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Abstract 

Remote sensing technologies are integral to monitoring mountain glaciers in 

a warming world. Tropical glaciers, of which around 70% are located in Peru, are 

particularly at risk as a result of climate warming. Satellite missions and field-based 

platforms have transformed understanding of the processes driving mountain glacier 

dynamics and the associated emergence of hazards (e.g. avalanches, floods, 

landslides), yet are seldom specialised to overcome the unique challenges of 

acquiring data in mountainous environments. A ‘new generation’ of remote sensing, 

marked by open access to powerful cloud computing and large datasets, high 

resolution satellite missions, and low-cost science-grade field sensors, looks to 

revolutionise the way we monitor the mountain cryosphere. In this thesis, three novel 

remote sensing techniques and their applicability towards monitoring the glaciers of 

the Peruvian Cordillera Vilcanota are examined. Using novel processing chains and 

image archives generated by the ASTER satellite, the first mass balance estimate of 

the Cordillera Vilcanota is calculated (-0.48 ± 0.07 m w.e. yr-1) and ELA change of up 

to 32.8 m per decade in the neighbouring Cordillera Vilcabamba is quantified. The 

performance of new satellite altimetry missions, Sentinel-3 and ICESat-2, are 

assessed, with the tracking mode of Sentinel-3 being a key limitation of the potential 

for its use over mountain environments. Although currently limited in its ability to 

extract widespread mass balance measurements over mountain glaciers, other 

applications for ICESat-2 in long-term monitoring of mountain glaciers include 

quantifying surface elevation change, identifying large accumulation events, and 

monitoring lake bathymetry. Finally, a novel low-cost method of performing timelapse 

photogrammetry using Raspberry Pi camera sensors is created and compared to 3D 

models generated by a UAV. Mean difference between the Raspberry Pi and UAV 

sensors is 0.31 ± 0.74 m, giving promise to the use of these sensors for long-term 

monitoring of recession and short-term warning of hazards at glacier calving fronts. 

Together, this ‘new generation’ of remote sensing looks to provide new glaciological 

insights and opportunities for regular monitoring of data-scarce mountainous regions. 

The techniques discussed in this thesis could benefit communities and societal 

programmes in rapidly deglaciating environments, including across the Cordillera 

Vilcanota.  
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Chapter 1 

Introduction 

 

Climate change as a result of anthropogenic activity, is leading to glaciers 

across the world losing mass (Zemp et al., 2019; Fox-Kemper et al., 2021). Mass loss 

from mountain glaciers contributes to sea-level rise, water scarcity in mountain 

communities, and geomorphic hazards (Keiler et al., 2010; Baraer et al., 2012; 

Church et al., 2013). Projections indicate that as Earth’s climate warms during the 

next century, mass loss from glaciers will increase (Zemp et al., 2019; Rounce et al., 

2020). Over 1 billion people worldwide rely on fresh water originating from glaciers, 

primarily in the Himalaya (Immerzeel et al., 2019), Alps (Beniston, 2012) and Andes 

(Buytaert et al., 2017). Accurate predictions of how mountain glaciers are responding 

to warming, to provide insight into how they may respond to future warming, are 

essential to short-term hazard planning and long-term water resource management, 

yet there exists significant uncertainty in current estimates.  

In the Andes, ongoing glacial recession poses increasing threats in the form 

of natural hazards, such as glacial lake outburst floods (GLOFs). As glaciers retreat, 

the number and size of glacial lakes increases (Hegglin and Huggel, 2008; Colonia 

et al., 2017; Shugar et al., 2020), which exacerbates the risk of GLOFs across the 

region (Vilímek et al., 2005; Schneider et al., 2014). As glaciers provide an essential 

water resource, populations frequently inhabit the lowlands, leaving them particularly 

vulnerable to outburst events (Baraer et al., 2012). GLOFs have killed thousands of 

people since the 1940s in the Peruvian Cordillera Blanca alone (Carey, 2005). At the 

same time, future glacial lake expansion also poses potential opportunities through 

increased tourism and hydroelectric power potential (Haeberli et al., 2016). Glacial 

meltwater to run hydropower, which can reach a capacity of 732 MW in Peru during 

drought (Buytaert et al., 2017), represents an important contribution for Andean 

countries aiming to reduce their reliance on fossil fuels in the wake of the UN Paris 

Agreement.  

 

1.1. Mountain Glaciers of the Peruvian Andes 

Around 70% of all tropical glaciers are located in Peru (Figure 1.1). These 

glaciers are found at high (~4,200+ meters above sea level; m a.s.l.) elevations in 

distinct mountain ranges of the Andes, known as Cordilleras. Glaciers across Peru 
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are rapidly receding in response to climate warming. A country-wide assessment 

shows a recession in glacier area from 2,042 km2 in 1970 to 1,058 km2 in 2019 (ANA, 

2021). Some regions, such as the Cordillera Chila, have become almost entirely 

deglacierised as a result of this recession (Janský et al., 2011). 

 

 

Figure 1.1 - Glacierised regions of Peru (red) from the Randolph Glacier Inventory 

(RGI Consortium, 2017). 

 

 The largest glacierised area of Peru is the Cordillera Blanca (431 km2 as of 

2019 (ANA, 2021), ranging in elevation from ~4,200 m to 6,768 m at Huascarán), 

where meltwater is important for contributing up to 30% of river discharge during the 

dry seasons (May to September) and ensuring consistent supply to key rivers such 

as the Río Santa (Mark and Seltzer, 2003; Baraer et al., 2012). Owing to its size, 

accessibility, and proximity to large towns and cities, glaciers of the Cordillera Blanca 

have received extensive scholarly attention with regards to its past (Georges, 2004; 

Burns and Nolin, 2014), present (Motschmann et al., 2020), and future (Schauwecker 
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et al., 2017). The second largest glacierised area is the Cordillera Vilcanota (246 km2 

as of 2017 (ANA, 2021), ranging in elevation from ~4,600 m to 6,384 m at Ausangate), 

located in the south-east of Peru, around ~200 km from the Bolivian border. Water 

from the Cordillera Vilcanota supplies the city of Cusco (population 470,000), acting 

as an important buffer during dry seasons and drought. For many indigenous 

communities and smaller settlements living closer to the ice, meltwater from the 

Cordillera Vilcanota is their primary source of freshwater (Figure 1.2).  

 

Figure 1.2 – Meltwater is channeled from glaciers of the Cordillera Vilcanota (A) to 

provide a primary water resource for rural farms in the foothills (B). 

 

To the south of the central range of the Cordillera is Laguna Sibinacocha: a 

glacial fed water reservoir (~20 km2 in size) which occupies the former glacier extent 

at the last glacial maximum, and is now dammed at its southern end for hydropower 

(Figure 1.3). The dam has been in place since the 1990s and regulates water supply 

into a small river which feeds the Vilcanota-Urubamba basin. The east of the 

Cordillera Vilcanota is dominated by the Quelccaya ice cap: the second largest 

tropical ice cap, of ~40 km2 glacierised area in 2020. Quelccaya has receded and 

thinned rapidly in recent decades owing to the expansion of lakes, particularly along 

its western margin, driving melt (Yarleque et al., 2018). Glaciers of the Cordillera 

Vilcanota represent a source of heritage, culture, and spirituality for communities 

living in close proximity to the ice. Centuries-old cultural practices have ceased due 

to glacier recession, such as the carving ice from Ausangate (the highest peak of the 

Vilcanota) during the annual El Señorde Qoyllur Rit’i catholic pilgrimage (Allison, 

2015). Continued recession is leading to water anxiety, local tension, and the 

challenge of distrust of foreign interventions (Vuille et al., 2018).  

 



4 
 

 

Figure 1.3 – Key locations within the Cordillera Vilcanota.  

 

Nearby to the Cordillera Vilcanota (~100 km to the West) are the smaller 

Cordilleras Vilcabamba and Urubamba (glacierised area of 96 and 18 km2 

respectively (ANA, 2021), ranging in elevation from ~4,600 m to peaks of 6,271 m at 

Salcantay in the Vilcabamba and 5,893 m at Veronica in the Urubamba). Glaciers in 

these Cordilleras are generally smaller, steeper, and lower-lying than in the Cordillera 

Vilcanota (Guardamino and Drenkhan, 2016). Glaciers here also represent a 

significant point of heritage and tourism, with the UNESCO World Heritage site of 

Machu Picchu situated within the Cordillera Vilcabamba and the Willka Qhichwa 

(Sacred Valley of the Incas) within the Urubamba. This area has been farmed for over 

one thousand years, with irrigation systems channeling glacial meltwater from the 

mountains into the Urubamba valley for farming (Covey, 2006). This prevalence of 

glacial meltwater in irrigating agriculture in the rural headlands is of particular concern 

as climate change impacts this supply (Drenkhan et al., 2019). The concern over 

agriculture is particularly important for indigenous women, who make up a large 

portion of this sector (Del Aguila, 2015). The intersectionality of issues facing this 

population, from access to water to high poverty rates, means there is overall a lower 

capacity to adapt to dwindling water supplies.  
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1.2. A New Generation of Remote Sensing 

To track the changes of glacierised regions, improve confidence in future 

climate projections, and protect communities from associated hazards, requires 

detailed and systematic monitoring programmes. Mountain glaciers present unique 

challenges for remote sensing, which has limited the applicability of traditional 

techniques in glaciology to mountainous regions. Steep topography creates issues 

such as layover and shadowing, often hiding small glaciers between peaks. 

Nevertheless, remote sensing is important in monitoring these highly dynamic, yet 

remote and inaccessible, environments. Optical data form much of our current 

observation of mountain glaciers and medium (<30 m) spatial resolution optical data, 

including ASTER, Sentinel-2, and Landsat, are frequently used in assessing and 

monitoring glacier hazards (Quincey et al., 2005; Shugar et al., 2021) and long-term 

change (Bolch et al., 2010; Veettil, 2018; Racoviteanu et al., 2019). Synthetic 

Aperture Radar (SAR) data, and derived products such as glacier velocity maps, can 

also be used in conjunction with optical and elevation data for assessing long-term 

change in glacier dynamics (Kääb, 2005; Quincey et al., 2007; Robson et al., 2015). 

Yet, there remains an array of remote sensing techniques and satellites that have 

seldom been applied to mountain glacier environments, despite having made 

significant advances in monitoring the changing ice sheets.  

A new generation of high-resolution remote sensing techniques is increasing 

the potential for routine mountain glacier observation. First, stereoscopic images, 

whereby two or more optical images are used to generate a 3D digital elevation model 

(DEM), are powerful archives for monitoring glacier thinning and recession 

(Dussaillant et al., 2018), but mountain glaciers are vulnerable to issues such as 

layover and shadowing, and large data gaps can persist when cloud and snow 

conditions are heavy. In addition, harnessing the potential of archives of stereo data 

requires handling large volumes of data and creating new processing chains. In 

recent years, the accessibility of cloud computing (through, for example, Google Earth 

Engine) and open-source processing chains has borne global estimates of glacier 

volume change (Hugonnet et al., 2021), yet issues unique to mountain glaciers create 

challenges that result in high levels of uncertainty when applying these global 

datasets to understanding the dynamics of small mountain glaciers. On a local scale, 

stereo data archives can provide a robust estimate of mass balance change over 

mountain glaciers (Pieczonka et al., 2013; Watson et al., 2020), but this technique 

has yet to be applied to the Peruvian Andes. Indeed, no such current estimate of 

region-wide mass balance exists over the Cordilleras Vilcanota, Vilcabamba and 
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Urubamba, with field-based techniques providing valuable insights, but limited to 

specific glaciers. 

Secondly, satellite altimetry, using the time taken for a radar or laser pulse to 

travel from a satellite to the ground beneath and return, has typically performed well 

over large, flat ice sheets (Shepherd et al., 2018; Slater et al., 2021). However, the 

high relief of mountainous areas has severely limited this technique (Harding et al., 

1994), with manual corrections needed over smaller glaciers (Treichler and Kääb, 

2016). The recent launch of the Sentinel-3 (ESA; 2016) and ICESat-2 (NASA; 2018) 

missions offer promise to the ability of using satellite altimetry to monitor mountain 

glaciers. Both satellites capture data at a finer spatial and temporal resolution than 

predecessor altimeters, with novel onboard processing techniques to acquire data 

even in challenging conditions. Early insights into both satellites indicate their strong 

potential over ice sheets (McMillan et al., 2019; Brunt et al., 2019), yet no assessment 

has been performed of their potential over mountain glaciers. The possible insights 

that satellite altimetry could offer are large: from seasonal monitoring of snowfall 

depth, to highly precise estimates of glacier mass balance. 

Lastly, field-based remote sensing often offers the most accurate 

measurements of glacier dynamics, but is fraught with difficulties from the challenging 

logistical conditions of working at high altitude, rural sites. Glacier calving fronts are 

highly dynamic systems which can be monitored to track glacier velocity, mass loss, 

or, in the case of large calving events, GLOFs. Sensors to monitor glacier fronts in-

situ can cost many thousands of pounds in order to operate over long time periods in 

sub-zero conditions (Kienholz et al., 2019), while data are often analysed months or 

years after acquisition as a site revisit is required to retrieve imagery (Mallalieu et al., 

2017). The potential for structure-from-motion (SfM) timelapse arrays to monitor 

individual calving events for hazard management has been proven (Ryan et al., 2015; 

Mallalieu et al., 2017), yet must decrease in cost and include data transmission to be 

viable for inclusion in a hazard warning system. Microprocessors (small, low-powered 

computers) are carving out a new niche in other geoscience disciplines (Ferdoush 

and Li, 2014; Chan et al., 2020) by offering high spatial resolution monitoring at a low 

cost. However, their full potential has yet to be assessed in a glacierised environment, 

where they could provide regular updates on calving front dynamics. 

Together, this new generation of remote sensing techniques can help better 

understand the responses of glaciers to changes in climate, and provide a monitoring 

system for the subsequent effects on water resources and natural hazards. 
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1.3. Research Objectives 

The overall aim of this thesis is to develop, and test, the three ‘new generation’ 

remote sensing techniques outlined above, with a focus on quantifying glacier mass 

loss, monitoring potential changes in water availability, and protecting against natural 

hazards originating from Peruvian glaciers. Each of these techniques has been 

successfully applied in other glacierised settings or geoscience disciplines, 

presenting this thesis with a clear aim of assessing their potential over mountain 

glacier environments. Four objectives will help fulfil this aim and structure the thesis: 

1. Explore the current state of remote sensing over the mountain cryosphere, 

and identify remote sensing techniques and sensors currently in 

development, or used in other geoscience disciplines, that can be applied 

to the mountain cryosphere (Chapter 2); 

2. Quantify the mass balance and area change of glaciers in the Southern 

Peruvian Andes, concurrently examining the applicability of stereo 

archives to provide long-term monitoring over small mountain glaciers 

(Chapter 3); 

3. Explore the applicability for using new satellite altimetry missions 

(Sentinel-3 and ICESat-2) over small mountain glaciers, concurrently 

identifying opportunities for integrating altimetry data into glacier 

monitoring schemes (Chapter 4); 

4. Create a novel SfM-based system that generates science-grade 3D 

models of glacier calving fronts at a low-cost, concurrently providing a 

proof-of-concept for real-time, autonomous SfM for a GLOF hazard 

warning system (Chapter 5). 

 

1.4. Thesis Structure 

The thesis is broadly structured around the application of three remote 

sensing techniques (stereo optical imagery, satellite altimetry, and low-cost SfM; 

Chapters 3, 4, and 5) to monitoring mountain glaciers. Each of these data-driven 

chapters are written in the format of journal articles and are designed to be 

independent assessments of each technique. Other chapters provide the context 

behind selecting these techniques as the ‘new generation of remote sensing’ (Chapter 

2) and a discussion on their use and potential deployment within management 

schemes (Chapter 6). To this end, the chapters of the thesis are structured as follows: 
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1. Thesis introduction 

2. Remote sensing of the mountain cryosphere: Current capabilities and 

future opportunities for research 

3. Multi-decadal glacier area and mass balance change in the Southern 

Peruvian Andes 

4. Investigating the performance of novel satellite altimetry missions over 

mountain glaciers 

5. Evaluation of low-cost Raspberry Pi sensors for near real-time 

photogrammetry of glaciers 

6. Discussion and recommendations on the applicability of these 

techniques to monitoring Peruvian mountain glaciers 

7. Conclusions 
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Chapter 2 

Remote sensing of the mountain cryosphere: Current capabilities and 

future opportunities for research 

 

2.1. Introduction 

The mountain cryosphere, which we define as areas within mountainous 

environments that are frozen during part or all of the year, including glaciers, snow, 

permafrost, and lake ice, represents a source of fresh water for over one billion people 

worldwide (Immerzeel et al., 2019). Yet, mountain areas are increasingly threatened 

by climate warming, posing a threat to future water security (Hock and Rasul, 2019; 

Shugar et al., 2021). For communities living in mountain environments, such climate 

warming also poses an increased threat of natural hazards from the cryosphere, such 

as glacial lake outburst floods (GLOFs) (Carrivick and Tweed, 2016; Harrison et al., 

2018), avalanches (Fischer et al., 2012; Ballesteros-Cánovas et al., 2018), slope 

failures (Huggel et al., 2012), debris flows (Perov et al., 2017), or a combination of 

one or more hazards in a cascading chain (Kirschbaum et al., 2019). Given the 

significance of the mountain cryosphere in water resource and hazard management, 

it is therefore imperative to be able to track its rapid change, with the goal of being 

able to develop predictive capacity. Earth Observation (EO) and field-based 

techniques are increasingly viewed as being able to play a key role in securing the 

sustainable development of mountain communities (e.g. Murthy et al., 2014; Veettil 

and Kamp, 2019). However, there often remains a disconnect between monitoring 

from afar and local co-operation (Nussbaumer et al., 2017).  

Remote sensing has advanced rapidly in recent years, both in the physical 

hardware of the sensors and in the software used to subsequently process these 

data. However, the challenges associated with imaging areas of high relief are great, 

and the success of techniques that are now routinely applied over ice sheets (e.g. 

altimetry, gravimetry) has been limited (Kääb et al., 2005; Berthier et al., 2006;  

Racoviteanu et al., 2008a; Prinz et al., 2018). Optical satellite sensors are particularly 

hampered by persistent cloud, frequent and extensive snow cover, and accessibility 

of output data. Radar sensors can penetrate cloud, and quantify centimetric 

deformation rates (Joughin et al., 2010), but are often affected by radar shadow and 

layover from steep topography, and signal decorrelation due to the highly dynamic 

environment, which reorganises matching features. Field-based remote sensing 

techniques overcome such problems, and can offer very high spatiotemporal 
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resolution and bespoke data, but only from individual sites and with more challenging 

logistical obstacles, and many areas remain inaccessible for safety or geopolitical 

reasons.  

Recent innovations in sensor technology and processing techniques can be 

applied to remote observations of the mountain cryosphere. Upcoming satellite 

missions, in particular satellite constellations, will increase acquisition rates over 

mountain glaciers, at an ever improving spatial, spectral, and radiometric resolution. 

Private-public partnerships are becoming increasingly common, which has seen an 

associated rise in commercial data being incorporated into research publications 

(Figure 2.1). Field-based techniques are also changing rapidly, as bespoke 

Unoccupied Aerial Vehicles (UAVs) and low-cost micro-sensors increasingly become 

part of a glaciologist’s toolkit (Bhardwaj et al., 2016). Artificial Intelligence (AI) and 

cloud computing, with the vast increase in availability of free and open access data, 

are beginning to improve the processing of these new data.  

 

 

Figure 2.1 – Cumulative number of publications for the use of EO satellites in 

mountain glacier studies from Scopus. These data were generated from a systematic 

review of available literature from missions described in this chapter and then 

subsequently merged into commercial or public missions. 
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We are therefore in a period of rapid remote sensing, and consequently 

modelling, of the mountain cryosphere, presenting a timely opportunity to review the 

accomplishments to date and explore the future direction for this discipline. The aim 

of this chapter is to critically evaluate the performance of current remote sensing 

methods, identify limitations and gaps in current delivery, and discuss what emerging 

technologies could offer this research area in the future. This chapter will also further 

examine the background and future opportunities of harnessing stereoscopic image 

archives, new satellite altimetry missions, and low-cost microprocessors and their 

applications to monitoring Peruvian glaciers.  

 

2.2. Current monitoring of the mountain cryosphere 

There are a number of measurable parameters that can be used to chart the 

response of glacierised environments to climatic changes. Some parameters indicate 

changes in process rates (e.g. accumulation, ablation, ice deformation and sliding, 

sediment dynamics), while others are more pertinent to identifying features that may 

threaten downstream communities (e.g. glacial lakes, oversteepened and thawing 

slopes). In this section, we review the methods currently available for monitoring the 

mountain cryosphere, reflect on the key sensors available to researchers, and 

consider selected services available to local authorities. 

 

2.2.1. Surface Mass Balance 

Surface mass balance, the net sum of accumulation and ablation over a 

period, often one year, is perhaps the clearest indicator of how a glacier is responding 

to a warming climate (Dyurgerov and Meier, 2000). The overwhelming majority of 

remote sensing studies now calculate glacier-specific and region-wide mass balances 

using the geodetic approach.  

The geodetic approach describes the process of differencing time-separated 

digital elevation models (DEMs) and summing the glacier-wide elevation changes, 

before converting the resulting volume to mass (Bamber and Rivera, 2007; Huss, 

2013). It emerged during the late 1990s as an efficient means of deriving surface 

elevation measurements across broad areas within a single analysis (e.g. Wingham, 

1998). Both the Shuttle Radar Topography Mission (SRTM; 2000), and ASTER 

Global Digital Elevation Model (GDEM; 2009) are typically used as ‘baseline’ datasets 

to establish the first elevation epoch (Zhou et al., 2017; Wu et al., 2018). The second 
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epoch is usually then established by constructing a DEM from stereo imagery (e.g. 

SPOT, ASTER) acquired some years later (Rabatel et al., 2016; Braun et al., 2019). 

Many data sources appropriate for such analysis remain restricted in access, 

however. In particular, the SPOT family of satellites provides one of the longest and 

highest resolution archives for constructing glacier mass balance, but as a 

commercial mission the imagery is costly for the majority of researchers without a 

data grant; ALOS PRISM (2.5 m spatial resolution) and TerraSAR-X/TanDEM-X data 

(3 m StripMap mode and 12 m respectively; Rizzoli et al., 2017) are similarly only 

available to classified users under license. ASTER imagery provides stereo DEMs at 

no cost, but at medium spatial resolution (15 m; GDEM 30 m) and often with errors 

that exceed the magnitude of the change being detected (Bolch et al., 2008). 

Protocols for automating DEM production (such as fitting a regression through an 

ASTER DEM chain to robustly separate signal from noise) represent a major step 

forward, by providing data redundancy in the form of multiple datasets (Brun et al., 

2017; Hugonnet et al., 2021).  

Longer records of glacier mass change have exploited archives of aerial 

imagery or declassified stereo imagery from US reconnaissance missions (e.g. 

HEXAGON and Corona), to produce baseline DEMs, giving rise to 50+ year 

estimations of glacier mass balance in mountainous regions (Surazakov et al., 2007; 

Bolch et al., 2008; Pieczonka et al., 2013; Kjeldsen et al., 2015; Falaschi et al., 2019). 

Coupled with contemporary assessments of glacier evolution these historical records 

can provide valuable information on rates of change (Maurer et al., 2019; King et al., 

2019). After initial processing challenges brought about by non-conventional frame 

characteristics and missing location data, these declassified images are now also 

routinely fed into automated processing pipelines to derive elevation snapshots at 

multiple epochs (Maurer and Rupper, 2015) (Figure 2.2). 
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Figure 2.2 - Historic and contemporary images can be used to quantify mass change 

across the Cordillera Vilcanota, Peru (-13.76°N, -71.03°E). (A) KH-9 HEXAGON 

image from 3rd August 1980, georeferenced and overlain on a DEM generated using 

HEXIMAP (Maurer and Rupper, 2015). (B) Planet Imagery from May 2020 as a visual 

reference for glacier position today. (C) DEM differencing the KH-9 HEXAGON 

elevation model against a TanDEM-X DEM from July 2015. Positive values 

surrounding the glacier are likely due to georeferencing error of the HEXAGON image 

on very steep slopes. 

 

Regional estimates of mass balance are often more robust indicators of 

glacier response to climate change than those focussing on a small subset. The 
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Gravity Recovery and Climate Experiment (GRACE) satellites (2002-2017), and their 

successor (GRACE-FO; launched in 2018), offer the possibility to calculate regional 

estimations of net mass change and the subsequent contributions to sea level rise 

(Chen et al., 2013). However, their coarse spatial resolution (~300 km), and inability 

to disaggregate individual contributions of change, means that signals of ice loss 

could not be separated from signals from groundwater storage depletion or surface 

lake drainage (Yi and Sun, 2014; Song et al., 2015). Satellite altimetry from ICESat 

(2003-2010) and CryoSat-2 (2010-) has also been used to produce estimates of 

glacier mass loss, but only over the largest glaciers where observations were 

regularly repeated (Kääb, 2008; Neckel et al., 2014; Ke et al., 2015; Trantow and 

Herzfeld, 2016). Altimeters are frequently used as a comparison for the accuracy of 

other DEMs (e.g. Liu et al., 2019), or as ground control points for stereo DEMs; yet, 

there remains a gap in the current satellite delivery for highly precise elevation 

measurements over mountain glaciers from altimeters, that may yet be fulfilled by 

ICESat-2 (2018-) as it builds an archive of repeat observations, albeit over a limited 

number of glaciers (Bisschop, 2021).  

At a smaller scale, UAVs are important in the creation of cm-scale elevation 

models for monitoring surface mass balance through SfM photogrammetry. Repeat 

surveys can be used to monitor short-term surface melt through differencing point 

clouds (Dall’Asta et al., 2017; Bash et al., 2018). This is particularly important where 

melting dynamics are drastically different across the year (Rossini et al., 2018; Che 

et al., 2020). The cm-scale DEMs can also be used to measure the microtopography 

of glacier surfaces – an important component in the surface energy balance of 

glaciers (Chambers et al., 2019; Bash and Moorman, 2020; Bonekamp et al., 2020). 

 

2.2.2. Ice Velocity 

Glacier velocity products are important for determining the long-term response 

of a glacier or a region to climate warming (Dehecq et al., 2019), as well as for 

assessing likely locations for emerging hazards and those developing in the future 

(Quincey et al., 2007). Generating distributed velocity fields for mountain glaciers 

usually requires one of two approaches: feature tracking or Interferometric Synthetic 

Aperture Radar (InSAR). Feature tracking requires two images separated in time, 

captured within an optimal time window such that the features have moved sufficient 

distance to be detectable, but not such that they deform beyond recognition. Most 

algorithms employ normalised cross-correlation for matching features (e.g. Berthier 
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et al., 2005; Copland et al., 2009), but frequency-based approaches can also yield 

robust results (Leprince et al., 2007; Scherler et al., 2008); see Heid and Kääb (2012) 

for a comprehensive review. InSAR requires much shorter temporal baselines, such 

that the coherence of the radar signals between the two successive images is 

maintained (Rabus and Fatland, 2000), dependent therefore on periods of calm 

weather and geomorphic stability, neither of which are common in mountain 

environments. Where InSAR is successful, it can detect centimetre-scale 

displacements, at high precision, as well as performing well over relatively featureless 

(clean-ice or snow-covered) areas where feature tracking fails (Luckman et al., 2007).  

Traditionally, radar imaging sensors have been used for velocity tracking, as 

a) radar speckle results in an image rich in texture over optically-featureless surface, 

and b) their ability to penetrate clouds allows for images to be captured regardless of 

weather conditions. Today, the European Space Agency’s Sentinel-1 provides such 

imagery on a 6-day repeat cycle for deriving glacier velocity, building upon its 

predecessors ERS-1/2 (1991 and 1995) (Quincey et al., 2007; Luckman et al., 2007) 

and Envisat (2002) (Quincey et al., 2009). Images collected by commercial satellites, 

such as RADARSAT and TerraSAR-X, are also used to derive glacier velocity fields 

at high temporal frequency and spatial resolution (Abdel Jaber et al., 2012; Waechter 

et al., 2015), though these data are generally only available through licensing 

agreements or at great financial cost. 

Where successive cloud-free images can be acquired, velocity products can 

also be derived from optical imagery. Medium resolution imagery (10 – 30 m) such 

as ASTER provides broad coverage for regional assessments (Redpath et al., 2013; 

Guillet et al., 2022), while the long Landsat archive offers a window into past glacier 

dynamics and their current response to changes in climate (Dehecq et al., 2019). The 

Operational Land Imager on-board Landsat-8 is particularly well-suited to this task, 

offering improved radiometric resolution and geometric fidelity compared to its 

predecessors, making it possible to produce glacier velocity products that are 

comparable in terms of accuracy to InSAR (Roy et al., 2014; Fahnestock et al., 2016). 

