymede
(intercept) -0.003 0.107 -0.032 0.975 0.88
SRP -0.544 0.060 -9.023 0.000
SS 0.127 0.067 1.902 0.061
Flow 0.312 0.152 2.052 0.043
sine component -0.176 0.160 -1.104 0.273
cosine component -0.612 0.120 -5.092 0.000
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(b)(a) (c)
SRP SRP1/kbT

1/kbT PAR 1/kbT

Figure 3.6: Pairwise interactions in generalised least squares models for gross primary
production (GPP) at (a) Sonning (1/𝑘𝑏𝑇, SRP), (b) Sonning (PAR, 1/𝑘𝑏𝑇), and (c)
Runnymede (1/𝑘𝑏𝑇, SRP). Lines represent fitted response to one variable while keeping
the second variable values fixed at minimum, maximum, 10th, 50th, and 90th percentiles.
1/𝑘𝑏𝑇, transformed water temperature; PAR, photosynthetically active radiation; SRP,
inorganic phosphorus.

in the river (e.g. flow management, sewage discharges, etc.) to the downstream DO
dynamics. The model presented here is also particularly advantageous over open-channel
methods when DO observations are not continuously available. In such scenarios, the
estimation of metabolism rates outside of the available data periods relies on further
assumptions (see Bernhardt et al., 2018). The hourly model overcomes this challenge as
it simulates DO using observations of environmental variables and their process-linkages
with DO dynamics, thus eliminating the dependence of metabolism estimation strictly
on continuous DO measurements. The model can derive the relative contribution of
autotrophic and heterotrophic respiration (here 𝑅𝐴/𝑃𝐺𝑃𝑃 = 0.32 and 0.35 for Sonning and
Runnymede, respectively). Estimates of 𝑅𝐴/𝑃𝐺𝑃𝑃 are useful to estimate the autotrophic
base of food webs (Hall Jr and Beaulieu, 2013) and to calculate carbon spiralling in rivers
(Newbold et al., 1982). Furthermore, the model can be adapted to study the impact of
land use changes by translating diffuse nutrient fluxes into tributary inputs. The model
is also useful to predict changes in metabolic regime of rivers under different climate and
management scenarios (Hutchins et al., 2018).

In spite of the satisfactory reproduction of river water quality dynamics, process-
based models invariably include some uncertainties linked to input data quality, process
simplifications in the model structure and/or from process knowledge gaps (Hrachowitz
et al., 2014). For example, the model in this study assumes that Stephanodiscus hantzschii
diatoms dominate phytoplankton biomass in the lower Thames throughout the year
as found by Read et al. (2014). In reality, multiple algal groups may thrive together
and result in within-year compositional change. However, testing of the model using
parameters reflecting different phytoplankton groups has reinforced the assumption of
diatom dominance (Pathak et al., 2021).

The model also takes a simple approach to calculate reaeration flux. The model uses
a previously developed empirical equation (Owens, 1964) to calculate the reaeration
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coefficient. Out of several equations reported in the literature, it is recommended (Young
et al., 2004; Aristegi et al., 2009) to use the Owens (1964) equation for rivers with low
velocities such as the River Thames. Additionally, by comparing the commonly used
empirical equations (O’Connor and Dobbins, 1958; Churchill et al., 1962; Owens, 1964)
in water quality models (Chapra, 2008), I found that the choice of equation did not affect
metabolism rates largely because the reaeration coefficients were relatively low (average
𝑘𝑟𝑒𝑎 = 0.5-1.3 d-1) in the River Thames (Figure C.8). These approaches may be unreliable
to use with open-channel methods as (a) it is possible to get a good model fit to the
observations because of equifinality in themodel and (b) the errors in reaeration estimates
will directly translate to GPP and ER estimates (Holtgrieve et al., 2010). However, GPP
and ER in the model are simulated from biomass variation and underlying biochemical
processes. Moreover, I found that metabolism rates were insensitive to the reaeration
values derived for the flow regime of the River Thames (Figure C.8), thus reducing the
uncertainties related to reaeration fluxes.

Using the process-based model, I made a detailed quantification of metabolism fluxes,
and although the application presented here is data intensive, it can be implemented
with lower resolution inputs as shown in Chapter 2 (Pathak et al., 2021). The model
application here uses hourly scale inputs of light, water temperature, DO and Chl-a, and
daily scale input of flow. However, model sensitivity analysis in Chapter 2 suggests that
the model outputs are not sensitive to the time-scale of water quality inputs, but are highly
sensitive to that of radiation inputs. If the model is driven by weekly DO, temperature
and Chl-a observations, instead of hourly as presented, there is little loss of performance
at the downstream sites (e.g. at Windsor, NSE values for DO and Chl-a change from
0.59 to 0.57 and from 0.80 to 0.73, respectively). The outcome from the model sensitivity
analysis is reassuring for model applications elsewhere since water quality determinands
are irregularly monitored at high-resolution in rivers. Unlike water quality, flow is often
routinely (e.g. daily) monitored in rivers, and high-resolution (e.g. hourly) radiation
information is easier to obtain either directly or indirectly based on catchment location
and sunshine hours (Pathak et al., 2021).

It is still difficult to gather process-rate information in rivers, which is also the case in the
lower Thames. For this study, BOD information was only available at a monthly scale and
data on benthic oxygen demand were absent. Despite scarce data, the estimates of GPP
and ER rates in this study agree well with the findings of Hutchins et al. (2020), who used
the Delta method (Chapra and Di Toro, 1991) to estimate metabolism rates in the lower
Thames. For prediction of the specificmetabolic pathways, we can havemore confidence at
a larger temporal scale due to the lack of high-resolution process-rate information. Though
these limitations may introduce uncertainties during model calibration, other extensive
applications of the QUESTOR model in the River Thames (Waylett et al., 2013; Hutchins
et al., 2018, 2020) provide confidence in the parameter calibration in this study as the
calibrated values (Chapter 2, Pathak et al., 2021) lie within similar ranges.
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3.4.2 Multiple stressor controls on metabolism dynamics

Faster decline of GPP than ER (Figure 3.3) indicates a decrease in primary productivity
compared to biological activity and a shift in river energetics from autotrophic to
heterotrophic. The shift in river energetics implies reliance of the metabolic regime on
stored algae from summer and/or allochthonous carbon sources during autumn and
winter. I find that PAR, water temperature, SRP and flow variation mainly control the
GPP dynamics in the lower Thames (Table 3.1). Nitrate concentrations in the river are
present in excess throughout the year and do not limit primary production (Chapter 2).
Phosphorus concentrations, on the other hand, decrease with high biomass growth
and become limiting in summer (Pathak et al., 2021). Light availability, as commonly
observed (Bott et al., 1985; Mulholland et al., 2001), increases the GPP with increase in
photosynthetic production. High GPP occurred at mid-temperatures (Figure 3.6), which
is similar to the findings of Bowes et al. (2016) and Pathak et al. (2021), who reported
optimum temperature ranges (~11-18°C) for high phytoplankton growth in the lower River
Thames. An opposing interaction between 1/𝑘𝑏𝑇 and SRP (Figure 3.6) shows that GPP
increaseswithwater temperature, but only at low SRP levels. SRP depletionwith increased
GPP (Figure C.10) indicates biomass uptake (Bowes et al., 2016). Hence, I believe that
the opposing interaction between 1/𝑘𝑏𝑇 and SRP is more of a causal effect that occurs
during the growing season when phytoplankton utilises SRP and peaks with increase in
temperature.

The GLS model derived a positive slope to represent the overall response of GPP to
flow variation. However, a closer look at the partial dependence plot of the GPP-flow
relationship (Figure C.10) showed that GPP increased only up to a certain flow threshold
and began decreasing with further increase in flow (Pathak et al., 2021). Maximum GPP
occurred during mid-spring to mid-summer due to the presence of large phytoplankton
blooms during periods of low flows (Bowes et al., 2016; Pathak et al., 2021). The rest of
the year represented extremely low GPP due to low phytoplankton biomass (Figure 2.4,
Figure 3.2). Such a seasonal variation in GPP is commonly observed in temperate rivers,
where GPP peaks during periods of high light availability and low flows (Roberts et al.,
2007) and significantly reduces during high flows that flush away primary producers
(Wang et al., 2019).

High ER occurred duringmid-spring tomid-summer in response to high GPP, reflecting
high autotrophic respiration of phytoplankton biomass (Figure 3.2). A strong coupling
between GPP and ER is common in rivers as a major part of the organic matter produced
during photosynthesis is immediately respired by autotrophs and their closely associated
heterotrophs (Hall Jr and Beaulieu, 2013). During the biomass growing season, Sonning
represented higher overall ER compared to Runnymede because of added contributions
fromnitrification andBODdecayprocesses. Lower velocity at Sonningmayhavepromoted
higher respiration from organisms suspended in the water column with more residence
time to utilise the DO in the reach. Through empirical modelling, I derived SRP, flow and
SS to be the most important controls of ER in the river (Table 3.1). Addition of nutrients
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in the river did not result in increased biomass growth. On the contrary, I observed high
biomass growth coinciding with low SRP levels, suggesting algal uptake. Higher biomass
should have resulted in increased decomposer activity (Pascoal et al., 2003) and high
resource availability for feeders (Niyogi et al., 2003), causing higher microbial respiration
in addition to the high 𝑅𝐴 and both contributing to increase in ER. Thus, the co-occurrence
of high ER (fromalgal growth) and SRPdepletionmayhave put SRP in the list of important
predictors for ER variation.

On the other hand, high ER in response to high suspended sediments probably indicates
organic matter delivery attached to sediments (Roberts et al., 2007; Aspray et al., 2017).
Runnymede showed high ER in response to increase in flow, which can again be related to
flushing of upstream biomass and organic matter supply along with sediment delivery.
However, Sonning showed a negative correlation between flow and ER. Similar to the
relationship between flow and GPP, the partial dependence plot (Figure C.11) of ER in
response to flowat Sonning showed high ER atmid-flows that decreased at very high flows,
as opposed to Runnymede that showed constant ER after a certain flow threshold was
reached. GPP at Runnymede still decreased after a certain flow thresholdwas reached. The
relationship between flow-ER at Runnymede indicates that in-spite of the biomass flushing,
there is still an allochthonous organic matter supply that supports high respiration.

3.4.3 Comparing modelling approaches

In spite of the overall good model performance (r > 0.8), peak metabolism rates were
under-estimated in the GLS models. Some information about rapidly changing dynamics
could have been lost in the empirical modelling as this approach uses weekly time-
scale information about the environmental stressors to predict GPP and ER. The under-
estimation of GPP can be attributed to the under-estimation of Chl-a concentrations in
the process-based model (Table 2.2). ER under-estimation suggests that some important
metabolism controls might be missing in the empirical analysis. For example, only a
limited number of physicochemical controls were directly included. Land use pressures
can also be important as these can contribute large amounts of nutrients and fine particles
in the river, and influence primary producers and heterotrophs (Reis Oliveira et al., 2019).
However, I have accounted for these influences through proxy variables such as suspended
sediment and nutrient concentrations. Although I included flow as a control variable,
specific matrices of hydrology (e.g. low-flow events and duration) may improve the
model performance. Grazers may also influence ER through phytoplankton predation
(Welker and Walz, 1998) and oxygen consumption through respiration (Garnier et al.,
1999) with strong seasonal patterns (Schöl et al., 2002). Hence, further research on these
controls will be useful to improve model predictions and explain the role of seasonality
components in the GLSmodels. The process-basedmodel, on the other hand, includes the
influences of these controls directly (e.g. simulation of hydrology, nutrients and sediment
concentrations) or indirectly (e.g. grazing through calibration of death constant).
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Additionally, information about organic matter composition may help explain ER
under-estimation and improve model performance. 𝑅𝑤𝑐 at Sonning increased with
the tryptophan-like fluorescence component (Figure C.12), which is expected because
it represents the presence of organic matter that can be easily degraded by microbes,
resulting in high 𝑅𝑤𝑐. Runnymede, on the other hand, did not show a significant
relationship, probably because of the limited ability of the process-based model to
accurately represent BOD fluxes. As discussed earlier, there is a paucity of BOD data,
making it difficult to estimate the BOD decay rate parameter precisely in the model. The
process-based model cannot incorporate any additional site-specific sources/sinks of BOD
(e.g. internal BOD sources from higher trophic levels). Additionally, the poorer fits
and the under-estimation of Chl-a concentrations at Runnymede (Table 2.2) suggest that
𝑅𝑤𝑐 from phytoplankton death is not represented accurately at this site, which may have
resulted in a weak relationship between 𝑅𝑤𝑐 and organic matter availability. Nevertheless,
a strong relationship at Sonning still suggests that empirical model performance at
the upstream end can be improved with detailed information about organic matter
composition as it can be directly linked to BOD (Hudson et al., 2008). Use of water
fluorescence indicators (such as full spectra fluorescence excitation–emission matrix or
sensors designed to identify tryptophan at specific wavelengths) as an alternative in the
absence of BOD information in the river is an important area of future research as it can
potentially improve ER prediction in both process-based and empirical approaches.

Although the empirical approach under-estimates the peak values, it is mostly able to
mimic the process-based predictions. Combining a physics-based approachwith empirical
analysis provides powerful possibilities. For example, the empirical models derived
in this study can be used for rapid river health assessments across large areas when
setting up a complex, process-based model is not feasible. Empirical approaches also
provide information about important environmental stressors and their interactions for
GPP and ER variation. These established relationships between metabolism rates and
environmental stressors can be useful to infer the degradation or recovery of river health
following management actions (Jankowski et al., 2021), although the variable importance
and effect sizes of environmental stressors should be considered (Feld et al., 2016). A
process-based approach, on the other hand, presents a readily available tool to study
river ecosystem functioning in response to changing multiple environmental stressors
(Heathwaite, 2010). The process-based model in this study can be improved further
to create a management tool by linking it with multiple stressor effects such as flow,
temperature, nutrients and sediment modifications derived from the empirical approach.
Overall, the comparison of empirical and process-based approach provides useful insights
into modelling limitations and directions for future work.

3.5 SUMMARY

An approach to estimate ecosystem metabolism rates (GPP, ER) in lowland rivers with
a network-scale, process-based water quality model overcomes the current challenges
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in metabolism modelling by accounting for oxygen advection under varying flows and
oxygen transformations due to biogeochemical processes. Only a few river modelling
studies (Payn et al., 2017; Segatto et al., 2020) have attempted to overcome these challenges,
but at a much smaller spatial scale (e.g. reach level). The model can easily be extended
to an entire catchment if more observations in the catchment are available (Hutchins et
al., 2020). The approach presented here uses a previously tested high-resolution river
model for water quality prediction in the lower Thames (Pathak et al., 2021). Instead of
continuous DO measurements, the process-based approach relies on biomass variation,
and the physics of the underlying hydrological- and biochemical-process dynamics to
estimate GPP and ER. Therefore, the model has a potential to predict metabolism rates
(1) for periods when gaps in continuous DO observations are present, (2) at sites within
the modelled river network where continuous monitoring is not carried out and (3) under
future environmental and anthropogenic changes. The model presented here is a step
forward in high-resolution modelling of long-term, network-scale predictions of river
ecosystem functioning, which in turn, can support ecosystem health assessments using
functional indicators (Von Schiller et al., 2017).
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4
PREDICTING ECOSYSTEM METABOLISM UNDER FUTURE
CLIMATE AND CATCHMENT MANAGEMENT CHANGES IN
LOWLAND RIVERS

4.1 IN TRODUCT ION

Lowland river systems around the world are stressed by a combination of pressures such
as changing climate, increasing water demand due to population growth and land use
intensification, which has resulted in degradation of river ecosystem health (Schinegger
et al., 2012). Traditionally, studies on river health assessments have focused on evaluating
river ecosystem response to a single stressor such as the effect of changes in flow from dam
operations or the effect of nutrient pollution from land use practices. However, with the
traditionally dominant stressors being regulated and with other stressors emerging, river
ecosystems respond in complex ways to the combination of multiple stressors (Birk et al.,
2020). Understanding how these stressors interact to influence river ecosystem health is
vital to inform river management and restoration strategies (Lemm et al., 2021). However,
the interactions between these stressors are often non-linear making it difficult to predict
their net effects on river ecosystem health (Jackson et al., 2016).

Studies of river health assessments increasingly include functional metrics in addition
to structural metrics of aquatic ecosystem health (e.g. Feio et al., 2010; Estevez et
al., 2017), emphasising the importance of combining both types of metrics for holistic
river health assessments. Although structural indicators (e.g. water quality status,
channel morphology, biomonitoring indices) provide insight into ecosystem status at
the time of measurement, they fail to capture system dynamics (Palmer and Febria,
2012). For example, dissolved oxygen (DO; structural indicator) is widely used to assess
river ecosystem health, which is usually established through minimum DO thresholds.
Although changes in external controls are reflected in DO concentrations, it is difficult
to disentangle their relative influence. On the other hand, a functional indicator such
as ecosystem metabolism segregates the influence of physical and biological controls and
directly reflects river ecosystem response to change (Jankowski et al., 2021).

Ecosystem metabolism is characterised by gross primary production (GPP) and
ecosystem respiration (ER), both of which contribute to carbon cycling and energy
flow through food webs in rivers (Demars et al., 2015). GPP and ER are sensitive to
multiple environmental stressors, which may influence these metabolism rates either
independently or in concert with other stressors (Von Schiller et al., 2017; Pathak et al.,
2022). The key environmental controls of metabolism include light, water temperature,
hydrology, organic matter dynamics and nutrients (Jankowski et al., 2021). Furthermore,
anthropogenic pressures such as flow regulation (e.g. Aristi et al., 2014), sewage discharge
(e.g. Arroita et al., 2019) and land management (e.g. Fuß et al., 2017) also influence
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metabolism through changes in environmental controls. Several studies have observed
ecosystem metabolism to show early indication of ecosystem degradation or recovery in
response to stressors (e.g. Young et al., 2008; Arroita et al., 2019). Therefore, studying
metabolism response to changes in stressors is important for understanding how river
ecosystem health will respond to future changes in climate and catchment management
practices, and ultimately for guiding restoration and future management efforts.

Evaluation ofmetabolism response to a variety of stressors uncovers underlying controls
of metabolism (e.g. Beaulieu et al., 2013; Bernhardt et al., 2022). Traditionally, such
ecological assessments have relied on statistical methods, where metabolism is estimated
using long-term, continuous dissolved oxygen time-series and related to multiple
stressors empirically. While statistical tools provide useful insights into sensitivity of
metabolism to multiple stressors, extrapolation of the outcomes outside the period of
available observations can lead to errors. This can be overcome by mechanistically
linking metabolism rates to multiple environmental stressors (e.g. Segatto et al., 2020;
Pathak et al., 2022). In addition to understanding the underlying controls of metabolic
regimes in rivers, mechanistic modelling of metabolism and its environmental controls
is particularly advantageous to predict metabolism response to combined changes in
multiple environmental and anthropogenic pressures.

In this study, a mechanistic water quality model, hourly Quality Evaluation and
Simulation Tool for River-systems (QUESTOR) (Chapter 3, Pathak et al., 2021), was used
to predict ecosystem metabolism response to future climate and management changes in
the lower River Thames. Major lowland rivers, such as the Thames, are subjected to a wide
range of pressures including flow regulation, water abstractions, channel modifications
and pollution discharges from sewage and agricultural runoff (Hutchins et al., 2018) that
influence river health. The hourly QUESTOR model can account for these variety of
pressures by including their influence on changing environmental controls such as flow,
light, water temperature, nutrients, biomass and dissolved oxygen variation in the river.
Chapter 3 (Pathak et al., 2022) demonstrated the application of the hourly QUESTOR
model in the lowland River Thames for the prediction of ecosystemmetabolism alongwith
its environmental controls. Here, the model is used to evaluate ecosystem metabolism
response to changes in future climate and catchment management scenarios. Based on the
most widespread stressors that are known to affect rivers worldwide (Birk et al., 2020),
11 scenarios are selected in this study that test the influence of either a single stressor or
multiple stressors on river ecosystem metabolism.

4.2 METHODS

4.2.1 Model application and performance

The hourly QUESTOR model was used to predict water quality (Pathak et al., 2021) and
ecosystem metabolism (Pathak et al., 2022) in the lower Thames during 2013-2014. The
model was implemented along a 62 km stretch between Caversham and Runnymede.
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The entire river stretch was divided into 23 reaches based on the locations of gauging
stations, sewage treatmentworks and tributary confluences (see Table B.1 for river network
description). The outputs of the lower Thames model (Pathak et al., 2021, 2022) for years
2013-2014 were used to characterise the baseline water quality status. The model was
then used to study river response under future climate and management scenarios. In
this study, the results and discussion are focused on the outputs at the Runnymede site of
the modelled river network, as it integrates the river response of the entire study stretch.

