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Abstract

Dual-polarisation weather radars have become more common through the last 15 years,
as operational networks in the USA, UK and across Europe have been upgraded with
this capability. The distribution of dual-polarisation radars, and their wide spatial
coverage, provide a wealth of information for understanding and nowcasting high impact
weather, including quantitative precipitation estimation (QPE), hail detection and the
potential for use in data assimilation.

One variable from these radars is Specific Differential Phase (KDP ). There have been
many studies into the uses of KDP , including QPE, hydrometeor classification, and
liquid and ice water content estimations, with KDP often preferred over reflectivity
based measurements due to being less dominated by larger, but fewer, targets. However,
KDP is not directly measured by the radar, rather it is derived from the total phase shift
measured, which has a number of other contributors including backscatter differential
phase and noise, and therefore estimating KDP is difficult.

To explore the uncertainty associated with this estimation, a number of different esti-
mation methods are studied, and it is shown they all struggle to accurately estimate
KDP , especially when there is noise present. Being a difference between two orthogonal
observations, KDP is affected by the viewing geometry of non-spherical targets. This is
confirmed through observations of ice hydrometeors through a range of elevation angles,
and the effect of elevation angle on KDP is shown through a hydrometeor classification
algorithm, where adjusting KDP at high elevation angles changes the output from the
algorithm. Finally, output from a radar forward operator using high resolution model
simulations is compared with radar observations to study how well simulated fields
can recreate estimated KDP . The generalisation of ice in microphysical schemes and
the forward operator mean that radar signatures present in the observations are not
replicated in the output of the forward operator.
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Chapter 1

Introduction

One of the largest areas of uncertainty in numerical weather forecasts comes from a
poor understanding and parameterisation of ice, and ice microphysics, and how that
contributes to precipitation (Morrison et al. 2015). In-situ measurements of ice are
difficult and expensive to obtain; however, remote instruments such as radars can
provide an insight into the ice regions of clouds (Bukovc̆ić et al. 2018). Weather radars
give a unique opportunity to observe the growth, development and maturity of clouds,
by providing large spatial coverage and high temporal resolution of the column of
atmosphere surrounding each radar. This wealth of data has resulted in the detection
of hail in convective storms (Aydin et al. 1986), the identification of the melting layer
(Austin and Bemis 1950), the development of rain rate estimates (Meneghini 1978),
and improved issuance of severe storm warnings (Simmons and Sutter 2005).

Until recently, most operational weather surveillance radars transmitted an electro-
magnetic beam with a single polarisation. This allows for detection of objects and the
reflectivity of those objects, which is related to their size; however, it can not measure
the variety of shapes seen in ice. The research, development, and operational implemen-
tation of dual-polarisation radars overcomes this deficiency, resulting in measurements
of differential reflectivity, correlation coefficients between the two polarisations, phase
measurements, and depolarisation ratios, all containing information about the size and
shape of what is being observed. This additional polarimetric information has huge,
although yet not fully realised, potential to improve forecasts, severe weather detection,
and our microphysical knowledge of cloud development (Zhang et al. 2019; Ryzhkov
et al. 2020).

1



Chapter 1: Introduction

1.1 Specific Differential Phase

One of the variables returned from the observations of dual-polarisation radars is Spe-
cific Differential Phase (KDP ), which is a calculation of how the phase of the electro-
magnetic wave changes in each polarisation as it travels through targets away from
the radar (Seliga and Bringi 1978). As a comparison between the two orthogonal
polarisations, KDP is related to the size, shape, and number of of the targets the
beam propagates through. KDP has benefits over other radar measurements due to
being unaffected by radar calibration issues or partial attenuation, and therefore can
be used to help correct other radar measurements for attenuation. Thus, KDP appears
favourable for estimations of precipitation and microphysical retrievals when compared
to reflectivity measurements (Aydin et al. 1995; Bukovc̆ić et al. 2018); however, there
are uncertainties associated with measurements of KDP which, if not accounted for,
can negatively affect these retrievals. These uncertainties are relatively unexplored and
need to be addressed if the potential of KDP is to be realised.

1.2 Polarimetric Observations of Ice

Ice crystal habit type can be particularly sensitive to small changes in the temperature
and ice saturation, as extensively shown by Bailey and Hallett (2009). With the ad-
ditional size and shape information offered by polarimetric data, our understanding of
the current state of the atmosphere, and the microphysical processes that determine
the life cycle of ice particles, can develop, in turn improving how ice crystal properties
are represented in microphysical schemes in numerical weather prediction models.

However, there are factors which limit the use of the polarimetric observations. One
is in the verification of our interpretation of the observations. There is limited data
available of ice within clouds, as in-situ measurements can only take place at high-
altitude observations, for example at Jungfraujoch in the Alps (Lloyd et al. 2015) or
during flight campaigns. These campaigns are relatively few in number, can not cover
extensive spatial areas, and are prone to instrumental measurement error (Field et al.
2003; McFarquhar et al. 2007). Another limitation is errors in the radar measurements.
Issues surrounding the calibration of the radar, accuracy of processing algorithms, and a
lack of knowledge in how the radar beam interacts with melting hydrometeors, result in
uncertainties that make comparisons between radar data, microphysical measurements,
and theory challenging (Zhang et al. 2019). A mismatch in the sampling volume be-
tween radar and aircraft measurements can also cause issues when trying to use po-

2
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larimetric observations. Radar measurements cover a large three-dimensional volume,
typically observing the same location every 5-10 minutes, whereas an aircraft takes
measurements along a line in space, and depending on the flight schedule may not
return to the same location.

Pronounced radar signatures, including an increase in KDP , occur where dendritic
crystals are growing, crystals which grow in areas of enhanced ice supersaturation
at around -15 ◦C (Kennedy and Rutledge 2011), and in regions where secondary ice
production may be occurring, typically between -3 ◦C and -8 ◦C (Sinclair et al. 2016),
where observed ice crystal concentrations are orders of magnitude greater than the
concentration of ice nucleating particles. Hydrometeor classification algorithms are
able to distinguish different types of ice crystals based on the polarimetric data. KDP

is particularly useful for studying ice regions in clouds, with areas of enhanced KDP at
both locations of dendritic crystal growth and secondary ice production.

Dendritic ice crstyals are ice crystals that have a hexagonal core, with branches ex-
tending out from the core, which themselves have branches protruding outward (Botta
et al. 2013) . The presence of dendritic ice crystals as suggested by increased KDP

at around -15 ◦C is well correlated with increased surface precipitation in stratiform
weather (Bechini et al. 2013). Secondary ice production is a term for a number of
mechanisms that produce new ice crystals in the presence of preexisting ice without
the action of ice nucleating particles, which accounts for the difference between ob-
served ice concentrations and those predicted from primary ice nucleation (Field et al.
2017). Accurate representation of ice concentrations in numerical weather prediction is
important with the development of double-moment microphysics schemes (for example
(Thompson et al. 2008)) and for understanding the evolution of some types of clouds
(for example Connolly et al. (2006)).

1.3 Model Representation

Another obstacle in the use of polarimetric data to improve numerical weather predic-
tion is the difference in how models and radars represent hydrometeors. Microphysical
schemes used in models have increased in complexity, with many schemes now predict-
ing mixing ratio and number concentration for hydrometeors (Thompson et al. 2008;
Morrison et al. 2009). The number of hydrometeor species being predicted by the
microphysics schemes, plus the processes being modelled, are also increasing, adding
to the complexity of the schemes, but also increasing the need for them to be well
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constrained. While the large amount of data provided by dual-polarisation radars at
first seems optimal for this, the problem is that radars do not measure mixing ratio
and number concentration of different hydrometeor species, instead they provide re-
flectivity and phase measurements of all the objects within a volume. Therefore, an
operator is needed to convert from one to the other. Forward operators take the model
information and transform it into radar observations, while an inverse operator would
go from radar observations to model data (Zhang et al. 2019). However, the accuracy
of these operators is not fully known, and add another element of error into comparing
the data. Additionally, different sizes, shapes and habit types of ice crystals result in
different radar measurements; however, most microphysical schemes group ice into one
category. This difference between radar observations and model output increases the
challenge and uncertainty in forward operators.

1.4 Thesis Outline

This thesis will focus primarily on assessing the uncertainty in the measurements of
one polarimetric variable, specific differential phase (KDP ), and how well it can be
estimated through a forward operator from numerical weather prediction models. In
Chapter 2, the underlying concepts of dual-polarisation radar measurements are out-
lined, along with a brief introduction to polarimetric radar forward operators. The
data and methods used throughout this thesis are described in Chapter 3. Chapter 4
tests and compares a number of different methods used to estimate KDP , highlighting
strengths and weaknesses of each method. This chapter uses first an artificial truth,
and then observational data, to study how well each of the chosen methods estimates
KDP . Chapter 5 studies how estimated KDP can change due to the unique geome-
try of radar observations, through looking at observations through the full range of
radar elevation angles, being the first study to compare such observations with the
theoretical relation between KDP and elevation angle. Finally, in Chapter 6, KDP from
the radar is compared against KDP as estimated from a numerical weather prediction
model through a forward operator, looking at how well models and forward operators
replicate radar observations. All of these sections highlight uncertainties with KDP ,
and steps to overcome them, and their results are summarised in Chapter 7.
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Background

2.1 Weather Radar

During the Second World War, inspired by the need to detect enemy planes and sub-
marines, technology developed to improve radars. Previously, these were large devices
with poor resolution, however the development of the magnetron meant radars could
be made much smaller, and could easily be moved or mounted on aeroplanes. These
radars were detecting large, unknown patches, which could block any signal from en-
emy aircraft. It was deduced that these patches were precipitation, and meteorologists,
who were working as part of the military due to the strategic advantage of weather
forecasts, realised the potential. Research groups were set up to further explore the use
of radar in weather, the beginning of radar meteorology.

A radar works by transmitting an electromagnetic wave of known frequency, duration,
polarisation and power, focused in a single direction by an antenna, and then measuring
the power and the phase of the signal that is detected from backscattering from targets.
For weather surveillance radars, these targets are typically hydrometeors. One of the
most significant recent advancements in radar technology is the ability to send and
receive signals in two polarisations, known as dual-polarisation radar (Kennaugh 1952;
Huynen 1970; Boerner et al. 1981; Ryzhkov et al. 2005b). Dual-polarisation radars
transmit waves with orthogonal polarisations, typically one in which the oscillation
of the wave is parallel to the ground (horizontal polarisation) and the other with an
oscillation perpendicular to the ground (vertical polarisation); however, use of circular
polarisation has also been tested (e.g. Bebbington et al. (1987); Holt and McGuinness
(1990)). While single-polarisation radars could only measure the power and phase of
the returned signal in one polarisation, dual-polarisation radars measure these signals
from two, often orthogonal polarisations, allowing for a range of new measurements
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which compare the power and phase of the return signals in each polarisation, resulting
in better discernment of the size and shape of targets.

When the radar observes a volume, the signal returned to the radar is a combination
of individual returns from all scatterers within that volume. The returns from each in-
dividual scatterer interfere with each other, either constructively or destructively, and
the radar measures the amplitude and phase of the returned signal. However, if the
targets are moving, then a second observation would measure a different amplitude
and phase. Therefore, multiple observations are needed to reduce uncertainty in po-
larimetric measurements. However, taking multiple measurements of the same location
takes time, and as such results in a trade off between increasing statistical accuracy,
the maximum range that can be measured along a beam, and the temporal resolution
of radar measurements; increasing one of these will need a compromise from one or
both of the others.

The frequency of the transmitted wave impacts what can be usefully detected by the
radar. In the Rayleigh scattering regime, where the scatterer is much smaller than the
wavelength, the volume scattering coefficient is proportional to the sixth power of the
diameter of the scatterer divided by the fourth power of the wavelength (Fabry 2015).
This leads to two important factors: larger targets scatter much more than smaller
ones, so the signal received by the radar is dominated by larger targets, and for a given
size of scatterer, a shorter wavelength will produce greater scattering. However, large
scatterers may fall outside of the Rayleigh regime, into the Mie scattering regime. Here,
the volume scattering coefficient fluctuates depending on the exact value of wavelength
and object size, and the power of the returned wave no longer increases with object
size. At X band frequency (8-12 GHz), formulae derived for the Rayleigh regime are
valid for rain with a maximum diameter of 2.3 mm and graupel/hail with a maximum
diameter of 3 mm (Table 5.1 in Ryzhkov and Zrnić (2019)). Kumjian et al. (2018) show
the impact of Mie scattering resonance for larger hydrometeors, and the differences in
the resonance response for small changes of frequency within the X band range.

Measurements from a radar fall into one of three general categories - power based,
Doppler based, or phase based.
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2.1.1 Power Measurements

A form of the weather radar equation is given as

Phh =
(
π3P t

hg
2cτθ2

1
210λ2lrln2

)
|K|2

r2
0l

2
h

z̄hh, (2.1)

where Phh is the co-polar power received in the horizontal polarisation. The terms
inside the brackets are constants or radar dependent variables, all of which need to
be well known - P t

h is the power transmitted in the horizontal polarisation, g is the
antenna gain, c is the speed of light, τ is the pulse width of the transmitter, θ1 is
the beamwidth, λ is the radar wavelength, and lr is the range weighting function loss.
The terms outside the brackets are dependent on the path of the beam and the targets
encountered - r0 is the distance between the radar and the targets, |K|2 is the dielectric
constant of the scatterers, l2h is the loss due to attenuation along the path, and z̄hh is
the radar reflectivity factor. |K|2 varies significantly depending on what the scatterer
is, with a factor of 5 between liquid water and solid ice (Table 3.1 in Fabry (2015)).
Therefore, |K|2 is replaced with the dielectric constant of liquid water (|Kw|2), and z̄hh

becomes the equivalent radar reflectivity factor, as the exact nature of the scatterers
are usually unknown. This equation forms the basis for all power-based observations
and analysis from weather radar.

Radar Reflectivity

Rearrangement of equation 2.1 shows that reflectivity in a given polarisation is pro-
portional to the power received in that polarisation divided by the power transmitted
in a given polarisation, i.e. z̄hh ∝ P r

hh/P
t
hh. In practice, the effects due to attenuation

are ignored, resulting in the measured, attenuated reflectivity zhh = z̄hh/l
2
h. Correcting

for attenuation is not a trivial undertaking, and there is much research into how this
should be done (for example Vulpiani et al. (2008) and Gu et al. (2011)).

This equation gives reflectivity in linear units, that is mm6m−3. Using these units gives
a large range of values for reflectivity, from 0.01 mm6m−3 in liquid cloud to over 106

mm6m−3 in hail (Fabry 2015). For convenience, reflectivity is often expressed in units
of decibels, such that

Zhh = 10 log10(zhh). (2.2)

Using equation 2.2, the liquid cloud has a reflectivity of -20 dBZ, and hail now has a
reflectivity of 60 dBZ.

7



Chapter 2: Background

Reflectivity is related to the drop size distribution as:

Z =
∫
D6N(D)dD, (2.3)

where N(D) is the number of hydrometeors with a diameter of D in a unit volume.
Reflectivity is dominated by larger droplets, for example while one droplet with a
diameter of 2 mm has a similar reflectivity factor to 64 drops with a diameter of 1 mm
(Fabry 2015), there is a greater volume of water in the 64 smaller drops, and the one
larger drop would need to fall 8 times faster than the 64 smaller ones to produce the
same rain rate. This highlights some of the problems in using reflectivity to estimate
rain rate. Marshall and Palmer (1948) showed that the rain rate varies with drop size
distribution. As a result, a number of relationships exist between Z and R, mostly of
the form Z = aRb. These include the Marshall-Palmer Z-R relationship Z = 200R1.6,
and the NEXRAD (USA national radar system) default Z = 300R1.4. However, there
are many different versions of this equation, slightly different due to different dominant
dynamical and microphysical processes occurring in different regions (Stout and Mueller
1968; Smith and Krajewski 1993; Amitai 2000; Kim et al. 2021). Figure 2.1 shows some
plots of radar reflectivity from the NCAS X-band mobile radar.
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Figure 2.1: RHI plots of reflectivity from NCAS X-band mobile radar. The plot on the
left shows data from 11:36:14 UTC 17 May 2017, the plot on the right from 17:02:31
UTC 14 February 2018.

There are a number of factors that can negatively affect the quality of reflectivity mea-
surements. Firstly, the radar needs to be correctly calibrated, identifying the unknown
system error caused by the transmitter, receiver, and antenna, otherwise biases intro-
duced in the reflectivity measurements will be propagated through to rainfall estima-
tions. Calibration needs to be done on a regular basis, as environmental and instrument
changes will affect the correction. A number of methods exist for calibration, including
measurement of a known signal source, using a highly reflective metal sphere as a known
reference target (e.g. Sarabandi and Ulaby (1990); Yin et al. (2019)), or self-consistency
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with differential reflectivity and specific differential phase (e.g. Gourley et al. (2009);
Trabal et al. (2014); Louf et al. (2019)). Secondly, if the radar uses a radome, mois-
ture on the radome can bias reflectivity measurements by a few dB (Schneebeli et al.
2012; Mancini et al. 2018). This bias is variable, changing with the weather. Use of
hydrophobic paint on the radome can significantly reduce the effect (e.g. Dietrich and
West (1988)), or data-based consistency methods can highlight biases caused by a wet
radome. Thirdly, obstacles such as buildings or terrain can block the radar beam. In
the case of total blockage, there is no signal received by the radar down-radial from the
blockage, and no data can be collected. However, if the blockage is only partial, then
the radar will still receive some signal, although significantly weaker beyond the block-
age. Reflectivity can be corrected by estimating the degree of blockage, and adding
a correcting factor to the measured reflectivity (equations 6.50-6.52 in Ryzhkov and
Zrnić (2019)). Finally, attenuation of the beam can significantly reduce the power of
the radiation received by the radar. As previously mentioned, correcting for attenua-
tion is not straightforward; however, with no correction, precipitation estimates could
be severely biased. There are a number of algorithms that attempt to correct for re-
flectivity, using other measurements such as differential phase measurements or those
from another radar. However, these methods work best in rain, and correcting for
attenuation through the melting layer is still a significant challenge.

While all of these factors negatively impact on power-based measurements, they do
not have the same impact on phase-based measurements (with the exception of total
blockage of the beam). Therefore, phase measurements such as Specific Differential
Phase are being used to replace reflectivity in rain rate measurements (Timothy et al.
1999; Paulitsch et al. 2009), and to correct reflectivity measurements for these issues
(Overeem et al. 2021).

Differential Reflectivity

Dual-polarisation radars can measure received power for each polarisation state they
can receive. The ratio of the power returns in the horizontal and the vertical polarisa-
tions gives differential reflectivity, that is

z̄dr = P r
hh/P

r
vv. (2.4)

Ignoring attenuation again, this becomes

zdr = zhh/zvv, (2.5)
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or after converting to decibel units,

Zdr = 10 log10(zhh/zvv) = Zhh − Zvv. (2.6)

As reflectivity gives information about the size of the detected targets, differential
reflectivity therefore is related to the axis ratio of targets, where a differential reflectivity
of 0 dB means that Zhh = Zvv, and the measured targets are spherical. Typical values
of differential reflectivity range from 0 dB to 5 dB in rain, increasing with increasing
drop size, from 0 dB to 3 dB in snow. Non-meteorological targets can return larger
differential reflectivity values, ranging from -4 dB to 6 dB (Fabry 2015). As most
hydrometeors fall with their longest axis horizontal due to aerodynamic stability in
free fall (Willmarth et al. 1964; Westbrook et al. 2010), differential reflectivity is rarely
less than 0 dB in the atmosphere, with the exception of vertically-orientated ice crystals
which can occur in the presence of a strong electric field within a cloud, or occasionally
in hail Aydin and Zhao (1990); Picca and Ryzhkov (2012). As hail tumbles as it falls,
and can fall with its largest axis vertical, differential reflectivity values in hail are often
low. Near zero differential reflectivity in the region of high horizontal reflectivity (i.e.
Zhh > 50 dBZ) is a good indicator of the presence of hail. Conversely, insects are much
longer in the horizontal than the vertical, and can appear to the radar as elongated
water drops. They have a small reflectivity due to their size, but very high differential
reflectivity, distinguishing them from light rain and drizzle (Melnikov et al. 2015). Some
examples of differential reflectivity measurements are shown in figure 2.2.

Figure 2.2: RHI plots of differential reflectivity from NCAS X-band mobile radar. The
plot on the left shows data from 11:36:14 UTC 17 May 2017, the plot on the right
from 17:02:31 UTC 14 February 2018.

Unlike reflectivity, differential reflectivity is not usually affected by absolute miscalibra-
tion of the radar transmitter or receiver, as the miscalibration affects both polarisations
(Kumjian 2013); however, biases in the radar hardware toward one polarisation need to
be corrected before quantitative use of Zdr. Zdr calibration is often done through mea-
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surement of light rain when the radar is vertically pointing, as when viewed from below
falling raindrops appear spherical, thus Zdr should be 0 dB (Gorgucci et al. 1999a;
Marks et al. 2011). There are a number of options for Zdr calibration for radars inca-
pable of pointing vertically, including consistency checks with reflectivity in light rain
(Tabary et al. 2011), using dry aggregated snow (Ryzhkov and Zrnić 1998b; Ryzhkov
et al. 2005a), using clear-air echoes associated with Bragg scattering (Melnikov et al.
2011), and calibration using ground clutter (Borowska and Zrnic 2012). Zdr can also
be affected by anisotropic beam blockage, resulting in more of one polarisation being
blocked than another, which would bias measurements along the radial beyond the
blockage (Kumjian 2013).

Linear Depolarisation Ratio

If a scatterer is not symmetric along the axis of polarisation of the received radar beam,
some of the scattered signal will be in the orthogonal polarisation, that is the beam
will have been depolarised. Linear depolarisation ratio (LDR), is the ratio between
the power of the cross-polar and the co-polar signal measured at the radar (whereas
differential reflectivity is the ratio between orthogonal co-polar signals). For a beam
transmitted with horizontal polarisation, that is the ratio between the received vertical
polarisation and the horizontal polarisation,

LDR = 10log
(

⟨|shv|2⟩
⟨|shh|2⟩

)
, (2.7)

where sab is the backscattering coefficient of a scatterer with the backscattered radar
beam with a polarisation and incident beam with b polarisation (horizontal h or vertical
v), and the angled brackets denote the ensemble average representation of all scatterers
in the measured volume. Applications of LDR include identifying electrification in
thunderstorms (Sokol et al. 2020), estimating the shape of ice hydrometeors (Matrosov
et al. 2001), and distinguishing between stratiform and convective rainfall (Sandford
et al. 2017).

As the strength of the cross-polar signal is much smaller than that of the co-polar
signal, LDR values are very small. Targets such as small raindrops may produce LDR
of -35 dB, with the highest values rarely exceeding -15 dB for non-symmetric targets
such as hail (Fabry 2015; Doviak and Zrnić 1993).

For a radar to measure a cross-polar signal, it needs to be able to transmit just one
polarisation at a time, and then observe the backscattered signal in two planes. Most
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weather radars transmit in both polarisations simultaneously, meaning that the received
signal for a given polarisation is the co-polar signal from that polarisation combined
with the cross-polar signal from the orthogonal polarisation. As the cross-polar signal is
much weaker than the co-polar signal, and the co-polar and cross-polar signals can not
be separated, it is assumed that the entire return is co-polar, and therefore LDR can not
be measured. Some radars can transmit in one polarisation and listen in both, before
switching to transmit in the orthogonal polarisation, and thus allowing for measurement
of LDR (for example radars that are part of the UK Met Office radar network (Harrison
et al. 2015)); however, this will result in noisy estimates of the other dual-polarisation
variables, which depend on simultaneous transmission for accurate measurement, and
it requires a polarisation switch in the transmission to switch between polarisations,
resulting in a more complex radar design and faster wear rate (Doviak et al. 2000).
Therefore, LDR is rarely measured by weather radars (e.g. NEXRAD and the French
operational weather radar network (Gourley et al. 2006) do not measure LDR).

Co-polar Correlation Coefficient

The co-polar correlation coefficient (ρhv) is a measure of how much the returns of the
horizontal and vertical polarised beam fluctuate through successive measurements of
the same volume, that is

ρhv = ⟨svvs
∗
hh⟩

⟨|shh|2⟩1/2⟨|svv|2⟩1/2 . (2.8)

A coefficient of 1 indicates there is no change in the observed targets with time, which
would be the case if all scatterers were frozen in place, or if the returned signal is
dominated by one scatterer, such as a building or tower which produces a strong return.
Values less than 1 occur when scatterers are moving through the volume, or change
orientation or shape.

Co-polar correlation coefficient is therefore a measure of the diversity of the targets
within the measured volume, including characteristics such as the size, shape, orienta-
tion and phase. In pure rain, changes in shape and orientation are small. Values of ρhv

in pure rain are very high, typically >0.98 (Kumjian 2013; Ryzhkov and Zrnić 2019).
Values are slightly below 1 due to advection of raindrops through the volume, small
changes in orientation and shape (Ryzhkov and Zrnić 2019), and slight wobbling as
the raindrops fall (Kumjian 2013), resulting in small changes between measurements.
However, theoretical values of ρhv drop to 0.93 at C band due to resonance effects of
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droplets greater than 5 mm (Ryzhkov and Zrnić 2019).

Ice and snow can also have a high co-polar correlation coefficient; however, changes in
phase or ice crystal habit can reduce this. Most notable is in the melting layer, where
snow is melting into rain. Due to the large variability in the size, shape and phase of
hydrometeors in this region, ρhv can reduce to 0.8 (Fabry 2015). Compared to the high
values observed in rain and snow on either side, this change in ρhv stands out, making
for easy visual detection of the melting layer in ρhv plots. Other causes of low ρhv can
include insects and lofted debris associated with tornadoes; in both cases there is a
large amount of movement by scattering objects, and measuring ρhv at 0.4 is common.
This is one of the key parts of the Tornado Debris Signature, used by the USA National
Weather Service to confirm the presence of a tornado through polarimetric radar data
(Ryzhkov et al. 2005c; Houser et al. 2016).

2.1.2 Doppler Measurements

Doppler measurement capability started to be added to weather radars in the 1990s,
and since has become the standard. In addition to reflectivity, these radars can also
measure the radial velocity of targets, which can be useful in detecting severe weather
conditions, storm motion and the presence of strong mesocyclones that could produce
a tornado (Rinehart and Garvey 1978; Trapp et al. 2020).