Applications such as Cosi-CORR (Leprince et al., 2007), IMCORR (Scambos et al., 

1992), and auto-RIFT (Gardner et al., 2020) are used routinely to produce glacier 

velocity products from radar and optical data. However, given the cloudy and steep 

conditions of mountain glaciers, outputs from a range of correlation applications and 

sensors are often required for robust and complete coverage (Heid and Kääb, 2012).  
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2.2.3. Glacial Lakes 

The growth of lakes as glaciers recede is one of the most visible reminders of 

climate warming impacting the mountain cryosphere (Shugar et al., 2020). Lakes 

present opportunities in hydropower and tourism, but also additional risk from the 

threat of larger and more frequent outburst floods to downstream populations 

(Bajracharya and Mool, 2009; Carrivick and Tweed, 2016; Haeberli et al., 2016; 

Drenkhan et al., 2019). Existing glacial lakes can be located using a Normalised 

Difference Water Index (NDWI) from medium-resolution optical imagery such as 

Sentinel-2 or the Landsat archive (Drenkhan et al., 2018; Watson et al., 2018). DEMs 

can also be used to identify glacial lakes from stereo optical imagery (Ukita et al., 

2011) or higher-resolution SAR (Strozzi et al., 2012).  

Establishing lake volume requires bathymetry measurements to capture the 

bed, and therefore an in situ component (Fujita et al., 2009). In the absence of these 

data, empirical scaling lake area with mean depth (from bathymetric maps and 

published data to avoid auto-correlation) can be used to provide a first-order 

assessment, though high uncertainty may suggest a mixed-model approach is most 

appropriate for datasets containing varying lake sizes (Cook and Quincey, 2015; 

Shugar et al., 2020). Estimates of glacial lake volume can also be determined from a 

depth-reflectance (Fitzpatrick et al., 2014) or depth-area relationship, but in the case 

of the latter approach, significant variability exists between sites depending on their 

style of formation (Cook and Quincey, 2015; Drenkhan et al., 2018). The recently 

launched ICESat-2 (2018) altimeter can obtain photon returns from both the lake 

surface and bed (accounting for refraction) to depths of around 40 m (Parrish et al., 

2019), including from supraglacial lakes (Fair et al., 2020), though this is as yet 

untested in mountainous environments (see Chapter 4). Monitoring the changing lake 

surface height is theoretically possible from satellite altimeters or a continuous series 

of stereo DEMs. However, the archive for such measurements, at an appropriate 

accuracy to detect change through time, is not long. With extensive processing, data 

have been extracted from the Envisat era (2002-2012), with notable additions from 

ICESat (Neckel et al., 2014) and CryoSat-2 (Crétaux et al., 2016).  

Remote sensing of glacier lakes now begins long before their formation, with 

bed topography data and modelling able to indicate their future extent and volume 

(Drenkhan et al., 2019) to provide an early indication that mitigation of an emerging 

hazard may be necessary. New lakes will likely form in the overdeepenings carved 

from the erosive force of glaciers, and so can be located with high confidence using 
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contemporary DEMs and the perfect plasticity approach to estimating ice thickness 

(Linsbauer et al., 2012; Rounce et al., 2017; Kapitsa et al., 2017; Viani et al., 2020). 

However, the timing of their evolution still requires numerical modelling of future rates 

of ice melt.  

 

2.2.4. Supraglacial Ponds and Ice Cliffs 

Glaciers have highly complex and dynamic surfaces, and features such as 

ponds and cliffs contribute to the surface energy balance and overall hydrological 

regime of mountain glaciers (Miles et al., 2016; Brun et al., 2016; Miles et al., 2018a; 

Brun et al., 2018). Medium-resolution (10–30 m) optical satellite data can classify 

supraglacial lakes (with Sentinel-2 outperforming Landsat-8 in spectral contrast 

between debris and water; Watson et al., 2018) on a regional scale (Veettil, 2018) 

and repeat imagery can be used to follow drainage events to identify associated 

changes in velocity and surface elevation (Miles et al., 2018b). However, sub-metre 

resolution data are essential to accurately assess the dynamics, and classify features, 

of complex glacier surfaces. Sub-metre resolution imagery and DEMs are paramount 

to being able to delineate features such as ice cliffs, which can contribute to increased 

rates of ablation (Buri et al., 2016). In lieu of satellite sensors being able to resolve 

such small-scale features, field-based remote sensing is frequently deployed. 

Airborne sensors (LiDAR, photogrammetry) have conducted such surveys (e.g. 

Baltsavias et al., 2001; Arnold et al., 2006; Janke, 2013; Reid and Brock, 2014), but 

are sparsely used given the financial cost of mounting such a campaign. 

UAVs have rapidly become the most appropriate tool for very high resolution 

mapping of glacier surfaces. They are relatively low cost, yet rival the precision of 

traditional field-based surveying methods (e.g. ground mapping with GPS) (Gaffey 

and Bhardwaj, 2020), over an entire glacier surface in a fraction of the time (Figure 

2.3). Repeat UAV surveys have shown that the development of ponds and cliffs can 

accelerate ice velocity (Immerzeel et al., 2014) and imagery has been used to 

produce quantitative measurements of cliff geometry to better understand their 

formation and evolution (Buri et al., 2016; Kraaijenbrink et al., 2016). A particular 

advantage of UAVs is their flexibility to observe rapidly changing vertical features, 

such as underhanging cliffs, that are obscured from space and may not be accessible 

for fixed time-lapse cameras (Scaioni et al., 2019). The vast quantity of data that are 

gathered from UAV surveys opens the opportunity for intelligent learning algorithms 

to speed up data processing as well as acquisition. AI has primarily been used in 
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remote sensing to classify surface features (Kraaijenbrink et al., 2016), but 

embedding AI within UAV systems has streamlined data processing elsewhere in 

other disciplines (Vasuki et al., 2014; Gonzalez et al., 2016; Ramirez-Atencia et al., 

2017; Xu et al., 2018). 

 

 

Figure 2.3 - UAVs offer a much sharper view of mountain glaciers compared to 3D 

alternatives from satellites, allowing a more accurate view of the ice surface, 

presented here from the western margin of the Quelccaya Ice Cap, Peru. (A) Pléiades 

multispectral image layered over a 3D reconstruction from tri-stereo images acquired 

in August 2016. (B) SfM reconstruction from 528 images of a UAV flight over the same 

glacier in September 2019. (C) and (D) show closer views of the UAV-derived SfM 

model to highlight the primary advantages of using UAVs for 3D reconstruction of 

mountain glaciers. 
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2.2.5. Snow 

Snow cover in mountainous regions is important for hydropower, tourism, 

irrigation, water resource management and can represent a natural hazard for 

surrounding communities (Xiao et al., 2015; Hock and Rasul, 2019). Detecting snow 

with optical satellites is long established using band ratioing (Lopez et al., 2008; 

Rastner et al., 2014) and the Normalised Difference Snow Index (NDSI) (Salomonson 

and Appel, 2004; Gascoin et al., 2019). With these data in cloud computing platforms, 

global-scale snow cover maps are now being produced regularly at a medium spatial 

resolution (Dietz et al., 2015; Mityók et al., 2018; Gascoin et al., 2019). Snow cover 

on glaciers can be indicative of equilibrium line altitude (Rabatel et al., 2012). With 

the addition of a DEM, optical imagery can be autonomously processed to detect the 

snow-line altitude to an 80% accuracy, though clouds, shadows, and significant fresh 

snow remain key limitations (Rastner et al., 2019). Daily PlanetScope imagery could 

be used to detect snow-line altitude at much higher temporal resolution (Racoviteanu 

et al., 2019). 

Accurate quantification of snow depth is important for water resource 

management, to enable planning on short to medium timescales. Typically these data 

come from in situ snow gauges (Egli and Jonas, 2009) or terrestrial laser scanners 

(Prokop, 2008). Digital photogrammetry can measure snow depth to avoid potentially 

dangerous field excursions to gather data using UAVs (Bühler et al., 2016) and even 

high resolution stereo satellite imagery by comparison to snow-free images (Marti et 

al., 2016) – a method which can offer sub-metre root mean squared error when 

compared to airborne lidar measurements (Deschamps-Berger et al., 2020). Passive 

microwave satellites can quantify snow water equivalent and indicate melting of snow 

large glaciers (Smith and Bookhagen, 2018) but wide sensor footprints (tens of km2) 

can limit this over smaller glaciers (Clifford, 2010). SAR sensors have commonly been 

used for monitoring snow in the mountain cryosphere to identify wet snow (and thus 

indicate melt), from SeaSat (Rott, 1984) to Sentinel-1 (Tsai et al., 2019a). A 

comprehensive review of the role of SAR sensors in monitoring snow is available from 

Tsai et al. (2019b). 

 

2.3. Upcoming innovations in sensor technology 

Current trends and future forecasts both point towards a rapid rise in the 

launch of EO satellites, particularly from the commercial sector, over the next decade. 

Innovations will also positively impact field-based remote sensing, as UAVs become 
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increasingly accessible and interdisciplinary research leads to searching for solutions 

from outside of the mountain cryosphere. In this section, we review some of the 

upcoming planned missions that could address research gaps in observing the 

mountain cryosphere, and identify where gaps still remain. 

 

2.3.1. Optical sensors 

Established civilian programmes (Landsat, Copernicus) are facing increased 

competition in a world where innovation is being rapidly driven by the commercial 

sector. Landsat-9 (launched  2021) is designed with virtually identical sensors to its 

predecessor as a data continuity mission (Markham et al., 2016). Landsat-9 is 

acquiring imagery at 14-bit depth resolution, which allows for a quadrupled 

radiometric sensitivity (and thus better feature depiction) over bright targets such as 

snow and ice when compared to 12-bit sensors on-board Landsat-8, Sentinel-2, and 

Planet Labs’ Dove satellites. This unbroken series of 50+ years from Landsat is 

particularly vital to the mountain cryosphere, where year-to-year changes in ice 

extent, surface albedo, or lake growth can be observed. Looking to the future, Landsat 

NeXt (the successor to Landsat-9, launching in the late 2020s) will include greater 

spectral range, narrower bands, and higher spatial resolution to retain relevance 

(beyond its long record) as competition grows from constellations and SmallSats 

(spacecraft with a mass less than 180 kg) (Wulder et al., 2019; Wu et al., 2019; NASA, 

2021).  

Satellite constellations designed for near real-time imaging (data distribution 

within hours of acquisition) are becoming more popular and promise to shape the 

coming decade of EO (Table 2.1). Having multiple satellites working together clearly 

offers numerous advantages over single satellite missions, but the trade-off may be 

in terms of uneven instrument degradation. Although Planet Doves are radiometrically 

calibrated against Landsat-8, RapidEye, and monthly lunar acquisitions, image 

quality and signal-to-noise ratio still varies between sensors (Leach et al., 2019). 

Noise within optical data usually arises from atmospheric interference (Jorge et al., 

2017), which is typically corrected with shortwave infrared (SWIR) bands that 

SmallSats are lacking (Vanhellemont and Ruddick, 2018). These missing SWIR 

bands are also critical in distinguishing between the spectral signatures of ice and 

water (Dozier, 1989). Day-to-day changes observed by constellation imagery should 

therefore be approached cautiously, as they may reflect differences between 

satellites rather than on-the-ground change (Cooley et al., 2017; Poursanidis et al., 
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2019). Landsat and Sentinel may have medium spatiotemporal resolution, but they 

compensate for this with their consistent data quality. 

Compared to long-standing satellite sensors such as Landsat and Sentinel, 

SmallSat constellations offer reduced radiometric resolution, geometric fidelity, and 

spectral resolution, but the trade-off can be found in the vast volume of data they 

acquire. Planet Labs were one of the first organisations to mass produce multispectral 

SmallSats with their Dove satellites, which today provide global daily sub-3 m 

imagery. Since the first launch of their Doves in 2016, Planet Labs have expanded 

their market niche to releasing over 300 SmallSats at varying altitudes for improved 

spatiotemporal resolution. This has obvious benefits for hazard management where 

events can be sudden in their onset (such as lake outburst events (Miles et al., 

2018b), glacier surges (Rashid et al., 2020), or ice avalanches (Shugar et al., 2021)), 

and where weather windows for successful observations may be short-lived. Studies 

of short-term (diurnal) variations in ice surface albedo (e.g. Naeimi et al., 2018) will 

also benefit from more frequent data capture (Altena and Kääb, 2017). Recently 

launched optical satellites will improve both timeliness and flexibility of imaging – 

Pléiades Neo (launched in 2021) will revisit the same mid-latitude area up to 15 times 

per day (Airbus, 2020), while WorldView-Legion (2021) claim to be able to provide 

data to the user within an hour of the satellite being tasked (Maxar Technologies, 

2020). Planet Labs’s Pelican satellites will build on both Pléiades Neo and WorldView-

Legion by revisiting mid-latitude areas up to 30 times a day and providing data to the 

user within 5 minutes of acquisition. Other upcoming constellations, such as 

EarthDaily (planned for launch in 2023), promise to reconcile the long-standing trade-

off between data quality and quantity, by producing sensors similar in radiometric 

resolution and fidelity to Sentinel-2 and capable of delivering daily, 5 m resolution 

imagery, for better forecasting of glacier hazards (Yan et al., 2017). These satellites 

are predominantly for-profit commercial missions (as opposed to open-source civilian 

missions such as Copernicus and Landsat), and the data access to researchers or 

civilians for studies of the mountain cryosphere is as yet unknown.  
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Satellite Launch Number 
of 
satellites 

Spatial 
Resolution 

Temporal 
frequency 
(equator) 

Bit rate Spectral bands 

Landsat-8 2013 1 15 m (pan); 
30 m 

16 days 12-bit Coastal Aerosol: 430 – 450 nm 
Blue: 450 – 510 nm 
Green: 530 – 590 nm 
Red: 640 – 670 nm 
Near-IR: 850 – 880 nm 
SWIR1: 1570 – 1650 nm 

SWIR2: 2110 – 2290 nm 
Pan: 500 – 680 nm 
Cirrus: 1360 – 1380 nm 
TIRS1: 10.6 – 11.19 μm 
TIRS2: 11.50 – 12.51 μm 

Sentinel-2 2015 2 10 m 5 days 12-bit Blue: 458 – 523 nm 
Green: 543 – 578 nm 
Red: 650 – 680 nm 
Red Edge: 698 – 713 nm 
Red Edge: 733 – 748 

Red Edge: 773 – 793 
Near-IR: 785 – 899 nm 
Near-IR: 855 – 875 nm 
SWIR: 1565 – 1655 nm 
SWIR: 2100 – 2280 nm 

Planet 
SuperDove 

2019+ 150+ 3 m Daily 12-bit Blue: 457.5 – 522.5 nm 
Green: 542 – 577.5 nm 
Red: 650 – 680 nm 

Red Edge: 697.5 – 712.5 nm 
Near-IR: 855 – 875 nm 

Pléiades 
Neo 

2021 (2) 
+ 2022 
(2) 

4 30 cm Sub-Daily 12-bit Deep Blue: 400 – 450 nm 
Blue: 450 – 520 nm 
Green: 530 – 590 nm 
Red: 620 – 690 nm 
 

Red Edge: 700 – 750 nm 
Near-IR: 770 – 880 nm 
Pan: 450 – 800 nm 

Landsat-9 2021 1 15 m (pan); 
30 m 

16 days 14-bit Identical to Landsat-8  

WorldView-
Legion 

2021 6 0.29 m 
(pan);  
1.16 m 

Hourly ? Pan: 450 - 800 nm  
Coastal: Blue: 400 - 450 nm 
Blue: 450 - 510 nm 
Green: 510 - 580 nm  
Yellow: 585 - 625 nm  

Red: 630 - 690 nm 
Red Edge1: 695 - 715 nm  
Red Edge2: 730 - 750 nm  
Near-IR: 770 - 895 nm 

Planet 
Pelican 

2023 32 0.3 m  Hourly ? Unknown  

EarthDaily 2023 8 5 m Daily ? Identical to Sentinel-2  

 

Table 2.1 – Overview of key specifications of current and future optical satellites that play an important role in monitoring the mountain 

cryosphere.  
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Similar advances are being made with multi-sensor missions. Multi-sensor 

approaches overcome inherent limitations of a single-sensor mission (Markert et al., 

2018), providing further insights into surface mass balance (such as using SAR 

backscatter to monitor snowlines, glacier facies, and firn development) (Winsvold et 

al., 2018), as well as potential for maintaining coherence between image pairs by 

reducing their temporal baseline. One such constellation, OptiSAR, aims to launch 8 

optical and 8 SAR satellites in tandem orbit pairs, capturing image pairs seconds 

apart (Fox et al., 2017), though its current development is unknown owing to financial 

precarity. If launched, on-board intelligence, with communication from the leading 

SAR satellite, will enable the optical satellite to only acquire over cloud-free areas to 

improve satellite efficiency (Beckett et al., 2017). 

 

2.3.2. Radar sensors 

The weight and power requirements of radar sensors have thus far limited the 

emergence of small SAR satellites, at least when compared to the rapid evolution of 

optical sensor constellations (Sandau et al., 2010). Micro-SAR satellites are often 

forced to compromise on antenna size and power output, resulting in lower overall 

quality (Seguin and Geudtner, 2018), and aperture widths that are ~10% that of larger 

single satellites (Rosen et al., 2017). Indeed, small satellites are frequently ‘tasked’ 

to preserve power, meaning sudden-onset events such as avalanches, landslides, or 

GLOFs, may not be captured, and imagery showing conditions immediately 

preceding the event may need to be filled by alternative freely available data sources 

(Higman et al., 2018). Nevertheless, the next decade will deliver commercial 

constellations such as ICEYE, Capella Space, and SAR-XL, which promise to provide 

imagery at sub-daily repeat time, albeit with a possible compromise on image quality. 

Table 2.2 outlines upcoming radar sensors, in the context of other (current) satellite 

missions.   
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SAR 

Band 

Wavelength 

(cm) 

Frequency 

(GHz) 

Missions Applications 

P 30 – 100  0.3 – 1.0 Biomass*, 

ICESAR2012† 

Tomography 

L 15 – 30  1.0 – 2.0  NISAR*, ROSE-L*, 

SeaSat†, SRTM†, 

JERS-1†, ALOS† 

Tomography, Velocity Mapping, 

Displacement Mapping, Snow 

water equivalent 

S 7.5 – 15  2.0 – 4.0 NISAR*, NovaSAR-

S, Envisat† 

Snow hydrology 

C 3.75 – 7.5  4.0 – 8.0 Sentinel-1, 

Sentinel-3, 

Radarsat, ERS†, 

Envisat†, SRTM† 

Classifying wet/dry snow, firn 

line mapping, snow line 

mapping, velocity 

X 2.4 – 3.75  8.0 – 12.5 TerraSAR-X, 

ICEYE, Capella 

Space, SRTM† 

3D capabilities, elevation 

change, glacier velocity, mass 

dynamics  

Ku 1.67 – 2.4  12.5 – 

18.0 

CryoSat-2, 

Sentinel-3, ERS-

1/2†, Envisat†  

Surface elevation, volume 

change, mass dynamics 

Ka 0.75 – 1.13 26.5 – 

40.0 

SWOT*, SARAL 

AltiKa 

Surface elevation, continental 

surface water storage changes 

 

Table 2.2 – Radar satellites and their applications to monitoring the mountain 

cryosphere. *denotes confirmed future mission not yet launched as of July 2022. 

†denotes mission that is no longer in operation. 

 

Proposed candidate missions to expand the Copernicus mission shows that 

ESA will continue to focus on the cryosphere, but with dual-frequency missions (e.g. 

CRISTAL) designed for polar regions rather than mountain glaciers (Kern et al., 

2020). In satellite based radar systems, two upcoming L-band missions look to 

reintroduce subsurface imaging to the forefront of glacier remote sensing. ESA’s 

ROSE-L (Pierdicca et al., 2019) and NASA’s NISAR (Rosen et al., 2017) will 

complement existing radar missions by offering the ability to examine surface velocity 

and glacier mass balance with reduced temporal decorrelation from deeper 

penetration into the ice (Strozzi et al., 2008), as well as permafrost displacement and 

snow-water equivalent. ROSE-L will work in association with other Copernicus 

missions (e.g. Sentinel-1) to offer new insights into the mountain cryosphere. For 

example, Sentinel-1 could delineate wet and dry snow, then ROSE-L could quantify 

the snow-water equivalent of the dry snow (Davidson et al., 2019). The synergy of L-

band and S-band sensors onboard NISAR will allow for a more holistic view of glacier 

dynamics, focussing on glacier velocity and snow hydrology simultaneously. In a 
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break from convention, these satellite sensors are being designed explicitly with 

mountain glaciology in mind and, as civilian missions, data will be freely available. 

Developments in satellite altimetry have thus far mostly benefitted routine 

monitoring of ice sheet surface elevations, where large measurement footprints and 

non-uniform repeat tracks can be compensated for, in contrast to mountain regions 

where the highly variable surface topography precludes robust interpolation between 

observations. The upcoming launches of Sentinel-3C and -3D, which will complete 

the Sentinel-3 constellation, include plans for higher resolution on-board tracking 

commands to capture meaningful data over mountain glaciers. ICESat-2 offers vastly 

more data than its predecessor; with six laser beams to reduce the distance between 

ground tracks and a rapid pulse rate to measure elevation up to every 90 cm on the 

ground. It will be challenged in mountainous environments with its 91-day repeat time 

and inability to penetrate clouds; potentially leaving significant data gaps. Initial data 

from ICESat-2 show that the satellite performs well over mountain glaciers (Figure 

2.4), with high precision elevation measurements of the glacier surface. The 

upcoming Surface Water and Ocean Topography (SWOT) mission (2021) seeks to 

further innovate radar altimetry, but for the mountain cryosphere its application will 

likely be limited to low-resolution products (Biancamaria et al., 2016). 
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Figure 2.4 - Comparison of elevation retrievals from ICESat-2 with those of the High 

Mountain Asia (HMA)-2 DEM (Shean et al., 2020) over the Everest region of Nepal. 

(A) Available ground tracks of ICESat-2 data for the region, with the yellow track 

indicating data selected in below panel. Image from Google Earth and Maxar 

Technologies, 2020. (B) Comparison of the ICESat-2 ATL06 product relative to the 

High Mountain Asia 8 m DEM. 

 

2.3.3. UAVs 

The flexible nature of UAVs allows for custom-built mountable sensors to 

address site-specific research questions. Hyperspectral imaging from UAVs in other 

geoscience disciplines have shown success in producing SfM 3D models in over 100 

spectral bands (Honkavaara et al., 2017). Over mountain glaciers, hyperspectral 

imagers on UAVs could be used to study contaminants and pollutants at a much 

higher resolution than has hitherto been possible. For example identifying the 

components of cryoconite (Di Mauro et al., 2017), the presence of organic matter, or 

origin and impact of dust on albedo (Di Mauro et al., 2015) in a more efficient way 

than can be achieved from spot measurements. In landmine detection, ground 

penetrating SAR instruments have been mounted on UAVs to accelerate clearance 

(Schartel et al., 2018) which could be applied to measuring snow depth or 

characterising englacial conditions. 
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In theory, there are no technical limitations to the deployment of regularly 

repeating autonomous UAV surveys. UAVs have already been designed to return 

‘home’ to a wireless charging pad when their battery runs low (Junaid et al., 2016; 

Junaid et al., 2017; Campi et al., 2019), and solar panels could keep a constant 

energy supply to a battery pad, with autonomous de-icing (Sorensen et al., 2015). 

With a microcontroller onboard to detect weather patterns, control flight paths, data 

acquisition, and transmission, UAVs could potentially be designed to conduct surveys 

completely independent of any pilot or physically present operator. Such an 

autonomous system would have obvious benefits where change is rapid and early 

warning of a developing hazard is beneficial, although the legal obstacles to uncrewed 

flights in this way may become problematic as most countries look to tighten, rather 

than relax, their UAV regulations (Stöcker et al., 2017). 

 

2.3.4. Other field-based innovations 

The principles and main applications of photogrammetry are now well 

established within the geosciences (Smith et al., 2016), allowing the reconstruction of 

3D models from an array of 2D images, and the production of very high-resolution 

models (cm-scale) from off-the-shelf cameras (James and Robson, 2012; Mallalieu 

et al., 2017; Giordan et al., 2020). We envisage that the future of this technique is in 

sensors built with low-cost microprocessors (Figure 2.5), and in its autonomy; from 

capture to subsequent processing for real-time 3D of the mountain cryosphere.  
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Figure 2.5 - The potential of small low-cost sensors in mountain glaciology. (A) Low-

cost in-field remote sensing could be expanded with the use of low-cost sensors to 

include camera networks, weather stations, seismic stations, acoustic sensors and 

more communicating in a local network or connected to the internet through 4G/5G 

networks or satellite internet. (B) Raspberry Pi camera setup costing less than $50 at 

a glacial margin at the Quelccaya Ice Cap, Peru. 

 

As satellite internet expands coverage and connectivity in remote regions, and 

decreases in cost through the launch of constellations such as Starlink (SpaceX) and 

OneWeb, sensors that are left in situ will become routinely programmable such that 

they transmit recorded data autonomously for subsequent cloud storage and/or 

processing over satellite internet. Such technology already exists over cellular 

connections, but the lack of a suitable infrastructure in much of the mountain 

cryosphere currently makes this an unfeasible option. Autonomous SfM 
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photogrammetry has been proven in studies of soil displacement (Eltner et al., 2017), 

landslides (Kromer et al., 2017), and rockfalls (Blanch et al., 2019), which indicates it 

could also be a lucrative line of investigation for glaciology. In a similar vein, webcam 

images from ski resorts have been used to create snow cover classification maps in 

the Alps (Portenier et al., 2020), removing the need for physical visits by researchers 

altogether.  

Advances in robotics and robot design may offer insights into mountain 

glaciers that could open a significant new sub-branch of the discipline. Presently, the 

englacial system of a glacier remains somewhat of an enigma, with access limited to 

conduits that are safe and accessible enough for physical exploration (Gulley and 

Benn, 2007), using ground penetrating radar (Church et al., 2019), or the drilling of 

boreholes (Miles et al., 2019; Miles et al., 2021b). In the mining industry, robots and 

automated UAVs have been used to explore and map underground conduits (Mitchell 

and Marshall, 2017) – similar to the englacial systems of a glacier. Systems that make 

use of relay and ‘sacrifice’ robots enable constant communication, regardless of the 

complexity of the underground system (Cesare et al., 2015). While this technology is 

still in its primacy (Mitchell and Marshall, 2020), its adaptation for subsurface glacier 

exploration would make significant steps towards answering questions on the 

characteristics, dynamics and evolution of the hydrological networks that influence 

ice flow as well as the timing and magnitude of proglacial discharge (Miles, et al., 

2019b). Sensors embedded in the ice via boreholes can also indicate surface melting, 

ice velocity, water pressure (Hart et al., 2019a), and (when reaching the bed) till 

deformation and basal icequakes (Hart et al., 2019b). Similarly, sensors deployed 

around an ice-dammed lake in Canada were used to infer its englacial hydrology 

(Bigelow et al., 2020). 

 

2.4. Computational innovations to address research gaps 

In many cases, knowledge gaps can be addressed using one or more of the 

data sources currently available to researchers and stakeholders. Here, we argue 

that computational innovations may create the biggest difference in the next decade 

of observing the mountain cryosphere (Gomes et al., 2020). We introduce some of 

the computational innovations that have driven the discipline in the last five years in 

order to assess their future trajectory. We explore how research gaps could be 

addressed with techniques such as deep learning and cloud computing, and offer 

suggestions on future directions.  
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2.4.1. Cloud Computing and Big Data   

Cloud computing platforms, which allow for wide area geospatial analysis, 

offered a step-change in processing potential for the discipline as processing is 

moved to the area of data storage. While cloud computing is not ‘new’, as high 

performance computing (clustering hardware together to boost computational power) 

has been used in remote sensing for decades (Lee et al., 2011), the differentiator of 

cloud computing shifts the financial burden of the hardware for such power. Freely 

available cloud computing interfaces, such as Google Earth Engine (Gorelick et al., 

2017), Climate Engine (Huntington et al., 2017), pipsCloud (Wang et al., 2018), and 

Sentinel Hub (Sinergise, Ltd.) allow for batch processing and regional scale 

investigations without compromising on the spatial resolution being studied (Figure 

2.6). The platforms allow for spectral investigations, such as NDSI and NDWI (e.g. 

(Kraaijenbrink et al., 2017; Zhang et al., 2018; Shugar et al., 2020), and tap into freely 

available archives such as Landsat, Sentinel, and SRTM, as well as user-imported 

data. Most importantly, the interfaces are designed to be user-friendly to appeal to 

the growing EO market (Denis et al., 2017) while also providing scope for complex 

analysis to suit a broad array of applications.  