Figure 4.1: Time-series of (a) chlorophyll-a (Chl-a), dissolved oxygen (DO)
concentrations, and (b) gross primary production (GPP), ecosystem respiration (ER) at
Runnymede in the Baseline scenario

During the baseline period, the lower River Thames ecosystem was influenced by
massive phytoplankton blooms frommid-spring to mid-summer (Figure 4.1a) when light,
flow and water temperature conditions were favourable. GPP showed a distinct seasonal
variation as is commonly observed in temperate rivers (Roberts et al., 2007). High GPP
occurred during periods of high light availability, favourable water temperatures (11-18°C)
and low flows (21-63 m3 s-1), and considerably decreased during high flows that flushed
away primary producers (Pathak et al., 2021). Due to algal uptake, high GPP coincided
with low nutrient concentrations. ER showed a strong coupling with GPP since a major
portion of organic matter produced during photosynthesis was immediately respired. ER
also increased in response to increase in flow and suspended sediment concentration
(Pathak et al., 2022), which probably resulted fromflushing of upstreambiomasswith flow
and organic matter delivery attached to sediments. Out of all oxygen sink pathways, 𝑅𝑛𝑖𝑡𝑟𝑖
contributed the maximum (34%) to ER followed by 𝑅𝐴 (24%), 𝑅𝑤𝑐 (23%) and 𝑅𝑏𝑒𝑛 (19%).
Overall, the river was primarily autotrophic (GPP > ER) during April-June and shifted
to heterotrophy (GPP < ER) during the rest of the months. Average annual GPP/ER was
found to be close to 1 throughout the lower River Thames.
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4.2.2 Implementation of scenarios

The goal of the study is to predict river ecosystem response under probable future
conditions (∼ year 2050). The future scenarios were based primarily on the changes in
five variables including flow, water temperature, urbanisation intensity, shading amount,
total phosphorus concentrations and heterotrophic respiration rate (Table 4.1), which are
known to influence ecosystemmetabolism in rivers (Bernhardt et al., 2018; Birk et al., 2020).
For example, in lowland rivers regulated by locks and weirs, increased residence time
can promote interactions between biomass and nutrients that may increase metabolism
(Mulholland et al., 2001). Similarly, metabolism responds to interactions betweenmultiple
stressors such as light and temperature (Huryn et al., 2014) or nutrient availability and
water abstractions (Pardo et al., 2022), where the combined effect of the stressors on
metabolism can be additive, synergistic, antagonistic or opposing in nature.

Future flows hydrology predictions (Prudhomme et al., 2012; Prudhomme et al., 2013)
were used to derive percentage changes in river flows in the lower Thames. Specifically,
predictions from their Climate and Land-use Scenario Simulation in Catchments
(CLASSIC)model run (Crooks andNaden, 2007) at Thames at Kingston site were selected
since itwas the closest suitable site in the Future flowsmodel runs, integrating hydrological
characteristics in the lower Thames catchment. Future Flows Hydrology contains an 11-
member ensemble of transient climate projections for Great Britain based on HadRM3-
PPE-UK (Hadley Centre Regional Climate Model), which was run under the SRES A1B
’medium emissions scenario’ (Special Report on Emissions Scenarios - a balance across
all sources) (Murphy et al., 2009). Average values of 11 model runs were used to derive
percentage change values corresponding to 5th, 25th, 50th, 75th and 95th percentile flows. A
cubic interpolation (interp1d function from Scipypackage v1.5.0, Virtanen et al., 2020)was
used to derive percentage changes in flows for the entire flow duration curve (Figure 4.2).
The resulting percentage changes in flows were applied to all input flow duration curves,
i.e. at Caversham (model start point) site and at the tributaries within the modelled river
network.

For the temperature (Temp) scenario, a constant +2°C change was applied to the water
temperature inputs at Caversham and incoming tributaries, based on the UK Climate
Projections 2009 (United Kingdom climate projections, UKCP09) scenario (Hutchins and
Hitt, 2019).

The urbanisation (Urb) scenario accounts for changes in water abstraction and effluent
release practices in the lower Thames. Based on the estimate of future population increase
in England (16%, ONS, 2015), a change factor of ×1.16was used to characterise futurewater
usage and effluent release in the catchment (Hutchins and Hitt, 2019).

The heterotrophic respiration (Hetresp) scenario was included to account for the effect
of short-term events such as storms/flooding on river respiration. Such events are
predicted to increase in future in terms of frequency and intensity (Sayers et al., 2015), and
have a potential to leave long-lasting impacts on river ecosystems. For example, Hutchins
et al. (2020) found 70% increase in heterotrophic respiration rates (includes 𝑅𝑏𝑒𝑛 and
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𝑅𝑤𝑐) during 2013-2014 after a summer storm in 2012 in the River Thames. They found
that high flows elevated organic carbon delivery in the river, which escalated microbial
decomposition of the organic matter and consequently, heterotrophic respiration rates.

To present a realistic future it was assumed that management actions will be directed
towards restoration of river ecosystem health, which in turn, will help alleviate
the negative impacts from worsening climate. To account for future management
practices (Management scenario), two scenarios were included, namely (1) riparian zone
management to increase vegetation cover (Shade scenario) and (2) reduction in total
phosphorus (TP) loading in the river to reduce nutrient pollution (TP scenario). The
Shade scenario reflects changes in riparian management strategies that will contribute to
increase in bankside vegetation and riparian shading. The effect of changes in riparian
shadingwas included through changes in incident radiation reaching thewater surface, i.e.
level of fractional light penetration under full leaf canopies as recommended by Waylett
et al. (2013). Here, it was assumed that the canopy shading amount will double compared
to the baseline condition (fractional light penetration level of 0.40 from 0.70, Hutchins
et al., 2018). The TP scenario represents changes in phosphorus loading in the river from
point and diffuse sources. A change factor of ×0.6 (Hutchins and Hitt, 2019) was applied
to incoming TP concentrations (e.g. effluents and tributaries), reflecting overall reduction
in the future TP load in the river.

A total of 11 scenarioswere implemented in addition to the Baseline scenario as described
in Table 4.1 that included either a single stressor or a combination ofmultiple stressors. For
interpretations, the scenarios were divided in mainly three groups, (1) Management, (2)
ClimatePop and (3) Allscen. TheManagement scenario combined Shade and TP scenarios
to represent future water quality management practices. The ClimatePop scenario reflects
future changes in environmental variables and includes Flow, Temp, Urbanisation and
Hetresp scenarios. Finally, theAllscen scenario combines all variables to predict the overall
river response to future changes. The next section describes the river ecosystem response
to the scenarios mentioned here. The model outputs are reported in terms of a decrease
or increase in monthly median values of response variables unless explicitly mentioned
otherwise.
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Figure 4.2: (a) Percentage changes in flows in the Future flows model run in the lower
Thames and (b) flow duration curve at Caversham
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4.3 R E SULT S

4.3.1 Impact of future climate and population growth on ecosystem metabolism

Future Flows projections in the river suggest overall reduction (on average 8%) in flows
throughout the year (Figure 4.2). Low flows in the lower River Thames are projected to
reduce further (up to 13%) with changing climate and population growth, which puts
the river at an increased risk of prolonged low flow periods (July-October) in future.
Metabolism rates, however, are not drastically altered with predicted reduction in the
future flows either due to climate change or population growth. Urbanisation lowers
GPP during July-September and increases ER throughout the year (Figure 4.3), albeit
these changes are < 10%. Similarly, flow reduction from climate change does not have
a significant influence on GPP and ER, except during low flow months when reduction in
GPP is apparent andmedianGPP decreases up to 25%. Overall, metabolism is predicted to
strongly respond during low flow periods in response to the changes in future hydrology
and urbanisation.

Figure 4.3: Monthly percentage change in daily (a) gross primary production (GPP) and
(b) ecosystem respiration (ER) in response to Flow, Temp and Urb scenarios

In contrast to flow, future changes in water temperature show a significant impact
on both GPP and ER throughout the year. The model predicts 20-75% reduction in
median GPP with temperature increase during May-October (Figure 4.3a), when river
water is warmer compared to the other months (Figure C.14). The co-occurrence
of temperature increase with low flow conditions during May-October results in
unfavourable environment for diatom growth as (1) high temperatures (> 18°C) do
not favour phytoplankton growth and (2) extremely low flows (< 20 m3 s-1) result in
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settlement of biomass (Chapter 2). In contrast, during the colder months (i.e. November-
April), river flows are higher and temperature increase supports phytoplankton growth,
resulting in 10-70% increase in monthly median GPP in the Temp scenario. Despite the
high percentage increase, GPP still remains < 5 mg O2 L-1 d-1 due to extremely low GPP
in the Baseline scenario during November-April.

Similar to GPP, ER also increases during November-April in the Temp scenario for about
10% (Figure 4.3b). During June-September, the model predicts around 5-15% reduction
in median ER, which is mainly governed by 𝑅𝐴 response to future warming since 𝑅𝐴
decreases (40-60% reduction) with temperature increase due to biomass depletion during
these months (Figure C.17). On the contrary, heterotrophic respiration (𝑅𝐻) is predicted
to increase with temperature increase in all months except June. 𝑅𝑤𝑐 (10-15%) and 𝑅𝑛𝑖𝑡𝑟𝑖
(< 5%) fluxes decreasewith temperature increase during June-October because of biomass
(Figure C.15) and ammonium depletion, respectively. 𝑅𝑏𝑒𝑛, on the contrary, increase (5-
13%)with temperature increase throughout the year. The% increase in𝑅𝑏𝑒𝑛 is lower (∼5%)
in June compared to the other months, which suggests that 𝑅𝐻 response to temperature is
governed by 𝑅𝑏𝑒𝑛. The combined effect of flow and temperature scenarios on ecosystem
metabolism is found to be antagonistic, where the overall effect of both scenarios is less
than the sum of their individual effects. It should be noted that the future projections of
flow and temperature change are opposite in nature.

4.3.2 Impact of management practices on ecosystem metabolism

Phytoplankton growth in the lower Thames is highly sensitive to light intensity. Increase
in riparian shading will suppress harmful phytoplankton blooms (up to 30%) and
consequently median primary production (up to 54%) during late spring and early
summer (Figure 4.4). Phytoplankton blooms during mid-spring are not influenced by
shading as leaf-cover period begins fromMay and lasts till November. The model predicts
25-65% reduction in median GPP during the leaf-cover period with maximum reduction
in September-October months (> 60%) (Figure 4.4a) when reduction in Chl-a is also the
highest (Figure C.15). DO in the river does not show a strong response to changes in the
tree shading amount, and shows only 5-13% reduction in median values during May-June.
Similarly, ER shows significant reduction (> 10%) only during May-June. 𝑅𝐴 responds in
a similar way to GPPwith up to 60% reduction in median values (Figure C.17) during leaf-
cover period due to Chl-a depletion (Figure C.15). In the Baseline scenario, high 𝑅𝑤𝑐 levels
coincidewith phytoplankton bloomperiod (Figure C.18), possibly because respiration and
decomposition (from bloom crashing) during April-June contribute to high BOD decay
in the river. The Shading scenario causes a decrease in 𝑅𝑤𝑐 during the leaf-cover period
when Chl-a also decreases. 𝑅𝑏𝑒𝑛 shows only slight reduction due to increased canopy cover
with highest reduction during May-June (Figure C.19), which is probably the cause of DO
depletion during May-June (Figure C.16).

The response of water quality and metabolism rates to reduction in TP loads is similar
to their response to the increase in riparian cover, although the degree of change is much
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Figure 4.4: Monthly percentage change in daily (a) gross primary production (GPP) and
(b) ecosystem respiration (ER) in response to Shade and TP scenarios

smaller. For example, peak Chl-a concentrations during phytoplankton bloom period
show 18-19% decrease with TP reduction as opposed to 25-30% decrease for increase in the
riparian cover. GPP and ER decrease during April-October in the TP scenario (Figure 4.4)
as biomass depletes due to limited nutrient availability. The decrease in the median GPP
(< 20%) and ER (< 10%) is still small compared to the Shading scenario that decreases
median GPP and ER up to 60% and 20%, respectively. Similar to the climate scenarios, the
combined effect of the management scenarios is antagonistic as the combined effect of the
TP and Shading scenarios cause lower reduction in metabolism rates than the sum of these
individual scenarios.

4.3.3 Environmental versus management impacts

A comparison between ClimatePop and Management scenarios is made to differentiate
the influence of future environmental changes from management actions. Contrary to
expectations, future changes in the environment (Flow, Temp, Urb, Hetresp) improve
river water quality in terms of biomass growth, with up to 40% reduction in the bloom
size (maximum monthly Chl-a) during the growing season. Management actions show
a reduction in maximum monthly Chl-a throughout the year. During the growing
season, both scenarios reduce the bloom size to a similar degree – which is when the
river health is at risk from harmful phytoplankton growth. In spite of the reduction
in bloom size, peak monthly Chl-a concentrations during the growing season still
remain at high concentrations (> 0.03 mg L-1). Environmental changes result in oxygen
depletion throughout the year. During the phytoplankton growing season, minimum
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DO concentration decreases up to 28% from the present conditions. Minimum DO
concentration in the river is predicted to fall to harmfully low levels (below 6 mg L-1)
during several months (May, July-September). Management actions do not significantly
alter DO concentrations in the river. ClimatePop scenario shows that GPP increases (>
40%, monthly median) during late-autumn and winter (Figure C.13) when the river
environment is colder and wetter, and reduces during the rest of the period (9-93%,
monthly median) due to an unfavourable combination of extremely low flows and high
temperatures for phytoplankton growth (Chapter 2, Pathak et al., 2021). ER increases
throughout the year in response to the ClimatePop scenario (12-39%, monthly median),
except duringMay-June (Figure C.13) when the response of ER is governed by autotrophic
respiration. As opposed to the ClimatePop scenario, the Management scenario causes
overall reduction in both, GPP (up to 72%, monthly median) and ER (up to 23%, monthly
median), mainly due to the effect of riparian shading on phytoplankton growth.

4.3.4 Metabolic fingerprint of the lower River Thames

Figure 4.5: Metabolic fingerprint for Baseline, ClimatePop and Management scenarios.
Data points in yellow represent values during the biomass growing season and the points
in maroon represent values during the rest of the year. The plots in the upper and
right panels represent probability density curves for gross primary production (GPP) and
ecosystem respiration (ER), respectively. RA, autotrophic respiration; RH, heterotrophic
respiration.

To further investigate river ecosystem response to future environmental changes
(ClimatePop scenario) and management actions (Management scenario), metabolic
fingerprints are used as diagnostic tools. The majority of data points in the Baseline
fingerprint lie above the 1:1 line, which indicates river heterotrophy during most of the
year (Figure 4.5). However, during the phytoplankton growing season (April-June), the
river shifts to autotrophy with peak metabolism rates lying below the 1:1 line. Future
environmental and management changes compress the metabolic fingerprint from the
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Baseline scenario, by increasing and decreasing the low and high values of metabolism
rates, respectively. Boundaries of peak metabolism rates are slightly more compressed
by the management actions compared to the climate changes. Both future scenarios
show a shift in the fingerprint, with future scenario fingerprints moving closer to the 1:1
line compared to the Baseline. These shifts occur because GPP and ER are projected to
decrease and increase respectively under climate-management changes, which will lower
the GPP/ER ratios from > 1.

Figure 4.6: Metabolic fingerprint for Baseline, Allscen and Allscen_minus_hr scenarios.
Data points in yellow represent values during the biomass growing season and the points
in maroon represent values during the rest of the year. The plots in the upper and
right panels represent probability density curves for gross primary production (GPP) and
ecosystem respiration (ER), respectively. RA, autotrophic respiration; RH, heterotrophic
respiration.

The distribution of metabolism rates does not change from the Baseline to the
Management scenario. Although the ClimatePop scenario does not show a change in
the GPP distribution, respiration values in this scenario are clustered at an increased ER
rate compared to the Baseline scenario (Figure 4.5a). High ER is mainly attributed to the
increase in 𝑅𝑤𝑐 and 𝑅𝑏𝑒𝑛 rates that may result from short-term flooding/storm events. This
effect can be observed in Figure 4.5b with an overall increase in 𝑅𝐻 from the Baseline to
the ClimatePop scenario. Reduction in peak 𝑅𝐴 in Figure 4.5b can be attributed to biomass
depletion during the growing season. 𝑅𝐻 contribution in the Baseline scenario is generally
higher than 𝑅𝐴, with some exceptions during the phytoplankton bloom period when
algal respiration is high. However, environmental and management changes alter this
behaviour with fewer (Management) or no (ClimatePop) instances where 𝑅𝐴/𝑅𝐻 is > 1.
Such a change in respiration dynamics persists evenwithout the consideration of increased
𝑅𝑤𝑐 and 𝑅𝑏𝑒𝑛 rates from short-term events (Allscen_minus_hr scenario; Figure 4.6b).
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4.4 D I S CU S S ION

4.4.1 Future response of ecosystem metabolism in the lower Thames

The climate scenario included here projects a warmer and drier river compared to the
present conditions. The model predicts that, in general, future climate will increase
metabolism rates during winter and spring seasons, but reduce metabolism rates during
summer and autumn seasons. Regulated rivers with stable flows and high light
availability generally exhibit high annual productivity and respiration compared to the
rivers influenced by hydrologic disturbances (Bernhardt et al., 2022). The lower Thames
also shows high metabolism rates during stable, low flow conditions (Figure 4.1). The
influence of future flow forecasts and urbanisation on the river productivity is also only
relevant during July-September months when the baseline river conditions represent
stable, low flows (Figure C.14). During the rest of the year, metabolism does not exhibit a
significant change in response to these environmental changes. However, it should be
noted that the predictions in the Future flows hydrology are made assuming medium
emission scenarios (Prudhomme et al., 2013), and the change in hydrology does not vary
more than 13% for the entire range of river flows. Notable changes in the river hydrograph
due to extreme climate events and/or flow regulation are still likely to alter the metabolic
regime of the river considering flow is an important regulator of metabolism in the river
(Chapter 3, Pathak et al., 2022). Flooding events (Uehlinger, 2000; Cook et al., 2015;
Hutchins et al., 2020) or artificial water releases (environmental watering) during low
flow periods (Wallace and Furst, 2016) may significantly modify ecosystem metabolism.
Here, the model indirectly accounts for the influence of such short-term, high flow events
(Hetresp scenario), and predicts that events escalating the input of organic matter to rivers
may boost heterotrophic respiration up to 30% more than the present conditions in the
river.

In this study, it is assumed that management practices will be put into action to
mitigate the future climate influence on river ecosystem and tomaintain healthy ecosystem
functioning. Therefore, TP management scenario assumes that future TP loading in the
river will be lower compared to the baseline conditions. The relationship of phosphorus
with phytoplankton blooms has been previously documented in the Thames catchment
(Bowes et al., 2012), with phosphorus enriched rivers showing larger phytoplankton
blooms. Decreaseddischarge from sewage treatmentworks generally reduces downstream
metabolism due to decreased nutrient and organic matter availability (Gücker et al., 2006;
Arroita et al., 2019). In the lower Thames, I observe a decrease in metabolism rates, but the
reduction is mainly observed during April-October months when lower levels of nutrients
limit phytoplankton growth. The insignificant response of biomass andmetabolismduring
the rest of the months could occur because nutrient concentrations during this period are
still high despite TP reduction, thus not limiting phytoplankton growth. The river may
also exhibit high metabolism in spite of reduced nutrient concentrations because of legacy
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nutrient stores or because of a decoupled (or nonlinear) response of biomass growth to
changes in nutrient concentrations in the river (Jarvie et al., 2013).

In contrast to the TP scenario, the Shading scenario shows drastic changes in the
ecosystem response with around 40% and 10% more reduction in median GPP and ER,
respectively than the TP scenario. In the baseline condition, the lower Thames shows
high GPP and ER peaks from April to June when river flows are low and stable, and
temperature conditions are suitable for phytoplankton growth. However, phytoplankton
biomass reduces significantly when light availability reduces due to increased riparian
shadingduringMay-November (Figure 4.4). Light is the primary limiting factor forGPP in
many rivers (Mulholland et al., 2001). Despite the sparse tree coverage and the wide river
channel, shading has been shown to have significant influence onwater quality in the River
Thames (Bachiller-Jareno et al., 2019). To account for the influence of riparian shading in
the Thames, the model uses a constant estimate of fractional light penetration (during leaf-
cover period) that was derived byWaylett et al. (2013) and validated by Bachiller-Jareno et
al. (2019). However, it should be noted that spatial and temporal heterogeneity in shading
is common due to changes in local canopy characteristics (e.g. canopy structure, coverage
and tree height), landscape characteristics (e.g. channel orientation and width), sun
position (over a day and over a year) and seasonality in riparian vegetation structure (Li et
al., 2012; Savoy et al., 2021). Overall, the model outputs suggest that management efforts
to increase the tree cover are more efficient than TP reduction to reduce the magnitude
of harmful phytoplankton blooms in the river. Increasing riparian cover is also more
cost-effective compared to TP reduction from sewage discharge and land use practices
(Hutchins et al., 2010).