Doppler velocity

Doppler velocity uses the principle of Doppler shift to measure the movement of targets
toward or away from the radar. As targets move within the volume measured, the phase
of the returned electromagnetic beam shifts slightly between successive measurements
of the same location, depending on the mean movement of the targets. By measuring
these small changes in phase from successive returns, the Doppler velocity is retrieved:

dφ

dt
= −4πfn

c
vDOP , (2.9)

where dφ is the change in the phase of a target between successive transmitted pulses,
dt is the time between those successive pulses, f is the radar transmit frequency, n is
the average refractive index along the path, c is the speed of light, and vDOP is the
Doppler velocity of the target. By being able to measure the rate of change of the
phase, Doppler velocity can be estimated, with assumptions made about the refractive
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index of air. The refractive index depends on pressure, temperature, and humidity, and
for microwaves in the lower atmosphere can be estimated by

n = 1 + 10−6
(

0.776P
T

+ 3.73 × 103e

T 2

)
, (2.10)

where P and e are air pressure and partial pressure of water vapour in Pascals, and T

is temperature in Kelvin. The refractive index is approximately 1.0003 near sea level,
and decreases with height.

The change in phase that can be measured by a radar ranges from -π to π. Rearrange-
ment of Equation 2.9 therefore gives a maximum range of measured Doppler velocity
as

vDOP = ± c

4fndt , (2.11)

known as the Nyquist velocity. The Nyquist velocity can be increased by decreasing
the time between measurements; however, this results in a decrease to the maximum
range that can be observed from the radar. This trade off between maximum detectable
range and maximum unambiguous velocity, and what the operator expects to observe,
needs to be considered when setting up a radar.

Doppler velocity is typically defined using the convention of positive velocity for move-
ment away from the radar, and negative velocity for toward; however, not all radars
follow this convention. The Doppler velocity also gives just one part of the three-
dimensional wind field; however, use of overlapping measurements from another view-
ing angle can give the entire wind field structure. One method of gaining this extra
viewing angle is by using another Doppler radar (Trapp et al. 2020). The area over
which the three-dimensional wind field can be retrieved can be increased by increasing
the distance between the radars to a point, but increasing the distance will reduce the
resolution of the retrievals, and reduce the ability to retrieve the wind field in the lowest
scans.

Spectrum Width

The many targets present within a volume measured by the radar do not all move with
the same speed. This means that the Doppler velocity measurements fluctuate slightly
with successive measurements, as the interference pattern changes slightly between
returns. The rate at which fluctuations occur is the spectrum width, and is a measure
of the spread in the Doppler velocity of the targets in the measured volume. Wind
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shear, differences in fall speeds of hydrometeors, changes of hydrometeor orientation,
and turbulence can all contribute to spectrum width (Li and Zhang 2022). Turbulence
is a main contributor to spectrum width (Istok and Doviak 1986), and as such spectrum
width is often used to detect unsafe regions for aircraft (Fang et al. 2004).

2.1.3 Phase Measurements

While Doppler retrievals consider the change in the measured phase of the radar beam
through successive measurements of the same volume, the phase of the beam also
changes as the beam propagates away from, and then back toward, the radar. Consid-
eration of how the phase changes due to propagation for each orthogonal component
of the beam results in a number of different variables.

Total Differential Phase Shift

As the radar beam passes through and encounters targets, the phase of each polarisation
of the electromagnetic beam changes. The total differential phase shift is given as

ΨDP = φHH − φV V , (2.12)

where ΨDP is the total differential phase shift, and φHH and φV V are the total phase
shifts in the horizontal and vertical polarisations respectively. There are three compo-
nents that influence phase shift along the radial. Firstly is the phase difference between
the two polarisations at the point of transmission from the radar (ψ0), which is a func-
tion of hardware and software in the radar, is unique to each radar, and is often taken
as the total phase shift measured by the radar at range zero. Secondly, a shift in phase
occurs in the backscattered wave upon reflection from the scatterers (δ, Trömel et al.
(2013)). Thirdly, there is a change in phase due to changes in forward propagation
velocity as the beam moves through changing mediums (ΦDP , Kumjian (2013)).

Total differential phase shift can therefore also be written as

ΨDP = ΦDP + δ + ψ0, (2.13)

ΨDP generally increases with range; however, large changes of backscatter differential
phase or interactions with some scatterers can change that.

While ΨDP is the quantity measured by the radar, it is the individual components that
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are of greater interest, usually the range derivative of ΦDP , and so these variables are
often packaged with measured variables (such as reflectivity) in radar data files.

Backscatter Differential Phase

As the radar beam is scattered back to the radar from targets, each polarisation of the
beam may encounter a shift of phase due to the scattering interaction. The magnitude
of backscatter differential phase depends on the wavelength of the radar beam and
temperature, as well as hydrometeor type and size. For S-band radars, backscatter dif-
ferential phase is negligible except for the very largest hydrometeors (raindrops greater
than 7 mm diameter and melting hailstones greater than 5 cm diameter, Ryzhkov and
Zrnić (2019)); however, for C-band and X-band it becomes non-negligible for smaller
raindrop sizes (4.5 mm and 2.5 mm respectively), with the magnitude of backscatter
differential phase dependent on both drop size and temperature (Trömel et al. 2013).

Backscatter differential phase is negligible at S-, C- and X-band for most ice hydrome-
teor types, due to the small imaginary part of the ice dielectric constant (Trömel et al.
2013). However, large, dry hailstones have notable backscatter differential phase, which
can be much greater, or negative at certain sizes, for wet hailstones (Aydin et al. 1991).
Within the melting layer, backscatter differential phase can be significant. Modelling
work by Trömel et al. (2013) showed that the backscatter differential phase within the
melting layer can reach 1◦, 2◦, or 4◦ at S-, C- and X-band respectively; however, the
model they used assumed mixed phase particles do not interact, and wet snowflakes
do not aggregate. Including aggregation in the model is challenging; however, further
work by Trömel et al. (2013) with disdrometer data suggests that backscatter differen-
tial phase can reach 10◦ in the melting layer, which is a large contribution to the ΨDP

measurements.

2.1.4 Specific Differential Phase

As the radar beam propagates forward through scatterers, the phase of each polarisation
of the radar beam changes due to the beam travelling through changing mediums. This
differential phase shift due to forward propagation (ΦDP ) accumulates with range from
the radar. Thus, it is more useful to know how this phase shift changes along the range
of the radar beam. Specific Differential Phase (KDP ) is defined as the one-way range
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derivative of the forward propagation differential phase shift,

KDP (r) = 1
2
dΦDP (r)

dr
. (2.14)

Specific differential phase is the difference between the change in phase of the horizontal
polarisation and vertical polarisation due to passing through targets (Seliga and Bringi
1978). Hydrometeors falling under the influence of gravity are generally oriented with
their longer axis roughly parallel to the ground (Westbrook et al. 2010). This means
that the horizontal component of the radar beam has a greater encounter with the
hydrometeors than the vertical component, therefore a greater phase shift in the hori-
zontal than the vertical, resulting in positive specific differential phase. The two main
exceptions to this are in clouds with strong electric fields, within which ice crystals
can be vertically oriented along the electric field, and large hail which tumbles as it
falls, resulting in near zero or negative specific differential phase. Specific differential
phase tends to increase with increasing hydrometeor size; however, due to the dielectric
constant of ice being lower than that of water, KDP increases slower with diameter in
snow than in rain (Ryzhkov and Zrnić 2019). Figure 2.3 shows some examples of KDP

estimation.

Figure 2.3: RHI plots of specific differential phase from NCAS X-band mobile radar.
The plot on the left shows data from 11:36:14 UTC 17 May 2017, the plot on the right
from 17:02:31 UTC 14 February 2018.

As mentioned in Section 2.1, the observation of a volume of scatterers needs multiple
measurements to reduce statistical errors. The standard deviation for ΦDP is given by
equation 6.80 in Ryzhkov and Zrnić (2019) as

SD(ΦDP ) = 30.3
(
ρ−2

hv − 1
σvnM

)1/2

(2.15)

which propagates through to the standard deviation for KDP , which from equation
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6.82 in Ryzhkov and Zrnić (2019)

SD(KDP ) =
√

3 SD(ΦDP )
M

3/2
r ∆r

(2.16)

where σvn = 4σvTs/λ is the normalised spectrum width, σv is the spectrum width λ is
the wavelength in metres, Ts is the pulse repetition period in seconds, M is the number
of pulses, and Mr is the number of range samples used in the KDP estimation. Increas-
ing the number of pulses, the pulse repetition period, and the distance over which KDP

is estimated all decrease the standard deviation of the KDP estimation; however, as dis-
cussed in section 2.1, these have the trade off of reducing the maximum range from the
radar of measurement or increasing the time that lapses before the next measurement
of that region. For the NEXRAD radars, with a spectrum width of 1 ms−1 and ρhv of
0.99, the standard deviation in ΦDP is 3.1 ◦, which equates to a standard deviation in
KDP of 0.17 ◦km−1 when reflectivity is less than 40 dBZ (KDP is estimated over 25
range gates with a spatial resolution of 0.25 km, Ts is 0.003 seconds, and M is 17).
Given that, especially for S band radars, KDP can often be less than 1 ◦km−1, this is a
large statistical error, and motivates further need to reduce the effect of noise in KDP

estimations.

Specific differential phase may be closely, although not exactly, related to rainfall rate.
Computations based on a large set of drop size distributions measured by disdrome-
ters in Oklahoma (Schuur et al. 2005) suggest KDP is proportional to the number of
drops of diameter D multiplied by Da, where a is between 4.3 and 4.9, slightly de-
pendent on wavelength and drop size. For rainfall rate, a is approximately 3.67, and
for reflectivity a is equal to 6 (Fabry 2015; Ryzhkov and Zrnić 2019). A number of
studies have used KDP to measure rainfall rate, either solely or in combination with Z
and/or Zdr (Aydin et al. 1995; Zrnic and Ryzhkov 1996; Matrosov et al. 2006). KDP -R
relationships are also more favourable over Z-R relationships because, being a phase
measurement, KDP is not dependent on the strength of the return signal, and so is im-
mune to radar miscalibration, attenuation, and partial beam blockage (Kumjian 2013).
These benefits of KDP can also help correct reflectivity for attenuation (Vulpiani et al.
2008; Snyder et al. 2010), or to help with radar calibration (Gourley et al. 2009; Tra-
bal et al. 2014; Louf et al. 2019). However, for C-band radars (4-8 GHz frequency),
resonance-sized raindrops (5-7 mm in diameter) result in different values of KDP de-
pending on the temperature, and so can cause erroneous estimations of rainfall. These
temperature-dependent resonance effects are also present at X-band for raindrops 3-5
mm in diameter, although the difference due to temperature is less at X-band than
C-band, and at S-band it is negligible for raindrops with a diameter less than 7 mm
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(Ryzhkov and Zrnić 2019).

As well as rainfall rate, KDP has the potential to provide accurate estimations of
microphysical properties such as liquid and ice water content (LWC and IWC). The
same disdrometer data set from Oklahoma (Schuur et al. 2005) showed that KDP =
a LWCb, where a and b are dependent on radar wavelength. For frozen hydrometeors,
Vivekanandan et al. (1994) and Ryzhkov et al. (1998) showed that KDP is almost
linearly proportional to IWC, assuming that KDP is positive. In the case where KDP

is negative, KDP can provide information about electrical processes in clouds (Ryzhkov
and Zrnić 2019).

Specific differential phase is also used in hydrometeor classification (e.g. Liu and Chan-
drasekar (2000); Thompson et al. (2014)). An example of this is in the detection of
hail. As mentioned previously, KDP is close to zero in regions of hail, but is large for
heavy rain, whereas for both hail and heavy rain reflectivity is often greater than 50
dBZ (Liu and Chandrasekar 2000). Large KDP values can also be found in the ice
region where dendritic ice crystals are dominant, and where secondary ice production
may be occurring (Field et al. 2017).

Determining KDP is not necessarily as straightforward as taking the derivative of the
measured total differential phase shift. Even if the backscatter differential phase is
negligible, the differential should be calculated from measurements over a number of
resolution volumes in order to reduce errors and noise (Hubbert and Bringi 1995). In
the case where backscatter differential phase is not negligible or is unknown, it must
be accounted for and removed from the measured ΨDP profile to obtain a ΦDP for
calculating KDP . Failure to correctly remove backscatter differential phase results
in incorrect estimations of KDP , and these errors will be propagated through to any
products in which KDP is used in their derivation, for example rainfall rate (Trömel
et al. 2013). A number of different algorithms have been developed to estimate KDP ,
with different levels of complexity and with different assumptions made (e.g. Hubbert
and Bringi (1995); Vulpiani et al. (2012); Schneebeli et al. (2014)). The estimation
methods used in this thesis are described in in Section 3.3.

2.2 Numerical Weather Prediction

Mathematical models and equations governing the physics of the atmosphere are used to
predict the weather, taking the initial weather conditions and calculating their change
in time. This was first published in 1922 by Lewis Fry Richardson (Richardson and
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Lynch 2007), using a simplified set of equations with a hydrostatic approximation,
which took a period of months, between trips to the front line toward the end of World
War 1 (Thompson 1983), to produce a six hour forecast for two places in central Europe.
However, his forecast calculated the surface pressure would change by 145 millibars,
due to extrapolating an instantaneous pressure tendency and not correctly account-
ing for natural atmospheric damping through gravity waves (Lynch 2006). Numerical
weather prediction (NWP) became more successful and useful with the development
of computers in the 1950s. The Met Office produced their first numerical prediction
in 1952 using a computer at the University of Cambridge, before installing their own
computer in 1959. These forecasts used a 12 x 8 grid, with 260 km between grid spaces,
and required four hours to complete a 24 hour forecast (Met Office 2019).

Numerical weather prediction today is much more complex than in the 1950s. Increased
knowledge, more data for initial conditions, and powerful computers, have resulted
in improved accuracy, higher resolution, and longer lead times for weather forecasts.
Rather than using a 12 x 8 grid, modern NWP models can cover the entire globe, with
a horizontal resolution of 10 km rather than 260 km, and lead times extended from 1
day up to 16 (Kerns and Chen 2014; ECMWF 2021). Models covering local regions
use even higher resolution, with the Met Office using 1.5 km over the British Isles
(Ballard et al. 2015). More surface weather stations are collecting data which is used
to initialise the models, and more data from within the atmosphere becoming available
from aircraft and satellites. Ever-growing computers are needed to support all this,
and the Met Office has received £1.2 billion of funding from the UK government for
a new supercomputer, which will be in the top 25 of all supercomputers in the world
(Met Office 2021).

2.2.1 Microphysics Schemes

Numerical weather prediction models are not written as one block of code, rather dif-
ferent pieces of code relating to different processes are written separately, and can be
developed and improved, and in some cases completely changed, without re-writing the
entire NWP model. One of these areas, and one of the greatest challenges for atmo-
spheric modelling, is cloud microphysics (Igel et al. 2015). The microphysics scheme
controls clouds and precipitation within the model, with different schemes incorporating
different levels of complexity. Atmopsheric models can not represent individual cloud
and precipitation particles due to the huge number of them (1m3 of cloudy air could
contain a few million cloud droplets), and so only a selection of cloud and precipitation
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features are predicted (Grabowski et al. 2019). Most microphysics parameterisations
are bulk schemes, meaning they assume a shape for the hydrometeor size distribution,
and predict one or more moments of the distribution, whereas bin microphysics schemes
predict the evolution of the size distribution, but they are computationally expensive,
making them infeasible for forecasting applications. However, the additional detail
achieved by bin schemes means they are often used as a benchmark for testing bulk
schemes (Grabowski et al. 2019). Figure 2.4, taken from Grabowski et al. (2019), high-
lights the differences between bulk and bin microphysics schemes, and the increasing
complexity of those schemes.

Bulk microphysical schemes can generally be classified into one of two categories. Single
moment schemes predict the mixing ratios of a number of hydrometeors, representing
the size of each hydrometeor class with a defined distribution function (e.g. Lin et al.
(1983); Thompson et al. (2004); Straka and Mansell (2005)). Double moment schemes
also predict the number concentration of some or all hydrometeor types in the scheme
(e.g. Milbrandt and Yau (2005a); Morrison et al. (2005); Thompson et al. (2008)). This
gives more flexibility in the size distribution, and allows the mean diameter to change.
Despite requiring more computational work, double moment schemes are favoured as
the better representation of hydrometeor growth and processes result in significant
improvements to predicted surface precipitation and storm evolution (Loftus et al.
2014; Igel et al. 2015).

Figure 2.4: Figure 1 from Grabowski et al. (2019): General diagram of the increas-
ing complexity of microphysics schemes. Single-moment bulk microphysical schemes
predict only the mass mixing ratios q of certain cloud and precipitation categories,
whereas double-moment schemes also predict the number concentration N . Bin
microphysical schemes represent a size distribution for each category, with multi-
dimensional distributions used if more detail is needed.
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A few triple moment bulk microphysics schemes have been developed, with the third
moment in these schemes being radar reflectivity (Milbrandt and Yau 2006a,b; Loftus
et al. 2014; Loftus and Cotton 2014). The initial studies of these schemes focused on hail
in convective storms, and reported promising results with regards to location,timing and
size of hail in the studied storms. The Milbrant-Yau scheme has also been tested on an
orographic precipitation event (Milbrandt et al. 2008). While the simulated reflectivity
structure compared well against the radar observations and the spatial distribution
of hydrometeors was realistically simulated, the simulations generally over-predicted
the amount of precipitation and snow mass concentration aloft, and under-predicted
the pockets of cloud liquid water. While the prediction of an additional moment can
further improve the microphysical representivity in the model, this comes at the cost of
additional computational time, with Loftus and Cotton (2014) noting that their scheme
requires about 30% more computational time compared to a double-moment scheme.

2.2.2 Forward Operators

In the absence of triple moment microphysics schemes, there is no direct way to compare
the output from numerical weather prediction models to the observations from weather
radar, and even then only reflectivity is available for comparison. Forward operators
take the output from NWP models and convert the output to radar observables, and
can be expressed either as one value for each radar observable as the radar would
measure or separated out for each hydrometeor resolved in the microphysics scheme
(examples include Jung et al. (2008); Ryzhkov et al. (2011); Oue et al. (2020)). This
information can then be used to optimize numerical weather prediction models through
data assimilation; however, this use of polarimetric radar data is still a new area of
research, or for improving microphysical parameterisation (Ryzhkov et al. 2020).

With the exception of the bulk adaptive habit model (Harrington et al. 2013), the
aspect ratios of hydrometeors are not predicted in NWP microphysics schemes, and
neither are the distributions of hydrometeor orientations. While some suggestions have
recently been put forward for changing the aspect ratio of melting snowflakes and hail
as a function of mass water fraction (Jung et al. 2008; Ryzhkov et al. 2011), generally
forward operators make assumptions on the aspect ratio and hydrometeor orientation
based on hydrometeor type. The operators also need to account for radar wavelength,
elevation angle, the width of the canting angle distribution, and sometimes temperature,
before calculating radar observables, either by performing scattering calculations or
through the use of lookup tables.
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While forward operators can reproduce some polarimetric radar observables, they can
not account for all artifacts seen in the radar measurements. Attenuation in each po-
larisation of the radar beam can be accounted for, and is often returned by the forward
operator; however, miscalibration, beam blockage, and the presence of microwave noise
from the radar and the atmosphere can not be accounted for, neither can the echoes
from non-meteorological sources such as birds and insects, which adds to the complex-
ity in comparing between the model and the radar (Oue et al. 2020; Ryzhkov et al.
2020).

Radar forward operators also can not reproduce all radar signatures just using the data
straight from the microphysics schemes. The schemes rarely include any mixed phase
hydrometeors, meaning signatures in radar data that are due to melting, for example
the radar bright band in the melting layer, are not seen in the output from forward
operators. Jung et al. (2008) and Dawson et al. (2014) suggest creating artificial classes
to fix this, taking some amount of water and ice from the pure liquid and ice classes to
create “melting snow” and “melting hail”.

The output from forward operators is dependent on a lot of fine, microscale detail,
including information related to the microphysical properties at each grid location (for
example, the number and mass concentrations of each hydrometeor type), and how
that translates into interactions with a radar beam. Meanwhile, the accuracy of a for-
ward operator output when compared to radar observations is also dependent on the
accuracy of NWP models. These models contain uncertainty on a macroscale, such as
timing and location of weather, which can be affected by model initial and boundary
conditions, as well as the dynamics of the model itself.

Forward operators are key to the potential for using radar observations in data as-
similation to initialise NWP model runs (Jung et al. 2008; Xiao et al. 2008). Data
assimilation is the process of combining a background state, usually from a previous
model run, with new observations, to create the best guess of the current state of
the atmosphere to use as initial conditions for starting a new run of the model, while
also reducing the associated uncertainty from both the model and the observations.
Assimilation of reflectivity and Doppler velocity have been shown to be useful, pro-
ducing realistic storm-scale structures and helping reduce the spin-up time needed in
the model (Sun and Crook 1997; Dowell et al. 2011; Wang et al. 2013); however, re-
flectivity alone is not sufficient to analyse all the variables included in multi-moment
microphysics schemes (Zhang et al. 2019). Polarimetric radar data may help with this,
however there needs to be an improvement in how the additional data is assimilated,
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and how forward operators and microphysics schemes treat frozen and mixed-phase
hydrometeors (Zhang et al. 2019).
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Methods and Data

The primary dataset in this study comes from National Centre for Atmospheric Sci-
ence’s dual-polarisation Doppler mobile X-band radar (NXPol-1), with the observations
collected while the radar was based at Chilbolton Observatory (section 3.1). This is
supported with model data from the UK Met Office (section 3.2) and the Weather
Research and Forecasting (WRF) model (section 3.4), and with observations from the
Facility for Airborne Atmospheric Measurements (FAAM) aircraft (section 3.6). Also
discussed in this chapter are the forward operator used to convert WRF model data
to radar observables in Chapter 6 (section 3.5), and the different methods to estimate
KDP which are compared in Chapter 4 (section 3.3).

3.1 NXPol-1 Radar

The main instrument used throughout this study is a movable, dual-polarisation, X-
band Doppler weather radar operated by the National Centre for Atmospheric Science
(NCAS), which operates with a frequency of 9.375 GHz (a wavelength of 3.2 cm).

The radar is a Meteor 50DX model, manufactured by Selex Systems Integration GmbH,
now Leonardo Germany GmbH, with a larger 2.4 m antenna dish. The larger dish
means that the half-power beamwidth is reduced to 0.98◦ compared to 1.5◦ for the 1.8
m antenna dish model, allowing for higher resolution data collection; however, it means
that a radome can not be fitted to the radar. While the issue of radome attenuation is
eliminated, the removal of the radome means the radar is more susceptible to damage,
both in transit and in high-wind conditions. As such, the radar must be stowed when
wind speeds exceed 55 mph, and no data can be collected.
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The radar operates in a simultaneous horizontal and vertical polarisation mode, mean-
ing that it both transmits and receives both horizontal and vertical polarisations at
the same time, and is capable of scanning at any elevation angle between -1◦ and 181◦,
unlike many operational radar systems (for instance, the NEXRAD radars in USA have
a maximum elevation angle of 20◦ in operational usage). With an antenna speed of up
to 36◦ per second and a maximum range of 150 km, the NXPol-1 radar is well suited
for the study of cloud evolution, being able to rapidly scan large sections of the atmo-
sphere. A complete description of the NXPol-1 radar can be found in Neely III et al.
(2018).

3.1.1 Observations from Chilbolton Atmospheric Observatory (CAO)

The data used through this study were collected when NXPol-1 was located at Chilbolton
Observatory (51.145 ◦N, 1.427 ◦W), a facility in the south of the United Kingdom that
enables research in areas such as atmospheric science, radiocommunications, and astron-
omy (Goddard et al. 1994; Ladd et al. 2017). NXPol-1 was collecting data at Chilbolton
Observatory from 1st November 2016 through to 4th June 2018, and that data can be
accessed online through the Centre for Environmental Data Analysis (CEDA) catalogue
(Bennett 2020).

3.1.2 Data Collection

While at Chilbolton Observatory, NXPol-1 collected data using both Plan Position
Indicator (PPI) scans and Range Height Indicator (RHI) scans. Ten different elevation
angles were used through the PPI scans, the lowest being 0.5◦ and the highest 20◦ (figure
3.1). While the maximum height of the beam above the radar using an elevation angle
of 0.5◦ is only 1.3 km, the beam reaches a height of 15 km (likely to be near or above
the tropopause in the mid-latitudes) at a horizontal distance of just 41 km with an
elevation angle of 20◦, resulting in a large portion of the surrounding atmosphere being
measured.

A few different strategies were used throughout the campaign when conducting RHI
scans. One strategy measured just one RHI scan, with an azimuth of 248◦, scanning
a full cross section through the atmosphere with elevation angles from -1◦ through to
181◦. Another strategy measured 6 ‘half RHI’ scans, with five scans at 1◦ azimuth
increments between 243.5◦ and 247.5◦, plus one scan at an azimuth of 270◦, with all
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Figure 3.1: Height of radar beam at different elevation angles for increasing distance
from the radar.

measuring an elevation range between 0◦ and 90◦. This second strategy was used
primarily during the period when the FAAM aircraft was flying, in order to take more
measurements in the vicinity of the aircraft.

There are 34 variable fields stored in NXPol-1’s processed files:

1. Unfiltered reflectivity from both horizontal and vertical polarisations (dBuZ and
dBuZv).

2. Filtered (i.e. clutter-corrected) reflectivity from both horizontal and vertical po-
larisations (dBZ and dBZv).

3. Differential reflectivity, filtered and unfiltered (ZDR and ZDRu).

4. Radial velocity from both horizontal and vertical polarisations, filtered and un-
filtered (V, Vv, Vu, Vvu).

5. Spectral width from both horizontal and vertical polarisations, filtered and unfil-
tered (W, Wv, Wu, Wvu).

6. Total differential phase, filtered by the Rainbow software (PhiDP).

7. Total differential phase derived by the signal processor, filtered and unfiltered
(uPhiDP, uPhiDPu).
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8. Specific differential phase derived by the Rainbow software from PhiDP (KDP).

9. Specific differential phase derived by the signal processor, filtered and unfiltered
(uKDP, uKDPu).

10. Cross correlation coefficient, filtered and unfiltered (RhoHV, RhoHVu).

11. Degree of polarisation, filtered and unfiltered (DOP, DOPu).

12. Signal Quality Index from both horizontal and vertical polarisations, filtered and
unfiltered (SQI, SQIv, SQIu, SQIvu).

13. Signal to noise ratio, from both horizontal and vertical polarisations, filtered and
unfiltered (SNR, SNRv, SNRu, SNRvu).