 

Figure 2.6 - The EO Browser allows analytical cloud computing of Sentinel data in a 

user-friendly API that can display (A) true colour imagery, (B) false colour composites, 

(C) NDWI, (D) NDSI, and other analytical analyses. Here, Sentinel-2 data is displayed 

over Bering Glacier, Alaska. Such platforms open remote sensing of the mountain 

cryosphere to users with little prior experience. 
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The applications of cloud computing to accelerate research in the mountain 

cryosphere are vast. Autonomously, and rapidly, large volumes of near real-time 

satellite data can be downloaded and processed into a user-friendly output for 

management, stakeholders and communities to digest. Research can be conducted 

at a regional scale benefiting from petabytes of data to inform international policy by 

combining multispectral imagery, elevation data, climate modelling and ice thickness 

data. For example, in the Himalayas, this approach has been used to predict the 

future of all glaciers under a 1.5˚C warmer climate (Kraaijenbrink et al., 2017). 

Conventional computing infrastructure is inefficient at storing, processing, and 

transferring such large volumes of data. A particular benefit for the mountain 

cryosphere is that cloud masking and mountain shadowing of optical imagery is easily 

incorporated into the analysis flow chain for accurate digitisation of glacial lakes 

(Chen et al., 2017; Shugar et al., 2020) and calving fronts (Lea, 2018) at a global 

scale. Vast quantities of Sentinel-1 SAR imagery can be ingested for change-over-

time studies, for example, to map glacial lakes across the Tibetan Plateau (Zhang et 

al., 2020) or assess snowmelt across the Alps and Iceland (Nagler et al., 2016) every 

six days. Furthermore, the advent of freely available cloud computing, together with 

public data extensive documentation, means processing does not have to be limited 

to funded scientists or highly-trained specialists.  

Increased synchronisation between EO data can benefit mountain glaciology 

via open source pipelines and packages that can be embedded into coding platforms, 

and linked to cloud computing for performance. While they may lack a user-friendly 

interface, they have the potential to answer unique research questions. In particular, 

the AMES Stereo Pipeline by NASA (Beyer et al., 2018) is now widely used to produce 

3D stereo data from thousands of ASTER images for regional glacial mass balance 

reconstructions since 2000 (Brun et al., 2017; Menounos et al., 2019; Dussaillant et 

al., 2019; Shean et al., 2020). Over the next few years, similar free packages will 

provide greater accessibility to satellite data. For example, sPyMicMac (McNabb et 

al., 2020) will automate the pre-processing of nuances from the Hexagon US 

reconnaissance mission from the 1970s, providing easier access to these historic 

data for quantifying regional mass balance over fifty years ago. PyTrx (How et al., 

2020) will ingest terrestrial time-lapse data and perform calibration, registration, 

georectification, feature tracking, and change detection to speed-up monotonous pre-

processing of in situ camera data. ITS_LIVE (NASA; Gardner et al., 2018) will 

continue to create glacier velocity products from the 1980s to present day at high 

temporal frequency by collating measurements from multiple sensors (e.g. data from 
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the Landsat and Sentinel-1 missions are all used). Each of these freely available 

packages either performs their analysis using cloud computing, or supports 

adaptation into a cloud computing environment in order to efficiently process vast 

volumes of data. Over the mountain cryosphere, cloud computing could therefore lead 

to near real-time processing of ice surface dynamics, or detection of hazardous 

events. 

 

2.4.2. Artificial Intelligence and Machine Learning 

The broad field of Artificial Intelligence (AI) includes Machine Learning (ML) 

(whereby systems autonomously learn from themselves without prior programming), 

which is a powerful tool in solving the various challenges of EO. Deep learning (DL) 

algorithms are a subset of ML, using multiple layers of neural networks to increase 

their complexity and accuracy (Zhu et al., 2017; Hoeser and Kuenzer, 2020). For the 

mountain cryosphere, ML and DL models can be applied to classification, feature 

spotting, automatic mapping, and visual interpretation tasks as well as time series 

reconstruction and simulation (Paul et al., 2004; Brenning, 2009; Lary et al., 2016; 

Zhu et al., 2017; Bolibar et al., 2020). The application of DL algorithms for the 

cryosphere is still very scarce. Only 2% of studies dealing with DL-based image 

segmentation and object detection investigated on cryosphere topics (Hoeser et al. 

2020). This highlights the unused potential of DL-based applications on the mountain 

cryosphere (Figure 2.7). 

 

 

Figure 2.7 – Potential artificial intelligence applications to the mountain cryosphere. 
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For the first time, ML allowed classifying wet and dry snow in SAR data by 

applying a random forest classifier. High classification accuracies (F1-score over 

90%) in mountainous areas were achieved regardless of underlying land cover (Tsai 

et al., 2019b). Snow cover mapping was improved by creating a hybrid model 

including DL (Alex-Net), ML (random forest), and hand-crafted (manually designed) 

features. Classification accuracies of 98% were reached based on medium-resolution 

optical and radar Sentinel-1/2 images in addition with a digital elevation model 

(Nijhawan et al., 2019). Using Sentinel-2 imagery, Google have used DL to generate 

a real-time land classification product for monitoring dynamic landscapes, such as 

changing snow cover (Brown et al., 2022). Mapping snow cover extent from high-

resolution optical imagery has been performed by Guo et al. (2020) using pre-trained 

weights of a DeepLabv3+ model for Landsat-8 true-colour imagery to create accurate 

results with a small dataset of GaoFen-2 imagery. Besides classification tasks, a 

random forest regressor can be applied to reconstruct incomplete time series. For 

example, Hu et al. (2020) applied a random forest regression to model regional 

snowline elevations from optical earth observation data. Current challenges for snow-

related AI applications include quantifying the snow-water equivalent and estimating 

the snow depth (Kopp et al., 2019; Odry et al., 2020). 

ML applications on mountain glaciers focus on the determination of the glacier 

extent by either extracting the calving front (Mohajerani et al., 2019; Baumhoer et al., 

2019a; Cheng et al., 2020) or detecting the glacier boundary of debris covered 

glaciers (Nijhawan et al., 2018; Xie et al., 2020; Khan et al., 2020). Additionally, DL 

algorithms can be used to simulate time series. For example, Bolibar et al. (2020) 

modelled glacier evolution by simulating glacier-wide surface mass balance time 

series by an artificial neutral network. However, even common and simple machine 

learning algorithms (e.g. random forest) can yield better results than DL-based 

approaches, emphasising the importance of choosing the right AI model for each 

specific task. In glaciology, the potential that DL can offer, in automation, efficient 

processing, and removal of traditionally laborious manual tasks, is slowly being 

realised and still has unexploited potential. 

Intelligent learning does not have to be solely analytical. Embedding AI into 

sensor design could create powerful tools for in-field glacier monitoring. With data 

transmission via high-gain antennae (e.g. Carvallo et al., 2017) or satellite internet, 

we hypothesise that low-cost sensors, embedded within an AI framework, could 

revolutionise mountain glacier monitoring, as it has done in many other geoscience 

disciplines (Chan et al., 2020). Such sensors could include Arduinos or Raspberry 
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Pis (Vujovic and Maksimovic, 2014) that could act as a webcam, capture infra-red 

images at night, detect thermal signatures, record acoustic events, detect ground 

displacement or tremors from calving, track velocity with GPS, or communicate with 

satellites for real-time ground-truthing, for example. Each bespoke sensor can ‘talk’ 

intelligently to another, such the network could respond to real-time changes such as 

calving events, surges, or supraglacial pond drainage. In the wider literature, these 

intelligent systems have been called the ‘Internet of Things’ (Gubbi et al., 2013; Khalil 

et al., 2014; Alzahrani, 2017). There are vastly more complex logistical challenges in 

the mountain cryosphere, but none of these individual ideas are new. The 

interconnectedness, intelligent design, and autonomy that can be offered by such an 

approach marks a step-change in our understanding of the geomorphic processes 

currently shaping the world’s mountain environments. 

 

2.4.3. Open Science 

One of the most limiting factors in the use of remote sensing data over 

mountain glaciers is data availability and, even where data are available, they are not 

necessarily accessible (Pope et al., 2014). Hazard assessment plans produced for 

the mountain cryosphere require routine and open information on landslides, slope 

stability, and future glacial lake expansion (Schaub et al., 2013; Emmer and Vilímek, 

2013; Linsbauer et al., 2016; Ambrosi et al., 2018; Kirschbaum et al., 2019). Such 

data can provide a critical role in informing planning decisions being made by 

stakeholders in mountain regions. An increasing number of research programmes are 

committing to making their outputs open access, such as NASA’s High Mountain Asia 

Program, which combines a variety of remotely sensed derivatives (DEMs, glacier 

thickness, landslide inventories, mass balance) with in situ data (wind, precipitation, 

temperature, irradiance) for free download through an open access portal 

(https://nsidc.org/data/highmountainasia). This follows a precedent set by civilian 

programmes (e.g. Landsat and Copernicus) that public funded missions should be 

open-source at delivery.  

Citizen science programmes have great potential to radically transform 

remote sensing of the mountain cryosphere (Carey et al., 2016). Strengthening local 

collaborations is vital towards the successful mitigation of hazard risks, and 

adaptation to the impacts of climate change in mountains (Nussbaumer et al., 2017; 

Huggel et al., 2020). Knowledges should be co-produced for better understanding 

concerns and identifying adaptations solutions that work best for each community 
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(Klenk et al., 2017). This is particularly true of remote sensing work, where it is easy 

to perform and publish data analysis without ever entering the place we study. There 

is a dearth of studies that combine remote sensing data over mountain glaciers with 

local knowledge, and we should learn from where this has proved effective in other 

disciplines – such as landslide risk management (Holcombe et al., 2021), land 

degradation analysis (Yiran et al., 2012), and ecology (Eddy et al., 2017). 

Remote sensing data require in situ calibration and can lead to erroneous 

results and damaging policy suggestions if relied upon in isolation (such as NASA’s 

infamous false reporting of imminent danger at Lake Palcacoha, Peru; Kaser and 

Georges, 2003). At the same time, many DL algorithms require a large training set 

(Zhang et al., 2019a), which is often produced manually. Engaging citizens to classify 

features works well in disaster management projects such as Missing Maps (Scholz 

et al., 2018). Geotagged photos from social media can also be harvested for damage 

assessment following flood events (Cervone et al., 2016), identifying tourism and 

popularity of protected sites (Walden-Schreiner et al., 2018), assessing land cover 

change (Xing et al., 2017), and reconstructing 3D structures (Themistocleous, 2017), 

each of which could be applied to the mountain cryosphere. In mountain glaciology, 

local communities are working alongside researchers in setting up basic equipment 

such as webcams (Portenier et al., 2020) and mountaineers are increasingly 

collecting data and observations to report on changes (Watson and King, 2018) as 

well as to assess the true risk of hazards observed from space (Carey et al., 2016). 

Interactive data viewing portals can be an effective way to showcase research 

outputs, rather than static scientific figures that may alienate non-specialists. 

Initiatives such as the GLIMS Glacier Viewer (http://www.glims.org/maps/glims), 

ArcGIS Living Atlas (https://livingatlas.arcgis.com/en/home/), Sentinel Hub 

(https://apps.sentinel-hub.com/eo-browser/), or the recently launched NASA 

ITS_LIVE (https://nsidc.org/apps/itslive/; Gardner et al., 2018) are easy to access, 

understand, and extract information from. When this is the case, data are more readily 

used (Pope et al., 2014), and offer an effective conduit for engaging stakeholders 

outside of academia.  

 

2.5. Summary 

In this review, we sought to provide an assessment of the current capabilities 

of remote sensing over the mountain cryosphere, with a view to identifying future 

avenues of research. Remote sensing has been crucial to understanding and 
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monitoring the mountain cryosphere. Satellite missions have been used to monitor 

lakes, quantify ice melt, classify snow, and detect natural hazards. Civilian missions 

offer science-grade sensors with long archives, while newer commercial 

constellations offer rapid revisit time at a higher spatial resolution. In the rapidly 

expanding sector of EO satellites, innovation in sensor design over the next decade 

will produce higher quality data, expand the offering of complementary sensor 

technology, and create sub-daily repeat periods. Such vast quantities of data require 

cloud computing infrastructure to efficiently process, and AI will shape the next 

decade of processing as monotonous tasks are replaced by automation. DL will 

further the potential of AI; drawing upon the expanding pool of data available to 

address outstanding research questions in glaciology. The expanding breadth of 

sensor options available to UAVs is also now beginning to be realised in mountain 

glaciology. Furthermore, low-cost sensors could create affordable science for 

community monitoring systems. It is imperative that data and processing capabilities 

continue along the road to becoming freely available, so that communities who will be 

adversely affected by future changes to the mountain cryosphere, can use remote 

sensing as an effective tool in planning their response. 
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Chapter 3 

Multi-decadal glacier area and mass balance change in the Southern 

Peruvian Andes 

 

3.1. Introduction 

Tropical glaciers are highly sensitive to climatic changes and those in Peru, 

where the vast majority (~70%) are located, have been rapidly receding for several 

decades (Chevallier et al., 2011; Salzmann et al., 2013; Schauwecker et al., 2014; 

Zemp et al., 2019). Consequently, as mountain slopes become destabilised, there 

has been increased threat from natural hazards, an observed growth in the number 

and area of glacial lakes, and changes to primary water supply (Drenkhan et al., 2019; 

Brügger et al., 2021; Veettil and Kamp, 2021; Thompson et al., 2021). Glacier 

recession is unlikely to be reversed as reductions in precipitation and increases in 

temperature are projected until at least 2100 (Kronenberg et al., 2016). Studies of 

future river discharge are unanimous in predicting a reduction in longer-term water 

supply, particularly during the dry season when glacier melt provides a critical buffer 

against drought (Vuille et al., 2008).  

Compared to other mountain glacier regions around the world, there is a 

notable dearth of region-wide estimates of mass balance change for those located in 

Peru (Vuille et al., 2018). Previous studies have focussed on quantifying rates of 

glacier recession using satellite-based measurements of both area and volume 

change. At a continental-scale, Dussaillant et al. (2019) assessed mass balance 

across the Andes, noting that the glaciers of the tropical Andes (-0.42 ± 0.24 m w.e. 

yr-1) were losing mass at a steady rate between 2000 and 2018. At a national scale, 

Seehaus et al. (2019) presented areal losses of 28.6% from 2000 to 2016 and a Peru-

wide mass balance of -0.457 ± 0.064 m w.e. yr-1. In contrast to Dussaillant et al. 

(2019), Seehaus et al. (2019) found a recent (2013-2016) increase in the rate of mass 

loss. The National Inventory of Glaciers in Peru quantified a 48% decline of glacial 

area from 2,041.85 km2 in 1962 to 1,058.37 km2 as of 2021 (ANA, 2021). 

Regional studies of glacier recession in Peru disproportionately focus on the 

largest region; the Cordillera Blanca. Here, glacier loss has accelerated since the 

1970s with consequent increases in their terminus elevations (Racoviteanu et al., 

2008b), following 20th century retreat from their Little Ice Age maximum extent 

(Georges, 2004) with a brief glacial advance interruption in the 1920s (Kaser, 1999). 
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Glaciers in the Cordillera Blanca extend to lower elevations than the second-largest 

region, the Cordillera Vilcanota, owing to a lower annual freezing line altitude 

(Sagredo and Lowell, 2012; Schauwecker et al., 2017). Nevertheless, the Cordillera 

Vilcanota follows similar trends to the Cordillera Blanca, having lost 30% of its 

glacierised area and 45% of its volume from 1985 to 2006 (Salzmann et al., 2013). 

The National Inventory of Glaciers shows a decline of 48% of glacierised area in the 

Cordillera Vilcanota from 1962 to 2017 (INAIGEM, 2017; ANA, 2021). Measurements 

of mass balance on individual glaciers show that topography is a key control on ice 

loss; glaciers with a maximum elevation below 5,400 metres above sea level (m a.s.l.) 

are estimated to be losing mass at a rate (-1.2 m w.e. yr-1) double that of glaciers with 

an elevation above 5400 m a.s.l. (-0.6 m w.e. yr-1) (Rabatel et al., 2013a). 

The controls of glacier recession in the Peruvian Andes appear to be 

numerous, and are often interlinked. Overall, lower lying and smaller glaciers have 

been observed to be in rapid retreat (Rabatel et al., 2013a), although there is 

variability related to aspect, and therefore radiation receipt (Veettil et al., 2018). The 

surface energy balance of Peruvian glaciers is primarily controlled by precipitation, 

which impacts albedo and therefore radiation receipt over low-lying glacial termini 

(Vuille et al., 2008; Fyffe et al., 2021), particularly in the outer tropics (Kaser, 2001). 

Air temperature controls this precipitation phase, such that warming temperatures 

increase the proportion of a glacier receiving rainfall rather than snowfall, which 

subsequently also impacts their albedo and radiation receipt. The pattern is more 

complex when looking at specific regions of Peruvian glaciers. Some studies have 

made different links between discrete climatic variables and rates of glacier recession 

– for example, changes in temperature appear to be most important for glaciers in the 

Cordillera Huaytapallana (López-Moreno et al., 2014), while precipitation is a more 

important driver in the Cordillera Blanca (Fyffe et al., 2021). Over longer timescales, 

specific humidity may also play a key role in mass loss in other areas (Vuille et al., 

2008; Salzmann et al., 2013). For tropical glaciers more broadly, Kaser (1999) 

suggests both air temperature and humidity play a role in causing recent (post-1980s) 

retreat. There is also some indication that the interannual variability of the El Niño 

Southern Oscillation (ENSO) impacts glacier mass change in the Peruvian Andes, 

with heavy snowfall during La Niña phases and stronger ablation during El Niño, 

though these linkages are weaker (Vuille et al., 2008; Drenkhan et al., 2018). 

Given contemporary rates of recession, there is growing concern that many 

glacierised areas across Peru could be ice-free by the end of the century (Drenkhan 

et al., 2018). However, robust measurements of glacier change are still sparse, and 
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future projections are highly uncertain owing to the complexity of climatic and 

topographic factors driving change between regions (Schauwecker et al., 2017; Hock 

et al., 2019). The small size of tropical glaciers, and the fact that they are located in 

steep terrain, presents challenges for satellite-based observations as well as in-situ 

monitoring, meaning gaps in mass balance and ice area loss data persist for some 

regions, such as the Southern Peruvian Andes (Berthier et al., 2006; Prinz et al., 

2018; Taylor et al., 2021). There remains a need for accurate, detailed and 

comprehensive studies that combine multiple datasets together to fully assess the 

dynamics of glaciers at high spatial and temporal resolution, the outputs from which 

can be invaluable for stakeholders and planners working to mitigate ongoing changes 

in runoff in these locations and guide climate change adaptation (Bury et al., 2011; 

Carey, Huggel, et al., 2012). A growing archive of satellite observations, along with 

the increasing availability of cloud-based and high-performance computing, provides 

an opportunity to fill some of those gaps. 

Here, we use the 20-year ASTER (Advanced Spaceborne Thermal Emission and 

Reflection radiometer) satellite image archive as the basis for our analysis of glacier 

change in the Peruvian Andes. Previous studies have already defined a framework 

for producing regional (Dussaillant et al., 2018), continental (Brun et al., 2017; 

Dussaillant et al., 2019), and global (Hugonnet et al., 2021) measurements of glacier 

change using these data. Such datasets provide valuable insight into mountain glacier 

dynamics, their contribution to sea-level rise, and acceleration of melt, but they 

inevitably focus on the big picture of broad area changes. However, the usefulness 

of these large-scale datasets has seldom been examined in monitoring small 

mountain glaciers, particularly at their relatively coarse (100 m+) resolution. The 

overall aim of this research is, therefore, to provide detailed measurements of glacier 

area and volume change for the Cordilleras Vilcanota, Vilcabamba, and Urubamba, 

using the ASTER and Landsat satellite image archives, dating back to the 1970s. We 

generate medium-resolution (30 m) products of elevation change using the ASTER 

archive to assess the quality of the global Hugonnet et al. (2021) dataset in measuring 

mass balance over small mountain glaciers. We explore the key processes driving 

ice loss across these regions, and discuss likely future changes to these glaciers 

under various climate scenarios, all of which result in a rise in equilibrium line altitude 

(ELA) and thus continued, unabated mass loss. 

 

 



40 
 

3.2. Study Area 

The Cordilleras Vilcanota (246.8 km2 glacierised area in 2020; from this 

study), Vilcabamba (100.4 km2), and Urubamba (24.2 km2) represent a combined 

glacierised area of 371.4 km2 (Figure 3.1). These regions are relatively understudied 

in comparison to the Cordillera Blanca (which is larger than all three together); yet, 

they represent a water source for hundreds of thousands of people in the wider Cusco 

region, many of which are located in the city of Cusco (population 470,000) (Drenkhan 

et al., 2018; Martínez et al., 2020). Recent glacial lake outburst floods at 

Salkantaycocha in 2020 (Vilca et al., 2021) and Riticocha in 2010 (Drenkhan et al., 

2019) provide stark reminders of the threat that climatic changes pose in this region.  

 

Figure 3.1 – Location of the Southern Peruvian Cordilleras within (A) Peru and (B) 

the Cusco region. (C) The Cordillera Vilcanota outlined in yellow (with a 2 km buffer 

around glacierised areas), and (D) The Cordilleras Vilcabamba (blue) and Urubamba 

(red). Satellite imagery from DigitalGlobe. Glacier outlines from RGI Consortium 

(2017) (A) and this study (B, C, D). 
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The Cordillera Vilcanota comprises a central mountain range (ranging from 

~4,600 m a.s.l. to the peak of 6,384 m a.s.l  at Ausangate) arcing above Sibinacocha 

– a large (~28 km2) lake, which began being used for hydroelectricity generation in 

1996. The Quelccaya ice cap (ranging from ~5,200 to 5,743 m a.s.l) dominates the 

east of the Cordillera Vilcanota with a maximum ice thickness of 150 – 170 m 

(Salzmann et al., 2013). Until recently, Quelccaya was the largest tropical ice cap on 

Earth, replaced by the Coropuna Ice Cap in the South of Peru (not analysed in this 

study) (Kochtitzky et al., 2018). In the immediate vicinity of the glaciers of the 

Cordillera Vilcanota are small indigenous farming communities made up of a few 

thousand individuals. The largest, the Phinaya community, has witnessed glacier 

fluctuations for centuries, and is therefore well aware of the causes and 

consequences of glacier recession and the likely impact it will have on their futures 

(Orlove, 2009). Recession of glaciers in the Cordillera Vilcanota has previously been 

documented by Salzmann et al. (2013), but extending only as far back as 2009 for 

ice area and 2006 for ice volume change, and not benefiting from the availability of 

more recent and more robust methods of calculating mass balance. The National 

Inventory of Glaciers provides ice area change from the Cordillera Vilcanota to 2017 

(246 km2) and Cordilleras Vilcabamba and Urubamba to 2016 (96 km2 and 18 km2 

respectively) (INAIGEM, 2017; ANA, 2021). Detailed assessments of mass balance 

have been limited to individual glaciers based on field monitoring campaigns (Molina 

et al., 2015). 

The Cordilleras Vilcabamba and Urubamba are smaller in size, and together 

comprise around half the glacierised area of the Cordillera Vilcanota. They are located 

to the west and north-west of Cusco and stretch for around 100 km east-west, ranging 

from ~4600 m a.s.l to peaks of 6,271 m a.s.l at Salcantay in the Vilcabamba and 5,893 

m a.s.l at Veronica in the Urubamba. Glaciers in this region have deep spiritual 

connotations as mountain deities to indigenous communities (Drenkhan et al., 2018). 

In addition, their demise impacts directly on the agriculture-based economy, which 

relies on glacial meltwater as a source of irrigation. Measurements of glacier change 

in this region are extremely limited, restricted to individual watersheds (Drenkhan et 

al., 2018) or specific glaciers (Veettil et al., 2018).   
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3.3. Data and Methods 

3.3.1. Available datasets 

Satellite image archives are increasingly vast, as well as open-access, and 

computational advances have led to methodological frameworks that allow for robust 

analyses of glacier change that we employ here in the Cordilleras Vilcanota, 

Vilcabamba and Urubamba. The Landsat archive provides a record of ice area 

change almost continuously from 1972 to the present day, interrupted only by periods 

of heavy cloud and snow and short discontinuities in satellite operation. The small 

size of some glaciers in this region presents a challenge to delineating ice areas but, 

for decadal rates of change, the measured rates of recession frequently exceed any 

uncertainties in the data.  

Deriving volumetric changes from these stereoscopic sensors relies on there 

being sufficient contrast over snow and ice-covered surfaces for feature matching to 

be successful. Reconnaissance images (e.g. Corona KH-4; Bolch et al., 2008) 

acquired over the high-elevation accumulation areas of the Cordilleras Vilcanota, 

Vilcabamba, and Urubamba are largely featureless however, meaning surface 

elevations cannot be extracted. For this reason, we focussed our mass balance 

estimations on the ASTER archive, which provides a continuous record from 2000 to 

the present day of stereoscopic scenes across the world. ASTER acquires images 

every 16 days through a 14-band nadir sensor and a single band backward looking 

sensor to acquire stereo images. These data are collected at 15 m and 30 m 

resolution to produce 30 m-resolution digital elevation models (DEMs). Cloud and 

snow also interfere with the production of digital elevation models, but the huge data 

redundancy afforded by the archive means this issue is relatively easy to overcome. 

 

3.3.2. Area change between 1975 and 2020 

Orthorectified Landsat-2 scenes (Level L1TP, 60 m spatial resolution; Table 

3.1) were used to manually delineate glacier outlines for the 1970s, conducted in 

ArcMap. All Landsat-2 scenes were acquired between the 25th June – 31st July 1975 

to minimise the influence of snow cover. All other glacier outlines were produced from 

30 m imagery from the full-archive Landsat-5 Tier 1 Top of Atmosphere (1984 – 2012) 

and Landsat-8 Tier 1 Top of Atmosphere (2013 – 2020) datasets using a Normalised 

Difference Snow / Water Index (NDSI, NDWI) in Google Earth Engine. A cloud-free 

composite was produced for each year by extracting the median pixel value from the 

driest months (July 1st to September 30th) to minimise snow and cloud cover. Due to 
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heavy cloud in these regions, there are some years within the time series with no 

usable imagery. The resulting images were split into their respective boundaries from 

the Randolph Glacier Inventory 6.0 (RGI) dataset (RGI Consortium, 2017) and 

manually extended outwards using the ASTER GDEM. On inspection, a small number 

of RGI outlines in these regions seemed highly improbable, and so we manually 

delineated flowlines where it was clear the RGI database was merging multiple 

glaciers together. All shapefiles were clipped to remove polygons smaller than 0.01 

km2 in area and manually inspected to ensure no ice-free area was being incorrectly 

classified.  

 

Scene ID Date 

acquired 

Region 

LM02_LT1TP_002070_19750729_20200908_02_T2 29th July 1975 Vilcanota 

LM02_LT1TP_003070_19750730_20200908_02_T2 30th July 1975 Vilcanota 

LM02_LT1TP_004069_19750731_20200908_02_T2 31st July 1975 Vilcanota 

LM02_LT1TP_004069_19750625_20180425_01_T2 25th June 

1975 

Urubamba 

LM02_LT1TP_003069_19750730_20180426_01_T2 30th July 1975 Vilcabamba &  

Urubamba 

LM02_LT1TP_004069_19750731_20180426_01_T2 31st July 1975 Vilcabamba & 

Urubamba 

 

Table 3.1 – Orthorectified Landsat-2 scenes used in this study.  

 

When determining glacier area, we calculated a conservative estimate of 

uncertainty for Landsat-2 scenes by assuming all glacier periphery pixels were 

misclassified, and calculated the total area of these periphery pixels, representing an 

error of 11%. Studies which have calculated uncertainty in a similar way produce 

comparable estimates of uncertainty (e.g. 11% for Kochtitzky et al., 2018). Rocky 

outcrops between glaciers and nunataks were particularly problematic to determine 

whether they were glacierised or snow-covered. Glacier boundaries from 1984 

onwards were calculated via an automated method. Where this method is applied 

over predominantly clean-ice, associated error is  2 – 5% (Paul et al., 2013), and so 

we use a conservative estimate of 5% as the uncertainty value for glacier area 

delineated in this way, as the Southern Peruvian Andes are mostly clean-ice. We 
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acknowledge that this method excludes any small debris cover patches that exist, but 

this is consistent with other studies who also exclude these areas due to their scarcity 

in this region (Salzmann et al., 2013).  

 

3.3.3. Volume change between 2000 and 2020 

To calculate glacier volume change, we extracted all L1A ASTER tiles 

collected over these regions in the 20-year timespan from 1st January 2000 to 31st 

December 2020. We derived 631 DEMs using the AMES Stereo Pipeline using a 12 

m TanDEM-X tile seed with the following parameters: 

• --corr-seed-mode = 2 

• --disparity-estimation-dem = TanDEM-X tile 

• --disparity-estimation-error = 6 

• --corr-kernel = 7 7 

• --tr = 0.00027 (spatial resolution = 30 m) 

To ensure accurate co-registration, they were corrected for planimetric and 

altimetric shifts against the TanDEM-X tile with a third-order polynomial 

transformation in stable, off-ice areas using the method of Nuth and Kääb (2011). 

