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Abstract 

Particle breakage is an undesired phenomenon in the production chain of the 

pharmaceutical industry as it can strongly impact the product quality of an active 

pharmaceutical ingredient (API) e.g. dissolution rate and bioavailability. Moreover, 

most of the API crystals are organic and of high aspect ratio, thus more prone to break 

in agitation-based drying processes. 

A novel methodology combining experimental and modelling techniques is presented 

to predict the breakage of elongated particles in an agitated bed from the process 

environment and the particles properties. 

The breakage of glutamic acid crystals in their elongated form (β-LGA) is observed 

experimentally in lab-scale agitated filter dryer (AFD). Measurements of particle size 

distribution allows to quantify the fragmentation of crystals throughout agitation in both 

wet and dry beds. The breakage strength distribution of the β-LGA crystals is assessed 

introducing a novel 2-point bending method using atomic force microscopy. In total, 

52 individual crystals are broken. 

A shear cell is built using distinct element modelling (DEM) to mimic the stress 

conditions in an agitated dryer and filled with particles modelled utilising the 

experimentally measured physical and mechanical properties of the β-LGA crystals. 

After optimising the simulation setup, a full-factorial study of uniaxial compressions 

and Couette flows for different normal stresses and particle elongation is performed 

allowing the calculation of the particles internal stress. Correlations between key 

variables are examined to understand the behaviour of the particle bed to its 

mechanical environment, and mathematical models are then created to estimate the 

particles internal stress and calibrated against simulation data. 

Lastly, a breakage kernel is built using a probabilistic approach combining the obtained 

breakage strength of β-LGA crystals and the particles internal stress. The breakage of 

the crystals in a lab-scale AFD is estimated with a designed population balance model 

and the results are validated against experiments. The calibrated model is finally used 

to predict particle breakage for the scale-up of agitation. 
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1 Introduction 

1.1 Background Context  

The drying process in the pharmaceutical industry consists of the purification of the 

active pharmaceutical ingredient (API) whilst preserving its properties [1]. This is the 

last active step of the API production after crystallisation and filtration [2, 3]. A level of 

agitation is applied to the wet particle bed during the drying process to increase the 

drying performance. This agitation increases the stress environment within the particle 

bed, which has been reported as the main cause of particle breakage during the 

production of APIs [4]. The crystals produced in the pharmaceutical industry are in 

majority organic and elongated, therefore they are very sensitive to mechanical shear 

as their main breakage mechanism is the fragmentation by bending stress [1]. The 

effect of the presence of liquid within the particle bed on the extent of breakage isn’t 

clearly defined: some observations show that the stresses on particles decrease due 

to lubrication [1, 5], whilst authors have observed an increase of shear stress for wet 

systems due to the additional cohesion created by liquid bridges [6, 7]. The reason of 

these contradictory observations hasn’t been thoroughly investigated but it is hinted 

that this phenomenon is due to the nature of the material tested [1, 8, 9]. 

The breakage of crystals is of great concern in the pharmaceutical industry. 

Conservation of the desired particle size distribution (PSD) throughout downstream 

processing is extremely important, as PSD changes are known to affect properties 

such as bulk density, dissolution rate [10], flowability and content uniformity of drug 

product [11]. Although techniques like milling can be performed after drying to 

homogenise the particle size, the milling batch product exhibits slower dissolution [12].  

Understanding and predicting the breakage of elongated particles in agitated drying 

systems remains a challenging and active area of research. Computational methods 

such as Distinct Element Modelling (DEM) have been employed to simulate the flow 

of particle beds for various stress conditions [13] and a range of particles aspect ratio 

[14]. Experimental tools like PIV, PEPT and annular shear cell have also been used 

to understand the phenomenon. However the lack of methodology and analytical 

techniques [15] makes the impact of drying processes on powder properties poorly 

understood [16] and the crystal breakage phenomenon isn’t yet totally predictable at 
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industrial scale. For this reason, the production of pharmaceutical compound is 

nowadays based on a resource consuming “try-and-see” methodology. The scale-up 

and outsourcing of drying operations are also challenging [15] as no reliable model 

exists to transpose one equipment conditions to another [17]. 

In a sheared bed, contact forces between particles induce an internal stress which is 

responsible for particle breakage, with a predominance of the bending stress 

component [1]. Therefore, to elucidate the fracture phenomenon of elongated particles 

in agitated drying, the internal stress of individual crystals must be determined within 

an agitated bed. 

 

1.2 Aims and Objectives 

The objective of this research project is to predict the breakage of elongated organic 

crystals within a particle bed for agitated drying process conditions in the 

pharmaceutical industry.  

As the main breakage mechanism of elongated particles is fragmentation due to the 

bending stress, it is critical to measure the impact of drying environmental conditions 

on the particles bending stress. An assessment of the environmental process 

conditions and both physical and mechanical properties of single crystals are needed 

as they dictate the internal stress induced within the particles and their possible 

breakage. The effect of moisture content, PSD and stress environment on the particles 

internal stress needs to be investigated to estimate the propensity of crystal to 

experience breakage throughout the drying process. 

 

1.3 Research Methodology 

The studied material is glutamic acid crystallised in its beta form (β-LGA). This material 

is representative of API crystals in the pharmaceutical industry as it is organic and of 

high aspect ratio, which makes it an ideal candidate for the planned studies. 
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The breakage of β-LGA crystals is first quantified in a lab-scale AFD for both wet and 

dry cases. Measurements of the PSD with Morphologi G3 methods are examined to 

determine the reduction of particle size in length and width with agitation time. The 

predominance of fragmentation and attrition mechanisms in particle breakage is then 

assessed for the different drying conditions. 

A novel probabilistic approach is chosen for the prediction of particle breakage in 

agitated drying conditions using joint density function. This method requires both 

mechanical properties of particles, determined experimentally, and their internal stress 

for different mechanical environments calculated in simulations. 

The breakage strength of β-LGA crystals is measured using a novel experimental 

method [18]. Single crystals are glued as cantilever on a metallic support and an end 

load is applied on them using atomic force microscopy (AFM) creating a 2-point 

bending situation. The load is increased until the crystal breaks allowing to calculate 

its breakage strength using Euler-Bernoulli Beam Theory. Overall, the breakage 

strength of 52 crystals is assessed creating a distribution following a Weibull equation. 

The Weibull fitting parameters are finally determined by regression. 

A shear cell is built in DEM to mimic the mechanical environment experienced by 

particles in an agitated filter dryer. 2000 elongated particles are modelled using 

clumped spheres and periodic boundaries are set on two axes to simulate an infinite 

shear band. Inductive studies are undertaken to optimise the simulation setup to 

ensure that the particle bed behaviour is representative to reality in AFD and to 

decrease the computational resources needed. The validity of different methods for 

the calculation of particles internal stress in the studied system is also assessed and 

the most adequate technique is selected for the further analysis. 

DEM shear cell simulations are then performed for different particle shapes and 

mechanical environments in monodisperse bed and the internal stress is determined 

for each particle. The particle aspect ratio and normal stress applied on the bed are 

varied in both uniaxial compression and shearing case. The simulation results allow 

an extensive analysis of the bed behaviour for different conditions and identify the key 

variables impacting the particles internal stress. The distribution of particles internal 
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stress within the shear cell follows a Weibull model and the fitting parameters are 

obtained for the different simulations by regression. 

Theoretical and empirical mathematical models are then built for the prediction of the 

particle internal stress distribution and the location of the maximum stress on the 

particle neutral axis, as a function of stress environment and particle physical 

properties. The models are calibrated to fit the output data of the performed DEM shear 

cell simulations. 

Lastly, the extent of breakage is calculated using the aforementioned probabilistic 

approach. This method allows the estimation of particle breakage for the different 

mechanical environments, and particle mechanical and physical properties. The 

created breakage kernel is implemented in a population balance model (PBM) to 

estimate the PSD of particles in a lab-scale AFD. The model is then validated against 

experimental results and subsequent model calibration is applied. The calibrated 

model is finally used to predict particle breakage for the scale-up of agitation. 

 

Figure 1.3.1: Methodology for the prediction of crystal breakage in agitated filter 
dryer. 

The interactions between the different steps of the aforementioned methodology in 

this thesis are shown in Figure 1.3.1.  



 Chapter 2: Literature Review  

5 

 

2 Literature Review 

2.1 The Particles 

2.1.1 Physical Properties 

The physical properties of the produced crystals in the pharmaceutical industry are of 

great importance as they can impact the dissolution rate [10], stability, bioavailability 

and content uniformity of the drug product [11]. The particle shape and size are known 

to affect process performance in agitated dryers and is therefore given close attention 

to [19, 20]. Indeed, an irregular particle shape affects the quasi-static behaviour of a 

particle bed [20-24] e.g. via resistance to rotation and interlocking. Moreover, the 

reduction in particle size increases the particle surface for the same material volume, 

which augments the frictional energy in the bed. This phenomenon affects the particle 

flow and can ultimately jeopardise the entire process [25]. 

In the pharmaceutical industry, most of the API molecules are organic. The 

crystallisation process generates crystalline forms which are mostly of high aspect 

ratio. API crystals are mainly needle-shaped [26] and their length typically scales from 

tens to hundreds of micrometres at the end of crystallisation [16].  

The PSD of elongated particles is generally assessed using image analysis techniques 

(e.g. Morphologi G3) [25, 27, 28] which can measure both width and length of particles, 

allowing the calculation of their aspect ratio. Scanning Electron Microscopy (SEM) can 

also be employed and provides insights on particles shape and surface [25]. Even 

though laser diffraction [1] doesn’t consider the notion of particle elongation, it is 

generally used in addition to image analysis to provide a complete picture of particles 

physical properties [28-31]. Alternative methods exist to assess the PSD during 

manufacturing processes (e.g. drying) by applying light scattering techniques [16].  

 

2.1.2 Mechanical Properties  

The behaviour of a crystal under force application is dictated by its mechanical 

properties, which are dependent on the molecular crystal packing [32]. In the case of 
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organic crystals, their lattice is mainly formed by weak Van der Walls bonds [33], and 

their mechanical surface properties can vary due to the different nature of the involved 

molecular interactions [27, 34]. Their tensile strength is correlated to their modulus of 

elasticity [33]. 

The experimental assessment of mechanical properties of particles is time-consuming 

with actual methods [27]. The mechanical properties of small particles are generally 

assessed using nano-indentation where a hard tip is penetrated within the particle 

using increasing load: the Olivier-Pharr method [35] is used to assess the hardness 

[36] and Young’s modulus [28] of single particles from the loading-unloading curves. 

The three-point bending test is commonly used on elongated particles to evaluate the 

bending strength of a crystal [37]. This method allows the assessment of both Young’s 

modulus and breakage strength of elongated crystals using a derivative of Euler -

Bernoulli beam theory [26, 38]. The breakage strength of organic crystal typically 

scales at tens of 𝑀𝑃𝑎 [26] and their Young’s modulus at the magnitude of 𝐺𝑃𝑎 [34, 

39-42]. 

Even though the mechanical properties of a material can now be predicted from the 

crystal structure with good accuracy [32, 43-45], organic crystals still exhibit a 

heterogeneity in their measured mechanical properties [34, 42, 46]. The phenomenon 

is believed to be caused by the greater presence of defects within organic crystals. A 

Weibull model [47, 48] is typically fitted on the distribution of mechanical properties of 

these particles. The Weibull equation is also found to be more appropriate for the 

analysis of the mechanical properties data than a normally distributed function [47]. 

The link between particles size and mechanical properties is not clearly established. 

No correlation has been found for milled powder made of organic crystals [27] whilst 

it has been observed that the a decrease in size of elongated inorganic crystals 

increases their bending strength [49]. 
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2.1.3 Breakage Mechanisms  

There are different types of breakage: the attrition where a particle is chipped creating 

small fragments and fines, and the fragmentation which results in the rupture of a 

primary particle into at least two secondary particles [50, 51]. 

The breakage of a crystal results from a combination of both geometric (i.e. particle 

shape) and thermodynamic (i.e. molecular bonding) mechanisms. The fracture occurs 

preferably along crystallographic slip planes which are a source of defects and 

disorder during crystal deformation and fatigue [52], unless the elongation of the 

particle is sufficient to give predominance to geometric effect [27] e.g. for high aspect 

ratio particles [52]. Therefore, fragmentation is the main breakage mechanism of 

elongated particles [1, 26] and mainly occurs along the shortest axis of the crystals  

[52]. 

Euler-Bernoulli beam theory [26, 38] shows that the bending stress experienced by a 

particle scales linearly with the separation distance of force application contacts. The 

bending stress is the main cause of breakage for elongated particles [1]: the higher 

the aspect ratio of a particle, the more rapidly it breaks [53-55].   

The bending and breakage behaviour of crystals are dependent on their mechanical 

properties [56-58]. Particles with low hardness are expected to deform plastically 

rather than experience chipping [16, 26, 58]. Organic crystals with high Young’s 

modulus are stiffer, i.e. bend less for the same applied force [59], and have a higher 

breakage strength [33]. 

There are three modes characterising the fracture of homogenous continuum solids: 

ductile which refers to a fracture where significant plastic deformation takes place, 

brittle that denotes no plastic deformation before fracture, and semi-brittle which 

corresponds to a mode of fracture where brittle fracture happens at the limit of a 

plastically deformed zone [60]. Organic API are generally brittle materials [61]. 

In the case of crystalline materials a cleavage can also occur spontaneously in the 

crystal lattice which changes de facto its morphology [16]. The purity of the crystal, 

possible existing defects (e.g. cracks) and fatigue experienced also affect its bending 

and breakage behaviour [27]. 
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2.1.4 Dry Granules 

A granule is an assembly of particles held together by various types of forces [62]. 

Inter-molecular and electrostatic forces (i.e. Van der Waals, coulombic and hydrogen 

bonds) are related to crystal surface chemistry and increase with reducing the inter-

particulate distance. These forces are only significant for small dry particles (< 1𝜇𝑚) 

and short separation distance such as in the case of strong compaction. On a larger 

scale, mechanical interlocking occurs between rough surfaces of particles, especially 

in the case of elongated crystals, and is dependent on the packing density. Solid 

bridges can also be created from sintering, chemical reaction, melting, hardening 

bonding agents or crystallisation of dissolved materials. This last type of bonding is 

the strongest of all [63]. 

 

2.2 The Solvents 

2.2.1 Solvents in Pharmaceutical Industry  

Different types of solvents are used in the pharmaceutical industry. The most popular 

ones are alcohols, acetone, THF, ketones and alkanes. Once the crystals are formed 

after the crystallisation process, they are filtered from the mother liquor and dried. The 

properties of the solvent influence the efficiency of the drying process, the flowability 

of the materials and the agglomeration mechanism [15]. Most importantly, they affect 

the polymorphic form of the crystal [64]. 

 

2.2.2 Liquid Bridges  

Liquid bridges are created in presence of liquid at inter-particulate contact [62, 65, 66]: 

the capillarity attracts the liquid to the particles surfaces [67] whilst the cohesion of the 

liquid bridge results from both the surface tension and hydrostatic pressure within the 

liquid [68]. 
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2.2.2.1 Forces 

The capillary forces determine the static behaviour of a liquid bridge. There are two 

ways to determine the static forces in a liquid bridge between two identical spheres. 

In the first one, the force is determined at the neck of the bridge [69]: 

 𝐹𝑛 = 2𝜋𝑅𝛾𝐿 − 𝜋𝑅2∆𝑃 2.2.1 

And the second method focuses on the solid-liquid interface [70]: 

 𝐹𝑏 = 2𝜋R sin 𝛽 𝛾𝐿 sin(𝛽 + 𝜃) − 𝜋𝑅2 sin2 𝛽 ∆𝑃 2.2.2 

Where 𝜃 is the contact angle, 𝛽 the angle between the axis linking the two spheres 

centres and the axis of the sphere centre and the vapour-liquid-solid interface, 𝑅 the 

sphere radius, 𝛾𝐿  the liquid surface tension and ∆𝑃 the pressure differential.  

If the spheres are not identical then the geometric average radius can be used: 

 �̅� =
2𝑅𝐴𝑅𝐵

𝑅𝐴 + 𝑅𝐵

 2.2.3 

Where 𝑅𝐴 and 𝑅𝐵  are the radii of the two particles. 

The contact angle is the angle that the binder droplet does when it is put in contact 

with a particle at the vapour-liquid-solid interface. The contact angle plays an important 

part in determining the frictional forces between particles [71].  

The viscous force 𝐹𝑣𝑖𝑠  of a liquid bridge between moving identical spheres is given by 

the following equation:  

 𝐹𝑣𝑖𝑠 =
3

2
𝜋𝜂𝑅2

d𝑎

𝑎. d𝑡
 2.2.4 

Where 𝜂 is the viscosity of the liquid and 𝑎 the distance between the two spheres. 

The viscous force can be neglected in the case of static behaviour (low strain rate) 

[71] and low moisture content (low capillary number) [72]. 
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2.2.2.2 Mechanical Properties 

The calculation of liquid bridge properties (e.g. contact angle, rupture distance) using 

the previous models have shown good agreement with experimental observations 

[73]. It is possible to measure the strength of liquid bridges between particles using 

force-displacement curves from techniques like micro force balance [74]. Up to a 

certain distance, shorter liquid bridges have a greater adhesion force [74-76]. A 

greater liquid volume also participates to a stronger cohesion of a liquid bridge [77]. 

If the inter-particle distance exceeds a certain separation, then the liquid bridge 

experiences rupture. For identical spherical particles, the higher the volume of the 

liquid bridge, the further it can be stretched before rupture [78]. In case of rupture of a 

mobile liquid bridge, the cohesion force of the liquid is generally overcome, and a 

volume of liquid resides on the surface of the particle. It is assumed that the quanti ty 

of liquid on each particle corresponds to the volume of liquid bridge divided at its 

thinnest point. The viscous component of immobile liquid bridges can change their 

mode of rupture and the particle-liquid adhesion may be overcome before liquid 

cohesion depending on their strength. 

 

2.2.2.3 Kinetics 

The creation of mobile liquid bridges is promoted by lower binder viscosity, particle 

diameter or higher particle surface energy. Their forces are due to the surface tension 

at solid-liquid-gas interface (directed along the liquid surface) and negative capillary 

pressure within the liquid. Immobile liquid bridges can also be created: they are 

composed of a thin layer of viscous binder between particles. 

 

2.2.2.4 Morphology 

Various morphologies have been observed for a liquid bridge depending on the shape 

of the particles, geometrical configuration of particles and liquid properties (e.g. 
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contact angle, volume) [79]. Gravitational effect is considered insignificant compared 

to surface tension effects [80], which is confirmed by a low Bond number [81], on the 

shape of the liquid bridge. 

In the case of cylindrical fibres, the liquid bridge can take the shape of a column, a 

drop or a mix of the two [82-85]. These different states have been studied for wetting 

liquid, i.e. where the contact angle is below 90°, at different volume and fibres 

configurations (crossing angle and separation).  

The shape of a liquid bridge can also be approximated by the calculation of its liquid-

vapour surface area using energy balance equation: the system finds equilibrium at 

its lowest free energy [83]. The Young-Laplace equation [86, 87] can be used to model 

a toroidal liquid bridge [76]: 

 ∆𝑃 = 𝛾𝐿 (
1

𝑟1
−

1

𝑟2
) 2.2.5 

Where ∆𝑃 is the difference in hydrostatic pressure across the vapour-liquid interface, 

𝑟1  and 𝑟2  the local radii [73], and 𝛾𝐿  the interfacial tension between the liquid bridge 

and the external medium [70]. 

 

2.2.3 Wet Granules 

The phenomenon of granulation is of great concern for the pharmaceutical industry as 

it can affect the bioavailability of the obtained product [8]. In most cases, granules are 

heterogeneous particles and their strength is governed by inter-particular bonding 

rather than the strength of the individual crystals within [73].  

The shape of the primary particles is critical as it provides a surface area for effective 

contact between particles and thus increases the likelihood of agglomeration [1]. This 

phenomenon has been observed along the main axis of particles in presence of liquid, 

especially for high aspect ratio crystals (e.g. rod-shaped and needle-shaped) [9]. 
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2.2.3.1 Binding Forces 

In the case of static or quasi-static conditions (i.e. low strain rate), the inter-particulate 

forces within a wet granule is mainly due to the forces of their liquid bridges [62, 63, 

65, 66]. All other types of forces [77] can be neglected. Viscous forces become 

significant at high strain rate [71] and the dynamic behaviour of viscous immobile liquid 

bridges can be approximated by the Frenkel model [88]. Typically, a higher viscosity 

limits the motion of the liquid within a granule and offers more resistance to compaction 

[89-92]. It also creates small granules [93] whilst a lower viscosity allows a better 

wettability of the particles and produces more spherical granules [92, 94]. 

 

2.2.3.2 Saturation 

There are three existing states of contact network in wet granules (from low to high 

moisture content) [62, 95, 96]: pendular where each liquid bridge links two particles 

together, funicular where a liquid bridge can hold cohesive more than two particles, 

and capillary where the liquid fills the whole granule and where the surface of the 

granule shows both solid and liquid. If the moisture content increases again, the 

network becomes a droplet which shows only liquid at its surface. A moisture content 

of 1 − 4.5 𝑣/𝑣 % is reported as representative of a pendular regime for spherical 

particles [97, 98]. Another study reported the following values of moisture content for 

the different saturation regime with spherical particles [99]: 0 − 13.6 𝑣/𝑣 % for 

pendular regime, 13.6 − 100 𝑣/𝑣 % for funicular regime and 100 𝑣/𝑣 % for capillary 

regime. 

 

2.2.3.3 Mechanical Properties 

The cohesiveness of a granule increases with its moisture content and creates 

stronger pellets as the liquid fills the granule and lowers the porosity [91, 100, 101]. 

The higher the moisture content the stronger and more numerous the liquid bridges 

[102] that are able to transmit the experienced stress through the granule [62]. Also a 

higher binder content decreases the Young’s modulus of a granule [103]: it becomes 
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more flexible as the lubrication effect reduces friction and interlocking between 

particles. The hardness of a wet granule is related to the liquid surface tension, 

viscosity and friction between primary particles [104], whilst the tensile strength of the 

granule is mainly due to its saturation level [7]: positively correlated in the pendular 

and funicular state, and inversely proportional in capillary state [105]. 

A granule experiences rupture if the applied stress exceeds a critical value. According 

to the Rumpf’s theory [63] the breakage of a granule happens by simultaneous rupture 

of the bonds along the breakage plane, which means that the tensile strength of a 

granule is the sum of the intra-granular bonds along the breakage plane. Alternatively, 

Kendall’s theory [106] assumes that there is a crack nucleation and a chain reaction 

of bond rupture along the breakage plane (i.e. crack propagation). 

 

2.3 Drying Process Conditions 

The drying conditions are selected to meet a certain drying performance in the 

pharmaceutical industry. The process environment is mostly the result of dryer’s 

geometry, temperature and agitation, which induces different types of stresses and 

affects the PSD within the particle bed by agglomeration, fragmentation and attrition. 

The behaviour of the particle bed mainly depends on the particle properties and 

moisture content. 

 

2.3.1 Equipment  

The pharmaceutical industry uses various drying equipment to evaporate the solvent 

from the filtered wet particle bed and obtain a dry powder. In 1999, more than 200 

dryer variations were produced by more than 150 manufacturer [107]. API crystals are 

very sensitive to drying conditions and therefore pharmaceutical companies need to 

find specific equipment and settings to minimise the impact on the product quality.   

The most popular drying equipment is the agitated filter dryer (AFD) [8, 9, 65, 108, 

109]. This dryer type is highly appreciated as it allows the processes of filtration and 

drying without the need to change equipment: it limits the exposure of the API between 
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the two processes [1]. Despite of a limited mass/heat transfer compared to the other 

dryers, its containment is appreciated, especially regarding some specific APIs [110]. 

The AFD is a cylindrical vessel equipped with a rotating impeller. The impeller is 

composed of two or four blades that create different level of agitation on the particle 

bed. The geometry of the blade can have an impact on the drying performance since 

the use of curved impeller blades results in smoother and more spherical granules 

whilst plane ones give more irregular shaped pellets [111]. A filter is present at the 

bottom of the cylinder to allow the pressure filtration stage. At the beginning of the 

drying process, the impeller rotates and moves vertically to agitate the particle bed 

[15]. This agitation is made under vacuum and a heat transfer is performed by either 

a set jacket temperature or a gas temperature. The AFD is in the category of contact 

dryers and these dryers are preferred for the drying of elongated particles because of 

their drying performance, even if they generate a high degree of attrition [12]. 

The conical screw dryer performs the agitation of the particle bed with the rotation of 

a screw that lift the particles to the bed surface to allow the evaporation of the solvent . 

The shape of the bed container is conical which places a bigger percentage of the 

particles close to the bed surface. A large scope study has shown that conical screw 

dryer has the best drying performance and the highest overall heat transfer coefficient. 

This technique also generates attrition and agglomeration (attrition being dominant) 

resulting in a bimodal particle size distribution (PSD) [17]. 

 

2.3.2 Wetness 

During the drying process an amount of liquid is present within the particle bed. This 

moisture content links particles together with liquid bridges and creates a particle 

network. The cohesion between particles can be regarded as the interstitial cohesion 

within a wet granule [73]. The additional forces created by the presence of liquid 

influence the behaviour of the particle bed when agitated and impact the PSD 

changing throughout the drying process. Therefore, an understanding of the wet 

granule state and the liquid bridges within is critical to simulate the drying conditions 

computationally. 
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2.3.3 Bed Flow 

A minimum stress is needed to initiate the flow of the particle bed. The agitation 

provided within the dryer has to overcome this yield stress of a particle bed otherwise 

the bed remains stationary [112]. The produced work to initiate the flow can be 

observed as a spike in the torque signal of the impeller at the beginning of the agitation 

and generally lasts a few seconds [1, 113]: this behaviour is typical for visco-plastic 

fluid. 

The agitator torque can also give information on the flow regime of the particle bed. In 

the case of industrial scale AFD, with a low shear rate, the agitator torque is constant 

regardless of the impeller speed [1]: it shows a quasi-static bed behaviour where the 

momentum transfer is governed by frictional forces between particles [114] and is 

independent of the shear rate [115, 116]. The agitator torque may vary throughout 

drying because of a densification of the bed due to particle breakage [1]: the attrition 

of particles generally creates a poor flowability of the particle bed [8, 17]. This happens 

because of a greater number of frictional contacts present between particles, which 

increases the impeller torque [1, 117]. If recorded on a specific bed location, the torque 

signal shows periodic fluctuation as the blade passes: the bed compresses at the 

approach of the blade, and then the particles are lifted up due to the angle of the 

impeller blade before avalanching behind the blade which causes a dilatation of the 

bed [118]. This phenomenon is confirmed in DEM simulation of AFD where particles 

in front of impeller experience shear and fall behind the blade to a region where the 

bed is dilated [119]. Other torque fluctuation can be observed and are due to the “slip-

and-stick” behaviour of particles flow [1, 116]. 

Another way to define the flow regime is the calculation of the Froude number 

associated with the dimensionless shear rate [118]: it allows the definition of the flow 

regime as static (or quasi-static), intermediate or granular [116]. Indexes have also 

been created to define the flowability of a fluid or assembly [62]. 

Various methods exist to track the motion of individual particles: Positron Emission 

Particle Tracking (PEPT) which locates an irradiated particle within a particle bed, 

Magnetic Resonance Imaging (MRI), and Particle Imaging Velocimetry (PIV) that 

records the motion of particles at the surface of a particle bed [118]. 
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The behaviour of a system is also dependent on the total moisture content within and 

its distribution [120-125]. A high moisture content decreases the mixing performance 

because of the formation of agglomerates that can resist the shear from agitation 

without being broken (in the case of spherical particles). This behaviour has been 

confirmed by the observation of a lower radial and vertical particle velocities [80]. 

Indeed the lubrication effect of the liquid reduces the number of inter-particulate 

collisions as the liquid films on particles have to drain before the contact of particles 

surfaces [8]. This effect increases the mobility of the particles because of an increased 

particle-particle distance and reduces their frictional contacts [118]: it has per 

consequence the dilatation of the particle bed and the increase of its porosity [80]. In 

industrial scale dryers the mass of the particle bed generates a normal stress that 

partly compensate the dilatation of the bed. A way to know if the induced shear from 

agitation overcomes the cohesiveness of the bed consists on observing changes in 

the bed height for different agitation speed: if the height decreases then the dilatation 

of the bed due to the liquid bridges is compensated by the shear induced [118]. During 

drying the moisture content decreases which makes the liquid bridges shorter and 

stronger, increasing the cohesion of the particle bed [77]. Therefore the agitator torque 

and the fluctuation in the shear produced can monitor the particles agglomeration and 

the wet-to-dry transition [118]. PIV experiments have also been performed on a 

particle bed in an AFD with the variation of the moisture content [118]: the velocity of 

spherical particles changes when the liquid content is above 0.5% and holds cohesive 

the particles in a "correlated regime”. 

The flowability of powder is reduced with particle elongation [126-129], which can 

affect hopper discharge [130, 131] and die filling [132] in the industry. During agitation, 

the particle size reduction changes the shape and surface properties of the crystals, 

and influences the flow properties of the bulk material [25, 52, 126, 133]. On the one 

hand, the fragmentation of elongated particles reduces the interlocking and increases 

the powder flow [25]. On the other hand, the attrition of particles and the creation of 

small fines increase the overall surface area [25], which augments the number of 

frictional contacts within the bed. Moreover, the surface energy of organic crystals 

increases with breakage [134-137] which augments the cohesiveness of the powder 

[133]. This phenomenon induces sticking of particles to wall, and fines are likely to 

accumulate near the blade and container base in AFD operations. 
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2.3.4 Drying Kinetics 

The drying rate is one of the most important aspects to assess the drying performance 

of a system. Therefore, the pharmaceutical industry aims to optimise the liquid mass 

transfer during the drying process. 

To improve the liquid mass transfer, heat is conducted to the particle bed, either by 

gas or by contact with dryer walls. In the case of contact drying, a level of agitation is 

needed to promote the heat transfer by convection which reduces the drying time [1, 

8]: the higher the agitation the greater the heat and mass transfer [125]. Here, the 

agitation homogenises the liquid content through the bed which participates to the 

increase of the drying rate [138]. To preserve the stability of heat-sensitive materials, 

a reduced pressure can be applied using the vacuum within the dryer, which allows 

drying at low temperature [17]. If the set absolute pressure of the system is lower than 

the vapour pressure of the solvent, given by Antoine’s equation, then it increases the 

drying rate of the particle bed [139].  

Thus the drying rate is proportional to the heat and mass transfer coefficient, the 

temperature and the surface area [17], the latter being scale-dependant [140]. Other 

models correlate the loss on drying (moisture weight loss) to the enthalpy [140] and 

involve the use of the Arrhenius equation [141, 142]. The Newton’s law for fluid-wall 

heat transfer, the Darcy formula for vapour transfer and the energy balance equation 

can also model the vaporisation of a solvent in a vacuum contact dryer [138]. 

The drying process can be divided into three different stages [65]: the preheating 

where the temperature increases in the bed until a constant “wet bulb temperature” is 

reached, then the constant rate phase where the heat initiates the evaporation of the 

solvent, and finally the falling rate where the drying rate decreases because of the low 

moisture content which increases the thermal resistance of the bed. When the drying 

rate becomes constant the diffusion can be assimilated to a Fickian diffusion [143, 

144]. 

The modelling of heat transfer and drying rate have been performed for various 

materials in tray dryers [145], rotary dryers [146, 147] and agitated dryers [138, 148]. 
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As the agitation promotes particle breakage and agglomeration, models have also 

been developed to determine the drying performance for intermittent agitation [138]. 

 

2.3.5 Stresses at Scale 

The weight of a bed and the agitation provided by the rotation of the impeller induces 

various stresses on the particles through the drying process. Typical hydrostatic 

pressure experienced by particles in agitated dryers are: 0.2𝑘𝑃𝑎 at laboratory scale 

(bed weight at 50𝑔), 1.4𝑘𝑃𝑎 at pilot scale (150𝑘𝑔) and 3𝑘𝑃𝑎 at commercial scale 

(500𝑘𝑔) [1]. Several experimental setups exist to simulate the pressure and shearing 

experienced by the particles in industrial scale dryers [16, 62]. 

The hydrostatic pressure 𝑃 within a homogenous material (e.g. liquid) is given by the 

following equation: 

 𝑃 = 𝜌𝑔ℎ 2.3.1 

Where 𝜌 is the material density, 𝑔 the acceleration of gravity and ℎ the normal distance 

from the material surface. 

The pressure 𝑃 can be related to the average of the normal stress in all directions as 

followed [80, 149]: 

 𝑃 =
1

3
(𝜎𝜃𝜃 + 𝜎𝑟𝑟 + 𝜎𝑦𝑦) 2.3.2 

Where 𝜎𝜃𝜃  is the normal stress in the tangential direction, 𝜎𝑟𝑟 in the radial direction 

and 𝜎𝑦𝑦  in the vertical direction. The choice of the cylindrical coordinates is adapted to 

most of the dryers’ geometries.  

The normal stress on particles cannot be predicted from the hydrostatic pressure for 

all APIs and equipment configurations. Indeed, if the bed height exceeds a certain 

level then the dryer walls may support partially the weight of the particles, which 

produces a lower pressure than expected towards the bottom of the bed. This 
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phenomenon has been confirmed by both experiments with torque measurements [1] 

and DEM simulation [150].  

Particulate solids have the ability to transfer stresses from normal to shear direction 

[151]. In the case of quasi-static flow regime where the momentum transfer is 

governed by frictional contacts [112], the shear stress 𝜏 scales linearly with the normal 

stress 𝜎 as given in Coulomb’s law of friction [152-154]:  

 𝜏 = 𝜎 tan 𝜃 + 𝐶𝑓 2.3.3 

Where 𝜃 is the angle of internal friction and 𝐶𝑓 the cohesiveness of the material (≥ 0). 

This linear dependency has been verified experimentally [1]. This correlation can be 

observed in yield locus curves giving the shear stress by the normal stress. The angle 

of internal friction, the tensile strength and the cohesiveness of a material can be 

obtained from these curves. The yield locus curve of a cohesionless material is linear 

and intercepts the origin. In the case of a typical powder, the tensile strength is 

obtained from the yield curve when shear stress is null, and the cohesiveness is found 

when normal stress is null. If cohesion is added to the particle bed, e.g. by the 

presence of moisture content, then the yield curve shifts upward [62]. In quasi-static 

flow regime, the shear stress scales with the pressure [112].  

The shear stress can also be averaged in a cylindrical agitated bed using the Darelius 

equation [152]: 

 𝜏𝑎𝑣𝑒 =
𝑇

2𝜋𝑅2𝐻
 2.3.4 

Where 𝜏𝑎𝑣𝑒  is the average shear stress, 𝑇 the measured torque, 𝑅 the radius of the 

glass vessel and 𝐻 the total height of the powder bed during agitation. 

The composition of the particle bed has an impact on the shear stress experienced by 

the particles. Indeed the shear stress depends on the number of frictional contacts on 

particles, thus the difference between the size of a given particle and the size of its 

neighbours (i.e. size ratio) affects the stress experienced by this particle [155]. 
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Moreover, the cohesion between particles induced by the forces of liquid bridges 

influences the way the stress is transmitted though the particle bed. Indeed the torque 

profile changes in the presence of moisture content [113, 156]. There are different 

conclusions regarding the effects of moisture content on the shear stress in the 

literature: some papers argue that the presence of liquid makes wet particles flow by 

lubrication and decreases the measured torque [1, 5], whilst other authors have 

observed the increase of the shear stress for wet systems as the liquid allows the 

transfer of energy from the impeller into the particle bed [6, 7]. These different 

observations could be explained by the nature of the studied material [1, 8, 9]. 

A DEM study gives the level of normal and shear stress experienced by spherical 

particles in an agitated filter dryer with the variation of the moisture content [80]. It is 

observed that the normalised pressure (by gravity) scales linearly with the normalised 

height of the particle bed, and that the presence of moisture content increases the 

normalised shear stress (by gravity). 

 

2.3.6 Impact on PSD 

In the pharmaceutical industry, the PSD obtained after crystallisation is generally 

altered by uncontrollable breakage [157] and agglomeration [158, 159] throughout the 

drying process, which degrades the powder quality [8, 9]. An undesired PSD is 

typically associated with batch failure, increased costs and downstream issues (e.g. 

tabletting) [25]. 

 

2.3.6.1 Agitation 

Although the agitation is necessary to increase the drying rate, it also promotes the 

changing of the PSD within the particle bed [8]. Indeed, the shear induced by the 

agitation increases the energy and rate of particle collisions (i.e. particle-particle, 

particle-blade and particle-wall) [16, 17], which can lead to both agglomeration and 

breakage depending on the drying equipment [109, 160-162] (e.g. type of dryer, 
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impeller blade design) and operational parameters [8, 80, 118] (e.g. agitation rate, 

liquid content, temperature and pressure).  

The breakage of particles densifies the particle bed and increases the number of 

frictional contacts. The particle bed requires then more energy to maintain the flow 

with the agitation. This phenomenon has been observed in an AFD for high aspect 

ratio particles by measuring the torque on a dry particle bed [1]. The increase in the 

torque corresponds to the densification of the bed due to the fragmentation of particles 

lengthwise [1] (particles don’t agglomerate in this experiment). As the sensitivity to 

mechanical stress scales with particle size [16] and elongation [8, 9] for brittle 

materials, the particle bed stops experiencing particle breakage after a certain level of 

agitation.  

In the case of quasi-static flow regime with no agglomeration, the particle breakage is 

independent of the impeller speed and is only determined by the total strain (shear 

deformation) experienced by the particle bed [108]. As the average shear stress can 

be calculated from the torque in an AFD (Darelius equation) [152], then the particle 

breakage phenomenon is proportional to the work provided by the impeller. This theory 

has been validated in AFD and shows that even if a wet bed shows a different 

resistance than a dry bed (observable by torque measurement), the breakage of given 

elongated particles is only dependant on the total work applied on the particle bed [1]. 

In an AFD, the work 𝑊 can be calculated from the measured torque 𝑇 using the 

following equation: 

 𝑊 = ∫ 𝑇 ∙ 𝜔𝑑𝑡
𝑡

0

 2.3.5 

Where 𝜔 is the angular velocity of the impeller rotation and 𝑡 the time. 

Thus, the agitation improves the drying kinetics but also promotes the changing of 

PSD within the particle bed [8]. Compromises are found for the drying conditions in 

the pharmaceutical industry to minimise agglomeration and breakage [15].  Efforts are 

developed to obtain a high drying rate with minimising the agitation to preserve the 

materials properties [138]. 
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2.3.6.2 Scale Effect 

Particle properties are typically affected in manufacturing of API by scale-up of 

operations and transfer to different equipment [15, 16, 163, 164]. The breakage of 

particles is more extensive in industrial scale than laboratory scale drying [16]: the 

particles experience greater shear stress [165] because of the increase of normal 

stresses (pressure) in high scale equipment. Indeed, the normal stress is reported as 

the predominant factor impacting particle breakage [156]. 

An experimental setup allows the application of a weight on a particle bed in a 

laboratory scale AFD to mimic the hydrostatic pressure experienced at scale [1, 16, 

156, 166]. This method has also been applied with a FT4 rheometer [156]. This 

apparatus allows the torque measurement on an agitated bed of elongated particles 

for different pressure applied [1], and shows that the torque and particle breakage 

increase with the pressure applied. Moreover, the time for the torque to reach a plateau 

increases with the pressure applied; therefore, the particle breakage phenomenon is 

more extensive and lasts longer in higher scales. In this experiment [1], the output 

density and PSD have shown good agreement with pilot scale experiments. 

 

2.3.6.3 Dryers Geometry 

The breakage of particles also depends on the geometry of the dryer. There exist 

zones in the dryers where the particle breakage is more extensive, and the mixing 

conditions change the residence time of particles in these zones. In an AFD these 

zones are the bottom plate [16] (beneath the impeller due to the bed compression) 

and near the impeller [1, 108, 165]. These zones are also known to have a higher flow 

velocity enhancing the particle breakage phenomenon [167]. The difference of 

breakage between low and high risk zones is so important that models assume the 

particle breakage being only dependant on the energy and frequency of the impact 

with the impeller [168], whilst neglecting the low risk areas. 
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2.3.6.4 Moisture Content 

The presence of liquid within the particle bed also changes its resistance to agitation. 

This phenomenon is due to the adhesion and lubrication effects that liquid bridges 

induce between particles, which changes the nature of inter-particulate frictional 

contacts. The energy required to flow a given particle bed depends on its temperature 

and moisture content. Up to a certain level, the moisture content promotes wet 

granulation in a particle bed [80], and a specific region of temperature and liquid 

content called “sticky-point” exists where agglomeration is highly present [62, 169, 

170]. The sticky-point can be observed when the torque reaches its maximum on a 

torque vs. moisture content graph for a given temperature [156]. The liquid properties 

also impact the agglomeration of particles as it is demonstrated that above a critical 

contact angle the resulted granules have a wider PSD and lower strength [171]. 

The phenomenon of adhesion in the presence of liquid can be enhanced by particle 

breakage as broken crystals are more cohesive and easily agglomerate [12]. Moreover 

a scattered PSD produces a closer particle packing and leads to denser and stronger 

granules, which are more difficult to break [169]. 

The particle breakage is also affected by the presence of moisture content. There is 

however no consensus in the literature on whether the presence of liquid is promoting 

or reducing particle breakage in a particle bed. On the one hand, authors observe 

more crystal breakage in a wet cake than in a dry bed with the same agitation [1, 8, 

16, 156], which can be attributed to a higher pressure (due to the weight of the liquid) 

applied on particles that move less freely within the particle bed: a higher resistance 

to the flow increases the shear experienced by particle which break more easily. On 

the other hand, other papers show that particle breakage occurs preferably towards 

the end of drying when the moisture content is low [1, 8, 9]. This phenomenon is 

explained by a greater number of frictional contacts with a lower moisture content 

which induces more particle breakage [172]. The lubrication effect created by the 

presence of liquid [1] reduces the shear stress on particles as they move more freely 

and make the materials flow easier [5]. This phenomenon can be combined with the 

ability of elongated materials to stack lengthwise with liquid bridges which lowers their 

sensitivity to bending stress [9]. 
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Authors agree on the fact that this difference in particle breakage observation with 

different moisture content is due to the nature of the tested crystals. Indeed, the crystal 

morphology and strength influence the PSD changes under agitation [9], which is 

confirmed by the good agreement of population balance models with AFD experiments 

where the Young’s modulus, critical aspect ratio and crystal density are considered as 

input variables [168]. 

 

2.3.6.5 Temperature 

A high temperature has the advantage to shorten the drying time which reduces the 

exposition of particles to shear [8]. In these conditions, the probability for a crystal to 

become more soluble and form solid bridges at the end of the drying process would 

increase, which would augment the strength of the resulting agglomerates. Likewise, 

a low pressure decreases the number of inter-particulate collisions and minimises 

particle breakage. 

 

2.3.6.6 Particle Properties 

The rate of PSD changing under drying conditions is partially influenced by the 

material properties of the crystals [9], e.g. morphology and mechanical properties. 

Despite of the absence of constitutive equation to describe particle breakage [173], 

empirical models have been created to predict the phenomenon. An equation 

suggests that the particle size reduction is positively correlated to the initial particle 

size, hardness and aspect ratio, whilst inversely proportional to the particle thickness 

[28]. In this study, a logarithmic curve is used to fit the particle size distribution. 

 

2.3.6.7 Strategies and Solutions 

Strategies have been elaborated to obtain desired PSD in pharma manufactures [129, 

174-179]. However these solutions may not be applicable as they can affect API 

solubility, impurity level, toxicity, yield or environmental impact [25]. Batch 
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crystallisation process [10] and milling [180] are typically used to alter the obtained 

PSD and fit the properties required by formulators to create the desired drug product. 

The wet milling is then used to reduce the particle aspect ratio whilst avoiding the 

generation of fines [25, 135] and amorphous forms which can potentially be toxic [181-

183]. This combination of re-crystallisation and wet milling used repetitively allows to 

reach the target mean size and a narrow PSD; however, it is generally impracticable 

due to number of iterations and volume required for PSD measurements [25]. 

Methodologies also exist to assess the attrition risk of particles. Attrition matrix have 

been developed and the impact of key process parameters on the particle size 

reduction is evaluated with small scale agitator (e.g. FT4 powder rheometer) [156]. 

Although this method requires a large amount of compound (10-100g per experiment), 

it allows the classification of the risk for a material (i.e. hard, medium, easy) and the 

estimation of attrition at larger scale [16, 156]. Other methods have been introduced 

to assess the attrition risk of a material without the need of large amount of powder by 

comparing initial and final PSD parameters after lab-scale AFD experiment [28]. 

Propensity of materials to break under specific conditions can also be determined 

experimentally with methods like the agitation cell, HELOS [16] and tracer granules. 

However it remains difficult to predict the dried materials PSD, especially in scale-up 

process [158] and when changing dryer equipment [140]. 

Other experiments allow the assessment of the mechanical properties for a bed of 

crystals: the annular shear cell is used to measure the shear strength of packed 

crystals [184]. This technique can be used to evaluate the propensity of breakage of 

particulate solids [108, 185, 186] 

 

2.4 Distinct Element Method (DEM) 

DEM is a computational modelling method introduced in 1971 [22] which models 

particles using discrete elements. The interactions between particles are ruled by 

contact models and particle bed can be created with mechanical behaviour similar to 

real assemblies. The mechanical response of assemblies can be observed in shear 
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cells which mimic the process conditions experienced by a particle bed when agitated 

in dryers.  

 

2.4.1 Particles  

2.4.1.1 Shape 

DEM elements can be spherical or polyhedral depending on the software used and 

are assembled to create particles with desired shape [24]. Elongated particles can 

then be modelled with smooth surface as sphero-cylinders [187-191] or using spheres 

overlapped along an axis [192-197].  

In clumped spheres approach, the particle overlap [198] generally defines the 

accuracy of particle modelling: for elongated particles, the higher the overlap, the 

greater the number of elements and the lower the roughness of the created particles.  

Indeed,  the clumped sphere approach creates artificially rough surfaces [199-203], 

decreases the coefficient of restitution [202] and potentially increases the 

computational overhead of tracking multiple spheres. The angular measure of 

smoothness has been introduced to quantify the roughness of clumped-sphere 

particles [204], which is often considered more similar to actual granular materials 

compared to particles with smooth surface [205]. The overlapping ratio can be defined 

as the overlap distance over the radius of the sphere element [149]. 

The elongation of particles and granular materials is quantified with the aspect ratio 

[55, 206, 207] i.e. the length of the particle over its width [119, 208, 209] : The aspect 

ratio is high for an elongated particle (e.g. needle, rod-shaped) [191] and low (< 1) for 

platy particles (e.g. disk-shaped) [13]. Different shape descriptors have been 

introduced for more complex particle shapes such as the form, the angularity and the 

surface texture [210]. 
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2.4.1.2 Size 

The granular assembly is called monodisperse when composed of particles having the 

same size, and polydisperse otherwise. The polydispersity of particle size and shape 

generally has an impact on the mechanical behaviour of the bed [211]. A mathematical 

model, e.g. Gaussian, can be used to obtain the distribution of size or aspect ratio 

[191]. 

 

2.4.1.3 Mechanical Properties 

Particles made of clumped spheres act like rigid body: the internal contacts between 

the spherical elements are ignored in the contact model calculations and internal 

contacts don’t break [195, 212-215].  

It is good practice when selecting input parameters to scale down the Young’s 

modulus of particles as it reduces the computational cost and time of DEM simulations. 

This modification can only be performed after confirming that it doesn’t affect the 

results e.g. torque in the agitated bed. The elastic modulus is generally scaled down 

by several orders of magnitude [55]. The rolling friction of spherical particles can also 

be adjusted in DEM to better model the behaviour of prismatic particles [165]. 

 

2.4.2 Models 

2.4.2.1 Particle Interaction 

In DEM simulations, the motion of each particle is determined discretely by solving 

Newton’s second law of motion [210, 216]: 

 𝑚𝑝 . �⃗�𝑝 = �⃗�𝑐,𝑝 + 𝑚𝑝 . �⃗� + �⃗�𝑓,𝑝  2.4.1 

 𝐼𝑝 . �̇�𝑝
⃗⃗⃗⃗⃗⃗ − (𝐼𝑝 . �⃗⃗⃗�𝑝) × �⃗⃗⃗�𝑝 = �⃗⃗�𝑝 2.4.2 
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With 𝑚𝑝 the mass of particle 𝑝, 𝑎𝑝 its acceleration, 𝜔𝑝 its rotational speed, �̇�𝑝 its 

rotational acceleration and 𝐼𝑝 its moment of inertia tensor. The translational motion of 

the particle is determined from the inter-particulate contact force 𝐹𝑐,𝑝, the gravitational 

force 𝑚𝑝 .𝑔 with 𝑔 the acceleration of gravity, and the fluid-particle interaction force 𝐹𝑓,𝑝 

in the presence of a fluid media. The torque 𝑇𝑝 induced the particle’s interactions (i.e. 

with walls, fluid or other particles) dictates the rotation of particle 𝑝. 

Models exist to simulate the attractive, repulsive and frictional forces of particle-particle 

and particle-wall interactions [192, 217]. Simulations of particle shearing are generally 

operated with linear contact models [195] or with Hertzian models [55, 190, 218, 219]. 

The Mindlin-Deresiewicz [220, 221] or sliding model [55, 222] can also be used for the 

calculation of tangential forces. Ultimately, the contact model is selected based on the 

material simulated. 

The advantage of using DEM with spherical element is the simplicity of the sphere-

sphere contact detection which requires less computational power. In soft sphere 

approach, the deformation of particles in contact is simulated by the overlap of the 

element spheres of the two involved particles: the greater the overlap the higher the 

repulsive forces. The relationship between contact force and overlap distance is 

mainly dictated by the Young’s modulus assigned to the elements. 

Other existing methods allow the calculation of collisional stress by the summation of 

particle contact force vectors within a volume in a zonal approach of the particle bed 

[114]. Most of the models do not include the calculation of kinetic stresses as they are 

found being three order of magnitude lower than collisional stresses [80]. 

 

2.4.2.2 Cohesion 

The presence of liquid is simulated by the addition of a cohesive force to the total force 

balance on particles [150, 218]. Viscosity models can also be used [210] where the 

viscosity of the fluid is likely to affect the force balance on particles e.g. for high fluid 

viscosity or in dynamic regime. Cohesive forces are calculated at inter-particulate 

contacts (pendular regime of saturation) and are effective within a chosen particle-

particle distance [79] i.e. below the critical size of a liquid bridge.  
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Even though DEM aims for a realistic particle bed modelling, assumptions are taken 

to reduce the computational time needed. Concerning the modelling of moisture 

content effects on a particle bed, the liquid is generally assumed being only present at 

inter-particulate contacts and homogenously spread with equal liquid bridge volumes 

[98, 223]: the total liquid volume is divided by the number of particles and average 

coordination number in a dry bed (around 5 for monodisperse spheres) [80]. The 

rupture distance of the liquid bridges is given as a function of their volume. Moreover, 

the capillary forces are usually presumed acting in the only normal contact direction 

and don’t affect tangential movement [80]. The capillary force is also dependent on 

the contact angle which can be considered null for hydrophilic materials [223], and on 

the surface roughness at low moisture content [120] (not considered in first 

approximations [80]). In models where drying kinetics are not considered, the state 

transition (e.g. evaporation or condensation) isn’t simulated. 

Other cohesive models are based on numerical solutions of Laplace-Young equation 

[224], where the axial component from surface tension and the hydrostatic force due 

to pressure deficiency are calculated [210], and the results of static capillary forces 

show good agreement with experimental data [68, 225]. 

 

2.4.2.3 Flexible Particles 

Flexible particles are studied in DEM simulations since 1993 [226] and consist on 

spheres linked together by forces that are related to the mechanical properties of the  

particle [192, 227]. The use of bending models allows the elongated particles to deform 

elastically [228]. Some models use energetic equations to rule the mechanical 

behaviour of fibres made of bound spheres [210]: the global kinetic energy of the fibre, 

the local kinetic energy of the constituent spheres and the elastic potential energy are 

calculated in the simulations [228]. 

Bending fibres in 3D Couette shear box experience similar normalised shear stress 

compared to rigid fibres, unless at high solid fraction and coefficient of static friction 

where they experience smaller normalised shear stress [14, 210, 228]. Indeed, the 

coordination number, shear stress and stress ratio vary with the Young’s modulus of 

bonds within a flexible particle. A minimum Young’s modulus of bonds of around 
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100𝑀𝑃𝑎 is necessary to observe the same bulk mechanical behaviour of a bed 

compared to rigid particles [228]. 

 

2.4.2.4 Particle Breakage 

Breakage kernels are implemented in DEM simulations to compute the breakage of 

particles when their critical internal stress is reached. DEM is used for the prediction 

of particle breakage either by computing the breakage of primary particles into 

secondary particles within the simulation or by associating stress calculation in the 

model with assessing effects of stresses on the extent of breakage experimentally 

(e.g. annular shear cell) [165].  

