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Abstract 

Traditional estimates of the population focus on residential populations and 

capture a single point in time. These estimates fail to account for the frequent 

fluctuations in human mobility, which significantly impacts the size and demographic 

composition of small area populations. Despite the impact and utility of estimates of 

the ambient population, they are not currently published as part of official population 

statistics. Estimates of the ambient population are a valuable asset in policymaking 

and can be utilised to inform emergency planning, retail analysis, epidemiological 

models, and crime analysis. In this thesis, estimates of the ambient population are 

produced and applied to a study of the spatial distribution of crime rates. 

 

The thesis begins by identifying and critiquing data sources which may be 

useful for building estimates of the ambient population. This provides a framework of 

reference for researchers within urban analytics and other areas in which an accurate 

measurement of the ambient population is required. A method of statistical 

modelling is utilised in conjunction with novel data to produce daytime and night-

time estimates of the ambient population in an urban area. These estimates are then 

employed to demonstrate any influence that the choice of denominator has on the 

spatial distribution of crime. This is the first time that a study of crime has utilised a 

comprehensive measure of the ambient population, drawing on high-resolution 

footfall counts and other novel sources of data. 
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Chapter 1 

Introduction 

1.1 Introduction to the research 

In recent decades, intensive urbanisation has resulted in over 55% of the 

global population living in cities or urban areas (United Nations, 2018). This figure is 

expected to continue to rise to 68% by 2050, with a total of 2.5 billion people 

estimated to live in urban areas by this date (United Nations, 2018). Increases in the 

size of the population living and working in urban areas pose significant challenges to 

the planning and management of numerous issues, including public safety, health, 

and infrastructure (Kuddus et al., 2020). A fundamental barrier to effective planning 

and management within urban areas is the lack of estimates of the size of these 

populations and the absence of a standardised methodology to produce these 

estimates. Most commonly, estimates of the size of the population enumerate the so-

called resident population, which is a measure of the spatial distribution of the night-

time population (Bhaduri et al., 2007). Therefore, these estimates fail to account for 

fluctuations in the size of the populations that occur due to human activities. 

Consequently, estimates of the resident population have limited value as they do not 

capture the entire population within an area. As levels of global urbanisation continue 

to rise, small area estimates of the size of the non-residential population will be a vital 

tool within research and policymaking and will enable the impacts of urbanisation on 

a range of services to be better understood. 

 

A key challenge of producing small area estimates of the size of the ambient 

population is the selection of appropriate population data and suitable methodology. 

The use of open-source data and a reproducible methodology is key to ensuring that 

the accurate estimates of the size of the ambient population can be easily produced 

for applications across public sectors and within academic research. Despite the 
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utilisation of suitable population data being key to the production of accurate 

estimates, many previous studies have simply employed novel types of data, such as 

mobile phone or social media data, as a proxy of the size of the ambient population 

(Malleson and Andresen, 2016; Kounadi et al., 2018; Ristea et al., 2018; Tucker et al., 

2021). When used in isolation, these novel types of data can be problematic as there 

is often socio-economic disparities in who they do and do not represent. 

Consequently, estimates employed in previous studies fail to capture all sectors of the 

ambient population and an approach that can enumerate the whole ambient 

population is required. The validation of these datasets has also posed a significant 

barrier due to the lack of ground truth data available. This thesis aims to address these 

challenges. 

 

One application for which small area estimates of the size of the ambient 

population are crucial is within crime studies. Crime rates are considered the most 

meaningful statistic within crime studies and are valuable for communicating risk, 

informing resource allocation, and influencing policymaking and planning (Boggs, 

1965; National Academy of Sciences, 2016). The importance of appropriate measures 

of the population at risk for calculating crime rates has been highlighted within the 

literature (Boggs, 1965; Harries, 1981). Existing studies have demonstrated that crime 

rates calculated using the resident population as a measure of the population at risk 

may not be accurate and, therefore, do not accurately communicate the real risk of 

crime (Boggs, 1965; Malleson and Andresen, 2015; Hanaoka, 2018; Ristea et al., 2018; 

He et al., 2020). However, existing studies have not yet explored the suitability of 

different measures of the non-residential population as measures of the population 

at risk. This gap in the literature provides an opportunity to assess the impact of 

different measures of the population at risk, including the ambient population, on the 

spatial distribution of crime rates. Identifying the most appropriate measure of the 

population at risk will enable the production of more accurate crime which can then 

inform policing. 
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The production of small area estimates of the size of the ambient population 

presents an opportunity to explore suitable data types and methodologies. These 

estimates can then be applied to aid the development of a better understanding of 

the spatial distributions of crime rates. This thesis explores types of population data 

and their suitability for producing estimates of the size of the ambient population. An 

approach is then developed which employs these data in conjunction with a method 

of statistical modelling to produce estimates of the size of the ambient population. A 

case study of West Yorkshire (UK) is employed to demonstrate both the utility and 

importance of these estimates. The variations in the spatial distributions of the crime 

rates of two crime types (‘theft from the person’ and ‘violence and sexual offences’), 

calculated using different measures of the population (estimates of the resident, 

workday, and the ambient populations), are investigated. 

 

1.2 Research aim and objectives 

The overall aim of this research is to explore the development of small area 

estimates of the size of the ambient population in an urban area. To fulfil this aim, the 

following objectives have been established: 

1. Review and discuss the literature relating to quantifying the size of the ambient 

population and comparable small area estimates of populations and their use 

within crime studies. 

2. Assess and critique sources of population data that have the potential to be used 

to produce estimates of the size of the ambient population in urban areas, 

including those utilised in the existing literature. 

3. Develop small area estimates of the size of the ambient population for an urban 

area. 

4. Produce a validation dataset that captures footfall counts in an urban area. 

5. Employ the validation dataset to assess the accuracy of the manual footfall counts, 

the footfall camera counts and the model estimates. 
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6. Utilise the estimates of the size of the ambient population to examine the impact 

of different measures of the population on the spatial distribution of the rates of 

two crime types; ‘theft from the person’ and ‘violence and sexual offences’. 

 

1.3 Thesis structure 

This thesis is presented in the alternative format as described by the University 

of Leeds. The six chapters of the thesis are outlined below, and Table 1.1 highlights 

the structure of the thesis in relation to the research objectives. It should be noted 

that chapters 3, 4 and 5 of the thesis are self-contained manuscripts published in or 

submitted to peer-reviewed journals.  

Table 1.1 The thesis structure in relation to the research objectives. 

Research Objective Chapter number 

1. Review and discuss the literature relating to quantifying 

the size of the ambient population and comparable 

small area estimates of populations and their use within 

crime studies. 

Chapter 2 

2. Assess and critique sources of population data that have 

the potential to be used to produce estimates of the size 

of the ambient population in urban areas, including 

those utilised in the existing literature. 

Chapter 2  

Chapter 3 

3. Develop small area estimates of the size of the ambient 

population for an urban area. 

Chapter 4 

4. Produce a validation dataset that captures footfall 

counts in an urban area. 

Chapter 4 

5. Employ the validation dataset to assess the accuracy of 

the manual footfall counts, the footfall camera counts 

and the model estimates. 

Chapter 4 
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Chapter 2 presents a critical review of literature relevant to producing 

estimates of the size of the ambient population. This chapter defines the term the 

'ambient population' and highlights early studies of the topic. Then follows a critical 

discussion of both conventional and novel types of population data which may be 

useful in producing small area estimates of the size of the ambient population. The 

chapter then explores studies within environmental criminology that employ 

estimates of the ambient population to assess the relationships between the crime 

rates, calculated using different measures of the population at risk and their spatial 

distributions. The work in this chapter highlights the need to develop a better 

understanding of the spatio-temporal differences between population data that have 

the potential to be used to produce estimates of the size of the ambient population. 

This opportunity is explored within the subsequent chapter. 

 

The work in Chapter 3 has been published in the ISPRS International Journal 

of Geo-Information as: 

Whipp, A., Malleson, N., Ward, J. and Heppenstall, A., 2021. Estimates of the 

Ambient Population: Assessing the Utility of Conventional and Novel Data Sources. 

ISPRS International Journal of Geo-Information, 10(3), p.131. 

  

Chapter 3 aims to identify and assess the utility of sources of novel and 

conventional data for producing estimates of the size of the ambient population. The 

work begins with a critical discussion of types of population data and then explores 

and compares the spatio-temporal distribution of the available data. The results of 

6. Utilise the estimates of the size of the ambient 

population to examine the impact of different measures 

of the population on the spatial distribution of the rates 

of two crime types; ‘theft from the person’ and ‘violence 

and sexual offences’. 

Chapter 5 
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the work highlight that footfall camera count data have not yet been explored within 

the literature and are a potentially viable type of population data for producing 

estimates of the size of the ambient population. The work in this chapter also 

acknowledges that while footfall camera count data may be valuable, they have not 

yet been validated. 

 

The work in Chapter 4 is ready to be submitted to a peer reviewed journal as: 

Whipp, A., Malleson, N., Ward, J. and Heppenstall, A. Towards a 

comprehensive measure of the ambient population: Building estimates using 

geographically weighted regression. 

 

Chapter 4 develops a novel approach for producing estimates of the size of 

the ambient population in an urban area. A method of statistical modelling, 

geographically weighted regression, is utilised in conjunction with indicators of the 

size of the population to estimate the number of footfall counts. The footfall camera 

count data and the model estimates are validated using a novel dataset enumerating 

manual footfall counts produced as part of this research. The work in this chapter 

highlights the utility of openly available, novel data for producing estimates of the size 

of the ambient population in urban areas. 

 

The work in Chapter 5 has been accepted with revisions by PlosOne: 

Whipp, A., Malleson, N., Ward, J. and Heppenstall, A. Alternative measures of 

the population at risk and their impact on the spatial distribution of crime. 

 

Chapter 5 presents a study in which alternative measures of the population at 

risk are employed to investigate the impact on the spatial distributions of two crime 

types: ‘theft from the person’ and ‘violence and sexual offences’. Three measures of 

the population at risk are used: the resident population, the workday population, and 

the ambient population. The estimates of the size of the ambient population utilised 
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in this study are produced using the approach detailed in Chapter 4. The study finds 

that for rates of ‘theft from the person’ and rates of ‘violence and sexual offences’, 

the use of both the resident and workday populations results in the risk of 

victimisation within urban centres being overestimated. In contrast, the risk in 

residential areas is underestimated. The findings of the study highlight the value of 

estimates of the ambient population for producing accurate crime rates and support 

the demand for geographically comprehensive estimates that can be utilised by police 

forces and policymakers. 

 

The thesis is concluded in Chapter 6. The chapter begins by outlining the 

novelty of the thesis. The chapter then proceeds to provide a summary of the thesis 

and demonstrates the extent to which the research aim and objectives have been 

met. The limitations of the research are noted and recommendations for future work 

are made. An outlook on producing and utilising estimates of the size of the ambient 

population and concluding remarks are also documented.   
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Chapter 2 

Understanding the Ambient Population 

2.1  Introduction 

The key aim of this thesis is to explore the development of small area 

estimates of the size of the ambient population in an urban area. To fulfil this aim, a 

thorough understanding of the ambient population and the relevant literature is 

required. This chapter provides a comprehensive review of the existing literature 

related to the ambient population, types of population data, and the application of 

estimates of the ambient population within environmental criminology. Section 2.2 

defines the term the ‘ambient population’ and highlights early studies of the topic. 

Section 2.3 follows with a critical discussion of traditional and novel types of 

population data which may be valuable for enumerating the size of the ambient 

population. In Section 2.4 studies within environmental criminology that have 

employed estimates of the ambient population to assess the relationships between 

the crime rates calculated using different measures of the population at risk and their 

spatial distributions are presented. 

 

2.2 Defining the ambient population 

Typically, estimates of the size of the population enumerate the resident 

population of an area at a single point in time, i.e., the number of people who have 

lived or intend to live at an address continuously for a twelve-month period (United 

Nations, 2008a). However, the utility of these estimates is limited as they do not 

capture the significant fluctuations in the size of the population which occur due to 

human activity patterns, i.e., the ambient population (Bell and Ward, 2000)Be. The 

ambient population can be defined as “the number of people within a given 

geographical area at a specific point in time, excluding individuals at their place of 

residence and those utilising modes of transport” (Whipp et al., 2021, p.131). This 

definition is used throughout this thesis, but it should be noted that there are 
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numerous terms utilised within the existing literature that are used synonymously 

with the term the ‘ambient population’. These terms include ‘real-time census’ 

(Kontokosta and Johnson, 2017), ‘temporary population’ (Charles-Edwards et al., 

2008), ‘daytime population’ (Schmitt, 1956; Boeing, 2018), ‘non-residential 

population’ (Berry et al., 2016), ‘mobile population’ (Malleson and Andresen, 2015b), 

‘service population’ (Markham et al., 2013), ‘functional population’ (Nelson and 

Nicholas, 1992), and ‘seasonal population’ (Adamiak et al., 2017). This chapter 

reviews works that employ these terms, or the term the ‘ambient population’.  

 

There is a considerable need for estimates of the size of the ambient 

population across a range of applications, including emergency planning and 

management (Smith et al., 2005; Chen and McAneney, 2006; Bengtsson et al., 2011), 

retail analysis (Soundararaj et al., 2020), service planning (Markham et al., 2013), 

environmental criminology (Malleson and Andresen, 2015a; Malleson and Andresen, 

2015b; Malleson and Andresen, 2016; Hipp et al., 2019; Ristea et al., 2020; Haleem et 

al., 2020; Jung et al., 2020; He et al., 2020; Tucker et al., 2021), and urban analytics 

(Ratti et al., 2006; Reades et al., 2007; Reades et al., 2009). The importance of both 

understanding and estimating the size of the ambient population was first highlighted 

in studies published in the 1950s by Foley (1954) and Schmitt (1956). Despite the need 

for estimates of the size of the ambient population being acknowledged within the 

literature over sixty years ago, they are not currently a part of the standard suite of 

official population statistics in any nation. Historically, this has been due to the lack of 

available data and the absence of a standardised methodology to produce estimates 

of the size of the ambient population (Malleson and Andresen, 2015a; Malleson and 

Andresen, 2016; Crols and Malleson, 2019; He et al., 2020). However, it was stated by 

Smith (1989) that the development of a single methodology that can be utilised across 

varying contexts and geographies was likely impossible. It should be noted that this 

assertion was made prior to the proliferation of spatio-temporal data produced by 

emergent technologies in recent decades. However, geographic variations in the 

drivers of the size of the ambient population have not yet been explored within the 
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literature. The following section critically reviews types of population data that may 

be valuable for producing estimates of the size of the ambient population. 

 

2.3 Types of population data 

The ability to estimate the size of the ambient population has previously been 

limited by the lack of suitable data. However, in the last two decades vast volumes of 

spatio-temporal data have been produced by emergent technologies. This section 

critically reviews types of population data that may be valuable for producing 

estimates of the ambient population. These include conventional data types, such as 

census data, official statistics, and travel survey data, and novel data types, including 

mobile phone data, geo-located social media data, Wi-Fi sensor data, and mobility 

data. 

 

2.3.1 Census data and official population statistics 

Estimates of the size of populations have conventionally been a product of 

national surveys, most notably censuses and other official population statistics. Unlike 

many other sources of data, census data are geographically comprehensive and 

enumerate close to the whole population, for example, the 2011 Census of England 

and Wales was completed by approximately 95% of households (Office for National 

Statistics, 2013b). Consequently, census data are considered to represent the gold 

standard of data collection (Rees et al., 2002). 

 

There are, however, several significant limitations of national census data and 

other official population statistics in that they are only representative of a single point 

in time (Census Day) and the data are commonly only collected at five or ten-year 

intervals. Consequently, the data fail to capture diurnal, seasonal, and event-driven 

fluctuations, which contribute to the size of the ambient population and become 

outdated. Additionally, due to the length of data processing, data are often published 

over a year after data collection; thus, they become quickly outdated. To address this 
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issue and provide more up-to-date official estimates of the resident population, the 

statistical agencies in several countries produce mid-year population estimates, 

including England, Wales, and the US. Mid-year population estimates are calculated 

using the most recent estimates of the resident population from the national census, 

in addition to the numbers of births, deaths, and internal and external migration. This 

allows more current estimates of the resident population to be produced; however, 

mid-year estimates still do not account for any short-term visitors or diurnal 

movements. 

 

As estimates of the resident population only enumerate the number of 

individuals living at a residential address, they are considered to have limited utility 

for enumerating the size of the ambient population, as they fail to capture human 

mobility due to work, leisure, and other activities. However, the 2011 the Census for 

England and Wales captured estimates of the workday population which provide the 

typical location of individuals during standard working hours, in addition to the 

number of people in the area who are not in employment (Office for National 

Statistics, 2013a). The US Census Bureau produces similar data in the form of 

Commuter-Adjusted Population Estimates, which are akin to workday population 

estimates. These estimates are calculated by adding the total resident population to 

the total workers working in an area, then subtracting the total workers who live in 

the area (United States Census Bureau, 2017). Although work-related movements are 

a key element of diurnal populations, estimates of the workday population do not 

capture fluctuations in the size of the ambient population, which result from other 

activities. 

 

Despite the limitations of census data, as described above, they have 

nonetheless been employed in a number of studies to produce estimates of the 

ambient population in conjunction with other datasets (Gober and Mings, 1984; 

Smith et al., 2005; Martin et al., 2009a; Martin et al., 2015). A database of the ambient 

population was produced by Smith et al. (2005) for use in hazard modelling and 

provided geographically comprehensive coverage of England and Wales (UK). The 
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database drew on census estimates of the resident and workday populations and 

official population statistics enumerating care home, prison, hospital, and school 

populations, in addition to the locations of leisure facilities and retail centres. Martin 

et al. (2015) later proposed a framework for estimating the ambient population, 

which drew on similar datasets, including census data and other forms of official 

population statistics, such as higher education statistics and hospital episode 

statistics. Studies by Gao et al. (2014) and Qi et al. (2015) utilised demographic data 

and resident population estimates from the Chinese census with land use data to 

produce estimates of the daytime ambient population. In 2018, daytime ambient 

population densities were calculated in a study of San Francisco (US) using US census 

data and payroll statistics (Boeing, 2018). The aforementioned studies utilised 

traditional datasets, which provided comprehensive spatial information, but did not 

employ novel sources of data that are able to add temporal detail, such as seasonality. 

 

 Census data have also been utilised, in conjunction with ancillary data, 

to produce LandScan, a dataset of estimates of the ambient population. LandScan is 

a global dataset developed annually by Oak Ridge National Laboratory. The dataset is 

produced using census data, remotely sensed images and dasymetric modelling to 

disaggregate estimates of the ambient population, averaged over a one-year period, 

within a spatial boundary (Oak Ridge National Laboratory, n.d.). The data represent 

estimates of the ambient population for a 24-hour period at a spatial resolution of 

1km2 (Oak Ridge National Laboratory, n.d.). LandScan data are freely available for 

academic use and have consequently been utilised in several studies (Dobson et al., 

2000; Sutton et al., 2001; Chen, 2002; Dobson et al., 2003; Bhaduri et al., 2007); 

however, the data lack detailed temporal information. As the data are averaged over 

a 24-hour period, diurnal fluctuations, and seasonality, which are crucial to producing 

accurate estimates of the ambient population, are not captured. 

 

As census data do not quantify temporary populations, which significantly 

impact the size of the ambient population, previous studies have successfully 

employed other forms of official statistics. In order to estimate the size of the service 
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population in the context of Indigenous persons in Australia, Markham et al. (2013) 

utilised health service data, while Adamiak et al. (2017) measured seasonal 

populations in Finland using the registries of second home ownership. These studies 

highlight the utility of official statistics to enumerate temporary populations which 

are not captured by census data and offer a low-cost alternative to novel sources of 

data, such as mobile phone data, which can be financially expensive to acquire. 

However, it should be noted that while these studies were able to estimate the size 

of seasonal populations not captured by the census, they did not enumerate more 

temporary visitors, such as workers and visitors. 

 

 While data from national censuses and official population statistics 

provide extensive geographical coverage and high levels of enumeration, the 

frequency of data collection and the temporal representation of the data significantly 

limit their utility. Despite these limitations, these data sources have been employed 

extensively within the existing literature, highlighting their utility for producing 

estimates of the size of the ambient population. 

 

2.3.2 Travel survey data 

Travel survey data capture information regarding human activity patterns that 

lead to fluctuations in the size of the ambient population. Travel survey data often 

provide information regarding journey purpose, destination, and duration, which can 

be used to estimate the size of the ambient population. Both national governments 

and private organisations conduct travel surveys at local and national levels, but 

commonly lack the geographical comprehensiveness of census data. 

 

 Travel survey data have been successfully employed to produce 

estimates of the size of the ambient population in both Australia and Japan. Lau 

(2009) employed travel survey data to estimate the size of the ambient population in 

Melbourne (Australia) for vehicle route-planning. However, at the time of publication, 

the travel survey data used were over a decade old; thus, the findings were unlikely 
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to be representative of the true spatio-temporal distribution of the ambient 

population. Kashiyama et al. (2017) employed agent-based modelling to produce an 

open dataset of estimates of the ambient population across urban areas of Japan 

using travel survey data and national census data. The estimates were then validated 

using commercial mobility and traffic census data. However, as travel survey data for 

the study area are collected once every five years, the data cannot reflect seasonal 

changes in human activity patterns, which are a crucial element of the ambient 

population (Bell, 2001; Kashiyama et al., 2017). Additionally, the complexity of the 

model developed is a barrier to the approach being widely utilised within research 

and policymaking. 

 

 Travel surveys can be utilised to quantify seasonal populations, which 

official statistics often fail to capture. Warchivker et al. (2000) utilised travel surveys 

to explore spatial changes in the residence of Aboriginal communities, a group 

characterised by high levels of mobility, in central Australia. The travel surveys used 

in this study were conducted during different seasons to account for seasonality and 

evidenced high levels of inter-community and intra-community mobility. Happel and 

Hogan (2002) adopted a similar approach in a study that examined seasonal 

movements of population in Arizona, Florida and Texas (US); however, the authors 

noted the significant limitations relating to the suitability of the data. These studies 

demonstrated that travel survey data can represent seasonal fluctuations in the 

ambient population if surveys are conducted at frequent intervals to capture different 

seasons and annual fluctuations. However, the frequent collection of data is often 

beyond the scope of surveys undertaken by national and local governments. 

 

While travel survey data capture the activity patterns of individuals, there are 

several limitations to their use in producing estimates of the size of the ambient 

population. Travel survey data are most commonly self-reported, resulting in omitted 

journeys that significantly impact both data accuracy and quality (Sallis and Saelens, 

2000; Stopher et al., 2005; Bricka et al., 2009; Lubans et al., 2011). Additionally, there 

are challenges associated with the development of statistically valid sampling 
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methods to represent seasonal populations (Happel and Hogan, 2002; Kashiyama et 

al., 2017). The issue of infrequent data collection, which is due to the financial and 

temporal expenses associated with conducting surveys, is acknowledged in the 

studies reviewed. The studies reviewed in this section highlight the value of travel 

survey data if collected at frequent intervals. However, some novel types of 

population data, such as mobile phone data, offer alternatives to travel surveys as 

they continuously capture human activity patterns; thus, offering high levels of spatio-

temporal detail. The subsequent sections explore novel types of population data. 

 

2.3.3 Mobile phone data 

Mobile phone data have garnered significant interest within the research 

community due to the high penetration rates of mobile phones and the spatio-

temporal data they produce. These data are collected by network operators and 

provide mobile positioning data that log a mobile phone's approximate location. 

Several methods can be employed to geo-locate mobile phones; however, due to 

higher levels of accuracy, the triangulation of signal strengths from surrounding cell 

towers is most commonly used (Toole et al., 2012). Consequently, the accuracy of 

mobile phone positioning data is higher in areas that contain higher densities of cell 

towers, such as cities and urban areas. As mobile phones are used globally, the utility 

of these data for estimating human activity patterns in both developed and 

developing countries has been acknowledged within the existing literature (Blondel 

et al., 2015; Wesolowski et al., 2015; Manley and Dennett, 2019). Therefore, mobile 

phone data have the potential to be utilised as a part of a standardised framework to 

produce estimates of the size of the ambient population. 

 

Mobile phone data have been utilised to produce estimates of the ambient 

population in several studies. To aid understanding of urban environments in a case 

study of Milan (Italy), Ratti et al. (2006) employed data from a major European 

telecommunications provider. The work visualised cell phone call density to 

demonstrate activity patterns across the city. Reades et al. (2007) used mobile phone 
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data to characterise locations in Rome (Italy) and identify clusters, such as night-time 

leisure and early morning commuting, based on mobile phone usage. Data from 

Telecom Italia Mobile were utilised in conjunction with commercial premises data in 

order to demonstrate a measurable link between mobile phone usage and business 

activity in Rome (Italy) (Reades et al., 2009).  A study by Deville et al. (2014) utilised 

over one billion mobile phone call records from Portugal and France to estimate 

population densities; however, the data represented only 20% of the market in 

Portugal and 30% of the market in France (Deville et al., 2014). The estimates of 

population density were then validated using remotely sensed images and ancillary 

data (Deville et al., 2014). Several studies have employed mobile phone data in 

conjunction with other data types to produce estimates of the ambient population 

(Lwin et al., 2016). Lwin et al. (2016) utilised mobile call records, person trip data, and 

geo-located Tweets in conjunction with a space-time multiple regression model to 

produce grid-based estimates of the population for the city of Kobe (Japan), at thirty-

minute intervals. Mobile phone data have also been employed to study seasonal and 

temporary fluctuations in the population, which are crucial elements of the ambient 

population. Silm and Ahas (2010) attempted to quantify movements of seasonal 

populations in Estonia, while Bengtsson et al. (2011) explored shifts in the size of the 

population following the 2010 earthquake and consequent cholera outbreak in Haiti.  

 

Despite mobile phone data providing high spatio-temporal resolution 

information regarding the movements of mobile phone users, the data have several 

limitations. While mobile phone data are produced at a high-spatial resolution, the 

data are often aggregated to a lower geographical level to protect user privacy. This 

significantly limits the utility of the data, as the size of the ambient population will 

vary considerably across space; thus, spatial detail is crucial for producing accurate 

estimates. Additionally, there are concerns regarding the spatial accuracy of mobile 

phone data. The positioning accuracy of 3G and 4G networks is 200 metres and above 

150 metres, respectively; however, the introduction of 5G cellular networks will allow 

higher accuracy spatial data to be produced (up to 1 metre). However, increased 

spatial accuracy will have a limited impact on the utility of the data if they are 
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aggregated to a low geographical level. It is also important to note that the geography 

of studies that employ mobile phone data is reflective of data availability and 

accessibility. For example, several studies have focussed on Italian cities, particularly 

Milan and Rome, as aggregated and anonymised mobile phone data for these areas 

were made available by a national telecommunications provider. As mobile phone 

data are commonly commercial datasets, they can be extremely costly to acquire and 

may not be available with high levels of spatio-temporal detail nor for all geographic 

regions. 

 

2.3.4 Geo-located social media data 

The increasing popularity of social media platforms, such as Twitter, Instagram 

and Foursquare, has resulted in the availability of large volumes of spatio-temporal 

information. The aforementioned social media platforms allow users to share their 

location with a post, providing spatio-temporal data which can be utilised to quantify 

the size of the ambient population. Geo-located social media data provide more 

accurate spatial information than mobile phone data as they often utilise GPS 

coordinates (García-Palomares et al., 2018). The spatial accuracy of geo-located social 

media data, therefore, allows these data to be used in conjunction with other types 

of data, such as land use data, which can aid in building more comprehensive 

estimates of the ambient population. Geo-located social media data have been 

utilised as a proxy of the ambient population in several crime-based studies (Steiger 

et al., 2015; Malleson and Andresen, 2015b; Hipp et al., 2019) and to estimate the 

size of visitor populations (Hamstead et al., 2018).  