14. Clutter correction ratio from both horizontal and vertical polarisations (CCOR
and CCORv).

The data used has been calibrated by Lindsay Bennett, the instrument scientist for the
radar, and is made available through CEDA (Bennett 2020).

3.2 Met Office UK Atmospheric High Resolution Model data

Data from a post-processed regional downscaled version of the Unified Model is used
to create a temperature field to support the radar observations. This data has an
approximate spatial resolution of 0.018◦, produces hourly data at the surface and fifteen
pressure levels, from 1000 hPa to 30 hPa, and is available on CEDA (Met Office 2016).
The radar observations are on a polar coordinate space centred at the radar, and is
at higher resolution than the model data, particularly in the vertical direction. To
transpose model data from its coordinate space to the radar coordinate space, the
following process is used for each radar gate location:

1. The latitude and longitude of the radar gate is found using the Py-ART python
package (Helmus and Collis 2016), and from that the closest model grid point in
the horizontal plane is obtained.

2. The height of the radar gate is compared to the height of the pressure levels for the
model column which contains the nearest grid point, retrieving the temperature in
that column for the pressure level directly above and directly below the radar gate.
If the radar gate lies below the lowest pressure level, then the 1.5m temperature
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is used.

3. Temperature is linearly interpolated between the heights of the pressure levels
to the height of the radar gate, to give an estimate for the temperature at that
location.

With this process completed for each radar gate location, a linearly interpolated, polar
coordinate temperature field is obtained and added to the radar data files. Using
temperature as a vertical coordinate, as is done through Chapter 5 means that radar
data from different days can be easily compared to each other, as air temperature is
one of the factors that influences ice habit (Bailey and Hallett 2009).

3.2.1 Comparison to Radiosonde Observations

To compare the accuracy of this linear-interpolation, radiosonde data collected as part
of the PICASSO (Parameterizing Ice Clouds using Airborne obServationS and triple-
frequency dOppler radar) campaign are used. Ten radiosondes were launched from
Chilbolton Observatory while the radar was collecting data, between 23rd January
and 14th February 2018. The radiosondes used were RS-41SGP radiosondes made by
Vaisala, which use a Platinum Resistor to measure temperature, with an uncertainty of
0.3 ◦C in sounding data below an altitude of 16 km (Vaisala 2020). These radiosondes
took measurements every second during ascent.

Temperature from the radiosonde is compared to the linearly interpolated, polar coor-
dinate temperature field in the radar files, with the nearest radar gate location used for
each radiosonde measurement. The results of this are shown in Figure 3.2. The inter-
polated temperature and the radiosonde-measured temperature agree well, generally
within 1 ◦C up to around -45 ◦C. The main exception to this is where the radiosonde
passes through a front, as the vertical resolution of the provided model data is not
sufficient to capture that transition.

A 1 ◦C error corresponds to a change in height of about 100m in dry conditions, and
about 170m in a moist atmosphere. NXPol-1 uses 150m range gates, so when the radar
is vertically pointing there may be a 1 ◦C difference in temperature between the top
and bottom of the measurement volume. Similarly, with a 0.98◦ beamwidth, the width
of the measured volume is 100m at a range of almost 5850m from the radar, and 170m
at almost 9940m, meaning starting from those distances a 1 ◦C difference could exist
between the top and bottom of the measurement volume when the centre of the radar
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beam is parallel to the ground. However, boundaries between hydrometeor types, and
the range in which they exist, are not hard and absolute, rather hydrometeors exist
across a wide range of temperatures and transition from one to another happens over a
few degrees (for example the thickness of the melting layer (Boodoo et al. 2010)), and
so a 1 ◦C temperature error is sufficient for this study.
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Figure 3.2: Temperature from the Met Office model transposed onto radar grid com-
pared to temperature from radiosondes. The dashed line shows equal temperature
between radiosonde and regridded model, with the dotted lines showing ±1 ◦C.

3.3 KDP estimation methods

As discussed in Section 2.1.4, KDP is not directly measured by the radar, and instead
is calculated from the measured total differential phase shift (ΨDP ). There are many
different methods in the literature for estimating KDP , with various approaches and
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levels of complexity. Some of the methods take the simplest approach possible, by
assuming backscatter differential phase (δ) is negligible and then just calculating the
slope of the ΨDP profile over a number of gates. Other approaches include the use of
a finite impulse response filter to remove noise and δ from the ΨDP profile, use of an
ensemble of Kalman filters to extract KDP and δ without smoothing the ΨDP profile,
or minimization of a cost function to calculate the most likely profile of KDP .

Eight estimation methods are studied in Chapter 4:

• Rainbow (Hubbert and Bringi 1995; Bringi et al. 2007).

• Bringi (Hubbert and Bringi 1995; Lang et al. 2019).

• Schneebeli (Schneebeli et al. 2013; Helmus and Collis 2016).

• Maesaka (Maesaka et al. 2012; Helmus and Collis 2016).

• Vulpiani (Vulpiani et al. 2012; Helmus and Collis 2016).

• Ryzhkov (Ryzhkov et al. 2005a).

• ωradlib (Vulpiani et al. 2012; Heistermann et al. 2013).

• UK Met Office (UKMO).

The Bringi, Schneebeli, Maesaka, Vulpiani, and ωradlib methods are all available in
open source python modules, with the default options being used for all of these meth-
ods. The Ryzhkov method was coded based on the description of the method in Ryzhkov
et al. (2005b), and the UK Met Office method was provided through personal commu-
nication. The Rainbow method is the only one where the underlying code was not
available, due to being part of NXPol-1’s proprietary signal processing software that
produces the radar moments during the operation of the radar.

3.3.1 Rainbow and Bringi Methods

The processing software within NXPol-1 provided by Selex-Gematronik, called Rain-
bow, includes a method for estimating KDP from ΨDP based on the method described
in Hubbert and Bringi (1995). This method uses an iterative finite impulse response
(FIR) filtering method to remove the effects of δ, and is carried out on inidividual range
profiles of ΨDP . This method is described both in Hubbert and Bringi (1995) and in
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the handbook as part of the Selex-Gematronik documentation (Bringi et al. 2007).

Before any filtering can take place, ΨDP is first unwrapped to account for any increase
of phase difference over 360◦, and then a ‘good data’ mask is created for each ray.
This separates the meteorological and non-meteorological echoes based on the standard
deviation of ΨDP over ten consecutive range samples (< 12 ◦), the signal-to-noise
ration (SNR, > 3 dB), and the copolar correlation coefficient (ρhv, > 0.8). For ‘bad
data’ segments, ΨDP is linearly interpolated between the two surrounding ‘good data’
points.

The Finite Impulse Response (FIR) filter is then applied to reduce the high frequency
fluctuations in ΨDP from one radar measurement to the next along a ray, while keeping
the overall pattern of ΨDP in that range. While a single use of the filter reduces most
of the high frequency oscillations, in cases where δ is significant then its effects will still
be visible in the filtered ΨDP signal. Therefore, an iterative process is implemented to
remove δ from ΨDP , leaving the ΦDP profile.

The iterative process is as follows. The initial ’raw’ ΨDP is passed through the FIR to
create a new, filtered ΨDP . Then, a new ΨDP profile is created by combining the initial
profile and the filtered profile, depending on the difference between the two. For each
range gate, if the absolute value of the difference between the raw and filtered ΨDP is
below a specified threshold (which is set according to the expected standard deviation of
the measurement of differential phase, 3◦-5◦), then the initial ’raw’ ΨDP measurement
is used in the new profile, otherwise the filtered ΨDP value is used. This new ΨDP

profile is then passed through the FIR filter, and again a new profile is created, and
this process is continued to convergence, determined by the change in ΨDP from one
profile to the next being within some tolerance. Hubert and Bringi (1995) found that
repeating this process 10 times produced good results; however, for S band, where δ is
not significant, the number of iterations can be reduced to two. The outcome of this
process is a smoothed profile without the effects of δ, and thus ΦDP has been extracted
from ΨDP .

Finally, KDP is calculated using a least squares linear fit from the obtained ΦDP profile.
The value of radar reflectivity (ZH) is the factor in choosing the number of consecutive
range gates to use for the fit (10 gates if ZH > 45 dBZ, 20 for 30 < ZH < 45 dBZ, and
30 for ZH < 30 dBZ). This further smooths the KDP field along the ray, particularly
in areas of light rain where values of KDP are smaller.

The Bringi method, taken from the CSU Radar Tools GitHub repository with the
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function name ‘calc kdp bringi’ (Lang et al. 2016), is based on the same work by
Hubbert and Bringi (1995), but there are a few small differences between this method
and the one provided in the Rainbow software.

1. The CSU code assumes ΨDP has already been unwrapped prior to calling the
function.

2. The CSU code only masks data based on the standard deviation of ΨDP , not
including SNR and ρhv as the Rainbow software does.

3. The coefficients used in the FIR filter in the Bringi KDP differ slightly to those in
Hubbert and Bringi (1995). The documentation for the Rainbow software does
not state which coefficients they use.

4. The default value for the number of iterations of the FIR filter in the CSU code
is 1. Although the Rainbow documentation does not explicitly state how many
iterations are used, it does say that it is typically 10 for C and X band radars,
and 2 for S band.

5. In the KDP calculation step, the threshold on reflectivity between using 20 and
30 samples is 35 dBZ in the Bringi KDP estimation, compared to 30 dBZ in the
Rainbow KDP estimation.

3.3.2 Schneebeli Method

Schneebeli et al. (2014) describe a method of estimating KDP along each ray by us-
ing a number of Kalman Filter estimates. Kalman filtering is an optimal estimation
algorithm, a way of extracting information about what you can’t measure from what
you can. In this case, KDP and δ are extracted from the measured ΨDP profile, with δ
considered to be a function of KDP . This method is implemented in the Python ARM
Radar Toolkit (Py-ART, Helmus and Collis (2016)).

The Kalman filter is applied a number of times for each ray, with the error covariance
matrix scaled by a set of factors a, where a = 10b and b = −1,−0.8,−0.6, ..., 0.8, 1.
The filter is also applied to the ΨDP profile in each direction along the ray for each
scaled error covariance matrix, resulting in an ensemble of estimates.

However, for the Kalman filter to work at the start and the end of the rays, 50 gates
are added to the start of the ray with values of 0◦ + η (assuming 0◦ system offset
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in ΨDP ), and 50 gates of Ψend
DP + η are added at the end of the profile, where η is a

Gaussian noise component. Additionally, differential phase measurements rarely are
defined throughout the entirety of the profile, for example spaces of clear air. Missing
ΨDP values are linearly interpolated with a Gaussian noise component added. After
completion of the process, estimates of KDP and ΦDP from these sections of the profile
are removed.

The final KDP estimate is taken from combining the forward and backward ensembles,
taking either the forward or backward ensembles depending on whether KDP is increas-
ing or decreasing along the ray. This process results in a new ensemble of estimates,
from which the final KDP estimate is retrieved.

3.3.3 Maesaka Method

Maesaka et al. (2012) produce an algorithm to estimate KDP that assumes a mono-
tonically increasing ΦDP . This assumptions means that the resultant KDP is never
negative. This assumption holds reasonably below the melting layer, in areas of rain-
fall, although in ice regions one might expect to encounter negative KDP in certain
regions, namely that where vertically-oriented ice crystals are dominant. This method
is also implemented in Py-ART (Helmus and Collis 2016).

The Maesaka method creates a cost function to estimate KDP from ΨDP . Firstly the
lower and upper bounds for ΦDP along the profile are determined through a linear
regression over the first (last) 20 gates for the lower (upper) bound. If the slope of the
regression line is positive, then the value of the regression line at the first (last) range is
used for the boundary condition; however, if it is negative then the median value is used.
The cost function is then constructed by comparing the measured differential phase
with the boundary conditions, and the unknown solution of ΦDP with the boundary
conditions, plus a mean square of a Laplacian of k, which acts a s a low pass filter,
where k is related to KDP . KDP is calculated from the solution that minimises the
cost function.

3.3.4 Vulpiani Method

The third method used that is taken from Py-ART (Helmus and Collis 2016), the
Vulpiani method uses a multistep moving-window range derivative approach, based on
the work by Vulpiani et al. (2012). A first guess KDP is obtained by taking half of
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the difference of ΨDP at each end of the moving window divided by the size of that
window, which is defined as 10 gates in the Py-ART code.

This first guess of KDP is checked against wavelength-dependent thresholds of KDP to
remove phenomena such as aliasing, noise, and δ, with valid KDP defined as greater
than -2 ◦km−1 and less than 40 ◦km−1 for X-band radars. If KDP fails this check, it
is set to 0 ◦ km−1. Then, the standard deviation of the estimated KDP is calculated at
each location, with the default option in the Py-ART code for the size of the window
being 11. KDP is set to zero where the standard deviation is greater than 5 ◦ km−1.

The filtered differential phase from forward propagation estimate is reconstructed as
the two way integral of KDP . From this filtered ΦDP , the final estimation of KDP is
then obtained, simply as the difference between range gates.

3.3.5 ωradlib Method

In the ωradlib python package (Heistermann et al. 2013), there are a few of options for
estimating KDP . The main option is based on the Vulpiani method. However, there
are a few key differences in this implementation:

1. Firstly, the data is despeckled, to remove floating pixels between NaNs in the
ΨDP data.

2. After the first guess of KDP , ΦDP is unfolded, based on searching for if KDP is
below a defined threshold (-20 ◦ km−1).

3. A second guess of KDP is derived using Lanczos convolution, rather than the
simple finite difference scheme.

4. Thresholds are then applied on KDP , with 20 ◦km−1 used for the upper threshold
of KDP rather than 40 ◦km−1.

5. The ΦDP reconstruction and KDP retrieval section is iterated over twice, using
the resultant KDP profile from the first iteration to initialise the second.

3.3.6 Ryzhkov Method

A very simple KDP estimation method is described by Ryzhkov et al. (2005b). ΨDP is
unfolded and smoothed along the radial using two different averaging windows, one of
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9 gates and one of 25. This produces a ’lightly filtered’ and a ’heavily filtered’ radial
profile. Then, two estimates of KDP are obtained, as a slope of a least squares linear
fit from the filtered ΨDP using the same two range averaging intervals, producing a
’heavy filtered’ and a ’lightly filtered’ estimate of KDP . Then, for each range gate, the
final estimate of KDP is selected based on a reflectivity threshold: if Z > 40dBZ, the
’lightly filtered’ estimate of KDP is taken, otherwise the ’heavily filtered’ estimate is
used. With the WSR-88D radar used in their study, this results in a radial resolution
of KDP of about 6 km for in low reflectivity, and about 2 km in higher reflectivity.

3.3.7 UK Met Office Method

The UK Met Office use a relatively simple approach to calculating KDP , based on a
finite difference schemes of a ‘cleaned-up’ ΨDP profile. Two masks are created on the
ΨDP profile, the first using a ρhv threshold of 0.9 to remove clutter from the profile.
The resulting profile has a median filter applied, such that the value at each location
is the median of that measurement, the 5 before, and the 5 after. This filtered data is
then interpolated to fill in gaps in the ΨDP profile.

The second mask is created by setting the threshold of ρhv at 0.97, and then the
same process of filtering and interpolating is applied, this time using 4 gates either
side instead of 5. The remaining profile is then smoothed twice using a convolution
function, firstly with a window size of 5, and secondly of 3. KDP is then calculated
from this smoothed profile using a second order central difference scheme along most
of the ray, with a first order one-sided scheme used at the ends of the ray. Negative
values of KDP are then set to 0 ◦km−1.

3.4 Weather and Research Forecasting (WRF) Model

The WRF model is a mesoscale numerical weather prediction (NWP) model, developed
primarily by the National Center for Atmospheric Research (NCAR), alongside partners
such as the National Oceanic and Atmospheric Administration (NOAA) and the U.S.
Air Force, designed as both a model for atmospheric research and operational forecast-
ing (Skamarock et al. 2021). The model is used operationally by the National Centers
for Environmental Prediction (NCEP 2022) and many other meteorological agencies
and companies, and can be run on almost any computer, ranging from a Raspberry Pi
to a high performance supercomputer.
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The WRF-ARW model version 4.2.2 is used to simulate the atmospheric conditions on
24th January 2018. The model is centred over Chilbolton Observatory, utilising triple
nested domains with horizontal grid spacing of 10km, 2km and 400m and 350, 401,
and 501 grid points respectively in each horizontal direction (Figure 3.3). All of the
domains have 81 vertical levels, with the highest level at 50 hPa. The model was run
using the JASMIN computer facility, with initial and boundary conditions provided by
the Global Forecasting System (GFS) model. The cumulus physics parameterisation
used in the outer domain is the Kain-Fritsch parameterisation (Kain 2004), and the
cumulus parameterisation is turned off for the smaller two domains due to the grid
spacing, as WRF is able to explicitly resolve convection at resolutions of 4 km and
higher (Knievel et al. 2004; Rogers 2010; Gao et al. 2017)). More information on all
the chosen schemes can be found in Appendix A.

D01

D02

D03

Figure 3.3: Horizontal extent of domains used in WRF model.
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3.4.1 Microphysics schemes

One of the advantages of the WRF model is the ability to use a number of different
parameterisation schemes. Three different microphysics schemes are used in Chapter 6
for each day simulated by the model - the Thompson scheme (Thompson et al. 2008),
the Morrison scheme (Morrison et al. 2009), and the Milbrant scheme (Milbrandt and
Yau 2005a,b). All of these schemes are double-moment schemes, which means as well
as predicting mixing ratios for a number of hydrometeors (as a single-moment scheme
does), they also predict number concentrations, which should increase model accuracy
(Loftus et al. 2014). Table 3.1 shows which hydrometeors are predicted for each moment
and in each microphysics scheme used.

Microphysics
Scheme Mass Mixing Ratios Number Concentrations

Thompson Cloud, Rain, Ice, Snow,
Graupel Ice, Rain

Morrison Cloud, Rain, Ice, Snow,
Graupel Rain, Ice, Snow, Graupel

Milbrant Cloud, Rain, Ice, Snow,
Graupel, Hail

Cloud, Rain, Ice, Snow,
Graupel, Hail

Table 3.1: Quantities predicted by the microphysics schemes used in Chapter 6.

Studies show that, even for idealised events, different microphysics schemes can re-
sult in quite varied results (for example Bao et al. (2019); Huang et al. (2020); Baki
et al. (2021)), and one study that compared eight two-moment microphysics schemes
concluded that none of them were consistently the best for all cloud properties, and
often the ensemble mean had more realistic characteristics than each individual scheme
(Wang et al. 2022). Therefore, three microphysical schemes are used in Chapter 6,
rather than just selecting one.

3.5 Cloud-resolving model Radar Simulator (CR-SIM)

NWP models predict mixing ratios and number concentrations for different hydrom-
eteor species; however, radars observe reflectivity and phase shifts which result from
the interaction between radar radiation and hydrometeors (and other targets); NWP
models do not simulate this interaction. To compare model data with radar observa-
tions, a forward operator is needed to emulate radar observables from high-resolution
models. CR-SIM is a forward operator developed by Oue et al. (2020) that can take
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NWP output from a number of different microphysics schemes, including the three
mentioned in Section 3.4.1, and simulate radar and lidar observables at different radar
wavelengths. This provides a way to compare directly between observations from the
radar and predictions from the model. The simulated radar observables can be used
to assimilate radar data into a new model run (Wang et al. 2013) or to help improve
microphysical parameterisations (Ilotoviz et al. 2018).

CR-SIM works by using look-up tables which store the scattering amplitudes (that
is sij as in Equation 2.7) of hydrometeors as calculated using the T-matrix method
(Mishchenko 2000). The scattering amplitudes for each hydrometeor type at each
grid space is found based on air temperature (for cloud and rain), bulk density (ice
hydrometeors), radar frequency (3 GHz, 5.5 GHz, 9.5 GHz, 35 GHz, or 94 GHz),
elevation angle (0◦ to 90◦ in 1◦ intervals), particle size, and aspect ratio. CR-SIM
assumes a mean canting angle of 0◦ for all hydrometeors. The aspect ratios used in
the work presented in Chapter 6 are the same as those used by Oue et al. (2020), that
is the aspect ratios proposed by Brandes et al. (2002) for rain drops, 0.2 for cloud ice,
0.6 for snow, those by Ryzhkov et al. (2011) for graupel and hail. The bulk density
used in CR-SIM is the same as is parameterised in the microphysics scheme. CR-SIM
then creates Particle Size Distributions (PSDs) for each hydrometeor based on data
from the model microphysics. Radar observables are then computed by integrating the
scattering properties from the look-up tables over the PSDs for each hydrometeor type,
using the equations in Appendix A of Oue et al. (2020), and then they are integrated
over all hydrometeor types to produce a value for each radar observable at each grid
box.

3.6 Facility for Airborne Atmospheric Measurements (FAAM)

The FAAM aircraft is a BAe-146-301 aircraft based in the United Kingdom, converted
for the purpose of airborne atmospheric research. A number of flights took place
during the winter of 2018 as part of the PICASSO campaign, during which a number
of measurements of cloud microphysics were made. One of the instruments on board
during these flights are used in this study: the CIP-15 camera is used in Section 5.2 to
look for dominant ice habits or patterns that reflect the radar observations.
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3.6.1 Cloud Imaging Probe 15 micron (CIP-15)

The CIP-15 probe takes two-dimensional images of hydrometeors at 15 micron resolu-
tion, by recording shadows as hydrometeors pass through a laser beam. This allows
for identification of particle phase state, based on the assumption that ice particles
are non-spherical and therefore produce non-circular images, which holds true except
for frozen droplets (Korolev et al. 2017). There is also debate as to how many pixels
are needed to distinguish between spherical and non-spherical images, and what size
resolution is needed, and an issue with the image of particles depending on how close
they are to the plane on which they cause a shadow. As such, care is needed to make
sure only “in focus” images are used (Korolev et al. 2017). These images are looked at
in Chapter 5 to aid the understanding of the radar observations.
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Evaluation of different KDP

methods

As shown in Chapter 2, specific differential phase is not measured directly by the
radar, rather it is derived from total differential phase. There are a number of different
methods and algorithms created with the purpose of extracting KDP from ΨDP , with
different levels of complexity; the eight used in this study are outlined in Section 3.3.

The natural question to ask then, if wanting to estimate KDP , is which method is most
appropriate, or provides suitable estimations, and therefore should be used. However,
in the absence of truth, quantitatively defining the accuracy of an estimation is difficult,
if not impossible. This is the case in many meteorological observations, for example
temperature and rainfall, where whilst we can attempt to measure, the measurements
are never perfect and always carry a degree of error. The estimation of KDP is com-
plicated by noisy measurements of ΨDP , and the potential existence of non-negligible
backscatter differential phase (δ). In order to highlight the strengths and weaknesses in
several KDP estimation methods, two tests are conducted: firstly comparing a known,
simulated ‘truth’ profile (Section 4.2), and then comparing the methods to each other
using real data where no baseline truth can be established (Section 4.3).

4.1 KDP Benchmark Setting

In order to know how good is good enough, first there must be some consideration of
the expected KDP estimations, and the application of those estimates. Firstly, Table
4.1 shows the KDP values that give certain rain rate values based on equations 19 and
22 from Ryzhkov et al. (2014) for both S- and X-band radars respectively, and the range
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of KDP values that would result in a 5% error in rainfall. This shows that for accurate
estimations of light rainfall, very precise estimations of KDP are required, with less
precision needed for the same error in rainfall estimation at higher rain rates. However,
using the numbers for the standard deviation in KDP from the standard deviation in
ΦDP as discussed in Section 2.1.4. In order to achieve a standard deviation in KDP of
0.02◦ km−1 (for a rainfall estimation within 5% of 10 mmhr−1 at S-band), the standard
deviation of ΦDP needs to be 0.36◦, a lot smaller than the 3.1◦ mentioned in Section
2.1.4.

Rainfall
Rate

(mmhr−1)

KDP at
S-band

(◦ km−1)

KDP at
X-band

(◦ km−1)

Rainfall
Rate ± 5%
(mmhr−1)

KDP range
at S-band
(◦ km−1)

KDP range
at X-band
(◦ km−1)

1 0.01 0.03 0.95 - 1.05 0.01 - 0.01 0.03 - 0.03
5 0.07 0.22 4.75 - 5.25 0.07 - 0.08 0.21 - 0.23
10 0.16 0.52 9.5 - 10.5 0.15 - 0.17 0.49 - 0.55
50 1.17 3.87 47.5 - 52.5 1.10 - 1.24 3.63 - 4.12

Table 4.1: KDP for given rainfall rates at S-band and X-band, based on Equations 19 and
22 in Ryzhkov et al. (2014).

While accurate rainfall estimation, for example, may require a high accuracy of KDP

estimation, this is not required for every use of KDP . Many hydrometeor classification
algorithms use a fuzzy logic scheme (Liu and Chandrasekar 2000; Thompson et al.
2014), which typically use beta membership functions which allow for a broader range
of KDP values to be weighted in the algorithm. In this case, one may consider half
of the width of the slope of the membership function to be a reasonable allowable
error in the KDP estimation (that is an error which does not dramatically alter the
contribution of KDP to the output of the algorithm). This therefore varies depending
on the algorithm, and could be over 0.5◦ km−1 (for example, dendrites at X-band in
Thompson et al. (2014).

4.2 Comparison using a simulated KDP profile

The algorithmic performance of the KDP estimation methods is tested through a sim-
ulated profile, which gives an artificial ‘true’ profile by which the methods can be
compared. This profile starts very simply, with uncertainty and additional phase mea-
surements added to determine their impact on each estimation method. This simulated
profile has 768 gates along the ray spaced 0.15 km apart (the same as the NCAS X-
band radar). The ‘true’ KDP is integrated to create a ‘true’ ΦDP , and various noise
is added, and ‘missing measurements’ created, resulting in a ‘measured’ ΨDP profile,
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which is provided to the estimation methods from which to retrieve KDP .

4.2.1 Constant KDP

The simplest profile one can start with is that of constant KDP . As some of the
methods used assume KDP at the start of the ray is equal to 0◦ km−1, the profile is
prefixed with a small number of ‘gates’ with KDP = 0◦ km−1, with an immediate step
change to the chosen constant value, which is 0.5◦ km−1. A similar step change at
the end of the profile down to 0◦ km−1 is implemented at the end of the ray, with the
step change expected to produce problems as KDP often changes much more smoothly.
These 0◦ km−1 values preceding and succeeding the KDP profile are implemented in all
of the simulated profiles.

As mentioned in Section 3.3, the Ryzhkov and Bringi methods use different window
sizes depending on the measured reflectivity. As there is no reflectivity profile here, a
number of constant reflectivity profiles are used to match the different thresholds in
each method.
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Figure 4.1: Estimating a constant KDP profile.

