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ABSTRACT

In this thesis, we present several proposed methods that can be integrated to mitigate

the attack threats of the cache side-channel attacks in particular and the threats of

microarchitectural attacks in general. These methods relied on different viewpoints to

address these threats to maintain and preserve the advantages and characteristics of

cloud computing. The first method uses memory deduplication features to allow the

proposed defence mechanism to reach the shared physical addresses of the sensitive

processes to be monitored and identify suspicious behaviours using logistic regression

to classify the behaviours according to the readings extracted from the observation

of the shared cache lines. This mechanism provides self-protection for the VM and

disrupts attackers’ results in rare cases of false negatives due to frequent access to the

cache lines for monitoring. The second method relied on integrating dynamic and static

analysis based on machine and deep learning algorithms. This mechanism monitors

suspicious behaviour within the shared virtualised system using hardware performance

counters related to the shared cache and affected by the cache side-channel attacks. If

any suspicious behaviour of the VM is observed. In that case, the static analysis is run to

access the disk images and RAM images of the suspicious VM to extract executable files

to be checked against implicit attack characteristics (opcodes) using reverse engineering

tools, and then the threat level of the VM is determined using a Softmax classification

algorithm. This mechanism develops using static analysis to protect the shared systems

with low system overhead and high accuracy. The third method is based on the static

analysis of the microarchitectural attacks and logistic regression for classification. This

mechanism is designed to ensure the integrity of the shared virtualised system.
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CHAPTER 1. INTRODUCTION

The introduction chapter provides an overview of the thesis, which proposes methods to

protect shared virtualised systems against microarchitecture attacks, specifically cache

side-channel attacks. This chapter defines the scope of the project and the motivations

that explain the importance of these proposed solutions. It also describes the problem

that the project seeks to solve by mitigating the threats of cache side-channel attacks,

presents research questions related to the problem and how to design defence systems

that operate at various levels to monitor suspicious activities and ensure the integrity

of VMs and thus the integrity of shared virtualised systems in general, and presents

the hypotheses that have been proposed and relied upon to prove their effectiveness in

experiments.

1.1 Project Area and Motivation

One of the most widely used technologies nowadays is cloud computing technologies

that combine computing resources and services provided to customers via the Internet.

In accordance with the National Institute of Standards and Technology (NIST): "The

Cloud Computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction" [5].

Cloud computing technology brings significant benefits for businesses and organizations,

such as cost efficiency, scalability, and flexibility [6]. According to a Gartner analysis [7]

which considered that cloud computing is among the top 10 most essential and promising

aspects of technologies [8]. Cloud computing facilitates resource sharing by utilising

multi-tenancy technologies to distribute computing resources owned by a third-party

provider [9]. Furthermore, Cloud computing enables the provisioning and deployment of

critical services, such as social media and business applications, with minimal adminis-

tration effort [10].

2



1.1. PROJECT AREA AND MOTIVATION

Multi-tenancy is a critical characteristic of cloud. It enables cloud providers to maximise

resource consumption by distributing a shared virtualised infrastructure across multiple

users, thus reducing cost [6].Cloud computing providers utilise automatic resource

allocation mechanisms, which result in the creation of two or more VMs associated with

distinct clients using the same physical machine’s resources[11]. However, at times, the

resources cloud is shared with a malicious user who exploits the allocation techniques or

VMs placement policy to co-locate their VM with the specific target VM. In such a case,

this could lead to confidentiality violation by executing co-resident attacks [12].

Despite all the benefits of multi-tenancy, it is still a source of new risks in cloud com-

puting [13], [14]. Without appropriate security solutions designed for clouds, security

issues could become the primary concern hindering adoption [6]. Moreover, virtualization

that enables multi-tenancy, considered the main component of a cloud, creates signifi-

cant security vulnerabilities and does not provide adequate isolation between multiple

instances operating on the same host. The NIST report [13, 15] considered that the

multi-tenancy is one of the most serious shortcomings and source of threats to cloud

security and privacy. Likewise, several researchers [16–18] considered the multi-tenancy

as a security vulnerability confronting cloud services vendors.

Also, the shared virtualised environment may be exploited to launch attacks on the

shared cache that contains recently accessed data. These types of attacks expose the

victim’s sensitive information. Knowledge of such sensitive data leads to cracking encryp-

tion keys in almost all used encryption libraries such as AES and RSA which are well

known encryption systems. The use of the shared virtualised environment is a substan-

tial risk to the data unless there is a protection mechanism that monitors the activities

within this environment periodically while maintaining the non-deterioration of the

performance of the system as a whole, identifying suspicious activities and eliminating

any attacking factor that may threaten the shared environments.

Although there are many proposed methods to mitigate the threats of this sort of an

attack, these methods have some limitations in how a mechanism to detect or protect the

3



CHAPTER 1. INTRODUCTION

data works, and also what will steps will be taken after detecting a potential suspicious

behaviour, the accuracy of detection of threat detection, and who is responsible for detec-

tion and protection operations. We also believe that data protection is the responsibility

of everyone who works within the shared virtualised environments. Therefore there is

a need to find integrated solutions that are reliable with high accuracy and acceptable

performance and shared by everyone in order for the result to be an environment with

the least possible threats that may potentially influence the security and privacy of all

users of the shared virtualised environments. This research concentrates on a particular

type of threat, namely the cache side-channel attacks that target the virtualisation

level. In this kind of attack, the attackers have specific target VMs to extract sensitive

information by exploiting various side channels (Breaking cryptography by using infor-

mation leaked from physical parameters such as execution time and electromagnetic

emission [19][12]. Moreover, the work presented in this thesis will introduce compatible

solutions and countermeasures to detect suspicious behaviour that could indicate a

cache side-channel attacks and develop security controls that maintain the advantages

of multi-tenancy and sharing resources while reducing the security risks.

This thesis presents integrated solutions to provide the necessary protection for VMs that

operate in a shared virtual environment in which VMs share a common computing power.

We addressed the security problems from the user’s and the service provider’s point of

view because sharing the responsibility of resources protection is everyone’s responsibility.

Therefore, we provided a mechanism that works inside the VM for detecting suspicious

behaviour that may indicate the presence of an attack, and mechanisms that work inside

the host for detecting the attacks and protecting the shared virtualised environment

against malicious activities and attacks’ programs such as Cache side-channel attacks

with precautions being taken while there has been an indication of an attack on the

shared resource. Also, a mechanism based on static analysis has been proposed to check

VMs on a long-term periodic basis integrated with a well-known antivirus called ClamAV

to scan VM against Microarchitectural Attacks and other threats that may be caused by

viruses.

4



1.2. PROBLEM STATEMENT

1.2 Problem Statement

Cloud computing relies on sharing computing resources over a network to reduce the

cost of infrastructure. One form of sharing involves using a common pool of applications

and programs that could be sensitive. Such as sharing cryptographic libraries using

memory deduplication, which is a memory-saving feature to optimise memory utilisation

and allows to increase the number of VMs on the same host. Despite the economical

benefits of sharing computing resources, it is known to give rise to security risks if

the resources are shared with a malicious user. In such a case, the malicious user can

exploit the shared resources on the same physical machine as a covert channel to launch

side-channel attacks. In some cases, such side-channel attacks are known to be able to

crack most encryption algorithms leading to confidentiality violations [4, 12, 20–22].

There are a number of countermeasures [23–30] designed to mitigate cache side-channel

attacks. Due to the cache attacks relying on sharing cache levels and time difference

of accessing data from cache and main memory, most of the existing defence methods

are proposed based on the following ideas: eliminating imbalance, partitioning caches,

avoiding co-location, and detecting malicious activities. However, they are also known to

have some shortcomings that will be discussed next. When applied to cloud computing,

it requires significant changes to the computing infrastructure. This may hinder their

adoption by cloud providers. Also, some of these methods may cause system performance

degradation and high overhead. They also have high false rates (either false positive or

negative) in detecting malicious activities. They also lack the diversity and comprehen-

siveness of protection against cache side-channel attacks. Moreover, they do not provide

systematic procedures to exclude the malicious VM after detecting the cache attacks.

Therefore, it is necessary to design a protection system that integrates diverse lines

of defence with acceptable performance and high accuracy, making it difficult to be

penetrated and bypassed by attackers. While achieving all this the protection system

also needs to maintain the fundamental nature of shared virtualised systems and

improve security controls that enhance performance characteristics. It is also essential

5



CHAPTER 1. INTRODUCTION

to conserve the economic advantages of the shared virtualised systems while reducing

side-channel attacks and microarchitectural attacks risks and providing mechanisms to

monitor VMs’ activities on the shared cache and design forensics workstation compatible

with shared virtualised systems to analyse executable files of the suspicious VM to

exclude malicious VM.

1.3 Research Questions and Objectives

In the context of providing shared virtualised systems and cloud computing systems

with adequate integrated protection, this work studies and analyse effects, sources

and reasons of the cache side-channel attacks and designing integrated detection and

protection mechanisms that aim to provide the necessary protection for shared systems.

Along these lines, this thesis seeks to answer the following research questions:

• Question 1: Is it possible to take advantage of memory deduplication as a protective

factor to detect suspicious behavior in virtualized systems and obfuscate the attacks’

results?

• Question 2: How can self-protection be provided to a VM for detecting suspicious

activities and protecting its applications against cache side-channel attacks while

there are limitations in using hardware performance counters inside the VM?

• Question 3: How to design a hybrid system that integrates dynamic and static

analysis to detect and protect the shared virtualised system and identify malicious

VMs with acceptable performance and high accuracy?

• Question 4: How to improve a protection system based on static analysis to be

compatible with the nature of the shared virtualised system for scanning executable

files against the cache side-channel attacks?

6



1.3. RESEARCH QUESTIONS AND OBJECTIVES

• Question 5: How to generalise the static analysis to scan microarchitectural attack

opcodes integrated with an antivirus application for periodically scanning VMs

within the shared virtualised system to prevent malware?

• Question 6: How to integrate the proposed solutions to design an integrated system

to protect the shared virtualised system from malware and monitor suspicious

activities?

Several experiments have been accomplished in the subsequent chapters to address the

research questions. Questions 1 and 2 have been discussed in Chapter 3. Questions 3

and 4 have been addressed in Chapter 4, while Chapter 5 has addressed Question 5, and

Chapter 6 has answered the research Question 6.

To address these research questions, the project seeks to fulfill the following objectives:

• Objective 1: To develop security controls that maintain the advantages of multi-

tenancy while reducing the security risks due to side-channel attacks with ac-

ceptable degradation in performance, hence increase the difficulty for attackers to

extract sensitive information.

• Objective 2: To detect abnormal behavior in the virtualised environment that could

indicate cache side-channel attacks.

• Objective 3: To develop a comprehensive protection system to protect cloud com-

puting against a sufficient number of microarchitectural attacks with various

approaches and high accuracy.

• Objective 4: To provide self-protection for VMs to protect their shared applica-

tion and cryptographic libraries within the shared virtualized system without

fundamental changes to the system infrastructure.

The research questions and objectives will also be reviewed in the conclusion, in Chapter

7.
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1.4 Thesis Hypothesis

In this section, we illustrate a number of possible hypotheses to solve the problem

causing the attack.

• H1 - It is possible to sense instability of the shared cache due to the attacks in-

structions on these cache lines by accessing the addresses of the sensitive functions

of the cryptographic libraries in the shared cache and monitor the activities by

measuring the access time of these functions.

• H2 - Disabling memory deduplication may reduce the attack’s success rate, and

hence it can be used as a precaution if suspicious activities are detected.

• H3 - Monitoring the attacker’s activities and their impact on the hardware per-

formance counters using the Linux Perf and then analysing them using machine

learning classifiers, then it will be possible to detect the attack state in the vir-

tualized system with high accuracy because the attack operations usually have

a significant impact on some performance counters during the execution of the

attack.

• H4 - Analyzing the executable files of a particular VM and find the implicit char-

acteristics of cache side-channel attacks will help identify the threat level of the

suspicious VM using a softmax classifier because the attack files contain a series of

instructions and opcodes that threaten the shared system.

• H5 - Combining the H3 and H4 will reduce the system overhead and increase the

detection accuracy because the H3 will indicate which suspicious VM needs to

be analyzed with H4 rather than checking all the VMs in the shared virtualized

system.

• H6 - Generalizing the hypothesis H4 to other microarchitectural attacks and ana-

lyzing their implicit attributes using a logistic regression algorithm combined with

an antivirus application, the protection against malicious programs will be more
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comprehensive because not all antiviruses applications can detect microarchitec-

tural attacks related to the shared virtualised system.

• H7 - If we combine the H1, H5 and H6 to operate together within the shared

virtualised system, the protection system will become more comprehensive, which

will positively affect the accuracy of detecting microarchitectural attacks due to the

diversity of detection methods, as well as the system overhead will be acceptable

because the protection system will rely on dynamic analysis continuously and

restrict the use of static analysis instead of complete reliance on static analysis

that consumes high system overhead.

In the subsequent chapters, several experiments will be conducted to examine the

hypotheses. In Chapter 3, Hypothesis H1 will be examined. Hypothesis H2 and H5 will

be discussed in Chapter 4, while Hypothesis H6 will be tested in Chapter 5, while we

will discuss Hypothesis H7 in Chapter 6.

1.5 Thesis Contributions

This thesis provides new approaches for protecting shared virtualized systems against

microarchitectural attacks and its contributions are outlined as follows:

• We proposed a method for protection against cache side-channel attacks by using

memory deduplication and logistic regression from within the victim VM to detect

suspicious activities and obfuscate the results of the attacks (Chapter 3).

• We designed a method for detecting and protecting shared virtualised systems

against cache side-channel attacks by integrating a dynamic and static analysis and

identifying the threat level of a particular VM using machine learning algorithms

(Chapter 4).

• We developed a method for periodically cleansing shared virtualised systems

against microarchitectural attacks and viruses by analyzing implicit attributes

9



CHAPTER 1. INTRODUCTION

of executable files by using a logistic regression algorithm integrated with a well-

known antivirus application called ClamAV (Chapter 5).

• We designed a method that combines the above contributions to provide comprehen-

sive and integrated protection for shared virtual systems against threats exposed

to them with high accuracy and acceptable overhead on the system (Chapter 6).

1.6 Thesis Structure

The remainder of the thesis is organized as follows:

• Chapter 2 – Literature review – provides a review of concepts and principles related

to cloud computing security and threats to cloud computing and illustrates the

current countermeasures and related shortcomings.

• Chapter 3 – Mitigation through Memory Deduplication – presents a method for

monitoring memory locations of shared sensitive applications such as cryptographic

libraries using memory deduplication to fetch readings of activities on these mem-

ory locations and analyze them using a logistic regression algorithm to identify

abnormal activities that indicate the state of cache side-channel attacks.

• Chapter 4 – Mitigation through Dynamic and Static Analysis – offers a mecha-

nism for detecting the activities of VMs within the shared virtual system using

Linux Perf to fetch the hardware performance counters readings and then analyze

them using logistic regression to detect suspicious behavior. Upon detection of a

suspicious VM, the VM’s executable files are analyzed against the implicit char-

acteristics of the cache side-channel attacks. Then the threat level is determined

using the Softmax neural network algorithm.

• Chapter 5 – Mitigation through Periodically Long-range Intervals Scan – provides

a technique to protect shared virtualized systems by periodically scanning VMs’
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executable files against implicit attributes and opcodes of microarchitectural at-

tacks and analyzing them using a logistic regression algorithm. Also, this method

is integrated with the ClamAV antivirus application to provide comprehensive

protection for shared virtualized systems.

• Chapter 6 – Integrated Protection System – proposes an integrated and comprehen-

sive method that integrates all the proposed methods to provide various lines of

defense with different techniques to protect the shared virtualised systems, making

the attack operations more difficult to penetrate these lines of defense.

• Chapter 7 – Conclusion – highlights the thesis conclusions, summarises the project’s

results to assess how effectively the objectives have been met, and discusses areas

for future research.
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CHAPTER 2. LITERATURE REVIEW

This chapter discusses essential topics, including concepts and principles related to the

research problem; It provides overviews of the benefits and challenges of multi-tenancy

systems. It also presents a study on the microarchitectural attacks that cloud computing

is exposed to and possible solutions with an explanation of their limitations.

2.1 Cloud Computing Security

Cloud computing is adopted by companies, individuals, and governments to save cost, to

increase efficiency, and to obtain other advantages in their business environment [31].

Despite the promising benefits of cloud computing, there are barriers that may limit

its adoption in all areas, especially when it comes to information security within cloud.

Adopters of cloud computing are plagued and concerned by the issue of security [32–35],

as the cloud may be exposed to many security risks through the Internet or through

co-residence that may expose it to more threats of malicious attacks. Concern about

security in cloud computing is considered the main obstacle for the continuing growth of

cloud computing.

Cloud computing is a shared system where many users share the same computing

resources. Cloud computing’s multi-tenancy concept and resource sharing have created

new security concerns and impacts on information security [36, 37]. Cloud computing’s

multi-tenancy makes it possible for malicious users to run a VM and share resources

with a victim VM on the same physical machine, making the malicious and victim VMs

sharing resources on the same host,leading to a break in the logical isolation provided by

virtualisation and a breach in confidentiality or degradation of the performance of the

victim VM by launching side-channel attacks [38, 39].

In cloud computing, there are many different forms of side-channel attacks categorised

based on the target hardware and how they work, for example, side attacks on the cache

memory. Hence, sharing the same physical resources may facilitate side-channel attacks

performed using a shared channel (covert channel) between an attacker and a victim
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VMs. These vulnerabilities may lead to inadequate isolation between VMs and thus steal

confidential and sensitive information from users.

Cloud computing provides clients with a management interface via which they can launch

and terminate VM instances based on a configuration given by the client. To launch

a VM, a client specifies a set of parameters, which are then sent to the provider’s VM

launch service by the client. Before deploying VMs, clients often create a cloud account

and configure VM parameters such as the type of instance, disk image, or location. Then

the VM launch service allocates resources for the VM and selects a specific physical host

to run the new VM; this process is called VM placement. Certain factors influence the

VM placement, for example, the available machines that can be used in the data centre,

concurrent VM launch requests and time.By controlling these factors, an attacker is able

to affect the placement of VMs on specific physical machine to locate the malicious VM

with target VMs. Also, placement policy behaviour can be observable and exploited to

increase the likelihood of attackers achieving co-residency[39].

The multi-tenancy in cloud computing involves multiple users, who may include the

attacker and the victim, sharing the same computing resources. The side-channel attacks

we consider require two main steps: first, placement of a malicious and a target VMs on

the same server (co-located with the target VM), and second, extraction of information

using a covert channel [40, 41].

According to Ristenpart et al. [38], an attacker should follow certain procedures and

phases in order to conduct a co-resident attack and gather confidential information from

the victim VM. In the first phase, the attacker creates an account with a cloud provider,

then the attacker collects information about VM placement policy and discovers the cloud

cartography using network probing. Next, the attacker abuses or brute forces the VM

placement policy and determines whether two instances (attacker VM and target VM)

are co-resident using a network-based co-resident check. After achieving multi-tenancy,

In the third phase, the attacker recovers the sensitive information using a side-channel

attack.
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Cloud computing must be secure and adhere to strict requirements for data confiden-

tiality, integrity, and availability. Cloud computing adopts the multi-tenancy feature to

increase resource utilisation, improve performance, and reduce cost. On the other hand,

multi-tenancy and virtualisation are considered the main challenges in cloud computing.

Cloud computing systems produce several benefits; however, some organisations are still

hesitant about shifting their setups to a cloud, mainly because of security issues and

risks [42–44].

2.2 Side-channel Attacks

According to Shahid et al. [45] "side-channel attacks are the physical attacks that use

the physical process to extract the secret information of the cryptographic algorithms

such as encryption key." These attacks exploit the data leakage from a secret channel

during execution processes. According to AlJahdali et al. [42] "A side channel attack is

any attack based on information gained from the physical implementation of a system.

There are many side channel attacks known in the field; some of the well- known side

channel attacks are timing attacks, power consumption attacks and differential fault

analysis."

Side-channel attacks are evolving in attacking computing devices until they reached

cloud computing platforms, and they are also applicable and work effectively in cracking

many encryption applications and other applications to identify the behaviour of the

victim [46]. Side-channel attacks are not new, whereas their impact is increasing in

cloud computing due to the sharing of resources. In side-channel attacks, the attacker

exploits the shared hardware resources as a covert channel for recovering confidential

information, such as the cryptographic key or any other sensitive information regarding

the victim. The data that is leaked may come in various forms, for example, power

leakage, electromagnetic leakage, and timing leakage.

In the timing attack, the attacker measures the timing of executing sensitive operations
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to break encryption keys or obtain sensitive information about the victim’s behaviour.

This type of attack includes many scenarios and methods for carrying out these at-

tacks. The side-channel attacks have successfully broken almost all the cryptographic

algorithms today. They are a severe threat to the cloud systems [12, 47].

2.2.1 Cache Side-channel Attack

In this work, we focus on cache attacks that target the shared cache memory between

users in virtualized systems, where the attacker analyzes the timing information gained

from retrieving data from the cache or from the main memory [45]. When the CPU looks

for data, it can be found in the main memory or in the cache. If the data is recovered

from the cache, the retrieval time or amount of CPU cycles is low. However, suppose the

data is not cached in memory. In that case, it must be recovered from the main memory,

ensuring a relatively larger amount of time and CPU cycles would be taken to recover it.

