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Abstract

This thesis focuses on model interpretability, an area concerned with under-

standing model predictions in Natural Language Processing (NLP) tasks. The

increase in adoption of opaque models, such as BERT, leads to an increasing

need for explaining their predictions. This is typically performed by extract-

ing a sub-set of the input, that is indicative of the true reasoning behind the

model’s prediction (i.e. a faithful explanation or rationale).

Whilst there are multiple approaches in literature for extracting explana-

tions (e.g. feature attribution methods), some faced criticism about how faith-

ful they are. Furthermore, explanation faithfulness also depends on the model

employed, where highly parametrised models have been shown to produce less

faithful explanations. Previous research has also shown that there is no sin-

gle best feature attribution method across models, tasks and even instances of

the same dataset, whilst finding a rationale length is still an open problem.

Additionally, a limitation of current evaluations for explanation faithfulness,

is that they are performed on a held-out dataset coming from the same do-

main (i.e. the data they are evaluated on, are from the same distribution as

the training data). However, we are not aware how faithfulness is impacted in

out-of-domain settings.

The main aim of this thesis therefore, is to improve and evaluate the faith-

fulness of explanations in NLP applications. First, we improve the faithfulness

of explanations extracted using attention mechanisms, a popular component

used in neural NLP models. In a similar direction, we show improvements on

the faithfulness of explanations from feature attribution approaches, when us-

ing large language models. We then address the problem of specifying a priori

a feature scoring method, rationale length and type. Finally, we evaluate the

faithfulness of explanations in out-of-domain settings, highlighting a problem

when using popular faithfulness evaluation metrics.
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Chapter 1

Introduction

Natural Language Processing (NLP) technologies are increasingly becoming more reliant on

complex neural network models, with large pre-trained transformer-based language models

(LMs) such as BERT (Devlin et al., 2019), currently dominating performance across language

understanding benchmarks (Wang et al., 2018). Their high predictive capabilities and effi-

ciency in dealing with large amounts of data, have expanded their application in safety-critical

tasks, such as the medical domain (Johnson et al., 2016) and the justice system (Chalkidis

et al., 2020a). However, a significant drawback of these models is their opaqueness in provid-

ing predictions due to their highly parameterised and interconnected architecture, earning

them the title of “black boxes” (Zhang et al., 2018; Linzen et al., 2019). A growing concern

as such is whether their use in safety-critical domains is responsible, safe or even ethical

(Madsen et al., 2021b).

Pivotal to mitigating these concerns, is understanding model predictions by providing

a justification (e.g. an explanation or rationale). This has led to increased interest by

researchers towards model interpretability, an area concerned with defining and identifying

approaches for understanding model predictions. The growth of this field within the NLP

community is evident by the evolution towards what constitutes a high quality interpretation,

with an increasing amount of methods and approaches developed to provide a justification by

generating explanations or rationales (Ribeiro et al., 2016; Kindermans et al., 2016; Bastings

and Filippova, 2020; Guerreiro and Martins, 2021).1 Rationales are snippets, representing

1These terms are used interchangeably through this work
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Figure 1.1: Demonstrative example of different rationale types: a) human rationale; b) plausible

rationale; and c) faithful rationale. A plausible rationale is one which agrees with human ratio-

nales (a “ b), whilst a faithful rationale does not necessarily entail that (a ‰ c).

the most important parts of the input that a model uses to make a prediction, and are such

a subset of the input.

Two important categorisations of rationales are plausibility and faithfulness (Jacovi and

Goldberg, 2020). A plausible rationale is one that is intuitive and aligns with human un-

derstanding. A faithful rationale is one that accurately describes the reasoning behind a

model’s prediction. These two properties do not correlate, such that a plausible rationale

is not necessarily faithful and vice versa (Atanasova et al., 2020). However, this does not

exclude that a faithful rationale can also be plausible. For clarity, this distinction can be

demonstrated in an example of a positive sentiment prediction using a movie review snippet

shown in Figure 1.1.

Through this example we can observe that using the faithful rationale, for a user it would

not be intuitive that the model has selected “!!!” instead of the word “amazing”. However

this demonstrates that what we find intuitive is not often what the model uses to make a

prediction. This can be also caused by a model attaching to dataset-specific artefacts or

by spurious correlations learned during training (Glockner et al., 2020). In fact, plausible

rationales seem to fit the description of model interpretability as given by Lipton (2016),

which is “a measure of how understandable by an observer is an explanation of why a model

made a particular prediction for a single input”. However, Jacovi and Goldberg (2020)

argue that faithfulness is an important property of rationales as it provides us with a better

understanding of what reasoning the model followed, despite of how intuitive it is.
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(a) Post-hoc explanation (b) Select-then-predict model

Figure 1.2: Examples of rationale extraction using two approaches. (a) uses a feature attribu-

tion approach to identify the most important subset of the input (post-hoc explanation). Darker

coloured heatmaps indicate a higher importance score (i.e. more important for a model’s predic-

tion). (b) extracts rationales using inherently faithful, select-then-predict models. These models

are inherently faithful, as the classifier is trained only on the rationale.

In literature there are two popular approaches for extracting rationales (see examples

in Figure 1.2). The first (see example (a)) uses feature scoring methods to identify the

most important segments of the input (Arras et al., 2017; Ribeiro et al., 2016; Jain and

Wallace, 2019), i.e. post-hoc explanations. Feature scoring methods attribute importance

to the input tokens, with highly scored tokens indicating that they have contributed more

towards a model’s predictions. The latter (see example (b)) consists of training inherently

interpretable models (also referred to as select-then-predict), consisting of two modules: a

generator and an encoder (Lei et al., 2016; Bastings et al., 2019; Jain et al., 2020; Treviso and

Martins, 2020; Guerreiro and Martins, 2021). The generator is responsible for generating a

rationale mask, whilst the encoder is trained on an end-task (e.g. text classification). The

encoder is thus inherently faithful, as it is trained using only the rationales as input. A

drawback of these models, is that they sacrifice predictive performance to achieve inherent

interpretability, as in the large majority of cases they do not reach the predictive performance

of a model trained on the full text (Guerreiro and Martins, 2021). Recent studies have used

feature scoring methods as part of the generator in select-then-predict models (Jain et al.,

2020; Treviso and Martins, 2020).

One prominent example of a feature scoring method are attention mechanisms (Bah-

danau et al., 2015). Attention mechanisms produce a probability distribution over the input
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by computing a vector representation of the entire token sequence as the weighted sum of its

constituent vectors. A common practice is to provide explanations for a given prediction and

qualitative model analysis by assigning importance to input tokens using scores provided by

attention mechanisms (Chen et al., 2017; Wang et al., 2016; Sun and Lu, 2020; Jain et al.,

2020). However, the efficacy of attention mechanisms in producing faithful explanations has

been recently been disputed. A series of studies showed that that explanations obtained

by attention weights do not always provide faithful explanations (Jain and Wallace, 2019;

Serrano and Smith, 2019) while different text encoders can affect attention interpretability,

e.g. results can differ when using a recurrent or non-recurrent encoder (Wiegreffe and Pin-

ter, 2019). Evaluation in these studies was mostly conducted by comparing against another

popular feature scoring method, the gradients of the prediction computed with respect to the

input. Contradicting previous studies, more recent work has shown that attention mecha-

nisms can produce faithful explanations, in certain cases even surpassing the previous “gold

standard” gradient-based feature scoring method (Jain et al., 2020; Madsen et al., 2021a).

A limitation of attention as an indicator of input importance is that it refers to the word in

context, due to information mixing in the model (Pascual et al., 2020; Tutek and Snajder,

2020).

LMs such as BERT can provide faithful explanations through feature scoring methods,

particularly using attention (Jain et al., 2020), but still fall behind other simpler architec-

tures, such as the multi-layer perceptron (Atanasova et al., 2020), possibly due to increased

information mixing and higher contextualisation in the model (Brunner et al., 2020; Pas-

cual et al., 2020). Multiple studies have attempted to improve the explainability of non

transformer-based models, by guiding them through an auxiliary objective towards informa-

tive input importance distributions (e.g. human or adversarial priors) (Ross et al., 2017a;

Liu and Avci, 2019; Moradi et al., 2021). In fact, auxiliary training objectives have also

been used to assess the robustness of input importance distributions produced by attention

mechanisms (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019). These show the efficacy

of auxiliary objectives in impacting the faithfulness of explanations generated via feature

scoring methods.

Atanasova et al. (2020) also show that there is no single best feature scoring method

across models, datasets and even within the same dataset. Additionally, rationales are usually

extracted using a pre-defined fixed length (i.e. the ratio of a rationale compared to the full
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input sequence) across all instances in a dataset. Using a fixed length or type for different

instances could result into shorter (i.e. not sufficient for explaining a model’s prediction) or

longer than needed rationales reducing rationale faithfulness, whilst finding the explanation

length is an open problem (Zhang et al., 2021). Moreover to extract rationales, practitioners

are currently required to make assumptions for the rationale parameters (i.e. feature scoring

method, length and type), whilst different choice of parameters might substantially affect the

faithfulness of rationales.

Extracting faithful explanations can help improve trust in a model’s prediction. Currently,

the faithfulness of both post-hoc explanations and rationales from select-then-predict models,

has mostly been evaluated on in-domain settings (i.e. the train and test data come from the

same distribution). However, when deploying models in real-world applications, inference

might be performed on data from a different distribution, i.e. out-of-domain (Desai and

Durrett, 2020; Ovadia et al., 2019). This can create implications when extracted explanations

(either using post-hoc methods or through select-then-predict models) are used for assisting

human decision making. Whilst we are aware of the limitations of current state-of-the-art

models in out-of-domain predictive performance (Hendrycks et al., 2020), how faithful out-

of-domain post-hoc explanations are has yet to be explored. Similarly, we are not aware how

inherently faithful select-then-predict models generalize in out-of-domain settings.

1.1 Research Questions

The previous discussion shows that providing explanations for model predictions is a rapidly

evolving field, critical for improving trust and understanding for otherwise opaque model

predictions. Whilst there is growing number of approaches for extracting explanations and we

are closer to a consensus of what constitutes a quality interpretation, there are still significant

challenges to address. These challenges give rise to the following research questions, that we

seek to address in this thesis:

1. Attention mechanisms have been criticised for their ability to produce faithful expla-

nations. Additionally it has been shown that their performance is encoder-dependent.

Is it possible to improve their faithfulness, regardless of the encoder? Background on
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the attention mechanisms and previous studies on evaluating the faithfulness of their

explanations is further discussed in Chapter 2;

2. Large pre-trained transformer models have been empirically shown to produce faithful

explanations, however still fall behind simpler model architectures. Building on pre-

vious research that shows explanation faithfulness can be influenced by learning with

auxiliary objectives, can we improve the faithfulness of their explanations by informing

their learning through other, informative salient importance distributions?

3. Given all the recently developed tools for generating explanations, there is empirical

proof that there is no single feature scoring method that produces the most faithful

rationales across all instances in a dataset (Atanasova et al., 2020; Jacovi and Goldberg,

2020). This also applies for pre-defined fixed rationale lengths (Zhang et al., 2021) and

therefore possibly for rationale types (i.e. an explanation consists of either independent

words from the input sequence or a contiguous segment). Can we select these at

instance-level rather than globally (across all instances in a dataset) in order to provide

more faithful explanations?

4. Currently explanation faithfulness (for both post-hoc explanations and select-then-

predict models) is evaluated in-domain. This raises the question: How is post-hoc

explanation faithfulness and select-then-predict performance affected out-of-domain?

1.2 Main Contributions

This thesis makes the following contributions towards tackling the previously discussed re-

search questions:

1. Proposes a new family of mechanisms to improve the faithfulness of attention-based

explanations, by scaling the attention weights using a non-contextualised score. The

motivation, methodology, experiments and empirical results are detailed in Chapter

3.1;

2. Introduces an auxiliary objective that guides the model towards an alternative informa-

tive salient distribution during training, to improve post-hoc explanation faithfulness
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in large pre-trained transformer-based models. Details, experiments and results in

Chapter 3.2;

3. A simple yet effective method is presented in Chapter 4, which allows the selections

of instance-specific (1) feature scoring method; (2) rationale length and (3) rationale

type. This helps mitigate the assumptions a practitioner needs to make during rationale

extraction and shows that rationales extracted with the proposed method are more

comprehensive and highly sufficient;

4. In Chapter 5 an extensive empirical study that examines how explanation faithfulness is

affected when moving from in-domain to out-of-domain settings. We show that current

metrics for post-hoc explanation faithfulness are misleading in out-of-domain settings,

whilst select-then-predict models demonstrate comparable predictive performance in

out-of-domain settings to full-text trained models.

1.3 Publications

Material from this thesis has been published in the following peer reviewed conferences:

• The work presented in Chapter 3.1 has been published at the Proceedings of the 59th

Annual Meeting of the Association for Computational Linguistics and the 11th In-

ternational Joint Conference on Natural Language Processing (ACL&IJCNLP 2021)

(Chrysostomou and Aletras, 2021b);

• The work presented in Chapter 3.2 has been published at the 2021 Conference on

Empirical Methods in Natural Language Processing (EMNLP 2021) (Chrysostomou

and Aletras, 2021a);

• The work presented in Chapter 4 has been published at the 36th AAAI Conference on

Artificial Intelligence (AAAI-22).

• The work presented in Chapter 5 has been accepted at the Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (ACL 2022)

7



1.4 Structure of Thesis

Chapter 2 begins with prerequisite knowledge on neural networks and then presents a

detailed background on model interpretability, including a critical analysis of previous work.

This includes how it is defined in literature and the definition adopted by this work. We then

discuss approaches to extract explanations and finally how faithfulness is currently evaluated

and improved.

Chapter 3 presents two novel approaches for improving the faithfulness of post-hoc expla-

nations. More specifically, Chapter 3.1 presents the first contribution on improving attention-

based explanations for text classification. Chapter 3.2 presents a novel auxiliary objective

for improving the faithfulness of transformer-model based explanations. Both sections begin

with the problem motivation, the methodology adopted, experimental setup and results.

Chapter 4 We motivate the adoption of instance-specific rationalisation in NLP and pro-

pose a novel method to achieve this. Followed by the description of the proposed approach,

this chapter then includes the experiments and results that empirically show that rationales

extracted with the proposed method are more faithful.

Chapter 5 first motivates the need for evaluating faithfulness of post-hoc explanations and

select-then-predict models in out-of-domain settings. The experimental setup then covers the

range of approaches adopted to extract explanations, followed by the results which highlight

a problematic behaviour of current popular faithfulness evaluation metrics in out-of-domain

settings.

Chapter 6 provides a summary of the contributions made throughout this thesis and

the research questions tackled by them. Finally, based on these contributions we propose

potential areas of future research.
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Chapter 2

Background

The aim of this chapter is to provide a background understanding around the area of model

interpretability and will identify and highlight limitations of previous work. It first begins by

briefly describing some prerequisites, which are necessary for introducing and motivating the

problem of model interpretability. These include popular NLP tasks and a brief background

on different neural network architectures (Sections 2.2 and 2.3). Secondly, this chapter will

focus on model interpretability, with a focus on generating explanations (or rationales) for

model predictions. This includes: (1) what are explanations, how they are defined in liter-

ature and which definition is adopted by this work (Section 2.4); (2) how explanations are

extracted (Section 2.5); (3) how they are evaluated (Sections 2.6 and 2.6.1) and finally (4)

how previous research has attempted to improve them (Section 2.7).

2.1 Supervised NLP Task Setup

We begin by describing typical supervised NLP task setups that are used in this work. In

supervised learning, models are trained using annotated labels provided with the data (Kot-

siantis et al., 2007). In Table 2.1, we include demonstrative examples of popular supervised

NLP tasks, which we describe in detail below.

A popular NLP task is text classification, where the goal is to “teach” a model M to

predict the label ŷ of a text sequence x, such as predicting the sentiment of movie reviews
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Task Input 1 (x) Input 2 (q) Labels

Sentiment

Analysis
Great movie !! -

Positive

Negative

Topic

Classification
Stocks are at a historic low. -

World

Business

Sports

Politics

Question

Answering
Mary is home sleeping. Where is Mary?

Office

Home

Outside

Reading

Comprehension
Today the weather is much warmer than yes-

terday. However, today is rainy.

Yesterday was

raining.

True

False

Table 2.1: Examples of supervised NLP tasks, which require either one or two text sequences as

input and their possible labels.

(Socher et al., 2013) or the topic of news articles (Corso et al., 2005). In contemporary neural

approaches, M is comprised of four components: (1) the embedding layer; (2) an encoder

Enc(); (3) an attention mechanism (described in Section 2.2) and (4) a classification layer.

Therefore, a pipeline for text classification consists first of one-hot-encoded tokens xi PR|V|

that are mapped to embeddings ei P Rd, where i P r1, ..., ts denotes the position in the

sequence, t the sequence length, |V | the vocabulary size and d the dimensionality of the

embeddings. The embedding ei is a vector representation of the token xi which can be

learned along-side the model during training. Alternatively, we can preload embeddings which

have been trained on a large corpora (Mikolov et al., 2013; Pennington et al., 2014). The

embeddings ei are then passed to an encoder to produce contextualised hidden representations

h1 , . . . ,ht “ Encpe1 , . . . , etq, where hi PRN, with N the size of the hidden representation.

Encpq can represent any suitable neural network architecture (described in Section 2.3). A

vector representation c for the entire text sequence {x1, ..., xt} is subsequently obtained as

the sum of hi weighted by attention scores αi (see Section 2.2 for more details).

c “
t

ÿ

i“1

hiαi, c PRN (2.1)

The representation c is finally passed to the output layer, which is a fully-connected linear
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layer, followed by an activation function.

Another task setting in NLP, is to use two text sequences to the model M. Popular

tasks with this setup are question answering, reading comprehension (Khashabi et al., 2018;

DeYoung et al., 2020) and next sentence prediction (Devlin et al., 2019). For example,

in question answering the model M usually presented with a context sequence x and a

question sequence q. The task is to find the answer to the question q in the context x.

Similar to text classification the context x and question q undergo the same procedures to

obtain representations, hxi and hqi . Both representations rhxi ,h
q
i s are then used to compute

the attention scores αi. To then reach a prediction, the same process is applied as in text

classification. We obtain the context vector c for the entire context sequence {x1, ..., xt} as the

sum of hxi weighted by attention scores αi. The vector c is then passed to a fully-connected

linear layer, followed by an activation function return the prediction ŷ.

While there are other popular tasks in NLP, such as sequence-to-sequence tasks (e.g.

machine translation or natural language generation), these have not been used for the exper-

iments of this thesis. This work focuses only on binary or multi-class classification tasks, that

require as input a text sequence (or two text sequences) and return an output distribution

Y over classes, where the predicted label ŷ P Y .

2.2 Attention Mechanisms

We have previously described how the encoded representations hi are weighted by attention

scores αi. In this section we are going to describe in detail the attention mechanisms that

compute αi.

Attention mechanisms were first introduced for aiding models in word alignments in neural

machine translation (Bahdanau et al., 2015). However they were quickly adapted to various

NLP tasks, such as text classification due demonstrating improved predictive performance

(Yang et al., 2016). Additionally, attention mechanisms form the backbone of the transformer

architecture (Vaswani et al., 2017), which is discussed in Section 2.3.4, arguably one of the

most influential model architectures in contemporary NLP.

Attention mechanisms produce a probability distribution over the input tokens. As de-
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scribed previously, they operate over the word representations resulting from the encoder.

Attention weights (αi), the elements of the distribution, are obtained by passing the contextu-

alised representations (hi) to the attention mechanism, which usually consists of a similarity

function φpq followed by a softmax activation function:

αi “
expφpq,hiq

řt
k“1 expφpq,hkq

(2.2)

where q PRN is a query vector in a sequence to sequence or a question answering task. In

a machine translation task for example the query vector would represent the decoder output

state st corresponding to output word at position t, as the aim of the attention mechanism is

to compute the alignment score of output word yt and input word xi. In a text classification

task, q represents a trainable self-attention vector similar to Yang et al. (2016). There are

multiple variants of similarity functions or scoring functions in literature. Below, we describe

two popular scoring functions that are used in our experiments:

Tanh Attention (Tanh): was first introduced by Bahdanau et al. (2015). In this imple-

mentation (Yang et al., 2016), the similarity function is as follows:

φpst,hiq “ vT tanhpWrst; hisq (2.3)

where v and W are trainable model parameters, st is the decoder network’s hidden state

output for the output word at position t and hi the encoder output for the input word at

position i. In text-classification, the similarity function can be adapted as (Jain and Wallace,

2019):

φpq,hiq “ qT tanhpWhiq (2.4)

where the similarity between a learnable parameter q and the contextualised representation

hi of input word at position i is learned.
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Scaled Dot-Product (Dot): is a similarity function first proposed by Luong et al. (2015),

where similarity scores are computed by:

φpq, hiq “
hTi q
?
N

(2.5)

where the query vector q in a machine translation task is the decoder output state st, and

N is the dimension of hi. Vaswani et al. (2017) formed this adaptation from Luong et al.

(2015), by adding the scaling factor 1?
N

.

2.3 Neural Text Encoders

In the previous section we presented attention mechanisms, which operate over the contex-

tualised representations produced by the encoder (hi). This section will therefore describe

popular neural text encoders, that map the embeddings (ei) to latent representations hi.

2.3.1 Multi-Layer Perceptron (MLP)

A neural network can be defined as an interconnected network of nodes, or neurons, with the

processing memory of the network stored in the connections between the neurons, the weights,

which are obtained by a learning process (Gurney, 2014). Neural networks bare their roots

from linear regression models and more specifically to the perceptron. Linear regression learns

a linear relationship between a response and explanatory variables (e.g. the text sequence

x and a label y) (Montgomery et al., 2012). McCulloch and Pitts (1943) formulated a

mathematical model as an attempt to mimic brain activity, by using interconnected nodes to

project input to an output space. This model though lacked of a learning process. Building

on top of this model, Rosenblatt (1958) conceived the perceptron with a learning mechanism

by assigning weights to the connections rather than the inputs. McCulloch and Pitts (1943)

then proved that with a perceptron they could model the OR/AND/NOT logical functions,

as neuron activations above a certain threshold return a 1 and 0 otherwise. The perceptron

can be formally defined as:
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Figure 2.1: Illustration of the Multi-Layer Perceptron (MLP). Arrows represent the connections

(weights) between the nodes.