 

2.4.2.4.1 Particle Internal Stress 

The internal stress of elongated particles can be calculated along the simulation using 

the Newton’s second law of motion (see Equation 2.4.1 and Equation 2.4.2) and Euler 

equation of motion [55]. The particle internal normal and shear stress can also be 

calculated on specific planes [229], and the beam bending equation can be used in 

the case of flexible fibres [230].  

Once the particle internal stress is calculated, the particle breakage is performed if the 

particle internal stress exceeds the assigned critical value. The breakage strength can 

be attributed homogeneously to all particles or following a Weibull distribution to reflect 

the heterogeneity of a particle bed due to the presence of defects within the crystals 

[192]. 

The particle internal stress calculation method can be verified by performing a DEM 3-

point bending simulation [191] and compare the results with analytical solving of the 

simple beam bending equation [59]. 
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2.4.2.4.2 Breakage Mechanisms 

There are three types of breakage models in DEM [210]: the bound-particle model 

where the bonds between the constitutive elements of a particle break if their stress 

exceeds the material strength [191, 192, 194, 231-234], the fragment spawning model 

where a parent sphere generates daughter spheres with temporary overlaps, and the 

attrition prediction model where the attrition rate is given as a function of the strain 

applied. 

Breakage kernels can compute both attrition and fragmentation [232-234]. 

Nevertheless, it is assumed that the fines have a low impact on the flow behaviour due 

to low attrition rates in dryers, which is why the fines are generally not accounted in 

the breakage kernels [191]. The corresponding mass loss is typically < 3%. 

 

2.4.2.4.3 Breakage Rate 

The location of particles within the bed in an AFD highly impacts the breakage rate. In 

DEM agitation cell, a reduced distance between elongated particles and the impeller 

increases the breakage rate when using a breakage kernel [191]. Indeed, particle 

breakage mainly occurs in front of the impeller as it is an identified high stress region 

[108, 188, 191]. Likewise, a higher hydrostatic pressure [235] and strain applied 

increase the breakage rate of particles, which is confirmed in AFD simulations where 

more than 50% of the attrition of spherical particles occurs in the bottom third of the 

bed and towards larger radial distances [108]. The extent of breakage is actually 

dependent on the number of impeller rotations (i.e. the work applied) regardless of the 

impeller speed, which is in good agreement with the quasi-static flow regime during 

the drying process [1, 8, 9, 108, 156, 191, 235]. The breakage of elongated particles 

mainly occurs during the first impeller rotations in DEM agitated cell and then 

decreases with time [1, 191]. With time, particle breakage becomes more probable in 

the upper region of the bed as particles segregate and the smaller particles, requiring 

larger forces to break, migrate towards the bottom of the bed [191]. 

Finally, the particle physical and mechanical properties influence the breakage rate. 

As breakage occurs, the aspect ratio of particles is reduced which decreases their 
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breakage rate as they need a greater load to be broken [55, 191]. On the contrary, a 

lower particle yield strength or higher particle elastic modulus [55] increase the 

breakage rate of elongated particles [191]. A higher contact friction (i.e. particle-

particle and particle-wall) is also reported to increase the breakage rate of elongated 

flexible particles made of bound spheres [235]. If the number of particles in the 

simulation is not sufficient, noise in the breakage rate can occur due to the lack of bed 

homogeneity [191]. Ultimately, the same steady state of PSD is achieved with 

sufficient work applied on the particle bed [8, 9, 28], regardless of the initial distribution 

[1, 191]. 

 

2.4.2.4.4 Location of Breakage 

Elongated particles preferably break at their centre and the distribution of breakage 

location along the particle neutral axis follows a Gaussian model in both attrition cell 

[191] and compaction simulations [194]. The distribution parameters are the same for 

all aspect ratio and stress conditions, with a mean at the middle of the particle length 

[55, 191, 192, 194, 235] and a standard deviation at 0.11% of the length [191]. 

Moreover, the maximum internal stress on a particle occurs at its surface [55] where 

the tensile stress is at its maximum. 

The probability that the particle internal stress exceeds the critical material strength on 

multiple location on the particle is below 1% [191]. In this case, the particle is broken 

on the location of the maximum stress. These models have shown good agreement 

with experimental extent of breakage when they use experimentally assessed 

mechanical properties (e.g. 3-point bending test) [192, 194].  

 

2.4.2.4.5 Population Balance Model 

The breakage rate of particles can be implemented in a population balance model 

(PBM) to predict the PSD of elongated particles during agitation [168, 191]. The PBM 

estimates the distribution of particle size or particle aspect ratio, the latter following a 

log-normal function if enough work is applied on a breakable particle system [191]. 
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The PSD reduction in agitated systems is typically related to the operating conditions 

[157, 186, 231, 236-238]. The extent of attrition scales with the normal stress 

characterising the stress environment and the shear strain quantifying the deformation 

of the bed [157, 184]. Other models predict the extent of attrition from the work applied 

on the sheared particle bed [231]. The bed volume can be divided into zones and the 

operating conditions can be assessed within each zone [108] to increase the accuracy 

of the model. 

The prediction of particle breakage can be performed by a combination of DEM 

simulation and PBM, as it has been done for elongated particles made of bound 

spheres in uniaxial compression [192, 194]. Alternatively, the extent of attrition can 

also be predicted from a combination of DEM simulations and experimental 

measurements allowing model calibration. A study has combined DEM simulation of 

lab-scale AFD, to obtain the strain and normal stress within the particle bed, with 

experimental measurement of attrition in annular shear cell [108]. In this paper, the 

particle size reduction due to breakage is considered having no effect on the strain, 

stresses and breakage rate of the primary particles with an aspect ratio of 2. 

 

2.4.3 Shear Cell 

A shear cell built in DEM consists of the application of shear and normal stress to a 

bed of particles. This method mimics the mechanistic conditions experienced by 

particles in an experimental annular shear cell [165] where the lower plate rotates 

horizontally inducing shear on the particle bed whilst the higher plate applies a 

scalable compression on it. Consequently, friction is generated at inter-particulate 

contacts and the bed deforms with particle rearranging to relieve the stress. 

 

2.4.3.1 Types of Cells 

Conventional shear test is performed using two connected boxes filled with particles. 

The boxes perform a translational movement in opposite directions to deform the 

particle bed [195]. The distance between the two boxes can be adjusted to define the 
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depth of the shear band i.e. the volume of the bed that experiences deformation [239, 

240]. When the boxes separation is null, the shear band can be defined as a shear 

plane. 

The Couette method consists of deforming a particle bed using rough walls instead of 

boxes. The shearing is induced by the translation of either one [13, 24] or the two 

parallel walls [21, 23, 241] in opposite directions [13, 24, 242]. The roughness of the 

walls is needed to ensure that no slipping occurs at the particle-wall interface: the 

particles in contact with the walls are dragged efficiently to avoid strain localisation at 

the boundaries [13, 23, 242, 243]. This phenomenon is generally simulated by 

increasing adhesion of particle-wall contacts (i.e. gluing particles to the walls) or 

modifying the walls inner surfaces to promote particle-wall interlocking. The particle 

bed can be compressed by reducing the distance between the two walls creating a 

uniaxial compression [191]. 

When populating the cell, particles are usually generated at random position and 

orientation [191] with no initial translational or rotational velocities [55]. An algorithm is 

used to ensure that particles are not generated where they would overlap with existing 

ones. 

 

2.4.3.2 Periodic Boundaries 

The use of periodic boundaries has become a standard in DEM simulations. Applied 

on two axes, it allows the creation of an infinite shear band with a reduced number of 

particles [21, 244], and thus considerably moderates the required computational 

power.  

A shear cell can be simulated with periodic boundaries on the three spatial dimensions 

using Lees-Edwards boundaries [245], creating an infinite cell. The shearing is 

induced by assigning a velocity to particles crossing the Lees-Edwards boundaries 

and applying a reverse symmetry between the two involved boundaries [203]. The 

effect of gravity cannot be studied in this configuration as there is no wall to balance 

unidirectional forces. 
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2.4.3.3 Domain Size 

2.4.3.3.1 Cell Dimensions 

The shear cell volume needs to be large enough to produce consistent data and be 

representative of the volume of a real particle bed. The cell dimension is generally 

defined after the size of the studied particles. In the case of non-spherical particles, 

the diameter of a sphere (𝑑𝑣), which volume is equivalent to the particle volume, is 

taken as reference to normalise simulations [119, 154]. In the case of elongated 

particles, the recommended specimen size is defined as a function of the particle 

length (i.e. particle’s maximum dimension): a minimum of × 5 with an ideal figure of 

× 8 [246], and a maximum of 12 × maximum particle size reported in tri-axial 

compression [205]. 

The objective of the domain definition is to minimise the number of particles generated 

and then increase the rapidity of the simulation, whilst conserving the consistency of 

the data. A comparison between a 20.16 × 20.16 × 10.08 𝑑𝑣 and 15.12 × 15.12 ×

7.56 𝑑𝑣 cell size has been performed for particles aspect ratio of 6 and the results in 

normal stress, shear stress, kinetic and collisional components were in good 

agreement [203]. Further on, the smaller domain has been chosen for the study of 

elongated particles [228]. 

 

2.4.3.3.2 Number of Particles 

A minimum number of particles is essential to obtain relevant particle bed behaviour 

and bed homogeneity, as the mechanical properties of assemblies (e.g. stiffness and 

peak shear strength) vary with sample size [247, 248]. The number of particles is 

generally reduced with increasing aspect ratios [55], especially for clumped-sphere 

particles as they require more computational power due their increased total number 

of elements. 

The number of particles typically scales at the order of magnitude of thousands: 1170 

to 3000 ellipsoids used in tri-axial compression [205, 249], 4500 clumped-sphere 
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particles in direct shear test [195], 2360 to 8400 elongated sphero-cylinders in DEM 

vertical axis mixer [55], and up to 8000 flat particles in shear box [13]. A study on 3D 

DEM shear cell has shown that the number of particles can be reduced from 4000 to 

2000 whilst conserving identical mechanical response of the bed [203]. 

In simulations on two dimensions, the minimum number of particles for representative 

bed behaviour can be reduced: 1500 particles were sufficient in 2D Couette flow [23]. 

 

2.4.3.4 Mechanical Aspects 

2.4.3.4.1 Strain and Strain Rate 

The strain of a particle bed in a shear cell is defined by the relative displacement of 

the translating walls over the separation distance of the two parallel walls [23]. It is 

therefore a dimensionless number quantifying the deformation experienced by a 

particle bed. In shear cell simulating a Couette flow, the dimensionless strain 𝛾 is 

expressed as follows: 

 𝛾 = �̇�. 𝑡 2.4.3 

With 𝑡 the time of shearing and �̇� the strain rate given as: 

 �̇� =
|�⃗�𝑢𝑝 − �⃗�𝑙𝑜𝑤|

ℎ(𝛾=0)

 2.4.4 

With |�⃗�𝑢𝑝 − �⃗�𝑙𝑜𝑤| the relative velocity between the upper and lower walls, and ℎ(𝛾=0) 

the shear cell height at the start of the shearing phase i.e. when the strain applied is 

null. 

In Couette flow, an effective strain application is promoted by increasing the roughness 

of the walls. The grip factor 𝑓 quantifies this effectivity as follows [155]: 

 𝛾 =
𝑑

ℎ
𝑓 2.4.5 
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With 𝑑 the relative displacement of the two walls and ℎ the shear cell height. Here, the 

strain application is optimal when 𝑓 = 1. 

The velocity profile assesses the gradient of particle velocity in the shear direction 

across the bed [242] and a uniform strain application throughout the bed can be 

confirmed by a linear velocity profile [13]. To ensure a linear velocity profile, a velocity 

can also be assigned to particles individually according to their position along the bed 

height, ensuring a linear velocity gradient [203]. 

The magnitude of strain performed in simulations generally corresponds to the 

deformation needed to reach a steady state on an investigated variable. A strain of 

0.15 was sufficient to reach a constant stress ratio (see Equation 2.4.6) in a 3D 

conventional shear cell with particles aspect ratio between 1 and 2.5 [149], whilst a 

strain of 2.5 was needed to study the mechanical behaviour of a bed of platy particles 

[13], and only 0.3 in a direct shear test with elongated clumped-sphered particles 

strained on a shear plane [195].  

In triaxial compression, the strain required to reach a plateau of effective stress ratio 

increases with aspect ratio of ellipsoids [205]. The same observation is made for 

clumped-sphere particles in direct shear test [195]. On the contrary, the normal stress 

applied doesn’t impact the strain needed to reach a steady state in this study, for a 

range of 50𝑘 − 2𝑀𝑃𝑎. 

The initial acceleration of the walls, before they reach a constant velocity, has been 

taken in consideration, and a low acceleration can be assigned to walls to avoid initial 

shock disturbance on the particle bed [24]. 

 

2.4.3.4.2 Bed Dilatancy and Densification 

A granular assembly dilates slightly when a shear stress is applied on it. This 

phenomenon is called Reynold’s dilatancy [250, 251] and is due to the interlocking 

between particles and rearrangement of particles in an over-consolidated bed [21]. 

Indeed, the particles change position and rotates to release the frictional energy by 

breaking existing particle-particle contacts and creating new ones [252, 253]. 
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Therefore, the choice of either constraining the bed volume by fixing the walls 

separation distance or constraining the normal pressure applied by adjusting the walls 

separation [13, 21, 23, 24, 195] throughout shearing may affect the mechanical 

behaviour of the particle bed [24]. 

 

2.4.3.4.3 Stress Environment 

The stress environment is defined with the components of the stress tensor [13, 254, 

255]. Generally, only the normal and shear stresses are taken to characterise this 

stress environment in DEM. The two stresses are linearly proportional in quasi-static 

flow regime according to the Coulomb’s law of static friction [152-154] (see Equation 

2.3.3). 

The stress ratio 𝜑 is the main dimensionless number for the characterisation of the 

mechanical behaviour of a particle bed [13, 21] and is given as a function of the shear 

stress 𝜏 and the normal stress 𝜎 : 

 𝜑 =
𝜏

𝜎
 2.4.6 

The stress ratio can also be obtained by the division of the deviatoric stress by the 

hydrostatic pressure (see Equation 2.3.2). The deviatoric stress is then given as the 

major 𝜎1, intermediate 𝜎2 and minor 𝜎3 principal stresses [149]: 

 𝜏 =
√(𝜎1 − 𝜎2)

2 + (𝜎1 − 𝜎3)2 + (𝜎2 − 𝜎3)
2

√6
 2.4.7 

In the shear cells, the average normal and shear stresses can be calculated from the 

sum of forces on the wall �⃗�𝑖 ,𝑤 divided by the wall area 𝐴 [195, 256, 257]: 

 𝜎 =
1

𝐴
∑ �⃗�𝑖,𝑤 . 𝑧

𝑛

𝑖=1

 2.4.8 
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 𝜏 =
1

𝐴
∑ �⃗�𝑖,𝑤 . �⃗�

𝑛

𝑖=1

 2.4.9 

With 𝑛 the number of wall contacts, 𝑧 the unit vector in the normal stress direction and 

�⃗� the unit vector in the shear direction. 

In shear cells, the stress ratio first increases to a peak in the transitional state [13] 

before decreasing to reach a steady state [258]. The average value of stress ratio in 

steady state can be taken as a characteristic value [149]. 

The aspect ratio of elongated particles influences the mechanical behaviour of the bed 

in shear cells and affects the shear stress [203]. Observations differ on the nature of 

the correlation between aspect ratio and shear stress. On the one hand, the stress 

ratio is reported to decrease with higher particle elongation when the aspect ratio is 

greater than 1.5 in shear cells [149, 228]. Indeed, the angle of friction, proportional to 

the stress ratio [152-154] (see Equation 2.3.3), for ellipsoids is shown to slightly 

decrease with increasing aspect ratio [258]. This phenomenon may be attributed to 

particles alignment which reduces particles resistance to shear and make them slide 

more easily [149]. On the other hand, a bed of particles made of two clumped spheres 

with an aspect ratio of 2 exhibits larger shear stress than for spherical particles [154]. 

This observation is supported by the increase of critical direct shear angle of friction 

with particle elongation for aspect ratio ranging from 1.2 to 2.2 in direct shear test [195]. 

It is also the case in 2D simulations using clumped spheres for aspect ratio ranging 

from 1 to 3.3 [259]. In AFD simulations, the impeller torque, proportional to the shear 

stress using Darelius equation [152] (see Equation 2.3.4), scales with particle 

elongation up to an aspect ratio of 5 [119]. The increase of torque with non-spherical 

particles made of clumped spheres and with inter-particular friction is confirmed in 

DEM Freeman powder rheometer [193]. In the case for platy particles, the shear stress 

also scales with particle platyness in 3D Couette flow [13]. Finally, the peak value of 

stress ratio is not correlated to the particle aspect ratio when > 1.2 in direct shear test 

[195]. 

The impact of aspect ratio on shear stress can also be magnified by the bed packing 

and particle-particle interaction properties e.g. solid volume fraction and friction 
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coefficient [14, 203, 210]. Indeed, the normalised shear stress increases with solid 

volume fraction for particles with aspect ratio of 6 [228]. Likewise, the impeller torque 

increases with lower elastic modulus of sphero-cylinders in DEM vertical axis mixer. 

The use of realistic elastic modulus produces torque similar as experimentally 

observed [188].  

Contrary to cylindrical-shaped particles, the spacing between elements in multi-sphere 

particles induces an additional particle roughness which promote interlocking and a 

higher shear stress in shear tests [149, 228, 260]. The flow stresses produced with 

these particles is greater by over one order of magnitude than with smooth particles in 

DEM simple shear flow [14, 203, 261].  

The normal stress applied isn’t reported to have an impact on the steady state value 

of the stress ratio, as it is the case in tri-axial compression of ellipsoids with an aspect 

ratio of 1.1 and the normal stress ranging from 50𝑃𝑎 to 2𝑘𝑃𝑎 [205, 262]. However, the 

peak value of stress ratio increases for lower normal stress in the range of 50𝑘 −

20𝑀𝑃𝑎 [195]. 

 

2.4.3.4.4 Bed Flow 

Granular flow is characterised according to the correlation between the stress and the 

shear rate applied [203, 210]: it is called dilute when collisions are dominant and the 

stress scales with the square of shear rate, dense (or elastic-inertial) in the case of 

multiple enduring contacts where the stress scales linearly with shear rate, and quasi-

static if the shear stress and shear rate are independent [116]. In the dilute flow regime, 

the flow stress is largely dependent on the particles aspect ratio rather than the surface 

roughness [14, 203, 261]: the stress is inversely proportional to the aspect ratio. In the 

dense flow regime, the stress increases with particles aspect ratio, friction and surface 

roughness. 

In the case of quasi-static flow regime, most of the energy is dissipated by frictional 

contact rather than inter-particulate damping [24] and the kinetic energy can be 

considered negligible [205]. The ratio of mean unbalanced force to the mean contact 

force is an indicator of quasi-static flow if low enough: a value of 10−5 has been 
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reported as characteristic of quasi-static flow [263], however no maximum value is 

specified for this regime. 

Quasi-static flow regime is characteristic of bed behaviour in industrial scale AFD [1] 

where the normal stress scales linearly with the shear stress [152-154] (see Equation 

2.3.3). This phenomenon is confirmed in AFD simulations with the impeller torque 

being linearly proportional to the lid pressure [191, 235]. 

The particle shape affects the bed flow in DEM shear tests [264]. The velocity of 

sphero-cylinders in mixing simulations decreases with increasing particles elongation 

[188]. This phenomenon is due to a higher mass moment of inertia of elongated 

particles restraining their rotation, and is reported to lower the rate of volume changing 

in tri-axial compression [205]. Indeed, the variation of particles angular rotation 

decreases with increasing aspect ratio [149]. Nevertheless, their trajectories remain 

similar to spherical particles with vortices on horizontal plane circulating in opposite 

direction from blade rotation [188]. 

 

2.4.3.4.5 Packing 

The particle shape is one of the key factors conditioning the packing structure [265] 

and this phenomenon was investigated for ellipsoids [266, 267], polyhedrons [268, 

269] and cylinders [187, 189]. 

The coordination number of a particle is the number of particles in contact with it [270]. 

It is related to the structural stability of a granular assembly [271] and a coordination 

number greater than 4 is necessary to consider stable an assembly of polydisperse 

spheres [270]. The coordination number increases with particle aspect ratio [228], and 

a plateau is reached for an aspect ratio of 2 with ellipsoid [205]. This increase is 

potentially due to the obstruction of particle rotation with greater aspect ratio, forcing 

the creation of more particle-particle contacts for them to slide [205]. The choice of 

modelling ellipsoids with clumped spheres decreases their coordination number but 

increases the total number of contacts compared to smooth shapes [272]. When a bed 

of ellipsoids is strained, the coordination number decreases to reach a steady state 

[205, 270]. 
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The void ratio of a bed increases with elongation of ellipsoids having an aspect ratio 

greater than 1.5 [119, 205]. The same observation is made for sphero-cylinders in 

DEM monodisperse system with periodic boundaries [273-276]. The sphere overlap 

also affects packing properties: the void ratio is observed to be larger for rough 

particles compared to smooth [272, 277] and affects the number of contacts [249, 258, 

266, 278] which appears twice as high for rough particles [228]. Likewise, increasing 

the stress field with a higher compression on particles augments the coordination 

number and decreases the void ratio [205]. Indeed, the coordination number typically 

increases with reduced porosity [270]. 

Elongated particles have the ability to align [14] along the flow stream in sheared 

systems [188] and the order parameter 𝑆 quantifies the uniformity of their ordering in 

the same direction [205, 279, 280]: the order director. A higher aspect ratio of particles 

is reported to increase alignment [14], decreases overall solid fraction and solid 

fraction uniformity within the bed [188]. In DEM vertical axis mixers, the alignment 

phenomenon then affects the flow and particle velocity [188]. A smaller degree of 

alignment, and thus solid fraction, is found in the region of higher velocity in DEM 

agitated cell with sphero-cylinders [188]. 

Different packing gives different resistance to the flow and can affect particle breakage 

[281]. Methods can be employed to generate isotropic dense assemblies, such as 

setting to zero the gravitational acceleration and friction coefficients of particle-particle 

and particle-wall interactions [205]. The use of this method resulted in the densest 

granular assemblies [282, 283]. Further on, the coefficients can be set back to a 

realistic value for the shearing phase [195, 205, 282-284]. 

 

2.4.3.4.6 Force Chains 

The forces induced by the stress environment are transmitted through contacts 

between particles within a granular assembly. The contact network can be described 

as strong/weak subnetwork if normal contact force is higher/below average normal 

force applied [195, 285-287]. The strongest contacts support most of the stress on the 

assembly and form force chains across the bed [195, 285-287]. 
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Sliding mainly occurs on weak contacts as they require less force to be broken during 

bed straining [205, 285, 288]: they are called sliding contacts. They behave like 

interstitial liquid providing stability for the force propagation along the strong contacts  

[205, 285]. The percentage of sliding contacts increases with the particle aspect ratio 

in monodisperse bed [205]. 

 

2.4.3.5 Gravity 

The gravity is generally used when simulating a realistic environment [289] and 

becomes essential when the acceleration of gravity is likely to have an impact on the 

modelled phenomenon. This is especially the case in large scale where the load on 

particles scales with the mass of the bed, which produces a discrepancy of 

compressive stress within the bed due to the uni-directionality of gravity. 

The use of gravity in simulations has a noticeable influence on the key properties of a 

particle bed when a low pressure is applied on particles in a shear cell: it particularly 

affects the symmetrical distribution of particles velocity, inter-particulate forces and 

stress tensors along the gravity axis [290]. Moreover, the behaviour of elongated 

particles changes with gravity as they tend to lie flat on surfaces to minimise their 

gravitational potential energy [205]. The influence of gravity diminishes when the 

applied load increases. The magnitude of the applied gravity force also has a 

noticeable effect on the packing of the particle bed in quasi-static flow: the density 

increases and the macroscopic friction decreases with a greater gravity force [291]. 

Moreover, powders exhibit more cohesiveness with decreasing gravity [292]. 

Nevertheless, the absence of gravity allows the observation of small-scale 

phenomenon and reduces the number of variables involved, i.e. degrees of freedom 

[203, 228, 241, 261]. As an example, not introducing gravity allows the creation of an 

homogeneous stress field within the particle bed [13]. 
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2.4.4 DEM Validation 

The angle of repose is a widely used method and consists of measuring the angle of 

a pile of particles been dropped on a flat surface. The angle is affected by DEM 

parameters such as the angle of friction, particles morphology and surface energy. 

The angle also generally increases with the presence of cohesion [120]. The result of 

this test can then be validated against experimental observations. Another method 

was used to validate DEM results by performing uniaxial compression on chalk sticks 

and compare the load vs. displacement curve with experiments [191, 235]. 

The flow of the particles within a bed when submitted to agitation can be compared 

with Particle Image Velocimetry (PIV) experiments that analyse the velocity of particles 

at the bed surface [80]. The use of Positron Emission Particle Tracking (PEPT) 

experiments has the advantage to validate particle flow through the whole bed [165]. 

The level of shear and normal stress that the particles experience in simulated blade 

mixers can also be confirmed by theory. As expected, DEM simulations have 

demonstrated that these stresses scale linearly with the total weight of particle bed 

[150]. Also it is realistic to observe in simulations that the momentum transfer is 

independent of shear rates in quasi-static flow regime [115]. 

 

2.5 Concluding Remarks 

API crystals experience breakage during the drying process in the pharmaceutical 

industry. The phenomenon is of great concern as it degrades the quality of medicines 

and requires resource-consuming methods to obtain the desired particle properties for 

further product formulation. 

The breakage of a crystal means that the internal stress experienced by the crystal 

exceeded its critical breakage strength. Therefore, two variables are needed to solve 

the issue of crystal breakage during agitation drying: the particle internal stress 

experienced in the drying environment and the particle breakage strength. 

The presence of defects in organic crystals involved in the pharmaceutical industry 

makes their mechanical properties unpredictable from their ideal crystal lattice. An 
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experimental study on the crystals charged into the dryer is then essential to obtain 

the distribution of their breakage strength. Methods like 3-point bending are widely 

used in the literature and allow to assess the mechanical properties of individual 

crystals to obtain this distribution. 

Most of these crystals are highly elongated e.g. rods or needles. Therefore, their main 

breakage mechanism is fragmentation from their experienced bending stress. 

Mechanical theory informs that the internal stress of particle is induced by external 

forces on its surface. In granular assembly, these forces are created from inter-

particulate contacts. An in-depth knowledge of the force magnitude and number of 

contacts is then crucial to accurately determine the particle internal stress. This 

information can only be obtained using modelling tools, and DEM is an established 

method to simulate the behaviour of granular assemblies. 

Due to the limits of computational power nowadays, it is not possible to simulate the 

number of particles present in an AFD with DEM. Nevertheless, it is possible to study 

the behaviour of a reduced number of particles using a shear cell which can mimic the 

mechanical process environment within an AFD: the normal stress induced by the 

weight of the bed and the shear stress generated from the impeller rotation. The shear 

stress is proportional to the normal stress due to the quasi-static flow regime of a 

particle bed in the AFD. 

The use of DEM shear cell simulations with the different normal stresses experienced 

in an AFD and particle elongations represents a solution to obtain the distribution of 

particle internal stress. The distribution parameters can then be correlated with the 

particle physical properties and drying process conditions to obtain mathematical 

models. These models have the potential for the process operator to predict the 

particle internal stress distribution in dryers without the need to perform further DEM 

simulations which require time and computational resources. 

Particle breakage is generally computed during the simulation which makes the PSD 

time-dependant and creates transient model. A novel probabilistic approach can be 

proposed to obtain the extent of breakage of particles from the joint density function 

of particle internal stress and particle breakage strength. It is reported that the 

breakage rate is proportional to the strain applied, which is dependent on the radial 
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distance in AFD and number of impeller rotation. A breakage kernel can then be 

created and used in a population balance model to obtain the breakage rate of 

particles in the different zones of an AFD. This methodology would allow the prediction 

of PSD during the drying process in an AFD and can be validated against lab-scale 

experimental results. 
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3 The Breakage of Elongated Organic Crystals in Agitated 

Filter Dryers 

3.1 Introduction 

In this chapter, the breakage of elongated organic crystals is investigated for different 

agitated drying conditions. Glutamic acid is crystallised in its elongated form (β-LGA). 

The crystals are then filtered and agitated in a lab scale agitated filter dryer (AFD). 

The effect of agitation is assessed by measuring the particle size distribution (PSD) 

for different level of agitation, i.e. number of impeller rotations applied to the particle 

bed. The impact of agitation on particle breakage is investigated on both dry and wet 

systems. The PSD is measured by laser diffraction and image analysis for cross-

referencing. The use of image analysis method provides insights on the mode of 

breakage of particles according to their size and shape. As the study of individual β-

LGA crystal breakage using Atomic Force Microscopy (AFM) performed in Chapter 4 

confirms the brittle fracture of this material, and the agitation in AFD is applied in quasi-

static flow regime, the expected principal modes of breakage of these elongated 

crystals are attrition and fragmentation. 

 

3.2 Materials and Methods 

3.2.1 Crystallisation 

The crystallisation of glutamic acid is performed to obtain its needle-shaped β-LGA 

polymorph following the methodology described by Shier [293]. A 99% purity glutamic 

acid powder provided by Sigma-Aldrich is taken as raw material. 40𝑔 glutamic acid 

powder and 1𝐿 deionised water is charged into a 1𝐿 vessel (see Appendix 1) and 

heated up to 70°𝐶 for 60𝑚𝑖𝑛 to dissolve the solid under a 300𝑟𝑝𝑚 agitation throughout 

(the solution took approximately 30𝑚𝑖𝑛 to reach the desired temperature). The 

temperature of the solution was then reduced to 60°𝐶 over 30𝑚𝑖𝑛. 1.2𝑔 LGA material 

is ground up using a mortar and pestle until the consistency becomes like floor and 

non-shiny. The crushed powder is then charged to the reactor at a batch temperature 
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of 60°𝐶. The seed holds forming a thin white slurry and is cooled down to 20°𝐶 at a 

rate of 0.06°𝐶/𝑚𝑖𝑛, allowing the crystals to grow. 

 

3.2.2 Filtration 

After crystallisation, the slurry is removed from the vessel and vacuum filtered in 4 

portions, each approximately 250𝑚𝐿, using the AFD model PSL minilab GFD (see 

Figure 3.2.1). The filtration is performed by nitrogen gas flow at 5𝐿/𝑚𝑖𝑛, room 

temperature and 0.4𝑏𝑎𝑟 pressure controlled by a Humidifier P-50 from Cellkraft. 

 

Figure 3.2.1: Agitated filter dryer (1) Minilab GFD from PSL used for filtration and 

agitation of β-LGA crystals. The nitrogen flow is applied in the vessel via flexible 

tubing (2) and controlled using a Humidifier P-50 from Cellkraft (3). The AFD 

controller (4) allows the selection of the impeller rotation speed. 

1 

2 
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The filtration was rapid and took less than 5𝑠 for each portion, with the filtrate collection 

performed after each portion filtrated. The wet cake is then directly agitated in the wet 

agitation experiment, whilst it is allowed to deliquor in static conditions by flow through 

nitrogen at 5𝐿/𝑚𝑖𝑛 with a target humidity at 0% to obtain a dry bed for the further dry 

agitation experiment. 

During the filtration process, the agitator is on its top position and outside of the wet 

cake for the further dry agitation experiment, whilst it is already positioned towards the 

bottom of the bed for the further wet agitation experiment. 

 

3.2.3 Agitated Drying Process 

3.2.3.1 Dry Bed 

After crystallisation and filtration, the wet cake is left overnight in the AFD with a 

nitrogen flow filtration allowing the particles to fully dry in static conditions. The particle 

bed is considered fully dry after overnight filtration and no moisture content 

measurement is performed. 

The impeller rotation is then activated in the forward direction at 30𝑟𝑝𝑚 and lowered 

into the particle bed until a 5𝑚𝑚 gap separates the impeller from the bottom of the 

AFD. 8 rotations were performed in the forward direction into the bed whilst lowering 

the agitator. The agitation of the particle bed is started again at 30𝑟𝑝𝑚 for 1𝑚𝑖𝑛 then 

100𝑟𝑝𝑚 until the end of the agitation phase.  

Bed sampling is performed regularly for PSD measurements, stopping the agitation if 

the impeller is rotating. In total, 9 laser diffraction and 5 G3 PSD measurements are 

performed during the dry bed agitation experiment (see Table 3.2.1). 

Table 3.2.1: List of samples during AFD experiment of dry bed with performed 

analysis. 

Sample 

name 
Description 

Impeller rotations 

(cumulative) 
Microscopy 

Laser 

diffraction 
Morphologi G3 
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3.2.3.2 Wet Bed 

Another crystallisation and filtration are performed. The cake height is assessed by 

fully immersing a spatula and measuring the portion covered with white powder. The 

measured cake height is 6𝑐𝑚 with a slight overestimate as the spatula was immersed 

with a slight angle.  

Contrary to the dry bed agitation experiment, the agitator was already positioned 5𝑚𝑚 

away from bottom of the AFD before filtration to avoid crushing of particles when 

lowering. 

8 impeller rotations are then carried out in the forward direction at 30𝑟𝑝𝑚. The agitation 

of the particle bed is started again at 100𝑟𝑝𝑚 until the end of the agitation phase.  

Again, bed sampling is performed regularly for PSD and moisture content 

measurements, stopping the agitation if the impeller is rotating. In total, 6 moisture 

Dry-A After fi ltration 0 Y Y N 

Dry-B Overnight fi ltration 0 Y Y Y 

Dry-C 8 impeller rotations 8 Y Y N 

Dry-D 1min 30rpm 38 Y Y Y 

Dry-E 5min, 100rpm 638 Y Y N 

Dry-F 25min 100rpm 3.74k Y Y N 

Dry-G 120min 100rpm 18.8k Y Y Y 

Dry-H 165min 100rpm 50.4k Y Y Y 

Dry-I 505min 100rpm 132.4k N Y Y 
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contents, 6 laser diffraction and 4 G3 PSD measurements are performed during the 

wet bed agitation experiment (see Table 3.2.2). 

Table 3.2.2: List of samples during AFD experiment of wet bed with performed 

analysis. 

 

3.2.4 Measurements 

3.2.4.1 Particle Sampling 

The particle sampling is performed using a soft cut plastic pipette (see Figure 3.2.2). 

The cut pipette is inserted into the particle bed along the entire bed height to obtain a 

representative PSD and account for the possible particle segregation by size with 

Sample 

name 
Description 

Impeller 

rotations 

(cumulative) 

Microscopy 
Moisture 

content 

Laser 

diffraction 

Morphologi 

G3 

Wet-A After crystallisation 0 Y N N N 

Wet-B After fi ltration 0 Y Y Y Y 

Wet-C 8 impeller rotations 8 Y Y Y N 

Wet-D 1min 100rpm 108 Y Y Y Y 

Wet-E 5min, 100rpm 708 Y Y N N 

Wet-F 25min 100rpm 3.81k Y Y N N 

Wet-G 142min 100rpm 21.1k Y Y Y Y 

Wet-H 204min 100rpm 58.8k Y N Y N 

Wet-I 987min 100rpm 195.2k Y N Y Y 
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particle breakage and agitation. All wet samples are dried in a vacuum oven before 

performing microscopy, laser diffraction or Morphologi G3. 

 

Figure 3.2.2: Particle sample collected using a soft cut plastic pipette. 

 

3.2.4.2 Particle Size Distribution 

The PSD of β-LGA crystal samples is assessed using two methods to obtain both one-

dimensional and 2-dimensional particle size measures. This combination provides 

complete insights on the particles physical properties [28-31]. 

The laser diffraction [1] is performed using the Mastersizer 3000 from Malvern. The 

powder dispersion is operated at 2𝑏𝑎𝑟 air pressure at a temperature of 0°𝐶 and 3 

million snaps (individual data record collection instances) are demanded. The 

additional parameters recorded for the different samples are summarised in Appendix 

9. 

The measure of particles width and length is performed using the Morphologi G3 [25, 

27, 28] from Malvern. The data collected is analysed using a script presented by Mahdi 
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et al. [294] allowing the elimination of particles having an unrealistic shape, e.g. t-

shape due to superposed particles. The PSD is presented as a 31 × 31 cell grid being 

bins of particles width and length. The bins limit values are linearly divided for the input 

maximum values of width 𝑊𝑚𝑎𝑥  and length 𝐿𝑚𝑎𝑥 . 

 

3.2.4.3 Moisture Content 

The moisture content is measured for a sample mass of 0.1𝑔 using the HR73 Halogen 

Moisture Analyzer oven (see Figure 3.2.3) from Mettler Toledo at a temperature of 

100°𝐶 with an automatic end point detection. 

 

Figure 3.2.3: HR73 Halogen Moisture Analyser oven from Mettler Toledo used for 

moisture content measurement of β-LGA crystal samples. 

 

3.2.4.4 Microscopy 

The β-LGA crystals (see Appendix 3 & Appendix 4) are observed using an Axioskop 

40 light microscope from Zeiss (see Appendix 2) and images are captured with a Zeiss 

Axiocam 512 color camera and the ZEN 2.5 Lite software. 
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3.3 Results and Discussion 

3.3.1 Moisture Content 

The moisture content is measured for 6 samples during the wet agitation experiment. 

The values range between 45.5% and 72.2% with a mean value at 59.4%. It is not 

expected for the moisture content to vary significantly within 142𝑚𝑖𝑛, therefore the 

variability of the results is attributed to the inaccuracies in the sampling. 

Table 3.3.1: Measured moisture content of the different samples of wet agitation 

experiment (see Table 3.2.2). 

Sample name Description Tare (g) Wet weight (g) Dry weight (g) Moisture content 

Wet-B After Filtration 8.40 9.43 8.89 52.4% 

Wet-C 8 Impeller Rotations 8.45 9.15 8.69 65.7% 

Wet-D 1 min 100 rpm 8.49 9.21 8.69 72.2% 

Wet-E 5 min 100 rpm 8.63 9.40 8.91 63.6% 

Wet-F 25 min 100 rpm 8.55 9.50 8.96 56.8% 

Wet-G 142 min 100 rpm 8.41 9.40 8.95 45.5% 

 

3.3.2 Laser Diffraction 

The analysis of the laser diffraction results allows to observe the particle size reduction 

due to particle breakage. There is the established consensus that the flow regime in 

an AFD is quasi-static [1, 8, 9, 108, 156, 191, 235], which means that the impact 

breakage driven by particle velocity is expected to be marginal in the performed 

experiments. Likewise, it is expected that the viscous forces are negligible in the wet 

agitated particle system [71]. Therefore, there are two possible modes of particle 
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breakage occurring here: the attrition where a particle is chipped creating small 

fragments and fines, and the fragmentation which results in the rupture of a primary 

particle into two secondary particles [50]. Most of organic API are brittle [61] and the 

individual β-LGA crystal breakage study using AFM in Chapter 4 confirms the brittle 

fracture mode of this material. The microscope images of particles at different stages 

of the dry experiment suggest that no granulation is occurring in the performed 

agitation experiments. 

 

Figure 3.3.1: Laser diffraction data of the different samples of dry agitation 

experiment with the particle size at 10%, 50% and 90% of the PSD. 

The median particle size at the beginning of the dry agitation experiment is 

approximately 30𝜇𝑚, with 10% of the particles below 10𝜇𝑚 and 10% above 90𝜇𝑚 (see 

Figure 3.3.1). There’s a noticeable increase of 5𝜇𝑚 in the particle size after overnight 

filtration, which isn’t reflected in the microscope image of the two samples “after 

filtration” and “overnight filtration" (see Appendix 3). A second sample is taken and 

confirms the PSD obtained for “overnight filtration”, which indicates that there might 

have been a specific difference in the sampling or analysis method of the “after 

filtration” particles that has not been identified. The PSD decreases during the agitation 

phase, with an end median size at 20𝜇𝑚. The size of the biggest particles has 

experienced a significant decrease down to 𝐷𝑥(90) = 64𝜇𝑚, which is also the case 

for the smallest particles down to 𝐷𝑥(10) = 4.3𝜇𝑚. The microscopy images show an 
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extensive production of fines confirming the attrition of particles. Indeed, attrition is 

highly present in dry particulate systems due to the frictional contacts between 

particles [172], especially in AFD equipment [12]. 

In the wet case, the particle size after filtration is higher than in the dry case with a 

median value at 37𝜇𝑚, 10% of the particles below 11.3𝜇𝑚 and 10% above 109𝜇𝑚 

(see Figure 3.3.2). This difference could only be attributed to a variability of the PSD 

obtained using the same crystallisation process. At the end of the agitation phase, the 

median size decreased down to 31.6𝜇𝑚, which is also the case for the biggest particles 

down to 𝐷𝑥(90) = 95.6𝜇𝑚. At the same time, the size of the smallest particles 

remained quasi-constant at 𝐷𝑥(10) = 10𝜇𝑚 which is supported by the low number of 

fines present on the microscopy images at the end of agitation (see Appendix 4). It 

suggests that the crystals have predominantly broken by fragmentation along their 

length rather than producing fines by attrition. Indeed, the moisture content creates 

liquid bridges at inter-particulate contacts [62, 65, 66] and the lubrication effect of the 

liquid [1, 103] reduces the number of inter-particulate collisions as the liquid films on 

particles have to drain before the contact on particles surfaces [8]. This effect 

increases the mobility of the particles because of an increased particle-particle 

distance and reduces their frictional contacts [118]. 

 

Figure 3.3.2: Laser diffraction data of the different samples of wet agitation 

experiment with the particle size at 10%, 50% and 90% of the PSD. 
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The breakage of particles increases monotonically with the strain applied in a quasi-

static system [1, 108], therefore, the particle size reduction is observed as a function 

of the number of impeller rotations. Here, the particle size doesn’t change as 

significantly as in the dry case (see Figure 3.3.3). An order of magnitude of 10𝑘 

impeller rotation is needed to observe the effect a significant decrease in the particle 

size due to crystal breakage. The end values and trend in the dry case suggest that 

particle breakage would continue to occur if the agitation was carried on for a longer 

period: no steady state is yet observed. When kept agitated in the same conditions, 

the PSD is expected to reach a steady state if sufficient work is applied on the particle 

bed [8, 9, 28] regardless of the initial distribution [1, 191]. Indeed, the sensitivity to 

mechanical stress scales with particle size [16]. Therefore, it can be assumed that 

breakage would keep occurring if more agitation is applied to the bed. 

 

Figure 3.3.3: Laser diffraction data in agitation phase given by the number of impeller 

rotations. The particle size is given at 10%, 50% and 90% of the PSD. 

 

3.3.3 Optimisation of Script Analysis for Morphologi G3 Data 

Based on observation of microscopy images (see Appendix 3 and Appendix 4), the 

script [294] was first parameterised for an analysis of the dry case samples with 
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maximum length 𝐿𝑚𝑎𝑥 = 1450𝜇𝑚 and maximum width 𝑊𝑚𝑎𝑥 = 250𝜇𝑚, and of the wet 

case samples with 𝐿𝑚𝑎𝑥 = 1200𝜇𝑚 and 𝑊𝑚𝑎𝑥 = 220𝜇𝑚. 

The script retains 22 − 83% of the solid volume depending on the sample analysed 

and the proportion of particles with a shape considered as credible (see Appendix 13). 

The number of particles retained ranges 31𝑘 − 170𝑘 for a volume of 0.4 − 0.9𝑚𝑚3 . 

 

Figure 3.3.4: PSD data of the different samples (see Chapter 3.2.3) performed using 

Morphologi G3 and analysed using script parameterised with no minimum neighbour. 

A 2-dimensional PSD is output with a graph showing the presence of particles within 

this grid (see Figure 3.3.4). A cumulative density function (CDF) of the particles length 
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is also displayed as a green curve on the graphs. The presence of a few big particles 

creates sudden increases in the CDF for multiple cases. For instance, 1 particle with 

an aspect ratio of 𝛼𝑝 = 10 represents 3.8% of the bed volume by itself and is isolated 

in the PSD grid in sample Dry-H. Another particle with 𝛼𝑝 ≈ 2 represents 4.5% of the 

bed volume in sample Dry-G. These particles skew the PSD and are not considered 

representative of the typical particle size in the bed. To allow a liable 

representativeness of the PSD in the particle bed, the maximum particle sizes for the 

script analysis are set at 𝐿𝑚𝑎𝑥 = 600𝜇𝑚 and 𝑊𝑚𝑎𝑥 = 150𝜇𝑚 for both dry and wet 

cases. In addition, the “minimum neighbour” option is set at 2, meaning that a cell of 

the PSD grid containing particles must be in contact with a minimum of 2 occupied 

cells to be kept in the output PSD. This parameter is designed to exclude particles that 

are isolated on the PSD grid. The application of a minimum neighbour at 2 has 

excluded around 20 particles with a negligible impact on the PSD at it typically 

represents a volume fraction of 10−10 . 

 

3.3.4 Morphologi G3 

The 2D PSD graphs produced using the analysis script are superposed to present the 

evolution of the PSD throughout the agitation phase in an intuitive way. 

The size of particles typically ranges up to 300𝜇𝑚 long and 100𝜇𝑚 wide before 

agitation in the dry case (see Figure 3.3.5). Significant particle breakage occurs as 

agitation is brought to the bed, which is shown by the contraction of the PSD cloud. 

The results for the 165𝑚𝑖𝑛 sample show an unexpected expansion of the PSD cloud 

whilst the results for 120𝑚𝑖𝑛 already demonstrated a significant particle breakage and 

decrease in size. This increase of PSD for 165𝑚𝑖𝑛 is not observed in the laser 

diffraction data (see Figure 3.3.1) which indicates that there might have been a 

difference in the sampling or the G3 method that has not been identified. 

At the end of agitation, the particle size ranges up to 150𝜇𝑚 long and 65𝜇𝑚 wide, 

which corresponds to a loss of approximately half the particles size range. 
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Figure 3.3.5: PSD data of the different samples of dry agitation experiment (see 

Table 3.2.1) performed using Morphologi G3 and analysed using script [294] 

parameterised with 2 minimum neighbours. 

The PSD cloud obtained for the wet case is comparable to the dry case before 

agitation with particle size ranging on the same values of length and width (see Figure 

3.3.6). Nevertheless, the contraction of the PSD cloud with agitation is not as 

significant with an end range of particle size up to 200𝜇𝑚 long and 115𝜇𝑚 wide. It 

confirms the observation made from the laser diffraction results where more breakage 

is occurring in the dry bed. 
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Figure 3.3.6: PSD data of the different samples of wet agitation experiment (see 

Table 3.2.2) performed using Morphologi G3 and analysed using script [294] 

parameterised with 2 minimum neighbours. 

The enhanced breakage phenomenon in the dry case is also observable in the 

probability density functions (PDF) of particles size (see Figure 3.3.7). In both dry and 

wet cases, the proportion of particles with length 𝐿 > 180𝜇𝑚 decreases. However, this 

breakage has the effect of narrowing the distribution and decreasing the mode of PDF 

in the dry case from 90𝜇𝑚 to 30𝜇𝑚, whilst the mode remains unchanged in the wet 

case at 50 − 60𝜇𝑚. Thus, the breakage in dry conditions produces smaller fragments 

then in the wet case. Again, the values for 165min 100rpm sample are unexpected 

and are not discussed further.  



 Chapter 3: The Breakage of Elongated Organic Crystals in Agitated Filter Dryers   

62 

 

The same phenomenon occurs for the particle width where the PDF mode decreases 

from 30𝜇𝑚 to 15𝜇𝑚 in the dry case. The width PDF in the wet case remains unchanged 

during agitation except for a little bump around 120 − 140𝜇𝑚 in the “after filtration” 

sample representing 3% volume fraction for 7 particles only. 

 

 

Figure 3.3.7: Particle size distributions of the different samples collected in the dry 

case for particle length (a) and width (b), and in the wet case for particle length (c) 

and width (d). The PSD data is obtained from script analysis [294]. 

The PDF values suggest that there are different breakage mechanisms occurring for 

the wet and dry cases. In both dry and wet cases, there’s a quasi-identical decrease 

in the volume of long particle, i.e. with an aspect ratio 𝛼𝑝 ≥ 6, which is reduced by half, 

indicating a breakage of the longest particles (see Figure 3.3.8). 

0%

5%

10%

15%

20%

25%

0 200 400 600

V
o

lu
m

e 
fr

a
ct

io
n

Overnight Filtration

1 min 30 rpm

120 min 100 rpm

165 min 100 rpm

505 min 100 rpm

0%

2%

4%

6%

8%

10%

12%

14%

0 50 100 150

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 200 400 600

V
o

lu
m

e 
fr

a
ct

io
n

Particle length (μm)

After Filtration

1 min 100 rpm

142 min 100 rpm

987 min 100 rpm

0%

2%

4%

6%

8%

10%

12%

0 50 100 150
Particle width (μm)

 

a 

 

  

b 

c d 



 Chapter 3: The Breakage of Elongated Organic Crystals in Agitated Filter Dryers   

63 

 

 

Figure 3.3.8: Volume fraction of fines (𝛼𝑝 = 1, 𝐿 < 15𝜇𝑚) and long particles (𝛼𝑝 ≥ 6) 

for the different samples collected for G3 analysis in dry and wet cases. 

The volume of the fines, i.e. within the called “𝛼𝑝 = 1” category (0.67 ≤ 𝛼𝑝 ≤ 1.5) and 

𝐿 < 15μm, in the wet case remains unchanged throughout the agitation, which shows 

that the wet particles break preferably by fragmentation rather than attrition. Here, the 

liquid acts as a lubricant and reduces the probability of particles to being chopped at 

particle-particle contacts and decrease in size by attrition [25, 135]. The presence of 

the liquid also increases the weight of the bed [80] and is expected to augment the 

compressive force on the particles, especially towards the bottom of the bed. This 

increase of normal stress on the bed can facilitate the fragmentation of particles due 

to higher contact forces between particles. 

On the contrary, the volume fraction of fines raises from 0.7% to 3.8% in the dry case 

indicating that an important attrition phenomenon occurred. The end volume fraction 

of fines is in good agreement with the reported steady state value of mass loss at 3% 

due to attrition in dryers [191]. The augmentation of fines matches the diminution of 

long particles volume fraction, however the particles with 𝛼𝑝 ≤ 6 would also break, 

which indicates that the breakage of long particles is occurring by a mix of 

fragmentation and attrition mechanisms. 
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Starting here from quasi-identical volume fractions of fines and long particles, the 

results of agitation are significantly different, which is attributed to the action of the 

liquid. 

These observations are confirmed by the particle aspect ratio distributions (see Figure 

3.3.9), which can be output to analyse the effect of breakage on the reduction of 

particle elongation [191]. Indeed, the volume fraction of particles with 𝛼𝑝 = 1 increases 

in the dry case due to particle attrition and remains unchanged during the wet agitation. 

Inversely, the volume fraction of 𝛼𝑝 = 3 particles increases and reaches a steady state 

in the wet case, whilst it is decreasing in the dry conditions due to the combination of 

the two breakage mechanisms. In both cases, particles with a higher aspect ratio 

break and their volume fraction decreases, with more significant breakage in the dry 

case. 

 

Figure 3.3.9: Probability density function of aspect ratio of the different samples 

during dry (a) and wet (b) agitation experiment. The data is displayed for 𝛼𝑝 ≤ 10 

(full distribution values in Appendix 14). 

The effect of the first impeller rotations is also investigated by sampling the particle 

bed after 1𝑚𝑖𝑛 agitation in both dry (at 30𝑟𝑝𝑚) and wet (at 100𝑟𝑝𝑚) cases. Indeed, 

elongated particles are reported to mainly break during the first impeller rotations in 

simulations of agitated cell [1, 191]. The volume fraction of dry particles with 𝛼𝑝 ≤ 2 

increases whilst the proportion of more elongated particles decreases. A significant 
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change can be observed for 𝛼𝑝 = 2 with an augmentation of 6% in their volume 

fraction. The same phenomenon can be observed for wet particles with a moderate 

impact on the volume fractions. Indeed, the proportion of wet particles with 𝛼𝑝 ≤ 3 

increases to the detriment of more elongated ones. This result indicates the breakage 

of particles in the early stage of agitation, with a predominant effect in the dry case. It 

is noted that, contrary to the wet case, the impeller wasn’t positioned towards the 

bottom of the AFD during filtration and the agitator was inserted into the dry bed after 

overnight filtration during 8 impeller rotations (see Chapter 3.2.3.1). Introducing the 

impeller into the bed may have crushed the particles and could be an explanation for 

the important breakage phenomenon observed between “overnight filtration” and 

“1 min 30𝑟𝑝𝑚”. As the particle bed remained static during drying, it is also possible that 

solid bridges have formed by crystallisation of the remaining dissolved LGA, which are 

the strongest type of bonding [63] and would have increased the yield strength of the 

bed that needs to be overcome to initiate the flow [112], promoting particle breakage. 