Then the recovered data will temporarily remain in the cache memory to improve the

system performance if the data is retrieved next time. Consequently, the attack process

depends on exploiting the time difference between recovering data either from cache

or the main memory; in other words, the time difference between cache hits and cache

misses[20].

The attackers take advantage of timing information to launch attacks on the victim’s

VM using the cache hits and cache misses to measure the CPU cycles or the time to

recover the cache memory’s targeted addresses. In this attack, the attacker can break

the isolation between VMs [22], uncover the victim’s actions, obtain information about

cryptographic operations, and then break the encryption key.

The attackers can obtain sensitive information from encryption processes using timing in-

formation extracted from the shared cache memory. This may lead to breaking encryption

systems, e.g., by using timing information in the TableLookUp implementation of AES.

For making the encryption process easy and fast in AES, the T-Table implementation

was designed in addition to the XORing process (TableLookUp operation). However, the
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T-table entries will be stored in the cache memory when used in encryption processes,

which leads to ease of breaking the encryption key using timing information[20, 48].

The main ways to exploit cache memory and extract sensitive data are given in section

2.2.1.1, section 2.2.1.2, and section 2.2.1.3.

The attacker takes several steps to execute cache side-channel attacks, taking advantage

of shared resources and memory deduplication, as shown in Figure 2.1. The attack is

carried out with the following steps: (1) In the beginning, the victim can use the shared

program that contains a number of sensitive operations and functions that are loaded

into the shared cache by simply entering one of them and executing one of the functions.

(2) The attacker evicts these physical addresses from the cache memory by using the

flush command (clflush) to ensure that the addresses will be retrieved from the main

memory if requested next time, as a trap for the victim to find out the data retrieved and

stored in the cache memory, if the victim used one of these addresses. (3) The victim may

use one or more of the sensitive program’s functions, and as soon as the victim uses one

of them, it will be restored to the cache memory. That means that the victim has actually

fallen into the trap set by the attacker. (4) The attacker retrieves all the addresses that

have been flushed while keeping track of how long it takes to retrieve each of these

addresses using Time Stamp Counter (rdtsc). (5) The attacker analyzes the results. If

the retrieval time for any of the physical addresses is longer than the specified threshold,

this means that none of them was used. However, if the retrieval time for any of them

was less than the threshold, this means that it was used in the sensitive operations.

Data leakage is the result of sharing the same physical machine. Prior studies have

shown the possibility and practicality of cache side-channel attacks in cloud computing.

For instance, in the case of a cross-VM attack on AES implementations, Irazoqui et

al.[20] found that the attack exploits the ransparent Page Sharing used in virtualization

environments. Suzaki et al.[49] employed memory deduplication to detect processes

running on the target VM. Bernstein’s attack is a cache attack that is implemented in

a client-server-based environment that is non-virtualized[50]. Bernstein used a client

18



2.2. SIDE-CHANNEL ATTACKS

Figure 2.1: Flush+Reload Cache Side-Channel Attacks

to send UDP packets to request encryption from the server, and then the server sends

back the encrypted text to the client. Bernstein was able to crack the AES encryption

key using the timing information. Also, Irazoqui et al.[51] applied Bernstein’s attack on

OpenSSL 1.0.1 using a virtualized environment with Ubuntu 12.04 running XEN and

VMware hypervisors. Irazoqui et al. implemented a cross-VM attack scenario, and were

able to break an AES cryptographic key.

Multiple researchers have discussed the security issues related to cache attacks when

certain information is leaked. For instance, in cache attacks on AES, Bernstein imple-

mented a cache attack that targeted the TableLookup of OpenSSL implementation of

AES, using timing information. Bernstein used two servers. One was the actual victim’s

server, and the other was a replica identical to the victim’s server [50]. The attack was

performed in two main stages: the first stage is the profiling and the second stage is the

execution of the attack. In the first stage, the attacker sends a large number of packets

to the identical server. The server encrypts these packets with an identified encryption

key and provides the attacker with the encryption’s timing information. After that, in
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the second stage, a similar operation is executed again, but in this stage targeted the

actual server itself using a private encryption key. Next, the timing profiles from these

two stages are correlated to indicate the most likely value to be the encryption key used

for the encryption process[50, 52, 53].

Yarom et al. presented the cache attack based on Flush + Reload technique to extract a

secret encryption key from the GnuPG 1.4.13 implementation of RSA. The result of their

cache attack was the breaking of the encryption key from an ECDSA (Elliptic Curve

Digital Signature Algorithm)[4, 54]. Gullasch et al.[55] applied a cache timing attack

on the OpenSSL 0.9.8n using Linux kernel 2.6.23. The attack was executed using the

Flush + Reload technique to find out the memory accesses’ timing information. The key

was broken with a few encryption attempts during the attack. Also, Irazoqui et al.[20]

implemented a cache attack with different scenarios on AES by using the Flush + Reload

attack to gain the AES cryptographic key in a virtualized environment. The attack

needed to enable memory deduplication in VMware ESXI 5.5.0 with several Ubuntu

12.04 64-bit guest OSs.

This review was presented based on the information related to the main topic of the

thesis, so through this review, it was identified what side-channel attacks are, their

goals, how to implement them, and what is the appropriate environment for such attacks.

These questions are fundamental to provide a comprehensive overview of these attacks

and thus comprehend and understand the goal of the thesis. Also, Table 2.1 shows the

number of cache attacks, the systems that were targeted to carry out these attacks, and

the exploit points for each system that was targeted. The table shows that these attacks

threaten many cryptographic systems, indicating the diversity of their implementations.
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Table 2.1: Cache Attacks Implementations[1]

Attack Target Experimental system Exploited Fea-
tures

[55] AES(OpenSSL 0.9.8n) Pentium M, Linux
2.6.33.4

Shared library, com-
pletely fair sched-
uler in Linux

[4] RSA(GnuPG 1.4.13) Intel Core i5-3470 (Ivy
Bridge), Intel Xeon E5-
2430, VMware ESXi5.1,
KVM

Memory mapping
or page deduplica-
tion

[20] AES (OpenSSL 1.0.1f) Intel i5-3320M, VMware
ESXi5.5.0

Page deduplication

[54] ECDSA(OpenSSL 1.0.1e) Intel Core i5-3470 Memory mapping

[56] TLS, DTLS (PolarSSL
1.3.6, CyaSSL 3.0.0,
GnuTLS 3.2.0)

Intel i5-650, VMware
ESXi5.5.0

Page deduplication

[57] Keystroke,AES(OpenSSL
1.0.2)

Windows, Linux Shared libraries

[58] DSA in OpenSSL Intel Haswell (Core i5-
4570)

Shared libraries

[59] ElGamal (GnuPG 1.4.13
and 1.4.18)

Xen 4.4 (Intel Xeon E5
2690), VMware ESXi 5.1
(Intel Core i5-3470)

Huge page

[22] User behaviours Ubuntu LTS
v16.04.1,QEMU-KVM
v2.6.2

Page deduplication

[21] AES(OpenSSL) Haswell i7-4790 CPU Shared libraries

2.2.1.1 Prime+Probe

In this method, the attacker’s VM loads the cache lines with its data. Next, it gives

the victim some time to perform some encryption operations. After that, the previously

loaded data retrieval time is measured by the attacker’s VM. As a result, the attacker

will know what data has been removed from the cache memory and, thus, recognize

the cache lines used in the victim’s encryption operations, as shown in Figure 2.2. This

technique does not require shared libraries or page deduplication. Figure 2.2 shows the
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Figure 2.2: Prime+Probe Attacks

steps of the attacker using the prime+probe technique. At first, the attacker fills the

shared cache memory with his own data (cache lines in yellow in the figure), then allows

some time for the victim to carry out some sensitive operations (the victim used the green

cache line in figure), which will be stored in the shared cache memory. After that, the

attacker accesses the same data that was filled in the cache memory and, at the same

time, measures the access time for each cache line. If it exceeds the specified threshold

(marked in red in the figure), it means that the victim used this cache line in its sensitive

operations.

2.2.1.2 Flush+Reload

The attacker’s VM first flushes the required cache lines out of the cache, as shown in

Figure 2.3. After that, it gives the victim time to perform some encryption operations.

Next, the attacker reloads the evicted lines and measures their access time. Thus, the

attacker can identify if the victim’s encryption process has recovered the cache lines,
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Figure 2.3: Flush+Reload Attacks

using the timing information. This technique relies on shared libraries and memory

deduplication. Figure 2.3 represents the steps of the attacker using the flush+reload

technique. In this attack, the attacker first flushes a specific cache lines (marked gray

in the figure) out of the shared cache, then allows some time for the victim to perform

sensitive operations(the victim used green cache lines in the figure), after which the

attacker reloads the same cache line (marked yellow in the figure) that was flushed

before. At the same time, the attacker measures the access time of the cache line. If the

access time is shorter than the specified threshold, this means that the victim used the

same cache line in the sensitive operations (marked in red in the figure).

2.2.1.3 Flush+Flush

In this approach, as shown in Figure 2.4, the attacker’s VM first flushes the required

memory lines out of the cache. After that, it gives the victim time to perform some
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Figure 2.4: Flush+Flush Attacks

encryption operations. Next, the attacker’s VM flushes again the previous memory lines

and measures the flush instructions’ execution time, bypassing direct cache accesses.

The attacker can use this type of attack to break a cryptographic key. This technique

relies on shared libraries and memory deduplication. Figure 2.4 illustrates the steps of

the attacker using the flush+flush technique. In this attack, the attacker first flushes

a specific cache lines out of the shared cache (marked gray in the figure), then allows

some time for the victim to perform sensitive operations (the victim used green cache

lines in the figure), after which the attacker flushes again the same cache line(this is

the only difference from the previous flush+reload technique ). At the same time, the

attacker measures the access time of the cache line. If the access time is longer than the

specified threshold, this means that the victim used the same cache line in the sensitive

operations (marked in red in the figure).
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2.2.2 Other Microarchitectural Attacks

This section reviews some other microarchitectural attacks that threaten the shared

virtualised systems due to the nature and structure of these systems. These microarchi-

tectural attacks share some properties, techniques, and attack environments with cache

side-channel attacks.

2.2.2.1 Spectre Attack

The Specter Attack exploits an essential optimization technique adopted by modern

CPUs called Speculative Execution. Speculative execution occurs when a CPU retrieves

data that will most likely be required later, rather than waiting until it definitely

requires it. The attacker can observe the data from region not allowed to be accessed

in the memory that leads to reveal the victim’s process. To perform the attack, first,

the attacker performs flush instructions to evict the desired cache lines and the target

branch instruction address. The attacker effect the CPU branch predictor many times

using proper inputs for the conditional branch. After which, the attacker inputs an

invalid value for the conditional branch to cause a wrong prediction, thereby loading

sensitive data into the shared cache. Finally, the attacker observes and keeps track of

accessing time of the cache lines. If certain cache lines have a short access time, the data

is considered sensitive [60, 61].

2.2.2.2 Meltdown Attack

Meltdown attack is a microarchitectural attack that abuses speculative execution feature

in modern CPUs to leak data that is stored in kernel memory. This is a very similar

attack to the spectre attack, except that it does not rely on branch prediction, and aims

to read the kernel memory from the userspace [60]. The attacker achieves the meltdown

attack in the following manner. First, the attacker runs a code to read a byte (secret

value) from privileged memory to implement a faulting instruction that will throw an

exception of segmentation fault. Although it throws the segmentation fault exception, the

the byte (secret value) is in the cache, after the attacker multiplies, the byte, the cache
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page size, and use it as an index into the block of allocated memory. After which, the

attacker iterates through and observes the time taken to read, thus revealing confidential

data [62].

2.2.2.3 Rowhammer Attack

Rowhammer attack approach exploits the electrical interaction of the DRAM rows with

each other causing them to leak part of the charge when continuously accessing adjacent

rows. The attacker takes advantage of this point by repeatedly accessing a DRAM row

until it causes the bit flips from one to zero or vice versa. The attacker takes the following

steps to carry out this attack: first, the attacker selects a DRAM row that is next to the

DRAM row that is to be flipped. After which, the attacker repeatedly accesses the DRAM

row to affect the adjacent rows, thus leaking their charge. Finally, the attacker evicts the

accessed DRAM out of the cache to guarantee that the subsequent access will be to the

DRAM row [63].

2.2.3 Cache and Microarchitectural Attacks Characteristics

The implicit characteristics of microarchitectural side-channel attacks explain how these

attacks have been designed and how they work. Figure 2.5 shows the characteristics

of microarchitectural side-channel attacks (opcode). As described by Irazoqui et al.[64]

[26], the code and programs of microarchitectural side-channel attacks contain implicit

characteristics and instructions that may distinguish them to some extent which lead

to revealing them when analyzing these attacks’ codes. Table 2.2 shows a set of char-

acteristics (opcodes) of microarchitectural attacks and their function, as well as the

microarchitectural attacks that use each.

The attacker is likely to misuse unprivileged information and the legal use instructions

to launch microarchitectural side-channel attacks. This information can inform the the

attacker to design and program attack scripts by utilizing instructions that are able to,

evict the cache memory, measure time for retrieving data precisely, locking the memory
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bus, and bypassing cache access as well, as shown in Figure 2.5. All these scripts are then

compiled into executable files within the shared virtualized environments to perform the

attacks. However, identifying these scripts of attacks’ is possible by disassembling the

executable files of the attack and recognizing the interior implicit characteristics and

instructions on how they have been built.

The microarchitectural side-channel attacks comprise of certain characteristics that

require to be incorporated in their design. Below we review these characteristics as

discussed in [64] [26].

• High-Resolution Timers: As shown in Figure 2.5 (line 7 and line 12), a set of

microarchitectural side-channel attacks rely on timing information for retrieving

data from the cache, the RAM, the last level of cache, and the first and second level

cache precisely. Hence, it is required to use an instruction, such as Time Stamp

Counter (rdtsc), that records the timing information efficiently and has adequate

precision to distinguish between data retrieval times.

• Memory Barriers: As shown in Figure 2.5 (line 5, 6, 8, and 11), memory barriers

includes two type of instructions, mfence, and lfence. The attacker may use these

instructions to serialize all store and load activities that happened prior to mfence

and lfence instructions in the program instruction stream. In other words, these

instructions can be used to suspend out-of-order execution and collect precise

timing information of retrieving data from the cache and RAM. mfence and lfence

instructions can also be included in the attacks’ scripts [65, 66].

• Cache Evictions: As shown in Figure 2.5 (line 14), the attacker is able exploit the

eviction instructions to evict the required cache line out of the cache using Clflush

instruction as a trap for the victim to retrieve the data from the RAM and waits for

a while until the victim retrieves this cache line. Therefore, the attacker realizes

that the evicted and flushed cache line has been used by measuring the data
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retrieval time. The desired cache line is removed from the entire cache memory

(all cache levels) using the Clflush instruction [67].

• Memory Access Lock: Attack scripts could also contain memory bus locking instruc-

tions to ensure that the processor has exclusive ownership of the shared memory

for the execution duration.The bus locking instruction consists of the Lock prefix

and the following instructions as ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG,

DEC, FADDL, INC, NEG, NOT, OR, SBB, SUB, XADD, XOR. However, The XCHG

instruction does not require the Lock prefix [68].

• Non-temporal Memory Access: Non-temporal instructions allow the processor not

to write data into the cache. Thus retrieving data from the memory directly when

requested. These instructions include monvnti and movntdq instructions [69, 70].

• CPU Affinity Assignment: Some microarchitectural attacks require CPU affinity

to achieve the co-residency on the same CPU core to share a specific cache level

with a target process. Therefore, the attacks scripts may have function calls that

accomplish the CPU affinities, such as sched_setaffinity[26].

• Instruction Iteration: In some microarchitectural attacks, the attacker needs to

repeat some of the instructions mentioned above to execute the attack successfully.

Hence some of these instructions may be placed inside a Loop.

• Mmap() Function: Attackers using mmap() function to load the target program

into memory with as a Read Only file, then memory deduplication feature scans

and removes the replica files to be one copy shared between users; this is a critical

requirement for the Flush+Reload and Flush+Flush attacks.

2.2.4 Cryptographic Systems Vulnerable to Cache Attacks

Many cryptographic algorithms have been exposed to side-channel attacks, for example.

RSA, AES, Digital Signature Algorithm, Elliptic Curve Cryptography and ElGamal.
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Figure 2.5: Attack Characteristics snippet from [4]

This section discusses the most important cryptographic algorithms, which are the most

extensively employed in secure systems. The objective is to provide sufficient context to

comprehend the side-channel attacks.

2.2.4.1 Advanced Encryption Standard (AES)

AES or advanced encryption standards is one of the most widely used block cipher to

encrypt and decrypt sensitive information. There are three different forms to encrypt

128-bit blocks of data with a symmetric-key block cipher: with 128-bit key size, 10

rounds of encryption, or 192-bit key size, 12 rounds of encryption. With 256-bit key

size, 14 rounds of encryption. AES is comprised of 4 main functions [71]; SubBytes for

substituting the bytes according to a substitution table. ShiftRows for shifting rows of

the state. Mixcolumns for mixing the columns of the state. AddRoundKey to XOR the

state with the round key. Each round implements these 4 functions except the last round

as shown in Figure 2.6 , MixColumns function is not used. To speed up the encryption
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Table 2.2: Microarchitectural Attacks Characteristics

Characteristics Task Attack(s)

rdtsc Timing information Prime+Probe, Flush+Reload,
Flush+Flush, Specter, and Melt-
down

mfence, and lfence Instructions serialization Prime+Probe, Flush+Reload,
Flush+Flush, Specter, Melt-
down, and Rowhammer

clflush Cache line eviction Flush+Reload, Flush+Flush,
Specter, Meltdown, and
Rowhammer

lock prefix Memory access lock Prime+Probe, Flush+Reload,
Flush+Flush, Specter, Melt-
down, and Rowhammer

monvnti, and movntdq Preventing caching data Rowhammer

sched_setaffinity CPU affinity Prime+Probe, Flush+Reload,
and Flush+Flush

loop Instruction iteration Prime+Probe, Flush+Reload,
Flush+Flush, Specter, Melt-
down, and Rowhammer

Mmap() Load file to the mwmory Prime+Probe, Flush+Reload,
and Flush+Flush

execution, the SubBytes, ShiftRows and Mixcolumns functions have been combined into

4 lookup tables (T-tables) in various AES implementation such as OpenSSL.

2.2.4.2 Rivest–Shamir–Adleman (RSA)

RSA is a well known asymmetric key algorithm; The encryption and decryption process

is accomplished with two different keys; the encryption process is accomplished with a

public key and the decryption process is accomplished with a private key in the RSA

system. RSA encryption relies on factors and large prime numbers, and its operations

are based on modular exponentiations. RSA starts its function by generating the keys; It

picks two prime numbers that are huge and distinct p and q, then calculating n = p× q

and totient function that is φ(n)= (p−1)× (q−1). After that selecting a positive integer

30



2.2. SIDE-CHANNEL ATTACKS

Figure 2.6: The AES Algorithm Flow Chart

e such that e is co-prime to φ(n) that means; gcd(e,φ(n))= 1 and 1< e <φ(n). The pair

(n, e) make up the encryption key. Finally, calculating d that equals d = e−1 mod φ(n).

The pair (n,d) make up the decryption key [71].

Plaintext P is encrypted with the encryption key (public key) by executing the C =
P e mod n operation, and the decryption of the ciphertext C is calculated with the

decryption key (private key) by performing P = Cd mod n. The square and multiply

algorithm can be used to execute modular exponentiation. It can be used to process the

key’s bits and execute square and multiply operations regarding bits [71]. Multiplication

is performed only when a key bit is one; otherwise, it is not, and a square is always

performed, as shown in Algorithm 1.

2.2.4.3 ElGamal Encryption

ElGamal encryption is an asymmetric key cryptosystem, it uses privet and public keys to

communicate between two users to encrypt and decrypt the message between them [72,
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Algorithm 1 Square and Multiply
Input: Ciphertext:C, Modulus:N and Private key:K = (km−1,km−2....k0)
Output: Plaintext:M = Ck mod N

1: R = C
2: for i=m−2 to 0 do
3: R = R2 mod N
4: if ki = 1 then
5: R = R∗C mod N
6: end if
7: end for
8: return R

73]. ElGamal encryption has three steps: key generation, encryption and decryption:

Key generation: In order to create the encryption key, we must select a large prime

number (p), and we also select the decryption key (d). After that, we choose a number

for the second part (e1) for the encryption key, so that the third and final part of the

encryption key (e2) is calculated by e2= e1dmod p so the public key is the value of (e1,

e2, p). Encryption: in encryption process we have to select an integer random number

(r), then we calculate the first part of the ciphertext (c1) that equals c1= e1rmod p. After

that, we calculate the second part of the ciphertext (c2) by c2= (m∗ e2r)mod p (while

(m) denotes to the plaintext), so the ciphertext is the value of (c1, c2). Decryption: first

step in this stage is caculating k value that equals k = c1dmod p and then we caculate

the plaintext that equals m = (c2∗ k−1)mod p , and then the plaintext is the value of

(m).

2.2.4.4 Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) is an asymmetric key cryptosystem. it provides equal

security with a smaller key size compared with other algorithms. An elliptic curve is a

curve defined by y2 = x3 +ax+b [74].