ŷ “

$

&

%

1 if
řt
i“0wixi ` b ą 0

0 otherwise
(2.6)

where wi is a weight multiplied by the input x at position i, added with the bias term b

to produce a value ŷ. The learning mechanism is activated when the prediction does not

match the expected label. The update process included negating the features that led to

the incorrect prediction and adding the features that contribute towards the correct. The

addition and negation can also be multiplied by a learning rate, which scales the effect of the

weight update.

As the perceptron is a linear model, it cannot model the XOR problem (McCulloch and

Pitts, 1943) or other non-linear problems. This limitation was tackled by the Multi-Layer

Perceptron (MLP), or Feed-forward Neural Network, which comprises of multiple perceptron

nodes stacked in layers, illustrated in Figure 2.1 (Minsky, 1968). Between the hidden layers

and the output layer an activation function is introduced. Activation functions are non-linear

functions that allow the model to compute non-linearly solvable problems. There are several

activation functions common in literature, with the most popular being: the sigmoid , tanh

and ReLU. The activation functions can be described by the following equations and can be
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(a) sigmoid (b) tanh (c) ReLU

Figure 2.2: Visual illustration of the activation functions as described in equation 2.7 with input

x P r´5, 5s

visualised as in Figure 2.2:

sigmoidpxq “
1

1` exp´x

tanhpxq “
expx´ exp´x

expx` exp´x

ReLUpxq “ maxp0, xq

(2.7)

Having multiple nodes stacked in a layer allows each node to learn different decision

boundaries while the activation functions applied on the nodes allow modelling of non-linear

problems. An MLP with a single layer and sigmoid activation can be viewed as a logistic

regression model, whereby:

ŷ “
1

1` exp´pWx`bq

Similarly to the perceptron, the major problem in its initial formulation was the lack

of a learning process. Whilst the training process of neural models is described in detail

in Section 2.3.6, it is essential to introduce a key component of the learning procedure as

several neural architectures were developed with the aim of improving it. Prior to updating

the model parameters the contribution of each parameter with respect to the error of the

output if first calculated. Their contribution is calculated via computing the derivative of the

output with respect to the parameter. This is achieved through the chain rule which us to

obtain the derivative of the composition of functions, by computing intermediary derivatives

and multiplying them to obtain the target derivative.
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2.3.2 Recurrent Neural Networks (RNNs)

With the need to incorporate model dependencies between tokens in the input sequence,

Recurrent Neural Networks (RNN) were soon widely used in NLP (Goldberg, 2016). Un-

like Feed-Forward Networks, which assume independence of the input tokens, RNNs can be

conceptualised as Hidden Markov Models. As an example, considering a sequence x with T

tokens, the RNN produces the hidden representations of the input in a recurrent manner,

where the process at time step i in a single cell is:

hi “ Wxi `Uhi´1 ` b (2.8)

where hi is the contextualised representation at time step i, W, U are the parameters of

the model, hi´1 is the hidden representation of the previous time step and b is the bias.

Therefore each representation at time step t carries information from the previous token and

is as such contextualised. It can therefore be well conceptualised as a Hidden Markov model

where under ideal conditions the representation at time step i is dependent on the history

up to the previous time step i - 1.

LSTM: Standard RNN’s have a fundamental flaw. In contrast to feed-forward networks

which do not consider dependencies between tokens, the recursive nature of the gradient cal-

culation in the backward step during training, causes the gradients to vanish due to increases

in the multiplicative interactions in the chain rule (Hochreiter and Schmidhuber, 1997) (we

provide details about the training and optimisation of neural networks in Section 2.3.6).

To address this issue, Hochreiter and Schmidhuber (1997) proposed Long-term Short

Term Memory (LSTM) Networks, which at a single LSTM cell the operations are described
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as:

fi “ σgpWf rhi´1,xis ` bf q

ii “ σgpWirhi´1,xis ` biq

oi “ σgpWorhi´1,xis ` boq

ĉi “ tanhpWcrhi´1,xis ` bcq

ci “ fi ˝ ct´1 ` ii ˝ ĉt

hi “ oi ˝ tanhpciq

(2.9)

where f, i, o, ĉ represent the forget, input, output and cell gates of the LSTM. The process

starts with the forget gate f, which controls how much information is passed on from the

previous state. The input gate controls how much information to keep at the current state

and the output gate the information relevant to the hidden representation. The strength

of LSTM’s considering gradients lies in the cell state, which carries and stores information

going forward throughout the recurrency. During training, the element-wise multiplication

and addition in the cell state “modify” the chain rule from being only a product in the

case of RNNs, to products of additive interactions. This results into a stabilised gradient

and subsequently yields better long-range dependencies than RNNs, but at the cost of an

increased number of parameters and complexity.

GRU: Cho et al. (2014) proposed the Gated-Recurrent Units (GRU), an architecture that

simplifies the LSTM using a smaller number of parameters. It is defined as follows:

zi “ σgpWzrhi´1,xis ` bzq

ri “ σgpWrrhi´1,xis ` brq

n “ tanhpWnrht´1 ˝ r,xis ` bnq

hi “ p1´ ziq ˝ n` z ˝ hi´1

(2.10)

where z is the update gate and r the reset gate. While having similar properties with LSTMs,

the latter have been proven to handle better longer range dependencies compared to GRUs

(Weiss et al., 2018).
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Figure 2.3: An illustration of a CNN pipeline used for an NLP task (Zhang and Wallace, 2017)

2.3.3 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) were first introduced in the 1960’s and function sim-

ilarly to MLP’s (LeCun et al., 1999). The core difference is the replacement of the matrix

multiplications, of the previously mentioned neural architectures, with mathematical opera-

tions called convolutions. A convolution operates on two functions that produce an expression

on how the functions affect each other. It is easier to understand the workings of CNNs in a

computer vision task, where a filter or kernel is passed through a matrix of values or pixels

(image) to produce a value. The kernel W PRkˆl represents the learnable parameters of a

CNN, where k and l are the height and width of the kernel. In NLP tasks, the sequence is

represented as a matrix S with height T representing the sequence length and width d repre-

senting the embedding dimension. Since each row in S represents a distinct token, usually W

has width l “ d (Zhang and Wallace, 2017). The convolutional operation can be described

as:

oi “ W ¨ Ari : i` k ´ 1s (2.11)

where Ari : i`k´1s represents the sub-matrix the kernel covers at each stride and ¨ is the dot
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product (Zhang and Wallace, 2017). Multiple filters can be used for the same or different sized

regions to learn complementary features. To produce a feature map ci, or a represenation

of the sequence, usually an activation function f is applied to the output sequence o P

Rs´k`1, where ci “ fpoiq. The second distinct feature of CNN’s is pooling. Pooling works

by reducing the dimensionality of the feature map, with the two common approaches being

average pooling and max pooling. Pooling proves to be an effective technique in computer

vision to allow the learned features to be translation and positional invariant. In a computer

vision task this means that irrespective of the position of the features in an image, the CNN

will be capable of detecting them due to the pooling technique. The pooling layer works much

like the filter with a fixed width and height passing over the feature map and selecting either

the average in the region of the filter or the max value. Figure 2.3 represents an illustration

of a CNN applied to a binary text classification task.

2.3.4 Transformer

Vaswani et al. (2017) introduced the Transformer, a non-recurrent model architecture based

on the attention mechanism, mainly for machine translation and sequence-to-sequence tasks.

In recurrent encoders, each contextual representation hi is mostly influenced from the sur-

rounding context (Bahdanau et al., 2015). Though desirable for grammatical understanding,

this reduces the ability of associating relevance with parts of the sequence that are further

apart which the transformer architecture is capable of capturing.

The transformer architecture can be viewed in Figure 2.4a, whereby the component on

the left can be described as an encoder and the component on the right as the decoder.

The encoder consists of six stacked layers of multi-head attention an MLP . The multi-head

attention seen in Figures 2.4b and 2.4c, is a key component in this architecture, where it

computes the relevance of certain values V, based on keys K and queries Q. A single head

attention is based on the scaled-dot attention mechanism described in Section 2.2. Using

a single attention on the same sets of values, keys and queries would result in capturing

only a single aspect of the input, thus the transformer uses multi-head attention, where each

attention head focuses on different aspects of the sequence. The resulting similarity matrices

from the attention process are concatenated and mapped through an MLP, to compute

relationships between the different aspects.
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(a) The Transformer architecture

(b) Multi-Head Atten-

tion

(c) Scaled-Dot Prod-

uct Attention

Figure 2.4: The transformer architecture with a detailed view of Multi-head Attention and

Scaled-Dot product attention

2.3.5 Pre-trained Transformer-based Language Models

The inception of the transformer architecture, paved the way for the development of models

which would revolutionise the NLP landscape and dominate popular language understanding

benchmarks (Wang et al., 2019). The most widely used model is BERT (Devlin et al., 2019),

where its encoder is comprised of multiple layers of transformer networks. Crucial to its

success is the learning component employed, the Masked Language Model (MLM) objective.

MLM tasks a model in predicting all tokens in a sequence that have been masked ([MASK])

given their surrounding context. Devlin et al. (2019) adapted the transformer for learning text

represenations, by pre-training on large corpora using the MLM as a primary objective. This

pre-training results in the model learning rich text-representations due to the large number

of training iterations (i.e. epochs) and size of the corpora it was trained on. Following pre-

training, the model can be “fine-tuned” on a supervised end-task (e.g. text classification)

by using only a handful of epochs. Soon after the introduction of BERT other variants were

introduced, with most of them varying the pre-training objective (Lan et al., 2020; Sanh

et al., 2020; Clark et al., 2020; Liu et al., 2019a; Yamaguchi et al., 2021) or by changing the
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pre-training corpus to be domain specific (Beltagy et al., 2019; Chalkidis et al., 2020b).

2.3.6 Training Neural Networks

An ideal neural network would be initialised with a set of weights, that would yield for

each case the appropriate prediction (Egmont-Petersen et al., 1994). However such weights

cannot be known a priori. This is where the training, or learning phase, is applied to adapt the

parameters of the model to produce predictions close to some target outputs. The training of

neural networks often follows the same pipeline across architectures in supervised learning.

First, the data is split into subsets for training, development and testing. The training

subset is used for training the model with the development subset used for evaluating the

predictive performance on unseen data, to find which set of parameters are most suitable for

the model and task at hand. The testing subset is used for monitoring the model’s predictive

performance on unseen data. During training a prediction is produced by passing the input

through the model, in what is often called a forward pass. The error is then computed

between the prediction and the actual expected output.

Loss functions: The function used to compute the error, also referred to as loss, often

varies with the selection of the metric heavily relying on the task at hand (Egmont-Petersen

et al., 1994). A common metric used for regression tasks is the Mean-Absolute Error , which

can be defined as:

Lpŷ, yq “ |ŷ ´ y| (2.12)

where ŷ and y are the models prediction and actual output respectively. This is a naive

metric used for simple models, which was later adapted to the Mean-Squared Error (MSE).

MSE simply squares the error shown in equation 2.12. This essentially penalises the model

more when the error values are large. For classification tasks a commonly used error metric

is Cross-Entropy Loss, which is described as:

Lpŷ, yq “ ´
ÿ

ŷ log y (2.13)
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Cross-Entropy Loss penalises the model not only when it makes a false prediction, but pe-

nalises highly when it makes a false prediction highly. Another common metric used for

classification is Negative Log-Likelihood Loss which is formed from the negative log value of

the expected output, losspŷ, yq “ ´ log y.

Computing the error is followed by the learning phase, where the parameters are adjusted

to reduce the error or loss. This is an optimisation problem and the first step to optimising

is calculating the contribution of each parameter to the output error (LeCun et al., 1989).

Backpropagation: The contribution of each of the parameters can be calculated by back-

propagation (LeCun et al., 1989). Backpropagation was first tested on feed forward neural

networks and has since then become the predominant approach for training neural models

(Werbos, 1974). Given that the functions used by a neural network to produce a prediction

are differentiable, the chain rule is used to compute the derivatives of the error, computed

from the loss functions, with respect to the network’s parameters. The chain rule allows us

to obtain the derivative of the composition of functions. As an example consider function

fpxq “ gpzpxqq, where we assume that g is an activation function and zpxq a linear trans-

formation function. The chain rule allows us to compute effectively the derivatives f 1pxq

by computing the intermediary derivatives such that f 1pxq “ f 1pgq ¨ g1pxq. This allows for

optimisation algorithms, described further on, to be used as learning processes to adjust the

parameters with the most prominent one being stochastic gradient descent.

In the case of RNN’s though the time dependency requires a slight variant of backprop-

agation, called Backpropagation-through time (BTT) (Werbos, 1990). This variant modifies

the standard backpropagation approach to unfolds the equations through the time steps and

assigns the propagated the error through each time step (LeCun et al., 1989). This results

in an elongated chain of nodes equal to the time steps.

Optimisation: Following the computation of the gradients, and thus the contribution

of each parameter, there are several commonly used optimisation algorithms to adapt the

parameters. The basis for most optimisation algorithms in neural networks is Gradient

Descent (Lemaréchal, 2012). Batch Gradient Descent (BGD) is performed on the entire

dataset and is guaranteed to converge to the global minimum for convex error surfaces and
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to a local-minimum for non-convex (Ruder, 2016). However it can be very time consuming

for large datasets and is rarely used in literature, thus will not be described in this report.

Stochastic Gradient Descent (SGD) is a variant of BGD, and in contrast to BGD performs

an update for each instance by using the following rule:

θ “ θ ´ η ¨∇losspθ;xi; yiq (2.14)

where θ represents the model parameters, η the learning rate and ∇Jpθ;xi; yiq the gradient

of the loss. Compared to BGD, the fact that the update is performed for each point allows

the learning process to progress much faster and allows for finding better local minima, but

complicates convergence as it can also overshoot and not converge. By taking advantage

of the benefits of, Mini-batch Gradient descent utilises the same principles seen in equation

2.14 but performs updates on several instances at once (Ruder, 2016). There are several

variants and add-ons to the SGD to aid convergence with the most prominent ones varying

the learning rate according to the learning process.

Various modifications have been introduced to stochastic gradient descent for better con-

vergence. Such a variant is Adagrad, which modifies the learning rate η at each time by

performing larger updates for infrequent parameters and smaller updates for frequent ones

making it suitable for sparse data (Ruder, 2016). Adaptive Moment Estimation (Adam) also

dynamically adjusts the learning rate η by storing an exponentially decaying estimates of the

mean mt and variance vt of past gradients (Ruder, 2016). The Adam update rule is then

computed by:

θt`1 “ θt ´
η

?
vt ` ε

mt (2.15)

Regularisation: A common problem of neural models during training is overfitting.

Overfitting is caused when a model can predict accurately the instances within the domain

of the training data but performs badly on unseen data. To avoid this, as mentioned in this

section previously, a development subset of the data is used to monitor performance and

decide where to stop training. Additionally there are several techniques to regularise the

network parameters and prevent overfitting by introducing a priori on the error function.

The most common approaches in literature are l1 and l2 regularisations or weight decay

(Mc Loone and Irwin, 2001) and dropout. They aim to penalising the generalisation error
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Figure 2.5: Popular metrics for evaluating model predictive performance.

but not the training error, by adding a term on the loss function. l1 regularisation includes

adding the sum of all model parameters, l2 regularisation adds the sum of all squared model

parameters. Usually the two terms are multiplied by a scalar quantity λ to adjust the level of

regularisation. Finally, dropout controls overfitting by randomly omitting subsets of features

at each training iteration (Hinton et al., 2012).

Evaluating Model Predictive Performance: Having trained a model on an end-task,

we then need to evaluate the model’s predictive performance on unseen instances during

training. Two popular metrics used to evaluate predictive performance are Accuracy and the

F1 score, where a higher score indicates better predictive performance. Accuracy, represents

the ratio of the correctly predicted labels against the actual given labels. The F1 score

represents the harmonic mean between presicion and recall. Precision is the ratio of true

positives (correctly classified instances of target class) against the sum of true positives and

true negatives (instances correctly not classified as target class). Similarly, recall is computed

using the true positive ratio against the true positives and false negatives (instances wrongly

classified as not the target class). We show these metrics in Figure 2.5. For multi-class

tasks (i.e. not a binary task), we can compute the F1-macro or F1-micro for the overall

performance. F1-macro computes the average of the F1 score of all classes. In contrast,

F1-micro computes the weighted average (weighted by the number instances found under

each class) of the F1 score of all classes.

Whilst neural models have been gaining ground in most NLP applications in contrast

with linear classifiers, they carry several shortfalls. Larger neural architectures require more

data, time and computational power to train in comparison to simpler classifiers and more
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importantly they are more complex to understand. Compared to linear models, which of-

fer intuitive approaches to explain a specific prediction, the interconnected grid of weights,

non-linear activation functions and stacks of layers of neural models makes interpreting their

decisions notoriously difficult (Weiss et al., 2018). Their enlarged complexity and highly

parametrised architectures makes them hard to interpret, as such earning them the title of

‘black boxes’ (Zhang et al., 2018). Having provided pre-requisite knowledge in the previ-

ous sections, the remainder of this chapter will first motivate why model interpretability is

important and discuss the challenges faced by previous studies.

2.4 Model Interpretability in NLP

As more ‘black box’ models penetrate safety-critical tasks, extracting explanations to un-

derstand model predictions is increasingly becoming more important in NLP. Doshi-Velez

and Kim (2017) argue that model interpretability is of crucial importance for the following

reasons:

• To gain scientific understanding, by obtaining explanations that can be converted into

knowledge.

• To increase safety in scenarios where a prediction will lead to action in a high-risk

environment, by providing explanations for the prediction.

• To improve the ‘fairness’ of algorithmic predictions thus reducing or ideally eliminating

biases. For example when a hiring algorithm rejects a candidate based on his resume,

the hiring agents need to make sure that this decision was not influenced by ‘unethical’

reasoning.

• To provide explanations and accountability, as required by law, for predictions affecting

actions at a user-level (Goodman and Flaxman, 2017).

Defining Model Interpretability: Model interpretability as a concept has received in-

creased attention over recent years. This has subsequently led to an evolving definition of

what is model interpretability, with multiple possible directions for research forming under
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this umbrella term. Several studies have focused on examining the linguistic information

learned by these models (Brunner et al., 2020; Pascual et al., 2020). Other studies have

focused on generating explanations or rationales for model predictions, by identifying the

subset of the input that is more important for a model’s prediction (Lei et al., 2016; Jain

et al., 2020; Treviso and Martins, 2020). Whilst understanding the learning capabilities of

models is important, this project focuses on the latter, which is concerned about identifying

which parts of the input contributed the most towards a model’s prediction.

Lipton (2016) and Miller (2019) define interpretability as the degree to which an observer

can understand the cause of a decision, whilst an explanation is defined as “a mode in

which an observer may obtain understanding”. Miller (2019) equate explainability with

interpretability, whilst specifying that justification explains why a decision is good, but does

not aim to explain the actual process that achieved a prediction. Doshi-Velez and Kim

(2017) define interpretability as the ability to explain or present in understandable terms to

a human, however they argue that there is not a formal definition for explanation in machine

learning and thus adopted a definition from the field of psychology. Whilst some researchers

use interpretations and explanations to increase trust in their models (Miller, 2019; Ribeiro

et al., 2016), Lipton (2016) argues that interpretability as a term is ill-defined. This claim

is supported by the large disparity between the definitions given in literature, which clearly

shows a lack of a formal framework on what constitutes a good explanation or interpretation.

Jacovi and Goldberg (2020) helped accelerate research in this area, by framing two crucial

concepts or ‘properties’ of what an explanation or rationale should be. These ‘properties’

or categorisations are plausibility and faithfulness. A plausible explanation is one which is

intuitive to a human reader, whilst a faithful explanation is one which is truly reflective of

the reasoning behind a model’s prediction. An explanation can be both plausible and faithful

or either, as these two properties have been previously shown to not correlate (Atanasova

et al., 2020). Each property has its own importance under different settings. For example,

a plausible rationale might be more desirable where we need to increase the end-user’s trust

in a model’s prediction. On the other hand, a faithful rationale is essential in safety-critical

settings, where a practitioner needs to understand the true reasoning behind a model’s pre-

diction to avoid catastrophic decision making.

As the motivation of this work is to improve understanding for model predictions, particu-

larly in safety-critical settings, this thesis focuses on improving and evaluating the faithfulness
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(c) Heat-map

Figure 2.6: Examples of the different types of post-hoc explanations, with (a) showing the k

highest scored tokens (Top-k); (b) showing the highest score contiguous subset (Contiguous) and

(c) the explanation as a heat-map.

of explanations. The formal definition that is adopted therefore is: “A faithful explanation

or rationale is one that is representative of the true reasoning behind a model’s prediction

(Jacovi and Goldberg, 2020), regardless of if the explanation is plausible or not (Atanasova

et al., 2020)”.

2.5 Rationale Extraction

Given a model M trained on an end task, we are interested in explaining why M predicted ŷ

for a particular instance x P X. An extracted faithful rationale R, should therefore represent

as accurately as possible the most important subset of the input (R P x) which contributed

mostly towards the model’s prediction ŷ.