I also used metabolic fingerprints to assess river metabolism response to the multiple
stressor scenarios considered in this study. Bernhardt et al. (2018) proposed metabolism
fingerprints as diagnostic tools for comparing annual patterns of metabolism across
rivers or across years for the same river - although only a few subsequent studies
have reported river metabolism fingerprints (e.g. Arroita et al., 2019; Blaszczak et al.,
2019). Metabolic fingerprints provide interpretations of both peak and median metabolic
rates as well as variance in GPP/ER ratio. The annual GPP/ER ratio at Runnymede is
> 1 in the Baseline scenario (Pathak et al., 2022). However, with changes in future
environmental and management conditions, the instances where GPP/ER > 1 are lowered
because future scenarios significantly reduce the high peaks of biomass during the
growing season. Metabolic fingerprints are also useful to evaluate the response of river
ecosystem to future scenarios (or stressors). Bernhardt et al. (2018) hypothesised that
hydrological disturbances and sediment loading in rivers will compress the fingerprint,
whereas higher light, nutrient and carbon availability will expand the fingerprint. The
outputs in this study agree with this hypothesis. I find that the ClimatePop scenario
(flow reduction, temperature increase, urbanisation) compresses the Baseline metabolic
fingerprint (Figure 4.5). The Management scenario assumes reduced light and TP
availability, which again compresses the metabolic fingerprint as expected (Arroita et al.,
2019). Flooding events should compress the fingerprint according to the aforementioned
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hypothesis. However, as this study only considers the effect of flooding on RH, metabolic
fingerprint expands in response to the Hetresp scenario due to an increase in ER from
higher organic matter availability. The combined effect of environmental andmanagement
scenarios is to compress the metabolic fingerprint from the Baseline scenario. Although
the boundaries of metabolism change in future conditions, the centroids (dominant
metabolic rates) of metabolism fingerprints do not vary significantly in future conditions
(exception include Hetresp scenario). By comparing metabolic fingerprints from several
river systems, we will be able to determine how different types of river ecosystems will
respond to river management activities under a changing environment.

4.4.2 Stressors in lowland rivers

The scenarios presented in this study are limited in their representation of probable future
changes in terms of the direction and intensity of change. For example, the Flow scenario
considered in this study assumes a small decrease (up to 13%) in river flows. However,
accelerated climate change may cause drastic variations in river hydrology with higher
frequency of extreme events such as flooding and droughts. Extreme changes in hydrology
may alter patterns of organic matter availability (Acuña and Tockner, 2010; Cook et al.,
2015) through its control on biomass growth and allochthonous delivery. Although the
model indirectly accounts for the influence of flooding events on respiration through
Hetresp scenario, it employs a crude assumption of constant 70% increase in respiration
rate throughout the year based on the findings of Hutchins et al. (2020). Heterotrophic
respiration may present intra-annual variability with a strong variation in the degree of
change as it depends on multiple factors that influence riverine organic matter dynamics
such as climatic conditions (e.g. Val et al., 2016; Von Schiller et al., 2019), flow regulation
and variation (e.g. Marcarelli et al., 2010), effluent discharges (e.g. Izagirre et al., 2008)
and biomass degradation (e.g. Zhang et al., 2017).

Nutrient dynamics in rivers are also influenced by hydrology in addition to urbanisation
and land use practices. The QUESTOR model accounts for this coupled relationship
between hydrology and catchmentmanagement practices formodelling nutrient dynamics
in the river. These relationships are important to include in modelling since primary
production and nutrient cycling processes in rivers are often closely associated (Roberts
and Mulholland, 2007). For scenario analysis, this study assumes improvements in
phosphorus management practices in the river, but riverine phosphorus concentrations
may still increase if effluent dilution capacity is reduced in response to persistent low flows
(Bussi et al., 2017). High nutrient availability in the river may boost metabolism rates
(Dodds, 2007) through changes in oxygen source (𝑃𝑃, 𝑃𝑁) and sink (𝑅𝑛𝑖𝑡𝑟𝑖) pathways.
Land use changes such as agricultural intensification may lead to increased nitrogen
concentrations in the river, although a more likely future encompasses a reduction in
agricultural land due to a decrease in agriculture profitability (Bussi et al., 2017; Fezzi et al.,
2017). Nitrogen management scenario is not included here since nitrogen concentrations
do not limit phytoplankton growth in the river. However, nitrogen may play a bigger role

69



in influencing primary production with reduction in future nitrogen concentrations (e.g.
Dortch and Whitledge, 1992; Mackay et al., 2020).

Light and temperature are often found to be key controls of river metabolism (Roberts
et al., 2007). This study also found an influence of changes in light and water temperature
on river metabolism though application of Shading and Temp scenarios, respectively. The
model predicts improvements in water quality and a reduction in GPP with increased
shading during biomass growing season that is similar to what is found elsewhere (Burrell
et al., 2014; Nebgen and Herrman, 2019). Warming increases and decreases both GPP and
𝑅𝐴 in cold and warm months, respectively (e.g. Zoboli et al., 2018). 𝑅𝐻 is predicted to
increase in response to warming throughout the year, which is also in line with previous
findings (Demars et al., 2011; Song et al., 2018). The model also accounts for the influence
of light availability on water temperature dynamics, which may ultimately influence river
metabolic regime (Huryn et al., 2014; Nebgen and Herrman, 2019). Overall, the model
predicts an expected response ofmetabolism to changes in light and temperature scenarios.
However, themodel assumption of cool water diatoms as the dominant biomass producers
throughout the year (Pathak et al., 2021) may not hold true in these scenarios since
changes in light and temperature may create favourable growing conditions for other
phytoplankton communities (Descy et al., 2003), which may modify the river metabolic
regime.

Other important pressures of river metabolism that are not explicitly included in this
study, but may influence future river metabolism are changes in land use practices (Bernot
et al., 2010), grazing rates and their seasonality (Schöl et al., 2002), eutrophication
(Genzoli and Hall Jr, 2016), and channel hydraulics (Mulholland et al., 2001). Despite the
limitations in the scenarios considered in this study, the model is able to derive insights
into the response of rivermetabolism to future environmental and catchmentmanagement
changes in the lower River Thames. Process-basedmodels such as QUESTOR are powerful
tools to determine ecosystem response to individual as well as multiple environmental
stressors. Such scenario analysis exercises are useful to guide future river restoration
measures.
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5
METABOLISM MODELLING IN RIVERS WITH UNSTEADY FLOW
CONDIT IONS AND TRANSIENT STORAGE ZONES

5.1 IN TRODUCT ION

Biotic CO2 emissions from rivers can be estimated through the metabolic balance of rivers,
thus contributing to our understanding of the global carbon cycle (Raymond et al., 2013;
Hotchkiss et al., 2015; Demars et al., 2016). Whole-streammetabolism characterises carbon
fixation and mineralisation through gross primary production (GPP) and ecosystem
respiration (ER) in streams and rivers. GPP and ER are integral measures of riverine
biological processes (Bernhardt et al., 2018) and can serve as important indicators ofwhole-
river health (Young et al., 2008; Von Schiller et al., 2017; Ferreira et al., 2020).

Ecologists have developed robustmodels forwhole-streammetabolism estimation based
ondiel oxygen changes in open channels (Odum, 1956; Demars et al., 2015; Holtgrieve et al.,
2016) including book-keeping methods with Monte-Carlo simulation (Demars, 2019) or
inverse models with Bayesian procedure (Holtgrieve et al., 2010; Hall et al., 2016; Appling
et al., 2018a). However, these models were developed for reach-scale estimation and for
a limited range of river environments (Appling et al., 2018b). For example, the open-
channel metabolism models do not account for the influence of sub-daily flow variation
and transient storage zones on dissolved oxygen variation at river-network scale despite
these features being prevalent in many rivers influenced by flow regulation (Zimmerman
et al., 2010) and with vegetated stretches (Kurz et al., 2017), respectively. Civil engineers
have also produced water quality models for oxygen prediction to address river sanitation
issues (Streeter and Phelps, 1925; Beck and Young, 1975). These models are applicable
to entire river networks (Cox, 2003a,b), whereas this is just emerging in the ecological
literature (Segatto et al., 2020, 2021; Pathak et al., 2022). Therefore, we can integrate
implementations from both these fields to build parsimonious models applicable to a
wider range of river environments than those currently studied through open-channel
metabolism models.

Quantification of transient storage in metabolism models may be crucial as these zones
are potential hotspots of metabolism in rivers due to longer residence times (Fellows et
al., 2001; Mulholland et al., 2001; Argerich et al., 2011). These zones are characterised
by stagnant pockets of water due to presence of biofilms, dense patches of aquatic plants,
hyporheos or eddies of deep pools (Bencala and Walters, 1983; Ensign and Doyle, 2005;
Bottacin-Busolin et al., 2009). Several models have been developed to simulate the impact
of transient storage on solute transport in rivers such as the Transient Storage Model
(Bencala and Walters, 1983; Runkel, 1998; Manson et al., 2001) and the Aggregated Dead
Zone (ADZ)model (Beer and Young, 1983; Wallis et al., 1989). The proportion of transient
storage and the exchange rate ofwatermolecules between themain channel and the storage
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zone may change with flow (Manson et al., 2010; Wallis and Manson, 2018), but current
models were designed to work under steady flows.

The assumption of steady flow conditions in metabolism models may not hold true in
regulated rivers. Wide-spread flow regulation for reservoir operations in rivers around
the world has altered the frequency and magnitude of sub-daily flow variation and
consequently impacted healthy ecosystem functioning (Poff and Zimmerman, 2010). The
timings and magnitude of flow releases determine trends in metabolism. Reduction in
flow variability can elevate downstream metabolism (Aristi et al., 2014), whereas abrupt
high flow releases can reduce tailwater metabolism (Uehlinger et al., 2003). The studies
analysing flow regulation impacts on ecosystemmetabolism havemainly looked at coarser
temporal scale using Odum (1956)’s two-station method at a river-reach scale, where
homogeneous hydraulic conditions are assumed over a period of day, i.e. impact of
average daily flow on average daily metabolism (e.g. Uehlinger et al., 2003; Aristi et al.,
2014; Chowanski et al., 2020). However, metabolism models need to account for sub-
daily flow variability, especially considering recent trends in the rapidly changing energy
markets (e.g. switch to renewable energy) that may enhance the sub-daily variability
in flow (hydropeaking) in tailwaters (Ashraf et al., 2018). To address these limitations,
a river network model for stream metabolism requires the run of a flow routing model
ahead of implementing the two-station method (Whitehead et al., 1997b; Cimorelli et al.,
2016; Payn et al., 2017). The prospect of simply adding water transient storage using
advection-dispersion equations (Chapra and Runkel, 1999; Demars et al., 2015) to these
more complicated models is daunting because many additional parameters would need to
be estimated or well constrained to apply the models at river-network scale under varying
flow conditions, as exemplified with nutrient cycling (Ye et al., 2012).

This study overcomes these limitations through development of a parsimonious model
for Metabolism estimation in rivers with Unsteady Flow conditions and Transient storage
zones (MUFT) that can be extended to a river-network scale. To demonstrate the model’s
development and implementation, I used a case study of the River Otra in southern
Norway. The MUFT model was implemented along an 11 km river stretch downstream of
a hydropower plant, where dam operations cause significant diel fluctuations in flow. To
include the influence of diel flowvariation in theMUFTmodel, I coupled a simple unsteady
flow routingmodel adapted from theQUASAR (QUAlity SimulationAlong River systems)
model (Whitehead et al., 1997b) with a two-station stream metabolism model (Odum,
1956). The study stretch also demonstrates delayed oxygen transport compared to water
velocity, which could be attributed either to the transient storage created from excessive
plant growth in the river reach or to the dual flow regulation by dams at the upstream
and downstream ends of the study stretch. To account for these probable mechanisms
of oxygen transport, I tested two model formulations, (1) ADZ model that accounts for
transient storage zones (Wallis et al., 1989) and (2) ADV (advection) model that accounts
for dual flow regulation impact on oxygen transport (Beck and Young, 1975). In the
MUFT model, these formulations (ADV or ADZ) are coupled with the unsteady flow
routing and the two-station streammetabolismmodels. Previously, studies have proposed
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modifications in the QUASAR flow routing model to simulate unsteady flows (Sincock
and Lees, 2002) as well as proposed coupling of ADZ and original QUASAR (steady
flow) models to simulate non-conservative solutes (Lees et al., 1998). The MUFT model
combines these efforts by coupling the unsteady QUASAR model and the ADZ model to
simulate non-conservative solutes.

I show metabolism estimation using both inverse and accounting (book-keeping)
approaches in the MUFT model. While the accounting method is not predictive, it allows
an independent estimation of the light parameters for GPP that are used to better constrain
the inverse model and avoid issues of equifinality. The modelling approaches presented
in this study not only provide theoretical benefits for studying the impact of transient
storage zones and unsteady flows on metabolism dynamics, but also promote practical
applications for the management of tailwater river ecosystems.

5.2 THEORY

I first selected a flow routing model to simulate discharge downstream of a hydropower
plant, with upstream flow boundary conditions (from e.g. gauging station, rainfall-
runoff simulations) as model input. I present the flow model equations in this section,
but any flow routing model of user’s preference can be used. Further, I present
associated metabolic models of dissolved oxygen (DO) concentrations under unsteady
flow conditions with increasing complexity. In the next section, I show how to apply these
models to a case study.

5.2.1 Flow routing model

To simulate unsteady flows in the MUFT approach, I adapted the flow routing model
proposed by Sincock and Lees (2002), who based their approach on the QUASAR model
(Whitehead et al., 1997b) originally designed for slowly time-varying flows (quasi steady-
state). Because of the steady flow assumption, the original QUASAR model assumes the
flow and solute travel times to be equal. However, under unsteady flow conditions, the
travel time of flood wave can be expressed in terms of kinematic wave velocity (celerity),
which is higher than the mean flow velocity (Sincock et al., 2003) and consequently, solute
velocity. The ratio 𝑚 of the average celerity (𝑐, m s-1) to the average flow velocity (𝑢, m s-1)
is expressed following Sincock et al. (2003),

𝑚 = 𝑐
𝑢 = 𝑑𝑄/𝑑𝐴

𝑄/𝐴 (5.1)

where 𝑄 is discharge (m3 s-1), 𝐴 is the cross section area of flow and 𝑚 may be
approximated as 5/3 (Chapra, 2008).

73



The celerity (𝑐, m s-1) of the flood wave for a reach of length 𝐿 (m) is,

𝑐 = 𝐿
𝑇𝑓 𝑙𝑜𝑤

(5.2)

where 𝑇𝑓 𝑙𝑜𝑤 represents the travel time of the flood wave (s).
It is assumed that 𝑇𝑓 𝑙𝑜𝑤 may be partitioned into dispersion (𝑇𝑓 𝑙𝑎𝑑𝑧) and advection (𝜏𝑓 𝑙)

terms using a fraction of retention 𝐹𝑟,

𝑇𝑓 𝑙𝑎𝑑𝑧 = 𝐹𝑟 × 𝑇𝑓 𝑙𝑜𝑤 (5.3)

𝜏𝑓 𝑙 = (1 − 𝐹𝑟) × 𝑇𝑓 𝑙𝑜𝑤 (5.4)

The flow routingmodel includes a simple mass-balance of incoming and outgoing flows
and assumes fixed channel width with rectangular cross-section. Lateral groundwater
inflows and discharge from small tributaries were assumed to be negligible within reaches.
In a river network, the flow of major tributaries may be inserted at the upstream edge
of a reach. River reaches may be represented as a series of non-linear reservoirs. The
flow model simulates water transport through a series of 𝑛 non-linear reservoirs followed
by a time lag parameter (𝜏𝑓 𝑙, s) that lags the routed hydrograph without attenuation
(Figure 5.1a). The changes in flow are represented as,

𝑑𝑄𝑡
𝑑𝑡 =

𝑄𝑖,𝑡−𝜏𝑓 𝑙
− 𝑄𝑡

𝐹𝑟𝑇𝑓 𝑙𝑜𝑤
(5.5)

where 𝑄 is the flow leaving the reach at time t, 𝑄𝑖 is the flow coming into the reach at time
t. Eq. 5.5 accounts for the travel time (𝑇𝑓 𝑙𝑜𝑤) derived from celerity (Eq. 5.2) as opposed to
the travel time derived frommean flow velocity as is commonly done in original QUASAR
model applications.

5.2.2 Metabolic model in a well-mixed reach under unsteady flow conditions

I developed the metabolic model of DO dynamics (Eq. 5.6) by combining two approaches,
(1) the conservative solute transport model proposed by Whitehead et al. (1997b) to
simulate DO transport with unsteady flows and (2) the stream metabolism two-station
method proposed by Odum (1956) to simulate in-stream DO sources and sinks from
metabolism and air-water gas exchange processes. The detailed proof of bothmodels were
given in the original publications. Note that Eq. 5.6 does not account for water transient
storage.

𝑑𝐶𝑡
𝑑𝑡 =

𝑄𝑖,𝑡
(𝑄𝑡 × 𝑇𝑢)(𝐶𝑖,𝑡 − 𝐶𝑡) + 1

𝑧𝑡
(𝑃𝐺𝑃𝑃,𝑡 − 𝑅𝐸𝑅,𝑡) + 𝑘(𝐶𝑠,𝑡 − 𝐶𝑡) (5.6)

where 𝐶𝑖 is the incoming DO in the reach (mg O2 L-1 equivalent to g O2 m-3), 𝐶 is the DO
leaving the reach (mgO2 L-1), 𝑃𝐺𝑃𝑃 is the gross primary production (g O2 m-2 min-1), 𝑅𝐸𝑅
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Figure 5.1: Conceptualisation of river reaches in the (a) unsteady flow model adapted
from Sincock and Lees (2002) and (b) ADZ model adapted from Lees et al. (2000) for
conservative solute C

is the ecosystem respiration (g O2 m-2 min-1), 𝑘 is the gas exchange coefficient (min-1) and
𝐶𝑠 is the expected oxygen solubility (mg O2 L-1). 𝑇𝑢 (min) represents the mean flow travel
time, which is equal to the solute travel time for a well-mixed reach.

5.2.3 Metabolic model with pure advection and a well-mixed reach under unsteady flows (ADV
model)

In long reaches where solute transport is dominated by advective transport as opposed to
dispersion, it may be necessary to explicitly take into account pure advection as follows
(Beck and Young, 1975):

𝑑𝐶𝑡
𝑑𝑡 =

𝑄𝑖,𝑡−𝛼
(𝑄𝑡 × 𝑇𝑠𝑎𝑑𝑣)(𝐶𝑖,𝑡−𝛼 − 𝐶𝑡) + 1

𝑧𝑡
(𝑃𝐺𝑃𝑃,𝑡 − 𝑅𝐸𝑅,𝑡) + 𝑘(𝐶𝑠,𝑡 − 𝐶𝑡) (5.7)

𝛼 = 𝐹𝑎𝑑𝑣 × 𝑇𝑠𝑎𝑑𝑣 (5.8)

where 𝐹𝑎𝑑𝑣 is the advection delay coefficient. The addition of pure advection 𝛼 (see
Table 5.1) in the first term of the equation allows to have the two DO concentration curves
in phase without modifying their shape (simple time translation), with 𝛼 ≤ 𝑇𝑠𝑎𝑑𝑣 (Beck
and Young, 1975). Note that 𝑇𝑠𝑎𝑑𝑣 is equivalent to 𝑇𝑢 for the ADV model.
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5.2.4 Metabolic model with pure advection and transient storage (dispersion) under unsteady
flows (ADZ model)

The influence of transient storage in the metabolic model is included using the ADZ
concept (Beer and Young, 1983; Wallis et al., 1989) as proposed by Sincock and Lees (2002),
who coupled the unsteady QUASAR flow model with the ADZ model for a conservative
solute. ADZ model was selected for its simplicity and its conceptual similarity to the
unsteady QUASAR flow model (Figure 5.1). The original QUASAR model assumes the
river reach to be a perfectly mixed system. ADZ model conceptualises the river reach
as an imperfectly mixed system, where solute is subjected to pure advection followed by
dispersion in a lumped active mixing zone (Beer and Young, 1983; Wallis et al., 1989; Lees
et al., 2000). The metabolic model becomes:

𝑑𝐶𝑡
𝑑𝑡 =

𝑄𝑖,𝑡−𝜏𝑠

(𝑄𝑡 × 𝑇𝑎𝑑𝑧)(𝐶𝑖,𝑡−𝜏𝑠
− 𝐶𝑡) + 1

𝑧𝑡
(𝑃𝐺𝑃𝑃,𝑡 − 𝑅𝐸𝑅,𝑡) + 𝑘(𝐶𝑠,𝑡 − 𝐶𝑡) (5.9)

The ADZ model partition the overall solute travel time 𝑇𝑠𝑎𝑑𝑧 into dead-zone residence
time 𝑇𝑎𝑑𝑧 and advection lag 𝜏𝑠, equivalent to partitioning total reach volume into the
volume of water transient storage and main channel.