If we have Eq(a,b), which is an elliptic curve with parameters (a),(b), and (q) that is a

prime number, also we have G, which is a base point in the elliptic curve Eq(a,b), we can

use elliptic curve cryptography to encrypt and decrypt messages by the following steps:
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Users Key generation : User A selects a private key nA while nA< n (n is the curve limit)

then user A calculates the public key pA that equals pA = nA ∗G. User B also selects a

private key nB while nB< n (n is the curve limit) then user A calculates the public key pB

that equals pB = nB ∗G. Then, user A calculates the secret key using user B public key

and vice versa for user B secret key K = nA ∗ pB And K = nB ∗ pA. Encryption : When

we encrypt a message (m), we should encode it into a point on elliptic curve pm, and then

we select a random positive number (k), so the cipher point will be cm = {kG, pm +kpB}

this cipher point will be sent to the receiver. Decryption : To decrypt the cipher point

cm the receiver (user B) multiplies the x-coordinate (kG) with the receiver’s secret key

kG ∗nB, then subtract it from y-coordinate pm + kpB − kG ∗nB, then the receiver get

the (pm) point.

2.3 Multi-Tenancy and Virtualisation

The main goal of multi-tenancy is to share resources, which is the fundamental base

of cloud computing. It allows many users to be served and saves costs, alongside other

benefits such as, higher utilization, easier maintenance and deployment. For example,

on Github, each user can share the main software application and codes, but each user’s

data is isolated from the others. Users can customise some features in their accounts,

but unauthorised users cannot modify the core application and codes. However, multi-

tenancy presents severe security threats and opens doors for possible privacy leaks[75].

Moreover, it presents the possibility of deploying a malicious VM on the same physical

hardware, thus risking the extraction of secret information via side-channels[39]. Indeed,

multi-tenancy could lead to a cloud security issue since it provides malicious parties

with the right to access shared resources[76]. Different views exist on multi-tenancy

in cloud computing; although some see it as an advantage, others see it as a risk that

necessitates a solution[13]. Multi-tenancy is enabled by virtualisation that makes one

physical machine act as many machines. Virtualisation uses a piece of software called

Hypervisor (abstraction layer) or Virtual Machine Manager (VMM), which can create
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a virtualisation layer and enable many operating systems for operating on one host

concurrently, as shown in Figure 2.7. VMM observes the performance of guest operating

systems that share virtualized hardware resources [77], such as VMware ESX. Thus, we

can run many machines in one physical host with lower cost, higher performance and

faster maintenance.

Virtualisation’s primary goal is to manage workload by making computing resources

more flexible, accessible, and cost-effective. Applying virtualisation can take place at both

the software and hardware levels [78]. Although virtualisation has positive effects on a

cloud computing environment, researchers [76] suggest eliminating the virtualisation

layer to prevent multi-tenancy (which is considered a vulnerability and a source of

security concerns) because virtualisation enables the running of many operating systems

and applications concurrently on the same physical host [78], which an attacker could

exploit to achieve co-resident attacks on the same server[76].

Figure 2.7: Virtualisation Architecture

2.4 Cache Architecture

The cache memory is a hierarchical collection of small-size and fast memory levels; some

of these levels are reserved for a specific CPU core, while others, such as the last level
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of cache, are accessible by entire CPU cores. cache is often situated between both the

CPU and main memory. The primary objective of the cache memory idea is to accelerate

data retrieval in the system, as obtaining data from the main memory takes longer than

obtaining data from the cache memory[79].When the CPU requires data to be retrieved,

it first checks all available cache memory levels. Assume the data was fetched from a

cache memory location. This is referred to as a cache hit, and the retrieval time is quite

faster in comparison to getting data from main memory. Retrieving data from the main

memory instead of the cache is called a cache miss [20]. When data is retrieved from

main memory, the CPU retrieves the entire block of data into the cache memory in order

to take advantage of spatial locality for enhancing system performance.

The cache consists of three levels: L1, L2, and last level of cache (LLC). These levels of

cache have different storage capacities and different characteristics as well. L1 and L2

are smaller storage capacity and faster than the LLC, and they are assigned for one core

only in the CPU. In contrast, all the CPU cores share the LLC. The cache memory is

split into blocks of the same size. These blocks are organized into sets with the same

index[23].

2.4.1 Cache Addressing

Cache addressing or cache mapping refers to the techniques used for mapping a memory

block from the main memory into the cache memory. There are three basic types of cache

mapping, as outlined below.

2.4.1.1 Direct Mapping

In this technique, the main memory is divided into pages that are equal in size to the

cache frame. Each location in the cache can store one copy of the main memory page, as

shown in Figure 2.8. In other words, it maps a particular block of main memory into

only one possible line of the cache. For example, if we have cache memory split into

equal-sized 128 cache lines, and we have block 8 of main memory, then we can map block
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Figure 2.8: Direct Mapping

8 into only the cache line = 8 mod 128. Because each memory block can get mapped into

only one cache line, this technique does not require any cache replacement policy.

2.4.1.2 Associative Mapping

This technique can map any main memory block into any location in the cache. This

technique takes the shortest time and offers significant mapping flexibility [79]. The

technique uses content-addressable memory, as shown in Figure 2.9. For example, if we

have cache memory split into equal-sized 128 cache lines, and we have block 8 of memory

that needs to be mapped into cache memory, we can map this block into any cache line

number (from 0 to 127).

2.4.1.3 Set-Associated Mapping

In this case, the cache lines are grouped into sets. This technique can map a particular

block of main memory into only one specific set of the cache [79, 80]. For example, assume

that we have cache memory split into equal-sized 128 cache lines; these cache lines are

grouped into 64 sets (2-way set associative mapping), as shown in Figure 2.10. Then
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Figure 2.9: Associative Mapping

Figure 2.10: Set-Associated Mapping

when we want to map memory block number 8 into the cache using this technique,

we can map it into a set number = 8 mod 64 only of the cache. In this technique, the

replacement policy is required to replace the occupied cache lines if there are no available

cache lines in the specific set.
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2.4.2 Cache Replacement Policy

Cache memory depends on the cache placement policy in case the cache is full of data,

and there is no space to store more data required by the processor to perform operations.

Therefore, algorithms are designed to evict cache block out of the cache to allow more data

to be stored to improve overall system performance. We review some of these algorithms

as follows:

• First-In First-Out (FIFO): This algorithm replaces the cache block that has re-

mained inside the cache for a longer period. This algorithm is also called the Round

Robin algorithm [81].

• Last-In First-Out (LIFO): This algorithm expels the cache block that has been

stored in the cache recently so that it deals with the cache memory as a stack.

• Least Recently Used (LRU): This algorithm removes the least recently accessed

cache block to store new data. The ageing bit is used to keep track of each cache

block’s history [81].

• Pseudo-Least Recently Used (PLRU): This algorithm uses approximate measures of

ageing bit to replace the cache block to enhance Least Recently Used performance

[82].

• Random Replacement (RR): This algorithm randomly selects the cache block to be

evicted to allow a new cache block to be stored in the cache [83].

These algorithms are used if the cache is full of data and there is no space to store a new

cache block. Therefore, it is necessary to know these algorithms that may positively or

negatively affect the success of cache attacks.
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2.5 Memory Deduplication

Memory deduplication is a feature that increases memory utilization on physical servers

running multiple VMS by allowing the data used by several VMs to be shared between

these VMs. The redundant copies of the data are removed from the memory. Table 2.11

shows memory deduplication task to save memory, so if multiple memory pages have

the same content, then the hypervisor only keeps one copy of these to be shared between

users. Memory deduplication was introduced around the mid-1990s, and it has been

implemented in virtual platforms recently [84]. For example, Red Hat proposed the KSM

technique to implement memory deduplication in the Linux kernel. KSM has merged

into the Linux kernel since version 2.6.32 in 2009 [49]. This feature is supported and

offered in almost all the hypervisors, for instance, VMWare ESX and Linux KVM [85].

This feature’s central concept is that if there are many identical pages in the content

over multiple VMs, the hypervisor removes all copies while keeping only one shared

copy between them. While memory deduplication increases memory efficiency, it has a

significant influence on virtualized systems security.

Accessing the same data or the same library, especially the shared cryptographic libraries,

can be potentially manipulated to leak confidential data of the victim VM’s encryptions

processes. Thus, memory deduplication can be exploited by attackers for obtaining

sensitive information regarding encryption processes. For example, assume we have an

attacker VM, and a victim VM reside on the same host, and they share the same memory,

and the host enabled the memory deduplication to save memory. The attacker is able to

know if a replica executable file is loaded in the victim’s VM memory by mapping the

executable file into memory and waiting for memory deduplication to take effect. Then

the memory deduplication removes the replica executable file and keeps just one copy

to be shared between the attacker and the victim. In this case, the attacker can know

which function of the shared executable file has been performed by the victim VM using

timing information of accessing specific cache lines related to the shared executable

file, thus revealing the victim’s behaviour. The exploit of the memory deduplication is
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accomplished when the attacker’s VMs prime or flush the cached data and give the

victim’s VM some time to access or reload any of these data to be cached again. Hence,

the accessed cache data leaks information regarding the victim’s activities [20, 85].

Several kinds of memory deduplication mechanisms are implemented by popular hypervi-

sors, such as the Kernel Based-Virtual Machine (KVM) hypervisor. KVM is a hypervisor

software applied on the Linux kernel, which employs the Kernel Samepage Merging

(KSM) technique. KSM explores or scans all VMs in the virtualized environment looking

for all pages that have the same content, and if it finds pages with the same content,

they are then deduplicated and shared [86].

In virtualized systems that support the memory deduplication feature, pages may be

data, libraries, or executable files shared between two VMs. One of these devices may be

a malicious VM. In this case, the malicious VM is able to discover the victim’s behavior.

The attacker must load an executable file or a page into the memory and then wait for

pages with the same content to be scanned, deduplicated, and shared with the victim’s

VM, which has the same page. Then the attacker can recognize the victim VM’s actions

and operations by writing on the shared page. If it takes longer, this means that the page

has been shared and ready to launch the attack on the victim’s VM using this shared

page, resulting in sensitive information disclosure[85].

Figure 2.11: Memory Deduplication Feature
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2.6 Current Solutions and Mitigations in Cloud

There are many countermeasures against cache side-channel attacks. Due to the cache

attacks relying on sharing cache levels and the time difference between accessing data

from the cache and main memory, most of the existing defence methods have been

proposed based on the following ideas: eliminating imbalance, partitioning caches, avoid-

ing co-location, and detecting malicious activities. However, they have the following

shortcomings. Firstly, applying them to cloud computing requires significant changes to

the computing infrastructure. This may hinder their adoption by cloud providers. Also,

some of these methods may cause system performance degradation and high overhead.

They also have a high false rate (positive and negative) in detecting malicious activities.

Moreover, they lack the diversity and comprehensiveness of protection against cache

side-channel attacks and the provision of preventive measures during analysis processes

to detect malicious activities and malicious programs.This section reviews prior works

focusing on detecting and preventing cache side-channel attacks and other microarchi-

tectural attacks and identifying their limitations, which has urged us to focus on these

limitations and consider them in our work.

A set of studies have relied on machine learning for detecting cache side-channel attacks

by analysing malicious behaviour in order to identify side-channel attacks and their

specific pattern. They include Zhang et al.[30], who presented CloudRadar, a detection

mechanism used to decrease cache-based side-channel attacks in cloud systems sig-

nificantly. It uses a combination of a signature detection method and anomaly-based

detection supported by a hardware performance counter such as per f used in the Linux

Kernel. CloudRadar uses a database to store signatures for use in comparison to identify

suspicious behaviour. However, CloudRadar is unable to identify attacks that exhibit only

minor changes from existing attacks because CloudRadar depends on signature-based

detection, so it can only identify a specific pattern of attack program behaviour. If there

is even a slight change in the attack program’s behaviour pattern, the attack will be

undetected, meaning that this method only detects attacks known with a specific pattern.
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Some detection approaches have taken advantage of Hardware Performance Counters

(HPCs) in various manners to profile the behaviour of a malicious program, thus detecting

cache side-channel attacks. The motivation for utilising HPCs is to obtain information

from hardware such as the CPU to detect attacks. Chiappetta et al.[24] introduced

several detection mechanisms that rely on hardware performance counters. The proposed

mechanisms are able to detect two kinds of cache side-channel attacks, Fulsh+Reload

and Prime+Probe attacks, and fulfil their essential purpose. However, the mechanisms

should expand their scope to include other cache attacks. When detection approaches

utilise hardware performance events to detect cache attacks, the events must be carefully

selected and, after examination, be analysed afterwards because there are side-channel

attacks, Flush + Flush, which do not affect these events. Therefore, it is difficult to detect

this type of attack. [23, 27, 87] utilised Intel Cache Monitoring Technology (Intel CMT)

for collecting hardware events and then analysing these events using different machine

learning. They can detect prime+probe and Flush+Reload effectively; however, their

mechanisms cannot detect a Flush+Flush attack, one of the stealthiest cache attacks,

because such an attack does not produce cache misses [21] to be monitored by their

mechanisms.

Some studies have suggested solutions based on supervised deep learning, such as Cho

et al.[88], and unsupervised deep learning, such as Gulmezoglu et al. [25]. These studies

utilised performance counters provided by Intel Performance Counter Monitor (Intel

PCM) to profile cache attack behaviour and analyse the counters’ events. They detect

these attacks after, or profile the expected behaviours of benign applications and then

detect abnormal behaviours using unsupervised deep learning. However, these detection

mechanisms require very complicated computation and much training data, especially

in the case of unsupervised deep learning models.

There have been approaches that do not depend on machine learning but rather other

ideas, such as the approaches suggested by Wang et al. study [89] and Irazoqui et

al.[26], who relied on static analysis of malicious programs and applications to detect
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them. Irazoqui et al. proposed MASCAT, a mechanism used for microarchitectural attack

detection by static analysis of attacks’ executable files. MASCAT utilises static analysis

to scan an attack’s elf files, searching for implicit opcodes of an attack that are usually

present in the design. However, MASCAT has a set of limitations that may hinder

its adoption as a suitable solution for virtualised environments, as it contains a high

percentage of false positives. It also creates significant overhead in the system. Moreover,

it can be used inside a local device only to scan executable files, meaning that it is not

usually used to detect and protect against malicious programs in shared virtualised

environments to scan a VM’s disk and RAM. Total reliance on static analysis consumes a

lot of system power and causes a high overhead if it is used on a large group of virtual

machines. Therefore, these solutions may not be suitable for shared virtual systems.

Some studies have proposed mechanisms [28, 29] that add noise to distract the time

difference between the cache hit and the cache miss in shared systems or eliminate

fine-grained timers using fuzzy timers instead of high-resolution clocks to deal with this

risk. However, implementing these solutions is not attractive because it requires more

modifications to the hypervisor. Also, they are not feasible for applications that require

fine-grained timing information [59]. Further solutions have been proposed to reduce

the probability of sharing the same resources between the victim and the attacker by

designing VM placement policies[90]; The fundamental concept is to restrict the number

of servers allowed for each account to use, hence reducing the attacker’s exposure to

target VMs. This policy increases the possibility of co-locating VMs associated with

the same user account, making it challenging to complete co-residence with the target

VM. However, this policy has apparent limitations related to workload balance and

power consumption [91]. Reducing the probability of sharing the same resources can be

achieved by dividing the cache into several zones and assigning one for each VM, thus

leading to partial isolation of VMs [92]. This approach may effectively isolate caches

between distinct processes performing sensitive functions [93]. However, it limits the

number of VMs that use shared cache on the same host, and it requires significant

changes in the current cloud model to be adopted effectively [91].

43



CHAPTER 2. LITERATURE REVIEW

Some microarchitectural attacks may affect the performance counters of hardware; they

have a clear impact within systems and so they can be detected by analysing these

counters. Therefore, some studies have relied upon performance counters to detect some

of these attacks, such as [94] that introduced a detection mechanism that could identify

Spectre attacks by detecting side attacks using a neural network model. It also collects

data from hardware performance counters to monitor cache activities, as a Specter attack

produces distinct patterns for cache activities. Moreover, Aweke et al. [95] developed

the ANVIL that uses hardware performance counters to obtain information regarding

memory accesses and cache miss rate to indicate the frequently accessed rows in the

DRAM and then refreshes adjacent rows to protect from rowhammer attacks. Many

studies have proposed solutions based on machine learning, such as [96] that introduced

a mechanism that can analyse the access activities of the DRAM to detect a rowhammer

attack based on machine learning.

Although various approaches for cache attacks and malware detection have been in-

troduced, these approaches have significant limitations. Some of these approaches are

not comprehensive enough for a sufficient number of cache attacks. Also, some are not

attractive because they require fundamental changes in the infrastructure of the envi-

ronment. Moreover, some of them do not give consistent results in certain circumstances.

Furthermore, mechanisms based on static analysis perform static analyses frequently

and do not require a start-up condition, thus increasing the load on a system. Moreover,

they are ineffective in detecting and protecting shared virtualised environments against

various side-channel attacks. Additionally, most of the aforementioned methods require

improvement in terms of performance and results. Finally, even the most popular an-

tivirus programmes fail to detect any of the threats we have studied (cache side-channel

attacks) [26, 64].

Our work focuses on detecting at least several of the most significant cache attacks to

extract accurate detection results for such attacks with acceptable system performance.

We address the limitations of current detection methods by proposing approaches that
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monitor and detect any abnormal behaviour of a VM periodically and then perform

static analysis of the detected VM’s executable files, classifying the threat level of the

VM’s executable files using neural network classification algorithms, thus eliminat-

ing any malicious VM and protecting the shared virtual environment with acceptable

performance.

We have identified resources to provide an overview of the thesis’s main topic and to

support our study based on three aspects. We have determined these resources based

on cache side-channel attacks, how they are implemented, and the most appropriate

conditions and environment for their implementation. The second aspect has been

identifying systems vulnerable to these attacks and studying their characteristics. The

third and final aspect has been to recognise the limitations and shortcomings of state-of-

the-art countermeasures against cache attacks.

Table 2.3: Summary of Current Solutions and Mitigations in Cloud

Paper Idea Target Attacks Limitation(s)

[28, 29] The idea is eliminating the

time contrasts between cache

hits and cache misses by in-

jecting noise.

Cache Side-channel

Attacks

These solutions were not fea-

sible for applications that

require fine-grained timing

information. Implementing

these solutions was not at-

tractive because it required

more modifications to the hy-

pervisor.

[94–96] Using machine learning to

analyse HPCs and access ac-

tivities of the DRAM.

Microarchitectural

attacks(Rowhammer,

Spectre)

They need to expand their

scope to include more than

one specific attack.
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[30] This solution relied on

signature-based detection,

comparing monitored appli-

cations with preidentified

attack signatures.

Cache Side-channel

Attacks

It could detect attacks with

known patterns but could not

detect attacks with minor

changes in their patterns. It

created significant CPU over-

head due to continuous com-

paring processes.

[23, 24, 27,

87, 88]

These mechanisms relied on

obtaining data from hard-

ware performance counters

and then analysing the

data using supervised ma-

chine learning to classify be-

haviours as benign or mali-

cious.

Cache Side-channel

Attacks

These mechanisms provide

limited protection, as there

are several side-channel at-

tacks that these mechanisms

could not detect, such as

Flush+Flush. Also, some of

these mechanisms required

significant modifications and

intolerable latency for pars-

ing attack readings. Further-

more, it was vulnerable when

an attacker had root access

mode.

[90, 92] Reducing the probability of

sharing the same resources.

Cache Side-channel

Attacks

It limited the number of VMs

that used shared cache on

the same host, and it re-

quires significant changes in

the current cloud model to

be adopted effectively [91].
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[25] This mechanism relied on ob-

taining data from hardware

performance counters to pro-

file the expected behaviours

of benign applications using

unsupervised deep learning

and then detecting abnor-

mal behaviours if there were

differences between the pre-

dicted counter value and the

actual counter value.

Cache Side-channel

Attacks

The detection mechanism

requires much complicated

computation and much train-

ing data for unsupervised

deep learning models; mak-

ing it unattractive to be

adopted.[88]

[26, 89] Using static analysis of ap-

plications, then detect mali-

cious applications.

Microarchitectural At-

tacks

It had a high false posi-

tive rate and created signif-

icant overhead in the sys-

tem. Moreover, it can be

used only in the app store to

scan a specific application; it

was not designed to access

virtual machines to extract

files to scan against micro-

architectural attacks.

2.7 Hardware Performance Counter (HPC)

Modern microprocessors include a series of special registers called HPCs. These counters are

utilised to keep track of the number of hardware-related events in a computer system for

conducting low-level performance analysis. HPCs provide users with row readings of CPU
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events to be analysed and associated with other counters to indicate a specific performance

status [97]. We can access performance counters using the Perf Tool on Linux systems, which

is manageable by the command-line interface to record statistical readings related to hardware

to monitor various operations.

2.8 Machine Learning Classification Algorithms

In this section, we review some of the machine learning algorithms that were used in our

projects to analyse the data effectively. The machine learning algorithms are characterised by

their ability to train on the data of different systems and interact with them, which increases

their development. The following supervised machine learning algorithms were relied on in

our projects to support accurate decision making.