Currently, there are two popular approaches for extracting rationales. The first approach

consists of first identifying the most important input tokens, by using feature attribution

methods (Ω). Feature attribution methods are approaches which allocate importance scores

(ω) to the input tokens with respect to a prediction.1 We can then form a rationale by

selecting the k most important tokens (top-k rationale), or by selecting the highest scored

contiguous subset of length k (contiguous rationale). Alternatively, another popular use

of feature attribution approaches, is to visualise the allocated importance over the input

sequence as a heat-map (Barbieri et al., 2018). As this approach relies on using a model that

1Feature attribution methods are also referred to as feature scoring methods.
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Figure 2.7: A typical pipeline followed by an inherently faithful select-then-predict model.

is already trained on an end-task, these explanations are typically referred to as post-hoc

explanations. For clarity, we illustrate types of post-hoc explanations in Figure 2.6.

The second approach for extracting rationales, focuses on forming inherently faithful

classifiers by jointly training two modules, a rationale generator and a rationale classifier

(Lei et al., 2016; Bastings et al., 2019). The rationale generator first generates a rationale

mask that can be applied over the input. The classifier is then trained on an end-task using

only the extracted rationales. As the classifier is trained only on the rationales, it is therefore

inherently faithful. Recent studies have used feature attribution methods as part of the

rationale generator (Jain et al., 2020; Treviso and Martins, 2020; Guerreiro and Martins,

2021), showing improvements in classifier predictive performance. We visualise select-then-

predict models in Figure 2.7.

For the remainder of this section, we first present popular feature attribution methods

used for extracting post-hoc explanations and will then follow with popular implementations

of inherently faithful select-then-predict models.

2.5.1 Feature Attribution Methods for Post-hoc Explanations

Given a pre-trained model M and an output distribution Y (where ŷ P Y), feature attribution

approaches Ω extract importance scores ω for an input sequence x such that:

ω “ ΩpM,x,Yq (2.16)

Feature attribution approaches can be categorised into different groups, based on the
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framework they adopt. Through this work we will present feature attribution approaches,

that are split into the following groups: (1) gradient-based; (2) perturbation-based; (3)

simplification-based and finally (4) attention-based.

Gradient-based methods: Gradient-based methods rely on computing the gradients of

a prediction with respect to the input as indicators of input importance. The foundation of

gradient-based methods is the sensitivity analysis approach (Simonyan et al., 2013), which

directly computes the gradients of the prediction with respect to the input such that Bŷ
Bx

. Since

the input to a neural network are token representations (i.e. the embeddings), rather than the

tokens themselves, there exist different formulations on how to map the embedding gradients

to a single token-wise importance score (DeYoung et al., 2020). Popular formulations include

computing the average gradient score for each word representation, summing all gradient

scores, computing their l1 norm or their l2 norm. It has been shown that preserving large

gradient values by performing aggregation (e.g. l1 or l2 norm) rather than averaging, results

in more faithful allocation of input importance (Atanasova et al., 2020).

Several other variants have been developed with the aim of obtaining a more accurate

allocation of input importance. Such an approach is InputXGradient, which uses the sen-

sitivity analysis method to generate the gradients to then multiply them with the input

(Kindermans et al., 2016). Layer-wise Relevance Propagation (LRP), uses the target class

(predicted class) and decomposes the function that produces the target class prediction. The

decomposition is performed by back-propagating through the network using a set of rules and

allocates relevance to the neurons of each layer recursively until it reaches the input layer.

This approach is based on the principle that relevance is conserved across all layers of the

network. Another popular approach, Integrated-Gradients (IG) allocates input importance,

by computing the integral of the gradients taken along a straight path from a baseline input

to the original input, where the baseline is the zero embedding vector (Sundararajan et al.,

2017). In a similar direction, DeepLift computes the difference between the activation of

each neuron and a reference activation (zero embedding vector) to allocate input importance

(Shrikumar et al., 2017).

Perturbation-based methods: The intuition behind this class of feature scoring meth-

ods, is that we can compute the importance of a single token on the prediction by ei-
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ther removing or replacing it. A popular example of such a feature attribution method

is Word Omission, which allocates input importance by computing the difference between

the probabilities of the predicted class when including a word i and omitting it: WOi “

ppŷ|xq´ ppŷ|xzxiq (Robnik-Šikonja and Kononenko, 2008; Nguyen, 2018a). Typically, the to-

kens are omitted by replacing them with a zero embedding vector. Kim et al. (2020) suggest

an alternative formulation to occlusion style approaches, which relies on input marginalisa-

tion. Instead of replacing the input token with a zero embedding vector, Kim et al. (2020)

suggest replacing the target input token with the most likely candidate to replace it. In the

case of transformer-based models like BERT, this is easily achievable as they are pre-trained

using a masked language objective and as such the Masked Language Model (MLM) can be

used. They then suggest marginalising over the likelihoods of candidate tokens in place of

the target token, to reach an attribution score for the particular token.

Simplification-based methods: These approaches are inspired by using simpler, explain-

able models to approximate the predictions of the original ‘black box’ model. A prominent

simplification method is Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro

et al., 2016). LIME generates explanations by perturbing parts of the input and then observ-

ing how the output is affected. LIME essentially generates these explanations by training a

linear model to describe the underlying more complex model, based on the aforementioned

perturbations. A key benefit of this method is that it is model-agnostic and thus it can

provide explanations for the predictions of any pre-trained model.

Attention-based methods: Derived from attention mechanisms (described in Section

2.2), attention weights (α) from a model trained on an end-task have been implicitly or

explicitly used as indicators of input importance (Cho et al., 2014; Xu et al., 2015; Barbieri

et al., 2018; Ghaeini et al., 2018). In an attempt to improve them, other variants emerged.

Such a variant that is not frequently used are the attention gradients (Serrano and Smith,

2019), which essentially use the gradients of the prediction with respect to the attention

weights as indicators of input importance. Building on that, scaled attention multiplies the

attention weights with their corresponding attention gradients. The intuition is that attention

weights offer an output-generic representation of importance. As such, scaling them by their

gradients to the prediction results in class-specific importance scores.
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2.5.2 Select-then-Predict Models

This section describes popular variants of select-then-predict, inherently faithful models. For

simplicity this work will describe the implementations of different variants, in terms of the

processes they follow which can be depicted in Figure 2.7. Generally, select-then-predict

models are comprised of two modules, a rationale extractor and a rationale encoder followed

by a classification layer, which typically operate together.2 The rationale extractor accepts as

input an entire text sequence and is responsible for extracting the most informative subset of

the input sequence, i.e. the rationale. The input sequence is first fed into the rationale mask

generator, which generates a rationale mask z which is conditioned on the input, such that

ppz|xq. The rationale mask indicates which tokens should be extracted and which should be

omitted. The preserved input (i.e. the rationale) is then passed through the classifier to reach

a prediction. Depending on the implementation, these two modules can be either trained

jointly (Lei et al., 2016; Bastings et al., 2019; Treviso and Martins, 2020) or independently

(Jain et al., 2020; Treviso and Martins, 2020).

Bernoulli-Latent-Model: The work by Lei et al. (2016), is one of the first popular im-

plementations of inherently faithful select-then-predict models in NLP. To gain a better

understanding of the processes underlying select-then-predict models, we describe this model

in detail. Their proposed rationale mask generator (genpx;φq), is tasked with predicting

a sequence of t Bernoulli parameters given an input x, where t is the number of tokens in

the input sequence and φ the parameters of the generator model. The Bernoulli parameters

are then used to generate a rationale mask z “ tz1, . . . , zT u, which acts as a binary gating

mechanism that decides which tokens in the input sequence to preserve. We can therefore

generate a rationale R by:

z „ Bernoullipgenpx;φqq

R “ zd x
(2.17)

2We refer the rationale encoder and the classification layer jointly as the rationale classifier for brevity.
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The rationale R is then passed through a classifier to make a prediction, such that:

ŷ „ Classifierpzd x; θq (2.18)

where θ are the classifier parameters and during training, the generator and classifier are

jointly learned. The learning challenge is two-fold. Firstly, the predicted outcome should be

as close as possible to the actual outcome (i.e. the given labels). For example if we were to

minimise the mean squared error:

Lpz,x,yq “ ||Classifierpzd x; θq ´ y||22 (2.19)

Secondly, the generator is guided to select short and coherent rationales, such that:

Ωpzq “ λ1||z|| ` λ2

t
ÿ

i“0

|zi ´ zi´1| (2.20)

where the first term penalizes the number of selections and the second encourages the con-

tiguity of selections. The final loss function is a combination of the two, where the overall

expected loss L is minimised over both the generator and classifier such that:

min
φ θ

n
ÿ

i“1

Ezi„genpxiqLpClassifierpxi, ziq,yiq (2.21)

where n is the number of documents in the training corpus. The expected loss is difficult to

optimise as it requires marginalising over all the possible rationale masks z. Lei et al. (2016)

perform parameter approximation by drawing samples from the generator and averaging their

gradients during training. This works well for extracting rationales, however as a result of

the high difficulty in exploring the space of all possible rationales, there is large variation in

predictive performance across random seeds.

HardKuma: Bastings et al. (2019) build upon the work of Lei et al. (2016) to train a

jointly the rationale mask generator and the classifier. They key difference in their work, is the
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introduction of the Hard Kumaraswamy (HardKuma) distribution, which they use to sample

the latent rationale mask z. HardKuma allows them to draw samples using the reparametri-

sation trick, such that gradient estimation is possible without REINFORCE (Williams, 1992)

as in the case of Bernoulli latent variables. REINFORCE algorithms allow for parameter ad-

justments by approximation, without explicitly computing gradient estimates. Bastings et al.

(2019) also propose the use of Lagrangian relaxation for constraining the extracted rationale.

A significant drawback of stochastic rationale models is that they require marginalization

over all possible rationales, which in practice is intractable (Guerreiro and Martins, 2021). For

training, this results to either REINFORCE style gradient estimates, such as the Bernoulli-

Latent-Model, or reparametrised gradients such as the case of HardKuma. As such, these

models require careful hyperparameter tuning and they typically exhibit high variance over

multiple runs (Jain et al., 2020).

FRESH: In a different direction, Jain et al. (2020) introduced FRESH. Unlike the two

previously discussed variants, FRESH uses three modules: a support model, an extractor and

a classifier. The support model and extractor can be considered as parts of the rationale

extractor depicted in Figure 2.7. A crucial difference in FRESH, is that the support model

and classifiers can be trained independently. More formally, the support model is trained

using the full length sequences on the end-task, the extractor module extracts rationales by

using a feature attribution approach and the classifier is trained on the rationales for an end-

task. The fact that these modules are independent, allows for one to use an already trained

support model and then specify an extractor which uses a pre-defined feature scoring method,

sparsity level (i.e. length of the rationale) and rationale type (i.e. top-k or contiguous) to

generate a rationale mask z. Additionally it has been shown that FRESH does not require the

extensive hyperparameter search that the Bernoulli Latent variables and HardKuma require.

In a similar direction to FRESH, Treviso and Martins (2020) propose using sparse at-

tention as the feature scoring method to generate rationales. Sparse attention probability

distributions are obtained by using the sparsemax (Martins and Astudillo, 2016) instead

of the softmax over the attention weights. Sparsemax allows for assigning zero probability

scores and as such the attention probability distribution is sparse. This arguably makes

sparse attention easier to interpret than when using standard attention with softmax (see

Section 2.2). They form a rationale mask z by selecting all tokens with non-zero attention
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probability. A limitation of using sparse attention however and FRESH, is that the rationale

sparsity and contiguity cannot be enforced during training.

2.6 Evaluating Explanation Faithfulness

In literature, the large majority of evaluation approaches for post-hoc explanation faithfulness

rely on erasure approaches (Nguyen, 2018b; Serrano and Smith, 2019; Atanasova et al., 2020;

DeYoung et al., 2020; Madsen et al., 2021a). Erasure approaches constitute of masking input

tokens (i.e. by replacing certain tokens with an empty placeholder, such as [MASK]) and

observing changes in the prediction. There are multiple variants and implementations of

erasure approaches, which are described below:

Word Relevance: Arras et al. (2017) evaluate the faithfulness of explanations generated

by LRP and sensitivity analysis, by recursively removing (i.e. by masking) words in order

of increasing and decreasing importance. The intuition is, that by deleting important words

in order of decreasing importance in correctly classified sentences, then we should observe

performance degradation. This degradation should continue with increasing numbers of

removed “important” words. Inversely, by removing tokens of increasing importance in falsely

classified sentences, we should observe increases in performance. They argue that a higher

degradation rate, in the case of removing tokens of decreasing importance, indicates a feature

attribution method that can more faithfully allocate importance.

Fraction of Tokens: In a different direction to word relevance, which removes words based

on their true class, Nguyen (2018b) suggest removing words based on their predicted class.

They argue that this allows for an unsupervised evaluation of explanation faithfulness, when

the true labels are not available. Additionally, this work considers this evaluation to be more

closely aligned with the concept of faithfulness, as a faithful explanation is concerned with

explaining what a model has predicted and not what it should have predicted. Fraction

of tokens therefore, removes tokens in order of decreasing importance and records when a

prediction switch has occurred (i.e. how many tokens are required relative to the length of

the sequence to cause a prediction flip). The intuition is that a feature scoring method that
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results in a low fraction of tokens score is more faithful, as it highlights correctly the most

important tokens in a sequence (Serrano and Smith, 2019).

Comprehensiveness: DeYoung et al. (2020) suggest that for a rationale to be faithful,

we should observe a drop in the probability score of the originally predicted class when

removing it from the sequence. The comprehensiveness score therefore aims to quantify

how necessary the rationale is for a model’s predictions. This is achieved by measuring the

change in a model’s probability score between the original prediction probability score and

the probability score with the rationale masked, such that:

Comppx, ŷ,Rq “ ppŷ|xq ´ ppŷ|xzRq (2.22)

Carton et al. (2020) bind this metric between 0 and 1, but also suggest normalising compre-

hensiveness to account for the behaviour of the model when presented with a baseline input

(i.e. an all zero embedding vector). They argue and empirically demonstrate that normali-

sation, paints a truer picture of rationale comprehensiveness and sufficiency when comparing

across models and datasets. Normalised comprehensiveness (NormComp) is therefore defined

as:

NormComppx, ŷ,Rq “ Comppx, ŷ,Rq
Comppx, ŷ, 0q

(2.23)

where Comppx, ŷ, 0q is the comprehensiveness of an all zero embedding vector.

Sufficiency: A sufficient rationale, is one which is adequate for a model to make a pre-

diction (DeYoung et al., 2020). To measure sufficiency, DeYoung et al. (2020) measure the

difference between the predicted class probability of a model using the full input against

using only the rationale, similar to comprehensiveness. The intuition is that if a rationale is

sufficient, there should be a low difference in the predicted class probability:

Suffpx, ŷ,Rq “ ppŷ|xq ´ ppŷ|Rq (2.24)
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Carton et al. (2020) bind again this metric between 0 and 1. Similar to comprehensiveness,

they again normalise sufficiency (NormSuff):

NormSuffpx, ŷ,Rq “ Suffpx, ŷ,Rq ´ Suffpx, ŷ, 0q

1´ Suffpx, ŷ, 0q
(2.25)

AOPC: As sufficiency and comprehensiveness evaluate rationales at a specified length,

DeYoung et al. (2020) suggest capturing these metrics under different rationale lengths by

computing the Area over the Perturbation Curve (AOPC).3 To achieve that, they construct

bins designating the number of tokens to be deleted and aggregate their importance. For

comprehensiveness (normalised or not) this is defined as:

AOPC “
1

|B|

B
ÿ

b“0

ppŷ|xq ´ ppŷ|xzRq (2.26)

where B is the set of pre-defined bins, e.g. B “ t10%, 20%, ..u. The same formulation can be

applied for sufficiency analogously.

F1 macro: Similar to comprehensiveness we can measure the drops in F1 macro perfor-

mance of model M when masking the rationale in the original input (xzR) (Arras et al.,

2017). Larger drops in F1 scores indicate that the extracted rationale is more faithful. Arras

et al. (2017) measured this using the dataset gold-labels, however for evaluating faithfulness

the F1 macro performance can be evaluated using the predicted labels of a model using the

full text.

ROAR: Remove-and-Retrain (ROAR) is based on the principle that a rationale is impor-

tant, then removing it from the input and retraining the model should result in degraded

performance Hooker et al. (2019). As ROAR was originally conceptualised for computer

vision tasks, Madsen et al. (2021a) adapted it for NLP and proposed an improvement, Re-

cursive ROAR (Rec-ROAR). Rather than assuming a fixed length rationale, similar to AOPC

3Carton et al. (2020) also use the term fidelity when jointly referring to sufficiency and comprehensive-

ness.
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ROAR recursively removes tokens (or bins of tokens) in order of decreasing importance. At

each iteration the model is re-trained and the updated performance is recorded. As with

Word-Relevance, we expect that the most faithful feature attribution method is the one

which results in the highest performance degradation at each recursion.

The evaluation approaches described previously are applicable for post-hoc explanations.

Select-then-predict models are inherently faithful and as such there is no need to evaluate

the faithfulness of their rationales. However, a good measure of their explanation quality or

informativeness, is the predictive performance of the classifier which is trained only on the

rationales. When comparing across the same classifier architecture, increases in performance

indicate that the rationales contain more information relevant to the task, as the model is

able to learn better. Overall, recently developed select-then-predict models exhibit higher

and more stable predictive performance across multiple runs and tasks, with a reduced need

for extensive hyperparameter tuning (Jain et al., 2020; Treviso and Martins, 2020; Guerreiro

and Martins, 2021) compared to work in this area (Lei et al., 2016; Bastings et al., 2019).

2.6.1 Faithfulness of Post-hoc Explanations

Due to the rapid developments in the area of model interpretability, there has not always

been a clear framework of what constitutes a good explanation or rationale (Jacovi and

Goldberg, 2020). This has impacted the evaluation of post-hoc explanations in literature,

with previous research showing conflicting outcomes. For this purpose, this section describes

in a chronological order how the faithfulness of post-hoc explanations was studied in previous

work, describing those relevant to the context of this project. This past-to-present analysis,

will help form a clearer understanding of what is the current state and limitations when

extracting faithful post-hoc explanations.

Nguyen (2018b) have compared the faithfulness of three feature scoring methods, namely

LIME, the sensitivity analysis and Word Omission. They used two text classification datasets

to perform their analysis and their evaluation was largely based on computing the AOPC

comprehensiveness (non-normalised) of the generated post-hoc explanations. Their results

have shown that for Logistic Regression, Word Omission outperformed LIME regardless of

the number of samples used in it. Similarly, for an MLP model simple gradients performed

better followed by Word Omission and finally LIME. It is important to note that with an
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increasing number of samples, LIME becomes more computationally expensive. As such,

their research shows that LIME rarely justifies the computational overhead compared to the

faithfulness of its generated explanations. Nguyen (2018b) have also shown that outcomes

from the AOPC comprehensiveness evaluation also hold, when evaluating using the Fraction

of Tokens approach. Arras et al. (2017) used Word Relevance to compare the efficacy of

LRP against the sensitivity analysis approach. They show that there is a larger degradation

in model predictive performance by removing important tokens when indicated by LRP

compared to sensitivity analysis. However, Arras et al. (2017) use the true labels of the model

rather than the predicted to evaluate post-hoc explanations, an important limitation towards

evaluating explanation faithfulness. This is not representative of explanation faithfulness, as

a faithful explanation aims to show why a model made a certain prediction, despite of if the

model is right or wrong.

Atanasova et al. (2020) have examined post-hoc explanations against a wide range of

properties, including faithfulness. Their study, one of the more extensive on evaluating

faithfulness, includes four gradient-based feature scoring methods, two perturbation based

and one simplification approach (LIME). The gradient-based include the simple gradients

approach, two variants of InputXGrad and Gradient Backpropagation, a variant of LRP.

Additionally, for the gradient-based methods two aggregation approaches were tested (i.e.

from embedding level importance to token level importance). First, averaging across the

embedding dimension and secondly computing the l2 norm. For the perturbation based

approaches, Atanasova et al. (2020) opted for Word Omission and Shapley Value Sampling

(ShapSampl) (Castro et al., 2009). ShapSampl is based on the Shapley Values approach,

that computes the average contribution of each word across all possible word perturbations.

The Sampling variant considers only a fixed number of random perturbations as opposed to

all possible perturbations and thus is a faster approximation of Shapley Values.

The findings of Atanasova et al. (2020) shed light into some problematic behaviour of fea-

ture scoring methods. Firstly, it was shown that the faithfulness of a feature scoring method

depends on the task and encoder. Faithfulness was evaluated by measuring comprehensive-

ness under different rationale lengths. Encoder-wise, they show that post-hoc explanations

were more faithful when using simpler encoder architectures (such as CNNs) when compared

to transformer-based models (independent of the feature scoring method). This is expected,

as the less complex a model, the better the explanations are (Jain and Wallace, 2019; Wiegr-
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effe and Pinter, 2019). Overall, it was shown that InputXGradient, a gradient-based variant

with l2 aggregation, performed more consistently than all other feature scoring methods and

resulted in more faithful explanations. However, the performance of the remainder of feature

scoring methods is inconsistent and depends on the dataset and encoder. Finally, it was

demonstrated empirically that the performance of feature scoring methods not only varies

across datasets, but also within the same dataset across instances. These findings are largely

in agreement with the suggestions of Jacovi and Goldberg (2020), who support this argument

and also suggest evaluating faithfulness at instance-level.

The case of attention: A prominent feature scoring method that has faced criticism for

the quality of its explanations are attention mechanisms (Jain and Wallace, 2019; Serrano and

Smith, 2019; Wiegreffe and Pinter, 2019). A common practice was to provide explanations

for a given prediction and qualitative model analysis by assigning importance to input tokens

using scores provided by attention mechanisms (Chen et al., 2017; Wang et al., 2016; Sun and

Lu, 2020) as a mean towards model interpretability (Lipton, 2016). Barbieri et al. (2018) for

example, use attention heat-maps to qualitatively show that the attention weights from their

proposed, multi-label attention mechanism allocate importance more closely to a particular

label.

However, their efficacy in producing explanations has not been assessed until recently.