Figure 4.1 shows the ‘true’ KDP profile and the estimated profile retrieved by each
method. The estimation methods are mostly able to reproduce the ‘true’ KDP profile;
however, the Bringi method, at all reflectivity thresholds, underestimatesKDP by about
0.01◦ km−1, which is likely a result of smoothing of the ΨDP profile by the finite im-
pulse response filter, accounting for the sections of 0◦ km−1 KDP at each end of the
profile. The sharp transitions between 0◦ km−1 and 0.5◦ km−1 are not replicated in any
of the methods, as they all employ some sort of smoothing or averaging window, which
smooths out large and sudden changes in the ΨDP profile, and therefore the sudden
change in KDP is smoothed out as well. Additionally, noise is seen at the start and
end of the profile estimated by the Schneebeli method. This is due to the addition of
slightly noisy ΨDP data to each end of the measured profile needed for the Kalman
filter to work (see Section 3.3.2).
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4.2.2 Sinusoidal KDP

While reassuring to see accuracy in each of the estimation methods against a constant
KDP profile, such a profile is not very realistic. Therefore, first complication added
to the simulated profile is to add changing KDP values along the ray. A simple sine
wave is used to model the changing values of KDP , with negative values set to 0◦ km−1.
While not entirely realistic, the sinusoidal pattern does give smooth changes in KDP ,
with spatially smooth profiles often seen as ideal, particularly when estimating rainfall
from KDP . This profile has five peaks in KDP with values of 1◦ km−1.
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Figure 4.2: Same as Fig.4.1, using a sinusoidal KDP profile with negative values set
to 0.

Figure 4.2 starts to show some differences between the retrieved profiles. The wradlib
and UKMO methods still accurately estimateKDP ; however, the Maesaka method over-
estimates the peak by about 0.07◦ km−1, and the Schneebeli method and the Vulpiani
method underestimate by about 0.07◦ km−1 and 0.09◦ km−1 respectively. The Vulpiani
method also peaks early, compared to the ‘truth’. The other profiles appear to have
timing that matches the peaks in the ‘true’ profile. Between the peaks, all the retrieved
KDP profiles return to 0◦ km−1 a little after the ‘true’ profile, partly due to the sharp
change seen in the ‘truth’ whereas the estimated profiles prefer a smooth transition.
Similarly, non-zero KDP values are estimated earlier preceding each peak than are seen
in the ‘true’ profile. The exception to this is the Maesaka method, in which the KDP

profile does return to 0◦ km−1 after the final peak; however, between peaks the profile
only returns to about 0.01◦ km−1.

The two methods that are dependent on reflectivity (Ryzhkov and Bringi) show differing
results as reflectivity changes. The Ryzhkov method, which has two reflectivity regions
separated at 40 dBZ, matches the truth well for high reflectivity measurements, but it
underestimates the peaks by almost 0.1◦ km−1. The Bringi method, which has three
reflectivity regions with splits at 35 dBZ and 45 dBZ, underestimates for all three, with
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the degree of underestimation increasing as reflectivity decreases. For both methods, as
reflectivity decreases, the averaging window in the KDP estimation method increases
in size, so at the peaks the highest values of KDP are diluted by smaller values which
are more prevalent in the larger averaging windows, resulting in underestimation. The
opposite is true at the transition from KDP = 0◦ km−1 to positive KDP : the larger
averaging window size picks up the positive ‘true’ KDP further from the ‘truth’ than
the smaller averaging windows, so the KDP estimations at lower reflectivity remain
above 0◦ km−1 far longer than those estimations at higher reflectivity.
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Figure 4.3: ‘True’ and estimated ΦDP profiles for the ‘true’ sinusoidal KDP profile.

Despite these observed shortcomings in the KDP profiles, it is worth noting how they
affect the ΦDP profiles, shown in figure 4.3. For the Vulpiani method, the timing
and magnitude differences observed in KDP appear to average each other out, so that
the retrieved ΦDP profile generally agrees with the ‘truth’, albeit with slightly more
gradual inflection points and slightly early on the timing. The Schneebeli method shows
a similar pattern in its retrieved ΦDP , with a slightly early pattern and yet slightly more
gradual inflection points; however, the deviation from the ‘truth’ does increase along
the profile, suggesting that the differences in the KDP profile due to timing are slightly
larger than the differences due to peak magnitude. Somewhat surprisingly, despite
overestimating the peaks of KDP and the profile not returning to 0 between those
peaks, the ΦDP profile retrieved using the Maesaka method is a very close match to
the ‘truth’. The Maesaka KDP profile exhibits much steeper changes than the ‘true’
profile, and therefore is underestimating the truth a lot of the time, despite the stand-
out differences being in the overestimation. These differences compensate well to give
an accurate ΦDP profile. Unsurprisingly, as the wradlib KDP retrieval was very close
to the ‘truth’, so is its retrieved ΦDP profile.
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4.2.3 Missing ΨDP measurements

Sometimes there may be no value of ΨDP at a gate, or number of gates, along the
ray. This could be due to there being no scatterers in that region, the measurement
of the returned phase shift being rejected by the radar as bad or invalid data, or an
error in processing. This leaves a ΨDP profile with gaps in, from which KDP is to be
retrieved. To replicate this, a random selection of 20 gates along the ray in section
4.2.2 are removed. Two estimated ΦDP and KDP profiles are now obtained from each
estimation method, one using the ‘raw’ ΦDP profile with the missing data, and the
other with ΦDP linearly interpolated between the missing data points. As the missing
data gates are randomly selected, by running this multiple times an ensemble approach
to the statistics can be utilised.
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Figure 4.4: Same as Fig.4.2, with 20 missing ΨDP observations in the ‘raw’ profile.

While the exact location of the missing observations does have an effect on the retrieved
profiles, the general observations hold true regardless of location. Therefore, while only
one ensemble is shown, this discussion holds for all ensembles.

The Vulpiani method is most affected of the Py-ART estimation methods by missing
observations where KDP is non-zero. It can be clearly seen in Figure 4.4 that the
magnitude of the KDP peaks estimated by the Vulpiani method are lower than in
Figure 4.2 if there is missing data around those peaks, whereas the peaks without
missing data are similarly estimated. This effect is also seen in the estimated ΦDP

profile (figure 4.5), which has significantly lower ΦDP values than the ‘truth’ and than
those produced by the other methods. This occurs because during the processing, KDP

is set to 0 ◦ km−1 where data is missing. If that happens to be in at a location where
surrounding KDP is positive, as most clearly seen during the fourth peak, that positive
KDP information is lost in the ΦDP estimation, resulting in lower KDP (figure 4.4) and
ΦDP (figure 4.5).

46



Studying the uncertainty in Specific Differential Phase (KDP ) from weather radar measurements

0 20 40 60 80 100 120
Range (km)

0

10

20

30

40

50

60

70
Ph

iD
P 

(d
eg

re
es

)
True PhiDP
wradlib PhiDP
Maesaka PhiDP
Schneebeli PhiDP
Vulpiani PhiDP
Ryzhkov PhiDP (low dBZ)
Ryzhkov PhiDP (high dBZ)
UKMO PhiDP
Bringi PhiDP (low dBZ)
Bringi PhiDP (mid dBZ)
Bringi PhiDP (high dBZ)

Figure 4.5: Same as Fig.4.4, but showing ‘true’ and estimated ΦDP profiles.

Missing data also has an observable affect on KDP from the Schneebeli method: around
the missing data points the profiles lose their smoothness and appear noisy. This noise,
when located near one of the KDP peaks, can result in KDP peaks that match the
‘truth’ a lot more closely than before (for example, the first and third peaks in Figure
4.4). However, this has minimal impact on the ΦDP profile (figure 4.5), which still
closely reproduces the ‘true’ ΦDP but does drift slightly higher through the profile.

In this implementation of the Bringi estimation method, if there is a missing measure-
ment anywhere within the averaging window, that value of KDP is not estimated and
is set to be missing. This results in some very large gaps in the KDP profile, especially
in low reflectivity. The implementation of the Ryzhkov method does not have the same
issue and generally performs the same as previously, besides a few small changes seen
when there are missing data in the ‘truth’ near the peaks.

This implementation of missing ΨDP values highlight an underlying assumption in the
UKMO method which may not always hold true. The UKMO method removes invalid
ΨDP measurements, firstly to create a non-meteorological mask, secondly to create a
rain mask, based on meeting a threshold of the measured, or lack of, ρhv value. In this
work, while there are gaps in the ΨDP profile, there are no gaps in the ρhv profile used,
and as such there are no invalid ΨDP measurements. This means that when the median
filter is applied on the ΨDP profile, the missing values affect the output, resulting in a
noisy output around the location of the missing ΨDP measurements. As this process
is done twice, the effect is amplified, resulting in a noisy KDP estimation around those
locations. Adjusting the code to remove locations of missing ΨDP independently of the
ρhv measurement removes the noise in the estimation. However, as this is a study of
the accuracy of these methods as they are used, this adjustment is not applied through
the rest of this study.

Interpolating ΨDP between the missing points has a noticeable impact on the estimated
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Figure 4.6: Same as Fig.4.4, but with the 20 missing ΨDP observations have been
interpolated.

KDP profiles, as seen in Figure 4.6. It can be seen that the changes mentioned above
in the profiles estimated by the Vulpiani and Schneebeli methods are no longer present,
and the large gaps in the Bringi estimation methods are filled, such that these profiles
now appear the same as in Figure 4.2. Therefore, interpolation of the ΨDP profile over
missing data points should be considered as part of a pre-processing routine before
estimation of KDP .
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Figure 4.7: Same as Fig.4.6, but showing the ‘true’ and estimated ΦDP profiles.

4.2.4 Factors that affect ΨDP measurements: individually

There are three key factors that can be added to this simulated KDP profile to obtain
more realistic Total Differential Phase measurements, which are then used to retrieve
the original KDP . These factors are the existence of negative KDP , noise and incon-
sistency in the measurements, and the potential presence of backscatter differential
phase.

Negative KDP
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In most circumstances, KDP is positive, that is the specific phase shift of the horizontal
component of the radar beam is greater than that of the vertical component. This is
a result of the fall geometry of hydrometeors under the influence of gravity and atmo-
spheric drag, in which the elongated axis of the hydrometeor is horizontally orientated.
However, in some cases, hydrometeors may fall with their elongated axis perpendicular
to the ground, resulting in observations of negative KDP . The most common case of
this is in the presence of electric fields in clouds, where ice crystals can become vertically
orientated.
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Figure 4.8: Same as Fig.4.4, with the KDP values are truncated at -0.2◦ km−1 rather
than 0◦ km−1.

To view how the different estimation methods cope with negative KDP , the simulated
truth is adjusted so that values below -0.2◦ km−1 are set to -0.2◦ km−1, as opposed
to values below 0◦ km−1 being set to 0◦ km−1 as before. This new ‘true’ KDP , and
the retrieved KDP profile from each of estimation methods, is shown in Figure 4.8.
Given the previous results in this chapter, particularly Figure 4.4, and knowledge of
the choice to exclude negative KDP in the Maesaka and UKMO estimation methods,
these estimated profiles are not surprising. The only significant difference in allowing
negative KDP is observed in these two estimated profiles, as these methods assumes
that all KDP is non-negative. The two methods diverge slightly in their estimation of
the KDP peaks: while the UKMO method still accurately estimates the peak value in
KDP (ignoring the issue with missing data), the Maesaka method estimates slightly
higher peak values, with a greater rate of change of KDP than the ‘truth’. This is
because the UKMO method allows KDP to be negative during calculation, truncating
negative KDP values to 0 ◦ km−1, whereas the Maesaka method does not have negative
KDP at any point in its calculation. As a result, to reduce the cost function used in the
Maesaka method in areas where KDP is negative, the constant portion of the estimated
ΦDP profile stretches slightly each side into areas of positive KDP , as can be seen in
figure 4.9. This means narrower and higher KDP peaks are calculated to produce a
ΦDP profile that best solves the cost function.
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Figure 4.9: Same as Fig.4.8, but showing the ‘true’ and estimated ΦDP profiles.

Noise

To this point, only clean profiles of ΨDP have been considered. Measurements of Total
Differential Phase are always noisy, and part of the work of the estimation methods is
to remove noise from the profile, while retaining the ΦDP signal from which to estimate
KDP . A noise profile is therefore created, using Equation 6.80 from Ryzhkov and Zrnić
(2019):

SD(ΦDP ) = 30.3
(
ρ−2

hv − 1
σvnM

)0.5

, (4.1)

where σvn = 4σvTs/λ is the normalized spectrum width (σv), λ is the wavelength in
metres, Ts is the pulse repetition period in seconds, and M is the number of pulses.
Here, σv is set to 1 ms−1, and the other parameters are taken from the NCAS Mobile
X-Band Radar during its deployment at Chilbolton Observatory, so that λ = 0.032m,
Ts = 0.001s, and M = 60. These values result in SD(ΦDP ) equal to 1.58◦ when ρhv

is 0.99, increasing to 8.30◦ when ρhv is 0.8. Following Equation 2.16, this results in
SD(KDP ) equal to 0.15◦ km−1 and 0.77◦ km−1 respectively in the case of the Ryzhkov
method for low reflectivity (Mr in Equation 2.16 is equal to 25). This SD(KDP ) is
slightly smaller than the example discussed in Section 2.1.4 for the NEXRAD radars,
due to a higher normalised spectrum width and greater number of pulses used by NX-
Pol-1.

To use this equation to create noise, a profile of co-polar correlation coefficient (ρhv) is
needed. ρhv is generally close to 1; however, it decreases in some places, particularly in
the melting layer. The central KDP peak was therefore selected to be in the melting
layer, and Figure 4.10 shows the idealised ρhv that was then created. The minimum
value of ρhv of 0.8 was chosen based on the hydrometeor classification algorithm in
Thompson et al. (2014) and the range of expected values for ρhv in the melting layer
in Fabry (2015). Noise was then added to this ρhv profile, using the standard deviation
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Figure 4.10: ρhv profile created for adding noise to the simulated true profile.

as also given by Ryzhkov and Zrnić (2019):

SD(ρhv) = 0.53 1 − ρ2
hv

(σvnM)0.5 . (4.2)

For each location along the profile, noise for ρhv is generated by picking a random
number from a Gaussian distribution, with a mean of 0 and the standard deviation as
calculated for that location. This noise is then added to the idealised ρhv profile at
that location, creating a new noisy ρhv profile, which in turn is then used to calculated
the standard deviation of ΦDP , and the same process is used to create the noise in the
ΨDP profile. The noise in ΨDP , and how this adds to the defined ΦDP profile to create
the final ΨDP profile, are shown in Figure 4.11.

Figure 4.11: Noise (orange) added to ΦDP (blue) to create a profile of ΨDP (green).

The effect of adding noise to the ΨDP profile is shown in Figure 4.12. This shows
that the different estimation methods cope quite differently to each other due to the
introduction of noise to the ΨDP profile. The wradlib-derived KDP estimation, which
until this point matched the ‘true’ profile better than any of the other methods, now
exhibits noise throughout its estimated profile, which is largely exaggerated through
the ‘melting layer’. The peak KDP value estimated here is over 4◦ km−1, and in some
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ensemble members it reaches 5◦ km−1, whilst the maximum value in the ‘true’ profile
is 1◦ km−1, and throughout most of this peak KDP values are largely overestimated
compared to the ‘truth’. This results in significant deviation from the ‘truth’ in the es-
timated ΦDP profile, with the estimated ΦDP increasing by approximately 30◦ through
the ‘melting layer’, when the ‘true’ ΦDP only increases by about 15◦ (Figure 4.13).
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Figure 4.12: Estimated and simulated KDP profiles when noise is included in the ΨDP

profile.

The UKMO method shows similar noise throughout its profile outside the ‘melting
layer’, greater than that shown by the wradlib method, although the limitation on
negative values means that some of this noise is obscured by being set to zero. Within
the ‘melting layer’, the estimated values are not as extreme as those from the wradlib
method, but they are still not representative of the ‘true’ KDP profile.
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Figure 4.13: Same as figure 4.12, but showing the ‘true’ and estimated ΦDP profiles.

All of the other estimation methods are also affected by the introduction of noise,
although not so severely. The pattern in the Maesaka-estimated KDP is broadly the
same in the 4 ‘normal’ KDP peaks, with greater rate of change of KDP and slight
overestimation at the peaks; however, through the ‘melting layer’ the KDP estimation
becomes noisy, with values ranging from about 0.2◦ km−1 to around 1.6◦ km−1.

The Vulpiani method is affected less by the introduction of noise than most of the
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other methods. The KDP estimation it derives still exhibits a smooth pattern, with
a small change in the ‘melting layer’; however, the previously observed pattern of
underestimation and early timing are still the significant factors.

The Ryzhkov and Bringi methods produce differing results based on the value of reflec-
tivity. In both methods, the profiles that assume lower reflectivity, and therefore utilise
larger averaging windows, filter out noise well, and as such the effects of noise are small
in the estimated profile. Noisy measurements have more of an effect on these meth-
ods as reflectivity increases, especially for the Ryzhkov estimation method, which away
from the ‘melting layer’ follows the wradlib method quite closely. Within the ‘melting
layer’, it does not show the same extreme estimation, but the Ryzhkov method still
exhibits more noise and larger values than most of the other methods. However, for
the high reflectivity versions of the Bringi estimation, while there is a little more noise
in the estimated profile, it is still quite close to the low reflectivity version - in high
reflectivity areas, the Bringi estimation method removes noise better than the Ryzhkov
estimation method.

Backscatter Differential Phase

The final factor that affects ΨDP , and hence the retrieval of KDP , is the potential
presence of Backscatter Differential Phase (δ). δ is the difference between the phase
of the horizontal and vertical components of the radar beam that occurs as a result
of scattering, rather than the phase change that occurs as the beam travels through a
different medium. The value of backscatter is dependent on radar wavelength, temper-
ature, and hydrometeor size. At X band, the magnitude of δ is small for drop diameters
of less than 2.5mm, but increases significantly after. Contributions to ΨDP caused by
δ need to be removed before KDP can be estimated.

Using work by Trömel et al. (2013), based largely on their Figures 3 & 8, a profile of
δ is created for X band, and is shown in Figure 4.14. δ in rain is largely a function of
temperature and raindrop size. Below the ‘melting layer’, δ is set to 0.8◦, resembling
raindrops with diameter around 3mm, and above the ‘melting layer’ δ is equal to 0◦, as
δ is negligibly small for most ice hydrometeors, including snow, crystals, and graupel.
Within the melting layer, δ is difficult to reliably estimate; however, Trömel et al.
(2013) used a microphysical and scattering model to estimate δ up to about 4◦. The
limitation of their model is that it does not include aggregation, which they comment
would significantly increase δ. The simulated profile used here has a peak value of δ of
5◦, although larger values could be observed, especially for X band.
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Figure 4.14: Created backscatter differential phase profile to be added to ΦDP profile
to make ΨDP .

Figure 4.15 shows KDP profiles from the different estimation methods as a result of
including δ in the ΨDP profile. None of the methods are successful in completely
removing the effects of δ in the melting layer, which is evident in the estimated ΦDP

profiles by the ‘bump’ seen between 50 and 60 km (figure 4.16), and in the oscillating
nature of the KDP profiles, with overestimation of KDP before the ‘true’ peak as δ
increased, followed by negative values of KDP after the ‘true’ peak as δ decreased.
The Maesaka- and UKMO-estimated profiles are the exception to this, as they do not
allow for negative KDP ; however, they still do not remove δ in the ‘melting layer’
and significantly overestimate KDP . This is not surprising, given that the Maesaka
estimation method is designed for rain, where the effects of δ are small, and in this case
with constant δ before the ‘melting layer’, its effects on KDP estimation are negligible,
not just for the Maesaka method but for all.
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Figure 4.15: Estimated and ‘true’ KDP profiles when δ is included in the ΨDP profile.

In both the methods that are dependent on reflectivity, the lower reflectivity versions
have smaller estimations of KDP around the ‘δ-bump’, for the same reason as why
they have smaller peaks mentioned in Section 4.2.2: the larger averaging window used
reduces the impact of more extreme values, smoothing out the resultant profiles.
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Figure 4.16: Same as figure 4.15 but showing ΦDP .

4.2.5 Factors that affect ΨDP measurements: pairs

After analysing the effect on the estimated KDP profiles individually, these three factors
(negative KDP , noise, and δ) can be paired together to see if they affect each other,
or if there is a more dominant factor. Figures 4.17, 4.18, and 4.19 show the estimated
profiles when there is noise in the ΨDP when allowing negative values of KDP , when
there is noise and δ in the ΨDP profile, and when δ is present in ΨDP and negative
KDP is allowed, respectively.
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Figure 4.17: Estimated and ‘true’ KDP profiles with negative KDP values and noise
included in the ΨDP profile.

These figures show that these factors, and the changes they make to the estimated KDP

profiles, combine together without creating anything unexpected or new. In Figure 4.17,
where noise and negative KDP are present, the results are effectively the noisiness in
Figure 4.12 overlaying the profiles seen in Figure 4.8 where negative KDP is the only
additional factor.

In Figure 4.18, where noise and δ are included, the resultant profiles are very similar to
Figure 4.12; however, the values of KDP are slightly higher at the start of the ‘melting
layer’ as a result of the presence of δ. This is especially observed in the Maesaka-
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Figure 4.18: Estimated and ‘true’ KDP profiles with δ and noise included in the ΨDP

profile.
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Figure 4.19: Estimated and ‘true’ KDP profiles with negative KDP values and δ in-
cluded in the ΨDP profile.

derived KDP profile, which is slightly noisy in the ‘melting layer’ in Figure 4.12, and
has the largest early peak KDP value in the presence of δ (Figure 4.15), and so in
Figure 4.18 where these effects are combined, the largest value of KDP in the ‘melting
layer’ region increases from about 1.9◦ km−1 and 1.6◦ km−1 in the noise-only and δ-only
profiles to about 4.4◦ km−1 when these two factors are combined. The combination of
δ and noise also has an effect on the Vulpiani and Ryzhkov (low reflectivity) estimated
profiles around the ‘melting layer’. The effect of noise alone within the ‘melting layer’
is to produce two peaks, akin to a bimodal distribution, this being more pronounced
in the Ryzhkov (low reflectivity) profile. The introduction of δ means that the first of
these peaks is reinforced, and the second diminished, by the early peak caused by not
correctly accounting for δ, resulting in a shape around the ‘melting layer’ that looks
more like a Poisson distribution, with an early peak and a longer tail.

The profiles in Figure 4.19, combining the presence of δ and negative KDP , are also as
expected, almost exactly combining the profiles in Figure 4.15 with the allowance for
negative KDP shown in Figure 4.8.

56



Studying the uncertainty in Specific Differential Phase (KDP ) from weather radar measurements

4.2.6 Factors that affect ΨDP measurements: all three

Having looked at negative KDP , noise and δ individually and paired together, all three
are now combined to create a more realistic ΨDP profile, further testing the capabilities
of the estimation methods. The results of this are shown in Figure 4.20. As when pairing
factors together, combining all three does not introduce any new limitations or failures
in the estimated KDP profiles, rather just combining together what has already been
mentioned. The noise continues to have the most noticeable effect, especially within
the ‘melting layer’; however, the effects due to δ and due to negative KDP can also be
seen.
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Figure 4.20: Estimated KDP profiles from a ΨDP profile that includes noise, δ and
negative KDP .

4.2.7 Statistical evaluation

Having looked at how each method estimates KDP with different factors applied to the
ΨDP profile for one profile, the same is done 52 more times, each with different noise
and missing gates. Figures 4.21 & 4.23 shows the mean correlation coefficient across
all of these ensembles for each estimation method, using ‘raw’ and ‘interpolated’ ΨDP

respectively, compared to the ‘true’ KDP at each of the previously outlined stages, as
well as the minimum and maximum correlation coefficient across the ensembles.

The first row in Figure 4.21 shows the correlation coefficient between each KDP es-
timation method and the ‘truth’ for our original, clean KDP ‘true’ profile, with the
mean absolute error for the same comparison shown in the first row of Figure 4.22.
As there are no missing data points here, there is no interpolation process, and so the
interpolated results should (and do) match the original estimation (compare Figures
4.23 & 4.24 with Figures 4.21 & 4.22). This confirms what was previously suggested
in Section 4.2.2, that all of the methods estimate this clean KDP well, the wradlib

57



Chapter 4: Evaluation of different KDP methods

wradlib
maesaka

schneebeli
vulpiani

ryzhkov_low

ryzhkov_high
ukmo

bringi20
bringi40

bringi50

Clean profile
(Section 4.2.2)

M
issing m

easurem
ents

(Section 4.2.3)

Noisy m
easurem

ents
(Section 4.2.4)

Negative KDP values
(Section 4.2.4)

Backscatter Differential Phase
(Section 4.2.4)

Negative KDP and
noisy m

easurem
ents

(Section 4.2.5)

Noisy m
easurem

ents
and backscatter

(Section 4.2.5)

Negative KDP and
backscatter

(Section 4.2.5)

Negative KDP, noisy
m

easurem
ents, and backscatter

(Section 4.2.6)

1.000
1.00 - 1.00

0.990
0.99 - 0.99

0.990
0.99 - 0.99

0.950
0.95 - 0.95

0.990
0.99 - 0.99

1.000
1.00 - 1.00

1.000
1.00 - 1.00

0.990
0.99 - 0.99

1.000
1.00 - 1.00

1.000
1.00 - 1.00

1.000
1.00 - 1.00

0.989
0.98 - 0.99

0.990
0.99 - 0.99

0.952
0.95 - 0.96

0.990
0.99 - 0.99

1.000
1.00 - 1.00

0.966
0.94 - 0.99

0.992
0.95 - 1.00

0.999
0.99 - 1.00

1.000
1.00 - 1.00

0.644
0.56 - 0.76

0.824
0.67 - 0.95

0.892
0.79 - 0.95

0.909
0.85 - 0.95

0.944
0.88 - 0.98

0.586
0.38 - 0.75

0.685
0.52 - 0.80

0.946
0.80 - 0.99

0.916
0.72 - 0.99

0.871
0.63 - 0.99

1.000
1.00 - 1.00

0.892
0.88 - 0.91

0.990
0.99 - 1.00

0.950
0.93 - 0.96

1.000
0.99 - 1.00

1.000
1.00 - 1.00

0.951
0.92 - 0.97

0.992
0.96 - 1.00

0.999
0.99 - 1.00

1.000
1.00 - 1.00

0.940
0.94 - 0.94

0.928
0.92 - 0.93

0.945
0.94 - 0.95

0.868
0.83 - 0.90

0.950
0.95 - 0.95

0.940
0.94 - 0.94

0.925
0.88 - 0.95

0.960
0.87 - 1.00

0.959
0.89 - 1.00

0.957
0.90 - 1.00

0.687
0.60 - 0.80

0.735
0.59 - 0.85

0.919
0.81 - 0.96

0.924
0.87 - 0.96

0.959
0.91 - 0.99

0.648
0.43 - 0.80

0.696
0.52 - 0.82

0.958
0.86 - 1.00

0.934
0.78 - 0.99

0.898
0.70 - 0.99

0.648
0.56 - 0.77

0.791
0.52 - 0.92

0.868
0.79 - 0.94

0.859
0.77 - 0.91

0.940
0.85 - 0.98

0.603
0.40 - 0.76

0.680
0.52 - 0.83

0.944
0.81 - 0.99

0.918
0.76 - 0.99

0.879
0.65 - 0.99

0.950
0.95 - 0.95

0.834
0.81 - 0.86

0.960
0.95 - 0.97

0.890
0.86 - 0.91

0.960
0.96 - 0.96

0.960
0.95 - 0.96

0.908
0.87 - 0.94

0.968
0.90 - 1.00

0.969
0.91 - 1.00

0.966
0.92 - 1.00

0.689
0.60 - 0.80

0.694
0.47 - 0.82

0.896
0.81 - 0.95

0.882
0.81 - 0.93

0.955
0.88 - 0.98

0.658
0.45 - 0.81

0.688
0.52 - 0.84

0.955
0.85 - 1.00

0.935
0.81 - 0.99

0.903
0.71 - 0.99

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Correlation Coefficient

Figure
4.21:C

orrelation
C

oeffi
cientforeach

m
ethod

ateach
stage

com
pared

to
the

‘true’
K

D
P .