Using a higher resolution seed DEM (12 m) compared to Hugonnet et al. (2021) (90 

m) for co-registration should result in more accurate elevation models. DEMs that 

passed this correction phase were uploaded to Google Earth Engine using geeup 

(Roy, 2021), and clipped to elevations between 2000 and 6500 m a.s.l. (the 

approximate range of elevation within these Cordilleras) to exclude grossly erroneous 

pixels. A single value per pixel per year was extracted from all DEM tiles by collecting 

the median value (excluding values above and below the median ± 100 m). We trialled 

using the standard deviation as a filter in this step (i.e. median ± standard deviation), 

but in some areas the range was too high and this included too many erroneous data 

points. Using these single values per year, a linear fit through the surface elevation 

was then calculated over three time periods: 2000 – 2010; 2010 – 2020; and 2000 – 

2020 to represent elevation change per year during these intervals. Hugonnet et al. 

(2021) produce elevation change at 5-year intervals, but the associated error is often 

far larger than in the decadal intervals, and so we consider only the 10-year products 

to be usable.  
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For the conversion of elevation change to mass change, there are three key 

sources of uncertainty:  

1) Error in glacier area (𝜎𝐴) 

2) Error in the calculated elevation change (𝜎∆𝑧)  

3) Error in ice density calculations (𝜎𝑓∆𝑉) 

We followed the method presented by Brun et al. (2017) to calculate overall 

uncertainty for mass balance calculations. We calculate uncertainty for the region-

wide mass loss and use this fraction to attribute uncertainty in mass balance. 

Uncertainty in volume change is calculated using the standard deviation of elevation 

change on stable ground (𝜎∆ℎ). We cast a 2 km buffer outwards from the glacier 

margin into stable ground and used the standard deviation of all pixels in this buffer 

area as 𝜎∆ℎ. We follow Brun et al. (2017) in using a decorrelation length of 500 m, but 

use a glacier area uncertainty (𝜎𝐴) of 5% as we have greater confidence that this 

region is predominantly clean-ice. Finally, we use an ice density uncertainty (𝜎𝑓∆𝑉) of 

60 kg m-3 following Huss (2013).  

 

3.3.4. Calculation of Geodetic Mass Balance, Median Glacier Elevation, and ELA 

Geodetic mass balance was calculated by taking into account the elevation 

change per pixel, pixel size (30 m), and ice density of 850 ± 60 kg m3 (Huss, 2013). 

Calculation of surface mass balance, which would include estimates of glacier flow 

from modelled ice thickness and velocity (Miles et al., 2021a), was not possible in this 

region owing to lack of available flow data. This precluded a robust estimate of the 

glacier ELA using our surface elevation data alone. Therefore, in the absence of any 

in situ data, we investigated previously published methods to quantify ELA change 

through time. These included quantifying changes to the freezing-line altitude (e.g. 

Schauwecker et al., 2017; Yarleque et al., 2018), the end of summer snowline altitude 

(Condom et al., 2007; Rabatel et al., 2013b), and the use of the median glacier 

elevation as an ELA proxy (e.g. Braithwaite and Raper, 2009; King et al., 2017). We 

adopted this final approach in the absence of higher spatial resolution climate data or 

reliable cloud-free satellite data to quantify snowlines, though we acknowledge this is 

likely to underestimate actual ELAs as the glaciers are out of balance with the climate. 

We calculated median glacier elevation for every glacier, and herein summarise an 

area-weighted average region-wide median glacier elevation for the Cordilleras 
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Vilcabamba and Urubamba, and separate the Cordillera Vilcanota into five sub-

regions reflecting the differing altitudes and topographies of each (Figure 3.2). 

 

Figure 3.2 – Sub-regions of the Cordillera Vilcanota used in the calculation of median 

glacier elevation. Glacier outlines shown here from 1984. Basemap from 

DigitalGlobe. 

 

 We also test a new method for calculating glacier ELA shifts using DEM time 

series data. Hypothetically, we propose that the mean elevation at which glacier 

surface elevation change is zero could be a proxy for ELA. To our knowledge, this 

has not before been tested in the literature. For the time periods 2000 – 2010 and 

2010 – 2020, we converted the elevation change raster images to points at 30 m 

resolution. For each glacier, per-pixel volume change was plotted against the 

elevation of each pixel and a linear regression passed through the points. Where the 

y-intercept of this linear regression equalled zero volume change, the value of 

elevation was taken to represent the ELA (a visual example of this calculation is given 

in Figure 3.3). These ELA values are available for each glacier, and for the entire 

Cordillera Vilcanota. This regional ELA was calculated using the same method, but 

with all points over glacierised area in the Vilcanota, with a 95% confidence interval. 

Using all points across the Cordillera Vilcanota yields significant linear regressions (p 
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< 0.001) with R2 values for the linear fit models of 0.07 for the first decadal interval, 

0.03 for the second decade, and 0.14 for the full 2000 – 2020 dataset. 

 

Figure 3.3 – Example, from Chumpe Glacier at the centre of the Cordillera Vilcanota, 

of a novel approach to calculating ELA. Where the linear regression between 

elevation and surface elevation change intercepts the zero of surface elevation 

change, the y-intercept is the ELA. 

 

3.3.5. Topography and Climate data 

To identify the most significant controls on ice loss in each region, we 

correlated the variables of change (volume and area loss) against topographic and 

climate data. Topographic data (aspect, elevation, slope) were derived from the 

ASTER GDEM and averaged over the shapefiles of each glacier. Climate data were 

created using the Weather Research and Forecasting (WRF) model and bias-

corrected against daily precipitation and maximum and minimum daily temperature 

data in the region, from 1980 to 2018. Frost days were calculated as the number of 

days in the year where the minimum daily temperature fell below 0 °C. For full details 

of the WRF model setup and bias-correction, see (Fyffe et al., 2021).  

Climate data were correlated to glacier area change from 1984 (the first year 

of overlap between the Landsat record and climate dataset) to 2018 (the end of the 

climate dataset) for every glacier individually. These coefficients were then 

transformed to z-values using Fisher’s Z to ensure a normal distribution of data. A 
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mean was taken of these Fisher’s Z values, which was subsequently back-

transformed to achieve an overall region-wide correlation coefficient between ice area 

and climatic variables. Significance for these values was calculated using the 

Harmonic mean p-value, weighted to the size of the glacier, as a robust measure of 

significance in large datasets (Wilson, 2019). These steps ensure each glacier is 

statistically analysed against only the climate data that are of most relevance to that 

particular glacier. 

 

3.4. Results  

3.4.1. Ice area change (1975 – 2020)  

Overall, glacierised area of the Southern Peruvian Andes shrunk from 833.6 

± 91.7 km2 in 1975 to 312.6 ± 15.6 km2 in 2020 (Figure 3.4). This loss has 

predominantly occurred at low elevations (Figure 3.5). The Cordillera Vilcanota 

shrunk from a regional total of 540.6 ± 59.4 km2 in 1975 to 246.8 ± 12.3 km2 in 2020. 

This represents a loss of 54.3% of the glacier ice that was present in 1975 over a 45-

year time period. 82 of the 257 glaciers present in 1975 had been lost by 2020 (or 

shrunk smaller than 0.01 km2 in size). There has been consistent and steady 

recession of ice across the region in this time. The Quelccaya ice cap, which is 

included within the area for the Cordillera Vilcanota, shrunk from 57.4 ± 5.4 km2 in 

1975 to 41.6 ± 2.1 km2 in 2020, representing a loss (27.5%) that is below the regional 

average (Figure 3.5). There has, in contrast to the region-wide Cordillera Vilcanota, 

been an observable slowdown of ice area loss in recent years. 
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Figure 3.4 – Glacierised Area of (A) Cordillera Vilcanota, (B) Quelccaya ice cap, (C) 

Cordillera Vilcabamba, and (D) Cordillera Urubamba. Note the varying y-axis scales. 

Blue line represents second-order polynomial fit. 

 

The Cordillera Vilcabamba shrunk from 226.1 ± 24.9 km2 in 1975 to 98.9 ± 4.9 

km2 in 2020, a loss of 56% of glacierised area. 25 of the 169 glaciers present in 1975 

had been lost by 2020. The Cordillera Urubamba shrunk from a glacierised area of 

66.9 ± 7.4 km2 in 1975 to 24.2 ± 1.2 km2 in 2020; a loss of 64%. This represents the 

largest relative decline in glacierised area of the regions as this is the lowest-lying of 

the three Cordilleras (Figure 3.6). Of the 39 glaciers in the Cordillera Urubamba in 

1975, seven had been lost by 2020. 

These area changes, which predominantly affect lower-lying zones, have 

driven the glaciers to higher elevations over the 45-year study period (Figure 3.5). It 

is notable that in all three Cordilleras, glacier ice has all but disappeared from 

elevations below 4,700 m a.s.l. but is largely preserved above elevations of 5,500 m 

a.s.l. In each case, the hypsometry is skewed towards lower elevations. In contrast, 
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the hypsometry of Quelccaya is skewed towards higher elevations, and consequently 

the bins with greatest area have been largely preserved. For Quelccaya, there is no 

observed change in glacier area above 5,550 m a.s.l. from 1975 to 2020. 

 

 

Figure 3.5 – Evolving glacier hypsometry (1975, 2000, and 2020) in 50 m elevation 

bins for the (A) Cordillera Vilcanota, (B) Quelccaya ice cap, (C) Cordillera 

Vilcabamba, (D) Cordillera Urubamba. Note varying y-axis in each graph.  
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Figure 3.6 – Area change of the Southern Peruvian Cordilleras as a percentage of 

their original (1975) glacierised area.   

 

Across the Cordillera Vilcanota, there is a moderate correlation between mean 

annual air temperature (which has risen by ~0.2°C per decade from 1980 to 2020) 

and rate of ice area change (R = -0.514, p < 0.01), and maximum annual temperature 

and ice area loss (R = -0.576, p < 0.01) (Table 3.2; Figure 3.7). There is no statistically 

significant link (at p < 0.01) between ice area change and precipitation, but there is a 

corresponding correlation between the number of frost days in the year and ice area 

loss. The key topographic control on rate of ice area change is maximum elevation 

(R = -0.394, p < 0.01), with a second-order control of slope (R = -0.269, p < 0.01). 

There is no significant (p < 0.01) co-linearity between maximum elevation and slope. 

The prevalence of cloud or snow-covered scenes in our record limits our ability to 

analyse the role that ENSO plays in affecting glacier area change.  

Over the Cordilleras Vilcabamba and Urubamba, there is also a moderate 

correlation between maximum annual temperature and rate of ice area change (R = 

-0.338, p < 0.01 and R = -0.576, p < 0.01 respectively). There is no statistically 

significant link between ice area change and precipitation. Similar to the Cordillera 

Vilcanota, the primary topographic control on ice area change in the Cordilleras 

Vilcabamba and Urubamba is maximum elevation (R = -0.241, p < 0.01; R = -0.677, 

p < 0.01 respectively) though this driver is much weaker in the Cordillera Vilcabamba. 

Slope is not a statistically significant control in the Cordillera Vilcabamba, but is in the 

Cordillera Urubamba (R = -0.301, p < 0.01), though there is co-linearity between 

elevation and slope in the Urubamba (R = 0.515, p < 0.01).  



52 
 

 

Region Max. annual air temp Mean annual air temp Annual precipitation Number of frost days Mean elevation 

R p R p R p R p R p 

Vilcanota -0.576 9.14 x 10-5 -0.514 0.000962 0.193 0.0331 0.361 0.00891 -0.233 0.000311 

Vilcabamba -0.338 0.00414 -0.277 0.0287 -0.163 0.179 0.305 0.0102 -0.161 0.0449 

Urubamba -0.576 0.000171 -0.446 0.00388 -0.156 0.0816 0.370 0.00285 -0.578 0.000177 

 

Region Max elevation Min elevation Aspect Slope  

R p R p R p R p 

Vilcanota -0.394 3.88 x 10-10 -0.169 0.00937 0.174 0.00762 -0.269 2.83 x 10-5 

Vilcabamba -0.241 0.00240 0.0803 0.319 -0.0482 0.550 -0.107 0.183 

Urubamba -0.677 4.27 x 10-6 0.368 0.0252 0.0125 0.942 -0.301 0.0703 

 

Table 3.2. Analysis of correlations exclude the 1975 data point for ice area as this does not overlap with the climate dataset which 

begins in 1980. Climate data correlated directly against ice area measurements. Topographic data correlated against rate of ice area 

change as a proportion of 1984 (Vilcanota) or 1988 (Vilcabamba / Urubamba) area. 

 

 

Figure 3.7 (Next page) -  Full statistical tests for drivers of ice area change. Grey areas represent 95% confidence interval for 

regression.
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3.4.2. Ice volume and mass balance (2000 – 2020)  

Between 2000 and 2020, the Cordillera Vilcanota shrunk at a rate of -0.159 ± 

0.022 Gt yr-1 (-0.48 ± 0.07 m w.e. yr-1). There was no significant change in the mass 

balance between the two sub-decadal periods; from -0.49 ± 0.17 m w.e. yr-1 between 

2000 – 2010 to -0.44 ± 0.16 m w.e. yr-1 between 2010 – 2020 (Figure 3.8). Owing to 

the cloudiness of ASTER data, smaller glaciers, and steeper slopes over the 

Cordilleras Vilcabamba and Urubamba, the uncertainty in our mass balance 

calculation was much larger than it was for the Vilcanota. Between 2000 and 2020, 

the Cordillera Vilcabamba shrunk at a rate of -0.405 ± 0.451 m w.e. yr-1, while the 

Cordillera Urubamba shrunk at a rate of -0.559 ± 1.575 m w.e. yr-1. We present these 

figures here for completeness, but do not analyse them further given the extent to 

which the uncertainty exceeds any signal in the data. Thinning of debris-covered ice, 

which is not included in the glacier area polygons but only makes up a minimal 

percentage of ice in the region, can be observed in the surface elevation change 

dataset (e.g. Figure 3.8B and 3.8C). 

There is a moderate correlation between volume change over the full 20-year 

period and elevation (R = 0.38, p < 0.001), suggesting that low-lying areas are 

thinning, as well as receding, the most. There is a slight, but significant, correlation 

between volume change and slope (R = 0.16, p <0.001) and aspect (R = -0.04, p < 

0.001). This is particularly noticeable over the Nevado Ausangate cluster of glaciers, 

where South-facing glaciers are largely shadowed from solar radiation, while North-

facing glaciers are experiencing large thinning (Figure 3.8B). 
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Figure 3.8 – Elevation change from 2000 to 2020 over the central range of the 

Cordillera Vilcanota. (A) Overview of elevation change in the Cordillera Vilcanota. The 

large pixelated body in the centre of the figure is Laguna Sibinacocha. (B) Nevado 

Ausangate. (C) Chumpe Glacier. (D) Cluster of lower-lying Eastern glaciers. (E) 

Quelccaya ice cap. Glacier outlines from the year 2000 are in light grey. Large surface 

elevation changes in off-ice areas (most notably in panels B and C) are from debris-

covered ice. 
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The median elevation of the Cordilleras Vilcabamba and Urubamba rose at 

the fastest rates across the full 1975 – 2020 time series (3.28 m yr-1 and 3.27 m yr-1 

respectively), from 4,966 m a.s.l. to 5,110 m a.s.l. for the Cordillera Vilcabamba and 

4,930 m a.s.l. to 5,077 m a.s.l. for the Cordillera Urubamba (Figure 3.9). However, 

the rate of change between the regions through time varies. The median elevation of 

the Cordillera Urubamba is accelerating upwards (from 2.88 m yr-1 for 2000 – 2010 to 

4.59 m yr-1 for 2010 – 2020), while the rate of change in the Cordillera Vilcabamba is 

decelerating (from 3.69 m yr-1 for 2000 – 2010 to 3.06 m yr-1 for 2010 – 2020) (Figure 

3.10).   

 

Figure 3.9 – Change in median glacier elevation between 1975 and 2020 over the 

Southern Peruvian Andes. The North, East, Central, South-East, and Quelccaya 

categories are sub-regions of the Cordillera Vilcanota (Figure 3.2). Dotted lines 

represent linear regressions. 
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Figure 3.10 – Mean annual rate of ice area change over the (A) Cordillera Vilcanota, 

(B) Quelccaya ice cap, (C) Cordillera Vilcabamba, and (D) Cordillera Urubamba. 

 

The rate of median elevation change over the Cordillera Vilcanota is lower in 

all sub-regions than the Cordilleras Vilcabamba and Urubamba. The northernmost 

region of the Cordillera Vilcanota (Nevado Qolquepunco) has the lowest median 

elevation of the region (at 5,163 m a.s.l. in 2020; compared to 5,451 m a.s.l. at 

Quelccaya), but the rate of change has remained steady in recent decades. 

Quelccaya exhibits the lowest rate of median elevation change of all the regions at 

1.59 m yr-1 from 1975 to 2020, likely due to its high elevation and flat topography. This 

rate of change has decelerated to 1.06 m yr-1 between 2010 and 2020. The key driver 

for the rate of median elevation change across the Cordillera Vilcanota is 

temperature; there is a significant correlation between maximum annual temperature 

and median elevation (R = 0.603, p < 0.001). The role of precipitation and frost in 

driving median elevation was not significant at p < 0.01.  
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Using our hypothetical approach of calculating ELA, where we derive the 

mean elevation at which surface elevation change is zero, we calculate a mean ELA 

change across the Cordillera Vilcanota of 1.33 m yr-1 between 2000 – 2010 and 2010 

– 2020. While absolute ELA corresponds reasonably well with median glacier 

elevation (R2 = 0.96; Figure 3.11), high error in the surface elevation change raster 

over some glaciers renders this approach unusable. For example, in the North sub-

region, ELA change is calculated as -1.40 m yr-1 through this approach, rather than 

the 2.54 m yr-1 as calculated by the median elevation of each glacier.  

 

 

Figure 3.11 – Comparison of ELA between 2000 and 2010 as calculated by identifying 

the mean elevation at which surface elevation change is zero (x-axis) compared to 

the median glacier elevation in 2005 (y-axis). Each point represents an individual 

glacier within the Cordillera Vilcanota. 
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3.5. Discussion 

3.5.1. Comparison to previous works 

Published estimates of glacier area in these regions are scarce, and many 

studies limit their efforts to studying specific watersheds within the wider region (e.g. 

Veettil and Souza, 2017; Drenkhan et al., 2018). Furthermore, definitions of the 

boundaries of the Cordilleras are not fixed, with differing assessments of how many 

smaller periphery glaciers are included in calculations of the glacierised area of the 

region (Hanshaw and Bookhagen, 2014). Nevertheless, being cognisant of the slight 

variability in study areas, our estimations of ice recession fit well with the trend 

presented by other publications (Figure 3.12). To our knowledge, only the National 

Inventory of Glaciers presents information on glacier area change in the Cordilleras 

Vilcabamba and Urubamba. Our results for the area of the Cordillera Vilcabamba in 

2017 (100.07 ± 5.00 km2) are comparable to the INAIGEM data (95.54 km2), but are 

slightly higher for the Cordillera Urubamba (25.27 ± 1.26 km2 to the INAIGEM’s 24.92 

km2). Note there is a discrepancy between the INAIGEM published estimate for the 

Cordillera Urubamba of 17.89 km2 and their dataset of 24.92 km2, likely due to the 

way boundaries are drawn between Cordilleras (INAIGEM, 2017; ANA, 2021).    
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Figure 3.12 – Ice area change comparison to published studies over (A) the Cordillera 

Vilcanota and (B) the Quelccaya ice cap.  

 

There have been no comparable estimates of mass balance over the 

Cordillera Vilcanota specifically; however, the global ASTER dataset of glacier 

change (Hugonnet et al., 2021) provides reasonable context for our findings. The 

primary difference between the two datasets is their spatial resolution: the current 

study reports data at 30 m spatial resolution, while Hugonnet et al. (2021) is 

downsampled to 100 m resolution. Our mass balance estimate over the 20-year time 

period (-0.477 ± 0.067 m w.e. yr-1) is nearly identical to using their dataset (-0.479 ± 
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0.048 m w.e. yr-1). We attribute our slightly higher level of uncertainty to our finer 

spatial resolution which introduces some small artefacts into our dataset. However, 

the trade-off is that we are able to observe much more closely the changes of 

individual glaciers (an example comparison is shown over Chumpe glacier, in the 

Cordillera Vilcanota in Figure 3.13). The problem of very large uncertainty of mass 

balance change over the Cordilleras Vilcabamba and Urubamba was not unique to 

our dataset as Hugonnet et al. (2021) had large data gaps over this region, rendering 

their data unusable. Our high errors were due to cloud rather than steep terrain. Over 

the Cordilleras Vilcabamba and Urubamba, we produced far fewer DEMs per pixel 

(~20 DEMs over the 20-year time period) in comparison to the Cordillera Vilcanota 

(~75 DEMs per pixel). 

Our 2020 median glacier elevation estimate of 5,357 m a.s.l. for the central 

sub-region of the Cordillera Vilcanota is comparable to the 5,399 m a.s.l. (2016 figure) 

calculated by Drenkhan et al. (2018), with the difference attributed to different spatial 

areas covered (their study includes only glaciers in the Vilcanota-Urubamba-

Vilcabamba basin). Our 1975 – 2020 rate of median elevation increase over the 

Quelccaya ice cap (15.9 m per decade) is comparable to the 1980 – 2017 estimate 

of 16.3 m per decade over the Quelccaya ice cap estimated by Yarleque et al. (2018). 

Our 1975 – 2020 rate of median elevation increase over the Central region of the 

Cordillera Vilcanota (24.8 m per decade) is slightly higher than the 22.8 m per decade 

between 1988 and 2010 estimated by Hanshaw and Bookhagen (2014). Our changes 

in the rate of median glacier elevation change show high variability across regions 

and decadal intervals (Figure 3.14). This is not inconsistent with the interannual 

variability of measured ELA change over glaciers in the Cordillera Blanca (Kaser and 

Georges, 1997; Condom et al., 2007) and Cordillera Ampato (Veettil et al., 2016) 

which have been attributed to fluctuations in air humidity and the role of ENSO 

respectively. The interannual variation we exhibit in the Cordillera Vilcanota 

correlated to maximum air temperature, though this warrants further investigation 

given the high variability between sub-regions.  
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Figure 3.13 – Comparison of datasets over Chumpe Glacier, Cordillera Vilcanota. (A) 

2000 to 2020 change in elevation generated by this study, (B) Comparison to 

Hugonnet et al. (2021) and their 100 m resolution product over the same 20-year time 

period, (C) 2000 – 2010 change in elevation generated by this study, (D) 2010 – 2020 

change in elevation. Black outlines represent the glacier area in 2000 produced by 

this study.   
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Figure 3.14 – Decadal change in median glacier elevation through time for each 

region. North, Central, East, Quelccaya, and South-East are sub-regions of the 

Cordillera Vilcanota (Figure 3.2). 

 

Ice area retreat is prolific across all areas of the Southern Peruvian 

Cordilleras. In the Cordillera Vilcanota, 82 of 257 glaciers (which represented 11.2% 

of the 1975 glacierised area) disappeared completely over the study period – most 

notably a cluster of glaciers to the south-east of the Quelccaya ice cap (Figure 3.15). 

However, deglaciation is occurring at differing rates between regions. Between 1988 

and 2020, the Cordillera Vilcabamba lost 34% of its glacial area, compared to 45% 

for the Cordillera Vilcanota between 1984 and 2020. This is likely due to the differing 

morphology of glaciers between the regions – glaciers in the Vilcabamba are 

generally smaller and at lower elevations (Drenkhan et al., 2018) in comparison to 

the Vilcanota, which means less relative area is exposed to rapid melt. A differing 

climate setting between the regions is also likely to affect area change: the Cordilleras 

Vilcabamba and Urubamba are generally wetter than the Vilcanota (Kaser, 2001; 

Fyffe et al., 2021) though, unlike Fyffe et al. (2021), we did not observe precipitation 

to be a statistically significant driver of ice area change. This is likely due to the 

temporal resolution of our dataset; we examined annual precipitation and often with 

gaps between years in the dataset. Fyffe et al. (2021) studied the influence of 
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precipitation at daily to weekly timescales, and found high variability in melt due to 

these precipitation dynamics. Further work is needed at a higher temporal resolution 

to better understand the role precipitation plays in regulating ice area change over 

long time scales. 

 

 

Figure 3.15 – A small cluster of glaciers in the Cordillera Vilcanota to the south-east 

of the Quelccaya ice cap almost completely melting in the 45-year time span of this 

series. 1975 background image is from Landsat-2, 2020 image is from DigitalGlobe. 

 

Glacier thinning has been consistent throughout the two decadal intervals 

studied. It is difficult to make an authentic comparison of our mass balance rate (-

0.477 ± 0.067 m w.e. yr-1) to other estimates as differing proportions of the regions 

are studied. Using thickness-volume scaling, Salzmann et al. (2013) calculated an 

approximate thinning of -0.39 m a-1 from 1985 – 2006 (Seehaus et al., 2019), which 

would suggest that thinning has accelerated in recent decades when compared to our 

estimate of -0.563 m a-1 from 2000 – 2020. Limited field-based point measurements 

of mass balance over individual glaciers of the Cordillera Vilcanota have largely 

focussed on understanding the role micro-topography plays on the spatial 

differentiation of mass balance; ranging from -4 to 1.4 m w.e. yr-1 across the surface 

of Suyuparina glacier in the Cordillera Vilcanota in 2013 (Molina et al., 2015). While 

we do not have exact location information on their stakes, our results for the 2010 – 

2020 time interval show ranges of -4.79 to 2.28 m w.e. yr-1 over the same glacier. Our 

estimates of mass balance are slightly larger than the -0.42 ± 0.24 m w.e. yr-1 

calculated by Dussaillant et al. (2019), which suggests this region is also thinning 

faster than their Andes-wide average. A Peru-wide calculation of glacier thinning from 
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2000 – 2016 was estimated to be -0.359 ± 0.068 m a-1 (Seehaus et al., 2019), which 

suggests that thinning in the Cordillera Vilcanota is generally faster than the Peru-

wide average. 

 

3.5.2. Future Perspectives 

In this study, we did not explicitly consider the change in glacial lakes across 

these regions and how this affects glacier loss. Previous studies (e.g. Drenkhan et 

al., 2018; Wood et al., 2021), have shown glacial lake expansion across each of these 

Cordilleras in line with climatic changes. The role of glacial lakes may be important in 

evaluating future change for tropical mountain glaciers, as lakes have been shown to 

accelerate ice recession when in direct contact (King et al., 2019). As more lakes 

develop in overdeepenings left by glacial recession (Colonia et al., 2017), this opens 

up the opportunity for accelerated ice loss. Similarly, in areas where glacial lakes do 

currently exist and ice is currently in contact with these lakes (such as the Western 

face of the Quelccaya ice cap), there may be a slow-down in areal recession in future 

decades as ice retreats up-slope and out of these lakes. This is particularly important 

in the Cordillera Vilcanota where 117 new large (> 10,000 m2) lakes are projected to 

develop by 2050; the greatest of any Peruvian Cordillera (Guardamino et al., 2019), 

which is likely to accelerate glacier recession. 

Future projections of glacier change in the Andes are stark. Even under a low 

emissions pathway, Schauwecker et al. (2017) suggest a rise in the freezing line of 

the Cordillera Vilcanota of 230 ± 190 m by 2100, which would lead to greater 

committed ice loss. The close relationship between temperature and ELA, projected 

2.5 to 4.5°C warming over these glaciers by 2100 (Yarleque et al., 2018; Fyffe et al., 

2021), and presence of low-lying glacier tongues across the regions suggest there 

will be significant melt of the Southern Peruvian Andes this century. Studies projecting 

future increase in ELA over the Vilcanota and Quelccaya (Schauwecker et al., 2017; 

Yarleque et al., 2018) also suggest this rate is likely to rise sharply in the coming 

decades. Low-lying regions within the Cordillera Vilcanota (South-East and North; 

Figure 3.2) will likely experience the most glacier loss in the near future. Predictions 

of remaining glacial ice in 2100 for the Cordillera Vilcanota range from a pessimistic 

13 km2 to an optimistic 155 km2 (5.4 to 63.0% of 2020 ice extent) (Schauwecker et al. 

2017).  

For people living in close proximity to this glacial ice, this represents a major 

loss of a freshwater resource. Following the approach of Drenkhan et al. (2018), we 
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can contextualise this by noting that in our 2000 – 2020 study of volume change, the 

loss of 3.44 km3 of water from the Cordillera Vilcanota represents ~84 years of water 

supply for the city of Cusco. Up to 33% of the population of Cusco rely on glacial 

meltwater during dry seasons (3% annually) (Martínez et al., 2020). Future ice melt 

is also unlikely to be even. Key glaciers supplying the Laguna Sibinacocha would lose 

over 90% of their glacierised area by 2100 (Drenkhan et al., 2018), while the 

Quelccaya ice cap will likely be below the ELA by mid-century (Yarleque et al., 2018). 