2.8.1 Logistic Regression

Logistic regression is a type of supervised machine learning approach utilised for binary

classification to classify data into a set of specified categories, for example, classify an email

as spam or not. There are more classification problems logistic regression can handle. It is a

predictive analysis algorithm based on Sigmoid function S(z)= 1
1+e−z to limit its predicted

values between 0 and 1, that is the main difference between logistic and linear regression,

as shown in Figure 2.12. In contrast, Linear regression can have greater than one and less

than zero values. The sigmoid function produces probability values p between 0 and 1. In

order to assign these probability values p to a separate class such as True/False classes,

we set a threshold value at 0.5 such that p ≥ 0.5 = Class 1 and p < 0.5 = Class 0. For

example; If the prediction function returns a value of 0.6, the value is classed as 1, but if the

prediction function returns a value of 0.2, the value is classified as 0. We made use of the

logistic Regression concept to make classifications of two classes, and it was applied using

the sigmoid function to divide between different benign and malicious activities, as discussed

in Chapter 3.
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Figure 2.12: The sigmoid function takes two values, either zero or one, and it takes a curve that
looks like the letter "S", and the blue line represents the threshold that separates two groups in
the classification cases.

2.8.2 Softmax Regression

Softmax Regression or Multi-class Logistic Regression is a generalization of a logistic re-

gression classifier algorithm that can handle multi-class classification problems such that

yiϵ {1,2,3....,C} where C is the number of classes [98]. In contrast, the logistic regression

model can classify between two kinds of discrete classes such that yiϵ {0,1}.

In softmax regression, we replace the sigmoid function with the softmax function that is

S (zi)= ezi∑N
j=1 ez j . The softmax function receives the input vector, which is the output of the

last layer of the neural network models, then normalizes it into a probability distribution for

classes of the model. The sum of these values of the output equals 1 such that
∑N

i=1 S (zi)= 1.

We made use of the Softmax Regression concept to make classifications of more than two

groups, and it was applied using neural networks to divide between different threat levels, as

discussed in Chapter 4.
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2.9 Summary

This chapter discussed a set of essential topics for comprehending the research project as

required, such as the concept of multi-tenancy for cloud computing, the concept of memory

deduplication, and their importance and disadvantages as factors assisting in implementing

side-channel attacks.

the chapter also highlighted the side-channel attacks and microarchitectural attacks that

threaten cloud computing. Furthermore, it reviewed the implicit characteristics of these types

of attacks. It also discussed several previous studies on these attacks.

We also reviewed several possible current solutions against these attacks and identified their

advantages and limitations for these proposed solutions to mitigate side-channel threats. We

also discussed the machine learning algorithms that were used for analysis and classification

in our project.
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CHAPTER 3. MITIGATION THROUGH MEMORY DEDUPLICATION

This chapter describes a method for detecting cache side-channel attacks using the memory

deduplication feature. The VM uses the method to monitor cache locations of the sensitive

shared executable file and shared cryptographic library and then classify suspicious behaviours

using the logistic regression model. Our proposed method in this chapter can also work in

conjunction with the other methods of the subsequent chapters to provide more robust and

more reliable protection.

3.1 Introduction

Sharing applications and libraries is an optimisation technique introduced to improve memory

utilisation of the shared virtualised system and thus improve overall system performance.The

effect of this technique appears when a considerable number of virtual machines are running

on the same physical machine and share the same physical memory. However, this technique

raises the level of threats to reveal confidential information of victims’ VMs when some of

these sensitive programs, such as cryptographic libraries, are shared with malicious VMs

[20].Malicious users exploit the difference in timing information between retrieving data from

cache (cache hit) and main memory (cache miss), as shown in Figure 3.1 that shows the

scenario of retrieving data from the cache as well as from the main memory. Also, Figure 3.2

shows the normal distribution of CPU cycles for cache Hit and cache Miss. Attackers can

exploit this information to break the isolation between VMs, uncover the victim’s actions,

obtain information about cryptographic operations, and break the encryption key.

In this chapter, we focus on a specific type of side-channel attack, which is enabled by

the use of a cloud-computing virtualisation feature called memory deduplication. Memory

deduplication is a method of reducing memory usage by keeping in the memory of the server

only one copy of the data and code used by multiple VMs. An attacker can use deduplication

to access the physical addresses of the shared memory area, followed by cache flush operations

on any addresses of interest. Subsequently, any memory locations used by the victim VM are

brought back into the cache, and can be identified by the attacker since the time to retrieve

them is much shorter than the retrieval time for memory locations that were not used by the
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victim. Determining the memory locations accessed by the victim VM in this way can reveal

sensitive information about the victim [4, 20, 22, 99].

Although several methods for mitigating this type of side-channel attack have been pro-

posed [23–25, 27, 30, 87, 88], these methods have significant drawbacks. First, they require

the execution of code on the host (i.e., the physical machine), which is not something that

the victim (i.e., the user of the VM) can typically do. Additionally, they do not provide

any preventative protection for the victim VM. In particular, any false-negatives allow the

malicious VM to perform the attack undetected.

We address these limitations of current mitigation solutions by introducing a new method

that protects against memory-deduplication side attacks from within the victim’s VM. Our

method monitors sensitive data addresses, and renders attacks ineffective by providing the

malicious VM with fake results during attack attempts, even in the (rare) instances when

these attacks are not detected (due to false negatives). To this end, the method uses memory

deduplication itself to get readings of the monitored functions of an executable program and

then analyzes the readings using logistic regression. The proposed method can be used inside

the VM to be protected from cache attacks, with no changes to the virtualization platforms.

The main contributions of this chapter are:

1. We present a method for for protection against memory-deduplication side-channel

attacks by using memory deduplication and logistic regression from within the victim

VM.

2. We introduce the design and implementation of the method.

3. We evaluate the method in multiple scenarios, in terms of attack detection accuracy

and performance characteristics.

The remainder of this chapter is organized as follows. In Section 3.2 describes the proposed

protection method. Section 3.3 provides an overview of the experiments we carried out using

the new method. In Section 3.4, we discuss the evaluation of the implemented method and
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Figure 3.1: Cache Hit and Miss.

compares our method to related work. In section 3.5 provides an overview of limitations

related to our method. Finally, Section 3.6 provides a brief conclusion.

3.2 Protection Method

This section explains our proposed protection method. Consider two VMs in a virtualised

environment that supports memory/page deduplication. One of the VMs is the attacker and

the other is the attack target (victim). Both VMs are located on the same physical host and

share the LLC and some files (e.g., libraries and executable files). The memory deduplication

mechanism removes redundant copies of these files, so that only a single version of each

shared file is retained.

As illustrated in Figure 3.3, users can access the shared memory addresses and are able to

conduct flush-based side-channel attacks. Attacker’s actions when executing the flush-based

attack are as follows. The attacker identifies the desired memory pages that are to be
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(a) Cache Hit

(b) Cache Miss

Figure 3.2: Normal Distribution of Cache Hit and Miss

monitored over a certain period of time and flushes them out of the cache, using the cl f lush

instruction (flushing may need to be repeated multiple times to ensure the attack’s success).

The aim is that the flushed pages are recovered from the main memory when these pages are

requested by the victim. Next, the attacker reloads the desired pages and measures the access
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Figure 3.3: Flush-based Attacks Exploiting Shared LLC.

time (using the rdtsc instruction) to determine whether or not the victim has requested

those pages.

The protection method involves the following steps:

1. Receives the addresses of the executable program’s functions to be monitored and

protected from the flush-based cache attacks.

2. Retrieves the monitored functions into the cache memory.

3. Measures the time taken to retrieve each function over each specified period of time. As a

result, the functions will be pre-fetched and the flush instructions will be discovered. The

measurement is carried out using the rdtsc instructions that provide a high-resolution

time stamp counter [21]. It uses the mf ence instructions as well.

4. Sets a sample for each function so that the retrieval time is measured frequently. It is
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then measured against the threshold of the system to detect if flush instructions have

been performed on the functions.

The aforementioned method can detect attacks based on a flush instructions, including the

Flush+Flush attack . It requires no memory access and thus produces no cache misses.

However, the cache hits are significantly decreased because of the continuous cache flushes,

comparing to any other cache attack[21]. The protection mechanism runs parallel to the

execution of sensitive operations in another terminal. It can run on a VM to monitor the

sensitive program’s physical addresses obtained by the debugging tool. Debugging process may

be complicated for the user unless the sensitive program’s physical addresses are identified

and entered automatically. The attacker may notice that the protection mechanism is running

because the attacker continuously records the same results.

Figure 3.3 shows that two virtual machines, one malicious and the other victim, are working

in a shared virtual system that supports the memory deduplication feature. Both VMs share

the last level of cache and also share the same cryptographic library due to the use of memory

deduplication, so both virtual machines can access the same shared memory addresses of

functions of the shared cryptographic library. Then The attacker takes the following steps:

1. The attacker flushes the target shared memory addresses out of the cache, using the

cl f lush instruction (to ensure the success of the attack, the attacker might have to

flush the same addresses repeatedly).

2. Then, the attacker waits to allow the victim some time to carry out encryption processes

using the same shared memory addresses of the functions.

3. The attacker then reloads the addresses of the flushed functions and calculates the

access time (using the rdtsc instruction) to determine whether the victim has requested

and executed those functions.

57



CHAPTER 3. MITIGATION THROUGH MEMORY DEDUPLICATION

The other part of the figure represents how to protect against these side-channel attacks

using the proposed method that takes the following steps:

1. It receives the shared functions’ addresses of the cryptographic libraries to be monitored

and protected from these attacks.

2. Then, the protection mechanism retrieves the monitored functions’ addresses into the

cache memory while measuring each function’s retrieval time. As a result, the functions

will be reloaded, and the detection mechanism will discover the flush instructions.

3. It records the number of flushes for each monitoring function and saves them as a CSV

file to be analysed later.

4. Then, the protection mechanism analyses the number of flushes for each function using

a logistical regression model. and warns the user in case of attack.

3.3 Experiments

This section explains how to carry out experiments to prove the effectiveness of the proposed

method. In this section, we describe the objectives of the experiments and how to create

the threat model and the experimental environment. The results of the experiments are also

recorded for the various systems used in the experiments.

Our approach’s main idea involves the use of memory deduplication to periodically analyze

the behaviors of the running VMs that are using the same executable program to recognize

abnormal actions on the cache memory that could indicate and detect cache attacks. The

proposed method’s objective is to provide accurate information about the VM’s activities

conducted on the cache memory when two or more VMs share the same executable program.

That information will be analyzed and classified using machine learning algorithms for detecting

malicious activities.

The design and implementation objectives of the proposed method are as follows:
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• It should provide cache-related information that indicates flush-based cache attacks

among VMs through the shared LLC (last level of cache).

• The design should not require significant changes to the hypervisor to correctly and

integrally apply the method on any hypervisor.

• It should produce accurate and reliable information with acceptable performance.

• It should be compatible with machine learning algorithms for providing a self-protection

mechanism for the VM.

3.3.1 Threat Model

In this section, we describe our assumptions regarding the environment. We assume that we

have two VMs (attacker and victim) share only the LLC; this is accomplished by assigning

a different core for each; this means that the other cache levels are not shared between

them. The proposed approach endeavours to provide information about the flush-based cache

attacks carried over the shared LLC using data deduplication. Also, we assume both the

attacker’s VM and the victim’s VM share the same executable program that is deduplicated

using KSM (QEMU-KVM hypervisor), and each VMs is equipped with the GNU Project

Debugger (GDB), which was the scenario used in previous studies [22, 99] We further assume

that the attacker’s VM and the victim’s VM can use the x86 architecture set, such as rdtsc

and cl f lush. The attacker’s VM and the victim’s VM do not have to be privileged users to

use these instructions. In these circumstances, the attacker can access the last shared level of

cache and perform operations such as flush operations.

The attacker is able to identify the functions addresses of the shared executable program

because of memory deduplication, so when conducting a flush+reload attack on these

functions, the attacker is capable of knowing the behaviour of the victim who is sharing the

same executable program and memory locations for these functions, so the attacker able to

know which of the functions were executed by the victim just by analysing the results of the
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flush+reload attack and distinguish between the functions that registered cache hits or cache

misses.

The attacker’s goal is to attack the functions of shared executable programs or the functions

of cryptographic libraries shared by several virtual machines. When the attacker identifies

the functions executed by the victim, he can identify the victim’s behaviour in executing

the shared program. The attacker can also identify the behaviour of the encryption process

executed by the victim, thus breaking the encryption keys as explained in section 2.2.

3.3.2 Experimental Results

We performed experiments on the KVM hypervisor that runs KSM as a memory-saving

deduplication feature. We created two VMs running a Linux operating system; one VM acting

as a victim and the other acting as an attacker. We used QEMU-KVM hypervisor on a Debian

10 (buster) host with Intel Core i5-4200M CPU, 12 GiB memory, and Ubuntu’s guest VMs

18.04.4 LTS. We also used QEMU-KVM hypervisor on a CentOS Linux 8 host with Intel Core

i5-5300U CPU, 8 GiB memory, and Ubuntu guest VMs 18.04.4 LTS. We created the shared

virtualized environment using the hypervisor’s default settings. We mean by default settings

that KSM is active on the QEMU-KVM hypervisor, which allows the hypervisor to save RAM

(memory deduplication) by sharing executable files and applications over multiple VMs and

processes of the same program with a reduced memory footprint, and makes it uncomplicated

to find a shared physical address between two VMs to exploit. Furthermore, We installed

no additional security software. We assumed that the victim’s and the attacker’s VMs were

pinned to different processor cores, which means the LLC was shared between them. Thus,

the other levels of cache were not shared among the VMs. The method intends to provide

data about the shared executable program using a side-channel carried between two VMs

within the shared LLC.

In both VMs, we installed and ran the same executable program, shared using KSM. We checked

the number of pages that have been shared between VMs. We found the addresses of the appli-

cation’s functions using debugging tools such as GDB to be used as inputs in our proposed de-
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tection program. After that, we created a covert channel between VMs to monitor the attacker

behavior. We used a Mastik Framework [22, 100], which has several libraries to use and recreate

many important functions such as map_of f set(), f r_monitor(),and f r_probe().

We developed a C program implementing Algorithm 1, which counts the number of flushes

that happen to the shared executable program; flushes for each function are counted. This

indicates the instability status of the cache memory due to the presence of a large number of

flushes that occur in a short interval of time (e.g., 5 seconds). Figure 3.4 shows the results

from a series of experiments that we carried out to evaluate the feasibility of our method.

Algorithm 2 Flush Counter in a Given Interval of Time
Input: App.elf, F_Add1, F_Add2. . . ..F_Addn
Output: Number of flush operations in a given time interval

1: Read-Only Mmap App.elf into Memory Offset = 0;
2: for i = F_Add1 to F_Addn do
3: Initial Access Time Measurement, Prefetching to Cache
4: FlushCounter[ i ] = 0;
5: end for
6: while true do
7: T1 = Start Clock ();
8: Pause for 5 seconds
9: for I teration = 1 to Total No of Measurements do

10: for i ← F_Add1 to F_Addn do
11: Time = Access Time Measurement(i);
12: if Time > Access Threshold then
13: FlushCounter[ i ] ++;
14: end if
15: end for
16: end for
17: T2 = Stop Clock();
18: Time_Elapsed = T2−T1 // time in microseconds
19: end while

The protection mechanism performs a series of functions. First, using the map_of f set()

function to load the executable program into memory as a Read-Only file means none of the

users can modify the file to be shared between users. However, once the user modifies the

file, the KSM will create a separate copy of the modified file only for the user who made

the modification and will stop the deduplication of the file. After that, the user inputs the

addresses of the functions that are needed to be monitored. It then initially measures the time

it takes to retrieve data from these addresses, and thus we ensure that all addresses have
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been placed in the cache memory. In addition, the approach will be ready to measure any

flush instructions that occur to addresses that cause successive cache misses; their impact

will be clear at the measurement time. We can then measure the actual time to retrieve data

from addresses. Before that, we determine the system’s threshold to differentiate between

retrieving data from the cache memory comparing with retrieving data from the main memory.

If the retrieving time is greater than the system’s threshold, this means that the addresses

have just been flushed out of the cache. After that, we measure the time that the CPU

takes to measure the time of retrieving data, showing that the cache memory is unstable and

exposed to flush operations and thus an attack on the cache memory. To be more precise,

we create a sample loop so that we can measure the retrieving time for each address several

times. The frequency can be changed according to the system.

We recorded the results for Debian 10 and CentOS 8 in different cases. First, we recorded the

results in a normal case without any attack on the cache memory. Secondly, we recorded the

results when the attack was on only one function in the shared executable program. Finally,

we recorded the results in the case of an attack on all functions in the shared executable

program. The relationship between the attack state (red line) and the normal state (green

line) has been clarified using the plot charts shown in Figure 3.4. The plot charts show a big

difference between an attack and no attack, thus a big difference in the stability of the cache

memory in a short period.

In Figure 3.4, the results are recorded during all the scenarios mentioned above. In the first

plot, the results are represented for all addresses that were monitored in the absence of an

attack. It is also considered a stable case for a longer period compared to the results of other

cases. As for the second chart, it represents the suspicious state of all the sensitive functions

addresses, in cases of attacks on them all. It shows a high rise in flush commands on the

addresses, indicating the attack status. As for the following charts, they show the cases of the

attack on an address for one function only, as they show instances of instability for different

periods due to the presence of the flush commands, indicating the attack on the specific

function in each chart.
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Figure 3.4: Number of flushes per 5s for different attack scenarios: no attack (top left), attack
on all four functions of a software application (top right), attack on one of the functions of the
application at a time (second and third row) .

Figure 3.5 We mean by "Normal Activity" that the virtual machine is running without any

programs or applications running in the virtual machine background, and by "Noise", we mean

the state of running programs and applications such as the browser in the virtual machine

background. Therefore, we have clarified scenarios in this figure, which are monitoring the

number of flushes while running programs and applications on the virtual machine (Normal

Activities + Noise), and the other scenario is monitoring the number of flushes during

performing the attack with applications and programs running in the background of the virtual

machine (Attack + Noise). The figure shows a significant difference in the number of flashes

in both scenarios.
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Figure 3.5: Number of flushes per 5s for attack and normal activities with background noise sce-
narios: attack ( left), attack on a function of a software application with background applications
noise (right), normal activities with background applications noise.

3.4 Evaluation and Comparison to Other Solutions

In this section, we evaluate and compare our protection solution to the other solutions.

Previous works have been based on the performance counter provided by Linux and Intel, such

as Intel PCM (Performance Counter Monitor), Intel CMT (Cache Monitoring Technology),

and Linux perf. Most previous studies have used these tools inside the host machine to

monitor counters affected by an attack. However, if they are used inside a VM then there

will be limitations; the guest VM needs authorization from the host to use the hardware

performance counters, and not all provided counters are supported for use in a VM[101–103],

which makes it difficult to detect an attack using these tools inside a VM in order to provide

it with self-protection. To validate our approach, we ran it on different operating systems

(Debian 10 and CentOS 8) in different scenarios for the virtualized platform. We used the

Mastik framework to recreate the attack. The attacker flushes the functions of the shared

executable program and the sharing was achieved by the data deduplication feature. The

scenarios were as follows.

• No-Attack Scenario: The attacker conducts no cache attack on the side channel, nor is

there any sign of suspicious behavior. The results were almost consistent with only one

flush for all functions and for both operating systems used in the experiment, indicating

no attack on shared re-sources.
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• One-Function-Attack Scenario: The attacker executes the flush-based cache attack on

a shared executable program to attack only one function. The attacker specifies the

function address to execute repeated flush instructions on this address. We recorded

a very high number of flush instructions. The results were similar for both operating

systems used.

• Multiple-Functions-Attack Scenario: In this scenario, the attacker performs the side-

channel attack on a shared executable program to attack multiple functions. In both

Debian 10 and CentOS 8, we recorded a different number of flush instructions, and

the results were clear enough to indicate an attack on all functions. We produced plot

charts that better illustrate the results of the experiment’s scenarios, as shown in Figure

3.4.

Based on the obtained results, we were able to identify suspicious behaviour that exploited

the shared executable program, which indicates the attack status. Also, the VM was provided

with our self-protection mechanism by detecting the attack’s impact on shared resources

and obfuscating the results of the attack, as shown in Figure 3.8. The attack’s effect on the

system was identified, which was the cache state’s instability for a long time and a massive

increase in the number of flushes, which meant a significant difference in the case of an attack

and no attack.

Like in the experiments shown in Figure 3.4, we evaluated the proposed approach in several

scenarios: no attack, attacks on only one function of an application, and attacks on all four

functions from our application. In the no attack case, the results were almost constant at one

flush per time period (i.e., per 5| seconds) for all functions within the application, making it

proof of non-attack. In the case of attacking one function, the results show a high number

of flush instructions. For the attack on multiple functions, the results (shown in Figure 3.6)

differed between the operating systems we used in our experiments.

In Debian 10, we recorded very large numbers of flushes (Figures 3.6a), while for CentOS 8

(Figures 3.6b) we had to increase the number of iterations of the for loop from lines 9–16 in
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Algorithm 2 in order to observe the increased number of flushes caused by the attack. The

explanation for the fewer flushes when several functions are under attack is that the attack is

distributed across the multiple functions, with fewer flushes of individual memory locations

occurring within a given period of time. With this calibration, we distinguished between the

no attack and attack cases easily for both operating systems.

Although the results recorded in the case of attacking multiple functions in CentOS 8 showed

fewer flush instructions than the results in Debian 10, the difference between it and the

non-attack case was obvious and significant, and we could easily distinguish between them,

as shown in Figure 3.6b. We could also specify a threshold to help increase the accuracy of

the results or even increase the number of iterations. For example, if we set the threshold at

12 flushes, all the attack cases could be detected, as was proven in the experiment results.

Suppose we set 12 flushes as a threshold to indicate suspicious behaviors. In such a case, the

attack will always be detected because, for all experiments, the recorded results would be

more than 12 flushes for all attack cases. That makes the proposed approach effective in

helping to detect an attack.