T
he

centralnum
berin

each
box

is
the

m
ean

correlation
coeffi

cient
from

allensem
ble

m
em

bers,beneath
is

the
m

inim
um

and
m

axim
um

coeffi
cients.

T
he

highest
values

in
each

row
are

in
bold

type.

58



Studying the uncertainty in Specific Differential Phase (KDP ) from weather radar measurements

wr
ad

lib
mae

sa
ka

sc
hn

ee
be

li
vu

lpi
an

i

ry
zh

ko
v_

low

ry
zh

ko
v_

hig
h

uk
mo

br
ing

i20
br

ing
i40

br
ing

i50

Cl
ea

n 
pr

of
ile

(S
ec

tio
n 

4.
2.

2)

M
iss

in
g 

m
ea

su
re

m
en

ts
(S

ec
tio

n 
4.

2.
3)

No
isy

 m
ea

su
re

m
en

ts
(S

ec
tio

n 
4.

2.
4)

Ne
ga

tiv
e 

KD
P 

va
lu

es
(S

ec
tio

n 
4.

2.
4)

Ba
ck

sc
at

te
r D

iff
er

en
tia

l P
ha

se
(S

ec
tio

n 
4.

2.
4)

Ne
ga

tiv
e 

KD
P 

an
d

no
isy

 m
ea

su
re

m
en

ts
(S

ec
tio

n 
4.

2.
5)

No
isy

 m
ea

su
re

m
en

ts
an

d 
ba

ck
sc

at
te

r
(S

ec
tio

n 
4.

2.
5)

Ne
ga

tiv
e 

KD
P 

an
d

ba
ck

sc
at

te
r

(S
ec

tio
n 

4.
2.

5)

Ne
ga

tiv
e 

KD
P,

 n
oi

sy
m

ea
su

re
m

en
ts

, a
nd

 b
ac

ks
ca

tte
r

(S
ec

tio
n 

4.
2.

6)

0.
01

0
0.

01
 - 

0.
01

0.
05

0
0.

05
 - 

0.
05

0.
04

0
0.

04
 - 

0.
04

0.
08

0
0.

08
 - 

0.
08

0.
04

0
0.

04
 - 

0.
04

0.
01

0
0.

01
 - 

0.
01

0.
01

0
0.

01
 - 

0.
01

0.
04

0
0.

04
 - 

0.
04

0.
03

0
0.

03
 - 

0.
03

0.
02

0
0.

02
 - 

0.
02

0.
01

0
0.

01
 - 

0.
01

0.
04

4
0.

03
 - 

0.
05

0.
04

0
0.

04
 - 

0.
05

0.
08

3
0.

08
 - 

0.
09

0.
04

0
0.

04
 - 

0.
04

0.
01

0
0.

01
 - 

0.
01

0.
03

5
0.

02
 - 

0.
05

0.
03

5
0.

02
 - 

0.
05

0.
02

6
0.

02
 - 

0.
03

0.
02

0
0.

01
 - 

0.
03

0.
26

6
0.

21
 - 

0.
35

0.
09

2
0.

07
 - 

0.
11

0.
09

5
0.

08
 - 

0.
12

0.
11

1
0.

09
 - 

0.
13

0.
07

5
0.

06
 - 

0.
10

0.
23

5
0.

18
 - 

0.
34

0.
17

4
0.

13
 - 

0.
23

0.
06

8
0.

03
 - 

0.
13

0.
07

9
0.

04
 - 

0.
17

0.
09

8
0.

05
 - 

0.
21

0.
01

0
0.

01
 - 

0.
01

0.
16

9
0.

16
 - 

0.
17

0.
04

9
0.

04
 - 

0.
05

0.
10

8
0.

10
 - 

0.
12

0.
04

8
0.

04
 - 

0.
05

0.
01

0
0.

01
 - 

0.
01

0.
10

7
0.

09
 - 

0.
13

0.
04

6
0.

03
 - 

0.
06

0.
03

3
0.

02
 - 

0.
04

0.
02

6
0.

02
 - 

0.
03

0.
05

0
0.

05
 - 

0.
05

0.
07

3
0.

07
 - 

0.
08

0.
07

1
0.

06
 - 

0.
08

0.
11

8
0.

10
 - 

0.
13

0.
07

0
0.

07
 - 

0.
07

0.
05

0
0.

05
 - 

0.
05

0.
06

0
0.

04
 - 

0.
07

0.
05

7
0.

02
 - 

0.
14

0.
05

1
0.

02
 - 

0.
12

0.
04

9
0.

02
 - 

0.
10

0.
26

6
0.

21
 - 

0.
35

0.
20

6
0.

18
 - 

0.
23

0.
09

5
0.

08
 - 

0.
12

0.
12

8
0.

10
 - 

0.
15

0.
07

8
0.

06
 - 

0.
10

0.
23

5
0.

18
 - 

0.
34

0.
23

3
0.

19
 - 

0.
28

0.
07

4
0.

03
 - 

0.
13

0.
08

4
0.

04
 - 

0.
18

0.
10

0
0.

05
 - 

0.
21

0.
26

6
0.

21
 - 

0.
35

0.
09

5
0.

07
 - 

0.
12

0.
10

6
0.

09
 - 

0.
14

0.
12

7
0.

11
 - 

0.
15

0.
07

8
0.

06
 - 

0.
12

0.
23

8
0.

18
 - 

0.
35

0.
17

7
0.

13
 - 

0.
22

0.
07

2
0.

03
 - 

0.
13

0.
08

3
0.

04
 - 

0.
20

0.
10

1
0.

05
 - 

0.
24

0.
05

0
0.

05
 - 

0.
05

0.
19

0
0.

18
 - 

0.
20

0.
07

5
0.

07
 - 

0.
08

0.
13

7
0.

12
 - 

0.
15

0.
07

0
0.

07
 - 

0.
07

0.
05

0
0.

05
 - 

0.
05

0.
13

3
0.

12
 - 

0.
15

0.
06

6
0.

03
 - 

0.
15

0.
05

8
0.

03
 - 

0.
12

0.
05

4
0.

03
 - 

0.
10

0.
26

7
0.

21
 - 

0.
35

0.
21

4
0.

19
 - 

0.
24

0.
10

6
0.

09
 - 

0.
14

0.
14

4
0.

13
 - 

0.
17

0.
08

1
0.

06
 - 

0.
13

0.
23

9
0.

18
 - 

0.
35

0.
23

6
0.

19
 - 

0.
28

0.
07

9
0.

03
 - 

0.
13

0.
08

8
0.

04
 - 

0.
21

0.
10

3
0.

05
 - 

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Mean Absolute Error

Fi
gu

re
4.

22
:S

am
e

as
Fi

g.
4.

21
,b

ut
sh

ow
in

g
M

ea
n

A
bs

ol
ut

e
Er

ro
r.

T
he

lo
we

st
va

lu
es

in
ea

ch
ro

w
ar

e
in

bo
ld

ty
pe

.

59



Chapter 4: Evaluation of different KDP methods

method estimating most accurately, and the Vulpiani method with its mistimed peaks
least accurately. When some of the data points are missing (Section 4.2.3, and the
second row in figures 4.21 & 4.22), the correlation coefficient and the mean absolute
error are very similar for each method to those calculated for the ‘clean’ profile. While
there are observable differences in the profiles estimated by the Vulpiani and Schneebeli
methods when there is missing data compared to what they estimated for the ‘clean’
profile, these differences have little affect on the statistics.

The third, fourth and fifth rows in Figures 4.21 & 4.22 show the results when one factor
was added to the ΨDP profile, being noise, negative KDP , and δ respectively, as in
Section 4.2.4. Out of the three, negative KDP has the least impact on most estimation
methods, with both correlation coefficient and mean absolute error being very similar
to the previous stage. The notable exception to this is the Maesaka method, which
as previously mentioned does not allow for negative KDP values, and so the observed
decrease in correlation coefficient and increase in mean absolute error is expected.

This is a bigger factor for the Maesaka method than the UKMO method, which also
does not estimate negative KDP , due to how each method removes negative KDP . The
Maesaka method assumes from the start of the algorithm that ΦDP can only increase,
and so to most accurately reproduce ΦDP it has narrower but larger changes when
KDP is not constant (for example, see the middle peak in Figure 4.8), whereas the
UKMO method allows for ΦDP to decrease, and estimates KDP from a ΦDP profile
that includes decreasing ΦDP ; however, it removes negative KDP as the last part of the
estimation by setting all negative values to 0◦ km−1. This means that the estimated
KDP more closely follows the ‘true’ KDP when KDP is greater than 0◦ km−1 than
the Maesaka method does, and so the correlation coefficient is not as affected for the
UKMO method.

The inclusion of δ in the ΨDP profile (row 5 in figures 4.21 & 4.22) has a small effect
on all methods. As seen in Figure 4.15, none of the methods completely remove the
‘δ-bump’ observed in the ‘melting layer’, and as a result the correlation coefficient
decreases and the mean absolute error increases for all methods. This has the biggest
effect on the profiles estimated using the Vulpiani method. As this estimated profile
already has early peaks in KDP compared to the ‘truth’, the addition of δ, which causes
all the estimation methods to peak early in the ‘melting layer’, shifts the KDP peak
in the Vulpiani profile even further ahead of the ‘true’ KDP peak, thus increasing the
error.

Adding noise to the ΨDP profile generally has the largest impact on the estimated
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Studying the uncertainty in Specific Differential Phase (KDP ) from weather radar measurements

profiles, some methods are more significantly affected than others. The wradlib method
and Ryzhkov (high reflectivity) are most affected, with the short averaging windows
used in the Ryzhkov (high reflectivity) and wradlib methods not able to smooth out the
noise. This leads to significant decreases in correlation coefficient (from 1 to ∼0.65 and
∼0.59 for wradlib and Ryzhkov respectively), and large increases in the mean absolute
error (from ∼0.01 to ∼0.27 and ∼0.24), much greater than any change seen as a result
of the other two factors. The other methods are also affected by the addition of noise,
although not as significantly - the Vulpiani estimated profile is slightly less affected by
noise than by δ (correlation coefficient of ∼0.91 compared to ∼0.87, and similar mean
absolute error). The Ryzhkov (low reflectivity) profile is the least affected, not just
by noise but also by each of the other individual factors, with correlation coefficient
dropping to ∼0.94 at the lowest and mean absolute error increasing to ∼0.08 at the
most (both due to the addition of noise). This performance with a noisy ΨDP profile
is in stark contrast to the same method in high reflectivity, potentially suggesting that
the smaller averaging window does not have any advantage. However, it is also likely
that in high reflectivity regions, KDP might be higher and potentially fluctuate more
than in this simple example, where the shorter averaging window would be of benefit.

The inclusion of noise is where the impact of interpolating between the missing ΨDP

data points can become noticeable, albeit in an initially unexpected manner (compare
Figures 4.23 & 4.24 with Figures 4.21 & 4.22). Particularly with the Schneebeli and
the Vulpiani methods, interpolating the missing data points led to a worse estimation
of KDP than not interpolating, with both correlation coefficient decreasing and mean
absolute error increasing. A hypothesis for this result is that only a simple linear
interpolation was used, using just one data point either side of the missing points, and
thus the noise was being included in the interpolation, resulting in a noisy value. If a
few data points either side of the missing data point were used, the noise may have been
smoothed out, resulting in a more accurate ΨDP value, and therefore a more accurate
KDP estimation at that location.

Pairing two of these factors, as discussed in Section 4.2.5, does not have much additional
effect beyond what was observed by each factor individually. Rows 6, 7, & 8 in Figures
4.21 & 4.22 show the correlation coefficient and mean absolute error for each estimation
method compared to the truth in the presence of noise and negative KDP (row 6), noise
and δ (row 7), and negative KDP and δ (row 8). As the addition of noise generally had
the greatest effect, the pair without noise (row 8) has the highest correlation coefficients.
The exception to this is the Vulpiani method, which as mentioned previously is more
affected by δ than noise. Using the raw, non-interpolated ΨDP profile, the Vulpiani
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Chapter 4: Evaluation of different KDP methods

estimation has a higher correlation coefficient in the no-δ pair (row 6); however, when
using the interpolated ΨDP data the issue mentioned in the previous paragraph means
that the no-noise pair (row 8) has the highest correlation coefficient.

The final row in Figures 4.21 & 4.22 show the results from Section 4.2.7, where negative
KDP , δ, and noise are all included in the ΨDP profile. The Ryzhkov method covers both
extremes, with the low reflectivity version producing the highest correlation coefficient
(∼0.96) and lowest mean absolute error (∼0.08), while the shorter averaging window
associated with high reflectivity results in the lowest correlation coefficient (∼0.66)
and second highest mean absolute error (∼0.24, compared to ∼0.27 for the wradlib
method). This suggests that while this method works well in low reflectivity areas, for
example in ice or low to moderate rain, when reflectivity is high and factors such as
noise and δ are more likely, for example heavy rain or in the melting layer, then this
method is less capable. The Vulpiani and Schneebeli methods both perform well, with
high correlation coefficient (∼0.88 and ∼0.90) and low mean absolute error (∼0.14 and
∼0.11), suggesting they perform well over the entire range of the ΨDP profile and, while
not perfect as seen previously, they both deal with noise and δ well. These methods
also show a small range across the ensembles, suggesting that the noise is dealt with
well and consistently. The Vulpiani method may perform better with some sort of
supervision to line up the peaks correctly; however, when using real data, one would
not know how much the KDP profile needs shifting, therefore a more extensive study
would need to be conducted.

4.2.8 Different ‘true’ profiles

So far, only one ‘true’ KDP profile has been considered, with values ranging from -
0.2◦ km−1 to 1◦ km−1, with periods of constant -0.2◦ km−1 (truncated at 0◦ km−1 when
not including negative values). In this section, three other ‘true’ profiles are simulated
using the same process as outlined so far throughout this chapter, one where the values
in the KDP profile are doubled, one where they are halved, and one where the values
are increased by 1◦ km−1, such that an entire sine wave is captured between 0◦ km−1

and 2◦ km−1. These ‘truths’ are shown in figure 4.25. The correlation coefficient and
mean absolute error for each method at the final ΨDP stage above, that is including
noise, backscatter and negative values, is shown in Figs.4.26 & 4.27 for all four ‘true’
profiles.

The statistics shown in Figures 4.26 & 4.27 show that the strength of correlation and size
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Figure 4.25: Four different ‘true’ KDP profiles used. ”Double”, ”Half”, and ”Plus
One” describe how those profiles relate to the ”Original” profile before truncation of
negative values.

of error do change slightly with different ‘true’ KDP profiles; however, the changes to
correlation and error can be easily understood. Increasing the size of the ‘truth’ profile
increases the correlation coefficient, but also increases the mean absolute error. This is
because the miscalculation at the turning points in the profile results in larger errors,
although doubling the ‘true’ profile does not double the error, and so the correlation
coefficient increases. This change is further exaggerated in the ‘Plus One’ profile,
which encapsulates an entire sine wave and does not have the constant KDP sections
between the KDP peaks. Here, the mean absolute error increases as there is incorrect
estimation with both peaks and troughs in the ‘true’ KDP profile, but good estimation
along the gradual slope in the profile between the two, rather than the sharp change
between constant and changing KDP seen in the previous ‘truths’, results in increased
correlation coefficients.

4.3 Comparison using real ΨDP measurements

After comparing these different methods to a known ‘truth’, it is important to look at
some observations. However, as previously mentioned, there is no ‘truth’, so instead
the estimation methods are compared to each other, to look for similarities between the
estimations, or for any extreme irregularities. Radar data was taken from the NCAS
Mobile X-Band Radar from 26 days between 15th January 2018 and 27th March 2018
on which precipitation was measured at Chilbolton Observatory, where the radar was
located during this time as part of the PICASSO campaign. Firstly, two individual
rays are studied as an example, and then statistics are derived from all 26 days.

Figures 4.28 & 4.29 show the estimated KDP profiles for two rays, one at a 1◦ elevation
primarily below the melting layer (Figure 4.28) and one at a 6◦ elevation which travels
through the melting layer early in the ray. Similar plots for ΦDP , and the standard
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Figure 4.26: Correlation Coefficient for each method at the final ΨDP stage compared
to four ‘true’ KDP profiles: ”Original” is the same ‘truth’ as throughout this chapter,
”Double” is double ”Original”, ”Half” is half ”Original”, and ”Plus One” is ”Original”
increased by 1◦ km−1, as shown in figure 4.25. The central number in each box is the
mean correlation coefficient from all ensemble members, beneath is the minimum and
maximum coefficients.

deviation of ΦDP from equation 2.15, are shown in figures 4.30 & 4.31. While only
these two rays are shown here, the patterns seen in them are representative of those
observed in other rays.

Visually, the greatest issue is with the wradlib profile. In Figure 4.28, there is a very
large spike in KDP at the start of the profile, and then nothing for the rest of ray. This
is in stark contrast to Figure 4.29, where the wradlib estimation produces the most
extreme values of KDP with large fluctuations along the ray when compared to the
other methods, which are mostly much smoother, matching the simulations throughout
section 4.2. This explains why the wradlib KDP estimation method has no correlation
with the other methods (figure 4.32), and is likely an issue in the wradlib code.

The next method which appears to have comparatively larger fluctuations is the UKMO
method. This is in agreement with the observations on the simulated truth, particularly
Figures 4.4 & 4.12, where firstly missing ΨDP values caused problems for the estimation,
and then the addition of noise to the profile was amplified through the KDP estimation.

The other estimation methods mostly follow a similar profile along both of the rays,
with the Schneebeli method producing a slightly noisier profile, again following the

66



Studying the uncertainty in Specific Differential Phase (KDP ) from weather radar measurements

wradlib
maesaka

schneebeli
vulpiani

ryzhkov_low

ryzhkov_high
ukmo

bringi20
bringi40

bringi50

Original

Double

Half

Plus One

0.267
0.21 - 0.35

0.214
0.19 - 0.24

0.106
0.09 - 0.14

0.144
0.13 - 0.17

0.081
0.06 - 0.13

0.239
0.18 - 0.35

0.236
0.19 - 0.28

0.079
0.03 - 0.13

0.088
0.04 - 0.21

0.103
0.05 - 0.25

0.261
0.19 - 0.34

0.250
0.22 - 0.29

0.144
0.12 - 0.17

0.232
0.19 - 0.27

0.112
0.09 - 0.15

0.242
0.19 - 0.35

0.295
0.22 - 0.35

0.106
0.05 - 0.15

0.106
0.06 - 0.22

0.115
0.06 - 0.26

0.274
0.22 - 0.36

0.172
0.16 - 0.19

0.089
0.07 - 0.12

0.102
0.08 - 0.13

0.066
0.05 - 0.11

0.238
0.18 - 0.34

0.197
0.16 - 0.24

0.065
0.03 - 0.13

0.080
0.03 - 0.19

0.098
0.04 - 0.23

0.372
0.30 - 0.45

0.254
0.22 - 0.31

0.250
0.22 - 0.28

0.340
0.30 - 0.38

0.204
0.18 - 0.22

0.357
0.29 - 0.46

0.379
0.31 - 0.45

0.178
0.13 - 0.24

0.196
0.15 - 0.31

0.213
0.16 - 0.35

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Mean Absolute Error

Figure 4.27: Same as Fig.4.26, but showing Mean Absolute Error.
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Figure 4.28: Estimated KDP profiles from a 1◦ elevation scan at 13:24:32 UTC on 17
May 2017.

trend seen in the simulated profiles when noise was added to the ‘truth’ (Figure 4.12).
The Maesaka estimation smooths out the small KDP values, especially early in the
profile, although as the other methods start predicting larger KDP values, for example
within the melting layer and into the ice region, then the Maesaka method estimates
similar values of KDP .

Having looked in detail at these two rays, KDP is estimated by each method for PPI
scans from 26 days between 15th January 2018 and 27th March 2018 during which rain
was observed at Chilbolton Observatory to give more of a bigger picture of how similar
the estimated profiles by each method are. The mean correlation coefficient between
each KDP estimation method for each PPI scan is shown in figure 4.32. The wradlib
method stands out as calculating completely different KDP profiles to each of the other
methods. Closer inspection of some individual profiles, for example Figure 4.28, show
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Figure 4.29: Same as Fig.4.28, but with an elevation of 6◦.
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Figure 4.30: Same as figure 4.28, but showing ΦDP and the standard deviation of ΦDP

as calculated by equation 2.15.

that occasionally there is an error in the computation of KDP by the wradlib code
which results in most of the KDP profile estimated as 0◦ km−1.

Amongst the other methods, the highest correlations are found between the Rainbow
KDP method, Ryzhkov KDP method, and Bringi KDP method. These methods also
share low deviations in correlation from volume to volume (Figure 4.33). The similarity
between Rainbow KDP and Bringi KDP is unsurprising, as they use similar methods in
their estimation; however, the inclusion of the Ryzhkov KDP estimation method, and
its especially high correlation with the Bringi KDP method, is more surprising, as the
Ryzhkov KDP method is the simplest of methods used in this study, just using a moving
averaging window, with a threshold on window size at 40 dBZ. In these PPI volumes,
there is very little data with reflectivity over 40 dBZ, therefore most of the Ryzhkov
KDP is estimated using the larger window size in the method, which has the effect
of more aggressively smoothing any sudden changes in ΨDP . While the comparisons
through Section 4.2 suggest that the Ryzhkov method appeared to give profiles better
matching the ‘true’ profiles in the lower reflectivity regions, particularly with noisy
ΨDP measurements, it may be that in real observations the smaller averaging window
at high reflectivity produces better KDP estimations in those regions; however, further
study would need to be done to confirm this, and whether the 40 dBZ threshold is still
suitable for UK weather conditions.

68



Studying the uncertainty in Specific Differential Phase (KDP ) from weather radar measurements

0 10 20 30 40 50 60
Range (km)

0

20

40

60

80

100
Ph

iD
P 

(d
eg

re
es

)
Rainbow PhiDP
Maesaka PhiDP
Schneebeli PhiDP
Vulpiani PhiDP
wradlib PhiDP
Ryzhkov PhiDP
UKMO PhiDP
Bringi PhiDP
SD(PhiDP)

Figure 4.31: Same as figure 4.29, but showing ΦDP and the standard deviation of ΦDP

as calculated by equation 2.15.

4.4 Summary

There are many methods to choose from to estimate KDP from the measured ΨDP

profile, with different levels of complexity. Eight of these methods are tested and
compared in this chapter, seven on an artificial ΨDP profile, and all eight using real
data. Two of these methods use different averaging window sizes depending on the
reflectivity value; they were both tested with a constant reflectivity profile either side
of each threshold for the artificial data.

Out of the three factors additional to KDP in the ΨDP profile, noise has the biggest
effect on the accuracy of the KDP estimation. While the estimated profiles still follow
the general profile of the ‘truth’, there is an oscillation in the estimations around the
‘truth’ in most of the profiles due to the noise, with the methods that use the largest
averaging windows, and therefore greatest smoothing, least affected, for example the
Ryzhkov and Bringi methods in low reflectivity, and the Vulpiani method. However,
the Ryzhkov method for high reflectivity, the UKMO method, and the wradlib method,
all show a lot of noise in the estimated profiles, especially in the defined melting layer
in the middle of the profile, and these methods have the biggest drop in correlation
coefficient when compared to the artificial ‘true’ profile, and the biggest increase in
mean absolute error. The Bringi method appears to deal best with noise, with high
correlation coefficients and low mean absolute error for all reflectivity thresholds (third
row in figures 4.21 & 4.22). While it might therefore be easy to assume that just us-
ing the largest averaging or smoothing window at all times is the best approach, this
will miss any fluctuations in KDP on a scale smaller than the averaging window used,
and work by Gorgucci et al. (1999b) has shown that changes in reflectivity within the
averaging window can lead to inaccurate KDP estimations.

All of the methods fail to remove the backscatter differential phase, resulting in over-
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Figure 4.32: The mean correlation coefficient between two KDP estimation methods,
averaged over many PPI scans, with minimum and maximum correlation values in-
cluded for each pairing.

estimation in KDP before the peak of the ‘δ-bump’ in the melting layer, and under-
estimation afterwards. This includes the methods that explicitly resolve, or attempt
to remove, δ. However, the finite impulse response filter used on the Bringi method
does the most to reduce the effect of δ, resulting in a peak in KDP that is closest in
location to the peak of the ‘true’ KDP , and the value of KDP in the low reflectivity
case is almost the same as that in the low reflectivity Ryzhkov, which are two of the
closest to the ‘truth’. In high reflectivity, as might be observed in the melting layer, the
Bringi method performs better than the Ryzhkov method in the presence of δ, resulting
in higher correlation coefficients and lower mean absolute error for the Bringi method
when compared to the artificial truth than for the Ryzhkov method (fifth row in figures
4.21 & 4.22).