𝑇𝑎𝑑𝑧 = 𝑇𝑠𝑎𝑑𝑧 − 𝜏𝑠 (5.10)

For reaches affected by transient storage, the effective solute transport velocity (𝑢𝑠) is
lower than the mean flow velocity (𝑢) due to solute retention in the storage zone. The
relationship between these velocities can be described using a solute-lag coefficient 𝛽 (Lees
and Camacho, 2000) as,

𝑢𝑠 = 𝑢
1 + 𝛽 (5.11)

Considering Eq. 5.1, Eq. 5.2 and Eq. 5.11, travel time and advection lag for a solute in the
ADZ model can be described in terms of flow parameters (Sincock, 2002),

𝑇𝑠𝑎𝑑𝑧 = 𝑚(1 + 𝛽)𝑇𝑓 𝑙𝑜𝑤 (5.12)

𝜏𝑠 = 𝑚(1 + 𝛽)𝜏𝑓 𝑙 (5.13)

5.2.5 Modified two-station model for the accounting method

Eq. 5.9 can be simplified to derive net ecosystem production (𝑃𝑁𝐸𝑃 = 𝑃𝐺𝑃𝑃 − 𝑅𝐸𝑅) using
Euler finite-difference approach, which gives the two-station accounting approach under
varying discharge,

𝑃𝑁𝐸𝑃,𝑡 = (𝐶𝑡+Δ𝑡 − 𝐶𝑡
Δ𝑡 −

𝑄𝑖,𝑡−𝜏𝑠

(𝑄𝑡 × 𝑇𝑎𝑑𝑧)(𝐶𝑖,𝑡−𝜏𝑠
− 𝐶𝑡) − 𝑘(𝐶𝑠,𝑡 − 𝐶𝑡)) 𝑧𝑡 (5.14)
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Note that Eq. 5.14 can easily be adjusted for the other metabolic models presented above
(Eq. 5.6 and Eq. 5.7). This approach allows to estimate average 𝑅𝐸𝑅 during the dark hours
(photosynthetically-active radiation (PAR) < 1 μmol-photons m-2 s-1) and deduce 𝑃𝐺𝑃𝑃,𝑡
by difference (𝑃𝑁𝐸𝑃,𝑡 − 𝑅𝐸𝑅,𝑡) during the light hours assuming constant 𝑅𝐸𝑅 throughout
the day (seeDemars et al., 2015). DailyGPP (𝑃𝐺𝑃𝑃) is simply the sumof𝑃𝐺𝑃𝑃,𝑡 throughout
a day,

𝑃𝐺𝑃𝑃 =
∫𝑡𝑒𝑛𝑑

𝑡0
𝑃𝐺𝑃𝑃,𝑡 𝑑𝑡
1 𝑑𝑎𝑦 (5.15)

5.2.6 Photosynthesis-light relationship

The accounting method has the advantage, over the inverse modelling approach,
of deriving instantaneous and daily GPP without making any assumption on the
photosynthesis-light relationship. Themost appropriate link functionmay thus be selected
by plotting 𝑃𝐺𝑃𝑃,𝑡 as a function of 𝑃𝐴𝑅𝑡. The function is substituted to 𝑃𝐺𝑃𝑃,𝑡 in the
metabolic models (Eq. 5.6, Eq. 5.7 or Eq. 5.9). The parameters of the link function may be
used as constants or enabled to constrain the priors (through their uncertainties) in the
inverse model, thus reducing issues of equifinality. Here, instantaneous gross primary
production (𝑃𝐺𝑃𝑃) was modelled as a function of PAR with a Michaelis-Menten type
equation to include the light-saturation effect on photosynthesis (Demars et al., 2011),

𝑃𝐺𝑃𝑃,𝑡 =
𝑃𝐺𝑃𝑃𝑚𝑎𝑥 × 𝐸𝑃𝐴𝑅,𝑡

𝑘𝑃𝐴𝑅 + 𝐸𝑃𝐴𝑅,𝑡
(5.16)

where 𝐸𝑃𝐴𝑅,𝑡 is the photosynthetically-active radiation (μmol-photons m-2 s-1) at time t,
𝑃𝐺𝑃𝑃𝑚𝑎𝑥 is the maximum GPP (g O2 m-2 min-1) and 𝑘𝑃𝐴𝑅 is the PAR at which half the
𝑃𝐺𝑃𝑃𝑚𝑎𝑥 is attained (μmol-photons m-2 s-1).

𝑃𝐺𝑃𝑃𝑚𝑎𝑥 and 𝑘𝑃𝐴𝑅 in the inverse model were estimated using a least-squares
minimisation algorithm. It is implicitly assumed that light conditions are spatially uniform
along the modelled channel length and PAR only varies with time.

5.2.7 Dissolved oxygen saturated concentration

The expected oxygen solubility (𝐶𝑠, mg L-1) was estimated from Standing Committee of
Analysts (1989) as follows,

𝐶𝑠 = 𝐶𝑎𝑡𝑚(𝑃 − 𝑉𝑃)
101.325 − 𝑉𝑃

(5.17)

where 𝐶𝑎𝑡𝑚 is the oxygen solubility under normal atmospheric pressure (mg L-1), 𝑃 is
the observed atmospheric pressure (kPa) and 𝑉𝑃 is the saturation vapour pressure of
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water (kPa). 𝐶𝑎𝑡𝑚 and 𝑉𝑃 were estimated as a function of water temperature 𝑇 (range
of application 0-50°C, Demars et al., 2015),

𝐶𝑎𝑡𝑚 = −0.00005858𝑇3 + 0.007195𝑇2 − 0.39509𝑇 + 14.586 (5.18)

𝑉𝑃 = 0.0000802𝑇3 − 0.000717𝑇2 + 0.0717𝑇 + 0.539 (5.19)

5.3 CA S E STUDY

5.3.1 Study area

The River Otra flows through forests and alpine uplands in the valley of Setesdal and is
the largest river in southern Norway. The river drains a catchment area of 4000 km2 and
runs for about 240 km until it meets the North Sea at Kristiansand (Wright et al., 2017).
The river is extensively used for hydropower production (about 4 TWh per year) through
construction of dams and water transfers, with Brokke being the largest hydropower
station in the valley (Rørslett, 1988; Wright et al., 2017).

I applied the models within a 10780 m long river section located downstream of the
Brokke hydropower plant (Figure 5.2). This section drains about 1900 km2 (Wright et al.,
2017). The river stretch can be considered an artificial system with its flow and water
level controlled by Brokke hydropower plant at the upstream end and Hekni dam at
the downstream end. The oscillating demands on energy production can cause flow to
vary from ∼ 20-80 m3 s-1 within 24 h under low summer flows. The hydropower plant
effluent can also release water highly supersaturated in dissolved gases depending on
water intakes (streams versus reservoirs) independently of discharge (Pulg et al., 2016).
No such supersaturation events were observed during the short term study period here
(Demars et al., 2021). In addition to the controlled flow, the river reach also shows profuse
growth of the aquatic plant Juncus bulbosus, which may create significant amount of water
transient storage, delaying solute transport time relative to the velocity of water (Ensign
and Doyle, 2005; Kurz et al., 2017).

5.3.2 Sensor deployment and bathymetry

DO and water temperature were monitored using O2 and temperature sensors (miniDOT
PME) at site 2 (Figure 5.2). A monitoring station was also installed at site 3 to
monitor dissolved oxygen and water temperature (Xylem - Andeeraa optode 4831),
photosynthetically-active radiation (LICOR Quantum LI190R-L), air temperature and
atmospheric pressure (Barometer RM Young 061302V) using a Campbell data logger
(CR1000X). Data from the monitoring station were transferred daily through a Campbell
Scientific 4G modem CELL215. Data were logged at 5 min time intervals from 4th (10:00
am) to 8th (15:35) August 2019. The sensor at site 2 was installed vertically facing down in
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Figure 5.2: Study stretch in the River Otra spanning from Brokke to Hekni. Monitoring
locations of river flow (red circle) and dissolved oxygen (black filled circles) are marked
on the map.

the main current at mid depth, tied to a post. The sensor at site 3 was inserted into a plastic
pipe fixed on Straume bridge, and protruded in themain current. The oxygen sensors were
cross calibrated in 100% air saturated water in a bucket before and after deployment and
small corrections (< 3% DO saturation) were applied, as previously reported (Demars,
2019).
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Total dissolved gas (TDG) was monitored at site 1, 2, 3 and 4 every 30 min at infrequent
intervals during a five year period (2012-2017) with Total Gas Analysers 3.0 (Fisch-
und Wassertechnik (Pulg et al., 2016) based on the Weiss-saturometer principle (Weiss,
1970). The saturation is measured as the percent dissolved air in the water relative to
expectation from ambient air pressure. The saturometer has an accuracy of ±10 hPa, which
is approximately ±1% TDG.

Several thousands georeferenced water depth points were taken throughout the reach
with a measuring stick north of Straume and Lowrance sonar in the downstream part
to Hekni (Figure D.1), and cross calibrated with discharge. Changes in water depth
were determined from absolute pressure difference (see Moe and Demars, 2017) between
atmospheric pressure and submersible pressure sensors inserted into a perforated plastic
tube at sites 1-4 recording at 30 min time intervals (Onset HOBO data loggers U20L-04,
accuracy equivalent to 4 mm for water level).

5.3.3 Flow-velocity

Hourly flow data at Brokke (hydropower plant effluent and river) and Hekni sites were
obtained for a duration of 8 days (3/8/2019-10/8/2019) from the hydropower company.
Flow observations were not available at Rysstad Øy and Straume, where metabolism is
estimated. Flood wave travel times at these sites were derived from solute travel time
using the travel time relationships proposed by Sincock et al. (2003). I used these travel
time relationships to back-calculate solute and flow travel time parameters from velocity
estimates (Table 5.1). Velocity estimates in the river reaches were derived using two
approaches.

Average velocities for the first section (site 1-2: steep, shallow, fast flowing, cobble
bed) were determined using Manning’s equation: 𝑣 = (1/𝑛)𝐴/𝑃𝑚

2/3𝑆1/2
𝑐 , where 𝑛 is the

Manning roughness coefficient (0.04, cobble bed), 𝐴 is the cross-sectional area of the river
channel (m2), 𝑃𝑚 is the wetted perimeter of the river channel (m) and 𝑆𝑐 is the channel
slope (0.0016m/m). 𝐴 and 𝑃𝑚 were calculated using changes inwater depth. Thismethod
could not be applied further downstream due to partial control on water level by Hekni
dam.

Average velocities for the second section (site 2-3: very wide, gentle slope, sandy
bed) and the third section (site 3-4: narrow, water level controlled by Hekni dam) were
estimated from section length (𝐿) and mean travel time (𝑇𝑠) of large peaks in TDG, where
𝑢𝑠 = 𝐿/𝑇𝑠. I used cross correlation function in R (Venables and Ripley, 2002) to identify
average travel time lags (h) between TDG time-series across the sites. Large TDG super-
saturation events (threshold > 130% at Brokke) with time lag correlation coefficient >
0.4 were selected for the estimation of velocity. These velocities were plotted against
discharge at Hekni (averaged for corresponding event duration) to establish flow-velocity
relationship for each reach. TDG travel times ranged between 2-12 hours and 7-13 hours
in the second (site 2-3) and third sections (site 3-4), respectively. This method could not
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Table 5.1: Velocity and travel time formulations in the ADV and ADZ models for the River
Otra back-calculated based on the travel time relationships proposed by Sincock et al.
(2003). (CSTR, continuous stirred tank reactor)

ADV model ADZ model
Solute velocity 𝑢𝑠 = 𝑏𝑄𝑐 𝑢𝑠 = 𝑏𝑄𝑐

Solute-lag coefficient 𝛽 = 0 𝛽 = 1.55 (see Appendix D)
Mean flow velocity 𝑢𝑎𝑑𝑣 = 𝑢𝑠 𝑢𝑎𝑑𝑧 = (1 + 𝛽) × 𝑢𝑠
Celerity 𝑐𝑎𝑑𝑣 = 𝑚 × 𝑢𝑎𝑑𝑣 𝑐𝑎𝑑𝑧 = 𝑚 × 𝑢𝑎𝑑𝑧
Water residence time in CSTR 𝑇𝑢𝑎𝑑𝑣 = 𝐿/𝑢𝑎𝑑𝑣 𝑇𝑢𝑎𝑑𝑧 = 𝐿/𝑢𝑎𝑑𝑧
Total solute travel time 𝑇𝑠𝑎𝑑𝑣 = 𝑇𝑢𝑎𝑑𝑣 𝑇𝑠𝑎𝑑𝑧 = 𝐿/𝑢𝑠
Advection delay 𝛼 = 𝐹𝑎𝑑𝑣𝑇𝑠𝑎𝑑𝑣 𝜏𝑠 = 𝑇𝑠𝑎𝑑𝑧 − 𝑇𝑢𝑎𝑑𝑧
Dead zone residence time 𝑇𝑎𝑑𝑧 = 𝑇𝑢𝑎𝑑𝑧

be applied in the first section as the temporal resolution of the TDG data was too coarse
relative to the mean travel time (< 1 h).

I established relationships between flow and TDG velocity as 𝑢𝑠 = 𝑏𝑄𝑐 for three
discernible sections. Ideally a conservative solute should be used to estimate flow-velocity
parameters (𝑏, 𝑐). While TDG is not a conservative tracer, the selection of the largest peaks
to differentiate from noise and the very low gas exchange rate in these sections gave a
similar result to a continuous addition of lime under high flow conditions (about 102 m3

s-1) monitored with electric conductivity sensors deployed at Straume (site 3) and Hekni
(site 4). Power regressions between the velocities of TDG waves and corresponding mean
flows at Hekni provided values of constants 𝑏 and 𝑐 for the second (𝑅2 = 0.78) and third
sections (𝑅2 = 0.56) (Figure D.2, Table D.1). Water travelled fastest in the first section
(Brokke-Rysstad Øy) with a mean velocity of 0.73 m s-1, slowest (0.14 m s-1) in the widest
section with high plant growth (Rysstad Øy-Straume) and slow-flowing in the narrower
and deeper third section (0.27 m s-1) for a 50 m3 s-1 discharge.

5.3.4 Gas exchange rate

The gas transfer velocity (𝑘𝑧) of CO2 was estimated as the flux of CO2 (𝐹𝐶𝑂2, mmol m-2

h-1) determined using floating chambers equippedwith infra-red gas analysers (following
Bastviken et al., 2015) relative to the CO2 saturation deficit as follows (𝐶𝑠 − 𝐶, mmol m-3),

𝑘𝑧 = 𝐹𝐶𝑂2
𝐶𝑠 − 𝐶 (5.20)

More specifically, CO2 efflux (or influx) were estimated in 33 half-hour runs, from the
average of three chambers for each run drifting freely at the water surface and logging at
30 s time intervals. The runs were conducted betweenMarch 2020 and August 2020 under
varying temperature, discharge and depth. The calculations of CO2 flux for individual
chambers followed Martinsen et al. (2018). Water samples were collected at the beginning
and end of each run in 120 mL glass bottles to determine the CO2 saturation deficit. Water
bottles were filled to the rim and capped underwater, then crimped. Mercuric chloride
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(HgCl2) was immediately added to stop biological processes (100μL of half saturated
solution per 120 mL bottle). The samples were kept cool (+4°C) and in the dark until
the day of gas analysis. The samples were warmed and weighed at room temperature,
a 30 mL helium headspace was created, the samples were weighed again (to determine
the volume of water removed from the bottle), and shaken gently horizontally for at least
an hour. The headspace was analysed by gas chromatography and concentrations were
calculated following Yang et al. (2015). It was checked that the addition of HgCl2 did not
affect the determination of CO2 (Borges et al., 2019; Koschorreck et al., 2021).

The specific flux 𝐹𝐶𝑂2 was not related to water temperature, discharge, depth or velocity.
Thus 𝑘𝑧 = 0.022 ± 0.004 m h-1 was estimated as the slope of the regression line between
specific CO2 flux and CO2 saturation deficit (Figure D.3). In theory the regression line
should go through the origin, but the uncertaintieswere reasonable given themodest range
of dissolved CO2 saturation (70-267%). Thus knowing average depth (𝑧 = 1.82 m) during
the chamber runs, the gas exchange coefficient was calculated for CO2 as 𝑘𝐶𝑂2 = 0.012
±0.002 h-1.

Finally, the oxygen gas exchange coefficient 𝑘𝑂2 was simply calculated from 𝑘𝑂2 =
𝑘𝐶𝑂2/0.81 (Demars, 2019), where the constant 0.81 accounts for differences in the rates
of CO2 and O2 diffusion in water independently of temperature (Davidson, 1957). The
estimate of 𝑘𝑂2 (0.35±0.07 d-1) indicated lowgas exchange, comparable to other riverswith
similar depth-velocity (< 2 d-1, Palumbo and Brown, 2014). 𝑘𝑂2 was used as a constant in
the metabolism models (𝑘 in Eq. 5.6, Eq. 5.7, Eq. 5.9) to simulate reaeration flux.

5.3.5 Model application and parameter estimation

I developed the model code in Python (3.6.3). Flow and solute dynamics in the river were
described using ordinary differential equations and solved through an accounting method
using finite difference approximation and inverse modelling using odeint() function from
the Scipy package (v1.5.0) in python. The odeint() function solves ordinary differential
equations using lsoda solver from the FORTRAN library odepack.

The boundaries of the river network for model implementation were decided based
on data availability. The modelling approach presented here requires observations at
minimum two sites in the river, one for input and one for parameter calibration. Although
the model implementation in this study is limited to one reach, the model can be extended
for multi-reach application. The flow routing model was first implemented at 5 min time-
steps for the river stretch betweenBrokke andHekni since flowhydrographswere available
at these two sites. Similarly, the solute model was implemented at 5 min time-steps for the
river stretch between Rysstad Øy and Straume since oxygen observations were available at
these sites.

Model parameters in the inverse model were estimated using a two-step calibration
process (similar to Sincock and Lees, 2002), where flow parameters were first optimised
with respect to the observed flow, prior to the optimisation of solute transport relationships
andmetabolic parameters. Flowparameters can be optimised between the gauging sites on
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reach-by-reach basis in downstream direction. Flow time-series at Brokke and Hekni were
used to first optimise 𝐹𝑟 parameter. Flow at Rysstad Øy and Straume were then modelled
using the optimised value of 𝐹𝑟.

Solute travel times in the River Otra were derived as described in section 5.3.3. Next,
metabolic parameters (𝑃𝐺𝑃𝑃𝑚𝑎𝑥, 𝑘𝑃𝐴𝑅, 𝑅𝐸𝑅) were optimised in the process of fitting
oxygen time-series. Model parameters were optimised using a least-squares minimisation
approach with the Nelder-Mead algorithm (Gao and Han, 2012) from the lmfit package
(v1.0.1) in Python. Lower and upper bounds were provided from prior knowledge to
constrain the inverse model parameters and avoid parameter equifinality. Initial values of
𝑃𝐺𝑃𝑃, 𝑘𝑃𝐴𝑅 and 𝑅𝐸𝑅 were provided from the outputs of the two-station accountingmethod.
𝐹𝑎𝑑𝑣 was optimised in the modified two-station model (ADV formulation, accounting
method) by minimising the residual sum of squares of GPP-PAR link function (Eq. 5.16),
and was used as a constant in the inverse ADV model. Metabolism parameters were
assumed to be constant over a period of 24 h for a given reach.

I sampled Bayesian posterior distribution of solute model parameters using the Markov
Chain Monte Carlo (MCMC) algorithm using the emcee package (v3.0.2) in python. This
method calculated the log-posterior probability (𝑙𝑛 𝑝(𝜃𝑡𝑟𝑢𝑒|𝐷)) of themodel parameters (𝜃)
given the data (D),

ln 𝑝(𝜃𝑡𝑟𝑢𝑒|𝐷) ∝ ln 𝑝(𝜃𝑡𝑟𝑢𝑒) − 1
2 ∑

𝑛
[(𝑔𝑛(𝜃𝑡𝑟𝑢𝑒) − 𝐷𝑛)2

𝑆𝑛
2 + ln(2𝜋𝑆𝑛)2)] (5.21)

where 𝑙𝑛 𝑝(𝜃𝑡𝑟𝑢𝑒) is the log-prior. The second term on the right represents log-likelihood,
𝑙𝑛 𝑝(𝐷|𝜃𝑡𝑟𝑢𝑒), where 𝑔𝑛 is the generative model, 𝐷𝑛 is the data and 𝑆𝑛 is the measurement
uncertainty. Note that I did not use the MCMC algorithm for parameter optimisation.
Instead, I first optimised themodel parameters using the Nelder-Mead algorithm and later
used the MCMC algorithm to sample from the posterior distribution of these optimised
values to obtain parameter uncertainties and covariance.

5.4 R E SULT S

Performances of flow routing and metabolism models were evaluated separately. River
flows were simulated ahead of the metabolism estimation and outputs from the flow
routing model were fed as inputs in the metabolism model. An initial visual inspection
of flow and DO curves showed that water travelled faster than DO within the study reach
(Figure D.4). Such a time lag could result either from the dual water regulation at Brokke
and Hekni or from the excessive vegetation in the river reach between Rysstad Øy and
Straume. Therefore, to account for this time lag, I included both potential causes in the
model formulations i.e., pure advection (ADV, Eq. 5.7) and also including transient storage
(ADZ, Eq. 5.9) for metabolism estimation. In this section, I present the results of the flow
routing and metabolism model applications. Furthermore, I provide posterior probability
distribution of optimised model parameters in the inverse metabolism model.
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5.4.1 Influence of hydropower plant on DO dynamics along the reach

The O2 turnover in the second section (site 2-3) was only 14%, calculated as 𝑂2,turnover =
1 − 1/𝑒𝑥𝑝(𝑘𝐿/𝑢) (rearranged oxygen footprint equation, Demars et al., 2015), where
𝐿 = reach length (4660 m), 𝑢 = average water velocity (8.03 m min-1) and 𝑘 = reaeration
coefficient (0.00025 min-1). The output suggests that 86% of the oxygen variability at
Straume (site 3) can be attributed to the variability of oxygen at Rysstad Øy (site 2). It
is known that the hydropower plant affects greatly total dissolved gas variation at Rysstad
Øy (Pulg et al., 2016). Hence, the conventional one-station model (Odum, 1956; Appling
et al., 2018a) or averaged two-station model (Demars et al., 2011; Demars, 2019) would not
provide reliable metabolism estimates in the study section. It also highlights the difficulty
of the task of disentangling metabolism from background noise, notably the hydropower
plant effluent at Brokke representing 87% of median flow, i.e. most of the O2 mass flux.