Jain and Wallace (2019) were the first to address the faithfulness of post-hoc explanations

from attention weights. Their analysis was two-fold; for attention weights to provide expla-

nations: (1) they should correlate with other feature attribution methods and (2) adversarial

attention distributions that diverge from the original (i.e. that show alternative input impor-

tance to the original attention distribution), should yield significant changes in the prediction.

For their first analysis they correlated the importance rankings of attention weights with the

simple gradients method and Word Omission. They found that with recurrent encoders,

attention weights exhibited low correlation to either of the other two feature attribution

methods and suggested that attention weights cannot produce explanations. Regarding their

adversary analysis, they first kept a pre-trained model fixed and scrambled the attention

weight distribution. They found that there were many alternative attention distributions

that yielded comparable prediction distributions. However, their evaluation has received

criticism itself.
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Wiegreffe and Pinter (2019) argued against some of the experiments conducted by Jain

and Wallace (2019), showing that in certain cases attention mechanisms can produce faithful

explanations. Their work is based on the argument that the adversary experiments were not

structured and it was not clear what property of explanations was evaluated. As such, they

assessed how useful to a model the attention mechanism as a proxy for evaluating their expla-

nation quality. Serrano and Smith (2019) conducted a concurrent but independent study to

Jain and Wallace (2019), to assess the faithfulness of attention-based post-hoc explanations.

For their experiments, they used Fraction of Tokens and a variant of it, which computes the

percentage of decision flips (i.e. changes in a model’s prediction) observed after masking the

more important token (as indicated by a feature scoring method). What is interesting about

this study, is the fact that they also examined other attention-based feature scoring meth-

ods, namely attention-gradients and scaled attention. Similar to Jain and Wallace (2019),

they also compared attention-based explanations with those from a gradient-based approach.

They show across both experiments that explanations from attention-weights are less faithful

than those of the sensitivity analysis approach. However, an interesting outcome was that

scaled attention and attention-gradients outperformed attention weights. In fact, they per-

formed comparably to the sensitivity analysis approach. Despite this finding, many studies

following this work only use attention weights to compute input importance and not scaled

attention or attention-gradients, which have been shown to be more faithful.

In a different direction, Madsen et al. (2021a) evaluated the faithfulness of explanations

generated from attention weights, integrated gradients and simple gradients using ROAR

and Rec-ROAR. Their comprehensive analysis shows that the performance of feature scoring

methods is task-dependent, agreeing with the results of Atanasova et al. (2020). However, the

performance of these three feature scoring methods overall is comparable to each other. This

is an important finding as, attention weights do not impose any additional computational

overhead when interpreting predictions, whilst integrated gradients require the computation

of gradients multiple times in their experiments. This significant increase in computational

overhead is not justified by the faithfulness of explanations generated by integrated gradients.

Madsen et al. (2021a) show that attention weights do produce faithful explanations. They

argue that the faithfulness of an explanation largely depends on how much the performance of

a model drops when compared to a random baseline. The argument that attention weights

can produce explanations is also supported by Jain et al. (2020). Using FRESH to build

inherently faithful classifiers, Jain et al. (2020) show that using attention as part of the
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rationale extractor results in classifiers with higher performance, compared to when using

the simple gradients feature scoring method.

The conflicting outcomes of how faithful post-hoc explanations are from attention weights,

are strong indicators of the difficulties in defining and evaluating faithfulness. Results vary

across tasks, model architectures and rarely even across faithfulness evaluation approaches.

Whilst proof via counter-example tests, such as finding adversaries (Jain and Wallace, 2019),

are useful for evaluating how robust an explanation is, are not recently used for evaluating

faithfulness. Latest research points to erasure approaches (i.e. masking the rationale or

keeping only the rationale whilst masking the rest of the input) as the gold standard proxy for

evaluating post-hoc explanations. Overall, there is a general trend which suggests that post-

hoc explanation performance depends not only on the feature scoring method, but also on the

task and model architecture used. Attention weights, seem to be regaining ground (Madsen

et al., 2021a) after the criticism they have received (Jain and Wallace, 2019; Wiegreffe and

Pinter, 2019), whilst attention-based variants show promising that they can be more faithful

(Serrano and Smith, 2019). Finally, it has been shown that more computationally expensive

approaches such as LIME and IG, rarely justify this computational overhead with increased

post-hoc explanation faithfulness (Nguyen, 2018b; Madsen et al., 2021a).

2.7 Improving Explanations

Previous research has shown that it is possible to influence attention-based explanations

during training, by using auxiliary objectives (Kennedy et al., 2020; Wiegreffe and Pinter,

2019; Ross et al., 2017a; Liu and Avci, 2019). Auxiliary objectives are additional tasks

given to the model during training, that complement the primary goal which is to learn

the association between the input and the predicted labels. These objectives have typically

been used as a tool for evaluating explanation faithfulness generated by attention (Kennedy

et al., 2020; Wiegreffe and Pinter, 2019; Pruthi et al., 2020; Ghorbani et al., 2019). Wiegreffe

and Pinter (2019) for example, use an auxiliary objective during training to influence the

attention distribution of a model to be as far as possible from that of another model, whilst

yielding similar predictions.

A different branch of studies, uses auxiliary objectives to improve the plausibility of ex-
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planations generated by non-transformer based models (Ross et al., 2017a; Liu and Avci,

2019; Mohankumar et al., 2020). Liu and Avci (2019) use auxiliary objectives to reduce

unintended biases exhibited by classifiers. Their objective function essentially penalises the

distribution of token importance as indicated by a feature scoring method (in their case in-

tegrated gradients) using human annotated priors. Ross et al. (2017a) use masks to penalise

the gradients to a prediction of tokens, where a model should not focus on. These masks

are either annotated by human experts or are formed in an unsupervised manner. The un-

supervised approach functions by generating an ensemble of masks and thus models, that

are “right for different reasons”. They then suggest that they can present the masks to a

domain expert for finding the “right reasons” and using those to penalise model gradients.

Mohankumar et al. (2020) take a different approach to improving the plausibility of attention

weight explanations, by reducing the contextualisation in the word representations resulting

from an LSTM encoder. They argue, similar to Tutek and Snajder (2020), that the contex-

tualisation harms the explanation plausibility of attention weights and as such modify the

LSTM-cell to reduce it.

Moradi et al. (2021) attempt to improve the faithfulness of attention weights in neural

machine translation, by also proposing an objective function. Their approach is based on

erasure evaluation, where the premise is that by perturbing or erasing important tokens indi-

cated by attention, there should be a large divergence in the output probability distribution.

As such, their auxiliary objective penalises the LSTM model when the output distribution

does not change, when they (1) randomly perturb the attention weights; (2) erase the most

important tokens and (3) introduce a uniform attention distribution. In a similar direction,

Tutek and Snajder (2020) design a word-level auxiliary objective to reduce the contextualisa-

tion in the word representations of an LSTM encoder. Similar to Mohankumar et al. (2020),

they argue that contextualisation harms the faithfulness of explanation. Their auxiliary ob-

jective attempts to reduce contextualisation, by penalising when the l2 norm of the difference

between the word representations from the LSTM encoder and the word embeddings is large.

Such studies illustrate the effectiveness of auxiliary objectives for improving the faith-

fulness of model explanations. This suggests that there can be potential applications of

auxiliary objectives for explanation faithfulness, particularly when considering improving

the explanation faithfulness in large transformer-based models.
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2.8 Summary

This chapter presents a background on model interpretability with a focus on explanation

faithfulness. We begun by first providing prerequisite knowledge on neural text encoders

and attention mechanisms. We then described the definition of what is a faithful expla-

nation and presented different approaches available in literature for extracting explanations

(i.e. feature scoring methods and select-then-predict models). We then show how explana-

tion faithfulness is typically evaluated in previous studies and describes how feature scoring

methods and select-then-predict models perform in terms of producing faithful explanations.

Finally, we discuss a different branch of studies which focuses on improving explanations in

non-transformer based model architectures.
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Chapter 3

Improving the Faithfulness of

Post-hoc Explanations

Previously, we have described the current state of post-hoc explanation faithfulness and how

recent studies attempted to improve it. However, proposed methods are either encoder-

specific and often do not cover transformer-based models (Moradi et al., 2021; Tutek and

Snajder, 2020; Mohankumar et al., 2020). Inspired by these limitations, this chapter pro-

poses two novel approaches for improving the faithfulness of post-hoc explanations extracted

using feature attribution methods. Section 3.1 is concerned with improving attention-based

post-hoc explanations for text classification, whilst Section 3.2 focuses on improving the

faithfulness of post-hoc explanations in transformer-based models.

3.1 Improving Attention-based Explanations

3.1.1 Motivation

As described in Section 2.6.1, a common practice is providing explanations for a given pre-

diction and qualitative model analysis by assigning importance to input tokens using scores

provided by attention mechanisms (Chen et al., 2017; Wang et al., 2016; Jain et al., 2020; Sun

and Lu, 2020), as a mean towards model interpretability (Lipton, 2016; Miller, 2019). A series
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of recent studies illustrated that explanations obtained by attention weights do not always

provide faithful explanations (Serrano and Smith, 2019) while different text encoders can af-

fect attention interpretability, e.g. results can differ when using a recurrent or non-recurrent

encoder (Wiegreffe and Pinter, 2019).

Attention indicates how well inputs around a position i correspond to the output (Bah-

danau et al., 2015), due to the contextual dependencies of the words in the sequence. For

example, in a bidirectional recurrent encoder each token representation hi contains informa-

tion from the whole sequence so the attention weights actually refer to the input word in

context and not individually (Tutek and Snajder, 2020). Inspired by the simple and highly

interpretable bag-of-words models, which assign a single weight for each word type (word

in a vocabulary), we hypothesise that by scaling each input word’s contextualised repre-

sentation ci (see Eq. 2.1) by its attention score and a non-contextualised word type scalar

score, attention-based explanations can be improved. The intuition is that by having a less

contextualised sequence representation c, information mixing can be reduced for attention.

For example, consider the following review: “The food was amazing, service was excellent

and the price decent.”. With current architectures, the attention score for the word “amaz-

ing”, is affected by the surrounding context, with stronger influence from the tokens close to

it, e.g. the words “service” and “was”. As such, by applying the non-contextualised score

sxi , we aim to reduce this influence and have a more representative importance score from

attention, without losing the all-important contextualisation in the token representation hi.

This section is organised into five sub-sections. Section 3.1.2 describes the methodology for

infusing non-contextualised information in the model during training. Section 3.1.3 presents

the experimental set-up and finally Section 3.1.4 discusses the results obtained.

3.1.2 Methodology

We propose the Task-Scaling (TaSc) mechanism, which learns task specific token level im-

portance sxi complementary to the encoder representations and attention scores in Eq. 2.1,

such that:

c “
ÿ

i

hiαisxi , c PRN (3.1)

45



x1

x2

  

xt

Enc( )

et

e2

e1

TaSc

Input

Embeddings

Attention

Sequence
Representation

Output

α1

α2

αt

sx1

sx2

sxt

Figure 3.1: A text classification pipeline with the proposed TaSc component (where, |x| “ |α| “

|sx|).

The proposed mechanism can be visualised in Figure 3.1, where we compute sxi by proposing

three Task-Scaling (TaSc) mechanisms.1

Linear TaSc (Lin-TaSc): The first TaSc mechanism to introduce is Linear TaSc (Lin-

TaSc), the simplest and lightest method in the family of TaSc mechanisms that estimates

a scalar weight for each word in the vocabulary by introducing a new vector u P R|V|.

Given the input sequence x “ rx1, . . . , xts representing one-hot-encodings of the tokens, we

perform a look up on u to obtain the scalar weights of words in the sequence. u is randomly

initialised and updated partially at each training iteration, because naturally each input

sequence contains only a small subset of the vocabulary words.

We then obtain a task-scaled embedding êi for a token i in the input by multiplying the

original token embedding with its word type weight ui:

êi “ uiei (3.2)

The intuition is that the embedding vector ei was trained on general corpora and is a

non-contextualised “generic” representation of input xi. As such the score ui will scale ei

to the task. We subsequently compute context-independent scores sxi for each token in the

sequence, by summing all elements of its corresponding task-scaled embedding êi; sxi “
řd êi

1Number of parameters for each proposed mechanism in Table 3.2.
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in a similar way that token embeddings are averaged in the top-layers of a neural architecture.

We opted to sum-up and not average, because we want to retain large and small values from

the task-scaled embedding vector êi (Atanasova et al., 2020). Additionally, max and mean-

pooling or using the ui directly instead of si in early experimentation resulted in lower results.

We hypothesize that the summation resulted in the best outcomes, as it retains all of the

information of the scaled embedding vector rather than using subsets of it as with the max-

pooling, whilst mean-pooling has similar effects to averaging the vector (where averaging has

been shown to reduce performance (Atanasova et al., 2020)).

As the attention scores pertain to the word in context (Tutek and Snajder, 2020), we also

expect the score sxi to pertain to the word without the contextualised information. That

way, we complement attention which in turn results into a richer sequence representation c.

Feature-wise TaSc (Feat-TaSc): Lin-TaSc assigns equal weighting to all the dimensions

of the word embedding ei (see Eq. 3.2), but some of them might be more important than

others. Inspired by the RETAIN mechanism (Choi et al., 2016), Feature-wise TaSc (Feat-

TaSc) learns different weights for each embedding dimension to identify the most important

of them. Compared to Lin-TaSc where ei is scaled uniformly across all vector dimensions,

with Feat-TaSc each dimension is scaled independently. To achieve this, we introduce a

learnable matrix U PR|V|ˆd. Similar to Lin-TaSc, given the input sequence x, we perform a

look up on U to obtain Us “ ru1, . . . ,uts. U is randomly initialised and updated partially at

each training iteration. To obtain sxi , we perform a dot product between ui and embedding

vector ei;

sxi “ ui ¨ ei (3.3)

Convolutional TaSc (Conv-TaSc): Lin-TaSc and Feat-TaSc weigh the original word

embedding ei but do not consider any interactions between embedding dimensions. Conv-

TaSc addresses this limitation by extending Lin-TaSc.2 We apply a CNN3 with n channels

over the scaled embedding êi from Lin-TaSc, keeping a single stride and a 1-dimensional

2We only apply Conv-TaSc over Lin-TaSc to keep the mechanism relatively lightweight. Note that

Feat-TaSc learns an extra matrix of equal size to the embedding matrix.
3See CNN configurations in Section 3.1.3.
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kernel. This way, we ensure that input words remain context-independent. We then sum

over the filtered scaled embedding êfi , to obtain the scores sxi ;

sxi “
d

ÿ

êfi (3.4)

3.1.3 Experimental Setup

Dataset Av. |||W | |V|
Splits

Train/Dev/Test

SST 20 13,686 6,920 / 872 / 1,821

ADR 22 6,716 14,452 / 2,551 / 4,251

IMDB 185 12,147 17,212 / 4,304 / 4,363

AG 34 14,573 60,895 / 7,145 / 3,960

MIMIC 2,180 16,277 4,654 / 822 / 1,369

Table 3.1: Dataset statistics including average number of words (Av. |||W |) per instance, vocab-

ulary size (|V|) and splits.

Datasets: We consider the following datasets for text classification following Wiegreffe and

Pinter (2019) and Jain and Wallace (2019) (see Table 3.1 for details):

SST: Stanford Sentiment Treebank consists of sentences tagged with sentiment on a

5-point-scale from negative to postive (Socher et al., 2013). Jain and Wallace (2019) re-

moved sentences with neutral sentiment and labelled the remaining sentences to negative

and positive if they have a score lower or higher than 3 respectively.

IMDB: The Large Movie Reviews Corpus consists of 50,000 movie reviews labelled

either as positive or negative (Maas et al., 2011). We filter the dataset as per Jain and

Wallace (2019) to include movie reviews with sequence length less than 400 words.

ADR: A dataset of „20,000 tweets with labels indicating whether a Twitter post con-

tains an adverse drug reaction or not Sarker et al. (2015).
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TaSc Mechanism Additional Parameters

Lin-TaSc |V|

Feat-TaSc |V| ˆ d

Conv-TaSc |V| ` dˆ n` n

Table 3.2: Additional parameters resulting from the proposed TaSc mechanisms where |V | is the

vocabulary size, d the embedding dimension and n the number of channels in a CNN.

AG: A subset of the original news articles4 dataset compiled by Jain and Wallace (2019)

for topic categorisation (Business and World news).

MIMIC: A sample of discharge summaries from the MIMIC III dataset of health

records (Johnson et al., 2016). The task is to recognise if a given summary has been la-

belled as relevant to acute or chronic anemia (Jain and Wallace, 2019).

Models and Hyperparameters: Similar to Jain and Wallace (2019) we use FastText

pretrained embeddings (Joulin et al., 2016) for the SST and ADR datasets, Glove pretrained

embeddings (Pennington et al., 2014) for the IMDB and AG News datasets, while we use

Word2Vec (Mikolov et al., 2013) from Gensim (Řeh̊uřek and Sojka, 2010) to train embeddings

for MIMIC. All embeddings are of size d = 300. We also replace all numbers in text with a

special symbol q and initialise the embeddings of unknown words randomly from a normal

distribution, N p0, 1q. The embeddings are not trained alongside the rest of the model.

We train the models using default Adam learning rate (1e-3) with 1e-4 weight decay, which

adds an l2 regulariser across all parameters. We use 64 dimensional hidden representations

for one-layered bi-LSTM and bi-GRU encoders and 128 dimensional hidden representation

for the MLP encoder following Jain and Wallace (2019). For the CNN we use 4 kernels

of sizes [1, 3, 5, 7], each with 32 filters, giving a final contextual representation hi of size

N “ 128, with ReLU activation function on the output of the filters, as per Jain and Wallace

(2019). For BERT we use the pre-trained version from Wolf et al. (2019) and fine-tune with

a learning rate of 1e´ 5 all BERT parameters except from the word embeddings, to simulate

the scenario with the rest of the encoders, and 1e ´ 4 for the remainder of the parameters.

We train our models three times using different random seeds and a batch size of 8 for BERT

4https://di.unipi.it/~gulli/AG_corpus_of_news_articles.html. Accessed on Sep 2019
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and 32 for the rest of the models.

For Conv-TaSc we apply a CNN with 15 channels over the scaled embedding ei from

Lin-TaSc, keeping a single stride and a 1-dimensional kernel. This way, we ensure that input

words remain context-independent. We then sum over the filtered scaled embedding efi , to

obtain the scores sxi . We have also experimented with filter sizes of [2, 10, 20 , 30, 50]

individually and simultaneously.

For the MIMIC dataset we also attempted to use LongFormer (Beltagy et al., 2020),

which is a BERT version that has the ability to accept and deal with longer sequences.

However due to the increasing time to train and evaluate the model, this BERT variant was

abandoned. Additionally we attempted to use Hierarchical BERT to deal with the longer

sequences, however increases were not substantial and run times where similarly increased.

Finally, contrary to the remainder of the datasets to deal with the long sequences of MIMIC

we truncated the 256 first tokens and 256 last tokens, following the suggestions of Sun et al.

(2019). We experimented with using the first and the last 512 tokens, but the head and

tails truncation approach yielded the best performances. In Table 3.2 we also present the

additional parameters introduced by each variant, with Lin-TaSc requiring the lowest number

of parameters and Feat-TaSc the most.

Attention-based Importance Metrics We use three input importance metrics by Ser-

rano and Smith (2019): (1) attention (α); (2) attention-gradients (∇α); and finally (3) scaled

attention (α∇α).5

Evaluating Attention-based Interpretability: We use the Fraction of Tokens erasure

approach to evaluate faithfulness, similar to Serrano and Smith (2019), Atanasova et al.

(2020) and Nguyen (2018a). Also, similar to Serrano and Smith (2019) we use a variation

of Fraction of Tokens, called Decision Flip which records the percentage of flips observed by

removing the single most informative token (for evaluation see details described in Section

2.6), where higher is better.6 Note that we conduct all experiments at the input level (i.e.

by removing the token from the input sequence instead of only removing its correspond-

5See Section 2.5.1 for more details on feature attribution approaches.
6Note that Jacovi and Goldberg (2020) argue that a human evaluation is not an appropriate method to

test faithfulness.
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Dataset Enc() No-TaSc Lin-TaSc Feat-TaSc Conv-TaSc

Dot Tanh Dot Tanh Dot Tanh Dot Tanh

SST

BERT .91 .90 .89 .88 .85 .88 .91 .91

LSTM .76 .75 .79 .79 .79 .80 .78 .77

GRU .76 .77 .79 .78 .80 .79 .77 .77

MLP .76 .76 .78 .78 .79 .78 .79 .79

CNN .76 .74 .80 .78 .80 .80 .78 .76

ADR

BERT .80 .79 .78 .77 .79 .76 .78 .77

LSTM .74 .73 .75 .75 .74 .75 .73 .75

GRU .74 .73 .76 .75 .74 .76 .74 .75

MLP .74 .68 .75 .74 .75 .74 .75 .74

CNN .73 .69 .75 .74 .74 .75 .76 .75

IMDB

BERT .93 .93 .93 .92 .92 .92 .93 .93

LSTM .89 .89 .88 .88 .88 .89 .89 .89

GRU .89 .90 .88 .88 .89 .89 .89 .89

MLP .88 .88 .88 .88 .88 .88 .89 .88

CNN .88 .88 .88 .88 .88 .88 .88 .89

AG

BERT .94 .94 .94 .94 .94 .94 .94 .94

LSTM .92 .93 .92 .92 .92 .92 .92 .92

GRU .92 .92 .92 .92 .92 .92 .92 .92

MLP .92 .92 .92 .92 .91 .91 .92 .92

CNN .92 .92 .92 .92 .92 .92 .92 .92

MIMIC

BERT7 .82 .84 .82 .83 .83 .83 .83 .83

LSTM .87 .89 .87 .87 .88 .88 .88 .88

GRU .87 .89 .87 .88 .88 .88 .88 .88

MLP .87 .87 .87 .86 .86 .86 .87 .86

CNN .88 .89 .88 .87 .87 .87 .88 .88

Table 3.3: Average F1 macro (3 runs) across datasets, encoders and attention mechanisms for

models with and without TaSc (No-TaSc). Underlined and bold values indicate comparable and

better predictive performance by using TaSc respectively. Standard deviations do not exceed 0.01

ing attention weight) as we consider the scores from importance metrics to pertain to the

corresponding input token following related work (Arras et al., 2016, 2017; Nguyen, 2018a;

Vashishth et al., 2019; Grimsley et al., 2020; Atanasova et al., 2020; Madsen et al., 2021a).