In profiles of ΨDP that do not have noise, a simple linear interpolation between missing
data before estimating KDP improves the estimated profile, particularly in the UKMO
estimation method due to it not removing missing data before estimation, and those
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Figure 4.33: Same as Fig.4.32, but showing standard deviation of the correlation
coefficients between PPI scans.

that do not estimate KDP in the vicinity of missing data, for example the Bringi
method. However, this interpolation has the opposite effect in noisy data. Linearly
interpolating between noisy data points may lead to a more inaccurate ΨDP profile,
which results in a more inaccurate KDP estimation. This is most pronounced in the
Schneebeli and Vulpiani methods, with decreases in correlation coefficient and increases
in mean absolute error. This leaves two options for estimating KDP in real world data,
either use an estimation method that does not need a continuous ΨDP profile to estimate
from, or do the interpolation based on a smoothed ΦDP profile, rather than on the noisy
observations.

As a result of how the finite impulse response filter deals with the large increase in
backscatter differential phase through the melting layer, and with noise throughout
the profile, the Bringi method returns the best statistics overall. However, the Bringi
method does not deal well with individual missing data points along the ray, which can
result in large gaps in the estimated KDP profile. After linearly interpolating the ΨDP

profile before applying the estimation methods, the Ryzhkov method returns similar, if
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not very slightly better, statistics than the Bringi method in the low reflectivity region
for the Ryzhkov method (below 40 dBZ); however, the small averaging window used
by Ryzhkov for larger reflectivity results in much smaller correlation coefficients and
higher mean absolute errors than the mid and high reflectivity versions of the Bringi
method (figures 4.23 & 4.24).

When looking at real data, the spread between the different methods is quite large, with
the correlation coefficient between most methods being quite low (below 0.4). However,
three of the methods produce KDP profiles that are close to each other: the Rainbow
method (which could not be included in the artificial data study), the Bringi method,
and the Ryzhkov method. The Rainbow method and the Bringi method use a similar
methodology, and as such it is not surprising they produce similar results. The Ryzhkov
method is the simplest of the methods used, just smoothing the ΨDP profile using an
averaging window, and a slope from a least squares linear fit to estimate KDP . This
method is also surprising given the noisy estimations observed in the artificial data when
there is significant noise in the ΨDP profile in the high reflectivity regime. However,
the data used here has very few observations that fall in the high reflectivity regime (>
40 dBZ), suggesting either the threshold may need to be adjusted for different weather
regimes and different radars, or that the removal of convective weather from the study
also removed the majority of the data that would meet this threshold.

Though the Bringi method appears to provide the best results, based on the results of
the first section of this chapter, given the observed similarities between the Rainbow
and Bringi methods shown in the second section of this chapter, and the fact that
NXPol-1 natively calculates KDP with the Rainbow method, the Rainbow method will
be used throughout the rest of this thesis. These results suggest that no other method
would provide a meaningful improvement in KDP estimation compared to what is
currently available. However, with the diversity in estimations, one method can not
be unequivocally chosen as ‘better’ than the others. There may be one method, or a
combination of methods, which is better in certain cases, for certain weather patterns or
a particular radar. This also means that retrieval relations for microphysical quantities,
such as rain rate or liquid or ice water contents, derived using one KDP estimation
method or on one radar system or network, might not have the desired accuracy for
another estimation method or radar. Therefore, where the necessary observations are
present or can be obtained, these relations will be most accurate if tuned or derived for
each radar system and method individually.
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Variation in KDP with radar
elevation angle

One of the benefits of using specific differential phase over reflectivity measurements is
that KDP is not affected by attenuation. However, a number of the uses of KDP (for
example hydrometeor classification and quantitative precipitation estimation) also rely
on reflectivity measurements, and so the effects due to attenuation need to be consid-
ered. This is particularly true for X band radars, where the shorter wavelength used
compared to other weather radars means attenuation is more of an issue. One method
of doing this is to limit the maximum distance from the radar in which measurements
are used. For example, Bechini et al. (2013) used data within 50 km of the radar,
Matrosov et al. (2005) used PPI scans with a maximum range of 57.6 km, the radars in
the Collaborative Adaptive Sensing of the Atmosphere (CASA) network have a max-
imum range of 30 km (Brotzge et al. 2006), and Wolfensberger et al. (2016) limited
observations to just within 5 km.

When limiting usable data to short distances, higher elevation angles are needed to
study the melting layer or ice regions of clouds. A melting layer 2 km above the radar
requires an elevation angle of 11◦ at a distance of 10 km from the radar, or 22◦ at
5 km. To observe the dendritic growth layer at around -15 ◦C, roughly 3 km above
the melting layer, the required elevation angle needed is 27◦ or 45◦ at distance 10 km
or 5 km respectively. The impact of elevation angle on differential reflectivity is well
known (Ryzhkov et al. 2005a), with commonly used ZDR calibration technique based on
the assumption that the average ZDR being zero when the radar is pointing vertically
(Gorgucci et al. 1992; Bechini et al. 2008).

A relation between KDP and elevation angle has previously been theoretically derived
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(Schneebeli et al. 2013; Lu et al. 2015), although it has not been shown by observational
studies. Also, due to the small values in KDP and the uncertainty in its estimation,
these relations are unstable for the highest elevation angles. Equation 9 in Schneebeli
et al. (2013), which is

KDP (θ = 0) = 2KDP (θ ̸= 0)
1 + cos(2θ) , (5.1)

shows that while changes to KDP are small when going from low elevation angles
(θ < 20◦) to θ = 0, while this multiplicative factor can be more significant for higher
elevation angles (see Figure 5.1). This multiplier affects not only the ‘true’ KDP , but
also the errors and uncertainty in the estimated KDP value. Table 5.1 shows how an
error of 0.05 ◦ km−1 at different elevation angles would propagate through to 0◦ eleva-
tion angle. Therefore, if using KDP at high altitudes for hydrometeor classification or
short term precipitation forecasting (Bechini et al. 2013), a small error in estimation
can propagate through to incorrect classification or precipitation estimation.
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Figure 5.1: Multiplication factor when adjusting KDP to 0◦ elevation based on equa-
tion 9 in Schneebeli et al. (2013).

The two main aims of this chapter are (1) to use observations to confirm the relationship
between KDP and elevation angle, and (2) to study if other available data can be used
to constrain adjusted KDP from high elevation angles. This chapter uses observational
data from the NXPol-1 radar to study the relationship between KDP and elevation
angle, first through a few small case studies and then a larger study using 3 months
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θ (◦) Multiplier Adjusted Error
(◦ km−1)

20 1.13 0.057
50 2.42 0.12
70 8.55 0.43
80 33.16 1.66

Table 5.1: Change in 0.05 ◦ km−1 error of KDP adjusted to an elevation of 0◦ from
various elevation angles.

of observations. Evidence for a physical understanding of the observations is also
presented, along with an example from hydrometeor classification of the importance of
correctly estimating KDP .

5.1 Case Studies

Three 1 hour long case studies are selected for initial study. These three hours are 1100-
1200 17 May 2017 (Figure 5.2), 1700-1800 5 June 2017 (Figure 5.3), and 0100-0200 12
July 2017 (Figure 5.4). These three periods were chosen because they were times of
stratiform rainfall associated with frontal activity due to low pressure systems from the
Atlantic Ocean, with at least two hours of sustained rainfall observed at Chilbolton
Observatory in each case. By limiting data to times when stratiform rainfall was
observed, the clouds present are more likely to be well developed, with vertical structure
that would enable comparison at different temperatures. The limitation of stratiform
rainfall, rather than convective, also increases the likelihood of horizontal homogeneity,
meaning that it is more likely that what the radar observed directly overhead was
the same as at a distance further away, and therefore any change in observed values
is more likely due to the change in radar elevation angle, as opposed to a change in
hydrometeor type. This can be seen in figures 5.2, 5.3 & 5.4, where in all three cases
there is consistency in the vertical structure throughout the RHI.

Figure 5.5 shows KDP against elevation angles from all the RHI observations for each
of these case studies for data points with a temperature of -15 ◦C ± 0.5 ◦C, with each
data point coloured by the reflectivity measured at that location. In two of these case
studies (Figures 5.5a,c), for temperatures below 0 ◦C where ice is dominant, KDP has
a large value (over 0.5 ◦ km−1) when observed at low elevation angles (between 0 ◦ and
20 ◦), but KDP decreases to 0 ◦ km−1 as elevation angle increases, as predicted by
the equations in Schneebeli et al. (2013) and Lu et al. (2015). However, in the third
of these cases (Figure 5.5b, 5th June 2017), such an angular change in KDP is not
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Figure 5.2: From the top, reflectivity factor from horizontal polarization,
differential reflectivity, and specific differential phase measured by 248◦ RHI
scan at 11:36:54 UTC 17 May 2017, and at the bottom the standard deviation
of specific differential phase as calculated by Equation 2.16. On each RHI
are contours of temperature from the UK Met Office model regridded to the
radar co-ordinates.
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Figure 5.3: Same as Fig. 5.2, for 17:08:12 UTC 5th June 2017.

observed. The measured reflectivity in this case is lower than in the other two (∼10
dBZ compared to ∼20 dBZ), which along with the different KDP measured at low
elevation angles suggests that there is a difference in the hydrometeors being observed
between this case study and the other two.

Data from the same hours are also plotted for a temperature of +5 ◦C (Figure 5.6).
While there is little data available for the highest elevation angles, there is no sign of
a strong change in KDP with elevation angle in any of the case studies, with low KDP

observed at low elevation angles in all, regardless of reflectivity. This may suggest that
knowing temperature, as well as reflectivity, may help improve the adjustment to KDP

needed between high and low elevation angles.
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Figure 5.4: Same as Fig. 5.2, for 01:13:18 UTC 12th July 2017.

5.2 Discussion of physical understanding

Images taken from the CIP-15 probe on a FAAM flight on 17th May 2017 (radar obser-
vations and modelled temperature in figure 5.2) were examined visually to determine
if any patterns or dominant ice habits existed. A selection of these images are shown
in figure 5.7, representing the large number of images available. Observations from the
entire flight were binned by temperature in a similar fashion to the radar observations.
In matching with the changes of reflectivity seen by temperature, hydrometeors tended
to increase in size as altitude decreases and temperature warmed, from mostly small
plates and columns crystals at -25 ◦C to larger aggregates at around -5 ◦C - 0 ◦C, and
then raindrops at +5 ◦C (figure 5.7).

The observed size and shape of the hydrometeors matches what is expected based on
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Figure 5.5: KDP against elevation angle at -15 ◦C for all RHI scans between (a) 1100
UTC and 1200 UTC 17th May 2017, (b) 1700 UTC and 1800 UTC 5th June 2017,
and (c) 0100 UTC and 0200 UTC 12th July 2017.

79



Chapter 5: Variation in KDP with radar elevation angle

Figure 5.6: Same as Fig. 5.5, for +5 ◦C.
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Figure 5.7: Images from the CIP-15 probe aboard the FAAM aircraft flight on 17th

May 2017, at temperatures of (a) -25 ◦C, (b) -15 ◦C, (c) -5 ◦C, and (d) 0 ◦C.

the radar observations and known ice crystal behaviour. At the lowest temperatures
(-25 ◦C), the dominant hydrometeor type is small, pristine ice crystals, which are small
in size and so have small reflectivity. As shown in figure 5.8, a volume of pristine
plate and column crystals, which tend to fall with horizontal orientation (Willmarth
et al. 1964; Westbrook et al. 2010) and are observed at colder temperatures within
clouds, result in positive KDP when viewed from the side, i.e. a low radar elevation
angle. However, the smallest of these (associated with the small values of reflectivity)
have the smallest KDP , as their size means they have little effect on the propagation
of the radar wave, and having less time to grow means they are closer to spherical
(at least in absolute dimensions (a − b), not necessarily relative dimensions or aspect
ratio (a/b)). Therefore, smaller ice crystals will have KDP close to 0 ◦ km−1 at the
low elevation angles. Larger ice crystals, which have had more time to grow and are
associated with higher reflectivity, will have grown into the shape determined by their
habit type, increasing the differential impact on the propagation of the radar beam,
and hence resulting in higher KDP when viewed at lower elevation angles (Andrić et al.
2013). However, when viewed from beneath, the apparent axis ratio for plates will be
∼1, and the random orientation of columns within the volume observed by a radar will
also result in an average axis ratio of ∼1, regardless of ice crystal size, so as the radar
points vertically, KDP will tend toward 0 ◦ km−1 in these regions, as observed.

Between -10 ◦C and -20 ◦C dendritic growth can occur in areas of high ice supersatura-
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Figure 5.8: Sketch showing view of different hydrometeors to the radar from different
elevation angles, highlighting the change in KDP with elevation angle.

tion. In radar observations, this manifests in increased reflectivity and increased KDP ,
with the increased KDP observable at lower elevation angles. This agrees with studies
such as Kennedy and Rutledge (2011), Bechini et al. (2013), Moisseev et al. (2015),
and Griffin et al. (2018). In clouds with less available moisture, dendrites are not able
to grow, therefore ice crystals will tend to remain as small, hexagonal plates (Bailey
and Hallett 2009), which have a lower reflectivity and lower, although non-zero, KDP

when viewed at low elevation angles.

At temperatures warmer than -10 ◦C, the primary microphysical process is the aggre-
gation of crystals. This has the effect of increasing reflectivity while reducing KDP ,
as observed and shown in figures 5.12 and 5.13. A volume of aggregated crystals can
appear as spherical particles to a radar, both when viewed from the side and from
beneath, reducing KDP toward 0 ◦ km−1. The exception is at the largest reflectivity,
at low elevation angles, a small, positive KDP is still observed (figure 5.13). There are
a couple of hypotheses that would explain this. Firstly, the presence of graupel: while
attempts were made to remove convective cases, it is plausible that there are some
cases of stratiform systems with embedded convection. This could result in graupel
just above the melting layer, which when wet would exhibit high reflectivity and non-
zero KDP (Liu and Chandrasekar 2000; Moisseev et al. 2015), although conical graupel
could also result in negative KDP (Oue et al. 2015). Secondly, it is possible that wet
melting snowflakes are sometimes captured at 0 ◦C. Melting snowflakes are known to
exhibit high KDP and high radar reflectivity (e.g. Zrnić et al. (1993) and Ryzhkov and
Zrnić (1998a)).
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These observations from the CIP probe explain changes why KDP of hydrometeors
when viewed from side incidence changes, and how that may relate to temperature and
reflectivity. The next section considers whether the additional information supplied by
reflectivity and temperature could better help in adjusting KDP from high elevation
angles.

5.3 Analysis of observations during Winter 2018

To explore the results of these case studies further, 26 days on which rainfall occurred
at Chilbolton Observatory between 15 January 2018 and 27 March 2018 were chosen for
further analysis. This period was selected as radiosonde and aircraft measurements are
also available for this time frame from the PICASSO campaign. For each of these 26
days, a DiVeN disdrometer (Pickering et al. 2019) located at Chilbolton Atmospheric
Observatory was used to determine if rain was falling during each RHI scan, eliminating
times with no observed precipitation. Only using data when precipitation was occurring
ensures more of the data is from mature clouds, rather than clouds early in their
development life cycle. Use of the Radar Convective Parameter (RCP, Bechini et al.
(2013)) further limited data to periods of stratiform precipitation from well developed
clouds, increases the likelihood of horizontal homogeneity such that the hydrometeors
the radar observes at a distance should be the same as those observed directly overhead
at the same height. RCP is defined by Bechini et al. (2013) as

RCP(dB) =
∫ h(−15 ◦C)

h(0 ◦C)
mean(Zlin)

median(Zlin) dh

h(−15 ◦C) − h(0 ◦C) , (5.2)

where Zlin is reflectivity in linear units (mm6m−3), and h(−15 ◦C) is the height in me-
tres of −15 ◦C above ground. Work by Bechini et al. (2013) shows a dramatic difference
between convective and stratiform precipitation when studying the correlation between
reflectivity and KDP , with a marked change around RCP = 4 dB. The correlation is
around 0.8 for RCP < 4 dB compared to below 0.3; as such stratiform precipitation is
defined as when RCP < 4 dB.

From the remaining RHI scans, values of KDP , horizontal reflectivity, radar elevation
angle, and temperature were extracted, and then binned by both temperature (-25 ◦C
to +5 ◦C in 5 ◦C intervals) and reflectivity (10 dB bins, starting from 0 - 10 dBZ, up
to 40-50 dBZ, plus one open-ended bin for dBZ < 0).

Figure 5.9 shows, for -20 ◦C, plots of KDP against elevation angle for each reflectivity
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Figure 5.9: Heatmaps of KDP against elevation angle at -20 ◦C for radar RHI scans
from 26 days, normalised by elevation angle, with data split by reflectivity factor from
horizontal polarization between (a) 40 and 50 dBZ, (b) 30 and 40 dBZ, (c) 20 and 30
dBZ, (d) 10 and 20 dBZ, (e) 0 and 10 dBZ, and (f) below 0 dBZ. Where more than 50
data points are present, the plots are density shaded, with the shading going from the
lowest density for a given elevation angle (white) to the greatest density (dark green).
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Figure 5.10: Same as Fig. 5.9, for 0 ◦C.
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bin, shaded by density where there are more than 50 data points. A significant change
in KDP with respect to elevation angle is observed for more intense values of reflectivity
(i.e. dBZ > 20; figure 5.9c), however for lower reflectivity most KDP values lie close
to 0 ◦ km−1 (figures 5.9e,f). When looking at warmer temperatures, for example 0 ◦C
(figure 5.10), with the exception of a small change (up to around 0.5 ◦ km−1) at low
elevation angles in high reflectivity areas (30+ dBZ; figures 5.10a,b), KDP changes very
little with respect to radar elevation angle. However, although apparently small, the
change observed at 0 ◦C may still be of importance, as such large reflectivity values are
common just above the melting layer. These results from a larger set of measurements
agree with what was observed in the few case studies.
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Figure 5.11: Lines showing KDP against elevation angle at -20◦C, fitting data from
26 days of radar RHI observations. Each line represents one 5-dBZ bin. The shading
around the 20 - 25 dBZ line indicates the interquartile range for the KDP measure-
ments at that elevation angle for angles where there are more than 40 KDP estima-
tions.

To compare these six density plots at each temperature more clearly, lines of the form
KDP (θ) = a(1+ cos(2θ)) (from Schneebeli et al. (2013)) were fitted to each plot, where
a is a constant determined to best fit the data, which from Equation 9 in Schneebeli
et al. (2013) equals KDP (θ = 0)/2, and θ is the radar elevation angle. a is calculated
such that the sum of the squared residuals between the data and the fit curve is min-
imised. For this comparison, data were split further by reflectivity, from 10 dBZ bins
down to 5 dBZ. This gives 12 lines for each temperature (one per reflectivity bin), so
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Figure 5.12: Same as Fig. 5.11, for -10 ◦C.

that the role of reflectivity may be more easily compared. Figure 5.11 shows these 12
bins for -20 ◦C, highlighting the angular dependence of KDP for reflectivity greater
than 20 dBZ, a smaller change in KDP for the reflectivity bins covering the 10 - 20
dBZ range, and below 10 dBZ almost no change in KDP with elevation angle. Figure
5.12 shows the same for -10 ◦C, and figure 5.13 for 0 ◦C. Comparison of the three
temperature regimes shows that as temperature increases, the reflectivity at which the
angular shift matters increases. However, at 0 ◦C (Figure 5.13), although the change
in KDP (∼ 0.3 ◦ km−1) is only for high reflectivity (greater than 30 dBZ), it is common
for such high reflectivity to be observed just above the melting layer. Therefore, the
angular change in KDP at 0 ◦C should not be ignored.

Figure 5.14 shows the angular shift at different temperatures for the 20 - 25 dBZ
reflectivity bin. This shows the importance of temperature on the strength of the
variation of KDP with elevation angle, with a larger change in KDP as temperatures
decrease. Therefore, when attempting to adjust KDP at a given elevation angle to an
elevation angle of 0◦, temperature and reflectivity need to be taken into consideration
in addition to the elevation angle. For example, if KDP was measured to be 0.05 ◦ km−1

at an elevation angle of 80◦, then by following the equations in Schneebeli et al. (2013)
and Lu et al. (2015), KDP corrected to an elevation angle of 0◦ would be 1.66 ◦ km−1,
however if that measurement was taken where the temperature was around -10 ◦C, then
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Figure 5.13: Same as Fig. 5.11, for 0 ◦C.

figure 5.12 would suggest that 1.66 ◦ km−1 might be too high. The reflectivity measured
at that point could also help determine what a more suitable value for KDP might be.
A reason for the importance of accounting for reflectivity is that two factors affect the
shape of an ice crystal - temperature and vapor supersaturation (Bailey and Hallett
2009). For a given temperature, an increase in vapor supersaturation results in larger
observed crystals (see Figure 11 in Bailey and Hallett (2009)), which in turn result
in higher radar reflectivity. However, due to the large uncertainty in KDP estimation
(as discussed through Chapter 4), one would need to be careful to ensure efforts in
adjusting KDP are not dominated by temperature and reflectivity.

5.3.1 Considering noise

Following the discussion in Chapter 4, it is worth considering the noise in these KDP

measurements, especially as most of the estimated KDP values are small. Figures 5.2,
5.3 and 5.4 include plots of the standard deviation of KDP as calculated by equation
5.1, and these values from range gates above the melting layer (as determined by use
of the hydrometeor classification algorithm presented in Thompson et al. (2014)) are
represented in the histogram in figure 5.15. The majority of these standard deviations
are below 0.2 ◦ km−1, which when compared with figures 5.9 and 5.10 is within the
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Figure 5.14: Lines showing KDP against elevation angle where reflectivity is between
20 and 25 dBZ, fitting data from 26 days of radar RHI observations. Each line
represents data at a specific temperature. The legend states in brackets how many
data points are represented by each line.

region of highest density of KDP measurements at all angles and reflectivities.

However, when considering how this might affect use of equation 5.1 to adjust KDP from
high elevation angle to 0◦ elevation, a difference of 0.2 ◦ km−1 to the KDP estimation is
significant, as can be seen through use of figures 5.11-5.13. For figure 5.11, 0.2 ◦ km−1

covers the range of the best fit lines above 70◦ elevation, with an error of 0.2 ◦ km−1

being multiplied by 8.55 through the use of equation 5.1 (see table 5.1). At warmer
temperatures (for example -10◦C as shown in figure 5.12), 0.2 ◦ km−1 covers the spread
of the best fit lines at an elevation angle of 55◦ - at warmer temperatures an error of 0.2
◦ km−1 covers the range of the best fit lines at lower elevations, although as elevation
angle decreases so does the multiplication factor of adjusting KDP to 0◦ elevation. This
further suggests that use of KDP and elevation angle alone will not be sufficient when
adjusting KDP values for elevation angle; however, decreasing the standard deviation of
KDP can increase the elevation angle where adjusting KDP through the use of equation
5.1 can be useful.
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Figure 5.15: Histogram of standard deviation of KDP as calculated by Equation 2.16
for data points in the three case studies shown (Figures 5.2,5.3,5.4) classified as plates,
dendrites, ice crystals or aggregates by the Thompson et al. (2014) hydrometeor clas-
sification algorithm.

5.4 Implications

To further explore the role of aggregation in the elevation dependence of KDP , the
hydrometeor classification algorithm (HCA) from Thompson et al. (2014) was applied
to the three case studies shown in figures 5.2, 5.3, & 5.4, the results of which are
shown in figures 5.16, 5.17, & 5.18. This HCA is designed specifically for stratiform
precipitation, and distinguishes between different ice habit types above the melting
layer. The algorithm uses reflectivity, differential reflectivity and co-polar correlation
coefficient to firstly determine the location of the melting layer, with the areas above
and below the melting layer then treated separately. The areas above the melting layer
are classified as aggregates, ice crystals, dendrites, or plates, using specific differential
phase in addition to the polarimetric observations used in the melting layer detection.
Below the melting layer, temperature is used along with horizontal reflectivity to classify
between rain and freezing rain.

In this implementation of the HCA, reflectivity data is used without attenuation correc-
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Figure 5.16: KDP and hydrometeor classification algorithm based on Thompson et al.
(2014) from a radar RHI scan at 11:36:54 UTC 17 May 2017 (figure 5.2). (a) KDP

as measured by the radar. (b) Hydrometeor classification algorithm using measured
KDP . (c) KDP corrected to 0◦ following Eq. 9 in Schneebeli et al. (2013) when
elevation angle is greater than 20◦. (d) Hydrometeor classification algorithm using
adjusted KDP . The black lines on each plot show 20◦ and 70◦ elevation angle. The
abbreviations in the legend for the hydrometeor classification expand as follows: OT
- other, WS - wet snow, RN - rain, FZ - freezing rain, PL - plates, DN - dendrites, IC
- ice crystals, AG - aggregates.

tion. Although use of corrected Zdr would be ideal, correcting Zdr is non-trivial, with
most methods correcting Zdr based on attenuation in rainfall. Furthermore, ΦDP is
often used to constrain attenuation correction algorithms (Jameson 1992; Testud et al.
2000; Lim and Chandrasekar 2016). As the focus of this chapter is on the ice region
of clouds, with only a short path through liquid regions, such techniques would not be
suitable. While this may cause some small error, in the ice region KDP has the greatest
weighting of the three variables used in the HCA, and as such the accuracy of KDP is
more important.

The output from the HCA for the 17 May 2017 case (figure 5.16) suggests that ag-
gregates (AG) are present at higher altitudes (colder temperatures) at higher elevation
angles compared to lower elevation angles (almost 6 km above ground, about -15 ◦C,
compared to 4 km, about -5 ◦C). Dendrites at -10 ◦C to -15 ◦C are present at lower
elevation angles (up to around 20◦), but at higher elevation angles are classified instead
as aggregates. A similar pattern is seen in the 12 July 2017 case (figure 5.18) with the
classification of dendrites between 3 and 7 km above ground, although the presence of
stronger estimated KDP at elevation angles just above 20◦ results in the transition to
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Figure 5.17: Same as figure 5.16, but for data from 17:08:12 UTC 5 June 2017, as in
figure 5.3.

from dendrites to aggregates at higher altitudes starting at a higher elevation angle.
If this change in classification is due to a change in KDP caused by the change in
radar viewing angle, then by changing KDP at high elevation angles to match that at
a lower elevation angle, it should be expected that the classification of aggregates at
high elevation angles should change. An alternative method could be to change the
weighting for KDP to be a function of elevation angle and temperature, however this
could lead to the classification being mostly dependent on reflectivity and temperature,
which could result in unrealistic crystal classifications (Thompson et al. 2014). This
hypothesis is tested by changing KDP for all elevation angles greater than 20◦ to what
KDP should be at 0◦ elevation angle, according to equation 9 in Schneebeli et al. (2013).
Although Zdr also changes with elevation angle, that correction has not been applied
here, so that the importance of adjusting KDP can be identified, and in this hydrom-
eteor classification algorithm KDP has a greater weight in deciding the probability of
ice hydrometeors than Zdr does. The result of this is shown in figure 5.16(c), and the
hydrometeor classification using the changed KDP in figure 5.16(d).