5.4.2 Flow routing model

The flow routing model was able to capture the timing and magnitude of flow peaks
and troughs (Figure 5.3). The model estimated average 61% retention for flow in the
river stretch (𝐹𝑟 = 0.61). Minor discrepancies between modelled and observed flows
were expected because the model does not account for the effect of flow regulation at
the downstream (Hekni) end that causes rapid rises and falls in water level at Hekni.
Nevertheless, the flow routing model satisfactorily reproduced flow variation at Hekni
with goodness-of-fit (𝑅2) of 0.87 (Figure 5.3b).

Figure 5.3: Comparison of flow observations at Brokke and Hekni sites (a) and modelled
and observed flows at Hekni site (b) at 5 min time-steps
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5.4.3 Modified two-station model (accounting method)

Modified two-station model formulation with only pure advection (ADV) performed
better than the formulation with pure advection plus transient storage (ADZ) (Figure 5.4).
The two-station ADZ model simulated sudden drops in NEP at Straume around mid-
day, suggesting a sudden decrease in GPP around mid-day since ER was assumed to be
constant. Variation in PAR did not explain the mid-day drops in GPP (Figure 5.4c). While
an afternoon lull inGPPhas often been reported, the estimatedmid-day drops inNEPwere
not driven by biological production, but indicated a systematic error in the metabolism
estimates resulting from errors in the simulation of DO mass flux. The mass flux of DO
in the river largely followed flow variation. The upstream site (Rysstad Øy) showed
concurrent decline in flow and DO in the afternoon owing to changing water demand
for power plant operations (Figure D.4). The downstream site (Straume) did not show
a concurrent decline in DO and flow, but showed shoulders in the DO time-series earlier
in the day (around mid-day). These shoulders result from delayed transport of DO from
RysstadØy to Straume (Figure D.4) since oxygen variation at Straume is highly influenced
by oxygen variation at Rysstad Øy (explained in section 5.4.1). Although the two-station
ADZ model accounts for these delayed transport mechanisms through transient storage
influence, the model was unable to model NEP variation accurately. The ADV model, on
the other hand, was able to resolve the issue of mid-day drops in GPP to a larger extent.

Both models showed a positive relationship between photosynthesis and light, with
saturation of photosynthesis under high light intensity (Figure 5.4). The ADV model
(𝑅2 = 0.56, Figure 5.4a) represented a slightly better regression fit than the ADZ model
(𝑅2 = 0.44, Figure 5.4b) for GPP-PAR link function (Eq. 5.16). The estimates of half-
saturation light intensity in both models (Figure 5.4) were in line with what is commonly
observed in freshwater systems (𝑘𝑃𝐴𝑅 = 100-500 µmol quanta m-2 s-1, Demars et al., 2011).
The estimates of 𝑃𝐺𝑃𝑃𝑚𝑎𝑥 and 𝑘𝑃𝐴𝑅 fitted in the GPP-PAR link function (Figure 5.4) served
as priors in the inverse model when simulating GPP as a function of PAR.
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Figure 5.4: Non-linear regression between gross primary production (GPP) and
photosynthetically-active radiation (PAR) in the modified two-station (a) ADV and (b)
ADZ models at Straume. (c) shows the variation in net ecosystem production (NEP) and
PAR in themodified two-stationmodels at Straume. Negative values of GPP are not shown
in panels (a) and (b).

5.4.4 Inverse metabolism model

Both ADV and ADZ formulations captured the overall DO variation at Straume
(Figure 5.5), but the ADV model performed significantly better than the ADZ model
to capture the overall trend and magnitude of oxygen variation. The ADZ model showed
a small time lag between the observed and modelled DO concentrations, which indicates
inaccuracies in the simulation of DO mass flux with flow. Note that the flow-velocity
relationships derived for TDG in the study reachdoes not cover the entire range of observed
flows during the modelling period (e.g. equations derived for velocities at Q > 50 m3 s-1

for reach 2, Figure D.2).
Estimated values of metabolism parameters in the ADV model are generally lower than

the estimates of the ADZ model (Table D.2). The ADV model (𝑅2 = 0.96) derived a
better overall goodness-of-fit than the ADZ model (𝑅2 = 0.83). Therefore, I selected the
ADV model to sample Bayesian posterior distribution of metabolism parameters using
the MCMC algorithm. 𝑃𝐺𝑃𝑃𝑚𝑎𝑥 and 𝑅𝐸𝑅 parameters showed a strong positive correlation
during the first two days of the modelling period (> 0.86). Other significant correlations
were observed between 𝑘𝑃𝐴𝑅-𝑃𝐺𝑃𝑃𝑚𝑎𝑥 (0.95) and 𝑘𝑃𝐴𝑅-𝑅𝐸𝑅 (-0.63) on the third day.
Despite these high correlations, I find that the median values (and maximum likelihood
estimates) of all metabolism parameters lie in a close range of the values optimised by the
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Figure 5.5: Comparison of modelled and observed dissolved oxygen concentrations at 5
min time-steps at Straume in the inverse (a) ADV and (b) ADZ formulations

Table 5.2: Median values of posterior probability distribution of the inverse ADV model
parameters with 1-σ uncertainty derived from the MCMC runs and optimised parameter
values by the Nelder-Mead least-squares minimisation algorithm (in brackets). Units are
g O2 m-2 d-1 for 𝑃𝐺𝑃𝑃𝑚𝑎𝑥 and 𝑅𝐸𝑅, and µmol quanta m-2 s-1 for 𝑘𝑃𝐴𝑅.

Parameter Day 1 Day 2 Day 3
𝑃𝐺𝑃𝑃𝑚𝑎𝑥 8.64±0.16 (8.64) 12.38±0.12 (12.96) 11.52±0.24 (11.52)
𝑘𝑃𝐴𝑅 144±5 (144) 144±1 (144) 461±32 (461)
𝑅𝐸𝑅 3.46±0.09 (3.46) 4.61±0.05 (4.32) 4.03±0.04 (4.03)

Nelder-Meadminimisation algorithm (within 1-σ uncertainty) (Table 5.2, Figure 5.6). The
performance of theMCMC algorithmwas judged using the estimate of average acceptance
fraction, which was found to be within an acceptable range (0.2-0.5, Foreman-Mackey et
al., 2013) in all cases. Figure 5.7 shows the variation in NEP and the relationship between
GPP-PAR as estimated in the inverse ADV model.

5.5 D I S CU S S ION

The MUFT model application here demonstrates how the impact of hydropeaking (i.e.
sub-daily flow fluctuations) and transient storage can be included in the estimation of
metabolism. The better performance of the ADV model compared to the ADZ model here
suggests that despite the initial hypothesis, river vegetation may not produce significant
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Figure 5.6: Posterior distribution of inverse ADV model parameters gppmax (𝑃𝐺𝑃𝑃𝑚𝑎𝑥),
kpar (𝑘𝑃𝐴𝑅) and er (𝑅𝐸𝑅) using MCMC algorithm on day 3. Blue lines show the median
values of posterior probability distribution of model parameters. _lnsigma parameter is
used to estimate the true uncertainty in the data.

Figure 5.7: Estimated net ecosystem production (NEP) (a) and modelled GPP-PAR
relationship (b) at Straume in the inverse ADV model. GPP = gross primary production
and PAR = photosynthetically-active radiation.

transient storage (ADZ) and that introduction of pure transportation delay (ADV) in the
model may be sufficient to characterise DO dynamics at Straume during the modelling
period. However, due to limited data availability, it is difficult to confidently pinpoint
the dominant transport mechanism in the river. Since, the aim of this study is to present a
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generalmodel application formetabolism estimation, I do not delve in to the specifics of the
process-dynamics in the River Otra. In this section, I discuss the differences in the inverse
and accounting modelling approaches along with their limitations and the possibilities of
future model improvements.

5.5.1 Comparison of the inverse model with the modified two-station model

Discrepancies in the outputs of the inverse and modified two-station models mainly arise
from the differences in the model structures. For example, the numerical solution of the
ODE equation in the modified two-station model uses a simple Euler finite difference
scheme as opposed to a more robust lsoda solver from the FORTRAN library odepack
(Hindmarsh, 1983) in the inverse model. Moreover, both models characterise GPP in
different ways. The accounting approach, although advantageous for not assuming the
type of relationship between GPP and PAR, may fail to segregate the influence of flow on
DO mass flux from the influence of biological production on DO transformations, when
DO mass flux and/or solute-lag coefficient are not characterised accurately. On the other
hand, the inverse model is able to segregate these influences up to a certain extent because
GPP is modelled as a function of PAR.

Another difference between the two approaches is the parameter calibration process.
The two-station method involves an accounting approach where NEP is directly estimated
from oxygen observations without any parameter calibration procedure. Daily average
ER is then estimated during dark hours, and GPP is calculated as a difference between
NEP and daily average ER. The inverse model, on the other hand, optimises model
parameters in the process of fitting modelled DO to observed DO time-series using a
least-squares minimisation algorithm; hence, providing more confidence in the model
estimates. Admittedly, the inverse approach includes more number of model parameters,
corresponding to a larger number of degrees of freedom and consequently, the risk of
parameter equifinality (Spear and Hornberger, 1980). However, as demonstrated in
this study, equifinality may be reduced by constraining the parameter space with prior
knowledge of the river system and by minimising the number of unknown parameters
by using field measurements to the extent feasible (e.g. Du et al., 2014). Often, random
sampling methods such as MCMC algorithms are useful to estimate uncertainty in the
optimised model parameters (e.g. Segatto et al., 2021) as represented in this study.
Furthermore, sensitivity analysis may also be used to identify the most influential
parameters for the simulations (e.g. Vandenberghe et al., 2001).

Although the modified two-station approach is simpler and quicker compared to the
inversemodel, its application is limited to amuch smaller spatial scale, i.e. river-reach scale.
Additionally, the two-station accounting approach relies on continuous DOmeasurements
at both sites in the river reach of interest, which is often not possible due to adverse field
conditions, drifting of sensors, etc. (Wagner et al., 2006). On the contrary, the inverse
model is an apt alternative to estimate long-term trends in metabolism at a river-network
scale evenwhen there are gaps present in continuousDOmeasurements at calibration sites.
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Despite the differences laid out here, I showed that the outcomes from the two-station
accounting approach are useful to constrain the metabolism parameters in the inverse
model. Therefore, both approaches are complementary rather than competitive.

5.5.2 Modelling limitations and future efforts

The parsimonious model MUFT relies on certain assumptions. For example, the flow
routing model approximates constant flow parameters for the entire reach between
Brokke andHekni because it employs reach-by-reach calibrationmethod between gauging
stations. In this study, a constant retention parameter was assumed for the entire river
section between Brokke and Hekni. This assumption is not realistic since river hydraulics
varywithin the stretch (discussed in section 5.3.3). Although I accounted for heterogeneity
using reach-wise flow-velocity relationships in the flow routing model, such data may not
be easily available in other rivers. It is important to estimate flow parameters precisely
because small errors in flow parameters may result in large errors in metabolism estimates
when flow dominates the mass flux of oxygen in the river. Multiple non-linear storage
tanks (𝑛𝑐 > 1) may be more appropriate when the river section is heterogeneous,
but increasing 𝑛𝑐 value did not significantly improve model performance in this case.
Parameter sensitivity analysis (e.g. Sincock et al., 2003) may also be employed prior to
MCMC simulations to identify an appropriate model structure and reduce bias in the flow
parameters. However, a more detailed investigation of parameter bias is out of the scope
of this study.

It is difficult to derive a physical understanding of travel time mechanisms because of
the lumped parameter structure of the MUFT model. Characterisation of oxygen travel
time from flow based parameters integrates flow and metabolism models and therefore,
overcomes this issue to a certain extent. However, it is still difficult to relate travel
time parameters to river hydraulic properties and interpret the physical significance of
model coefficients because of the crude description of dead zone (ADZ, Wallis et al.,
1989) and advective transport (ADV, Beck, 1976) in the model. For example, I found
ADZ residence time to be poorly related to metabolism. A lack of strong relationship
may partly be attributed to the assumption that TDG velocity ≈ solute velocity in the
river. This assumption may introduce some bias in NEP estimates. Conservative tracer
experiment may help characterise solute travel time parameters (e.g. 𝑇𝑠𝑎𝑑𝑧, 𝑇𝑎𝑑𝑧, 𝛽) more
accurately and consequently, help reduce the bias in metabolism estimates. A poor
relationship may also occur from model’s inability to account for the diversity of transient
storage components that contribute to different metabolic processes (e.g. autotrophic and
heterotrophic production) (Haggerty et al., 2009). Oneway to account for diverse transient
storage zones is through resazurin tracer experiments, to segregate metabolically active
transient storage from a less-active transient storage (Haggerty et al., 2009; Argerich et al.,
2011). However, the possibility of a weak or non-existent relationship between transient
storage and ecosystem functioning cannot be neglected (Bernhardt et al., 2002; Webster
et al., 2003). Nonetheless, in spite of limited available data and a simplified structure,
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both formulations of the model are able to provide fairly accurate predictions of oxygen
transport and dispersion in this as well as previous studies (Lees et al., 2000; Santos Santos
and Camacho, 2022). TheMUFTmodel thus offers an alternative with a trade-off between
accuracy and complexity.

Another simplification in the MUFT model is in the way in-stream processes are
modelled. The ADZ formulation, in particular, assumes that metabolic activity occurs in
the transient storage zone, and not during oxygen advection. Lees et al. (1998) proposed a
mass decay term for non-conservative solutes (e.g. ammonium). However, it is difficult to
characterise mass decay of oxygen during advection through a single term, when coupled
with streammetabolism approach. On the other hand, the ADV formulation does not have
this issue since it assumes that advection process is dominant in the river reach. Themodel
also includes a simple formulation of metabolism fluxes, but a more complex formulation
may be included if necessary. I find that a Michaelis-Menten type equation adequately
simulates GPP in the River Otra, but the model can be easily modified to include other
formulations such as linear (Payn et al., 2017) or hyperbolic tangent function (Jassby and
Platt, 1976; Holtgrieve et al., 2010). I assume constant ER over a day to keep the model
structure simple, but ER may be varied as a function of water temperature (Holtgrieve
et al., 2010; Song et al., 2018) if deemed necessary in the river system. Estimate of gas-
exchange coefficient 𝑘 is crucial since a small bias in 𝑘 may lead to a large bias inmetabolism
estimates (Hall Jr and Ulseth, 2020). 𝑘 may be modelled as a function of river hydraulic
properties (Raymond et al., 2012) or may be estimated during model calibration with
prior information from empirical relationships or direct measurements (Holtgrieve et al.,
2010). Here, 𝑘 is estimated from floating chamber studies, performed under a limited
range of flows. Use of a constant 𝑘 value during the modelling period was adequate in
this case because the study reach represented slow-flowing water with considerably low
gas-exchange compared to metabolism, thus limiting biases in metabolism from biases in
𝑘.

In the River Otra, I find that both inverse modelling approaches are able to predict
oxygen variation in the study reach, although performance of the ADV model is
significantly better than the ADZ model. The MUFT modelling approach presents
opportunities to estimate metabolism in rivers with unsteady flows and/or transient
storage zones. Popular approaches of solute modelling with unsteady flows (e.g. flood
routing models based on Saint-Venant equations) or including transient storage zone
effectswith steady flows (Bencala andWalters, 1983; Runkel, 1998; Manson et al., 2010) use
partial differential equations (one-dimensional) to simulate water and solute movement.
The MUFT model, on the other hand, takes a simpler approach by characterising river
reaches as non-linear storage zones in series (zero-dimensional), and simulates water
and solute movement using ordinary differential equations. Due to its parsimonious
structure, the model includes fewer calibration parameters. Furthermore, the model offers
flexibility in selecting an appropriate formulation (e.g. unsteady flows, solute transport
mechanisms) that best represents the river conditions.
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5.6 SUMMARY AND CONCLUS ION

This study presents a coupled modelling approach (MUFT) to estimate whole-stream
metabolism in rivers with unsteady flow conditions and transient storage zones. The
MUFT model integrates flow and oxygen modelling based on travel-time relationships
proposed by Sincock and Lees (2002), which were originally built on QUASAR
(Whitehead et al., 1997b) and ADZ (Wallis et al., 1989; Lees et al., 2000) models. I
proposed an additional model formulation for dominant advective transport (ADV) based
on the model developed by Beck and Young (1975). The MUFT approach can be applied
through inversemodelling or accountingmethod (two-stationmethod) according to user’s
preference and data availability. I demonstrated the application of the MUFT model
in the River Otra in southern Norway. I found that the accounting method is simpler,
but shows high bias in metabolism estimates when oxygen mass flux is not precisely
modelled. The inverse modelling approach is more robust as it employs least-squares
minimisation algorithm to optimise model parameters. Moreover, the inverse model
supports investigation of parameter uncertainties and correlations through Bayesian
sampling of posterior distributions.

The MUFT approach presents opportunities to estimate whole-stream metabolism in
hydropeaking river environments as well as in rivers influenced by transient storage
zones. While the model application here is demonstrated only for a short stretch of
the river with limited data, the model can be modified in future to estimate long-term
trends in metabolism in larger river networks when sufficient data are available. With
increasing feasibility of high-resolution, long-term oxygen monitoring in rivers (Appling
et al., 2018a,b; Bernhardt et al., 2022), it is possible to extend the model for network-scale
metabolism prediction. Using the knowledge of river hydraulics, the inverse model may
also be able to predict metabolism rates at sites within the river network where continuous
monitoring is not carried out (e.g. Pathak et al., 2022). In future, the model can be
expanded for metabolism prediction under future changes such as warming, extreme
weather events and river management practices - a research area that calls for more
attention (Bernhardt et al., 2018).
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6
SYNTHESIS

6.1 OUTPUT S O F THE THE S I S

This thesis has produced two models to estimate ecosystem metabolism. Both model
developments target applications in rivers influenced by different types of pressures:
(1) flow regulation through locks and weirs with multiple stressors influencing river
water quality (e.g. sewage discharges, eutrophication), and (2) flow regulation through
hydropower dams with/without excessive plant growth influencing solute transport.

The first model is a high-resolution, process-based water quality model that simulates
ecosystem metabolism along with its environmental controls at hourly timescale in
lowland rivers. This model was developed by modifying an existing water quality model,
Quality Evaluation and Simulation Tool for River-systems (QUESTOR), to run at higher
temporal resolution. The hourly QUESTOR model was tested along a 62 km stretch in the
lower River Thames for a 2 year period. Chapters 2 and 3 described model development
and its application, and demonstrated that the hourly model can successfully predict
phytoplankton biomass and ecosystem metabolism in lowland rivers.

Chapter 2 showed that modelling at higher temporal resolution (hourly scale) improves
prediction of the timing and magnitude of phytoplankton blooms, which are often a
concern for healthy river ecosystem functioning. Therefore, the model can be used to
provide early warnings of phytoplankton blooms. The model also facilitates identification
of flow and temperature bounds that promote harmful phytoplankton growth (>
0.3 mg L-1), which is useful to devise potential management strategies for maintenance of
good river water quality.

Chapter 3 presented a novel approach to estimate ecosystem metabolism in lowland
rivers (influenced by multiple stressors) using the hourly QUESTOR model introduced in
Chapter 2. The hourly QUESTOR model overcomes the current challenges (see Bernhardt
et al., 2018) in metabolism modelling since it accounts for oxygen advection under slowly
varying flows and for oxygen transformations due to biochemical processes. The model
also allows characterisation of specific biochemical pathways of oxygen sinks, and hence
derives a comprehensive understanding of different respiration pathways in the river (e.g.
autotrophic and heterotrophic respiration). Furthermore, I derived the most influential
stressors and their relationships with metabolism rates using empirical modelling as
shown in Chapter 3. A comparison of process-based and empirical approaches was
useful for understanding mechanisms of multiple stressor influence on metabolism and
for recommending ways to improve process-based modelling using the outputs of the
empirical approach.

In Chapter 4, I used the hourly QUESTORmodel to evaluate river ecosystem response to
future climate and management conditions in the lower Thames. I tested 11 scenarios that
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included future changes in either a single or a combination of multiple stressors. Deriving
the response of ecosystem metabolism under future climate and management conditions
is vital to guide river restoration and future management efforts. In the lower Thames, I
found that the climate and management scenarios considered in this thesis will compress
the metabolic fingerprint in future.

The second model, Metabolism estimation in rivers with Unsteady Flow conditions and
Transient storage zones (MUFT), couples an unsteady flow routing model with the two-
stationmetabolismmethod. TheMUFTmodel can be applied using an accountingmethod
(book-keeping) and/or inverse modelling approach. The model also allows flexibility
in selecting an appropriate model structure to suite hydrological and solute transport
characteristics in the river. For example, Chapter 5 described two model formulations
that can be selected based on the dominant solute transport mechanism (either advective
or dispersive transport) in the river of interest. In Chapter 5, I showed the development
and implementation of the MUFT model using a case study of the River Otra in Norway.
The model was successfully implemented in an 11 km river section below a hydropower
dam, where flow shows significant diel fluctuations from dam operations and oxygen
transport is influenced by excessive plant growth. The MUFT model is advantageous over
conventional metabolism models because it offers opportunities to estimate metabolism
at higher spatial scale in hydropeaking rivers, which was not done before using a simple,
parsimonious model.