 

Twitter data have been acknowledged as being particularly well suited for 

building estimates of the size of the ambient population as Tweet data are openly 

available via an Application Programming Interface (API); however, the data have 

several shortcomings. It should be noted that only a limited volume of data are 

available, as only a random sample of Tweets that accounts for 1% of the feed can be 

downloaded (Tucker et al., 2021). Furthermore, a study by Sloan et al. (2013) found 
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that only 0.85% of Twitter data are geotagged, resulting in a small sample of data. 

Rates of geotagging may be low as location services on Twitter are disabled by default, 

thus must be enabled by the user. Consequently, users who have privacy concerns 

relating to sharing their location or those who are unaware of the service may not use 

the service. Demographic factors, such as age and socio-economic status, have a 

significant impact on the volume and frequency of geotagged Tweets (Longley et al., 

2015). While the demographics of Twitter users have been quantified (OFCOM, 2020), 

a study by Sloan et al. (2013) found that the characteristics of users who geotag 

Tweets were statistically significantly different from the wider Twitter users. Thus, 

geotagged Tweets are neither representative of all Twitter users nor of the ambient 

population as a whole. In 2019, Twitter announced the ability to geotag Tweets with 

precise geographic information would no longer be available, thus limiting the use of 

Twitter data in future attempts to estimate the size of the ambient population (Tucker 

et al., 2021). 

 

2.3.5 Pedestrian counters 

Pedestrian counters are a source of individual level movement data which are 

most commonly captured using either footfall cameras or Wi-Fi sensors. Footfall 

cameras capture data using a counting device, often mounted on walls or streetlights, 

which record high quality video. Image processing and target-specific tracking 

algorithms are employed to identify pedestrians and enumerate them as they pass a 

virtual line. Due to the spatio-temporal detail these data are able to capture and their 

ability to capture the whole population, and not only those who use particular 

services, such as Wi-Fi enabled devices or social media platforms, they have the 

potential to enumerate the ambient population. At the time of writing, there are no 

studies that the author is aware of that employ footfall camera data to estimate the 

size of the ambient populations, or produce other small area estimates of the 

population. Therefore, there is a marked opportunity to explore the utility of footfall 

camera count data for producing estimates of the size of the ambient population.  
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Wi-Fi sensors are a potentially valuable source of data for producing estimates 

of the ambient population due to their ability to enumerate individuals and provide 

spatio-temporally detailed data (Crols and Malleson, 2019; Soundararaj et al., 2020). 

Wi-Fi sensors log counts when a Wi-Fi probe request emitted from a Wi-Fi enabled 

device, such as a mobile phone or tablet, is received. Probe requests are emitted 

periodically; therefore, as an individual with a device moves through an urban area, 

the device is likely to connect to multiple access points (Oliveira et al., 2018). This 

produces highly detailed spatio-temporal data, which can be utilised to estimate the 

size of the ambient population.  

 

Data access is a significant barrier to the use of Wi-Fi sensor datasets as they 

are often commercial products that can be costly to obtain. There are also concerns 

regarding the representativeness of Wi-Fi sensor data as despite the high penetration 

rates of Wi-Fi enabled mobile devices, the average number of devices carried by an 

individual is unknown. This may be particularly problematic in urban areas, where one 

individual may be carrying multiple Wi-Fi enabled devices and will, therefore, be 

logged multiple times at each location. There have also been ethical and privacy 

concerns regarding the use of Wi-Fi sensor data as individual movements can be 

captured, as probe requests contain the unique media access control (MAC) address 

of each device (Freudiger, 2015). To address these privacy issues, both Apple and 

Android devices periodically randomise MAC addresses; consequently, the same user 

and device may be logged by a sensor multiple times under different MAC addresses 

(Martin et al., 2017; Android, 2020). Due to this randomisation of the MAC addresses, 

it is not possible to detect multiple logs of the same user and device and omit them 

from the dataset; thus, the number of logs may be significantly higher than the 

number of people in the area.   

 

Wi-Fi sensor data have not been widely used for producing estimates of the 

ambient population; however, there are two examples within the existing literature. 

Kontokosta and Johnson (2017) used over 20 million Wi-Fi probe requests in 

conjunction with traditional data sources to develop a real-time census for building 
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occupancy New York City (US). The estimates produced were then validated using 

survey data and were found to be within 5% of the survey estimates. However, this 

study failed to discuss the issue of MAC address randomisation which may result in 

the same device being logged multiple times. Wi-Fi probe requests were also used by 

Crols and Malleson (2019), together with official statistics and travel survey data, to 

quantify the ambient population in Otley (UK). A notable limitation of this work is that 

empirical validation of the estimates of the size of the ambient population was not 

conducted due to a lack of data (Crols and Malleson, 2019). While Wi-Fi sensor data 

provide detailed spatio-temporal information, data access poses a significant 

challenge, and consequently, the data have not been used extensively in the existing 

literature. However, these studies demonstrate the potential value of Wi-Fi sensor 

data which could be explored within future work. 

 

2.3.6 Mobility data 

To aid efforts in remediating the impacts of the COVID-19 pandemic, three 

companies, Google, Apple and CityMapper, made mobility data publicly available. 

While not designed to enumerate the size of the ambient population, these datasets 

may be useful for aiding the understanding of the human activity patterns, which 

result in fluctuations in its size. 

 

Google COVID-19 Community Mobility Reports are calculated using 

aggregated and anonymised data from Google account users who have the ‘Location 

History’ setting enabled, which is disabled by default. The data account for daily 

changes in the number of visits by Google account users to six place categories; 

grocery and pharmacy, parks, transit stations, retail and recreation, residential, and 

workplaces (Google, 2020). The number of daily visits is compared to a baseline figure 

for the corresponding day of the week during the 5-week period between January 3rd 

and February 6th, 2020 (Google, 2020). The data provide a percentage change in the 

number of visits to each of the six place categories and do not provide the actual 

number of visits. The location accuracy of the data is acknowledged to vary 
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geographically, and regions are excluded from the dataset if the levels of data are not 

statistically significant (Google, 2020). Google COVID-19 Community Mobility Reports 

were successfully utilised by Halford et al. (2020) to measure the mobility elasticity of 

four crime types in the UK during the pandemic. As the mobility elasticity of crime is 

calculated using the percentage change of the number of crimes and the percentage 

change of the number of visits, Google COVID-19 Community Mobility Reports can be 

used. However, the data are not suitable for studies in which raw numbers are 

required.  

 

The technology company Apple publish daily Mobility Trends Reports which 

capture routing requests in the iOS application ‘Apple Maps’ (Apple, 2020). The data 

represent the percentage changes in the number of direction requests via public 

transport, walking and driving since January 13th, 2020. However, the number of 

routing requests is not necessarily indicative of the number of journeys that took 

place. The dataset provides coverage of 63 countries, and the data are aggregated to 

country, region, sub-region, and city levels (Apple, 2020). While the Apple Mobility 

Trends Reports provide data at a higher spatial resolution than the Google COVID-19 

Community Mobility Reports, the data still lack sufficient detail for use in the 

production of small area estimates of the ambient population.  

 

Citymapper, a GPS navigation application, publish the Citymapper Mobility 

Index, which is calculated by comparing the number of journeys planned via the 

Citymapper iOS and Android applications to a typical usage period (Citymapper, 

2020). Users can plan journeys via public transport, walking, cycling, taxis and micro-

mobility (such as e-bikes and electric scooters) (Citymapper, 2020). However, the 

application cannot be used to plan journeys by a private car. The typical usage period 

is the four weeks between January 6th and February 2nd, 2020 (Citymapper, 2020). In 

some geographic locations, an alternative typical usage period is employed to reflect 

typical usage more accurately in these areas. Examples include Hong Kong and 

Singapore, for which the typical usage period utilised was December 2nd to the 22nd, 

2019 (Citymapper, 2020). Data are available for 36 cities; thus, the dataset is a smaller 
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geographic coverage than Google COVID-19 Community Mobility Reports and Apple 

Mobility Trends Reports. 

 

Google COVID-19 Community Mobility Reports, Apple Mobility Trends Reports 

and the Citymapper Mobility Index offer novel, open mobility data that are indicative 

of fluctuations in the ambient population. However, it is important to note the 

shortcomings of these datasets as they may limit data utility. All three datasets 

compare the percentage change in the number of journeys made during the 

pandemic but do not quantify the number of journeys; thus, the data cannot be 

utilised as a proxy for the size of the ambient population in a given geographic 

location. The number of users for each of the applications is unknown; consequently, 

the size and representativeness of the samples cannot be determined. For both the 

Citymapper Mobility Index and Apple Mobility Trends Reports, the index is calculated 

using the number of trips planned, not the number of trips actually taken and, 

therefore, does not accurately represent of mobility. Google COVID-19 Community 

Mobility Reports, however, only contain data for those movements which have 

occurred. An additional limitation is that both Google COVID-19 Community Mobility 

Reports and Apple Mobility Trends Reports are only available for a limited period 

during the COVID-19 pandemic, which will limit their use in future research. At the 

time of writing, Apple Mobility Trends Reports and the Citymapper Mobility Index 

have not yet been employed in studies of the size of the ambient population. 

 

2.4 Estimation methods 

In his seminal work, Smith (1989) identified two approaches for estimating temporary 

populations, the direct and the indirect approach. The direct approach draws on 

information collected from the temporary population via censuses and large-scale 

surveys. The indirect approach draws upon variables which are symptomatic of 

changes in the size of temporary population. However, the difference between these 

two approaches has become increasingly unclear due to the emergence of novel 
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sources of data. Types of novel data, such as mobile phone data and Wi-Fi sensors, 

can be treated as either direct or indirect, depending on the approach utilised 

(Panczak et al., 2020). Previous studies have employed both direct and indirect 

approaches to generate estimates of temporary populations (Rigall-I-Torrent, 2010; 

Lwin et al., 2016). More recent work by Crols and Malleson (2019) used simulation 

and modelling methodologies to produce estimates of the temporary population. 

 

2.4.1 Direct approaches 

The earliest method of deriving estimates of temporary populations was to employ 

direct estimates from national censuses, survey data or through the combination of 

several different data sources. Studies that used these methods often combined 

information about workplaces (Office for National Statistics, 2013a), residential status 

(Gober and Mings, 1984) and place of enumeration (Bell and Ward, 2000)  to identify 

two or more states of population distributions (for example, daytime and night-time). 

A similar approach involves the scaling of population estimates from single or multiple 

sources to the entire population based on expansion factors. This approach has been 

utilised in a range of studies, some employed survey data (Foley, 1954), while others 

used mobile phone data (Bengtsson et al., 2011), night-time census estimates (Deville 

et al., 2014) or ancillary data (Kontokosta and Johnson, 2017).  

 

2.4.2 Component-based approaches  

Estimates of the temporary population have been produced using component-based 

approaches. These methods utilise either generic or area-specific equations to 

calculate estimates of temporary populations by subtracting and adding the numbers 

of people arriving in or leaving an area across a given timeframe. A component-based 

approach was utilised in conjunction with journey to work data from the US Census 

was used in work by McKenzie et al., 2013, while Adamiak et al. (2017) used second 

home ownership data to capture seasonal variations in temporary populations. This 
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approach was also used by Swanson and Tayman (2011) to derive estimates of 

different subgroups of the temporary population.  

 

2.4.3 Symptomatic data redistribution 

Symptomatic data have been utilised with areal interpolation methods, such as 

dasymetric mapping, to redistribute estimates of temporary populations from larger 

(coarser) to smaller (more granular) geographical units (Tenerelli et al., 2015). The 

redistribution of symptomatic data often uses ancillary data such as building type 

(Greger, 2015) or land use data, in addition to data from other sources including 

censuses and other large scale surveys, mobile phones, transportation (Ma et al., 

2017), and social media (Lwin et al., 2016). Dobson et al. (2000) utilised a multi-

dimensional dasymetric model to produce estimates of the ambient population for 

grid cells at a global scale. The symptomatic data can be related to the size of the 

population through sampling techniques (Mennis, 2003; Mennis and Hultgren, 2006; 

Wu et al., 2008), regression analysis (Chen, 2002; Wu et al., 2006; Briggs et al., 2007; 

Silván-Cárdenas et al., 2010; Lu et al., 2010) or expert knowledge (Eicher and Brewer, 

2001).  

 

2.4.4 Modelling and simulation 

Several more contemporary studies have used various methods of modelling or 

simulation to produce estimates of temporary populations, including agent-based 

modelling (Walker and Barros, 2012; Kashiyama et al., 2017; Crols and Malleson, 

2019), cellular automation modelling (Khakpour and Rod 2016), and neural networks 

(Liu et al., 2018; Chen et al., 2018). 

 

 

2.4.5 Section summary 
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 It has been suggested within the existing literature that there have 

been limited attempts to estimate the size of the ambient population due to the lack 

of suitable data (Malleson and Andresen, 2015a; Malleson and Andresen, 2016; Crols 

and Malleson, 2019; He et al., 2020). Despite the increased availability of spatio-

temporal data, such as mobile phone, social media, and mobility data, within the last 

two decades, there has been little progress in the development of estimates of the 

size of the ambient population. This section has highlighted that many of the data 

types reviewed offer fine-scale, spatio-temporal data which can be explored and 

potentially employed to produce estimates of the size of the ambient population, 

despite their limitations. However, it is noted that due to their ability to provide 

spatio-temporally detailed data, which is able to represent the whole ambient 

population, pedestrian counter data, most notably footfall camera counts, should be 

investigated further. Several of the data types reviewed in this section have previously 

been utilised within the context of environmental criminology and are discussed in 

Section 2.4. 

 

2.5 Estimates of the ambient population and the geography of crime 

Crime rates are a valuable statistic utilised to measure and communicate risk. 

They are commonly calculated using estimates of the resident population as a 

measure of the population at risk. However, as crime clusters within space and time, 

the size of the resident population may not always be a reflective measure. To 

account for fluctuations in the size of the population within crime rates, existing 

studies have employed estimates of the ambient population as a measure of the 

population at risk. This section begins by defining crime rates and highlighting their 

importance within crime studies and policymaking. A discussion of theories within 

environmental criminology that support the use of the ambient population within the 

calculation of crime rates is then present. This section then reviews the existing 

literature related to the use of these measures in the calculation of crime rates, the 

exploration of the spatial distribution of crimes, and the investigation of relationships 

between crime rates. 
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2.5.1 Calculation of crime rates 

Crime rates are the most common measurement of crime and quantify the 

ratio of police-recorded crimes to the size of the population in a geographic area. They 

are considered to be the most meaningful statistic employed within crime studies 

(Boggs, 1965) and have a diverse range of applications. They are a valuable tool used 

to inform resource allocation, influence planning and policymaking by police forces 

and local governments, and convey messages regarding safety and risk to members 

of the public (National Academy of Sciences, 2016). Crime rates are also critical within 

environmental criminology as they enable researchers to better understand the 

spatial distribution of crime and analyse patterns (Boggs, 1965). Crime rates are 

currently calculated by dividing the number of crimes that occur (numerator) by the 

size of the population at risk within a given geographic area (denominator). The 

denominator most commonly employed in the calculation of crime rates is the 

resident population, which is captured by national censuses (Andresen and Jenion, 

2010).  

 

Despite the importance of appropriate denominators, estimates of the 

resident population are still widely utilised (Harries, 1981). The use of unsuitable 

denominators is financially and temporally expensive and result in the production of 

crime rates that do not accurately represent the risk of a crime occurring (Harries, 

1981). As the denominator is the size of the population at risk, it would be expected 

that the denominator should vary depending on the level of risk exposure and on the 

crime type (Boggs, 1965).  Barriers to the use of alternative measures of the 

population at risk, such as a lack of data and substantial cost, have been noted within 

the existing literature (Boggs, 1965; Andresen and Jenion, 2010). However, the 

proliferation of spatio-temporal data over the last two decades has resulted in the 

emergence of data types that may be useful for producing estimates of the size of the 

ambient population (Crols and Malleson, 2019). 
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The need for estimates of the ambient population for the use in the calculation 

of crime rates is supported by two of the most prominent theories within 

environmental criminology; routine activity theory and crime pattern theory (Cohen 

and Felson, 1979; Brantingham et al., 1981). Routine activity theory states that three 

elements must converge in space and time for a crime to occur; a target, an offender 

and the absence of a capable guardian (Cohen and Felson, 1979). This theory supports 

the need for estimates of the ambient population as the convergence of these three 

elements is related to both the size of and fluctuations within the population. Crime 

pattern theory suggests that crimes are more likely to occur in proximity to the nodes, 

paths, and edges which are familiar to the perpetrator (Brantingham et al., 1981). 

Brantingham and Brantingham (1995), expanded on crime pattern theory through the 

introduction of crime attractors and generators. Crime attractors are those locations, 

such as car parks, which attract criminals for the sole purpose of committing a crime. 

While crime generators, including shopping centres and train stations, lead to the 

convergence of victims and criminals in space and time. Both crime attractors and 

generators are commonly located in areas, such as urban centres, which attract large 

volumes of people and experience significant fluctuations in the size of the ambient 

population. Thus, it is evident that in accordance with both routine activity theory and 

crime pattern theory, estimates of the size of the ambient population are required to 

calculate accurate crime rates. 

 

2.5.2 Exploration of the spatial distribution of crimes 

The utility of estimates of the ambient population in crime studies was first 

noted by Boggs (1965) over fifty years ago. Boggs (1965) noted that the use of the 

resident population in crime rates may lead to high crime rates in central business 

districts in which there are few residents but high numbers of potential victims and 

targets. In her seminal work on patterns of urban crime, Boggs (1965) presents crime 

rates based on the environmental opportunities for different crime types. The results 

of a factor analysis test indicated that different crime types are concentrated by 

neighbourhood, while the impact of an alternative denominator varied between 

crime types. The study identified that car theft and business robbery would benefit 
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from the use of alternative denominators, while for homicide, aggravated assault and 

resident daytime burglary, crime specific rates did not add value. This study 

demonstrated that for some crime types, the use of the resident population as a 

denominator is inappropriate and, therefore, may be misleading. 

 

Estimates of the ambient population, produced using traditional data types, 

have been utilised within environmental criminology to explore the spatial 

distribution of crimes. Andresen and Jenion (2008) demonstrate that estimates of the 

ambient population can be utilised at primary, secondary, and tertiary levels of crime 

prevention. The authors identify that LandScan data can be used to better understand 

areas that currently experience high rates of crime (tertiary), identify areas at risk of 

developing high crime rates (secondary), and quantify the relationship between crime 

and fluctuations in the ambient population to inform policy (primary). Stults and 

Hasbrouck (2015) examine the impact of commuting on crime rates in cities in the US 

using commuter adjusted daytime population estimates produced by the United 

States Census Bureau. The study found that for violent crime and three types of 

property crime, those cities which experienced an increase in the ambient population 

due to commuting trends have higher rates of crime (Stults and Hasbrouck, 2015). 

Work by Felson and Boivin (2015) employed travel survey data to explore the 

relationship between daily visitors in Eastern Canada for violent and property crimes. 

The study concludes that the size of the ambient population could potentially be more 

influential than the size of the resident population in determining the spatial 

distribution of crimes.  

 

Novel types of data have also been employed to explore the spatial 

distribution of crimes in several studies. Work by Malleson and Andresen (2015b) 

used Twitter data as a proxy of the ambient population and found that different 

spatial patterns of crime emerge when using the ambient population and the resident 

population in Leeds, UK. An interesting finding from this work is that the city centre 

of the study area, where high numbers of crimes are recorded, does not contain any 

statistically significant clusters of violent crime. This finding is critical to the discussion 
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around the use of alternative measures of the population at risk, as it evidences the 

significant difference between the use of the ambient population and the resident 

population. Twitter data are also used with geographically weighted regression to 

forecast hotspots of street crime in Portland (US) (Ristea et al., 2018). The model was 

relatively successful and was able to predict hotspots containing 23% of future street 

crimes. Haleem et al. (2020) integrated mobile phone data and census data to 

estimate the size of the ambient and the exposed populations to assess hotspots of 

violent crime in public spaces on Saturday nights in Greater Manchester (UK). The 

study found a non-linear relationship between population size and occurrences of 

violent crimes, which established an expected link between violent crime and the 

night-time economy.  

 

2.5.3 Investigation of relationships  

Measures of the ambient population have been used within environmental 

criminology to examine the relationships between the size of the ambient population 

and the number of crime events. Work by Andresen and Jenion (2010) compared 

crime rates calculated using the ambient population, represented by LandScan data, 

to those calculated using the resident population. The study highlighted that the two 

crime rates have a very weak statistical relationship, which supports the argument to 

employ estimates of the size of the ambient population, particularly for the 

calculation of rates of violent crimes. However, this is the only study that employs a 

traditional data type to investigate the relationship between crime rates calculated 

using a measure of the ambient population. 

 

More recent studies have employed mobile phone data as a measure of the 

ambient population to explore relationships. Hanaoka (2018a) examined the 

relationship between snatch and run offences and hourly estimates of the ambient 

population based on mobile phone data. The study found that the effects of the 

ambient population are substantial and that the effects differ between daytime and 

night-time hours. During daytime hours, when the ambient population is larger in size, 
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fewer snatch and run offences are committed. However, the same pattern was not 

evident during night-time hours as the number of snatch and run offences were 

weakly correlated with estimates of the ambient population. Work by Jung et al. 

(2020) compares the relationship between assault density and the ambient and the 

resident populations using a generalised linear model. The ambient population, which 

was represented using mobile phone data, is associated with the number of assaults 

throughout the four examined time periods, while the resident population fails to 

account for the spatio-temporal variation. He et al. (2020) also use spatially 

referenced mobile phone data to measure the size and activity patterns of the 

ambient population. They find that the size of the non-local (i.e. the non-resident) 

population is significantly correlated with the spatial variation of larceny-theft (He et 

al., 2020). This study is unique as the authors had access to mobile phone activity data 

from three state-owned and operated telecommunications providers in Xi’an in the 

Shaanxi province of China; consequently, location data for all mobile phone users 

within the study area were available. While these studies highlight the utility of mobile 

phone data for exploring the relationships between crime rates, acquiring mobile 

phone data with such extensive geographical coverage and high levels of enumeration 

would be unachievable in most countries.  

 

Twitter data have also been used to investigate the relationship between 

crimes and the ambient population. Hipp et al. (2019) use Twitter data to investigate 

the relationship between the size of the ambient population and the number of 

reported crimes throughout a day. The work demonstrated that the number of violent 

crimes increases as the size of the ambient population increases and, interestingly, 

also evidenced that an increased ambient population has a strong negative 

correlation with rates of property-based burglary. Consequently, the study 

highlighted the value of the use of estimates of the size of the ambient population for 

calculating rates of crime that target properties rather than individuals. Twitter data 

are also employed by Tucker et al. (2021) to estimate the size of sectors of the 

ambient population; local residents, commuters and tourists and investigate any 

correlation with crime rates. In non-residential areas, commuters and tourists have a 
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positive correlation with public violence and private conflict. However, commuters 

and tourists have a relationship with violent crime and daytime hours during 

weekdays, while commuters and tourists only have a statistically significant 

relationship with private conflict during daytime hours on both weekdays and 

weekend days. It is important to note that the authors find that Twitter data has 

limited utility as the geographical coverage is sparse for residential areas (Tucker et 

al., 2021). These studies highlight that Twitter data can be employed in studies of the 

relationships between the size of the ambient population and crime; however, the 

data are limited in terms of geographical coverage. 

 

2.5.4 Section summary 

The existing literature has highlighted the importance of accurate crime rates 

and provided evidence that estimates of the resident population are not reflective of 

the population at risk for all crime types. However, there remains an opportunity to 

explore variations in both the spatial distribution of, and relationships between, crime 

rates calculated using different measures of the population at risk, including the 

ambient population. This opportunity is explored in Chapter 5 of the thesis, which 

investigates the impact of the use of three different measures of the population at 

risk on the rates of two crime types. 

 

2.6 Chapter summary - Understanding the Ambient Population  

This chapter provided a critical review of studies that developed or employed 

estimates of the size of the ambient population and highlighted the importance of 

these estimates within environmental criminology. Section 2.2 provided a brief 

introduction to the ambient population. The term the ‘ambient population’ was then 

defined, and the utility of estimates of the size of the ambient population was 

highlighted. The limitations to producing estimates of the size of the ambient 

population, primarily the lack of suitable data and a standardised methodology, were 

noted. 
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Section 2.3 critically discussed traditional and novel types of population data, 

which may be valuable for enumerating the size of the ambient population. The 

section highlighted relevant sources of population data and how they have been 

employed in existing studies as estimates of the size of the ambient population. The 

section also explored the advantages and disadvantages of both traditional and novel 

data types. It was noted that pedestrian counter data, produced by footfall cameras 

and Wi-Fi sensors, are a potentially viable source of population data for producing 

estimates of the size of the ambient population and their utility should be explored 

further. Pedestrian counter data are explored in more detail in Chapter 3 of this thesis 

and are employed to produce estimates of the size of the ambient population in 

chapters 4 and 5. 

Section 2.4 provided an overview of methods and approaches utilised for 

producing estimates of population, both of the ambient population and of 

populations more generally. 

Section 2.5 highlighted the importance of accurate crime rates for various 

applications and discussed early studies of the ambient population within 

environmental criminology. The section also outlined two of the most prominent 

theories within environmental criminology, routine activity theory and crime pattern 

theory, both of which support the use of alternative measures of the population at 

risk. The section then presented studies within environmental criminology that have 

employed estimates of the ambient population to assess the relationships between 

the crime rates calculated using different measures of the population at risk and their 

spatial distributions. The work in this chapter identifies an opportunity to explore 

variations in both the spatial distribution of, and relationships between, crime rates 

calculated using different measures of the population at risk, including the ambient 

population. This opportunity is explored in Chapter 5 of the thesis. 
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Chapter 3 

Estimates of the Ambient Population: Assessing the 

Utility of Novel Data Sources 

This chapter has been published as: 

Whipp, A., Malleson, N., Ward, J. and Heppenstall, A., 2021. Estimates of the 

Ambient Population: Assessing the Utility of Conventional and Novel Data Sources. 

ISPRS International Journal of Geo-Information, 10(3), p.131. 

The aim of this chapter, which addresses Research Objective 2 is to assess and 

critique sources of population data that have the potential to be used to produce 

estimates of the size of the ambient population in urban areas, including those utilised 

in the existing literature. 

This chapter builds upon the work in Chapter 2 which identified the need to 

assess the utility of and differences between both traditional and novel types of 

population data, particularly pedestrian counter data. 

Abstract 

This paper will critically assess the utility of conventional and novel data 

sources for building fine-scale spatio-temporal estimates of the ambient population. 

It begins with a review of data sources employed in existing studies of the ambient 

population, followed by preliminary analysis to further explore the utility of each data 

set. The identification and critiquing of data sources which may be useful for building 

estimates of the ambient population is a novel contribution to the literature. This 

paper will provide a framework of reference for researchers within urban analytics 

and other areas where an accurate measurement of the ambient population is 

required. The work has implications for national and international applications where 

accurate small area estimates of the ambient population are crucial in the planning 

and management of urban areas, the development of realistic models and informing 
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policy. This research highlights workday population estimates, in conjunction with 

footfall camera and Wi-Fi sensors data as potentially valuable for building estimates 

of the ambient population. 

 

3.1 Introduction 

The United Nations (2018) estimates that 68% of the global population will be 

living in cities or other urban centres by 2050. This predicted rise in the size of urban 

populations highlights the urgent need to be able to quantify the ambient population. 

The ability to produce estimates of the ambient population is integral to the 

management and planning of urban areas and allows the development of insights into 

socioeconomic and environmental issues that impact cities (Batty, 2013). In this 

paper, the ambient population is defined as the number of people within a given 

geographical area at a specific point in time, excluding individuals at their place of 

residence and those utilising modes of transport. 

 

This paper assesses the utility of conventional and novel data sources for 

producing estimates of the ambient population and identifies appropriate data 

sources recommended for use in future work. A UK-based case study in the city of 

Leeds, West Yorkshire is utilised to demonstrate spatio-temporal patterns produced 

by different data sources. The study is widely generalisable as similar data are 

available worldwide. The work addresses an omission in the existing literature by 

producing an assessment of potential data sources and recommends the utilisation 

of a combination of conventional and novel data sources to produce estimates of the 

ambient population.  