Nevertheless, these results need to be taken with care as no breakage phenomenon 

of this importance is observed in the laser diffraction data for both dry (see Figure 

3.3.1) and wet cases (see Figure 3.3.2), even though laser diffraction is not as 

sensitive to a change in aspect ratio. Moreover, the nitrogen flow during filtration and 

drying was at room temperature, so the formation of solid bridges has not been 

promoted by a temperature effect [8]. It is therefore assumed that no solid bridge has 

formed in the dry bed. Besides, an experimental error needs to be considered and 

more agitation experiments are necessary to confirm the results obtained. Also, the 

use of the script with the “minimum neighbour” parameter may introduce a bias to the 

analysis as it casts out existing particles for their lack of representativeness on the 

PSD. These particles are present in the bed and are usually voluminous, which could 

influence further samples analysis if these particles break and if their fragments/fines 

are included in the analysis with the applied parameter. Elongated particles are also 

known for their ability to align [14] along the flow stream in sheared systems [188]. 

This phenomenon affects the flow and particle velocity [188] due to their higher mass 

moment of inertia restraining their rotation [149, 205], densifies the bed, and reduces 

the particle sensitivity to bending stress when stack lengthwise with liquid bridges [9]. 

Indeed, at this level of moisture content, the wet bed is in funicular regime of saturation 

[99] and the forces in the particulate network is mainly due to the forces of their liquid 
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bridges [62, 63, 65, 66] which can be impacted by the morphology of the liquid bridges 

[82-85]. This effect is expected to take place in our experiment, though its impact on 

particle breakage is out of scope in this study. It is also expected that particle 

segregation takes place as a function of size whilst breakage occurs [191], with smaller 

particles migrating towards the bottom of the bed. With agitation, the location of 

highest breakage rate changes from the bottom of the bed [16] at the beginning where 

the load is the highest to the upper region of the bed where the most elongated 

particles are as they need less force to be broken [191]. Additionally, a greater radial 

distance increases the breakage rate of particles as they are experiencing a higher 

strain rate [1, 108]. 

Finally, the fragmentation is reported as the main breakage mechanism of elongated 

particles [1, 26] and mainly occurs along the shortest axis of the crystals [52] due to 

the predominance of geometric effect [27] increasing their bending stress [1]. As 

breakage occurs, the aspect ratio of particles is reduced which decreases their 

breakage rate as they need a greater load to be broken [55, 191]. It confirmed by the 

results that elongated particles break then more rapidly than shorter ones [8, 9, 53-55] 

in both cases by fragmentation. The particle breakage is also affected by the presence 

of moisture content. There is however no consensus in the literature on whether the 

presence of liquid is promoting [1, 8, 16, 156] or reducing [1, 8, 9] particle breakage in 

a particle bed. The analysis of PSD data reveals that particle attrition is almost non-

existent in the wet bed due to the lubrication effect of the liquid [1]. The weight of the 

liquid increases the normal stress applied on the particles which facili tates their 

breakage by fragmentation. The present work shows an enhanced breakage 

phenomenon in a dry system compared to wet. The effect of different moisture 

contents is not investigated here, however it can be anticipated that an equilibrium 

point exists where the particle breakage is minimised by reducing the liquid volume, 

and hence the normal stress, whilst maintaining the lubrication effect. The reduction 

of moisture content would also decrease the number and strength of liquid bridges 

[102], reducing the cohesive forces between particles and affecting the behaviour of 

the particulate system [113, 120-125, 156]. 

 



 Chapter 3: The Breakage of Elongated Organic Crystals in Agitated Filter Dryers   

67 

 

3.4 Conclusion 

The impact of agitation on the breakage of β-LGA crystals is investigated for both dry 

and wet conditions. 

The particles break mainly by fragmentation in the wet case and from both 

fragmentation and attrition in the dry case. The dry environment promotes attrition and 

the production of fines, which is attributed to the increased friction between particles 

compared to the wet case. Indeed, the moisture content creates liquid bridges at inter-

particle contacts and has a lubrication effect reducing the extent of attrition. The 

increased weight of the wet particle bed due to moisture content is expected to have 

augmented the normal stress on particles and quantifying this effect would require an 

inductive study varying the liquid volume in the bed. 

The quantification of breakage in situ allows the validation of the predictive breakage 

model presented in Chapter 8. 
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4 The Breakage Strength of Elongated Organic Crystals  

4.1 Introduction 

The work initiated by Hallac in his Master’s report [295] on the breakage of elongated 

crystals is continued. In the MSc degree part of the integrated PhD program, Hallac 

introduced a novel 2-point method to assess the yield strength of β-LGA crystals using 

Atomic Force Microscopy (AFM). 

In this chapter, further crystal breakage are performed and the measurement of 

crystals dimensions on microscopy images performed during the MSc is refined. 

Overall, 52 crystals are broken for the present analysis and are listed in Appendix 5: 

crystals no 1 to 50 have been broken during the MSc, and crystals no 51 to 52 are 

broken during the PhD component of the integrated program. A completely new data 

analysis has been performed with the new dataset and a study of the crystals Young’s 

modulus has been added. Among the figures in this chapter, only Figure 4.3.2 is also 

present in the Master’s report, and metric indications have been added to it. 

The study presented in this chapter has been published [18] and beam bending 

simulations in Chapter 4.3.4 were performed by the co-author Dr. Fragkopoulos. 

An assessment of the breakage strength and the Young’s modulus of a sample of β-

LGA crystals is performed in this chapter. The crystals are produced following the 

same crystallisation method as for the lab-scale AFD experiments in Chapter 3, giving 

consistency for the further cross-validation of results in the following chapters. 

 

4.2 Background Context 

The majority of pharmaceutical and fine chemical active ingredients consist of high 

aspect ratio particles such as needles and plates. Such highly elongated materials are 

significantly prone to undesired breakage during manufacturing processes such as 

filtration [26] and drying [26, 296] where crystals are subjected to significant forces by 

the processing equipment. Changes in particle size distribution can significantly affect 

downstream processing characteristics of active pharmaceutical ingredients (APIs) 
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[126], and can unintentionally alter critical quality attributes, affecting patients [297]. 

For instance, in an agitated pressure filter dryer, high aspect ratio crystals form an 

open structure in which crystals are deposited on top of each other. In such structure, 

forces applied by pressurising the equipment or rotation of the agitator are conveyed 

via the contact points between two crystals touching each other. High aspect ratio 

particles have multiple contact points along their long axis which leads to crystal 

bending. Undesired breakage occurs when the incurred internal stress is higher than 

the critical strength of a crystal [298].   

The fundamental mechanical properties data to underpin a mechanistic postulate such 

as the one described above is largely missing for organic crystalline materials. Yet, 

mechanical properties such as Young’s modulus 𝐸, tensile strength 𝜎𝑐  and the critical 

stress factor 𝐾𝐼𝑐  are fundamental to linking the impact of forces at macro or process 

scale to the behaviour of crystals at the micro scale. This is highly relevant for 

processes such as crystallisation, filtration, drying, granulation, milling and compaction 

as crystals are exposed to significant force.  

Organic crystals are usually formed by solvent crystallisation as small crystals, 

typically with high aspect ratios (e.g. needles, plates). As these materials are not 

typically used for construction, measurement data has lagged behind compared to 

inorganic materials and polymers. 

Table 4.2.1: Literature values of mechanical properties for organic materials. 

Material 𝐸 

(𝐺𝑃𝑎) 

𝜎𝐵 

(𝑀𝑃𝑎) 

𝐾𝐼𝐶  

(𝑀𝑃𝑎 𝑚0.5) 

𝑙𝑐 

(𝜇𝑚) 

Method [ref] 

phenylbutazone 3.33 6.8 0.14 424 PE [34, 126] 

ibuprofen 5.02 7.71 0.104 182 PE [34, 126] 

sulfadiazine 7.70 8.04 0.148 339 PE [34, 126] 

tolbutamide 5.22 9.6 0.113 139 PE [34, 126] 

caffeine (anhydrous) 8.73 9.93 0.261 691 PE [34, 126] 

aspirin 7.45 11.89 0.156 172 PE [34, 126] 

theophylline (anhydrous) 12.93 13.33 0.264 392 PE [34, 126] 

paracetamol  13.38 0.115 74 PE [34, 126] 

a-lactose monohydrate 24.06 18.33 0.345 354 PE [34, 126] 

sildenafil citrate  13.9 ± 1.5  0.02 ± 0.01  NI [299] 
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pharma compound c  14.9 ± 1.3  0.05 ± 0.01  NI [299] 

pharma compound  b  7.6 ± 0.5  0.04 ± 0.01  NI [299] 

pharma compound  a  2.9 ± 0.4  0.06 ± 0.00 (15-70)* NI [299] 

voriconazole  3.7 ± 0.4    NI [299] 

* range depending on applied load; PE: porosity extrapolation, NI: nano-indentation 

Roberts et al. [34, 46] formed macroscopic square bars with varying porosity and, by 

extrapolating to zero porosity, determined mechanical properties of organic materials, 

summarised in Table 4.2.1. The observed breakage strengths varied between 𝜎𝐵 = 4 

to 25𝑀𝑃𝑎 and the Young’s modulus between 3 and 24 𝐺𝑃𝑎. They also measured the 

critical stress index, an important measure to describe the breakage of crystals under 

high impact [300], and reported 𝐾𝐼𝐶 = 0.1 to 0.35𝑀𝑃𝑎.𝑚1 2⁄ . Under the assumption that 

the surface energy is significantly less than the energy required to plastically deform 

the material near the tip of a crack (𝐽𝐼𝑐 , the toughness), the breakage strength 𝜎𝐶  and 

𝐾𝐼𝐶  are correlated by: 

 𝜎𝐵 =
𝐾𝐼𝐶

√𝑙𝑐
= √

𝐸 𝐽𝐼𝑐
𝑙𝑐

 4.2.1 

Where 𝑙𝑐 is the average flaw length (or crack length). Table 4.2.1 gives the crack 

lengths for the materials they studied, interestingly, the crack lengths are similar to 

typical width and/or thickness of crystals found after crystallisation (5 − 400𝜇𝑚). 

Ast et al [301] reviewed the experimental approaches to measure fracture toughness 

and identifies three key methods: (i) Nano indentation, (ii) micro pillar splitting (not 

discussed in this paper) and (iii) micro cantilever testing. Nano-indentation is widely 

used to assess mechanical properties, typically 𝐾𝑙𝐶, 𝐸, and hardness. Nano 

indentation assesses these properties on, and close to, the surface of the solid. An 

indenter, the apex of a small pyramidal shape, is used to penetrate the crystalline 

material leading to the formation and propagation of cracks. The observed crack length 

and propagation can consequently be employed to determine the fracture toughness 

𝐾𝐼𝐶 , and Young’s modulus 𝐸, but not the breakage strength of APIs. Very detailed work 

on Sucrose [302] shows that the elasticity is dependent on the phase of the crystal 

investigated as may be expected from crystallographic considerations. This method 

gives similar values for the Young’s modulus of organic molecules [299] to those 
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obtained by extrapolation of porosity and excipients (see Table 4.2.1). The values of 

the critical stress index are however an order of magnitude lower when measured by 

nano-indentation compared to porosity extrapolation. Nano-indentation experiments 

have also been performed using the tip of the Atomic Force Microscope’s cantilever 

(AFM) [303]. Relevant results are 𝐸 ≈ 2.5GPa  for polymer films [304] and the hardness 

of a number of organic materials [305].  

The micro cantilever method requires the construction of the pillar/beam using 

lithographic or micro machining methods. In 2000, Namazu et al. described a three 

point bending test using AFM to determine tensile (breaking) strength and elastic 

modulus of Si [49]. This work showed both elasticity and breakage strength could be 

measured for well-defined lithographically engineered silicon structures. 

Nano-indentation systems have also been used to conduct 3-point bending 

experiments of Schiff bases [306]. These materials have a very low Young’s modulus, 

(𝐸 = 0.190 to 0.880𝐺𝑃𝑎) which was attributed to the presence of weak hydrogen-

halogen and halogen-halogen interactions which are easily broken and reformed, thus 

allowing the molecules to easily slip over each other. Plastic deformation is however 

prevented by interlocking of crystallographic planes so as to hinder long range 

molecular movement.  

In this study, we present an alternative single crystal cantilever method to measure 

micro-mechanical properties of single organic materials, which are often unstable at 

their melting point, making it difficult to prepare the homogeneous large-scale samples 

used in mechanical property testing (e.g. beams, dumbbells), nor are they easily 

manipulated using lithographic methods commonly used on inorganic substances.  

 

4.3 Materials and Methods 

4.3.1 Materials 

4.3.1.1 Organic Crystals 

The needle-shaped beta polymorph of glutamic acid was the selected organic 

material. A 99% purity glutamic acid powder provided by Sigma-Aldrich was re-

crystallised following the methodology described in Shier’s paper [293]. The glutamic 
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acid powder was dissolved in deionised water and heated up to 70°𝐶. The solution 

was cooled down to 60°𝐶 and previously crushed β-LGA seed material was added to 

the solution. The solution was held for 2 hours and then slowly cooled down to 20°𝐶 

at approximately 3.5 º𝐶/ℎ allowing the crystals time to grow. The β-LGA crystals 

produced have of a length in the order of 0.1 to 1 𝑚𝑚 (see Figure 4.3.1). 

 

Figure 4.3.1: Light microscope image of the re-crystallised β-LGA crystals. 

 

4.3.1.2 Metallic Support 

A 303 stainless steel metallic piece of 5𝑥5𝑥2𝑚𝑚, small enough to fit in the AFM stub, 

was milled using a DMG 40evo machine with a milling cutter of 0.8𝑚𝑚 diameter to 

give three corridors (1𝑚𝑚 width each and with 0.5𝑚𝑚 distance between each other) 

in both sides of the piece (see Figure 4.3.2). Each corridor was milled at different depth 

(0.3𝑚𝑚, 0.6𝑚𝑚 and 0.9𝑚𝑚) allowing the measurement of the dimensions (height, 

length, and width) of three crystals per face – 6 crystals in total (see Figure 4.3.3) – 
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with lateral and top-down microscopy. The rectangular corners of the corridors 

ensured about 90° (±10%) angle between the crystal (cantilever) and the steel 

support. The steel’s hardness guarantees that the crystals’ breakage strength is not 

affected by movement of the support. 

 

Figure 4.3.2: Metallic support: the red corner is placed at the centre of the AFM stub. 

6 crystals can be mounted as cantilevers on positions A to F. 

 

4.3.1.3 Glue 

Industrial superglue (Everbuild products industrial super glue gp CYN50) composed 

of ethyl-2-cyanoacrylate was mixed with acetone in a 1: 5 (glue:acetone) volume ratio, 

providing sufficient bonding strength and not affecting the physical and chemical 

properties of the β-LGA crystals [307, 308]. The two liquids are miscible with each 

other, and the reduced viscosity of the resulting glue mixture allows an easier 

application onto crystals. 
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4.3.2 Preparation 

4.3.2.1 Crystal Mounting 

The designed metallic piece was glued on the AFM magnetic stub in such a way so 

that the corner with the highest corridor height was placed at the centre of the stub 

(see Figure 4.3.3). Beta-LGA crystals were carefully dropped on the metallic piece to 

minimise potential fragmentation. The higher elongated and better-shaped crystals 

were manoeuvred with fine tweezers within each corridor towards its edge as 

cantilevers. Over the 52 crystals studied, 3 were lying on their sides (crystals no 26, 

32 and 47 in Appendix 5): their measured height is greater than their width. 

About 1μ𝐿 glue mixture was dispersed on each corridor using an Acura 825 micro-

dispenser with 0.1–1μ𝐿 micropipette tip. The glue spreading was carefully controlled 

to avoid any movement of the crystals due to capillary flow, and to prevent the 

spreading of the glue past the metallic support edge and the subsequent coating of 

the cantilever part of the crystal. 

 

Figure 4.3.3: AFM magnetic stub. The corner of the metallic support highlighted in 

red is positioned at the centre of the AFM stub. 
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4.3.2.2 AFM Calibration 

A Bruker Multimode 8 atomic force microscope using the stiffest Bruker RTESP-525 

AFM probe model was used to enable force application onto the organic beta-LGA 

crystal cantilever. A Bruker Sapphire-12M sample was used for the AFM probe 

calibration; the deflection error sensitivity of the laser sensors was estimated to be 

equal to 45𝑛𝑚/𝑉 (±50%) using the gradient of a ramp curve (small deflection) on the 

sapphire’s hard surface (see Figure 4.3.4) [309]. The probe’s spring constant 𝑘𝑃 was 

taken to be the manufacturer’s value of 200𝑁/𝑚. 

 

Figure 4.3.4: Ramp curve on Bruker Sapphire-12M used for the AFM probe 

calibration. 

 

4.3.2.3 Sample Cleaning 

After each breakage experiment, the metallic piece was washed in an acetone bath 

followed by a 30𝑚𝑖𝑛 ultrasonic bath wash (James SONIC 3MX) to remove the glue 

mixture and the crystals. 
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4.3.3 Measurements 

4.3.3.1 Crystal Dimensions 

The macro-system light microscope Motic SMZ-168 with a built-in AxioCam camera 

(ERc5s) was used here for the observation of the crystals. The cantilevers’ dimensions 

(length, width and height) were measured using the AxioVision 7 software (see Figure 

4.3.5). The crystals were considered as cuboids. 

 

Figure 4.3.5: (a) Top and (b) lateral views of a mounted crystal (see 𝑁𝑜 38 in 

Appendix 5). The image was produced using a light microscope at 𝑥5 magnification. 

 

(a) 

(b) 
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4.3.3.2 Force Calculation 

With the prepared stub in the AFM, the AFM probe was engaged at the edge of the 

crystal cantilever (see Figure 4.3.6).  

 

Figure 4.3.6: Schematic representation of (a) the force application on the β-LGA 

cantilever and (b) the AFM probe and β-LGA cantilever deflections. 

A ramp curve was performed on the cantilever’s edge to determine the system (probe 

& crystal) spring, 𝑘𝑇; the system spring was equal to the gradient of the loading curve 

(see Figure 4.3.7).  

(a) 

(b) 
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Figure 4.3.7: Ramp loading (blue)/unloading (red) curve of a Bruker RTESP-525 

AFM probe engaged on the beta-LGA cantilever. The system spring, 𝑘𝑇, is equal to 

the gradient of the loading curve (𝑘𝑇 = 𝐹𝑜𝑟𝑐𝑒/𝛿𝑇). 

The AFM step motor was then used to apply a load at the crystal’s edge by lowering 

the AFM probe step-by-step in a quasi-static way until crystal breakage occurred (see 

Figure 4.3.8). No significant indentation of the AFM tip into the glutamic acid crystal 

has been observed, and it is therefore assumed the error due to deformation at the 

AFM tip is negligible. 
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Figure 4.3.8: Top view of the AFM probe engagement at the tip of the glued crystal 

at different step motor deflections: a) 0 steps, b) 40 steps, c) 60 steps and d) 63 

steps (when crystal breakage occurred). 

β-LGA was considered here as linear-elastic material (based on the elastic nature of 

similar organic materials [306]) and consequently, the β-LGA crystal cantilever was 

considered to have a linear spring. The applied force was obtained using Hooke’s law  

[310]: 

 𝐹 = 𝑘𝐶 .𝛿𝐶 4.3.1 

where 𝐹 is the applied force (in 𝑚), 𝑘𝐶 the crystal spring (in 𝑁.𝑚−1) and 𝛿𝐶 the 

deflection of the crystal (in 𝑚). The crystal spring was calculated by (see derivation in 

Appendix 20): 

 𝑘𝐶 = 
𝑘𝑃. 𝑘𝑇

𝑘𝑃 − 𝑘𝑇

 4.3.2 
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here 𝑘𝑇 is the system spring (in 𝑁.𝑚−1) and 𝑘𝑃 the probe’s spring constant. The 

deflection of the crystal, 𝛿𝐶, was expressed as (see derivation in Appendix 21): 

 𝛿𝐶 = 𝛿𝑇 .
𝑘𝑃

𝑘𝑃 + 𝑘𝐶

 4.3.3 

With 𝛿𝑇 is the step motor deflection (in 𝑚) given by: 

 𝛿𝑇 = 𝑛𝑠𝑡𝑒𝑝𝑠 . 𝑆𝑚 4.3.4 

𝑛𝑠𝑡𝑒𝑝𝑠  is the number of the step motor steps and 𝑆𝑚 is the deflection per step. The 

deflection for 9 motor steps was measured to be 4.2μ𝑚 making 𝑆𝑚 = 0.466 μ𝑚/𝑠𝑡𝑒𝑝. 

 

4.3.3.3 Broken Crystal Measurement 

The beta-LGA organic crystals were not identical and the position at which crystal 

breakage occurred was different for each crystal. The length of each crystal’s broken 

part, 𝐿𝐵, was calculated by (see Figure 4.3.9): 

 𝐿𝐵 = 𝐿 − 𝐿𝐴 4.3.5 

where 𝐿 is the total crystal cantilever length (in 𝑚) and 𝐿𝐴 the length of the crystal’s 

remaining part (in 𝑚), which was measured using the light microscope after each 

breakage event (see Figure 4.3.10). 
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Figure 4.3.9: Schematic representation of the crystal length before and after 

breakage. 

 

Figure 4.3.10: Top view of the crystal after breakage. The image was produced using 

a light microscope at 𝑥5 magnification. 

 

4.3.3.4 Mechanical Properties 

Having the individual beta-LGA crystal dimensions at hand, one can calculate the 

Young’s modulus, 𝐸, using [311]: 
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 𝐸 = 
4 𝑘𝑐  𝐿

3

𝑤 ℎ3
 4.3.6 

𝑤 is the crystal’s width (in 𝑚) and ℎ the crystal’s height (in 𝑚). Note that 𝐸 is based on 

forces applied by the AFM directly and 𝑘𝑐  results from the measured force ramp (see 

Figure 4.3.4 and Equation 4.3.2). 

The breakage strength, 𝜎𝐵 , was estimated using a derivative from the Euler-Bernoulli  

beam theory [26, 38]. For a rectangular beam: 

 𝜎𝐵 = 𝐹𝐵

6 𝐿𝐵

𝑤 ℎ2
=

𝑛𝑠𝑡𝑒𝑝𝑠  𝑆𝑚 𝑘𝑝

(1 +
𝑘𝑇

𝑘𝑃 − 𝑘𝑇
)(

𝑘𝑝

𝑘𝑇
− 1)

6 𝐿𝐵

𝑤 ℎ2
 4.3.7 

where 𝐹𝐵  is the applied force that leads to crystal breakage (in 𝑁). The breakage force 

was calculated using Equations 4.3.1 to 4.3.4 and the total number of motor steps that 

led to crystal breakage. The length of each crystal’s broken part, 𝐿𝐵, was used here to 

calculate the stress on the breakage site of the crystal. 

 

4.3.4 Beam Bending Simulations 

The linear elastic material solid mechanics model, available in COMSOL structural 

mechanics suite, was used here for crystal bending simulations. The model was tested 

against literature data of bending of crystal silicon [49], and then applied to cuboid 

crystals of high aspect ratio, fixed at the bottom face (see Figure 4.3.11). 
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Figure 4.3.11: Predicted von Misses stress along the crystal arc length. The crystal is 

fixed on a support and the force applied ~375𝜇𝑚 from the edge of the support. 

 

4.4 Results and Discussion 

4.4.1 Preliminary Observations 

In this study, 52 crystals were broken. More than 50% of the crystals were found to 

break close to the fixed point (within a distance equal to 10% of their length). The 

crystals tend to break some distance from the support and the glue, which indicates 

that the gluing process has not affected the strength of the crystals. Simulation of the 

crystal bending stress across a line boundary at the top of the beam (see Figure 

4.3.11) was found to reach its maximum value at 8% of the distance between the edge 

of the support and the location where the force is applied. 

The descriptive statistics of the obtained breakage strength and Young’s Modulus 

values are summarised in Appendix 6 (Appendix 5 gives the values for each crystal). 

The mean value of Young’s modulus equals 3.08𝐺𝑃𝑎, which compares well to the 

Young’s modulus predicted for organic molecules using a crystal modelling program 

[312]. Namazu et al. [49] use a three-point bending test on Si beams using AFM to 

apply the force and found a consistent value for the Young’s Modulus across different  

Support

crystal
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size beams (169.9𝐺𝑃𝑎, inorganic materials have typically much higher Young’s 

modulus that organic crystals). Taylor et al. [299] observed a standard deviation of 

14% in the Young’s modulus from nano-indentation for pharmaceutical materials. Our 

study finds the Young’s modulus varies randomly from crystal to crystal with a wide 

variation of 85% i.e. 0.163 − 12.4𝐺𝑃𝑎 (see Appendix 6).  

Comparing the data from different AFM tips shows that different crystals behave 

differently on the same tip, and the crystal-to-crystal variation appears randomly 

spread over the tips, eliminating tip fatigue or tip to tip performance variations as a 

cause of the distribution (see Figure 4.4.1). 

 

Figure 4.4.1: Crystals Young’s Modulus 𝐸 values against the associated probe and 

order of usage (individual data can be found in Appendix 5). 

The quality of the glue joint that fixes the crystal on the support is a second cause of 

variability. Elasticity measurements on crystals in runs where crystals were bent and 

then returned to the rest position showed the spring constant and thus the Young’s 

modulus varied less than 10% (10 tests on the same crystal with increasing extend of 

bending). This is indicative of a good joint but does not exclude the fact that the 

observed elasticity could be the result of the combined glue and crystal elasticity. 

However, it is interesting that Roberts et al. [46] observed the average crack length to 
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be of the same order of magnitude as our crystals (see Table 4.2.1), indicating that 

our assumption that a crystal is a solid beam consisting of a single continuous lattice 

with few faults may not be correct.  

The presence of defects of a size equivalent to the crystal width and height, would 

result in significant deviation from the ideal cantilever assumptions. In addition, it is 

worth noting that Matoy et al [313] using silicon oxide, oxinitride and nitride beams 

observed the analytical solution (see Equation 4.3.6) to underestimate the Young's 

modulus by 30%, because additional  shear stresses in short and thick cantilevers, 

and a systematic error of the length of the cantilever beams, which has a cubic 

influence on the Young's modulus (see Equation 4.3.6).  

In any case, for each crystal the spring constant  𝑘𝑐 remains constant during the 

experiment, and thus allows accurate estimation of the force. The calculated breakage 

force (see Equation 4.3.7) is thus not impacted by “give” in the glue, or unexpected 

changes in 𝐸 from crystal to crystal due to lattice defects. The observed breakage 

strength also varies strongly, between 5.27𝑀𝑃𝑎 and 81.1𝑀𝑃𝑎. This is however more 

in line with expected behaviour as it’s well known that the breakage property is not just 

a physical material property, but rather dependent on cracks in the surface and crystal 

lattice that vary from crystal to crystal [314-316]. The position of crystal imperfections 

is critical: a small crack in the region of maximal stress could initiate the breakage 

process, reducing the breakage strength of the crystal with respect to another crystal 

with fewer defects in the high stress zone. 

 

4.4.2 Model Fitting 

Tensile strength distributions are usually captured with the Weibull probability 

distribution function: 

 𝑓(𝑥,𝑘,𝜆) = 1 − 𝑒−(
𝑥
𝜆
)
𝑘

 4.4.1 

where 𝑘 and 𝜆 are the Weibull repartition function shape and scale parameters 

respectively, and 𝑥 corresponds to the distributed property values. Such distribution is 

more suitable for mechanical properties data than the Normal distribution [48, 317]. 

The utility of a distribution lies in its direct implementation in numerical investigations, 
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e.g. Discrete Element Method (DEM), as it represents the probability of breakage for 

a given exerted stress [48], and helps predict breakage due to forces applied on 

crystals in processing equipment [16, 168, 192, 194]. 

The Weibull repartition function was fitted to the cumulative distribution values 

obtained by evenly distributing the logarithmic values of breakage strength and 

Young’s modulus over 8 and 9 bins respectively (see Figure 4.4.2 and Figure 4.4.3).  

 

Figure 4.4.2: Distribution of breakage strength 𝜎𝐵  (see data in Appendix 7) 

 

Figure 4.4.3: Distribution of Young's modulus 𝐸 (see data in Appendix 8). 
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The estimated Weibull parameters along with the Weibull average and median values 

of both distributions are tabulated in Table 4.4.1, and show 50% of the crystals 

experience breakage at 22.4𝑀𝑃𝑎 which is in good agreement with estimates of the 

glutamic acid breakage strength by MacLeod and Muller, who found that for 300 −

600 𝜇𝑚 long beta glutamic acid crystals 𝜎𝐵  was 13 − 17𝑀𝑃𝑎 [26]. 

Table 4.4.1: Weibull fitting parameters of breakage strength distribution of the β-LGA 

crystals. 

Weibull Breakage Strength, 𝜎𝐵 Young’s Modulus, 𝐸 

Nbr of bins 8 9 

Shape parameter 𝑘 1.95274 1.43674 

Scale parameter 𝜆 (𝑃𝑎) 2.70E+07 2.45E+09 

Median (𝑃𝑎) 2.24E+07 1.90E+09 

Average (𝑃𝑎) 2.40E+07 2.23E+09 

𝑅2 0.99670 0.99509 

 

 

4.4.3 Correlations 

In order to gain a better understanding of the significance of each crystal dimension 

on the distribution of the mechanical property estimates, the monotonicity between 

these variables was assessed using the Spearman correlation, a rank-based statistical 

analysis method, which is ideal for small samples and is insensitive to extreme values. 

The results of the Spearman analysis, using interval of confidence of 95% and a 

significance level, of 0.05, are tabulated in Table 4.4.2. The coefficient of correlation 

takes a value between −1 (for a strictly inverse proportionality) and +1 (for a strictly 
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positive proportionality). A coefficient of 0 shows a non-monotonic relationship 

between the variables [318].  

Table 4.4.2: Spearman correlation analysis. The shaded columns have p-values 

larger than the significance limit 𝛼 = 0.05. 

Spearman Correlation  

(𝑁 = 52, 𝛼 = 0.05) 

𝐿𝐵, crystal broken 

length 

𝐿, crystal 

length 

𝑤, 

width 

ℎ, 

height 

𝜎𝐵, breakage 

strength 

𝜎𝐵, breakage 

strength 

Corr. 0.259 0.131 0.0444 -0.419 - 

P-value 0.0637 0.356 0.755 0.00201 - 

𝐸, Young's 

modulus 

Corr. 0.215 0.254 0.206 -0.290 0.544 

P-value 0.126 0.0691 0.142 0.0370 3.07E-05 

 

The correlation coefficient between the Young’s modulus and the breakage strength 

is 0.544 with a p-value well below the significance level (𝑝𝑐𝑜𝑟𝑟 = 3.07 × 10−5): the 

stronger the crystal the higher its Young’s modulus and vice versa. The Spearman 

coefficient was found equal to −0.419 with a p-value of 2.01 × 10−3 between crystal 

height and breakage strength, and −0.290 with a p-value of 3.70 × 10−2 for Young’s 

Modulus. Thus, the thicker crystals deem to have a lower breakage strength (and 

Young’s modulus). This is consistent with Equation 4.2.1 if the crack length is 

proportional to the height of the crystals: 

 
𝐸

𝜎𝑏
2ℎ

= 0.04 𝑡𝑜 0.26 ~
1

𝐽𝑖𝑐
 
𝜆

ℎ
 4.4.2 

For the data set measured, the left term in Equation 4.4.2 is 10% on average, but in a 

wide range of 0.04 to 0.26, suggesting that the carefully crystallised crystals (seeded 

cooling crystallisation) have a wide range of initial crack lengths.  
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4.4.4 Potential Improvements and Future Work 

A penetration phenomenon may have occurred during our experiments and a fraction 

of the force applied might have this way been absorbed. Even if the absorbed force is 

expected to be marginal, the idea of using another shape of AFM probe can be 

considered in the future. Swadener et al. [319] have shown that a spherical tip does 

not affect the hardness of the tested materials. Furthermore, Perkins et al. [320] found 

that such an operation should distribute the applied force over a larger area. 

Crystals are by nature symmetrical arrangements of molecules in a solid form. It has 

been observed that the atomic bonds play a crucial role in the mechanical response 

of nano-indented crystals, not only because of their strength but also due to their 

spatial distribution [321]. As a forward look, it would thus be interesting to consider the 

energetic characteristics of the miller plane at which the breakage occurs and attempt 

to find a correlation between the energy of the breakage plane and the mechanical 

properties of the crystal alongside this plane.  

 

4.5 Conclusions 

An innovative method to measure breakage strength and elastic modulus from single 

crystal cantilevers using Atomic Force Microscopy is presented in this study. Crystals 

break at ~10% of the distance between where forces are applied and the edge the 

cantilever hangs over, in line with prediction of 8% for linear elastic materials.  

The Euler-Bernoulli beam theory was used to calculate the breakage strength and 

Young’s modulus of 52 β-LGA crystals. The mechanical properties data were fitted 

into a Weibull distribution model which defines that 50% of the crystals break at 

22.4𝑀𝑃𝑎 and have Young’s modulus below 1.90𝐺𝑃𝑎. Spearman analysis 

demonstrated that (i) stronger crystals have a higher Young’s modulus and vice versa, 

and (ii) thicker crystals have lower breakage stress and Young’s modulus and vice 

versa, which corresponds with the established fracture mechanics theory.   

The data generated using the single crystal cantilever method provides the 

fundamental material properties essential for understanding of undesirable crystal 

fracture in manufacturing processes such as crystallisation, filtration and drying of 

chemical ingredients but the broad range of 𝐸 and 𝜎𝑏  values reported suggests a 
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significant extend of crystal imperfections, even though the crystals where carefully 

crystallised using a seeded cooling crystallisation. 

The Young’s modulus and crystals dimensions obtained for the β-LGA sample in this 

study will be used to design particles for the DEM shear cell simulations in Chapter 5 

and 6, whilst their breakage strength will be used the create the probabilistic breakage 

kernel in Chapter 8. 
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5 Optimisation of Simulation Setup and Methods 

5.1 Introduction 

In this chapter, particles are sheared in a shear cell created using distinct element 

modelling (DEM) and their behaviour is examined for different stress conditions. 

The particles populating the shear cell are modelled after the samples of β-LGA 

crystals with their mechanical and physical properties assessed in both Chapter 3 and 

Chapter 4. The movement of the parallel walls exerts compressive and shear stress 

on the particles, imitating the mechanical environment experienced by a particle bed 

in an agitated filter dryer (see Figure 5.1.1): strain applied, normal and shear stresses. 

After preliminary observations, the shear cell parameters are optimised to be 

representative of the quasi-static flow regime in industrial dryers and to minimise the 

computational resources needed for the completion of the simulations. 

Finally, the relevance of different methods for the calculation of the particle internal  

stress on the studied system is investigated and the most suitable one is chosen for 

the further analysis. 

 

Figure 5.1.1: Stress conditions within a particle bed sheared in an agitated filter 

dryer. 
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5.2 Initial Simulation Setup 

The simulations are performed using DEM, a computational modelling method 

introduced in 1971 [22] which models particles using discrete elements. Simulations 

are run with EDEM software supplied by Altair Engineering with spheres as DEM 

elements. 

 

5.2.1 Particles 

5.2.1.1 Physical Properties 

DEM elements can be assembled to create particles with the desired shape [24]. In 

this study, elongated particles are created using multi-element model composed of 

overlapped soft spheres. High aspect ratio particles are generally created using 

spheres overlapped along an axis [192-197]. 11 identical spheres are then aligned 

with the same overlapping distance to create a particle (see Figure 5.2.1). The spheres 

are clumped together making the particles rigid: the internal contacts between the 

spherical elements are ignored in the contact model calculations and internal contacts 

don’t break [195, 212-215]. An overlap distance of one sphere radius (i.e. overlap ratio 

[149] of 1) is selected as compromise between a too low overlap distance requiring 

more element spheres and computational power, and a too high overlap distance 

which would induce an additional particle roughness promoting interlocking and 

generating a higher shear stress [149, 228, 260]. Indeed, the clumped sphere 

approach creates artificially rough surfaces [199-203] which is often considered more 

similar to actual granular materials compared to particles with smooth surfaces [205]. 

Moreover, it is reported that a minimum Young’s modulus of 100𝑀𝑃𝑎 for particles is 

necessary to observe the same bulk mechanical behaviour of the bed compared than 

for rigid particles [228]. Therefore, the use of flexible particle models [192, 226-228] is 

unnecessary for the particles in this study as the experimentally assessed elastic 

modulus of the β-LGA crystals is at the scale of 𝐺𝑃𝑎 (see Chapter 4). 
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Figure 5.2.1: Elongated particle modelled in EDEM 

The particles are sized following the observation of the sample of β-LGA crystals used 

in Chapter 4 (see Figure 5.2.2) [18]. The sphere diameter is set at 50𝜇𝑚, which 

corresponds approximately to the average of the experimental mean crystal width (see 

Appendix 6). The mean length of the simulated particles equals 300 𝜇𝑚 which 

corresponds to an aspect ratio [119, 208, 209] of 6. This length is selected to also 

consider the non-cantilever part of the crystals mounted in the AFM experiments. 

 

Figure 5.2.2: Light microscope image of β-LGA crystals. 

 

5.2.1.2 Mechanical Properties 

The mechanical properties are representative of β-LGA crystals for the particles and 

stainless steel for the walls (see Table 5.2.1). The Young’s modulus of the particles is 

determined experimentally in Chapter 4 [18].  
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Table 5.2.1: Mechanical properties of simulation objects 

Object Particle Wall  

Material  β-LGA Steel 

Poisson’s ratio 𝜈 0.25 [196] 0.3 [322] 

Solid density 𝜌 (𝑘𝑔. 𝑚−3) 1460  [323] 8000  [324] 

Young’s modulus 𝐸  (𝐺𝑃𝑎) 1.9 [18] 200 [325] 

 

5.2.1.3 Interactions 

In DEM simulations, the motion of each particle is determined discretely by solving 

Newton’s second law of motion [210, 216] (see Equations 2.4.1 and 2.4.2). 

Simulations of particle shearing are generally operated using Hertzian models [55, 

190, 218]. 

 

5.2.1.3.1 Contact Model 

The contact model used in this study for particle-particle and particle-wall contacts is 

called “Hertz-Mindlin (No Slip)” [217], with the normal force component based on 

Hertzian contact theory [219] and the tangential force model based on Mindlin-

Deresiewicz work [220, 326]. The damping components of the normal and tangential 

forces are calculated using a damping coefficient related to the coefficient of restitution 

as presented in Tsuji et al. [218]. The tangential friction force is calculated following 

the Coulomb law of friction model as in Cundall et al. [327]. The rolling friction is 

implemented as the contact-independent directional constant torque model as in 

Sakaguchi et al. [328]. 

At a particular contact, the normal force 𝐹𝑛 is given as a function of normal overlap 𝛿𝑛: 
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 𝐹𝑛 =
4

3
𝐸∗√𝑅∗. 𝛿𝑛

3 2⁄
 5.2.1 

Where the equivalent Young’s Modulus 𝐸∗ and the equivalent radius 𝑅∗ are defined 

as follows: 

 
1

𝐸∗ =
(1 − 𝜈𝑖

2)

𝐸𝑖
+

(1 − 𝜈𝑗
2)

𝐸𝑗
 5.2.2 

 
1

𝑅∗ =
1

𝑅𝑖
+

1

𝑅𝑗
 5.2.3 

With 𝐸𝑖, 𝜈𝑖, 𝑅𝑖, and 𝐸𝑗, 𝜈𝑗, 𝑅𝑗 being the Young’s Modulus, Poisson ratio and radius of 

each sphere in contact. Additionally there is a damping force 𝐹𝑛
𝑑 given by: 

 𝐹𝑛
𝑑 = −2√

5

6
𝛽√𝑆𝑛𝑚∗. 𝑣𝑛

𝑟𝑒𝑙̅̅ ̅̅  5.2.4 

With 𝑚∗ = (
1

𝑚1
+

1

𝑚𝑖
)

−1

 the equivalent mass, 𝑣𝑛
𝑟𝑒𝑙̅̅ ̅̅  is the normal component of the 

relative velocity, 𝛽 and the normal stiffness 𝑆𝑛 are given by: 

 𝛽 =
ln(𝑒)

√ln2(𝑒) + 𝜋2
 5.2.5 

 𝑆𝑛 = 2𝐸∗√𝑅∗𝛿𝑛 5.2.6 

With 𝑒 the coefficient of restitution. The tangential force 𝐹𝑡  depends on the tangential 

overlap 𝛿𝑡 and the tangential stiffness 𝑆𝑡: 

 𝐹𝑡 = −𝑆𝑡𝛿𝑡 5.2.7 

With 

 𝑆𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 5.2.8 
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Here 𝐺∗ is the equivalent shear modulus (see Equation 5.2.13). Additionally, tangential 

damping is given by: 

 𝐹𝑡
𝑑 = −2√

5

6
𝛽√𝑆𝑡𝑚

∗. 𝑣𝑡
𝑟𝑒𝑙̅̅ ̅̅

 5.2.9 

Where 𝑣𝑡
𝑟𝑒𝑙̅̅ ̅̅  is the relative tangential velocity. The tangential force is limited by Coulomb 

friction 𝜇𝑠𝐹𝑛 where 𝜇𝑠 is the coefficient of static friction. 

For simulations in which rolling friction is important, this is accounted for by applying 

a torque to the contacting surfaces. 

 𝜏𝑖 = −𝜇𝑟𝐹𝑛𝑅𝑖𝜔𝑖 5.2.10 

With 𝜇𝑟 the coefficient of rolling friction, 𝑅𝑖 the distance of the contact point from the 

centre of mass, and 𝜔𝑖 the unit angular velocity vector of the object at the contact 

point. 

 

5.2.1.3.2 Model Parameters 

The coefficient of static friction between particles and walls is increased to 10 to ensure 

an effective grip and force propagation to the particle bed during the shearing phase 

(see Table 5.2.2). Indeed, the roughness of the walls is needed to avoid slipping at the 

particle-wall interface: the particles in contact with the walls are then dragged 

efficiently to prevent strain localisation at the boundaries [13, 23, 242, 243] 

Table 5.2.2: Interaction properties of simulation objects 

Contact type Particle-Particle Particle-Wall 

Contact model  Hertz-Midlin (no-slip) Hertz-Midlin (no-slip) 

Coefficient of restitution 𝑒 0.3 [329] 0.4 [196] 
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Coefficient of static friction 𝜇𝑠 0.3 [196] 10 

Coefficient of roll ing friction 𝜇𝑟 0.05 [196] 0.05 [196] 

 

5.2.2 Shear Cell 

A shear cell is built in DEM to mimic the mechanical environment experienced by 

particles within an agitated dryer. 

 

5.2.2.1 Domain 

A minimum number of particles in the shear cell is essential to have a representative 

and homogeneous [191] mechanical behaviour of the bed, as the mechanical 

properties of assemblies vary with sample size [247, 248]. It has been demonstrated 

that the mechanical behaviour for cell size of about 15 × 15 × 7.5 𝑑𝑣 (𝑑𝑣: diameter of 

sphere with equivalent volume of a particle [119, 154]) with 2000 elongated particles 

having an aspect ratio of 6 is comparable to a 20 × 20 × 11 𝑑𝑣 domain with 4000 

particles in terms of normal stress, shear stress, kinetic and collisional components 

[203]. The smaller domain size and number of particles are then chosen to reduce the 

time cost of the simulations [228]. Therefore, the shear cell width and length measure 

1.5𝑚𝑚. It corresponds to × 5 the particle length (300𝜇𝑚) which is reported as the 

minimum ratio for the recommended specimen size [246]. 

Moreover, periodic boundaries are used on the length �⃗� and width �⃗� axis to create an 

infinite shear band (see Figure 5.2.3). The distance between the two walls defines the 

depth of the shear band i.e. the volume of the bed that experiences deformation [239, 

240]. This method has become a standard in DEM simulations [21, 244] and reduces 

wall effects. Lees-Edwards boundaries [245], i.e. periodic boundaries on the three 

axes, are not considered in this study as the shear cell is designed to allow the 

variation of cell volume and keep the normal stress applied constant. 
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Figure 5.2.3: Shear cell designed in EDEM. Both normal and shear stress are 

applied on particle bed 

There is no gravity applied to the particles. Indeed, it is likely that gravity would not 

generate an important disparity in the results since the hydrostatic pressure applied is 

at least × 100 superior (magnitude of 𝑘𝑃𝑎) to the pressure induced by the weight of 

particle at the scale of the shear cell. The absence of gravity also creates an 

homogeneous stress field within the particle bed [13], an isotropic dense assembly 

[205], and is generally chosen for the observation of small-scale phenomenon [203, 

228, 241, 261]. 

 

5.2.2.2 Bed Filling 

The 2000 particles are generated within a space of 1.5 × 1.5 × 1.6 𝑚𝑚 (�⃗�, �⃗�, 𝑧), 

between the two parallel walls, at random initial position and orientation, with no initial 

translational and angular velocity. This method is widely used to populate a shear cell 

in DEM to obtain an inert, homogeneous and randomly packed bed [55, 191]. The 

embedded solver within EDEM software ensures that particles do not enter in contact 

when generated. The two walls are 200𝜇𝑚 distant from the bed filling space, greater 

than half particle length to ensure no particle touches the walls when generated. The 

particles are identical which produces a monodisperse particle bed. 
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Bed filling methods exist to generate isotropic dense assemblies, such as setting to 

zero the gravitational acceleration and friction coefficients of particle-particle and 

particle-wall interactions [205]. The use of this method results in the densest granular 

assemblies [282, 283]. These methods are avoided here to allow the analysis of the 

impact of particle alignment on the bed mechanical behaviour. Indeed, the particle bed 

is randomly packed at the start of shearing phase, where its alignment is minimal, and 

is expected to increase its ordering with strain applied [188]. 

 

5.2.2.3 Compression and Shearing 

Once the particle bed is generated, a force controller is assigned to the upper wall in 

the −𝑧 direction and is compressing the bed (see Figure 5.2.3). The target value of 

the force controller �⃗�𝑤,𝑐𝑜𝑛𝑡𝑟𝑜𝑙  is determined from the selected compressive stress �⃗�: 

 𝐹𝑤,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐴𝑤𝑎𝑙𝑙 .�⃗� 5.2.11 

With 𝐴𝑤 the area of the wall. The lower wall remains static in the 𝑧 direction. 

Then, the upper wall lowers down and compresses the particle bed. Once the upper 

wall’s compressive force reaches a steady state at the targeted value, the two walls 

move in opposite directions at 1𝑚𝑚. 𝑠−1  on the �⃗� axis. This wall movement strains the 

bed and generates a shear stress on the particle due to their ability to transfer stresses 

from normal to shear direction [151], creating a Couette flow [13, 21, 23, 24, 241, 242]. 

The motion of the upper wall in the 𝑧 axis is allowed to enable the variation of the bed 

volume during the shearing phase and keep the compressive stress constant [13, 21, 

23, 24, 195]. 

This shear cell setup reproduces the mechanical environment experienced by a 

particle bed in an agitated filter dryer where the normal stress is the compression 

induced by the bed mass, the shear stress resulting from frictional contacts between 

particles and the strain generated from the movement of the impeller during its 

rotation. 
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The stress environment is generally defined with the components of the stress tensor 

[13, 254, 255]. Therefore, the normal and shear stress on the particle bed is calculated 

as a function of the normal and tangential forces of particle-wall contacts (see 

Equations 2.4.8 and 2.4.9). 

 

5.2.3 Simulator Settings 

5.2.3.1 Time Step 

The simulation consists of a Euler time integration [330, 331] calculating the contact 

force between particles at time 𝑡𝑛 based on their position at 𝑡𝑛−1 using a contact model. 

The force calculated will then be used to determine the new particle position. The  

chosen time step between two calculations corresponds to 20% of the Rayleigh time 

step 𝑇𝑅, which is typically used for quasi-static packed particle bed with high 

coordination number (≥ 4) [332]: 

 𝑇𝑅 =
𝜋. 𝑟𝑚𝑖𝑛(𝜌 𝐺⁄ )1/2

0.1631𝜈 + 0.8766
 5.2.12 

With 𝑟𝑚𝑖𝑛 the radius of the smallest sphere element radius, 𝜌 the material’s density, 𝐺 

the shear modulus and 𝜈 the Poisson’s ratio of the particle.  

The shear modulus 𝐺 is related to the Young’s modulus 𝐸 with the following equation 

[333]: 

 𝐸 = 2𝐺(1 + 𝜈) 5.2.13 

 

5.2.3.2 Simulator Grid 

The domain is divided into grid cells and the simulator calculates contact forces within 

cells containing 2 element spheres or more. This method reduces processing time 

without affecting the simulation results. The value of the cell size is optimised within 

EDEM and set at 2.5𝑅𝑚𝑖𝑛, with 𝑅𝑚𝑖𝑛  the smallest element sphere radius. 
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5.3 Preliminary Observations 

5.3.1 Velocity Profile 

When performing a shearing simulation on a particle bed, it is crucial to ensure that 

the strain is effective on the whole bed, especially in the present case where no speed 

controller is applied to particles [203] and strain is promoted by sliding parallel walls . 

The velocity profile along the shear cell height [242] is a common way to confirm the 

absence of strain localisation in the particle bed. Moreover, the coefficient of static 

friction has been increased to 10 to ensure an effective particle-wall grip (see Table 

5.2.2), which can be quantified by the grip factor [155] (see Equation 2.4.5).  

 

Figure 5.3.1: Division of the particle bed within a shear cell along its height. 

The particle bed is divided along its height into zones of equal volume (see Figure 

5.3.1) and the mean particle speed within each zone is calculated as: 

 �̅�𝑖 =
1

𝑚
∑ 𝑣𝑝 . 𝑦

𝑚

𝑝=1

 5.3.1 
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With 𝑖 the index of the zone, 𝑚 the number of particles 𝑝 in this zone and �⃗� the direction 

of shearing. A particle belongs to a zone when its centre of gravity is in the 

corresponding range of bed height. 

The average velocity profile along the simulation is close to linear (see Figure 5.3.2) 

with a coefficient of determination 𝑅2 = 0.966. The tested linear function crosses the 

velocity of walls at their position. It demonstrates that the modified particle-wall 

coefficient of static friction is sufficient to stick the particles to the walls, with a grip 

factor estimated at 1, and that the strain application is uniform throughout the bed [13].  

 

Figure 5.3.2: Mean velocity profile of a simulation with 10 bed divisions height-wise. 

The speed values are normalised over the module of wall speed. The case of a 

linear velocity profile is shown by the red line. 

The bed is composed of elongated particles, and the slight dissymmetry in the average 

velocity profile is assumed to be an artefact of the simulation due to the random 

packing of particles. Also, the upper wall enters in contact with particles and pushes 

the particles downwards to the lower wall during the compression phase, which can 

be responsible of this dissymmetry. Moreover, particles are rearranging throughout 

the shearing phase, and this non-uniform phenomenon creates a discontinuity of 

particles speed within the different zones of the bed (see Figure 5.3.3). 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-100% -50% 0% 50% 100%

%
B

ed
 H

ei
gh

t

Normalised Mean Particle Speed



 Chapter 5: Optimisation of Simulation Setup and Methods  

103 

 

 

Figure 5.3.3: Mean particle speed during bed shearing simulation for 5 zones of the 

particle bed divided along the height. The speed values are normalised over the 

module of wall speed. 

 

5.3.2 Particle Alignment 

5.3.2.1 Calculation Method 

Elongated particles have the ability to align along the flow stream in sheared systems 

[188] and the order parameter 𝑆, originally used to determine molecular ordering of 

liquid crystals [280], quantifies the uniformity of their ordering in the same direction  

[205, 279, 280]: the order director. 

 

5.3.2.1.1 Order Tensor 

Each particle 𝑝 has a unit vector �⃗⃗�𝑝 directed along its neutral axis (see Figure 5.3.4).  
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Figure 5.3.4: Clumped sphere particle with its neutral axis and unit vector �⃗⃗�𝑝. 

The order tensor 𝑄 of a group of 𝑁 particles is obtained from their unit vector using the 

following equation [205, 279, 280]: 

 𝑄𝛼,𝛽 =
3

2𝑁
∑(𝑢𝑝,𝛼𝑢𝑝,𝛽 − 𝐼𝛼,𝛽)

𝑁

𝑝=1

 5.3.2 

With 𝛼 and 𝛽 cartesian axes among (𝑥, 𝑦, 𝑧) and 𝐼 the identity matrix. Here, the 

biaxiality of particles have no effect on the order tensor calculation i.e. either �⃗⃗�𝑝 or −�⃗⃗�𝑝 

can be used. 

The order tensor is symmetrical: 

 𝑄𝛼,𝛽 = 𝑄𝛽,𝛼 5.3.3 

And as �⃗⃗�𝑝 is a unit vector, the order tensor is traceless: 

 𝑄𝑥𝑥 + 𝑄𝑦𝑦 + 𝑄𝑧𝑧 = 0 5.3.4 

The 2nd order tensor 𝑄 has 3 eigenvalues 𝜆1, 𝜆2 and 𝜆3 corresponding to 3 

eigenvectors �⃗�1, �⃗�2 and �⃗�3 . The calculation of eigenvalues is performed with a 

diagonalization of 𝑄: 

 𝑄 = 𝑃𝐷𝑃𝑇 5.3.5 

With 𝐷 the diagonalized matrix, 𝑃 the system of eigenvectors and 𝑃𝑇 the transpose of 

𝑃: 
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𝐷 = [
𝜆1 0 0
0 𝜆2 0

0 0 𝜆3

]  𝑃 = [
⋮ ⋮ ⋮
𝑣1 𝑣2 𝑣3

⋮ ⋮ ⋮
]  𝑃𝑇 = [

… 𝑣1 …
… 𝑣2 …
… 𝑣3 …

] 

𝑃𝑇 is here used instead of 𝑃−1 as the eigenvectors are orthogonal. 