The low-lying Cordillera Urubamba is particularly at threat of severe ablation over the 

coming decades owing to the high rate of ELA change, posing an imminent risk of 

loss of water for irrigation, hydropower, and a drinking source in dry seasons 

(Chevallier et al., 2011). Ice melt is also unlikely to be even in time. While few studies 

have examined these specific Cordilleras for the timing of ‘peak water’ (a maximum 

river discharge from the glacial melt contribution), indications from other Cordilleras 

of Peru show that peak water is likely to pass in the near-future (Drenkhan et al., 

2014; Mark et al., 2017; Huss and Hock, 2018; Drenkhan et al., 2019).  

An immediate concern is also the increased risk of outburst flood events and 

hazards to communities downstream of these destabilising glaciers (Vilca et al., 

2021). Urgent adaptation measures, such as alternative agricultural practices (e.g. 

sustainable irrigation systems) and GLOF monitoring systems, are needed across the 

Southern Peruvian Andes to minimise the impact of this loss on communities (Veettil 

and Kamp, 2019). This must be integrated with a social perspective to recognise the 

cultural and spiritual loss marked by the recession of these glaciers, and connection 

of indigenous communities to the ice (Motschmann et al., 2020). 

The drivers of ice loss across all three regions are largely due to warming 

maximum air temperatures (which correlated with ice area loss and ELA changes in 

all regions) and topographic controls, most notably, elevation. This is as expected; 

freezing levels are rising in line with temperature rises and low-lying glacier tongues, 

many of which are low-gradient and thus susceptible to even minor temperature 

shifts, are now exposed to melt processes (Thompson et al., 2011). However, we did 

not have the data available to explore all the predicted key climatic drivers of ice loss, 

such as atmospheric humidity and radiation (Kaser, 1999; Vuille et al., 2008). 

Furthermore, the role of ENSO as a driver of tropical glacier mass loss is becoming 

realised over individual glaciers across the Andes (Maussion et al., 2015; Bijeesh 

Kozhikkodan Veettil et al., 2016), but we could not explore this phenomenon within 

the available datasets. This signal is thought to be lesser over the Cordilleras 

Vilcanota, Vilcabamba, and Urubamba as they receive moisture from the Amazon 
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during La Niña; thereby dampening the ENSO signal (Perry et al., 2014). This 

highlights the need to complement remote sensing observations with in situ data to 

bridge such gaps. 

The optical imagery from Landsat and ASTER used in this study provides 

useful insights into the dynamics of changes to mountain glaciers, and the long 

archives of both have been particularly beneficial to generate these results. However, 

their limitation is highlighted by the lower numbers of usable images we were able to 

acquire over the Cordilleras Vilcabamba and Urubamba and steep terrain. Mass 

balance estimates over the Peruvian Andes are few and can be improved using 

satellite data (Vuille et al., 2018), but the level of uncertainty driven by lack of usable 

DEM data from ASTER images remains too high. We have demonstrated in this study 

that the 100 m resolution Hugonnet et al. (2021) dataset provides comparable 

estimates of mass balance over small mountain glaciers as a higher resolution 30 m 

product. Radar satellites are able to penetrate cloud, which overcomes the primary 

limitation, but are challenged by steep topography, which often limits their usefulness 

to glaciers far larger than those in the Southern Peruvian Andes (Lee et al., 2013). 

Furthermore, with the steady decay of ASTER as the Terra satellite drifts further out 

of orbit, and with no current plans for an alternative non-commercially operated stereo 

satellite, there is an urgent need to find alternative sources to derive regional-level 

and multi-temporal digital elevation data. 

 

3.6. Conclusions 

In this study, we used the Landsat and ASTER archives to quantify glacier 

area and mass balance change across the Peruvian Cordilleras Vilcanota, 

Vilcabamba, and Urubamba – three regions typically understudied in the Andes. We 

identify a decline in both ice area and mass balance across the Southern Peruvian 

Andes which is most closely linked to the elevation of the individual Cordilleras; low-

lying glaciers are most at risk of immediate melt, and those are most prevalent in the 

Cordillera Vilcanota. Over the period from 1975 to 2020, glaciers in the Southern 

Peruvian Andes have receded by ~512 km2 and are now at less than half their original 

size. These glaciers are also rapidly thinning; losing 3.18 ± 0.44 Gt ice from 2000 – 

2020. As the climate continues to warm though, the ELA will shift further upwards, 

which will consequently expose large flat glaciers (including the Quelccaya ice cap) 

to net ablation. Optical imagery, and stereo imagery, can provide useful insights into 

the dynamics of small mountain glaciers, but the heavy presence of cloud and snow 
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in long archives still limit the usability of these data and future research needs to 

validate and extend these data with in situ measurements. These data provide a 

closer insight into interdecadal patterns of glacier change in these data sparse 

regions, and can be used to help inform policymaking to manage the future threat of 

glacial hazards and ensure water security across the Cusco region.  
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Chapter 4   

Investigating the performance of new satellite altimetry missions over 

mountain glaciers 

 

4.1. Introduction 

Mass loss from mountain glaciers and ice caps is predicted to increase with 

rapid climate warming (Fox-Kemper et al., 2021), which poses increasing challenges 

for water resource and hazard management (Keiler et al., 2010; Viviroli et al., 2011). 

Approximately one-sixth of the world’s population rely on mountain glaciers and ice 

caps as water resources for hydropower, irrigation and drinking (Kundzewicz et al., 

2007; Immerzeel et al., 2019). This population is also increasingly threatened by 

glacial hazards, including severe flood events (Scheffran and Battaglini, 2011). 

Satellite remote sensing allows the opportunity to monitor glaciers at repeat intervals 

with high accuracy, for little-to-no cost to the end user. Typical techniques to study 

the changing dynamics of mountain glaciers for management purposes include DEM 

differencing (Berthier et al., 2007; Gardelle et al., 2012), optical imagery for area 

change investigation (Bolch, 2007; Racoviteanu et al., 2008) or Synthetic Aperture 

Radar (SAR)-based approaches (Rao et al., 2004). It has become increasingly 

common to include a combination of techniques in such studies to improve confidence 

in long-term results (Quincey et al., 2007; Shangguan et al., 2015). 

 Satellite altimeters have been used to improve estimation of mass loss from 

ice sheets for over three decades, including the European Remote Sensing (ERS-1 

and ERS-2) satellites (Shepherd et al., 2012), ICESat (Pritchard et al., 2009) and 

CryoSat-2 (Helm et al., 2014). While satellite altimetry has been able to quantify 

increasing mass loss over vast ice sheets (see Slater et al. (2021) for a 

comprehensive review of these results), the technique has seldom been applied to 

smaller mountain glaciers or ice caps, despite their importance as water resources. 

This is largely due to the challenging topography of mountainous regions, with steep 

slopes decreasing vertical accuracy (Harding et al., 1994). For some altimeters, the 

footprint (the, typically circular, ground area from which elevation data are captured 

over) can be too wide (e.g. CryoSat-2 is 1,650 m wide) to accurately acquire data 

where large topographic variations, such as in a mountain range, are observed. Large 

cross-track separation means that only a small proportion of mountain glaciers 

worldwide are intercepted by existing satellite altimetry tracks, leading to region-wide 
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mass balance estimates being produced based on averaging on-ice elevation change 

where acquired (Kääb et al., 2012).  

The recent launch of two new satellite altimetry missions, Sentinel-3 from the 

European Space Agency (ESA) and ICESat-2 from the US National Aeronautics and 

Space Administration (NASA), provides an opportunity to re-evaluate the potential 

application of satellite altimetry to monitoring glaciers and ice caps. Both satellites 

acquire data at a high spatial resolution, with new features to improve tracking of 

complex terrain (Sentinel-3) or the acquisition of large volumes of data across many 

glaciers in a mountain range (ICESat-2) (Table 4.1). However, while Sentinel-3 is 

designed as a multi-decadal mission, ICESat-2 is only designed to operate for three 

years. The launch of CryoSat-2 in 2010 represented a significant advance in spatial 

resolution and has built up an impressive 12-year archive of altimetry measurements. 

However, its performance over mountain glaciers has previously been evaluated (e.g. 

Dehecq et al., 2013; Jakob et al., 2021), and so we limit our analysis to, as yet, 

unstudied satellites. 

 

 Sentinel-3 ICESat-2 

Instrument type Radar Laser 

Altimeter SRAL ATLAS 

Along-track ground spacing 300 m 70 cm 

Repeat orbit 14 days (A+B) 91 days 

On-board DEM resolution 5 km 0.05˚ 

Range window width 60 m 6 km 

Distance between tracks at equator 52 – 104 km 3.6 – 10.8 km 

 

Table 4.1 – Comparison of Sentinel-3 and ICESat-2 altimeters 

 

Our aim is to conduct the first detailed examination of the performance of 

these new altimeters over mountain glaciers and ice caps. In this investigation, we: 

i) Compare the elevation data from Sentinel-3 and ICESat-2 to reference 

DEMs to quantify the accuracy of their measurements; 

ii) Where possible, identify potential applications for Sentinel-3 and ICESat-

2 as part of monitoring programmes of mountain glacier dynamics; 

iii) Explore future satellite altimetry missions and make recommendations for 

their improvement for acquiring data over mountain glaciers and ice caps. 
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4.2. Sentinel-3 

 Sentinel-3 is primarily an ocean monitoring mission, comprised currently of 

two satellites (Sentinel 3A, launched in February 2016 and Sentinel-3B, launched in 

April 2018) (Donlon et al., 2012). Two further Sentinel-3 satellites are due to launch 

in 2024 and 2028 to bring the operation of this mission to the mid-2030s. The potential 

for Sentinel-3 to monitor glacier change has been evidenced over Antarctica 

(McMillan et al., 2019) and Greenland (Maddalena et al., 2020), but not yet outside 

of the ice sheets. Altimetry is performed with the SRAL (Synthetic Aperture Radar 

Altimeter), which operates in its high-resolution SAR mode. SRAL operates at Ku-

band and C-band frequencies, in open-loop (positioning the range window based on 

an on-board elevation model; Figure 4.1) and closed-loop (range window defined by 

analysing the waveform returns of previous acquisitions) modes. It is the open-loop 

tracking mode that provides optimism that Sentinel-3 will outperform predecessor 

radar altimeters. For example, elevation retrieval from CryoSat-2 was only found to 

be possible over very large (~800 km2) individual glaciers (Trantow and Herzfeld, 

2016) due to incorrectly tracking underlying terrain and placing the range window at 

mountain peaks rather than glacier surfaces (Dehecq et al., 2013). The reality may 

be more nuanced, with CryoSat-2 tracking both peaks and valleys dependent on 

location, but nevertheless this nuance means that CryoSat-2 remains an unreliable 

source of information for repeat acquisitions. 

 

Figure 4.1 – In open-loop tracking mode, Sentinel-3 uses an onboard DEM (the open-

loop tracking command; OLTC) to position a 60 m wide ‘range window’ – a window 

about the expected surface topography where the satellite ‘listens’ for an echo return 

– to capture the surface elevation.   
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Novel methods of tracking complex terrain are necessary in order to retrieve 

any usable data from these regions. The Jason-2 satellite (2008 – 2019), with the 

Poseidon-3 altimeter, was primarily an ocean monitoring mission, but acquired data 

over land using a pseudo-DEM (limited elevation data over targets of interest) to 

position a range window; the first open-loop tracking mode (Martin-Puig et al., 2016). 

This opened the potential for retrieving regular elevation from large (>100 km2) lakes 

and wide rivers (Birkett and Beckley, 2010). However, the wide footprint of Poseidon-

3 (>1 km) meant that elevation retrieval over mountain glaciers was imprecise (Hwang 

and Cheng, 2015). Jason-3, the successor mission in this series, used a similarly 

wide instrument footprint, though with a greater memory capacity for open-loop 

tracking to be extended to more targets (Biancamaria et al., 2018). Sentinel-3 

combines the use of a SAR altimeter from CryoSat-2 for a small (300 m) along-track 

footprint with open-loop tracking proven by the Jason-2 and Jason-3, thereby 

theoretically capable of accurate elevation retrieval over mountain glaciers. With its 

rapid revisit time (27 days), and tandem pair orbit to acquire data over more of Earth’s 

surface, Sentinel-3 represents an opportunity for radar altimeters to acquire repeat, 

accurate, elevation measurements over mountain glaciers. 

 

4.2.1. Sentinel-3 Methods 

We acquired Level-2 enhanced data from Sentinel-3A from a number of ice 

caps and mountain glaciers across Earth, in both open and closed-loop tracking 

modes (Table 4.2, Figure 4.2) to explore how differing tracking modes impact data 

acquisition. Sentinel-3 uses multiple methods to extract elevation, and we explored a 

number of variables from within the Level-2 enhanced data product. Of particular 

interest were the elevation, altitude, range, and OCOG (offset centre of gravity) 

elevation variables. OCOG is a more appropriate re-tracking technique over land-ice 

as it is better able to process the wider range of waveform shapes that may be 

expected (Wingham et al., 1986). All analysis was performed using MATLAB R2017a. 

Most mountain glaciers and ice caps are situated within the open-loop tracking mode, 

where Sentinel-3 uses the OLTC to position its range window. To compare the 

performance of Sentinel-3 in both tracking modes, we also studied the Vatnajökull ice 

cap, where Sentinel-3 operates in closed loop mode. For each region, we compared 

the performance of Sentinel-3A in retrieving accurate measurements of elevation 

against reference DEMs, given in Table 4.2.  
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Fig. 

4.2 

Ref 

Site Name Type Relative 

orbit 

number 

Lat 

range 

(°) 

Lon 

range 

(°) 

Elevation 

range (m) 

Open / 

Closed 

loop 

Reference 

DEM 

A Vatnajökull  Ice cap 52 64.10 – 

64.75 

-16.90 – 

-16.30 

366 - 

1659 

Closed ArcticDEM 

& GDEM 

B Peru Glaciers 60 -13.67 –         

-13.78 

-71.11 – 

-71.09 

4922 - 

5772 

Open GDEM 

C Himalaya Glaciers 33 27.80 – 

28.20 

86.63 – 

86.77 

3643 - 

7346 

Open High 

Mountain 

Asia DEM 

D Patagonia 

Icefield - 

North 

Ice Cap 338 -49.5 –   

-48.35 

-73.83 – 

-73.35 

0 - 1749 Open SRTM 

E Patagonia 

Icefield - 

South 

Ice Cap 

and 

Glaciers 

32 -50.1 –    

-48.7  

-73.35 – 

-73.93 

114 - 

2631 

Open SRTM 

F Patagonia 

Lakes 

Meltwater 

lakes 

89 -50.32 – 

-49.5 

-72.27 – 

-72.64 

179 - 252 Open SRTM 

 

Table 4.2 – Areas investigated by Sentinel-3. 

 

Ground-based data are essential to validating the accuracy of satellite 

altimeters. Owing to the logistical challenges associated with visiting all sites, in 

combination with the COVID-19 pandemic, we have had to use reference DEMs as a 

comparison. Of global DEMs, the ASTER GDEM shows the lowest RMSE (root mean 

squared error) to ground-based validation in rugged terrain (Uuemaa et al., 2020) of 

11.77 m. For the Himalaya, this is outperformed by the HMA DEM, with a RMSE of 

1-2 m (Shean, 2017), though this has not been independently assessed. However, 

while the ASTER GDEM shows good promise, it has large data gaps and high levels 

of inaccuracy over bright surfaces such as the accumulation zones of ice caps. For 

this reason, we use the SRTM DEM over Patagonia, accounting for an approximate 

6 m C-band radar penetration (which varies from 3 m over bare ice to 9 m over fresh 

snow; Rignot et al., 2001). While this variation in penetration is negligible in 

positioning the 60 m wide range window, it will inevitably result in uncertainty when 

comparing SRTM to Sentinel-3.  
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Figure 4.2 – Sentinel-3 track coverage over ice cap and mountain glacier areas 

studied in this Chapter, in both open (A) and closed-loop (B – F) tracking modes. Full 

details of each site are given in Table 4.2. Background images from Landsat / 

DigitalGlobe. 

 

We also assess other, more crude, methods of estimating elevation which 

avoids retracking algorithms and geophysical corrections and results in a faster end 

product to the user. In theory, subtracting the range window that Sentinel-3 looks for 

a pulse return from its altitude should yield this crude estimate of elevation, to allow 

the user to verify if the retracking algorithms or geophysical corrections are causing 
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poor elevation returns in the traditional products. This method does not account for 

poor quality waveforms, or any corrections that are performed on the dataset, but 

could be a suitable backup in areas of low data availability. For each study area, 

seven cycles were examined, from cycle 30 (collected between 7th April and 4th May 

2018) to cycle 36 (collected between 16th September and 13th October 2018).  

In addition to studying glaciers and ice caps themselves, proglacial lake levels 

can be indicative of glacial dynamics (Pasquini et al., 2008) as their elevation changes 

seasonally with increasing melt. When such lakes are large enough to have multiple 

Sentinel-3 returns across them, direct altimetry of the lake surface elevation can be 

used for water resource management. We therefore also studied the Argentino and 

Viedma Lakes, which are supplied by glacial melt from the east side of the Southern 

Patagonian Icefields (Figure 4.2F). Each lake was examined across a full year (Cycle 

22 to Cycle 36; September 2017 to September 2018). Multiple returns are recorded 

across both lakes, so the mean lake surface elevation in each cycle is reported.  

 

4.2.2. Performance of Sentinel-3 over mountain glaciers 

4.2.2.1. Open Loop Tracking 

In Peru and the Himalaya, where tracking is in open-loop mode, there were 

zero returns that provided a valid elevation value within the study period on any of the 

seven cycles analysed (Table 4.3). Subtracting the range window from the altitude in 

both areas yielded elevation values between 0 and 20 m. In Patagonia Icefield - North, 

around 1% of returns provided a valid elevation value on any one cycle, with OCOG 

retracking providing slightly more (3-6%) valid elevation returns. More than 90% of 

failed returns did not reach the threshold for total power in the waveform, due to 

incorrect positioning of the range window. We identified significant disparity between 

the on-board OLTC table and reference DEMs, which may be causing poor elevation 

retrieval. Patagonia Icefield – South achieved a greater elevation return rate, with 

around one quarter of returns providing a valid elevation value in any one cycle. 

However upon further inspection with satellite imagery, these valid returns occured 

almost exclusively in non-glacierised regions along the track, always returning an 

elevation value between 170 and 190 m (corresponding to the approximate position 

of the OLTC). This also occurred with OCOG retracking.  
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Ref. Site Number of 

returns per cycle  

Number of valid 

elevation returns 

per cycle 

Number of valid OCOG 

elevation returns per 

cycle 

B Peru 34-35 0 0 

C Himalaya 76-77 0 0 

D Patagonia Icefield 

– North 

333-334 2-4 9-20 

E Patagonia Icefield 

- South 

442-443 110-111 129-146 

 

Table 4.3 – Valid returns for each area of interest in cycles 30-36. Returns are given 

as the minimum and maximum number in the seven studied cycles. 

 

 The reason for the lack of elevation returns is due to the range window being 

positioned such that it does not reflect the ice surface, as demonstrated by a lack of 

power in any radargram. For many inland water sites, such as lakes, reservoirs, and 

rivers, the OLTC has been updated to accurately represent these targets within the ± 

10 m needed for Sentinel-3 to capture altimetry data (Le Gac et al., 2019). Where 

targets are not specified, the OLTC remains positioned at the elevation of the 

preceding target until another target repositions it (Jiang et al., 2020). This means 

that unless a priori information is supplied regularly over complex terrain, the OLTC 

is highly likely to be inaccurate. Cycles 30 to 36, analysed above, were acquired 

based on version 4.2 of the Sentinel-3A OLTC, which did not include any targets over 

our sites of interest. Using the ESA crowdsourcing portal (https://www.altimetry-

hydro.eu) (Le Gac et al., 2019), we uploaded elevation information covering each of 

our areas of interest using the DEMs outlined in Table 4.2. The potential for updating 

the OLTC is, however, extremely limited, because the tracking system is only able to 

update every ~5 km along-track. Over complex terrain this represents a severe 

shortfall and so we chose on-ice targets positioned, where possible, in the centre of 

a glacier. These updates were added to the OLTC version 5.0 which were uploaded 

to the satellite on 3rd September 2019. The OLTC update moves the range window to 

within the elevation of glaciers of interest and a greater range of data are available to 

analyse. 

 In the Cordillera Vilcanota, Peru, a surface echo is recorded by the satellite 

for around half of the area of interest, from -13.80° to -13.70° latitude, although the 

recorded elevation data does not correlate to the underlying DEM (Figure 4.3). As 
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elevation decreases towards the north end of the track, the coarse spatial resolution 

of the OLTC means that it cannot track rapid elevation changes, and no signal is 

recorded in the radargram (Figure 4.3C). Over an unnamed glacier of interest situated 

to the west of Chumpe glacier, where the OLTC was positioned to record, the 

difference between GDEM and Sentinel-3A was 27.5 m. In the subsequent orbit, this 

difference was 214 m. In the Himalaya, where topography is steeper, but the area of 

interest is wider, Sentinel-3A acquires more data than in Peru (Figure 4.4), with 14 

valid elevation returns over the Ngozumpa glacier where the OLTC was positioned. 

The mean absolute difference to the HMA DEM in this portion of the track is 46.87 m 

(mean -6.07 m).  

 

 

Figure 4.3 – Performance of Sentinel-3A (cycle 42) with updated OLTC over the 

Cordillera Vilcanota, Peru (orbit 60). (A) Comparison of Sentinel-3 with GDEM along-

track, with OLTC positions highlighted. (B) Corresponding radargram showing power 

returns to the satellite, where blue shows no power. The y-axis represents the 128 

bins of the waveform return. (C) GDEM and Sentinel-3A elevation along the Sentinel-

3A track. (D) Spatial difference between GDEM and Sentinel-3A elevation.  
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Figure 4.4 – Performance of Sentinel-3A (cycle 42) with updated OLTC over the 

central Himalaya (orbit 33). (A) Comparison of Sentinel-3 with HMA DEM along-track, 

with OLTC positions highlighted. (B) Corresponding radargram showing power 

returns to the satellite, where blue shows no power. The y-axis represents the 128 

bins of the waveform return. (C) HMA DEM and Sentinel-3A elevation along the 

Sentinel-3A track. (D) Spatial difference between HMA DEM and Sentinel-3A 

elevation. Ngozumpa glacier is positioned to the South of this figure.  

 

Over Patagonia, the updated Sentinel-3A OLTC closely tracks ice surface and 

acquires data across the ice cap (Figure 4.5). The more gradual topographic changes 

along these tracks means that the OLTC is able to more closely reflect the underlying 

elevation and the difference to the GDEM is lower (mean absolute difference of 106.7 

m, mean difference of 36.5 m across the track). However, over the margins of the ice 

cap, where rapid changes in topography do occur, the difference grows, reaching in 

excess of 500 m. Similar patterns are observed in both orbits 32 and 338. Sentinel-3 

performs much better over the Argentino and Viedma proglacial lakes, with consistent 

and valid elevation returns acquired in each cycle. Over the course of one year, 

Sentinel-3 monitors the ~2 – 4 m change in water surface height corresponding to 

glacial melt (Figure 4.6). While lake gauge data were not in place during the course 

of this investigation, this represents a reasonable seasonal variation of these lakes 

from 2011-14 (Richter et al., 2015; Carabajal and Boy, 2021). 
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Figure 4.5 – Performance of Sentinel-3A (cycle 42) with updated OLTC over the 

Patagonia ice cap (orbit 338). (A) Comparison of Sentinel-3 with GDEM along-track, 

with OLTC positions highlighted. (B) Corresponding radargram showing power 

returns to the satellite, where blue shows no power. The y-axis represents the 128 

bins of the waveform return. (C) GDEM and Sentinel-3A elevation along the Sentinel-

3A track. (D) Spatial difference between GDEM and Sentinel-3A elevation.  
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Figure 4.6 – Sentinel-3A elevation (orbit 89) from (A) Viedma and (B) Argentino 

lakes to the East of the Patagonian ice cap, as recorded over a full year. Location 

displayed in Figure 4.2. 

 

4.2.2.2. Closed loop tracking 

The number of returns across the Vatnajökull ice cap varies greatly between 

cycles, from a minimum of 127 to a maximum of 222 (mean 176), with the number of 

valid elevation returns ranging from 23% to 39% of total returns. While there is greater 

variability in the number of returns between cycles compared to open-loop tracking, 

there is a higher success rate for valid elevation measurements. Detailed analysis of 

the quality of waveform returns from cycle 36 (using the waveform_qual_ice_20_ku 

variable), where 39% of returns record a valid elevation measurement, shows that 

poor positioning of the range window leads to low power in the waveform, or the 

leading edge of the peak falling before a given threshold (gate 44) (Figure 4.7). 

Elevation data across Vatnajökull does not closely match either ArcticDEM or GDEM 

using any variable (Figure 4.8). The mean difference between Sentinel-3A and 

ArcticDEM ranged from 100.0 m using the standard elevation variable to 153.3 m by 

subtracting the altitude of the satellite from the range window. 
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Figure 4.7 – Failed waveforms from the Vatnajökull ice cap, cycle 36, orbit 52, due to 

(A) lack of power in the waveform or (B) the leading edge not meeting the threshold 

of gate 44. Note the varying y-axis scales in each.  

 

Figure 4.8 – Comparison of four different variables to acquire elevation data from 

Sentinel-3A using close-loop tracking over the Vatnajökull ice cap (cycle 36, orbit 52).  

 

4.2.3. Use of Sentinel-3 data over mountain glaciers 

 The lowest difference between Sentinel-3 and a reference DEM is found in 

open-loop tracking mode, where the OLTC provides a priori data of a target. Only 

once this information is uploaded to the satellite, via regular crowd-sourced OLTC 
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updates, does Sentinel-3 altimetry become usable. Given the coarse resolution of the 

OLTC pseudo-DEM, valid elevation retrievals in complex terrain are, in practice, 

restricted to a single point within a ~5 km portion of track. This may be a usable 

platform for measuring change on one glacier within a range, but only if the glacier is 

fortuitously positioned beneath the orbit of Sentinel-3 to acquire data. In the Cordillera 

Vilcanota, only two Sentinel-3 tracks cover the range, intercepting just nine of the 175 

glaciers. Given the narrowness of the mountain range and need to position the OLTC 

over specific targets, only two glaciers (one per track) of the whole Cordillera 

Vilcanota could, in practice, be monitored. 

 Sentinel-3 is first and foremost an ocean monitoring mission. The OLTC 

allows the SRAL to acquire data over land, which has allowed for highly accurate 

monitoring of inland water bodies (Le Gac et al., 2019; Taburet et al., 2020). For 

example, over the Zamebzi river, differences between Sentinel-3-derived elevation 

and in situ water level stations ranged from 2.9 to 31.3 cm at targets of interest (Kittel 

et al., 2021). Over the Cordillera Vilcanota, differences between the altimeter and the 

reference DEM spanned several orders of magnitude. Monitoring glacial melt via 

proglacial lake surface elevation change may be a more promising use of Sentinel-3, 

as demonstrated over the Argentino and Viedma lakes. This has been demonstrated 

in the Pyrenees mountain range, where the surface elevation of small (>130 m wide) 

reservoirs was monitored to 1.39 m accuracy with minimal land influence on the 

waveforms (Gao et al., 2019). However, the problem of large cross-track separation 

means that no lakes >100 m wide within the Cordillera Vilcanota are covered by either 

Sentinel-3A or 3B. A parallel satellite altimeter, also within the ESA Copernicus 

Programme, Sentinel-6 Michael Freilich, shares this issue with even larger cross-

track separation (315 km at the equator). 

 Retracking methods, whereby the extended range of the waveform is 

analysed to handle added complexity in waveform shape, may be a useful future 

avenue for research into satellite radar altimetry over mountainous regions (Gao et 

al., 2019). In China, acquiring data from mountainous rivers situated between 

topographic peaks was improved by using the Multiple Waveform Persistent Peak 

(MWaPP+) retracking algorithm to produce sub-metre error (Jiang et al., 2020). 

Waveforms from a radar altimeter in complex terrain can become contaminated by 

off-nadir reflections, resulting in non-conventional waveforms. MWaPP+ assesses 

adjacent waveforms to calculate the bin at which the underlying water body is best 

represented by the peak (Villadsen et al., 2016). However, it is noteworthy that data 

acquisition in mountainous terrain was only possible by first improving the OLTC, in 
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addition to waveform retracking (Tsai et al., 2020; Jiang et al., 2020). Where the 

tracking window is inaccurately positioned, even the extended waveform does not 

capture data.  

 The novelty of Sentinel-3, in providing high spatial resolution elevation 

retrieval with a small footprint, is hindered only by its inability to correctly track the 

underlying surface. Open-loop tracking via the OLTC shifts the range window to a 

more accurate position, but its narrowness of 60 m means that targets over complex 

terrain are limited. Narrow range windows are a problem which have affected satellite-

based radar altimeters for decades (Ridley and Partington, 1988; Scott et al., 1994) 

and is typically addressed by retracking algorithms (Deng and Featherstone, 2006), 

though this relies on the waveform being close to the range window – not over 1000 

m apart as we observed prior to altering the OLTC. For Sentinel-3, further 

development in tracking algorithms and the provision of an OLTC with finer along-

track resolution based on accurate DEMs is necessary before this next generation 

satellite can provide accurate and reliable data over mountain glaciers. 