 

There is a clear need to develop estimates of the ambient population in order 

to better understand urban dynamics and the needs of growing urban populations. 

Existing studies regarding the ambient population have employed a range of data 

sources, both conventional and novel; however, there is a lack of research assessing 
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the viability of these data sources. While the systematic literature review by Panczak, 

Charles-Edwards and Corcoran (2020) identifies potential data sources, it does not 

assess their suitability for building estimates of the ambient population. This paper 

assesses the viability of datasets previously employed and identifies those which may 

be useful and therefore should be validated. This is a necessary step in order to ensure 

the development of appropriate estimates of the ambient population in future work. 

The next section of the paper will evaluate conventional and novel data sources 

identified as potentially useful for quantifying the ambient population. 

 

3.2 Data types 

Despite estimates of the ambient population being highlighted as beneficial 

by Boggs (1965) over 50 years ago, there has been limited research within this area. 

Andresen et al. (2012) suggest that the lack of research is due to temporal and 

financial constraints. Often novel data were privately owned, thus unavailable or 

expensive (Andresen et al., 2012). However, these constraints are no longer as 

significant due to advances in technology resulting in high resolution population data 

being more widely available (Andresen, 2011). 

 

This paper examines what will be referred to as conventional and novel data 

sources. Conventional data are those typically acquired from surveys, interviews and 

questionnaires and are available from national statistical agencies. Novel data are 

those collected from novel sources such as sensors, mobile phones, social media 

platforms and footfall cameras. Table 3.1 provides a summary of the data sources 

reviewed in this paper. These sources were selected as they are able to provide 

estimates of population which are relevant to the ambient population. The primary 

focus is on data available in the United Kingdom, but similar datasets exist in many 

other countries so the review will generalise widely.
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Table 3.1 A summary of data sources reviewed 

Category Data type Data 

source(s) 

Description Frequency of 

data collection 

Open access Ability to 

represent 

daytime 

population 

Ability to provide 

detailed  

spatio-temporal 

information 

Census data Conventional Usual 

resident 

population 

The number of residents at 

each household on census day. 

Decennial Yes No  No 

Mid-year 

population 

 

A combination of various 

administrative datasets which 

aim to provide more up to date 

estimates of the usual resident 

population. 

Annual Yes No No  
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Workday 

population 

Workday population is the 

number of individuals in a 

geographical area who are in 

employment and whose 

workplace is within the 

specified area, in addition to 

those who are not in 

employment and are usual 

residents. These data are not 

collected in all countries. 

Decennial Yes Yes No 

Other 

administrative 

datasets 

Conventional Travel 

surveys 

Data on the movement of 

individuals. They are conducted 

at national and local levels, by 

government agencies 

Annually Yes  Yes  Yes 

Mobile data Novel Mobile 

phone 

activity data 

Produced either when a mobile 

phone receives or makes a call 

or SMS message or when a 

Each time the 

phone 

No  

 

Yes   Yes 
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device moves between cell 

towers. The data are highly 

granular, thus are spatially 

detailed. All records are 

timestamped. 

communicates 

with a mask 

Smartphone 

location 

data/mobility 

reports 

Gathered by a variety of 

smartphone applications that 

track the location of a user. 

Variable. No Yes  Yes 

Cell tower 

locations 

(OpenCellID) 

OpenCellID   is   an   open   

dataset   of   cell tower 

locations. The data are 

contributed by   commercial 

organisations   and by 

individuals. The dataset is   not 

comprehensive and does not 

When a user 

uploads data. 

Yes Yes  No  
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provide full geographical 

coverage of area. 

Geo-located 

social media 

data 

Novel Twitter,  

Flickr,  

Foursquare, 

Facebook, 

etc. 

These data are produced when 

users upload social- media 

posts with an attached 

geographical location. 

When a user 

uploads a post. 

Data is 

subject to 

restrictions 

such access 

to a limited 

sample and 

limited 

spatio-

temporal 

detail. 

Yes  Yes  



 

 68 

Pedestrian 

counters 

Novel Footfall 

cameras 

 

Counts of individuals passing a 

specific geographic point. These 

data are usually captured by 

local governments and private 

organisations operating in 

spaces such as shopping 

centres and city centres. 

When a 

person passes 

a camera 

Private 

organisations 

do not 

publicly 

release the 

data, but it is 

often 

available on 

agreement. 

Yes  Yes  

Wi-Fi sensors Wi-Fi sensors capture the MAC 

addresses of nearby Wi-Fi 

enabled mobile devices as they 

attempt to connect to a hub. 

The data are spatio-temporally 

detailed. 

When a Wi-Fi 

enabled 

device passes 

a sensor. 

Privately 

owned. 

Yes  Yes  
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3.2.1 Conventional data sources 

This section reviews ‘conventional’ sources that have been used to estimate 

the ambient population. The utility of conventional data is assessed in order to 

determine whether data lacking fine spatio-temporal detail have value for building 

estimates of the ambient population. 

 

3.2.1.1 Census data 

Estimates of populations have traditionally been derived from household 

surveys and government data sources, most notably population censuses. Data from 

the 2011 UK census includes estimates of the usual resident population, mid-year 

population and workday population. These measures of the population are currently 

widely used for academic research and industrial purposes (Kobayashi et al., 2011; 

Wardrop et al., 2018). The usual resident population is the count of the number of 

individuals usually resident at a given address (Nomis, 2013). Mid-year population 

estimates are calculated using the most recent census in addition to data regarding 

internal and external migration, births, deaths, etc (Office for National Statistics, 

2021). Workday population data were introduced in the 2011 UK Census to quantify 

individuals at their place of work during typical working hours, in addition to those 

who are unemployed residents (Office for National Statistics, 2013a). Workday 

population data can provide an overview of the usual daytime population, unlike the 

residential population and mid-year population estimates. However, estimates of the 

workday population are not able to capture fluctuations in the size of the ambient 

population which occur throughout time. Additionally, similarly to estimates of the 

resident population, estimates of the workday population are only representative of 

a single day of a year (census day). Estimates of the workday population are not 

universally available and are only currently available for England, Wales, and the US 

(Mckenzie et al., 2013; Office for National Statistics, 2013b; Panczak et al., 2020). 
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Censuses held by national statistical offices represent the gold standard of 

data collection and are geographically comprehensive (Rees et al., 2002). There are 

examples of estimates of the ambient population being constructed from multiple 

data sources, typically including census data. Bhaduri et al. (2007) used census data 

as a primary input, combining it with remote sensing images to capture the average 

ambient population over a 24-hour period at a resolution of 1km2. Smith et al. (2005) 

produced a population database for hazard modelling that combined a variety of data 

sources, including measures from the UK census, leisure facilities and retail data. The 

limitations of this work included data accuracy and the rapidity with which census 

data become outdated. Martin, Cockings and Leung (2009b) proposed a framework 

that uses a range of administrative datasets including the census, Higher Education 

and Hospital Episode Statistics to produce a grid model of the average ambient 

population (Martin et al., 2009b). A weakness of the framework is that it relies on 

annual data and fails to include data which are produced by novel sources and contain 

high-levels of spatio-temporal detail. However, the authors acknowledge the 

potential value of novel data which supports the rationale of this work. Highlighting 

the utility of data from other national censuses, data from the Chinese census were 

used by Qi et al. (2015) to build daytime population estimates through the addition 

of tourism, school registration, hospital patient, and land use data. However, this 

research did little to expand work by Martin, Cockings and Leung (2009b), despite the 

availability of novel data, such as geo-located social media data, in 2015.  

 

Despite these examples, the data are impacted by several issues, including 

under-enumeration and respondent errors (Sullivan, 2020). In the UK, it can take over 

12 months for census data to be processed and released (Office for National Statistics, 

n.d.); thus, censuses conducted decennially are quickly outdated (Wardrop et al., 

2018). Urban areas are continually in a state of flux, with changes in the residential 

population and workday population varying significantly within a short period of time 

(Nemeškal et al., 2020). These changes which occur at relatively fine temporal scales 

cannot be captured by a decennial census. However, conventional data sources may 

have been heavily utilised due to their accessibility.  
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3.2.1.2 Travel survey data 

Data from travel surveys are able to provide detailed information regarding 

the movements of individuals. Travel surveys are conducted by a number of national 

and local governments across the world, but there is no general framework, resulting 

in inconsistent data. The frequency at which these surveys are conducted varies 

greatly, and many countries do not collect any travel data. 

 

Travel surveys were primarily introduced to inform policymaking regarding 

transport planning and land-use, but recently they have also been used to examine 

the ambient population (Nitsche et al., 2014). Zandvliet and Dijst (2005) use the 

Netherlands National Travel Survey to examine temporary, visitor populations and 

determine the demographic characteristics of this temporary population. Similarly, 

Charles-Edwards et al. (2008) employed the National Australian Visitor Survey to gain 

insight into the temporary movements of the population, for purposes such as leisure 

activities. The surveys collect information regarding the typical journeys that people 

make, including journey length and the purpose of the trip. They are also able to 

capture valuable socio-demographic information about individuals which many novel 

data sources are not able to capture. 

 

Many of the studies which utilise travel survey data are now becoming 

outdated, principally due to the availability of alternative, novel data sources. A 

primary advantage offered by travel survey data, especially when compared to novel 

data, is the ability to provide information regarding demographics, reason for travel 

and mode of transport. These features are not required to quantify the ambient 

population but may be valuable to future work examining the demographic 

characteristics of the ambient population. However, it should be noted that travel 

surveys are limited by their sample size. Due to the expense associated with collecting 

travel survey data, the samples are often very limited and may prevent findings from 

being extrapolated to the wider population (Faber and Fonseca, 2014).  
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Estimates of the ambient population can benefit from the use of conventional 

data sources, primarily due to their extensive geographical coverage. Workday 

population estimates are able to reveal more detail regarding the geographic location 

of individuals during a typical working day, deeming them valuable in attempting to 

quantify the ambient population. Despite the utility of workday population data, 

these data are still plagued by infrequent data collection and lack estimates of the 

numbers of people in an urban area for activities, such as shopping, socialising and 

tourism which are required to produce estimates of the ambient population. Although 

this limits their use as a sole measure of the ambient population, there may be value 

in combining these data with others (as Section 2.2 will discuss in detail). 

Consequently, the following sections discuss additional data from novel sources that 

may be useful in building estimates of the ambient population and fill the gaps in the 

more traditional sources. 

 

3.2.2 Novel data sources 

Several data sources have emerged in recent years that provide detailed 

spatio-temporal data that can be useful for building estimates of the ambient 

population. Due to the secondary nature of the data, i.e., many of the data sources 

were not designed to capture the ambient population, many have limitations, and few 

have been extensively explored (Steiger et al., 2015). The utility of novel data sources 

will be assessed in the remainder of this section.  

 

3.2.2.1 Mobile phone data 

Mobile phone activity data have been utilised by several studies that explore 

the ambient population. Ratti et al. (2006) demonstrate the benefits of mobile phone 

data for use within urban analytics and city planning through the production of a 

visual representation of urban activities in Milan, Italy. In a similar study, Reades et al. 

(2007) employ mobile phone data to build visualisations of mobile phone usage across 

Rome; however, due to the demographic characteristics of mobile phone users - i.e. 
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a small proportion of the elderly population use a mobile phone - the data fail to 

reflect the entire ambient population (Reades et al., 2007). Work by Terada, Nagata 

and Koboyashi (2013) accounts for socio-demographic characteristics such as age and 

gender and employed mobile phone activity data to produce spatial estimates of the 

population of Japan. Crucially, Reades et al. (2007) acknowledge that while traditional 

datasets have limited temporal detail, data access and ethical issues are barriers to 

the use of mobile phone activity data. He et al. (2020) used geo-referenced mobile 

phone data as a measure of the ambient population to assess the relationship 

between larceny (theft) in Xi’an, China. The dataset utilised provided full coverage of 

all mobile phone users within the study area and includes information such as gender 

and date of birth. The authors state that the work highlights the utility of mobile 

phone data for estimating the ambient population; however, they do not 

acknowledge that access to such a comprehensive dataset is not possible in many 

countries. Smartphone location data were utilised by (Hanaoka, 2018b) as an 

estimate of the ambient population. It is unknown whether these data are publicly 

available or if similar data are available for other countries. The work fails to assess 

the representativeness of the data and doesn’t indicate whether the smartphone 

location data are able to reflect the size of the ambient population. Mobile phone 

activity data are not analysed in further detail due to the associated ethical concerns 

and the lack of data available at a sufficiently small geographical scale. 

 

Since the outbreak of COVID-19, several technology companies, such as Apple 

and Google, have made mobility data available. Apple produce daily mobility reports 

which demonstrate the changes in routing requests via the Apple Maps application 

(Apple, 2020). The data are able to indicate changes in the percentage of requests for 

walking, driving and public transport routes (Apple, 2020). While the data are able to 

depict temporal trends in the percentage change of route requests, the 

representativeness of the data is a significant concern. Firstly, there is no information 

regarding whether people take the journeys they requested directions for using the 

Apple Maps application. Secondly, journeys which are not planned using the 

application are not captured. It can be assumed that routing requests for journeys 
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made more regularly, such as commuting to work and travelling to the supermarket, 

are less common. Additionally, the spatial detail of the data is limited and does not 

provide any indication to the number of journeys made into or out of an area, limiting 

the use of the data for quantifying the ambient population. 

 

Google mobility reports indicate the percentage change in the visits to 

different location categories including retail and recreation, supermarket and 

pharmacy, parks, workplaces and public transport (Google, 2020). The level of spatial 

detail varies significantly between countries. The data are gathered from Google 

Account users who have devices that are able to track their movements (typically 

smart phones) and enable ‘Location History’. Google state that the data may or may 

not be representative of the wider population (Google, 2020). Unlike Apple mobility 

data, Google mobility reports indicate journeys which have taken place; however, the 

number of journeys made and information regarding the representativeness of the 

data are unknown. Google also state the reports will only be available for a limited 

period of time, thus may not be available for use in future research (Google, 2020).  

 

Although the data used to generate mobility reports (particularly the traces of 

individual peoples’ movements that are used in the Google reports) may provide a 

valuable source of high-resolution information about the ambient population, at 

present the products are not released at a sufficient spatial granularity to be of direct 

use here. Typically, a single mobility estimate covers an entire city or borough. While 

these estimates may provide a useful picture of regional behaviour change, they are 

not sufficiently detailed to estimate the dynamics of the ambient population and will 

not be reviewed. 

 

3.2.2.2 Geo-located social media data 

Social media platforms are a novel source of vast quantities of real-time 

volunteered geographic data (Goodchild, 2007). Many social media platforms allow 
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users to share geographic data, including; Facebook, FourSquare and Twitter (Hecht 

and Stephens, 2014). 

 

Volunteered geographic data generated on Twitter are noted as being 

exceptionally well suited to building estimates of the ambient population (Stefanidis 

et al., 2013; Malleson and Andresen, 2015; Steiger et al., 2015; Hamstead et al., 2018; 

Hipp et al., 2019). This is due to the open and accessible API and the detailed spatio-

temporal information provided. However, if a request through the API exceeds 1% of 

total Tweets, the data are then limited to a random sample of 1% of all Tweets (Tucker 

et al., 2021). This sample is extremely limited and, consequently, may not be 

generalisable to the wider population (Faber and Fonseca, 2014). However, 

techniques such as geoparsing can be used to derive geographic information from 

Tweets that are not geotagged. Geoparsing can be utilised to convert free text 

descriptions of a location (toponyms) into geographic locations in the form of 

coordinates. Geoparsing can be conducted through a range of applications, such as 

the Python library Mordecai (Halterman, 2017; Gritta et al., 2020). 

 

Despite the limitations of geo-located social media data have been utilised in 

diverse applications, from measuring tourism attractiveness (Giglio et al., 2019) to 

quantifying human mobility (Roy et al., 2019) and predictive crime modelling (Ristea 

et al., 2020). However, there are concerns regarding the generalisability of the data. 

Socio-economic characteristics, such as age and socioeconomic group, have a 

significant influence on the volume and temporal frequency of geo-located social 

media data (Liu et al., 2015). For example, in the UK 95% of 16-24 year olds have at 

least one social media profile, however this decreases to 39% of people aged between 

65 and 74 (OFCOM, 2020). Twitter data have been used in existing work to quantify 

the size of the ambient population, to estimate the size of the population at risk from 

specific crimes and to test criminological theory (Malleson and Andresen, 2015a; Hipp 

et al., 2019; Liu et al., 2020). 
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Geo-located social media data are able to provide insight at fine spatio-

temporal scales but are limited by their lack of generalisability. Further research into 

the representativeness of geo-located social media data would allow these types of 

data to be utilised within studies of the ambient population. However, the future of 

Twitter data in academic research may be limited as in 2019 Twitter announced that 

the option to geo-tag Tweets was going to be removed as most users do not use the 

feature (Tucker et al., 2021). 

 

3.2.2.3 Wi-Fi sensor data 

Wi-Fi sensors are a potentially viable tool for counting the number of 

individuals in an area and providing real-time data (Crols and Malleson, 2019; 

Soundararaj et al., 2020). Wi-Fi sensors record a count every time a Wi-Fi probe 

request is received from a Wi-Fi enabled device (Freudiger, 2015), such as a mobile 

phone. As a device moves through an urban area, it will attempt to connect to 

multiple access points, thus is counted at multiple geographical locations, providing 

detailed spatio-temporal data (Oliveira et al., 2018). When the sensor data are 

calibrated and validated, there can be certainty in the numbers of devices counted, 

but it is not yet evident how many people carry no Wi-Fi enabled device, or even 

multiple devices. Given the proliferation of the use of Wi-Fi enabled smart phones, 

Wi-Fi sensors are a cheap and feasible method of collecting data regarding the 

ambient population. 

 

Ethical concerns regarding the use of Wi-Fi sensor data have recently become 

less significant due to technological developments. Wi-Fi sensors are able to capture 

the movements of individuals as probe requests contain a device’s unique media 

access control (MAC) address (Freudiger, 2015). Many mobile device users will be 

unaware that their device emits probe requests, nor that probe requests would allow 

them to be tracked (Vanhoef et al., 2016). However, both Apple and Android devices 

now periodically change MAC addresses to prevent device users from being tracked 

(Martin et al., 2017) (Android, 2020). An additional barrier to the use of Wi-Fi sensors 
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data is accessibility. Often the data are privately owned, thus can only be acquired 

through an agreement, often financial. 

 

Wi-Fi sensor data have not yet been used extensively, however the small 

number of studies that have employed them have demonstrated their value. 

Kontokosta and Johnson (2017) developed a real-time census with hourly estimates 

of the ambient population for Lower Manhattan, New York City using over 20 million 

Wi-Fi probe data points, in conjunction with data from conventional sources. User 

groups, such as daily, weekly, first-timers, or occasional visitors, were identified based 

upon hourly connections to the Wi-Fi sensors. This enabled the extraction of 

population estimates for workers, residents and visitors (Kontokosta and Johnson, 

2017). The work provided an excellent foundation in using modelling techniques and 

Wi-Fi data to produce estimates of the population. Highlighting the value of using Wi-

Fi sensor data in conjunction with other sources, Crols and Malleson (2019) used a 

combination of administrative datasets and footfall counts from Wi-Fi sensors to build 

an agent-based model of demographic characteristics of commuters. A significant 

limitation of this study was the lack of empirical data; thus, a validation process was 

not carried out.  

 

While Wi-Fi sensor data may be a useful source of detailed spatio-temporal 

information for building estimates of the ambient population, the lack of accessible, 

open Wi-Fi sensor data may be a barrier to its use. 

 

3.2.2.4 Footfall camera data 

Footfall cameras are another source of individual movement data and are 

typically operated by private companies, thus, there is limited information regarding 

data accuracy.  
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Footfall cameras rely on a physical device to capture data. Therefore, it is 

crucial that the cameras are situated in appropriate locations and that there are 

sufficient devices to capture footfall in different geographical areas. Ensuring the 

equitable distribution of footfall cameras is a crucial issue, as highlighted by Robinson 

and Franklin (2020). While sensors are able to produce new data and subsequently 

new knowledge about urban population, where there is a lack of coverage gaps 

emerge, resulting in so-called ‘sensor deserts’ (Robinson and Franklin, 2020). 

The most commonly used footfall camera technology is target-specific 

tracking. Target-specific tracking utilises counting devices mounted on the sides of 

buildings and CCTV columns. High-definition video is used with image processing 

algorithms to produce counts of pedestrians as they cross a virtual line. The cameras 

can be employed outdoors to measure footfall in urban centres. There are ethical 

concern regarding the use of these cameras as they have the potential to identify and 

track individuals (Righetti et al., 2018). However, it should be noted that not all 

cameras that utilise this technology record or store data. 

 

Counts from footfall cameras have not been employed extensively within 

academic research, thus it is challenging to assess the potential benefits of the use of 

footfall camera data. Footfall cameras do offer spatio-temporally detailed data and 

are an unobtrusive way of quantifying the population. Further exploration of these 

data is needed to assess their utility and their accuracy. 

 

3.3 Data assessment: A case study in a large UK city 

This section will assess the suitability of conventional and novel datasets for 

building estimates of the ambient population by examining their spatio-temporal 

characteristics. Recall that the aim of the paper is not to create a new estimate of the 

ambient population, but to assess the viability of the datasets discussed previously 

and identify those which may be useful.  
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The study area for this section will be the city centre of Leeds, United Kingdom 

(UK), shown in Figure 3.1. The area which is encapsulated by the term ‘city centre’ 

was determined and agreed upon with Leeds City Council. While the following analysis 

benefits from the use of a case study, the findings regarding the efficacy of the 

datasets are globally generalisable. Leeds is the third-largest city in the UK with a 

population of 751,485 (Office for National Statistics, 2011a), while the usual resident 

population of the study area is 16,022. Leeds is the biggest commercial centre in the 

region, thus experiences high volumes of workers commuting into the city and is a 

popular destination for shopping and other leisure activities. Leeds is a major urban 

centre which experiences fluctuations in the ambient population, making it an ideal 

testbed for this work. Where data have been aggregated, workplace zones (the lowest 

level of UK geography), an administrative boundary is used and LSOAs have been 

utilised. Workplace zones were designed to represent consistent numbers of workers 

across England and Wales, thus vary in size based on the workday population in each 

workplace zone. LSOA are an administrative boundary which, on average, contain 

approximately 1500 residents or 650 households (Office for National Statistics, 2016). 

 

Figure 3.1 The study area, Leeds, United Kingdom. The inset maps highlight the focus 

area, which is the city centre of Leeds, in addition to the location of Leeds within 

the UK. The city centre covers an area of 4 km2. 
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3.3.1. Census data 

Estimates of the usual resident population and workday population are 

commonly used in small area estimates of the population. Within Leeds, there are 

vast differences between the two estimates due to the city centre attracting visitors, 

shoppers and workers, with the ward of City and Holbeck, which features the city 

centre, experiencing a 346% increase between estimates of the usual resident and 

workday populations (Office for National Statistics, 2011b).  

 

Figure 3.2 demonstrates the workday population per workplace zone and the 

resident population per LSOA. The usual resident population is very low across much 

of the West of the study area, while it higher in the East. The maximum workday 

population is much higher than the maximum usual resident population. It should be 

noted that the workday population and the usual resident population are not 

available at the same geographic scale (workplace zone and LSOA level) and cannot 

be directly compared. 
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Figure 3.2 The workday population per workplace zone and the usual resident 

population per LSOA in Leeds city centre (Office for National Statistics, 2011b). 

 

3.3.2. OpenCellID data 

OpenCellID data, highlighted in Figure 3.3 represent the density of cell towers 

within the study area. Kernel Density Estimation (KDE) calculates the density of 

features, in this instance for point data, around each output raster cell (esri, n.d.). The 

KDE was produced using ArcGIS Pro 2.8.0. The KDE works by fitting a smoothly curved 

surface over each point (cell tower). The value of the surface is highest at the 

geographic location of the point and decreases as the distance from the feature 

increases (esri, n.d.). The bandwidth was calculated using an algorithm in ArcGIS Pro 

2.8.0 which calculates the default search radius. The data are a cumulative record of 

cell towers and were downloaded on the 3rd December 2020 and, therefore capture 

all cell towers within the area. The cell towers are located primarily in the areas 

around the Leeds train station and the Trinity shopping centre. OpenCellID data are 

useful in helping to identify areas which are likely to experience high volumes of 

people, however there are no data regarding the number of individuals using a mobile 

device in each location.  
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Figure 3.3 KDE of cell towers in Leeds city centre using a radius of 200m and a cell size 

of 2.79m2. There are 1261 cell towers within the study area according to the 

OpenCellID database. 

 

3.3.3 Geo-located social media data 

Social media platforms have recently emerged as a possible source of data for 

building estimates of the ambient population, with Twitter being the most commonly 

used source of geo-located data. Figure 3.4 highlights hotspots of a random sample 

of 10,000 geo-located Tweets in the Leeds local authority district collected from 4th 

December 2015 to 14th February 2017. The data were collected using the Twitter 

Streaming API, listening for all tweets within the UK and filtering those with precise 

coordinates. The KDE of geo-located Tweets has a very different distribution to the 

KDE of cell towers, seen in Figure 3.3. The areas with the highest density of geo-

located tweets are primarily located around the main shopping and leisure areas of 

the city centre. Towards the west of the city centre, in the business district, the 

density of geo-located Tweets is lower which suggests that people in the city for 

leisure purposes are the producers of geo-located Tweets. While the number of 

 

Trinity shopping 
centre 

Leeds train station 
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Twitter users who send geo-located Tweets can be quantified, it is more challenging 

to determine their proportion within the ambient population. 

 

Figure 3.4 KDE of geo-located Tweets in Leeds city centre using a radius of 200m and 

a cell size of 2.79m2. 

 

3.3.4 Wi-Fi sensor data 

Wi-Fi sensor counts are logs of Wi-Fi probe requests which occur when a Wi-

Fi enabled device passes a Wi-Fi sensor. The Wi-Fi data used in this study were 

produced by the Local Data Company in partnership with the Consumer Data 

Research Centre. The sensor data were downloaded at 5-minute intervals for the 12 

months of 2017. While this example is based in Leeds, there are other examples in 

cities such as London (UK) and Singapore. As can be seen in Figure 3.5, Wi-Fi sensors 

produce pedestrian counts at specific geographic points and enable the detection of 

patterns and fluctuations at different temporal levels such as daily or hourly. Figure 

3.5 also highlights the importance of enumerating individuals who visit the city centre 

for leisure purposes as Saturday experiences the highest pedestrian count in all 

locations except St. Pauls Street, which is located in the business district. 



 

 84 

 

Figure 3.5 Counts from Wi-Fi sensor data capturing daily fluctuations (sum for a 24-

hour period, averaged over 12 months) by location. 

 

3.3.5 Footfall camera counts 

Footfall cameras are a novel data source which are able to capture 

fluctuations in hourly and daily counts of pedestrians. The data examined in this 

section were aggregated from 8 footfall cameras located in Leeds in May 2018. Figure 

3.6 highlights the hourly changes in footfall recorded by the footfall cameras. 

Mondays, Tuesdays and Wednesdays exhibit similar trends in hourly counts, likely to 

be due to workers in the city. Thursdays and Fridays experience higher footfall than 

days earlier in the week and footfall in the early evening, between 17:00 and 19:00 is 

evident. This could be linked to later shop closing times on these days and an increase 

in people socialising in the city centre towards the end of the typical working week. 

On both Saturday and Sunday, footfall reaches a peak later in the day, around 14:00, 

when compared to the working week.   

 

The data offer fine spatio-temporal detail and enumerate non-workers in the 

city centre, both of which benefit estimates the ambient population. Footfall camera 

data could be used with workday population data in order to enumerate the ambient 

population by capturing workers and non-workers in an area.  
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Figure 3.6 Hourly fluctuations in pedestrian counts from eight footfall cameras 

located in Leeds city centre and a map showing the locations of the cameras. 