We tested the effectiveness of the detection mechanism when attacking a shared cryptographic

library. We attacked the GnuPG implementation of RSA. Our detection mechanism was

monitoring memory lines for the sensitive functions of the GnuPG executable, namely Square,

Multiply and Reduce functions. We have implemented the Flush+Reload attacks and the

Flush+Flush, so we found the readings extracted from the detection mechanism obvious to

differentiate between the attack and non-attack cases with a difference in the threshold as

shown in Figure3.7.

The results of the readings for all scenarios were fairly evident. However, the difference of

threshold was critical in all scenarios, so it was necessary to use an analysis mechanism for

the extracted data, and to train the machine on all classes and scenarios, so we used machine

learning, specifically used the logistic regression algorithm, to help us in this process effectively

to increase the effectiveness of the detection mechanism.
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(a) Suspicious behavior in Debian 10.

(b) Suspicious behavior in CentOS 8.

Figure 3.6: Number of flushes per 5s for attacks on multiple Application functions(the horizontal
axis shows the time in seconds). Different thresholds (1000 flushes for Debian 10, and 10 for
CentOS 8) were used to distinguish between normal behaviour (shown as green circles) and
suspicious behaviour (shown as red triangles).
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(a) Flush+Reload Attack the GnuPG implementation of RSA.

(b) Flush+Flush Attack the GnuPG implementation of RSA.

Figure 3.7: Number of flushes per 5s for attacks on the GnuPG implementation of RSA (the
horizontal axis shows the time in seconds). Different thresholds (60 flushes for Flush+Reload
Attack, and 1000 for Flush+Flush) were used to distinguish between normal behaviour (shown
as green circles) and suspicious behaviour (shown as red triangles).
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(a) The results of the attack while the detection mechanism is inactive.

(b) The results of the attack while the detection mechanism is active.

Figure 3.8: Obfuscation of attack results. If the detection mechanism is not activated, the results
of the attack are precise (function 1 was recorded as used). In contrast, if the mechanism is
activated, the attack’s results are unclear which of the functions was used by the victim (all
functions were recorded as used while just function 1 used).
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The results were also recorded in CSV format to be used as a dataset in machine learning

algorithms. We created a logistic regression model to support attack detection. We also

analyzed the results and measured the accuracy of our detection mechanism. As shown in

Table 3.1, our method achieved a mean accuracy of 99% in these experiments. Table 3.1 also

shows a comparison of the proposed attack detection method to the methods introduced in

previous studies, which are described in Section 2.6 from the thesis. While the CPU usage

of our solution (2–8%) is above that of some of the existing approaches, this additional

overhead comes with the major advantage that our solution can be deployed and run within

the VM requiring protection. Furthermore, this overhead only occurs while our approach

is activated during periods when the protected VM performs sensitive operations, which is

typically infrequent. In contrast, the other approaches need to be active at all times, since

finding out when the victim’s VM performs sensitive operations and requires protection is

difficult to know.

Table 3.1 shows the F-score, which is a measure of a machine learning model’s accuracy

in predictions. It also is defined as the harmonic mean of the model’s precision and recall.

F-score is used to evaluate the model performance. F-score can be calculated as follows:

F − score = 2
precision−1 + recall−1 = 2

precision.recall
precision+ recall

= TP
TP + 1

2 (FP +FN)

while TP = TruePositives, TN = TrueNegatives, FP = FalsePositives, and FN =
FalseNegatives.

Table 3.1: Comparison to other approaches

Method Tool CPU Usage(%) Detection Rate
Accuracy(%) F-score

Zhang et al.[25, 30] Linux perf 5% - 0.85
Chiappetta et al.[24] Linux perf 0.6% - 0.93

Mohammad-Mahdi et al.[23] Intel CMT 2% - 0.67
Jonghyeon Cho et al.[88] Intel PCM 0.9% 97% -

Gulmezoglu et al.[25] Intel PCM 18% 99% 0.99
Mushtaq et al.[27] Intel CMT 4% 99% -

Our Method Memory Deduplication 2–8% 99% 0.99
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3.5 Limitations

The proposed method provides many important characteristics in detecting and preventing side-

channel attacks, but there are a number of limitations that must be taken into consideration

to develop the method appropriately. One of the limitations is that it is necessary to use the

digging tools to find out the shared memory addresses between the virtual machines and

enter them into the proposed mechanism to monitor these addresses, and this process may be

somewhat complicated for the ordinary user. The method also recorded a slight increase in

the processor overhead, but the mechanism is not activated except when executing sensitive

operations such as encryption operations. Additional experiments are required to further

evaluate our method’s effectiveness in a broader range of scenarios.

3.6 Summary

We introduce a method for protection against a side-channel attack made possible by the use

of a cloud-computing feature called memory deduplication. Memory deduplication improves

the efficiency with which physical memory is used by the virtual machines running on the

same server by keeping in memory only one copy of the libraries and other software used

by multiple VMs. However, this allows an attacker’s VM to find out the memory locations

(and thus the operations) used by a victim’s VM, as these locations are cached and can be

accessed faster than memory locations not used by the victim.

To perform the attack, the malicious VM needs to execute an abnormal sequence of cache

flushes, and our new method detects this by monitoring memory locations associated with

sensitive (e.g., encryption) operations and using logistic regression to identify the abnormal

cached operations. Furthermore, our method disrupts the side channel, making it more

difficult for the attacker to acquire useful information. The experiments we ran using the

KVM hypervisor and Ubuntu 18.04 LTS VMs on both Debian 10 and CentOS physical servers

show that our method can detect attacks with 99% accuracy, and can feed fake information

to an attacker with between 2–8% CPU overheads.
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We proposed a flush-based attack detection mechanism that works inside the protected

VM without additional requirements to provide readings of a shared executable program’s

performance between VMs. The experimental results indicate that method works with a mean

accuracy of 99% if a suitable threshold is set to determine the attack status.The method

helps VMs to detect an attack by knowing the attack readings, thus providing self-protection

for the VM. This differs from previous solutions, which need to run in the host machine.

The solution proposed in this chapter answers research questions 1 and 2 from Section 1.3

in the thesis, confirming that it is possible to exploit memory deduplication as a protective

factor to detect and protect VM shared sensitive executable files by sensing cache instability

during sensitive processes such as encryption processes. Also, continuous monitoring of the

shared cache locations is enough to confuse the attack results due to the constant access

to the shared cache locations to measure data retrieval time. Furthermore, the experiments

carried out to validate this solution confirm hypotheses H1 and H2 from Section 1.4.
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We design in this chapter a method for detecting and protecting against side-channel attacks.

The method integrates dynamic and static analysis. The dynamic analysis uses Linux Perf

to acquire runtime readings from 13 hardware counters associated with the shared cache.

The logistic regression classification algorithm is then used to classify the VM behaviour

as suspicious or benign based on these counters. Static analysis is then started to extract

executable files from the suspicious VM’s RAM and disk image. It then determines whether

they contain side-channel attack operation codes. This information is used to determine the

threat level of these files via the SoftMax classification method; there are a total of four

threat levels. Following that, the VM that represents a security risk to the shared environment

is excluded.

4.1 Introduction

This chapter focuses on a set of cache-targeting threats in the shared virtualized environment

called cache side-channel attacks. Cache side-channel attacks require monitoring the cache hit

and miss for a specific cache line while retrieving data, thus realizing whether the monitored

cache lines have been recently used or not, which leads to cracking the encryption keys of the

shared encryption libraries and exposing confidential data.

Although several mitigation approaches for this sort of cache attacks have been presented[26,

64, 88, 89, 104–107], a variety of flaws exist in these approaches. First, there is no a

fundamental precautionary action when detecting malicious executable files, especially when

performing static analysis because it takes longer. Some of these solutions do not have a

signal to start as a reason for performing static analysis, which generally causes significant

overload of the system. Additionally, most of the prior methods are required to enhance

performance and detection results. Finally, none of the most widely used antivirus software

detects any of the threats we examined (Cache side-channel attacks) for protecting shared

virtualised environments [26, 64].

We introduce a method that combines dynamic and static analysis to detect and defend
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against this type of attack. The dynamic analysis approach monitors the activities of VMs.

It detects suspicious activities that indicate the presence of cache side-channel attacks by

extracting readings from hardware performance counters using Linux Perf and classifying them

using logistic regression to determine the status of the attack or not. If suspicious activity is

detected for one of the VMs, this is considered the starting signal for operating the static

analysis of the executable files of the suspicious VM detected. The virtual machine’s executable

files are accessed, disassembled, and analysed whether they contain implicit characteristics of

the cache attacks or contain the operation codes of the attacks. The threat level of these

files is then determined using a neural network classifier that uses the SoftMax algorithm for

classification. The following are the primary contributions of this chapter:

1. We introduce an approach for detecting and protecting shared virtualized environments

against cache side-channel attacks using dynamic and static analysis.

2. Mechanism design, implementation and experimentation.

3. We evaluate the approach in various attacks scenarios in terms of detection efficiency

and performance attributes.

The remainder of the chapter is arranged in the following manner. Section 4.2 presents the

required tools. Section 4.3 illustrates the proposed detection and protection method. Section

4.4 describes the experiments we conducted using the proposed method. In Section 4.5, we

discuss the evaluation of the implemented method. In section 4.6 provides an overview of

limitations related to our method . Finally, Section 4.7 provides the conclusion.

4.2 Required Tools

This section reviews the tools required to carry out the experiments and implement access to

the RAM image of the VMs, and the analysis processes.
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4.2.1 Libguestfs library

We have applied various tools to support and facilitate completing static analysis, and we

must use software and tools to enable us to access the VMs and extract files for analysis.

When we create a guest VM on a hypervisor such as Qemu-Kvm, we create a qcow2-type disk

image as a virtual disk volume assigned to the guest VM. We could mount the disk image of

a VM if we needed to examine or alter files on it. We would be able to change and inspect

the disk image’s content before unmounting it, so we utilized the Libguestfs library, a set of

open-source tools to access the VM disk images to view the disk images or modify files inside

the VM [108].

Libguestfs supports almost all sorts of disk images, including qcow2 disk images. Libguestfs

toolset can be installed on Linux, Windows, and Mac. Moreover, It is compatible with other

hypervisor systems like VMware, VirtualBox and Hyper-V. We can mount the VMs’ disk

image in a read-write or read-only mode according to our needs and purpose. When the

libguestfs toolset is installed, we can access the qcow2 disk image of a VM using guestmount

command-line. Also, we can define the image path, a mount point, and mounting mode [109].

In our project, we used QEMU/KVM as a hypervisor to form a shared virtualized environment,

so it was the type of disk used qcow2. We also used Linux command lines to mount the

required disk image, and these commands were executed using C. We created the mount point,

identified the disk image path, and mounted the disk; then, we were able to extract executable

files using Find command in Linux. After completing the static analysis, we unmounted the

disk using guestunmount command line.

4.2.2 AVML Tools and Volatility Framework

It was essential to combine memory analysis and VMs’ disk analysis in our method to provide

comprehensive analysis for suspicious VMs. We utilized Acquire Volatile Memory Linux (AVML)

and Volatility Framework to perform memory acquisition and memory dump analysis for the

required VM in the shared virtualized environment. In this process, we know the executable
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files that have been mapped into the RAM; hence, they have been used and operated recently.

AVML is an open-source volatile memory acquisition tool produced by Microsoft, and it was

created with Rust programming language, and it supports almost all Linux distributions. We

applied the AVML to regularly capture VM’s memory image to analyze the memory image

using the Volatility Framework to find out the executable files recently stored in the RAM

[110].

Analyzing the memory images assists us in finding malware. In our project, we regularly

create memory image files. These files contain information that can be useful in determining

malicious VMs in the virtualized environments. We conducted a memory image analysis using

the Volatility Framework.

The Volatility Framework is a set of open-source memory forensics tools implemented in

Python. It is capable of analysing Windows, Linux, Mac, and Android operating systems.

The Volatility Framework is beneficial in reconstructing the activities that the suspicious

VM performed and identifying the running malicious binaries. Moreover, it provides a set of

scanner plugins that improve the RAM dump analysis [111].

Using the analysis tools mentioned above, we can retrieve significant information that supports

us in discovering the running and recently terminated processes, files mapped in the memory,

command lines history, etc. We have benefited from these tools in extracting executable files,

which have recently been activated, instead of analyzing a wide range of executable files as in

the VMs’ disk analysis.

4.3 Method

The proposed detection mechanismperforms several successive operations and stages, as

shown in Figure 4.1.

1. In the first stage, the proposed mechanism receives the process ID of the VM. It utilizes

77



CHAPTER 4. MITIGATION THROUGH DYNAMIC AND STATIC ANALYSIS

Linux Perf to obtain the performance readings from the performance counters, such as

instruction per cycle, L1, L2, and L3 cache miss counters. The appropriate threshold is

measured and determined in advance during analyzing the side-channel attacks at the

time of execution their impacts on hardware performance counters. This stage is the

condition for starting static analysis.

2. In this stage, we create and train a logistic regression model that processes the data

extracted from the performance counters and acts as a classifier between suspicious

and normal behaviours.

3. In this stage, we access the virtual machine disk image on the KVM host by using the

Libguestfs tools [108] that can also be used in popular hypervisors such as VMware

and Hyper-V.

4. We then extract the executable files from the virtual machine disk and store them into

a file to be checked in the stage number 6. In this stage we capture the VM RAM

periodically using AVML Framework [110] then analyze them from within the host using

the Volatility Framework [111] to extract the files that have been stored in the RAM,

thus knowing which files that have been used recently. We then filter these files to

reduce the number of files extracted from the disk to be processed later. This step is

optional if you want to analyse the disk image of the VM only.

5. In this stage, we disassemble the extracted executable files using an open-source static

binary analyser called the Radare2 and the Objdump command in Linux to facilitate

executable file analysing.

6. Then we examine the extracted files against the implicit characteristics of the cache

attacks codes. We utilise the R2pipe API tool [112] to automate reverse engineering

of the executable files using Linux command lines.The implicit characteristics of the

cache attacks codes are clflush, rdtsc, mfence, and lfence, as mentioned in [4, 26, 64].

The result of this stage will be a dataset for the next stage. The result is organized in

columns as follows: File path, cl f lush, rdtsc, mf ence, l f ence, and ThreatLevel.
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Table 4.1: Score-based threat classification

CharacteristicsInput
Clflush Rdtsc Mfence Lfence

Class

1 X X X X
2 X X X ✓
3 X X ✓ X
4 X X ✓ ✓

Green

5 X ✓ X X
6 X ✓ X ✓
7 X ✓ ✓ X
8 X ✓ ✓ ✓
9 ✓ X X X

10 ✓ X X ✓
11 ✓ X ✓ X
12 ✓ X ✓ ✓

Yellow

13 ✓ ✓ X X
14 ✓ ✓ X ✓
15 ✓ ✓ ✓ X

Orange

16 ✓ ✓ ✓ ✓ Red

The value of 1 indicates the existence of the implicit characteristic, otherwise it is 0

for each column. The threat level can take a value from 0 – 3 according to the variety

of characteristics found. For example, we understand memory barrier (mf ence, and

l f ence) are not a threat if they are not issued together with rdtsc timers or cl f lush

eviction instructions. We have organised the threat classes, as shown in Table 4.1

which determines the threat level based on the combination of characteristics in the

executable file, so that the (X) sign indicates that the corresponding characteristic is

not existing, and the (✓) sign indicates its existence.
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• Red: This level is considered the maximum threat and expresses the presence of

all the implicit characteristics and dangerous instructions in malicious codes to

launch side-channel attacks.

• Orange: This level is considered a high threat and expresses the presence of two

implicit characteristics (cl f lush and rdtsc) this may include having only one

of the memory barrier instructions (mf ence, and l f ence). These dangerous

instructions have enough ability to launch side-channel attacks.

• Yellow: This level is considered a low threat and expresses the presence of only one

of the implicit characteristics of( cl f lush or rdtsc); this also may include having

only one of the memory barrier instructions (mf ence, and l f ence). Having just

one of these dangerous commands is insufficient to launch cache side-channel

attacks.

• Green: This level represents the nonexistence of a threat and indicates the absence

of any dangerous instructions. At the same time, it may include memory barrier

instructions (mf ence, and l f ence) that do not represent a threat.

7. We create and train a neural network model using the SoftMax algorithm to classify

executable files based on the previously mentioned threat levels 4.4.

4.4 Experimental Results

We executed experiments using the QEMU-KVM hypervisor. We used the QEMU-KVM

hypervisor on various hosts; Ubuntu 18.04.5 LTS with Intel Core i5-4200M CPU, Debian 10

with Intel Core i5-4200U CPU, and CentOs 8 with Intel Core i5-5300U CPU. We then created

two VMs running a Linux Ubuntu 18.04.5 LTS operating system, one VM running as a victim

and the other running as an attacker VM. We installed the Libguestfs Tool [108], the Linux

Objdump Disassembler, and Volatility Tools [111] inside the host. For the guests, we installed

AVML (acquire volatile memory for Linux) [110] to capture the RAM regularly. We designed

the shared virtualized environment utilizing the QEMU-KVM hypervisor’s default settings, as
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Figure 4.1: Detection Stages

mentioned in section 3.3.2 in the previous chapter we mean by default settings that KSM

was enabled on the QEMU-KVM hypervisor, allowing the hypervisor to share executable

files and applications across multiple VMs and processes and no additional security software

was installed. We then assigned the victims and the attackers’ VMs to different CPU cores,

meaning the VMs shared the LLC cache. Thus, The VMs were not able to share the other

levels of cache among the VMs.

The experience consisted of two main parts. At first, we conducted an experiment to monitor

suspicious behaviours that lead and hint at an attack within the virtualized environment. The

second part was to perform a static analysis of the suspicious VM to detect whether there

was really a threat from the VM and to take the necessary action. These combined operations
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reduce the fault rate in the detection process.

4.4.1 Monitoring Suspicious Behaviours

This section demonstrates the experiment to monitor effective performance counters related to

a cache for detecting cache attacks in shared virtualized environments which are Flush+Reload,

Flush+Flush, and Prime+Probe attacks. We monitored a set of performance counters and

noticed that they constantly changed as we performed cache side-channel attacks. The Mastik

framework was used to carry out the various cache attacks. Also, we used the Linux Perf

tool to extract CPU performance counters readings. We executed the experiments with four

scenarios. The first scenario is normal activities; We took the observations without any attacks

or noise. In the second scenario, the observations were taken with the normal activities with

noise of background applications; no attacks were performed in this scenario. To clarify,

we mean by "Normal Activity", which is the state of the machine without any programs

or applications running on the virtual machine, while by "Noise", we mean the state of

the machine while programs and applications are running in the background of the virtual

machine. In the third scenario, we fetched the readings from the performance counters during

the execution of the cache attacks without any interference from background applications.

Finally, we carried out the attacks with several applications; the readings were observed in

this scenario as well.

Our experiment focused on 13 cache-related counters as shown in Table 4.2 to record

observations in various scenarios every 15 seconds. The first scenario is obtaining the CPU’s

performance counters readings in the virtual machine’s normal state without any activity;

secondly, getting the readings while performing activities such as running applications on the

virtual machine only without any attack. Third, taking observations during the execution of

the side-channel attack only, without any noise from the background applications and finally,

fetching the readings from the performance counters of the CPU during the execution of the

side channel attacks with the presence of noise issued by the background applications.This

set of performance counters was chosen because it changed significantly in the experimental
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Algorithm 3 Pseudo-code of the Dynamic Analysis
Input: VM Process ID
Output: Malicious=1 or Benign=0

1: Receive vm process id
2: Model = logistic regression()
3: for Inf inite Loop do
4: Pause f or 15 seconds
5: Run per f kvm stat − o output.txt − e event counters
6: Output = open and read output.txt
7: while f gets(l ine, size,Output)!= Null do
8: Convert counters readings to integers
9: Save counters readings to f ile.csv

10: end while
11: Data = open and read f ile.csv
12: Result = Model ← Data
13: if Result > 0 then
14: Detect malicious behavior
15: Stop ksm
16: Start static anal ysis
17: end if
18: end for

scenarios and to provided sufficient readings in the case of machine training. We implemented

training stage by utilising the hardware performance counters gathered by the Linux Perf tool.

We gathered the training data from various scenarios because the performance counters were

affected by other programs operating on the VMs. The data was acquired while implementing

cache attacks, both with and without running multiple background programs. About 3610

samples were collected. Also, a binary classification model was created using logistic regression

to analyse the input data and categorize whether the system was under attack or not; 0

indicated a no attack state and 1 indicated an attack state.