6.2 ECOSYST EM METABOL I SM FOR R I V ER HEALTH MANAGEMENT

6.2.1 Ecosystem metabolism as a river health indicator

It is becoming increasingly evident that river health assessments need to move from only
focusing on structural metrics (e.g. water chemistry, biomass) to also including functional
metrics (e.g. metabolism, nutrient cycling) (Palmer and Febria, 2012). To maintain river
health at a ’good ecological status’, the European Union Water Framework Directive
prescribes biological, hydromorphological and physicochemical criteria. Dissolved
oxygen (DO) is an important indicator of river ecological status, but the majority of
ecological assessments have relied on discontinuous DO measurements to assess river
health. Discontinuous measurements of DO do not provide information about ecosystem
processes. Regular monitoring of DO has now become feasible with advances in robust
sensor technology (Rode et al., 2016), but it is difficult to segregate the influence of
environmental and anthropogenic controls by just looking at the DO data. Ecosystem
metabolism (derived from continuousDO time-series), on the other hand, not only reflects
the changes in these controls, but also separates the influence of biological and physical
controls on DO (Jankowski et al., 2021). Long-term time-series of metabolism have also
been shown to provide early warnings of ecosystem degradation and recovery (Bernhardt
et al., 2018; Arroita et al., 2019) and hence, metabolism is often advocated as an important
indicator of river health (Young et al., 2008).
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6.2.2 Modelling ecosystem metabolism

6.2.2.1 One-station models

Inverse modelling approaches with Bayesian analysis are generally more popular for
metabolism estimation due to their robustness (Jankowski et al., 2021). Especially, one-
station, inverse approaches arewidely employed in currentmetabolismmodels (e.g. Grace
et al., 2015; Winslow et al., 2016; Appling et al., 2018b). These widely-used one-station
metabolism models work on certain assumptions (Demars et al., 2015; Appling et al.,
2018b): (1) the river reach is well mixed, (2) metabolism and gas exchange rates are
homogeneously distributed within the reach of estimation and (3) sources of oxygen in
the reach are limited to photosynthesis, gas exchange with the atmosphere, and water
flowing from upstream. Due to these assumptions, one-station methods cannot be used
in reaches that have any discontinuities in the upstream river reach such as reaches
with inputs from major tributaries or wastewater treatment plants as well as reaches
where sub-daily flow variation persists (e.g. hydropeaking rivers). These limitations
have confined whole-stream metabolism estimation to river environments that conform
to these assumptions. However, with increasing river regulation practices around the
world, it is especially important to develop models that support metabolism estimation in
rivers that are influenced by multiple pressures such as water abstractions, damming and
pollution loading. The selection of a model for metabolism estimation broadly depends
on two criteria – river characteristics and data availability. The majority of the metabolism
methods use continuous time-series of DO, photosynthetically-active radiation (PAR) and
water temperature, and sometimes alsomake use of discharge, barometric pressure, solute
travel time, salinity, etc. When data for the key variables are available at few sites in
the river and when the aforementioned assumptions (of one-station method) are fulfilled
in the river reach, the existing one-station models are powerful tools for metabolism
estimation. These models also allow error propagation in metabolism estimates through
prior information of parameters, through estimation of parameter uncertainties as well
as through simultaneous quantification of gas exchange and metabolism (Appling et al.,
2018b). Furthermore, these models are useful for aggregating estimates from a large
number of sites within and across rivers to infer regional patterns and predictors of whole-
stream metabolism (Beaulieu et al., 2013; Bernhardt et al., 2022). The challenge, however,
becomes evident when the assumptions of one-station method are violated.

Recently, researchers have tried to address this problem by extending current models or
through introduction of new modelling approaches, which I will discuss throughout this
section when relevant. The models presented in this thesis (hourly QUESTOR andMUFT)
mainly address the third aforementioned assumption of the one-station method for the
purpose of metabolism estimation in regulated rivers. In the following sections, I will talk
about applicability of the models introduced in this thesis for metabolism estimation in
specific, regulated river environments (not covered by one-station models) and discuss
how they advance upon the existing modelling approaches.
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6.2.2.2 Metabolism modelling under unsteady flows

The one-station method assumes steady flow conditions in the river reach meaning the
reach must not be influenced by water abstractions and water inputs from dams, canals
and pollutant discharge points (Appling et al., 2018b) that may potentially result in
large diel fluctuations in flow. Diel variations in flow are especially common in river
stretches located below hydropower dams, where significant fluctuations in flow occur
in the process of managing power demands (Zimmerman et al., 2010). Changes in flow
directly influence river ecosystem processes including metabolism (Poff and Zimmerman,
2010). For metabolism estimation in river reaches below dams, two-station models (Hall
et al., 2016) are required to account for the processes influencing DO changes over a reach
rather than a single point. However, two-station models assume constant DO transport
velocities over a reach during the period of analysis (Payn et al., 2017) and the estimation
in these models is limited to a single river reach. In cases where flow changes during
the period of analysis, the assumption of constant DO transport velocity is violated and
hence, metabolism estimation in these cases require a more sophisticated approach such
as coupling of a flow routing model with a two-station metabolism model (e.g. Payn
et al., 2017). A full dynamic flood wave routing, based on Saint-Venant’s equations
and commonly used in 1-D hydrological models, is ideal in unsteady flow conditions.
The MUFT model uses a simpler flow routing model (Sincock and Lees, 2002) than a
dynamic wave routing model (e.g. Payn et al., 2017), and couples it with a two-station
metabolism model. The choice of a simpler structure in the MUFT model is beneficial
because different modules (e.g. flow routing, transient storage zone, metabolism) of the
model are compatible, and because the model offers benefits of reduced complexity (0-D)
with less number of model parameters over 1-D hydrological models. Reduced complexity
in models is advantageous since it minimises data requirements, model sensitivity and
issues of parameter equifinality (Lindenschmidt, 2006).

6.2.2.3 Metabolism modelling in transient storage zones

Transient storage (or hyporheic) zones in rivers are created mainly from two mechanisms,
(1) from the hydrological interaction between surface water and groundwater
compartments (called hyporheic zones) or (2) from water entrapment and exchange
between fast-moving water and in-channel dead zones such as pools, eddies and excessive
vegetation (Bencala andWalters, 1983; Gooseff et al., 2005; Haggerty et al., 2009). Transient
storage zones are characterised with higher residence time compared to free-flowing
water. Therefore, these zones are potential hotspots of metabolism and nutrient cycling.
For accurate estimation, it is vital to include the influence of transient storage zones in
metabolism model applications in rivers where solute transport is influenced by these
zones.

Usually, transient storage zone influence is modelled using traditional advection-
dispersion equations (Bencala andWalters, 1983; Runkel and Bencala, 1995), where model
parameters are estimated from solute tracer experiments. These transient storage models
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include 1-D solute transport with sources and sinks representing exchange (Bencala and
Walters, 1983; Runkel, 1998; Haggerty andReeves, 2002). In later advancementswith these
models, studies proposed a use of resazurin as a ’smart-tracer’ to characterisemetabolically
active transient storage in river systems (Haggerty et al., 2009; Argerich et al., 2011). While
these models are advantageous, they were developed for steady flow conditions and are
relativelymore complex than the other suite of transient storagemodels developed around
the same time such as the Aggregated Dead Zone (ADZ) model (Beer and Young, 1983;
Wallis et al., 1989). The ADZ model is a lumped model with a simpler structure and has
proved to perform equally well in streams and rivers (Lees et al., 2000). Owing to the
similarity in the conceptual basis, the MUFT model adapts the representation of transient
storage zones from the ADZ model and couple it with the unsteady flow routing and the
two-station metabolism model. The final model, MUFT, was able to successfully simulate
oxygen transport and estimate metabolism rates in my case study, River Otra, where it
was crucial to include the influence of both, unsteady flows and transient storage zone, in
the estimation of whole-stream metabolism. The MUFT model also has an ability to move
beyond conventional reach-scale estimation of metabolism to larger spatial scales subject
to data availability.

6.2.2.4 Metabolism modelling in multi-stressed environments

The processes controlling DO changes in a river reach in the one-station models include
DO production from photosynthesis, DO loss from ecosystem respiration and oxygen
exchange at the air-water interface (Figure 6.1). Processes such as nitrification, organic
matter availability and biomass changes may also influence DO changes in rivers, but
the one-station models do not specifically account for these processes. Lowland rivers
around the world are influenced by multiple pressures such as flow regulation, water
abstractions, channel modifications, eutrophication and pollution discharges from sewage
treatment works (Schinegger et al., 2012). Rivers that are influenced by such multiple
pressures show complex interactions between metabolism and multiple stressors such as
flow, sediment and physicochemical water quality. Thus, it is crucial to account for these
multiple stressors in a mechanistic way in models to derive accurate interpretations of
ecosystem metabolism.

Similar to the MUFT model, the hourly QUESTOR model also addresses the third
aforementioned assumption of the one-station method, but in a different context. The
hourly QUESTORmodel is suitable for river reaches that are influenced by flow regulation
through locks and weirs (slowly varying flow in my case study), water abstractions,
eutrophication, and inputs from wastewater treatment plants and tributaries. The model
can also be linked to groundwater models/estimates (Hutchins et al., 2018). Previous
modelling efforts have accounted for some of the controls mentioned above. For example,
models have estimated metabolism as a function of biomass (Segatto et al., 2020), but
keeping it as a latent variable. Several water quality models (e.g. Enhanced stream
water quality model, Brown and Barnwell (1987); River water quality model, Reichert et
al. (2001)) include multiple controls, but these models are tested at coarser resolutions
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Figure 6.1: Conceptual diagrams of flow regimes, reach structures and oxygen source-sink
processes in one-station, hourly QUESTOR andMUFTmodels. Points of estimation in the
hourly QUESTOR (b) and MUFT (c) models are end points of all reaches in the modelled
network.

and do not specifically focus on estimating whole-stream metabolism. The hourly
QUESTOR model addresses these limitations and also facilitates quantification of specific
biochemical pathways of ecosystem respiration, which is crucial to estimate autotrophic
base of food webs as well as to to calculate carbon spiraling in rivers (Hall Jr and
Beaulieu, 2013). Furthermore, unlike one-station models, the hourly QUESTOR model
estimatesmetabolism based on the physics of the underlying hydrological and biochemical
processes, thus removing the dependence on continuous DO time-series that often have
data gaps due to adverse field conditions and maintenance issues.

6.2.2.5 Hourly QUESTOR versus MUFT

In addition to addressing the aforementioned limitations (third assumption of one-station
models) in current modelling approaches, the models presented in this thesis also offer
other additional advantages. Bothmodels (hourly QUESTOR andMUFT) have a potential
to predict long-term trends in whole-stream metabolism at a river-network scale. The
hourly QUESTOR model application demonstrates this advantage in Chapter 3 where
the model predicts metabolism at hourly scale for a period of 2 years at multiple sites
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along a 62 km river stretch. Although the application of the MUFT approach in Chapter 5
is limited to a short time-period and a single river reach because of data constraints,
the model can be extended to a wider river network and implemented to predict long-
term metabolism trends when data are available. Because these models simulate river
reaches like continuous stirred tank reactors in series, estimation of metabolism is also
possible at sites where monitoring of all environmental variables is not carried out, but
the information about river reach hydraulics is available. This is a considerable advantage
over current metabolism models that focus on estimation at a single river reach and rely
on continuous DO time-series for metabolism estimation. The model structures also
allow the translation of upstream changes in river flow and quality dynamics (e.g. water
abstractions, pollution loading) to downstream sites of interest. Therefore, both models
can be used as predictive tools to assess impacts of restoration measures on downstream
river reaches. This thesis demonstrates this application in Chapter 4 where metabolism
is predicted under future climate and management scenarios using the hourly QUESTOR
model.

Although both models presented in this thesis share several common advantages as
mentioned above, these models are considerably different in their approach to estimating
ecosystemmetabolism (Table 6.1). The models are suited to specific types of river systems
and the choice of model will depend on the river characteristics and the multiple stressors
that modify the river water quantity and quality. The other major difference lies in the
representation of processes in both models (Figure 6.1). In terms of simulating in-stream
oxygen sources and sinks, the MUFT approach is closer to the widely used two-station
models in ecological studies, whereas the hourly QUESTOR model is closer to the widely
used water quality models in civil engineering applications. The hourly QUESTOR model
estimates metabolism based on the underlying hydrological and biochemical processes
and simulates flow, water temperature, PAR, biomass and nutrient concentrations in
addition to DO. Therefore, the hourly QUESTOR model is more complex and involves
manymodel parameters compared to theMUFTmodel. TheMUFT approach, on the other
hand, is a simpler, parsimonious approach to estimate metabolism with fewer parameters.
As the hourly QUESTORmodel involves simulation of several water quality determinands,
the data requirements for model inputs and calibration are also higher compared to the
MUFT approach. Bothmodels also differ in their parameter estimation process. The hourly
QUESTORmodel involves sequential calibration process, where parameters are calibrated
determinand by determinand from upstream to downstream sites. It is possible to use
more robust parameter optimisation algorithms with water quality models (e.g. Soil and
water assessment tool - SWAT, Abbaspour et al., 2007). However, the hourly QUESTOR
model does not include the parameter optimisation feature at the moment. The MUFT
model, on the other hand, employs a least-square optimisation algorithm to estimate
model parameters. The MUFT application can also provide additional information about
parameter covariance and uncertainties using Bayesian methods as shown in Chapter 5.
Overall, both models offer useful applications in different types of river environments as
demonstrated in this thesis. Parsimonious approaches are generally better and should
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be prioritised when possible. However, when rivers are influenced by multiple stressor
interactions, it is also crucial to employ models that include these process-interactions to
provide accurate interpretations of river metabolism dynamics.

Table 6.1: Details on data requirements, methods and processes used in the hourly
QUESTOR and MUFT models. The parameters in the first column are adapted from the
summary information table (Table 2) by Jankowski et al. (2021) for several metabolism
models. This table shows where the hourly QUESTOR model and the MUFT model stand
in comparison to the existing metabolism models (reviewed in Jankowski et al., 2021)

Hourly QUESTOR model MUFT model
Environment Flow regulation through

weirs, water abstraction,
eutrophication, pollution
discharges

Flow regulation
through
hydropower dams,
transient storage
zones

Software Fortran Python
Time-series input
data

Flow, light, water temperature,
nutrients, suspended sediment,
dissolved oxygen, chlorophyll-a

Flow, light, water
temperature,
dissolved oxygen,
atmospheric
pressure

Discrete input
data

Reach hydraulics, mean water
depth, velocity-discharge
relationship, volume of
sewage discharges and water
abstractions, tributary inputs of
water quantity and quality, weir
type and height

Reach hydraulics,
mean water depth,
velocity-discharge
relationship

Parameter
estimation
method

Sequential calibration Bayesian

Gas exchange
coefficient
calculation Empirical equation Floating chamber

experiments
Uncertainty
estimates Fourier amplitude sensitivity

test
Posterior
distribution

Outputs GPP, ER, flow, light, water
temperature, nutrients,
suspended sediment, dissolved
oxygen, biomass

GPP, ER, flow,
dissolved oxygen
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6.2.3 Environmental controls of ecosystem metabolism

Similar to terrestrial systems, lotic systems do not show regular trends in productivity and
respiration cycles because these systems are controlled by combinations of several external
stressors, which themselves may not have a periodicity (Bernhardt et al., 2018, 2022).
Rivers may represent disparate controlling mechanisms for metabolic regimes because
of their dynamic nature and spatial variability in their physical, chemical and biological
characteristics (Dodds et al., 2018). These controlling factors are scale dependent. Alberts
et al. (2017) provide a conceptual template of critical drivers of stream metabolism acting
at thewatershed and local scales (see Figure 1 inAlberts et al., 2017). The regional template
can comprise climate, vegetation and topography drivers that regulatewatershed and local
scale controls on streammetabolism. Land use changes operate at thewatershed scale, and
control flow and nutrient fluxes entering into rivers. On the other hand, temperature, light
and organic matter inputs are mainly determined by riparian land use at the local scale.
In addition to the spatial scale, the temporal scale also controls how different stressors
(e.g. temperature, light, vegetation, flow) affect gross primary production (GPP) and
ecosystem respiration (ER). These controls further varywithin and across river biomes and
river sizes. In this section, I discussmyfindings (Figure 6.2) on themultiple environmental
controls of ecosystem metabolism in lowland rivers (particularly the lower River Thames,
Chapter 2-4) in context of the existing literature on commonly observed environmental
controls of metabolism in river ecosystems. The findings on multiple environmental
controls of metabolism in the lower River Thames are derived using a combination of
process-based (hourly QUESTOR) and empirical modelling approaches.

Temperature and light are key controls of ecosystem metabolism in rivers (Roberts et
al., 2007). Temperature variations are found to influence water quality, biotic conditions
and ecosystem functioning processes such as primary production, self-purification and
nitrification in rivers (Poole and Berman, 2001; Caissie, 2006). Light availability controls
primary production by autotrophs. The light regime is influenced bymultiple factors such
as turbidity levels, topographic shading and riparian shading (Savoy and Harvey, 2021).
Seasonal variation in riparian vegetation may significantly influence light availability in
temperate rivers, where maximum light is available in early spring before leaf out and
during late autumnafter the litterfall (Hill andDimick, 2002; Roberts et al., 2007). Changes
in light availability are found to alter the relationship between temperature and ecosystem
metabolism in rivers (Huryn et al., 2014; Nebgen and Herrman, 2019). Some studies have
also reported synergistic interaction between light andwater temperature to influence river
metabolism (Beaulieu et al., 2013). In the lower River Thames, light and temperature
significantly influencemetabolismdynamics. GPP increases in response to increase in light
availability and reaches maximum levels within an optimum temperature range (Bowes
et al., 2016; Pathak et al., 2022). ER responds in a similar manner to GPP during biomass
growing season when autotrophic respiration governs ER variation. Often, temperature is
shown to have a stronger control on ER compared toGPP in rivers (Demars et al., 2011). As
a result, studies have predicted increase in ERwith future warming, indicating an increase
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Figure 6.2: Key controls of ecosystem metabolism in the lower River Thames. Orange
arrows represent direct effects, yellow arrows represent indirect effects, green arrows
represent interaction effects and blue arrows represent reverse effects. All stressors (in
yellow, oval boxes) influence each other, but their interrelationships are not shown for
brevity. OM, organic matter; GPP, gross primary production; ER, ecosystem respiration.

in atmospheric CO2 contributions from river systems (Demars et al., 2016). I found a
similar pattern of increase in heterotrophic respiration with future warming in the lower
River Thames (Chapter 4).

Flow regime also affects ecosystem structure (e.g. microbes, plants, animals) and
functioning (e.g. organic matter decomposition, nutrient cycling) that may directly
or indirectly influence ecosystem metabolism rates (Von Schiller et al., 2017). The
lower River Thames shows a strong coupling between GPP and ER, which is commonly
observed in rivers (Hall et al., 2016) as a major part of the organic matter produced
during photosynthesis is immediately respired by autotrophs and their closely associated
heterotrophs (Hall Jr and Beaulieu, 2013). However, the coupling between GPP and ER
may be disturbed by extreme hydrological events. For example, high floods are shown
to reduce GPP in rivers due to scouring and export of benthic sediment beds in rivers
(Uehlinger and Naegeli, 1998; Uehlinger, 2006) or from increased turbidity (Uehlinger,
2000; Izagirre et al., 2008). Low flows can cause drying of stream bed and hamper the
functioning of benthic primary producers (Datry, 2012), although studies have also found
improvements in ER due to organic matter accumulation during post-drought recovery
(Acuña et al., 2005). The lower Thames shows highest GPP during low flow conditions
due to high biomass growth, which significantly subsides during the rest of the year. Such
a seasonal variation is often observed in temperate rivers, whereGPP peaks during periods
of high light availability and low flows (Roberts et al., 2007) and significantly reduces
during high flows that flush away primary producers (Wang et al., 2019).

102



Nutrient loading may also impact metabolism and become significant when light and
other disturbances are not limiting (Hill et al., 2009). For example, riparian vegetation
removal and flow regulation may render rivers vulnerable to nutrient availability because
of reduced light limitation and disturbance frequencies in rivers (e.g. Sabater et al., 2000).
Removal of riparian vegetation can also lead to increased nutrient delivery in rivers, which
in turn may increase GPP rates (Young et al., 2008; Alberts et al., 2017). There is still
limited proof suggesting control of nutrient availability on metabolism in rivers (Hoellein
et al., 2013). Few studies have shown increase in GPP and ER from increase in nitrogen
and/or phosphorus loading (e.g. Kominoski et al., 2018) or have suggested nutrient
concentrations to be secondary drivers of metabolism (Dodds and Cole, 2007; Young et
al., 2008). Contrarily, some studies have discovered reverse causality, i.e. metabolism
variation to have a strong control on riverine nutrient dynamics (Roberts et al., 2007;
Heffernan and Cohen, 2010; Jarvie et al., 2018). The outputs in the lower Thames agree
with the latter findings and show a negative relationship betweenmetabolism and nutrient
concentrations because of biomass uptake (Chapter 3). Nitrate concentrations in the
river are present in excess throughout the year and do not limit primary production.
Phosphorus concentrations, on the other hand, decrease with high biomass growth and
become limiting in summer.