 

In Figure 3.7 the temporal trends of Wi-Fi sensor counts and footfall camera 

counts are highlighted. Both data sources demonstrated decreases in counts on the 

7th May, 14th May, 21st May and 29th May. The peaks in Wi-Fi sensor counts occur 

more frequently than in the footfall camera data and do not share any overlaps 

temporally. Reasons for this may include that the Wi-Fi sensors and footfall cameras 

are located in different parts of the city centre, thus are not enumerating the same 

spatial locations. Additionally, the counts are captured in different ways; footfall 

cameras count the number of passing pedestrians, while Wi-Fi sensors count the 

number of Wi-Fi enabled devices that emit a probe request. Thus, the counts from 

the two different data sources would not be expected to be identical. Conducting a 

validation process will enable better understanding of the accuracy of counts from 

each data source. 
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Figure 3.7 The number of pedestrians/Wi-Fi enabled devices captured in Leeds during 

May 2017. Hourly counts by location have been aggregated to daily counts and 

have been normalised. 

3.4 Discussion and conclusion 

This paper assesses the utility of conventional and novel data sources that 

have previously been identified as potential sources of data regarding the ambient 

population. It provides an assessment of the advantages and disadvantages of data 

previously employed to quantify the ambient population and identifies potentially 

useful data for use in future research. Future research may include data validation 

and the development of a methodological framework to quantify the ambient 

population. At the time of writing the authors are unaware of any other study that 

assesses the viability of data sources for producing estimates of the ambient 

population and identifies those which may be useful in future work. 

 

The work notes the limited utility of conventional data sources to estimate the 

ambient population in cities, due to the infrequency of data collection and the lack of 
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spatio-temporal detail provided. However, these data have extensive geographic 

coverage and enumerate the majority of the population, encapsulating most, if not 

all, demographic groups (Rees et al., 2002). Workday population data were 

highlighted as a potentially useful measure for estimating the ambient population if 

used in conjunction with novel data which capture fluctuations throughout the day 

(Malleson and Andresen, 2016). 

 

Novel sources of data, previously utilised in existing studies of the ambient 

population, have been acknowledged to have several significant limitations. 

OpenCellID data are able to indicate where people are likely to be located, but they 

are limited by the inability to enumerate the mobile devices connecting to a cell tower 

(Ulm et al., 2015). Consequently, the data have limited utility in producing estimates 

of the ambient population. Geo-located social media data have been identified as 

being able to provide detailed spatio-temporal logs of the locations of individuals; 

however, the data only represent a small-proportion of social media users and not 

the entire population of an area (Tucker et al., 2021). Finally, mobile phone data 

provide temporally frequent data but are expensive to purchase from network 

providers, which is a significant research barrier. Additionally, there are significant 

ethical issues surrounding the consent of mobile service users.  

 

Footfall camera data have limited ethical concerns and are able to capture all 

individuals who pass the camera, thus can be representative of the whole population. 

However, it is possible that individuals may be counted by the same camera multiple 

times or be counted by multiple cameras. As with Wi-Fi sensors, a physical device has 

to be installed to capture data, therefore ensuring there are sufficient devices within 

a geographical area is crucial to ensure that there enough data and that the data are 

representative (Robinson and Franklin, 2020). Footfall camera data are able to 

capture non-working and atypical working populations at fine spatio-temporal scales. 

Wi-Fi sensors also offer spatio-temporal detail, but do not capture the entire 

population as they only capture the number of Wi-Fi enabled devices (Freudiger, 

2015). Footfall camera data are able to enumerate the whole population without the 
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bias of the digital divide. The availability of Wi-Fi sensor and footfall camera data 

remains a significant issue, however this work has provided evidence that they are 

potentially valuable sources of data for building estimates of the ambient population. 

Following the direct comparison of footfall camera and Wi-Fi sensor counts, it is clear 

that a validation process must be undertaken to assess the accuracy of the data. 

 

Assessing the utility of data sources for quantifying the ambient population is 

a crucial step in producing accurate estimates. While no single dataset is able to 

capture the ambient population, this paper has highlighted data sources which may 

be valuable for estimating the ambient population. Estimates of the ambient 

population would benefit from data which are geographically comprehensive and 

spatio-temporally detailed. Conventional data sources, such as the census are able to 

provide data which are geographically comprehensive, but they lack temporal detail 

(Office for National Statistics, 2013b). However, workday population estimates are 

able to provide an indication of work-related temporal fluctuations, in addition to 

providing an extensive geographical coverage (Office for National Statistics, 2013a). 

Footfall cameras and Wi-Fi sensors are able to pr  ovide spatio-temporally detailed 

data which do not have associated ethical concerns, unlike mobile phone activity data 

(Reades et al., 2007). While geo-located social media are also able to provide data at 

a high spatio-temporal resolution, there is insufficient information regarding the 

representativeness of the data (Goodchild, 2007; Tucker et al., 2021). Additionally, 

Twitter data will no longer be geo-located which limits it’s use in future research 

(Tucker et al., 2021). Consequently, Wi-Fi sensor and footfall camera data have been 

recommended as potentially valuable for estimating the ambient population. Issues 

such as data access and counting individuals multiple times remain, but validating and 

exploring these datasets further would enable the development of a framework for 

building estimates of the ambient population (Bernardin and Stiefelhagen, 2008). 

Future work should include the validation of counts from footfall cameras and Wi-Fi 

sensors and the production of a comprehensive framework to estimate the ambient 

population. 
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Chapter 4 

Towards a Comprehensive Measure of the Ambient 

Population: Building Estimates Using Geographically 

Weighted Regression 

 

This chapter is ready to be submitted to a peer reviewed journal as: 

Whipp, A., Malleson, N., Ward, J. and Heppenstall, A. Towards a comprehensive 

measure of the ambient population: Building estimates using geographically weighted 

regression. 

This chapter has three aims: 

1. To develop small area estimates of the size of the ambient population for an 

urban area. 

2. To produce a validation dataset that captures footfall counts in an urban area. 

3. To employ the validation dataset to assess the accuracy of the manual footfall 

counts, the footfall camera counts and the model estimates. 

The work in this chapter fulfils research objectives 3, 4, and 5. This chapter 

builds on the work in Chapter 3 which identified the need to produce small-area 

estimates of the ambient population using both traditional and novel data types. 

The paper was submitted with supplementary materials which included an R 

script containing all of the code needed to replicate the model. 

 

Abstract 

Estimates of the resident population fail to account for human mobility, which 

significantly impacts the numbers of people in urban areas. Employing the ambient 

population provides a more nuanced approach to small-area population estimation. 

This paper utilises a method of statistical modelling, geographically weighted 
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regression, and novel data to estimate the size of the ambient population in an urban 

area. Models of the daytime and night-time ambient populations are produced for 

the city of Leeds, West Yorkshire, UK. Interestingly, the presence of cash machines 

and hospitality venues were found to be statistically significant and were identified as 

the most important predictors of the ambient population. In contrast to the literature, 

the number of retail hubs, transport hubs, and the density of mobile phone cell 

towers were not found to have statistically significant relationships with footfall 

camera counts. Footfall camera data and the results of the predictive model were 

validated through comparison with manually collected pedestrian counts. The results 

of this validation process demonstrated that at five out of the six locations in Leeds 

city centre, the model produced expected estimates of the size of the ambient 

population. The results suggest that the approach of this study can be used as a tool 

to inform decision-making within local government and studies in which small area 

estimates of ambient populations are required. 

 

4.1 Introduction 

Estimates of the ambient population quantify fluctuations in the non-

residential population. They are a valuable asset in policymaking and are an essential 

tool within social science research. The ambient population can be defined as “the 

number of people within a given geographical area at a specific point in time, 

excluding individuals at their place of residence and those utilising modes of 

transport” (Whipp, Malleson, et al., 2021, p.131). Estimates of the ambient 

population can be used to gain a better understanding of human mobility (Ratti et al., 

2006; Reades et al., 2007; Kontokosta and Johnson, 2017), to inform hazard 

management (Smith et al., 2005; Chen and McAneney, 2006; Løvholt et al., 2012) and 

to represent crime rates with greater accuracy (Andresen and Jenion, 2010; 

Andresen, 2011; Mburu and Helbich, 2016). Despite the utility of estimates of the 

ambient population, previously there have been limited attempts to produce and 

employ them. 
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Much of the recent literature has focussed on the use of single, novel data 

sources as a proxy of the ambient population, rather than combining multiple sources 

to produce more comprehensive estimates. This study aims to estimate the size of 

the ambient population in an urban area using numerous traditional and novel 

datasets. This aim is fulfilled by employing geographically weighted regression to 

estimate the size of the ambient population using high-resolution spatio-temporal 

footfall camera counts and contextual factors, such as estimates of the workday 

population, the locations of mobile phone cell towers, and land use data. The 

estimates of the ambient population are then externally validated using manual 

footfall counts to assess the accuracy of both the model estimates and of the footfall 

camera data.  

 

The article is structured as follows. Section 4.2 reviews existing research 

relating to quantifying and exploring the ambient population. The data and methods 

utilised are presented in Section 4.3, while Section 4.4 outlines and discusses the 

results from the predictive models. In Section 4.5, the validation process is outlined, 

and the results are presented. Section 4.6 provides a conclusion and 

recommendations for future work.  

 

4.2 Background 

Estimates of the ambient population can aid the development of a more 

detailed understanding of the fluctuations in human activity patterns. There are 

currently no widely accepted methods for estimating the size of the ambient 

population, despite the many applications for its use and the value of these estimates 

being acknowledged within the literature over 60 years ago (Schmitt, 1956; Martin et 

al., 2009b).  

 

Existing work has attempted to use traditional datasets, such as censuses, in 

conjunction with areal interpolation methods to produce spatially detailed estimates 
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of the ambient population. Various areal interpolation methods have been employed 

to produce estimates of populations, including dasymetric mapping (Mennis and 

Hultgren, 2006; Bhaduri et al., 2007; Sims et al., 2017), grid-based modelling (Martin, 

1989; Martin, 1996; Martin et al., 2009b; Martin et al., 2015) and pycnophylactic 

interpolation (Tobler, 1979; Tobler et al., 1995; Tobler et al., 1997). These methods 

commonly utilise land use data in conjunction with auxiliary data to produce small 

area estimates of the population. The primary advantage of areal interpolation 

methods is the ability to disaggregate coarse data to a finer spatial resolution to 

produce small-area estimates of the ambient population (Mennis and Hultgren, 

2006). However, due to the increased volume and availability of spatio-temporally 

detailed data, the utility of areal interpolation methods has diminished.  

 

There are several limitations of areal-based interpolation methods. 

Dasymetric mapping assumes that all features are equitably distributed within a 

geographical area and the accuracy of the results is dependent on the resolution of 

the auxiliary data utilised. The auxiliary data are most commonly remotely sensed 

images; however, using  these images to enumerate high-rise buildings, which are 

typically located in urban areas, is a sizable challenge and can lead to reduced data 

accuracy (Li et al., 2020). Consequently, there are concerns regarding the accuracy of 

remotely sensed images for urban areas, as high-rise buildings have a significant 

impact on the number of people within an area. Grid-based modelling techniques, 

first developed in work by Martin (1989), interpolate values from a control point, 

often the centroid of a polygon. The control point has a significant impact on the 

results of the interpolation, as, if the geometric centroid is outside of the polygon 

boundary it can impact the reliability of the interpolated values (Comber and Zeng, 

2019). Pycnophylactic interpolation was used in a study by Tobler (1979) to produce 

interpolated values of the residential population in Michigan, U.S. However, as 

pycnophylactic interpolation produces a smooth interpolated surface, the method is 

only suitable for use with continuously observed phenomena; thus, use with 

population data is not appropriate (Comber and Zeng, 2019). Due to the limitations 

of areal interpolation-based methods and the reduced need to disaggregate coarse 
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data, this study focusses on the use of both traditional and novel sources of data with 

a method of statistical modelling. 

 

As high-resolution spatio-temporal data became more readily available there 

was a shift towards the use of novel data as a proxy of the ambient population. Spatio-

temporal data, including geo-located social media data (Kounadi et al., 2018; Giglio et 

al., 2019; Roy et al., 2019), mobile phone activity data (Reades et al., 2007; Terada et 

al., 2013) and Wi-Fi sensor counts (Kontokosta and Johnson, 2017; Crols and 

Malleson, 2019), have been utilised both as a proxy of the ambient population and to 

provide insight into its spatial distribution. However, there have been limited 

attempts to use these types of data in conjunction with quantitative methods to 

produce estimates of the ambient population. To address this gap in the literature, 

this paper aims to use high-resolution spatio-temporal data and statistical modelling 

to produce estimates of the ambient population in an urban area. 

 

To produce comprehensive estimates of the ambient population, 

geographically weighted regression (GWR) is employed in this study. GWR is a local 

spatial regression technique that can capture spatial heterogeneity. GWR has been 

used in a range of applications, such as crime studies (Cahill and Mulligan, 2007; Stein 

et al., 2016; Xu et al., 2019; Maldonado-Guzmán, 2020), land use (Tu and Xia, 2008; 

Wang et al., 2011; Liu et al., 2015; Chen et al., 2016; Munira and Sener, 2020), 

transport (Cardozo et al., 2012; Selby and Kockelman, 2013; Pirdavani et al., 2014; 

Chiou et al., 2015; Yang et al., 2017), pollution (Robinson et al., 2013) and health 

(Comber et al., 2011; Yang and Matthews, 2012; Kauhl et al., 2016). GWR has been 

used for population estimation to predict population size based upon satellite 

imagery data (Lo, 2008; Chu et al., 2019; Roni and Jia, 2020). However, the method 

has not yet been employed to build estimates of the ambient population using non-

image data. Given this gap in the literature, this paper aims to utilise novel sources of 

data and GWR to produce estimates of the ambient population in an urban area. 
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4.3 Data and methodology 

4.3.1 Study area and geography 

The selected study area is the city centre of Leeds, UK (see Figure 4.1). The 

area has a large retail offering, a significant financial and legal district and is a popular 

tourist destination which result in fluctuations in the ambient population, making it 

an ideal test-bed for this work. The study area has a resident population of 16,022 

and a workday population of 134,244 (Office for National Statistics, 2011b), 

highlighting the diurnal fluctuations which occur in the centre of the city due to the 

dynamics of the ambient population. The geographic area encapsulated as the city 

centre of Leeds was developed through discussions with Leeds City Council and is 

shown in Figure 4.1. The approach used in this study could be generalised to other 

city or urban centres where the necessary data are available. Other candidate cities 

which could be suitable for the use of this approach for estimating the ambient 

population include Liverpool and Manchester, due to the similarities between the 

retail offerings, geographic concentrations of workplaces, and the night-time 

economy. The data sources are described in detail in sections 4.2 and 4.3.  
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Figure 4.1 The study area of the city centre of Leeds, UK. The inset maps represent 

the location of Leeds within the UK. The study area covers an area of 4km2. 

Basemap data copyrighted OpenStreetMap contributors and available from 

https://www.openstreetmap.org. 

 

The data utilised have been aggregated to workplace zones. Workplace zones 

are a set of output geographies from the 2011 UK Census and are the smallest level 

of UK geography designed specifically to represent the workday (i.e. non-residential) 

population (Office for National Statistics, 2014). Workplace zones were selected as 

the unit of geography as using the smallest level of geography enables small-area 

estimates to be produced which can provide a more representative indication of how 

the size of the ambient population varies across space. The study area contains 116 

workplace zones, and each workplace zone was designed to contain an average of 

500 people (House of Commons, 2014).  

 

4.3.2 Dependent variables 

The dependent variables utilised in the statistical models are daytime and 

night-time counts of pedestrians from eight footfall cameras located within the study 

area from the 1st to the 31st of May 2019. The cameras, operated by Leeds City 

Council, capture hourly counts of pedestrians passing the cameras and the data are 

openly available from Data Mill North (https://datamillnorth.org/), a source of open 

data created by Leeds City Council. The counts from the eight cameras were divided 

into daytime counts, between the hours of 07:00 and 19:00, and night-time counts, 

between 19:00 and 07:00. The time periods that represent the daytime and the night-

time were selected based on discussions held with Leeds City Council. As commuters 

typically enter the city from 07:00 onwards, this was selected as the start of the 

daytime period, while 19:00 was selected as the end of the daytime period as this is 

when there is an increase in activity associated with the night-time economy. 

The data were then aggregated by workplace zone, producing daytime and 

night-time counts for each of the zones. The accuracy of the footfall camera counts is 
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unknown; thus, the data are validated using manual counts in Section 4.5. The footfall 

cameras cover a limited geographical area, spanning six workplace zones; 

consequently, in two zones the mean of two separate camera counts is used. All eight 

cameras are in the primary shopping district; therefore, the observed dependent 

variables may not capture all human activity patterns that produce fluctuations in the 

ambient population and may impact the model fit. Footfall camera data are becoming 

increasingly accessible and are currently openly available for several cities including 

Melbourne (Australia), Auckland (New Zealand) and Dublin (Ireland). Creating similar 

models for such cities and comparing them to the model produced here presents an 

interesting opportunity for future work. 

 

4.3.3 Independent variables  

The independent variables used in this study were selected based upon 

factors identified in the existing literature as being associated with levels of footfall or 

the size of the ambient population. The selected variables are discussed in detail 

below and summarised in Table 4.1. The independent variables were assessed for 

multicollinearity using a variance inflation factor which identifies correlation between 

independent variables. The variance inflation factor was below 10 in all instances, 

thus there was not multicollinearity present between variables (O’Brien, 2007).  

Table 4.1 The candidate independent variables used in the daytime and night-time 

OLS and GWR models of the ambient population. 

Variable  Data source and 

year 

Description 

OpenCelliD OpenCelliD, 

2020 

The number of cell towers and corresponding cells 

per workplace zone. The data are gathered using 

software which captures the GPS position of the 

cell towers that users are connected to. The data 

are available from OpenCelliD 
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(https://opencellid.org/). The data used in this 

paper were downloaded on December 3rd, 2020.  

Expected correlation with the dependent 

variable: Positive 

ATMs OpenStreetMap, 

2021 

The number of ATMs per workplace zone 

according to OpenStreetMap 

(https://www.openstreetmap.org/). The data 

were filtered using the tag ‘amenity=atm’. 

Expected correlation with the dependent 

variable: Positive 

Higher and 

further 

education 

OpenStreetMap, 

2021 

The number of college and university buildings 

per workplace zone according to OpenStreetMap. 

The data were filtered using the tags 

‘amenity=college’ and ‘amenity=university’. 

Expected correlation with the dependent 

variable: Positive 

Hospitality OpenStreetMap, 

2021 

The number of bars, cafes, restaurants, and pubs 

per workplace zone according to 

OpenStreetMap. The data were filtered using the 

following tags: ‘amenity=bar’, ‘amenity=cafe’, 

‘amenity=restaurant’ and ‘amenity=pub’. 

Expected correlation with the dependent 

variable: Positive 

Retail OpenStreetMap, 

2021 

The number of shops per workplace zone 

according to OpenStreetMap. The retail data were 

filtered using the tag ‘building=retail’. 

Expected correlation with the dependent 

variable: Positive 
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Transport 

hubs 

OpenStreetMap, 

2021 

The number of transport hubs per workplace 

zone according to OpenStreetMap. The number 

of bicycle parking facilities, bus stops, car parks, 

and train stations were downloaded using the 

following tags: ‘amenity=bicycle_parking’, 

‘highway=bus_stop’, ‘amenity=parking’, and 

‘building=train_station’. 

Expected correlation with the dependent 

variable: Positive 

Workday 

population 

UK 2011 Census 

(Office for 

National 

Statistics, 2011b) 

The workday population can be defined as the 

number of people in employment in an area, in 

addition to those who are residents in the area 

and are not in employment (Office for National 

Statistics, 2013a). These data are available at 

workplace zone level from the UK Census. 

Expected correlation with the dependent 

variable: Positive 

 

4.3.3.1 Mobile phone cell tower density: OpenCelliD 

OpenCelliD is a cumulative database of cell tower locations and their network 

coverage areas (known as cells). The data are collected in a crowd-sourced manner 

via a smartphone application that captures the location of the cell that a user is 

connected to. The size of a cell is dependent on environmental factors, such as 

typography, and the number of expected mobile phone users in the area. 

Telecommunication providers install cell towers where there are likely to be higher 

numbers of people; thus, mobile phone cell tower density data may be a good proxy 

of the ambient population. OpenCelliD data are considered to be indicative of the 

ambient population and were utilised as a proxy of the ambient population to produce 

crime rates in Vancouver, BC  (Johnson et al., 2020). OpenCelliD is a global database, 

thus the data could be used to estimate the size of the ambient population in other 
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urban areas (OpenCelliD, 2018). The data utilised in this study were downloaded on 

the 3rd December 2020. 

 

4.3.3.2 Points of Interest: OpenStreetMap  

OpenStreetMap (OSM) is a collaborative mapping service and corresponding 

database. The data, which are geographic features, are available to download from 

the OSM database. Geographic features are represented as points (nodes), lines 

(ways) and polygons (relations) which are commonly tagged with attribute data. The 

tagging of features is encouraged to create a common basemap and to ensure that 

the data are of high quality, despite the activity being time intensive (Liu et al., 2011; 

Mooney and Corcoran, 2012). Despite tagging being encouraged, there are missing 

and incorrect tags; thus, it is probable that the true number of features in each 

workplace zone will be higher than stated. However, existing work suggests that OSM 

data tend to be more comprehensive in urban areas (Hagenauer and Helbich, 2012). 

 

There are no formal standards for tagging features, but it is expected that 

users should use both a key, which describes a category, and a value, which is a 

feature (OpenStreetMap, 2020). The key and value should be separated by an equals 

sign, for example a shop should be tagged as ‘amenity=shop’. The tags used to 

download data utilised in this study can be seen in Table 1. The OSM data were 

downloaded using the ‘osmdata’ R package (Padgham et al., 2017). Four of the 

variables used in this study were produced using OSM data, these are the number of 

ATMs, higher and further education buildings, retail premises and transportation 

hubs. To validate the OpenStreetMap data points, the geographic locations of the 

features of interest (ATMs, institutes of higher and further education, hospitality 

venues, retailers, and transport hubs) were cross-referenced with Google Maps. In 

instances where the feature was not present in both sources, it was removed from 

the downloaded OSM point data. 
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ATMs (automated teller machines) are generally located in areas which 

experience high levels of footfall to increase the number of transactions (Introna and 

Whittaker, 2007; Kisore and Koteswaraiah, 2017; Ashtikar et al., 2019). It would 

therefore be expected that higher numbers of ATMs are indicative of a higher 

ambient population in an area, thus were selected as a candidate predictor variable. 

Although beyond the scope of this paper, it will be interesting to verify whether ATMs 

continue to be a useful predictor of footfall following the increase in cashless payment 

options employed during COVID-19 restrictions. 

 

Student populations can have a significant impact on the ambient population 

in many urban areas, with regards to both daytime and night-time activity. There are 

numerous ways in which the student population can be quantified; in this study the 

number of university and college buildings has been utilised. These data have been 

selected as they are indicative of where students are likely to be located, particularly 

during daytime hours, rather than providing information regarding their residential 

location. Estimates of the numbers of students in further and higher education were 

also included in a spatio-temporal model of the population for flood risk assessment 

in urban areas by Smith et al. (2016). 

 

Footfall counts have been utilised in retail geography and planning as an 

indicator of potential spend (Genecon, 2011), in addition to being employed as a 

method of site selection for new retail offerings (Brown, 2006; Wood and Browne, 

2007). Smith et al. (2016) used retail destination data, as retail areas attract large 

numbers of non-residential populations and shopping is a significant element within 

human activity patterns. Consequently, it would be expected that areas with a high 

number of retail premises also experience high levels of footfall and the number of 

retail venues has been selected for use as a dependent variable. The same trend 

would be expected with the hospitality sector, including bars, cafes, restaurants, and 

pubs. There are several ways in which retail and hospitality could be quantified; in this 

study the aggregated number of shops, bars, cafes, restaurants, and pubs in each 
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workplace zone has been used. Alternative methods include using feature density or 

areal coverage. 

  

Transport hubs and transportation more generally have been highlighted as 

important attractors in urban environments in a number of studies (Echtner et al., 

1993; Choi et al., 2007; Mazanec et al., 2007; Tang et al., 2009). Consequently, the 

aggregated counts of bicycle parking facilities, bus stops, car parks, and train stations 

per workplace zone were selected as candidate predictor variables.  

 

4.3.3.3 Workday population: 2011 UK Census 

Workplaces are a key element of human activity patterns, thus it is expected 

that the workday population and the ambient population are intrinsically linked 

(Martin et al., 2015; Berry et al., 2016). Estimates of the workday population are able 

to capture those in employment within an area, in addition to those are residents but 

are not in employment (Office for National Statistics, 2013a); thus, these data were 

selected as a candidate independent variable. In a study by Smith et al. (2016), the 

working age and retired populations were included in a model of the population; 

however, since this research was conducted, workday population data captured by 

the UK Census have been made available (Smith et al., 2016). As UK Census data are 

only collected decennially, the data used in this study are ten years old. This is a clear 

limitation of the dataset; however, it is the most geographically comprehensive 

estimate of the workday population currently available. 

 

4.3.4 Geographically weighted regression 

GWR is a form of local analysis which captures non-stationarity and allows 

spatial heterogeneity to be explored (Brunsdon et al., 1996; Fotheringham et al., 

1997; Charlton and Fotheringham, 2002). In global regression models, such as an 

Ordinary Least Squares (OLS) regression, the relationship between y and x is assumed 
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to be unchanging across the study area. The equation for a simple linear regression is 

as follows,  

𝑦! = 𝛽" +	 & 𝛽#

$

#	&	'

𝑋!# + 𝑒!  

where, for observations i=1..n, 𝑦!  is the dependent variable, 𝑋!# is the value of the kth 

predictor variable, m is the number of independent variables, 𝛽" is the intercept term, 

𝛽# is the regression coefficient for the kth predictor variable, and 𝑒!  is the random 

error term. 

 

However, spatial data are often not compatible for use with an OLS model as they are 

spatially autocorrelated and often represent spatial patterns that are challenging to 

explore using global models and statistics. Spatial autocorrelation is a measure of 

similarity between values that are close in space. If data are spatially autocorrelated, 

the strength of the relationship between variables will vary across space. GWR 

enables this spatial heterogeneity to be captured. GWR is similar to simple linear 

regression, but a GWR model is fitted at geographic coordinate locations. The GWR 

model is, 

𝑦! = 𝛽!" +	 & 𝛽!#

(

#	&	'

𝑋!# + 𝜀!  

where, 𝑦!  is the dependent variable at location 𝑖, x is the value of the 𝑘th covariate at 

location 𝑖, 𝛽!" is the intercept, 𝛽!# is the regression coefficient of the 𝑘th covariate, p 

is the number of independent variables, and 𝜀!  is the random error at location 𝑖. 

 

GWR was selected for use in this study as it has not yet been used in the literature to 

produce small-area estimates of the population. Other methods of areal interpolation 

have been employed to produce estimates of populations, including dasymetric 

mapping (Mennis and Hultgren, 2006; Bhaduri et al., 2007; Sims et al., 2017), grid-

based modelling (Martin, 1989; Martin, 1996; Martin et al., 2009b; Martin et al., 2015) 

and pycnophylactic interpolation (Tobler, 1979; Tobler et al., 1995; Tobler et al., 
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1997). These methods commonly utilise land use data in conjunction with auxiliary 

data to produce small area estimates of the population. The primary advantage of 

areal interpolation methods is the ability to disaggregate coarse data to a finer spatial 

resolution to produce small-area estimates of the ambient population (Mennis and 

Hultgren, 2006). However, due to the increased volume and availability of spatio-

temporally detailed data, the utility of areal interpolation methods has diminished. 

Consequently, this provided an opportunity to explore the use of GWR as a method 

of modelling the ambient population. 

 

Daytime and night-time OLS and GWR models of the ambient population were 

produced with the seven candidate independent variables, summarised in Table 4.1. 