   

4.3. ICESat-2 

ICESat-2, launched in September 2018, is primarily designed to monitor ice 

sheet mass balance and forest canopy height using a different satellite altimetry 

approach (Neumann et al., 2019). Whereas Sentinel-3 is a radar altimeter, ICESat-2 

uses six laser beams and the Advanced Topographical Laser Altimeter System 

(ATLAS) to retrieve elevation. Up to 200 quadrillion 532 nm photons leave the satellite 

each second, providing an along-track spatial resolution of up to 70 cm over a 91-day 

repeat orbit. Its six laser beams provide up to 3.6 km cross-track separation at the 

equator, allowing data acquisition from numerous glaciers in a mountain range; 

contrary to the Sentinel-3A/B spacing of 52 km. ICESat-2 has a 6 km wide range 

window for elevation retrieval, which means no open-loop tracking mode is 

necessary. However, ICESat-2 is limited in its scope as the laser beams do not 

penetrate cloud, unlike Sentinel-3’s radar. With a 91-day repeat orbit, this could lead 

to large data gaps, such that ICESat-2 may only be able to be relied upon for annual 

monitoring. Nevertheless, its strong performance potential, particularly in 

mountainous regions, means that ICESat-2 could form part of a suite of techniques 

used to monitor changing glaciers.  

Satellite laser altimetry began with the original ICESat mission, which 

operated from 2003 to 2010, with the Geoscience Laser Altimeter System (GLAS). 
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ICESat was designed primarily to monitor ice sheet mass balance (Schutz et al., 

2005; Ewert et al., 2012), but also provided accurate elevation retrievals over ice caps 

and glaciers (Treichler and Kääb, 2016). The most significant limitation with ICESat 

was that its track positions could vary by a few hundred metres between cycles, 

rendering repeat observations and regular monitoring of small glaciers difficult 

(Kropáček et al., 2014). To overcome this, small mountain glaciers could be 

monitored by comparing elevation retrievals to a reference DEM and using a linear 

regression to derive elevation trends (Kääb, 2008; Kääb et al., 2012). ICESat-2 looks 

to overcome this challenge of the original ICESat mission by using six beams to 

retrieve more tracks than its predecessor; ICESat had an equatorial cross-track 

spacing of 15 km, compared to ICESat-2’s 3.6 km. The distance between retrievals 

has also decreased from ~170 m to ~70 cm. This means a far greater number of 

glaciers have regular, accurate, elevation retrievals. Finally, the six beams of ICESat-

2 are paired and spaced 90 m apart on the ground, with a fixed reference track 

running between beam pairs. This means that even if repeat cycles do not accurately 

overlap each other, the elevation of this reference track can be determined by 

interpolating the slope between the two beams on both occasions, allowing for 

accurate and reliable monitoring of elevation change (Markus et al., 2017). Together, 

these factors suggest that ICESat-2 should be a promising mission for regular 

observation over small mountain glaciers.  

 

4.3.1. ICESat-2 Methods 

 Given the vast quantity of data acquired by ICESat-2, we narrowed our study 

to the Peruvian Cordillera Vilcanota and performed an in-depth analysis on a wider 

range of potential applications. We used the ATL03 (raw photons) and ATL06 

(geolocated, land-ice surface height) products to assess the performance of ICESat-

2 over glaciers and lakes of the Cordillera Vilcanota, Peru. The ATL06 product 

segments ATL03 into 40 m wide windows and passes a linear model through ATL03 

photons. The centre point of this linear model per segment is then taken as the 

elevation of each 40 m window (Smith et al., 2019). This decreases the spatial 

resolution of the product (40 m compared to a theoretical 70 cm of ATL03), but should 

increase the accuracy as a result of excluding low confidence photon returns. Early 

insights from the interior of Antarctica shows that ATL03 has an accuracy <5 cm, 

while ATL06 has an accuracy <3 cm (Brunt et al., 2019), though this is over a smooth 
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flat surface and is unlikely to be representative of accuracy over rugged mountainous 

terrain. 

 Over oceans and ice sheets, ICESat-2 repeats its ground tracks on a 91-day 

cycle to acquire overlapping observations. A critical mission objective of ICESat-2 is 

to capture regular, high spatial resolution information on global carbon stocks by 

observing the height of vegetation (Abdalati et al., 2010). In order to gain good 

coverage of global vegetation between tracks, over land, ICESat-2 changes its 

ground track position every 91 days by adjusting the angle of the ATLAS. Every 2 

years, ICESat-2 cycles through eight different off-nadir angles, resulting in low (<2 

km) cross-track separation across the time period (Markus et al., 2017). For mountain 

glaciers, this means that far more glaciers are covered by the tracks than Sentinel-3 

(over 90% of glaciers in the Cordillera Vilcanota are intercepted by an ICESat-2 track 

at one of the eight time periods; Figure 4.9), but most repeat acquisitions are 

separated by 2 years. For some areas, there is overlap on an annual basis owing to 

the far left beams overlaying the tracks of the far right beams from a year prior. We 

analyse all tracks covering the Cordillera Vilcanota from January 2019 to January 

2022. Data are acquired from the open-source ICESat-2 viewing interface, Open 

Altimetry, and analysed in MATLAB and R.  

 

 

Figure 4.9 – Ground track positions of ICESat-2 over the Cordillera Vilcanota over a 

2-year time period. The eight positions are demonstrated in different shading.   
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4.3.2. Performance of ICESat-2 over mountain glaciers 

Analysing the performance of Sentinel-3 involved in-depth analysis into the 

extremely little data acquired to understand why the satellite was so inaccurate in 

elevation retrieval. In contrast, it was immediately apparent that ICESat-2 acquires 

far more promising data and so we used a more sophisticated approach to assess 

accuracy. To analyse the accuracy of satellite altimeters, they should be compared 

to ground-based measurements (Vu et al., 2018). Where ground-based comparisons 

of ICESat-2 have taken place over the flat interior of Antarctica, error is less than 10 

cm (Brunt et al., 2019; Brunt et al., 2021). In the absence of comparative studies in 

mountainous regions, and due to the inability to collect ground-based measurements 

ourselves owing to the COVID-19 pandemic, we compare ICESat-2 with a 12 m 

resolution TanDEM-X tile. TanDEM-X has precedence for being the highest accuracy 

global DEM product in mountainous regions based on a number of ground validated 

studies in similar terrain, with sub-metre mean error, compared to error greater than 

10 m for products such as SRTM and GDEM (Wessel et al., 2018; Guth and Geoffroy, 

2021; Chen et al., 2022). However, on steep slopes exceeding 20°, TanDEM-X DEMs 

rapidly increase in their error (Uuemaa et al., 2020). TanDEM-X DEMs used the 

original ICESat mission as ground control points, but do not (yet) use ICESat-2 data 

in their referencing. 

We compared all 35,068 points from the ATL06 product acquired in off-ice 

areas of the Cordillera Vilcanota between January 2020 to January 2022 to a 

TanDEM-X DEM (Figure 4.10). These points were collected from five of the eight 

track positions of ICESat-2 as the other three were too clouded to retrieve any data. 

Owing to differing levels of penetration over water bodies between TanDEM-X and 

ICESat-2, we removed lakes from this analysis. The mean absolute difference was 

2.73 m, with a mean difference (TanDEM-X minus ICESat-2) of -0.85 m (Figure 

4.10a). Owing to the increased uncertainty of altimeters over steep terrain (Wang et 

al., 2019; Zhang et al., 2021), we also compare this difference to slope derived from 

TanDEM-X and concur with previous estimates that difference rapidly increases 

beyond slopes of 20° (Figure 4.10b). Using the 21,673 points acquired on slopes less 

than 20°, mean absolute difference between TanDEM-X and ICESat-2 decreases to 

1.25 m, with a mean difference of -0.39 m. However, given the high uncertainty of 

TanDEM-X itself over steep slopes, it is difficult to comment on whether this difference 

is derived from inaccuracy from ICESat-2 or TanDEM-X. We can therefore suggest 

that ICESat-2 is consistent against TanDEM-X, but cannot use TanDEM-X to assess 

the accuracy of ICESat-2 measurements owing to its own flaws. 
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Figure 4.10 – (A) Difference between ICESat-2 and a TanDEM-X DEM from off-ice 

areas of the Cordillera Vilcanota. (B) Difference between ICESat-2 and TanDEM-X 

against TanDEM-X-derived slope. Blue line represents a generalized additive model 

to smooth data. 

A 

B 
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4.3.3. Applications of ICESat-2 to monitoring glaciers 

 Given the quality of ICESat-2 in complex off-ice terrain, the next step was to 

demonstrate a number of potential applications for embedding ICESat-2 into a 

programme for regular monitoring of mountain glaciers. This included monitoring 

lakes, glacier mass balance, and seasonal snowfall. The potential of ICESat-2 to 

provide data for ASTER DEM validation (Chapter 3) is also discussed. 

 

Glacier elevation change 

The shifting repeat tracks of ICESat-2 over land (excluding ice sheets) means 

that monitoring of glacier thinning, and thus mass balance, is only possible every two 

years when track positions repeat. This is particularly unreliable when considering 

that cloudy conditions can prevent data acquisitions at all. However, in the fortunate 

circumstance that two cloud-free acquisitions do occur in succession, glacier surface 

elevation change can be derived (Figure 4.11). Over a glacier situated to the North of 

the Cordillera Vilcanota, we use the ATL06 product to observe a mean glacier surface 

elevation change of -1.49 m yr-1 from July 2019 to December 2021, which increases 

to an average of -2.76 m yr-1 over the lowest 1 km of the glacier. These values 

corroborate closely (around -0.5 m yr-1 lower) to the 2000 – 2020 surface elevation 

change derived by ASTER DEMs in Chapter 3, though acknowledging that these data 

are gathered at a later time window to ASTER. It is also noteworthy that this glacier 

was chosen as it was the only suitable site within the Cordillera with data to perform 

this experiment.  

This demonstrates, for the first time over mountain glaciers, the possibility for 

using ICESat-2 to quantify glacier elevation change, and subsequently glacier mass 

balance, where data allow. However, the full potential of ICESat-2 in supporting mass 

balance measurements is likely to be when used in conjunction with a reference DEM, 

akin to Kääb et al. (2012) used for ICESat. This approach has been adopted over the 

Himalaya with ICESat and GRACE gravimetry datasets to quantify mass balance 

change across the region (Wang et al., 2021), and with ASTER DEMs over the 

Tibetan Plateau (Zhao et al., 2022). Areas where measurements have been made 

using both ICESat and ICESat-2 also allows for accurate quantification of surface 

elevation change (Sochor et al., 2021), though the large cross-track separation of 

ICESat means these areas will be sparse over mountain glaciers. As the ICESat-2 

archive grows with time, its usefulness as a tool for quantifying mass balance grows 

too. 
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Figure 4.11 – Surface elevation change of a glacier in the Cordillera Vilcanota, as 

derived by ICESat-2 (A mapped, B graphed). Change is between July 2019 and 

December 2021, using the ATL06 product over track 133.  

 

Seasonal monitoring of snowfall 

In some circumstances, different beams of ICESat-2 crossover between the 

eight track positions to provide more frequent elevation data. Over the same glacier 

to the North of the Cordillera Vilcanota, elevation retrievals between July and 

December 2021 demonstrate seasonal variations in a glacier’s surface. We observe 

a large (>15 m) deposit of snowfall on a south-facing slope of an adjacent glacier, 

separated by a mountain peak (Figure 4.12). This is difficult to validate as stereo 

images are inaccurate over bright targets such as fresh snow and field-based 

measurements are extremely limited. Using the only field-based measurements of 

accumulation in the Cordillera Vilcanota of 1.2 – 1.4 metres water equivalent in 

2013/14 at Suyuparina glacier (Molina et al., 2015), and a density of 100 kg/m3 for 

fresh snow (Judson and Doesken, 2000), snowfall of 12 – 14 m is seemingly not 

unexpected in this region. We hypothesise that ICESat-2 is recording a large deposit 

of snowfall, and could therefore be used to monitor seasonal changes to glaciers. 

There is precedence for this in earlier missions as the original ICESat mission was 

able to quantify snowfall in the interior of Antarctica of 10 – 13 cm in depth 
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(Bindschadler et al., 2005). To our knowledge, this is the first such quantification of 

an accumulation event over a mountain glacier using satellite altimetry. The 

significance of this result in quantifying glacier accumulation is large given the very 

high degree of uncertainty of elevation change derived by stereo images (Chapter 3).  

 

  

Figure 4.12 – Surface elevation change of a glacier in the Cordillera Vilcanota, as 

derived by ICESat-2 (A mapped, B graphed). Change is between July 2021 and 

December 2021, using the ATL06 product over track 133. (C) Elevation of the track 

from July 2021 to demonstrate the separation of watersheds about the topographic 

high of ~13.71° latitude. 

 

Validation of optical stereo DEMs 

Processing chains for producing DEMs from optical stereo images, such as 

ASTER, typically require the alignment of the output data to a reference DEM 

containing stable terrain (Brun et al., 2017; Dussaillant et al., 2019). This can be 

achieved with as little as 10% of the 20 km x 20 km ASTER tile classified as stable 
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terrain (Nuth and Kääb, 2011), but does still require its presence. The high accuracy 

of ICESat-2 opens the opportunity for providing tie points for optical stereo DEMs 

across unstable terrain when the two datasets are acquired close in time, thereby 

improving the confidence of this technique. The original ICESat mission was regularly 

used to provide highly accurate validation for the co-registration of DEMs (Nuth and 

Kääb, 2011; Korsgaard et al., 2016), but the wide cross-track distance (15 km) limited 

the spatial coverage of tie points. A more dense mesh of elevation retrievals from 

ICESat-2 (3.6 km separation) owing to shifting track positions creates thousands of 

tie points per 20 km x 20 km ASTER tile for co-registering DEMs. For mountain 

glaciers, this may greatly improve the confidence of optical stereo images and so 

retrieve regular, accurate, mass balance estimates for every glacier in a mountain 

range. For large ice caps and ice sheets, ICESat-2 could be used to generate DEMs 

further into the interior where no stable terrain is present in a scene. A recent global 

glacier mass balance product using the full ASTER archive (Hugonnet et al., 2021) 

was limited to quantifying change over the periphery of Greenland due to a lack of 

stable terrain further inland. ICESat-2 could assist in the derivation of optical stereo 

DEMs further into the interior of Greenland. 

 

Lake surface elevation change 

ICESat-2 acquires high confidence returns of the surface elevation of water 

bodies (Zhang et al., 2019b). The ATL06 product filters photon returns to only return 

the surface of water, despite some photons being able to penetrate into the water in 

ATL03 (Smith et al., 2019). Given the high spatial resolution of ATL06, we observe 

many small (>40 m width) lakes across the Cordillera Vilcanota with surface elevation 

data. However, the shifting track patterns of ICESat-2 and cloudiness of this region 

frequently prevent repeat measurements being made in these small lakes. We 

analysed the largest lake of the Cordillera Vilcanota, Laguna Sibinacocha, a glacial-

fed lake (~28 km2) which is dammed for hydroelectric power. We extracted all data 

acquired over Laguna Sibinacocha in the ICESat-2 record and averaged the surface 

elevation from shore to shore of each pass using only strong beams. ICESat-2 is able 

to track sub-metre changes in surface water elevation throughout the year (Figure 

4.13), as reservoir volume changes due to meltwater variability and control of flow 

from the dam. While Sentinel-3 acquires no data over Laguna Sibinacocha, so any 

altimetry measurement is welcomed, the temporal variability of data acquisitions are 

still a major limitation of ICESat-2. Of the 22 passes of Laguna Sibinacocha performed 
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from January 2019 to January 2022, the cloudiness of the region means that surface 

elevation data are only retrieved on seven occasions. The longest data gap in this 

series is 300 days, suggesting that ICESat-2 would be an unreliable mission for 

monitoring seasonal changes in surface water elevation.  

 

 

Figure 4.13 – Surface elevation of Laguna Sibinacocha, Cordillera Vilcanota, as 

measured by ICESat-2. Data are acquired from tracks 125, 133, and 567.  

 

Glacial lake bathymetry 

Establishing glacial lake volume is a key parameter in any quantitative glacial 

hazard assessment. Monitoring the surface elevation indicates how these lakes are 

changing over time, but not the volume of water that could be released during a GLOF 

event. A serendipitous result from the ICESat-2 mission has been the ability to 

accurately derive bathymetry in shallow waters using the ATL03 product (Parrish et 

al., 2019), which could aid in quantifying the volume of glacial lakes. In clear waters 

of coral reefs, ICESat-2 photon returns are accurate to depths of ~40 m, though 

additional processing is needed to account for refraction (Ma et al., 2020; Babbel et 

al., 2021). Supraglacial lake bathymetry can also be analysed with ICESat-2, to 

depths of ~10 m, where water is very clear (Datta and Wouters, 2021). Proglacial lake 

bathymetry is more challenging to derive as these bodies are typically opaque due to 

sediment influx. However, ICESat-2 data do appear to show some potential for 

providing limited bathymetric information, albeit at low confidence – such as at Lake 
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Amayuni, a proglacial lake in the Cordillera Vilcanota, reaching depths of ~9 m (Figure 

4.14). With no robust validation depth data available for Lake Amayuni, it is unclear 

as to whether this is the bed of the lake or simply the maximum depth from which 

photons are returned. Further analysis over a greater number of lakes is needed, 

however it is worth noting that Amayuni is the only lake in the Cordillera Vilcanota 

where bathymetry measurements were apparent; all others which had data from the 

surface had no bathymetric measurements, likely due to sediment clouding the 

photon returns. If repeatable, the implications of this could be significant – 

understanding the volume of lake water in proglacial lakes is paramount to 

understanding the risk they pose from outburst floods, or the opportunities they pose 

as a store of drinking water for local residents. 

  

 

Figure 4.14 – ICESat-2 Track 567 ATL03 product from 4 August 2019 across Laguna 

Amayuni (−13.81°N, −70.99°E) in the Cordillera Vilcanota. Sediment intrusion in the 

glacial lake clouds limits the penetration of photons to the bed, which limits its 

applicability in deriving lake volume to a high confidence in this environment. Top 

image from Google Earth and CNES/Airbus, 2020. 
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4.6. Recommendations for future satellite altimetry missions 

 The future status of satellite altimetry in monitoring the global cryosphere is 

currently uncertain. With CryoSat-2 towards the end of its operational life (having 

elapsed 12 years to date), ICESat-2 having already exceeded its expected 3-year 

mission duration, and Sentinel-3 unable to retrieve data over mountain glaciers or at 

high latitudes, there may soon be a break in the record of altimetry measurements 

over ice sheets (International Altimetry Team, 2021). Upcoming radar altimetry 

missions, if accelerated in their launch, could ensure no data gap occurs. However, 

given the limitations of radar-based satellite altimetry over mountain glaciers as seen 

in this chapter, and as observed by the European Union in scoping future satellite 

missions (Duchossois et al., 2018), this section will evaluate changes to upcoming 

missions and recommend possible changes that could be made prior to launch in 

order to acquire elevation over small glaciers in complex terrain.   

 To ensure continuity of the Sentinel-3 mission, successor missions (Sentinel-

3C and 3D) are launching in 2024 and 2028 to directly replace Sentinel-3A and 3B 

respectively. There will be no differences in instrumentation between 3A/3B and 

3C/3D, but small changes could allow for more data acquisition over mountain 

glaciers. At present, the number of hydrological targets able to be uploaded to 

Sentinel-3 is ~140,000. The 2021 version 6.1 update to Sentinel-3A (and equivalent 

version 3.1 update to Sentinel-3B) means that this number has now been reached 

(Le Gac et al., 2019). An anticipated expansion to the memory allowance for the 

OLTC (Taburet et al., 2020) will allow more targets to be defined and so more 

mountain glaciers to be monitored, though still requiring users to upload a priori 

information first. This OLTC upgrade is currently onboard the recently launched 

Sentinel-6 Michael Freilich mission, which uses an upgraded POSEIDON-4 altimeter 

based on SRAL. A larger memory and ability to change range window at a resolution 

of ~1 km along-track (Donlon et al., 2021) means, in theory, that more hydrological 

targets can be defined, and a greater number of mountain glaciers can be monitored. 

To further improve the number of glaciers covered by Sentinel-3, changes to its orbit 

could be made to decrease cross-track separation at the expense of increasing repeat 

interval. However, should the launches of Sentinel-3C and 3D occur while Sentinel-

3A and 3B are still operational, ESA note that they will adopt the same orbit as 3A/B 

in order to synergise cross-mission instruments (Nordbeck et al., 2021). 

In an extension to the Copernicus mission, ESA have designed candidate 

status to a satellite altimeter with the primary mission objectives of monitoring the 
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cryosphere. CRISTAL (Copernicus Polar Ice and Snow Topography Altimeter) is 

currently under development at Airbus with a target launch of 2027. Should CRISTAL 

launch before CryoSat-2 ends, this will ensure uninterrupted altimetry measurements 

of ice sheets (International Altimetry Team, 2021). However for mountain glaciers, 

key changes to the radar altimeter compared to SRAL provide optimism that it will be 

usable. CRISTAL will have a Ku-band interferometer, akin to CryoSat-2, to improve 

ground spatial resolution. CRISTAL will operate with a 256 m wide range window with 

uncompressed open-loop tracking and data acquisition at 100 m along-track 

resolution (Kern et al., 2020). The wide range window and optimised open-loop 

tracking could, when provided ground elevation data, derive elevation over complex 

terrain and be used in monitoring mountain glaciers. In theory, CRISTAL will be twice 

as accurate and acquire four times the volume of data compared to CryoSat-2 (Kern 

et al., 2020).  

 

4.5. Conclusions 

 Innovation in satellite altimeter technology and processing provides, for many 

mountainous regions, the first usable altimetry data. In this study, we evaluated the 

performance of Sentinel-3 and ICESat-2 in deriving elevation over mountain glaciers 

and identified potential avenues for integrating their outputs into regular glacier 

monitoring schemes. Sentinel-3 poses novelty in its high along-track spatial 

resolution, combined with an open-loop tracking mode using a pseudo-DEM to 

position its narrow range window. Without prior elevation information, Sentinel-3 does 

not capture data over mountainous regions at all. With elevation data uploaded to the 

OLTC, Sentinel-3 acquires some data but its potential is limited to retrieving accurate 

data over a single point in a 5 km track where the OLTC is set. Its successor missions, 

in Sentinel-3C/3D and Sentinel-6, will use an OLTC with the ability to shift the tracking 

window more regularly (every ~1 km along-track), which should mean more mountain 

glaciers can be monitored. However, the most severe limitation of Sentinel-3 is its 

large cross-track separation of 52 km (104 km for each of Sentinel-3A/B respectively). 

Few mountain glaciers are intercepted by Sentinel-3 and so this mission is not one 

that could be used in monitoring schemes.  

 The novelty of ICESat-2 arises from its very high along-track spatial resolution 

(70 cm), close cross-track separation (3.6 km), and six laser beams to acquire vastly 

more information than its predecessor, ICESat. These specifications, combined with 

regularly shifting ground tracks over land, mean that ICESat-2 retrieves data over 
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vastly more mountain glaciers than Sentinel-3. Additionally, a 6 km wide range 

window means that ICESat-2 acquires highly accurate data across complex terrain 

(mean difference to TanDEM-X DEM of -0.85 m). For mountain glaciers, ICESat-2 

can derive regular changes to surface lake elevation and, in some circumstances, 

bathymetry. Where tracks are fortunate to overlap in succession across a glacier, 

changes to surface elevation can be derived on a seasonal and interannual basis. 

Here, we quantified (for the first time over a mountain glacier using satellite altimetry), 

a large snowfall event of ~15 m in the Cordillera Vilcanota. We also provided the first 

demonstration of quantifying surface elevation change using only ICESat-2 data over 

a mountain glacier. However, many of these case studies showcase the satellite data 

in idealised conditions. The cloudiness of mountain glacier regions creates large data 

gaps, even over large targets (we observed a 300-day data gap over a 28 km2 target, 

Laguna Sibinacocha, which is crossed by three ICESat-2 tracks). Furthermore, while 

the cross-track spacing is the lowest of any satellite altimeter, ICESat-2 still misses 

many key glaciers and lakes of the Cordillera Vilcanota, including Chumpe glacier, 

the primary water source of Laguna Sibinacocha. ICESat-2 represents a leap forward 

in satellite laser altimetry and will no doubt be widely used across the mountain 

cryosphere, but to be embedded in a comprehensive glacier monitoring programme, 

will likely be used in tandem with other satellite-derived data sources such as optical 

stereo DEMs. 
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Chapter 5   

Evaluation of low-cost Raspberry Pi sensors for photogrammetry of 

glacier calving fronts 

 

5.1. Introduction 

Monitoring glacier calving fronts is becoming increasingly important as climate 

warming changes the stability of the cryosphere. Globally, glacier frontal positions 

have receded rapidly in recent decades (Marzeion et al., 2014; Zemp et al., 2015), 

leading to an increased threat of glacial lake outburst floods (GLOFs) from newly 

formed proglacial lakes at the glacier terminus (Tweed and Carrivick, 2015). Large 

ice calving events can trigger violent waves and GLOF events (Lüthi and Vieli, 2016), 

though both the magnitude and frequency of this phenomenon are poorly quantified 

owing to a lack of appropriate monitoring (Emmer et al., 2015; Veh et al., 2019). 

Satellites are able to provide near-continuous observations of lake growth (Jawak et 

al., 2015), hazard development (Quincey et al., 2005; Rounce et al., 2017) and, over 

large glaciers, calving rate through iceberg detection (Sulak et al., 2017; Shiggins et 

al., 2021). However, to measure frontal dynamics at a high spatial and temporal 

resolution, which is particularly necessary over smaller mountain glaciers, monitoring 

requirements can only be met by in situ sensors.  

Accurate 3D models of glaciers and their calving fronts are necessary to fully 

evaluate the hazards they pose (Kääb, 2000; Fugazza et al., 2018) and to better 

understand frontal dynamics (Ryan et al., 2015). Where in situ camera sensors have 

been used to monitor glacier fronts as part of an early warning system, stationary 

cameras have previously been used to relay regular images to be analysed externally 

(Fallourd et al., 2010; Rosenau et al., 2013; Giordan et al., 2016; How et al., 2020). 

This can be useful for monitoring glacier velocity, snowfall, and calving dynamics, but 

remains a 2D snapshot of glacier behaviour and offers little in terms of being able to 

detect the magnitude of an individual event or process. 3D models, on the other hand, 

permit more detailed analysis, such that the physics involved in glacier calving can 

even be captured (James et al., 2014; Mallalieu et al., 2020). Unoccupied aerial 

vehicles (UAVs) have been used regularly to capture high-resolution 3D models of 

glacier fronts (Ryan et al., 2014; Bhardwaj et al., 2016; Chudley et al., 2019) but, as 

yet, these systems are not autonomous and are therefore dependent on an operator 

being present, as well as often being highly expensive (many thousands of dollars). 
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Arrays of fixed cameras can be positioned around a glacier front to capture 

images repeatedly over long time periods. The resulting imagery can then be used to 

photogrammetrically generate 3D models at a high temporal resolution and analyse 

change over days, months, or years. Off-the-shelf timelapse cameras provide some 

of the cheapest ways of reliably collecting imagery for repeat photogrammetry and 

have been deployed at Russell Glacier, Greenland, to monitor seasonal calving 

dynamics (Mallalieu et al., 2017). Elsewhere in glaciology, timelapse arrays using 

more expensive DSLR-grade cameras have been used for repeat photogrammetry to 

quantify ice cliff melt on Langtang glacier at high spatial resolution (Kneib et al., 2022). 

In other geosciences disciplines, timelapse arrays for photogrammetry have been 

used to monitor the soil surface during storms (Eltner et al., 2017), the stability of rock 

slopes (Kromer et al., 2019), and evolution of thaw slumps (Armstrong et al., 2018), 

for example. The key limitation of these studies, and this setup design, is that a site 

revisit is necessary to collect data and analysis is therefore far from real-time. 

Autonomous photogrammetry, whereby 3D models are created with no user input, is 

still in its infancy but shows great promise, with machine learning used to optimise 

camera positions (Eastwood et al., 2020), point cloud stacking to enhance timelapse 

photogrammetry (Blanch et al., 2020), and user-friendly toolsets for monoscopic 

photogrammetry in glaciology (How et al., 2020). Real-time data transmission is the 

next step in autonomous timelapse photogrammetry, but trail cameras with cellular 

connectivity are many hundreds of dollars per unit, rendering this setup unaffordable 

for most monitoring schemes. 