Organic matter variation also influences river metabolism. ER rates in rivers are strongly
controlled by organic matter availability, and hence the capacity of rivers to support
or transport organic matter downstream determines the extent of GPP-ER coupling
(Bernhardt et al., 2018). Establishing a relationship between metabolism and organic
matter availability is challenging. ER is influenced by the composition of organic matter
(dissolved and particulate fractions of organic matter), which in turn is regulated by a
combination of environmental controls. Particulate organic matter availability in rivers
is often linked to seasonality of riparian vegetation (Tank et al., 2010) and hydrological
events (Raymond and Saiers, 2010). In low-gradient large rivers, floodplain-channel
connectivity is also important to regulate particulate organic matter availability (Minshall
et al., 1985). Dissolved organic mater availability in rivers can be linked to riparian soil
type (Mulholland et al., 1997), terrestrial leaf litter (Kaplan andNewbold, 1993), in-stream
primary production (Kaplan and Bott, 1989) as well as anthropogenic activities (Meng
et al., 2013). The bioavailability of organic matter is also crucial in driving respiration,
and can be determined by tracing organic matter origins (e.g. fluorescence analysis,
Hudson et al., 2007). Due to lack of data, I could not establish a relationship between
organic matter availability and metabolism in the lower Thames. However, using limited
water fluorescence observations in the river, I observed a positive relationship between
water column respiration and tryptophan-like fluorescence (represents degradable organic
matter). These findings indicate a potential control of organic matter availability on ER
dynamics in the river. Such a relationship has also been observed in a previous modelling
study in the River Thames, where heterotrophic respiration was found to increase with
dissolved organic carbon delivery from flooding (Hutchins et al., 2020). There is a need
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to systematically include the dynamics of particulate and dissolved fractions of organic
matter in stream metabolism models (see Segatto et al., 2020).

It is vital to study interactions between key stressors of ecosystem metabolism that I just
discussed (light, temperature, flow, nutrients, organic matter) to predict how ecosystem
metabolismwill bemodified by global drivers such aswarming, land use changes and flow
regulation (Bernhardt et al., 2018). However, sufficient information is not yet available to
establish such interactions at regional scales. The effects ofmultiple stressors are difficult to
separate and hence, metabolism response to changes in global drivers is difficult to predict.
Modelling tools such as the hourly QUESTOR (Chapter 4) presented in this thesis can help
predict and disentangle river ecosystem response to these multiple stressors. In the lower
Thames case study, the hourly QUESTOR model predicts that metabolism will generally
increase during winter and spring, but reduce during summer and autumn seasons in
response to predicted changes in climate (hydrology, temperature). Future hydrology and
urbanisation changes will not significantly alter metabolism, although it is important to
consider that the predicted future changes in flow are considerably low for the study site
(Prudhomme et al., 2013). High flow events still have a potential to boost heterotrophic
respiration up to 30% more than the present conditions (Chapter 4). The model predicts
that reduction in total phosphorus (TP) loads from sewage treatment works and incoming
tributaries will reduce GPP during the biomass growing season. However, management
efforts targeting light availability (e.g. riparian shading) are found to be more efficient
compared to TP reduction practices. Overall, both climate and management scenarios
considered in this thesis predict improvements in river water quality, especially during
the biomass growing season when the river health is at risk from harmful phytoplankton
growth and oxygen depletion. Chapter 2-4 in this thesis demonstrated hourly QUESTOR
model’s application in analysing multiple stressor controls of ecosystem metabolism by,
(a) modelling metabolism as a function of underlying hydrological and biochemical
controls, (b) deriving response variables (GPP, ER) for empirical models to analyse
stressor importance and interactions and (c) predicting ecosystem metabolism under
future climate and management scenarios for river restoration and management.

6.3 R E S EARCH L IM I TAT IONS AND FUTURE D I R EC T IONS

6.3.1 Data requirements

Data requirements for metabolism estimation largely depends on the objective and the
type of the model used (Jankowski et al., 2021). Here, I outline the data requirements for
metabolism estimation using the two models presented in this thesis (see Table 6.1). For
the MUFTmodel application, continuous time-series of DO, discharge, water temperature
and atmospheric pressure at minimum two sites in the river reach are required for model
input and calibration. PAR is also crucial and ideally should be measured at the river
site. However, it may not always be feasible to measure PAR directly, in which case, it
can be modelled using remote sensing information (Holtgrieve et al., 2010; Waylett et al.,
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2013) with careful considerations. Mean river depth can be derived as discharge divided
by mean velocity and mean stream width. Accurate estimation of mean velocity and
solute residence time is important, especially in river reaches with significant transient
storage (Lees et al., 2000). Ideally, a conservative tracer such as salt slug (Hall Jr
and Hotchkiss, 2017) should be used to derive residence time and velocity estimates,
but other approaches (e.g. use of TDG as shown in Chapter 5) may be employed if
estimates can be validatedwith observations. Furthermore, tracer experiments for varying
discharge should help derive empirical relationships between discharge and velocity,
which is useful for upscaling metabolism estimates (Raymond et al., 2012). Application
of the hourly QUESTOR model in multi-stressed rivers (affected by eutrophication and
wastewater discharges) requires biomass and nutrient information in addition to the data
for the variablesmentioned above. Some information about riverine process-rates (benthic
oxygen demand, biochemical oxygen demand) is also needed for parameter calibration in
the hourly QUESTOR model.

The hourly QUESTOR model has more extensive data requirements compared to the
MUFT model. It can be difficult to gather data for all variables at high-resolution since
routine monitoring practices generally do not include high-frequency measurements of
water quality. To investigate this limitation, I evaluated model’s sensitivity (the hourly
QUESTOR) to the frequency of input data in Chapter 2. I find that the model outputs
are not sensitive to the time-scale of water quality inputs, but are highly sensitive
to that of radiation inputs. The outputs of the sensitivity analysis are encouraging
for model applications elsewhere since PAR can be modelled in the absence of direct
field measurements. Nevertheless, high-resolution data are still crucial to minimise
uncertainties in the interpretations of metabolism pathways. There is a need to include
water quality variables in regular monitoring practices. Long-term data from regular
monitoringwill not only helpmonitor ecosystemmetabolism, butwill also help investigate
the environmental controls of river ecosystem health.

6.3.2 Modelling limitations

The modelling approaches presented in this thesis are not exempt from limitations. Both
models presented here do not include characterisation of rainfall-runoff mechanisms in
their flow routing modules, and hence rely on external estimation when these effects
are required to be included (e.g. to derive future hydrology). The simple flow routing
module in the hourly QUESTOR model is unable to capture rapid changes in flows and
water quality that could occur from river regulation such as dam operations (Cox, 2003b).
Therefore, in rivers with rapidly changing flows, the flow routing module of the MUFT
model should be used.

Accurate characterisation of gas exchange coefficient remains challenging, especially
using open-channel approaches in rivers with low productivity and high gas exchange
(Hall Jr and Ulseth, 2020). Several methods exist for estimation of gas exchange coefficient
varying from direct measurement (e.g. floating chamber studies, Lorke et al., 2015) to
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empirical approaches (e.g. relating gas exchange to river hydraulics, Raymond et al.,
2012) to Bayesian methods (e.g. partial pooling, Appling et al., 2018a) and many more
(see Hall Jr and Ulseth, 2020). It is crucial to accurately estimate gas exchange in the
MUFT model since the estimation of ER and gas exchange coefficient is interlinked. This
is not an issue for the hourly QUESTOR model since metabolism rates are not directly
dependent on gas exchange estimates, but are estimated based on the underlying physics
of the environmental controls (Segatto et al., 2020; Pathak et al., 2022). In any case,
characterisation of gas exchange is not a matter of significant concern in this thesis
because river reaches in both case studies represent slow flowing water with negligible
gas exchange compared to metabolism. However, the selection of gas exchange estimation
method is crucial to limit errors in metabolism (Hall Jr and Ulseth, 2020), especially in
turbulent rivers where gas exchange is significant (Ulseth et al., 2019).

Uncertainties in process-based models are inevitable and may propagate from a
variety of sources such as errors in field measurements, model structure and process
understanding due to lack of data (Abbaspour et al., 2015). It is especially a concern
with process-based models that have huge data requirements because there is a possibility
of having acceptable outputs through multiple pathways (parameter values, inputs, etc.),
called parameter equifinality (Beven and Freer, 2001). Although the hourly QUESTOR
application in this thesis doesn’t include a separate uncertainty estimation, the daily
QUESTORmodel (basis of hourly model) has been tested and subjected to comprehensive
sensitivity analysis elsewhere (Deflandre et al., 2006; Hutchins and Hitt, 2019). This
thesis also makes use of the existing literature on water quality modelling in the River
Thames (Whitehead and Hornberger, 1984; Whitehead et al., 2015; Hutchins et al., 2018)
tominimise parameter uncertainties during the calibration process. Extensive applications
of theQUESTORmodel in the River Thames provide confidence in calibration of the hourly
model parameters since optimised values lie within similar ranges.

In the MUFT model application (Chapter 5), I demonstrated the quantification of
parameter uncertainties and covariance using a Bayesian approach. The MUFT model
involves optimisation of parameters using a least-square minimisation approach and
sampling of Bayesian posterior distribution of model parameters using the Markov Chain
Monte Carlo (MCMC) algorithm. Bayesian approaches are becoming more popular in
metabolism modelling (e.g. Holtgrieve et al., 2010; Grace et al., 2015; Appling et al.,
2018a) since these approaches allow inclusion of errors from multiple sources of data
and formal propagation of uncertainties in parameter estimates (Holtgrieve et al., 2016).
Although the MUFT model involves a formal quantification of parameter uncertainties,
the model application in this thesis is limited to a short time-period for a single river reach.
Assessment of the model for multiple reaches using long-term data is needed for further
evaluation of parameter covariance and process understanding.
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6.3.3 Future research directions

For comprehensive comparisons of metabolic regimes within and across river systems as
well as to predict metabolism under changing global drivers, long-term, high-frequency
data at multiple sites within the catchment are required. However, data are usually
collected for shorter time periods and at few sites within the river, mainly due to logistical
reasons. Only recently, has it become feasible to monitor high-frequency water quality
with the availability of cheap and robust water quality sensors (Rode et al., 2016). The
advances in sensor technology has made it possible to collate large-scale, high-frequency
water quality observations, many of which are freely available online such as data sets
maintained by theNational Ecological ObservatoryNetwork (NEON) (https://www.neon
science.org/data) and theGlobal Lakes EcologicalObservatory (GLEON) (Hanson et al.,
2016). Specifically, data amalgamation initiatives such as STREAMPULSE are especially
valuable, where river metabolism data from published studies are gathered and hosted on
an open-access platform (www.data.streampulse.org, Appling et al., 2018b). However,
these data sets are mainly focused on rivers across the United States and more such
compilation efforts are required for European rivers as well.

Future modelling studies should focus on improving the existing knowledge about
how ecosystem metabolism will respond to changing environmental conditions and
anthropogenic actions. To achieve this, synchronous information of ecosystemmetabolism
and its environmental controls is required for diverse river environments. For example,
a recent study by Bernhardt et al. (2022) compiled metabolism estimates for more than
200 rivers across the United States, and found light and flow regime to control ecosystem
metabolism. However, due to the lack of data and modelling techniques, they did not
relate metabolism to other environmental variables (temperature, nutrients or biomass)
and did not include river environments such as those considered in this thesis. Future
broad-scale metabolism assessments require inclusion of diverse environmental controls
and river environments. For example, most metabolism work around the world has been
focused on small rivers that are not heavily impacted by pollution, and only few studies
have focused on large rivers (e.g. Dodds et al., 2013; Hall et al., 2016). Furthermore, studies
analysing impacts of dam operations on river biological health have traditionally relied on
structural indicators (e.g. fish, algae, invertebrates) instead of functioning indicators such
as metabolism. This thesis fills this gap up to a certain extent. Further applications of
the models presented in this thesis will elucidate metabolism controls across more diverse
river ecosystems than those currently studied. That being said, more methodological and
application-based efforts are required to expandmetabolism estimation in river conditions
that are not included in this thesis such as when the river is ice covered (Mejia et al., 2019)
or when the flow is intermittent (Stanley et al., 2004; Acuña et al., 2005).

Human modifications and river management have affected river health around the
world by altering hydrological and water quality regimes (Sabater and Tockner, 2009).
For example, reservoir operations alter metabolism through changes in flow (Sabater
and Tockner, 2009), temperature (Olden and Naiman, 2010), delivery of organic carbon,
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sediments, nutrients and biomass (Kunz et al., 2011). Although studies have looked at the
impacts of natural events such as droughts (Acuña et al., 2005) and flooding (Uehlinger,
2000) on metabolism, few studies have looked at the impacts of river management actions
on metabolism (Levi et al., 2013; Kupilas et al., 2017; Chowanski et al., 2020). Further
research is required to understand metabolism response to river management actions
to guide future river restoration strategies (Hall Jr, 2016). For example, characterising
metabolism at several places across the catchment can help identify high productivity
areas that could support endangered species (Kaylor et al., 2019). Effectiveness of river
restoration actions can be analysed using long-term estimates ofmetabolism (e.g. Batt et al.,
2013). Long-term data on metabolism can also support segregation of ecological response
from anthropogenic actions, and therefore support assessments of ecosystem degradation
or recovery usingmetabolism as an indicator of river health (Roley et al., 2014; Bernhardt et
al., 2018; Arroita et al., 2019). Our understanding of controls ofmetabolism is continuously
improving, and we need more assessments of metabolism within and across biomes to
provide reference conditions for river management.

Ecosystemmetabolism assessment in freshwater systems is an emerging field of research
due to its role in understanding freshwater contribution to the global carbon cycle and
due to the ease of monitoring and estimating metabolism using DO observations. Recent
efforts (Appling et al., 2018b; Bernhardt et al., 2018; Koenig et al., 2019; Bernhardt et
al., 2022) have focused on broad-scale estimation of metabolism as well as on deriving
regional controls of ecosystem metabolism across different biomes. Such broad-scale
assessments are extremely useful to reduce uncertainties in our global estimates of
freshwater carbon fluxes. This thesis directly contributes to these efforts by introducing
two new modelling approaches, hourly QUESTOR and MUFT, that expand metabolism
estimation to river networks influenced by diverse set of environmental stressors, resulting
from different types of river regulation. Throughmodel development and implementation
in this thesis, I have demonstrated that the hourly QUESTOR and MUFT models unlock
new opportunities (a) to estimate whole-stream metabolism, (b) to study multiple
environmental controls of metabolism and (c) to forecast river ecosystem health under
changing climatic and management conditions in regulated, multi-stressed river systems.
Future studies should build on these advances and focus on comparing metabolic
regimes across diverse river environments, while using an increasingly improving pool
of freshwater data sets and metabolism modelling techniques.
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A
HOURLY QUESTOR MODEL

A.1 MODEL THEORY

The change in water temperature is calculated as follows,

𝑑𝑇
𝑑𝑡 = (𝑇𝑖 − 𝑇)

𝜏 −
𝐻(𝐻𝑓 𝑙𝑢𝑥)

𝑧 (A.1)

where 𝑇𝑖 is the mean temperature (°C) from all sources, T is the temperature of water
leaving the reach (°C),H is the heat flux coefficient (m-1), 𝐻𝑓 𝑙𝑢𝑥 = 𝐿𝑖𝑛.𝑅𝑠–𝐿𝑜𝑢𝑡.𝑅𝑜, 𝐿𝑖𝑛 is the
incoming radiation factor (m4 °CW-1 h-1), 𝑅𝑠 is the incoming solar radiation (Wm-2), 𝐿𝑜𝑢𝑡
is the outgoing radiation factor (m4 °CW-1 h-1) and 𝑧 is themeanwater depth of reach (m).
The largest component for the outgoing radiation is the long wave back radiation, which
is given by 𝑅𝑜 = 0.97𝜎𝑇4 (in which 0.97 is the emissivity constant of a water surface, 𝜎 is
the Stefan-Boltzmann constant (5.67051 ×10-8 W m-2 k-4) and 𝑇 is the temperature in °K).

The processes considered in the nitrogen model include transformation of particulate
organic nitrogen to ammonium, nitrification and denitrification. The equation
characterising the rate of change in particulate organic nitrogen (PON) is,

𝑑𝐶𝑃𝑂𝑁,𝑜
𝑑𝑡 =

(𝐶𝑃𝑂𝑁,𝑖 − 𝐶𝑃𝑂𝑁,𝑜)
𝜏 − 𝑘𝑚𝑖𝑛.𝐶𝑃𝑂𝑁,𝑜 + 𝛼.𝑘𝑟𝑒𝑠 + 𝛼.𝑘𝑑𝑒𝑎𝑡ℎ −

𝑣𝑠𝑒𝑑.𝐶𝑃𝑂𝑁,𝑜
𝑧 (A.2)

where 𝐶𝑃𝑂𝑁,𝑖 is the input PON concentration (mg L-1), 𝐶𝑃𝑂𝑁,𝑜 is the output PON
concentration (mg L-1), 𝑘𝑚𝑖𝑛 is the mineralisation rate (h-1), 𝑘𝑟𝑒𝑠 is the respiration rate of
autotrophs (h-1), 𝑘𝑑𝑒𝑎𝑡ℎ is the death rate of autotrophs (h-1), 𝑣𝑠𝑒𝑑 is the settling velocity
(m h-1), 𝐶𝑝ℎ𝑦 is the concentration of chlorophyll-a (Chl-a) (mg L-1) and 𝛼 is the ratio of
nitrogen to Chl-a in autotrophs.

The change in ammonium (NH4) is represented as,

𝑑𝐶𝑁𝐻4,𝑜
𝑑𝑡 =

(𝐶𝑁𝐻4,𝑖 − 𝐶𝑁𝐻4,𝑜)
𝜏 − 𝑘𝑛𝑖𝑡.𝐶𝑁𝐻4,𝑜. ( 𝐷𝑂

𝐷𝑂 + 𝑆𝑛𝑖𝑡
) + 𝑘𝑚𝑖𝑛.𝐶𝑃𝑂𝑁,𝑜 − 𝑛𝑝𝑟𝑒𝑓 .𝑘𝑝ℎ𝑜.𝛼

(A.3)

where 𝐶𝑁𝐻4,𝑖 is the input NH+
4 concentration (mg L-1), 𝐶𝑁𝐻4,𝑜 is the output NH+

4
concentration (mg L-1), 𝑘𝑛𝑖𝑡 is the nitrification rate (h-1), 𝑆𝑛𝑖𝑡 is the dissolved oxygen (DO)
half-saturation concentration for nitrification (mg L-1), 𝑘𝑝ℎ𝑜 is the photosynthetic rate of
autotrophs (h-1) and 𝑛𝑝𝑟𝑒𝑓 is the autotroph preference for ammonia.
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The change in nitrate is calculated as,

𝑑𝐶𝑁𝑂3,𝑜
𝑑𝑡 =

(𝐶𝑁𝑂3,𝑖 − 𝐶𝑁𝑂3,𝑜)
𝜏 +𝑘𝑛𝑖𝑡.𝐶𝑁𝐻4,𝑜. ( 𝐷𝑂

𝐷𝑂 + 𝑆𝑛𝑖𝑡
)−𝑘𝑑𝑒𝑛.𝐶𝑁𝑂3,𝑜−(1−𝑛𝑝𝑟𝑒𝑓 ).𝑘𝑝ℎ𝑜.𝛼

(A.4)

where 𝐶𝑁𝑂3,𝑖 is the input NO-
3 concentration (mg L-1), 𝐶𝑁𝑂3,𝑜 is the output NO-

3
concentration (mg L-1) and 𝑘𝑑𝑒𝑛 is the denitrification rate (h-1).

Process transformations for organic and inorganic phosphorus are included in themodel
as explained below. The change in organic phosphorus (Porg) is calculated as,

𝑑𝐶𝑃𝑜𝑟𝑔,𝑜
𝑑𝑡 =

(𝐶𝑃𝑜𝑟𝑔,𝑖 − 𝐶𝑃𝑜𝑟𝑔,𝑜)
𝜏 − 𝑘𝑃𝑚𝑖𝑛.𝐶𝑃𝑜𝑟𝑔,𝑜 + 𝑘𝑟𝑒𝑠.𝛽 + 𝑘𝑑𝑒𝑎𝑡ℎ.𝛽 −

𝑣𝑠𝑒𝑑.𝐶𝑃𝑜𝑟𝑔,𝑜
𝑧 (A.5)

where 𝐶𝑃𝑜𝑟𝑔,𝑖 is the input Porg concentration (mg L-1), 𝐶𝑃𝑜𝑟𝑔,𝑜 is the output Porg
concentration (mg L-1), 𝑘𝑃𝑚𝑖𝑛 is the phosphorus mineralisation rate coefficient (h-1) and 𝛽
is the ratio of phosphorus to Chl-a in autotrophs.

The change in inorganic phosphorus (here soluble reactive phosphorus, SRP) is
represented as below,

𝑑𝐶𝑆𝑅𝑃,𝑜
𝑑𝑡 =

(𝐶𝑆𝑅𝑃,𝑖 − 𝐶𝑆𝑅𝑃,𝑜)
𝜏 + 𝑘𝑃𝑚𝑖𝑛.𝐶𝑃𝑜𝑟𝑔,𝑜 − 𝑘𝑝ℎ𝑜.𝛽 (A.6)

where 𝐶𝑆𝑅𝑃,𝑖 is the input SRP concentration (mg L-1) and 𝐶𝑆𝑅𝑃,𝑜 is the output SRP
concentration (mg L-1).