As the eigenvectors are unit vectors, 𝐷 is traceless: 

 𝜆1 + 𝜆2 + 𝜆3 = 0 5.3.6 

 

5.3.2.1.2 Eigenvalues and Order Parameter 

Using the method of the determinant, the eigenvalues are the solutions of 𝜆 for which: 

 𝑑𝑒𝑡(𝑄 − 𝜆𝐼) = 0 5.3.7 

With 𝑄 the order tensor and 𝐼 the identity matrix. 

After developing the determinant, the characteristic polynomial is then obtained: 

 𝑎𝜆3 + 𝑏𝜆2 + 𝑐𝜆 + 𝑑 = 0 5.3.8 

With: 

𝑎 = 1  𝑏 = 𝑄𝑥𝑥 + 𝑄𝑦𝑦 + 𝑄𝑧𝑧 = 0 

𝑐 = 𝑄𝑥𝑥𝑄𝑦𝑦 + 𝑄𝑥𝑥𝑄𝑧𝑧 + 𝑄𝑦𝑦𝑄𝑧𝑧 − 𝑄𝑥𝑦
2 − 𝑄𝑥𝑧

2 − 𝑄𝑦𝑧
2 

𝑑 = 𝑄𝑥𝑥𝑄𝑦𝑧
2 + 𝑄𝑦𝑦𝑄𝑥𝑧

2 + 𝑄𝑧𝑧𝑄𝑥𝑦
2 − 𝑄𝑥𝑥𝑄𝑦𝑦𝑄𝑧𝑧 − 2𝑄𝑥𝑦𝑄𝑥𝑧𝑄𝑦𝑧 

The characteristic polynomial can then be written as followed: 

 𝜆3 + 𝑐𝜆 + 𝑑 = 0 5.3.9 

The method of Cardano-Tartaglia [334] is used to solve this 3rd order polynomial with 

the discriminant 𝛥 is expressed as: 
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 ∆= 4𝑐3 + 27𝑑2 ≤ 0 5.3.10 

𝛥 is negative as there are at least two real roots to the polynomial. 

 

The three solutions of 𝜆 are: 

𝜆1 = 2𝜇 cos(
𝑡0

3
)  𝜆2 = 2𝜇 cos(

𝑡0+2𝜋

3
)  𝜆3 = 2𝜇 cos(

𝑡0+4𝜋

3
) 

With: 

𝜇 = √−
𝑐

3
  𝑡0 = cos−1 (−

𝑑

2𝜇3) 

The maximum of the absolute values of the eigenvalues is the order parameter 𝑆 of 

the system i.e. the measure of its alignment: 

 𝑆 = 𝑀𝑎𝑥(𝐴𝑏𝑠(𝜆1),𝐴𝑏𝑠(𝜆2),𝐴𝑏𝑠(𝜆3)) 5.3.11 

Normally, the order parameter scales from −1/2 where all unit vectors are normal to 

each other, to +1 for a perfect alignment (𝑆 = 0 during the isotropic phase). The 

standard approach is to take the absolute value as a basis to compare the ordering of 

different particle beds. 

 

5.3.2.1.3 Eigenvectors and Order Director 

The eigenvectors �⃗� are determined using the calculated eigenvalues in the following 

equation: 

 (𝑄 − 𝜆𝐼)𝑣 = 0 5.3.12 
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 𝑣 = [
𝑋
𝑌
𝑍
] ≠ [

0
0
0
] 5.3.13 

A system of three equations is obtained: 

𝐿1: (𝑄𝑥𝑥 − 𝜆)𝑋 + 𝑄𝑥𝑦𝑌 + 𝑄𝑥𝑧𝑍 = 0 

𝐿2: 𝑄𝑥𝑦𝑋+ (𝑄𝑦𝑦 − 𝜆)𝑌 + 𝑄𝑦𝑧𝑍 = 0 

𝐿3: 𝑄𝑥𝑧𝑋+ 𝑄𝑦𝑧𝑌 + (𝑄𝑧𝑧 − 𝜆)𝑍 = 0 

The method of Gauss is used on two of these equations to calculate two eigenvectors: 

𝑋 =
𝛼

𝑀
  𝑌 =

𝛽

𝑀
  𝑍 =

𝛾

𝑀
 

With: 

M = √𝛼2 + 𝛽2 + 𝛾2 

With 𝛼, 𝛽, 𝛾 values obtained by solving a system of two equations among 𝐿1, 𝐿2 and 

𝐿3:  

 𝑳𝟏  & 𝑳𝟐  𝑳𝟏  & 𝑳𝟑  𝑳𝟐  & 𝑳𝟑  

𝜶 𝑄𝑥𝑧(𝑄𝑦𝑦 − 𝜆) − 𝑄𝑥𝑦𝑄𝑦𝑧 𝑄𝑥𝑦
(𝑄𝑧𝑧 − 𝜆) − 𝑄𝑥𝑧𝑄𝑦𝑧 𝑄𝑦𝑧

2 − (𝑄𝑦𝑦 − 𝜆)(𝑄𝑧𝑧 − 𝜆) 

𝜷 𝑄𝑦𝑧
(𝑄𝑥𝑥 − 𝜆) − 𝑄𝑥𝑦𝑄𝑥𝑧 𝑄𝑥𝑧

2 − (𝑄𝑥𝑥 − 𝜆)(𝑄𝑧𝑧 − 𝜆) 𝑄𝑥𝑦
(𝑄𝑧𝑧 − 𝜆) − 𝑄𝑥𝑧𝑄𝑦𝑧 

𝜸 𝑄𝑥𝑦
2 − (𝑄𝑥𝑥 − 𝜆)(𝑄𝑦𝑦 − 𝜆) 𝑄𝑦𝑧

(𝑄𝑥𝑥 − 𝜆) − 𝑄𝑥𝑦𝑄𝑥𝑧  𝑄𝑥𝑧(𝑄𝑦𝑦 − 𝜆) − 𝑄𝑥𝑦𝑄𝑦𝑧 

This method offers 3 systems of equations, which allows the calculation of 

eigenvectors coordinates even when 𝛼 = 𝛽 = 𝛾 = 0 (i.e. calculation impossible) for 

one of the systems. If the calculation is impossible for the 3 systems, a cross product 

can be performed on two eigenvectors to obtain the third one: 

 𝑣3 = 𝑣1 × 𝑣2 5.3.14 
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The eigenvector corresponding to the eigenvalue selected as order parameter is the 

order director i.e. the direction along which the particles are the most aligned to. 

 

5.3.2.2 Order Parameter 

The order parameter is a dimensionless number quantifying the level of alignment of 

a particle bed, and the order director is the vector along which the particles are the 

best aligned to. 

 

Figure 5.3.5: Order parameter of a particle bed along simulation of shear cell. 

Mechanical shearing promotes the alignment of elongated particles in a bed [14, 188]. 

Indeed, the order parameter starts at 𝑆 = 0.26 on the beginning of the shearing phase 

and increases monotonically until reaching a plateau at 𝑆 = 0.82 after an applied strain 

of 𝛾 = 30 (see Figure 5.3.5). The steady state value obtained corresponds to the value 

reported in DEM shear cell for particles with an aspect ratio of 6 [14]. 
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Figure 5.3.6: Particle bed within the shear cell at a strain applied of 𝛾 = 0 and 𝛾 =

30. 

The particles align along the direction of shearing �⃗� (see Figure 5.3.6) as 

demonstrated by the predominance of the 𝑦 component in the order director after only 

𝛾 = 4 applied strain (see Figure 5.3.7). The 𝑦 and 𝑧 components switch values when 

the theoretical order parameter switches sign at a strain of 𝛾 = 4. In the present study, 

only the absolute value of order parameter is studied. 

 

Figure 5.3.7: Absolute value of order director’s coordinates of a particle bed along 

simulation of shear cell. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

D
ir

ec
to

r'
s 

C
o

o
rd

in
a

te
s

Strain

Abs(X)

Abs(Y)

Abs(Z)

𝛾 = 0 𝛾 = 30 



 Chapter 5: Optimisation of Simulation Setup and Methods  

110 

 

 

5.3.3 Bed Densification 

As the particle bed is sheared, the bed changes conformation from its initial random 

packing and elongated particles align, which densifies the bed [188]. The closer 

packing of the bed increases its volume solid fraction until reaching a steady state (see 

Figure 5.3.8). The steady state value is reached after a strain applied of 𝛾 = 30, which 

corresponds to the steady state of particle alignment (see Figure 5.3.5). 

 

Figure 5.3.8: Solid fraction 𝑓𝑠 during the shearing phase for a normal stress applied 

𝜎 = 6.5𝑘𝑃𝑎 and an aspect ratio 𝛼𝑝 = 6. 

A slight decrease of 𝑓𝑠 is observed after inducing the shearing phase and reaches a 

minimum after a strain applied at 𝛾 = 2. Here, the bed dilates due to particle 

interlocking [21] where contacts are stable and require more energy to be broken: this 

phenomenon is called Reynold’s dilatancy [250, 251]. This higher energy is provided 

to the bed via an initial peak of shear stress (see Chapter 5.5.2) to overcome the yield 

strength of the particle bed. 
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5.4 Particles Internal Stress 

Two methods for the calculation of the particle internal stress are examined: the 

Simple Beam Bending [59] and the Euler Equation of Motion [55]. The applicability of 

these two methods to the designed system in this study is assessed and the most 

suitable one is identified for further analysis. In both methods, the maximum internal 

stress value obtained for a particle is defined as its proper internal stress experienced.  

 

5.4.1 Calculation Methods 

5.4.1.1 Analytical Solving of Simple Beam Bending 

This bending stress calculation method is widely used in mechanical engineering for 

its simplicity [335]. It requires a force equilibrium on the studied system i.e. static 

condition. 

Applying this bending stress method to calculate particle internal stress implies that 

the bending stress is considered acting predominantly on particles internal stress. 

The bending stress of the particle is calculated from the component of the contact 

forces �⃗�𝑖 directed normally to its neutral axis �⃗⃗�. A cross product is performed to obtain 

the bending moment �⃗⃗⃗�𝑛 at contact index 𝑛: 

 �⃗⃗⃗�𝑛 = ∑�⃗�𝑖 × (�⃗⃗�𝑛 − �⃗⃗�𝑖)

𝑛

𝑖=1

 5.4.1 

With the contact index 𝑖 sorted by increasing 𝑢𝑖.  
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The maximum bending moment of a particle is here expected to be located at the 

position 𝑢𝑛 of a contact point rather than in between contacts. Moreover, the bending 

moment at the first and last contacts are null (see Figure 5.4.1). 

 

Figure 5.4.1: Typical case of force application on a particle represented by its neutral 

axis �⃗⃗�. The shear force 𝑉 and the bending moment 𝑀 are calculated based on the 

magnitude of the normal component of the forces 𝐹𝑋,𝑛𝑜𝑟𝑚  and their application point 

𝑢𝑋 with ∑𝐹𝑋,𝑛𝑜𝑟𝑚 = 0. 

Two-dimensionally, the bending moment at contact 𝑛 is expressed as: 
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 𝑀𝑛 = ∑𝐹𝑖 ,𝑛𝑜𝑟𝑚(𝑢𝑛 − 𝑢𝑖)

𝑛

𝑖=1

 5.4.2 

Where 𝐹𝑖,𝑛𝑜𝑟𝑚  is the normal component of �⃗�𝑖. 

The shear force 𝑉𝑛 at contact index 𝑛 is expressed as: 

 𝑉𝑛 = ∑𝐹𝑖,𝑛𝑜𝑟𝑚

𝑛

𝑖=1

 5.4.3 

With: 

 𝑀𝑛 = ∫ 𝑉𝑛𝑑𝑢

𝑢𝑛

𝑢1

 5.4.4 

Three-dimensionally, at each contact a plan (𝑃) including �⃗⃗� exists for which the 

projections of force vectors �⃗�𝑖 produce the maximum value of bending moment using 

Equation 5.4.2. The projection 𝐹𝑖,𝑝𝑟𝑜𝑗  of 𝐹𝑖,𝑛𝑜𝑟𝑚  on plan (𝑃) is expressed as: 

 𝐹𝑖,𝑝𝑟𝑜𝑗 = 𝐹𝑖,𝑛𝑜𝑟𝑚 𝑐𝑜𝑠𝜃𝑖  5.4.5 

With 𝜃𝑖 the angle from plan (𝑃) to �⃗�𝑖,𝑛𝑜𝑟𝑚 . 

To minimise the number of unknown variables, all force projections are expressed as 

a function of 𝜃1: 

 𝐹𝑖,𝑝𝑟𝑜𝑗 = 𝐹𝑖 ,𝑛𝑜𝑟𝑚 𝑐𝑜𝑠(𝜃1 − 𝜃1𝑖 ) 5.4.6 

With 𝜃1,𝑖 the angle from �⃗�𝑖,𝑛𝑜𝑟𝑚  to �⃗�1,𝑛𝑜𝑟𝑚  (𝜃1𝑖 ∈ [0; 𝜋]). 
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Signs of angles are here important for the analytical solving and are determined by the 

direction of �⃗�𝑖,𝑛𝑜𝑟𝑚 × �⃗�1 ,𝑛𝑜𝑟𝑚 : if the cross-product is in the same direction than �⃗⃗� then 

𝜃1𝑖  is positive, else 𝜃1𝑖  is negative (see Figure 5.4.2). 

 

Figure 5.4.2: Projection �⃗�𝑋,𝑝𝑟𝑜𝑗  of the normal component �⃗�𝑋,𝑛𝑜𝑟𝑚  of contact force on a 

defined plane (𝑃) and 𝜃𝑋  the angle between these two vectors. 

 𝜃1,𝑖 = 𝑆𝑖𝑔𝑛(𝜃1,𝑖).𝐴𝑏𝑠(𝜃1,𝑖) 5.4.7 

 𝜃1𝑖 =
(�⃗�𝑖,𝑛𝑜𝑟𝑚 ×𝐹1 ,𝑛𝑜𝑟𝑚).�⃗⃗�

‖�⃗�𝑖,𝑛𝑜𝑟𝑚 ×𝐹1,𝑛𝑜𝑟𝑚‖
. 𝑐𝑜𝑠−1(

𝐹𝑖,𝑛𝑜𝑟𝑚. 𝐹1,𝑛𝑜𝑟𝑚

‖�⃗�𝑖,𝑛𝑜𝑟𝑚‖.‖𝐹1,𝑛𝑜𝑟𝑚‖
) 5.4.8 

The bending moment of the particle at contact index 𝑛 for a selected plan (𝑃) is then 

expressed as: 
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 𝑀𝑛,(𝑃) = ∑𝐹𝑖,𝑛𝑜𝑟𝑚 𝑐𝑜𝑠(𝜃1 − 𝜃1𝑖 ) (𝑢𝑛 − 𝑢𝑖)

𝑛

𝑖=1

 5.4.9 

The minimum and maximum bending moment are found when: 

 𝑀𝑛,(𝑃)
′ =

𝑑𝑀𝑛,(𝑃)

𝑑𝜃1
= 0 5.4.10 

The derivative of 𝑀𝑛,(𝑃) is developed: 

 𝑀𝑛,(𝑃) = ∑𝐹𝑖,𝑛𝑜𝑟𝑚(𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃1𝑖 + 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃1𝑖 )(𝑢𝑛 − 𝑢𝑖)

𝑛

𝑖=1

 5.4.11 

With 𝑐𝑜𝑠(𝑎 + 𝑏) = 𝑐𝑜𝑠 𝑎 𝑐𝑜𝑠 𝑏 + 𝑠𝑖𝑛 𝑎 𝑠𝑖𝑛 𝑏 

 𝑀𝑛,(𝑃)
′ = ∑𝐹𝑖,𝑛𝑜𝑟𝑚(𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃1𝑖 − 𝑠𝑖𝑛 𝜃1 𝑐𝑜𝑠𝜃1𝑖 )(𝑢𝑛 − 𝑢𝑖)

𝑛

𝑖=1

 5.4.12 

 𝑀𝑛,(𝑃)
′ = ∑𝐹𝑖,𝑛𝑜𝑟𝑚 (

1− 𝑡2

1+ 𝑡2 𝑠𝑖𝑛𝜃1𝑖 −
2𝑡

1 + 𝑡2 𝑐𝑜𝑠𝜃1𝑖)

𝑛

𝑖=1

(𝑢𝑛 − 𝑢𝑖) 5.4.13 

With 𝑡 = tan(𝜃1 2⁄ ) and 𝜃1 ∈ [0; 𝜋]. 

 𝑀𝑛,(𝑃)
′ = 0 5.4.14 

 ∑𝐹𝑖,𝑛𝑜𝑟𝑚(𝑡2 𝑠𝑖𝑛𝜃1𝑖 + 2𝑡 𝑐𝑜𝑠𝜃1𝑖 − 𝑠𝑖𝑛𝜃1𝑖)

𝑛

𝑖=1

(𝑢𝑛 − 𝑢𝑖) = 0 5.4.15 

The 2nd degree polynomial of 𝑡 is solved (𝑎𝑡2 + 𝑏𝑡 + 𝑐 = 0): 

 𝑎 = ∑𝐹𝑖,𝑛𝑜𝑟𝑚 𝑠𝑖𝑛 𝜃1𝑖 (𝑢𝑛 − 𝑢𝑖)

𝑛

𝑖=1

 5.4.16 
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 𝑏 = 2 ∑𝐹𝑖 ,𝑛𝑜𝑟𝑚 𝑐𝑜𝑠𝜃1𝑖 (𝑢𝑛 − 𝑢𝑖)

𝑛

𝑖=1

 5.4.17 

 𝑐 = −∑𝐹𝑖,𝑛𝑜𝑟𝑚 𝑠𝑖𝑛𝜃1𝑖 (𝑢𝑛 − 𝑢𝑖)

𝑛

𝑖=1

 5.4.18 

The two real roots of 𝜃1 are: 

 𝜃1,1 = 2 𝑡𝑎𝑛−1(
−𝑏 − √∆

2𝑎
) 5.4.19 

 𝜃1,2 = 2 𝑡𝑎𝑛−1(
−𝑏 + √∆

2𝑎
) 5.4.20 

With ∆= 𝑏2 − 4𝑎𝑐. 

The maximum absolute bending moment is selected as bending moment at contact 

index 𝑛: 

 𝑀𝑛 = 𝑀𝑎𝑥(𝐴𝑏𝑠(𝑀𝑛(𝜃1,1)) ,𝐴𝑏𝑠(𝑀𝑛(𝜃1,2))) 5.4.21 

Once the bending moment is calculated for all contacts 𝑁 on particle 𝑝, the maximum 

value is selected as bending moment 𝑀𝑝 of the particle: 

 𝑀𝑝 = 𝑀𝑎𝑥(𝑀1 ,… , 𝑀𝑁) 5.4.22 

The bending stress 𝜎𝑝 of particle 𝑝 is then obtained with the simple beam bending 

stress formula: 

 𝜎𝑝 =
𝑀𝑝 . 𝑦

𝐼𝑢
 5.4.23 

With 𝑦 the perpendicular distance to neutral axis �⃗⃗� and 𝐼𝑢 the second moment of area 

of neutral axis. 
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A cylindrical shape of the particles is assumed, therefore 𝑦 = 𝑟 the radius of an 

element sphere and: 

 𝐼𝑢 =
𝜋𝑟4

4
 5.4.24 

 

5.4.1.2 Euler Equation of Motion 

The following methodology is used to calculate discretely the internal stress of the 

particles [55] from its contact forces. Further calculations are performed integrally in 

the particle’s referential (𝑥𝑝⃗⃗⃗⃗⃗,𝑦𝑝⃗⃗⃗⃗ ⃗, �⃗⃗�). 

 

A cross-section (𝐶𝐶 ′) of the particle, normal to its neutral axis �⃗⃗�, splits the particle into 

two segments, one of them designated as 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐵. The internal normal force �⃗⃗⃗� =

(0,0, 𝑁) and shear force �⃗⃗� = (𝑉𝑥,𝑉𝑦 , 0) on (𝐶𝐶 ′) are given by the following equation: 

 �⃗⃗⃗� + �⃗⃗� + ∑𝐹𝑖,𝑠𝑒𝑔𝐵
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗ + 𝐺𝐵

⃗⃗⃗⃗⃗⃗ = 𝑚𝐵.𝑎𝐵⃗⃗⃗⃗ ⃗ 5.4.25 

Where 𝐹𝑖 ,𝑠𝑒𝑔𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ are the contact forces on 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐵, 𝐺𝐵

⃗⃗ ⃗⃗ ⃗ the gravity force of 𝑆𝑒𝑔𝑚𝑒𝑛𝑡  𝐵 

and 𝑚𝐵 the mass of 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐵. 

The translational acceleration of point 𝐵 (centre of gravity of 𝑆𝑒𝑔𝑚𝑒𝑛𝑡  𝐵) 𝑎𝐵⃗⃗ ⃗⃗ ⃗ is 

calculated as follows: 

 𝑎𝐵⃗⃗⃗⃗ ⃗ = 𝑎𝑃⃗⃗⃗⃗ ⃗ + 𝜔𝑃⃗⃗⃗⃗⃗⃗ × (𝜔𝑃⃗⃗⃗⃗⃗⃗ × 𝑃𝐵⃗⃗⃗⃗⃗⃗ ) + �̇�𝑃
⃗⃗⃗⃗⃗⃗ × 𝑃𝐵⃗⃗⃗⃗⃗⃗  5.4.26 
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With 𝑃 the centre of gravity of the particle, 𝑎𝑃⃗⃗⃗⃗ ⃗ the translational acceleration of the 

particle, 𝜔𝑃⃗⃗⃗⃗ ⃗⃗  its rotational velocity and �̇�𝑃
⃗⃗⃗⃗ ⃗⃗  its rotational acceleration given by: 

 �̇�𝑃
⃗⃗⃗⃗⃗⃗ = 𝐼𝑃

−1.𝑀𝑃
⃗⃗ ⃗⃗⃗⃗  5.4.27 

𝑀𝑃
⃗⃗ ⃗⃗ ⃗⃗  is the moment of forces on 𝑃 and 𝐼𝑃 the principal moment of inertia of the particle, 

here assumed having a cylindrical shape: 

 𝐼𝑃 =

[
 
 
 
 
𝑚𝑝𝑙2

12
+

𝑚𝑝𝑟2

4
0 0

0
𝑚𝑝𝑙2

12
+

𝑚𝑝𝑟2

4
0

0 0
𝑚𝑝𝑟2

2 ]
 
 
 
 

 5.4.28 

With 𝑟 the radius of the element sphere, 𝑚𝑝 the mass of the particle and 𝑙 its length. 

The bending moment �⃗⃗⃗� = (𝑀𝑥 ,𝑀𝑦 , 0) and twisting moment �⃗⃗� = (0,0, 𝑇) on (𝐶𝐶 ′) are 

given by: 

 𝐼𝐵. �̇�𝐵
⃗⃗⃗⃗⃗⃗ + 𝜔𝐵⃗⃗⃗⃗⃗⃗ × (𝐼𝐵.𝜔𝐵⃗⃗⃗⃗⃗⃗ ) = ∑𝐵𝐶𝑖

⃗⃗ ⃗⃗⃗⃗ ⃗ ×𝐹𝑖,𝑠𝑒𝑔𝐵
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗ + �⃗⃗⃗� + �⃗⃗� + 𝐵(𝐶𝐶′)⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗ × �⃗⃗� 5.4.29 

With 𝐼𝐵  the second moment of inertia of 𝑆𝑒𝑔𝑚𝑒𝑛𝑡  𝐵, 𝐶𝑖 the contact point for contact 

index 𝑖, and:  

𝜔𝐵⃗⃗ ⃗⃗⃗⃗  = 𝜔𝑃⃗⃗⃗⃗ ⃗⃗   �̇�𝐵
⃗⃗ ⃗⃗⃗⃗ = �̇�𝑃

⃗⃗⃗⃗ ⃗⃗  

Then, the stress tensor 𝜎(𝑋, 𝑌) at coordinates (𝑋,𝑌) within (𝐶𝐶 ′) is calculated as 

followed: 

 𝜎(𝑋, 𝑌) =

[
 
 
 
 0 0

4𝑉𝑥(𝑟2−𝑋2)−6𝑇𝑌

3𝜋𝑟4

0 0
4𝑉𝑦(𝑟2−𝑌2 )+6𝑇𝑋

3𝜋𝑟4

4𝑉𝑥(𝑟2−𝑋2)−6𝑇𝑌

3𝜋𝑟4

4𝑉𝑦(𝑟2−𝑌2 )+6𝑇𝑋

3𝜋𝑟4

𝑁𝑟2+4𝑀𝑥𝑌−4𝑀𝑦𝑋

𝜋 𝑟4 ]
 
 
 
 

 5.4.30 

The stress tensor is diagonalised and the maximum absolute eigenvalue is retained 

as the internal stress of the particle at that location. 
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The internal stress is calculated at different locations using discretisation of cylindrical 

coordinates of the particle (𝑟𝑖 ,𝜃𝑗 , 𝑙𝑘) with 𝑖 ∈ [1,𝑁𝑟], 𝑗 ∈ [1,𝑁𝜃] and 𝑘 ∈ [1, 𝑁𝑙]: 

𝑋 = 𝑟𝑖 cos𝜃𝑗   𝑌 = 𝑟𝑖 sin 𝜃𝑗  

The maximum internal stress value found from these (𝑖, 𝑗, 𝑘) combinations is selected 

as particle internal stress. Here, the higher the 𝑁 values, the more accurate the 

estimation of the maximum internal stress value for the particle. 

 

5.4.2 Discretisation of Location for Euler Equation of Motion Method 

Euler Equation of Motion method is used to calculate the particles internal stress at 

different location within them. The location is determined using a discretisation of 

cylindrical coordinates: radius, angle and length (see Chapter 5.4.1.2). 

 

5.4.2.1 Radius 

It has been demonstrated that the maximum internal stress is located at the particle’s 

surface [55]. Indeed, the bending component of the stress tensor will promote 

breakage at the surface due to the tensile stress induced. This crack nucleation then 

propagates within the particles through a preferred cleavage plane following Kendall’s 

theory of breakage [106]. 
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Thus, the particles internal stress is only calculated at the surface of particles. 

 

5.4.2.2 Length 

An observation of the particles internal stress calculated along the length shows that 

the maximum stress is likely to be located at the projection of a particle contact onto 

the particle neutral axis (see Figure 5.4.3). Indeed, the contact force is suddenly added 

to the internal force on the cross section (𝐶𝐶’) when it reaches the contact location. It 

explains why there is a sudden change in the particle’s internal stress at the location 

of a contact. 

 

Figure 5.4.3: Internal stress of a particle calculated with Euler Equation of Motion at 

different length positions: for the particle length discretised at 100 locations and at 

the location of contacts. 

The mean particles internal stress, i.e. the mean value of the individual maximum 

particle internal stress, is calculated among the particle bed for different length 

discretisation numbers (see Figure 5.4.4). The higher the discretisation number the 

closer the calculated mean particles internal stress is to the real maximum value. The 

plot is fitted using the following equation reaching coefficient of determination 𝑅2 =

0.99996: 
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 𝑦 = 𝑦0 + 𝐴1(1 − 𝑒−𝑥 𝑡1⁄ )+ 𝐴2(1 − 𝑒−𝑥 𝑡2⁄ ) 5.4.31 

 lim
𝑥→+∞

𝑦 = 𝑦0 + 𝐴1 + 𝐴2 5.4.32 

With 𝑦0 = 369146, 𝐴1 = 16742, 𝑡1 = 98.6, 𝐴2 = 94831 and 𝑡2 = 11.77. 

The real mean particles internal stress is the predicted limit of the fitted curve which is 

480720𝑃𝑎.  

The calculation at the location of contacts has an error of 1.22%, and is in average 5𝑥 

faster than a discretisation number of 100 for the same accuracy. Thus, the calculation 

at contacts appears as an excellent comprise. 

 

Figure 5.4.4: Mean particles internal stress calculated for different length 

discretisation numbers and at location of contacts. 

 

5.4.2.3 Angle 

The mean particles internal stress is calculated with different discretisation numbers 

(see Figure 5.4.5). The plot is fitted using the same method as in Chapter 5.4.2.2 

reaching coefficient of determination 𝑅2 = 0.9998 with 𝑦0 = 214372, 𝐴1 = 8047.7, 𝑡1 =

12.82, 𝐴2 = 253174 and 𝑡2 = 2.372. 
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The real mean particles internal stress is the predicted limit of the fitted curve which is 

475604𝑃𝑎.  

An angle discretisation number of 30 is a good compromise between computational 

resources and accuracy, with an error of 0.15%. 

 

Figure 5.4.5: Mean particles internal stress calculated for different angle 

discretisation numbers. 

 

5.4.2.4 Concluding Remarks 

Euler Equation of Motion is a discretised calculation method, and a selection of 

discretisation numbers is made with a consideration for the computational resources 

to accuracy ratio. The found comprise is a calculation of the particle’s internal stress 

at its surface, for a length corresponding to the location of its contacts, and at 30 

different angles. The error associated with this selection of discretisation parameters 

is 1.37%. 
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5.4.3 Comparison of Methods 

A comparison of the Simple Beam Bending (SBB) and Euler Equation of Motion (EEM) 

methods for particles internal stress calculation is performed to select the most 

adequate. 

SBB (see Chapter 5.4.1.1) is solved analytically to find the maximum bending stress 

within a particle and has the advantage to be calculated faster. It requires the 

assumptions that the particle is in quasi-static state and that bending stress is the 

dominant component of the particles internal stress. EEM (see Chapter 5.4.1.2) is a 

discrete calculation and requires more time and computational resources to solve. This 

method can be used for all flow regimes and considers all types of internal stress within 

particles. 

EEM results are considered as reference values to evaluate if the faster and easier 

SBB method can be used for the performed simulations. 

The mean particles internal stress is overestimated using SBB (see Figure 5.4.6) 

showing that at least one of the assumptions for the use of this method is not valid. 

 

Figure 5.4.6: Mean particle internal stress calculated with Simple Beam Bending and 

Euler Equation of Motion methods. 
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Having a closer look at the internal stress of a single particle along its length (see 

Figure 5.4.7), the stress doesn’t reach zero at the last contact for SBB method as it is 

supposed to in quasi-static case. It means that the forces on the particle system are 

not balanced enough for SBB to be used for the performed simulations. 

 

Figure 5.4.7: Internal stress of a particle along its length, calculated with Simple 

Beam Bending and Euler Equation of Motion methods 

Thus, the EEM method is used for the calculation of particles internal stress in all 

further analysis. 
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finer analysis of correlations for the other variables involved (e.g. particles alignment) 

by reducing the number of degrees of freedom. 

At first, the upper wall mass is calculated as follows: 

 𝑀𝑎𝑠𝑠𝑤𝑎𝑙𝑙_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝐹𝑤,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 × 𝑔 5.5.1 

With 𝐹𝑤,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 the normal force set to the upper wall (see Chapter 5.2.2.3) and 𝑔 =

9.81𝑚.𝑠−2 the gravitational acceleration on Earth. Here, the upper wall behaves like a 

weight where the normal force corresponds to its gravitational force on Earth. The 

lower wall position is fixed, so the value of its mass does not affect the simulations. 

The normal stress measured on the upper wall exhibits non-negligible variations. 

Indeed, the wall acceleration is insufficient to adjust its position during the 

rearrangement of the particle bed in the shearing phase. Here, the normalised 

standard deviation of normal stress equals 9.4%. 

As given by Newton’s second law of motion (see Equations 2.4.1 and 2.4.2), the wall 

acceleration is inversely proportional to the wall mass for a given normal force. 

Therefore, the wall mass is reduced to increase wall acceleration. The wall mass is 

decreased from its original value using a multiplier: 

 𝑀𝑎𝑠𝑠𝑤𝑎𝑙𝑙_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑀𝑎𝑠𝑠𝑤𝑎𝑙𝑙_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ×𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 5.5.2 

An inductive study is performed to find the multiplier for which minimum normal stress 

variations are observed (see Figure 5.5.1).  
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Figure 5.5.1: Normalised standard deviation of normal stress for different wall mass 

multipliers. 

It must be noted that if the wall acceleration is too high, the wall over-reacts to the 

rearrangement of the particle bed and jump out of the simulation environment: this is 

happening for 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 10−8. The safe option of 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 10−5 is selected 

which corresponds to a normalised standard deviation of 0.1%: the normal stress can 

here be considered as constant (see Figure 5.5.2). 

 

Figure 5.5.2: Compressive stress during shear phase for wall mass multiplied by 1 

and 10−5. The stress values are normalised over the target value. 
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5.5.2 Strain Rate and Flow Regime 

The selection of strain rate (see Equation 2.4.4) applied to the particle bed impacts its 

flow regime in the shearing phase. Indeed, the type of inter-particulate contact is 

mostly determined by their relative speed, the frictional part of contact forces and 

interlocking [252, 253]. 

The flow regime of a granular assembly is determined by the effect of the imposed 

strain rate on the stress ratio (see Equation 2.4.6) in the steady state. A particle bed 

in an AFD typically experiences a quasi-static flow regime [1, 8, 9, 108, 156, 191, 235] 

where the momentum transfer is governed by frictional forces between particles [112, 

114] and is independent of the shear rate [115]. Indeed, most of the energy is 

dissipated by frictional contact rather than inter-particulate damping [24] and the 

kinetic energy can be considered negligible [205]. Therefore, a quasi-static flow regime 

of the particle bed is desired in this study to be representative of the mechanical 

behaviour of a particle bed in an AFD. In quasi-static flow of non-cohesive assembly, 

the stress ratio (and shear stress) is constant [112, 191, 235], independent of the strain 

rate [115, 116], and scales with the angle of internal friction by the Coulomb’s law of 

static friction [1, 152-154] (see Equation 2.3.3). 

It has been demonstrated that a strain rate varying in the range of 0 to 5𝑠−1 doesn’t 

impact the amount of attrition of low aspect ratio particles for the same applied strain 

in DEM simulation of particle agitation [108], demonstrating a quasi-static flow regime 

for this range of strain rate. 

A range of strain rates are applied to the particle bed within the shear cell and the 

stress ratio is calculated throughout the shearing phase (see Figure 5.5.3). As 

expected, the stress ratio increases to a peak during the transitional state [13] at the 

beginning of the shearing phase before reaching a steady state [258] after a strain 

applied of about 3. It is noted that the initial value of shear cell height is taken for the 

calculation of the dimensionless strain (see Equation 2.4.4 and 2.4.5). The average 

value of stress ratio in steady state is considered as a characteristic value for the 

mechanical behaviour of the particle bed [13, 21, 149]. It is assumed that the possible 

initial shock disturbance due to the sudden acceleration of the walls [24] disappears 

when entering the steady state of stress ratio. Small variations of stress ratio still occur 
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in the steady state due to the “slip-and-stick” behaviour of particles in this flow regime 

[1, 116]. It is observed that a strain rate of 200𝑠−1 increases the value of stress ratio, 

whilst it remains similar for 2𝑠−1 and 20𝑠−1. Indeed, the angle of internal friction in 

steady state for 2𝑠−1, 20𝑠−1 and 200𝑠−1 are respectively 24°, 24.5° and 27.4°.  

 

Figure 5.5.3: Stress ratio during the shearing phase for a strain rate of 2, 20 and 

200𝑠−1 

The maximum strain rate conserving the mechanical behaviour of the particle bed is 

selected for further simulations to decrease the simulation time, here 20𝑠−1. 

 

5.5.3 Young’s Modulus 

The median Young’s modulus of β-LGA has been determined experimentally [18] in 

Chapter 4 and equals 1.9𝐺𝑃𝑎. 

It is common practice in DEM simulations to scale down the Young’s modulus to 

increase the Rayleigh time step (see Chapter 5.2.3.1), which reduces the 

computational cost and time required to perform the simulations. The elastic modulus 

is generally scaled down by several orders of magnitude [55]. 

Simulations are performed to determine if scaling down the Young’s modulus from its 

reported value modifies the mechanical behaviour of the particle bed. It is observed 
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that scaling the Young’s modulus down to 19𝑀𝑃𝑎 (i.e. by a factor of 100) results in an 

instability of the particle bed where particles are penetrating the walls (see Figure 

5.5.4). Here, particles are too soft and penetrate their respective overlap volume of 

their clumped element spheres (see Chapter 5.2.1.1) during contact. It creates an 

artefact of calculation where the same contact force is calculated multiple times. 

 

Figure 5.5.4: Shear cell at 𝛾 = 40 with particles at 𝐸 = 19𝑀𝑃𝑎. A few particles have 

penetrated the upper wall. 

𝐸 = 19𝑀𝑃𝑎 being out of scope, simulations are performed for 𝐸 = 190𝑀𝑃𝑎 and the 

reported value 𝐸 = 1.9𝐺𝑃𝑎. The stress ratio is lower for 𝐸 = 190𝑀𝑃𝑎 (see Figure 

5.5.5) with a sensible difference in the angle of internal friction in the steady state (i.e. 

strain γ > 3): 23.1° with 𝐸 = 190𝑀𝑃𝑎 instead of 24.5° with 𝐸 = 1.9𝐺𝑃𝑎.  



 Chapter 5: Optimisation of Simulation Setup and Methods  

130 

 

 

Figure 5.5.5: Stress ratio during in shearing phase for particles Young's modulus of 

1.9𝐺𝑃𝑎 and 190𝑀𝑃𝑎. 

This phenomenon is attributed to the reduction of particles single contact force 

resulting from 23% to 39% more particle contacts in the bed with the lower Young’s 

modulus (see Figure 5.5.6). Moreover, the strength of particle-particle interlocking, 

intrinsic phenomenon due to their clumped-spheres morphology [149, 228, 260], is 

decreases with softer particles. 

 

Figure 5.5.6: Number of particle contacts during the shearing phase for particles 

Young's modulus of 1.9𝐺𝑃𝑎 and 190𝑀𝑃𝑎. 
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Also, the particles internal stress is different for the two Young’s modulus. The mean 

value is in average 6.8% lower for 𝐸 = 190𝑀𝑃𝑎 (with 𝛾 > 3) (see Figure 5.5.7). 

 

Figure 5.5.7: Mean particles internal stress during the shearing phase for particles 

Young's modulus of 1.9𝐺𝑃𝑎 and 190𝑀𝑃𝑎. 

Scaling down particles Young’s modulus is found to have an important effect on the 

mechanical behaviour of the bed and internal stress experienced by particles. This 

observation is confirmed by comparisons performed between DEM and experimental 

agitation in vertical axis mixer where the use of realistic elastic modulus produces a 

similar torque as experimentally observed [188]. Thus, the experimental Young’s 

modulus of β-LGA is selected for all performed simulations. 

 

5.6 Wall Effect 

The flat surfaces of the walls may have an impact on particles mechanical behaviour 

along the simulation. Indeed, the raised coefficient of static friction for particle-wall 

contacts restrains the ability of particles to rearrange freely when touching the walls. 

The wall effect is then investigated and the data of affected particles will be removed 

from further analysis to obtain universal model. 
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5.6.1 First Layer 

To evaluate the importance of the wall effect, two groups of particles are studied: 

categorised as “wall particles” when they are touching one of the two walls, and “core 

particles” the remaining ones (see Figure 5.6.1). 

 

Figure 5.6.1: Side view of particle bed in the shear cell. Wall particles are in contact 

with one of the two walls. 

A quick observation of box plots of particles internal stress for the two groups of 

particles at γ = 3 (see Figure 5.6.2) supports the hypothesis that being in contact with 

a wall affects the internal stress experienced by particles. 
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Figure 5.6.2: Box plots of particles internal stress for wall particles and core particles 

at 𝛾 = 3. The crosses indicate the mean values for the two groups of particles and 

the horizontal bars are (from bottom to top) the lower boundary, first quartile, 

median, third quartile and upper boundary. The boundaries of the whiskers is based 

on the 1.5 × interquartile range value. 

Here, wall particles have a higher internal stress. The mean value (see Figure 5.6.3) 

and standard deviation (see Figure 5.6.4) are also higher for wall particles during the 

shearing phase. 
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Figure 5.6.3: Mean particle internal stress of wall particles and core particles in the 

shearing phase. 

 

Figure 5.6.4: Theoretical standard deviation of particles internal stress for wall 

particles and core particles in the shearing phase. 

To statute on whether these two groups of particles belong to the same population, a 

parametric test is performed on the entire particle population at each time recorded 

with the categorical variable being “in contact with walls”: True or False. 
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The high number of particles in each group, i.e. around 200 wall particles and 1800 

core particles, allows the assumption that the distribution of values for the observed 

variable follows a normal distribution according to the Central Limit Theorem [318].   

The particles touching walls represent 8.2 to 12.5% of the total particle population in 

the bed, which creates unbalanced group sizes and prevents the realisation of 

variances comparison tests: the hypothesis of homoscedasticity cannot be supported.  

Under these conditions, the most robust parametric test for comparison of means, the 

Welch’s T-test [336], is chosen to conduct this analysis. The test of hypothesis is 

expressed as: 

 𝐻0: 𝜇𝑤𝑎𝑙𝑙𝑠 = 𝜇𝑐𝑜𝑟𝑒 5.6.1 

 𝐻1: 𝜇𝑤𝑎𝑙𝑙𝑠 ≠ 𝜇𝑐𝑜𝑟𝑒 5.6.2 

With 𝜇𝑤𝑎𝑙𝑙𝑠 and 𝜇𝑐𝑜𝑟𝑒  being respectively the mean particle internal stress for wall and 

core particles. 

The statistic 𝑇 and the critical threshold 𝑡0.975(𝜈) for the two-tailed Student law with 5% 

risk are calculated. When the calculated number of degrees of freedom is a decimal 

figure, a linear interpolation of the critical threshold is used to obtain the exact critical 

value. 

 

Figure 5.6.5: 𝑇 value and critical 𝑡0.975(𝑣) of null hypothesis 𝐻0 during the shearing 

phase. 
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The statistic 𝑇 value is higher than the critical 𝑡0.975(𝜈) when 𝛾 > 3 (i.e. steady state of 

stress ratio). The null hypothesis H0 is therefore rejected, meaning that wall particles 

and core particles belong to different population.  

Thus, wall particles won’t be included in further analysis. 

 

5.6.2 Second Layer 

It is questioned whether the observed wall effect spreads to the 2nd layer of particles 

i.e. particles in contact with wall particles.  

First observation of box plots of particles internal stress at γ = 3 (see Figure 5.6.6) 

shows that the descriptive statistics of particles internal stress are similar for the 2nd 

layer particles and new core particles (i.e. all particles excepting wall particles and 2nd 

layer particles).  

 

Figure 5.6.6: Box plots of particles internal stress for 2nd layer particles and new 

core particles at 𝛾 = 3. The crosses indicate the mean values for the two groups of 

particles and the horizontal bars are (from bottom to top) the lower boundary, first 

quartile, median, third quartile and upper boundary. The boundaries of the whiskers 

is based on the 1.5 × interquartile range value. 
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The mean value (see Figure 5.6.7) and standard deviation (see Figure 5.6.8) of 

particles internal stress are comparable during the shearing phase. The variations are 

more significant for the 2nd layer particles, which is attributed to their reduced number 

i.e. around 70 compared to 1700 new core particles.  

 

Figure 5.6.7: Mean particle internal stress of 2nd layer particles and new core 

particles in the shearing phase. 

 

Figure 5.6.8: Theoretical standard deviation of particles internal stress of 2nd layer 

particles and new core particles in the shearing phase. 
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The similar values obtained for the two groups of particles supports the hypothesis 

that the wall effect is limited to the only wall particles and is inexistent or negligible for 

the 2nd layer particles. 

Same as for previous case (see Chapter 5.6.1), the number of particles in the two 

groups allows the assumption that the Central Limit Theorem is respected.   

Also, since 2nd layer particles represent 2.4 to 7.4% of the total particle population in 

the bed, the hypothesis of homoscedasticity cannot be supported. 

To confirm the assumption that 2nd layer and new core particles belong to the same 

population, a Welch’s T-test is performed with 5% risk. The test of hypothesis is then 

expressed as: 

 𝐻0: 𝜇2𝑛𝑑 𝑙𝑎𝑦𝑒𝑟 = 𝜇𝑛𝑒𝑤 𝑐𝑜𝑟𝑒 5.6.3 

 𝐻1 : 𝜇2𝑛𝑑 𝑙𝑎𝑦𝑒𝑟 ≠ 𝜇𝑛𝑒𝑤 𝑐𝑜𝑟𝑒 5.6.4 

 

Figure 5.6.9: T value and critical 𝑡0.975(𝑣) of null hypothesis 𝐻0 during the shearing 

phase. 

The statistic 𝑇 value is found to be lower than the critical 𝑡0.975(𝜈) when 𝛾 > 3 (see 

Figure 5.6.9). The null hypothesis is therefore accepted, meaning that 2nd layer and 

new core particles belong to the same population.  

Thus, only the core particles population will be considered in further analysis. 
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5.7 Conclusions 

The initial simulation setup is optimised and validated through a series of inductive 

studies. The velocity profile is close to linear, meaning that the strain is 

homogeneously effective along the bed height. A strain rate of 20𝑠−1 is selected as it 

is the maximum order of magnitude allowing conservation of mechanical behaviour of 

the particle bed. The wall mass is reduced from its theoretical value – calculated from 

the force controller value – by a factor of 10−5 to ensure a constant compressive stress 

on the particle bed using the force controller. The Young’s modulus couldn’t be scaled 

down to reduce simulation time as it has a significant impact on particles mechanical 

behaviour, including their internal stress. The internal stress of particles is calculated 

using the Euler equation of motion method as the simple beam bending method is too 

sensitive to the absence of force equilibrium on single particle system. Finally, the 

particles touching the walls are excluded from further analysis as their internal stress 

is shown to be significantly impacted by their contacts with walls. 

This optimised simulation setup is used for the further analysis in Chapter 6 where the 

correlations between key parameters in the particle bed are assessed from the results 

of an inductive study with the variation of particle aspect ratio, normal stress and 

particle ordering. 
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6 Particles Internal Stress for Agitated Drying Conditions 

6.1 Introduction 

When processed in agitated dryers, the particles experience mechanical stress which 

promotes breakage. Understanding how the drying conditions impact the particles 

internal stress is the key for the selection of drying equipment and parameters to 

reduce particle breakage. 

The objective of this chapter is to correlate the particles internal stress to the 

mechanistic environment and physical properties of particles, giving insights for the 

prediction of particle breakage.  

A series of simulations are performed for different particle shapes, bed conformations 

and mechanistic environments for both shearing phase and uniaxial compression to 

isolate the effect of the shear stress in data analysis. The simulation setup is designed 

based on the optimisations and parameters selection performed in Chapter 5. In this 

chapter, the existing correlations between key variables are highlighted and are the 

basis of further creation of mathematical models for the prediction of the particles 

internal stress (see Chapter 7). 

 

6.2 Modelling of Distributions 

The population of the bed in the performed simulations is composed of approximately 

2000 particles. To undertake an effective analysis, the distributions of interest are 

regressed to models that are well known to fit accurately the studied variables: the 

particles internal stress and the location of this stress on the particles neutral axis. 

 

6.2.1 Weibull Fitting for Distribution of Particles Internal Stress 

The distribution of the particles internal stress is modelled using a cumulative Weibull 

fit [47, 48]: 
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 𝑓(𝑥) = 1 − 𝑒−(𝑥 𝜆⁄ )𝑘
 6.2.1 

With 𝜆 the scale parameter and 𝑘 the shape parameter. Here, the greater the 𝑘, the 

narrower the distribution. 

Indeed, the Weibull model is known to correctly fit the distribution of particles internal 

stress and is more appropriate than a normally distributed function [47]. 

The coefficient of determination 𝑅2 (i.e. method of least residual sum of squares) is 

selected to assess the quality of the model fitting of the cumulative distribution. 

Mathematically, this method set the priority on fitting accurately the greatest values, 

here the data for particles experiencing the highest internal stress i.e. that are the most 

likely to break. 

 

6.2.2 Gaussian Fitting for Distribution of Maximum Stress Location 

The distribution of location of the maximum stress on the particles neutral axis is 

modelled using a Gaussian fit [318]: 

 𝑓(𝑥) =
1

𝜎𝑑𝑒𝑣√2𝜋
𝑒

−
1
2
(𝑥−�̅�
𝜎𝑑𝑒𝑣

)
2

 6.2.2 

With �̅� the mean value of 𝑥, 𝜎𝑑𝑒𝑣  the standard deviation of 𝑥, and 𝑥 ∈ (0;𝐿𝑝) with 𝐿𝑝 

the particle length (see Figure 6.2.1). 

 

Figure 6.2.1: Position 𝑃 of maximum particle internal stress and 𝑥 its projection on 

the particle neutral axis �⃗⃗�. 
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Indeed, it is reported that elongated particles preferably break at their centre and the 

distribution of breakage location along the particle neutral axis follows a Gaussian 

model in both attrition cell [191] and compaction simulations [194]. 

 

6.3 Simulation Setups 

The simulation setup has been optimised in Chapter 5. Particle and geometry 

properties are listed in Table 5.2.1. The interaction properties are listed in Table 5.2.2. 

As of conclusion of simulation setup optimisation (see Chapter 5.7), the chosen strain 

rate is �̇� = 20𝑠−1 and the wall mass is scaled down by 10−5 from its theoretical value.  

The varying parameters in this chapter are presented in the following sub-sections. 

 

6.3.1 Particles and Domain Size 

The particle bed is monodispersed and the shearing simulations are performed for 5 

different aspect ratios 𝛼𝑝 ∈ [2;6]. The elongation of particles is varied by changing the 

number of element spheres 𝑛𝑠  composing the particles such as 𝑛𝑠 = 2𝛼𝑝 − 1, 

preserving an overlap ratio of 1 (see Figure 6.3.1). 

 

Figure 6.3.1: Particles shape for the different aspect ratio 𝛼𝑝. 
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The shear cell dimensions are modified so that its height remains unchanged for the 

different aspect ratios and a 2000 particles bed (see Table 6.3.1). This ensures that 

the strain rate remains the same without the need to change the walls speed. 

Table 6.3.1: Number of element spheres composing the different aspect ratio 

particles and their corresponding shear cell width. 

Aspect ratio Number of elements Shear cell width (𝑚𝑚) 

2 3 0.7 

3 5 1 

4 7 1.3 

5 9 1.4 

6 11 1.5 

 

6.3.2 Stress Environment 

6.3.2.1 Shearing Phase 

The normal stress is reported as the predominant factor impacting particle breakage 

in AFD [156]. Therefore, an inductive study is performed on 5 different normal stress 

values applied by the upper wall on the particle bed whilst being sheared: 𝜎 ∈

[1;2; 4; 6.5; 10]𝑘𝑃𝑎. The order of magnitude of the normal stress applied corresponds 

to the compressive stress experienced by particles in an industrial and pilot scale AFD 

[1]. The wall mass is scaled down accordingly using the same multiplier 10−5 to ensure 

that the normal stress recorded remains constant (see Chapter 5.5.1). These normal 

stress values are applied for 5 different aspect ratios, for a total of 25 shearing 

simulations performed. 
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6.3.2.2 Uniaxial Compression 

The behaviour of the particle bed is analysed on a wider range of normal stress for 10 

different values i.e. 𝜎 ∈ [100;200; 500;1𝑘; 2𝑘;5𝑘;10𝑘; 20𝑘, 50𝑘, 100𝑘]𝑃𝑎, with no 

shear stress involved. This extended range of normal stress applied allows the 

observation of the effect of the number contact on a wider range. To perform the 

analysis for different bed conformation (e.g. alignment), the 10 values of compression 

are applied on a particle bed having experienced different level of strain for the 5 

different aspect ratios. To do so, the shearing simulations are stopped when the strain 

value is reached, then the coefficient of static friction is set to 0 between walls and 

particles to eliminate the shear stress, and finally the 10 values of normal stress are 

applied to the particle bed in an ascending order. As the strain required for the bed 

order parameter to reach steady state increases with aspect ratio, more bed 

conformations are tested for higher aspect ratio (see Table 6.3.2). In total 250 

combinations of aspect ratio, bed conformation and normal stress are analysed in the 

compression case simulations. For each of these combinations, 5 time recordings of 

simulation data are performed. 

Table 6.3.2: Strain levels applied in compression case simulations for different 

aspect ratios. 

Aspect ratio Strain applied 

2 0; 2; 5; 15 

3 0; 2; 5; 10 

4 0; 5; 10; 20 

5 0; 5; 10; 15; 20 

6 0; 3; 5; 10; 15; 20; 25; 30 
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6.3.3 Data Recording 

A total of 50 simulations are performed: 25 in uniaxial compression and 25 in shearing 

phase. Around 100 data points are conserved for each shearing simulation, and 

around 50 for each compression simulation (i.e. 5 data points for each of the 10 normal 

stresses applied). It represents overall 2510 data points for the shearing phase (see 

Appendix 11) and 1174 for uniaxial compression (see Appendix 12). 