Through changing KDP measured at high elevation angles, the output of the hydrom-
eteor classification algorithm changes to dendrites where previously there were aggre-
gates. This suggests that at high elevation angles, these observed changes in KDP ,
along with the general uncertainty in KDP estimation, can result in misidentification
of hydrometeors as aggregates. However, for elevation angles greater than 70◦, the cor-
rection to KDP appears to be inadequate, providing an apparently large over-correction,
as noted by Schneebeli et al. (2013) and Lu et al. (2015).
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Figure 5.18: Same as figure 5.16, but for data from 01:35:54 UTC 12 July 2017, as in
figure 5.4.

Figure 5.17 shows an example with lower estimated KDP , with the classification of ice
in the cloud dominated by ice crystals, rather than dendrites. After adjusting KDP

due to elevation angle, very little change is seen in the output from the hydrometeor
classification algorithm, suggesting the low KDP values do not have much influence
on the HCA output. As in the other two examples, this simple adjustment provides
very large estimations of KDP above 70◦. As the change in KDP with elevation angle
has been shown in this chapter to be influenced by reflectivity and temperature, using
reflectivity and temperature data could help improve corrections to KDP .

5.5 Summary

The observations in this chapter confirm that measured specific differential phase is
strongly affected by the viewing geometry of the radar, confirming the theoretical
cos(2θ) dependence as described in Schneebeli et al. (2013) and Lu et al. (2015), with
values of KDP tending toward 0 ◦ km−1 as the elevation angle increases to 90◦.

However, as both of those studies state, and as these observations show, use of this
equation is inadequate when adjusting KDP to side incidence from an elevation angle
greater than 70◦. This is due to KDP being close to zero, and so a small change in
the measured KDP at high elevation angle (e.g. due to noisy estimates as discussed
in Section 4.2.4, or excessive smoothing in calculation) result in large changes to the
estimated KDP at 0◦ elevation. This is shown to result in misidentification from hy-
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drometeor classification algorithms.

The observations analysed in this chapter suggest that adjustments of KDP from high
elevation angles to 0◦ elevation angle could be improved by including reflectivity from
horizontal polarisation and temperature observations within the correction. As tem-
perature decreases above the melting layer, or as reflectivity increases, KDP at low
elevation angles tends to increase. Using this knowledge can provide a guideline for
more accurate KDP adjustments.

The proposed underlying physical mechanism for this phenomenon is the vapour growth
and aggregation of pristine plates and columns. At cold temperatures, the presence of
small plate and column crystals result in positive KDP values when viewed from the
side, however when viewed from beneath KDP would tend to zero. Slightly larger
crystals, with greater reflectivity, will appear wider (plates) and longer (columns),
and so would have a greater KDP . As temperature increases, these crystals start to
aggregate, forming hydrometeors irregular in shape but appearing more spherical to
the radar, thus leading to lower KDP , until the hydrometeors melt and become quasi-
spherical raindrops, resulting in KDP ∼ 0 ◦ km−1. While in-situ observations from one
day support this idea, additional observations and modelling are needed to explore this
hypothesis.
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Chapter 6

Comparison between radar
forward operator output and
radar observations of KDP

While there are many uses for polarimetric weather radar observations, for example
hydrometeor classification (for example Liu and Chandrasekar (2000); Thompson et al.
(2014)), quantitative precipitation estimation (Tabary et al. 2011; Vulpiani et al. 2012),
and liquid and ice water content estimation (Ryzhkov et al. 1998; Hogan et al. 2005),
one area which is a relatively new area of research is the utilisation of radar data
in numerical weather prediction (NWP) models (Ryzhkov et al. 2020). Radars can
provide data at a high temporal resolution over a large coverage area, and can identify
different hydrometeor types and processes through polarimetric data which could be
used to constrain the microphysics in NWP models (Ryzhkov et al. 2020). These
uncertainties are a major contributor to uncertainty in forecasts (Morrison et al. 2020)
due to uncertainty in the microphysical processes and the need for a level of simplicity
(Morrison et al. 2015; Fan et al. 2017).

However, radars and models do not have the same data. One aspect of this is that radar
measurements are often at a much higher spatial resolution than model grid spacing (for
example 300 m range gates between UK Met Office radar measurements, and 1.5 km
grid spacing in the Met Office high resolution model run (Hawkness-Smith and Simonin
2021)). Not only do radar and model data occupy different spatial domains, they also
have different variables representing different physical properties. State variables from
NWP models are mass mixing ratio and number concentration for each hydrometeor,
which are proportional to the 3rd and 0th moment of the size distribution (Ryzhkov et al.
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2020). Radar variables are measurements of how hydrometeors scatter electromagnetic
radiation (Ryzhkov et al. 2020), and are determined by higher moments of the Drop Size
Distribution, i.e. radar reflectivity is approximately the 6th moment (Zhang et al. 2019).
This means that data stored in polarimetric radar measurements are influenced more by
larger hydrometeors, which are fewer in number than the smaller hydrometeors which
have important effects on microphysical processes (Zhang et al. 2019). Some studies
have attempted combining dual-polarisation parameters in an attempt to overcome this
issue when using radar data to estimate the Drop Size Distribution (Huang et al. 2019;
Bringi et al. 2020).

A key aspect in bridging the gap between radar meteorology and numerical weather
prediction is the development of radar forward operators. Forward operators take the
state variables from the cloud microphysics scheme in NWP models, and estimate radar
variables through the use of scattering calculations, based on the size distributions
predicted by the microphysics scheme and assumptions on the aspect ratio and canting
angles of the hydrometeors. This is the start of the data assimilation process, which has
the potential to be one of the main uses for polarimetric radar observations, particularly
in convective scale NWP (Wang et al. 2013; Zhang et al. 2019). Forward operators are
also used to aid with model evaluation, with a number of studies (for example Bodas-
Salcedo et al. (2008); Nam and Quaas (2012)) using forward operators to convert model
data to satellite observations. While satellites are more often used for such evaluations,
such work can also be carried out using ground-based radar data (for example Bouniol
et al. (2010)).

The work presented in this chapter aims to study how well, if at all, regions of ele-
vated KDP can be simulated from a radar forward operator, with elevated KDP being
an indicator of increased rainfall rate (Bechini et al. 2013) or associated with radar
signatures of microphysical processes (for example secondary ice production (Sinclair
et al. 2016) and dendritic growth (Kennedy and Rutledge 2011)). One case study - a
frontal weather system across the UK on the 24th January 2018 - is studied, during
which a number of elevated KDP regions can be observed in the radar data (figure 6.1).
The forward operator is initiated with data from high-resolution WRF model output,
and is presented using multiple microphysics schemes, to ensure that observations of
the output from the forward operator are related to the forward operator, and are not
dependent on the microphysical scheme chosen.

This chapter is presented as follows. Firstly, the output from the WRF model runs is
checked against surface observations at Chilbolton Observatory to check its accuracy.
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Figure 6.1: KDP on 24 January 2018 at 10:54:18 UTC (left) and 13:41:59 UTC (right),
at 2◦ elevation angle.

Next, the estimates from CR-SIM are compared to each other to look for differences
between the microphysics schemes. Finally, the CR-SIM output is compared to radar
observations with a focus on KDP , using PPI scans from NXPol-1 as these scans show
a wide coverage area, are routinely collected by operational radar networks, and avoid
the problems of high elevation angles as discussed in Chapter 5.

6.1 Comparison between WRF model output and Chilbolton surface
observations

The case study chosen is a cold front passing through the United Kingdom on the 24th

January 2018. On this day, a low pressure system moved north-east across the western
Northern Ireland coast and across north-western Scotland into the North Sea, with a
long trailing cold front bringing rain to most of the UK throughout the morning, with
rain continuing to fall through the afternoon in southern and south-eastern England
(figure 6.2).

Output of 2m temperature, precipitation, and sea level pressure from each WRF run is
compared against surface measurements from Chilbolton Observatory (Figures 6.3, 6.4
& 6.5). These show that while the model captures the general trend throughout the

97



Chapter 6: Comparison between radar forward operator output and radar observations of KDP

Figure 6.2: Synoptic chart for 24th January 2018 12:00 UTC.

day, the timing of the main cold front passing Chilbolton Observatory is wrong by ∼30
minutes, independent of the microphysics scheme used. This indicates the timing of
the front in the model may be a function of the initial and lateral boundary conditions,
rather than the microphysics scheme.

The WRF models in this case study also fail to capture the intensity of the rainfall
(Figure 6.5). They capture the presence of rain both before and after the front passes
through; however, the total precipitation values are less than 50% of that measured
by the surface rain gauge. The choice of microphysics scheme leads to differences in
the total precipitation, which mostly comes in the hour or two after the front passes
through. It would be expected that this reduction in rainfall would result in slightly
lower values of horizontal reflectivity and specific differential phase from the forward
operator compared to that measured by the radar; for example, taking the peak station
rainfall rate as 22 mm/hr, and the peak model rainfall rate as 12 mm/hr (from figure
6.5), that would convert to an expected radar reflectivity near the surface of 45 dBZ and
41 dBZ respectively using the Marshall-Palmer relationship of Z = 220R1.6 (Marshall
and Palmer 1948), and expected KDP values of 1.39 ◦ km−1 and 0.65 ◦ km−1 using
R = 16.9|KDP |0.801 from Ryzhkov et al. (2014) (Table 6.1). These numbers are not
meant as predictions of what should be seen based on the rainfall rate, but rather are
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Figure 6.3: Temperature at Chilbolton Observatory, as predicted by each WRF run
and observed (blue line).

meant to suggest how much of a difference might be expected between the radar and
forward operator outputs.

Rainfall Rate Expected Reflectivity Expected KDP

22 mm/hr (station) 45 dBZ 1.39 ◦ km−1

12 mm/hr (model) 41 dBZ 0.65 ◦ km−1

Table 6.1: Expected reflectivity and specific differential phase based on peak rainfall
rates observed at Chilbolton Observatory and predicted by WRF.

While this single-point analysis is not sufficient as a full study of model analysis, that is
not the intention of this work. Rather, this single-site comparison is intended to provide
a sanity check that the model computes a reasonable prediction of the observed weather
conditions, which these single-point comparisons confirm, with all three microphysical
schemes producing similar results that resemble the features of the observations.
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Figure 6.4: As Fig.6.3, for mean sea level pressure.

6.2 Comparison of CR-SIM output between different microphysical
schemes

Figure 6.6 shows WRF output, CR-SIM output, and radar data for 24th January 2018
at 10:55 UTC at a 2◦ elevation angle, with output from the three microphysics schemes
used. All three schemes produce high reflectivity along the front (>40 dBZ), with the
Morrison and Thompson schemes having higher reflectivity and a thicker front than
the Milbrant scheme. To understand this, the number and size concentrations for each
hydrometeor predicted by each scheme would need to be studied and compared to
in-situ data, which is beyond the scope of this study. The Morrison and Thompson
schemes also give higherKDP than the Milbrant scheme, with values exceeding 1 ◦ km−1

throughout much of the front for Morrison and Thompson, compared to only small
regions of high values in the Milbrant scheme, with most values in the front between
0.4 and 0.8 ◦ km−1.

Ahead of the front, the model simulations resolve lines of precipitation ahead of the
front, which can be seen in the precipitation plots and the reflectivity plots (regions
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Figure 6.5: As Fig.6.3, for rainfall.

around 20-30 dBZ), and to a lesser extent the KDP plot for the Thompson and Morrison
schemes. However, despite the higher reflectivity and KDP produced by the model than
the radar, the amount of rainfall observed by the weather station is not replicated in
any of the WRF simulations, missing around 3 mm of rain before the arrival of the
front.

The model simulations diverge slightly behind the front (Figure 6.7). The Milbrant
and Morrison schemes show cloud breakup behind the front, with patchy areas of
higher reflectivity (20+ dBZ) and larger areas of low reflectivity (<0 dBZ), while the
Thompson scheme has more area of the larger reflectivity. However, all of the schemes
have very small KDP after the front has passed, with some small patches of low KDP

(< 0.1 ◦ km−1) in areas of where higher reflectivity is simulated.

While the two times shown in figures 6.6 & 6.7 do not capture the entire evolution of
the weather system as it passes over the radar, they do show the model produces a
reasonable simulation of the weather on that day, while highlighting similarities and
differences between the schemes on either side of the main front.
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6.3 Comparison between CR-SIM and radar observations

While comparing the CR-SIM output between the different microphysical schemes show
there are some differences, they all appear as plausible and realistic when compared to
the radar observations. As the front passes Chilbolton Observatory, CR-SIM from the
Milbrant scheme replicates the radar observations most closely, with closer values of
reflectivity and KDP , and similar thickness of the front as judged by the width of high
reflectivity, whereas the Morrison and Thompson schemes show a slightly larger values
and a thicker front; this pattern is replicated through other elevation angles. This is
surprising given the lower rainfall in the models compared to the observations: lower
values of polarimetric radar variables would be expected with lower rainfall.

However, in the ice region of the clouds, there are further discrepancies in the CR-SIM
output, particularly in the estimated KDP . Figure 6.8 shows an example of missing
a number of large KDP features, and while data from only one time is shown, these
results hold throughout all output from this event. Firstly, a ring of higher KDP at
a range between 20km and 40km can be seen in the radar observation, which is not
observed in any of the CR-SIM simulations. This ring is located in the melting layer. As
changes in radar measurements around the melting layer are a key signature in radar
measurements, it should be simulated in a radar forward operator.

Another region of increased KDP is observed 60km to 80km west of the radar, in a
region where the temperature is around -8 ◦C, deduced from model simulations from
the Met Office (section 3.2). This is completely missed in the KDP from CR-SIM in
the Morrison scheme, which is the only one to still have reflectivity values close to
the radar observations at this time. This region has the signs of being an area of
secondary ice production, with large KDP and an increase in ZDR in the region as
shown in figure 6.9 (Sinclair et al. 2016; Field et al. 2017). Secondary ice production
is seen as an important mechanism to explain the difference between the expected ice
particle concentrations from primary ice nucleation, and the concentrations observed
through airborne observations. Correctly predicting ice concentrations, which play an
important role in cloud development and evolution (Hallett and Mossop 1974), is an
important challenge to a successful microphysics scheme (Field et al. 2017).

Possibly the main reason why this potential area of secondary ice production is missed
by the model and the forward operator is due to the generalisation of ice. Most micro-
physics schemes categorise ice as hail, graupel or ice, which is a very broad category. As
shown by Bailey and Hallett (2009), there are a range of shapes, sizes, and categories
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Figure 6.9: PPI of ZDR at 13:41 UTC using a 2◦ elevation angle.

of ice crystal, which grow depending on the temperature and supersaturation of the
environment. Including all of these into one category may speed up the computation
of the microphysics scheme; however, key details in the cloud may be missed when
compared to radar observations.

6.4 Future Work

To increase the accuracy of KDP estimations from radar forward operators above the
melting layer, more ice habit types need to be represented, which could result in better
replication of polarimetric radar signatures. There are potentially two options for
this: either take the temperature and humidity information from the model and make
assumptions on the dominant habit type based on the work by Bailey and Hallett
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(2009), or incorporate more ice habit types in microphysical schemes, which increases
the complexity and computation time of the scheme but provides more information for
the forward operator to work with.

There is one microphysics scheme in the WRF model that has more detail in the ice
category, which is the Hebrew University Cloud Model (Khain et al. 2004). This is
a bin microphysics cloud model which has separate categories for plate-, columnar-,
and branch-like ice crystals, as well as aggregates. While CR-SIM does not have this
scheme incorporated into the code, the program is written to be expandable to include
further microphysics schemes.

Adding these different ice crystal types into the forward operator highlights an issue
with the current assumptions in CR-SIM. The scattering properties for all ice hydrom-
eteors (ice crystals, snow, graupel and hail) are only computed for a temperature of
-30 ◦C. As shown by Bailey and Hallett (2009), ice crystals at -30 ◦C grow in a dif-
ferent way to those at -5 ◦C, and therefore the scattering properties of those crystals
will be different. Likewise, an increase in ice supersaturation results in different size
or shape ice crystals (larger supersaturation typically results in bigger crystals), and
therefore different scattering properties. While the T-matrix code used to calculate the
scattering properties does not require temperature or supersaturation, it does require
axis ratio and equivalent volume diameter, which are size and shape dependent, there-
fore incorporating additional environmental information could result in more accurate
scattering properties.

Another assumption of the CR-SIM operator that hinders accurate emulation of radar
measurements is that all hydrometeors are either pure liquid or a mixture of ice and air,
that is there are no melting hydrometeors. This will result in a large misrepresentation
of radar measurements, particularly in mid-latitudinal weather conditions, as melting
snow forms a very distinct layer in the radar data, as seen in figure 6.8 and discussed
in section 6.3 (Austin and Bemis 1950; Smyth and Illingworth 1998; Sánchez-Diezma
et al. 2000). A radar forward operator developed by Jung et al. (2008), and refined by
Dawson et al. (2014), included a melting model, in which when snow and rain coexist
some of the rain mixing ratio is combined with some of the snow mixing ratio to create
a rain-snow mixture (section 3b in Jung et al. (2008)). This would help output from
the operator to replicate one of the key signatures seen in radar observations - the radar
bright band characteristic of the melting layer.
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6.5 Summary

There are many uses for polarimetric radar observations, but utilising the data with
numerical weather prediction is still a relatively new area of research (Ryzhkov et al.
2020). By estimating radar observations from model output, radar forward operators
provide the means to compare model data to radar observations. However, shortcom-
ings in radar forward operators, particularly with regards to how ice is treated mean
that some radar signatures are not reproduced, for example the radar bright band, or
elevated KDP in areas of secondary ice production.

There are two major benefits of having a radar forward operator that can accurately
reproduce polarimetric observations such as KDP . Firstly, it is largely understood that
one of the main sources of uncertainty in forecasts comes from inadequate microphys-
ical parameterisations (Morrison et al. 2015; Fan et al. 2017). Polarimetric weather
radars provide a lot of information that could be useful for constraining microphysical
schemes, but to do so, uncertainty and inaccuracy in the measurements (as discussed
in Chapters 4 & 5, for example), and then in the operators, needs to be considered and
reduced where possible (Ryzhkov et al. 2020). Secondly, the data obtained by radars
can be assimilated into numerical weather prediction models. It has been shown that
assimilating reflectivity helps reduce spin up time in models (Sun and Crook 1997; Gao
and Stensrud 2012) and can help improve precipitation forecasts (Jung et al. 2012;
Snook et al. 2016); however, reflectivity alone is not enough to analyse all the variables
in a multi-moment microphysics scheme, hence the need for a forward operator that
can accurately reproduce polarimetric radar data from numerical model output.
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Synthesis

The aim of this thesis was to study some of the uncertainties associated with estima-
tions of Specific Differential Phase (KDP ), using data from the NCAS mobile X-band
radar (NXPol-1). KDP is less sensitive to large hydrometeors than reflectivity mea-
surements, being proportional to the number of drops of diameter D multiplied by Da,
where a is between 4.3 and 4.9 for KDP , compared to 6 for reflectivity (Fabry 2015;
Ryzhkov and Zrnić 2019). With the constant a being approximately 3.67 for rainfall
rate, KDP appears to be more favourable for quantitative precipitation estimation.
Furthermore, KDP is more closely related to ice water content (IWC) than reflectivity
is, with a linear relationship to IWC making KDP more suitable for microphysical re-
trievals (Vivekanandan et al. 1994; Bukovc̆ić et al. 2018). Improved retrievals could help
facilitate the use of polarimetric radar data in initialising numerical weather prediction
(NWP) models (Jung et al. 2008).

However, KDP is not measured directly by the radar, rather it is derived from the
measurement of the total differential phase (ΨDP ), which includes measurements of
backscatter differential phase (δ), and noise within the phase measurements. This
makes retrieving KDP from radar observations challenging and prone to uncertainty
and error. This thesis focused on three topics:

• How different methods of retrieving KDP from ΨDP deal with noise, the presence
of δ, and negative KDP values, through performance against a synthetic, but
known, ‘true’ profile, and through performance on real data.

• How the viewing geometry of targets from the radar influence estimations of KDP .

• How well output from NWP models and radar forward operators can replicate
KDP .
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These topics were studied through use of observations from the NCAS mobile X-band
radar while it was stationed at Chilbolton Observatory from November 2016 through
to June 2018 through the PICASSO (Parameterizing Ice Clouds using Airborne ob-
ServationS and triple-frequency dOppler radar) campaign, along with output from the
Met Office UK Atmospheric High Resolution Model (Met Office 2016), the Weather
Research and Forecasting (WRF) model (Skamarock et al. 2021), and observations
from the Facility for Airborne Atmospheric Measurements (FAAM) aircraft.

7.1 Review of results

The results from each section are summarised below, along with any suggestions for
further research.

7.1.1 Chapter 4: Comparison of different KDP estimation methods.

The aim of this section was to determine the impact of KDP estimation methodology
on its retrieval. Seven different estimation methods, with a range of complexity in
how they estimate KDP , were tested against an artificial, but known, ‘true’ profile,
and then eight methods were compared to each other when using real data (the KDP

estimation method provided by the Rainbow software with the radar could not be
used in the artificial KDP section, but was used in the real data section). Two of the
methods used in the first section (Ryzhkov and Bringi) use changing averaging window
sizes depending on reflectivity thresholds - each of these methods were tested with a
constant reflectivity profile on either side of each threshold.

All of the methods were able to accurately reproduce the clean synthetic KDP profile
away from the sharp gradient, but there were various discrepancies close to the step
change in KDP that affected the estimated retrievals for some range either side of the
gradient. While such a large, sudden change in KDP would not be expected in real data,
users should be aware of the small inaccuracies that are created by such a change, par-
ticularly in the Maesaka method which oscillates around the true positive value for a
while after the gradient. Most of the methods were also accurate in their reproduction
of the true KDP profile when there were random missing data points along the ray;
however, the UKMO method was strongly affected around the locations of missing
data, producing large spikes of KDP at those locations. The Ryzhkov method for
high reflectivity was similarly affected, although to a lesser degree, and the Vulpiani
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method underestimated KDP due to the addition of missing data. The Bringi method
uses an averaging window as part of its estimation at each point along the ray, and
if any measurement within that window is missing then it does not estimate KDP

at that ray. This results in large gaps in the estimated profile, although when an
estimation is present it is close to the ‘true’ profile. Interpolating the ΨDP profile
before estimating KDP removes these mentioned issues in all affected methods, and
so may be an important step in achieving accurate KDP estimations, provided that
locations of no measurement are accounted for correctly after KDP estimation.

There are three factors in addition to KDP that affect ΨDP measurements that could
impact KDP retrieval - noise, backscatter differential phase, and negative KDP - each
of which are added individually to the synthetic ΨDP profile in this analysis. The
results from allowing negative KDP were unsurprising, in that the methods that do not
allow KDP estimations to be negative (UKMO and Maesaka) produced regions of 0
◦ km−1 where the rest of the methods were estimating negative KDP . Negative KDP

was included by moving the truncation of the ‘true’ KDP profile from 0 ◦ km−1 to -0.2
◦ km−1, producing large regions of negative KDP . This is not particularly realistic, as
negative KDP is mainly seen in small areas where ice crystals become vertically aligned
due to strong electric fields in the clouds. However, there is nothing in the results, or in
the methodology of each estimation, to suggest that they would not be able to estimate
small, localised negative KDP .

Backscatter differential phase (δ) is a phase shift that occurs upon the electromagnetic
beam scattering from targets, as opposed to the shift due to propagation through
them. δ is almost non-existent in ice crystals and small raindrops, and is small in large
raindrops; however, it can be large and non-negligible for mixed-phase hydrometeors,
such as melting snow seen throughout the melting layer. A corresponding δ profile was
then added to the synthetic ΨDP profile, including a large ‘δ-bump’ in the middle of
the profile replicating the melting layer. None of the methods correctly removed δ and
reproduced the ‘true’ KDP profile, instead they all over-estimated KDP ahead of the
peak of the δ-bump and under-estimated KDP behind that peak. This is in spite of
some methods (Schneebeli, Bringi, and Maesaka) explicitly accounting for δ in their
retrieval.

However, the addition of noise to the ΨDP profile has the biggest impact on the accuracy
of the estimated KDP profiles. The estimated profiles still follow that of the ‘true’ KDP ,
with a bit of oscillation around the ‘truth’ due to the noise; however, in the melting
layer, where the standard deviation of ΨDP , and therefore the noise in ΨDP , is greatest,
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there is a lot more variability in the estimation of KDP . This is particularly the case in
the wradlib method, the Ryzhkov method in high reflectivity, and the UKMO method,
resulting in the biggest drop in correlation coefficient and biggest increase in mean
absolute error when compared to the ‘true’ profile. Therefore, removing as much noise
as possible from the ΨDP profile is key to accurate KDP estimations; however, as none
of the methods can completely remove noise from the collected data, it is important
to consider noise in the phase measurements when setting radar parameters if accurate
KDP estimations are required. As discussed in section 2.1.4, the standard deviation in
the KDP estimation can be reduced by increasing the number of pulses used in each
measurement or increasing the pulse repetition period, but these changes also decrease
the measurement range and increase the time between measurements.

When looking at observations, there is no truth that can be used to compare each
method with, and so the methods are compared to each other instead. This shows low
correlation coefficient (<0.6, and often <0.4) between most of the methods, suggesting
that those methods together are not converging around a common solution; however,
three of the methods show high correlation (>0.7) between each other: Bringi, Ryzhkov
and Rainbow (which could not be used in the first section). The similarity between
Bringi and Rainbow is unsurprising, as they are based on the same methodology; how-
ever, the inclusion of the Ryzhkov method is surprising, as it is a very simple method
that just smooths ΨDP using an averaging window, and then estimates KDP as a slope
of a least squares linear fit. The inclusion of the Ryzhkov method here is also unex-
pected because of the noisy estimations previously seen when there is high reflectivity
and noise in the ΨDP profile. In the observations used, there is very little data that
reaches the threshold of 40 dBZ needed for the high reflectivity estimation, instead the
larger window size of the low reflectivity estimation is used which more aggressively
smooths out the sudden changes in ΨDP . This may mean that the threshold is not
suitable for this data, particularly as this looks at X-band observations collected in the
UK rather than the S-band radars in the USA that this method was developed on, or
simply that the removal of convective cases means that only lower reflectivity values are
observed in this dataset, and the results would be different for convective observations.