The change in suspended sediment (SS) concentration in the model is represented as,

𝑑𝐶𝑆𝑆,𝑜
𝑑𝑡 =

(𝐶𝑆𝑆,𝑖 − 𝐶𝑆𝑆,𝑜)
𝜏 − 𝑣𝑠𝑒𝑑.𝐶𝑆𝑆,𝑜.𝑧 (A.7)

where 𝐶𝑆𝑆,𝑖 is the input SS concentration (mg L-1) and 𝐶𝑆𝑆,𝑜 is the output SS
concentration (mg L-1).

The change in biochemical oxygen demand (BOD) is calculated as shown below,

𝑑𝐶𝐵𝑂𝐷,𝑜
𝑑𝑡 =

(𝐶𝐵𝑂𝐷,𝑖 − 𝐶𝐵𝑂𝐷,𝑜)
𝜏 −𝑘𝑏𝑜𝑑.𝐶𝐵𝑂𝐷,𝑜. (

𝐶𝐷𝑂,𝑜
𝐶𝐷𝑂,𝑜 + 𝑆𝑏𝑜𝑑

)−
𝑣𝑠𝑒𝑑.𝐶𝐵𝑂𝐷,𝑜

𝑧 + 32
12.𝑘𝑑𝑒𝑎𝑡ℎ.Δ

(A.8)

where 𝐶𝐵𝑂𝐷,𝑖 is the input BOD concentration (mg L-1) (mean from all sources) and
𝐶𝐵𝑂𝐷,𝑜 is the output BOD concentration (mg L-1).
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Several process rate coefficients (e.g., 𝑘𝑚𝑖𝑛, 𝑘𝑛𝑖𝑡, 𝑘𝑏𝑜𝑑) in the model are temperature-
dependent as below,

𝑘𝑇 = 𝑘𝑇𝑟𝑒𝑓
.𝜃(𝑇−𝑇𝑟𝑒𝑓 ) (A.9)

where 𝑘𝑇 is the process rate at T °C (h-1), 𝑘𝑇𝑟𝑒𝑓 is the process rate (h-1) at a reference
temperature 𝑇𝑟𝑒𝑓 that is 20°C and 𝜃 is a temperature correction factor.

Denitrification rate (𝑘𝑑𝑒𝑛, h-1) is represented as,

𝑘𝑑𝑒𝑛 = 𝑘𝑑𝑒𝑛20
𝑧 .100.0293𝑇 (A.10)

where 𝑘𝑑𝑒𝑛20 (m h-1) is the denitrification parameter provided by the user.
For reaeration at surface in the DO module, saturated DO concentration (𝑂𝑠𝑎𝑡) is

calculated using the equation attributed by Bowie et al. (1985) to Elmore andHayes (1960),
assuming pressure to be 1 atmosphere and salinity as zero.

𝑂𝑠𝑎𝑡 = 14.652 − 0.41022𝑇 + 0.007991𝑇2 − 0.0000777774𝑇3 (A.11)

Reaeration coefficient (𝑘𝑟𝑒𝑎, h-1) is estimated using an empirical relationship between
velocity and depth derived by Owens (1964),

𝑘𝑟𝑒𝑎 = (5.3.𝑣0.67.1.024𝑇−20)
𝑧1.85 (A.12)

For reaeration at weirs, oxygen deficit ratio (𝑅𝑂𝐷𝑅) is calculated based on water
temperature (T), degree of pollution (A), weir height (H) and type (B) (Gameson, 1957),

𝑅𝑂𝐷𝑅 = 1.0 + [(0.38𝐴𝐵𝐻).(1.0 − 0.11𝐻).(1.0 + 0.046𝑇)] (A.13)

where A is dependent on the percentage oxygen saturation (POS) as shown below,

Table A.1: Degree of pollution (A) for percentage oxygen saturation (POS) in the model
POS (%) A
≥60 1.8
60-40 1.6
40-10 1.0
<10 0.65

POS is calculated using 𝑂𝑠𝑎𝑡 and the actual DO concentrations in the water column as
below,

𝑃𝑂𝑆 = (
𝐶𝐷𝑂,𝑜
𝑂𝑠𝑎𝑡

) .100 (A.14)

B varies based on the weir type as shown below,
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Table A.2: Values of B in Eq. A.13 for weirs in the model
Weir type B
Free-fall 1
Sloping 0.4
Step 1.3
Cascade 0.8

A.2 A S S E S SMENT OF MODEL P ER FORMANCE

Model performance was assessed using a combination of Nash and Sutcliffe Efficiency
(NSE) and percentage error in mean (PBIAS) statistics. NSE value represents how well
the model explains the variance in the observed time-series data. The value of PBIAS
indicates up to what extent the model under (negative) or over-estimates (positive) the
observed data trends. NSE and PBIAS statistics are calculated by Eq. A.15 and Eq. A.16,
respectively.

𝑁𝑆𝐸 = 1 − ⎡⎢
⎣

∑𝑛
𝑖=1(𝑌𝑜𝑏𝑠

𝑖 − 𝑌𝑠𝑖𝑚
𝑖 )2

∑𝑛
𝑖=1(𝑌𝑜𝑏𝑠

𝑖 − 𝑌𝑚𝑒𝑎𝑛)2
⎤⎥
⎦

(A.15)

𝑃𝐵𝐼𝐴𝑆 = ⎡⎢
⎣

∑𝑛
𝑖=1(𝑌𝑜𝑏𝑠

𝑖 − 𝑌𝑠𝑖𝑚
𝑖 ).100

∑𝑛
𝑖=1(𝑌𝑜𝑏𝑠

𝑖 )
⎤⎥
⎦

(A.16)

𝑌𝑜𝑏𝑠
𝑖 is the ith observed value, 𝑌𝑠𝑖𝑚

𝑖 is the ith simulation value, 𝑌𝑚𝑒𝑎𝑛 is the mean of the
observed data and n is the total number of observations.
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B
HOURLY QUESTOR MODEL : IMPLEMENTATION AND
CALIBRATION
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Table B.1: River network description in the hourly model (W = weir, T = tributary, D =
sewage treatment works, A = abstraction, Calib = calibration)
Reach Name Reach Length (km) Calib Site Influence Type Influence Description
Caversham 3.5 Start Point
Kennet A,T,D,W River Kennet influences

including Kennet at ufton
bridge, Clayhill brook,
Smallmead ditch, Reading
STW, Blake’s weir and Kennet-
Avon canal

Sonning 3.7 Yes W Caversham weir
Shiplake Lock 1.1 W Sonning weir
Wargrave 3.5 W Shiplake weir
Marsh Lock, Henley 4.0 T Lodden River
Remenham 6.9 W Marsh weir
Hurley Lock 1.2 T Fawley court Stream, Hamble

brook
Temple Lock 2.7 W Hurley weir
Marlow Lock 1.3 W Temple weir
Dial Close, Cookham
Dean

1.9 W Marlow weir

Stone House 2.3 D Hurley STW
Bourne End 1.1 D Little Marlow STW
Cookham Bridge 5.0 T Wye River
Boulter’s Lock 2.9 W Cookham weir
Taplow (Bray Lock) 1.7 Yes W Boulter’s weir
Dorney Reach 3.5 W Bray weir
Boveney Lock 0.9 A,T,D Bray pumping station, Cut

River, Maidenhead STW
Windsor Racecourse 3.3 W Boveney weir
Romney Lock 1.3 T,D Boveney ditch, Slough STW
Windsor (Datchet) 5.0 Yes W Romney weir
Sunnymeads 0.7 A Datchet and Sunnymeads

intakes
Old Windsor 2.8 D,W Windsor STW, Old Windsor

weir
Runnymead 1.7 Yes End Point
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Table B.2: Values of global model parameters
Symbol Definition Value Unit
𝐻 Heat flux coefficient 0.005 m-1

𝑇𝑟𝑒𝑓 Reference temperature for reactions 20 °C
𝜃 Temperature correction factor for BOD decay 1.047 -
𝜃 Temperature correction factor for nitrification 1.085 -
𝜃 Temperature correction factor for hydrolysis 1.08 -
𝜃 Temperature correction factor for benthic oxygen

demand
1.08 -

𝜃 Temperature correction factor for phosphorus
mineralisation

1.08 -

𝜃 Temperature correction factor for respiration of
phytoplankton

1.08 -

𝜃 Temperature correction factor for growth of
phytoplankton

1.08 -

𝑆𝑛𝑖𝑡𝑟𝑖 Half saturation concentration for nitrification 1 mg L-1

𝑆𝑏𝑜𝑑 Half-saturation concentration for satisfaction of
BOD

1 mg L-1

𝑘𝑝𝑟𝑒𝑓 Preference factor for ammonia over nitrate 0.1 -
𝑘𝑁 Half saturation constant for N in phytoplankton 0.1 mg L-1

𝑘𝑃 Half saturation constant for P in phytoplankton 0.01 mg L-1

𝐿𝑜𝑝𝑡 Optimum light intensity for phytoplankton 60 W m2

𝛼 Ratio of nitrogen to Chl-a in autotrophs 10 -
𝛽 Ratio of phosphorus to Chl-a in autotrophs 1 -
Δ Ratio of carbon to Chl-a in autotrophs 50 -
𝛾𝑏𝑎𝑠𝑒 Light attenuation in clean water 0.01 m-1

𝐿𝑠𝑠 Light attenuation per mg of SS 0.01 m-1 mg-1 L
𝐿𝑝ℎ𝑦 Light attenuation per mg of phytoplankton 10 m-1 mg-1

𝑘𝑝ℎ𝑜
𝑟𝑒𝑓 Growth rate maximum for phytoplankton 0.095 h-1

𝑘𝑟𝑒𝑠
𝑟𝑒𝑓 Respiration rate maximum for phytoplankton 0.2 -

𝑘𝑑𝑒𝑎𝑡ℎ
𝑟𝑒𝑓 Death rate maximum for phytoplankton 0.2 -

𝐿1 Fraction of incoming radiation that is visible light 0.5 -
𝐿2 Fraction of incoming visible light useful for

photosynthesis
0.5 -

𝐿3 Fraction of light reaching water surface that is not
reflected

0.6 -

𝐿𝑖𝑛 Incoming radiation factor 1 m4 °C W-1 h-1

𝐿𝑜𝑢𝑡 Outgoing radiation factor 1 m4 °C W-1 h-1
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Table B.3: Calibrated process-rate parameters
Parameter Value Unit
Global parameters
Growth rate maximum for
phytoplankton

0.095 (2.28) h-1 (day-1)

Respiration rate maximum for
phytoplankton

0.2 (0.1 in the phytoplankton
model)

-

Death rate maximum for
phytoplankton

0.2 (0.1 in the phytoplankton
model)

-

Reach-scale parameters
PON to NH+

4 rate 0 h-1 (day-1)
NH+

4 to NO-
3 rate 0.05-0.2 (1.2-4.8) h-1 (day-1)

Denitrification rate parameter 0 m h-1 (m day-1)
Benthic oxygen demand rate 0.000833-0.004 (0.02-0.096) h-1 (day-1)
BOD decay rate 0.025-0.04 (0.6-0.96) h-1 (day-1)
BOD sedimentation rate 0 h-1 (day-1)
P mineralisation rate 0 h-1 (day-1)

Table B.4: Dissolved oxygen (DO)model performance statistics (Chapter 3) for calibration
(2013) and validation periods (2014).

Period Determinand Sonning Taplow Windsor
NSE PBIAS NSE PBIAS NSE PBIAS
(-) (%) (-) (%) (-) (%)

Calib (2013) DO 0.63 11.14 0.47 -8.35 0.59 -6.78
Valid (2014) DO 0.31 14.35 0.31 -8.13 0.50 -7.91
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C
HOURLY QUESTOR MODEL : OUTPUTS

C.1 SUP PORT ING F I GURE S FOR PHYTOPLANKTON MODELL ING IN CHAPT ER 2

Figure C.1: Modelled (hourly QUESTOR) and observed flow duration curve at the
Windsor site in the River Thames
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Figure C.2: Modelled (hourly QUESTOR) and observed quantile distribution of water
temperature (panels a and b), dissolved oxygen (DO) (panels g and h) and chlorophyll
(panels i and j) concentrations at Taplow and Windsor, and of nitrate (panels e and f)
and soluble reactive phosphorus (SRP) (panels c and d) at Sonning Bridge (SB) and
Runnymede during 2013-2014
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Figure C.3: Representation of phytoplankton growth-limiting factors including light
limitation (a), temperature dependence (b), nitrogen (N) limitation (c) and phosphorus
(P) limitation (d) in the hourly QUESTOR model (example of Windsor site)

Figure C.4: Partial dependence plots for the modelled soluble reactive phosphorus (SRP),
nitrate, flow, temperature and photosynthetically-active radiation (PAR) with normalised
fitted values of observed chlorophyll concentrations at Windsor in the first boosted
regression tress (BRT) model
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C.2 SUPPORT ING F I GURE S FOR METABOL I SM MODEL L ING IN CHAPT ER 3

Figure C.5: Modelled (hourly QUESTOR) time-series of percentage dissolved oxygen
saturation (DOsat) at Sonning and Runnymede during 2013-2014

Figure C.6: Diurnal variation (annually averaged) of gross primary production (GPP) in
response to photosynthetically-active radiation (PAR), and diurnal variation (annually
averaged) of ecosystem respiration (ER) in response to modelled (hourly QUESTOR)
water temperature at Sonning and Runnymede
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Figure C.7: Power regression between modelled (hourly QUESTOR) reaeration and
observed flows at Sonning and Runnymede during 2013-2014
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Figure C.8: Comparison of hourlyQUESTORmodel performance using different empirical
equations (by Churchill et al. (1962), O’Connor and Dobbins (1958) and Owens (1964))
to estimate reaeration at the air-water surface. (a), (b) and (c) represents daily fluxes
of reaeration (K), gross primary production (GPP) and ecosystem respiration (ER),
respectively at Windsor during 2013
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Figure C.9: Variable importance of water temperature (1/kbT), inorganic phosphorus
(SRP), photosynthetically-active radiation (PAR), suspended sediment (SS), flow volume,
dissolved organic carbon (DOC) and dissolved inorganic nitrogen (DIN) in random forest
models of gross primary production (GPP) (a) and ecosystem respiration (ER) (b)

125



Figure C.10: Partial dependence plots for environmental controls in random forest models
of gross primary production (GPP) prediction at Sonning and Runnymede sites

Figure C.11: Partial dependence plots for environmental controls in random forest models
of ecosystem respiration (ER) prediction at Sonning and Runnymede sites
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FigureC.12: Relationship betweenmodelled (hourlyQUESTOR)water column respiration
(𝑅𝑊𝐶) and tryptophan-like fluorescence component at Sonning and Runnymede on a
log/log scale
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C.3 SUPPORT ING F I GURE S FOR SCENAR IO ANALYS I S IN CHAPT ER 4

Figure C.13: Monthly percentage change in daily (a) gross primary production (GPP) and
(b) ecosystem respiration (ER) in response to Management and ClimatePop scenarios

Figure C.14: Time-series of (a) flow, water temperature, and (b) nutrient concentrations
at Runnymede in the Baseline scenario
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Figure C.15: Month wise variation in chlorophyll-a (Chl-a) concentrations (a) and
month wise variation in relative change (percentage change) in chlorophyll-a (Chl-a)
concentrations (b) in response to single and multiple stressors scenarios, depicted in the
legend

Figure C.16: Month wise variation in dissolved oxygen (DO) concentrations (a) and
month wise variation in relative change (percentage change) in dissolved oxygen (DO)
concentrations (b) in response to single and multiple stressors scenarios, depicted in the
legend
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Figure C.17: Month wise variation in autotrophic respiration (𝑅𝐴) (a) and month wise
variation in relative change (percentage change) in autotrophic respiration (𝑅𝐴) (b) in
response to single and multiple stressors scenarios, depicted in the legend

Figure C.18: Month wise variation in water column respiration (𝑅𝑤𝑐) (a) and month wise
variation in relative change (percentage change) in water column respiration (𝑅𝑤𝑐) (b) in
response to single and multiple stressors scenarios, depicted in the legend
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Figure C.19: Month wise variation in benthic respiration (𝑅𝑏𝑒𝑛) (a) and month wise
variation in relative change (percentage change) in benthic respiration (𝑅𝑏𝑒𝑛) (b) in
response to single and multiple stressors scenarios, depicted in the legend

Figure C.20: Month wise variations in loss of dissolved oxygen due to nitrification (𝑅𝑛𝑖𝑡𝑟𝑖)
(a) and month wise variation in relative change (percentage change) in loss of dissolved
oxygen due to nitrification (𝑅𝑛𝑖𝑡𝑟𝑖) (b) in response to single and multiple stressors
scenarios, depicted in the legend
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D
MUFT MODEL : THEORY AND IMPLEMENTATION

D.1 E ST IMAT ION OF SOLUTE - LAG COE F F I C I ENT

Using average TDG travel time (Table D.1), 𝑚 = 5/3 (Chapra, 2008) and average flood
wave travel time in Eq. D.1, 𝛽 = 1.55 is derived for the river section between Brokke and
Hekni.

𝑚 = 𝑐
𝑢 = 𝑐

𝑢𝑠 × (1 + 𝛽) =
10780

190
10780

807 × (1 + 𝛽)
(D.1)

D.2 E ST IMAT ION OF F LOW ROUT ING PARAMETER S

Flood wave travel time 𝑇𝑓 𝑙𝑜𝑤 can be dervied from reach length and avereage celerity as
shown in Eq. 5.2. Based on Eq. 5.2 and travel time relationships provided in Table 5.1,

𝑇𝑓 𝑙𝑜𝑤 = 𝐿
𝑐 = 𝐿

𝑚(1 + 𝛽)𝑢𝑠
(D.2)

Solute travel time (𝑇𝑠) at time 𝑡 for a reach 𝑖 is expresses as,

𝑇𝑠 = 𝐿𝑖
𝑢𝑠

= 𝐿𝑖
𝑏𝑖𝑄

𝑐𝑖
𝑡

(D.3)

Substituting Eq. D.3 in Eq. D.2,

𝑇𝑓 𝑙𝑜𝑤 =
𝐿1

𝑏1𝑄𝑐1
𝑡

+ 𝐿1
𝑏2𝑄𝑐2

𝑡
+ 𝐿3

𝑏1𝑄𝑐3
𝑡

𝑚(1 + 𝛽) (D.4)

Values of 𝑏 and 𝑐 constants for each reach are provided in Table D.1.
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D.3 MODEL APP L I CAT ION AND OUTPUT S

Table D.1: Description of river reaches (L = length, W = mean width, v = velocity, 𝜏 =
travel time)

Reach
no

Reach
name

L
(m)

W
(m)

b c Mean v
(m s-1)

Mean 𝜏
(min)

1 Brokke - Rysstad Øy 3130 107 0.1554 0.3967 0.73 71
2 Rysstad Øy – Straume 4660 316 0.0047 0.8699 0.14 550
3 Straume - Hekni 2990 119 0.0489 0.4352 0.27 186

Table D.2: Parameter values in the inverse ADV and ADZ models optimised using the
Nelder-Mead algorithm. Units are g O2 m-2 d-1 for PGPPmax and RER, and µmol quanta m-2

s-1 for kPAR.
Model Parameter Day 1 Day 2 Day 3
ADV PGPPmax 8.64 12.96 11.52

kPAR 144 144 460
RER 3.46 4.32 4.03

ADZ PGPPmax 13.82 14.40 12.53
kPAR 144 144 173
RER 6.48 6.48 5.90
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Figure D.1: Spatial distribution of depth measurements in the Otra River. Data points are
representedwith different colours to segregate depths taken on different days during June,
2020. The triangle markers highlight the locations of the gauging sites in the catchment
(see Fig 5.2)

Figure D.2: Flow-velocity relationship for reach 1 (maroon, triangle markers), reach
2 (green, diamond markers) and reach 3 (blue, square markers) derived using total
dissolved gas observations. Point in orange (circle marker) represents average velocity
for a flow of 102 m3 s-1 derived from a lime addition study between Straume and Hekni.
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Figure D.3: Estimation of gas transfer velocity from a regression between specific flux of
CO2 derived from the floating chamber runs and CO2 saturation deficit derived from the
gas chromatograph analyses

Figure D.4: Time-series of observed dissolved oxygen concentrations C and observed flow
Q (a) and time-series of observed mass flow rate of oxygen and observed flow Q at sites
within the study stretch (b)
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Figure D.5: Day 1. Posterior distribution of inverse ADV model parameters gppmax
(𝑃𝐺𝑃𝑃𝑚𝑎𝑥), kpar (𝑘𝑃𝐴𝑅) and er (𝑅𝐸𝑅) usingMCMC algorithm. Blue lines show themedian
values of posterior probability distribution of model parameters. _lnsigma parameter is
used to estimate the true uncertainty in the data.
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Figure D.6: Day 2. Posterior distribution of inverse ADV model parameters gppmax
(𝑃𝐺𝑃𝑃𝑚𝑎𝑥), kpar (𝑘𝑃𝐴𝑅) and er (𝑅𝐸𝑅) usingMCMC algorithm. Blue lines show themedian
values of posterior probability distribution of model parameters. _lnsigma parameter is
used to estimate the true uncertainty in the data.
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