 

6.4 Shearing Phase 

The analysis performed for the shearing phase distinguish the transitional phase from 

the steady state for most of the variables studied. Defining the steady state is a visual 

exercise made from the observation of corresponding graphs. 

 

6.4.1 Number of Core Particles 

As observed in Chapter 5.6, the presence of flat walls and absence of periodic 

boundary on the 𝑧 axis (i.e. direction of normal stress) have an impact on the internal 

stress experienced by particles. It has been demonstrated that this “wall effect” is 

limited to the particles in contact with the walls. Therefore, all analysis are performed 

on the “core particles” only, i.e. those not in contact with the walls. 

The number of core particles can vary slightly throughout the shearing phase but 

remains relevant for statistical analysis with a minimum population of 1758 (see Figure 

6.4.1). 
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Figure 6.4.1: Minimum number of core particles in shearing simulations for the 

different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

 

6.4.2 Bed Conformation 

6.4.2.1 Particle Alignment 

Elongated particles are known to align when mechanical strain is applied on a particle 

bed [14]. They align in the direction of shearing [188] and their level of ordering is 

quantified by the order parameter 𝑆 [205, 279, 280] (see Chapter 5.3.2.1.2). At the 

beginning of the shearing phase, the bed is at its maximum level of disorder due to 

the initial random packing. So, 𝑆 has a minimum value at the beginning of the shearing 

phase and then increases until reaching a steady state (see Figure 6.4.2). 
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Figure 6.4.2: Order parameter 𝑆 during the shearing phase for the different aspect 

ratios 𝛼𝑝 and a normal stress at 𝜎 = 4𝑘𝑃𝑎. 

The strain required to reach the steady state value of 𝑆 increases with the particle’s 

aspect ratio (see Figure 6.4.3), meaning that more elongated particles need greater 

mechanical strain to reach their maximum level of alignment. The normal stress 𝜎 

applied has no impact for the tested range of values, i.e. 𝜎 ∈ [1;2; 4;6.5;10]𝑘𝑃𝑎. 

 

Figure 6.4.3: Strain 𝛾 required to reach steady state of order parameter 𝑆 for the 

different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 
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The mean value of order parameter in steady state, 𝑆̅, increases with the aspect ratio 

(see Figure 6.4.4). Again, no impact of the normal stress is observed with a very low 

Spearman coefficient at 0.05. It shows that the more elongated the particles, the better 

they align in their steady state. Indeed, shorter particles will be more prone to rotate 

on a direction normal to their neutral axis due to their reduced mass moment of inertia 

[205], and the variation of particles angular rotation is reported to decreases with 

increasing aspect ratio [149]. 

This phenomenon is also observed in DEM shear cell involving cylindrical particles 

[14]. The values obtained corresponds to the reported order parameter for aspect ratio 

6 with 0.8 in this study and 0.85 in Guo et al. [14], and aspect ratio 4 with 0.72 in this 

study compared to 0.76. However, the values for aspect ratio 2 are higher in this study, 

0.45 compared to 0.25, which is attributed to the higher solid fraction in this study with 

0.57 (see Chapter 6.4.2.2) compared to 0.5 in Guo et al. 

 

Figure 6.4.4: Mean value of order parameter 𝑆̅ in steady state for the different aspect 

ratios 𝛼𝑝 and normal stress 𝜎. 

Elongated particles then naturally align in a sheared bed. A certain level of compaction 

is needed to hold particles together and promotes the ordering of the bed with 

increasing strain applied. In an AFD, variations of compaction and solid density can 

produce disorder within the particle bed e.g. when particles are avalanching behind 

the blade after its passage [118]. 
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6.4.2.2 Bed Densification 

The particle bed densifies as particles align [188] from their initial random packing 

state at the beginning of the shearing phase to their steady state of ordering (see 

Chapter 6.4.2.1). As observed in Chapter 5.3.3, the volume solid fraction 𝑓𝑠 in the bed 

first decreases at the beginning of the shearing phase as the bed expands (see Figure 

6.4.5). This bed dilatation, called Reynold’s dilatancy [250, 251], is due to the 

interlocking between particles and rearrangement of particles [21]. The solid fraction 

then increases to reach a steady state when the maximum level of alignment is 

obtained. 

 

Figure 6.4.5: Solid fraction 𝑓𝑠 of particle bed in shearing phase for the different 

aspect ratios and a normal stress at 𝜎 = 1𝑘𝑃𝑎. 

The mean solid fraction in steady state, 𝑓�̅�, decreases with higher particle aspect ratio 

as they have a lower ability to closely pack [188] (see Figure 6.4.6). The observation 

is confirmed by the reported increase of the void ratio of a bed with elongation of 

ellipsoids having an aspect ratio greater than 1.5 [119, 205]. The same observation is 

made for sphero-cylinders in DEM monodisperse system with periodic boundaries 

[273-276]. 
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The normal stress has a moderate impact on 𝑓�̅�, nevertheless they are positively 

correlated [205]. Here, the normal stress promotes a closer packing of particles, even 

when conserving the same bed conformation, as no effect of normal stress is observed 

on the steady state value of order parameter (see Chapter 6.4.2.1). 

It is noted that the overlap distance between the constitutive sphere elements of a 

particle affects the packing properties of an assembly: the void ratio is observed to be 

larger for rough particles compared to smooth [272, 277]. Also, high aspect ratio 

particles may decrease the solid fraction uniformity within the bed and can affect the 

particle velocity [188]. The impact of this phenomenon on the key variables analysed 

in this study is assumed marginal. 

 

Figure 6.4.6: Mean solid fraction in steady state of shearing phase, 𝑓�̅�, for the 

different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

The overlap between touching particles due to the soft-sphere approach of the used 

contact model (see Chapter 5.2.1.3) is expected to play a minor role in the bed density 

value since the material’s Young’s modulus is not scaled down and is at the order of 

magnitude of the 𝐺𝑃𝑎 (see Chapter 5.5.3). 
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6.4.2.3 Particle Contacts 

The mean number of contacts on a particle, 𝑁𝑐,𝑝, increases from a minimum value at 

the beginning of the shearing phase and reaches a steady state value (see Figure 

6.4.7). 𝑁𝑐,𝑝 increases throughout the shearing phase as the particles align (see 

Chapter 6.4.2.1) and the bed densifies (see Chapter 6.4.2.2). The number of contacts 

on a particle is different to the coordination number [270] (number of particles in 

contact with the studied one) as there can be here more than one contact between 

two particles. The choice of modelling the particles with clumped spheres (see Chapter 

5.2.1.1) decreases their coordination number but increases the total number of 

contacts compared to smooth shapes [249, 258, 266, 272, 278], up to twice as high 

for rough particles [228]. 

 

Figure 6.4.7: Mean number of contacts on particle, 𝑁𝑐,𝑝, in shearing phase for the 

different aspect ratios 𝛼𝑝 and a normal stress at 𝜎 = 10𝑘𝑃𝑎. 

The mean value of 𝑁𝑐,𝑝 in steady state increases with both aspect ratio and normal 

stress applied (see Figure 6.4.8). Indeed, elongated particles have a greater available 

surface for contact creation and a higher compression augments the coordination 

number [205]. 
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Figure 6.4.8: Mean number of contacts on particle, 𝑁𝑐,𝑝, in steady state of shearing 

phase for the different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

The influence of the normal stress 𝜎 on 𝑁𝑐,𝑝 is partially due to the increase of solid 

fraction with higher 𝜎 [270] (see Chapter 6.4.2.2). Indeed, 𝑁𝑐,𝑝 appears as quasi-

linearly correlated with the solid fraction 𝑓𝑠 for a fixed aspect ratio and normal stress 

applied (see Figure 6.4.9). 

 

Figure 6.4.9: Mean number of contacts on particle, 𝑁𝑐,𝑝, in the shearing phase given 

by the solid fraction 𝑓𝑠 for the different aspect ratios 𝛼𝑝 and a normal stress applied 

at 𝜎 = 10𝑘𝑃𝑎. 
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The correlation between 𝑓𝑠 and 𝑁𝑐,𝑝 remains linear and shifted for the different normal 

stresses applied (see Figure 6.4.10), meaning that the effect of 𝜎 on 𝑁𝑐,𝑝 is not entirely 

due to the increase of bed density. Indeed, there is a phenomenon of forced stacking 

between particles when a greater normal stress is applied, which increases their 

number of contacts. 

 

Figure 6.4.10: Mean number of contacts on particle 𝑁𝑐,𝑝, given by the solid fraction 𝑓𝑠 

for the different normal stresses 𝜎 and an aspect ratio at 𝛼𝑝 = 6. 

It is expected that the available surface for contact increases with particle aspect ratio, 

explaining why 𝑁𝑐,𝑝 is positively correlated to particle elongation for the same solid 

fraction. The clumped-sphere modelling of the particles also influences the number of 

contacts, especially when elongated particles align and experience stacking. Indeed, 

it is likely that two particles enter in contact on multiple locations due to their asperity, 

which is confirmed by the increase of the mean number of contacts between two 

interacting particles, 𝑁𝑐,2𝑝, with the order parameter 𝑆 during the shearing phase (see 

Figure 6.4.11). Here, 𝑁𝑐,2𝑝 increases with aspect ratio as more elongated particles are 

made of more clumped spheres, which offers a higher number of possible contact 

locations. 
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Figure 6.4.11: Mean number on contacts between two interacting particles, 𝑁𝑐,2𝑝, 

given by the order parameter 𝑆 during shearing phase for the different aspect ratios 

𝛼𝑝 and a normal stress at 𝜎 = 10𝑘𝑃𝑎. 

 

6.4.3 Stress Ratio 

The stress ratio 𝜑 (see Equation 2.4.6) is the main dimensionless number for the 

characterisation of the mechanical behaviour of a particle bed [13, 21] and is given as 

the shear stress 𝜏 divided by the normal stress 𝜎 applied on the particle bed by the 

translating walls (see Chapter 5.2.2.3). 

At the very beginning of the shearing phase, the walls have not started straining the 

bed (i.e. strain applied 𝛾 = 0), hence a quasi-absence of shear stress with the stress 

ratio 𝜑 ≈ 0 (see Figure 6.4.12). The stress ratio then increases to a peak in the 

transitional state [13] before decreasing to reach a steady state [258]. Indeed, the 

quasi-static flow regime with optimised simulation setup has been demonstrated in 

Chapter 5.5.2, where the shear stress scales linearly with the normal stress [152-154] 

(see Equation 2.3.3) in this non-cohesive particle assembly. The stress ratio varies in 

the steady state due to the “slip-and-stick” behaviour of the particles flow [1, 116]. 
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Figure 6.4.12: Stress ratio in the shearing phase, 𝜑, for the different normal stresses 

𝜎 and an aspect ratio 𝛼𝑝 = 6. 

The strain required to reach the steady state of stress ratio tends to increase with the 

particles aspect ratio, and decrease with a higher normal stress applied (see Figure 

6.4.13). The proportionality with aspect ratio was observed in triaxial compression 

where the strain required to reach a plateau of effective stress ratio increases with 

aspect ratio of ellipsoids [205]. The same observation is made for clumped-sphere 

particles in direct shear test [195]. On the contrary, the normal stress applied isn’t 

reported to impact the strain needed to reach a steady state of stress ratio for the wide 

range of 50𝑘 − 2𝑀𝑃𝑎 [195]. 

The strain required to reach the steady state is around 0.5 for aspect ratio 2, which is 

typically the order of magnitude reported in a 3D conventional shear cell with particles 

aspect ratio between 1 and 2.5 [149] and in direct shear test of clumped-sphere 

particles for the same range of aspect ratio [195]. A strain of 2.5 is reported for platy 

particles in a shear cell [13], which corresponds to the order of magnitude for more 

elongated particles in this study. 
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Figure 6.4.13: Strain required to reach steady state value of stress ratio 𝜑 for the 

different particles aspect ratio 𝛼𝑝 and normal stresses 𝜎. 

The peak value reached by the stress ratio in the transitional state is inversely 

proportional to the normal stress applied (see Figure 6.4.14) and no monotonic relation 

is found with the aspect ratio. Both observations are also reported in direct shear test 

of clumped-sphere particle with an aspect ratio > 1.2 [195]. 

 

Figure 6.4.14: Peak value of stress ratio 𝜙 during transitional state for the different 

aspect ratio 𝛼𝑝 and normal stresses 𝜎. 
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The mean stress ratio in the steady state, 𝜑, is taken as a characteristic value for the 

analysis of the mechanical behaviour of the bed [149]. It is primarily correlated to the 

mean number of contacts on particle, 𝑁𝑐,𝑝, with a Spearman correlation coefficient of 

−0.74: 𝜑 is inversely proportional to 𝑁𝑐,𝑝. Indeed, when 𝑁𝑐,𝑝 increases, the mean 

contact force 𝐹𝑐 decreases (see Chapter 6.4.4) which reduces the tangential contact 

force required to break the contact by sliding, itself linearly proportional to 𝐹𝑐 by the 

coefficient of static friction between particles (see Chapter 5.2.1.3.1). This lowers the 

resistance of the particle bed to shear, decreasing the shear stress and thus the stress 

ratio. 

𝑁𝑐,𝑝 being correlated to the particle aspect ratio (see Chapter 6.4.2.3), 𝜑 is then also 

inversely proportional to the aspect ratio. Indeed, the aspect ratio of elongated 

particles is also known to influence the bed flow of in shear tests [264] and affects the 

shear stress [203]. The stress ratio is reported to decrease with higher particle 

elongation when the aspect ratio is greater than 1.5 in shear cells [149, 228]. Moreover, 

the angle of friction, proportional to the stress ratio by Coulomb’s law of static friction 

[152-154] (see Equation 2.3.3), for ellipsoids is shown to slightly decrease with 

increasing aspect ratio [258]. This phenomenon may be attributed to particles 

alignment reducing the resistance of particles to shear and make them slide easier 

[149]. However, different observation have also been reported regarding the 

correlation between the stress ratio and aspect ratio. It is positive for clumped-sphere 

particle with aspect ratio from 1 to 2 in 3D shear cell [154]. Also, the critical direct shear 

angle of friction increases with particle elongation for aspect ratio ranging from 1.2 to 

2.2 in direct shear test [195]. Same correlation in 2D simulations using clumped 

spheres for aspect ratio ranging from 1 to 3.3 [259]. In AFD simulations, the impeller 

torque, proportional to the shear stress using Darelius equation [152] (see Equation 

2.3.4), scales with particle elongation up to an aspect ratio of 5 [119]. The increase of 

torque with non-spherical particles made of clumped spheres is confirmed in DEM 

Freeman powder rheometer [193]. These studies tend to demonstrate that the 

flowability of powder is reduced with particle elongation [126-129]. 

The normal stress 𝜎 has an additional impact on 𝜑, with 𝜑 increasing when 𝜎 

decreases (see Figure 6.4.15). Indeed, the solid fraction scales with normal stress 

applied (see Chapter 6.4.2.2), and the proportionality between normalised shear 
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stress and volume solid fraction is also reported in shear cell for aspect ratio 6 [228]. 

Likewise, the densification of the bed in AFD experiment increases the measured 

torque [1], and therefore augments the shear stress [152] (see Equation 2.3.4). This 

effect is more important for lower aspect ratio 𝛼𝑝. This phenomenon is attributed to the 

difficulty of elongated particles to rotate around an axis normal to its neutral axis due 

to their higher mass moment of inertia [205], which forces more elongated particles to 

slide in the shearing direction rather than rotate as the bed is strained. This is 

confirmed by the reported decreases of variation of particles angular rotation with 

increasing aspect ratio [149]. The lower value of order parameter for reduced aspect 

ratio (see Chapter 6.4.2.1) confirms the greater ability of shorter particles to rotate  

easier this way. Such particle rotation is rendered more difficult as the normal stress 

on the bed increases. Thus, particle rotation is easier for lower aspect ratio and normal 

stress, which reduces contact slipping and increases the resistance of the particle bed 

to shearing. The mechanical behaviour of the bed is then governed to a greater extent 

by particle rearrangement due to interlocking rather than by the release frictional 

contacts. This observation confirms the importance of the particle shape in the 

mechanical response of a bed to straining.  

 

Figure 6.4.15: Mean stress ratio in steady state, 𝜑, given by the mean number of 

contacts on particle 𝑁𝑐,𝑝 for the different normal stresses 𝜎. Within each 𝜎 series, 

𝑁𝑐,𝑝 increases with the particle aspect ratio 𝛼𝑝 set at [2; 3; 4;5; 6]. 
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It is noted that the particle bed is here monodisperse and as the shear stress depends 

on the number of frictional contacts on particles, the difference between the size of a 

given particle and the size of its neighbours (i.e. size ratio) is expected to affect the 

stress experienced by this particle [155]. Thus, introducing polydispersity in the 

simulations would alter the stress ratio. 

 

6.4.4 Contact Force 

At the beginning of the shearing phase, the mean contact force 𝐹𝑐 increases from its 

initial value to reach a peak before decreasing to a plateau (see Figure 6.4.16). This 

phenomenon recalls the behaviour of the stress ratio in these transitional and steady 

states (see Chapter 6.4.3), especially since the contact force results mechanically from 

the normal and shear stresses applied to the bed. Here, a higher force is needed to 

overcome the yield strength of the bed and initiate the flow [112]. 

 

Figure 6.4.16: Mean contact force, 𝐹𝑐, in the shearing phase for the different aspect 

ratios 𝛼𝑝 and a normal stress at 𝜎 = 10𝑘𝑃𝑎. 

When the normal stress increases, a combination of two mechanisms occurs. The first 

one is the linear increase of the mean contact force 𝐹𝑐 as the load on the bed is 

amplified. The second one is the multiplication of contacts, due to a closer packing of 

particles (see Chapter 6.4.2.2), which spreads the load on the bed over more 
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supporting points. This second phenomenon creates more and weaker force chains  

for the same normal stress applied, confirmed by the negative correlation between 𝐹𝑐 

and the mean number of contacts on particle 𝑁𝑐,𝑝 (see Figure 6.4.17). A heterogeneity 

of contact force is also expected within the contact network composed of weak and 

strong subnetworks [195, 285-287]. The strongest contacts then support a greater 

portion of the stress applied on the bed and form the strongest force chains. The weak 

contacts are called sliding contacts as they need less force to be broken during 

straining [205, 285, 288]. They behave like interstitial liquid providing stability for the 

force propagation along the strong contacts [205, 285]. The ratio between sliding and 

strong contacts is expected to remain unchanged for the different aspect ratios [205]. 

 

Figure 6.4.17: Mean contact force 𝐹𝑐 given by the mean number of contacts on 

particle 𝑁𝑐,𝑝 for the different aspect ratios 𝛼𝑝 and a normal stress applied at 𝜎 =

10𝑘𝑃𝑎. The values are given in the steady state of stress ratio. 

Clearly, the first mechanism is dominating as the mean value of 𝐹𝑐 in the steady state 

scales with the normal stress applied 𝜎 (see Figure 6.4.18). The effect of the second 

mechanism prevents the perfect linearity of this correlation with a Pearson coefficient 

at 0.87. 
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Figure 6.4.18: Mean contact force in steady state of shearing phase, 𝐹𝑐, for the 

different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

𝐹𝑐 also correlates with 𝛼𝑝. Indeed, elongated particles don’t pack as efficiently as 

shorter ones (see Chapter 6.4.2.2), which decreases the cross-sectional concentration 

of contacts 𝑐𝑐,𝑎𝑟𝑒𝑎  (see Figure 6.4.19) estimated from the volume concentration of 

contacts 𝑐𝑐,𝑣𝑜𝑙  and assuming an isotropic distribution of contacts: 

 𝑐𝑐,𝑎𝑟𝑒𝑎 = 𝑐𝑐,𝑣𝑜𝑙
2/3 6.4.1 

 

Figure 6.4.19: Mean surface concentration of contacts in steady state, 𝑐�̅�,𝑎𝑟𝑒𝑎 , for the 

different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 
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The surface concentration of contacts appears as a key variable and is inversely 

proportional to 𝐹𝑐 for the same normal stress applied (see Figure 6.4.20). Here, a 

higher 𝑐𝑐,𝑎𝑟𝑒𝑎  increases the number of force chains, and thus decreases the mean 

contact force. 

 

Figure 6.4.20: Mean contact force 𝐹𝑐 given by the surface concentration of contacts 

𝑐𝑐,𝑎𝑟𝑒𝑎  for the different aspect ratios 𝛼𝑝 and a normal stress at 𝜎 = 10𝑘𝑃𝑎. The data 

are given in the steady state of stress ratio. 

 

6.4.5 Inter-Contact Distance on Particle 

The mean distance between contacts on a particle’s neutral axis, ∆𝐿̅̅̅̅ , is calculated 

from the particle aspect ratio 𝛼𝑝 and number of contacts on particle: 

 ∆𝐿̅̅̅̅ =  
𝐿𝑝

𝑁𝑐,𝑝 + 1
 6.4.2 

During the shearing phase, ∆𝐿̅̅̅̅  starts from a maximum value and reaches a steady 

state (see Figure 6.4.21) when the number of contacts has reached a plateau (see 

Chapter 6.4.2.3). 
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Figure 6.4.21: Mean inter-contact distance on particle, ∆𝐿̅̅̅̅ , during the shearing phase 

for the different aspect ratios 𝛼𝑝 and a normal stress applied at 𝜎 = 10𝑘𝑃𝑎. 

∆𝐿̅̅̅̅  correlates with the normal stress applied 𝜎, as a higher 𝜎 increases the mean 

number of contacts on particle 𝑁𝑐,𝑝 (see Chapter 6.4.2.3). By definition, ∆𝐿̅̅̅̅  correlates 

directly with 𝛼𝑝 and is inversely proportional to 𝑁𝑐,𝑝 (see Figure 6.4.22). 

 

Figure 6.4.22: Mean inter-contact distance on particle, ∆𝐿̅̅̅̅ , in shearing phase given 

by the mean number of contacts on particle 𝑁𝑐,𝑝 for the different aspect ratios 𝛼𝑝. 
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6.4.6 Particles Internal Stress 

6.4.6.1 Predominance of Bending Stress Component 

The particle internal stress is determined by diagonalisation of the stress tensor (see 

Chapter 5.4.1.2). To assess the importance of the bending stress component with the 

stress tensor, i.e. component (𝑍, 𝑍)  involving the bending moment (see Equation 

5.4.30), its absolute value is divided by the particle internal stress 𝜎𝑝 to obtain the 

bending stress ratio 𝛼𝜎,𝑍𝑍: 

 𝛼𝜎,𝑍𝑍 =
|𝜎𝑍,𝑍|

𝜎𝑝

 6.4.3 

The mean bending stress ratio, 𝛼𝜎,𝑍𝑍, experiences a slight decrease at the beginning 

of the shearing phase before increasing to reach a steady state. The phenomenon is 

more pronounced for lower aspect ratios (see Figure 6.4.23). 

 

Figure 6.4.23: Mean bending stress ratio, 𝛼𝜎,𝑍𝑍, for the different aspect ratios 𝛼𝑝 and 

a normal stress at 𝜎 = 10𝑘𝑃𝑎. 

As expected, the mean 𝛼𝜎,𝑍𝑍 in steady state scales with the particles aspect ratio 𝛼𝑝 

with a Spearman coefficient at 0.97. Indeed, the bending stress is reported as the main 

cause of breakage for elongated particles [1]: the higher the aspect ratio of a particle, 

the more rapidly it breaks [53-55], as it increases its bending stress and therefore the 
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predominance of the bending stress in the particle internal stress. For high aspect 

ratios, 𝛼𝜎,𝑍𝑍 slightly increases with the normal stress 𝜎 (see Figure 6.4.24). This 

proportionality isn’t observed for lower 𝛼𝑝. This positive correlation between 𝛼𝜎,𝑍𝑍  and 

𝜎 seem counter-intuitive since it is demonstrated that the mean number of contacts on 

particle 𝑁𝑐,𝑝 increases with higher normal stress (see Chapter 6.4.2.3), which 

decreases the inter-contact distance (see Chapter 6.4.5) and then bending moment. 

In addition, a greater normal stress increases the mean contact force 𝐹𝑐 (see Chapter 

6.4.4), and therefore the compressive internal stress in particles. The combination of 

these two aspects should produce an inverse correlation between 𝛼𝜎,𝑍𝑍  and 𝜎.  

 

Figure 6.4.24: Mean bending stress ratio in steady state, 𝛼𝜎, for the different aspect 

ratios 𝛼𝑝 and normal stresses 𝜎. 

The explanation resides in the presence of particles experiencing a low number of 

contacts. Indeed, the probability for a particle to experience bending is related to the 

conformation of its contacts. The higher the number of contacts, the more likely the 

conditions for an effective bending are being met as the particle gains stability (see 

Chapter 6.5.4). It is observed that, for aspect ratio 𝛼𝑝 = 6, 𝛼𝜎,𝑍𝑍  decreases significantly 

for a number of contacts 𝑁𝑐,𝑝 ≤ 5 (see Figure 6.4.25). 
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Figure 6.4.25: Mean bending stress ratio in the steady state, 𝛼𝜎,𝑍𝑍, given by the 

number of contacts on particle 𝑁𝑐,𝑝 for the different normal stresses 𝜎 and a particle 

aspect ratio of 𝛼𝑝 = 6. 

As demonstrated in Chapter 6.4.2.3, a higher normal stress increases the 𝑁𝑐,𝑝 (see 

Figure 6.4.8), and thus contributes to the reduction of the particles having a low 𝛼𝜎,𝑍𝑍 . 

In fact, the proportion of particles with aspect ratio 𝛼𝑝 = 6 experiencing a number of 

contacts below 5 decreases from 26% at normal stress 𝜎 = 1𝑘𝑃𝑎 to 11.2% at 𝜎 =

10𝑘𝑃𝑎 (see Figure 6.4.26). 

 

Figure 6.4.26: Proportion of particles experiencing a number of contacts 𝑁𝑐,𝑝 ≤ 5, 

given by the different normal stresses 𝜎 and for a particle aspect ratio at 𝛼𝑝 = 6. 
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6.4.6.2 Weibull Fit Parameters 

The Weibull cumulative distribution function is fitted on the particle internal stress 

distribution, calculated using Euler equation of motion with discretisation parameters 

optimised in Chapter 5.4.2, to obtain two key variables for analysis: the scale and 

shape parameters, respectively 𝜆 and 𝑘 (see Chapter 6.2.1). 

 

6.4.6.2.1 Scale Parameter  

The Weibull scale parameter 𝜆 (see Chapter 6.2.1) has an initial value lower than 

during the rest the shearing phase (see Figure 6.4.27). 𝜆 increases then to a peak 

before reaching a steady state value, recalling the behaviour of the stress ratio 𝜑 in 

these shearing simulations (see Chapter 6.4.3). 

 

Figure 6.4.27: Weibull scale parameter 𝜆 during the shearing phase for the different 

aspect ratios 𝛼𝑝 and a normal stress applied at 𝜎 = 10𝑘𝑃. 

As expected, the mean Weibull scale parameter in the steady state, �̅�, scales with 

both the particles aspect ratio 𝛼𝑝 and the normal stress applied 𝜎 (see Figure 6.4.28). 

The sensitivity of a particle to mechanical stress scales with its elongation [8, 9], 

explaining why elongated particles break easier than shorter ones in the same 

conditions [1], as shorter particles need a greater load to be broken [55, 191]. Indeed, 
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6.4.5), which increases the bending moment and thus the bending stress of particles 

(see Chapter 5.4.1.1). Considering that the bending stress component contributes 

predominantly to the particles internal stress (see Chapter 6.4.6.1), it explains the 

strong correlation between parameter �̅� and the aspect ratio. 

 

Figure 6.4.28: Mean Weibull scale parameter in steady state, �̅�, for the different 

aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

 

Figure 6.4.29: Mean Weibull scale parameter in the steady state, �̅�, given by the 

mean contact force 𝐹𝑐 for the different aspect ratios 𝛼𝑝. Within each 𝛼𝑝 series, 𝐹𝑐 

increases with the normal stress applied 𝜎 set at [1;2; 4; 6.5; 10]𝑘𝑃𝑎. 
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A greater normal stress applied increases the mean contact force 𝐹𝑐 (see Chapter 

6.4.4), and the linear correlation between �̅� and 𝐹𝑐 (see Figure 6.4.29) is in good 

agreement with the equation of bending stress calculation (see Chapter 5.4.1.1), with 

a Pearson coefficient of 0.94, confirming that 𝐹𝑐 is a key parameter for the estimation 

of �̅�. 

 

6.4.6.2.2 Shape Parameter 

The value of Weibull shape parameter 𝑘 increases at the beginning of the shearing 

phase to reach a steady state (see Figure 6.4.30). 

 

Figure 6.4.30: Weibull shape parameter 𝑘 in the shearing phase for the different 

aspect ratios and a normal stress at 𝜎 = 6.5𝑘𝑃𝑎. 

The strain required to reach the steady state of 𝑘 increases with the particles aspect 

ratio and is not dependant on the normal stress applied (see Figure 6.4.31). 
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Figure 6.4.31: Strain 𝛾 required to reach steady state value of Weibull shape 

parameter 𝑘 for the different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

The shape parameter 𝑘 is associated to the standard deviation of the distribution of 

particles internal stress in an inversely proportional fashion: the greater the shape 

parameter, the narrower the distribution. 

 

Figure 6.4.32: Weibull shape parameter 𝑘 in the steady state, given by the 

normalised standard deviation of the sum of absolute forces on particle 𝜎𝑛𝑜𝑟𝑚 (𝑠) for 

the different aspect ratios 𝛼𝑝. 
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The strongest correlation found involving 𝑘 is with the normalised standard deviation 

of the sum of absolute forces on particle 𝜎𝑛𝑜𝑟𝑚 (𝑠) (see Equation 6.5.1) with a 

Spearman coefficient at −0.9 in the shearing simulations. Interestingly, this correlation 

is stronger than between the shape parameter and the normalised standard deviation 

of the particle internal stress with a Spearman coefficient at −0.81. 𝑘 is then inversely 

proportional to 𝜎𝑛𝑜𝑟𝑚(𝑠) in the same fashion for all normal stresses and aspect ratios 

studied (see Figure 6.4.32). 

The mean value of shape parameter during the steady state also increases with the 

normal stress applied and tends to an inverse proportionality with the particle aspect 

ratio (see Figure 6.4.33). 

 

Figure 6.4.33: Mean Weibull shape parameter in steady state, 𝑘, for the different 

aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

 

6.4.6.2.3 Coefficient of Determination 

The coefficient of determination 𝑅2 of Weibull model fitting increases at the beginning 

of the shearing phase before reaching a steady state (see Figure 6.4.34).  The strain 

required to reach the steady state of 𝑅2 is identical to the values reported for the steady 

state of Weibull shape parameter 𝑘 (see Figure 6.4.31). 
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Figure 6.4.34: Coefficient of determination 𝑅2 of Weibull model fitting in the shearing 

phase for the different aspect ratios 𝛼𝑝 and a normal stress at 𝜎 = 10𝑘𝑃𝑎. 

The mean coefficient of determination in the steady state, 𝑅2̅̅̅̅ , is above 0.97 in all 

shearing simulations, which indicates an excellent precision of Weibull model fitting 

(see Figure 6.4.35). 𝑅2̅̅̅̅  scales predominantly with the mean number of contacts on 

particle 𝑁𝑐,𝑝 in the same fashion for all values of aspect ratio 𝛼𝑝 and normal stress 𝜎 

studied. 

 

Figure 6.4.35: Mean coefficient of determination 𝑅2̅̅̅̅  of Weibull model fitting in the 

steady state, given by the mean number of contacts on particle 𝑁𝑐,𝑝 for the different 

normal stresses 𝜎. Within each 𝜎 series, 𝑁𝑐,𝑝 scales with the aspect ratio 𝛼𝑝 set at 

[2;3; 4; 5; 6].  
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Moreover, the predominance of bending stress in the particle internal stress increases 

with higher aspect ratio (see Chapter 6.4.6.1), which is in good agreement with the 

known excellent accuracy of the Weibull model for the fitting of bending stress 

distributions [47]. 

Also, the quality of model fitting is more stable during the steady state for higher normal 

stress and aspect ratio, as 𝑅2 exhibits a lower normalised standard deviation in its 

steady state (see Figure 6.4.36). Overall, the quality of model fitting is extremely stable 

with a normalised standard deviation of 𝑅2 below 0.8% in steady state in all shearing 

simulations. 

 

Figure 6.4.36: Normalised standard deviation of the coefficient of determination 𝑅2 in 

steady state for the different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 
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value and the standard deviation 𝜎𝑑𝑒𝑣  (see Chapter 6.2.2). 

The mean value is on the middle, i.e. 50%, of the particle length for all aspect ratios 
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The standard deviation 𝜎𝑑𝑒𝑣  is stable during the shearing phase (see Figure 6.4.37). 

 

Figure 6.4.37: Standard deviation 𝜎𝑑𝑒𝑣  of Gaussian fitting of distribution of maximum 

stress location in the shearing phase for the different aspect ratios 𝛼𝑝 and a normal 

stress at 𝜎 = 1𝑘𝑃𝑎. 

𝜎𝑑𝑒𝑣, the mean of 𝜎𝑑𝑒𝑣 , scales linearly with the aspect ratio 𝛼𝑝 (see Figure 6.4.38). 

Indeed, an increased particle elongation offers a wider range of distance and more 

possible locations on the particle length, which logically skews the distribution of 

location of maximum stress. 

 

Figure 6.4.38: Mean standard deviation 𝜎𝑑𝑒𝑣 of Gaussian fitting of distribution of 

maximum stress location for the different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 
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The influence of normal stress on 𝜎𝑑𝑒𝑣 is due to the number of contacts it produces. 

Indeed, a higher mean number of contacts on particle 𝑁𝑐,𝑝 decreases 𝜎𝑑𝑒𝑣, although  

with a moderate effect compared to the influence of the aspect ratio (see Figure 

6.4.39). 

 

Figure 6.4.39: Standard deviation 𝜎𝑑𝑒𝑣  of Gaussian fitting of the distribution of 

maximum stress location in the shearing phase, given by the mean number of 

contacts on particle 𝑁𝑐,𝑝 for the different aspect ratios 𝛼𝑝. 

 

Figure 6.4.40: Mean distance from particle centre of location of maximum stress in 

the shearing phase, given by the number of contacts on particle 𝑁𝑐,𝑝 for the different 

normal stresses 𝜎 and an aspect ratio at 𝛼𝑝 = 6. 
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The correlation between 𝜎𝑑𝑒𝑣  and 𝑁𝑐,𝑝 appears linear in the range of data studied, 

however an observation of this relationship for all the values of 𝑁𝑐,𝑝 present on an 

individual particle level shows an inverse function with an important increase of the 

mean distance of max stress location from particle centre for low 𝑁𝑐,𝑝 (see Figure 

6.4.40). The steady state of this distance for high 𝑁𝑐,𝑝 is around 10%, which 

corresponds to the reported normalised standard deviation at 11% of the particle 

length [191]. 

 

6.5 Uniaxial Compression 

All variables analysed in this section are averaged over the 5 time recordings for each 

combination of particle aspect ratio, normal stress and state of alignment. 

 

6.5.1 Number of Core Particles 

The number of core particles, determined following the method described in Chapter 

5.6, decreases with increasing normal stress in the uniaxial compression (see Figure 

6.5.1).  

 

Figure 6.5.1: Minimum number of core particles in uniaxial compression for the 

different strains 𝛾 performed in the shearing phase, normal stresses applied 𝜎, and 

an aspect ratio of 𝛼𝑝 = 2. 
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This indicates a rearrangement of the particles within the bed when a higher pressure 

is applied, due to the release of contact frictional energy between particles. The 

coefficient of static friction between walls and particles set at zero might also have 

facilitated the rearrangements of the particles touching the walls. 

The number of core particles in all uniaxial compression simulations remains relevant 

for statistical analysis with an overall minimum population of 1705 (see Figure 6.5.2). 

 

Figure 6.5.2: Minimum number of core particles in all uniaxial compression 

simulations for different aspect ratios 𝛼𝑝. 

 

6.5.2 Bed Conformation 

6.5.2.1 Particle Alignment 

The order parameter 𝑆 quantifies the level of alignment of an elongated particle bed 

(see Chapter 5.3.2.1). As the normal stress increases in uniaxial compression, the 

particle bed rearranges which promotes the increase of particle alignment (see Figure 

6.5.3). 

The variation of 𝑆 for the different normal stresses applied 𝜎 remains low for all 

performed simulations as it ranges from 1% to 3.1% of initial value i.e. 𝜎 = 100𝑃𝑎 (see 

Figure 6.5.4). 
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Figure 6.5.3: Order parameter 𝑆 in uniaxial compression performed at the beginning 

of shearing phase (i.e. strain applied 𝛾 = 0), for different normal stresses applied 𝜎 

and aspect ratios 𝛼𝑝. 

 

Figure 6.5.4: Maximum variation of order parameter ∆𝑆 in uniaxial compression for 

different aspect ratios 𝛼𝑝 and strain applied 𝛾. 

 

6.5.2.2 Bed Densification 

As the normal stress applied increases, the bed densifies and the solid fraction 

augments (see Figure 6.5.5). As observed in Chapter 6.5.2.1, the particle bed 

rearranges slightly in these uniaxial compression simulations and explains the 

densification of the bed. 
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Figure 6.5.5: Solid fraction 𝑓𝑠 in uniaxial compression simulations, performed at the 

beginning of shearing phase (𝛾 = 0), for different normal stresses applied 𝜎 and 

aspect ratios 𝛼𝑝. 

Indeed, the maximum variation of solid fraction ∆𝑓𝑠 ranges between 1.5% and 3.1%, 

which corresponds to the variation observed for the order parameter (see Figure 

6.5.6). ∆𝑓𝑠 increases with the aspect ratio, whilst the order parameter of the bed 

doesn’t have a particular effect on it. 

 

Figure 6.5.6: Maximum variation of solid fraction ∆𝑓𝑠 from initial value (i.e. at normal 

stress applied 𝜎 = 100𝑃𝑎) in uniaxial compression simulations for different aspect 

ratios 𝛼𝑝 and mean order parameter 𝑆̅ of the bed. 
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6.5.2.3 Particle Contacts 

The mean number of contacts on particle, 𝑁𝑐,𝑝, increases significantly with the normal 

stress in uniaxial compression (see Figure 6.5.7).  

 

Figure 6.5.7: Mean number of contacts on particle 𝑁𝑐,𝑝 in uniaxial compression 

simulations, performed at the beginning of shearing phase (i.e. stain applied 𝛾 = 0), 

for different normal stress applied 𝜎 and aspect ratios 𝛼𝑝. 

 

Figure 6.5.8: Mean number of contacts on particles, 𝑁𝑐,𝑝, in uniaxial compression, 

given by the solid fraction 𝑓𝑠 for the different normal stresses 𝜎 and an aspect ratio at 

𝛼𝑝 = 6. Within each 𝜎 series, 𝑁𝑐,𝑝 scales with the strain applied 𝛾 set at 

[0;3; 5; 10;15; 20; 25;30]. 
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𝑁𝑐,𝑝 is linearly correlated with the solid fraction 𝑓𝑠 due to a denser bed packing (see 

Figure 6.5.8). The normal stress applied 𝜎 affects the ramp between 𝑁𝑐,𝑝 and 𝑓𝑠, where 

𝑁𝑐,𝑝 increases with 𝜎 for the same 𝑓𝑠. Therefore, in addition to a denser packing related 

to the increase of particle alignment (see Chapter 6.5.2.2), a greater normal stress 

also induces forced stacking between particles. 

The shape of the particles also has an impact on 𝑁𝑐,𝑝. Indeed, a greater aspect ratio 

𝛼𝑝 increases the available surface on particles creating more contact points (see 

Figure 6.5.9). The clumped sphere model used for particle design increases the 

asperity at the surface of the particles which increases the number of contacts, 

especially when elongated particles align and experience stacking. In those cases, 

two particles can enter in contacts on multiple location (see Chapter 6.4.2.3). 

 

Figure 6.5.9: Mean number of contacts on particles, 𝑁𝑐,𝑝, in uniaxial compression, 

given by the solid fraction 𝑓𝑠 for the different aspect ratios 𝛼𝑝 and a normal stress at 

𝜎 = 100𝑘𝑃𝑎. 

 

6.5.3 Contact Force 

The contact force between particles is dependent on two main factors: the load on the 
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force 𝐹𝑐 increases with the aspect ratio 𝛼𝑝 as elongated particles pack less efficiently 
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(see Chapter 6.5.2.2) which decreases the concentration of contacts in the bed. 

Indeed, this concentration determines the number of force chains supporting the load 

applied on the bed. Therefore, for a given normal stress applied 𝜎, 𝐹𝑐 is inversely 

proportional to the cross-sectional concentration of contacts in the bed (see Figure 

6.5.10). 

 

Figure 6.5.10: Mean contact force 𝐹𝑐 in uniaxial compression, given by the cross-

sectional concentration of contacts 𝑐𝑐,𝑎𝑟𝑒𝑎  for the different aspect ratios 𝛼𝑝 and a 

normal stress at 𝜎 = 100𝑘𝑃𝑎. Each data point corresponds to the different strain 

value tested. 

 

Figure 6.5.11: Mean contact force 𝐹𝑐 in uniaxial compression, given by the mean 

number of contacts on particle 𝑁𝑐,𝑝 for the different aspect ratios 𝛼𝑝 and a normal 

stress at 𝜎 = 100𝑘𝑃𝑎. Each data point corresponds to the different strain value 

tested. 
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As the bed densifies, the mean number of contacts on particle 𝑁𝑐,𝑝 increases which 

reduces the magnitude of 𝐹𝑐 for a given aspect ratio and normal stress (see Figure 

6.5.11). 

As expected, 𝐹𝑐 scales with the normal stress applied (see Figure 6.5.12). 

Nevertheless, this correlation is not perfectly linear as a higher normal stress increases 

the bed density spreading the load onto additional force chains (see Figure 6.5.9). 

 

Figure 6.5.12: Mean contact force 𝐹𝑐 in uniaxial compression, performed at the 

beginning of the shearing phase (i.e. strain applied 𝛾 = 0), for the different aspect 

ratios 𝛼𝑝 and normal stresses applied 𝜎. 

 

6.5.4 Particles Stability 

The mean sum of absolute forces on particle �̅� is calculated using the following 

equation: 

 �̅� =
1

𝑁𝑝

∑ ∑|�⃗�𝑗,𝑖|

𝑁𝑐 ,𝑖

𝑗=1

𝑁𝑝

𝑖=1

 6.5.1 

With 𝑁𝑝 number of particles, 𝑁𝑐,𝑖 number of contacts on particle 𝑖 and �⃗� the contact 

force. 
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�̅� increases with the number of contacts on particle 𝑁𝑐,𝑝 until it reaches a steady state, 

at 𝑁𝑐,𝑝 ≈ 15  for aspect ratio 6 (see Figure 6.5.13). On an individual particle level, this 

means that forces are added up to the total force system of the particle with increasing 

𝑁𝑐,𝑝 until enough contacts are made for the particle to reach stability i.e. when �̅� 

reaches a plateau. When a particle is stabilised, new contacts are not adding forces 

to the force system of the particle, but spread the total load on the particle onto 

additional supports. This phenomenon is related to the structural stability of granular 

assembly [271]. As an example, a coordination number greater than 4 is reported 

necessary to consider stable an assembly of polydisperse spheres [270]. 

 

Figure 6.5.13: Mean sum of absolute forces on particle �̅� given by the number of 

contacts on particle 𝑁𝑐,𝑝 for a strain applied 𝛾 = 30, an aspect ratio 𝛼𝑝 = 6 and a 

normal stress 𝜎 = 100𝑘𝑃𝑎. 

The shape of the curve can be interpreted as a cumulative density function giving the 

probability of particles to be stable, and experience the highest force system, for the 

number of contacts they encounter. 

 

6.5.5 Inter-Contact Distance on Particle 

The mean inter-contact distance on particle’s neutral axis ∆𝐿̅̅̅̅  is, by definition (see 

Equation 6.4.2), inversely proportional to the mean number of contacts on particle 𝑁𝑐,𝑝. 
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As elongated particles have a greater length, this correlation is shifted where ∆𝐿̅̅̅̅  scales 

with the particles aspect ratio 𝛼𝑝 (see Figure 6.5.14). 

 

Figure 6.5.14: Mean inter-contact distance on particle ∆𝐿̅̅̅̅  in uniaxial compression, 

given by the mean number of contacts on particle 𝑁𝑐,𝑝 for different aspect ratios 𝛼𝑝. 

∆𝐿̅̅̅̅  decreases with a greater normal stress applied (see Figure 6.5.15) as it promotes 

the number of contacts in the bed (see Chapter 6.5.2.3). Even if elongated particles 

have a higher 𝑁𝑐,𝑝 due to the increased available surface for contacts, their greater 

length bestows them a higher ∆𝐿̅̅̅̅  for the same normal stress applied (see Figure 

6.5.15). 

 

Figure 6.5.15: Mean inter-contact distance on particle ∆𝐿̅̅̅̅  in uniaxial compression, 

performed at the beginning of the shearing phase (i.e. strain applied 𝛾 = 0), for the 

different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 
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6.5.6 Particles Internal Stress 

6.5.6.1 Predominance of Bending Stress Component 

The importance of the bending stress component in the particles internal stress is 

determined using the bending stress ratio (see Equation 6.4.3). The mean bending 

stress ratio 𝛼𝜎,𝑍𝑍  is above 0.84 in the uniaxial compression simulations which denotes 

a predominance of the bending stress in the particles internal stress. 𝛼𝜎,𝑍𝑍 scales with 

the particles aspect ratio 𝛼𝑝 (see Figure 6.5.16) which confirms the consensus on the 

fact that bending stress is main breakage mechanism of elongated particles [1]. 

 

Figure 6.5.16: Mean bending stress ratio 𝛼𝜎,𝑍𝑍  in uniaxial compression, performed at 

the beginning of the shearing phase (i.e. strain applied 𝛾 = 0), for the different aspect 

ratios 𝛼𝑝 and normal stresses 𝜎. 

 

6.5.6.2 Weibull Fit Parameters 

The Weibull cumulative distribution function is fitted on the particle internal stress 

distribution to obtain two key variables for analysis: the scale and shape parameters, 

respectively 𝜆 and 𝑘 (see Chapter 6.2.1). 
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6.5.6.2.1 Scale Parameter 

As expected, the internal stress experienced by particles, represented by the Weibull 

scale parameter 𝜆, scales with the normal stress applied onto the bed 𝜎 (see Figure 

6.5.17) as it increases the mean contact force 𝐹𝑐 (see Chapter 6.5.3). Also, 𝜆 increases 

with the aspect ratio 𝛼𝑝 as it increases the mean inter-contact distance on particle ∆𝐿̅̅̅̅  

(see Chapter 6.5.5) and thus the bending stress dominating the particles internal 

stress (see Chapter 6.5.6.1). 

 

Figure 6.5.17: Weibull scale parameter 𝜆 in uniaxial compression simulations, 

performed at the beginning of shearing phase (𝛾 = 0), for different normal stress 

applied 𝜎 and aspect ratios 𝛼𝑝. 

Surprisingly, a greater ordering of the bed (i.e. strain applied 𝛾) increases 𝜆 for the 

same 𝐹𝑐 (see Figure 6.5.18). Indeed, the mean number of contacts on particle 𝑁𝑐,𝑝 

increases with 𝛾 (see Chapter 6.4.2.3) which decreases 𝐹𝑐 (see Chapter 6.5.3) and ∆𝐿̅̅̅̅  

(see Chapter 6.5.5), both by definition positively correlated to 𝜆 due to the 

predominance of the bending stress component (see Chapter 6.5.6.1). This 

phenomenon is not observable in the range of normal stress applied in the shearing 

simulations (see Chapter 6.4.6.2.1). 
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Figure 6.5.18: Weibull scale parameter 𝜆 in uniaxial compression, given by the mean 

contact force 𝐹𝑐 for the different strain applied 𝛾 and an aspect ratio at 𝛼𝑝 = 6. Within 

each 𝛾 series, 𝜆 scales with the normal stress applied 𝜎 and the mean number of 

contacts on particle 𝑁𝑐,𝑝. 

The explanation resides in the correlation between 𝜆 and the mean sum of absolute 

forces on particle, �̅�, in uniaxial compression simulations being one of the strongest 

with a Spearman coefficient at 0.99. Indeed, �̅� increases with the number of contacts 

and the particles stability (see Chapter 6.5.4), explaining the positive correlation 

between 𝜆 and 𝑁𝑐,𝑝. 

 

6.5.6.2.2 Shape Parameter 
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normalised standard deviation of the sum of absolute forces on particle 𝜎𝑛𝑜𝑟𝑚 (𝑠) (see 

Equation 6.5.1) with a Spearman coefficient at −0.96 in uniaxial compression. This 

correlation is stronger than between 𝑘 and the normalised standard deviation of the 

particles internal stress with a Spearman coefficient at −0.88, which is surprising as 𝑘 
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proportional to 𝜎𝑛𝑜𝑟𝑚(𝑠)  in the same fashion for all aspect ratios and normal stresses 

studied (see Figure 6.5.19). 

 

Figure 6.5.19: Weibull shape parameter 𝑘 in uniaxial compression, given by the 

normalised standard deviation of the sum of absolute forces on particle 𝜎𝑛𝑜𝑟𝑚 (𝑠) for 

the different aspect ratios 𝛼𝑝. 

 

Figure 6.5.20: Mean Weibull shape parameter 𝑘 in uniaxial compression simulations, 

performed at the beginning of shearing phase (𝛾 = 0), for different normal stress 

applied 𝜎 and aspect ratios 𝛼𝑝. 
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The shape parameter is also strongly correlated with the normal stress applied 𝜎 on 

the bed (see Figure 6.5.20) with a Spearman correlation coefficient of 0.94. Here, the 

higher the normal stress, the narrower the particle internal stress distribution. 

The mean number of contacts on particles 𝑁𝑐,𝑝 doesn’t have a particular effect on the 

shape parameter for a fixed normal stress and aspect ratio (see Figure 6.5.21). This 

means that the homogenisation of the bed related to a greater 𝑘 is not due to the 

increase of number of contacts, but rather due to an overall augmentation of the total 

force systems on the particles 𝑠 along with a diminution of their standard deviation. 

 

Figure 6.5.21: Weibull shape parameter 𝑘 given by mean number of contacts on 

particles 𝑁𝑐,𝑝 in uniaxial compression with a normal stress applied of 𝜎 = 100𝑃𝑎, for 

different aspect ratios 𝛼𝑝 and bed ordering. 

 

6.5.6.2.3 Coefficient of Determination 

The quality of the Weibull fitting of particle internal stress distribution is assessed by 

calculating the coefficient of determination 𝑅2. This coefficient is strongly correlated 

with the mean number of contacts on particle 𝑁𝑐,𝑝 (see Figure 6.5.22) with a Spearman 

correlation coefficient of 0.92. Indeed, a greater 𝑁𝑐,𝑝 reduces the number of unstable 

particles with a low number of contacts (see Chapter 6.5.4) and participates to the 

homogenisation of the bed, promoting a better Weibull distribution fitting. 
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Figure 6.5.22: Coefficient of determination 𝑅2 of Weibull fitting, given by mean 

number of contacts on particle 𝑁𝑐,𝑝 in uniaxial compression for the different aspect 

ratios 𝛼𝑝. 

Both the aspect ratio 𝛼𝑝 and normal stress 𝜎 promote 𝑁𝑐,𝑝 (see Chapter 6.5.2.3), 

explaining their indirect positive correlation with 𝑅2. 

 

6.5.6.3 Location of Maximum Stress on Particles 

A Gaussian cumulative density function is fitted onto the distribution of location of 

maximum internal stress on particles with two parameters: the mean, which always 

equals to 50% of the particle length, and the standard deviation 𝜎𝑑𝑒𝑣  (see Chapter 

6.2.2). 

𝜎𝑑𝑒𝑣  is inversely proportional to the mean number of contacts on particle 𝑁𝑐,𝑝 (see 

Figure 6.5.23) with a Spearman correlation coefficient of −0.82. Therefore, the higher 

the number of contacts, the closer to the centre of the particle the maximum stress is 

likely to be (see Chapter 6.4.6.3). 
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Figure 6.5.23: Standard deviation 𝜎𝑑𝑒𝑣  of Gaussian fitting of distribution of maximum 

stress location in uniaxial compression, given by the mean number of contacts on 

particle 𝑁𝑐,𝑝 for the different aspect ratios 𝛼𝑝. 

𝜎𝑑𝑒𝑣  is also proportional to the aspect ratio 𝛼𝑝 as longer particles offer more possible 

location for contacts, which inevitably skews the distribution of maximum stress 

location. 

 

6.6 Conclusions 

The behaviour of the particle bed under both shearing and uniaxial compression 

conditions is analysed and correlations between the main variables characterising the 

particle bed are evaluated (see Figure 6.6.1). 
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Figure 6.6.1: Direct correlations between main variables characterising the particle 

bed in the simulations. The description of the variables is listed in Chapter 

Nomenclature. 

The particle aspect ratio 𝛼𝑝 and the normal stress applied on the bed 𝜎 are the two 

input variables and remain constant during the shearing phase. 