The Bringi method returns amongst the highest correlation coefficient and lowest mean
absolute error when compared with the synthetic ‘true’ profile across most of the sce-
narios, although the Bringi method does not deal well with individual missing data
points, which results in large parts of the estimated profile having no value KDP being
estimated. Linearly interpolating the ΨDP profile before estimating KDP removes this
issue, but also results in statistics similar, or very slightly worse than, the Ryzhkov
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method when looking at low reflectivity regions (below 40 dBZ); however, the Bringi
method performs better than the Ryzhkov method for higher reflectivity, based on
its higher correlation coefficient and lower mean absolute error when compared with
the ‘true’ profile (figures 4.23 & 4.24). In regions where backscatter differential phase
is present or there is noise within the measurement, the Bringi method may be the
best choice; however, if there are individual missing data points along the ray then
another method, or interpolation, may be more applicable to retrieve a full profile, and
when there is little noise within the measurement then most methods return reasonable
results.

Therefore, while one method may work best in some cases, or for certain types of
weather or different wavelengths of radar (which is not directly explored in this study),
that method might not be the best choice in other cases. This also means that any
retrieval relation, for example for rain rate, or ice or liquid water content, might not be
directly applicable from one estimation method to another. One should not necessarily
expect to be able to take any relation in the literature and expect it to achieve the
greatest accuracy, instead it should ideally be adjusted with the KDP being estimated,
where the corresponding observations are available. For example, using a KDP - rain
rate relation derived and tested using one particular KDP estimation method may not
provide rainfall rate estimations with the accuracy determined in its testing, for optimal
results it should be tested and adjusted using rainfall rate measurements near the radar.

7.1.2 Chapter 5: Change of estimated KDP with radar elevation angle.

In this section, how KDP is affected by changing the radar elevation angle, and therefore
the viewing geometry of hydrometeors, is studied. While the theoretical change of Zdr

with elevation angle had been shown observationally (Ryzhkov et al. 2005a), the same
had not been done with observations of KDP to prove a theoretically derived equation
between KDP and radar elevation angle (Schneebeli et al. 2013; Lu et al. 2015). In
Chapter 5 observations are presented which support the theory, and then further studied
to potentially constrain uncertainty in adjusting KDP from high elevation angles (>70◦)
to 0◦ elevation.

Radar data from stratiform weather across 26 days were used to show how elevation
angle affects KDP . This data was binned by reflectivity and temperature (taken from
the Met Office UK Atmospheric High Resolution Model), so that data from different
days could be compared to each other. This showed a larger KDP at 0◦ elevation angle
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as reflectivity increases and as temperature decreases, which is explained by the vapour
growth and aggregation of pristine plates and columns. These pristine ice crystals are
observed at colder temperatures, and result in positive KDP values when viewed from
the side; however, when viewed from below their KDP would tend to 0 ◦ km−1 due to
the random rotation in the horizontal plane of these crystals. Larger pristine crystals
would appear longer and wider to the radar when viewed from the side, and so have
larger KDP . As temperature increases, these crystals aggregate, forming hydrometers
that, while irregular in shape, appear more spherical to the radar, and therefore KDP

at side incidence will reduce.

Observations from the CIP-15 probe measured from the FAAM aircraft during one
flight support this idea, but additional observations and modelling studies are needed
to fully support this hypothesis.

Both Schneebeli et al. (2013) and Lu et al. (2015) mention the inadequacy of the
theoretical equation at high elevation angles (>70◦). The addition of reflectivity and
temperature information can help with adjusting KDP from high elevation angles to
0◦ elevation angle. Due to the small values of KDP estimated at high elevation angles,
any noise and uncertainty in the KDP value (as explored through Chapter 4) would
propagate through the adjustment and could result in unrealistically large estimations
of adjusted KDP . Knowledge of reflectivity and temperature could help constrain
the adjustment of KDP from high elevation angles; however, this would need further
observations and modelling to achieve an adjustment that does not result in KDP that
is purely a function of reflectivity and temperature.

While there is little application for this, as for knowledge of the Zdr change with eleva-
tion angle, in operational radar measurements due to the lower elevation angles used
(20◦ or less), accounting for this change is shown to have an impact on the output
from a hydrometeor classification algorithm applied to an RHI scan, as are often used
in research (for example Kouketsu et al. (2015); Lang et al. (2016); Le et al. (2016);
Chen et al. (2017); Roberto et al. (2017)). A case was studied where a hydrometeor
classification algorithm returned aggregates at elevation angles greater than 20◦ and
temperatures colder than -5 ◦C, while it returned dendrites in the same temperature
region at lower elevation angles. By only using the equation in Schneebeli et al. (2013)
and Lu et al. (2015), adjusting KDP between elevation angles of 20◦ and 70◦ to KDP

at 0◦ elevation angle resulted in parts of this section being reclassified as dendrites,
highlighting potential misclassification due to the viewing geometry and the general
uncertainty associated with KDP . However, above 70◦ elevation, use of this equation
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resulted in large over-adjustment, and this region may benefit most from use of reflec-
tivity and temperature data. Accurately adjusting KDP at these high elevation angles
could also help with quantitative precipitation estimation, microphysical retrievals, and
comparison to in-situ data, where KDP estimates are used.

7.1.3 Chapter 6: Comparison between radar forward operator output and
radar observations of KDP .

The final chapter looked at how output from a radar forward operator compared to
observations taken from NXPol-1. Being able to accurately replicate polarimetric radar
observables, such as KDP , from model data can help improve microphysical schemes
within the model (Ryzhkov et al. 2020), and assimilate radar data to improve the initial
conditions used (Sun and Crook 1997; Gao and Stensrud 2012; Wang et al. 2013). The
CR-SIM operator (Oue et al. 2020) was used to convert data from the WRF model to
estimations of radar observables. The model was run three times for one case study
using different double-moment bulk microphysical schemes: Thompson (Thompson
et al. 2008), Milbrant (Milbrandt and Yau 2005a,b), and Morrison (Morrison et al.
2009). The WRF model run used a double-nested domain, with the domains centred
over the location of the radar at Chilbolton Observatory, and the smallest domain using
400m horizontal grid spacing.

Visually accounting for the model getting the timing of the front wrong by about 30
minutes, the reflectivity and KDP estimated by the forward operator look realistic
around the front when compared to the radar observations. However, the values of re-
flectivity estimated from the Morrison and Thompson schemes were a little higher than
the radar measurements, which is surprising given the lower rainfall amounts predicted
by the model compared to the amount observed by a weather station at Chilbolton
Observatory (lower reflectivity would be expected for lower rainfall). The output from
these two microphysical schemes also resulted in higher KDP estimations than from the
Milbrant scheme; however, estimated values of KDP from all three schemes fell into the
range of values estimated by the Rainbow software from the observed Total Differential
Phase.

However, behind the front in the ice region of the cloud, deficiencies in the forward
operator result in significant deviations from the radar measurements. Microphysics
schemes and forward operators rarely distinguish between different ice habits, and in
CR-SIM all ice is treated as being at -30 ◦C. This generalisation of ice appears to con-
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tribute to the model and forward operator missing an example of potential secondary
ice production in this case study, where an area of elevated KDP is present in the radar
observations where the temperature is around -8 ◦C but not in the CR-SIM output.
Secondary ice production is an important mechanism in explaining the difference be-
tween expected and observed ice particle concentrations, which play a key role in the
development and evolution of clouds (Hallett and Mossop 1974; Field et al. 2017). Fur-
ther cases need to be studied to confirm this deficiency in the forward operator, looking
at times where both high and low values of KDP are estimated from radar observations,
and particularly at times when in-situ measurements are available from aircraft flights,
such as liquid and ice water content and hydrometeor imaging.

To improve the estimations of the radar forward operators, more ice habits need to
be represented to fully capture the polarimetric signatures, such as identifying areas
of secondary ice production, that are seen in radar measurements. This could either
be through including more ice habits in microphsyics schemes, which becomes com-
putationally expensive, or through taking environmental information from the model
and assume a dominant habit type or ice regime based on work such as that by Bailey
and Hallett (2009). The inclusion of melting hydrometeors in the forward operator has
been shown to improve the accuracy of forward operator estimations around the radar
bright band (Jung et al. 2008; Dawson et al. 2014), and including further ice habit
types may help to represent other radar signatures in ice, such as the dendritic growth
zone (Kennedy and Rutledge 2011).

Improving forward operators has two key benefits. Weather surveillance radars provide
a lot of information and measurements that are useful for constraining and improving
microphysical schemes, provided the uncertainty in the measurements and operators
are reduced and accounted for (Ryzhkov et al. 2020). Data from operational weather
surveillance radars can also be used to help initialise NWP models. It has previously
been shown that assimilating reflectivity can help reduce spin up time (Gao and Sten-
srud 2012) and improve precipitation forecasts (Jung et al. 2012); however, reflectivity
alone is not sufficient to analyse all the variables in microphysics schemes (Jung et al.
2008). An accurate polarimetric radar forward operator could be used to assimilate
dual-polarisation radar quantities, such as KDP , to improve the forecast model initial
conditions.
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7.2 Summary

The aim of this thesis was to study uncertainty in Specific Differential Phase (KDP )
estimations from dual-polarisation radars, and the following key results have been iden-
tified:

• There is a lack of consistency between different methods of estimating KDP from
an artificial and a measured ΨDP profile. This inconsistency means that any
retrieval relation derived for one method will not have the desired accuracy if
used with another method, or potentially with another radar than that from which
the original data came. Where data is available, relations should be tweaked and
adjusted for each radar.

• None of the methods account well for the presence of non-negligible backscatter
differential phase and noise in the ΨDP measurements. Extra steps should be
taken to remove these before using any of these KDP estimation methods, includ-
ing consideration of radar settings such as pulse repetition frequency to minimise
noise in the collected data.

• Interpolating the ΨDP measurements between individual missing data points im-
proves the estimated KDP ; however, interpolating through noisy ΨDP decreases
the quality of estimated KDP . Therefore, removal of noise in the measurements
should be done before any interpolation of ΨDP .

• Observations have been presented that confirm the theoretically derived equation
in Schneebeli et al. (2013) and Lu et al. (2015) on how KDP is affected by the
radar elevation angle, and therefore the viewing geometry of hydrometeors.

• Using the equation relating KDP and radar elevation angle, the output from a
hydrometeor classification algorithm can be improved for elevation angles above
20◦. For elevation angles above 70◦, including reflectivity and temperature data
may help to further improve the adjustment of KDP ; however, this needs to be
tested through further observations and modelling.

• Polarimetric radar forward operators have the potential to unlock further uses of
dual-polarisation radar data alongside numerical weather prediction output, but
large inaccuracies exist, shown especially in the ice region of a frontal weather
event, due to different ice habits not being distinguished between in models and
forward operators.
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• The generalisation of ice in numerical weather prediction models (NWP) and
polarimetric radar forward operators contributes to polarimetric radar signatures,
such as the increase in KDP observed in areas of secondary ice production, not
being replicated. Better representation of ice will result in better identification
of these signatures, which can result in polarimetric measurements such as KDP

being used in data assimilation schemes to improve forecasting.

While there is promise in the use of KDP for quantitative precipitation estimation,
microphysical retrievals, and radar data assimilation based on the theory of KDP , in
practice there are issues regarding the accuracy of KDP estimations, and a deficiency
in the representation of ice in NWP models and forward operators, which have been
highlighted and addressed in this thesis; however, this still much to be done before the
full potential of KDP will be realised.
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Appendix A

WRF options

Global attributes from WRF out file for each domain, including all the namelist options
specified. Only the Thompson microphysics scheme run is shown (:MP PHYSICS =
8), however all runs share the same options, with the exception of the microphysics.

Domain 1:

:TITLE = “ OUTPUT FROM WRF V4.2.2 MODEL”
:START DATE = ”2018-01-24 00:00:00”
:SIMULATION START DATE = ”2018-01-24 00:00:00”
:WEST-EAST GRID DIMENSION = 351
:SOUTH-NORTH GRID DIMENSION = 351
:BOTTOM-TOP GRID DIMENSION = 81
:DX = 10000.f
:DY = 10000.f
:AERCU OPT = 0
:AERCU FCT = 1.f
:IDEAL CASE = 0
:DIFF 6TH SLOPEOPT = 0
:AUTO LEVELS OPT = 2
:DIFF 6TH THRESH = 0.1f
:DZBOT = 50.f
:DZSTRETCH S = 1.3f
:DZSTRETCH U = 1.1f
:SKEBS ON = 0
:SPEC BDY FINAL MU = 1
:USE Q DIABATIC = 0
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:GRIDTYPE = ”C”
:DIFF OPT = 1
:KM OPT = 4
:DAMP OPT = 0
:DAMPCOEF = 0.2f
:KHDIF = 0.f
:KVDIF = 0.f
:MP PHYSICS = 8
:RA LW PHYSICS = 1
:RA SW PHYSICS = 1
:SF SFCLAY PHYSICS = 1
:SF SURFACE PHYSICS = 2
:BL PBL PHYSICS = 1
:CU PHYSICS = 1
:SF LAKE PHYSICS = 0
:SURFACE INPUT SOURCE = 1
:SST UPDATE = 0
:GRID FDDA = 0
:GFDDA INTERVAL M = 0
:GFDDA END H = 0
:GRID SFDDA = 0
:SGFDDA INTERVAL M = 0
:SGFDDA END H = 0
:HYPSOMETRIC OPT = 2
:USE THETA M = 1
:GWD OPT = 0
:SF URBAN PHYSICS = 1
:SF SURFACE MOSAIC = 0
:SF OCEAN PHYSICS = 1
:SHCU PHYSICS = 0
:MFSHCONV = 0
:FEEDBACK = 1
:SMOOTH OPTION = 0
:SWRAD SCAT = 1.f
:W DAMPING = 0
:DT = 30.f
:RADT = 30.f
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:BLDT = 0.f
:CUDT = 5.f
:AER OPT = 0
:SWINT OPT = 0
:AER TYPE = 1
:AER AOD550 OPT = 1
:AER ANGEXP OPT = 1
:AER SSA OPT = 1
:AER ASY OPT = 1
:AER AOD550 VAL = 0.12f
:AER ANGEXP VAL = 1.3f
:AER SSA VAL = 0.85f
:AER ASY VAL = 0.9f
:MOIST ADV OPT = 1
:SCALAR ADV OPT = 1
:TKE ADV OPT = 1
:DIFF 6TH OPT = 0
:DIFF 6TH FACTOR = 0.12f
:OBS NUDGE OPT = 0
:BUCKET MM = -1.f
:BUCKET J = -1.f
:PREC ACC DT = 0.f
:ISFTCFLX = 0
:ISHALLOW = 0
:ISFFLX = 1
:ICLOUD = 1
:ICLOUD CU = 0
:TRACER PBLMIX = 1
:SCALAR PBLMIX = 0
:YSU TOPDOWN PBLMIX = 0
:GRAV SETTLING = 0
:DFI OPT = 0
:NTASKS X = 8
:NTASKS Y = 8
:NTASKS TOTAL = 64
:SIMULATION INITIALIZATION TYPE = ”REAL-DATA CASE”
:WEST-EAST PATCH START UNSTAG = 1
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:WEST-EAST PATCH END UNSTAG = 350
:WEST-EAST PATCH START STAG = 1
:WEST-EAST PATCH END STAG = 351
:SOUTH-NORTH PATCH START UNSTAG = 1
:SOUTH-NORTH PATCH END UNSTAG = 350
:SOUTH-NORTH PATCH START STAG = 1
:SOUTH-NORTH PATCH END STAG = 351
:BOTTOM-TOP PATCH START UNSTAG = 1
:BOTTOM-TOP PATCH END UNSTAG = 80
:BOTTOM-TOP PATCH START STAG = 1
:BOTTOM-TOP PATCH END STAG = 81
:GRID ID = 1
:PARENT ID = 0
:I PARENT START = 1
:J PARENT START = 1
:PARENT GRID RATIO = 1
:CEN LAT = 51.145f
:CEN LON = -1.44101f
:TRUELAT1 = 51.145f
:TRUELAT2 = 51.145f
:MOAD CEN LAT = 51.145f
:STAND LON = -1.441f
:POLE LAT = 90.f
:POLE LON = 0.f
:GMT = 0.f
:JULYR = 2018
:JULDAY = 24
:MAP PROJ = 1
:MAP PROJ CHAR = ”Lambert Conformal”
:MMINLU = ”MODIFIED IGBP MODIS NOAH”
:NUM LAND CAT = 21
:ISWATER = 17
:ISLAKE = 21
:ISICE = 15
:ISURBAN = 13
:ISOILWATER = 14
:HYBRID OPT = 2
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:ETAC = 0.2f

Domain 2:

:TITLE = “ OUTPUT FROM WRF V4.2.2 MODEL”
:START DATE = ”2018-01-24 00:00:00”
:SIMULATION START DATE = ”2018-01-24 00:00:00”
:WEST-EAST GRID DIMENSION = 401
:SOUTH-NORTH GRID DIMENSION = 401
:BOTTOM-TOP GRID DIMENSION = 81
:DX = 2000.f
:DY = 2000.f
:AERCU OPT = 0
:AERCU FCT = 1.f
:IDEAL CASE = 0
:DIFF 6TH SLOPEOPT = 0
:AUTO LEVELS OPT = 2
:DIFF 6TH THRESH = 0.1f
:DZBOT = 50.f
:DZSTRETCH S = 1.3f
:DZSTRETCH U = 1.1f
:SKEBS ON = 0
:SPEC BDY FINAL MU = 1
:USE Q DIABATIC = 0
:GRIDTYPE = ”C”
:DIFF OPT = 1
:KM OPT = 4
:DAMP OPT = 0
:DAMPCOEF = 0.2f
:KHDIF = 0.f
:KVDIF = 0.f
:MP PHYSICS = 8
:RA LW PHYSICS = 1
:RA SW PHYSICS = 1
:SF SFCLAY PHYSICS = 1
:SF SURFACE PHYSICS = 2
:BL PBL PHYSICS = 1
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:CU PHYSICS = 0
:SF LAKE PHYSICS = 0
:SURFACE INPUT SOURCE = 1
:SST UPDATE = 0
:GRID FDDA = 0
:GFDDA INTERVAL M = 0
:GFDDA END H = 0
:GRID SFDDA = 0
:SGFDDA INTERVAL M = 0
:SGFDDA END H = 0
:HYPSOMETRIC OPT = 2
:USE THETA M = 1
:GWD OPT = 0
:SF URBAN PHYSICS = 1
:SF SURFACE MOSAIC = 0
:SF OCEAN PHYSICS = 1
:SHCU PHYSICS = 0
:MFSHCONV = 0
:FEEDBACK = 1
:SMOOTH OPTION = 0
:SWRAD SCAT = 1.f
:W DAMPING = 0
:DT = 6.f
:RADT = 30.f
:BLDT = 0.f
:CUDT = 5.f
:AER OPT = 0
:SWINT OPT = 0
:AER TYPE = 1
:AER AOD550 OPT = 1
:AER ANGEXP OPT = 1
:AER SSA OPT = 1
:AER ASY OPT = 1
:AER AOD550 VAL = 0.12f
:AER ANGEXP VAL = 1.3f
:AER SSA VAL = 0.85f
:AER ASY VAL = 0.9f
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:MOIST ADV OPT = 1
:SCALAR ADV OPT = 1
:TKE ADV OPT = 1
:DIFF 6TH OPT = 0
:DIFF 6TH FACTOR = 0.12f
:OBS NUDGE OPT = 0
:BUCKET MM = -1.f
:BUCKET J = -1.f
:PREC ACC DT = 0.f
:ISFTCFLX = 0
:ISHALLOW = 0
:ISFFLX = 1
:ICLOUD = 1
:ICLOUD CU = 0
:TRACER PBLMIX = 1
:SCALAR PBLMIX = 0
:YSU TOPDOWN PBLMIX = 0
:GRAV SETTLING = 0
:DFI OPT = 0
:NTASKS X = 8
:NTASKS Y = 8
:NTASKS TOTAL = 64
:SIMULATION INITIALIZATION TYPE = ”REAL-DATA CASE”
:WEST-EAST PATCH START UNSTAG = 1
:WEST-EAST PATCH END UNSTAG = 400
:WEST-EAST PATCH START STAG = 1
:WEST-EAST PATCH END STAG = 401
:SOUTH-NORTH PATCH START UNSTAG = 1
:SOUTH-NORTH PATCH END UNSTAG = 400
:SOUTH-NORTH PATCH START STAG = 1
:SOUTH-NORTH PATCH END STAG = 401
:BOTTOM-TOP PATCH START UNSTAG = 1
:BOTTOM-TOP PATCH END UNSTAG = 80
:BOTTOM-TOP PATCH START STAG = 1
:BOTTOM-TOP PATCH END STAG = 81
:GRID ID = 2
:PARENT ID = 1
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:I PARENT START = 135
:J PARENT START = 135
:PARENT GRID RATIO = 5
:CEN LAT = 51.05497f
:CEN LON = -1.584106f
:TRUELAT1 = 51.145f
:TRUELAT2 = 51.145f
:MOAD CEN LAT = 51.145f
:STAND LON = -1.441f
:POLE LAT = 90.f
:POLE LON = 0.f
:GMT = 0.f
:JULYR = 2018
:JULDAY = 24
:MAP PROJ = 1
:MAP PROJ CHAR = ”Lambert Conformal”
:MMINLU = ”MODIFIED IGBP MODIS NOAH”
:NUM LAND CAT = 21
:ISWATER = 17
:ISLAKE = 21
:ISICE = 15
:ISURBAN = 13
:ISOILWATER = 14
:HYBRID OPT = 2
:ETAC = 0.2f

Domain 3:

:TITLE = “ OUTPUT FROM WRF V4.2.2 MODEL”
:START DATE = ”2018-01-24 00:00:00”
:SIMULATION START DATE = ”2018-01-24 00:00:00”
:WEST-EAST GRID DIMENSION = 501
:SOUTH-NORTH GRID DIMENSION = 501
:BOTTOM-TOP GRID DIMENSION = 81
:DX = 400.f
:DY = 400.f
:AERCU OPT = 0
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:AERCU FCT = 1.f
:IDEAL CASE = 0
:DIFF 6TH SLOPEOPT = 0
:AUTO LEVELS OPT = 2
:DIFF 6TH THRESH = 0.1f
:DZBOT = 50.f
:DZSTRETCH S = 1.3f
:DZSTRETCH U = 1.1f
:SKEBS ON = 0
:SPEC BDY FINAL MU = 1
:USE Q DIABATIC = 0
:GRIDTYPE = ”C”
:DIFF OPT = 1
:KM OPT = 4
:DAMP OPT = 0
:DAMPCOEF = 0.2f
:KHDIF = 0.f
:KVDIF = 0.f
:MP PHYSICS = 8
:RA LW PHYSICS = 1
:RA SW PHYSICS = 1
:SF SFCLAY PHYSICS = 1
:SF SURFACE PHYSICS = 2
:BL PBL PHYSICS = 1
:CU PHYSICS = 0
:SF LAKE PHYSICS = 0
:SURFACE INPUT SOURCE = 1
:SST UPDATE = 0
:GRID FDDA = 0
:GFDDA INTERVAL M = 0
:GFDDA END H = 0
:GRID SFDDA = 0
:SGFDDA INTERVAL M = 0
:SGFDDA END H = 0
:HYPSOMETRIC OPT = 2
:USE THETA M = 1
:GWD OPT = 0
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:SF URBAN PHYSICS = 1
:SF SURFACE MOSAIC = 0
:SF OCEAN PHYSICS = 1
:SHCU PHYSICS = 0
:MFSHCONV = 0
:FEEDBACK = 1
:SMOOTH OPTION = 0
:SWRAD SCAT = 1.f
:W DAMPING = 0
:DT = 1.2f
:RADT = 30.f
:BLDT = 0.f
:CUDT = 5.f
:AER OPT = 0
:SWINT OPT = 0
:AER TYPE = 1
:AER AOD550 OPT = 1
:AER ANGEXP OPT = 1
:AER SSA OPT = 1
:AER ASY OPT = 1
:AER AOD550 VAL = 0.12f
:AER ANGEXP VAL = 1.3f
:AER SSA VAL = 0.85f
:AER ASY VAL = 0.9f
:MOIST ADV OPT = 1
:SCALAR ADV OPT = 1
:TKE ADV OPT = 1
:DIFF 6TH OPT = 0
:DIFF 6TH FACTOR = 0.12f
:OBS NUDGE OPT = 0
:BUCKET MM = -1.f
:BUCKET J = -1.f
:PREC ACC DT = 0.f
:ISFTCFLX = 0
:ISHALLOW = 0
:ISFFLX = 1
:ICLOUD = 1
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:ICLOUD CU = 0
:TRACER PBLMIX = 1
:SCALAR PBLMIX = 0
:YSU TOPDOWN PBLMIX = 0
:GRAV SETTLING = 0
:DFI OPT = 0
:NTASKS X = 8
:NTASKS Y = 8
:NTASKS TOTAL = 64
:SIMULATION INITIALIZATION TYPE = ”REAL-DATA CASE”
:WEST-EAST PATCH START UNSTAG = 1
:WEST-EAST PATCH END UNSTAG = 500
:WEST-EAST PATCH START STAG = 1
:WEST-EAST PATCH END STAG = 501
:SOUTH-NORTH PATCH START UNSTAG = 1
:SOUTH-NORTH PATCH END UNSTAG = 500
:SOUTH-NORTH PATCH START STAG = 1
:SOUTH-NORTH PATCH END STAG = 501
:BOTTOM-TOP PATCH START UNSTAG = 1
:BOTTOM-TOP PATCH END UNSTAG = 80
:BOTTOM-TOP PATCH START STAG = 1
:BOTTOM-TOP PATCH END STAG = 81
:GRID ID = 3
:PARENT ID = 2
:I PARENT START = 150
:J PARENT START = 150
:PARENT GRID RATIO = 5
:CEN LAT = 51.03695f
:CEN LON = -1.61264f
:TRUELAT1 = 51.145f
:TRUELAT2 = 51.145f
:MOAD CEN LAT = 51.145f
:STAND LON = -1.441f
:POLE LAT = 90.f
:POLE LON = 0.f
:GMT = 0.f
:JULYR = 2018
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:JULDAY = 24
:MAP PROJ = 1
:MAP PROJ CHAR = ”Lambert Conformal”
:MMINLU = ”MODIFIED IGBP MODIS NOAH”
:NUM LAND CAT = 21
:ISWATER = 17
:ISLAKE = 21
:ISICE = 15
:ISURBAN = 13
:ISOILWATER = 14
:HYBRID OPT = 2
:ETAC = 0.2f
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