3.1.4 Results

Predictive Performance: A prerequisite of interpretability is to obtain robust explana-

tions without sacrificing predictive performance (Lipton, 2016). Table 3.3 shows the macro
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Attention No-TaSc Lin-TaSc Feat-TaSc Conv-TaSc

α
Tanh 7.46 5.69 (0.8) 5.89 (0.8) 5.00 (0.7)

Dot 4.89 3.93 (0.8) 4.42 (0.9) 3.90 (0.8)

∇α
Tanh 7.88 9.60 (1.2) 9.92 (1.3) 9.92 (1.3)

Dot 7.09 10.79 (1.5) 11.04 (1.6) 10.40 (1.5)

α∇α
Tanh 11.32 12.69 (1.1) 12.19 (1.1) 11.52 (1.0)

Dot 8.47 11.36 (1.3) 11.36 (1.3) 10.56 (1.2)

Table 3.4: Mean average percentage of decision flips across attention mechanisms occurred by

removing the most informative token, using the three TaSc variants and No-TaSc (higher is bet-

ter). Bold and underlined values denote best performing method row-wise and overall (for each

attention mechanism). Relative improvement over No-TaSc in parenthesis (ą1 TaSc is better

than No-TaSc).

F1-scores of all models across datasets, encoders and attention mechanisms using the three

TaSc variants (Lin-TaSc, Feat-TaSc and Conv-TaSc described in Section 3.1.2) and without

TaSc (No-TaSc).

In general, all TaSc models obtain comparable performance and in some cases outperform

No-TaSc across datasets and attention mechanisms. Our main aim is not to improve predic-

tive performance, however it is positive to observe comparable performances with only three

cases resulting in slight performance deteriorations (maximum of 2 F1 points with MIMIC

and CNN). We argue that even in those cases it is up to the end-user to select whether or

not this sacrifice is worth the improvements in faithfulness of attention-based explanations,

which we illustrate below.

Decision Flip: Table 3.4 and Figure 3.2 present the mean average percentage of decision

flips (higher is better) across attention mechanisms, encoders and datasets by removing the

most informative token for TaSc variants and No-TaSc for all attention-based importance

metrics.

In Table 3.4, we observe that TaSc variants are effective in identifying the single most im-

portant token, outperforming No-TaSc in 12 out of 18 cases across attention-based importance

metrics. This suggests that the attention mechanisms benefit from the non-contextualised

7Lower predictive performance is observed with BERT in MIMIC, as BERT accepts a maximum of 512

word pieces as input.
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(a) α (b) ∇α (c) α∇α

Figure 3.2: Mean percentage of decision flips occurred by removing the most informative token,

using the three TaSc variants and No-TaSc across encoders (first row) and datasets (second row),

where lower is better.

information encapsulated in TaSc when allocating importance to the input tokens. Models

using Tanh without TaSc appear to produce on average a higher percentage of decision flips

compared to those using the Dot mechanism. Using either of the TaSc variants improves

both mechanisms, with Dot mechanism benefiting the most, making it comparable to Tanh.

For example, Dot moves from 8.47% with No-TaSc to 11.36% with Lin-TaSc, which is closer

to 12.69% achieved by Lin-TaSc with Tanh (for α∇α).

The first row of Figure 3.2 presents a comparison across encoders. TaSc variants achieve

improved performance over No-TaSc across all encoder variants with ∇α and α∇α. All TaSc

variants yield comparable results with the exception of Conv-TaSc with BERT. Results fur-

ther suggest that non-recurrent encoders (MLP, CNN) without TaSc outperform recurrent

encoders (LSTM, GRU) and BERT which has the poorest performance. We hypothesise that

this is due to the attention module becoming more important without feature contextual-

isation which is similar to findings of Serrano and Smith (2019) and Wiegreffe and Pinter
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Attention No-TaSc Lin-TaSc Feat-TaSc Conv-TaSc

α
Tanh .52 .48 (0.9) .51 (1.0) .53 (1.0)

Dot .60 .58 (1.0) .59 (1.0) .61 (1.0)

∇α
Tanh .36 .23 (0.6) .22 (0.6) .26 (0.7)

Dot .40 .23 (0.6) .23 (0.6) .27 (0.7)

α∇α
Tanh .32 .20 (0.6) .20 (0.6) .25 (0.8)

Dot .37 .22 (0.6) .22 (0.6) .27 (0.7)

Table 3.5: Mean fraction of tokens required to cause a decision flip across attention mecha-

nisms, using the three TaSc variants and No-TaSc (lower is better). Bold and underlined values

denote best performing method row-wise and overall (for each attention mechanism). Relative

improvement over No-TaSc in parenthesis (ă1 TaSc is better than No-TaSc).

(2019). However, we observe that using any of the TaSc variants across encoders results into

improvements with LSTM and GRU becoming comparable to MLP and CNN. For exam-

ple, BERT without TaSc improves from 5.7% to 8.0% (relative improvement 1.4x) and 9.3%

(relative improvement 1.6x) using Lin-TaSc and Feat-TaSc respectively (for α∇α).

Observing results in the second row of Figure 3.2, we see that TaSc variants outperform

No-TaSc in all datasets when using ∇α and α∇α. This highlights the robustness of TaSc as

improvements are irrespective of the dataset. In general, Lin-TaSc and Feat-TaSc perform

equally well, however Lin-TaSc has the smaller number of parameters amongst the three

variants. Similar to the findings of Serrano and Smith (2019) best results overall, irrespective

of the use of TaSc, are obtained using α∇α to rank importance.

Fraction of Tokens: Providing one token (i.e., the most informative) as an explanation

is not always a realistic approach to assessing faithfulness. In our second experiment, we

test TaSc by measuring the fraction of important tokens required to be removed to cause a

decision flip (change model’s prediction). Table 3.5 and Figure 3.3 show the mean average

fraction of tokens required to be removed to cause a decision flip (lower is better) across

attention mechanisms, encoders and datasets for all importance metrics.

In Table 3.5, we see that attention-based explanations from models trained with any of

the TaSc mechanisms require on average a lower fraction of tokens to cause a decision flip

compared to No-TaSc (in 16 out of 18 cases). Overall Lin-TaSc achieves higher or comparable

relative improvements over Conv-TaSc and Feat-TaSc in 5 out of 6 times.
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(a) α (b) ∇α (c) α∇α

Figure 3.3: Mean fraction of tokens required to cause a decision flip, using the three TaSc vari-

ants and No-TaSc across encoders (first row) and datasets (second row), where lower is better.

We present an across encoders comparison in the first row of Figure 3.3. All three TaSc

variants obtain comparable performance with the exception of Conv-TaSc with BERT. We

hypothesise that with BERT, Conv-TaSc fails to capture interactions between embedding

dimensions due to perhaps higher contextualisation of BERT embeddings. Similarly to the

previous experiment results suggest that non-recurrent encoders (MLP and CNN) without

TaSc outperform the remainder of encoders, with BERT having the worst performance. This

strengthens our hypothesis that attention becomes more important to a model with reduced

contextualisation. When using TaSc, performance across all encoders becomes comparable

with the exception of BERT. For example, GRU improves from .40 with No-TaSc to .17 with

Lin-TaSc, .18 with Feat-TaSc and .20 with Conv-TaSc (for α∇α).

The second row of Figure 3.3 presents results across datasets. All three TaSc mechanims

manage to outperform vanilla attention. Lin-TaSc and Feat-TaSc perform comparably, with

the first having a slight edge obtaining highest relative improvements in 3 out of 5 datasets

with α∇α. For example in ADR, No-TaSc requires on average .75 of all tokens to be removed
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(a) SST (LSTM) (b) MIMIC (BERT) (c) ADR (BERT)

(d) IMDB (MLP) (e) AG (GRU) (f) SST (CNN)

Figure 3.4: Box-plots of fractions of tokens removed across all test instances and importance

metrics. bvdenotes attention without TaSc; bvdenotes attention with Lin-TaSc (lower and nar-

rower is better).

for a decision flip to occur compared to .43 obtained by Lin-TaSc (for α∇α). The benefits of

TaSc become evident when considering longer sequences. For example in MIMIC, Lin-TaSc

requires on average 44 tokens to cause a decision flip compared to 220 for No-TaSc.

Robustness Analysis: We also perform a detailed comparison between the best perform-

ing TaSc variant (Lin-TaSc) and vanilla attention (No-TaSc) across all test instances. Figure

3.4 shows box-plots with the median fraction of tokens required to be removed for causing

a decision flip when ranking tokens by all three importance metrics. For brevity we present

results for six cases.
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We notice that the median fraction of tokens required to cause a decision flip for Lin-

TaSc using α is higher compared to No-TaSc in certain cases. However, Lin-TaSc results

in consistently lower medians (with substantially reduced variances) compared to No-TaSc

using ∇α and α∇α which are more effective importance metrics. This is particularly visible

in MIMIC using BERT, where the 25% and 75% percentiles are much closer to the median

values, compared to No-TaSc. Reduced variances suggest that the explanation faithfulness

across instances remains more consistent.

Comparing TaSc with Non-attention Input Importance Metrics: We finally com-

pare explanations provided by using Lin-TaSc and α∇α to three standard non-attention in-

put importance metrics without TaSc which are strong baselines for explainability (Nguyen,

2018a; Atanasova et al., 2020). For this purpose we use: (1) Word Omission (WO); (2)

InputXGrad (x∇x); and (3) Integrated Gradients (IG).

Table 3.6 shows the results using Fraction of Tokens for evaluation, comparing the best

performing attention-based importance metric (α∇α) with Lin-TaSc to Non-TaSc models

with WO, x∇x and IG importance metrics across all encoders and datasets.8 We observe that

using α∇α with TaSc to rank word importance requires a lower fraction of tokens to cause

a decision flip on average compared to WO, x∇x and IG without TaSc. We outperform the

other explanation approaches in 46 out of 50 cases, whilst obtaining comparable performance

in other 3 cases. This demonstrates the efficacy of TaSc in providing more faithful attention-

based explanations than strong baselines without TaSc (Nguyen, 2018a; Atanasova et al.,

2020). The improvements are particularly evident using BERT as an encoder. In ADR, WO

with Tanh requires on average .81 of the tokens to be removed for a decision flip compared

to just .44 for α∇α with TaSc.

We also observe that the attention-based importance metric (α∇α) with TaSc is a more

robust explanation technique than non-attention based ones, obtaining lower variance in the

fraction of tokens required to cause a decision flip across encoders. For example α∇α with

TaSc and Tanh requires a fraction of tokens in the range of .03-.07 compared to IG which

requires .05-.14 in MIMIC, showing the consistency of our proposed approach.

8We do not compare with LIME (Ribeiro et al., 2016) because WO and the gradient-based approaches

outperform it (Nguyen, 2018a; Atanasova et al., 2020).
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Tanh Dot

Non-TaSc TaSc Non-TaSc TaSc

Dataset Enc() WO x∇x IG WO x∇x IG α∇α WO x∇x IG WO x∇x IG α∇α

SST

BERT 0.29 0.57 0.49 0.38 0.30 0.35 0.26 0.30 0.57 0.46 0.31 0.31 0.38 0.31

LSTM 0.22 0.22 0.38 0.22 0.20 0.45 0.20 0.26 0.28 0.45 0.22 0.20 0.45 0.20

GRU 0.24 0.23 0.36 0.23 0.20 0.43 0.19 0.22 0.23 0.42 0.22 0.20 0.45 0.20

MLP 0.29 0.23 0.38 0.26 0.21 0.40 0.19 0.21 0.19 0.38 0.21 0.19 0.39 0.18

CNN 0.27 0.24 0.36 0.23 0.21 0.40 0.20 0.21 0.20 0.37 0.21 0.20 0.40 0.19

ADR

BERT 0.77 0.89 0.86 0.79 0.81 0.80 0.65 0.81 0.92 0.90 0.50 0.47 0.57 0.44

LSTM 0.77 0.77 0.80 0.57 0.50 0.75 0.44 0.81 0.82 0.86 0.48 0.41 0.73 0.40

GRU 0.77 0.76 0.80 0.55 0.47 0.73 0.42 0.78 0.81 0.84 0.49 0.41 0.74 0.41

MLP 0.68 0.61 0.74 0.58 0.45 0.71 0.40 0.52 0.47 0.55 0.53 0.46 0.73 0.45

CNN 0.68 0.68 0.74 0.53 0.47 0.68 0.40 0.66 0.66 0.72 0.49 0.45 0.70 0.41

AG

BERT 0.45 0.71 0.63 0.56 0.42 0.48 0.31 0.50 0.72 0.66 0.35 0.46 0.53 0.45

LSTM 0.45 0.54 0.65 0.43 0.31 0.65 0.23 0.35 0.43 0.59 0.36 0.28 0.69 0.23

GRU 0.40 0.48 0.61 0.46 0.32 0.67 0.22 0.37 0.44 0.55 0.33 0.32 0.61 0.40

MLP 0.55 0.63 0.77 0.44 0.23 0.61 0.21 0.44 0.71 0.73 0.28 0.22 0.60 0.22

CNN 0.51 0.40 0.63 0.47 0.33 0.62 0.22 0.41 0.39 0.61 0.35 0.29 0.62 0.22

IMDB

BERT 0.26 0.66 0.58 0.28 0.26 0.22 0.09 0.32 0.68 0.65 0.27 0.68 0.62 0.59

LSTM 0.12 0.09 0.26 0.08 0.06 0.19 0.06 0.09 0.09 0.32 0.06 0.06 0.19 0.06

GRU 0.10 0.10 0.28 0.08 0.06 0.18 0.05 0.10 0.15 0.36 0.06 0.06 0.20 0.06

MLP 0.06 0.06 0.25 0.07 0.05 0.14 0.05 0.07 0.06 0.30 0.06 0.06 0.14 0.06

CNN 0.11 0.08 0.21 0.09 0.07 0.17 0.05 0.09 0.08 0.21 0.08 0.08 0.17 0.06

MIMIC

BERT 0.12 0.68 0.54 0.12 0.13 0.14 0.07 0.15 0.70 0.60 0.09 0.07 0.10 0.06

LSTM 0.26 0.24 0.28 0.07 0.03 0.10 0.02 0.07 0.40 0.42 0.03 0.03 0.09 0.03

GRU 0.17 0.12 0.20 0.04 0.03 0.08 0.03 0.05 0.15 0.23 0.03 0.03 0.08 0.03

MLP 0.09 0.04 0.12 0.04 0.02 0.05 0.02 0.03 0.04 0.19 0.03 0.03 0.06 0.03

CNN 0.12 0.07 0.11 0.03 0.03 0.06 0.03 0.06 0.05 0.11 0.04 0.04 0.06 0.03

Table 3.6: Average fraction of tokens required to cause a decision flip using the best performing

attention-based ranking (α∇α) with TaSc and Word omission, (WO), InputXGrad, (∇x) and

Integrated Gradients without TaSc (Non-TaSc) and with TaSc (IG). Underlined values denote

that Lin-TaSc is better and bold values denote the best performing method row-wise. (lower is

better).

Finally we observe that TaSc consistently improves non-attention based explanation ap-

proaches (WO, x∇x and IG) requiring a lower fraction of tokens to be removed compared

to Non-TaSc across encoders, datasets and attention mechanisms in the majority of cases.
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(a) AOPC NormSuff (b) AOPC NormComp (c) Fraction of Tokens

Figure 3.5: Mean AOPC Normalised Sufficiency (higher is better), AOPC Normalised Compre-

hensiveness (higher is better) and Fraction of Tokens (lower is better) occurred by removing the

most informative token, using the three TaSc variants and No-TaSc across encoders (first row)

and datasets (second row), using α∇α.

3.1.5 Evaluation across Faithfulness Metrics

We now compare the performance of our proposed TaSc mechanisms, across a larger range of

post-hoc explanation faithfulness evaluation metrics. This analysis aims to examine whether

observations hold across evaluation approaches. For this purpose, alongside Fraction of To-

kens (lower is better) we also employ AOPC Normalised Sufficiency (AOPC NormSuff; higher

is better) and Normalised Comprehensiveness (AOPC NormComp; higher is better). For

more details on these approaches, see Section 2.6. For clarity, in Figure 3.5 we compare

results across the three evaluation metrics when using α∇α.9

Overall, results show that observations hold across all the three evaluation metrics used.

For example encoder-wise (first row), our three proposed TaSc mechanisms improve across

9For results with α and ∇α see Appendix A.2.
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(a) IMDB - LSTM - Dot (b) ADR - GRU - Tanh

Figure 3.6: Highest and lowest scored 5 words from learnable parameter u with LSTM encoder

and Dot mechanism for the IMDB dataset.

all encoders, with increased improvements observed over LSTM, GRU and BERT compared

to MLP and CNN. Observing across the three evaluation approaches, AOPC NormComp

and Fraction of Tokens appear to compute scores with a larger variation compared to AOPC

NormSuff. For example using AOPC NormComp and BERT, scores range from 0.40 to 0.70.

In comparison using AOPC NormSuff and BERT, scores range from 0.66 to 0.74.

The findings from these results are two fold. Firstly, our proposed TaSc mechanisms

result in more faithful attention-based explanations, irrespective of which metric we use to

measure faithfulness. Secondly, we observe that the three tested evaluation metrics produce

similar conclusions across tasks and mechanisms. This suggests that using either as a proxy

for faithfulness should be sufficient to draw conclusions.

3.1.6 Qualitative Analysis

We finally examine qualitatively what type of information the parameter u from Lin-TaSc

learns. Similar to a bag-of-words model, our initial hypothesis is that u will assign high

scores to the words that are most relevant to the task. Figure 3.6 illustrates the 5 highest
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and lowest scored words from the IMDB and ADR datasets with a LSTM encoder and Dot

attention and CNN encoder and Tanh attention respectively. For brevity we include two

examples, however observations hold similar throughout other configurations (e.g. encoders,

datasets) and when increasing the number of top-k words.

We first observe in 3.6a, that indeed words expressing sentiment are assigned high scores

(e.g. excellent, waste, perfect), either positive or negative. However, a positive or negative

sign does not correspond to supporting the positive or negative class respectively. For example

withdrawal in ADR can be considered relevant to positive class, yet it is negatively scored.

Also sick can be considered a withdrawal symptom which is relevant to the negative class,

yet it is positively scored. We speculate that this happens due to the complex non-linear

relationships between the input words and the target classes learned by the model.
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3.2 Improving Transformer-based Explanations

3.2.1 Motivation

In Section 3.1 we proposed a family of mechanisms that improve the faithfulness of attention-

based post-hoc explanations. However, as we have previously shown through empirical re-

sults and discussed in Section 2.6.1, large pre-trained language models (LMs) such as BERT

(Devlin et al., 2019) still produce less faithful explanations compared to simpler model ar-

chitectures (e.g. LSTM, MLP). This also holds true, despite of the improvements offered by

our proposed mechanisms.

Previous work has explored whether LMs encode syntactic knowledge, by studying their

multi-head attention distributions (Clark et al., 2019; Htut et al., 2019; Voita et al., 2019).

Recent studies have evaluated the faithfulness of explanations for predictions made by these

models (Vashishth et al., 2019; Atanasova et al., 2020; Jain et al., 2020). In general, LMs

can provide faithful explanations, particularly using attention (Jain et al., 2020), but still

fall behind other simpler architectures (Atanasova et al., 2020) possibly due to increased

information mixing and higher contextualisation in the model (Brunner et al., 2020; Pascual

et al., 2020; Tutek and Snajder, 2020). Previous studies have attempted to improve the ex-

plainability of non transformer-based models, by guiding them through an auxiliary objective

towards informative input importance distributions (e.g. human or adversarial priors) (Ross

et al., 2017a; Liu and Avci, 2019; Moradi et al., 2021).

Targeting post-hoc explanations from transformer-based models, we propose Salient Loss

(SaLoss); an auxiliary objective that allows the multi-head attention of the model to learn

from salient information (i.e. token importance) during training, to reduce the effects of

information mixing (Pascual et al., 2020) and improve post-hoc explanation faithfulness. We

compute a priori token importance scores (Xu et al., 2020) using TextRank (Mihalcea and

Tarau, 2004) (i.e. an unsupervised graph-based method) and penalise the model when the

attention distribution deviates from the salience distribution.

This section is organised into five sub-sections. Section 3.2.2 describes the methodology for

infusing non-contextualised information in the model during training. Section 3.2.3 presents

the experimental set-up and Section 3.2.4 discusses the results obtained.
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3.2.2 Methodology

Even though attention scores can be more faithful than other feature attribution approaches

(Jain et al., 2020), they usually pertain to their corresponding input tokens in context and

not individually due to information mixing (Tutek and Snajder, 2020; Pascual et al., 2020).

As such, we hypothesise that we can improve the ability of a pretrained LM in providing

faithful explanations, by showing to the model alternative distributions of input importance

(i.e. word salience). We assume that by introducing the salience distribution via an auxiliary

objective (Ross et al., 2017b), we can reduce information mixing by “shifting” the model’s

attention to other informative tokens. In a similar direction to ours, Xu et al. (2020) showed

that by computing attention together with salience information from keyword extractors

improves text summarisation.