We plotted the readings for the various aforementioned different scenarios. Figures 4.3 and

4.2 show the clear variance in cache misses counters and instructions counters readings in all

scenarios. Also, all performance counters were analysed using machine learning to analyse the

data more accurately and efficiently. We implemented the Logistic Regression classification

model to analyse and classify the data, whether the extracted data indicated the presence of

an attack or not, as this is the first step of the proposed detection process. The model was

trained on 70% of the samples collected and tested on 30% of the samples. The model showed

about 99% accuracy for the test case. The accuracy is an essential metric for evaluating

the model performance of predictions, and it means how many times the model predicts the
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Table 4.2: Intel Hardware Performance Events [2, 3]

Performance Counter Counter Description
mem_load_uops_retired.l1_miss This event counts retired load uops which data sources

were misses in the nearest-level (L1) cache.
mem_load_uops_retired.l2_miss This event counts retired load uops which data sources

were misses in the mid-level (L2) cache.
mem_load_uops_retired.l3_miss This event counts retired load uops which data sources

were misses in the last-level (L3) cache.
br_inst_exec.all_branches This event counts both taken and not taken speculative

and retired branch instructions.
instructions This event counts number of instructions.
L1-dcache-load-misses Level 1 cache for data (L1d) read misses by a CPU core.
L1-icache-load-misses Level 1 cache for instructions (L1i) read misses by a

CPU core.
LLC-load-misses Last level cache (LLC) read misses by a CPU core.
LLC-loads Last level cache (LLC) read accesses by a CPU core.
cache-missess This event counts number of memory access that could

not be served by any of the cache.
cache-references Cache accesses per CPU core.
iTLB-load-misses Translation lookaside buffer for instructions (iTLB) read

misses by a CPU core.
iTLB-loads Translation lookaside buffer for instructions (iTLB) read

accesses by a CPU core.

correct label, i.e. true positive. The accuracy can be calculated as follow:

Accuracy= TP +TN
TP +TN +FP +FN

while TP = TruePositives, TN = TrueNegatives, FP = FalsePositives, and FN =
FalseNegatives. We used conf usion_matrix from sklearn.metrics to assess predic-

tion performance. We recorded the false positives and negatives as shown in the Figure

4.9.

To carry out the experiment, we first extracted the process IDs of the virtual machines using

the Linux command line. We then used the process IDs to monitor the performance counters

of the virtual machines using the Linux Perf tools in different scenarios. Then we use the

binary classification model. If there was suspicious behaviour from a VM, we proceeded to

the next step, which was the static analysis of the virtual machine.
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Figure 4.2: Experiment scenarios of all cache side-channel attacks in two cases without
noise attack and with background noise. PP represents prime+probe, FF represents
Flush+Flush, and FR represents Flush+Reload.

4.4.2 Static Analysis for VMs

This section discusses how the experiment was carried out for the static analysis of VMs

that had suspicious behaviour within the shared virtualized environment. We downloaded and

installed the aforementioned required programs for analysis on the host and the VMs.

Our analysis involved the Mastik tool designed by Yarom et al.[100], Xlate [113], Cache

Template Attack source code represented by Gruss et al.[114], and the Flush + Flush attack

tool [115], as well as other Github repositories inspired by "Cache Template Attacks"[57] and

"FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack" [4] such

as [116], [117], [118], [119], and [120].

We implemented virtual machines static analysis experiments in two scenarios, as described
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Figure 4.3: Number of cache misses per 15s for different attack scenarios.

below:

1. VM Disk Image Analysis: In this scenario, our proposed mechanism received the name

of the VM. It created a mount point for the VM using libguestfs tools [108], which

allowed access to the guest’s filesystem from the host and extracted files through it so

that the VM remained operating and we did not need to turn off the VM to access

the VM’s disk image.After that, we extracted the executable files in both user and

kernel space files using the command lines that were implemented using the C language

and stored the resulting files’ paths in a .txt file. We then used the Linux Objdump

tool to disassemble the executable files and display the opcodes of the executable files

in the assembly language. Next, we made sure of the presence of the attack opcodes

that had implicit cache side-channel attacks characteristics inside the executable files,
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such as the flush commands cl f lush and the time stamp counter commands rdtsc,

which provide the attacker with accurate measurements about execution times and

knowledge of the time the the contrast between the cache hits and the cache misses,

as they are commands that represent a threat to shared virtualized environments. Then

we recorded the results of each extracted executable file, then we stored the results to

be processed in the neural network model that depending on the SoftMax classification

to determine the threat level of these files.

2. VM RAM Image Analysis:In this scenario, we analysed the VM’s RAM image. We

performed this experiment in several steps. First, we downloaded and installed the

AVML (Acquire Volatile Memory for Linux)[110] to periodically capture the VM’s RAM

image. In addition, we have downloaded and installed the Volatility Framework [111]

to support analysing RAM images. Using these tools, our method was able to capture

images of the RAM periodically, making it possible to track the operations of the VM.

It was constantly updated during the operation of the VM. From the host device we

were able to process and analyse the RAM and recognize the files stored in the RAM,

making our method more effective in detecting an attack, thus protecting the virtualized

environment and getting rid of malicious VMs. We accessed the VM that had suspicious

behaviour inside the shared virtualized environment using the libguestfs tools [108]. We

then extracted the executable files the same as we performed in the first scenario, after

which we accessed the RAM image produced from the AVML [110] periodical captures

and extracted the executable files. We then filtered the files by comparing the files’

paths elicited from the disk image and the files’ paths elicited from the RAM image.

We implemented files filtration in this approach to obtain sufficient information about

the recently executed files and reduce the large number of files extracted from the disk

image. We then analysed the filtered executable files using the Linux Objdump tool to

convert the executable files into an assembly language, making it straightforward to

investigate the presence of implicit attributes that comprise a threat on the system. We

then stored the results to be classified later using the neural network model.
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Algorithm 4 Pseudo-code of the Static Analysis
Input: VM Name and D=Disk or M=Memory
Output: Threat_level

1: Enter V M Name and d or m
2: Model = Neural Network Classi f ier()
3: if argv = "d" then
4: guestmount vm disk image
5: find ELF f iles path → ELFs.txt
6: else if argv = "m" then
7: guestmount vm disk image
8: find ELF f iles path → ELFs.txt
9: find vm memory image → Image.raw

10: volatility l inux_el f s → ELFs.txt
11: filter disk_el f s and memory_el f s → ELFs.txt
12: end if
13: while f gets(l ine, size,ELFs)!= Null do
14: objdump ELF f ile path (l ine) → ob jdump.txt
15: while f gets(l ine, size, ob jdump)!= Null do
16: if strstr(l ine = cl f lush) then
17: f lush = 1
18: else if strstr(l ine = rdtsc) then
19: rdtsc = 1
20: else if strstr(l ine = mf ence) then
21: mf ence = 1
22: else if strstr(l ine = l f ence) then
23: l f ence = 1
24: end if
25: write result → result.csv
26: end while
27: Result = open and read result.csv
28: Threat_level = Model ← Result
29: end while

The complete architecture of our neural network model for the attack detection is shown in

Figure 4.4. The model contains 3 layers; the first layer, which is the input layer, contains 4

nodes {x1 ∼ x4} and receives either zero or one input for each node, depending on the presence

of attack characteristics in the executable files. Then the hidden layer, which contains 16 nodes

that were identified by a number of attempts to expand and deepen the hidden layer to get the

best results in terms of accuracy. Finally, the output layer contains 4 nodes, which express the

threat level, and the outputs are one of the following colours {Green,Y ellow,Orange,Red}.

To accomplish and build this neural network model, we used the Python language, and the

TensorFlow library was used to adjust the settings of the model and create the layers. Then,

we trained the model after collecting the training data from a different set of virtual machines

in cases of the presence of the attack and in cases where there are no attack files inside

these devices. A label was set for each sample to train the model to classify among the four

mentioned categories. We collected the dataset to train and test the model by creating a
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Figure 4.4: Neural Network Model

set of virtual machines, extracting executable files, and analysing them to record the implicit

characteristics of these files. About 4,500 data samples were collected in two scenarios: the

case of no attack files and the presence of a set of attack files. We used TensorFlow, a

Google-provided open-source framework for machine learning methods, to develop the Softmax

classification model. We configured the training settings with 200 epochs and 10 as the batch

size. In addition, we applied the Adam optimization algorithm to adjust the weights and

minimize the loss. Furthermore, we included early stopping in our training through a callback.

The model was used as a classifier to classify the executable files according to the threat

levels, and The model’s accuracy ranged from 96% to 99%. We plotted the validation and

training loss, as shown in Figure 4.10.

4.4.3 Expansion of the Static Analysis for VMs

Because several benign system files were classified as a threat because they carry some

implicit characteristics of side-channel attacks as shown in Figure 4.6a, we proposed adding

additional implicit characteristics up to eight characteristics to be analysed accurately, as the

map function was added, loop analysis and analysing instructions inside the loop. Thus, The

neural network classification model has been expanded to receive 8 inputs and 16 nodes in
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Figure 4.5: Expanded Neural Network Model

the hidden layer, then 4 possible results represent the threat level, as shown in Figure 4.5.

Figure 4.6 represents the results of classifying a benign virtual machine that does not contain

any files that threaten the system. The results appear more accurate in the neural networks

model that receives eight inputs from implicit characteristics compared with the four input

neural networks model. Also, Figure 4.7 represents the results of classifying a virtual machine

that contains high-threat files. The results of the eight input model shows more accurate

output in detecting malicious files. In Figure 4.8 We plotted the validation loss, which is a

metric used to evaluate the performance of a machine learning model on the validation set (a

part of the dataset for validation), and the accuracy (number of correct predictions out of the

total number of predictions) of the neural network classification model in this experiment.
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(a) Four Features (b) Eight Features

Figure 4.6: Neural Network Classification of Benign VM

(a) Four Features (b) Eight Features

Figure 4.7: Neural Network Classification of Malicious VM

4.5 Evaluation

This section discusses a series of experiments conducted to assess and verify the efficacy of

our method in detecting and protecting against cache attacks in virtualized environments.

In particular, we evaluate the proposed method in terms of its ability to detect the attacks

in different cases using a machine learning classifier and then determine the threat level of

executable files for protection. To evaluate the performance of our method in detecting and

protecting against the attacks, we established the shared virtualized environments explained

in the previous section. The environments’ hypervisor was QEMU-KVM, while the guests’

operating systems were Linux Ubuntu 18.04.5 LTS. We performed experiments on three hosts,

Ubuntu 18.04.5 LTS, Debian 10, and CentOS 8, with various processor models.

We evaluated the accuracy of detecting suspicious behaviours resulting from launching side

channels and measured in different cases with a noise background from running several

applications during the attacks. In the dynamic analysis, we produced the readings from the

91



CHAPTER 4. MITIGATION THROUGH DYNAMIC AND STATIC ANALYSIS

(a) Eight Features Accuracy (b) Eight Features Loss

Figure 4.8: Validation Loss and Accuracy of the Neural Network Classification Model

system every 15 minutes to classify them based on whether they indicated the presence of a

side-channel attack. We then measured the classification accuracy while using the Linux Top

tool to check the CPU usage and the system load during operations.

We tested 200 samples for each host involving various side-channels attacks. The system

counters readings were extracted by the Linux Perf to be classified. We then classified these

samples using the logistic regression classification. There were simple differences in the

accuracy of detecting suspicious behaviour ranging from 96% to 99%. The CPU usage was

between 0.11, 0.44 and the load on the system ranged from 0.6 to 3 for all host devices in

the dynamic analysis, as shown in the Table 4.3.

In cases of positive results, whether true or false, in dynamic analysis of suspicious behaviours,

we moved to the static analysis that extracted and analysed executable files to validate the

results. They performed their part in classifying a threat level for these files, thus the threat

level of the VM. Suppose we received a false positive result in the dynamic analysis; we would

move to the static analysis. The executable files would then be analysed and classified; if it

was not a malicious VM then the VM files would be classified as green, meaning they do

not pose any threat to the shared virtualized environments. In this process, the results are

supported and the detection system’s accuracy as a whole increases so that the final results

are almost unaffected by faults that may stem from the dynamic analysis.
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Figure 4.9: Logistic Regression False Positive and Negative

We then conducted several experiments to measure the accuracy of the static analysis and

measured the CPU usage and the load on the system. Different host operating systems were

used. In each of them, we created a set of virtual machines by downloading and installing a

set of side-channel attacks tools and executable files as we described in section 5. Attack

files included a collection of attacks framework tools such as the Mastik framework, Xlate

framework, and other attack project source codes. After that, we performed the static

detection in two scenarios, the desk analysis, and the memory analysis. As shown in the Table

4.3, the method detected attacks on executable files with 97-98% accuracy, with between

10–25% CPU usage and between 0.85 –1.46 system overhead.

The results extracted from the static analysis of the disk were a statement of a set of

executable files that carried at least one of the implicit characteristics of side-channel attacks,

after which the extent of the threat level to these files was classified using the SoftMax

algorithm used in the neural network classifier, regardless of whether these executable files

had been recently run on the systems or not. In the constant analysis of the memory, all files

extracted as results had recently been run on the system, which is why they were mapped
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Figure 4.10: Validation and Training loss

into the memory. These executable files also carried at least one of the implicit characteristics

of side-channel attacks.

Table 4.3 shows the measurements of the system load, the CPU usage, and the accuracy of

detection. We mean by the system load, the average number of processes being executed

or waiting to be executed by the CPU over the past 5 minutes. As for the CPU usage, it

means the percentage of the CPU that was used out of the total CPU capacity during the

execution time. Regarding the accuracy, it expresses the number of correct predictions by the

model out of the total number of predictions. We have used Linux Top tools that facilitate

monitoring the CPU and displaying the processes currently being executed. It also can be

used to display information about the CPU Usage and the system load. The table also shows

the time required to fetch readings from the hardware performance counters using the Linux

Perf for each virtual machine. The time here is user-defined, so the time appears the same

for each host machine.

We designed a mechanism that depends on analyzing the behavior of VMs at the beginning of

the approach and then integrating it with static analysis to ensure good system performance,
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check the results, and then decide whether to suspend the virtual machine or not. Based

on the obtained results, we were able to identify suspicious VM behaviors, And scanned the

virtual machine against executable attack files with high accuracy. Also, this approach is

applicable in the shared virtualized environments to monitor the activities of the VMs and

identify the threat level of the suspicious VM from within the host machine. Table 4.4 is

a table that shows a comparison between our method and some of the previous methods

through the tools used, the targeted attacks, the percentage of detection accuracy, and

compatibility with the nature of cloud computing.

Table 4.3: Experiment results

Dynamic Analysis
Os and CPU Type %CPU Usage System Load Accuracy Time

Ubuntu i5-5200U CPU 0.6 - 3 0.33 - 0.35 %96.00 15 Sec
Debian i5-4200U CPU 1.3 - 2 0.11 - 0.22 %99.00 15 Sec
CentOS i5-5300U CPU 0.6 - 2 0.25 - 0.44 %95.58 15 Sec

Static Analysis
Os and CPU Type %CPU Usage System Load Accuracy Time

Ubuntu i5-5200U CPU 18 - 25 0.85 - 1.25 %97.91 8 - 12 Min
Debian i5-4200U CPU 10 - 24 1.09 - 1.46 %98.31 8 - 12 Min
CentOS i5-5300U CPU 12 -24 1.02 - 1.38 %97.27 8 - 12 Min

Although various approaches for malware detection have been introduced, these approaches

have critical drawbacks and limitations. First, they perform static analyses frequently and does

not require the start-up condition, thus increasing the load on the system. Moreover, they are

also not effective in detecting and protecting the shared virtualised environments from side

channel attacks. We address the limitations of the current detection methods by proposing a

new approach that detects and protects the shared virtualised environments against cache

side-channel attacks. Our approach monitors and detects any abnormal behavior of virtual

machines periodically and then performs static analysis of the detected virtual machine’s

executable files and then classifying the threat level of virtual machine executable files using

neural network classification algorithms, thus eliminating the malicious VM, and protecting

the shared virtual environment with acceptable performance.

95



CHAPTER 4. MITIGATION THROUGH DYNAMIC AND STATIC ANALYSIS

Table 4.4: Comparison to the Previous Works

Method Type Tools Attacks Accuracy Cloud?

[26] Scan Apps in
App Store

IDA PRO Static Bi-
nary Analyzer

Microarchitectural
Attacks

97% No

[88] Monitoring
CPU Counters

Intel
PCM(Performance
Counter Monitor)/
Neural Networks
Classification Model

Cache Attacks 97% Yes

[24] Monitoring
CPU Counters

Linux perf/Machine
Learning models

Cache Attacks 93% Yes

[27] Monitoring
CPU Counters

Intel CMT(Cache
Monitoring Tech-
nology)/Machine
Learning Models

Prime+Probe At-
tack

99% Yes

Our
Method

Monitoring
CPU Coun-
ters/Scanning
suspicious VMs’
Disk/RAM

Linux Perf/Logistic
Regression
Model/Neural
Networks Classi-
fication Model/
Radare2-R2pipe
tools/Linux Obj-
dump

Cache Attacks 97-98% Yes

4.6 Limitations

Despite the promising results of this method in reducing the overhead of the system by relying

on the hybrid analysis between dynamic analysis and static analysis to detect suspicious

behaviour and then detect attack programs inside malicious virtual machines, some limitations

must be considered, such as obfuscation of the code or hiding attack programs to bypass

static analysis. Since the proposed method depends on two types of analysis, as mentioned,

the use of code obfuscation techniques will partially affect the proposed detection mechanism,

as only static analysis is affected, but dynamic analysis of virtual machines’ activities will

not be affected by these techniques. Also, the proposed method requires further experiments

and evaluations on host machines that can run many virtual machines because the number

of virtual machines may significantly impact analysis and monitoring activities on shared
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virtualised systems. The proposed detection mechanism also needs to improve the analysis

processes to include microarchitecture attacks to protect the shared virtualised systems from

these attacks.

4.7 Summary

We proposed a side-channel attacks detection and protection method which combined dynamic

and static analysis. The dynamic analysis used Linux Perf to obtain readings from 13 hardware

counters related to the shared cache at runtime. Based on these readings, the VM behaviour

was then classified into suspicious or benign using the logistic regression classification. As a

second step, the static analysis extracted the executable files from the disk image or the RAM

image of the suspicious VM. It then checked whether they contained operating codes for

side-channel attacks. Based on this, the threat level of these files was determined using the

Softmax classification algorithm; we had four threat levels in total. After that, the VM that

posed a threat to the shared environment was excluded.Our proposed mechanism combines

the advantages of dynamic analysis and static analysis to reduce the load on a system.

As a hypervisor, we employed KVM (Kernel-based Virtual Machine), and as guest operating

systems, we utilized Linux Ubuntu 18.04.5 LTS (64bits). We then conducted experiments on

several host machines, namely Ubuntu 18.04.5 LTS, Debian 10, and CentOS 8, with various

processor models. The accuracy of detecting suspicious behaviour and classifying the threat

level was recorded as 96%–99% percent with between 0.6%–25% CPU overheads for dynamic

and static analysis.

The method designed in this chapter answers research questions 3 and 4 from Section 1.3

in the thesis, confirming the effectiveness of integrating dynamic and static analysis to

reduce the load on the system and support the results of attack detection and protection,

and the possibility of designing a static analysis that matches the nature of the shared

virtualised environments. Furthermore, the experiments conducted to validate this method

verify hypotheses H3, H4 and H5 from Section 1.4.
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CHAPTER 5. MITIGATION THROUGH PERIODICAL LONG-RANGE INTERVALS
SCAN

This chapter proposes a detection and protection method against microarchitectural attacks .

The method utilises the microarchitectural attacks’ static analysis. The method periodically

extracts executable files for the long-term scan, such as once a week, analyzes them to detect

whether they have microarchitectural attack attributes, and stores the results to be classified

using a logistic regression model. We have created a shared virtualised system to conduct

experiments on different hosts and processors. The results of our experiments show that our

method can detect attacks with 97.47% accuracy and between 24–26% CPU usage.

5.1 Introduction

This chapter focuses on threats to shared virtualized systems including microarchitectural

attacks. The microarchitectural attacks exploit the shared systems to reveal or alter secret

data resulting in decrypted encryption keys hence compromising systems. A number of

approaches have been proposed to mitigate the threats of microarchitectural attacks such

as [26, 89, 95, 96, 107, 121, 122]. However, some shortcomings exist in these approaches

which makes them unattractive for adoption as sufficient solutions for shared virtualized

systems.They do not provide comprehensive protection for a large number of malware and

microarchitectural attacks that threaten the shared virtualized system. Also, some of these

approaches need to improve the detection and protection results. Also, some solutions are

not compatible with shared virtualization systems to provide effective protection aginst

microarchitectural Attacks.

In this chapter, we introduce a new method based on static analysis of the implicit character-

istics of the attack’s executable files to address the shortcomings of the existing techniques

mentioned above. Also, the method can detect a wide range of executable files of microarchi-

tectural attacks within the shared virtualised system. Furthermore, the method contains two

types of analysis regarding the duration of the analysis process to detect attacks: fast scan

and full scan to scan executable files within the shared virtualised systems.

Hence, this chapter makes the following primary contributions:
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1. We introduce an approach for detecting and protecting shared virtualized environments

against microarchitectural attacks by analyzing implicit attributes of executable files.

2. We describe the method and results of the mechanism design, implementation, and

experimentation.

3. We evaluate the approach in various attack scenarios in terms of detection efficiency

and performance attributes.

The remainder of the chapter is arranged as follows. Section 5.2 illustrates the proposed

detection and protection method. Section 5.3 describes the experimental investigations based

on the proposed method. In Section 5.4, the evaluation of the implemented method is

discussed. Finally, Section 5.5 provides the conclusion.

5.2 Method

The proposed method in this chapter is based on static analysis of the implicit characteristics

of the attack’s executable files The proposed method consists of two types of executable

file scanning, namely, fast scan and full scan combined with logistic regression model for

classification. We propose combining the procedure with a logistic regression classifier model

for analysing these specific attacks’ executable files and recognising whether the executable

files contain any malware of microarchitectural attacks. The method include several steps

to complete the scan successfully. As shown in Figure 5.1 for Scanning Microarchitectural

Attacks the proposed method is accomplished using the following set of steps and stages.