We have designed a system, based on Raspberry Pi computers, to capture 

science-grade images for structure-from-motion (SfM) photogrammetry in glacial 

landscapes for ~$120 per unit – less than half the cost of an equivalent off-the-shelf 

trail camera with connectivity. Raspberry Pi computers are small, low-cost, and were 

designed with the intention of teaching and learning programming in schools. Their 

ease of use and affordability means they have also been used extensively as field 

sensors in the geosciences (Ferdoush and Li, 2014) as the quality of their camera 

sensors have developed to a science-grade level (Pagnutti et al., 2017). In hazard 

management, Raspberry Pi cameras have been used as standalone monitoring 

systems to complement wider internet-of-things (IoT) networks (Aggarwal et al., 

2018) and attached to UAVs to produce orthophotographs (Piras et al., 2017). In 

glacierised environments, the durability, low-cost, and low power requirements of 

Raspberry Pis means they have been used to complement sensor networks, such as 

controlling the capture of DSLR-grade time lapse cameras (Carvallo et al., 2017; 
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Giordan et al., 2020) or as a ground station for UAV-based research (Chakraborty et 

al., 2019). However, to our knowledge, Raspberry Pis and low-cost camera modules 

have never been the focus of a glaciology investigation and their potential for SfM in 

the wider geosciences has yet to be fully realised.  

The aim of this study was, therefore, to evaluate the quality of Raspberry Pi 

imagery for photogrammetric processing, with a view to incorporating low-cost 

sensors in glacier monitoring systems. Given that the highest accuracy glacier front 

3D models gathered from photogrammetry are derived from UAV imagery (typical 

horizontal uncertainty of 0.12 m (0.14 m vertical), even in the absence of ground 

control points (Chudley et al., 2019)), we chose to use a UAV-based point cloud as 

our primary reference dataset. We intensively deployed both sensor systems 

(ground-based Pis, and aerial UAV) at Fjallsjökull, Iceland over a four-day period. As 

a secondary objective, we also sought to understand the limitations of Raspberry Pi 

by deploying Raspberry Pi sensors at a range of distances to the glacier front and 

removing images in the processing of point clouds to identify the fewest frames 

necessary for generating accurate 3D models. 

 

5.2. Methods 

5.2.1. Study site – Fjallsjökull, Iceland  

Fjallsjökull is an outlet glacier of Öræfajökull, an ice-covered volcano to the 

south of the wider Vatnajökull ice cap, in south-east Iceland (Figure 5.1). Recession 

and thinning of Fjallsjökull has been underway since the end of the Little Ice Age, but 

has substantially accelerated in recent decades owing to climate warming (Howarth 

and Price, 1969; Chandler et al., 2020). Fjallsjökull terminates in a large (~4 km2) 

proglacial lake – Fjallsárlón – which is also increasing in size as Fjallsjökull recedes 

(Schomacker, 2010). Calving of Fjallsjökull is regular and has increased in frequency 

in recent decades as the glacier has accelerated, driven by the expansion of 

Fjallsárlón (Dell et al., 2019). As of September 2021, the calving face of Fjallsjökull 

was approximately 3 km wide, with ~2.4 km of this accessible from a boat (the 

northernmost 600 m had large, stationary icebergs which were dangerous to 

navigate; see Figure 5.1). We selected Fjallsjökull as a study site due to its 

accessibility, ability to conduct surveys from boat and shoreline, and variation in 

calving margin heights (ranging from ~1 m to ~15 m) to test the performance of our 

camera system under a diverse range of glaciological settings. This location was also 

chosen owing to rapidly changing international travel restrictions in place due to the 
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COVID-19 pandemic, which meant that we could not conduct this analysis in Peru as 

planned. However, we also present results from a longevity study conducted at the 

Quelccaya Ice Cap in Peru (-13.917°N, -70.840°E) from September to November 

2019, where we positioned a Raspberry Pi camera acquiring data at a proglacial lake 

for three months.  

 

 

Figure 5.1 – Fjallsjökull (flowing left-to-right), terminating in Fjallsárlón, captured by 

Planet Imagery on 10th September 2021. A-H denote the eight point cloud sub-

sections generated by both the Raspberry Pi and UAV. X-Y denote the start and end 

of land-based data collection at approximately 25 m intervals along the shoreline, 

used to generate sub-section B from a distance. 
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5.2.2. Hardware  

 Raspberry Pi computers have a variety of commercially available sensors for 

use in the geosciences (Figure 5.2). SfM photogrammetry has been performed using 

Raspberry Pi cameras, but only over small spatial scales (<1 m) not relevant to 

glaciology. For example, medical scientists have used the ‘Raspberry Pi Camera 

Module v2’ (8 MP; ~$25) to create 3D body and hand scans (Garsthagen, 2014; 

Eguiraun et al., 2020). Until May 2020, upon the release of the HD camera module, 

this 8 MP camera was the only easily compatible, commercial camera sensor for the 

Raspberry Pi. The Sony IMX219 sensor of the V2 camera offers ‘science-grade’ 

radiometric calibration (Pagnutti et al., 2017), and has been deployed in geoscience 

applications ranging from monitoring coastal environments for flooding (Addona et 

al., 2022) to rockfall prone cliffs (Blanch et al., 2020). However, its potential as an 

image source for SfM has not yet been examined in a glacierised environment, nor 

over the large (~100s metres squared) scale of a calving front.  

 

 

Figure 5.2 – Hardware used in this study. (A) Raspberry Pi HD Camera module. (B) 

16 mm telephoto lens. (C) 6 mm wide angle lens. (D) Raspberry Pi Camera Module 

v2. (E) Raspberry Pi Zero W computer. (F) Raspberry Pi 4 Model B computer. (G) 

LCD screen, which affixes to Raspberry Pi to view pictures in the field. 
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We tested the ability of the camera module v2 to generate 3D 

photogrammetric models during a survey at Quelccaya ice cap, Peru (-13.917°N, -

70.840°E) in September 2019. Here, we acquired images from 25 different positions 

around a small (0.4 km2) proglacial lake to capture a ~10 m high, ~150 m long calving 

margin. We found that the image quality was too poor to generate usable 3D models 

over the ~70 m from the proglacial lake shoreline to the calving margin of the ice cap 

(Figure 5.3). Point clouds contained large data gaps, required more images than 

anticipated (34 to generate a ~60 m point cloud), and the cameras were unable to 

resolve small (centimetre-scale) features. As a result, the camera module v2 was 

dismissed as a potential sensor moving forward. 

 

 

Figure 5.3 – Evaluating the usability of the Raspberry Pi Camera Module v2 in 

photogrammetry of glaciers. (A) Image acquired from the shoreline of a proglacial 

lake from a distance of ~70 m with the Raspberry Pi Camera Module v2. (B) Image 

from the same position as captured by a DSLR camera. (C) Point cloud of glacier 

calving front generated using 34 images from the Raspberry Pi Camera Module v2.  

 

 In May 2020, Raspberry Pi released their high quality camera module ($50 for 

the sensor board, $25-50 for additional lens; Figure 5.2). This 12.3 MP sensor, with 

adjustable lenses to create a bespoke approach for each setting, offered promise that 

low-cost SfM was possible to the standard as set by UAVs and timelapse trail 
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cameras. Two lenses are produced by Raspberry Pi to work alongside this HD sensor 

– a 6 mm wide angle lens, and a 16 mm telephoto lens. The 6 mm wide angle lens 

acquires images with distortion at the sides (Figure 5.4B) in order to capture a greater 

field of view (63°), which requires correcting before being used in photogrammetry 

(Hastedt et al., 2016). We therefore opted for the 16 mm telephoto lens in this study 

to reduce the post-processing required. This was attached to a Raspberry Pi Model 

4B and LCD display to visualise images, and adjust focus, as they were captured. 

Images from the Raspberry Pi were subsequently compared to images taken from a 

DJI Mavic 2 Pro UAV. Technical comparisons of the setups are given in Table 5.1.  

 

Figure 5.4 – Comparison of sensors at an ice cave feature at Kvíarjökull (~8 km south 

of Fjallsjökull), acquired over a 2-day period as captured by (A) Camera Module v2 

(B) High quality sensor with 6 mm wide angle lens (C) High quality sensor with 16 

mm telephoto lens (D) UAV. 

 

The Pi was mounted in a fixed position on a boat which traversed the 

southernmost ~2.4 km of the ~3 km Fjallsjökull calving face, around 500 m from the 

glacier, while the UAV flew above this boat (Figure 5.5). The Raspberry Pi was 

triggered manually approximately once every ten seconds throughout the transect 
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capturing 315 images in total. While we operated the system manually herein, it is 

important to note, however, that the system is also designed to trigger autonomously 

for timelapse purposes. At the same time, the UAV conducted two flights, capturing 

729 images, ensuring no calving occurred between collecting data from the two 

sensors. The UAV flew closer (~250 m) to the glacier terminus than the boat transect 

to ensure the highest possible accuracy in data collection. In the majority of images, 

the UAV camera was facing the flat calving face of the glacier. While the UAV has 

onboard software to autofocus images, we manually checked and altered the focus 

of the Raspberry Pi camera between images during the boat transect to ensure 

pictures were not blurry as the boat varied in distance from the glacier.  

 Raspberry Pi 

(HD Camera) 

DJI Mavic 2 Pro 

UAV 

Typical time lapse camera 

package (Canon Rebel T5) 

Camera Sensor Sony IMX477 1” CMOS CMOS (APS-C) 

Image size (px) 4056 x 3040 5472 x 3648 5184 x 3456 

Resolution 

(megapixels) 

12.3 20 18 

Horizontal field of 

view 

44.6° 77° 63° 

Images captured 315 729 N/A 

Cost $120* $1,500 $2,600 

 

Table 5.1 – Comparison of technical specifications between Raspberry Pi and UAV 

sensors. A typical time lapse camera package is provided as a comparison and 

follows the setup from Kienholz et al. (2019). The Raspberry Pi High Quality camera 

module is fitted with a 16 mm telephoto lens. *In this study, we used a more expensive 

Raspberry Pi computer (4B) in order to fit a screen for in-field monitoring of images; 

however the $120 cost applies to a cheaper model (Zero W).  

 

In order to test the limits of the Raspberry Pi, we performed additional analysis 

on sub-section B (Figure 5.1). We collected images of the calving face from a portion 

of the shoreline of Fjallsárlón, shown as X to Y in Figure 5.1, which ranged from 1.2 

to 1.5 km from the calving face. Owing to bad weather, we only collected shoreline 

data for a limited section (covering sub-section B entirely) before the glacier was 

obscured from view by fog. This experiment allowed us to assess how the Pi 

performed at long-range.  
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We also conducted an additional experiment on sub-section B to determine 

the performance of the camera under sub-optimal conditions, by removing 21 of the 

31 images captured by the boat transect and deriving point clouds from the remaining 

ten camera positions. This reflects the reality of the trade-off between data quality 

and practical considerations. In theory, fewer images should result in a lower point 

density (Micheletti et al., 2015), but the monitoring network would be cheaper as fewer 

cameras are required. 

 

 

Figure 5.5 – An overview of our data acquisition. (A) Fjallsjökull, leading into 

Fjallsárlón, as of 17th September 2021. (B) Raspberry Pi on the shoreline survey. The 

camera was stabilised with a small tripod, with hardware and batteries connected in 

a weatherproofed receptacle. (C) Boat survey, approximately 500 m from the glacier 

front, as captured by the UAV. 

 

5.2.3. Photogrammetry and M3C2  

For images from both the Raspberry Pi and UAV, far cliffs (rock faces flanking 

Fjallsjökull; Figure 5.5A) were masked out prior to generating tie points in Agisoft 

Metashape. Images from the UAV were georeferenced using its onboard GNSS real-
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time kinematic positioning (RTK) system. Images from the Raspberry Pi were 

georeferenced by aligning them to images captured by the UAV and producing a 

sparse point cloud, before removing UAV images to produce the final dense point 

clouds. Point clouds from both sensors were therefore referenced to this RTK system 

only, rather than having a global reference (akin to Luetzenburg et al., 2021). While 

the Raspberry Pi images could be successfully aligned without UAV images, our 

workflow was designed to unify the coordinate systems of the point clouds and 

thereby avoid confounding co-registration errors in the cloud comparison. Eight high 

quality points clouds were produced from each of the Raspberry Pi and UAV at 

various stages along the calving face (locations in Figure 5.1) with a mild filter using 

Agisoft Metashape. Sub-sections were computed at natural break points in the glacier 

front geometry, at approximately 250 – 350 m intervals, owing to limitations in 

computer processing. We then cropped point clouds to the calving face, cleaned with 

a noise filter, and finely aligned the Raspberry Pi clouds to the UAV clouds assuming 

a 95% overlap in CloudCompare.  

Differences between points clouds from the Pi and UAV were compared using 

the Multiscale Model to Model Cloud Comparison (M3C2) tool in CloudCompare 

(Lague et al., 2013). M3C2 calculates a series of core points from the Pi cloud and 

quantifies the distance to the UAV cloud about those points using projection cylinders. 

This requires users to define key parameters, including the width of normal (D), 

projection radius (d), and maximum depth of the cylinder (h) (all parameters in 

metres). We followed approaches developed by Lague et al. (2013), and applied to 

glacierised environments by Westoby et al. (2016) and Watson et al. (2017), of 

calculating the normal width to take into consideration surface roughness and the 

scale of the model. We used a standardised value of 0.6 m across all models as this 

fell within the range of 20-25 x surface roughness for the vast majority (>98%) of 

points, following equations presented in Lague et al. (2013). Projection diameter was 

calculated as a function of point density, so to ensure each projection cylinder had a 

minimum of five points, we used a value of 1.1 m. Finally, we set the maximum 

projection depth to 10 m to exclude grossly erroneous values (<0.01% of all values). 

 

5.3. Results 

5.3.1. Use of Raspberry Pi cameras to generate point clouds 

The Raspberry Pi-based camera captured high-resolution imagery across the 

full length of Fjallsjökull, at distances of up to 1.5 km. Glacier textures and structures, 
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such as debris patches and cracks in the ice, were clearly visible within the photos 

captured by the Raspberry Pi (see example imagery in Figure 5.6) to aid 3D 

reconstruction. The ground sampling distance (GSD) (the on-ground distance 

represented by one pixel) of the Raspberry Pi at 500 m range was 3.80 cm and at 1.5 

km was 11.41 cm (following calculations by O’Connor et al., 2017). By comparison, 

trail cameras used by Mallalieu et al. (2017), at a mean distance of 785 m to the 

glacier, achieved a GSD of 28.05 cm. We successfully generated point clouds along 

the front face of Fjallsjökull using the 315 Raspberry Pi photos captured from the boat 

survey. Eight point clouds were generated at high resolution, with survey lengths of 

~250 – 350 m each. The full range of calving face heights observed at Fjallsjökull, 

from ~1 m to ~15 m were examined in this analysis. Point clouds were largely 

complete, though many were speckled in appearance.  

 

 

Figure 5.6 – Example images captured by the Raspberry Pi sensor. Images A, B, and 

C are taken from the boat transect (~500 m from the glacier front) and have an 

approximate field of vision of ~100 m, while D is captured from the shoreline ~1.2 km 

from the glacier, with an approximate field of vision of ~400 m.  
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5.3.2. Comparison between Raspberry Pi and UAV point clouds 

Point clouds generated by the Raspberry Pi show a close comparison to those 

derived from the UAV, with a mean absolute error of M3C2 distance of 0.301 m and 

a standard deviation of 0.738 m across the Fjallsjökull calving face (Table 5.2, Figure 

5.7). Point density of all Raspberry Pi point clouds was high (< 10 cm average spacing 

between points), allowing small features on the ice surface to be distinguished from 

~500 m away. Extremely high M3C2 values (a threshold greater than 1 m difference 

between the UAV and Raspberry Pi) are found at the far edges of the models where 

fewer frames are used to produce the point clouds, and at the highest parts of the 

margin (particularly prominent in panel E of Figure 5.7). These values account for 

5.03% of points (3.31% > 1 m; 1.72% < -1 m) and there is a slight positive skew (the 

Pi is overestimating the range to the glacier) in the error distribution with a mean 

M3C2 distance of 4.31 cm (Figure 5.8). 

 

Frontal 

section 

Points in 

Pi Cloud 

(million) 

Points in 

UAV Cloud 

(million) 

M3C2 mean 

(m) 

M3C2 Standard 

deviation (m) 

M3C2 Mean 

absolute error 

(m) 

A 2.446 0.634  0.097 1.079 0.445 

B 3.289 0.763  0.033 0.461 0.272 

C 1.793 0.602 -0.0001 0.563 0.253 

D 1.986 1.322  0.030 0.760 0.259 

E 2.025 1.346  0.055 1.020 0.363 

F 0.891 0.500 -0.012 0.694 0.334 

G 2.071 1.472  0.063 0.640 0.298 

H 1.276 1.171  0.048 0.530 0.229 

ALL 15.777 7.810  0.0431 0.738 0.301 

 

Table 5.2 – Key statistics and M3C2 comparison between point clouds generated by 

the Raspberry Pi and UAV. Frontal sub-sections can be seen in Figure 5.1.  
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Figure 5.7 (Part 1 of 2) – Fjallsjökull calving face running from northernmost (A) to southernmost (H) sections, as captured by the Raspberry Pi 

and UAV, and the M3C2 distance between each. Note varying scales between each section are to minimise white space in figure design. 
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Figure 5.7 (Part 2 of 2) – Fjallsjökull calving face running from northernmost (A) to southernmost (H) sections, as captured by the Raspberry Pi 

and UAV, and the M3C2 distance between each. Note varying scales between each section are to minimise white space in figure design. 
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Figure 5.8 – Histogram of M3C2 distance values across the Fjallsjökull calving face, 

combining all eight sub-sections together. There is a slight positive skew in 

distribution (mean 4.31 cm). M3C2 distances are cropped here to ±2 m for display 

purposes, but some values reach ±10 m. Bin widths are 0.05 m. 

 

5.3.3. Exploring the limits of Raspberry Pi cameras in producing 3D models 

We analysed sub-section B (~250 m long) under a number of other scenarios 

to explore the limits of Raspberry Pi cameras in SfM studies. Capturing images from 

the shoreline of Fjallsárlón, between 1.2 and 1.5 km away from the calving face 

(denoted by X and Y in Figure 5.1), increased the standard deviation of M3C2 

distance (0.742 m compared to 0.461 from the boat transect, a 61% increase) and 

mean absolute error (0.341 m compared to 0.272 m from the boat transect, a 25% 

increase). The point cloud itself is largely complete, though visibly more speckled than 

the point cloud generated from the closer survey (Figure 5.9). We observed similar 

patterns of error in the point clouds captured from the shoreline as from the boat 

transect, with the highest errors corresponding to ridges of jagged ice.  

Sub-section B was generated using 31 images from the Raspberry Pi in Figure 

5.7 and Table 5.2; but timelapse camera arrays are generally limited to 10 – 15 

cameras due to cost. We found that using a reduced set of ten images had little impact 

on mean absolute error (0.263 m compared to 0.272 m using all images, a 3% 
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decrease), but increased the standard deviation (0.627 m compared to 0.461 m when 

using all images, a 36% increase). This was most notable towards the periphery of 

the point cloud (Figure 5.9G), though the point cloud contains more gaps than the 

original. Sub-section B is approximately 250 m long and an individual image captures 

~80 m of the glacier front, which means there was a low level of overlap (2-3 images 

at the right hand side which is most speckled, Figure 5.9). Given the good quality of 

images acquired at a greater distance, positioning cameras further away to create 

more overlap between images would likely address this speckle issue.  

 

Figure 5.9 – Exploring the limits of the Raspberry Pi sensor in comparison to UAV. 

(A-C) Sub-section B as generated by (A) Raspberry Pi), (B) UAV, and (C) the 

corresponding M3C2 comparison. (D) Point cloud generated by Raspberry Pi when 

positioned from the Fjallsárlón shoreline, at a distance of 1.2 – 1.5 km, and (E) 

corresponding M3C2 comparison with UAV. (F) Point cloud generated by Raspberry 

Pi from ten images, and (G) corresponding M3C2 comparison with UAV. 
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5.3.4. Longevity of Raspberry Pi sensors in glacierised environments  

Owing to the impact of the COVID-19 pandemic, a longevity experiment 

involving Raspberry Pi sensors that we began in September 2019 could not be 

completed. We report here our lessons learned with this experiment to enable the 

glaciology community to learn from a wider range of scenarios using Raspberry Pis. 

In order to examine the robustness and longevity of a Raspberry Pi in a glacierised 

environment, we situated a Raspberry Pi Zero W with a camera sensor (camera 

module v2) at a proglacial lake of the Quelccaya Ice Cap, Peru for three months 

between September and November 2019. The Pi was powered by a 12 V lead-acid 

battery and 10 W solar panel, regulated to provide a safe voltage to the Pi by a solar 

charge controller (Figure 5.10). We set the Raspberry Pi sensor approximately 100 

m from the glacier calving margin to capture timelapse imagery for three months. 

During this time, the Pi powered on three times a day to capture an image before 

powering down. The Pi clock was regulated using a Witty Pi 2 attachment which 

should have limited clock drift to ~1 second per week (Coca and Popa, 2012), though 

we were not able to provide an independent assessment of this drift. Images were 

acquired successfully throughout the three month period; however, their poor quality 

(owing to the use of a camera module v2) meant that Agisoft Metashape could only 

produce very low quality point clouds with large data gaps that could not be aligned 

to a UAV-based point cloud for comparison. Upon retrieval, we observed 

condensation in the weatherproof box which had affected the quality of some images 

acquired (a common problem in sub-zero environments; Liu et al., 2021). This could 

be improved with ventilation (Parajka et al., 2012) or desiccant (Liu et al., 2015). The 

results of this longevity experiment outline the success of using a Raspberry Pi in a 

glacierised setting for long time periods, demonstrating their potential as affordable 

alternatives to timelapse DSLR cameras. 
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Figure 5.10 – Raspberry Pi setup at the Quelccaya Ice Cap. (A) Example image 

captured by the Raspberry Pi camera module v2 approximately 100 m from the 

glacier. (B) Comparison image captured by a DSLR camera. (C) The Raspberry Pi 

sensor was housed in a transparent, weatherproof box (and later surrounded by rocks 

to stabilise it). (D) Deconstructed setup, including 12 V lead-acid battery, 10 W solar 

panel, solar charge controller, and Raspberry Pi Zero with camera module v2 

attached. 

 

5.4. Discussion 

5.4.1. Raspberry Pis in SfM-based glaciology studies 

Raspberry Pi cameras have rarely been tested in a glaciological setting, but 

our analysis suggests that they could feasibly be deployed for long-term monitoring 

purposes and, given their comparable quality to a UAV-derived point cloud, have the 

potential to capture and quantify dynamic events (e.g. calving). Our data show that, 

from up to 1.5 km away, Raspberry Pi cameras can detect small features within the 

ice and, when used to generated 3D data, could identify, with confidence, any 

displacement of ice over ~1 m in size. This also holds true for a camera setup using 
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a much-reduced array; our experiments using just ten camera positions yielded 

results that were largely comparable in quality to those comprising the full suite of 

data (31 camera positions).   

Improvements to research design, such as positioning cameras at a more 

optimal range of heights and angles, are likely to reduce error in the Raspberry Pi 

point clouds (James and Robson, 2012; Bemis et al., 2014). A key limitation of our 

research was that images were captured only from a fixed height in the boat. Indeed, 

it is no coincidence that we observed the lowest errors between the two sensors at 

approximately the height level of the boat across all point clouds generated. 

Therefore, using a greater variety of camera angles and positions, for example by 

positioning cameras above a glacier front using nearby bedrock or moraines, would 

likely reduce error across the model (Mosbrucker et al., 2017). While our setup and 

analysis therefore may represent a conservative view of the potential use of 

Raspberry Pis in photogrammetry, it also reflects the practical considerations of 

working in field environments which are frequently sub-optimal for deploying fixed 

cameras.  

Our study used relative georeferencing methods, removing the need for 

absolute positioning of the clouds using surveyed ground control points. Over glacier 

calving margins, placing ground control points is especially challenging and alternate 

methods are required (Mallalieu et al., 2017). There is precedent in using the 

geospatial data from one point cloud to reference another when comparing sensors 

(Zhang et al., 2019c; Luetzenburg et al., 2021). Alternatively, the positions of the 

cameras can be used to determine the georeferencing. This ‘direct georeferencing’ 

can be achieved using GNSS-based aerial triangulation of fixed positions, or an on-

board GPS unit that shares the clock of the camera such that a precise time-stamp 

of location can be associated with each of the acquired images (Chudley et al., 2019).  

In this study, we cropped our point clouds to show only the front, flat, calving 

face of Fjallsjökull. This involved significant trimming of point clouds generated by the 

UAV (up to 40% of points removed), while the Raspberry Pi only required minor 

adjustments (~10% of points removed). A key limitation of the Raspberry Pi setup is 

that it cannot achieve the wide range of viewing angles and heights as a UAV does, 

and so analysis is limited to the front (i.e. vertical section) of the calving face. While 

this means the setup can monitor advance/retreat and calving events, the additional 

ability to generate a 3D model of the top of a glacier surface could potentially provide 

important information on calving dynamics, such as crevasse formation and 
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propagation which could be indicative of imminent calving (Benn et al., 2007). In 

previous work, monitoring the glacier surface in addition to the calving face has 

enabled the reconstruction of events leading up to major calving events, including the 

calculation of strain rate and identification of propagation prior to calving (Jouvet et 

al., 2017). Furthermore, other glacier characteristics, such as surface velocity, can 

indicate imminent calving but require a more top-down view of the glacier surface 

(Ryan et al., 2014). Modelling a greater extent of the glacier terminus could be 

particularly important if such a system was to be integrated into a GLOF early warning 

system.  

For studies making use of a typical DSLR-grade handheld camera, James 

and Robson (2012) and Smith et al. (2016) suggest a typical relative precision ratio 

of 1:1000 – an error of 1 m when captured at a distance of 1000 m (though high-

quality SfM often far exceeds this (James et al., 2017)). At 500 m distance, we 

achieved a mean absolute precision of 1:1667 and at 1.2 – 1.5 km distance a mean 

of 1:978. These values almost match the precision thresholds set for DSLR-grade 

cameras, and exceed the precision achieved by similarly priced trail cameras used in 

glacierised environments (Mallalieu et al., 2017). While terrestrial laser scanners can 

achieve greater levels of precision for monitoring glacier fronts (e.g. Pętlicki et al., 

2015), their high weight and cost (tens of thousands of dollars) often precludes their 

use in glaciology research. 

 

5.4.2. Future applications in glaciology and potential for automation 

Glacier dynamics at a calving margin are complex, but a low-cost timelapse 

camera array can offer insight into many key questions. Ice velocities at the terminus 

of Fjallsjökull range from ~40 m a-1 to ~200 m a-1 for lake terminating ice (Dell et al., 

2019). Glacier frontal positions and their diurnal variability, can be monitored using 

this Raspberry Pi approach, as well as calving events that exceed 1 m in depth. 

Calving dynamics, including characterising different types of calving mechanisms and 

the impact of seasonality and lake drainage, can also be monitored from timelapse 

cameras (Mallalieu et al., 2020) to aid in the understanding of how glacier calving 

contributes to the overall mass balance of a glacier and how this fluctuates over 

varying timescales (How et al., 2019; Bunce et al., 2021). Using timelapse 

photogrammetry, it is theoretically possible to detect precursors (rotation, elevation 

change, creep) to calving events on the order of magnitude of >1 m, such as observed 

at Sermeq Kujalleq 65 hours prior to calving (Xie et al., 2016). 
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In addition to calving events, terrestrial-based photogrammetry based on a 

Raspberry Pi system could monitor other important glacier dynamics at a low-cost. 

There is a long history of using terrestrial photogrammetry for monitoring glacier 

thinning to quantify mass balance change of mountain glaciers. While this 

conventionally involves repeat site visits (Brecher and Thompson, 1993; Piermattei 

et al., 2015), our approach would not require such regular site visits. Similarly, while 

glacier velocity measurements can be achieved with a single camera, an SfM 

approach provides higher spatial accuracy and ability to monitor smaller changes 

(Lewińska et al., 2021). Where surrounding topography allows, positioning Raspberry 

Pi cameras to look down on to the glacier surface would allow for the monitoring of 

supraglacial lake filling and drainage, or ice-cliff recession (Watson et al., 2017). 

Creep rates of rock glaciers have been successfully monitored through terrestrial 

photogrammetry (Kaufmann, 2012) and UAV surveys (Vivero and Lambiel, 2019), but 

again requiring repeated site visits. In each of these additional applications, low-cost 

Raspberry Pi cameras could produce accurate 3D models at a greater temporal 

frequency, without the logistical challenges, and financial costs, associated with 

repeating fieldwork. 

We speculate that, given likely sensor innovation and the decreasing cost of 

technology, the potential of low-cost sensors in glaciology research will only increase 

(Taylor et al., 2021). We envisage Raspberry Pi computers, or other microprocessors, 

to play a key role in this expansion. Almost all Raspberry Pi models have built-in WiFi 

which allows data sharing between individual devices. With a WiFi radio on-site, 

providing a range of many hundreds of metres, individual cameras could 

autonomously send their data towards a central, more powerful, Raspberry Pi unit for 

further analysis. Similar wireless sensor networks in glaciology have been produced 

to monitor seismicity (Anandakrishnan et al., 2022), ice surface temperatures (Singh 

et al., 2018), and subglacial hydrology (Prior-Jones et al., 2021). We speculate that 

an array of Raspberry Pi computers could produce the first near real-time 

photogrammetry setup for continuous 3D monitoring of glacier calving fronts (Figure 

5.11). With the development of autonomous photogrammetry pipelines (Eastwood et 

al., 2019), this system could, theoretically, run entirely independent of user input. 