Computing Word Salience: We compute word salience σ using TextRank (Mihalcea

and Tarau, 2004), an unsupervised graph-based model for keyword extraction, where G “

pV,E,W q.10 Inspired by PageRank (Page et al., 1999), TextRank calculates the indegree

centrality of graph nodes iteratively based on a Markov chain, where each node (V) is a

wordpiece and each edge (E) links wordpiece pairs within a context window (Xu et al.,

2020). W represents the edge (E) thicknesses. For each input document X we first construct

an undirected graph. We represent the graph as a square matrix of vocabulary length, where

each row represents the inbound links from other nodes Vi and each column the outbound

links Vj. We then apply TextRank iteratively to compute the local salience scores (σi) of its

words by:

σi “ p1´ dq ` d
ÿ

VjPInpViq

Wji
ř

VkPOutpVjq
Wjk

σj (3.5)

where d is the damping coefficient, InpViq and OutpVjq are the incoming and outgoing nodes.

As shown from the above equation, the score of node i (Vi) depends on the edge weight Wji

(i.e. from Vj to Vi) and the sum of edge weights from node Vj to all other nodes, where the

maximum k is equal to the sequence length t. The salience scores are updated until either

10We also considered the use of Tfidf and χ2 scores observing comparable but lower performance in

early experimentation. We hypothesise that TextRank performs well due to its effectiveness in improving

performance in text summarisation (Xu et al., 2020). See also Section 3.2.6 for Tfidf and χ2 results on

input erasure experiments.
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Awesome meal , can not 
complain about the quality !

Figure 3.7: Demonstrative example of using TextRank to compute token sequence importance

σi (larger node size indicates higher importance, window size of 5).

convergence or the pre-defined number of iterations has been reached.11

Our intuition is that by using the task-agnostic TextRank, we can extract words that

are important in the context of the sequence and as such offer an alternative view of token

importance. We include a demonstrative example of TextRank for clarity in Figure 3.7.

Salience Loss: We propose Salient Loss (SaLoss), an auxiliary objective which allows the

model to learn attending to more informative input tokens jointly with the task. SaLoss

penalises the model when the attention distribution (α) deviates from the word salience

distribution (σ).12 For α we compute the average attention scores of the CLS token from

the last layer (Jain et al., 2020). We only use the attention scores from the last layer, as

it we can influence the remainder downstream model parameters through them. The joint

objective for adapting a LM to a downstream classification task with SaLoss is:

L “ Lc ` λLsal (3.6)

where Lc is the Cross-Entropy Loss for a downstream text classification task and λ a reg-

ularisation coefficient for the proposed SaLoss (Lsal) which can be tuned in a development

set. Lsal is defined as the KL divergence between α and σ:

Lsal “ KLpα,σq “
t

ÿ

i“0

αiplogαi ´ log σiq (3.7)

11We describe how σi parameters are initialised in 3.2.3.
12α PRt; σ PRt, where t is the sequence length.
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Data Av. |||W | C
Splits

Train/Dev/Test

SST 18 2 6,920 / 872 / 1,821

AG 36 4 102,000 / 18,000 / 7,600

Ev.Inf. 363 3 5,789 / 684 / 720

MultiRC 305 2 24,029 / 3,214 / 4,848

SEMEVAL 20 3 6,000 / 2,000 / 20,630

Table 3.7: Dataset statistics including average words per input, number of classes and splits.

We assume a standard text classification setting where a set of labeled documents is used

for fine-tuning a pretrained LM by adding an extra output classification layer. We normalise

the salience scores for compatibility with the KL divergence.13

3.2.3 Experimental Setup

Datasets: For our experiments we use SST (Socher et al., 2013) as in Section 3.1.3 and

also the following tasks (see dataset details in Table 3.7.):

AgNews (AG): News articles categorised by the following topics; Science, Sports,

Business, and World (Corso et al., 2005).

Evidence Inference (Ev.Inf.): Abstract-only biomedical articles describing randomised

controlled trials (Lehman et al., 2019). The task is to infer the reported relationship between

a given intervention and comparator with respect to an outcome.

Multi Reading Comprehension (MultiRC): A reading comprehension dataset com-

posed of questions with multiple correct answers, which depend on information from multiple

sentences (Khashabi et al., 2018). Similar to DeYoung et al. (2020) and Jain et al. (2020)

we convert this to a binary classification task where each rationale/question/answer triplet

forms an instance and each candidate answer has a label of True or False.

13We use KL divergence, as it was successfully used in literature to influence model learning through

priors (Yang et al., 2017).
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Dataset Model lrm lrc F1

SST bert-base 1e-5 1e-4 .91 ˘ .00

AG bert-base 1e-5 1e-4 .93 ˘ .00

Ev.Inf. scibert 5e-6 2e-4 .84 ˘ .01

MultiRC roberta-base 2e-6 2e-4 .75 ˘ .01

SEMEVAL bert-base 1e-5 1e-4 .59 ˘ .02

Table 3.8: Model and their hyper-parameters for each dataset, including learning rate for the

model (lrm) and the classifier layer (lrc) and F1 macro scores on the development set across three

runs.

SEMEVAL: The Semeval 2017 dataset for Task 4 Subtask A which consists of tweets

and the task is to classify whether the message is of positive, negative, or neutral sentiment

Rosenthal et al. (2017).

Models and Hyperparameters: Similar to Jain et al. (2020) we use: BERT (Devlin

et al., 2019) for (SST, AG, SEMEVAL); SciBERT (Beltagy et al., 2019) for Ev.Inf.; Roberta

(Liu et al., 2019b) for MultiRC. Table 3.8 presents the hyper-parameters used to train the

models across different datasets, along with F1 macro perfor mance on the development set.

Models where finetuned across 3 runs for 10 epochs, with the exception of the SEMEVAL

dataset which was finetuned for 20. We implement our models using the Huggingface library

(Wolf et al., 2019) and use default parameters of the AdamW optimiser apart from the

learning rates and a linear scheduler. Experiments run on a single Nvidia Tesla V100 GPU.

We found that the learning rate of our proposed objective, does not impact significantly

F1 macro performance. As such, since our objective is improving faithfulness, our λ selec-

tion includes training then evaluating on the development set the average fraction of tokens

required to cause a decision flip. We use the model with the lowest fraction of tokens scores

and report on the test set.

Computing Salience Scores with TextRank: We run TextRank for 20 steps, or until

convergence, with a window of 4 words, a damping coefficient of 0.85 and normalise the

salience scores to make them more compatible to attention distributions.
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Dataset Baseline λ SaLoss

SST .91 (.00) 1e-3 .91 (.00)

AG .93 (.00) 1e-4 .93 (.00)

Ev.Inf. .82 (.01) 1e-4 .80 (.02)

MultiRC .76 (.01) 1e-3 .76 (.00)

SEMEVAL .58 (.01) 1e-3 .57 (.03)

Table 3.9: F1 macro averaged across 3 seeds for vanilla LMs (Baseline) and SaLoss models. λ

represents the regularisation coefficient of our proposed objective.

Feature Attribution Approaches We use the following popular metrics to allocate im-

portance to input tokens: (1) Normalised attention scores (α); (2) Scaled attention (α∇α)

(Serrano and Smith, 2019); (3) InputXGrad (x∇x) (Kindermans et al., 2016; Atanasova

et al., 2020); and (4) Integrated Gradients (I.G.) (Sundararajan et al., 2017).

Evaluating Explanation Faithfulness We evaluate the faithfulness of model explana-

tions using two approaches: (1) Fraction of Tokens; and (2) FRESH (see Section 2.6).

3.2.4 Results

Predictive Performance: Table 3.9 shows F1 macro scores averaged over three runs with

standard deviation across tasks, for vanilla pretrained LMs (Baseline) and models with our

proposed objective SaLoss. Results demonstrate that models trained with our proposed

salience objective14 achieve similar performance to the Baseline models across datasets.

Fraction of Tokens: Table 3.10 shows results for the average fraction of input tokens

required to be removed to cause a decision flip for Baseline and SaLoss models in the test

set. Results suggest that models trained with our proposed objective require a significantly

lower fraction of tokens removed to cause a decision flip in 19 out of 20 cases (Wilcoxon Rank

Sum, p ă .05), with the exception of AG and α. This demonstrates that SaLoss obtains more

faithful explanations in the majority of cases (Jacovi and Goldberg, 2020). For example in

Ev.Inf., the Baseline approach with α requires .25 fractions of tokens on average to observe

14We treat λ as a hyper-parameter tuned on the development set, where λ P {1e-2, 1e-3, 1e-4}.
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Metric SST AG Ev.Inf. MultiRc SEMEVAL

Random .66 .67 .51 .44 .54

B
a
se

li
n

e

α .55 .43 .25 .40 .43

x∇x .65 .64 .42 .40 .55

α∇α .57 .52 .25 .38 .48

I.G. .63 .63 .42 .42 .50
S

a
L

os
s

α .42: .53 .14: .19: .39:

x∇x .61: .59: .38: .30: .51:

α∇α .48: .50: .12: .24: .41:

I.G. .61: .57: .33: .33: .45:

Table 3.10: Average fraction of tokens required to cause a decision flip across datasets and fea-

ture attribution metrics (lower is better). Bold denotes the best method in each dataset. : de-

notes a significant difference compared to Baseline using the same attribution metric (Wilcoxon

Rank Sum, p ă .05).

a decision flip compared to .14 with SaLoss (approximately 40 tokens less). We also observe

that in MultiRc where α is not the most effective feature attribution method with Baseline,

with SaLoss it becomes the most effective. In fact, α is the best performing feature attribution

approach across most tasks and metrics using SaLoss, indicating the effectiveness of infusing

salient information.

We also performed an analysis on the differences in Part-of-Speech (PoS) tags of the ra-

tionales selected by SaLoss and the Baseline, to obtain insights towards why rationales with

SaLoss are shown to be more faithful to those from models trained without our proposed

objective. In SST, we observe that SaLoss allocates more importance on adverbs and ad-

jectives, which are considered important in sentiment analysis (Dragut and Fellbaum, 2014;

Sharma et al., 2015). In Ev.Inf., we observed that SaLoss allocates importance to subor-

dinating conjunction words such as than, which are indeed important for the task, which

consists of inferring relationships (i.e. higher than). We thus hypothesise that SaLoss guides

the model to other informative tokens, complementing the task specific information learned

by the model.15

15We include a more extensive analysis in Appendix B.1.
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Dataset

TopK Contiguous

Baseline
SaLoss

Baseline
SaLoss

TextRank Uniform TextRank Uniform

SST (20%) .83 (.00) .87 (.00) : .82 (.00) .82 (.00) .83 (.00) : .80 (.00)

AG (20%) .92 (.00) .92 (.00) .92 (.00) .90 (.00) .89 (.00) .89 (.00)

Ev.Inf. (10%) .82 (.00) .81 (.00) .78 (.00) .79 (.00) .78 (.00) .78 (.00)

MultiRc (20%) .75 (.00) .75 (.00) .75 (.00) .70 (.00) .67 (.00) .71 (.00)

SEMEVAL (20%) .48 (.03) .53 (.01): .43 (.00) .46 (.03) .47 (.01): .42 (.00)

Table 3.11: F1 macro on models trained with extracted rationales (using α) using FRESH for

Baseline and SaLoss models. Bold denotes best performance in each dataset. : indicates that

SaLoss rationales perform significantly better (t-test, p ă .05).

FRESH Performance: We finally compare our SaLoss models with vanilla LMs (Base-

line) on rationale extraction using FRESH (Jain et al., 2020), by measuring the predictive

performance of the classifier trained on the extracted rationales. For completeness we also

include an uninformative baseline for SaLoss, which comprise of a normalised uniform dis-

tribution over the input (i.e. all inputs are assigned the same salience score). For brevity,

Table 3.11 presents results using α with TopK and Contiguous rationales.

Using TopK rationales, our approach significantly outperforms Baseline in 2 out of 5

datasets (t-test, p ă 0.05), whilst achieving comparable predictive performance on the rest.

For example in SST we observe a 3% increase in F1 using the same ratio of rationales. It

is notable that in MultiRc, AG and Ev.Inf., performance of classifiers trained on rationales

from both Baseline and SaLoss is comparable to that with full text (1-2% lower). We assume

that this is due to the nature of the tasks, which likely do not require a large part of the input

to reach high performance. This highlights the effectiveness of our approach, as a simple yet

effective solution for improving explanation faithfulness.

Contiguous rationales extracted from models trained with SaLoss, obtain comparable per-

formance to models without (Baseline). Additionally, results show that classifier performance

does not reach those with TopK rationales. We can therefore assume that TopK rationales

lead higher predictive performance in inherently faithful classifiers. It is encouraging to no-

tice that in the datasets where performance is comparable with our approach (AG, Ev.Inf.,

MultiRc), it is likely due to reaching close to Full-Text performance. For example, classifier

performance trained on Contiguous rationales from Baseline in SST is at .82 compared to
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Example 1 Data.:AG Id: test 239

[Baseline]: NEW YORK ( Reuters ) - Shares of Google Inc. will make their Nasdaq stock

market debut on Thursday after the year ’s most anticipated initial public offering priced far below

initial estimates , raising $1.67 billion .

[SaLoss (Ours)]: NEW YORK ( Reuters ) - Shares of Google Inc. will make their Nasdaq stock

market debut on Thursday after the year ’s most anticipated initial public offering priced far below

initial estimates , raising $1.67 billion .

[Topic]: Business

Example 2 Data.:SST Id: test 78

[Baseline]: If nothing else this movie introduces a promising unusual kind of psychological horror.

[SaLoss (Ours)]: If nothing else this movie introduces a promising unusual kind of psychological

horror.

[Sentiment]: Positive

Example 3 Data.:Ev.Inf. Id: 4118506 0

[Baseline]: ... analgesics . ABSTRACT.AIM : : The aim of this study is to evaluate the

efficacy of fentanyl along with LA field infiltration in controlling pain and discomfort

associated with CVC insertion . ABSTRACT.SETTINGS AND DESIGN : :...

[SaLoss (Ours)]: ... ABSTRACT.RESULTS : : The median interquartile range pain score is worst

for placebo group after LAI ( 5 [ 3 - 6 ] ) and in the immediate postprocedure period ( 5 [ 4 - 5 ] )

which was significantly attenuated by addition of fentanyl ( 3.5 [ 2 - 5 ] and 3 [ 2 - 4 ] ) (

P = 0.009 and 0.001 respectively ) ...

[Intervention || Comparator || Outcome]: Fentanyl || Normal saline || Pain score

[Relationship]: Significantly decreased

Table 3.12: True examples of extracted rationales from models using our proposed approach

(SaLoss) and from models that do not (Baseline)

.83 with SaLoss rationales.

Results also suggest that our uninformative baseline (Uniform), reduces the faithfulness

of rationales in most cases resulting in lower classifier performance. We hypothesise that in

cases where performance is comparable with Baseline and SaLoss, it is due to the task being

relatively easy and as such the loss function not impacting the faithfulness of rationales. We

consider this direction as an interesting area for future work.
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3.2.5 Qualitative Analysis

In Table 3.12 we present examples of extracted rationales from a model trained with our

proposed objective (SaLoss) and without (Baseline) using α∇α, to gain further insights to

complement the PoS analysis. For clarity we present rationales of Contiguous type.

In AG we observed similar performance between models trained with SaLoss and without.

Example 1 illustrates such a case, where both models predicted correctly but attended to dif-

ferent parts of the input. Despite in different locations, both segments are closely associated

with the label of “Business”. Example 2 is an instance from the SST dataset, were the SaLoss

rationale points to a phrase that is more associated with the task (“a promising unusual”)

compared to the Baseline. This also aligns with previous observations from the PoS analy-

sis, that models trained with our proposed objective attend to more adjectives compared to

Baseline. Example 3 considers an instance from the Ev.Inf. dataset, which shows that the

model trained with SaLoss and Baseline attended to two different sections. In fact what we

observed in agreement with the PoS analysis, is that models with SaLoss attend mostly to

segments including words related to relationships, such as “significantly attenuated” in this

particular example.

3.2.6 Comparing Salience Distributions

Table 3.13 presents the average fraction of tokens required to cause a prediction switch (de-

cision flip), when training models with SaLoss and (1) TextRank; (2) Chisquared; (3) Tfidf.

We observe that when models are regularised with TextRank scores, the feature attribution

approaches result in a lower average fraction of tokens to cause a prediction switch compared

to the other two salience functions. We also observe that Tfidf is comparable with TextRank

in most cases, outperforming Chisquared. We hypothesise that Tfidf performs poorer than

TextRank is due to the way these two approaches compute their “importance” scores. The

first computes them globally, whilst the latter locally (at instance-level) which we assume is

more beneficial for explanation faithfulness.
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Metric SST AG Ev.Inf. MultiRc SEMEVAL

Random .66 .67 .51 .44 .54

T
ex

tR
a
n

k α .42 .53 .14 .19 .39

x∇x .61 .59 .38 .30 .51

α∇α .48 .50 .12 .24 .41

I.G. .61 .57 .33 .33 .45
C

h
is

q
u

a
re

d α .49 .67 .29 .38 .44

x∇x .60 .59 .47 .34 .54

α∇α .61 .71 .28 .33 .49

I.G. .58 .56 .48 .38 .47

T
fi

d
f

α .47 .43 .20 .33 .48

x∇x .62 .57 .41 .36 .57

α∇α .50 .47 .20 .37 .58

I.G. .58 .56 .40 .38 .53

Table 3.13: Average fraction of tokens required to cause a decision flip across datasets and fea-

ture attribution metrics (lower is better).

3.2.7 Combining SaLoss with TaSc

We now examine if by combining SaLoss with TaSc (presented in Section 3.1), we can improve

further post-hoc explanation faithfulness. We use Lin-TaSc (Section 3.1.2) to compute the

non-contextualised scores sxi and subsequently scale the hidden representations hi from the

final layer of a transformer-based network. This can result in a less contextualised sequence

representation ci, which in turn can improve post-hoc explanation faithfulness as empirically

demonstrated in Section 3.1. Table 3.14 shows the average fraction of tokens required to

cause a decision flip (lower is better) across datasets and feature attributions from models

with: (1) No TaSc and no SaLoss (Baseline); (2) with only SaLoss (SaLoss); (3) with only

TaSc (TaSc) and finally (4) when using both (SaLoss + TaSc).

We first observe that training models with SaLoss and TaSc together, results in the

majority of cases to improved results compared to the Baseline (i.e. lower fraction of tokens to

cause a decision flip). However, improvements in faithfulness are less compared to when using

either SaLoss or TaSc independently (i.e. higher average fraction of tokens). Results also

suggest, that using either TaSc or SaLoss we can obtain a lower fraction of tokens compared

to the Baseline across any dataset or feature attribution method, with both performing

comparably. For example, using α with SaLoss in SST results to .42 fraction of tokens on
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Metric SST AG Ev.Inf. MultiRc SEMEVAL

Random .66 .67 .51 .44 .54

B
as

el
in

e

α .55 .43 .25 .40 .43

x∇x .65 .64 .42 .40 .55

α∇α .57 .52 .25 .38 .48

I.G. .63 .63 .42 .42 .50

S
a
L

os
s

α .42 .53 .14 .19 .39

x∇x .61 .59 .38 .30 .51

α∇α .48 .50 .12 .24 .41

I.G. .61 .57 .33 .33 .45

T
a
S

c

α .45 .42 .15 .23 .43

x∇x .61 .55 .40 .25 .52

α∇α .48 .47 .19 .25 .41

I.G. .58 .50 .37 .34 .36

S
aL

os
s

+

T
aS

c

α .49 .65 .22 .47 .42

x∇x .62 .64 .37 .52 .51

α∇α .51 .60 .40 .51 .45

I.G. .44 .58 .37 .48 .36

Table 3.14: Average fraction of tokens required to cause a decision flip across datasets and fea-

ture attribution metrics (lower is better), when comparing Baseline against using: (1) only Sa-

Loss; (2) only TaSc and (3) both SaLoss and TaSc.

average compared to .45 with TaSc, whilst using x∇x with SaLoss in MultiRC leads to

.30 compared to .25 with TaSc. We also observe a variation in the attention explanation

performance of Baseline between Table 3.14 and results from Section 3.1. This is attributed

to the fact that in Section 3.1, we did not use the internal attention mechanism of BERT

to produce attention scores, but rather a standalone attention mechanism over the model’s

representations. This allowed us to perform a fairer comparison across the encoders we were

comparing.

Using only TaSc appears to improve consistenly the faithfulness of explanations from both

attention-based metrics (α, α∇α) when compared to SaLoss. For example in AG, SaLoss

with α results to a higher fraction of tokens compared to the BaseLine, whilst TaSc to a

lower fraction of tokens (.53 with SaLoss, .42 with TaSc and .43 with Baseline). This is

expected, as TaSc targets specifically the final layer of the transformer-based models with

non-contextualised information from the model. On the other hand, SaLoss targets the model

73



through the attention mechanism via the training phase of the model. Whilst both combined

result to a deterioration in explanation faithfulness, compared to when both are deployed

individually, a case can be made for when to use each. SaLoss can be used in cases where we

cannot afford introducing additional parameters and we are content with the prior used to

influence model learning and the hyperparameter tuning. On the contrary, TaSc is a more

stable and robust component that does not necessarily require an informative prior or any

additional tuning for its parameters.