1. Record all disk image addresses so that only one address is randomly chosen every time

period to be scanned against microarchitectural attacks.

2. Utilize the Libguestfs tools [108] to access the target virtual machine’s disk image on

the KVM host, which can also be utilized in other hypervisors as well.

3. Next, the choice is made between a fast scan and a full scan. In the fast scan option, the

executable files are extracted from the userspace. In other words, the files are extracted
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from the userspace home folder of the Linux virtual machine. In contrast, with the full

scan of the virtual machine, all executable files are extracted inside the virtual machine.

However, full scan mode takes a longer time to complete the examination process.

4. Next, the extracted executable files are disassembeld utilizing the Objdump command in

Linux and the extracted executable files are examined against the implicit characteristics

of the microarchitectural attack codes as shown in Table 2.2

The result of this analysis produces a dataset. The value of 1 in the dataset indicates

the occurrence of the implicit characteristic. Otherwise (if not found), the value is set to

0 for each implicit characteristic. The attack characteristics are also checked to identify

if they are continuously executed in a loop that takes the value 2. For analyzing the

loop, we use a python program [123] that places each line of the disassembled binary

into a linked list and separates the memory address, opcode, and operands for each

line, then analyzing node addresses for the control flow graph.

5. Then all values of the implicit characteristics of the executable file are recorded and

saved in a CSV file to be read and entered into the machine learning classifier model.

6. We create and train a binary logistic regression model to classify executable files whether

they are malicious or benign.

7. Then, if any file exists that is classified as malicious, the file that poses a threat to the

shared virtual environment will be alerted.

5.3 Experimental Setup

The experiments were conducted on multiple hosts using the QEMU-KVM hypervisor. The

Ubuntu 18.04.5 LTS was employed which utilized an I5-4200M CPU, the Debian 10 utilized

an I5-4200U CPU, and the CentOS 8 utilized an I5-5300U CPU. Then we created two VMs for

each host that was running Ubuntu 18.04.5 LTS OS, one working as a VM for the victim and

the other as a VM for the attacker. After that, we installed the Libguestfs tools [108] so that
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Figure 5.1: The Proposed Method

we can access, inspect, and modify the disk image of the VMs from the host. Linux Objdump

tools was installed along with the Libguestfs tools to disassemble the executable files and

check them afterward. We performed the static analysis for a set of microarchitectural attacks.

Our analysis involved the Mastik tool designed by Yarom et al.[100], Xlate [113], Cache

Template Attack source code presented by Gruss et al.[114], and the Flush + Flush attack

tool [115], as well as other Github repositories inspired by "Cache Template Attacks"[57] and

"FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack" [4] such

as [116], [117], [118], [119], and [120]. We have also analyzed and tested a set of the Specter

attack programs [124–126], the Meltdown attack [127, 128], and Rowhammer [129, 130].

The proposed mechanism selected the disk image address of the target VM randomly every

period from among many virtual VMs. After that, a mount point was created by the Libguestfs
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tools [108] to extract executable files from the target VM (executing the static analysis from

the host) while the VM was still running. We did not have to shut down the VM to access

the disk image. After which, we created two options: extracting the executable files from

the userspace or the system space. Extracting files from userspace is faster in the analysis

process because the number of extracted files is much less. Next, we utilized the Linux

Objdump tool to disassemble the executable files and display the opcodes or mnemonics for

the machine instructions from the input file. Then we checked the presence of the attack’s

implicit attributes in the extracted executable files and also if they they were in a loop. We

recorded the appropriate values such that 0 indicates the absence of the implicit attribute

and 1 indicates the presence of the implicit attribute but not inside the loop, and 2 indicates

the presence of the attribute inside the loop. Then we saved the results into a CSV file to be

processed by the logistic regression binary classifier model.

Creating a set of VMs, extracting executable files inside them, and analyzing extracted files

to capture the implicit attributes included in these files, provided us with the dataset needed

to train and test the classification model. We collected around 5,000 data samples in two

cases, one for the case of no microarchitectural attacks files inside the VMs, and two the

presence of a set of microarchitectural attacks files.

We then created the Logistic Regression classification model to analyze and classify the data

based on whether the extracted data indicated the presence of an attack or not. We trained

the model for 70% out of 5000 malicious and benign samples collected and tested on 30% of

the samples. The model showed accuracy about 97.47% for the test case. We plotted the

ROC curve that shows the accuracy, and also we recorded the false positives and negatives,

as shown in Figures 5.2 and 5.3.

5.4 Experimental Results and Evaluation

In this part, we explain a set of experiments that were conducted to test and validate the

efficacy of our method in terms of performance overhead, execution time, and accuracy of
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Figure 5.2: False Positive and Negative

detecting microarchitectural side-channel attacks using the logistic regression classifier. For

evaluating our method efficiency in detecting attacks’ executable files, we designed the shared

virtualised environments described in the previous section.

We utilised QEMU-KVM hypervisor and ran test with various CPU models on three different

hosts, including Ubuntu 18.04.5 LTS, Debian 10, and CentOS 8. After that, we recorded the

results of the detection accuracy, performance overhead, and scan duration. In this section,

these results are discussed.

We accomplished the evaluation in two parts, as shown in Tables 5.1 and 5.2. The first is a

microarchitectural attacks scan, and the other is a viruses scan.

5.4.1 Microarchitectural Attacks Scan

We evaluate this part using a fast scan as well as a full scan for each host used as follows:

1. Detection Accuracy: To evaluate the accuracy of microarchitectural attacks detection
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Figure 5.3: The Roc Curve

Table 5.1: Attacks Scan Experiment Results

Attacks Fast Scan
Os and CPU Type #Files Duration CPU Time %CPU Usage Overhead %Accuracy

Ubuntu i5-5200U CPU 97 4 Mins 0.0103 Sec 25 1.23
97.47Debian i5-4200U CPU 230 19 Mins 0.2001 Sec 24.5 1.4

CentOS i5-5300U CPU 117 7 Mins 0.0152 Sec 26 1.06
Attacks Full Scan

Os and CPU Type #Files Duration CPU Time %CPU Usage Overhead %Accuracy
Ubuntu i5-5200U CPU 1922 38 Mins 0.1959 Sec 28.5 1.31

97.47Debian i5-4200U CPU 1824 43 Mins 0.1472 Sec 34 2.38
CentOS i5-5300U CPU 1956 37 Mins 0.2444 Sec 42 1.96

based on the logistic regression model, we measure our detection model’s true-positive

and false-positive rates by analyzing the different types of microarchitectural attacks,

as shown in Figure 5.2. We achieved an F1-score of 0.98, as shown in Figure 5.3. The

accuracy of detection was recorded in the process of testing the logistic regression

classification model.
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Table 5.2: Viruses Scan Experiment Results

Viruses Fast Scan
Os and CPU Type #Files Duration CPU Time %CPU Usage Overhead %Accuracy

Ubuntu i5-5200U CPU 97 13 Mins 0.0112 Sec 26 1.14
79Debian i5-4200U CPU 230 50 Mins 0.0209 Sec 24.8 1.04

CentOS i5-5300U CPU 117 36 Mins 0.0146 Sec 25.5 1.2
Viruses Full Scan

Os and CPU Type #Files Duration CPU Time %CPU Usage Overhead %Accuracy
Ubuntu i5-5200U CPU 1922 337 Mins 0.2099 Sec 32 1.44

79Debian i5-4200U CPU 1824 449 Mins 0.1475 Sec 36.5 2.7
CentOS i5-5300U CPU 1956 696 Mins 0.2231 Sec 47 2.17

2. Performance Overhead: The overhead was recorded for the entire system while the

detection mechanism was running to analyze just one VM. We found that the overhead

was different for each host, but it was slightly close to each other. The Linux Top

application was relied upon to record the overhead rate information every 5 minutes and

the CPU usage rate, as shown in Table 5.1. The CPU usage was intensive. However, it

depends on the computing power and model of the processor used.

3. Scan Duration:The duration of the detection mechanism was recorded as shown in

Table 5.1. The execution time was also recorded using the CPU time. We noticed

that the execution time depends on the number of files extracted for analysis, and the

type of processor also has an impact on the execution time. There were two types of

scanning, and there was a significant difference between a fast scan and a full scan for

executable files, which indicates the importance of a fast scan, as shown in Figure 5.4

and 5.5 which show how many files have been scanned and how many minutes it has

taken to scan, while we need to develop a full scan to be faster. Although we do not

need to turn off the virtual machine for examination, detection speed is essential for

the detection mechanism.

5.4.2 The Solution Works in Parallel with Antivirus applications

The other part of the experiment involved checking files using ClamAV antivirus. This

application is capable of detecting numerous varieties of malware; moreover, its databases are

updated continuously [131]. The ClamAV user can manage it and access all the functions
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(a) Fast Scan File Numbers (b) Fast Scan Duration in Minutes

Figure 5.4: Fast Scan for Attacks

(a) Full Scan File Numbers (b) Full Scan Duration in Minutes

Figure 5.5: Full Scan for Attacks

through the command-line interface. There are numerous features for the ClamAV antivirus,

such as scheduling scans and sending the scan report by e-mail. It also helps select files for

the scan. We extracted the executable files from the VM and checked them directly. We

can also reduce the execution time by choosing a fast scan option to extract files from the

userspace. After that, if malicious files are detected, a notification of the scan results is sent.

We have run the detection method in parallel with ClamAV as follows:

1. We keep track of all disk image addresses so that one address is randomly selected

every time period to be inspected with Clam AV software.

2. We then make use of the Libguestfs utilities to gain access to the disk image of the

target virtual machine running on the KVM host.
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3. Then we choose between a fast scan or a full scan of the executable files of the target

virtual machine.

4. After that, the extracted files from the disk image can be scanned using Clam AV

without disassembling the executable files.

5. Then, if any file is identified as malicious, the file that poses as a threat to the shared

virtual environment will be alerted.

Furthermore, we have evaluated this part using a fast scan as well as a full scan for each host

using ClamAV as follows:

1. Detection Accuracy: ClamAV has been used because it is open source and supports

the use of the command-line for managing its functions. This facilitates its adoption

in the design of the detection mechanism. The detection rate was 79% that is a

reasonable rate compared to other antivirus programs’ detection rates, such as McAfee

and Avast, according to the study presented in [132]. We can also use a different

antivirus application or a group of antivirus applications to raise the detection rate.

However, it may be a significant overhead on the system and may cause a longer

execution time, affecting the entire system’s performance.

2. Performance Overhead: Overhead was monitored every five minutes for the entire system

when the mechanism was running using ClamAV to check only one VM per host, as

shown in the table 5.2. CPU usage was also monitored, and there was no significant

difference between all hosts. Values may increase when adding more VMs running on

the same host.

3. Scan Duration:The execution time of the fast scan and the full scan using the ClamAV

antivirus were recorded, as shown in Figure 5.6, as there was a significant difference

between the duration of the two scans, and there was a massive difference in the

number of files as well. ClamAV was slow in the scanning process, and it spent roughly

eighteen seconds to scan only one file. However, the scanning mechanism does not
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(a) Fast Scan Duration in Minutes (b) Full Scan Duration in Minutes

Figure 5.6: Scan Duration using ClamAV

require turning off the virtual machine, as it normally works, which may be acceptable

to some extent.

5.5 Summary

This chapter introduced a detection and protection method against microarchitectural attacks

using static analysis based on a machine learning algorithm. The process periodically extracts

VMs’ executable files and checks them against microarchitectural attacks’ implicit attributes

(opcodes). Depending on the scan duration, we identify two types of scans: (i) fast scan and

(ii) full scan. In the case of the fast scan, the files are extracted from a VM’s userspace. And

in the case of the full scan, the files are extracted from the kernelspace of the entire VM

system in a shared virtualised system.

A logistic regression model is used to classify the executable files in case of scanning against

microarchitectural attacks. We employed QEMU-KVM (Kernel-based Virtual Machine) hyper-

visor, and as guest operating systems, we utilized Linux Ubuntu 18.04.5 LTS (64bits). We

then experimented with various processor models on several host machines, namely Ubuntu

18.04.5 LTS, Debian 10, and CentOS 8. The accuracy of detecting executable files was

recorded as 97.47% with between 24%–26% CPU usage for the static analysis.

The method proposed in this chapter answers research questions 5 from Section 1.3 in the
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thesis, confirming the possibility and effectiveness of generalising static analysis to extend the

scope of protection against other microarchitectural attacks. Also, it can work in parallel with

antivirus applications such as ClamAV to perform long-term periodic checking against attacks

and viruses as well. No antivirus can scan VM applications against microarchitecture attacks,

so it is important to design our method comprehensively to accomplish this. Furthermore, the

experiments conducted to validate this method confirm hypothesis H6 from Section 1.4.
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This chapter designs comprehensive solution of the three methods we proposed in previous

chapters to provide comprehensive protection for shared virtualised systems against microar-

chitectural attacks. This chapter presents experiments for comprising the three methods and

evaluating them in the possible operational scenarios. It evaluates the overhead on the system

and the CPU usage using different host systems for the evaluation processes.

6.1 Introduction

In the previous chapters we discussed several methods we have proposed to mitigate the

threat of side-channel attacks and microarchitectural attacks. We evaluated each method

individually to illustrate its advantages. In this chapter we combine these methods to design

a new mechanism that combines the advantages of the proposed methods. The mechanism

can monitor the activities that sensitive memory sites are exposed to, as it can monitor

and analyse activities of VMs through CPU performance counters, and perform periodic

inspections of VMs and suspend the VM that represents a threat to ensure the integrity

of a shared virtualised system. The novelty of this project is the design of a diverse and

comprehensive detection and protection system that protects against cache side-channel

attacks and microarchitectural attacks. Our mechanism works at the level of VMs and host

machines. Thus, the VM can provide self-protection by using the memory deduplication

feature to monitor malicious activities that target shared cryptographic libraries and shared

programs, obfuscating the attack results. Also, the host provides protection for the shared

virtualised system by relying on hybrid analysis processes, namely dynamic analysis, to monitor

suspicious activities. It also uses static analysis to extract executable files that pose a threat.

Our method also relies on machine learning models to support data analyses and improve

result accuracy. The proposed mechanism periodically scans VMs to ensure their integrity from

the presence of executable files that contain implicit attributes of microarchitectural attacks.

Our approach contains diverse lines of defence that are difficult for attackers to penetrate

and bypass. It can also work in a shared virtualised system with acceptable performance and

high accuracy. We have explained in detail in previous chapters the design of the detection
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and protection systems and how to implement and evaluate it. This chapter aims to design a

protection system based on a comprehensive solution that combines all the solutions in the

thesis, implement the mechanism and evaluate its performance characteristics.

The remainder of the chapter is arranged as follows. Section 6.2 illustrates the comprehensive

detection and protection methods. Section 6.3 describes the experimental setup. In Section

6.4, the evaluation of the results is discussed. Finally, Section 6.5 provides the conclusion.

6.2 Methodology

The methodology used consists of a combination of three methods, as explained in Chapter 3,

Chapter 4, and Chapter 5, that operate in shared virtualised systems. We will discuss these

separately below.

The first methodmonitors and protects sensitive shared program functions (cryptographic

libraries and shared executable files) from within a VM. It also uses the memory deduplication

feature to obtain attack readings and then analyses them using the logistic regression model.

It can detect suspicious activities that sensitive shared programs are exposed to during the

execution of sensitive operations in shared virtualised systems. Additionally, it can obfuscate

the results of attacks obtained by the attacker. The method supports VMs to detect attacks

by knowing the attacks’ readings, thus providing self-protection for the VM.

Suppose two VMs run in a shared virtualised system that supports the memory deduplication

feature. One of the VMs is malicious and the other is a target or victim VM. The two VMs

share the last level of cache on the same host and also share the same cryptographic libraries

and executable files as a result of using memory deduplication, which deletes all replicas of

executable files and retains only one shared copy between them to save memory capacity. As

shown in Figure 6.1, the VMs are able to access the shared memory and perform a flush-based

cache attack in the system. The attacker performs the flush-based attack as follows (steps

number 1 and 6 in Figure 6.1).
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• The attacker defines the desired memory addresses related to the shared executable

file’s target functions and flushes them out of the cache, using the cl f lush instruction

(the attacker may need to repeat flushing of the same addresses multiple times to

ensure the attack’s success). The intention is for the flushed functions’ addresses to be

retrieved from the main memory when the victim requests and executes these functions.

• After that, the attacker waits to give the victim some time to perform encryption

operations or execute sensitive data related functions. Next, the attacker reloads the

flushed functions’ addresses and measures the access time (using the rdtsc instruction)

to determine whether or not the victim has requested and executed those functions.

The proposed protection mechanism includes the steps numbered 2, 3, 4 and 5 in Figure 6.1).

• It gets the shared functions’ addresses of executable files and cryptographic libraries to

be monitored and shielded from the flush-based cache attacks.

• It recovers the monitored functions into the cache memory while measuring each

function’s recovery time over each specified period of time. As a result, the functions

will be reloaded and the detection mechanism will discover the flush instructions. The

measurement is conducted by utilizing the rdtsc instructions that provide a high-

resolution time stamp counter. It sets an iteration sample for the monitored functions so

that the recovery time is measured frequently. It is then measured against the threshold

of the system to detect whether flush instructions have been conducted on the functions.

Because the detection mechanism accesses the addresses specified continuously to be

monitored, the attack results are obfuscated, so the attacker will record that cache hits

for all the addresses monitored even if the victim does not use them.

• It records the number of flushes for each monitoring function and then analyses it using

logistical regression.

• It then warns the user in case of attack.
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Figure 6.1: Flush-based Attacks Detection Method

The second methodis a mechanism for detecting and protecting against cache side-channel

attacks from inside the host. The technique is a hybrid of dynamic and static analysis, as

shown in Figure 6.2. The dynamic analysis monitors VMs’ activities in a virtualised system

by obtaining readings from hardware performance counters relevant to the shared cache at

runtime. Then the activities of the VMs are classified between benign or suspicious after

analysing the readings using a logistic regression model. When any suspicious activity is

detected, the static analysis runs. The static analysis accesses the suspicious VM and extracts

executable files from a disk and RAM images. It then examines whether these files contain

opcodes of cache side-channel attacks. Based on the results, the threat level of these files is

determined using a neural network classification model.

The third method is based on a combination of static analysis with the ClamAV application.
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Figure 6.2: The Dynamic and Static Analysis Protection Method

The method runs periodically and the VMs are randomly selected for testing. There are two

types of scans: a microarchitectural attacks scan and an antivirus scan, as shown in Figure

6.3. The mechanism accesses the VM, extracts executable files, checks if they contain the

implicit characteristics of a microarchitectural attack, and then analyses the results using a

logistic regression model to detect whether there are any malicious files and whether they

contain viruses. The scan is divided into two parts: a fast scan and a full scan, in terms

of scan duration. This method provides periodic scanning of a shared virtualised system to

eliminate attack files and viruses, and to identify the malicious VM. The methods operate in

tandem to provide adequate protection for a shared system.
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Figure 6.3: The Periodically Cleansing Method

6.3 Experimental Setup

The same computing environment was used as in previous chapters. We created shared

virtualised systems and executed experiments with the QEMU-KVM hypervisor that runs

KSM as a memory-saving deduplication feature. As hosts we used Ubuntu 18.04.5 LTS which

uses an Intel Core i5-4200M CPU, and Debian 10 which uses an Intel Core i5-4200U CPU.

We then created two VMs on the same host. The VMs were running Ubuntu 18.04.5 LTS

OS, one VM as an attacker and the other as a victim. We installed several essential tools

inside the VMs. For instance, the GDB (GNU Project debugger) tool to facilitate finding the

shared executable file’s functions’ addresses, thus facilitating monitoring the functions. We

also installed AVML (acquire volatile memory for Linux) to capture the RAM status regularly.

Moreover, we installed the Linux Perf, the Libguestfs Tool, the Linux Objdump Disassembler,
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radare2, Volatility Tools, and ClamAV inside the host. We conducted the attacks using the

Mastik tool designed by Yarom et al. [100]. We conducted experiments using this environment

to evaluate the system’s overall performance and record the system load and CPU overhead.

The mechanism combines four mechanisms, as shown in Algorithm 5, which may significantly

impact a system. Thus, we decided to conduct experiments and record the effect.

6.4 Experimental Results and Evaluation

The experiments were conducted to assess the load on the system and the overhead of the

CPU. Therefore, the experiments were performed with different scenarios, as follows.

• Execution of the experiment on dynamic analysis mechanisms while we were conducting

side-channel attacks: the mechanisms for monitoring the activities of VMs were only

included with this experiment. The mechanism of Chapter 3 was combined with the

mechanism of dynamic analysis in Chapter 4, and the overhead of the processor was

measured.

• Execution of the experiment on the mechanisms of static analysis: the static anal-

ysis of side-channel attacks in Chapter 4 was combined with the static analysis of

microarchitectural attacks in Chapter 5.

• Measuring the load on the system and the CPU’s overhead while operating all mecha-

nisms. The dynamic and static analyses were implemented together.

The load on the system and the overhead for the CPU were measured using the Linux Top

tool, where the system load rate was recorded every 5 minutes, as shown in Table 6.1. Also,

the detection accuracy of the proposed mechanisms were averaged based on the detection

accuracy experiments in Chapters 3,4 and 5.