These models will be referred to as the ‘full models’. In the final models, the variables 

that were not statistically significant in the full models were removed and the models 

were re-run. The R2 values are used to compare the predictive capacity of the OLS and 

GWR models and the AIC values are used as a relative measure of the goodness of fit. 

The OLS models were fitted in R using the ‘lm’ function which is part of the built-in 

‘stats’ package. The GWR models were produced in R using the ‘spgwr’ package 

(Bivand et al., 2020). In instances where the GWR models predicted a negative 

estimate of the ambient population, the minimum value was capped at 0. The values 

were capped to more accurately reflect the ambient population which cannot have a 

negative value in the real-world. The estimates of the GWR model were visualised 

using QGIS. All basemap data are copyrighted OpenStreetMap contributors and are 

available from https://www.openstreetmap.org. 

 

4.4 Results 

4.4.1 The daytime ambient population: Model results 

In the full OLS and GWR models (Table 4.2), two of the seven variables have 

statistically significant relationships with the daytime ambient population. The 

number of ATMs was identified as the most significant predictor of the daytime 
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ambient population with a beta coefficient of 2.657 (p< 0.001). The number of 

hospitality venues is negatively associated with the daytime ambient population (beta 

coefficient= -1.759, p<0.001), which is inconsistent with the expected relationship 

based on the existing literature. This unexpected finding will be revisited in Section 6. 

The number of retail premises are positively associated with the daytime ambient 

population, but the relationship is not statistically significant. The variables 

OpenCelliD, hospitality, higher and further education, transport hubs, and the 

workday population were all negatively associated with the daytime ambient 

population, but the relationships were not significant. 

Table 4.2 Full OLS and GWR models of the daytime ambient population. 

 OLS model GWR model 

Variable Coefficient Standard 

error 

t-value Minimum Maximum 

Intercept 1.046 6.488 1.612 9.968 1.145 

OpenCelliD -4.242 3.017 -1.406 -4.505 -4.261 

ATMs 2.657 *** 3.373 7.877 2.651 2.727 

Higher and 

further 

education 

-6.100 3.330 -0.018 -1.032 -3.359 

Hospitality -1.759 ** 6.134 -2.867 -1.829 -1.765 

Retail 3.883 7.137 0.544 3.705 3.989 

Transport 

hubs 

-2.250 3.138 -0.717 -2.563 -2.124 

Workday 

population 

-8.892 1.779 -0.500 -9.847 -7.487 

OLS diagnostics: 

Adjusted R2: 0.301 

GWR diagnostics: 

Adjusted R2: 0.339 
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AIC: 2760.190 

Significance codes: 0 ‘***’, 0.001 ‘**’ 

AIC: 2750.114 

 

In the final OLS and GWR models (Table 3), the adjusted R2 values for the full 

daytime OLS and GWR models are 0.312 and 0.332 respectively. The AIC value of the 

GWR model of the daytime ambient population is lower than that of the OLS (by 

6.344), which along with the R2 value indicates that the GWR model has increased 

predictive capacity. The GWR model accounts for around 33% of the variation in the 

daytime ambient population. In the final model, ATMs remain the most statistically 

significant independent variable with a beta coefficient of 2676.46 and a p-value less 

than 0.001. The hospitality variable in the final model has a beta coefficient of -160.11 

and a p-value less than 0.001. 

Table 4.3 Final OLS and GWR models of the daytime ambient population. 

 OLS model GWR model 

Variable Coefficient Standard 

error 

t-value Minimum Maximum 

Intercept 361.53 410.38 0.881 315.11 575.95 

ATMs 2676.46 *** 330.26  8.104 2647.48 2927.77 

Hospitality -160.11 ** 59.75  -2.680 -184.53 -158.94 

OLS diagnostics: 

Adjusted R2: 0.312 

AIC: 2753.222 

Significance codes:  0 ‘***’, 0.001 ‘**’ 

GWR diagnostics: 

Adjusted R2: 0.332 

AIC: 2746.878 

 

 

The estimates of the daytime ambient population can be seen in Figure 4.2. 

Estimates are highest in the primary retail area of the study area, and in the central 

areas which feature high numbers of attractors, such as bars and restaurants. In the 
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financial district, estimates are significantly lower than in the retail areas. Despite high 

numbers of workers in this area, it is unlikely to experience fluctuations in the ambient 

population due to visitors or tourists. The spatial distribution of the estimates appears 

to be expected across the study area and the estimates will be validated in Section 5. 

 

 

Figure 4.2 The spatial distribution of the estimates of the daytime ambient 

population. 

4.4.2 The night-time ambient population: Model results 

In the full OLS and GWR models (Table 4.4), two of the seven variables have a 

statistically significant relationship with the night-time ambient population. As in the 

models of the daytime ambient population, the ATM variable was identified as the 

most significant predictor of the night-time ambient population, with a beta 

coefficient of 285.897 and a p-value of less than 0.01. The hospitality variable is 

negatively associated with the night-time ambient population with beta coefficient of 

-21.000 and is statistically significant (p<0.001). The variables OpenCelliD, higher and 

further education, transport hubs, and the workday population all have a negative 

association with the night-time ambient population, but these relationships are not 

statistically significant. The retail variable has a positive association with the night-
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time ambient population, which is to be expected based on the literature; however, 

the relationship is not statistically significant. 

Table 4.4 Full OLS and GWR models of the night-time ambient population. 

 OLS model GWR model 

Variable Coefficient Standard 

error 

t-value Minimum Maximum 

Intercept 178.692 104.840 1.704 170.722 194.024 

OpenCelliD -6.334 4.875 -1.299 -6.726 -6.324 

ATMs 285.897 *** 54.512 5.245 283.987 292.044 

Higher and 

further 

education 

-0.304 5.380 -0.057 -0.388 -0.258 

Hospitality -21.000 * 9.911 -2.119 -21.885 -20.975 

Retail 1.993 11.532 0.173 1.653 2.191 

Transport 

hubs 

-2.877 5.071 -0.567 -3.159 -2.721 

Workday 

population 

-0.001 0.002 -0.463 -0.001 -2.721 

OLS diagnostics: 

Adjusted R2: 0.166 

AIC: 2234.796 

Significance codes:  0 ‘***’, 0.01 ‘*’ 

GWR diagnostics: 

Adjusted R2: 0.193 

AIC: 2232.612 

 

In the final OLS and GWR models (Table 4.5), the adjusted R2 values for the full 

daytime OLS and GWR models are 0.166 and 0.182 respectively. The AIC value of the 

GWR model of the night-time population is 2229.427, which is 5.369 lower than that 
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of the OLS model. The AIC and R2 values indicate that the GWR model has increased 

predictive capacity. The GWR model is able to account for around 19% of the variation 

in the night-time ambient population. In the final model, the ATM variables is the 

most statistically significant variable, with a beta coefficient of 291.026 and a p-value 

of less than 0.01. The hospitality variable has a beta coefficient of -19.035 and a p- 

value of less than 0.05. 

Table 4.5 Final OLS and GWR models of the night-time ambient population. 

 

The spatial distribution of the estimates of the night-time ambient population 

can be seen in Figure 4.3. Estimates of the night-time ambient population are highest 

in the central and eastern areas of the study area where there are high numbers of 

attractors. Estimates of the ambient population are lowest in workplace zones in the 

West and North-West of the study area, which primarily contain workplaces and low 

numbers of attractors. Thus, the spatial distribution of the night-time population is 

reflective of the expected patterns. 

 

 OLS model GWR model 

Variable Coefficient Standard 

error 

t-value Minimum Maximum 

Intercept 72.530 66.131 1.097 66.324 93.016 

ATMs 291.026 *** 53.220 5.468 287.011 305.496 

Hospitality -19.035 . 9.628 -1.977 -20.704 -18.766 

OLS diagnostics: 

Adjusted R2: 0.166 

AIC: 2234.796 

Significance codes:  0 ‘***’, 0.05 ‘.’ 

GWR diagnostics: 

Adjusted R2: 0.182 

AIC: 2229.427 



 

 115 

There are clear differences between the estimates of the daytime and the 

night-time ambient population. The daytime ambient population is much higher 

across the whole of the study area, particularly in the retail areas of Leeds city centre. 

The night-time population is much lower across the study, with higher levels of the 

ambient population in areas with high concentrations of features associated with the 

night-time economy, such as the arena in the North East of the study area. 

 

Figure 4.3 The spatial distribution of the estimates of the night-time ambient 

population 

 

4.4.3 Model testing 

The model was tested in two other locations within the metropolitan borough 

of Leeds: Headingley and Wetherby, using the coefficients of the final daytime model 

of Leeds city centre.  These case study locations were selected to assess the validity 

of the model in areas of a similar geographic size with different demographic 

characteristics, hence different human activity patterns. Age was the demographic 

selected for use as it is expected to impact the type of activities people engage in and 

the frequency at which these activities occur. Headingley is a suburb of Leeds, 3km 

Northwest of Leeds city centre and a popular student area, with 78% of the usual 
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residents aged between 18 and 30 (Office for National Statistics, 2011b). Wetherby is 

a market town 20km Northwest of Leeds city centre. The residential population of 

Wetherby is 10% older than the national average, with 30.6% of households over the 

age of 65 (Office for National Statistics, 2011b).  

 

Estimates of the daytime ambient populations in Headingley and Wetherby 

were produced using the coefficient determined in the final daytime model. The same 

dependent variables were utilised as those used in the final model of Leeds city centre 

(the number of ATMs and the number of hospitality venues). However, the lack of 

ATMs in the centre of the town of Wetherby may be a limitation of the variables 

selected for use in the model. This issue may be relevant in other locations which are 

less urban and, therefore, have fewer ATMs. Consequently, alternative variables may 

need to be identified and utilised when producing estimates of the ambient 

population in smaller towns and less urbanised areas. 

 

 Estimates of the daytime ambient population in Headingley, which can be 

seen in Figure 4.4, shows an expected spatial distribution. Estimates of the ambient 

population are highest in the workplace zones in proximity to the train station, sports 

stadium, university student accommodation, and along the primary high street. 

Estimates are lowest in workplace zones in which building density is low, thus the 

spatial distribution of the estimates is rational.  
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Figure 4.4 Estimates of the daytime ambient population in Headingley. 

Estimates of the daytime ambient population in Wetherby, shown in Figure 

4.5, are highest in the workplace zones near the centre of town and along part of the 

main high street, where a major supermarket and a high density of shops and 

attractors are located. Estimates of the daytime ambient population are capped at 

zero in workplace zones towards the southeast of the study area where there are 

fewer attractors, and the area is primarily residential. However, the workplace zone 

in the centre of the study area has a high number of attractors, primarily shops and 

cafes, but the model estimates in this area are capped at 0; thus, do not fit the 

expected spatial distribution of the ambient population. This reinforces the need to 

develop a more robust understanding of the potential indicators of the size of the 

ambient population.  
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Figure 4.5 Estimates of the daytime ambient population in Wetherby. 

4.5 Validation  

Due to the limited number of locations at which footfall counts are collected 

and the consequent impact on assessing the accuracy of estimates produced by the 

GWR models, the results were validated using manual counts. As there is a lack of 

openly available data quantifying the size of the ambient population, it was necessary 

to collect manual pedestrian counts. There are three aims of the validation process. 

Firstly, to compare the manual counts collected by the three different data collectors 

at each location to determine whether the manual counts can themselves be trusted 

(Section 4.5.1). Secondly, to assess the accuracy of the counts produced by the footfall 

cameras used in this study (Section 4.5.2) and lastly to evaluate the estimates 

produced by the GWR models (Section 4.5.3). Manual pedestrian counts allow 

observations to be taken at specific geographical locations over a limited period of 

time and are a relatively cost-effective way of gathering data (Bauer et al., 2011). 

Three data collectors were located at each of the ten sites chosen as validation 

locations. Three data collectors were stationed at each site to enable a mean number 

of counts to be taken for each time period, at each location. The ten sites were 

selected to capture locations which typically experience significant fluctuations in the 
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ambient population due to features such as prominent retail areas, areas close to a 

large university, and those with high concentrations of offices. Six of the ten sites were 

selected as footfall cameras are installed in these locations and taking measurements 

at these locations allowed the footfall camera counts to be validated using manual 

counts.   

 

In sections 4.5.1 and 4.5.2, the two-sample Kolmogorov-Smirnov test is 

utilised to assess whether two independent samples come from the same distribution 

(Smirnov, 1948; Kolmogorov, 1992; Berger and Zhou, 2014). The null hypothesis is 

that the two samples come from the same distribution. If the Kolmogorov-Smirnov 

statistic is high and the p-value is below 0.05, the null hypothesis can be rejected. If 

the Kolmogorov-Smirnov statistic is low and the p-value is above 0.05, the null 

hypothesis cannot be rejected. 

 

4.5.1 Validation of manual counts 

The two-sample Kolmogorov-Smirnov test is used to assess whether the 

samples of manual counts recorded by the data collectors are likely to come from the 

same distribution. The test is conducted for eight locations and the results of the tests 

can be seen in Table 6. For seven of the eight locations, in each of the three tests the 

null hypothesis could not be rejected; thus, the three samples likely come from the 

same distribution. For the manual counts collected at North Street (Wetherby), the 

Kolmogorov-Smirnov statistic and p-value indicate that comparing the samples taken 

by data collectors 1 and 2, and 2 and 3, the null hypothesis, that the counts from each 

pair of data collectors are sampled from the same distribution, can be rejected. It is 

unclear why the samples differ in distribution at this location; possible reasons include 

counting errors or mistakes. Therefore, the results of the Kolmogorov-Smirnov 

statistic indicates that at seven of the eight locations the data collectors likely 

captured similar samples of the population; thus, are suitable for use in the validation 

of the footfall camera counts. 
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Table 4.6  The results of Kolmogorov-Smirnov tests on manual count samples at eight 

locations. 

Count location Data 

collectors 

Kolmogorov 

Smirnov 

statistic 

p-value Null 

hypothesis 

Otley 

Road/B617, 

Headingley 

1 and 2 

1 and 3 

2 and 3 

0.333 

0.333 

0.166 

0.930 

0.930 

0.999 

Fail to reject 

Fail to reject 

Fail to reject 

High 

Street/A661, 

Wetherby 

1 and 2 

1 and 3 

2 and 3 

0.333 

0.333 

0.333 

0.930 

0.930 

0.930 

Fail to reject 

Fail to reject 

Fail to reject 

North Street, 

Wetherby 

1 and 2 

1 and 3 

2 and 3 

0.833 

0.666 

0.833 

0.025 

0.142 

0.025 

Reject 

Fail to reject 

Reject 

Otley 

Road/Wood 

Lane, 

Headingley 

1 and 2 

1 and 3 

2 and 3 

0.166 

0.333 

0.333 

0.999 

0.930 

0.930 

Fail to reject 

Fail to reject 

Fail to reject 

The Headrow, 

Leeds city 

centre 

1 and 2 

1 and 3 

2 and 3 

0.166 

0.333 

0.333 

0.999 

0.930 

0.930 

Fail to reject 

Fail to reject 

Fail to reject 

Calverley 

Street, Leeds 

city centre 

1 and 2 

1 and 3 

2 and 3 

0.285 

0.214 

0.333 

0.871 

0.990 

0.930 

Fail to reject 

Fail to reject 

Fail to reject 
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Commercial 

Street, Leeds 

city centre 

1 and 2 

1 and 3 

2 and 3 

0.500 

0.333 

0.500 

0.474 

0.940 

0.474 

Fail to reject 

Fail to reject 

Fail to reject 

Briggate, 

Leeds city 

centre 

1 and 2 

1 and 3 

2 and 3 

0.333 

0.333 

0.333 

0.930 

0.930 

0.930 

Fail to reject 

Fail to reject 

Fail to reject 

 

4.5.2 Validation of footfall camera counts 

There is limited information available regarding the accuracy of pedestrian 

counting devices such as footfall cameras, especially those installed in outdoor 

environments, as most devices were developed for indoor environments, such as 

shopping centres (Greene-Roesel et al., 2008). There are several physical factors that 

may impact the accuracy of the data, including the weather, lighting and occlusion 

(when individuals are not visually isolated, leading to under-enumeration) (Greene-

Roesel et al., 2008; Lindsey, 2015). Data from three footfall cameras, located at 

Briggate, Commercial Street and The Headrow (locations 2, 3 and 5 in Figure 4.6) in 

Leeds city centre are validated using manual counts. Both the footfall camera counts 

and manual counts were recorded on the 8th and 9th July 2021 between the hours of 

10:00 and 16:00 and the Kolmogorov-Smirnov test is utilised to determine whether 

the counts are likely to have come from the same distribution. 

 

The results of the Kolmogorov-Smirnov test (Table 4.7) indicate that for data 

sampled at Commercial Street and The Headrow Square, the null hypothesis cannot 

be rejected; thus, the manual counts and the footfall camera counts likely come from 

the same distribution. However, at Briggate it is unlikely that the two samples came 

from the same distribution as the high Kolmogorov-Smirnov statistic and low p-value 

indicate that the null hypothesis can be rejected. This is supported by the percentage 

differences between the hourly counts from the average manual counts and the 
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footfall camera counts (Table 4.8). The average hourly percentage difference 

between the footfall camera counts and the manual counts at Briggate is 55.20%, 

which is substantially higher than the values for Commercial Street (1.32%) and The 

Headrow (16.39%). At Briggate a counting discrepancy may have occurred, such as 

the manual counts capturing a different geographical area to the footfall camera. It is 

not always clear precisely which part of the street the footfall cameras are covering, 

and this is exacerbated at Briggate as the camera is located at a busy intersection 

between multiple roads. However, as the counts at Commercial Street and The 

Headrow are similar, we are confident that the cameras are recording sufficiently 

accurate numbers and the failure of the Briggate camera to match the manual counts 

is the result of a discrepancy in where, precisely, the population is being recorded. 

Table 4.7 Results of the Kolmogorov-Smirnov test on the average manual counts and 

the footfall camera counts at three locations. 

Count location Kolmogorov-

Smirnov statistic 

p-value Null hypothesis 

Commercial Street 0.333 0.931 Fail to reject 

The Headrow 0.333 0.780 Fail to reject 

Briggate 1 0.01 Reject 

 

Table 4.8 A summary of the footfall camera counts and the manual counts. 

Footfall 

camera 

location 

Time Footfall camera count Mean manual count 

 

 

 

10:00 1512 610 

11:00 2120 941 

12:00 2551 1140 
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Briggate 13:00 2204 1134 

14:00 2598 1138 

15:00 2501 1103 

 

 

Commercial 

Street 

10:00 1106 1115 

11:00 1145 1539 

12:00 2197 1962 

13:00 2214 1673 

14:00 1900 1838 

15:00 1726 1644 

 

 

The Headrow 

10:00 275 445 

11:00 511 548 

12:00 632 858 

13:00 774 907 

14:00 800 728 

15:00 849 725 

 

4.5.3 Validation of the models of the ambient population 

In this section, footfall camera counts spanning the six-hour period between 

10:00 and 16:00 were utilised to compare the estimates of the model with the manual 

counts. The final daytime model, outlined in Section 4.4, was re-run using six-hour 

estimates of footfall. This allows direct comparisons between the two samples 

recorded at six locations in Leeds city centre which can be seen in Figure 4.6, in 

addition to two sites in Headingley (Figure 4.7) and two sites in Wetherby (Figure 4.8). 

At all six locations in Leeds city centre the model under-predicts the ambient 

population; however, given the R2 of the model is 0.332, differences between the 

model estimates and the mean manual counts are to be expected. The mean manual 
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counts at the six locations within Leeds city centre and the model estimates for the 

surrounding workplace zone can be seen in Table 4.9, in addition to the model 

estimate as a percentage of the mean manual count. At locations two and four the 

mean manual counts, and the model estimates are relatively similar, while at locations 

three, five, and six the model estimates as a percentage of the mean manual counts 

range between 20% and 37% which is expected given the R2. Location one is likely to 

be an outlier as there is a significant difference between the mean manual counts and 

the model estimates, this is likely to be due to the location having few attractors but 

being in proximity to a university campus and a large hospital; this will result in large 

numbers of people passing through the area which are not captured by the model. 

While the ‘workday population’ and the ‘higher and further education’ variables were 

not statistically significant, alternative measures of the groups represented could be 

explored in future work. 

 

Figure 4.6 Average estimates of the size of the ambient population between the hours 

of 10:00 and 16:00 in Leeds city centre. 
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Table 4.9 The mean manual counts at six locations within Leeds city centre and the 

model estimates for the surrounding workplace zone 

Manual count 

location 

Mean manual 

count 

Model estimate The model estimate as a 

percentage of the mean 

manual count 

1 2136 110 5 

2 4203 3369 80 

3 3252 1223 37 

4 8251 6641 80 

5 7834 2298 29 

6 6066 1232 20 

 

In the validation model for the study location Headingley, at location one 

(Figure 4.7) the average manual count is 1708 while the model estimate is 1825. At 

location two (Figure 4.7) the average manual count was 697, while the model 

estimate within the workplace zone is 1078. At both locations the mean manual 

counts are similar in value to the model estimates, the counts would not be expected 

to be identical as the model estimate represents the mean counts for a one-month 

period. The spatial distribution of the ambient population is expected, with higher 

counts along the main high street and in locations with high numbers of attractors. 

There are three workplace zones within the study area which have model estimates 

capped at 0, this is likely to be due to these areas being primarily residential and 

consequently lacking ATMs and hospitality venues. However, the model was 

developed to predict the ambient population in urban areas, such as Leeds city centre, 

which are likely to have high numbers of ATMs and hospitality venues. 
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Figure 4.7 Average estimates of the size of the ambient population between the hours 

of 10:00 and 16:00 in Headingley. 

In the validation model for the study location of Wetherby, the manual count 

location one (Figure 4.8), the average manual counts are 739, while the model 

estimate across the six-hour period between 10:00 and 16:00 was 854. At location 

two (see Figure 4.8) in Wetherby, the average manual count is 865, while model 

estimate was capped at 0 for this location. The model estimate at location two does 

not accurately represent the ambient population of the area, this is likely due to the 

workplace zone covering a geographically small area which does not feature any 

ATMs. This issue may limit the accuracy of the model for producing estimates of the 

ambient population in small-geographical areas.  
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Figure 4.8 Average estimates of the size of the ambient population between the hours 

of 10:00 and 16:00 in Wetherby. 

4.6 Discussion 

The aim of this work is to estimate the size of the ambient population in an 

urban area using both traditional and novel datasets. In estimating both the daytime 

and the night-time ambient populations, the GWR models have a higher predictive 

capacity than the OLS models, thus account for a larger proportion of the variation in 

the ambient population. This is to be expected as the ambient population is unevenly 

distributed across space and GWR can account for this spatial heterogeneity (Oshan 

et al., 2019; Ćwiakowski, 2020). The number of retail premises and ATMs are 

positively associated with the daytime and night-time ambient populations, but the 

relationship is only statistically significant for the ATM variable. The variables 

OpenCelliD, hospitality, higher and further education, transport hubs, and the 

workday population were all negatively associated with both the daytime and night-

time ambient populations; this contradicts information from the existing literature, 

but the relationships were not statistically significant (Echtner et al., 1993; Choi et al., 

2007; Mazanec et al., 2007; Tang et al., 2009; Smith et al., 2016). The results of this 

study suggest that those factors identified in the literature as having a relationship 
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with the ambient population need to be explored in more detail. This is increasingly 

important post the COVID-19 pandemic as there may be shifts in the ways individuals 

utilise public space, particularly within urban areas, which will impact both the size of 

the ambient population and the spatio-temporal fluctuations within it (Sharifi and 

Khavarian-Garmsir, 2020; Dubois and Dimanche, 2021; Ramani and Bloom, 2021; 

Florida et al., 2021). The exploration of the relationships between physical factors and 

the ambient population in other urban areas would be a valuable contribution to the 

literature, as these relationships may be place specific. The night-time model has a 

lower R2 than the daytime model which is to be expected as fluctuations in the night-

time ambient population are likely to be related to factors which were not included 

in the model, such as cultural and social events (Hanaoka, 2018). This highlights an 

opportunity to investigate factors which influence the ambient population during the 

night-time, as this has received little focus within the existing literature. 

 

The validation process demonstrated that in Leeds city centre at five of the six 

locations, the model produced expected values given the R2. The model estimates at 

location one in the city centre appear to be an outlier; this may be due to the large 

numbers of people passing through the area to access the nearby university campus 

and large hospital. This highlights an opportunity for future research to explore the 

relationship between pedestrian flow and the ambient population (Trasberg et al., 

2021). At both locations in Headingley and at location one in Wetherby, the model 

estimates were similar to the manual footfall counts. At location two in Wetherby the 

model estimates were significantly lower than the manual footfall counts; however, 

this is likely due to a lack of ATMs in the workplace zone as it covers a relatively small 

geographical area. This highlighted the limitations of employing the model to produce 

estimates of the ambient population in locations which comprise of a small 

geographical area.  

 

A limitation of the study is that the footfall camera data were only captured at 

six locations within Leeds city centre and validation data were only captured at ten 

sites across the three locations: Leeds city centre, Headingley, and Wetherby. This 
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highlights the importance of the equitable distribution of footfall cameras across 

geographical areas to ensure that different types of locations are captured and to 

ensure the data are valuable (Shelton et al., 2015; Hoffmann, 2019; Robinson and 

Franklin, 2020). The selection of the manual count locations aimed to capture 

locations which would be expected to experience a relatively large ambient 

population, i.e., primary retail locations in each of the areas. The study may benefit 

from additional data collected from a larger number of sites across all three study 

areas; however, this was not within the scope of the project. Additional data could 

provide insight regarding the size of the ambient population in different weather 

conditions, during weekends, and may allow the detection of further unexpected 

spatial distributions of the estimates of the ambient population.  

 

4.7 Conclusion 

This paper has estimated the size of the ambient population in an urban area, 

using novel sources of data and a method of statistical modelling, thus contributing 

to the existing literature. Models of the ambient population were developed using 

GWR and OpenStreetMap data capturing indicators of the size of the ambient 

population, the numbers of ATMs and hospitality venues. Interestingly, the numbers 

of higher and further education centres, retail hubs, the density of cell towers, the 

number of transport hubs, and estimates of the workday population did not have 

statistically significant relationships with footfall camera counts. The validation 

process assessed the similarity of the samples collected by the three data collectors, 

quantified the accuracy of the footfall cameras, and allowed model estimates to be 

compared to manual counts at ten sites using a novel, empirical dataset. This work 

has potential to provide insight regarding the size and spatial distribution of the 

ambient population in urban areas and consequently can inform studies such as those 

exploring exposure to air pollution, crime risk, and public safety. 
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Chapter 5 

Alternative Measures of the Population at Risk and their 

Impact on the Spatial Distribution of Crime 

 

The work in Chapter 5 has been accepted with revisions by PlosOne: 

Whipp, A., Malleson, N., Ward, J. and Heppenstall, A. Alternative measures of the 

population at risk and their impact on the spatial distribution of crime. 

The aim of this chapter is to investigate the impact of different measures of 

the population at risk (the residential, workday, and ambient populations) on the 

spatial distribution of crime rates for two crime types: ‘theft from the person’ and 

‘violence and sexual offences’. The work addresses Research Objective 5, as set out 

in Chapter 1 of the thesis. This work utilises the approach developed in Chapter 4 of 

the thesis to produce estimates of the size of the ambient population. 

 

Abstract 

Traditionally, crime rates are calculated using a measure of the resident 

population. However, as crimes are not only committed against residents of an area, 

but also against temporary populations, such as workers and visitors, the resident 

population may not reliably represent the population at risk. This study explores the 

impact that three measures of the population at risk have on the spatial distribution 

of crime rates for two crime types: ‘theft from the person’ and ‘violence and sexual 

offences’. The rates of both crime types are calculated using measures of the resident, 

workday, and ambient populations and are then explored using correlation analysis, 

global and local indicators of spatial autocorrelation, and hot spot analysis. The results 

of the study evidence that for rates of ‘theft from the person’ and rates of ‘violence 

and sexual offences’, the use of the both the resident and workday populations 

overestimate the risk of victimisation within urban centres and underestimate the risk 
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in residential areas. The findings of the study highlight the value of estimates of the 

ambient population for producing accurate crime rates and support the demand for 

geographically comprehensive estimates that can be utilised by police forces and 

policymakers. 