It is found that two variables have a direct impact on the Weibull scale parameter 𝜆 of 

particle internal stress distribution: the mean contact force 𝐹𝑐 and the mean inter-

contact distance on particles ∆𝐿̅̅̅̅ . This is in good agreement with the fact that the 

bending stress is predominant in the particle internal stress, especially for more 

elongated particles. Additionally, the probability of the particle’s stability, represented 

by the sum of absolute forces on a particle 𝑠, appears as a key factor for the evaluation 

of 𝜆. This probability is dependent on the number of contacts on a particle 𝑁𝑐,𝑝. 
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The Weibull shape parameter 𝑘 is conditioned by the particles aspect ratio 𝛼𝑝 and the 

normal stress applied on the bed 𝜎. Here, shorter particles and a higher bed 

compression promote a narrower distribution of the particles internal stress. 

The Gaussian standard deviation of the maximum internal stress location on the 

particle neutral axis, 𝜎𝑑𝑒𝑣 , scales with particle length and aspect ratio. A higher number 

of contact on particle 𝑁𝑐,𝑝 decreases 𝜎𝑑𝑒𝑣 , meaning that the maximum particle internal 

stress is more likely to be located towards the middle of the particle. 

Finally, it is mentioned that the implementation, testing and running of the complex 

Euler Equation of Motion for the calculation of particles internal stress has requested 

a non-negligible amount of time and computational power. Thus, the use of this 

technique would difficultly be viable for a higher population of particles considering its 

resource-consuming trait. The correlations found in this chapter will be used in Chapter 

7 for the creation of mathematical models for the prediction both Weibull scale 

parameter 𝜆, Weibull shape parameter 𝑘, and the Gaussian parameter 𝜎𝑑𝑒𝑣 . This 

model building will allow to avoid the use of the resource-consuming use of Euler 

Equation of Motion. 
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7 Prediction of Particles Internal Stress for Agitated 

Drying Conditions 

7.1 Introduction 

The analysis of the behaviour of a particle bed in DEM shear cell simulations in 

Chapter 6, on both uniaxial compression and shearing phase, has given insights on 

the existing mechanical phenomena and direct correlations between characteristic 

variables. The provided explanation and quantification of these inter-connections 

between variables allows the creation of predictive models for the estimation of key 

factors impacting particle breakage in agitated drying conditions.  

In this chapter, models are built from both physical theory and empirical regressions 

to predict the particle internal stress, the Weibull parameters 𝜆 and 𝑘 of the particle 

internal stress distribution (see Chapter 6.2.1), and the standard deviation of the 

maximum stress location on particles 𝜎𝑑𝑒𝑣  (see Chapter 6.2.2) using the identified 

correlations summarised in Chapter 6.6. These models are calibrated to fit the 

simulation data and values of particles internal stress calculated using the Euler 

Equation of Motion (see Chapter 5.4.1.2). 

Different models are created to allow the estimation of these key variables from either 

simulation data or bulk parameters, allowing process designers to avoid the use of 

simulations. All the models are created in the objective to bypass the resource -

consuming implementation, testing and running of the complex Euler Equation of 

Motion (see Chapter 5.4.1.2). 

 

7.2 Theoretical Model for Prediction of Particle Internal Stress 

The analysis of the simulations performed has given insights on the behaviour of an 

elongated particle bed when submitted to compression and shearing (see Chapter 6). 

The different phenomena and correlations detected are corroborated by the physical 

theory and are the basis of the creation of a theoretical model to predict the particles 

internal stress. 



 Chapter 7: Prediction of Particles Internal Stress for Agitated Drying Conditions   

196 

 

It has been demonstrated that the bending stress is the predominant component of 

the particle internal stress (see Chapters 6.4.6.1 and 6.5.6.1), and it is reported as the 

main cause of breakage of elongated particles [1]. The following model is then built 

accordingly and the predictions are compared with the simulation data to assess the 

accuracy of the model. A calibration of the model is applied to account for the first 

approximation approach, the different decided assumptions and the possible 

phenomena that haven’t been considered during the creation of the model. 

 

7.2.1 Mean Contact Force 

7.2.1.1 In Uniaxial Compression 

In a particle bed, the forces are transmitted via particle-particle contacts creating force 

chains [195, 285-287]. The compressive force applied to the particle bed within the 

shear cell is distributed over 𝑁𝑐,𝐴 number of contacts present on a cross-section (𝐴) 

parallel to the walls (see Figure 7.2.1). It is noted that a heterogeneity of contact force 

value is expected creating weak and strong force chains [205, 285, 288]. 

 

Figure 7.2.1: Compressive stress �⃗� distributed over contacts (black crosses) on 

cross-section (A) with contact forces 𝐹𝑐
⃗⃗⃗⃗  
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𝑁𝑐,𝐴 is expressed as: 

 𝑓(𝑥) =
1

𝜎𝑑𝑒𝑣√2𝜋
𝑒

−
1
2
(𝑥−�̅�
𝜎𝑑𝑒𝑣

)
2

 7.2.1 

 

𝑁𝑐,𝐴 = 𝐴. 𝑐𝑐,𝑎𝑟𝑒𝑎 

With 𝐴 the area of the cross-section (𝐴) and 𝑐𝑐,𝑎𝑟𝑒𝑎  the cross-sectional concentration 

of contacts which can be estimated from the volume concentration of contacts 𝑐𝑐,𝑣𝑜𝑙  in 

the shear cell, assuming an isotropic distribution of contacts (see Equation 6.4.1). 

The mean contact force 𝐹�̅� is then obtained from the normal stress 𝜎: 

 𝑓(𝑥) =
1

𝜎𝑑𝑒𝑣√2𝜋
𝑒

−
1
2
(𝑥−�̅�
𝜎𝑑𝑒𝑣

)
2

 7.2.2 

 

𝐹�̅� =
𝜎

𝑐𝑐,𝑣𝑜𝑙
2/3

 

Indeed, the analysis of correlations in Chapter 6.5.3 demonstrate the linear 

proportionality between 𝐹�̅� and 𝜎 (see Figure 6.5.12), and the sole and inverse 

proportionality between 𝐹�̅� and 𝑐𝑐,𝑎𝑟𝑒𝑎  for a fixed normal stress (see Figure 6.5.10). 

𝑐𝑐,𝑣𝑜𝑙  is expressed as a function of the mean number of contacts on particle 𝑁𝑐,𝑝 and 

the volume concentration of particle 𝑐𝑝,𝑣𝑜𝑙 : 

 𝑐𝑐,𝑣𝑜𝑙 =
𝑁𝑐,𝑝

2
. 𝑐𝑝,𝑣𝑜𝑙  7.2.3 

Here, 𝑁𝑐,𝑝 is divided by 2 as each single contact between two particles is considered 

as two contacts (one by involved particles) in this variable. 
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𝑐𝑝,𝑣𝑜𝑙  is, by definition, the number of particles in the bed 𝑁𝑝,𝑏𝑒𝑑 divided by the volume 

of the bed 𝑉𝑏𝑒𝑑, and 𝑁𝑝,𝑏𝑒𝑑 is itself the solid volume in the bed 𝑉𝑠𝑜𝑙 ,𝑏𝑒𝑑 divided by the 

volume of a particle 𝑉𝑝, such as: 

 𝑐𝑝,𝑣𝑜𝑙 =
𝑁𝑝,𝑣𝑜𝑙

𝑉𝑏𝑒𝑑
=

𝑉𝑠𝑜𝑙 ,𝑏𝑒𝑑

𝑉𝑏𝑒𝑑 . 𝑉𝑝
=

𝑓𝑠
𝑉𝑝

 7.2.4 

With 𝑓𝑠 the solid fraction in the bed. 

Assuming a cylindrical shape of particles, 𝑉𝑝 is given as: 

 𝑉𝑝 = 2𝜋𝛼𝑝𝑟𝑝
3 7.2.5 

With 𝑟𝑝 the radius of an element sphere and 𝛼𝑝 the aspect ratio of particles in the 

monodisperse bed. 

Here: 

 𝑐𝑐,𝑣𝑜𝑙
−2/3 = (

4𝜋𝛼𝑝𝑟𝑝
3

𝑁𝑐,𝑝 .𝑓𝑠
)

2/3

 7.2.6 

Thus, 𝐹�̅� is expressed as: 

 𝐹�̅� = 𝜎. (
4𝜋𝛼𝑝𝑟𝑝

3

𝑁𝑐,𝑝 . 𝑓𝑠
)

2/3

 7.2.7 

Indeed, the analysis of simulation data highlights the inverse proportionality between 

𝐹�̅� and 𝑁𝑐,𝑝 (see Figure 6.5.11), whilst 𝐹�̅� increases with the aspect ratio 𝛼𝑝 (see Figure 

6.5.12). The variation of solid fraction is too small to detect a direct effect on 𝐹�̅�, 

especially with the direct correlation existing between 𝑓𝑠 and 𝑁𝑐,𝑝 (see Figure 6.5.9). 

Using the values collected from the performed uniaxial compression simulations, it can 

be observed that the linearity between 𝐹�̅� 𝜎⁄  and 𝑐𝑐,𝑣𝑜𝑙
−2/3 is respected for all aspect 

ratios (see Figure 7.2.2). However, these two terms are not equal, especially for higher 

aspect ratios, and a calibration of the model will be further needed. 
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Figure 7.2.2: Linear correlation between 𝐹�̅� 𝜎⁄  (in 𝑚−2) and 𝑐𝑐,𝑣𝑜𝑙
−2/3 (in 𝑚−2) for the 

different aspect ratios 𝛼𝑝 in uniaxial compression, as described in Equation 7.2.7. 

 

7.2.1.2 In Shearing Phase 

When the walls strain the particle bed, a shear stress 𝜏 is induced within the shear 

cell. For each contact in the bed, a shear component is added to the contact force (see 

Figure 7.2.3). 

 

Figure 7.2.3: Compressive stress �⃗� and shear stress 𝜏 distributed over contacts 

(black crosses) on cross-section (A) with contact forces 𝐹𝑐
⃗⃗⃗⃗ . 
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Therefore, using Equation 7.2.7 and assuming an isotropy of contact distribution within 

the particle bed: 

 𝐹�̅� = 𝜎√1 + 𝜑2 . 𝑐𝑐,𝑣𝑜𝑙
−2/3 7.2.8 

 𝐹�̅� = 𝜎√1 + 𝜑2 (
4𝜋𝛼𝑝𝑟𝑝

3

𝑁𝑐,𝑝 .𝑓𝑠
)

2/3

 7.2.9 

With 𝜑 the stress ratio (see Equation 2.4.6). Here, the shear stress component is 

included using the Pythagorean theorem. 

The analysis of simulation data in Chapter 6.4.4 for the shearing phase highlights the 

positive correlation between 𝐹�̅� and both 𝛼𝑝 and 𝜎 (see Figure 6.4.18), whilst showing 

the inverse proportionality between 𝐹�̅� and 𝑁𝑐,𝑝 (see Figure 6.4.17). The influence of 𝜑 

on 𝐹�̅� is typically observed at the beginning of the shearing phase where a peak value 

is detected for both variables (see Figure 6.4.12 & Figure 6.4.16). Similarly to the 

uniaxial compression data, the small variation of 𝑓𝑠 in shearing simulations doesn’t 

allow the observation of its direct correlation with 𝐹�̅�, alongside the presence of multiple 

degrees of freedom. 

 

Figure 7.2.4: Linear correlation between 𝐹�̅� 𝜎⁄  and √1 + 𝜑2. 𝑐𝑐,𝑣𝑜𝑙
−2/3 in the shearing 

phase for the different aspect ratios 𝛼𝑝 as described in Equation 7.2.8. 
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Using the values collected from the performed shearing simulations, it can be 

observed that the linearity between 𝐹�̅� 𝜎⁄  and √1 + 𝜑2 . 𝑐𝑐,𝑣𝑜𝑙
−2/3 is respected for all 

aspect ratios (see Figure 7.2.4). Similarly to the uniaxial compression data, the two 

terms are not equal (see Figure 7.2.2), especially for higher aspect ratios, and a 

calibration of the model will be further needed. 

 

7.2.1.3 Model Fitting 

A calibration of the model is needed for both uniaxial compression and shearing phase 

as the equality between 𝐹�̅� 𝜎⁄  and √1 + 𝜑2 . 𝑐𝑐 ,𝑣𝑜𝑙
−2/3 is not exactly matched (see Figure 

7.2.5).  

 

Figure 7.2.5: Linear correlation between 𝐹�̅� 𝜎⁄  and √1 + 𝜑2. 𝑐𝑐,𝑣𝑜𝑙
−2/3 for all simulation 

data in uniaxial compression and shearing phase as described in Equation 7.2.8. 

The linearity is identical for both uniaxial compression and shearing phase, and the 

model for the prediction of 𝐹�̅� for all simulation data is: 

 𝐹�̅� = 𝜎√1 + 𝜑2. (𝑎. 𝑐𝑐,𝑣𝑜𝑙
−2/3 + 𝑏) 7.2.10 

With its final expression: 
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 𝐹�̅� = 𝜎√1 + 𝜑2 (𝑎 (
4𝜋𝛼𝑝𝑟𝑝

3

𝑁𝑐,𝑝 .𝑓𝑠
)

2/3

+ 𝑏) 7.2.11 

With parameters 𝑎 dimensionless and 𝑏 in 𝑚2 . 

This model is fitted on all simulation data and the fitting parameters are given in Table 

7.2.1.  

Table 7.2.1: Fitting parameters of Equation 7.2.11 on all simulation data. 

Parameters Values Dimension 

𝑎 2.32 ∅ 

𝑏 -2.47E-09 𝑚2 

𝑅2 0.97 ∅ 

This model has a good accuracy on all stress environments with an overall mean error 

of 7.41% (see Table 7.2.2). The precision of the model is consistent for all aspect ratios 

except for 𝛼𝑝 = 2 where it is more accurate in the uniaxial compression and less 

accurate in the shearing phase. The higher number of data points in shearing phase 

(2510) compared to uniaxial compression (1174) (see Chapter 6.3.3) explains that the 

mean error for all data (last column of Table 7.2.2) is closer to value found for the 

shearing phase than for uniaxial compression. 

Table 7.2.2: Mean error for prediction of 𝐹�̅� using Equation 7.2.11 and parameters in 

Table 7.2.1 for different aspect ratios and stress environments. 

Aspect ratio Compression Shearing All 

2 2.80% 12.8% 10.1% 

3 8.97% 6.12% 6.90% 
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4 9.17% 6.00% 6.87% 

5 7.34% 6.46% 6.73% 

6 6.18% 7.09% 6.70% 

All 6.79% 7.69% 7.41% 

 

7.2.1.4 Discussion 

A mathematical model is built from physical theory and accurately predicts the mean 

contact force 𝐹�̅� from the stress environment in the bed (i.e. normal and shear stress), 

the particle physical properties, the mean number of contacts on particle and the solid 

fraction in the bed (see Equation 7.2.11 and Table 7.2.1). 

The necessary calibration of this model is due to the first-approximation approach and 

assumptions. Indeed, the possible anisotropy of contact distribution in the bed, 

promoted by the particle elongation and alignment, could bias the estimation of the 

surface concentration of contacts on cross-section (𝐴) (see Figure 7.2.3). Moreover, 

the distribution of forces on contacts is not homogeneous [205, 285, 288] and the 

weight of stress components on the contact force might depend on the orientation of 

the tangential plane to the particle’s surface at contact location. The calculation of 

particle volume based on the assumption of cylindrical shape could also have 

introduced another error to the prediction. 

 

7.2.2 Particles Bending Stress 

According to Simple Beam Bending theory [59] (see Chapter 5.4.1.1), the theoretical 

bending stress 𝜎𝑝,𝑍𝑍  of particle 𝑝 – assumed being cylindrically shaped – is calculated 

as follows: 
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 𝜎𝑝,𝑍𝑍 =
4. 𝑀𝑝

𝜋𝑟𝑝
3  7.2.12 

With 𝑀𝑝 the maximum bending moment on the particle 𝑝 and 𝑟𝑝 the radius of an 

element sphere (i.e. half the particle width). 

The bending moment describes the reaction of an particle to an external force and 

typically scales with the distance from the position of force application (see Equation 

5.4.1). In a particle bed, the mean contact force 𝐹�̅� and the mean distance ∆𝐿̅̅̅̅  between 

two sequenced contacts on a particle length can be used to estimate the mean 

bending moment �̅�𝑝 and mean particle bending stress 𝜎𝑝,𝑍𝑍 such as: 

 �̅�𝑝 = 𝐹�̅� . ∆𝐿̅̅̅̅  7.2.13 

 �̅�𝑝,𝑍𝑍 =
4. 𝐹�̅� . ∆𝐿̅̅̅̅

𝜋𝑟𝑝
3  7.2.14 

If there is 𝑁𝑐,𝑝 mean number of contacts on particle in the bed, ∆𝐿̅̅̅̅  can be estimated 

as in Equation 6.4.2 with 𝐿𝑝 the particle length: 

 𝐿𝑝 = 2𝛼𝑝𝑟𝑝 7.2.15 

Resulting in: 

 �̅�𝑝,𝑍𝑍 =
8.𝛼𝑝 . 𝐹�̅�

𝜋𝑟𝑝
2(�̅�𝑐,𝑝 + 1)

 7.2.16 

Thus, using the calibrated model for the estimation of 𝐹�̅� (see Equation 7.2.11), the 

mean particle bending stress 𝜎𝑝,𝑍𝑍 can be expressed as: 

 
𝜎𝑝,𝑍𝑍 =

8. 𝛼𝑝 .𝜎√1 + 𝜑2 . (𝑎(
4𝜋𝛼𝑝𝑟𝑝

3

𝑁𝑐,𝑝 . 𝑓𝑠
)

2/3

+ 𝑏)

𝜋𝑟𝑝
2(𝑁𝑐,𝑝 + 1)

 
7.2.17 

With parameters 𝑎 and 𝑏 given in Table 7.2.1. 
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7.2.2.1 In Uniaxial Compression 

The theoretical value of the mean particles bending stress 𝜎𝑝,𝑍𝑍_𝑡ℎ is lower than the 

actual recorded value in simulations 𝜎𝑝,𝑍𝑍_𝑠𝑖𝑚  in uniaxial compression (see Figure 

7.2.6). Here, the particles bending stress is under-estimated, and this phenomenon 

increases with the mean number of contacts on particle 𝑁𝑐,𝑝.  

Indeed, it has been observed that the stability of a particle plays an important role in 

its force system (see Chapter 6.5.4) which is strongly related to the particle internal 

stress (see Chapter 6.5.6.2.1). The particle stability increases with its number of 

contacts [270, 271] and this phenomenon hasn’t been yet considered in the built ideal 

model for the prediction of the particles bending stress. 

 

Figure 7.2.6: Ratio between the theoretical and the recorded mean particles bending 

stress 𝜎𝑝,𝑍𝑍_𝑡ℎ 𝜎𝑝,𝑍𝑍_𝑠𝑖𝑚⁄  in uniaxial compression simulations, given by the mean 

number of contacts on particle 𝑁𝑐,𝑝 for the different aspect ratios 𝛼𝑝. 

Also, there is a noticeable offset with the aspect ratio 𝛼𝑝 = 2 which is probably due to 

the distinct error in the prediction of the mean contact force for this particle elongation 

(see Table 7.2.2). 
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7.2.2.2 In Shearing Phase 

Similarly to the uniaxial compression case, the theoretical mean particle bending 

stress 𝜎𝑝,𝑍𝑍_𝑡ℎ is under-estimated compared to the recorded 𝜎𝑝,𝑍𝑍_𝑠𝑖𝑚  from simulations, 

and this phenomenon increases with the mean number of contacts on particle 𝑁𝑐,𝑝 

(see Figure 7.2.7). 

 

Figure 7.2.7: Ratio between the theoretical and the recorded mean particles bending 

stress 𝜎𝑝,𝑍𝑍_𝑡ℎ 𝜎𝑝,𝑍𝑍_𝑠𝑖𝑚⁄  in shearing phase simulations, given by the mean number of 

contacts on particle 𝑁𝑐,𝑝 for the different aspect ratios 𝛼𝑝. 

The slight offset observed for aspect ratio 𝛼𝑝 = 2 in uniaxial compression (see Figure 

7.2.6) is also present for the shearing phase data. 

 

7.2.2.3 Model Fitting 

A modification of the model predicting the particle bending stress (see Equation 

7.2.17) is needed to consider the phenomenon of particle stability related to the mean 

number of contacts on particle 𝑁𝑐,𝑝. 
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The ratio between the theoretical and recorded mean particles bending stress is 

inversely proportional to 𝑁𝑐,𝑝, such as: 

 �̅�𝑝,𝑍𝑍_𝑠𝑖𝑚 = �̅�𝑝,𝑍𝑍_𝑡ℎ .𝑓(𝑁𝑐,𝑝) 7.2.18 

 𝑓(𝑁𝑐,𝑝) = 𝑐. 𝑁𝑐,𝑝
𝑑

 7.2.19 

Where a power law is assumed, with 𝑐 and 𝑑 dimensionless. 

So, the final model for the prediction of the mean particles bending stress 𝜎𝑝,𝑍𝑍 is: 

 
𝜎𝑝,𝑍𝑍 =

8.𝛼𝑝 . 𝜎√1 + 𝜑2 . (𝑎 (
4𝜋𝛼𝑝𝑟𝑝

3

𝑁𝑐,𝑝 .𝑓𝑠
)

2/3

+ 𝑏)

𝜋𝑟𝑝
2(𝑁𝑐,𝑝 + 1)

. 𝑐. 𝑁𝑐,𝑝
𝑑

 
7.2.20 

This model is fitted on all simulation data and the fitting parameters are given in Table 

7.2.3. An inter-dependency of parameter 𝑐 with parameters 𝑎 and 𝑏 would be found if 

the model was fine-tuned, however the three parameters are conserved to maintain 

the distinction between the prediction of the mean contact force and the particle 

stability factor. 

Table 7.2.3: Fitting parameters of Equation 7.2.19 on all simulation data. 

Parameters Values Dimension 

𝑐 0.145 ∅ 

𝑑 1.44 ∅ 

𝑅2 0.81 ∅ 

This model has a good accuracy with an overall mean error of 9.62% (see Table 7.2.4). 

The precision of the model differs for the different aspect ratios in uniaxial compression 

but correctly fits the simulation data in shearing phase with a mean error at 6.98%. 

The case of aspect ratio 𝛼𝑝 = 2 is still unique with an excellent precision in uniaxial 
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compression and increased error in shearing phase, recalling the error reported in the 

prediction of the mean contact force 𝐹𝑐 (see Table 7.2.2) for this aspect ratio. 

Table 7.2.4: Mean error for prediction of 𝜎𝑝,𝑍𝑍 using Equation 7.2.19 and parameters 

in Table 7.2.3 for different aspect ratios and stress environments. 

Aspect ratio Compression Shearing All 

2 3.26% 16.7% 13.0% 

3 22.0% 3.57% 8.60% 

4 22.5% 3.36% 8.60% 

5 16.7% 4.91% 8.64% 

6 13.3% 6.33% 9.33% 

All 15.3% 6.98% 9.62% 

 

7.2.2.4 Discussion 

A mathematical model is built and accurately predicts the mean particles bending 

stress 𝜎𝑝,𝑍𝑍 from the predicted mean contact force 𝐹𝑐 (see Equation 7.2.11), the 

particle physical properties and the mean number of contacts on particle (see Equation 

7.2.20 and Table 7.2.3). The rearranged Equation 7.2.20 shows that the bending 

stress depends on the solid fraction and number of contacts within the bed, which is 

confirmed by the reported impact of different packing on the particle breakage [281], 

therefore on the internal stress they experience. 

The modification and calibration of this model is necessary to take into account the 

phenomenon of stabilisation of the particles with increasing number of contacts. The 

singularity of the case of aspect ratio 𝛼𝑝 = 2 in the prediction of 𝜎𝑝,𝑍𝑍 is attributed to 

the specific error in the prediction of 𝐹𝑐 for this aspect ratio. 
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7.2.3 Bending Stress Ratio 

As demonstrated in Chapter 6.4.6.1 and Chapter 6.5.6.1 the predominant type of 

stress experienced by particles in the performed simulations is the tensile stress, here 

associated with the particles bending stress. This predominance, represented by the 

bending stress ratio 𝛼𝜎,𝑍𝑍 (see Equation 6.4.3), correlates strongly with the particles 

aspect ratio 𝛼𝑝 (see Figure 6.4.24) in the following fashion: 

 𝛼𝜎,𝑍𝑍 = 1 − 𝑒. 𝛼𝑝
𝑓  7.2.21 

With 𝑒 and 𝑓 dimensionless. 

The impact of the normal stress is considered marginal and isn’t included in the model 

for the prediction of 𝛼𝜎,𝑍𝑍. 

This model is fitted on all simulation data for the prediction of the mean bending stress 

ratio 𝛼𝜎,𝑍𝑍  and the fitting parameters are given in Table 7.2.5. 

Table 7.2.5: Fitting parameters of Equation 7.2.21 on all simulation data. 

Parameters Values Dimension 

𝑒 0.373 ∅ 

𝑓 -1.32 ∅ 

𝑅2 0.96 ∅ 

This model has an excellent accuracy with an overall mean error of 0.68% (see Table 

7.2.6). The precision of the model is consistent for all aspect ratios and stress 

environments, allowing a confident prediction of the mean bending stress ratio 𝛼𝜎,𝑍𝑍  

as a function of 𝛼𝑝. 
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Table 7.2.6: Mean error for prediction of mean bending stress ratio 𝛼𝜎,𝑍𝑍 using 

Equation 7.2.21 and parameters in Table 7.2.5 for different aspect ratios and stress 

environments. 

Aspect ratio Compression Shearing All 

2 0.99% 0.77% 0.83% 

3 0.99% 0.71% 0.79% 

4 0.96% 0.47% 0.61% 

5 0.80% 0.51% 0.60% 

6 0.73% 0.50% 0.60% 

All 0.86% 0.59% 0.68% 

 

7.2.4  Particles Internal Stress 

A model is created and predicts the mean bending stress ratio 𝛼𝜎,𝑍𝑍  as a function of 

the particles aspect ratio 𝛼𝑝 (see Equation 7.2.21) with an excellent accuracy. 

Therefore, the mean particles internal stress 𝜎𝑝 can be calculated from the predicted 

mean particles bending stress 𝜎𝑝,𝑍𝑍 (see Equation 7.2.20) as follows: 

 �̅�𝑝 =
�̅�𝑝,𝑍𝑍

𝛼𝜎,𝑍𝑍
 7.2.22 

 �̅�𝑝 =
8. 𝛼𝑝 . 𝐹𝑐

𝜋𝑟𝑝
2(�̅�𝑐,𝑝 + 1)

.
𝑓(𝑁𝑐,𝑝)

𝛼𝜎,𝑍𝑍
 7.2.23 

With 𝐹𝑐 the predicted mean contact force (see Equation 7.2.11) and 𝑓(𝑁𝑐,𝑝) the built 

function associated with particle stability (see Equation 7.2.21). 
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Thus, the final expression of the created model for the prediction of 𝜎𝑝 is: 

 
𝜎𝑝 =

8. 𝛼𝑝 .𝜎√1 + 𝜑2. (𝑎 (
4𝜋𝛼𝑝𝑟𝑝

3

𝑁𝑐,𝑝 .𝑓𝑠
)

2/3

+ 𝑏)

𝜋𝑟𝑝
2(𝑁𝑐,𝑝 + 1)

.
𝑐 . 𝑁𝑐,𝑝

𝑑

1 − 𝑒. 𝛼𝑝
𝑓

 
7.2.24 

With parameters 𝑎 and 𝑏 given in Table 7.2.1, 𝑐 and 𝑑 in Table 7.2.3, and 𝑒 and 𝑓 in 

Table 7.2.5. 

The accuracy of this model is quasi-identical to the one for the prediction of 𝜎𝑝(𝑍, 𝑍) 

(see Table 7.2.4) as the model for the prediction of 𝛼𝜎,𝑍𝑍 is quasi-perfect (see Table 

7.2.6). The overall mean error of the predictive model for 𝜎𝑝 is 9.42%, with a better 

accuracy for the shearing phase at 6.73% (see Table 7.2.7). 

Table 7.2.7: Mean error for prediction of mean particles internal stress 𝜎𝑝 using 

Equation 7.2.24 for different aspect ratios and stress environments. 

Aspect ratio Compression Shearing All 

2 3.73% 16.74% 13.21% 

3 21.23% 3.36% 8.22% 

4 22.17% 3.04% 8.26% 

5 16.75% 4.50% 8.38% 

6 13.38% 5.96% 9.15% 

All 15.17% 6.73% 9.42% 

 

7.2.5 Conclusion 

A model is built from physical theory to predict the mean particles internal stress in a 

particle bed from the particles physical properties, the stress environment, the number 

of contacts and the bed solid fraction. The model is calibrated to fit the simulation data 

with the introduction of six fitting parameters (which can be reduced to five by 
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integrating parameter 𝑐 into 𝑎 and 𝑏), giving the model an overall error of 9.42% when 

predicting simulation data. 

The model assumes that the bending stress is predominant in the particles internal 

stress, with the introduction of a function giving the bending stress ratio from the 

particles aspect ratio. Indeed, the bending stress ratio scales with particle elongation 

and this function is introduced in the model to account for this dependency. 

The analysis of simulation highlighted a phenomenon of particle stability increasing 

with the number of contacts it experiences. The more stable a particle, the higher its 

internal stress, and a function proportional to the mean number of contacts on particle 

is introduced in the model to reflect this key aspect. 

The mean bending stress is estimated using the Simple Beam Bending theory. This 

method calculates the bending stress of a particle in a static (or quasi-static) case from 

the contact forces and the distance between each contact on the particle neutral axis. 

The use of this theory assumes the optimal direction of forces to induce the maximum 

possible bending moment. This force direction factor isn’t introduced in the model but 

could be investigated as a probability factor in a future work. 

Finally, the mean contact force is estimated using a first approximation approach. The 

isotropic spatial distribution of contact points in the bed is assumed and the cross-

sectional concentration of contacts is assessed to determine the number of points 

supporting the normal and tangential load applied on the bed.  

The case of aspect ratio 𝛼𝑝 = 2 is unique and produces different accuracy of the model 

compared to the other particle elongations. An error propagation is noticed in the 

successive steps of model building, and the uniqueness of 𝛼𝑝 = 2 is observed from 

the very estimation of the mean contact force. This initial error could be due to the low 

values used to fit the model for this particle elongation. Indeed, the use of the residual 

sum of squares as fitting method could have slightly lowered the importance of data 

fitting for this particle elongation. Also, the cylindrical shape of particles is assumed in 

the prediction of the mean contact force, which would produce a larger particle volume 

error for shorter particles considering their actual clumped sphere shape. 



 Chapter 7: Prediction of Particles Internal Stress for Agitated Drying Conditions  

213 

 

In conclusion, and despite of the constraint of building a model from physical theory 

and the number of pre-requisite assumptions (e.g. isotropic contact distribution), the 

model predicts the mean particles internal stress with an acceptable physical error i.e. 

< 10%. 

 

7.3 Prediction of Weibull Scale Parameter 

The Weibull parameter 𝜆 gives the scale factor of the particle internal stress distribution 

(see Chapter 6.2.1). Being able to predict 𝜆 in a particle bed allows experimental 

designers to estimate the quantity of stress particles experience for different process 

conditions. 

Three models are created to estimate 𝜆 for different level of details: the first one is 

created from physical theory, the second is empirically built based on simulation data 

and the third one is empirically built from bulk parameters.  

 

7.3.1 From Predictive Theoretical Model of Mean Particles Internal Stress 

The Weibull scale parameter 𝜆 is typically related to the mean particle internal stress 

𝜎𝑝. The two variables are linearly correlated with a Pearson correlation coefficient at 

0.999 in simulations. The assumption of equality is here made: 

 𝜆 = �̅�𝑝 7.3.1 

This equality can then be used to estimate 𝜆 based on the theoretical model built for 

the prediction 𝜎𝑝 (see Equation 7.2.24). This method allows the prediction of 𝜆 with an 

overall error of 10.8% in the simulation data (see Table 7.3.1). The error is similar to 

the one for the prediction of 𝜎𝑝 (see Table 7.2.7) with a better accuracy for the case of 

shearing phase and a different precision in the case of particle aspect ratio 𝛼𝑝 = 2. 
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Table 7.3.1: Mean error between Weibull scale parameter 𝜆 and predicted mean 

particles internal stress 𝜎𝑝 for different aspect ratios and stress environments. 

Aspect ratio Compression Shearing All 

2 7.08% 23.39% 18.96% 

3 13.79% 6.73% 8.65% 

4 18.88% 3.18% 7.47% 

5 14.56% 5.70% 8.51% 

6 13.70% 8.22% 10.58% 

All 13.65% 9.47% 10.80% 

 

7.3.2 Empirical Model from Simulation Data 

7.3.2.1 Linear Correlation with Sum of Forces on Particle 

It is observed in the analysis of simulation data (see Chapter 6.5.6.2.1) that the Weibull 

scale parameter 𝜆 is strongly correlated to the mean sum of absolute forces on particle 

�̅� (see Equation 6.5.1). This phenomenon is due to the stabilisation of particles with 

increasing number of contacts (see Chapter 6.5.4). The correlation between 𝜆 and �̅� 

is quasi-linear with a Pearson correlation coefficient of 0.98 in uniaxial compression 

and 0.96 in shearing phase: 

 𝜆 = 𝑎. �̅� 7.3.2 

The parameter 𝑎 (in 𝑚−2) is calculated for all simulation data and the mean value 𝑎 is 

obtained for each aspect ratio and stress environment (see Table 7.3.2). Here, 𝑎 

scales with the particle aspect ratio and is slightly higher in the shearing phase. 
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Table 7.3.2: Mean 𝑎 (in 𝑚−2) as given in Equation 7.3.2 for the different aspect ratios 

and stress environments. 

Aspect ratio Compression Shearing 

2 4.89E+08 5.05E+08 

3 5.75E+08 6.02E+08 

4 6.98E+08 7.17E+08 

5 8.56E+08 8.78E+08 

6 9.93E+08 1.03E+09 

 

7.3.2.2 Linear Correlation with Particle Aspect Ratio 

A linear correlation is found between the parameter 𝑎 and the particles aspect ratio 𝛼𝑝 

with a Pearson correlation coefficient of 0.97 for compression and 0.98 for shearing 

case (see Figure 7.3.1).  

 

Figure 7.3.1: Mean 𝑎 (in 𝑚−2) for the different aspect ratios 𝛼𝑝 and stress 

environments (data in Table 7.3.2). 
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Indeed, shorter particles experience less internal stress than longer ones and need a 

greater load to be broken [55, 191]: the higher the aspect ratio of a particle, the more 

rapidly it breaks [53-55]. 

The Weibull scale parameter 𝜆 can then be obtained based on Equation 7.3.2 from 

the particles aspect ratio 𝛼𝑝 and the mean sum of absolute forces on particle �̅� with 

the following equation: 

 𝜆 = �̅�(𝑏. 𝛼𝑝 + 𝑐) 7.3.3 

With parameters 𝑏 and 𝑐 in 𝑚−2. 

𝑏 and 𝑐 are obtained using the regression method of residual sum of squares on all 

simulation data (see Table 7.3.3), and the created linear model fits the data with a high 

coefficient of determination. 

Table 7.3.3: Parameters of linear regression between 𝑎 and aspect ratio 𝛼𝑝 such as 

𝑎 = 𝑏. 𝛼𝑝 + 𝑐. 

Parameters Unit Value 

𝑏 𝑚−2 1.31E+08 

𝑐 𝑚−2 2.17E+08 

𝑅2 ∅ 0.9586 

The created model accurately predicts 𝜆 with an overall mean error of 4.10%, below 

the symbolic statistical threshold of 5%. The error is slightly reduced for shearing 

phase (3.36%) compared to uniaxial compression (5.66%) (see Table 7.3.4). 

Table 7.3.4: Mean error of predicted 𝜆 using Equation 7.3.3 for the different aspect 

ratios stress environments. 

Aspect ratio Compression Shearing All 
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2 4.29% 5.19% 4.95% 

3 6.58% 2.56% 3.65% 

4 7.03% 3.83% 4.70% 

5 6.17% 1.94% 3.28% 

6 4.90% 3.29% 3.98% 

All 5.66% 3.36% 4.10% 

 

7.3.2.3 Discussion 

An empirical model is built and accurately predicts the Weibull scale parameter 𝜆 from 

the mean sum of absolute forces on particle �̅� and the particles aspect ratio 𝛼𝑝. The 

creation of a model based on physical theory demonstrated that the particles internal 

stress is related to 3 main factors: the particles bending stress, the relative 

predominance of bending stress in particles internal stress and the stability of the  

particles.  

The Simple Beam Bending theory [59] shows that the bending moment can be 

obtained from the contact force and the inter-contact distance on particle, whilst the 

bending stress ratio is related to particle elongation, and the particles stability is linked 

to the particles force system.  

In the built empirical model, the presence of �̅� and 𝛼𝑝 accounts for both contact force, 

number of contacts and particle elongation, which are the key elements used for the 

quantification of the 3 main factors detailed above. This explains the excellent 

accuracy of the model when fitted on simulation data. 

Nevertheless, this empirical model needs a size factor to be applicable to other particle 

size and shape. Indeed, the sensitivity of particles to mechanical stress scales with 

their size [16]. This size factor for the shape and size of particles in simulations is 
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already present in parameters 𝑏 and 𝑐. Referring to the Simple Beam bending theory, 

this size factor is expected to be related to the second moment of inertia of the particle 

and the distance from the force application (particle surface) to the particle neutral 

axis. 

Finally, considering �̅� = 𝑁𝑐,𝑝 . 𝐹𝑐, it is possible to estimate �̅� using the created theoretical 

model for the prediction of 𝐹𝑐 (see Equation 7.2.11) and the empirical model predicting 

𝑁𝑐,𝑝 (see Equation 7.5.6) from bulk parameters.  

 

7.3.3 Empirical Model from Bulk Parameters 

7.3.3.1 Linear Correlation with Stress Environment 

The theoretical model created for the prediction of Weibull scape parameter 𝜆 (see 

Chapter 7.2) shows that the particles internal stress scales with the stress environment 

in a linear fashion. Indeed, the normal stress is reported as the predominant factor 

impacting particle breakage [156], explaining why the breakage of particles is more 

important in industrial scale than laboratory scale drying [16, 165]. Moreover, the 

stress ratio is the main dimensionless number for the characterisation of the 

mechanical behaviour of a particle bed [13, 21] and accounts for the shear stress 

present in the bed (see Equation 2.4.6). Therefore, the stress environment is 

described with the normal stress 𝜎 and the stress ratio 𝜑 in the same fashion as in 

Chapter 7.2.1.2, and 𝜆 can then be expressed as follows: 

With 𝑎 dimensionless. 

The parameter 𝑎 is calculated for all simulation data and the mean value 𝑎 is obtained 

for each aspect ratio and stress environment (see Table 7.3.5). Here, �̅� scales with 

the particle aspect ratio and is higher in the shearing phase. 

 𝜆 = 𝑎. 𝜎√1 + 𝜑2  7.3.4 
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Table 7.3.5: Mean 𝑎 as given in Equation 7.3.4 for the different aspect ratios and 

stress environments. 

Aspect ratio Compression Shearing 

2 8.12 10.37 

3 15.09 18.84 

4 25.51 30.95 

5 41.01 48.79 

6 58.81 70.32 

 

7.3.3.2 Power correlation with Particle Aspect Ratio 

A power correlation is found between the parameter 𝑎 and the particles aspect ratio 

𝛼𝑝 in both uniaxial compression and shearing phase (see Figure 7.3.2). Indeed, the 

sensitivity of a particle to mechanical stress scales with its elongation [8, 9]. 

 

Figure 7.3.2: Mean 𝑎 for the different aspect ratios 𝛼𝑝 and stress environments (data 

in Table 7.3.5). 
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The Weibull scale parameter 𝜆 can then be obtained based on Equation 7.3.4 from 

the particles aspect ratio 𝛼𝑝, the normal stress 𝜎 and the stress ratio 𝜑 with the 

following equation: 

With parameters 𝑏 and 𝑐 dimensionless. 

Parameters 𝑏 and 𝑐 are obtained using the regression method of residual sum of 

squares on all simulation data (see Table 7.3.6), and the created power model fits the 

data with a high coefficient of determination. 

Table 7.3.6: Parameters of power regression between 𝑎 and aspect ratio 𝛼𝑝 such as 

𝑎 = 𝑏. 𝛼𝑝
𝑐. 

Parameters Unit Value 

𝑏 ∅ 2.28 

𝑐 ∅ 1.87 

𝑅2 ∅ 0.96 

The created model predicts 𝜆 with an overall mean error of 9.96% (see Table 7.3.7), 

with a better accuracy for shearing phase (8.23%) compared to uniaxial compression 

(13.66%). The precision of the model is different for particle aspect ratio 𝛼𝑝 = 2, a 

uniqueness that is also observed in the creation the theoretical model (see Chapter 

7.2). 

Table 7.3.7: Mean error of predicted 𝜆 using Equation 7.3.5 for the different aspect 

ratios stress environments. 

Aspect ratio Compression Shearing All 

 𝜆 = 𝑏. 𝛼𝑝
𝑐 .𝜎√1 + 𝜑2  7.3.5 
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2 5.28% 19.34% 15.52% 

3 18.96% 5.99% 9.52% 

4 20.37% 2.84% 7.63% 

5 13.60% 5.24% 7.89% 

6 11.89% 7.65% 9.47% 

All 13.66% 8.23% 9.96% 

 

7.3.3.3 Discussion 

An empirical model is built and predicts the Weibull scale parameter 𝜆 with an overall 

error below the symbolic physical margin of error of 10%. This model is based on the 

particles physical properties and the bulk process conditions, and therefore doesn’t 

require simulation data. 

This model has a different accuracy for the particle aspect ratio 𝛼𝑝 = 2, a peculiarity 

that has been highlighted is the creation of the theoretical model (see Chapter 7.2). 

Also, the parameter 𝑎 (see Equation 7.3.4) has different values for shearing phase 

and uniaxial compression, despite of the integration of the stress ratio. It might show 

that the impact of the shearing aspect on the particles internal stress is not entirely 

represented by the presence of the stress ratio, and that there might be other 

phenomena to consider. The empirical model based on the forces on particle (see 

Chapter 7.3.2) gives equivalent results on both shearing phase and uniaxial 

compression, showing that the inequality of parameter 𝑎 resides in the link between 

bulk stress components and the contact forces. 
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7.4 Prediction of Weibull Shape Parameter 

The Weibull shape parameter 𝑘 gives the shape factor of the particle internal stress 

distribution (see Chapter 6.2.1). The prediction of 𝑘 in a particle bed allows 

experimental designers to estimate the uniformity of the stress experienced by 

particles for different process conditions: the higher the 𝑘, the narrower the distribution. 

Two models are created to estimate the shape parameter 𝑘: the first one is empirically 

built based on simulation data and the second one is empirically created from bulk 

parameters. 

 

7.4.1 Empirical Model from Simulation Data 

7.4.1.1 Power Correlation with Standard Deviation of Sum of Forces on Particle 

As the Weibull scale parameter 𝜆 is strongly correlated to the mean sum of absolute 

forces on particle �̅� (see Chapter 7.3.2.1), it is not surprising to observe by analogy 

that the Weibull shape parameter 𝑘 is related to the normalised standard deviation (i.e. 

standard deviation divided by mean value) of 𝑠, 𝜎𝑛𝑜𝑟𝑚(𝑠), with a Spearman correlation 

coefficient of −0.9 (see Figure 6.4.32 & Figure 6.5.19). 

A power-based correlation is found between the two variables such as: 

With 𝑎 and 𝑏 dimensionless. 

The parameters 𝑎 and 𝑏 are obtained using the regression method of the residual sum 

of squares on all simulation data (see Table 7.4.1). 

Table 7.4.1: Fitting parameters of Equation 7.4.1 on all simulation data. 

Parameters Units Value 

𝑎 ∅ 0.903 

 𝑘 = 𝑎. 𝜎𝑛𝑜𝑟𝑚(𝑠)𝑏 7.4.1 
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𝑏 ∅ -1.07 

𝑅2 ∅ 0.840 

This created simple power model predicts accurately 𝑘 with an overall mean error of 

5.07% (see Table 7.4.2). The model is slightly more precise for shearing phase and its 

accuracy is consistent for the different aspect ratios. 

Table 7.4.2: Mean error of predicted 𝑘 using Equation 7.4.1 and parameters values 

reported in Table 7.4.1. 

Aspect ratio Compression Shearing All 

2 10.01% 3.66% 5.38% 

3 5.22% 3.83% 4.21% 

4 5.68% 4.83% 5.07% 

5 8.29% 3.94% 5.32% 

6 6.46% 4.39% 5.28% 

All 7.07% 4.13% 5.07% 

 

7.4.1.2 Linear Correlation between Power Parameters 

The parameters 𝑎 and 𝑏 (see Equation 7.4.1) are obtained for each aspect ratio and 

stress environment using the regression method of the residual sum of squares (see 

Table 7.4.3). The model has a better data fitting for uniaxial compression with a higher 

coefficient of determination.  
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Table 7.4.3: Parameters of power regression as described in Equation 7.4.1 for the 

different aspect ratios and stress environments. 

 𝑎 𝑏 𝑅2 

Aspect ratio Compression Shearing Compression Shearing Compression Shearing 

2 0.6267 0.8627 -1.876 -1.253 0.9438 0.7988 

3 0.7073 0.9107 -1.584 -1.116 0.9859 0.7864 

4 0.7689 0.9601 -1.408 -0.973 0.9597 0.7841 

5 0.7429 0.9451 -1.387 -0.926 0.9466 0.8247 

6 0.8614 0.9449 -1.089 -0.894 0.9135 0.8418 

The two power parameters 𝑎 and 𝑏 appear linearly correlated in the same fashion for 

all aspect ratios and stress environments (see Figure 7.4.1). 

 

Figure 7.4.1: Parameter 𝑎 plotted against parameter 𝑏 (see Equation 7.4.1) for both 

compression and shearing cases (data in Table 7.4.3). 
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7.4.1.3 Correlation with Particle Aspect ratio 

The power parameter 𝑏 (see Equation 7.4.1) appears to scale linearly with the particles 

aspect ratio 𝛼𝑝 in both uniaxial compression and shearing phase (see Figure 7.4.2). 

 

Figure 7.4.2: Parameter b (see Equation 7.4.1) for the different aspect ratios 𝛼𝑝 and 

stress environments. 

Thus, 𝑘 is expressed as a function of 𝜎𝑛𝑜𝑟𝑚(𝑠) and 𝛼𝑝: 

With 𝑐, 𝑑, 𝑒 and 𝑓 dimensionless. 

The four parameters are obtained by using the regression method of residual sum of 

squares for all simulation data (see Table 7.4.4). 

Table 7.4.4: Fitting parameters of Equation 7.4.2 on all simulation data. 

Parameters Units Value 

𝑐 ∅ 0.02014 

𝑑 ∅ 0.81174 
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 𝑘 = (𝑐. 𝛼𝑝 + 𝑑). 𝜎𝑛𝑜𝑟𝑚(𝑠)𝑒.𝛼𝑝 +𝑓  7.4.2 
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𝑒 ∅ 0.08772 

𝑓 ∅ -1.4506 

𝑅2 ∅ 0.85494 

The accuracy of the created model is excellent with an overall mean error of 4.88% 

(see Table 7.4.5), below the statistical threshold of 5%. The model is slightly more 

accurate for the shearing phase and is consistent for the different aspect ratios.  

Table 7.4.5: Mean error of predicted 𝑘 using Equation 7.4.2 and parameters values 

reported in Table 7.4.4. 

Aspect ratio Compression Shearing All 

2 9.25% 3.35% 4.95% 

3 5.21% 3.77% 4.16% 

4 5.42% 5.09% 5.18% 

5 7.48% 3.91% 5.04% 

6 6.31% 4.08% 5.04% 

All 6.69% 4.04% 4.88% 

 

7.4.1.4 Discussion 

A model is created to predict the Weibull shape parameter 𝑘 from the normalised 

standard deviation of the sum of absolute forces on particle 𝜎𝑛𝑜𝑟𝑚(𝑠) and the particles 

aspect ratio 𝛼𝑝 with an excellent overall accuracy. This model doesn’t require the 
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calculation of particles internal stress with Euler Equation of Motion but needs 

simulation data to obtain 𝜎𝑛𝑜𝑟𝑚 (𝑠).  

The integration of 𝛼𝑝 into the model has a minor effect, as it is shown by the low value 

of parameters 𝑐 and 𝑒. Nevertheless, it allowed the model to reach an overall mean 

error of 4.88% instead of 5.07% for the simple power model (see Equation 7.4.1). 

 

7.4.2 Empirical Model from Bulk Parameters 

The analysis of simulation data has shown that the Weibull shape parameter 𝑘 scales 

with normal stress 𝜎 applied on the particle bed for both shearing phase (see Figure 

6.4.33) and uniaxial compression (see Figure 6.5.20). A logarithmic relationship is 

here assumed between the two variables such as: 

 𝑘 = 𝑎(ln𝜎)𝑏 7.4.3 

With 𝑎 and 𝑏 dimensionless. 

The parameters 𝑎 and 𝑏 are obtained using the regression method of the residual sum 

of squares on all simulation data (see Table 7.4.6). 

Table 7.4.6: Fitting parameters of Equation 7.4.3 on all simulation data. 

Parameters Units Value 

𝑎 ∅ 0.252 

𝑏 ∅ 0.762 

𝑅2 ∅ 0.682 

Despite a low 𝑅2 value, this logarithmic model predicts accurately the shape parameter 

𝑘 with an overall mean error of 7.07% (see Table 7.4.7).  
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Table 7.4.7: Mean error of predicted 𝑘 using Equation 7.4.3 and parameters values 

reported in Table 7.4.6. 

Aspect ratio Compression Shearing All 

2 8.48% 4.22% 5.38% 

3 13.13% 4.15% 6.60% 

4 6.57% 5.33% 5.67% 

5 6.24% 8.34% 7.68% 

6 5.74% 12.15% 9.39% 

All 7.60% 6.83% 7.07% 

An attempt to obtain a correlation between the fitting parameters and the particles 

aspect ratio was unsuccessful. As demonstrated in the creation of the empirical model 

from simulation data (see Chapter 7.4.1), the aspect ratio has a minor impact on the 

prediction of 𝑘. The impact of the particle size is out of scope of this study, and future 

work could consist of performing simulations with different particle width (i.e. element 

sphere radius) and observe the variation of 𝑘. 

 

7.5 Prediction of Maximum Stress Location on Particle 

The internal stress is calculated on different location within a particle using the Euler 

Equation of Motion (see Chapter 5.4.1.2) and the maximum value is selected as the 

particle internal stress. Knowing the location of this maximum stress on the particle 

neutral axis is essential as it represents the location of particle breakage if the particle 

internal stress exceeds its breakage strength [191, 192, 194]. 

The distribution of this location on the particle neutral axis follows a Gaussian model 

(see Chapter 6.2.2) with the mean value at the centre of the particle [55, 191, 192, 
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194, 235] and a metric standard deviation 𝜎𝑑𝑒𝑣 . In this section, two empirical models 

are created to predict 𝜎𝑑𝑒𝑣 : the first one from the simulation data, and the second one 

from the bulk parameters. 

 

7.5.1 Empirical Model from Simulation Data 

7.5.1.1 Power Correlation with the Mean Number of Contacts 

The analysis of simulation data highlighted an inverse proportionality between the 

standard deviation of Gaussian model for the distribution of maximum stress location, 

𝜎𝑑𝑒𝑣 , and the mean number of contacts on particle 𝑁𝑐,𝑝 for both shearing phase (see 

Chapter 6.4.6.3) and uniaxial compression (see Chapter 6.5.6.3). 𝜎𝑑𝑒𝑣  is then 

expressed as a function of 𝑁𝑐,𝑝: 

 𝜎𝑑𝑒𝑣 = 𝑎.𝑁𝑐,𝑝
𝑏

 7.5.1 

With 𝑎 in 𝑚 and 𝑏 dimensionless. 

The parameters 𝑎 and 𝑏 are obtained using the regression method of the residual sum 

of squares for the different particle aspect ratios and stress environments (see Table 

7.5.1). 

Table 7.5.1: Parameters of power regression as described in Equation 7.5.1 for the 

different aspect ratios and stress environments. 

 𝑎 (in 𝑚) 𝑏 𝑅2 

Aspect ratio Compression Shearing Compression Shearing Compression Shearing 

2 3.73E-05 4.03E-05 -0.18654 -0.24506 0.2783 0.1349 

3 6.88E-05 5.78E-05 -0.42215 -0.31834 0.8482 0.1949 

4 8.10E-05 7.25E-05 -0.3903 -0.32166 0.7756 0.4183 
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5 8.95E-05 8.30E-05 -0.31697 -0.27067 0.7962 0.585 

6 1.06E-04 9.70E-05 -0.32365 -0.27355 0.8065 0.6361 

 

7.5.1.2 Linear Correlation with Particle Aspect Ratio 

Parameter 𝑎 (see Equation 7.5.1) is found to scale with the particles aspect ratio 𝛼𝑝 

(see Figure 7.5.1), which corroborates the observations made during the analysis of 

simulation data (see Chapters 6.4.6.3 and 6.5.6.3). 