Based on the results shown in Figure 6.4, it was found that there is an increase in CPU

usage and system load. However, the reason for this may be either the limited computing
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Algorithm 5 holistic Protection Solutions
Input: Functions Addresses, V M process IDs, V M Disk Addresses
Output: Attack Detection Noti f ication, Threat Level

1: Model_P1= Logistic Regression()
2: while true do
3: for i = F_Address1 to F_Addressn do
4: Run Monitoring Addresses access time measurements
5: for Iteration do
6: Record EvictCounter[i++] → Data_P1.csv
7: Result_P1= Model_P1← Data_P1.csv
8: if Result_P1= 1 then
9: Detect Cache Attacks

10: end if
11: end for
12: end for
13: for VM process IDs do
14: Model_P2.1= Logistic Regression()
15: Run D ynamic Anal ysis to monitor V M
16: Record the reedings of HPCs → Data_P2.1.csv
17: Result_P2.1= Model_P2.1← Data_P2.1.csv
18: if Result_P2.1= 1 then
19: Disable Memory Deduplication
20: Suspend the V M to Scan RAM
21: Model_P2.2= NNClassi f ication()
22: Run Static Anal ysis to access V M RAM Image
23: Find and disassemble Executable f iles → f iles_P2.2.txt
24: Search Cache Attacks opcodes in f ile_P2.2.txt → Data_P2.2.csv
25: Threat Level = model_P2.2← Data_P2.2.csv
26: Threat Level Noti f ication
27: end if
28: end for
29: Pause(Long Period)
30: for VM Disk Addresses do
31: Model_P3= LogisticRegression()
32: Find Executable f iles → f iles_P3.1.txt
33: Result_P3.1= ClamAV ← f iles_P3.1.txt
34: if Result_P3.1= 1 then
35: ClamAV Noti f ication
36: end if
37: Disassemble Executable f iles in f iles_P3.1.txt → f iles_P3.2.txt
38: Search Microarchitectural Attacks opcodes in f ile_P3.2.txt → Data_P3.csv
39: Result_P3.2= ModelP3← Data_P3.csv
40: if Result_P3.2= 1 then
41: Microarchitectural Attacks Noti f ication
42: end if
43: end for
44: end while
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(a) System Load

(b) CPU Usage

Figure 6.4: Systems Overhead

power of the systems used, as we utilised an Intel Core i5 processor for both hosts, or the

complexity of the code. In both cases, the results will be better if a server with suitable

computing capabilities is utilised. Moreover, the mechanism relies on dynamic analysis to

determine whether there are any suspicious behaviours that require static analysis to ensure

the presence of attack files inside a suspicious VM. This condition may reduce overhead and

improve performance. Also, the static analysis that is used to detect files of microarchitectural

attacks scans VMs for long-term periods, rationalising the reliance on static analysis, despite

its importance in protecting a shared virtualised system.

122



6.4. EXPERIMENTAL RESULTS AND EVALUATION

Figure 6.5 represents the normal distribution of system load and processor usage. The figure

also shows the probability density of load and processor usage. The normal distribution was

calculated by calculating the mean and standard deviation, and then the normal distribution

was calculated using Microsoft Excel. We can also calculate the normal distribution after

calculating the mean µ and standard deviation σ using the following equation:

f (x)= 1

σ
p

2π
exp

(
−1

2

( x−µ

σ

)2 )

(a) Normal Distribution of System Load

(b) Normal Distribution of CPU Usage

Figure 6.5: Normal Distribution of Systems Overhead

123



CHAPTER 6. HOLISTIC PROTECTION SOLUTION

Table 6.1: System Overhead

Dynamic Mechanisms
OS System load CPU Usage

Ubuntu 1.40 27%
Debian 1.13 27.5%

Static Mechanisms
OS System load CPU Usage

Ubuntu 2.62 39.5%
Debian 2.66 42.5%

All Mechanisms
OS System load CPU Usage

Ubuntu 3.14 63%
Debian 4.2 68%

Accuracy
Ubuntu 97.25%
Debian 98.32%

6.5 Summary

Cloud computing relies on sharing resources between users of the same physical machine

to reduce costs by optimizing and increasing utilization. However, sharing these resources

may occur with malicious users, leading to confidentiality violations through co-residency

attacks. These attacks may exploit the sharing of resources, such as cache memory, to reveal

a legitimate user’s recent activities. Multiple techniques and factors can be exploited to

successfully perform side-channel attacks and other microarchitectural attacks. Therefore,

despite all the benefits of sharing resources on the same physical machine, there is still a risk.

If this security risk is not properly and adequately mitigated, it could be the main concern that

obstructs cloud adoption. This chapter introduced the use of the three approaches together

to provide the necessary protection for shared virtualised systems. These approaches provide

self-protection for the VM on which they are used by monitoring activities within shared

virtualised systems, determining the threat level of suspicious VMs, and providing periodic

scanning of the virtualised system against microarchitectural attacks and viruses.

We have proposed the development of three methods to provide comprehensive and holistic

protection for shared virtualised systems against microarchitectural attacks. The first method
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detects cache attacks using memory deduplication and a logistic regression model. The second

method detects and protects shared virtualised systems against cache side-channel attacks by

integrating a dynamic and static analysis, and identifying the threat level of a particular VM

by using machine learning algorithms. The final method periodically cleanses shared virtualised

systems against microarchitectural attacks and viruses by analysing implicit attributes of

executable files using a logistic regression algorithm comprised with ClamAV.

The method designed in this chapter answers research questions 6 from Section 1.3 in the

thesis, confirming the possibility of use the proposed solutions together in parallel to develop

a comprehensive protection system that operates on several levels. However, an increase in

the CPU overhead was recorded according to the computing power used in the experiments.

Furthermore, the experiments conducted to validate this method confirm hypothesis H7 from

Section 1.4.
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Finally, in this chapter, we summarise the contributions and findings in order to determine how

sufficiently the research questions have been addressed. In addition, this chapter discusses

the project’s limitations and offers some ideas for future work.The remainder of this chapter

is organized as follows: Section7.1 summarises the thesis research questions and objectives,

Section7.2 outlines the thesis contributions, and Section7.3 discusses the limitations and

opportunities for future work.

7.1 Conclusion

When the shared virtualised system or any of the VMs operating within the virtualised system

are attacked using the side-channel attack techniques, previous studies relied on four possible

solutions to address and defeat such attacks and mitigate their effects, which are: eliminating

imbalance, isolating, avoiding co-location, and detecting malicious processes using the CPU

counters [30, 61]. However, the previous studies did not explicitly study the causes of the

problem in a manner that preserves the characteristics and features of the shared virtualised

system and cloud computing. Furthermore, the previous studies have not focused precisely on

what decisions and procedures are to be undertaken after detecting attacks in addition to the

limitations related to them, which were mentioned and discussed in the literature reviewed in

Chapter 2. Thus, no extensive investigations have been conducted on memory deduplication

features in the cloud and how it can be used as a defence factor against these attacks, which

may be more effective in defence against these attacks. Also, there were no widely conducted

studies on static analysis in line with the nature of the shared virtualised system, and resorting

to static analysis was not among the options for possible solutions to protect the shared

virtualised system. Our literature review did not find studies and solutions based on hybrid

analysis that combines dynamic analysis and static analysis to detect attacks, protect the

shared virtualised system, and exclude virtual machines that represent a threat to the system.

This thesis has explored the possibility of designing and developing a comprehensive security

control system to protect the shared virtualised system using different perspectives and

analyses. Particularly, in this thesis, we did not lose sight of what will happen before and
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during the attack, and what are the possible operations after confronting and detecting

the attack. Hence we monitored the most likely attacking cache lines that carry sensitive

data instead of monitoring the cache in general without any influence that could be done

to the monitored cache line. Therefore, we were able to take precautions during the attack

process, which may confuse the results of the attack if it is not detected in rare cases. We

have also monitored suspicious activities on the shared virtualised environment and suspend

the suspicious virtual machine until it is examined, the threat level is determined, and its

integrity is verified. This step is very important to protect the virtualised environment in

general. We have also not neglected to periodically check VMs at frequent intervals to detect

microarchitectural attack programs and viruses as well.

From the results of this research, we are able to conclude that memory deduplication is not

just a vulnerability of the shared virtualised system, but rather it is a very important factor in

defending against side-channel attacks, in addition to obfuscating the results of the attack,

which makes it difficult for the attacker to reveal sensitive information to the victim, and it

also provides self-protection for VMs as illustrated in Chapter3.

The thesis also concludes on the importance of relying on hybrid analysis combined with

machine learning algorithms to defend against side-channel attacks to reduce system overheads,

improve cache attack detection results, and decide to exclude malicious VMs discussed

in Chapter 4. The thesis emphases the importance of generalising the methods to other

microarchitecture attacks and viruses to examine virtual machines and designing rapid and

comprehensive examination methods for the virtual machine system, thus maintaining the

integrity of the shared virtual system, the results have been discussed in Chapter 5. This

thesis has also discussed the design of a system that combines the different methods, which

makes it difficult for the attacker to carry out accurate architectural attacks, which effectively

reduces the threats to the shared virtualised system (discussed in Chapter 6).

The aim of this thesis, is stated in Chapter 1 was to fulfill the following:

How to build a comprehensive security system based on the integration of different methods

and machine learning algorithms to detect cache side channel attacks and remove any threats
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to the shared virtual system with high accuracy and low overhead.

A variety of subjects have been discussed in the preceding chapters that associate with

achieving the aim, answering the research questions, and accomplishing objectives specified

in Chapter 1. The research contributions will be outlined below to show how the following

research questions presented in chapter 1 have been addressed.

• Question 1: How can memory deduplication be used to design a security system to

monitor the activities of VMs and obfuscate the outcome of the attack?

– This question was answered in Chapter 3. Experiments proved the possibility of

using memory deduplication as a protection factor to monitor sensitive cache

locations, thus identifying abnormal activities that indicate cache side-channel

attacks and the ability to confuse the attack results.

• Question 2: How can a VM detect suspicious activity and defend its apps from Flush-

based attacks while hardware performance counters inside the VM are limited?

– This question was also answered in Chapter 3, where the proposed mechanism

can be used inside a VM to support it with protection and detection of suspicious

activities and analysis of these activities using logistic regression. At the same

time, there is a limitation in the use of hardware performance counters from inside

the VM, as discussed in the chapter.

• Question 3: Is it possible to develop a protection system that relies on static and

dynamic analysis of activities within the virtualised system to reduce system overheads

and effectively support detection and protection results?

– The proposed method in Chapter 4 answered this question. It demonstrated the

effectiveness of combining dynamic analysis and static analysis in supporting

results and reducing system overheads by decreasing the use of static analysis,

except in cases where there are indications of a cache side-channel attack.
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• Question 4: How can static analysis performance be improved to be compatible with

shared virtualised systems, so that suspicious VMs can be scanned to protect systems

against cache side-channel attacks?

– This question is answered in Chapter 4, where a system was designed based on

static analysis that utilised reverse engineering to scan VM’s executable files against

operating codes of the cache side-channel attacks. The conducted experiments

also confirmed the effectiveness of the protection system and the accuracy of

detecting malicious files.

• Question 5: Is it possible to extend the scope of static analysis to detect microarchi-

tectural attacks more broadly and combine it with an antivirus application to detect

malware, whether viruses or microarchitectural attack files, to design a more compre-

hensive system for protecting shared virtualised systems?

– The proposed solution in Chapter 5 answered this question, confirming that it is

possible to extend the scope of static analysis based protection to include other

microarchitectural attacks, and it has been effectively integrated with ClamAV

Antivirus to provide more comprehensive protection compatible with shared virtual

systems.

• Question 6: How can the provided solutions in the previous chapters be combined to

create an integrated system capable of protecting the shared virtualised system and

evaluating the performance characteristics of the protection system?

– Experiments were conducted in Chapter 6 confirming the possibility of using

the solutions proposed in the previous chapters to design a protection system.

Also, experiments were carried out to evaluate the overhead systems used in the

experiments in various scenarios and the possibility of improving the protection

system.

Unlike previous works where detection mechanisms were built using hardware performance

counters and relying just on these counters for detection, a methodology has been proposed
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to demonstrate the benefit and possibility of effectively building detection and protection

mechanisms using memory deduplication and a logistic regression model for classification

inside VMs, Thus answering our first and second research questions in Chapter 3.

Chapter 4 has discussed the establishment of a detection and protection mechanism based on

a hybrid analysis between dynamic analysis to detect suspicious activities of virtual machines

and static analysis to examine disk and RAM images of virtual machines and thus identify the

virtual machine that constitutes a threat to be excluded. This mechanism relies on machine

learning and deep learning algorithms to analyze results effectively and with high accuracy.

The dynamic analysis was initially relied upon to reduce the load on the system. The reliance

on static analysis repeatedly without any trigger for the beginning dramatically increases the

system’s overhead and the long execution time it might take for the static analysis to process

the scan. Thus, this chapter answered the third and fourth research questions.

Chapter 5 answered the fifth research question and discussed the use of static analysis in

line with the nature of the shared virtualised environment to analyse virtual machines based

on logistic regression to detect microarchitectural attacks. One of the well-known antivirus

applications was integrated with this mechanism. Two types of scan, Fast scan and Full

scan, are designed to put an option to reduce the execution time that static analysis takes in

the scan process. The performance characteristics of this mechanism were evaluated. The

importance of this mechanism is to use it periodically in long-term intervals to ensure the

safety of the shared virtualised system from viruses and microarchitectural attack programs.

The sixth research question has been addressed in Chapter 6. The section discussed the

possibility and how to combine the systems that were proposed in the previous chapters to

form a detection and protection system against microarchitectural attacks and malicious

programs in general. This integrated system relies on multiple defence lines for the shared

virtualised system to eliminate microarchitectural attacks and viruses before and during their

implementation, neutralize them and eliminate the threats to the shared virtualised system.
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7.2 Contribution to knowledge

Owing to the significant development in computer systems and information technology, re-

searchers have given great attention to protection and privacy systems. However, cache

side-channel attacks are a serious threat to cloud computing systems. There are many areas

related to protection against side-channel attacks that have not been adequately covered and

studied, and not all ideas leading to appropriate solutions have been consumed in line with

the nature of shared virtual systems. Academic research outputs have an effective and direct

impact on the development and growth of information and privacy protection systems and

thus reduce the threats to cloud computing. The thesis proposed three methods for detect-

ing and protecting against cache side-channel attacks; each method has its characteristics

for mitigating the threats of side-channel attacks in shared virtualised systems. The main

contribution of the work is highlighted below.

7.2.1 Mitigation cache side-channel attacks through memory

deduplication:

The first aspect of the novelty of our research is proposing a method based on a logistic

regression algorithm to mitigate side-channel attacks made possible through the use of

memory deduplication so that malicious activities are identified by monitoring and analysing

the activities that occur on sensitive memory locations belonging to shared cryptographic

libraries and sensitive programs in particular. Previous studies depended on monitoring activities

by fetching readings from the cache, in general, using hardware performance counters and

then analysing them, which makes them unable to work inside the virtual machine unless there

is an authorisation from the host to use them, and not all hardware performance counters are

supported to work inside the virtual machine [101–103] as discussed in Chapter 3. However,

monitoring of memory locations, in particular, is more accurate, as our method monitors the

sensitive memory locations and determines whether they are stable or evicted in preparation

for the attack and thus detect malicious activities, and at the same time, continuous access

into the memory locations for monitoring leads to the obfuscation of the results of the attack
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in rare cases of false negatives. The proposed method can be activated and used inside the

VM to be self-protected from cache attacks, with no required changes to the virtualised

platforms, thus reducing threats while preserving the characteristics of the shared virtualised

systems.

7.2.2 Mitigation through Dynamic and Static Analysis:

One novelty aspect in this thesis is proposing a mitigation method that integrates dynamic

analysis and static analysis based on machine learning and deep learning algorithms to detect

and protect against cache attacks within shared virtualised systems as discussed in Chapter

4. The dynamic analysis uses Linux Perf To monitor VMs’ activities and then analyze them

to classify them into benign and suspicious using the logistic regression classification model.

As a second step, the static analysis extracts the executable files from the disk image or

the RAM image of the suspicious VM. It then checks whether these files contain opcodes

that indicate side-channel attacks using automated reverse engineering. Based on this, the

threat level of these files is determined using the Softmax classification algorithm. In contrast,

the previous work used static analysis for a particular application analysis regardless of the

nature of shared virtualized systems, such as analyzing the application before adding it to

an app store.The reason behind this integration of these types of analysis is to reduce the

overhead on the system and improve the performance of static analysis so that static analysis

is accomplished only for the suspicious virtual machine, so the suspicion is determined by

monitoring the activities of the VMs by dynamic analysis. In addition, the method makes it

possible to effectively use static analysis within the shared virtualised systems to analyze the

RAM and disk of the suspicious VM and thus make the exclusion decision for the VM that

threatens the shared virtualised system.

7.2.3 Mitigation through Periodically Long-range Intervals Scan:

The next aspect of the novelty introduced by this thesis relies on proposing a method

based on static analysis and machine learning to examine the executable files of VMs in

accordance with the nature of the shared virtual environment. This method includes a number
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of microarchitectural attacks, and the mechanism is integrated with the ClamAV antivirus. The

reason behind this integration is that the shared virtualised systems needs for a mechanism

that can detect microarchitectural attacks and viruses (malware) as well as provide adequate

protection for shared virtualised systems from malicious programs that may threaten the

integrity of the entire system, where none of the antiviruses can detect microarchitectural

attacks [26, 64]. The importance of this mechanism lies in conducting periodic long-term

inspections to ensure the safety of virtual machines within the system. Two types of scanning,

the fast scan and the full scan, were also designed and evaluated as discussed in Chapter 5. In

the case of the fast scan, the files are extracted from a VM’s userspace, while in the full scan,

they are extracted from the kernel space of the entire VM system in the shared virtualised

system to be analysed and classified by a logistic regression model.

7.2.4 Integrated Protection System:

Another aspect of novelty introduced by this thesis rests on the integration of the proposed

methods into a single mechanism that performs its functions in an integrated manner within

the shared virtual systems, thus providing various lines of defence and protection, which

reduces the threats of microarchitectural attacks and malicious programs in general within

the systems as discussed in Chapter 6. Therefore, we designed compatible solutions and

countermeasures to detect suspicious behaviour that could indicate these attacks and develop

security controls that maintain the advantages of the multi-tenancy feature while reducing

the security risks. Experiments were also carried out with different scenarios on different host

devices to evaluate the performance characteristics of the protection system that integrates

the proposed solutions in the previous chapters, confirming the possibility of utilising it as a

comprehensive solution to mitigate the threats of microarchitecture attacks in general and

from side-channel attacks in particular.
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7.3 Limitations and Future Work

The mechanism proposed in the thesis relies on various approaches to meet the needs of

shared virtual systems for adequate protection. However, some limitations may affect one

method over the other. These limitations will be focused on in future work to mitigate their

impact and on the general protection of the system. Our proposed mechanism is flexible

enough to be compatible with new tools that can be added to address the limitations. This

PhD research is restricted by time constraints, which did not allow the realization of all the

promising directions, however, they are considered as opportunities to achieve them in future

work. Below we list some of the opportunities for extending this research in future work.

Code Obfuscation:

It is one of the techniques an attacker can take to bypass static analysis of executable files.

The attacker encrypts the attack program until its execution or transforms it into a unique

structure, making it difficult for reverse engineering mechanisms to identify it [133]. Since our

mechanism relied on a different set of methods and integrated lines of defence, the negative

impact on our protection mechanism will be partial, as only the parts that depend on static

analysis will be affected. However, many code deobfuscation techniques can be utilised in

conjunction with our mechanisms to address this partial limitation in our mechanism.

Intel Software Guard Extensions (Intel SGX) to Hide Malware:

This approach may be more serious than the previously described technique because it misuses

the Software Guard Extensions that allows the user to allocate a private area in the memory

called enclave that is designed to protect applications from high-level privileged processes,

making the Malware within this protected area hidden from the mechanisms of static and

dynamic analysis, which depends on the hardware performance counters readings because

these counters are not affected when the attack is executed within SGX enclave [134]. Since

the first method in our mechanism does not depend on the hardware performance counters

to monitor the activities inside the virtualised systems, it will not be negatively affected, as

will the rest of the methods that make up our mechanism. Therefore, it will have a partial

impact on the mechanism, whereas it is necessary to solve such an issue because it weakens
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the performance of our protection mechanism.

Further Experiments and Evaluations:

Aspects that can be extended in the thesis are further experiments and evaluations. Although

experiments have been performed on multiple scenarios and evaluated comprehensively, some

parts can be improved, such as improving the duration of static analysis to accomplish the full

scan of VM’s executable files. More experiments and evaluations are necessary to continue

developing our mechanism to keep pace with new threats and issues in shared virtual systems.

It is also necessary to evaluate the proposed solutions on virtualised systems that have

significant computing power in order to evaluate the system overhead and the percentage

of processor usage for these large systems. However, the evaluations were conducted for

the proposed solutions in different scenarios were sufficient to some extent to prove their

effectiveness.

At the end of the doctoral journey, this thesis presents how to establish a security control

system based on machine learning to detect and protect the shared virtualised systems against

side-channel attacks and malware while preserving these systems’ nature and features. When

evaluating the objectives and research questions specified at the beginning of the thesis, we

find that the results are generally promising, and the outputs of the hypotheses that have

been tested are significant findings. However, this is considered a start of opportunities and

participation in possible improvements and new explorations in future work in this field.

Availability of code and dataset. The code and datasets are uploaded on GitHub Click Here.
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The End...
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