5.1 Introduction 

Crime rates are the most common measurement of crime and are considered 

to be the most meaningful statistic employed within crime studies (Boggs, 1965). 

Crime rates communicate the risk of an individual becoming a victim of a specific 

crime type. They are a valuable tool used to inform resource allocation, influence 

planning and policymaking by police forces and local governments, and to convey 

messages regarding safety to members of the public (National Academy of Sciences, 

2016). Crime rates are calculated by dividing the number of recorded crimes by the 

size of the population at risk, most commonly the resident population, within a 

geographic area (Andresen and Jenion, 2010). However, due to the significant 

fluctuations in population size which occur due to human activity patterns, measures 

of the resident population do not effectively communicate the risk associated with 

crime types which target individuals (Boggs, 1965; Harries, 1981; Andresen and 

Jenion, 2010). The existing literature lacks conclusive evidence regarding the measure 

of the population at risk that should be employed in the calculation of crime rates 

instead of the resident population (Cohen et al., 1985; Andresen and Jenion, 2010). 

 

As alternative sources of non-resident population data have emerged, it is 

now possible to produce alternative measures of the population at risk for use in the 

calculation of crime rates. This research investigates the impact of different measures 

of the population at risk on the spatial distribution of crime rates for two crime types. 

The three measures of the population used are the resident population, the workday 

population, and the ambient population. In this study the ambient population is 

defined as “the number of people within a given geographical area at a specific point 

in time, excluding individuals at their place of residence and those utilising modes of 

transport” (Whipp et al., 2021). The two crime types ‘theft from the person’ and 
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‘violence and sexual offences’.  were chosen because the victim is not certain to be 

located at a residence (as would be the case with crime types such as burglary) and 

data for recorded incidents are readily available in the UK. Four methods were used 

to investigate the relationship between measures of the population at risk and the 

numbers of crimes across the study area and analyse the spatial distribution of the 

crime rates. A correlation analysis, measures of both local and global spatial 

autocorrelation, and hot spot analysis are employed. 

 

The results of this study demonstrate that the spatial distributions of rates of 

theft from the person and rates of violence and sexual offences vary considerably 

when alternative measures of the population at risk are utilised. Interestingly, the 

study finds that there are larger, statistically significant variations in the spatial 

distributions of the crime rates between the use of the workday and the ambient 

populations (i.e., the number of individuals present in an area for work and/or leisure 

purposes), than between the resident and workday populations for both crime types. 

The results of this study consolidate findings from the existing literature in that they 

support the use of a non-residential measure of the population at risk. Crucially, the 

findings support the use of the ambient population as the measure of the population 

at risk within crime rates, due to their ability to enumerate both the work and non-

work-related populations. 

 

5.2 Background 

The importance of using appropriate denominators for the calculation of 

crime rates has been explored within the existing literature, although it was first 

highlighted in work by Boggs (1965). The work noted that changes in human activities 

throughout a given timeframe produce fluctuations in the number of targets available 

to offenders, for example, the numbers of people or vehicles present. This led Boggs 

(1965) to hypothesise that differences in opportunities for crimes to occur should be 

reflected by the denominators of crime rates. The work demonstrated that the use of 

alternative measures of the population at risk had significant impacts on the rates of 
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car theft, non-residential daytime burglary, non-residential night-time burglary, and 

grand larceny (theft over the value of 1000 US dollars) (Boggs, 1965).  

 

Traditional sources of population data, such as national censuses and travel 

surveys, have previously been employed to improve understanding of the spatial 

distribution of crime rates (Stults and Hasbrouck, 2015; Felson and Boivin, 2015; 

Malleson and Andresen, 2016). Felson and Boivin (2015) employed transport survey 

data to test criminological theory and found that the use of the numbers of daily 

visitors may be more influential than the size of the resident population in the spatial 

distribution of crimes. Similarly, Stults and Hasbrouck (2015) used travel survey data 

to explore the impact of the commuting population on the spatial distribution of 

crimes and found that the risk of crime in cities is over-estimated when the resident 

population is used as a measure of the population at risk. Malleson and Andresen 

(2016) identified the workday population, an output of the 2011 Census of England 

and Wales, as an appropriate measure of the population at risk. However, the authors 

noted that the data fail to capture non-work-related fluctuations in the size of the 

population. Additionally, Malleson and Andresen (2016) only explored the impact of 

using an alternative measure of the population at risk on the spatial distribution of 

one type of crime, theft from the person. LandScan data, which are average estimates 

of the population calculated using data from national censuses and remotely sensed 

images and provides global coverage, have been used as a measure of the population 

at risk in several studies. Andresen (2007) used LandScan data to test criminological 

theory, while work by Andresen and Jenion (2008) employed LandScan data to assess 

the use of the ambient population at different levels of crime prevention. Later work 

by Andresen and Jenion (2010) quantified the value of the ambient populations in the 

calculation of rates of violent crime, using LandScan data. However, LandScan data 

are limited in their utility, as the data are produced using estimates of the resident 

population. While studies that employ traditional sources of data acknowledge the 

potential value of using alternative measures of the population at risk, further 

investigation using non-residential measures to explore a range of crime types in 

different locations is required (Andresen and Jenion, 2008; Andresen and Jenion, 
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2010; Felson and Boivin, 2015; He et al., 2020). The workday population in particular 

is highlighted in the literature as a potentially valuable source of estimates of the 

population at risk and should be explored further (Malleson and Andresen, 2016). As 

a result, the most recent, available estimates of the size of the workday population 

from the 2011 Census of England and Wales were selected for use in this study.  

 

More recently, geo-located data from the social media platform Twitter have 

been employed as a proxy for the ambient population in several studies (Malleson 

and Andresen, 2015a; Malleson and Andresen, 2015b; Ristea et al., 2018; Tucker et 

al., 2021). Twitter data were used by Malleson and Andresen (2015a) to identify 

spatio-temporal clusters of robbery and theft from the person events. They have also 

been used in conjunction with hot spot analysis to examine the emergence of hot 

spots of violent crimes (Malleson and Andresen, 2015b) and with geographically 

weighted regression (GWR) to forecast hotspots of street crime (Ristea et al., 2018). 

Tucker et al. (2021) employed Twitter data to investigate the relationship between 

ambient, resident, commuter, and tourist populations on the rates of public violence 

and private conflict across the city of Boston (US) using a machine learning clustering 

algorithm. The findings from these studies all supported the use of the ambient 

population as a potential alternative measure of the population at risk. However, the 

sparsity of Twitter data within residential areas was identified as a limitation (Tucker 

et al., 2021).  Additionally, in 2019 Twitter announced that users would no longer be 

able to share Tweets with a precise geographical location, i.e., geographic 

coordinates, limiting their use as a measure of population at risk for small areas in any 

future studies (Benton, 2019). However, techniques such as geoparsing can be used 

to derive geographic information from Tweets that are not geotagged. Geoparsing 

can be utilised to convert free text descriptions of a location (toponyms) into 

geographic locations in the form of coordinates. Geoparsing can be conducted 

through a range of applications, such as the Python library Mordecai (Halterman, 

2017; Gritta et al., 2020). 
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Call data records from mobile phones that provide the locations of mobile 

phone users, have also been used as a proxy of the ambient population and employed 

in studies of the spatial distributions of crime (Hanaoka, 2018; He et al., 2020; Jung et 

al., 2020). These data have been used to produce hourly estimates of the size of the 

ambient population in order to quantify the relationship between these estimates and 

the number of snatch and run offences in Osaka (Japan) (Hanaoka, 2018). The 

relationship between the size of the ambient population and the spatial variation of 

larceny-theft in Xi’an (China) was investigated by He et al. (2020). In this study, data 

which enumerated all mobile phone users in the area were employed; however, as 

mobile phone data are expensive to acquire and are often unavailable at a fine spatial 

scale due to data privacy restrictions, the enumeration of all users is not possible in 

most countries. In another recent study, Jung et al. (2020) compared the relationship 

between assault density and the ambient and resident populations using a 

generalised linear model. Similarly to the studies that employed geo-located Twitter 

data, all the aforementioned studies that employed call data records support the use 

of alternative measures of the population at risk in the calculation of crime rates; 

however, data access poses a significant barrier to its use. As a result, in this study 

only which is openly available is utilised. This allows the work to be easily 

reproducible, which is critical if alternative measures of the population at risk are to 

be routinely employed by local governments and police forces for policymaking and 

resource allocation. 

 

The need for an appropriate measure of the population at risk is also 

supported by two of the most prominent theories within environmental criminology: 

routine activity theory and crime pattern theory. Routine activity theory states that 

for a crime to occur, three elements must come together in space and time: a target, 

an offender, and the absence of a capable guardian (Cohen and Felson, 1979). 

According to this theory, the ambient population, due to the hourly, daily, and 

seasonal fluctuations in its size, influences where and when these elements will 

converge and consequently when and where crimes are committed. Crime pattern 

theory focuses on the ways in which the environmental backcloth, i.e., the physical 
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environment, impacts crime. Brantingham et al. (1981) suggest that the locations in 

which crimes are committed are not selected randomly, but are concentrated around 

nodes, paths and edges that the perpetrator is familiar with. Brantingham et al., 

(1995) later introduced the idea of crime generators (areas in which offenders and 

victims converge, e.g., offices and train stations) and crime attractors (areas known 

for opportunities to commit crimes, e.g., shopping centres and car parks) to crime 

pattern theory. As urban centres typically have higher concentrations of both crime 

attractors and crime generators, higher crime rates would be expected in these types 

of location. This suggests that the use of a non-residential measure of the population 

at risk would impact the spatial distribution of crime rates within urban centres in 

particular, as these areas attract high numbers of people. The changes in the spatial 

distribution of crime rates within urban centres and cities within West Yorkshire are 

explored in this study. 

 

To summarise, existing studies have begun to explore the impact of different 

measures of the population at risk on the spatial distribution of different crime types. 

This study addresses this gap within the literature as it explores differences between 

the spatial distributions of crime rates calculated using both residential and non-

residential measures of the population at risk, in addition to exploring the differences 

between two alternative measures of the non-residential population. Given the 

importance of accurate crime rates, for uses such as the communication of risk and 

the implementation of effective crime prevention strategies, further research into 

alternative measures of the population at risk is required.  

 

5.3 Data and methodology 

5.3.1 Study area and geography 

The chosen study area is the county of West Yorkshire, UK, which covers an 

area of approximately 2000 km2 (see Figure 5.1). West Yorkshire has a resident 

population of 2,226,058 people (Office for National Statistics, 2011) and significant 
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central business districts in the cities of Leeds, Bradford, and Wakefield which attract 

large numbers of people for both work and leisure purposes. Central business districts 

are typically associated with high levels of crime as they generally attract large 

numbers of people and contain high numbers of crime generators and attractors 

(Brantingham and Brantingham, 1995). In 2021, West Yorkshire had the second 

highest total crime rate of all police force areas in England and Wales (Office for 

National Statistics, 2021). Consequently, West Yorkshire is a suitable study area for 

this work and was selected for use in this study. 

 

Figure 5.1 The study area of West Yorkshire, with the cities of Bradford, Leeds, and 

Wakefield labelled. Two other large towns, Halifax and Huddersfield, are also 

labelled. The inset map demonstrates the position of West Yorkshire within the 

UK. 

In this study, data are aggregated to Lower Super Output Areas (LSOA) level. 

The LSOA boundaries were produced in 2011 and were downloaded from the UK Data 

Service (borders.ukdataservice.ac.uk).  Within the study area there are 1389 LSOAs 

and, on average, each LSOA contains 1500 residents or 650 households (Office for 

National Statistics, 2016). LSOAs have been selected for use due to their compatibility 
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with police recorded crime data and are the level of geography in a number of UK-

based studies of crime (Tompson et al., 2015; Malleson and Andresen, 2016). 

 

5.3.2 Data 

This study employs crime data, enumerating recorded incidences of theft from 

the person and violence and sexual offences and three measures of the population: 

the resident population, the workday population, and the ambient population (i.e., 

the number of individuals present in an area for work and/or leisure purposes). The 

crime data and the three measures of the population are used to produce crime rates 

for each LSOA, which are calculated using Equation 5.1.  

 

Equation 5.1 The equation for calculating the rate of crime per 1000 people, per LSOA. 

Crime	rate	per	1000	people	in	each	LSOA

= 	 6
Number	of	crime	events

Size	of	the	population	at	risk	per	LSOA? 	× 	1000		 

 

This section provides a detailed description of each of the data sources used 

in the study. Descriptive statistics for the data utilised to produce the rates of both 

crime types can be found in the Appendix A Table 1, while the summary statistics for 

the crime rates explored in this study and the variable names used in the remainder 

of the paper are presented in the Appendix A Table 2. 

 

5.3.2.1 Crime data 

 The crime data used in this study enumerate the number of police 

recorded incidences of theft from the person and violence and sexual offences per 

LSOA in West Yorkshire between 1st January and 31st December 2019. The police 

recorded crime data were downloaded from data.police.uk (https://data.police.uk/) 

at LSOA level. Visualisations of the counts of the two crime types are available in the 
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Appendix A Figure 1 and Appendix A Figure 2, and visualisations of the rates are in the 

Appendix A Figures 6-8. ‘Theft from the person’ is defined as property stolen while 

“being held or carried by the victim” (Office for National Statistics, 2017a). Crimes of 

‘violence’ include harassment, abuse, wounding, and homicide and ‘sexual offences’ 

include rape, sexual assault, and indecent exposure (Office for National Statistics, 

2017b). While violent crimes and sexual offences are defined separately in raw police 

records, it is not possible to distinguish between the crime types within the publicly 

available data. Recorded crimes that did not have an assigned location cannot be used 

and were removed prior to analysis (8.6% of theft from the person incidents and 3.7% 

of violence and sexual offences incidents). Incidences of violence and sexual offences 

were selected for use in this study as it was the most commonly committed crime 

type in West Yorkshire in 2019 and can significantly impact both survivors and their 

families. Due to their severity, it is imperative to reduce both the numbers of these 

offences, and their impact, through effectively directed policies. Theft from the 

person was selected as incidences of this crime, by definition, occur outside of the 

home; thus, it would be expected that the use of a non-residential measure of the 

size of the population would be appropriate for this crime type. In contrast, incidences 

of violence and sexual offences are likely to occur in both residential and non-

residential areas. Thus, it would be expected that the impacts of the measure of the 

population at risk will vary between the two crime types. Therefore, the use of theft 

from the person and violence and sexual offences allows the impact of alternative 

measures of the size of the population at risk to be explored. 

 

The geographic coordinates associated with each crime event in the police.uk 

data are an approximation of where a crime actually occurred (College of Policing, 

2021). In order to ensure anonymity, however, each data point must be located in the 

centre of a street, over a public place, or over a commercial premise and the area 

around each point must contain either more than eight postal addresses or none 

(College of Policing, 2021). This anonymisation of the crime data produces spatial 

inaccuracies as the spatial points do not reflect the exact location at which a crime 

was committed. However, as the crime data used in this study are aggregated to LSOA 
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level, the location accuracy will have a minimal impact on the analysis (Tompson et 

al., 2015). 

 

The crime data used in this study only enumerate recorded crimes, i.e., those 

reported to the police, thus the crime rates produced are not fully representative of 

the true number of offences committed. According to the 2016 Crime Survey of 

England and Wales (CSEW), which attempts to enumerate all crimes committed and 

not only those which are reported to the police, only 52% of violent crimes were 

reported (Office for National Statistics, 2017b). The CSEW does not attempt to 

quantify the under-reporting of sexual offences to the police due to low levels of 

reporting of these crimes to both police forces and in the CSEW (Office for National 

Statistics, 2017b). Evidence from the CSEW suggests that incidences of theft from the 

person are under-reported by between 40% and 50% (Office for National Statistics, 

2017a). Consequently, for both theft from the person and violence and sexual 

offences the numbers of crimes recorded will be substantially lower than the true 

number of offences committed. Thus, it should be noted that the crime rates 

produced and analysed in this study are only representative of recorded crimes and 

may not accurately reflect true crime rates. 

 

5.3.2.2 Estimates of the resident population 

Crime rates are commonly calculated using the resident population as a 

measure of the population at risk. In this study, estimates of the usual resident 

population from the 2011 Census of England and Wales are employed as the measure 

of the resident population. The Office for National Statistics, the producers of census 

data for England and Wales, define the usual resident population as “anyone, who on 

census day, was in the UK and had stayed or intended to stay in the UK for a period 

of 12 months or more, or had a permanent UK address and was outside the UK and 

intended to be outside the UK for less than 12 months” (Nomis, 2013). The data are 

open access and were downloaded at LSOA level from the UK Data Service 

(infuse2011gf.ukdataservice.ac.uk/). As census data for England and Wales are 
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collected decennially, and the results from the 2021 census have not yet been 

published, these data are the most recent estimates of the resident population 

available. 

 

5.3.2.3 Estimates of the workday population 

As employment can result in significant changes in the number of people in an 

area, when compared to the usual resident population, estimates of the workday 

population may be valuable as a measure of the population at risk. Workday 

population estimates for England and Wales were first captured in the 2011 census. 

The Office for National Statistics define the workday population as “where the usually 

resident population is re-distributed to their places of work, while those not in work 

are recorded at their usual residence” (Office for National Statistics, 2013). These 

estimates represent the workday population on Census Day (27th March) 2011. As 

with estimates of the resident population, the data are open access and were 

downloaded at LSOA level from the UK Data Service 

(infuse2011gf.ukdataservice.ac.uk/). 

 

5.3.2.4 Estimates of the ambient population 

Within this study, the ambient population is defined as “the number of people 

within a given geographical area at a specific point in time, excluding individuals at 

their place of residence and those utilising modes of transport” (Whipp et al., 2021). 

As estimates of the size of the ambient population are currently not part of any 

standard suite of population statistics, this study employs estimates produced using 

an approach developed by (Whipp, Malleson, et al., 2021).The estimates of footfall 

counts are produced using indicators of footfall, in conjunction with a method of 

statistical modelling developed in (Whipp, Malleson, et al., 2021). Two independent 

variables are utilised; the numbers of ATMs and the number of hospitality venues, 

which includes bars, cafes, restaurants, and pubs. The data for both variables was 

downloaded from OpenStreetMap and aggregated to LSOA level. These two variables 
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are then used in conjunction with geographically weighted regression to produce 

estimates of the number of footfall counts per LSOA (the dependent variable). These 

estimates are then added to the estimates of the workday population which are 

defined in Section 5.3.2.3. The amalgamation of the footfall counts and the estimates 

of the workday population aims to ensure that the estimates of the ambient 

population capture the number of people within an LSOA for both work and non-

work-related purposes. The model currently accounts for 33.2% of the variation of 

the dependent variable, i.e., the footfall camera counts; however, the predictive 

capacity of the model could be improved by developing a more in depth 

understanding of the drivers of the size of the ambient population in urban centres. 

Despite this limitation, this measure of the ambient population offers a significant 

advantage as a measure of the population at risk, when compared to the resident and 

ambient populations, as it captures, to some extent, both work and non-work-related 

populations. Visualisations of the spatial distribution of the ambient, resident, and 

workday populations in West Yorkshire are available in the Appendix A Figure 3-5. 

 

5.3.3 Methodology 

The aim of this study is to investigate the impact of different measures of the 

population at risk (the denominator in Equation One) on the spatial distribution of 

crime rates. To fulfil this aim, four empirical methods are employed: descriptive global 

analysis (correlation), a global measure of spatial autocorrelation (Moran’s I), a local 

measure of spatial autocorrelation (Local Indicators of Spatial Analysis (LISA)) and 

hotspot analysis (Getis Ord GI*). 

 

5.3.3.1 Descriptive global analysis - Correlation 

Correlation analysis is used to test the relationship between two variables and 

has been used in a number of crime studies to assess the relationships between 

crimes rates and different measures of the population (Malleson and Andresen, 2016; 

Hanaoka, 2018; Hipp et al., 2019; He et al., 2020; Tucker et al., 2021).  In this study, 



 

 151 

correlation analysis is used to investigate the relationship between crime rates 

calculated using three different measures of the population at risk (the resident, 

workday, and ambient populations). The analysis is conducted using the ‘.corr’ 

function within the ‘pandas’ package in Python. The Spearman’s rank correlation 

coefficient is specified as the method as all crime rates have a negatively skewed 

distribution.  

 

5.3.3.2 Global measure of spatial autocorrelation - Moran’s I  

Moran’s I is an inferential statistic which measures spatial autocorrelation and 

has been employed in existing studies investigating the spatial distribution of crime 

(Andresen, 2011; Kadar et al., 2017; Kounadi et al., 2018; Lan et al., 2019). The statistic 

evaluates whether the pattern produced is clustered, dispersed, or random in nature 

based on the value and location of a feature. The significance of the statistic can be 

evaluated using the p-value and z-score. The values produced by the tool range 

between 1 and -1. A Moran’s I value which is higher than the Expected I Moran’s I 

indicate a positive correlation, while values lower than the Expected Moran’s I 

indicate negative spatial autocorrelation. A value of 0 suggests a random pattern with 

no correlation. The analyses are conducted using ArcGIS Pro 2.8.0 using the ‘Spatial 

Autocorrelation’ tool.  

 

5.3.3.3 Local measure of spatial autocorrelation – LISA 

The LISA statistic is utilised to indicate the spatial clustering of low or high 

values (the crime rate per LSOA) within a dataset and to highlight outliers. Work by 

Andresen (2011) demonstrated the value of the LISA statistic to analyse the spatial 

distribution of violent crimes in Vancouver, Canada. The sum of all LISAs for a dataset 

is equivalent to a global indicator of spatial autocorrelation, such as Moran’s I 

(Anselin, 1995). Thus, using the LISA statistic provides a more in depth understanding 

of spatial autocorrelation as each area of analysis receives its own measure of spatial 

autocorrelation. Each area is then compared to its neighbouring area, in this instance 

LSOAs. A positive LISA suggests that the feature has similar values to the neighbouring 

features; thus, the data are clustered. The clusters can be groups of high value 
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features or low value features. A negative LISA suggests that the feature is a spatial 

outlier and is dissimilar to the neighbouring features. The spatial outliers can be low 

value features surrounded by high value neighbours, or high value features 

surrounded by low value neighbours. A summary of the cluster and outlier definitions 

can be seen in Table 5.1. The analyses are conducted using ArcGIS Pro 2.8.0 using the 

‘Cluster and Outlier Analysis’ tool. As spatial statistics require a feature to have a 

minimum of one neighbour for the analysis to be reliable, an appropriate distance 

band must be selected. Within ArcGIS Pro 2.8.0 the ‘Calculate Distance Band from 

Neighbour Count’ tool was utilised to evaluate the minimum, average, and maximum 

distances for a specified number of neighbours (a minimum of eight neighbours 

recommended).The recommended distance band, which determines the number of 

neighbours each feature has, was calculated to be 4.415km. The visualisations of the 

clusters and outliers for crime rates calculated using the resident population are not 

included due to the large volume of results generated. However, the visualisations 

can be found in the Supplementary Information (Appendix A Figure 12 and Appendix 

A Figure 13). 

Table 5.1 Definitions of cluster and outlier types which are identified using the LISA 

statistic. 

Cluster/outlier name Description 

Low-Low cluster A low value in a low-value neighbourhood 

High-High cluster  A high value in a low-value neighbourhood 

Low-High outlier A low value in a high-value neighbourhood 

High-Low outlier A high value in a low-value neighbourhood 
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5.3.3.4 Hot spot analysis - Getis Ord GI*  

Hot spot analysis enables the detection of statistically significant clusters of 

high or low values within a dataset, referred to as hot spots and cold spots 

respectively. Hot spot analysis is a commonly used technique within crime studies and 

has been used to inform resource allocation, facilitate problem-solving, and measure 

and analyse crime patterns (Eck et al., 2005; Chainey et al., 2008; Chainey and 

Ratcliffe, 2013; Malleson and Andresen, 2016). The use of hot spot analysis adds 

further insight, as it identifies where the sum values within a neighbourhood (number 

of neighbouring areas) is high or low relative to the global average, while the local 

measure of spatial autocorrelation measures the degree to which the value of an area 

is similar to the values of neighbouring areas. 

 

There are a number of statistical methods available to calculate hotspots 

(Chainey et al., 2008); in this study the Getis Ord GI* statistic was selected as it is an 

indicator of local, rather than global, spatial autocorrelation (Getis and Ord, 1992; Ord 

and Getis, 1995). A Getis Ord GI* statistic is produced for each feature (the crime rate 

per LSOA) within the dataset, and each feature is analysed within the context of the 

neighbouring features. A z-score (a GI* statistic) and a p-value are generated for each 

feature. A hot spot is determined by a high, positive z-score and a small p-value, while 

a low, negative z-score and small p-value determine a cold spot. As spatial statistics 

require a feature to have a minimum of one neighbour for the analysis to be reliable, 

an appropriate distance band must be selected. Within ArcGIS Pro 2.8.0 the ‘Calculate 

Distance Band from Neighbour Count’ tool was utilised to evaluate the minimum, 

average, and maximum distances for a specified number of neighbours (a minimum 

of eight neighbours recommended). The size of the distance band is 4.415km and was 

measured using Euclidean distance. The analyses are conducted using ArcGIS Pro 

2.8.0 using the ‘Hot Spot Analysis’ tool. The visualisations of the hot spot analysis for 

crime rates calculated using the resident population are not included due to the large 

volume of results generated but are available in the Supplementary Information (S14 

and S15 Figs). 
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5.4 Results  

5.4.1 Spatial distribution of the populations and the numbers of crime events 

The results of this study show that there is little variation in the spatial 

distribution of the usual resident population across West Yorkshire, which ranges 

between 1011 and 4156 people. This pattern is expected as census boundaries are 

designed to distribute the population evenly across a geographic area. The spatial 

distribution of the workday population is more varied than that of the usual resident 

population. Estimates of the workday population are high (between 20,000 and 

32,261 people) in LSOAs in proximity to Leeds, Wakefield, and Bradford and the 

Northeast of the study area. High estimates of the workday population are expected 

in large towns and cities due to people travelling to these areas for work. With regards 

to the spatial distribution of the ambient population, there are pockets of high 

estimates in and around the cities of Bradford, Leeds, and Wakefield, in addition to 

the towns of Halifax and Huddersfield. The fact that there are notable differences in 

the size and the spatial distributions of the three measures of the population illustrate 

the impact these different measures will have on crime rates. 

 

The spatial distributions of the counts of theft from the person events and 

violence and sexual offences are low (ranging between 0 and 300 offences) across 

most of the study area. However, there are distinct pockets of high counts of theft 

from the person in the city of Leeds. While for violence and sexual offences, areas in 

both Leeds and Halifax contain high numbers of crimes, ranging between 900 and 

1781 events in 2019. 

 

5.4.2 Spatial distribution of the rates of ‘theft from the person’ 

Rates of theft from the person calculated using the resident population are 

generally low across West Yorkshire, with small pockets of higher rates of these 

crimes in Leeds, Bradford, and Halifax. This spatial distribution occurs because 

although the resident populations of these urban centres are low, there are high 
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numbers of crime committed, as these types of centres typically contain high 

numbers of crime attractors and crime generators. When the workday population is 

used as a measure of the population at risk, there are no pockets of high rates present 

in the major cities and towns. For ambient theft (i.e., rates of theft from the person 

calculated using the ambient population), the spatial distribution is very similar to that 

of the workday theft variable (i.e., rates of theft from the person calculated using the 

workday population) (see Appendix A Figure 7 and Appendix A Figure 8) which 

suggests that there may be similarities between spatial distributions of the workday 

and the ambient populations. 