 

Figure 7.5.1: Parameter 𝑎 (see Equation 7.5.1) for the different aspect ratios 𝛼𝑝 and 

stress environments (data in Table 7.5.1). The dotted line represents the linear 

regression on the displayed data with an intercept at (0; 0). 

Parameter 𝑎 scales linearly with 𝛼𝑝 with an intercept at (0; 0). 𝜎𝑑𝑒𝑣  is then expressed 

as follows: 

 𝜎𝑑𝑒𝑣 = 𝑐. 𝛼𝑝 . 𝑁𝑐,𝑝
𝑏

 7.5.2 

With 𝑐 in 𝑚 and 𝑏 dimensionless. 

The parameters 𝑏 and 𝑐 are obtained using the regression method of the residual sum 

of squares on all simulation data (see Table 7.5.2). 
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Table 7.5.2: Fitting parameters of Equation 7.5.2 on all simulation data. 

Parameters Units Value 

𝑐 𝑚 2.42E-05 

𝑏 ∅ -0.466 

𝑅2 ∅ 0.937 

 

7.5.1.3 Linear Correlation with Particle Size 

𝜎𝑑𝑒𝑣  is in meter and therefore is expected to be correlated to the particle size in addition 

to the particle shape represented by the presence of the aspect ratio 𝛼𝑝 in the model 

(see Equation 7.5.2). The value found for parameter 𝑐 is quasi-equal to the particle 

half width i.e. an element sphere radius 𝑟𝑝 = 25𝜇𝑚. The equation is modified to 

integrate this metric component: 

 𝜎𝑑𝑒𝑣 = 𝑟𝑝 . 𝛼𝑝 .𝑁𝑐,𝑝
𝑏

 7.5.3 

With 𝑏 dimensionless. 

The parameter 𝑏 is obtained using the regression method of the residual sum of 

squares on all simulation data (see Table 7.5.3). 

Table 7.5.3: Fitting parameters of Equation 7.5.3 on all simulation data. 

Parameters Units Value 

𝑏 ∅ -0.482 

𝑅2 ∅ 0.937 
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This final power model predicts accurately 𝜎𝑑𝑒𝑣  with an overall mean error of 6.30% 

(see Table 7.5.4). The error is consistent for the different particle elongation and stress 

environment except for particle aspect ratio 𝛼𝑝 = 2 which is particularly high at 18.6%. 

This odd value is probably due to the reduced bending stress ratio for this particle 

elongation (see Chapters 6.4.6.1 and 6.5.6.1) and can explain why the distribution of 

maximum stress location is more scattered on the particle neutral axis. 

Table 7.5.4: Mean error of predicted 𝜎𝑑𝑒𝑣  using Equation 7.5.3 and parameters 

values reported in Table 7.5.3. 

Aspect ratio Compression Shearing All 

2 20.3% 18.0% 18.6% 

3 2.65% 4.84% 4.24% 

4 4.27% 2.51% 2.99% 

5 3.71% 2.33% 2.77% 

6 4.85% 2.94% 3.76% 

All 6.65% 6.14% 6.30% 

 

7.5.1.4 Discussion 

An empirical model is created and predicts accurately the standard deviation of the 

Gaussian distribution for the location of maximum stress on particle neutral axis 𝜎𝑑𝑒𝑣 . 

This model is based on the mean number of contacts a particle experienced in an 

inverse power fashion and the particle physical properties. 

The high error of the model for particles aspect ratio 𝛼𝑝 = 2 can be explained by their 

lower bending stress ratio, which decreases the probability of the maximum stress to 
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be located at the centre of the particle. For aspect ratio 𝛼𝑝 ≥ 3, the model has an 

excellent accuracy with a mean error below the statistical threshold of 5%. 

Finally, it can be noted that only one fitting parameter is needed in this model, and this 

parameter 𝑏 (see Table 7.5.3) is very close to − 1 2⁄  which could lead to a simplification 

of the model using a square root and give insights for the creation of a theoretical 

model. 

 

7.5.2 Empirical Model from Bulk Parameters 

An empirical model is created and accurately predicts 𝜎𝑑𝑒𝑣  from simulation data (see 

Chapter 7.5.1). The resulting equation (see Equation 7.5.3) can be used as a basis for 

the creation of a model predicting 𝜎𝑑𝑒𝑣  from bulk parameters. The mean number of 

contacts on particle 𝑁𝑐,𝑝 is a simulation data and therefore needs to be expressed as 

a function of bulk parameters. The correlations are investigated and quantified for the 

shearing phase only, then the built model is fine-tuned on both uniaxial compression 

and shearing phase data. 

 

7.5.2.1 Linear Correlation with Solid Fraction 

The analysis of simulation data highlighted a linear correlation between the mean 

number of contacts on particle 𝑁𝑐,𝑝 and the solid fraction 𝑓𝑠 for both shearing phase 

(see Figure 6.4.9) and uniaxial compression (see Figure 6.5.9). This correlation has 

also been reported in DEM tri-axial compression of ellipsoids [205] and shear cell filled 

with spheres [270], with an inverse proportionality between coordination number and 

void ratio. 

𝑁𝑐,𝑝 can then be expressed as a function of 𝑓𝑠 as follows: 

 𝑁𝑐,𝑝 = 𝑎. 𝑓𝑠 + 𝑏 7.5.4 

With 𝑎 and 𝑏 dimensionless. 
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The parameters 𝑎 and 𝑏 are obtained using the regression method of the residual sum 

of squares for the different particle aspect ratio 𝛼𝑝 and normal stresses applied 𝜎 in 

the shearing phase (see Table 7.5.5). The regression couldn’t be performed on 𝛼𝑝 =

2 due to the low variation of their 𝑁𝑐,𝑝 values. 

Table 7.5.5: Parameters of linear regression as described in Equation 7.5.4 for the 

different aspect ratios 𝛼𝑝 and normal stresses applied 𝜎 in shearing phase. The 

values of the coefficient of determination 𝑅2 are in Appendix 10. 

 𝑎 𝑏 

𝛼𝑝 \ 𝜎 1kPa 2kPa 4kPa 6.5kPa 10kPa 1kPa 2kPa 4kPa 6.5kPa 10kPa 

3 9.79 14.2 16.0 17.9 17.1 0.684 -1.54 -2.29 -3.13 -2.53 

4 10.3 11.6 14.2 17.4 18.6 0.880 0.450 -0.574 -2.00 -2.38 

5 11.4 13.9 17.4 17.5 19.4 0.848 -0.0860 -1.46 -1.24 -1.89 

6 12.8 14.8 18.9 20.4 22.1 0.655 0.0690 -1.46 -1.85 -2.30 

The linear model fits the data with a greater accuracy as 𝛼𝑝 increases – with a higher 

coefficient of determination 𝑅2 (see Appendix 10) – due to a wider range of their 𝑁𝑐,𝑝 

values.  

 

7.5.2.2 Linear Correlation with Particle Aspect Ratio 

The parameter 𝑎 (see Equation 7.5.4) appears to be positively correlated to the particle 

aspect ratio 𝛼𝑝 (see Figure 7.5.2). Indeed, the analysis of simulation data has shown 

that the mean number of contacts on particle 𝑁𝑐,𝑝 is proportional to 𝛼𝑝 in a linear 

fashion for both shearing phase (see Figure 6.4.9) and uniaxial compression (see 

Figure 6.5.9). Indeed, a higher coordination number is reported to increase with aspect 

ratio [228]. 
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Figure 7.5.2: Parameter 𝑎 as in Equation 7.5.4 obtained by linear regression for the 

different aspect ratios 𝛼𝑝 and normal stresses applied 𝜎 in shearing phase. Data 

available in Table 7.5.5. 

𝑁𝑐,𝑝 can then be expressed as follows: 

 𝑁𝑐,𝑝 = (𝑐. 𝛼𝑝 + 𝑑). 𝑓𝑠 + 𝑏 7.5.5 

With 𝑏, 𝑐 and 𝑑 dimensionless. 

These parameters are obtained using the regression method of the residual sum of 

squares for the different normal stresses applied 𝜎 in the shearing phase (see Table 

7.5.6). The values of the coefficient of determination 𝑅2 are high showing a good 

quality of the linear model fitting. 

Table 7.5.6: Parameters of linear regression as described in Equation 7.5.5 for the 

different normal stresses applied 𝜎 in shearing phase. 

Normal stress 𝜎 𝑏 𝑐 𝑑 𝑅2 

1kPa 0.824 1.02 6.31 0.963 

2kPa 0.0580 1.24 7.43 0.978 
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4kPa -1.31 1.50 9.60 0.983 

6.5kPa -1.63 1.63 10.2 0.987 

10kPa -2.20 1.82 11.0 0.986 

 

7.5.2.3 Logarithmic Correlation with Normal Stress 

The three parameters of the model (see Equation 7.5.5) are proportional to the normal 

stress 𝜎 (see Table 7.5.6). Indeed, the analysis of simulation data highlighted the 

proportionality between the mean number of contacts on particle 𝑁𝑐,𝑝 and the normal 

stress 𝜎 in a logarithmic fashion for both shearing phase (see Figure 6.4.8) and 

uniaxial compression (see Figure 6.5.7). 

The model is then modified and 𝑁𝑐,𝑝 is finally expressed as follows: 

 𝑁𝑐,𝑝 = (ln 𝜎)𝑒 . 𝑓𝑠. (𝑓. 𝛼𝑝 + 𝑔) 7.5.6 

With 𝑒, 𝑓 and 𝑔 dimensionless. 

Theses parameters are obtained using the regression method of the residual sum of 

squares on all simulation data (see Table 7.5.7). 

Table 7.5.7: Fitting parameters of Equation 7.5.6 on all simulation data. 

Parameters Units Value 

𝑒 ∅ 0.598 

𝑓 ∅ 0.403 

𝑔 ∅ 2.10 
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𝑅2 ∅ 0.936 

This final logarithmic model predicts excellently 𝑁𝑐,𝑝 with an overall mean error of 

2.60% (see Table 7.5.8). The error is consistent for the different particle elongation 

and the model fits quasi-perfectly the data for shearing phase with a mean error of 

1.66%. 

Table 7.5.8: Mean error of predicted 𝑁𝑐,𝑝 using Equation 7.5.6 and parameters 

values reported in Table 7.5.7. 

Aspect ratio Compression Shearing All 

2 5.26% 2.02% 2.90% 

3 4.46% 1.96% 2.64% 

4 3.68% 1.16% 1.85% 

5 4.01% 1.30% 2.16% 

6 5.21% 1.84% 3.29% 

All 4.62% 1.66% 2.60% 

This empirical model for the prediction of 𝑁𝑐,𝑝 is finally integrated into the model 

created for the prediction of the Gaussian standard deviation 𝜎𝑑𝑒𝑣  (see Equation 

7.5.3): 

 𝜎𝑑𝑒𝑣 = 𝑟𝑝 . 𝛼𝑝 . ((ln𝜎)𝑒 .𝑓𝑠 . (𝑓. 𝛼𝑝 + 𝑔))
𝑏

 7.5.7 

With 𝑏, 𝑒, 𝑓 and 𝑔 dimensionless. 

This final model predicts accurately 𝜎𝑑𝑒𝑣  with an overall mean error of 6.12% (see 

Table 7.5.9). The mean error for the different aspect ratios and stress environments is 
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similar to the one for the prediction of 𝜎𝑑𝑒𝑣  from simulation (see Table 7.5.4). The usual 

increase in error when switching model from simulation data to bulk parameters isn’t 

observed here, which is due to the excellent accuracy of the model predicting 𝑁𝑐,𝑝 (see 

Table 7.5.8). 

Table 7.5.9: Mean error of predicted 𝜎𝑑𝑒𝑣  using Equation 7.5.7 and parameters 

values reported in Table 7.5.3 and Table 7.5.7. 

Aspect ratio Compression Shearing All 

2 20.8% 17.7% 18.5% 

3 3.80% 4.30% 4.16% 

4 4.53% 2.62% 3.14% 

5 3.71% 2.19% 2.67% 

6 3.76% 2.56% 3.08% 

All 6.61% 5.88% 6.12% 

 

7.5.2.4 Discussion 

An empirical model is built and predicts accurately the Gaussian standard deviation 

𝜎𝑑𝑒𝑣  of the maximum stress location distribution. This estimation of 𝜎𝑑𝑒𝑣  from the bulk 

parameters is rendered possible by the creation of a model predicting excellently the 

mean number of contacts on particle 𝑁𝑐,𝑝 from the particle aspect ratio 𝛼𝑝, the solid 

fraction of the bed and the normal stress applied. The predicted 𝑁𝑐,𝑝 is then input into 

another model based on simulation data, allowing the estimation of 𝜎𝑑𝑒𝑣 . 

The mean error of this model is comparable to the one for the simulation data based 

model due to the excellent accuracy of the model predicting 𝑁𝑐,𝑝. The error of this 

model is higher for aspect ratio 𝛼𝑝 = 2 due to their decreased bending stress ratio and 
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lower probability of having their maximum stress located at the centre of their neutral 

axis. 

The model predicting 𝑁𝑐,𝑝 is dependent on the particle physical properties and is 

expected to vary for different particle shape in addition to different 𝛼𝑝. The simulations 

are performed in monodisperse bed and there is no doubt that 𝑁𝑐,𝑝 would change with 

polydispersity. Finally, the clumped sphere approach of particle modelling has shown 

to augment the number of in the performed simulations as two particles can enter in 

contact on multiple location (see Figure 6.4.11). Indeed, the sphere overlap is reported 

to affect the void ratio [272, 277] and the number of contacts [249, 258, 266, 272, 278] 

which can be twice as high for rough particles [228]. The asperity and roughness of 

the particles would then be a factor to consider for model refinement in further work. 

 

7.6 Conclusion 

The understanding of the existing physical and mechanical phenomena within a 

particle bed provided from simulation analysis (see Chapter 6) allows the creation of 

a theoretical model for the prediction of the particle internal stress. The mean particle 

internal stress is confidently assumed being equal to the Weibull scale parameter 𝜆 of 

the particle internal stress distribution. 

Additionally, empirical models are built to predict 𝜆, the Weibull shape parameter 𝑘 

and the Gaussian standard deviation 𝜎𝑑𝑒𝑣  of the maximum stress location distribution 

from either the output simulation data or the bulk parameters. The error associated 

with bulk parameters models is slightly higher (see Table 7.6.1) but allows process 

designers to estimate the stress experienced by particles without the need to perform 

simulations.  

The models usually give a better accuracy on shearing phase, which is probably due 

to the greater number of data points recorded from shearing simulations (see Chapter 

6.3.3) and used to calibrate the models using the residual sum of squares regression 

method. The case of particles with aspect ratio 𝛼𝑝 = 2 gives different errors on most 

of the models created, which is potentially due to the narrower range and lower values 
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for their key variables, mathematically increasing their error. Moreover, the regression 

method used is based on squared values and thus puts the priority of the better fitting 

of greater variable values. Alternatively, a distinction could be operated on shorter 

particles for which the assumptions might be slightly different e.g. for their volume 

calculation based on cylindrical shape. The selected simulation parameters in Chapter 

6 and the use of rigid particle are expected to have an impact on the fitting parameters 

obtained during the calibration of the different developed models, and their influence 

could be investigated in future work. 

All the created models are designed to predict the key variables characterising the 

particles internal stress and avoid the resources and time-consuming implementation, 

testing and running of Euler Equation of Motion. The models are based on simulation 

data of monodisperse bed compression and shearing, nevertheless they could predict 

these key variables for polydisperse bed by applying them on sub-groups of the 

particles population segmented by particle size and shape. 

The built models will be used in combination with the distribution of breakage strength 

distribution of β-LGA crystals experimentally assessed in Chapter 4 to create a 

probabilistic breakage kernel in Chapter 8. The kernel will be implemented in a 

population balance model to predict the breakage rate of particles in a lab-scale AFD. 

Table 7.6.1: Summary of theoretical and empirical models created with the 

associated overall mean error. The list of variable description is in Chapter No. 

Model type 
Variable 

predicted 
Input variables 

Overall 

mean error 
Comments 

Theoretical 

(calibrated) 

𝐹𝑐 𝜎, 𝜑, 𝛼𝑝, 𝑟𝑝, 𝑁𝑐,𝑝, 𝑓𝑠 7.41% Odd error for 𝛼𝑝 = 2 

�̅�𝑝,𝑍𝑍 𝜎, 𝜑, 𝛼𝑝, 𝑟𝑝, 𝑁𝑐,𝑝, 𝑓𝑠 9.62% Odd error for 𝛼𝑝 = 2 

�̅�𝑝 𝜎, 𝜑, 𝛼𝑝, 𝑟𝑝, 𝑁𝑐,𝑝, 𝑓𝑠 9.42% Odd error for 𝛼𝑝 = 2 

𝜆 𝜎, 𝜑, 𝛼𝑝, 𝑟𝑝, 𝑁𝑐,𝑝, 𝑓𝑠 10.8% Odd error for 𝛼𝑝 = 2 
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Empirical 

(from 

simulation 

data) 

𝜆 𝑠̅, 𝛼𝑝 4.10% Consistent error on all 𝛼𝑝 

𝑘 𝛼𝑝, 𝜎𝑛𝑜𝑟𝑚(𝑠) 4.88% Consistent error on all 𝛼𝑝 

𝜎𝑑𝑒𝑣 𝛼𝑝, 𝑟𝑝, 𝑁𝑐,𝑝 6.30% Greater error for 𝛼𝑝 = 2 

Empirical 

(from bulk 

parameters) 

𝛼𝜎,𝑍𝑍 𝛼𝑝 0.68% Excellent accuracy on all 𝛼𝑝 

𝜆 𝜎, 𝜑, 𝛼𝑝 9.96% Greater error for 𝛼𝑝 = 2 

𝑘 𝜎 7.07% Consistent error on all 𝛼𝑝 

𝑁𝑐,𝑝 𝜎, 𝛼𝑝, 𝑓𝑠 2.60% Consistent error on all 𝛼𝑝 

𝜎𝑑𝑒𝑣 𝜎, 𝛼𝑝, 𝑟𝑝, 𝑓𝑠 6.12% Greater error for 𝛼𝑝 = 2 
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8 Prediction of Particle Breakage for Agitated Drying 

Conditions 

8.1 Introduction 

In this chapter, a probabilistic approach is used to create a breakage kernel from the 

particle properties and the mechanical environment in which they are processed. The 

breakage strength distribution of a β-LGA crystal sample is assessed in Chapter 4 

using an Atomic Force Microscopy method for crystal breakage [18]. Mathematical 

models estimating the particle internal stress distribution for different particle shape 

and mechanical environments are built in Chapter 7 based on the analysis of DEM 

shear cell simulations in Chapter 6. 

The breakage kernel is then implemented into a population balance model (PBM) to 

estimate the breakage of particles in a lab-scale agitated filter dryer (AFD) for an 

increasing number of impeller rotations. The estimation is compared with experimental 

results for the agitation of a dry bed composed of β-LGA crystals presented in Chapter 

3. A calibration is then performed on the PBM and the impact of input parameters are 

discussed to optimise the accuracy of the model. Finally, the calibrated model is used 

to predict the breakage of the β-LGA crystals for the scale-up of agitation. 

 

8.2 Probabilistic Approach to Particle Breakage 

8.2.1 Extent of Breakage 

The experimental study [18] presented in Chapter 4 describes a novel technique for 

the assessment of particles breakage strength 𝜎𝑏  using Atomic Force Microscopy. It 

is observed that the results for a sample of β-LGA crystals are distributed and follow 

a Weibull model [47, 48]. Indeed, the breakage strength is highly affected by the 

presence of defects, especially for organic crystals [192]. Therefore the breakage 

strength is less a material property than a particle property, and a different distribution 

might be found for different beds even if their particles are made of the same material. 
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The cumulative density function of breakage strength 𝜎𝑏  for a given particle population 

represents then the breakage probability of one of these particles experiencing a 

certain internal stress. It also represents the percentage of particles with this 

population that would break if they were all experiencing the same internal stress.  

A probabilistic approach of particle breakage is here presented were the breakage 

strength distribution BSD (cumulative density function) is combined with the particle 

internal stress distribution PISD (probability density function) to estimate the number 

of particles broken (see Figure 8.2.1). The BSD characterises the mechanical 

properties of a particle population, and the PISD is dependent on both the environment 

experienced by these particles and their physical properties. 

 

Figure 8.2.1: Particle internal stress distribution (PISD) and breakage strength 

distribution (BSD). The area below the joint density function (𝑃𝐼𝑆𝐷 × 𝐵𝑆𝐷) is the 

extent of breakage. 

This extent of breakage 𝐵 corresponds to the area below the curve of the joint density 

function 𝑃𝐼𝑆𝐷 × 𝐵𝑆𝐷, such as: 

 𝐵 = ∫ 𝑃𝐼𝑆𝐷(𝜎) × 𝐵𝑆𝐷(𝜎)𝑑𝜎
+∞

0
 8.2.1 

It is demonstrated that both PISD and BSD are Weibull distribution models. 𝐵 can then 

be written as follows: 



 Chapter 8: Prediction of Particle Breakage for Agitated Drying Conditions  

244 

 

 𝐵 = ∫
𝑘𝑝

𝜆𝑝

(
𝜎

𝜆𝑝

)

𝑘𝑝−1

𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. (1 − 𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏 )𝑑𝜎
+∞

0

 8.2.2 

With 𝑘𝑝 and 𝜆𝑝 the Weibull parameters of the particle internal stress distribution, and 

𝑘𝑏  and 𝜆𝑏 the Weibull parameters of the particles breakage strength distribution (see 

Chapter 6.2.1). The final equation (derivation in Appendix 22) is: 

 𝐵 =
𝑘𝑏

𝜆𝑏
𝑘𝑏

∫ 𝜎𝑘𝑏−1. 𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏 . 𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

𝑑𝜎
+∞

0

 8.2.3 

 

8.2.2 Breakage Rate 

The simulations have been performed without implementing a breakage kernel [232-

234], therefore particles remain intact throughout the simulation regardless of the 

internal stress they experience. This choice allows the observation of the particle bed 

behaviour and particles internal stress during the simulations whilst conserving the 

particles size distribution, and therefore reducing the number of degrees of freedom.  

Thus, the probabilistic approach developed to estimate the extent of breakage 𝐵 (see 

Equation 8.2.3) doesn’t involve time, as breakage doesn’t occur in the simulations , 

which makes this model non-transient. This predictive model is then a breakage kernel 

and can be embedded in simulations to compute the breakage of particles individually 

based on their breakage probability. To obtain a breakage rate from the extent of 

breakage without performing simulations where particles would break, a time factor 

needs to be combined to the model. Therefore, it is essential to identify the physical 

phenomenon that induces an event of breakage. 

If a group of particles (e.g. the particles in the simulated shear cell) are experiencing 

an event of breakage, the estimated percentage of particles breaking corresponds to 

the extent of breakage 𝐵. Once breakage is estimated, the next event of breakage 

occurs when this group of particles is considered as a new one. Particles packing is 

characterised by the relative positioning and the contacts between its particles. 

Indeed, the internal stress of a particle is calculated from its contact properties 
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resulting from the relative positioning of the particles surrounding it. The change of 

particles conformation is thus an appropriate key element representing an event of 

breakage, and the change of particles conformation in respect to time is given by the 

strain rate �̇� (see Equation 2.4.4). The breakage rate �̇� is then expressed as a function 

of the extent of breakage 𝐵: 

 �̇� = 𝑁𝐵. 𝐵. �̇� 8.2.4 

With 𝑁𝐵 the number of event of breakage per strain applied. Here, particles in a static 

bed experience only 𝑁𝐵 events of breakage as the particles conformation remains 

unchanged and the same particles can only break once. On a contrary, the agitation 

of particles promotes their breakage at a rate determined by both the strain rate, 

particles mechanical properties and internal stress. In quasi-static flow regime, 𝐵 is 

independent to �̇�, in the same fashion as in the DEM shear cell simulations performed 

(see Chapter 5.5.2). Therefore, the probability of a particle to break in an agitated dryer 

increases at each strain applied 𝛾 such as: 

 𝑃(𝑏𝑟𝑒𝑎𝑘) = 1 − (1 − 𝑁𝐵.𝐵)𝛾 8.2.5 

 

8.2.3 Population Balance Model 

Once the breakage rate �̇� is determined (see Equation 8.2.4), the breakage of 

particles is simulated mathematically using a population balance model and the 

particle size distribution (PSD) is computed as the bed is sheared with increasing 

strain 𝛾 applied. 

After each unit of strain applied, the particle population is segmented into sub-groups 

based on their aspect ratio 𝛼𝑝 and the percentage of particles breaking within each 

sub-group corresponds to their determined extent of breakage per strain 𝑁𝐵. 𝐵 (see 

Equation 8.2.3). 

The breakage of particles is considered occurring with a cleavage plane orthogonal to 

the particles neutral axis and creates fragments with their aspect ratios being non-null 
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natural numbers 𝛼𝑓 ∈ ℕ∗. Here, the minimum particle aspect ratio is 𝛼𝑝 = 1 and these 

particles cannot break further. The size of fragments depends on the location of 

breakage on the particle neutral axis (see Figure 8.2.2) and is determined 

probabilistically using the Gaussian model for the distribution of maximum stress 

location (see Chapter 6.2.2). 

 

Figure 8.2.2: Aspect ratio 𝛼𝑓 of the two created fragments (circled) for the different 

ranges of breakage location 𝑥 in the case of a particle with 𝛼𝑝 = 6. No breakage 

occurs when 𝑥 ∈ [0, 0.5] ∪ [5.5, 6]. 

The number of fragments 𝑛𝛼𝑓
 created having an aspect ratio 𝛼𝑓 for the breakage of 

𝑁𝛼𝑝
 particle with an aspect ratio 𝛼𝑝 at the strain 𝛾 and at a breakage location 𝑥 is given 

as follows: 

 𝑛𝛼𝑓
(𝛼𝑝 ,𝛾) = 𝑛𝛼𝑝 −𝛼𝑓

(𝛼𝑝 ,𝛾) = 𝑁𝛼𝑝
(𝛾).𝑁𝐵. 𝐵𝛼𝑝

.2. 𝑃(𝑥 ∈ [𝛼𝑓 − 0.5, 𝛼𝑓 + 0.5]) 8.2.6 

For 𝛼𝑓 ∈ ℕ∗,𝛼𝑓 ∈ [0,⌊𝛼𝑝 2⁄ ⌋], with 𝐵𝛼𝑝
 the extent of breakage of the particle with an 

aspect ratio 𝛼𝑝, 𝑁𝐵 the number of breakage event per unit of strain and 𝑃 the 

probability of the breakage location 𝑥 being within the corresponding range of values 

to create fragments with 𝛼𝑓. Two exceptions occur to the equation above: when 𝛼𝑓 =

0 the lower limit for the range of 𝑥 in the probability function 𝑃 is 0, and when 𝛼𝑓 =

𝛼𝑝 2⁄  the upper limit of 𝑥 is 𝛼𝑝 2⁄ .  

The distribution of breakage location follows a Gaussian model with the mean �̅� =

𝛼𝑝 2⁄  and a standard deviation 𝜎𝑑𝑒𝑣 , so that the probability function 𝑃 is given as: 
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 𝑃(𝑥 ∈ [𝛼𝑓 − 0.5,𝛼𝑓 + 0.5]) =
1

2
(𝑒𝑟𝑓 (

𝛼𝑝 + 0.5 − 𝑥̅

𝜎𝑑𝑒𝑣√2
)− 𝑒𝑟𝑓 (

𝛼𝑝 − 0.5 − 𝑥̅

𝜎𝑑𝑒𝑣√2
)) 8.2.7 

As the Gaussian cumulative density function is applicable for a real-valued variable, 

𝑃(𝑥 ∈ [0, 𝛼𝑝]) ≠ 1. Therefore, the probabilities obtained for the different fragment size 

are normalised so that their sum equals 1. 

The number of particles 𝑁𝛼𝑝
(𝛾 + 1) within a sub-group of 𝛼𝑝 at a strain 𝛾 + 1 is then 

calculated as the number of particles 𝑁𝛼𝑝
(𝛾) within this sub-group at the strain 𝛾 

reduced by the number of particles breaking 𝑁𝛼𝑝
(𝛾). 𝑁𝐵. 𝐵𝛼𝑝

 and augmented by the 

number of fragments 𝑛𝛼𝑓=𝛼𝑝
(𝑖, 𝛾) with 𝛼𝑓 = 𝛼𝑝 generated from the breakage of longer 

particles (i.e. ≥ 𝛼𝑝) at the strain 𝛾: 

 𝑁𝛼𝑝
(𝛾+ 1) = 𝑁𝛼𝑝

(𝛾) (1 − 𝑁𝐵. 𝐵𝛼𝑝
) + ∑ 𝑛𝛼𝑓=𝛼𝑝

(𝑖,𝛾)

𝛼𝑝,𝑚𝑎𝑥

𝑖=𝛼𝑝

 8.2.8 

It is considered that no breakage is occurring when x ∈ [0, 0.5] ∪ [𝛼𝑝 − 0.5,𝛼𝑝], so the 

corresponding number of fragments (i.e. 𝛼𝑓 = 𝛼𝑝) is inserted back into the same 𝛼𝑝 

sub-group on the following strain 𝛾 + 1, as described in the above equation when 𝑖 =

𝛼𝑝. 

 

8.3 Model Application 

The probabilistic model created (see Equation 8.2.3) is applied to estimate the 

breakage of the studied sample of β-LGA crystals (see Chapter 4.3.1.1) in both 

uniaxial compression and shearing phase for different normal stresses applied 𝜎 and 

particles aspect ratios 𝛼𝑝. The analysis of DEM shear cell simulations is used to obtain 

the Weibull parameters of the particle internal stress distribution: the scale parameter 

𝜆𝑝 (see Chapter 6.4.6.2.1 for shearing phase and Chapter 6.5.6.2.1 for uniaxial 

compression) and the shape parameter 𝑘𝑝 (see Chapter 6.4.6.2.2 for shearing phase 

and Chapter 6.5.6.2.2 for uniaxial compression). The simulated particles size 
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distribution is monotonous with a particle width of 50𝜇𝑚 (see Chapter 5.2.1.1). The 

Weibull parameters of the breakage strength distribution are obtained experimentally 

from the breakage of β-LGA crystals using the novel method involving Atomic Force 

Microscopy (see Table 4.4.1): 𝜆𝑏 = 27.0𝑀𝑃𝑎 and 𝑘𝑏 = 1.95. 

In uniaxial compression, the extent of breakage is averaged for all bed conformations 

simulated (i.e. strain applied) for a given aspect ratio and normal stress, with a mean 

value �̅�. �̅� increases exponentially with both the particles aspect ratio 𝛼𝑝 and the 

normal stress applied 𝜎 (see Figure 8.3.1). Here, for aspect ratio 𝛼𝑝 = 6, �̅� is multiplied 

by 3.43 when doubling the normal stress 𝜎 from 10𝑘𝑃𝑎 to 20𝑘𝑃𝑎. As expected, the 

greatest value of �̅� is found for the highest aspect ratio 𝛼𝑝 and normal stress 𝜎: when 

a pressure of 100𝑘𝑃𝑎 is exerted on a monodisperse bed composed of the β-LGA 

particles studied with an aspect ratio of 6, with a length of 300𝜇𝑚, it is estimated that 

4.5% of these particles are breaking. 

 

Figure 8.3.1: Mean extent of breakage �̅� averaged over all bed conformations in 

uniaxial compression for the different aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

The exponential proportionality between the extent of breakage 𝐵 and both aspect 

ratio 𝛼𝑝 and normal stress 𝜎 is also observed in the shearing phase (see Figure 8.3.2). 

The addition of the shear stress to the mechanical environment augments the extent 

of breakage 𝐵: for instance, the extent of breakage increases from 0.71‰ to 1.3‰ 

for 𝛼𝑝 = 6 and 𝜎 = 10𝑘𝑃𝑎. 
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Figure 8.3.2: Extent of breakage 𝐵 in steady state of shearing phase for the different 

aspect ratios 𝛼𝑝 and normal stresses 𝜎. 

The created breakage kernel is implemented in a population balance model (PBM) 

(see Equation 8.2.8) to predict the breakage of a particle population with increasing 

strain applied in shearing phase and quasi-static flow regime. The initial particle size 

distribution (PSD) is monodispersed with cylindrical particles having an aspect ratio 

𝛼𝑝 = 6 and a particle length 𝐿𝑝 = 300𝜇𝑚. The Weibull parameters of the particles 

breakage strength distribution are experimentally obtained to reflect the mechanical 

properties of the β-LGA crystals studied. The normal stress applied remains constant 

at 𝜎 = 4𝑘𝑃𝑎, which is typically the order of magnitude of hydrostatic pressure 

experienced by particles at the bottom of industrial scale dryers [1]. The extent of 

breakage 𝐵 is previously calculated for each aspect ratio 𝛼𝑝 and the selected normal 

stress 𝜎 (see Figure 8.3.2). The size of fragments is determined probabilistically using 

the Gaussian model parameters of maximum stress location distribution obtained from 

the performed simulations: the mean value is half the particle length and the standard 

deviation 𝜎𝑑𝑒𝑣  is obtained for each aspect ratio 𝛼𝑝 at the selected normal stress 𝜎 (see 

Figure 6.4.38). The breakage of particles is simulated following the algorithm detailed 

in Chapter 8.2.3. The minimum fragment aspect ratio is 𝛼𝑝 = 1 and these particles do 

not break further. 
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The number of particles with 𝛼𝑝 = 6 is quickly decreasing in a geometrical progression 

with a rate of 21% of particles breaking after every 1000 unit of strain applied (see 

Figure 8.3.3). The number of particles in the other sub-groups increases as fragments 

from longer particles are created, and reaches a maximum before decreasing when 

the loss from their breakage exceeds the feed from the breakage of longer particles. 

Therefore, the maximum volume fraction occurs at a larger strain for decreasing 

aspect ratio. The fraction for aspect ratio 𝛼𝑝 = 1 keeps increasing as it is not able to 

break with the used PBM. For an infinite strain applied, all the particles with 𝛼𝑝 ≥ 2 are 

expected to break and the bed would be composed of only particles with aspect ratio 

𝛼𝑝 = 1. 

 

Figure 8.3.3: Fraction of particles population in the different aspect ratio 𝛼𝑝 sub-

groups, given by the strain applied 𝛾 and for a normal stress applied 𝜎 = 4𝑘𝑃𝑎. 

The PSD is then predicted with increasing strain applied and the corresponding 

volume of each particle sub-group is calculated (see Figure 8.3.4). Particles with 

aspect ratio 𝛼𝑝 = 6 represent the majority of the bed volume until a strain applied of 

𝛾 ≈ 5500, then the particles with aspect ratio 𝛼𝑝 = 3 become dominant until 𝛾 ≈ 27𝑘 

when the volume for aspect ratio 𝛼𝑝 = 2 particles becomes predominant. It is expected 

that curves for aspect ratio 𝛼𝑝 = 1 and 𝛼𝑝 = 2 will be crossing with the volume for 

aspect ratio 𝛼𝑝 = 1 becoming dominant if further strain is applied beyond 100𝑘. 
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Figure 8.3.4: Volume fraction in the different aspect ratio 𝛼𝑝 sub-groups, given by the 

strain applied 𝛾 and for a normal stress applied 𝜎 = 4𝑘𝑃𝑎. 

 

8.4 Model Validation against Experiments 

The created breakage kernel (see Equation 8.2.4) is implemented into the PBM (see 

Equation 8.2.8) to predict the PSD of a dry particle bed through agitation within a lab-

scale Agitated Filter Dryer (AFD).  

The initial process conditions and PSD observed experimentally for the dry agitation 

of β-LGA crystals in Chapter 3 are input into the model and the prediction of PSD is 

compared with experimental measurements of particle breakage throughout agitation. 

 

8.4.1 Bed Division into Zones 

For the dry agitation experiment in Chapter 3, the height of the particle bed is 

measured and equals approximately 60𝑚𝑚. The radius of the cylindrical bed is 

calculated from the information provided by the manufacturer and equals 25𝑚𝑚 [337]. 

The volume of the impeller is neglected and the total volume of the cylindrical particle 

bed is then 118𝑐𝑚3 . The particle bed in the AFD is divided into 9 zones of equal volume 

with different radial distance and height (see Figure 8.4.1) in the same fashion as in 
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Hare’s paper [108]. All the zones have the same height at 20𝑚𝑚. Zones {1, 4, 7} have 

a cylindrical shape whilst zones {2, 3,5, 6, 8, 9} are rings. 

 

Figure 8.4.1: Particle bed in agitated filter dryer divided 9 zones of equal volume and 

equal height.  

The radial distance of the centre of the {𝐼𝑛𝑛𝑒𝑟,𝑀𝑖𝑑𝑑𝑙𝑒,𝑂𝑢𝑡𝑒𝑟} zones is 

{7.22, 17.4, 22.7} 𝑚𝑚 and the height of the centre of the {𝐵𝑜𝑡𝑡𝑜𝑚,𝑀𝑖𝑑𝑑𝑙𝑒, 𝑇𝑜𝑝} zones 

is {10, 30, 50} 𝑚𝑚 so that all zones have equal volumes. 

 

8.4.2 Particle Properties 

8.4.2.1 Breakage Strength 

The breakage strength distribution of the particles follows the experimentally assessed 

distribution for the studied sample of β-LGA crystals in Chapter 4 (see Table 4.4.1) 

with the Weibull parameters 𝜆𝑏 = 27.0𝑀𝑃𝑎 and 𝑘𝑏 = 1.95. The β-LGA crystals 

involved in both Atomic Force Microscopy (AFM) experiments in Chapter 4 and AFD 

experiments in Chapter 3 are produced using the same crystallisation method (see 

Chapter 4.3.1.1) and are considered having the same breakage strength distribution. 
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8.4.2.2 Particle Aspect Ratio Distribution 

The Particle Aspect Ratio Distribution (PARD) is the volume of the bed segmented by 

the particle aspect ratio 𝛼𝑝. Indeed, the breakage of particles is computed within each 

sub-groups of aspect ratio regardless of the individual particles size, as it is assumed 

that big particles break the same way than small particles if they have the same 

elongation. The volume fraction of fragments created equals the volume fraction of the 

broken particles and is calculated proportionally to the fragments aspect ratio 𝛼𝑓 to 

conserve the same bed volume. 

The initial PARD input in the model corresponds to the measured volume probability 

density function in the lab-scale AFD experiment on the dry bed after overnight 

pressure filtration (see Appendix 14). The aspect ratio ranges within the interval 𝛼𝑝 ∈

[1,15]. The same initial PARD is assigned to the 9 zones of the particle bed. 

 

8.4.3 Breakage Model 

8.4.3.1 Mechanical Environment in Zones 

The results of the simulations and experiments performed in Hare’s paper [108] are 

kindly provided by the author and allow the estimation of the strain per impeller rotation 

𝛾𝑟𝑜𝑡  and the stress ratio 𝜑 in the 9 zones of the studied AFD. Like in the paper, only 

the 3rd impeller rotation is considered as two rotations are necessary to reach a steady 

state. The data for an impeller speed of 78𝑟𝑝𝑚, at which a quasi-static flow regime 

has been demonstrated in the paper, is selected for the further analysis. 

 

8.4.3.1.1 Strain per Impeller Rotation 

The strain experienced by each of the 9 zones in Hare’s AFD for an impeller rotation 

has been calculated (see Table 8.4.1). Hare’s AFD is larger than the studied AFD with 

radial distances of the centre of the {𝐼𝑛𝑛𝑒𝑟,𝑀𝑖𝑑𝑑𝑙𝑒,𝑂𝑢𝑡𝑒𝑟} zones at 

{18, 33.3, 42.8} 𝑚𝑚. 



 Chapter 8: Prediction of Particle Breakage for Agitated Drying Conditions   

254 

 

As it is mentioned in the paper, the strain experienced by particles in a shear cell is 

linearly proportional to the radial distance. Therefore, the amount of strain per impeller 

rotation 𝛾𝑟𝑜𝑡  is adjusted for each of the 9 zones by cross-multiplication to correspond 

to the radial dimensions of the studied AFD (see Chapter 8.4.1). 

Table 8.4.1: Strain per impeller rotation 𝛾𝑟𝑜𝑡  in the 9 zones of Hare’s AFD [108] and 

calculated for the studied AFD. 

𝛾𝑟𝑜𝑡 Hare et al. 2011 Studied AFD 

Height \ Radius Inner Middle Outer Inner Middle Outer 

Top 0.905 1.04 1.90 0.364 0.545 1.01 

Middle 1.30 1.69 2.61 0.523 0.885 1.38 

Bottom 1.41 1.92 2.61 0.565 1.00 1.38 

 

8.4.3.1.2 Normal Stress 

The hydrostatic pressure is taken as normal stress 𝜎 and calculated in each zone of 

the studied AFD using Equation 2.3.1 modified to account for the bed porosity: 

 𝜎 = 𝜌. 𝑔. ℎ. 𝑓𝑠 8.4.1 

With 𝜌 = 1460𝑘𝑔.𝑚−3 [323] the solid density of β-LGA crystals, ℎ the depth into the 

particle bed, 𝑔 = 9.81𝑚. 𝑠−2  the acceleration of gravity on Earth and 𝑓𝑠 the volume 

solid fraction of the bed. 

The volume solid fraction is calculated from the volume 𝑉 = 118𝑐𝑚−3 (see Chapter 

8.4.1) and the mass 𝑚 = 41.2𝑔 (see Chapter 3.2.1) of the particle bed: 

 𝑓𝑠 =
𝑚

𝜌. 𝑉
 8.4.2 
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The volume solid fraction is then 𝑓𝑠 = 0.24. 

Using the height of the centre of zones in the studied AFD (see Chapter 8.4.1), the 

normal stress is finally calculated and equals {172, 103,34.3} 𝑃𝑎 for the 

{𝐵𝑜𝑡𝑡𝑜𝑚,𝑀𝑖𝑑𝑑𝑙𝑒, 𝑇𝑜𝑝} zones. 

 

8.4.3.1.3 Stress Ratio 

The torque has been recorded experimentally in Hare’s AFD [165] and the mean 

torque during the 3rd impeller rotation is 𝑇 = 176𝑚𝑁.𝑚. 

Using the Darelius equation [152] (see Equation 2.3.4), the average shear stress 𝜏𝑎𝑣𝑒  

is calculated from the dimensions of Hare’s AFD, giving 𝜏𝑎𝑣𝑒 = 243𝑃𝑎. 

The hydrostatic pressure of the whole bed is taken as the normal stress 𝜎 and 

calculated from the mass of the bed 𝑚 = 250𝑔 [165], the acceleration of gravity on 

Earth 𝑔 = 9.81𝑚. 𝑠−2 , the radius of Hare’s AFD 𝑅 = 47𝑚𝑚 and the radius of the 

impeller holder 𝑅𝑖𝑚𝑝 = 8𝑚𝑚 using the following equation: 

 𝜎 =
𝑚. 𝑔

𝜋(𝑅2 − 𝑅𝑖𝑚𝑝
2)

 8.4.3 

The normal stress generated by the whole bed then equals 𝜎 = 364𝑃𝑎. 

The stress ratio 𝜑 considered in the further breakage model is finally calculated using 

Equation 2.4.6, resulting in 𝜑 = 0.667, which is a similar value to the stress ratio 

obtained in the DEM shear cell simulations (see Chapter 6.4.3). 

 

8.4.3.2 Particle Internal Stress Distribution 

The empirical models created in Chapter 7 are used to estimate the Weibull 

parameters of the particle internal stress distribution with bulk parameters as input. 

The models are built based on the DEM shear cell simulation output presented in 

Chapter 6 and performed in quasi-static flow regime (see Chapter 5.5.2). 
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8.4.3.2.1 Weibull Scale Parameter 

The scale parameter 𝜆𝑝 is calculated in the different zones of the studied AFD using 

Equation 7.3.5 as a function of particle aspect ratio 𝛼𝑝, normal stress applied 𝜎 (see 

Chapter 8.4.3.1.2), stress ratio 𝜑 (see Chapter 8.4.3.1.3) and the fitting parameters of 

the mathematical model in Table 7.3.6. 

As expected, 𝜆𝑝 increases with both aspect ratio 𝛼𝑝 and normal stress 𝜎 applied (see 

Figure 8.4.2). The minimum value is 94𝑃𝑎 for 𝛼𝑝 = 1 and 𝜎 = 34.3𝑃𝑎 in the top zones 

{7, 8, 9}, whilst the maximum value is 74.4𝑘𝑃𝑎 for 𝛼𝑝 = 15 and 𝜎 = 172𝑃𝑎 in the bottom 

zones {1, 2, 3}. 

 

Figure 8.4.2: Weibull scale parameter 𝜆𝑝 for the different aspect ratios 𝛼𝑝 and the 

different zones along bed height (top, middle and bottom). 
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8.4.3.2.2 Weibull Shape Parameter 

The shape parameter 𝑘𝑝 is calculated for the different zones of the studied AFD using 

Equation 7.4.3 as a function of the normal stress applied 𝜎 (see Chapter 8.4.3.1.2) 

and the fitting parameters in Table 7.4.6. 

The value of 𝑘𝑝 are {0.66,0.811, 0.88} for the {𝑇𝑜𝑝,𝑀𝑖𝑑𝑑𝑙𝑒, 𝐵𝑜𝑡𝑡𝑜𝑚} zones. 

 

8.4.3.2.3 Gaussian Standard Deviation 

The Gaussian standard deviation 𝜎𝑑𝑒𝑣  of the maximum stress location distribution is 

estimated using the built empirical model given by Equation 7.5.7 and normalised by 

the particle length (see Equation 7.2.15): 

 𝜎𝑑𝑒𝑣 =
1

2
((ln 𝜎)𝑒 . 𝑓𝑠. (𝑓.𝛼𝑝 + 𝑔))

𝑏

 8.4.4 

Where 𝜎𝑑𝑒𝑣  is expressed as a function of the normal stress applied 𝜎, the particle 

aspect ratio 𝛼𝑝 and the solid volume fraction 𝑓𝑠 = 0.24 (see Chapter 8.4.3.1.2). The 

values of fitting parameters are given in Table 7.5.3 for parameter 𝑏 and in Table 7.5.7 

for parameters 𝑒, 𝑓 and 𝑔. 

𝜎𝑑𝑒𝑣  is inversely proportional to both aspect ratio 𝛼𝑝 and normal stress applied 𝜎 (see 

Figure 8.4.3). The maximum value is 0.445 for 𝛼𝑝 = 1 and 𝜎 = 34.3𝑃𝑎 in the top zones 

{7, 8, 9}, whilst the minimum value is 0.226 for 𝛼𝑝 = 15 and 𝜎 = 172𝑃𝑎 in the bottom 

zones {1, 2, 3}. 
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Figure 8.4.3: Gaussian standard deviation of maximum stress location for the 

different aspect ratios 𝛼𝑝 and the different zones along bed height (top, middle and 

bottom). 

 

8.4.3.3 Extent of Breakage 

The extent of breakage 𝐵 is then calculated from the experimentally measured Weibull 

parameters 𝜆𝑏 and 𝑘𝑏  of the breakage strength distribution of the β-LGA crystals (see 

Chapter 8.4.2.1), and the Weibull parameters 𝜆𝑝 (see Chapter 8.4.3.2.1) and 𝑘𝑝 (see 

Chapter 8.4.3.2.2) of the particle internal stress distribution for the different sub-groups 

of aspect ratio in each of the 9 zones using the created probabilistic model (see 

Equation 8.2.3). 

The extent of breakage 𝐵 increases with both aspect ratio 𝛼𝑝 and normal stress 

applied 𝜎 (see Figure 8.4.4). The minimum value is 1.25𝐸 − 10 for 𝛼𝑝 = 1 and 𝜎 =

34.3𝑃𝑎 in the top zones {7, 8, 9}, whilst the maximum value is 2.48𝐸 − 05 for 𝛼𝑝 = 15 

and 𝜎 = 172𝑃𝑎 in the bottom zones {1, 2, 3}. 

20%

25%

30%

35%

40%

45%

0 2 4 6 8 10 12 14 16

σ
d

ev

Aspect ratio αp

Top

Middle

Bottom



 Chapter 8: Prediction of Particle Breakage for Agitated Drying Conditions   

259 

 

 

Figure 8.4.4: Extent of breakage 𝐵 for the different aspect ratios 𝛼𝑝 and the different 

zones along bed height (top, middle and bottom). 

 

8.4.3.4 PARD by Impeller Rotation 

The strain per impeller rotation 𝛾𝑟𝑜𝑡 , the normal stress 𝜎 and the stress ratio 𝜑 are 

different for the 9 zones of the studied AFD, so the PBM is applied for each zone 

separately to obtain the different PARD for each unit of strain applied. The total bed 

PARD at 𝐼 impeller rotations is then obtained by averaging the PARD of the 9 zones 

at the corresponding amount of strain experienced 𝛾𝑧 (𝐼) in zone 𝑧: 

 𝛾𝑧 (𝐼) = 𝐼. 𝛾𝑟𝑜𝑡 ,𝑧  8.4.5 

If the value of strain 𝛾 experienced in a zone for a given number of impeller rotations 

is not a natural number, an interpolation of the PARD is performed between the two 

closest values of 𝛾. 
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8.4.4 Model Calibration 

The model is calibrated against experimental AFD data by adjusting the number of 

events of breakage per strain 𝑁𝐵 (see Equation 8.2.4). With a step of 10, 𝑁𝐵 = 220 

gives the maximum coefficient of determination 𝑅2 = 0.967 (see Figure 8.4.5). 

 

Figure 8.4.5: Coefficient of determination 𝑅2 of the model fitting on experimental AFD 

data for different numbers of events of breakage per strain 𝑁𝐵. 

The volume fraction for aspect ratio 𝛼𝑝 = 2 reaches a steady state in both calibrated 

model and experimental results (see Figure 8.4.6). Moreover, the curves of aspect 

ratio 𝛼𝑝 = 1 and 𝛼𝑝 = 3 cross around the same order of magnitude of impeller rotations 

in both cases.  

Differences between the prediction and experimental results can be observed. The 

steady state of aspect ratio 𝛼𝑝 = 2 is about 54% in experiments whilst it is only 51% 

in the prediction. Also, the steady state of 𝛼𝑝 = 2 is reached earlier in experiments. 

Furthermore, the curves of aspect ratio 𝛼𝑝 = 1 and 𝛼𝑝 = 3 cross at a volume fraction 

of 20% in the model prediction, whilst it is around 17% in experiments. 
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Figure 8.4.6: PARD results from calibrated model (PBM) and dry AFD experiment 

(Exp) for an increasing number of impeller rotations 𝐼 (data are displayed for 𝛼𝑝 ≤ 6). 

Data for model-experiment comparison are in Appendix 14 & Appendix 15. 

The model estimation for sub-groups with aspect ratio 𝛼𝑝 ≥ 4 is in good agreement 

with experimental values, with slightly higher values for experiments. Indeed, the final 

volume fractions at 𝐼 ≈ 140𝑘 impeller rotations for 𝛼𝑝 = {4, 5, 6} are {6.7%, 2.9%,1.9%} 

in experiments and {4.8%, 1.6%, 0.43%} in predictions. 

 

8.4.5 Prediction for Process Scale-up 

The model is now calibrated and can be used to predict the breakage of particles for 

different input parameters such as in the case of process scale-up. 

The PSL Maxi Lab AFD is here considered [337] with a particle bed volume of 5𝐿. The 

cake height is 10𝑐𝑚 and the cake radius is 12.6𝑐𝑚. The particle bed is divided into 9 

zones of equal volume in the same fashion as in Chapter 8.4.1. The radial distance of 

the centre of the {𝐼𝑛𝑛𝑒𝑟,𝑀𝑖𝑑𝑑𝑙𝑒, 𝑂𝑢𝑡𝑒𝑟} zones is {36.4, 87.9, 115} 𝑚𝑚 and the height 

of the centre of the {𝐵𝑜𝑡𝑡𝑜𝑚,𝑀𝑖𝑑𝑑𝑙𝑒, 𝑇𝑜𝑝} zones is {16.7,50, 83.3} 𝑚𝑚. 
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The properties of the considered crystals are the same than the studied β-LGA sample 

(see Chapter 8.4.2) with the Weibull parameters of their breakage strength distribution 

𝜆𝑏 = 27.0𝑀𝑃𝑎 and 𝑘𝑏 = 1.95. The initial PARD is also identical to the one measured 

at the beginning of the dry AFD experiment (see Appendix 14). 

The amount of strain per impeller rotation 𝛾𝑟𝑜𝑡  scales with the radial distance and is 

calculated for each of the 9 zones by cross-multiplication based on the values in Hare’s 

paper [108]  to correspond to the radial dimensions of the Maxi Lab in the same fashion 

as in Chapter (see Table 8.4.2). 

Table 8.4.2: Strain per impeller rotation 𝛾𝑟𝑜𝑡  in the 9 zones of Hare’s AFD [108] and 

calculated for the scale-up Maxi Lab AFD. 