Furthermore, the flexibility of Raspberry Pi computers, particularly their ability to 

operate multiple sensor types from one unit, opens up the possibility for wide sensor 

networks across glaciers – creating comprehensive digital monitoring of rapidly 

changing environments (Hart and Martinez, 2006; Taylor et al., 2021). 
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Figure 5.11 – A hypothetical set up for a time-lapse camera array system situated on 

the Western margin of the Quelccaya ice cap to monitor calving events. The WiFi 

signal is transmitted to the site via a long-range antennae from a hydroelectric dam 

~20 km away, allowing data to be transmitted from the Raspberry Pi computers to a 

remote location for rapid processing. 

 

There exists considerable potential for low-cost sensors in mountain glacier 

communities, which are predominantly located in developing countries. Early warning 

systems situated around glacial lakes in the Himalaya have successfully prevented 

disaster during a number of GLOF events by allowing time for downstream 

communities to evacuate (Wang et al., 2022). By reducing the cost of camera-based 

sensors that are frequently used as part of a monitoring system (for example at 

Kyagar glacier in the Chinese Karakorum; Haemmig et al., 2014), more cameras can 

be situated to monitor calving rates, velocity, or stability at higher precision and 

accuracy in 3D. A low-cost also means that more community-driven initiatives based 

on this Raspberry Pi system are viable. Such systems must be co-designed, and 

ultimately owned by, the communities they serve. Simple systems (such as Raspberry 

Pis), with components that are easily replaceable and with open access 

documentation, lowers the technical knowledge required to maintain an early warning 

system and so a greater diversity of stakeholders can engage with its maintenance. 

Previous work has shown that diversity in engagement, and genuine understanding 
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of the social structures on which communities are built, is essential for the success of 

early warning systems like these (Huggel, et al., 2020).  

 

5.4.3. Practical recommendations 

While we suggest that Raspberry Pi cameras offer an alternative to expensive, 

DSLR cameras for timelapse camera arrays, based on our experiences we note a 

series of recommendations to future researchers and communities looking to use this 

approach in their own systems: 

• Camera setup must be carefully considered and adopt best practice set by 

others (e.g. Mallalieu et al., 2017) with regards to angle, overlap, and 

positioning; 

• Positioning cameras further away from the target (~1 km) where possible can 

capture a wider frame of reference while remaining viable for detecting 

change of magnitude >1 m, so fewer cameras are needed for an array setup; 

• There is only a narrow window of focus when using the Raspberry Pi 16 mm 

telephoto lens, particularly over 1 km from the target, and an in-field screen 

is essential to ensure correct setup; 

• In the absence of an in-field screen, SSH-based access to the Raspberry Pi 

can allow you to see image acquisitions on a computer screen or 

smartphone, though leaving wireless connectivity enabled draws more 

power; 

• Raspberry Pi computers draw very little power when commanded to turn 

on/off between image acquisitions, and can be sustained for many months 

using a lead-acid battery and small solar panel; 

• While Raspberry Pi cameras are robust and usable in sub-zero 

temperatures, adequate weatherproofing must be used to ensure that the 

camera lens does not fog over time. 

 

5.5. Conclusions  

We conducted a photogrammetric survey along the calving face of Fjallsjökull, 

Iceland, to compare a SfM point cloud generated using imagery from low-cost 

Raspberry Pi camera sensor to that derived using imagery captured from a UAV. We 

successfully produced point clouds along the front of Fjallsjökull, with a mean 

absolute M3C2 distance between point clouds generated by the two sensors of 30.1 
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cm, and a standard deviation of 73.8 cm. The Raspberry Pi camera also achieved 

sub-metre error at distances of 1.2 – 1.5 km from the glacier. This error is comparable 

to DSLR-grade sensors, and highlights the potential for Raspberry Pi cameras to be 

used more widely in glaciology research and monitoring systems. For certain 

applications, we suggest, conservatively, that Raspberry Pi sensors are viable for 

detecting change of magnitude >1 m, such as calving events and terminus 

advance/retreat. With WiFi capabilities within the Raspberry Pi computer, real-time 

data transmission could open an avenue for autonomous photogrammetry to enable 

this system to be used in warning against geomorphic hazards. More generally, their 

affordability, flexibility, durability, and ease of use makes them well-positioned to rival 

more expensive timelapse systems without compromising data accuracy, while also 

enhancing the potential for autonomy and remote system management. 
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Chapter 6 

Discussion and recommendations on the applicability of these 

techniques to monitoring Peruvian mountain glaciers 

 

This thesis has demonstrated the applicability of a range of novel remote 

sensing technologies to monitoring Peru’s mountain glaciers, using a variety of 

sensors, processing techniques, and methodologies. Each technology or technique 

is novel within the Cordillera Vilcanota, and indeed in its application to mountain 

glaciers more broadly, showing potential for their integration into management 

schemes to support policymakers in securing future water resource from glacierised 

regions. Each chapter within this thesis contains a dedicated discussion section to 

synthesise findings. This chapter therefore will present a brief summary of findings 

assessed against the research objectives given in Chapter 1, discuss the implications 

for this research in the Cordillera Vilcanota and more broadly, and outline future 

research directions resulting from this work.   

 

6.1. Research summary 

 Chapter 1 of this thesis began by outlining the importance of mountain glaciers 

as water resources and the hazards posed to communities living in close proximity to 

glaciers by climate warming. This thesis sought to show that novel remote sensing 

technologies could assist in developing adaptation and mitigation interventions to 

support these communities. Four research objectives were set in Chapter 1 to provide 

a framework for a holistic assessment of this topic. This section summarises how the 

results of this thesis have fulfilled the four research objectives. 

 

Objective 1 

Explore the current state of remote sensing over the mountain cryosphere, and 

identify remote sensing techniques and sensors currently in development, or used in 

other geoscience disciplines, that can be applied to the mountain cryosphere. 

 

 Chapter 2 of this thesis presented a comprehensive review of the current 

capabilities of remote sensing in the mountain cryosphere. Here, key advents in this 
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discipline were outlined, including cloud computing, artificial intelligence, open source 

automated pipelines, new satellite missions, and low-cost sensors. Many of these are 

novel to mountain glacier systems, but have been readily deployed in other 

geoscience disciplines. Finally, this review outlined upcoming remote sensing 

technologies, such as planned satellite missions, to highlight future opportunities for 

research in this discipline. 

 

Objective 2 

Quantify the mass balance and area change of glaciers in the Southern Peruvian 

Andes, concurrently examining the applicability of stereo archives to provide long-

term monitoring over small mountain glaciers. 

 

 Stereo archives have been exploited, for the first time in this data-scarce 

region, to quantify the regional glacier mass balance (-0.477 ± 0.067 m w.e. yr-1) of 

the Cordillera Vilcanota between 2000 and 2020. In addition, open source cloud 

computing and the Landsat archive were harnessed to quantify a 512 km2 recession 

of glacial ice across the Southern Peruvian Andes from 1975 to 2020 – a decline of 

more than half of their original size. This study identified the key drivers of ice loss as 

climate warming and the elevation of glaciers. With the median elevation of glaciers 

rising by 24.8 m per decade in the Cordillera Vilcanota, more glaciers will be pushed 

into net ablation in the near future. 

 

Objective 3 

Explore the applicability for using new satellite altimetry missions (Sentinel-3 and 

ICESat-2) over small mountain glaciers, concurrently identifying opportunities for 

integrating altimetry data into glacier monitoring schemes. 

 

 Sentinel-3, without the addition of a priori elevation information, does not 

capture elevation data over mountainous regions in open-loop tracking mode. 

Updating the OLTC to shift the tracking range window allows for some limited data 

acquisition, but this satellite mission is likely to be useful to only a very small handful 

of glaciers worldwide. Where Sentinel-3 passes over proglacial lakes, elevation 



123 
 

retrieval is more successful. ICESat-2, with a 6 km range window, acquires elevation 

data over mountainous areas with a high degree of accuracy (mean difference of -

0.85 m to TanDEM-X in off-ice areas). As such, other opportunities for ICESat-2 in 

glacier monitoring schemes include the ability to quantify glacier surface elevation 

change after a 2-year repeat, the depth of large accumulation events, interannual lake 

surface elevation change, and proglacial lake bathymetry. 

 

Objective 4 

Create a novel SfM-based system that captures science-grade 3D models of glacier 

calving fronts at a low-cost, concurrently providing a proof-of-concept for real-time, 

autonomous SfM for a GLOF hazard warning system. 

 

 Using a Raspberry Pi camera sensor, science-grade point clouds (mean 

difference to a UAV was 0.31 ± 0.74 m) were generated of the calving face of 

Fjallsjökull, Iceland. The Raspberry Pi also achieved sub-metre difference to the UAV 

at a distance of 1.2 – 1.5 km from the glacier, comparable to more expensive DSLR 

cameras. As a hazard warning system, an array of Raspberry Pi sensors situated 

surrounding a proglacial lake should be able to detect change of magnitude >1 m, 

such as calving events and terminus advance/retreat. By harnessing the WiFi 

capabilities of the Raspberry Pi to transmit data upon capture, these sensors could 

therefore be used to generate real-time point clouds of glacier margins to raise the 

alarm following a large calving event. 

 

6.2. Applicability of novel remote sensing technologies to the Cordillera 

Vilcanota 

Within the Cordillera Vilcanota, two key stakeholders could benefit from the 

use of the remote sensing technologies outlined in this thesis: EGEMSA (the energy 

company operating the hydroelectric dam at Laguna Sibinacocha) alongside other 

commercial operations relying on meltwater downstream, and residents living in close 

proximity to the ice.  

The hydroelectric plant at Laguna Sibinacocha has been operational since 

1996 and, during the dry season, is almost entirely reliant on glacial meltwater to 

maintain streamflow through the dam (Sarango et al., 2021). However, as the dry 
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season is projected to increase in duration with climate change, this will lead to an 

increased reliance on glaciers (up to 83% of water contribution; Martínez et al. (2020)) 

to maintain reservoir levels (Kronenberg et al., 2016). More broadly across the tropical 

Andes, glacial meltwater powers up to 732 MW of hydropower production during the 

dry season (Buytaert et al., 2017). Remote sensing-based modelling has been used 

to assist in identifying suitable sites for hydropower projects (Kulkarni et al., 2002; 

Farinotti et al., 2019), but numerical modelling is more typically used to project the 

impact of climate warming on future meltwater and, subsequently, streamflow 

(Beniston and Stoffel, 2014; Schaefli, 2015). However, validating these models to 

understand which trajectory the glacierised environment is following often requires 

field-based data collection. Once hydropower projects are established, optical 

satellite data (e.g. Landsat) is often used to quantify ice recession and interannual 

snow cover (Negi et al., 2009; Ashraf et al., 2012), but such analyses are limited by 

their lack of elevation-based data. 

The original ICESat mission has previously been used to monitor snow depth 

in Norway, to supply information on seasonal accumulation patterns for hydropower 

generation downstream (Treichler and Kääb, 2017). As demonstrated in Chapter 4, 

ICESat-2 is capable of acquiring vastly more data than ICESat over mountain glaciers 

and, as such, could potentially be used over the Cordillera Vilcanota to monitor 

accumulation in a similar fashion. ICESat-2 is also able to provide regular elevation 

acquisitions over these glaciers in order to validate projections of mass loss in the 

region, to allow for more accurate long-term planning of the longevity of glaciers as 

water resources. To this end, NASA’s open access data portal for ICESat-2, Open 

Altimetry, allows for easy access to these data with low technical requirements and 

no cost involved to implement into a regular monitoring programme.  

For regional policymakers (such as in CORECC, the regional council of the 

Cusco region), understanding the spatial variability in rates of glacier recession is a 

prerequisite for directing adaptation and mitigation programmes, so that interventions 

can be made in the most appropriate watersheds (Condom et al., 2012). In Chapter 

3, low-lying glaciers were identified as at the highest risk of immediate, rapid 

recession – particularly a cluster of glaciers in the North of the Cordillera Vilcanota 

(Nevado Qolquepunco). Intervention schemes could include identifying alternative 

sources of potable water during drought to communities relying on meltwater as their 

primary water resource (Bury et al., 2013) or modelling the future storage capacity of 

new lakes (Drenkhan et al., 2019). While the ASTER satellite continues to operate, 

regular stereo DEMs can still be added to the autonomous pipeline to quantify, across 
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the region, updating mass balance. Concurrently, with the launch of Landsat-9 and 

development of Landsat-NeXt, regular updates to ice area change are easily 

accessible with open access tools such as Google Earth Engine. Integrating these 

approaches into policymaking at a watershed level means that management have up-

to-date data and do not need to await research articles or reports from national 

government (e.g. INAIGEM, 2017; ANA, 2021).  

The expansion in area and volume of lakes at glacier calving margins of the 

Cordillera Vilcanota has increased in recent decades, and is projected to increase 

further under all future climate scenarios (Drenkhan et al., 2018). As such, the 

development of a comprehensive, low-cost SfM-based monitoring system that can be 

easily handed over to a community to develop to their bespoke needs, could be 

transformative. Co-designing the system to be targeted to the needs of local 

residents, and ownership of the final result, is imperative for any such system to be 

successful (Huggel et al., 2020). Raspberry Pi sensors, and all the components 

necessary to build these systems, are readily available in nearby towns and, due to 

the modular build, can be fixed very cheaply. Raspberry Pi computers are designed 

to be easy to learn and have been successfully deployed in educational schemes in 

the Global South (Ali et al., 2013). This success could feasibly be replicated within 

communities of the Cordillera Vilcanota with an appropriate injection of funding.  

  For early warning and climate adaptation schemes to succeed, communities 

living in close proximity to the ice must have good knowledge of the threats posed by 

climate change, clear ownership and understanding of a solution, and capacity to 

implement this solution (Thompson et al., 2020). Across the Cordillera Vilcanota and 

wider Vilcanota-Urubamba basin, there is good general public understanding of the 

cause and risks posed by climate change (Orlove, 2009; Brügger et al., 2021). 

However, the capacity of local communities to adapt to these risks is low. Where the 

Peru-wide average HDI (human development index, a United Nations indication of 

development quantified from 0 to 1) was 0.777 in 2019, communities living beneath 

Nevado Qolquepunco in Marcapata, Vilcanota had an average HDI of 0.202 (Instituto 

Peruano de Economía, 2021). As such, the affordability and durability of monitoring 

schemes is an imperative factor in their success. 

 Ensuring all stakeholders are involved in decisions relating to management 

of water resources is also paramount to their success. Where all parties are not 

considered, this has adverse effects on the ability of monitoring systems to protect 

the communities they are designed to serve. There is precedence in Peru that urges 
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such caution – there have been stand-offs between a hydropower company, the 

national water authority, and local communities at Laguna Parón (Condom et al., 

2012). Here, the dam caused lake levels to vary too greatly from their natural 

expectations, leading to citizens seizing control of the lake to ensure sustainable flows 

year-round. Technological intervention in climate change adaptation schemes can 

have unintended, negative consequences on communities by introducing unequal 

power dynamics which create social tensions (Carey et al., 2012). Such social 

tensions can spill over and ultimately result in the destruction or removal of glacier 

monitoring schemes that were designed to help (Huggel et al., 2020). Only when 

involving all stakeholders and members of communities affected can any of the 

management schemes discussed in this thesis, from satellite-based monitoring to 

field-based warning systems, ultimately be a success. 

Overall, each of the remote sensing technologies discussed in this research 

could be integrated within a variety of management opportunities in the Cordillera 

Vilcanota (Figure 6.1). Key philosophies of open access data, ease of use and 

deployment, and low-cost, are transparent across all suggested applications.  

 

 

Figure 6.1 – Application of the novel remote sensing technologies presented in this 

thesis to the Cordillera Vilcanota. 
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6.3. Wider applications of this research 

The primary focus of this thesis has been on the applicability of novel remote 

sensing techniques to monitor Peruvian glaciers, with a focus on the Cordillera 

Vilcanota. However, this research can also benefit communities, policymakers, and 

researchers of other mountain glacier regions worldwide.  

In Chapter 3 of this thesis, we compared our estimates of mass balance from 

an ASTER DEM time series to those of a global dataset generated by Hugonnet et 

al. (2021). This global dataset is open access, covers all mountain glaciers, and 

quantifies surface elevation change in 5-year intervals from 2000 to 2020. However, 

prior to this thesis, its applicability to challenging mountainous terrain had not been 

explored. Generating mass balance values for the Cordillera Vilcanota using our 

dataset (-0.477 ± 0.067 m w.e. yr-1) was almost no different to using their dataset (-

0.479 ± 0.048 m w.e. yr-1). By comparing their global approach to a bespoke approach 

with a higher resolution seed DEM and output product, this work provided the first 

verification for the Hugonnet et al. (2021) global dataset over mountain glaciers. While 

there remains limitations with the Hugonnet dataset, particularly its coarse spatial 

resolution and high uncertainty over very small glaciers, generating bespoke ASTER 

DEMs to assess surface elevation change in small areas (e.g. Minowa et al., 2021; 

McDonnell et al., 2022) is perhaps no longer necessary. Where these data are 

needed, this thesis moves the ASTER DEM time-series method to Google Earth 

Engine, a freely available (for non-commercial use) cloud computing interface, to 

lower the technical barrier that faces those needing to use this approach.  

This thesis has outlined the effectiveness of two key satellite missions in 

monitoring the mountain cryosphere: ASTER (Chapter 3) and ICESat-2 (Chapter 4), 

yet both satellites have operated beyond their operational life with no freely available 

alternatives yet in development. Alternative optical stereo satellites to ASTER, such 

as WorldView and Pléiades will continue to operate but, as commercial operations, 

their datasets will not be openly available. Open access satellite data have clear 

societal and economic benefit, and access to these data have transformed monitoring 

of the cryosphere (Pope et al., 2014; Wulder and Coops, 2014). Indeed, the public 

release of the full ASTER catalogue in 2016 immediately led to the creation of the first 

iteration of the ASTER DEM time-series method to quantifying glacier mass balance 

(Berthier et al., 2016), which was adapted in this thesis. Similarly, ICESat-2 has the 

potential to acquire vast volumes of data over mountain glaciers and, while designed 

as only a three-year mission, has already exceeded its operational life (Markus et al., 



128 
 

2017). The original ICESat mission remained operational for seven years (planned 

for five) but, from 2009 to 2018, the IceBridge mission (to ensure no data loss between 

satellites) only acquired data over ice sheets and Alaskan glaciers. There is a clear 

need for a new satellite mission to acquire regular elevation data over mountainous 

terrain in an unbroken record, whether from optical stereo images or altimeters.  

The development of a low-cost system to monitoring glacier calving fronts has 

large benefit outside of Peru. In the Himalaya, the area of glacial lakes have expanded 

by 14% between 1990 and 2015 (Nie et al., 2017). Although this expansion has not 

resulted in an increase in GLOF frequency (Veh et al., 2019), disaster risk 

management is nevertheless vital (Thompson et al., 2020) and can be supported by 

networks of field-based sensors (Fukui et al., 2008; Kumar et al., 2020). Identification 

of hazards and the development of early warning systems should be bespoke for 

each setting they are placed in, and the initiation mechanisms for GLOFs and other 

hazards may not be the same in different regions. Yet, the timelapse array of 

Raspberry Pi camera sensors outlined in Chapter 5 could (with the addition of further 

research) be adapted to monitor the hazard posed by hanging glaciers and 

avalanches – threats which may be more apparent in the Himalaya than the Peruvian 

Andes (Lala et al., 2018; Shugar et al., 2021). By identifying ~1 m depth change in a 

target up to 1.5 km away, the potential for these sensors across mountainous regions 

is significant.  

 

6.4. Future research directions 

In this thesis, the application of new remote sensing technologies and 

techniques to the mountain cryosphere has been demonstrated. This opens a broad 

range of future research directions across the discipline of remote sensing of the 

cryosphere to build upon this work. 

To quantify glacier area change in Chapter 3, we used the Landsat archive to 

delineate annual glacier boundaries. While this required manual intervention, editing 

was minimal in recent years when using Landsat-8 imagery. Combining this approach 

with deep learning approaches used to delineate calving fronts of ice sheets 

(Baumhoer et al., 2019) or enhance the detection of debris covered ice (Xie et al., 

2020) could result in an annually updating, self-generated glacier boundary product. 

Our approach of using NDSI and NDWI to detect glacial ice resulted in some data 

gaps in years where snow or cloud cover were particularly heavy. A more 

sophisticated approach, working on a pixel-by-pixel basis to detect cloud and snow, 
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and harnessing the growing Sentinel-2 archive to increase the number of cloud-free 

acquisitions, should help minimise these data gaps for subsequent studies. Lastly, 

when multi-sensor missions become readily available, the combination of SAR and 

optical data could further strengthen this delineation by building upon historic works 

(Rott and Mätzler, 1987) to produce transformative, automated products. 

The method to produce a time series of ASTER DEMs to monitor surface 

elevation change has, throughout the evolution of this method, remained open access 

(Berthier et al., 2016; Brun et al., 2017; Dussaillant et al., 2018; Dussaillant et al., 

2019; Hugonnet et al., 2021). However, the technical requirements to replicate this 

methodology have been high; with a requirement to understand complex pipelines, 

install computationally intensive software, and adapt long coding scripts. This 

technical barrier means that this method remained inaccessible outside of academic 

spheres. In Chapter 3, we lowered these technical barriers by integrating all complex 

analysis steps into a Google Earth Engine workflow. Additionally, while in this 

research we generated ASTER DEMs from the Level 1A product, the auto-generated 

‘AST14’ DEM product could also be considered accurate enough for this level of 

analysis. Users simply need to upload AST14 DEMs of their area of interest to our 

Google Earth Engine script to replicate the methodology of our study. While the 

Hugonnet et al. (2021) global dataset covers many applications of this method in 

glaciology, the option is now available for policymakers to produce their own 

estimates of mass balance in a way that is bespoke to their region of interest. 

Over the coming years, and as the ICESat-2 archive grows, scientific research 

using altimetry over mountain glaciers will vastly increase. The potential for this 

satellite are enormous, crossing a broad range of applications to the mountain 

cryosphere. More accurate estimates of mass balance can be produced to constrain 

the large uncertainty (in comparison to ice sheets) in global datasets (Slater et al., 

2021). Similarly, mass balance of the smallest glaciers (e.g. in the Cordilleras 

Urubamba and Vilcabamba) can now be quantified, where even the ASTER DEM 

time series approach failed to produce an accurate measure of mass balance. Over 

larger ice caps, such as Quelccaya, future research will use ICESat-2 to validate 

optical stereo DEMs and further reduce the uncertainty of mass balance change in 

glacier accumulation zones (Pieczonka and Bolch, 2015). To better understand the 

potential for the ATL03 product of ICESat-2 to derive proglacial lake bathymetry, 

global datasets of surface water (Pekel et al., 2016) could be combined with the 

ICESat-2 archive in Google Earth Engine to identify lakes where high confidence 

photon returns are captured beneath the lake surface.  
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In order to assess the application of Raspberry Pi camera sensors to operate 

as part of a timelapse array, each of the components described in Chapter 5 must be 

brought together in a full proof-of-concept study before the system could be used as 

a genuine early warning system for GLOFs. Using the lessons learned from this work, 

the implementation of such a study should be straightforward. Our sensors are 

designed to autonomously acquire data and, while further work is needed to improve 

the waterproof casing of these cameras, are ready to be placed into fixed positions at 

glacial lakes. Future work should look to improve data acquisition via point cloud 

stacking (Blanch et al., 2020) to ensure robust data can still be generated when 

weather conditions lead to sub-optimal acquisition. Automating many of the post-

processing steps (e.g. following approaches laid out by Eastwood et al., 2019) will be 

the final research step needed in order to test the ability for Raspberry Pis to be used 

in an autonomous early warning system. Crucially, moving forward, this work should 

be co-designed by communities living in close proximity to glaciers to ensure that 

community knowledge and experience, which may have been overlooked in this 

thesis, is integrated into the design of any such system.  

In light of recent deadly glacier collapse events, such as at Marmolada glacier 

in the Italian Alps (July 3rd 2022) and a glacier near Chamoli, Uttarakhand, India (7th 

February 2021), urgent work should be conducted on identifying topographic 

precursors to warn downstream communities of imminent danger. Potentially 

precursor seismic signals were detected at Chamoli the day prior to collapse, 

alongside cracking and wedging of the ice surface (Tiwari et al., 2022). In a ten-year 

monitoring study of an Italian glacier, where widening crevasses were also identified 

as a precursor to  collapse events, the availability of real-time data was critical in the 

development of a warning system (Dematteis et al., 2021). The low-cost of Raspberry 

Pi cameras, their high-quality camera sensors, and their flexibility to adapt to a wide 

range of physical environments, means that they could become critical in the 

development of warning systems across mountain glaciers to protect communities 

from future glacier collapse events. 

New remote sensing technologies show clear potential for monitoring 

mountain glaciers. Over the next decade, petabytes of usable data will be acquired 

over data-scarce mountain glacier regions to help us gain a deeper understanding of 

the way they are responding to climatic changes. Ideally, these data will be used by 

researchers and practitioners to inform water resource management charged with 

ensuring continued fresh water supply to the millions who rely on glaciers, and saving 

lives in the face of hazards from an increasingly unstable mountain cryosphere. We 
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stand at the dawn of this explosion of research potential, and principles of open 

science and collaboration with communities and stakeholders must be deeply 

intertwined in order to channel this potential into societal good. 
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Chapter 7 

Conclusions 

 

This thesis sought to identify novel remote sensing technologies and test their 

performance over mountain glaciers, focused on the Peruvian Cordillera Vilcanota.  

Cloud computing and new, automated, pipelines can harness the ASTER and 

Landsat archives to quantify mass balance and area change over mountain glaciers. 

For data-scarce regions, these open access tools represent an opportunity to quantify 

mass balance, identify the key drivers of ice loss, and target action efforts to areas 

where ice loss is greatest. In the Cordillera Vilcanota, and neighbouring Cordilleras, 

these innovations in Chapter 3 led to the first region-wide quantification of mass 

balance, ELA change, and multi-decadal ice area change. As the climate continues 

to warm, the ELA will continue to rise and expose large, flat glaciers, such as the 

Quelccaya ice cap, to net ablation. Chapter 3 demonstrates that open access optical 

stereo datasets, such as ASTER, can play a key role in informing policymaking to 

manage the future threat of glacial hazards and ensure water security across the 

Cusco region. 

New satellite altimetry missions represent a step-up in capability and can now 

be used to acquire regular elevation retrievals over mountain glaciers at an 

unprecedented spatial scale for this technique. While the open-loop tracking mode of 

Sentinel-3 yielded few elevation data points in rugged terrain, Chapter 4 shows 

promise that radar altimeters could, with modifications, be useful in studying mountain 

glaciers. With a higher resolution pseudo-DEM on-board and narrower cross-track 

separation, satellite radar altimetry could, in future missions, be used to measure 

interannual surface elevation change of small mountain glaciers worldwide. ICESat-

2 acquires vastly more data over mountain glaciers at a finer (sub-metre) accuracy to 

TanDEM-X DEMs. Chapter 4 demonstrates the breadth of applications of ICESat-2 

to monitoring the cryosphere of the Cordillera Vilcanota, from proglacial lake 

bathymetry and surface elevation change, to high spatial resolution estimates of mass 

balance where tracks are fortunate to cross over in repeat acquisitions. Chapter 4 

demonstrates the opportunities granted by altimeters to monitor select glaciers across 

small mountain glaciers to assist policymakers in quantifying interannual surface 

elevation change. 
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The quality and capability of low-cost sensors means that affordable 

monitoring and hazard warning schemes can now be developed. Given most 

mountain glaciers are situated in the Global South, cost is often the biggest barrier 

towards creating schemes to monitor emerging hazards. Chapter 5 shows that low-

cost Raspberry Pi camera sensors are an affordable, and accurate, alternative to 

more expensive DSLR cameras in glaciology fieldwork. Using an array of Raspberry 

Pi cameras to generate high resolution point clouds, low-cost SfM could provide 

regular 3D models of glacier calving margins at an accuracy similar to a UAV. Chapter 

5 demonstrates that the affordability, flexibility, and durability of Raspberry Pi sensors 

makes them well-positioned to rival more expensive time-lapse systems without 

compromising data accuracy, for remote system management of glacial hazards. 

 Finally, this thesis demonstrates how the implementation of novel remote 

sensing technologies can support stakeholders within mountainous regions. 

Throughout, this thesis highlights the importance of open access datasets and toolkits 

with low technical barriers to use. Remote sensing technologies, from satellite 

missions to bespoke in-field sensors, can be integrated into management schemes 

over small mountain glaciers to support communities living in close proximity to 

rapidly melting ice.  
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