3.3 Summary

This chapter presented two novel approaches for improving the faithfulness of post-hoc expla-

nations extracted using feature attribution methods. Section 3.1 introduced TaSc, a family

of three encoder-independent mechanisms that induce context-independent task-specific in-

formation to attention. Through an extensive series of experiments, we show that attention-

based explanation faithfulness with TaSc is improved compared to without TaSc. Through a

robustness analysis we showed that explanation quality remains more consistent with TaSc

over instances in a datasets, whilst results hold across faithfulness evaluation metrics. We

also show that attention-based explanations with TaSc outperform other popular feature at-

tribution methods. Section 3.2 introduced SaLoss, an auxiliary objective using TextRank

importance scores to shift the models attention to other a priori extracted informative dis-

tributions. Evaluating post-hoc explanation faithfulness using Fraction of Tokens, we have

shown that LMs trained with SaLoss require on average a lower number of tokens to cause

a prediction switch. This indicates that they are more faithful compared to models trained

without SaLoss. Finally, models with SaLoss return rationales that lead to higher predictive

performance with FRESH compared to models trained without SaLoss.
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Chapter 4

Instance-Specific Rationalisation for

NLP Models

4.1 Motivation

We have previously shown how feature scoring (i.e. attribution) methods, such as gradient

and attention-based scores (Arras et al., 2016; Sundararajan et al., 2017; Jain and Wallace,

2019), are used to identify important (i.e. salient) segments of the input to subsequently

extract them as rationales (Jain et al., 2020). We have also demonstrated in Section 3.1

how post-hoc explanation faithfulness can be improved. However, a single feature scoring

method is typically applied across the whole dataset (i.e. globally). Previous research has

shown that this might not be optimal for individual instances, resulting into less faithful

explanations (Jacovi and Goldberg, 2020; Atanasova et al., 2020). Additionally, rationales

are usually extracted using a pre-defined fixed length (i.e. the ratio of a rationale compared

to the full input sequence) and type (i.e. top k terms or contiguous) globally. We hypoth-

esise that using a fixed length or type for different instances could result into shorter (i.e.

not sufficient for explaining a model’s prediction) or longer than needed rationales reducing

rationale faithfulness, whilst finding the explanation length is an open problem (Zhang et al.,

2021). For example a pre-defined rationale length might not suffice for explaining a model’s

prediction (i.e. shorter than needed) or provide a larger number of tokens than needed re-

sulting into reduced rationale faithfulness. Moreover to extract rationales, practitioners are
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currently required to make assumptions for the rationale parameters (i.e. feature scoring

method, length and type), whilst different choice of parameters might substantially affect

the faithfulness of the rationales.

For this purpose, we propose a simple yet effective method that operates at instance-level

and mitigates the a priori selection of a specific: (1) feature scoring method; (2) length and

(3) type when extracting faithful rationales. Our proposed method is flexible and allows the

automatic selection of some of these instance-specific parameters or all. Inspired by erasure

methods, it functions by computing the difference between a model’s output distributions

obtained using the full input sequence and the input without the rationale respectively. We

base this on the assumption that by removing important tokens from the sequence, we should

observe large divergences in the model’s predicted distribution (Nguyen, 2018b; Serrano and

Smith, 2019; DeYoung et al., 2020) resulting into more faithful rationales (Atanasova et al.,

2020; Chen and Ji, 2020).

This chapter is organised into five sections. Section 4.2 describes the methodology for com-

puting instance-specific feature attribution, rationale length and types. Section 4.3 presents

the experimental set-up and Section 4.4 discusses the results obtained. Finally, Section 4.7

summarises and concludes the contributions and findings of this Chapter.

4.2 Methodology

The aim is to address the “one-size-fits-all” ad-hoc approach of previous work on rationale

extraction with feature scoring methods that typically extracts rationales using the same

feature scoring method, length and type across all instances in a dataset. Inspired by word

erasure approaches (Nguyen, 2018b; Serrano and Smith, 2019; DeYoung et al., 2020), we

mask the tokens that constitute a rationale and record the difference δ in a model’s output

distribution by using the full text and the reduced input. Our main assumption is that a

sufficiently faithful rationale is the one that will result into the largest δ (Atanasova et al.,

2020; Chen and Ji, 2020; DeYoung et al., 2020). Following this assumption, we can extract

rationales by selecting for each instance a specific (1) feature scoring method ; (2) length; and

(3) type. Similar to Jain et al. (2020), we consider two rationale types: (a) top k tokens

ranked by a feature scoring method, treating each word in the input sequence independently
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(TopK); and (b) Contiguous span of input tokens of length K with the highest overall score

computed by a feature scoring method.

4.2.1 Instance-level Feature Scoring Selection

For computing at instance-level the feature scoring method, given a set of M feature scoring

methods tΩ1, . . . ,ΩMu, we extract a rationale R as follows:

1. For each Ωi in the set we compute input importance scores ωi “ ΩipM,x,Yq;

2. We subsequently select the K highest scored tokens (TopK) or the highest K-gram

(Contiguous) to form a rationale Ri, where K is the rationale length;

3. For each rationale we compute the difference δi, between the reference model output

(using full text input) and the model output having masked the rationale, such that:

δi “ ∆pY ,Ym
i q “ ∆pMpxq,MpxzRi

qq

where ∆ is the function used to compute the difference between the two outputs;

4. We select the rationale R with the highest difference δmax “ maxptδ1, . . . , δi, . . . , δMuq.

For computing δ, we experiment with the following divergence metrics (∆): (a) Kullback-

Leibler (KL); (b) Jensen-Shannon divergence (JSD); (c) Perplexity (Perp.) and (d) Predicted

Class Probability (ClassDiff). We describe the metrics in detail in Section 4.2.3.

4.2.2 Instance-level Rationale Length Selection

For computing at instance-level the rationale length k and extracting the rationale R using

a single feature scoring method Ω, we propose the following steps:

1. Given Ω, we first compute input importance scores ω “ ΩpM,x,Yq;
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2. We then iterate over the sequence such that k “ rangep1, Nq, where N is the fixed, pre-

defined rationale length and k the possible rationale length at the current iteration. We

set N as the upper bound rationale length for our approach to make results comparable

with fixed length rationales.

3. At each iteration we begin by masking the top k tokens (as indicated by ω) to form a

candidate rationale Rk. When using TopK we mask the k highest scored tokens, whilst

with Contiguous we mask the highest scored k-gram;

4. We compute the difference δk between the reference model output Y and the model

output having masked the candidate rationale Ym
k “MpxzRk

q;

5. We record every δ until k “ N and extract the rationale R with the highest difference

δmax “ maxptδ1, . . . , δk, . . . , δNuq, where k at δmax is the computed rationale length.1

In a similar way to selecting a feature scoring method, our approach can also be used to

select between different rationale types (i.e. Contiguous or TopK) for each instance in the

dataset.

Finally, our approach is flexible and can be easily modified to support selecting any

of these parameters while keeping the rest fixed (i.e. feature scoring method, rationale

length and rationale type) or by selecting any combination of them. An important benefit

of our approach is that we extract rationales with different settings for each instance rather

than using uniform settings globally (i.e. across the whole dataset), which we empirically

demonstrate to be beneficial for faithfulness below.

4.2.3 Divergence metrics

To compute the value δ for how much Ym differs from Y , we consider four divergence met-

rics (∆), also previously used in literature (Robnik-Šikonja and Kononenko, 2008; Jain and

Wallace, 2019; Wiegreffe and Pinter, 2019):

1We also experimented with early stopping, whereby the difference between δk and the δmax until k are

under a specified threshold, however this resulted in reduced performance.

78



Kullback Leibler (KL): A non-symmetric divergence measure of how a particular distri-

bution divergences from a reference distribution:

KLpY ||Y˚q “ YplogpY ´ logpYm
qq (4.1)

Jensen-Shannon (JSD): A symmetric divergence metric based on the KL divergence of

two distributions from their mean:

JSDpY ||Ym
q “

1

2
pKLpY ||µq ` 1

2
pKLpYm

||µqq (4.2)

where µ is the average distribution of Y and Ym.

Perplexity (Perp.): A measure of how well a model can predict a sample, where:

PERP pY ||Ym
q “ expHpY,Ym

q (4.3)

where we consider Y as the ground truth and HpY ||Ymq is the Cross Entropy Loss.

Class Difference (ClassDiff): The direct difference between the predicted class proba-

bility from the model with full text (x) and the same class probability with reduced text

(xzR) :

CLASSDIFF pY ||Ym
q “ ppŷ|xq ´ ppŷ|xzRq (4.4)

where ŷ “ arg maxpYq.
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Data |W | C
Splits

Train/Dev/Test
F1 N

SST 18 2 6,920 / 872 / 1,821 90.1 ˘ 0.2 20%

AG 36 4 102,000 / 18,000 / 7,600 93.5 ˘ 0.2 20%

Ev.Inf. 363 3 5,789 / 684 / 720 83.0 ˘ 1.6 10%

MultiRC 305 2 24,029 / 3,214 / 4,848 73.2 ˘ 1.7 20%

Table 4.1: Dataset statistics including average words at instance (|W |), number of classes (C),

data splits, F1 macro performance and the fixed, pre-defined rationale ratio across all instances

(N).

4.3 Experimental Setup

4.3.1 Datasets

For our experiments we use the following datasets, also previously used in Section 3.2 (details

about the tasks in Section 3.2.3 and data characteristics in Table 4.1): (1) SST; (2) AG; (3)

Ev.Inf. and (4) MultiRC.

4.3.2 Models

Similar to Jain et al. (2020), we use BERT (Devlin et al., 2019) for SST and AG; SciBERT

(Beltagy et al., 2019) for Ev.Inf. and Roberta (Liu et al., 2019b) for MultiRc. Table 4.2

presents the hyper-parameters used to train the models across different datasets, along with

F1 macro performance on the development set. Models where finetuned across 3 runs for 5

epochs. We implement our models using the Huggingface library (Wolf et al., 2019) and use

default parameters of the AdamW optimiser apart from the learning rates. We use a linear

scheduler with 10% of the steps in the first epoch as warmup steps. Experiments are run on

a single Nvidia Tesla V100 GPU.
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Dataset Model lrm lrc F1

SST bert-base 1e-5 1e-4 90.7 ˘ 0.2

AG bert-base 1e-5 1e-4 93.3 ˘ 0.0

Ev.Inf. scibert 1e-5 1e-4 82.5 ˘ 0.9

MultiRC roberta-base 1e-5 1e-4 76.3 ˘ 0.2

Table 4.2: Model and their hyper-parameters for each dataset, including learning rate for the

model (lrm) and the classifier layer (lrc) and F1 macro scores on the development set across three

runs.

4.3.3 Feature Scoring Methods

We use a random baseline and six other feature scoring methods to compute input importance

scores, as described in Section 2.5.1 and similar to Jain et al. (2020) and Serrano and Smith

(2019). Namely, we use: (1) attention (α); (2) scaled attention (α∇α); (3) InputXGrad

(x∇x); (4) Integrated Gradients (IG); (5) DeepLift and finally (6) LIME.

4.3.4 Evaluating Explanation Faithfulness

We evaluate explanation faithfulness using the previously described approaches (see Section

2.6 for details): (1) F1-macro using the model predicted labels; (2) Normalised Sufficiency

(NormSuff) and finally (3) Normalised Comprehensiveness (NormComp).

We do not conduct human experiments to evaluate explanation faithfulness since that is

only relevant to explanation plausibility (i.e. how understandable by humans a rationale is

(Jacovi and Goldberg, 2020)) and in practice faithfulness and plausibility do not correlate

(Atanasova et al., 2020). Finally we do not compare with select-then-predict methods (Lei

et al., 2016; Jain et al., 2020), as we are interested in faithfully explaining the model M and

not forming inherently faithful classifiers.

4.3.5 Performance-Time Trade-off

Input erasure approaches typically require N forward passes to compute a rationale length

when removing one token at a time. Albeit significantly faster to computing LIME scores,
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selecting a rationale length at each instance in a dataset can be computationally expensive

when we compute δ for every token, being similar to evaluating using fraction of tokens

(Nguyen, 2018b; Serrano and Smith, 2019; Atanasova et al., 2020). This takes into consid-

eration that we have to perform a forward pass for every token until we reach N tokens, for

each feature attribution approach Ω.

Similar to Nguyen (2018b); Atanasova et al. (2020), we expedite this process when select-

ing a rationale length by “skipping” every X% of tokens. We use a 2% skip rate which led to

a seven-fold reduction in the time required to compute rationales for datasets comprising of

long sequences, such as MultiRc and EvInf, with comparable performance in faithfulness to

the slower process of removing one token at a time. We examine the performance/skip-rate

trade-off when (1) we do not use a skip-rate; (2) at 2% and (3) at 5% in Section 4.5.1.

4.4 Results

4.4.1 Selecting Instance-specific Feature Scoring

Figure 4.1 compares the faithfulness of extracted rationales when using our proposed method

for selecting an instance-specific feature scoring method (OURS) and our baselines, that

use a single fixed pre-defined feature scoring method globally (i.e. across all instances in

a dataset). We measure faithfulness using F1 macro (lower is better), mean NormSuff and

mean NormComp (higher is better respectively). Results using both the TopK rationale type

(sub-figures (a); (b) and (c)) and Contiguous (sub-figures (d); (e) and (f)).2

We first observe that results are similar across rationale types. As such, for clarity the

remainder of this section will focus on describing results with TopK rationales. Overall,

results demonstrate that rationales extracted with our proposed approach are highly sufficient

and comprehensive. In fact, our approach results in more sufficient rationales against all

single feature scoring methods in AG and is comparable with the best NormSuff scores in the

remainder of the datasets. This suggests that even when rationales with our proposed method

are not the most sufficient, they are consistently highly sufficient (i.e. rationales extracted

2Also for clarity, all results presented are using JSD for ∆. The other divergence functions performed

comparably and we include a comparison between them in Section 4.5.2.
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(a) F1 macro (b) NormSuff (c) NormComp

(d) F1 macro (e) NormSuff (f) NormComp

Figure 4.1: F1 macro (lower is better), mean NormSuff (higher is better) and mean NormComp

(higher is better), when using any single feature scoring method across all instances in a dataset

and our proposed method of selecting a feature scoring method for each instance (OURS) for

TopK rationale types (sub-figures (a), (b), (c)) and Contiguous (sub-figures (d), (e), (f)).

with our approach are significantly more sufficient than fixed, pre-defined feature scoring

methods in 18 out of 24 test cases). Compared to our six baselines, the rationales extracted

with our approach are significantly more comprehensive across all four datasets (Wilcoxon

Rank Sum, p ă .05). Additionally, the larger drops in F1 macro performance demonstrate

that rationales extracted with our proposed approach are more necessary for a model to make

a prediction compared to a globally used, pre-defined feature scoring approach.

Our results strengthen the hypothesis that whilst some feature scoring methods are better
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% x∇x IG DeepLift LIME α α∇α Avg.

T
op

K

SST 15.8 16.3 15.7 16.9 15.5 16.6 16.1

AG 14.5 16.5 15.2 16.3 16.3 16.3 15.8

Ev.Inf. 7.7 7.7 8.4 7.4 6.6 7.0 7.5

MultiRC 14.1 14.6 16.1 13.4 15.9 16.0 15.0
C

on
ti

gu
o
u

s SST 15.5 15.6 15.4 15.9 14.7 15.7 15.5

AG 14.0 15.7 14.9 15.0 14.5 15.1 14.9

Ev.Inf. 7.2 6.9 7.6 7.3 6.6 6.9 7.1

MultiRC 14.0 15.1 15.9 13.6 16.1 16.1 15.1

Table 4.3: Average instance-specific rationale lengths (as a percentage %) computed using JSD

(as ∆), across instances for TopK and Contiguous rationale types.

than others globally, they might not be optimal for all instances in a dataset (Jacovi and

Goldberg, 2020) and our approach helps mitigate that. Similar to Atanasova et al. (2020),

we observe that the faithfulness performance of single feature scoring methods varies across

datasets. For example, LIME returns more comprehensive rationales than α∇α in MultiRC,

however is outperformed by the latter in SST. By returning consistently highly comprehensive

and sufficient rationales, our propose method helps reducing the variability in faithfulness

performance observed when using any single feature scoring method across datasets.

4.4.2 Selecting Instance-specific Rationale Length

Table 4.4 shows the Relative Improvement (R.I.) ratio in mean NormSuff and NormComp

(ą1.0 is better) between rationales extracted using a fixed pre-defined length (see N in

Table 4.1) and rationales extracted using our method with instance-specific length across

feature scoring methods and datasets. Overall, rationales extracted using our approach are

on average shorter than fixed length rationales (see Table 4.3). Specifically, rationale length

drops from 20% to 16% on average in SST, AG; from 20% to 15% in MultiRc and from 10%

to 7% in Ev.Inf..

F1 macro scores indicate that rationales extracted with our proposed approach are compa-

rably faithful to the longer pre-defined rationales, despite being shorter (R.I. in the majority

of cases between 0.9 and 1.1). NormSuff scores indicate that our shorter on average ra-
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F1 macro NormSuff NormComp

Feature

Attribution
SST MultiRc AG Ev.Inf. SST MultiRc AG Ev.Inf. SST MultiRc AG Ev.Inf.

T
o
p

K

DeepLift 1.0 1.0 1.0 1.0 0.9 0.8 0.8 1.1 0.8 1.1 1.0 1.0

LIME 1.1 0.9 1.0 1.0 1.0 0.7 0.9 0.9 0.9 1.1 1.0 1.0

α 1.1 1.0 1.0 0.8 0.9 0.9 0.7 0.8 0.8 1.1 0.9 1.2

α∇α 1.0 1.0 1.0 0.8 0.9 0.9 0.8 0.9 1.0 1.1 0.9 1.0

IG 1.0 0.9 1.0 1.0 0.9 0.9 0.8 0.9 0.9 1.1 1.0 1.1

x∇x 1.0 0.9 1.0 0.9 1.0 0.8 0.7 0.8 0.9 1.1 0.9 1.2

C
on

ti
g
u

ou
s

DeepLift 1.0 0.9 1.0 0.9 0.9 0.9 0.8 1.2 0.9 1.1 1.3 1.5

LIME 1.0 0.8 1.0 0.9 0.9 0.7 0.8 0.9 1.0 1.1 1.2 1.3

α 1.0 1.0 1.0 0.8 0.9 0.9 0.7 0.9 0.7 1.1 1.0 1.2

α∇α 1.0 0.9 1.0 0.8 0.9 0.8 0.8 0.9 1.0 1.1 1.1 1.1

IG 1.0 0.9 1.0 0.9 0.9 0.8 0.8 1.0 1.0 1.2 1.2 1.4

x∇x 1.0 0.9 1.0 0.9 0.9 0.8 0.7 1.0 1.0 1.1 1.0 1.3

Table 4.4: Relative Improvement (R.I.) ratios for F1 macro, mean NormSuff and mean Norm-

Comp between fixed length rationales (see N in Table 4.1) extracted using our method and ratio-

nales with instance-specific length (ą1.0 is better).

tionales are overall less but comparably sufficient with longer, fixed-length rationales. For

example with SST rationales with instance-specific length are 0.9-1.0 times less sufficient

that rationale with pre-defined length. We find this particularly evident in datasets such as

MultiRc and Ev.Inf., where our rationales are on average 4-5% shorter (approximately 15

tokens shorter on average for α in MultiRc) but still retain comparable sufficiency, while in

some cases improving it (e.g. 1.2 R.I. in Ev.Inf. with DeepLift).

We also note that rationales extracted with instance-specific length are more compre-

hensive in most cases, despite being shorter on average compared to fixed-length rationales.

For example in Ev.Inf., Contiguous rationales with I.G. are 1.4 times more comprehensive

when we select their length at instance-level. Results also indicate that using our proposed

method benefits more Contiguous rationales compared to TopK for comprehensiveness, lead-

ing to increased R.I. in the majority of cases. Overall, findings support our initial hypothesis

that in certain cases a rationale with longer than needed length might contain unnecessary

information and adversely impact its comprehensiveness.
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F1 macro NormSuff NormComp

Type Len Feat SST MultiRc AG Ev.Inf. SST MultiRc AG Ev.Inf. SST MultiRc AG Ev.Inf.

T
op

K

Fix Fix 63.26 67.33 78.80 32.59 .68 .12 .37 .43 .54 .42 .28 .80

I-L Fix 64.41 62.74 79.52 25.26 .61 .11 .30 .37 .52 .46 .27 .82

Fix I-L 56.40 52.40 68.80 26.10 .63 .09 .44 .38 .57 .59 .41 .84

I-L I-L 57.20 48.80 69.90 21.70 .59 .07 .38 .36 .55 .62 .39 .86

C
on

ti
gu

o
u

s Fix Fix 70.89 68.96 89.18 55.32 .71 .07 .41 .85 .46 .47 .17 .55

I-L Fix 68.80 57.07 87.70 45.69 .63 .06 .33 .78 .47 .54 .19 .62

Fix I-L 69.80 55.00 86.90 50.50 .67 .07 .42 .82 .46 .60 .22 .59

I-L I-L 66.40 45.10 85.30 40.70 .61 .05 .33 .76 .48 .65 .24 .67

I-L I-L I-L 56.70 38.00 69.60 19.80 .60 .06 .39 .49 .57 .69 .41 .88

Table 4.5: F1 macro, Mean NormSuff and NormComp scores when we select at instance-level (I-

L) a combination of the: (1) rationale length (Len); (2) feature scoring method (Feat.); and (3)

rationale type (Type). {Type}-Fix-Fix and {Type}-I-L-Fix values are from the highest scoring

feature scoring method (see Figure 4.1). Bold values denote the highest performing combination

in column-wise (higher is better).

4.4.3 Selecting Instance-specific Feature Scoring, Length and Type

Table 4.5 shows F1 macro, mean NormSuff and NormComp scores when using our proposed

method to select at instance-level (I-L) a combination of: (1) the feature scoring method

(Feat); (2) the rationale length (Len); and (3) the rationale type (Type). For comparison,

we also show scores of the best performing fixed (Fix) feature scoring function, rationale

type and length (see Figure 4.1).

Selecting at instance-level all rationale settings results in lower F1 macro performance

compared to any combination across two datasets (MultiRc and Ev.Inf.), whilst being com-

parable with the rest. For example with MultiRc, F1 performance drops to just 38.00 when

we select all parameters compared to 45.1 with the second best (7 F1 point difference). Where

comparable, we observe that differences are marginal (e.g. 0.30 F1 macro difference in SST

with the best). This highlights the efficacy of our approach in extracting rationales that are

necessary for a model to make a prediction, without requiring any a priori assumptions about

any of the rationale parameters.