 

5.4.3 Spatial distribution of the rates of ‘violence and sexual offences’ 

The rates of violence and sexual offences calculated using the usual resident 

population are consistent across the study area, with concentrations of high rates in 

LSOAs in the central areas of Bradford and Leeds. When estimates of the workday 

population are employed, the spatial distribution of rates of violence and sexual 

offences changes considerably. Rates across much of the study area range between 

4.509 and 250 per 1000 people per LSOA, with small pockets of higher rates dispersed 

across the centre and Southeast of the study area. It should be noted that rates in the 

LSOAs within urban centres fall within the lowest class utilised (0-250 crimes per 1000 

people). For ambient violence (i.e., rates of violence and sexual offences calculated 

using the ambient population), the spatial distribution is very similar to that of 

workday violence. This highlights that while there are significant differences between 

the spatial distribution of resident violence and workday violence, there is little spatial 

variation between workday violence and ambient violence. Visualisations of the rates 

are available in the Appendix A Figures 9-11. As temporal information regarding the 

occurrence of violence and sexual offences is not available, it is not possible to specify 
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whether these crimes are more commonly committed at specific times of day. 

However, the Office for National Statistics (2015) noted that over half of all violent 

crime in the UK in the financial year 2013-2014 was identified as alcohol related. Due 

to the relationship between alcohol consumption and the night-time economy 

(Hadfield et al., 2009) it could be suggested that violent crimes may be more likely to 

be committed at night. This is supported by the lack of a statistically significant 

correlation between resident violence (rates of violence and sexual offences 

calculated using the resident population) and ambient violence (rates of violence and 

sexual offences calculated using the ambient population). It should be noted that 

there is no openly available information regarding the times of day that sexual 

offences are most commonly committed in the UK. 

 

 

 5.4.4 Correlation analysis  

The relationships between rates of theft from the person and violence and 

sexual offences calculated using the three measures of the population at risk are 

examined using a correlation analysis. As all rates have a negatively skewed 

distribution, Spearman’s rank correlation coefficient (ρ) was utilised; the results of the 

correlation analysis can be seen in Figure 5.2. 
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Figure 5.2 Correlation matrix highlighting the relationship between rates of theft from 

the person and violence and sexual offences, per 1000 people within West 

Yorkshire, calculated using three different measures of the population (the 

resident, workday, and ambient populations). 

 

Rates of theft from the person calculated using the resident population 

(resident theft) and those calculated using the workday population (workday theft) 

are strongly, positively correlated (ρ=0.903, p<0.001). Ambient theft (rates of theft 

from the person calculated using the ambient population) is strongly, positively 

correlated with both resident theft (ρ=0.880, p<0.001) and workday theft (ρ=0.969, 

p<0.001). These results suggest that the measures are capturing similar rates, which 

is supported by the similarities between their spatial distributions. 

 

Rates of resident violence (rates of violence and sexual offences calculated 

using the resident population) and workday violence (rates of violence and sexual 

offences calculated using the workday population) are moderately correlated, and the 

relationship is statistically significant (ρ=0.540, p<0.001). Given the variation between 
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the spatial distributions of resident violence and workday violence, a weak 

relationship between the rates would have been expected. The ambient violence 

variable (rates of violence and sexual offences calculated using the ambient 

population) is not significantly correlated with both resident violence (ρ=0.428, 

p<0.001) and workday violence (ρ=0.863, p<0.001). However, the relationship 

between ambient violence and workday violence is stronger than the relationship 

between resident violence and ambient violence. This is expected given the 

similarities between the spatial distribution of the two rates. 

 

5.4.5 Global spatial autocorrelation - Moran’s I 

The results of the Moran’s I statistical analyses, which were performed on the 

total crime rates for West Yorkshire as it is a global statistic, can be seen in Table 5.2. 

The z-scores for the Moran’s I statistics for resident theft (rates of theft calculated 

using the residential population), workday theft (rates of theft calculated using the 

workday population), and ambient theft (rates of theft calculated using the ambient 

population) are positive and statistically significant (p<0.001). The z-score for the 

Moran’s I statistics for all three measures of the rate of theft from the person are both 

positive and are statistically significant (p<0.001). Thus, the null hypothesis that the 

values demonstrate complete spatial randomness can be rejected for both crime 

types and the three different measures of the population at risk, as the distribution 

of high or low values in the dataset is more clustered than would be expected if the 

underlying spatial process were random.  

Table 5.2 Outputs of the Global Moran's I statistic for the two crime types, calculated 

using three different measures of the population at risk. 

Variable Expected 

Moran’s I 

Moran’s I z-score p-value 

Resident theft 

(rates of theft 

calculated using the 

-0.001 0.046 7.743 <0.001 
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residential 

population) 

Workday theft 

(rates of theft 

calculated using the 

workday 

population) 

-0.001 0.132 18.904 <0.001 

Ambient theft 

(rates of theft 

calculated using the 

ambient 

population) 

-0.001 0.088 13.227 <0.001 

Resident violence  

(rates of violence 

and sexual offences 

calculated using the 

residential 

population) 

-0.001 0.161 23.356 <0.001 

Workday violence 

(rates of violence 

and sexual offences 

calculated using the 

workday 

population) 

-0.001 0.109 15.503 <0.001 

Ambient violence 

(rates of violence 

and sexual offences 

calculated using the 

-0.001 0.076 11.383 <0.001 
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ambient 

population) 

 

The results of the Moran’s I statistic indicate that spatial clustering is present 

both in rates of theft from the person and in rates violence and sexual offences for all 

three measures of the population at risk. As spatial autocorrelation is present, it can 

be further investigated using a local measure of spatial autocorrelation in Section 

5.4.6. 

 

5.4.6 Local spatial autocorrelation – Local Indicators of Spatial Analysis 

The locations of High-High clusters (an LSOA with a high crime rate in a 

neighbourhood of LSOAs with high crime rates) for both resident theft (rates of theft 

calculated using the resident population) and workday theft (rates of theft calculated 

using the workday population) (Figure 5.3) are largely focussed around the city of 

Leeds, with a smaller group of clusters around Bradford. However, there are 

differences in the locations of High-Low (an LSOA with a high crime rate in a 

neighbourhood of LSOAs with low crime rates) outliers, which are concentrated in the 

Northeast of West Yorkshire for resident theft and dispersed throughout the study 

area for workday theft. These findings are supported by the results of the Global 

Moran’s I (Table 5.2), which indicated higher levels of spatial clustering for workday 

theft when compared to resident theft. With regards to ambient theft (Figure 5.4), 

High-High clusters are dispersed throughout the study area, with Low-High clusters 

located on the periphery. Unlike resident theft and workday theft, for ambient theft 

(rates of theft calculated using the ambient population) there are no large groups of 

clusters or outliers around large towns or cities. 
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Figure 5.3 The spatial distribution of clusters and outliers for rates of theft calculated 

using the workday population (Basemap: © OpenStreetMap contributors, 2021 

and Ordnance Survey data © Crown copyright and database right 2010-19). 

 

Figure 5.4 The spatial distribution of clusters and outliers for rates of theft calculated 

using the ambient population (Basemap: © OpenStreetMap contributors, 2021 

and Ordnance Survey data © Crown copyright and database right 2010-19). 
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For resident violence (rates of violence and sexual offences calculated using 

the resident population) and workday violence (rates of violence and sexual offences 

calculated using the workday population), the spatial distributions of Low-Low 

clusters (an LSOA with a low crime rate in a neighbourhood of LSOAs with high crime 

rates) and High-Low outliers are similar across the study area. For workday violence 

(Figure 5.5), the High-High clusters present around the cities of Leeds and Bradford, 

which are also present for resident violence, contain large pockets of Low-High 

outliers. For both resident violence and workday violence, there is a group of High-

High clusters and Low-High outliers South-West of Bradford. Low-Low clusters are 

primarily located along the North and South-West periphery of the study area for both 

resident violence and workday violence. In contrast, for the ambient violence (rates 

of violence and sexual offences calculated using the ambient population) variable 

(Figure 5.6), both clusters and outliers are distributed throughout the study area and 

are not present around any of cities in West Yorkshire. The spatial distribution of all 

four cluster types for ambient violence are significantly different to those for the 

resident violence and workday violence variables, highlighting the value of the 

ambient population as a measure of the population at risk. 
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Figure 5.5 The spatial distribution of clusters and outliers for rates of violence and 

sexual offences calculated using the workday population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19). 

 

Figure 5.6 The spatial distribution of clusters and outliers for rates of violence and 

sexual offences calculated using the ambient population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19). 

 

5.4.7 Hot spot analysis – Getis Ord GI* 

For both rates of resident theft (rates of theft calculated using the resident 

population) and workday theft (rates of theft calculated using the workday 

population), there are prominent groups of hot spots mainly located around the city 

of Leeds. For workday theft (Figure 5.7) there are additional groups of hot spots 

present around Bradford. Furthermore, for workday theft the hot spots located 

around Leeds span a larger geographical area and there is a large group of hot spots 

around the city of Bradford. However, a notable difference between the spatial 

distributions is that there are no cold spots present for resident theft, whereas for 
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workday theft and ambient theft cold spots are dispersed throughout the study area. 

For ambient theft (rates of theft calculated using the ambient population) (Figure 5.8), 

the hot spots are dispersed across the study area and there are no clusters present 

around the cities of Leeds and Bradford, or any of the other urban centres. The spatial 

variations between the hot spots for workday theft and ambient theft highlight the 

impact of the measure of the population at risk, particularly within urban centres. 

 

Figure 5.7 The spatial distribution of hot spots and cold spots for rates of theft 

calculated using the workday population (Basemap: © OpenStreetMap 

contributors, 2021 and Ordnance Survey data © Crown copyright and database 

right 2010-19). 
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Figure 5.8 The spatial distribution of hot spots and cold spots for rates of theft 

calculated using the ambient population (Basemap: © OpenStreetMap 

contributors, 2021 and Ordnance Survey data © Crown copyright and database 

right 2010-19). 

 

The patterns of hot spots and cold spots for resident violence (rates of 

violence and sexual offences calculated using the resident population) and workday 

violence (rates of theft calculated using the workday population) (Figure 5.9) are very 

similar. When these measures of the population at risk are employed, there are large 

clusters of hot spots shifts around the cities of Leeds and Bradford. The spatial 

distribution of cold spots is also similar, with groups of cold spots located on the North 

and South borders of the study area. The spatial distribution of hot spots and cold 

spots for ambient violence is significantly different to those for resident violence and 

workday violence, as demonstrated in Figure 5.10. In contrast, when the ambient 

population is employed (Figure 5.10), hot spots and cold spots are dispersed 

throughout the study area and, most notably, there are no pronounced clusters of 

hot spots around any urban centres. 
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Figure 5.9 The spatial distribution of hot spots and cold spots for rates of violence and 

sexual offences calculated using the workday population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19). 
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Figure 5.10 The spatial distribution of hot spots and cold spots for rates of violence 

and sexual offences calculated using the ambient population (Basemap: © 

OpenStreetMapContributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19). 

 

5.5 Discussion 

5.5.1 Discussion of results  

5.5.1.1 Theft from the person 

 

When the ambient population is used as the measure of the population at risk 

the results of the cluster and outlier analysis in this study demonstrate a substantial 

reduction in the number of statistically significant High-High clusters of incidents of 

theft from a person (a high value in a high-value neighbourhood) in urban centres, 

when compared to use of both the resident and workday populations. The most 

striking reductions are around the city of Leeds. This difference is expected as crime 

pattern theory suggests that while urban centres have a high number of crime 

attractors and crime generators, they also experience significant increases in the size 

of the ambient population due to human activity (Brantingham et al., 1981; 

Brantingham and Brantingham, 1995, Kinney et al., 2008). Consequently, as the size 

of the ambient population is larger than that of the resident and workday populations, 

due to it capturing work and non-work-related human activity, crime rates calculated 

using the ambient population are lower than those calculated using the resident and 

workday populations. This means that the actual risk of victimisation is lower in urban 

centres than currently communicated. As the perception of risk may influence how 

some individuals utilise and move through space and affect any precautions taken to 

reduce their risk of victimisation, the accurate communication of risk is essential to 

public safety (Curtis, 2015; Prieto Curiel and Bishop, 2018).  The use of the ambient 

population resulted in some High-High clusters of rates of theft from the person in 

areas with a primarily residential area. Given that the size of the ambient population 
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in residential areas would be expected to be lower than in urban centres and, 

therefore, contribute to an increased risk of victimisation, this finding is expected. 

However, it does contradict the low level of risk in residential areas communicated by 

rates of this crime type calculated using resident and workday populations. Therefore, 

the level of the risk of victimisation of theft from the person is under-estimated by 

the measure i.e., the resident population, currently employed by police forces. The 

use of the workday population similarly fails to communicate risk accurately.  

 

The hot spot analysis produced similar results to those discussed above, with 

substantial reductions in the number of hot spots in urban centres when the ambient 

population was employed. This supports crime patterns theory (Brantingham et al., 

1981; Brantingham et al., 2016) as although there are high numbers of crime 

attractors and generators in both Leeds and Bradford, these areas also attract large 

ambient populations. There were also increases in the number of hot spots present 

across the study area in LSOAs which would be described as primarily residential.  

 

The results of this study evidence that the use of the ambient population as a 

measure of the population at risk from theft from the person is crucial. In addition to 

more accurately representing the size of the population at risk, the statistically 

significant differences in the spatial distribution of rates, evidence that the selection 

of the measure of the population risk should not be arbitrary. 

 

5.5.1.2 Violence and sexual offences 

When examining rates of violence and sexual offences, the results of the 

cluster and outlier analysis evidence that when the workday population is employed, 

groups of High-High clusters and Low-High outliers (a low value in a high-value 

neighbourhood) are heavily concentrated around the cities of Leeds and Bradford. 

Low-Low clusters (a low value in a low-value neighbourhood) are present on the 

periphery of the study area in the North and Southwest, in LSOAs which have a 

residential backcloth. Therefore, these results suggest that high rates of violence and 
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sexual offences tend to cluster in cities, while suburban, residential areas experience 

clusters of low rates, and are, therefore, safer for individuals. In contrast, the use of 

the ambient population produced substantially different distributions of statistically 

significant clusters and outliers. There were no concentrations of High-High clusters 

or Low-High outliers present around Leeds or Bradford. Instead, clusters and outliers 

appear to be distributed randomly throughout the study area, indicating that rates of 

violence and sexual offences do not cluster disproportionately in urban centres. As 

with rates of theft from the person, when the ambient population is employed as a 

measure of the population at risk, there are High-High clusters present in LSOAs that 

are primarily residential. This pattern is expected in residential areas, as some 

incidences of violence and sexual offences are committed at residential locations. The 

use of the workday and resident populations suggests that rates of violence and 

sexual offences are low in residential areas and, therefore, do not accurately 

represent the spatial distribution of rates of this crime type. 

					

       The results of the hot spot analysis illustrate marked differences between 

the use of the workday population and the ambient population as a measure of the 

population at risk in the calculation of crime rates. When the workday population is 

employed, hot spots are concentrated around the cities of Leeds and Bradford, 

indicating high rates of crime in these areas. There are also groups of cold spots across 

the North and Southwest periphery of the study area. However, when the ambient 

population is used as the measure of the population at risk, while some LSOAs around 

Leeds and Bradford do contain hot spots, there are no large groups of hot spots 

present around any urban centres. This illustrates that the use of the both the 

resident population and workday population as a measure of the population at risk 

suggests that only urban centres contain crime hot spots, while the use of the ambient 

population evidences that hot spots are in fact dispersed throughout West Yorkshire. 

Furthermore, when the ambient population is used within the calculation of rates of 

violence and sexual offences, there are additional hot spots present in the Northeast 

and West of the study area located in LSOAs, which are mainly residential. Hot spots 

are not present in residential areas when the resident and workday populations are 
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employed, which suggests that this measure may not accurately represent the level 

of risk of victimisation in residential areas. The use of the ambient population also 

resulted in a distinct reduction in the number of statistically significant cold spots on 

the periphery of West Yorkshire, which has a primarily residential backcloth, when 

compared to the use of the resident and workday populations. Therefore, rates of 

violence and sexual offences calculated using these measures inaccurately indicate 

higher levels of safety in residential areas. 

 

The findings demonstrate the use of the resident and the workday populations 

as a measure of the population at risk, fail to accurately communicate the risk of 

victimisation from violence and sexual offences. The use of the ambient population 

demonstrates that levels of risk are not disproportionality higher in urban centres 

than in residential areas. This reinforces the need to employ the ambient population 

as a measure of the population at risk, to enable the calculation of accurate crime 

rates that can be utilised to inform effective policymaking. 

 

5.5.1.3 Implications of the findings 

The differences in the spatial distributions of rates of theft from the person 

and violence and sexual offences when different measures of the non-resident 

population are employed have significant implications for the use of crime rates. The 

spatial distributions of crime rates will influence resource allocation and the 

implementation of crime prevention policies. Therefore, if crime rates do not 

accurately represent the risk of a crime being committed, policies are likely to be 

ineffective. Consequently, those geographic areas that actually experience high crime 

rates and would benefit from the deployment of crime reduction policies will not be 

allocated appropriate resources. The use of both the resident and the workday 

populations in the calculation of crime rates suggest that cities of West Yorkshire 

experience concentrations of crime hot spots and clusters of crime. In contrast, the 

use of the ambient population demonstrates that these features are dispersed 

throughout the study area and large numbers of hot spots and clusters are not 
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present in urban centres. As measures of the resident and workday population do not 

capture the total population of an area, as the resident population fails to account for 

activities outside of the home and the workday population does not capture non-

work-related activities, they cannot, therefore, accurately represent the size of the 

population at risk. Consequently, crime rates calculated using these measures are not 

able to communicate the actual risk of crime to members of the public. As the 

perception of risk may influence how some individuals utilise and move through space 

and affect any precautions taken to reduce their risk of victimisation, the accurate 

communication of risk is essential to public safety.   

 

5.5.2 Limitations and opportunities for future work 

5.5.2.1 The modifiable areal unit problem 

The Modifiable Areal Unit Problem (MAUP) is a potential source of error within 

spatial analysis which occurs when the geographical boundaries imposed on data can 

impact the spatial patterns of aggregated data, as the variance structure of the data 

is altered (Charlton, 2009; Openshaw and Taylor, 1979). It is important to note that 

all data used in this study, as outlined in the Appendix A Table 1, are aggregated to 

LSOA level; thus, the results of the analyses employed are likely to be impacted by the 

effects of MAUP. Wong (2009) notes the importance of acknowledging the presence 

of MAUP; however, there are limited ways in which the effects can be managed. One 

approach is to conduct analyses at multiple geographical scales to investigate any 

variations in the results (Wong, 2009). However, only LSOAs are employed within this 

study as it is a commonly used geographic scale within crime analysis and is the 

smallest geography that can be used across all three measures of the population at 

risk. It should also be noted that the use of spatial units smaller than LSOAs, such as 

output areas or postcode areas, are not suitable for use as work by Tompson et al. 

(2015) illustrated that there is spatial error in police recorded crime data at these 

levels. While an alternative solution is to employ scale-independent analysis, this is 

not feasible within this study as crime rates must be representative of a geographical 

area (Su et al., 2011).  
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5.5.2.2 Spatio-temporal estimates of the population 

Given that certain types of crimes will be more likely to be committed at 

specific times of day, it can be argued that crime rates should take into account the 

number of people in the area at the times at which these crimes are commonly 

committed (Newton and Felson, 2015). For example, the rates of alcohol-related 

offences may be more accurately communicated by employing a measure of the 

population at risk which enumerates night-time, non-residential populations. This is 

supported by data produced by the Metropolitan Police (2018) which highlights that 

between April 2017 and April 2018 in London (UK), 72% of alcohol related offences 

were committed between the hours of 18:00 and 06:00 and 38% occurred between 

24:00 and 06:00. This study has not explored the use of spatio-temporal crime rates, 

as time-stamped crime data are not currently openly available.  

 

5.5.2.3 Limitations of the data 

In this section, limitations of the datasets employed in this study are noted. 

Data captured by the 2011 Census of England and Wales, i.e., the estimates of the 

size of the resident and workday populations, are limited by the frequency of data 

collection. While these data are geographically comprehensive and are considered to 

be the gold standard of population data (Rees et al., 2002), at the time of writing, the 

data utilised are over ten years old. It should be noted that data from the most recent 

census of England and Wales, conducted in 2021, have not yet been released. 

Consequently, these data may not accurately represent the resident and workday 

populations, and therefore will impact the accuracy of the crime rates produced. The 

estimates of the size of the workday population are also used to produce the 

estimates of the ambient population; thus, the estimates of the ambient population 

may also be outdated.  

 

 The accuracy of the footfall camera estimates used to produce the ambient 

population variable is impacted by the predictive capacity of the model used to 
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estimate footfall counts. The model currently accounts for 33.2% of the variation of 

the dependent variable, i.e., the footfall camera counts; however, the predictive 

capacity of the model could be improved by developing a more in depth 

understanding of the drivers of the size of the ambient population in urban centres. 

As the estimates of the ambient population are determined by the presence of ATMs, 

which may be limited in rural areas, and hospitality, which is a fluctuating market 

following the COVID-19 pandemic. 

 

5.5.2.4 Exploration of other crime types 

This study investigates the impact of different measures of the population at 

risk on the spatial distribution of the rates of two types of crime committed against 

the individual; theft from the person and violence and sexual offences. However, 

there may be value in the exploration of the use of the ambient population as a 

measure of the population at risk for the calculation of rates of crimes that do not 

target individuals, such as vehicle theft or burglary. One factor which supports this is 

that the size of the ambient population in residential areas will impact the number of 

capable guardians present and, therefore, in accordance with routine activity theory, 

will affect the numbers of crimes committed. 

 

5.5.2.5 Exploration of other locations 

While this study has explored patterns of crime rates across West Yorkshire, there 

remains an opportunity to investigate the impact of different measures of the 

population in different geographical locations. This would enable researchers to 

determine the generalisability of the work and determine instances in which the use 

of a resident (i.e. non-ambient) population may be more appropriate. In order to 

effectively assess the generalisability of the work, the impact in other regions, 

including urban, suburban, and rural areas, both in the UK and overseas, should be 

explored and assessed. 

5.6 Conclusions 
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This study illustrates significant differences in the spatial distributions of rates 

of theft from the person and of rates of violence and sexual offences, calculated using 

the residential population as the measure of the population at risk, compared to 

measures of the non-residential population. Findings from this study are consistent 

with the literature, supporting that the use of the resident population as a measure 

of the population at risk is inappropriate and that there is value in employing 

estimates of the non-residential population. However, this study also expands on the 

existing literature by evidencing the value of using the ambient population, as 

opposed to the workday population, as a measure of the population at risk. The 

results of the cluster and outlier analysis and the hot spot analysis evidence that for 

both crime types, the use of the resident and workday population overestimate the 

risk of victimisation within urban centres and underestimate the risk in residential 

areas. There are, of course, limitations of the estimates of the ambient population 

used in this study, i.e., they may not capture the whole ambient population due to 

the model's predictive capacity. However, as these estimates capture both work and 

non-work-related increases in the size of the population, which the resident and 

workday populations do not, they offer a significant advantage over the current 

approach. This study demonstrates that estimates of the ambient population may be 

beneficial for the calculation of accurate crime rates and supports the demand for 

geographically comprehensive estimates of the size of the ambient population that 

can be utilised by police forces and policymakers resulting in more effective crime 

reduction strategies. 
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Chapter 6 

Conclusions 

	

The work within this thesis has fulfilled the research aim, which was to explore 

the development of small area estimates of the size of the ambient population in an 

urban area. In addition to achieving this aim, the work makes four significant novel 

contributions to the literature. Firstly, the thesis contributes to the literature through 

the critical assessment of the suitability of different data types for producing 

estimates of the size of the ambient population. This is a valuable contribution as the 

identification of suitable data underpins attempts to produce estimates of the size of 

the ambient population. Secondly, the approach developed in this thesis to produce 

estimates of the size of the ambient population using solely open data is a novel 

contribution to the literature. Thirdly, the dataset produced for the purpose of this 

research and utilised to validate the estimates of the size of the ambient population 

is currently the only openly available dataset that captures manual footfall counts. 

Consequently, this work is the first to validate estimates of the size of the ambient 

population using ground truth data. Lastly, the work identified that the use of the 

resident and workday populations overestimate the risk of victimisation within urban 

centres, while underestimating the risk in residential areas. This finding demonstrates 

that estimates of the size of the ambient population are critical for the accurate 

calculation of crime rates. 

 

This chapter concludes the thesis and provides a summary of the research 

undertaken. Section 6.1 summarises the thesis and demonstrates the extent to which 

the aim and objectives, detailed in Chapter 1, have been met. The limitations of the 

thesis are discussed in Section 6.2, while Section 6.3 notes recommendations for 

future work. An outlook on both producing and utilising estimates of the size of the 

ambient population and concluding remarks are presented in Section 6.4. 
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6.1 Thesis summary and contribution to the literature 

The aim of this thesis, as stated in Chapter 1, is to explore the development of 

small area estimates of the size of the ambient population in an urban area. To fulfil 

this aim, six research objectives were established. This section revisits these 

objectives and assesses the extent to which they have been met by the work in this 

thesis.  

 

Objective One: Review and discuss the literature relating to quantifying the 

size of the ambient population and comparable small area estimates of populations 

and their use within crime studies. 

 

Objective One was fulfilled through a review of the literature in Chapter 2. 

Chapter 2 initially defined the ‘ambient population’ and identified terms used 

synonymously within the existing literature. The demand for estimates of the size of 

the ambient population across a range of applications within research and 

policymaking was then acknowledged. The chapter noted that despite the utility of 

estimates of the size of the ambient population, they are not yet part of the standard 

suite of population statistics in any nation. Methodologies and data types utilised in 

previous studies of the ambient population were then explored. Early studies of the 

ambient population used methods of areal interpolation, including dasymetric 

mapping, grid-based modelling, and pycnophylactic interpolation. These methods 

were employed as they are able to disaggregate coarse data to a fine spatial scale; 

however, given the granularity of data now available, the utility of these methods for 

estimating the size of the ambient population has diminished. It was noted that many 

recent studies had employed novel data, such as geo-located Twitter data, Wi-Fi 

sensor counts, and mobile phone data, as a proxy of the size of the ambient 

population. However, this approach has significant limitations, as simply employing 

novel data as a measure of the ambient population fails to represent the entire 

population, resulting in inaccurate estimates. Many types of novel data are not 

representative of the entire population as they are subject to sampling bias. Thus, 
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individuals with certain demographic characteristics, i.e., those within specific age or 

socio-economic categories, may not be captured. Thus, Chapter 2 identified an 

opportunity to expand on the existing literature by exploring the use of high-

resolution spatial data with a method of modelling to produce estimates of the size 

of the ambient population. 

 

The work in Chapter 2 explored the use of estimates of the size of the ambient 

population within crime studies. The importance of accurate crime rates and their 

value within research and policymaking was illustrated. The literature highlighted that 

crime rates calculated using estimates of the resident population are both 

inappropriate and inaccurate, as these estimates fail to capture the size of the 

population at risk. Previous studies have employed alternative, non-residential 

measures of the population at risk. The results of these studies evidenced significant 

qualitative and quantitative differences in the spatial distributions of crime rates 

compared to the use of the resident population. While some of these studies use 

measures of the ambient, very few use comprehensive estimates of the ambient 

population and instead employ Twitter data as a proxy. Therefore, the use of 

comprehensive estimates of the size of the ambient population as a measure of the 

population at risk within crime rates needs to be further investigated. 

 

Chapter 2 identified an opportunity to provide a novel contribution to the 

literature by comparing the differences between the use of two measures of the non-

resident population, i.e., the workday population and the ambient population, and 

their impact on the spatial distribution of crimes rates. Work by Malleson and 

Andresen (2016) previously highlighted the size of the workday population as the 

most appropriate measure of the population at risk. However, the study only explored 

the use of the workday population on one crime type within London (UK). Therefore, 

there remained an opportunity to explore differences between the use of the 

workday population and a measure of the ambient population on the spatial 

distribution of two crime types within an alternative study area. This exploration 

would be a valuable contribution to both crime studies and policymaking. While 
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estimates of the workday population are readily available and are more appropriate 

than the measure currently used by police forces (i.e., the resident population), they 

fail to capture non-work-related fluctuations in the size of the population. 