𝛾𝑟𝑜𝑡 Hare et al. 2011 Maxi Lab AFD 

Height \ Radius Inner Middle Outer Inner Middle Outer 

Top 0.905 1.04 1.90 1.83 2.75 5.09 

Middle 1.30 1.69 2.61 2.63 4.46 6.99 

Bottom 1.41 1.92 2.61 2.85 5.07 6.99 

The solid fraction of the bed remains unchanged at 𝑓𝑠 = 0.24. Equation 8.4.1 is used 

to calculate the normal stress which equals {286, 172, 57.2} 𝑃𝑎 for the 

{𝐵𝑜𝑡𝑡𝑜𝑚,𝑀𝑖𝑑𝑑𝑙𝑒, 𝑇𝑜𝑝} zones. The stress ratio is the same in all zones and the value 

obtained in Chapter 8.4.3.1.3 is taken with 𝜑 = 0.667. 

The mathematical models used to calculate the values of the Gaussian standard 

deviation 𝜎𝑑𝑒𝑣  of the maximum stress location distribution and the Weibull parameters 

of the particle internal stress distribution 𝜆𝑝 and 𝑘𝑝 are the same than the ones used 

in Chapter 8.4.3.2. The calculated value of 𝑘𝑝 are {0.731, 0.878,0.944} for the 

{𝑇𝑜𝑝,𝑀𝑖𝑑𝑑𝑙𝑒, 𝐵𝑜𝑡𝑡𝑜𝑚} zones. The calculated values of 𝜆𝑝 and 𝜎𝑑𝑒𝑣  for all aspect ratios 

in each zone are respectively in Appendix 17 and Appendix 18. The extent of breakage 
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𝐵 is calculated using the same method than in Chapter 8.4.3.3 and the values are in 

Appendix 19. 

The predicted PARD shows that the volume fraction for particles with 𝛼𝑝 = 2 augments 

and reaches a steady state at 𝐼 = 12𝑘 impeller rotations before decreasing (see Figure 

8.4.7). The volume fraction of particles with 𝛼𝑝 ≥ 3 decreases before reaching a 

plateau after 𝐼 = 20𝑘 for particles with 𝛼𝑝 ≥ 4. Whilst elongated particles are breaking, 

the volume fraction of particles with 𝛼𝑝 = 1 keeps increasing throughout agitation. 

 

Figure 8.4.7: PARD results from the application of the calibrated model to process 

scale-up for an increasing number of impeller rotations 𝐼 (data are displayed for 𝛼𝑝 ≤

6). 

 

8.4.6 Discussion 

The created PBM estimates the particle breakage in lab-scale AFD. A calibration of 

the breakage rate is needed and is multiplied by a factor × 220 to fit the observed 

breakage trend in experimental data. Several assumptions have been decided at the 

multiple steps of the model creation which can impact the calibration factor. 
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8.4.6.1 Particle Properties 

8.4.6.1.1 Selected Crystals for AFM Experiments 

The crystals used for the assessment of the breakage strength distribution of the β-

LGA sample using AFM [18] in Chapter 4 are selected for their ideal shape. Indeed, 

all used crystals are chosen among the biggest and most elongated ones as they are 

easier to handle during experiments. Due to their aspect, it is probable that these 

crystals haven’t undergone breakage prior to the AFM experiments and have then 

experienced minimum fatigue compared to the other particles crystallised. Moreover, 

their intact aspect suggests that these crystals could be stronger than the particles 

casted out as no crack is visible (see Figure 4.3.5). As discussed in Chapter 4.4.2, the 

mean breakage strength obtained from the AFM experiments is in the order of 

magnitude of the reported values for this material, though slightly higher with a mean 

value of 29.2𝑀𝑃𝑎 in the AFM experiments (see Appendix 6) compared to 13 − 17𝑀𝑃𝑎 

in MacLeod’s paper [26]. Therefore, the breakage strength distribution for the β-LGA 

sample may have been over-estimated due to the lack of representativeness of the 

selected crystals regarding the particle population crystallised. A lower breakage 

strength would have increased the extent of breakage calculated for the different 

zones and aspect ratio sub-groups, which would have accelerated the breakage of 

particles. In fact, the extent of breakage is highly sensitive to the breakage strength 

distribution due to the joint density function method (see Chapter 8.2.1), and dividing 

the Weibull scale parameter 𝜆𝑝 of particle internal stress distribution by 10 multiplies 

the extent of breakage 𝐵 by a factor × 89 (see Figure 8.4.8). 

If the Weibull scale parameter is selected as the average of the reported values for β-

LGA crystals [26] at 𝜆𝑝 = 15𝑀𝑃𝑎, it multiplies the extent of breakage by a factor × 3.2. 
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Figure 8.4.8: Extent of breakage 𝐵 given by the different aspect ratios for the 

different zones along bed height (top, middle and bottom) and a Weibull scale 

parameter 𝜆𝑝 at 27𝑀𝑃𝑎 and 2.7𝑀𝑃𝑎. 

An alternative to the AFM single crystal breakage experiment could be to perform 

uniaxial compression of the β-LGA crystals both experimentally and in simulation. The 

extent of breakage 𝐵 can be obtained by monitoring the PSD in experiments for 

different loads applied, and the particle internal stress distribution can be calculated in 

the simulations for the same conditions. Using the joint density function approach (see 

Chapter 8.2.1), the breakage strength distribution of the β-LGA crystals could then be 

determined. 

 

8.4.6.1.2 Polydispersity 

The polydispersity, observed is AFD experiments in Chapter 3, has not been 

investigated in the DEM shear cell simulations where the particle beds are 

homogeneous. Polydispersity may change the number of contacts and the contact 

forces on particles [211], which is likely to impact the particles internal stress. The 

models used in the PBM are empirical and don’t account for the contact properties, 
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therefore this may introduce a bias in the calculation of the extent of breakage. The 

theoretical model built for the prediction of the Weibull scale parameter 𝜆𝑝 (see 

Equation 7.3.5) is assumed valid in polydisperse case as it accounts for both the 

number of contacts and the contact forces. Moreover, this model is built based on the 

Simple Beam Bending theory which includes a shape factor (see Chapter 5.4.1.1) and 

therefore is adaptive to different crystal shapes (e.g. plates, cuboids, tablets) and size.  

 

8.4.6.1.3 Particle Size 

The Hertz-Mindlin contact model [219, 220, 326] (see Chapter 5.2.1.3) used in the 

DEM simulations doesn’t account for inter-molecular and electrostatic forces (i.e. Van 

der Waals, coulombic and hydrogen bonds) related to crystal surface chemistry. These 

forces would become significant for dry particles below a certain size (typically < 1𝜇𝑚) 

and for a strong compaction [62]. Therefore, the mathematical models built from the 

performed simulations may only be valid for a minimum particle size. 

The analysis of correlations for experimental AFM results in Chapter 4.4.3 highlighted 

the fact that thinner particles have a higher breakage strength (see Table 4.4.2). 

Indeed, the sensitivity of a particle to mechanical stress scales with its size [16]. This 

size effect isn’t considered in the PBM with the empirical models used and with the 

segmentation of particles by aspect ratio. A refined PBM prediction could be obtained 

by considering this size effect in the breakage kernel and analysing the particles as a 

PSD instead of a PARD. 

 

8.4.6.1.4 Mechanical Properties 

The extent of breakage in the PBM remains constant with agitation for each aspect 

ratio class: all the particles having the same aspect ratio and located in a particular 

zone have the same probability of breakage. Because there is a heterogeneity in the 

particles breakage strength, it can be argued that the weakest particles would break 

first, which would modify the breakage rate with applied agitation as the unbroken 

particles would be in average stronger than at the start of agitation. If this phenomenon 
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was considered in the PBM, the breakage rate would decrease with time, which is 

supported by AFD experiments where a steady state of PSD is achieved with sufficient 

work applied on the particle bed [8, 9, 28]. This isn’t the case in the PBM prediction 

where particles would continue to break. Nevertheless, this phenomenon needs to be 

balanced with the fact that particles experience cracks and fatigue during agitation, 

which would tend to make them weaker with increasing number of impeller rotations. 

The particles are also modelled as rigid in DEM shear cell simulations because their 

Young’s modulus is significantly high (𝐺𝑃𝑎) and their mechanical behaviour is reported 

comparable to flexible fibres with the corresponding elasticity [228]. If the particles are 

in the order of magnitude of 100𝑀𝑃𝑎 or lower, the use of flexible fibres in the 

simulations would then be more adapted and influence the particle internal stress 

distribution, as it is reported that the particle elastic modulus would affect the breakage 

rate of elongated particles [55]. 

 

8.4.6.2 Models Used in PBM 

Mathematical models are created in Chapter 7 and used in the PBM for the estimation 

of the Weibull parameters of particle internal stress distribution (see Equation 7.3.5 

and Equation 7.4.3) and the Gaussian standard deviation of the maximum stress 

location distribution (see Equation 8.4.4). These models are built based on the output 

of DEM shear cell simulations performed and analysed in Chapter 6.  

The particles sheared in these simulations have a particular size and shape which 

have an impact on their experienced internal stress for the different mechanical 

environments. The clumped-sphere approach of particle modelling may have 

increased the number of contacts particles due to their artificially rough surfaces 

compared to particles made of flat surfaces [199-203]. Nevertheless, it is reported that 

a clumped-sphered shape creates a particle roughness that is more representative to 

real particles [205]. Also, a cylindrical shape of particles is assumed in the use of Euler 

Equation of Motion for the calculation of particle internal stress (see Chapter 5.4.1.2), 

whereas there is a heterogeneity of shapes in real particle bed. 
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The particle internal stress is calculated discretely for different locations on the particle 

surface using Euler Equation of Motion, and the error associated with this selection of 

discretisation parameters is 1.37%, which may have contributed to the error 

propagation. 

Moreover, the accuracy of the mathematical models used in the PBM is assessed 

against the simulation data and there is an error associated with the use of these 

empirical models. The model used for the prediction of the Weibull scale parameter 𝜆𝑝 

has an error of 9.96% whilst the error for the prediction of the Weibull shape parameter 

𝑘𝑝 is 7.07%, and 6.12% for the Gaussian standard deviation 𝜎𝑑𝑒𝑣 . 

 

8.4.6.3 Experimental Error 

A significant difference is observed in the distribution of volume fraction by aspect ratio 

in the dry particle bed between the end of filtration (“𝑜𝑣𝑒𝑟𝑛𝑖𝑔ℎ𝑡 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛”) and after 

30 impeller rotations (“1𝑚𝑖𝑛 30𝑟𝑝𝑚”) (see Appendix 14). For example, the volume 

fraction of the particles with aspect ratio 𝛼𝑝 = 2 increases from 41% to 47%. These 

results, obtained from Morphologi G3 method and analysed with a dedicated script 

[294], suggest that an important breakage phenomenon occurred during the first 30 

impeller rotations, which is not observed in the laser diffraction data (see Chapter 

3.3.2). In fact, 18.8𝑘 impeller rotations are needed before observing a significant 

particle breakage in the laser diffraction data (see Figure 3.3.3). Thus, it is possible 

that this difference observed in Morphologi G3 results is due to a sampling error. If the 

PBM is applied with the PARD measured for “1𝑚𝑖𝑛 30𝑟𝑝𝑚” as initial distribution and 

keeping the calibrated number of events of breakage per strain 𝑁𝐵 = 220, the volume 

fraction for the different aspect ratio sub-groups compares better with the experimental 

results (see Figure 8.4.9) with a higher coefficient of determination 𝑅2 = 0.982. 
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Figure 8.4.9: PARD results from calibrated model (PBM) and dry AFD experiment 

(Exp) for an increasing number of impeller rotation 𝐼 (data are displayed for 𝛼𝑝 ≤ 6). 

The initial PARD is taken as the one measured at 𝐼 = 30. Data for model-experiment 

comparison are in Appendix 14 & Appendix 16. 

Also, the segregation of particles by aspect ratio from Morphologi G3 data may have 

amplified the error of volume fractions due to the reduced number of bins: 15 in the 

PARD compared to a 31 × 31 cell grid PSD. 

A possible solution is to perform several Morphologi G3 measurements at each stage 

of agitation to account for the sampling error. Ideally, several agitation experiments 

are also needed to assess the experimental error.  

Moreover, the particles used in AFM and AFD experiments are both produced using 

the same crystallisation method, however they are not taken from the same 

crystallisation batch. Here, the assessment of a possible experimental error in the 

crystallisation process might also be needed. 
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8.4.6.4 Breakage Mechanisms 

There are two main particle breakage mechanisms in quasi-static flow regime: 

fragmentation where a particle is broken into big subsequent particles and attrition 

when small fragments called fines are chopped from the primary particle [50]. As 

observed in the AFD experiments in Chapter 3, the agitation of dry particles promotes 

both fragmentation and attrition, whereas particles almost solely break from 

fragmentation in wet bed. This is due to the frictional contacts and gripping between 

particles in the dry case, whilst the moisture content present at inter-particulate 

contacts in the form of liquid bridges acts as a lubricant [26]. 

In the created PBM, the breakage of particles is an ideal fragmentation where the 

cleavage plane is normal to the particles neutral axis. The attrition isn’t considered in 

the PBM which would affect both the final PSD and the breakage rate for the different 

sub-groups of aspect ratio. Moreover, this PBM doesn’t compute the breakage of 

particles with an aspect ratio 𝛼𝑝 = 1 as the models used in the PBM are built to predict 

the breakage of elongated particles. The particles with 𝛼𝑝 = 1 are expected to break 

in reality and create fragments that would have different values of aspect ratio. This 

phenomenon is not included in the PBM which can explain the over-estimation of the 

volume fraction for 𝛼𝑝 = 1 and under-estimation for 𝛼𝑝 = 2 towards the end of agitation 

(see Figure 8.4.6). The analysis of PSD data from AFD experiments in Chapter 3.3.4 

allowed to quantify the fines with around 3% volume fraction (see Figure 3.3.8), which 

is typically reported in DEM agitated dryer using breakage kernels [191]. 

As a solution, an attrition model such as the one presented in Hare’s paper [108] could 

be implemented in the PBM to account for this breakage mechanism present in the 

agitation of dry particle bed. Considering attrition into the model is expected to 

increase the volume fraction of particles with aspect ratio 𝛼𝑝 ∈ [1,2] as it is the 

common shape of fines. 

 

8.4.6.5 Mechanical Environment 

The normal and shear stresses used as PBM input are both determined by first 

approximation approach. The hydrostatic pressure is taken as the normal stress and 
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calculated from the weight of the particle bed at the different zone depth (see Chapter 

8.4.3.1.2). The average shear stress is obtained from the measured torque and the 

particle bed volume (see Chapter 8.4.3.1.3) using the Darelius equation [152]. The 

stress ratio is then determined using Equation 2.4.6. 

It has been demonstrated that the agitation promoted by the rotation of the impeller 

varies the stresses in the different zones of the bed depending on the angular position 

of the impeller [108]. Besides, both strain rate and stresses experienced by particles 

in zones increase in the vicinity of the impeller. Therefore, the stresses taken as PBM 

input may be under-estimated regarding the level of stress particles experience when 

most strain is applied i.e. when breakage occurs predominantly according to the model 

(see Chapter 8.2.2). Also, it is expected that the geometries of the impeller and the 

AFD have an impact on both stresses and strain in the different zones. There is no 

vertical movement of the impeller during agitation in the performed experiments (see 

Chapter 3) and this functionality of AFD can have an influence on particle breakage 

as it promotes shear stress in different zones of the bed. 

A possible solution is to obtain the stresses and strain in the different zones for 

different angular rotation of the impeller from simulations like in Hare’s paper [108] and 

apply the created PBM with fractions of impeller rotation as calculation step rather than 

for a full rotation. This method could increase the accuracy of the model but will require 

more computational power. 

 

8.4.6.6 Particle Flow 

When submitted to gravity, particles in an agitated bed segregate mechanically by size 

with the smallest particles migrating towards the bottom of the bed and the biggest 

ones towards its surface [191]. The flow of particles between the different zones aren’t 

included in the created PBM which operates particle breakage and PARD calculation 

in zones as closed systems. 

If a particle flow model was implemented in the PBM to account for the segregation of 

particles by size, the fines created would be transferred deeper in the bed to the zones 

with a higher normal stress. In opposite, the most elongated particles (usually among 
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the biggest) would be transferred the higher zones with a lower normal stress. This 

phenomenon would then reduce the breakage of high aspect ratio particles whilst 

accelerating the breakage of shorter ones. Also, both particle breakage and flow are 

expected to increase the solid fraction within the bed, particularly in the deeper zones, 

which would affect the PBM predictions as it is taken as model input.  

 

8.4.6.7 Future Work 

The created PBM predicts the distribution of volume fraction by particles aspect ratio 

regardless of their size. Indeed, the particles are assumed to break in the same fashion 

if they have the same elongation. As a future work, the PBM could be applied using 

the PSD grid obtained with Morphologi G3 as input to account for the particle size. If, 

in addition, an attrition model is implemented into the PBM, the breakage of particles 

could be computed along both particle width and length, which would allow a refined 

prediction of PSD with agitation and would reflect both aspect ratio and size reduction 

with particle breakage. 

Also, the predictive models created in Chapter 7 are built from the analysis of DEM 

shear cell simulation output in Chapter 6 which are performed on dry particles only. 

The influence of moisture content is not investigated in this study and is a possible 

future work. Nevertheless, it can be assumed that the lubrication created from liquid 

bridges at inter-particle contacts would significantly reduce the shear stress and thus 

the stress ratio during agitation, as it is confirmed by an important decrease of the 

torque measured for AFD experiments on wet bed [1]. The addition of moisture content 

also increases the weight of the bed and thus the normal stress on particles calculated 

from the hydrostatic pressure. The actual PBM could then be used accordingly with 

the modified normal stress and stress ratio, and model prediction can be compared 

with experimental measurements. 
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8.5 Conclusion 

A probabilistic breakage kernel is created and calculates the extent of breakage of 

particles for different particle properties and mechanical environments. This breakage 

kernel is implemented into a population balance model (PBM) to estimate the particle 

size distribution within an agitated filter dryer (AFD) during the agitation of elongated 

dry particles. The model is calibrated against experimental results and the impact of 

input parameters on the accuracy of the model is discussed. The calibrated model is 

then used for the prediction of the breakage of the same particles for the scale-up of 

the drying process. This method can provide insights to process operators for the 

selection of drying equipment to minimise particle breakage phenomenon in the 

manufacturing of an API. 
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9 Conclusions and Future Work 

An innovative method combining experimental work, DEM simulations and 

mathematical modelling is presented to predict the particle size distribution of crystals 

being agitated in a dry bed. 

Glutamic acid is the studied material and is crystallised into its elongated form (β-

LGA). The breakage of these crystals within a lab-scale agitated filter dryer (AFD) is 

examined by monitoring the particle size distribution (PSD) throughout agitation for 

both dry and wet cases. The use of two-dimensional PSD measurement (Morphologi 

G3) allows the observation of the reduction of both particle size and elongation. Both 

particle attrition and fragmentation are detected in the dry bed whilst particles almost 

solely break by fragmentation in the wet case. The quasi-absence of attrition in the 

wet case is due to the lubrication effect caused by the presence of liquid bridges at 

inter-particulate contacts. 

The breakage strength of a sample of β-LGA crystals is assessed using a novel 

published method [18] involving atomic force microscopy (AFM). The crystals are 

glued on a metallic support as a cantilever and the AFM probe applies an end load on 

the crystals individually until they break. The Euler-Bernoulli Beam theory is used to 

calculate the breakage strength of each crystal and a breakage strength distribution is 

obtained. This distribution follows a Weibull model and the two fitting parameters are 

determined by regression with the scale parameter 𝜆𝑏 = 27.0𝑀𝑃𝑎 and the shape 

parameter 𝑘𝑏 = 1.95. 

A shear cell is built using distinct element modelling (DEM) and the behaviour of a 

sheared dry particle bed is observed in simulations. The shear cell is populated with 

2000 elongated particles and periodic boundaries are used in two axes to simulate an 

infinite shear band. An inductive study is performed to optimise the simulation setup 

ensuring that the particles are sheared in a quasi-static flow regime, that the strain is 

effective on the whole particle bed, and that the normal stress remains constant 

throughout shearing. The particles touching the walls have a different behaviour from 

the rest of the bed and their results are not considered for further analysis. An attempt 

to reduce the time required to perform a simulation is made by scaling down the 

particles Young’s modulus, however it disrupted the bed behaviour in an excessive 
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way. The two methods reported for the calculation of the particles internal stress are 

used and it is concluded that the Euler Equation of Motion is preferable to the Simple 

Beam Bending for the sheared particles in the performed simulations. 

DEM shear cell simulations are performed for different particle shapes and mechanical 

environments in monodisperse bed and the internal stress is determined for each 

particle using the Euler Equation of Motion. An inductive study is undertaken where 

the aspect ratio of particles, modelled using clumped-sphere approach, and the normal 

stress is varied in both uniaxial compression and shearing phase. An analysis of the 

result data allows to identify correlations between the key variables describing the 

particle bed behaviour and explanations are brought based on principles of 

mechanical theory to support the observations. The distribution of particles internal 

stress within the shear cell follows a Weibull model and the fitting parameters are 

obtained for the different simulations. The scale parameter 𝜆𝑝 is impacted by both the 

number of contacts and contact forces, resulting in 𝜆𝑝 increasing with both particle 

aspect ratio and normal stress applied. The shape parameter 𝑘𝑝 increases with aspect 

ratio and is inversely proportional to the normal stress applied. The distribution of 

maximum stress location on the particles neutral axis is calculated and follows a 

Gaussian model. The mean value of the model is half of the particle length, and the 

standard deviation 𝜎𝑑𝑒𝑣  increases with the number of contacts on the particle and is 

inversely proportional to the particle aspect ratio. 

Mathematical models are built for the prediction of the Weibull parameters of the 

particle internal stress distribution (𝜆𝑝 and 𝑘𝑝) and the Gaussian standard deviation of 

maximum stress location on particle neutral axis (𝜎𝑑𝑒𝑣 ). A theoretical model predicting 

𝜆𝑝 is created based on the Simple Beam Bending equation and calibrated to fit the 

output data of the performed DEM shear cell simulations. A series of empirical models 

are also created to predict these parameters for different data inputs: some models 

require simulation data and are more accurate, whilst other models simply require bulk 

parameters and are less precise. These various models are designed for different use 

and allow to avoid the implementation of the resource-consuming Euler Equation of 

Motion. It is therefore possible to estimate the internal stress experienced by dry 

particles in a sheared bed directly without the need to perform simulations or using 
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coding to implement calculation methods. Overall, 12 models are built having a mean 

error ranging from 0.68% to 10.8%. 

Finally, a probabilistic breakage kernel is built by calculating the joint density function 

of the particle internal stress distribution and the breakage strength distribution of the 

studied particles. The kernel is implemented into a designed population balance model 

(PBM) to predict the breakage of β-LGA crystals during dry agitation in a lab-scale 

AFD. The PBM computes the breakage of particles by fragmentation in 9 zones of a 

particle bed in an AFD having different radial distance and height. The Weibull 

parameters (𝜆𝑏 and 𝑘𝑏) obtained from the AFM experiments on β-LGA crystals are 

selected for the breakage strength distribution and the created empirical mathematical 

models are used to obtain the Weibull parameters (𝜆𝑝 and 𝑘𝑝) of the particle internal 

stress distribution for the different particle aspect ratios, normal stress, and stress ratio 

in the different zones. The location of breakage on a particle is determined in a 

probabilistic fashion using the created empirical mathematical model to obtain the 

Gaussian standard deviation (𝜎𝑑𝑒𝑣 ) from the particle aspect ratio, normal stress, and 

solid volume fraction in the different zones. The breakage rate is expressed as a 

function of strain experienced by particles for an impeller rotation in each of the zones. 

The PBM estimates the PARD, distribution of volume fraction for the different particle 

aspect ratios, with increasing number of impeller rotation. The model is then calibrated 

against experimental results by varying the value of the number of breakage event per 

strain (𝑁𝐵). The impact of the different input parameters on the model calibration are 

investigated, and it is concluded that the model is highly sensitive to its inputs (e.g. 

particle properties, mechanical environment) and the experimental results used for 

calibration. As a final step, the calibrated model is used to predict the breakage of the 

same β-LGA crystals for the scale-up of agitation. 

In conclusion, a novel method is presented to predict the PSD during the agitation of 

a dry bed, and the created model is available to use by researchers and industrials to 

predict the breakage of particles during the drying process for any equipment and 

particle properties. This model could be used after calibration to predict particle 

breakage for the process scale-up in industry, giving insights to process operators for 

the selection of drying equipment to minimise the particle breakage phenomenon. 
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Possible future work is the inclusion of an attrition model to the PBM to account for the 

creation of fines, especially in dry particle beds. Also, DEM shear cell simulations can 

be performed with a different contact model to mimic the lubrication and adhesion 

effects of liquid bridges. The mathematical models created can then be refined to 

account for the moisture content in the bed allowing the PBM to compute the breakage 

of particles during the drying process with varying level of wetness. 
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Appendixes 

Figures 

Appendix 1: Vessel apparatus used for the crystallisation of glutamic acid in their 

elongated β form. 
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Appendix 2: Zeiss Axioskop 40 light microscope mounted with a Zeiss Axiocam 512 

color camera used for the observation of β-LGA crystals. 
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Appendix 3: Light microscopy images of the different samples of β-LGA crystals 

collected during the dry agitation experiment (see Table 3.2.1). 
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Appendix 4: Light microscopy images of the different samples of β-LGA crystals 

collected during the wet agitation experiment (see Table 3.2.2). 
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Tables 

Appendix 5: Experimental data and calculated mechanical properties for 52 crystals. 

Crystal 

No 

Probe 

No 

L, crystal 

length  

(m) 

w, crystal 

width  

(m) 

h, crystal 

height 

(m) 

kT, 

crystal/probe 

system 

spring (N/m) 

E,  

Young's 

modulus 

(Pa) 

nsteps, 

motor 

steps 

LB,  

crystal 

broken 

length 

(m) 

FB, 

breakage 

force (N) 

σB, 

breakage 

strength 

(Pa) 

1 1 1.71E-04 6.10E-05 1.40E-05 29.43 4.08E+09 54 1.40E-4 7.41E-04 5.18E+07 

2 2 1.59E-04 8.67E-05 2.95E-05 65.63 7.07E+08 104 9.97E-5 3.18E-03 2.52E+07 

3 1 2.04E-04 5.34E-05 2.95E-05 40.90 1.28E+09 56 1.87E-4 1.07E-03 2.59E+07 

4 1 3.71E-04 6.76E-05 4.39E-05 21.15 8.48E+08 107 1.99E-4 1.05E-03 9.69E+06 

5 1 4.85E-04 5.97E-05 3.89E-05 40.04 6.53E+09 137 4.03E-4 2.56E-03 6.86E+07 

6 3 2.50E-04 6.37E-05 3.59E-05 93.63 3.74E+09 45 2.50E-4 1.96E-03 3.59E+07 

7 3 1.02E-04 3.94E-05 3.69E-05 102.22 4.50E+08 69 9.37E-5 3.29E-03 3.45E+07 

8 3 6.07E-04 7.66E-05 5.60E-05 32.18 2.55E+09 71 3.56E-4 1.06E-03 9.45E+06 

9 3 3.94E-04 7.64E-05 4.07E-05 32.57 1.84E+09 110 3.18E-4 1.67E-03 2.51E+07 

10 4 2.44E-04 7.21E-05 3.84E-05 66.47 1.42E+09 75 2.19E-4 2.32E-03 2.88E+07 

11 5 1.53E-04 8.29E-05 4.07E-05 168.18 2.72E+09 57 1.21E-4 4.47E-03 2.37E+07 

12 5 1.92E-04 7.05E-05 2.80E-05 118.14 5.31E+09 37 1.58E-4 2.04E-03 3.50E+07 

13 5 1.45E-04 6.94E-05 2.29E-05 63.12 1.34E+09 33 1.20E-4 9.71E-04 1.92E+07 

14 5 2.88E-04 4.72E-05 2.30E-05 32.77 6.54E+09 43 2.23E-4 6.57E-04 3.52E+07 

15 5 2.87E-04 5.98E-05 2.54E-05 33.71 3.90E+09 40 2.21E-4 6.28E-04 2.15E+07 

16 5 1.48E-04 8.26E-05 2.80E-05 179.23 1.24E+10 76 1.38E-4 6.35E-03 8.11E+07 
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17 5 1.44E-04 6.74E-05 2.87E-05 121.77 2.32E+09 24 1.39E-4 1.36E-03 2.05E+07 

18 5 2.69E-04 4.50E-05 2.70E-05 38.66 4.25E+09 37 2.08E-4 6.67E-04 2.54E+07 

19 5 1.14E-04 8.57E-05 4.46E-05 169.34 8.57E+08 68 1.07E-4 5.37E-03 2.01E+07 

20 5 2.71E-04 5.93E-05 3.59E-05 63.57 2.68E+09 46 1.61E-4 1.36E-03 1.72E+07 

21 5 1.84E-04 7.04E-05 4.20E-05 114.26 1.27E+09 43 1.32E-4 2.29E-03 1.46E+07 

22 6 1.73E-04 7.16E-05 3.69E-05 136.72 2.51E+09 46 1.73E-4 2.93E-03 3.13E+07 

23 6 2.34E-04 7.31E-05 2.44E-05 57.38 3.85E+09 46 2.16E-4 1.23E-03 3.65E+07 

24 9 1.70E-04 5.97E-05 1.91E-05 45.01 2.73E+09 27 1.70E-4 5.66E-04 2.65E+07 

25 9 2.73E-04 7.63E-05 3.69E-05 40.72 1.08E+09 47 2.73E-4 8.92E-04 1.40E+07 

26 9 1.59E-04 3.28E-05 6.04E-05 53.70 1.63E+08 34 1.23E-4 8.51E-04 5.27E+06 

27 10 3.31E-04 7.12E-05 3.69E-05 102.98 8.63E+09 64 2.43E-4 3.07E-03 4.63E+07 

28 10 3.29E-04 4.32E-05 3.05E-05 15.05 1.88E+09 140 3.00E-4 9.82E-04 4.39E+07 

29 10 1.82E-04 3.30E-05 2.67E-05 24.84 1.08E+09 66 1.39E-4 7.64E-04 2.71E+07 

30 10 3.14E-04 6.51E-05 3.71E-05 17.88 7.37E+08 80 2.86E-4 6.67E-04 1.28E+07 

31 10 3.04E-04 8.32E-05 4.20E-05 53.31 1.33E+09 115 3.04E-4 2.86E-03 3.55E+07 

32 10 1.73E-04 2.59E-05 4.32E-05 40.81 5.10E+08 76 1.73E-4 1.45E-03 3.11E+07 

33 10 3.12E-04 6.53E-05 3.30E-05 51.05 3.53E+09 64 2.60E-4 1.52E-03 3.33E+07 

34 11 2.01E-04 3.87E-05 2.93E-05 56.10 2.58E+09 24 1.77E-4 6.27E-04 2.00E+07 

35 11 1.91E-04 5.19E-05 3.43E-05 75.20 1.60E+09 20 1.74E-4 7.01E-04 1.20E+07 

36 11 3.67E-04 9.59E-05 4.83E-05 116.82 5.12E+09 37 1.85E-4 2.01E-03 9.99E+06 

37 11 1.67E-04 7.51E-05 3.31E-05 88.18 1.09E+09 34 1.67E-4 1.40E-03 1.71E+07 
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38 12 1.70E-04 6.49E-05 2.29E-05 83.39 3.60E+09 63 1.40E-4 2.45E-03 6.06E+07 

39 12 5.90E-04 7.84E-05 3.44E-05 33.58 1.04E+10 120 5.33E-4 1.88E-03 6.48E+07 

40 12 1.79E-04 8.09E-05 3.31E-05 173.66 1.03E+10 48 1.23E-4 3.88E-03 3.24E+07 

41 12 2.02E-04 5.22E-05 2.54E-05 55.80 2.95E+09 50 1.80E-4 1.30E-03 4.16E+07 

42 12 1.28E-04 7.15E-05 3.19E-05 160.59 2.96E+09 49 1.28E-4 3.67E-03 3.88E+07 

43 12 1.83E-04 5.21E-05 3.31E-05 89.40 2.09E+09 32 1.60E-4 1.33E-03 2.25E+07 

44 12 3.65E-04 5.87E-05 3.31E-05 24.41 2.56E+09 109 3.65E-4 1.24E-03 4.24E+07 

45 12 2.86E-04 4.93E-05 3.43E-05 34.65 1.96E+09 67 2.86E-4 1.08E-03 3.19E+07 

46 12 4.57E-04 6.09E-05 3.82E-05 22.79 2.89E+09 120 4.20E-4 1.27E-03 3.61E+07 

47 12 1.17E-04 4.47E-05 6.36E-05 196.03 5.58E+09 50 9.02E-5 4.57E-03 1.37E+07 

48 12 3.86E-04 6.99E-05 3.81E-05 52.94 4.25E+09 59 3.86E-4 1.46E-03 3.31E+07 

49 12 3.24E-04 8.45E-05 3.94E-05 62.34 2.38E+09 70 2.52E-4 2.03E-03 2.34E+07 

50 12 2.11E-04 3.59E-05 2.84E-05 23.87 1.24E+09 62 1.99E-4 6.90E-04 2.85E+07 

51 13 1.21E-04 5.21E-05 4.26E-05 106.26 3.98E+08 22 8.66E-5 1.09E-03 6.00E+06 

52 13 3.14E-04 4.51E-05 3.22E-05 13.58 1.21E+09 44 2.86E-4 2.83E-04 1.04E+07 
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Appendix 6: Descriptive statistical analysis data for the breakage experiment on the 

sample of 52 β-LGA crystals. 

 Minimum Maximum Mean Median Standard Deviation 

𝑙, crystal length (𝜇𝑚) 102 607 252 208 114 

𝑙𝐵, crystal broken length (𝜇𝑚) 86.6 533 211 183 95.3 

𝑤, width (𝜇𝑚) 25.9 95.9 62.7 65.0 15.9 

ℎ, height (𝜇𝑚) 14.0 63.6 34.9 34.3 9.32 

𝐹𝐵 , breakage force (𝑚𝑁) 0.283 6.35 1.84 1.36 1.31 

𝜎𝐵, breakage strength (𝑀𝑃𝑎) 5.27 81.1 29.2 26.8 15.8 

𝐸, Young’s modulus (𝐺𝑃𝑎) 0.163 12.4 3.08 2.53 2.64 
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Appendix 7: Breakage strength distribution data. 

Bin 

Index 

Bin Average 

Value (MPa) 

Bin Average 

Value (Log) 

𝑁𝑏𝑟  Frequency Cumulative 

𝑁𝑏𝑟  

%Cumul Weibull 

%Cumul 

1 6.25 6.80 2 3.8% 2 3.8% 5.57% 

2 8.80 6.94 4 7.7% 6 11.5% 10.57% 

3 12.4 7.09 5 9.6% 11 21.2% 19.56% 

4 17.4 7.24 6 11.5% 17 32.7% 34.56% 

5 24.5 7.39 12 23.1% 29 55.8% 56.24% 

6 34.5 7.54 14 26.9% 43 82.7% 80.02% 

7 48.6 7.69 5 9.6% 48 92.3% 95.66% 

8 68.3 7.83 4 7.7% 52 100% 99.78% 
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Appendix 8: Young’s modulus distribution data. 

Bin 

Index 

Bin Average 

Value (GPa) 

Bin Average 

Value (Log) 
𝑁𝑏𝑟  Frequency 

Cumulative 

𝑁𝑏𝑟  
%Cumul 

Weibull 

%Cumul 

1 0.208 8.32 1 1.9% 1 1.9% 2.84% 

2 0.337 8.53 1 1.9% 2 3.8% 5.60% 

3 0.545 8.74 2 3.8% 4 7.7% 10.87% 

4 0.881 8.95 7 13.5% 11 21.2% 20.53% 

5 1.43 9.15 8 15.4% 19 36.5% 36.80% 

6 2.31 9.36 14 26.9% 33 63.5% 60.00% 

7 3.74 9.57 10 19.2% 43 82.7% 83.96% 

8 6.05 9.78 5 9.6% 48 92.3% 97.41% 

9 9.78 9.99 4 7.7% 52 100.0% 99.93% 
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Appendix 9: Laser diffraction parameters for the different particle samples. 

Sample Description Residual 
Weighted 

Residual 

Laser 

Obscuration 

Valid 

Snaps 

Reported 

Exhaust 

Vacuum 

Pressure 

(bar) 

Wet-B After Filtration 0.79 0.59 2.33 3840 0.287 

Wet-C 8 Impeller Rotations 0.64 0.43 2.81 1655 0.327 

Wet-D 1 min 100 rpm 0.29 0.28 0.38 168 0.364 

Wet-G 142 min 100 rpm 0.21 0.17 2.5 9037 0.348 

Wet-H 204 min 100 rpm 0.24 0.19 2.87 1637 0.316 

Wet-I 987 min 100 rpm 0.3 0.17 2.99 7702 0.271 

Dry-A After Filtration 0.69 0.61 2.36 9182 0.412 

Dry-B Overnight Filtration 0.5 0.36 1.89 10895 0.335 

Dry-B (bis) Overnight Filtration (bis) 0.13 0.11 2.4 5078 0.329 

Dry-C 8 Impeller Rotations 0.22 0.16 2.5 7541 0.359 

Dry-D 1 min 30 rpm 0.28 0.19 2.45 5180 0.361 

Dry-E 5 min 100 rpm 0.27 0.19 2.65 6546 0.383 

Dry-F 25 min 100 rpm 0.27 0.2 2.72 10885 0.329 

Dry-G 120 min 100 rpm 0.45 0.22 3.06 15178 0.305 

Dry-H 165 min 100 rpm 0.43 0.25 3.5 14862 0.385 

Dry-I 505 min 100 rpm 1.38 0.24 3.9 17269 0.313 
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Appendix 10: Coefficient of determination 𝑅2 of linear regressions performed using 

Equation 7.5.4 for the different aspect ratios and normal stresses applied in shearing 

phase. Values of linear parameters given in Table 7.5.5. 

𝛼𝑝 \ 𝜎 1kPa 2kPa 4kPa 6.5kPa 10kPa 

3 0.521 0.710 0.752 0.767 0.756 

4 0.831 0.856 0.880 0.859 0.857 

5 0.902 0.939 0.929 0.937 0.924 

6 0.945 0.932 0.965 0.965 0.962 
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Appendix 11: Number of data points recorded in simulations of shearing phase for 

the different aspect ratios 𝛼𝑝 and normal stresses applied 𝜎. 

𝜎 \ 𝛼𝑝 2 3 4 5 6 All 

1kPa 101 101 100 100 100 502 

2kPa 101 101 100 100 100 502 

4kPa 101 101 100 100 100 502 

6.5kPa 101 101 100 100 100 502 

10kPa 101 101 100 100 100 502 

All 505 505 500 500 500 2510 
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Appendix 12: Number of data points recorded in simulations of uniaxial compression 

for the different aspect ratios 𝛼𝑝 and strain applied 𝛾. 

𝛾 \ 𝛼𝑝 2 3 4 5 6 All 

0 47 47 47 48 47 236 

2 46 47    93 

3     48 48 

5 47 49 45 46 47 234 

10  46 49 45 48 188 

15 48   47 48 143 

20   47 46 46 139 

25     46 46 

30     47 47 

All 188 189 188 232 377 1174 
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Appendix 13: Statistics of particles retained and excluded for the parameters used in 

the script analysis of Morphologi G3 data for the different samples collected (MN: 

minimum neighour). 

Sample 

name 
Description 

Nbr of 

particles 

retained 

Vol fraction 

of particles 

retained 

Vol of 

particles 

retained 

(𝑚𝑚3) 

Nbr of 

particles 

retained 

Nbr of 

particles 

excluded 

by MN=2 

Vol fraction 

of particles 

excluded by 

MN=2 

Wet-B After Filtration 96% 23% 0.845 5.35E+4 28 1.16E-10 

Wet-D 1 min 100 rpm 96% 22% 0.413 3.15E+4 19 2.34E-10 

Wet-G 142 min 100 rpm 97% 30% 0.707 3.27E+4 18 7.62E-11 

Wet-I 987 min 100 rpm 96% 66% 0.763 4.36E+4 23 1.03E-10 

Dry-B Overnight Filtration 96% 83% 0.499 3.33E+4 27 2.42E-10 

Dry-D 1 min 30 rpm 96% 58% 0.498 4.69E+4 17 9.78E-11 

Dry-G 120 min 100 rpm 93% 47% 0.538 1.12E+5 25 1.41E-10 

Dry-H 165 min 100 rpm 95% 48% 0.765 8.29E+4 28 1.18E-10 

Dry-I 505 min 100 rpm 94% 64% 0.686 1.70E+5 25 1.05E-10 
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Appendix 14: Probability density function of the different samples collected in dry and 

wet agitation experiments. The data is obtained using script analysis [294]. 

 Dry Wet 

Sample 
Overnight 

Filtration 

1min 

30rpm 

120min 

100rpm 

165min 

100rpm 

505min 

100rpm 

After 

Filtration 

1min 

100rpm 

142min 

100rpm 

987min 

100rpm 

Impeller 

rotations 
0 30 18.8k 50.4k 132.4k 0 100 21.1k 195.2k 

1 8.20% 9.78% 16.00% 12.06% 16.22% 11.16% 11.89% 8.30% 9.19% 

2 41.15% 47.11% 55.08% 53.27% 54.50% 42.10% 43.44% 44.83% 49.80% 

3 24.15% 22.17% 17.66% 20.46% 16.82% 21.00% 24.82% 26.27% 25.22% 

4 11.43% 10.06% 6.46% 7.65% 6.65% 11.21% 9.88% 9.98% 8.20% 

5 7.56% 5.16% 3.14% 3.43% 2.93% 7.38% 4.84% 5.53% 4.36% 

6 3.99% 2.76% 0.98% 1.16% 1.85% 4.22% 2.98% 2.60% 1.89% 

7 1.46% 1.58% 0.48% 0.78% 0.60% 1.72% 1.36% 1.18% 0.88% 

8 0.99% 0.91% 0.14% 0.55% 0.23% 0.68% 0.50% 0.51% 0.25% 

9 0.44% 0.28% 0.01% 0.02% 0.13% 0.33% 0.23% 0.37% 0.14% 

10 0.33% 0.10% 0.02% 0.35% 0.02% 0.15% 0.02% 0.37% 0.05% 

11 0.15% 0.07% 0.02% 0.28% 0.02% 0.01% 0.04% 0.04% 0.00% 

12 0.14% 0.03% 0.01%  0.01% 0.04%  0.02% 0.01% 

13 0.00%    0.00% 0.00%   0.00% 

14 0.00%    0.01% 0.00%   0.00% 

15 0.01%     0.00%   0.00% 

16      0.00%    

17      0.00%    
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Appendix 15: Estimation of probability density function from the calibrated model for 

different numbers of impeller rotations 𝐼 and aspect ratios 𝛼𝑝 (see Chapter 8.4.4). 

𝛼𝑝 \ 𝐼 0 30 18.8k 50.4k 132.4k 

1 8.20% 8.20% 11.11% 15.01% 22.87% 

2 41.15% 41.16% 45.24% 48.69% 51.29% 

3 24.15% 24.16% 25.64% 24.01% 18.64% 

4 11.43% 11.44% 10.53% 7.85% 4.91% 

5 7.56% 7.56% 4.87% 3.02% 1.71% 

6 3.99% 3.99% 1.77% 1.01% 0.46% 

7 1.46% 1.46% 0.49% 0.26% 0.08% 

8 0.99% 0.99% 0.23% 0.10% 0.02% 

9 0.44% 0.44% 0.07% 0.02% 0.00% 

10 0.33% 0.32% 0.03% 0.01% 0.00% 

11 0.15% 0.15% 0.01% 0.00% 0.00% 

12 0.14% 0.13% 0.00% 0.00% 0.00% 

13 0.00% 0.00% 0.00% 0.00% 0.00% 

14 0.00% 0.00% 0.00% 0.00% 0.00% 

15 0.01% 0.01% 0.00% 0.00% 0.00% 
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Appendix 16: Estimation of probability density function from the calibrated model for 

different numbers of impeller rotations 𝐼 and aspect ratio 𝛼𝑝. The initial PARD 

corresponds to the values for the dry AFD experiments at 𝐼 = 30 (see Chapter 

8.4.6.3). 

𝛼𝑝 \ 𝐼 30 18.8k 50.4k 132.4k 

1 9.78% 12.44% 16.13% 23.67% 

2 47.11% 50.20% 52.70% 53.96% 

3 22.17% 22.97% 21.30% 16.46% 

4 10.06% 8.96% 6.62% 4.12% 

5 5.16% 3.38% 2.10% 1.20% 

6 2.76% 1.25% 0.72% 0.33% 

7 1.58% 0.49% 0.25% 0.08% 

8 0.91% 0.19% 0.08% 0.01% 

9 0.28% 0.04% 0.01% 0.00% 

10 0.10% 0.01% 0.00% 0.00% 

11 0.07% 0.00% 0.00% 0.00% 

12 0.03% 0.00% 0.00% 0.00% 

13 0.00% 0.00% 0.00% 0.00% 

14 0.00% 0.00% 0.00% 0.00% 

15 0.00% 0.00% 0.00% 0.00% 
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Appendix 17: Weibull scale parameter 𝜆𝑝 of particle internal stress distribution in 𝑃𝑎 

for the different aspect ratios 𝛼𝑝 and in the different zones of the Maxi Lab AFD (see 

Chapter 8.4.5). 

𝛼𝑝 \ Zones Top Middle Bottom 

1 1.57E+02 4.70E+02 7.84E+02 

2 5.73E+02 1.72E+03 2.86E+03 

3 1.22E+03 3.67E+03 6.11E+03 

4 2.09E+03 6.28E+03 1.05E+04 

5 3.18E+03 9.53E+03 1.59E+04 

6 4.47E+03 1.34E+04 2.23E+04 

7 5.96E+03 1.79E+04 2.98E+04 

8 7.65E+03 2.30E+04 3.83E+04 

9 9.54E+03 2.86E+04 4.77E+04 

10 1.16E+04 3.49E+04 5.81E+04 

11 1.39E+04 4.16E+04 6.94E+04 

12 1.63E+04 4.90E+04 8.17E+04 

13 1.90E+04 5.69E+04 9.49E+04 

14 2.18E+04 6.54E+04 1.09E+05 

15 2.48E+04 7.44E+04 1.24E+05 
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Appendix 18: Gaussian standard deviation 𝜎𝑑𝑒𝑣  of the maximum stress location 

distribution for the different aspect ratios 𝛼𝑝 and in the different zones of the Maxi 

Lab AFD (see Chapter 8.4.5). 

𝛼𝑝 \ Zones Top Middle Bottom 

1 42.8% 39.9% 38.8% 

2 39.8% 37.1% 36.1% 

3 37.4% 34.9% 33.9% 

4 35.4% 33.0% 32.1% 

5 33.7% 31.4% 30.6% 

6 32.2% 30.0% 29.2% 

7 30.9% 28.8% 28.0% 

8 29.7% 27.7% 27.0% 

9 28.7% 26.8% 26.1% 

10 27.8% 25.9% 25.2% 

11 26.9% 25.1% 24.5% 

12 26.2% 24.4% 23.8% 

13 25.5% 23.8% 23.1% 

14 24.8% 23.2% 22.5% 

15 24.2% 22.6% 22.0% 
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Appendix 19: Extent of breakage 𝐵 for the different aspect ratios 𝛼𝑝 and in the 

different zones of the Maxi Lab AFD (see Chapter 8.4.5). 

𝛼𝑝 \ Zones Top Middle Bottom 

1 2.39E-10 1.26E-09 2.94E-09 

2 3.01E-09 1.58E-08 3.69E-08 

3 1.32E-08 6.96E-08 1.62E-07 

4 3.78E-08 1.99E-07 4.64E-07 

5 8.55E-08 4.50E-07 1.05E-06 

6 1.66E-07 8.75E-07 2.04E-06 

7 2.92E-07 1.54E-06 3.58E-06 

8 4.76E-07 2.50E-06 5.83E-06 

9 7.31E-07 3.85E-06 8.97E-06 

10 1.07E-06 5.65E-06 1.32E-05 

11 1.52E-06 8.01E-06 1.87E-05 

12 2.09E-06 1.10E-05 2.56E-05 

13 2.80E-06 1.47E-05 3.43E-05 

14 3.67E-06 1.93E-05 4.50E-05 

15 4.72E-06 2.48E-05 5.79E-05 
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Derivations 

Appendix 20: Derivation of Equation 4.3.2. 

Using Hooke’s law (see Equation 4.3.1) to calculate the spring constant and dividing 

the spring constant of the crystal by the spring constant of the probe gives:  

𝑘𝐶

𝑘𝑃

=
𝐹 𝛿𝐶⁄

𝐹 𝛿𝑃⁄
 

Re-arranging the equation gives: 

𝑘𝐶 = 𝑘𝑃.
𝛿𝑃

𝛿𝐶

 

Taking into account that the total displacement is equal to the sum of the crystal and 

the probe displacements, 𝛿𝑇 = 𝛿𝐶 + 𝛿𝑃 (see Figure 4.3.6), the equation takes the 

following form: 

𝑘𝐶 = 𝑘𝑃.
𝛿𝑃

(𝛿𝑇 − 𝛿𝑃)
 

Multiplying and dividing by 𝛿𝑇 gives: 

𝑘𝐶 =
𝑘𝑃

𝛿𝑇

.
𝛿𝑇 .𝛿𝑃

(𝛿𝑇 − 𝛿𝑃)
 

Re-arranging the equation: 

𝑘𝐶 =
𝑘𝑃 𝛿𝑇⁄

1
𝛿𝑃

−
1
𝛿𝑇

 

Multiplying and dividing by 𝐹 gives: 

𝑘𝐶 =
𝑘𝑃.

𝐹
𝛿𝑇

𝐹
𝛿𝑃

−
𝐹
𝛿𝑇

 

Considering Hooke’s law (see Equation 4.3.1) results in: 
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𝑘𝐶 =
𝑘𝑃. 𝑘𝑇

𝑘𝑃 − 𝑘𝑇
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Appendix 21: Derivation of Equation 4.3.3. 

Multiplying both sides of 𝛿𝑇 = 𝛿𝐶 + 𝛿𝑃 by 𝛿𝐶 and re-arranging gives: 

𝛿𝐶 =
𝛿𝑇𝛿𝐶

𝛿𝐶 + 𝛿𝑃

 

Dividing the numerator and the denominator of the right-hand side by 𝐹 gives: 

𝛿𝐶 = 𝛿𝑇 .
𝛿𝐶 𝐹⁄

𝛿𝐶

𝐹
+

𝛿𝑃
𝐹

 

Considering Hooke’s law (see Equation 4.3.1) results: 

𝛿𝐶 = 𝛿𝑇 .
1 𝑘𝐶⁄

1
𝑘𝐶

+
1
𝑘𝑃

 

Re-arranging the equation gives: 

𝛿𝐶 = 𝛿𝑇 .
𝑘𝑃

𝑘𝑃 + 𝑘𝐶
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Appendix 22: Derivation of Equation 8.2.2. 

Using the derivatives (𝑒𝑢)′ = 𝑢′ . 𝑒𝑢:  

𝐵 = ∫ − ((
𝜎

𝜆𝑝

)

𝑘𝑝

)

′

𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. (1 − 𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏) 𝑑𝜎
+∞

0

 

𝐵 = ∫ −(𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

)
′

. (1 − 𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏 )𝑑𝜎
+∞

0

 

Distributing the term under parenthesis: 

𝐵 = ∫ −(𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

)
′

+ (𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

)
′

𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏𝑑𝜎
+∞

0

 

Using the linearity of integrals: 

𝐵 = − ∫ (𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

)
′

𝑑𝜎
+∞

0

+ ∫ (𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

)
′

𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏𝑑𝜎
+∞

0

 

Solving the first integral: 

𝐵 = − [𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

]
0

+∞

+ ∫ (𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

)
′

𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏
𝑑𝜎

+∞

0

 

𝐵 = 1 + ∫ (𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

)
′

𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏
𝑑𝜎

+∞

0

 

Using the product rule of derivatives (𝑢𝑣)′ = 𝑢𝑣 ′ + 𝑢′𝑣: 

𝐵 = 1 + ∫ (𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. 𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏
)

′

− 𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. (𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏
)

′

𝑑𝜎
+∞

0

 

Using linearity of integrals: 

𝐵 = 1 + ∫ (𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. 𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏
)

′

𝑑𝜎
+∞

0

− ∫ 𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. (𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏
)

′

𝑑𝜎
+∞

0

 

Solving the first integral: 
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𝐵 = 1 + [𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. 𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏
]
0

+∞

− ∫ 𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. (𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏
)

′

𝑑𝜎
+∞

0

 

𝐵 = − ∫ 𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

. (𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏)
′

𝑑𝜎
+∞

0

 

Developing the derivative, Equation 8.2.3 is finally obtained: 

𝐵 =
𝑘𝑏

𝜆𝑏
𝑘𝑏

∫ 𝜎𝑘𝑏−1 . 𝑒−(𝜎 𝜆𝑏⁄ )𝑘𝑏 . 𝑒−(𝜎 𝜆𝑝⁄ )
𝑘𝑝

𝑑𝜎
+∞

0

 

 