Consequently, identifying any statistically significant differences in the spatial 

distributions of crime rates calculated using the workday and ambient populations 

allows an appropriate measure of the population at risk to be determined. 

 

Objective Two: Assess and critique sources of population data that have the 

potential to be used to produce estimates of the size of the ambient population in 

urban areas, including those utilised in the existing literature. 

 

           The work presented in Chapter 3 critically reviewed and assessed the 

utility of sources of population data that have the potential to be utilised in the 

production of estimates of the size of the ambient population. This chapter 

highlighted that conventional types of data, such as data from national censuses, are 

able to enumerate a high proportion of the whole population. However, the utility of 

conventional data is often limited by the granularity of the data available and may 

limit the spatial scale of studies undertaken. Infrequent data collection is a further 

limitation of the data and is due to the temporal and financial cost of conducting large 

scale surveys. Despite these limitations, conventional data types, in particular census 

data, are a valuable asset within studies of the ambient population. This is due to the 

geographic comprehensiveness of the data, which is seldom available with novel data. 

While beyond the scope of this thesis, it should also be noted that conventional data 

often provide additional information about the populations they enumerate. For 

example, census data capture detailed data regarding the demographic 

characteristics of the population, while travel surveys provide information regarding 

journey purpose and duration. This additional information could enable a more in-

depth understanding of the indicators and demographic composition of the ambient 

population to be developed. With many types of novel data, information regarding 

the individuals enumerated is often limited. Often, if individual-level information is 

captured, it is unlikely to be available for use due to privacy restrictions. Thus, the use 
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of conventional sources may be advantageous in studies that focus on the 

characteristics of the ambient population.  

 

Following this, Chapter 3 explored novel data types, including mobile phone 

data (mobile phone activity data, smartphone location data, and cell tower location 

data), geo-located social media data, and pedestrian counters (footfall cameras and 

Wi-Fi sensors).  

 

Mobile phone data are the most commonly utilised novel form of data within 

the existing literature and have been employed in a range of studies. However, mobile 

phone data are limited by significant ethical concerns and issues relating to data 

access. Both mobile phone activity and smartphone location data are produced by 

private organisations and can be expensive to acquire. Cell tower location data, 

however, is available free of charge from OpenCelliD and has been used in several 

studies to quantify the size of the ambient population. Despite this advantage, the 

data quantify cell tower density and do not provide information regarding the number 

of people in an area. Consequently, the utility of OpenCelliD data is limited, as they 

cannot be used to quantify the size of the ambient population.  

 

The work in Chapter 3 then illustrated that while geo-located social media 

data can provide spatio-temporally detailed information about the population, the 

utility of the data is significantly limited by the size and representativeness of the 

samples. As geo-located social media data are only representative of a small 

proportion of individuals who utilise social media platforms, the demographic 

characteristics and the activity patterns of these individuals are unlikely to be 

representative of the whole ambient population. 

 

Data from two types of pedestrian counters, Wi-Fi sensors and footfall 

cameras, are explored in Chapter 3. Wi-Fi sensors log the number of Wi-Fi enabled 
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devices passing a geographic point, while footfall cameras capture all individuals who 

pass a camera. Consequently, it can be argued that footfall camera data are more 

suitable for enumerating the whole population, despite high penetration levels of Wi-

Fi enabled devices across different demographic groups. Data captured by pedestrian 

counters are becoming increasingly openly available and are currently accessible for 

cities in Australia, the UK, and the US. The work in Chapter 3 highlighted an 

opportunity to further explore the utility of pedestrian counter data in estimating the 

size of the ambient population. 

 

Objective Three: Develop small area estimates of the size of the ambient 

population for an urban area. 

 

The work presented in Chapter 4 builds a model that produces small area 

estimates of the size of the ambient population using openly available data. A 

preliminary predictive model was developed in which footfall camera counts were 

employed as the dependent variable, and seven independent variables were selected 

based on the existing literature. Footfall camera counts were chosen as the 

dependent variable, as they were highlighted by the work in Chapter 3 as a valuable 

data source and have not been explored extensively within the existing research. The 

seven independent variables (cell tower density, the size of the workday population, 

and the numbers of higher and further education buildings, retail premises, transport 

hubs, hospitality values, and ATMs) had been successfully employed in other studies 

reviewed in Chapter Two or highlighted as potentially valuable by the work in Chapter 

Three. Surprisingly, only two out of the seven variables tested, the number of ATMs 

and hospitality venues, were statistically significant. Based on the existing literature, 

it was expected that all seven independent variables would have a significant 

relationship with the size of the ambient population. This finding highlights that the 

understanding of the indicators of the size of the ambient population remains 

relatively limited, which illustrates that a more in-depth understanding is crucial to 

producing accurate estimates of the size of the ambient population. A final model was 

then developed in which the two variables that had a statistically significant 



 

 185 

relationship with the footfall camera counts, the number of ATMs and hospitality 

venues, were employed as the independent variables. All other model conditions 

remained the same as in the preliminary model. The estimates of the size of the 

ambient population produced by the model were then validated to assess their 

accuracy. The dataset utilised to perform the validation, and the results of the process 

are discussed in the following sections. 

 

Objective Four: Produce a validation dataset that captures footfall counts in 

an urban area. 

 

To validate the footfall camera counts and estimates produced by the model 

developed in Chapter 4, footfall data from an alternative source were required. As no 

data were available, a novel dataset was produced. As outlined in Chapter 4, these 

manual footfall count data were captured by a team of data collectors at ten sites 

across the Metropolitan Borough of Leeds across a six-hour period. Three data 

collectors were stationed at each site, which allowed the mean total count to be taken 

and then utilised in the validation process. The validation data are openly available 

from the Consumer Data Research Centre (Whipp, 2021). These data also allow the 

accuracy of the manual footfall counts, the footfall camera counts, and the model 

estimates to be assessed (see Objective Five). 

 

Objective Five: Employ the validation dataset to assess the accuracy of the 

footfall camera counts and the model estimates. 

Validation is key to ensuring data accuracy. The validation process conducted 

in Chapter 4 assessed the similarity of the samples collected by the three data 

collectors, quantified the accuracy of the footfall cameras, and allowed model 

estimates to be compared to manual counts using a novel, empirical dataset. The 

results presented in Chapter 4 indicate that the samples collected by three data 

collectors at seven out of eight sites likely come from the same distribution. While the 

validation of the footfall camera counts demonstrated that the data were accurate 
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and had a similar distribution to the manual counts at two of three locations. The 

validation of the model estimates evidenced that at four of six locations, the accuracy 

of the estimates was as expected or higher than expected based on the model fit. No 

other studies within the existing literature have attempted to validate footfall camera 

data; thus, the findings are a novel contribution to the literature and highlight the 

value of the data for use in future studies. 

 

Objective Six: Utilise the estimates of the size of the ambient population to 

examine the impact of different measures of the population on the spatial distribution 

of the rates of two crime types; ‘theft from the person’ and ‘violence and sexual 

offences’. 

 

Objective Six was fulfilled through a literature review presented in Chapter 2 

and a case study in Chapter 5. Chapter 2 demonstrated that as crime clusters within 

space and time, crime rates calculated using the size of the resident population may 

not accurately represent the size of the population at risk. Existing studies within 

environmental criminology have employed alternative measures of the population at 

risk; however, the utility of a comprehensive estimates of the size of the ambient 

population on the spatial distribution of crime rates had not yet been explored. To 

assess the value of estimates of the size of the ambient population within crime 

studies and compare the use of both the resident population and different measures 

of the non-residential population at risk, a case study of West Yorkshire is employed 

in Chapter 5. This case study explored the impact of alternative measures of the 

population to assess the spatial distributions of the rates of two types of crime (‘theft 

from the person’ and ‘violence and sexual offences’). The results of this study 

consolidate findings from the existing literature in that they support the use of a non-

residential measure of the population at risk. The study also evidences that for rates 

of ‘theft from the person’ and rates of ‘violence and sexual offences’, the use of the 

both the resident and workday populations overestimate the risk of victimisation 

within urban centres and underestimate the risk in residential areas. The findings of 

the study highlight the value of estimates of the ambient population for producing 
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accurate crime rates and support the demand for geographically comprehensive 

estimates that can be utilised by police forces and policymakers. 

	

6.2 Limitations of the research 

This thesis has explored the development of small area estimates of the size 

of the ambient population in an urban area. The research has successfully developed 

a model which estimates the size of the ambient population. These estimates were 

utilised to investigate the impact of alternative measures of the population at risk on 

the spatial distributions of crime rates. However, there are several limitations of the 

research which are discussed in this section. 

	

6.2.1 Indicators of the size of the ambient population 

The work in Chapter 4 evidenced that indicators of the size of the population, 

which had been utilised in previous studies, were, surprisingly, not found to have a 

statistically significant relationship with the number of footfall counts. This finding 

suggests that the current understanding of indicators of the size of the ambient 

population is limited and needs to be developed. Furthermore, the indicators of the 

size of the ambient population will likely have changed within the last eighteen 

months due to the impacts of the COVID-19 pandemic. Changes in working patterns, 

which include working from home or hybrid forms of working, have resulted in 

changes in the size of the ambient population in urban areas. Government restrictions 

regarding social distancing and venue closures also resulted in fewer people visiting 

urban areas for leisure purposes. The lasting impact of both changes in working 

patterns and restrictions to social contact, and the subsequent effect on the size of 

the ambient population, is yet to be seen. 

	

6.2.2 Limitations of the footfall camera count data 
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Despite the benefits of footfall camera count data, as discussed in chapters 2 

and 3, these data also have some limitations. The primary limitation of footfall camera 

counts is that their utility is restricted by their representativeness. As footfall cameras 

only record the numbers of individuals who pass a specific geographic point, they do 

not enumerate the number of individuals within a wider geographical area. The 

representativeness is unknown as the ability of these data to enumerate large 

proportions of the population, particularly within urban areas, is heavily dependent 

on both the density of cameras and their location. 	

 

Additionally, as footfall cameras do not acquire any individual-level 

information, it is not possible to determine whether individuals pass a camera 

multiple times and are, therefore, double-counted, i.e., enumerated more than once. 

Double-counting will lead to overestimating the numbers of people in an area; 

however, quantifying this poses a significant challenge. Facial recognition algorithms 

offer a way to enumerate the issue; however, given the significant ethical issues 

associated with this approach, it is not a viable solution. 

	

6.2.3 Limitations of the manually collected footfall data 

The study in Chapter 3 produced estimates of the size of the ambient 

population using footfall camera counts and OpenStreetMap data with geographically 

weighted regression. These estimates were validated using manually collected footfall 

count data recorded at ten sites across the study area. However, the limitations of 

these data and the data collection process should be acknowledged. 

 

The manually collected footfall data have both spatial and temporal 

limitations. The data were collected at only ten locations across the study area, thus 

represent a limited geographic area. As the study enumerated footfall counts at three 

sites at which footfall cameras were located, these three sites were pre-determined 

and could not be altered. However, these sites were in close proximity to one another 

and, consequently, covered a small geographic area, further limiting the 
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representativeness of the sample. The small sample size is a significant limitation of 

the data as footfall is a heavily localised phenomenon and is often dependent on land 

use. Data were collected at each of the ten sites for six hours; thus, they are 

representative of a limited period of a single day and cannot account for features such 

as seasonality. Due to the high costs, both temporal and fiscal, of collecting manual 

footfall counts, it was not possible to conduct counts over a longer period or at a 

greater number of locations. However, this presents an opportunity for further 

research, and a more extensive investigation of the accuracy of footfall camera counts 

would be a novel contribution to the literature. 

 

Human error is a significant limitation of manual data and can impact data 

accuracy. Two forms of human error may occur in the data collection process: skill-

based errors and mistakes. Skill-based errors commonly occur when a task is 

repetitive, does not require a significant thought process, and if there are distractions 

in the environment. Due to the nature of capturing high volumes of manual counts in 

a busy, outdoor environment, these errors are highly likely to occur and cannot be 

prevented. Data collectors are susceptible to slips of action, such as counting an 

individual who does not qualify as a pedestrian (for example, someone riding a 

scooter) and lapses in attention, for example, not counting a pedestrian due to a 

distraction. Mistakes occur when rules are misapplied or when there are no rules 

which apply to a given situation. To avoid mistakes, the data collectors undertook a 

training session to ensure they had a clear understanding of the data collection 

process and guidance was provided on how to take appropriate action in unforeseen 

circumstances. While appropriate measures were employed to ensure mistakes were 

minimised, skill-based errors likely occurred during the collection of the manual 

footfall counts. 

 

Despite the limitations of the manually collected footfall counts utilised in this 

research, alternative datasets that can be used to validate footfall camera counts are 

not currently available. Consequently, these manually collected footfall counts remain 
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valuable for validating the accuracy of both the footfall camera counts and the model 

estimates. 

 

6.2.4 The modifiable areal unit problem 

 Substantial variations in the spatial distributions of crime rates when 

alternative (i.e., non-residential) measures of the population at risk are employed 

were demonstrated in Chapter 5. However, it is important to recognise the effects of 

the modifiable areal unit problem (MAUP) on the results of the research. The MAUP 

is a source of error that occurs when geographical boundaries are imposed on data. 

The spatial patterns of aggregated data are affected by the boundaries as the variance 

structure of the data is altered (Charlton, 2009). Therefore, when different 

geographical boundaries are employed, the spatial patterns of the data will also differ.  

 

While there are no ways in which the effects can be prevented, it is important 

to acknowledge the presence of the MAUP and how its effects can be minimised 

(Wong, 2009). One approach which can be employed to explore the effects of the 

MAUP is to produce visualisation and conduct spatial analyses at multiple 

geographical levels. Within Chapter 5, all visualisations and analyses were conducted 

at the LSOA level as it is the commonly utilised level of aggregation within crime 

studies. Additionally, smaller units of aggregation could not be employed as a study 

by Tompson et al. (2015) demonstrated that below the LSOA level, police recorded 

crime data for England contains spatial error, while employing larger units of 

aggregation would limit the utility of the results. The alternative solution is to use 

scale-independent analysis; however, as crime rates are specific to a geographical 

area, this solution is not appropriate. While these approaches are not suitable for use 

within this study, it is important to note that the results are likely to be affected by 

the MAUP. 
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6.2.5 Generalisability 

The work presented in this thesis may be limited by its generalisability. While 

the estimates of the size of the ambient population produced in Chapter 4 were 

validated in two locations, the work has not been tested in other urban areas within 

the UK or internationally. The indicators of the size of the ambient population may 

vary in different geographical locations due to factors such as variations in human 

activity patterns and the structures of urban centres. Consequently, there is the need 

for future research to explore variations in these indicators.  

6.2.6 Data equity 

The work in this thesis relies heavily on the use of footfall counter data. The 

presence of footfall counters, as part of wider sensor networks, in urban centres has 

increased significantly in recent years. These sensor networks and the data they 

collect aim to collect high-resolution spatio-temporal data which can be used to 

inform policy-making across a range of areas. However, it is important to note that 

the spatial distribution of these networks is often uneven and may reinforce growing 

social injustices within cities. Consequently, those locations which do not have sensor 

data available will be further impacted due to their inability to produce robust 

estimates of the size of the ambient population which would benefit public safety.  

6.3 Recommendations for future work 

There are several avenues for potential research identified by the work in this 

thesis. The most beneficial avenue for future work may be the further development 

of the model produced in Chapter 4. To improve this model, through an increased 

predictive capacity, a better understanding of the indicators of the size of the ambient 

population is required. Despite the extensive work undertaken to identify indicators 

that have a statistically significant relationship with footfall counts, the identification 

of additional indicators would allow estimates of the size of the population to be 

produced with higher levels of accuracy. Assessing the relationship between the 

number of footfall counts and relevant indicators of the size of the ambient 

population post-pandemic would be a valuable contribution to the literature. The 
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model estimates produced would, consequently, be a more valuable asset within 

crime studies and other areas of research and policymaking. 

 

This thesis explored the impact of different measures of the population at risk 

on the spatial distribution of crime rates. However, the study could be expanded, by 

examining other crime types. This thesis only explores theft from the person and 

violence and sexual offences, as these crimes target individuals and, therefore, the 

locations of offences will vary as populations move throughout space. Consequently, 

residential measures of the population at risk are inappropriate, as they do not 

accurately reflect the number of individuals at risk from these particular crime types. 

However, there remains an opportunity to investigate the impact of the ambient 

population on the spatial distribution of crimes that do not target individuals, such as 

daytime residential burglary, vehicle crime, or shoplifting. The exploration of these 

crime types would be a valid avenue for future research, as routine activity theory 

states that for a crime to occur, three things must converge in space and time; a 

target, an offender and the absence of a capable guardian (Cohen and Felson, 1979). 

As the size of the ambient population increases, there is likely to be an increase in the 

number of capable guardians present who may deter an offender from committing a 

crime. For example, an offender may be less likely to commit a daytime residential 

burglary if there are high numbers of people in the area to witness the crime. 

Therefore, the size of the ambient population may also be an appropriate measure of 

the population at risk for crime types that do not target individuals. 

 

Another opportunity for future research is the production of fine-grained 

temporal estimates of the size of the population at hourly intervals, which would be 

particularly valuable within crime studies and hazard management. Due to the highly 

temporal nature of crime events and hazards, hourly estimates of the size of the 

ambient population would allow for more fine-grained analysis and ultimately 

allowing for a more in-depth understanding of these phenomena. 
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Additionally, there remains an opportunity to investigate the utility of 

estimates of the size of the ambient population within research areas outside of crime 

studies. Relevant areas of study include exploring the exposure of the ambient 

population to air pollution and investigating the use of estimates of the size of the 

ambient population within hazard management. 

	

6.4 Outlook and concluding remarks  

Small area estimates of the size of the ambient population, particularly in 

urban areas, are essential to a wide range of applications, within both research and 

policymaking. Such estimates can allow a better understanding of urban phenomena 

to be developed and enable more effective decision making. The demand for easily 

reproducible, accurate estimates will increase as levels of urbanisation continue to 

rise globally, and climate change poses an increasing risk to urbanised areas. These 

estimates of the size of the ambient population can then be used to mitigate impacts 

of urbanisation and climate change through their use in informing emergency 

planning, improving hazard management, and monitoring exposure to noise and air 

pollution. 

 

The COVID-19 pandemic and the subsequent restrictions to limit social 

interactions have profoundly impacted human activity patterns. Shifts towards 

remote working within many sectors, travel restrictions, and limitations on leisure 

activities to ensure social distancing have all resulted in significant changes in the size 

and locations of the ambient population. To explore and quantify the extent of the 

impact of the COVID-19 pandemic on human activity patterns, estimates of the size 

of the ambient population would be beneficial. The COVID-19 pandemic reinforces 

both the value of estimates of the size of the ambient population and the importance 

of the frequent and systematic collection of population data. 
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This thesis has explored the development of small area estimates of the size 

of the ambient population in an urban area. Through the use of geographically 

weighted regression and open-source data, an approach to produce estimates of the 

size of the ambient population has been developed. Estimates of the size of the 

ambient population produced using this approach were then successfully employed 

to explore the impact of different measures of the population at risk on the spatial 

distribution of crime rates. The approach developed and presented within this thesis 

enables the production estimates of the size of the ambient population which have 

the potential to be effectively utilised within research and policymaking. 
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Appendix 

Appendix A: Chapter 5 supplementary tables and figures 

Appendix A Table 1 Descriptive statistics for the data used to calculate the rates of 

theft from the person. 

Data Source, 

producer, and 

date 

Sum Mean SD Min. 

value 

Max. 

value 

Theft 

from the 

person 

data 

Police, 

police.data.uk

, 2019 

3749.000 2.701 

 

23.129 

 

0.000 

 

770.000 

 

Violence 

and 

sexual 

offences 

data 

Police, 

police.data.uk

, 2019 

1388.000 

 

79.315 85.937 3.000 

 

1781.00

0 

 

Usual 

resident 

populati

on 

Census of 

England and 

Wales, Office 

for National 

Statistics, 

2011. 

2,226,058.0

00 

 

1603.7

88 

 

277.53

7 

 

1011.0

00 

 

4156.00

0 

 

Workday 

populati

on 

Census of 

England and 

Wales, Office 

for National 

Statistics, 

2011. 

1,036,058.0

00 

 

746.43

9 

 

1602.6

90 

 

58.000 

 

32261.0

00 
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Footfall 

counts 

Produced 

using the 

method 

outlined in 

Section 3.24, 

OpenStreetM

ap, 2021. 

890432.897 1213.1

24 

3190.626 0.000 57577.998 

The 

ambient 

populati

on 

OpenStreetM

ap, 2021; 

Census of 

England and 

Wales, Office 

for National 

Statistics, 

2011. 

1,926,488.0

00 

 

1387.9

59 

 

3557.0

72 

 

58.000 

 

89839.0

00 

 

	

Appendix A Table 2 Descriptive statistics for the rates of theft from the person and 

violence and sexual offences, calculated using three different measures of the 

population at risk. 

Variable 

name 

Crime 

type 

Measure of 

the 

population 

at risk 

Mean Standard 

deviation 

Min. 

value 

Max. 

value 

Resident 

theft 

Theft 

from the 

person 

Usual 

resident 

population 

1.594 10.877 0.000 274.314 

Workday 

theft 

Theft 

from the 

person 

Workday 

population 

3.119 5.952 0.000 74.084 
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Ambient 

theft 

Theft 

from the 

person 

Ambient 

population 

2.477 5.339 0.000 74.074 

 

Resident 

violence 

Violence 

and 

sexual 

offences 

Usual 

resident 

population 

49.118 48.785 1.856 764.499 

Workday 

violence 

Violence 

and 

sexual 

offences 

Workday 

population 

228.762 268.761 4.509 2916.667 

Ambient 

violence 

Violence 

and 

sexual 

offences 

Ambient 

population 

191.430 

 

253.598 1.914 2916.667 
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Appendix A Figure 1 The spatial distribution of the number of theft from the person 

and violence and 952 sexual offences events per LSOA (Basemap: © 

OpenStreetMap contributors, 2021 and 953 Ordnance Survey data © Crown 

copyright and database right 2010-19). 
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Appendix A Figure 2 The spatial distribution of the number of theft from the person 

and violence and sexual offences events per LSOA (Basemap: © OpenStreetMap 

contributors, 2021 and Ordnance Survey data © Crown copyright and database 

right 2010-19). 
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Appendix A Figure 3 The usual resident population per LSOA (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19).	
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Appendix A Figure 4 The workday population per LSOA (Basemap: © OpenStreetMap 

contributors, 2021 and Ordnance Survey data © Crown copyright and database 

right 2010-19).	

 

Appendix A Figure 5 The ambient population per LSOA (Basemap: © OpenStreetMap 

contributors, 2021 and Ordnance Survey data © Crown copyright and database 

right 2010-19).	
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Appendix A Figure 6 Rates of theft from the person per 1000 people per LSOA, 

calculated using estimates of the resident population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19).	
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Appendix A Figure 7 Rates of theft from the person per 1000 people per LSOA, 

calculated using estimates of the workday population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19).	

	



Appendix 

 204 

 

Appendix A Figure 8 Rates of theft from the person per 1000 people per LSOA, 

calculated using estimates of the ambient population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19). 
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Appendix A Figure 9 Rates of violence and sexual offences per 1000 people per LSOA, 

calculated using estimates of the resident population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19).	
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Appendix A Figure 10 Rates of violence and sexual offences per 1000 people per LSOA, 

calculated using estimates of the workday population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19).	
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Appendix A Figure 11 Rates of violence and sexual offences per 1000 people per LSOA, 

calculated using estimates of the ambient population (Basemap: © 

OpenStreetMap contributors, 2021 and Ordnance Survey data © Crown 

copyright and database right 2010-19). 
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Appendix A Figure 12 The spatial distribution of clusters and outliers for rates of theft 

calculated using the resident population (Basemap: © OpenStreetMap 

contributors, 2021 and Ordnance Survey data © Crown copyright and database 

right 2010-19). 
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Appendix A Figure 13 The spatial distribution of clusters and outliers for rates of 

violence and sexual offences calculated using the resident population 

(Basemap: © OpenStreetMap contributors, 2021 and Ordnance Survey data © 

Crown copyright and database right 2010-19). 
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Appendix A Figure 14 The spatial distribution of hot spots and cold spots for rates of 

theft calculated using the resident population (Basemap: © OpenStreetMap 

contributors, 2021 and Ordnance Survey data © Crown copyright and database 

right 2010-19). 
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Appendix A Figure 15 The spatial distribution of hot spots and cold spots for rates of 

violence and sexual offenses calculated using the resident population 

(Basemap: © OpenStreetMap contributors, 2021 and Ordnance Survey data © 

Crown copyright and database right 2010-19).	
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Appendix B: Manual count metadata 

This appendix includes an in-depth description of the manual footfall count 

dataset developed and used to validate work in Chapter 4 of the thesis. The data for 

this research were funded by the European Research Council under the European 

Union’s Horizon 2020 research and innovation programme (grant agreement No. 

757455), and are openly available via the Consumer Data Research Centre, an 

Economic and Social Research Council Data Investment (grant 

ES/L011840/1;ES/L011891/1). 

 

The manual footfall count data were utilised to: 

1. Validate estimates of the ambient populations produced using a statistical 

model in three geographic areas within the Metropolitan Borough of Leeds, 

UK: Headingley, Wetherby and Leeds city centre. 

2. Validate the accuracy of footfall camera data captured in Leeds city centre 

 

Manual footfall counts were collected at ten sites between the 5th to the 9th 

of July 2021 between 10:00 and 16:00 each day. At the time of data collection, footfall 

cameras were installed at three of the ten sites: Briggate, Headrow and Commercial 

Street. Footfall counts were collected at two sites per day and three data collectors 

were located at each site. Data collectors were replaced during breaks to ensure 

continuity. 

 

The dataset produced consists of 24 files providing manual footfall counts at 

ten locations. Each file contains the collection date and a timestamp, with each 

timestamp representing one count/one pedestrian. For each location, the files are 

numbered 1 to 3, representing the three data collectors. Due to data collection issues, 

timestamped data for the 5th of July 2021 at Bond Street and Vicar Lane are not 

available; however, the total counts recorded by each data collector at these locations 

are included in the dataset. 
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Counts were logged using the iOS application Counter+ which is available free 

of charge via the App Store. The application allows counts to be logged with an 

associated timestamp, enabling the data to be used in temporal analysis. The data can 

be exported from the application as a .txt file for further analysis. The application 

stores a maximum of 1000 records, thus the data must be exported prior to reaching 

over 1000 counts to avoid data loss. 

 

The data collectors were instructed to count all pedestrians who were not 

cycling, skateboarding, scootering, or using any form of transport. Individuals using 

motorised mobility aids were counted. All children were counted including those in 

pushchairs or being carried. Data collectors were located in positions which did not 

impede the flow of pedestrians and allowed them to have an uninterrupted view of 

the count location. To ensure that all data collectors were enumerating pedestrians 

in the same geographical area, pedestrians were counted as they passed a pre-

determined physical marker, for example a lamppost. At locations with a footfall 

camera installed, the footfall camera was the selected physical marker. 

 

On Tuesday 6th July, there was heavy rain from 10:00 to 16:00 at both 

locations, North Street (Wetherby) and B6167 Otley Road (Headingley) which may 

impact the number of pedestrians. During the other data collection days, the weather 

was dry with no cloud between 10:00 and 16:00. On Friday 9th July at Commercial 

Street, a sales cart was in proximity to the footfall camera. This partially obscured the 

data collectors’ view of pedestrian flows; it is unknown whether the sales cart would 

impact counts recorded by the footfall camera. 

 

 The data were collected by Annabel Elizabeth Whipp, Sedar Olmez, Ellie 

Marfleet, Deborah Olukan, Fredide Wallace, and Amandine Bodet Lefevre. Annabel 

Elizabeth Whipp was responsible for project management and data processing. 