We then observe that the highest NormSuff scores across three datasets (SST, MRc,
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EvInf), are from the best performing fixed scoring method with fixed length and rationale

type. Additionally, the best performing combination of our proposed approach for sufficiency

is when we only select the feature scoring method keeping the length and type fixed. This

combination results in the highest NormSuff scores in AG (.44 with TopK type compared

to .42, which is the second best with Contiguous) and competitive NormSuff scores with

the highest scoring combination (e.g. .82 in Ev.Inf. and Contiguous compared to .85). We

assume that using combinations which include instance-specific lengths do not perform as

well for sufficiency due to the shorter rationale length, which we have previously shown to

partially degrade rationale sufficiency.

Finally, our results demonstrate that we obtain highly comprehensive rationales when

selecting at instance level all parameters (Feat. + Len + Type) using our approach. In

fact, this results in higher NormComp scores compared to any other setting combination

across all datasets. For example in MultiRc., selecting all parameters results in a Norm-

Comp score of .69 which is .22 units higher than the rationales extracted with fixed feature

scoring method and length and type. This highlights the efficacy of our approach in extract-

ing highly comprehensive rationales, without requiring strong a priori assumptions about

rationale parameters.

4.4.4 Ablation Study

We finally perform an ablation study to examine the behavior and effectiveness of our ap-

proach by sequentially removing one feature scoring method at a time to measure changes in

F1 macro, NormSuff and NormComp. The intuition is that we should observe drops in faith-

fulness scores when removing feature attribution methods for our approach to be effective

(i.e. we should extract more faithful rationales when having more feature scoring options to

choose from). Figure 4.2 shows the results.

We first observe that removing one feature scoring method at a time results in increases

in F1 macro (lower is better) and drops in NormComp scores (higher is better). This demon-

strate that the faithfulness of the rationales extracted with our approach deteriorates as the

number of feature scoring methods becomes smaller highlighting the efficacy of our proposed

approach. For example, in Ev.Inf. by removing α∇α results in a drop of .14 in mean Norm-

Comp (.84 when including α∇α compared to .70 without it). On the other hand, we also
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(a) F1 macro (b) NormSuff (c) NormComp

Figure 4.2: F1 macro (lower is better), mean NormSuff and mean NormComp (higher is bet-

ter), when extracting rationales with our approach given decreasing numbers of feature scoring

methods.

observe that our method can still benefit from feature scoring methods that achieve low

NormComp scores when used standalone, resulting in improvements in comprehensiveness

and drops in F1 macro (e.g. α in SST). This indicates that our approach steadily improves

rationale faithfulness for model’s predictions given a larger pool of available feature scoring

methods.

Results show a deterioration in NormSuff scores as the number of feature scoring methods

becomes smaller, showing that our method results in more sufficient rationales when presented

with a larger list of available feature scoring methods in the majority of the datasets. We

hypothesise that this is not true for MultiRC due to the already low NormSuff scores of

the rationales (e.g. no more than 0.12). By using all six feature scoring methods, our

approach produces highly sufficient rationales and is comparable to the set achieved the

highest sufficiency. For example in Ev.Inf. using all feature scoring methods results to a

NormSuff score of approximately .38 compared to the highest scoring feature scoring set (all

except LIME) and the lowest scoring (x∇x) which achieved .39 and .15 respectively.
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@Token @2% @5%

(s) (s) R.I. (s) R.I.

T
o
p

K

SST 0.05 0.05 1.0 0.05 1.0

AG 0.29 0.29 1.0 0.15 1.9

Ev.Inf. 1.99 0.26 7.7 0.11 18.1

MultiRC 3.07 0.51 6.0 0.21 14.6

C
on

ti
g
u

ou
s SST 0.06 0.06 1.0 0.06 1.0

AG 0.37 0.38 1.0 0.19 1.9

Ev.Inf. 2.59 0.33 7.8 0.13 19.9

MultiRC 3.72 0.65 5.7 0.26 14.3

Table 4.6: Average time taken (s) to extract a rationales of instance-specific length per instance,

when computing δ at: (1) each token (@Token); (2) at every 2% (@ 2%) and at every 5% (@ 5%),

where lower time is better. We also denote relative improvements (R.I.) where higher is better.

We also tested different combinations of feature scoring methods with similar observations.

Finally, we experimented with doubling the upper bound of the rationale length (from N to

2 ˆ N) for both fixed length rationales and our proposed approach. Our approach still

yielded more comprehensive rationales compared to the fixed-length ones that were also

highly sufficient (results included in Section 4.5.3).

4.5 Quantitative Analysis

4.5.1 Reducing Time for Computing Instance-Specific Length

In Table 4.6, we present the average time taken (in seconds (s)) to extract a rationale of

instance-specific length for each instance, when computing δ at: (1) each token (@Token);

(2) at every 2% (@ 2%) and at every 5% (@ 5%) using JSD. We observe that in datasets

with a short average length of instance when moving from @Token to @2% does not reduce

time, but results in significant reductions in computations with MultiRc („6x R.I.) and

Evinf („8x R.I.). As expected, these are further reduced when reducing the granularity to

searching @5%, with AG recording a „2x R.I., MultiRC „14.5 R.I. and Ev.Inf. „19% R.I.

However alongside time improvements we also need to evaluate how faithfulness is impacted.
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@Token @2% @5%

F1 Suff. Comp. I.S.L. (%) F1 Suff. Comp. I.S.L. (%) F1 Suff. Comp. I.S.L. (%)

T
op

K

SST 57.22 0.59 0.55 17.15 57.22 0.59 0.55 17.15 57.34 0.59 0.55 17.23

AG 69.90 0.37 0.39 17.05 69.93 0.37 0.39 17.06 70.12 0.38 0.39 17.52

Ev.Inf. 21.09 0.35 0.87 6.52 21.74 0.36 0.86 7.25 23.22 0.37 0.84 8.28

MultiRC 47.63 0.07 0.63 13.59 48.76 0.07 0.62 14.31 49.92 0.08 0.61 15.37

C
on

ti
gu

o
u

s SST 66.43 0.61 0.48 16.01 66.43 0.61 0.48 16.01 66.48 0.61 0.48 16.21

AG 85.27 0.33 0.24 15.04 85.27 0.33 0.24 15.06 85.42 0.34 0.24 16.00

Ev.Inf. 37.03 0.68 0.70 6.12 40.66 0.76 0.67 7.08 46.20 0.84 0.62 8.37

MultiRC 43.38 0.05 0.66 12.29 45.12 0.05 0.65 13.22 47.87 0.06 0.63 14.42

Table 4.7: F1 macro (lower is better), NormSuff (higher is better) and NormComp (higher is

better) for our rationales with instance-specific length (I.S.L.) and feature scoring method at each

instance, when computing δ at: (1) each token (@Token); (2) at every 2% (@ 2%) and at every

5% (@ 5%). We also include average rationale lengths for helping with the analysis.

In Table 4.7 we present the faithfulness performance as we reduce the granularity of our

search. Results suggest that by reducing granularity, NormComp scores reduce whilst F1

macro performance increase, suggesting a reduction in faithfulness. However, we observe

that moving from @Token to @2% this reduction is negligible considering the significantly

improved computational times. However, as expected moving from @Token to @5% perfor-

mance degrades rapidly and as such 2% seems like a more appropriate step to consider. Un-

surprisingly, with increasing step-size we observe increases in the computed rationale lengths,

which leads to an increase in sufficiency.

Combining feature scoring rankings: We considered further reducing our computation

time by merging importance scores from all feature scoring methods. The intuition is that

we obtain a combined ranking and avoid selecting the best feature scoring method at each

instance and computing a rationale length for all feature scoring methods. We attempted

this by averaging the normalised importance scores for each sequence from all the feature

scoring methods, however as expected results where not comparable (63.2 average F1 macro

compared to 54.4) with our proposed approach or even our best performing baseline.

90



∆ NormSuff NormComp F1

T
op

K

JSD 0.38 0.64 46.03

KL 0.38 0.63 46.40

ClassDiff 0.38 0.63 45.02

Perp. 0.35 0.55 52.22

C
on

ti
gu

ou
s JSD 0.38 0.64 46.03

KL 0.38 0.63 46.40

ClassDiff 0.38 0.64 45.02

Perp. 0.35 0.55 52.22

Table 4.8: NormSuff (higher is better), NormComp (higher is better) and F1 macro (lower is

better) when using different divergence metrics to select the rationale length and feature scoring

method(∆)

4.5.2 Performance across Divergence Metrics

We now compare the effectiveness of divergence metrics in computing a rationale with

instance-specific length and selecting the best feature scoring method at instance level. Ta-

ble 4.8 presents F1 macro (lower is better), NormSuff and NormComp (higher is better)

macro scores for our proposed instance-specific length rationales from the best feature scor-

ing method at instance level.

Results demonstrate that all divergence metrics perform comparably with the exception

of perplexity. The remainder of the metrics result in similar scores for NormSuff, NormComp

and F1 macro, with JSD and ClassDiff having a slight edge over KL.

4.5.3 Effects of Increasing the Rationale Length Upper Bound N

We hypothesise that the information a rationale holds, increases with increasing rationale

lengths similar to Jain et al. (2020). We therefore evaluate the effectiveness of our approach,

when doubling the upper-bound of the maximum allowed rationale length N (see §4.2). We

assume that this should result into better rationale comprehensiveness and sufficiency.

In Table 4.9 we present the computed rationale lengths when we double N . As we observe
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x∇x IG DeepLift LIME α α∇α Avg.

T
o
p

K

SST 29.5 30.5 30.3 31.0 28.4 30.3 30.0

AG 32.4 34.8 32.4 32.8 33.6 32.9 33.2

Ev.Inf. 14.8 15.3 16.9 15.3 11.9 14.0 14.7

MultiRC 26.9 28.5 31.7 25.4 31.1 32.1 29.3
C

o
n
ti

g
u

ou
s SST 28.3 28.7 28.8 28.4 27.0 29.3 28.4

AG 31.7 32.2 31.8 30.6 31.4 31.4 31.5

Ev.Inf. 13.4 13.6 15.3 14.4 12.5 13.0 13.7

MultiRC 26.4 28.6 30.0 25.1 30.1 30.0 28.4

Table 4.9: Average instance-specific rationale lengths computed using JSD, across instances for

TopK and Contiguous rationale types when we double N to 2ˆN .

(a) F1 (b) NormSuff (c) NormComp

Figure 4.3: F1 macro (lower is better), mean NormSuff and NormComp scores (higher is better)

extracted rationales when using 2ˆN .

our rationales are still shorter compared to N ˆ 2, with certain cases resulting in significant

reductions. For example in Ev.Inf. with α, contiguous rationales extracted with our approach

are on average 7.5% shorter than fixed length rationales (approximately 27 tokens shorter).

In MultiRc the differences are even more apparent, with an average reduction in rationale

length of approximately 12%. This translates to 25 tokens less when forming a rationale with

our proposed approach.

Figure 4.3 shows F1 macro, NormSuff and NormComp scores of rationales, when we

increase N (1x) to 2ˆN (2x). For brevity we show results from rationales extracted with our

best performing method (OURS, i.e. using instance-level feature scoring method, rationale
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length and type) and when using α∇α across the entire dataset with fixed length. Results

highlight that our approach successfully scales with increasing rationale lengths, resulting

in highly sufficient and more comprehensive rationales with an average length shorter than

the 2 ˆ N upper-bound. For example, with Ev.Inf. rationales extracted with our proposed

approach have slightly improved sufficiency from N to 2 ˆ N (0.49 to 0.51 respectively).

In contrast, extracting rationales with a priori defined 2 ˆ N length and α∇α results to a

decrease in NormSuff scores (0.37 compared to 0.40). It is notable that improvements are

observed, regardless of our proposed approach resulting in rationales which are on average

6% shorter (translating to approximately 22 tokens less for Ev.Inf. to form a rationale).

4.6 Qualitative Analysis

Table 4.10 shows examples of the qualitative comparison between our approach (Ours) for

selecting at instance-level (I-L) a combination of the: (1) rationale length (Len); (2) feature

scoring method (Feat against our baseline of fixed-length rationales from a fixed feature

scoring method.

Concise rationales: Example 1 presents an instance from AG. Our approach extracts a

rationale that is six tokens shorter than the one with fixed length while also achieving a

higher NormComp score. However, the fixed length rationale scores higher in NormSuff. We

can assume from this that sufficiency positively correlates with rationale length.

Error analysis: Our assumption is that if a model makes a wrong prediction, we should

be able to extract the rationale that better demonstrates what led to a wrong prediction.

Example 2 shows an instance from Ev.Inf., where the model has wrongly predicted that

“Lenke scores at 12 months” have ‘increased significantly’ instead of the correct ‘no significant

difference’. Surprisingly, both rationales recorded maximum scores (1.0) in NormSuff and

NormComp. We observe that the correct answer is included in the fixed length rationale,

however the model made a wrong prediction. On the contrary, our rationale highlights

something directly related to its prediction.

Example 3 presents an instance from SST, where the fixed-length rationale and the
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Example 1 Data.:AG Id: test 4614

[Fixed-Len + α]: ... game last Friday night will stand , the CFL announced yesterday. While a

review ...

[I-L-Len + α (Ours)]: ... game last Friday night will stand , the CFL announced yesterday. While a

review ...

[Predicted Topic || True Topic]: Decreased significantly || Decreased significantly

Example 2 Data.:Ev.Inf. Id: 3162205 2

[Fixed-Len + α∇α]: ... computed tomography ( 3D - CT ) scans . ABSTRACT.RESULTS : The

control sides treated with an autograft showed significantly better Lenke scores than the study

sides treated with β - CPP at 3 and 6 months postoperatively , but there was no difference

between the two sides at 12 months . The fusion ..

[I-L-Len + α∇α (Ours)]: ... computed tomography ( 3D - CT ) scans . ABSTRACT.RESULTS : The

control sides treated with an autograft showed significantly better Lenke scores than the study

sides treated with β - CPP at 3 ...

[Predicted Relationship || True Relationship]: Increased significantly || No significant difference

Example 3 Data.:SST Id: test 694

[Fixed-Len + α]: ... Frontal is the antidote for Soderbergh fans who think he s gone too commercial ...

[I-L-Len + I-L-Feat (Ours)]: ... Frontal is the antidote for Soderbergh fans who think he s gone too

commercial ...

[Predicted Sentiment || True Sentiment]: Negative || Positive

Example 4 Data.:SST Id: test 1039

[Fixed-Len + α]: It ’s just incredibly dull.

[I-L-Len + I-L-Feat (Ours)]: It ’s just incredibly dull.

[Predicted Sentiment || True Sentiment]: Negative || Negative

Table 4.10: Examples when using our approach (Ours) to select at instance-level (I-L) a combi-

nation of the: (1) rationale length (Len); (2) feature scoring method (Feat) against our baseline

of fixed-length rationales from a fixed feature scoring method.

instance-specific rationale attend at different sections of the text. Our rationale scored lower

for NormSuff, however we observe that it aligns more closely with the predicted sentiment.

When using a fixed pre-defined length is not sufficient: Example 4 presents a differ-

ent scenario, where the fixed-length rationale for SST is at 20% whilst the upper bound N for

our rationale is at 40%. The intuition is that in certain cases a fixed rationale length might

not be sufficient for all instances to explain a prediction. We argue that our approach high-

lighted something more informative for the task (“incredibly dull” compared to “incredibly”),

due to removing the restriction of a pre-defined fixed length.
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4.7 Summary

We have proposed a simple yet effective approach for selecting at instance-level: (1) a feature

scoring method; (2) a rationale length; and (3) a rationale type. We empirically demonstrated

that rationales extracted with our approach are significantly more comprehensive and highly

sufficient, while being shorter compared to rationales extracted with a fixed feature scoring

method, length and type. We also show that our approach can scale effectively, given a

larger number of feature attribution approaches and an increased rationale length upper

bound. Finally, through a qualitative analysis we found that rationales extracted using our

proposed method can be useful for error analysis.
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Chapter 5

An Empirical Analysis of Faithfulness

in Out-of-Domain Settings

5.1 Motivation

As described in Section 2.5, two popular methods for extracting explanations are feature

attribution (i.e. post-hoc explanation methods) or inherently faithful classifiers (i.e. select-

then-predict models). In the previous chapters, we first attempted to improve post-hoc

explanation faithfulness and proposed an approach for extracting instance-specific rationales.

Similar to previous studies, we have previously evaluated explanation faithfulness on in-

domain settings (i.e. the train and test data come from the same distribution). However,

when deploying models in real-world applications, inference might be performed on data

from a different distribution, i.e. out-of-domain (Desai and Durrett, 2020; Ovadia et al.,

2019). This can create implications when the extracted explanations are used for assisting

human decision making. Whilst we are aware of the limitations of current state-of-the-art

models in out-of-domain predictive performance (Hendrycks et al., 2020), to the best of our

knowledge, how faithful out-of-domain post-hoc explanations are has yet to be explored.

Similarly, we are not aware on the generalization of inherently faithful select-then-predict

models in out-of-domain settings.

Inspired by this, we conduct an extensive empirical study to examine the faithfulness of
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five feature attribution approaches and the generalizability of two select-then-predict models

in out-of-domain settings across six dataset pairs. We hypothesize that similar to model

predictive performance, post-hoc explanation faithfulness reduces in out-of-domain settings

and that select-then-predict performance degrades.

This chapter is organised into five sections. Section 5.2 describes the approaches we

evaluate for extracting rationales. Section 5.3 presents the experimental setup and how

we evaluate post-hoc explanation faithfulness and select-then-predict performance in out-of-

domain settings. Section 5.4 discusses the results obtained. Finally, Section 5.5 summarises

and concludes the contributions and findings of this chapter.

5.2 Extracting Rationales

The aim of this chapter, is to evaluate the faithfulness of rationales in out-of-domain settings.

To extract rationales we employ two methods: (1) feature attribution methods for post-hoc

explanations (Section 5.2.1) and (2) select-then-predict models (Section 5.2.2), which we ex-

pand on below. Our hypothesis is that post-hoc explanations extracted from the same domain

that a model was trained on should be more faithful than rationales extracted from differ-

ent domain using the same model. Similarly, we expect select-then-predict model predictive

performance to drop when evaluating in out-of-domain settings.

5.2.1 Feature Attribution Methods

We employ a pre-trained BERT-base and fine-tune it on in-domain training data. We then

extract post-hoc rationales for both the in-domain test-set and two out-of-domain test-sets.

We use a random baseline and five other feature scoring methods to compute input impor-

tance scores, as described in Section 2.5.1. Namely, we use: (1) attention (α); (2) scaled

attention (α∇α); (3) InputXGrad (x∇x); (4) Integrated Gradients (IG) and finally (5)

DeepLift.
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Dataset C Splits

SST 2 6,920 / 872 / 1,821

IMDB 2 20,000 / 2,500 / 2,500

Yelp 2 476,000 / 84,000 / 38,000

AmazDigiMu 3 122,552 / 21,627 / 25,444

AmazPantry 3 99,423/ 17,546 / 20,642

AmazInstr 3 167,145 / 29,497 / 34,702

Table 5.1: Dataset statistics with number of classes (C) and train/development/test splits.

5.2.2 Select-then-Predict Models

We use two select-then-predict models (see Section 2.5.2 for details): (1) HardKuma and

(2) FRESH. We use BERT-base for the extraction and classification components of FRESH

similar to Jain et al. (2020). However, for HardKuma we opt using a bi-LSTM (Hochreiter

and Schmidhuber, 1997) as it provides comparable or improved performance over BERT

variants (Guerreiro and Martins, 2021), even after hyperparameter tuning. For model details

and hyper-parameters see Section 5.3.2.

5.3 Experimental Setup

5.3.1 Datasets

For evaluating out-of-domain model explanations, we consider the SST (Socher et al., 2013)

and IMDB (Maas et al., 2011) datasets as in Section 3.1.3 and the following (see Table 5.1

for details):

Yelp: Yelp polarity review texts. Similar to Zhang et al. (2015) we construct a binary

classification task to predict a polarity label by considering one and two stars as negative,

and three and four stars as positive.
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Amazon Reviews: We form 3-way classification tasks by predicting the sentiment (nega-

tive, neutral, positive) of Amazon product reviews across 3 item categories: (1) Digital Music

(AmazDigiMu); (2) Pantry (AmazPantry); and (3) Musical Instruments (AmazInstr)

(Ni et al., 2019).

5.3.2 Models and Hyperparameters

For feature attributions: We use BERT-base with pre-trained weights from the Hugging-

face library (Wolf et al., 2019). We use the AdamW optimizer (Loshchilov and Hutter, 2017)

with an initial learning rate of 1e´5 for fine-tuning BERT and 1e´4 for the fully-connected

classification layer. We train our models for 3 epochs using a linear scheduler, with 10% of

the data in the first epoch as warm-up. We also use a grad-norm of 1 and select the model

with the lowest loss on the development set. All models are trained across 5 random seeds

and we report the average and standard deviation. We present their test-set performance in

Table 5.2.

For FRESH: For the rationale extractor, we use the same model for extracting rationales

with feature attributions. For the classifier (trained only on the extracted rationales), we also

use BERT-base with the same optimizer configuration and scheduler warm-up steps. We also

use a grad-norm of 1 and select the model with the lowest loss on the development set. We

train across 5 random seeds for 5 epochs.

For HardKuma: We use the 300-dimensional pre-trained GloVe embeddings from the

840B release (Pennington et al., 2014) as word representations and keep them frozen during

training. The rationale extractor (which generates the rationale mask z) is a 200-d bi-

directional LSTM layer (bi-LSTM) (Hochreiter and Schmidhuber, 1997) similar to Bastings

et al. (2019) and Guerreiro and Martins (2021). We use the Adam optimizer (Kingma and

Ba, 2014) for all models with a learning rate between 1e´ 5 and 1e´ 4 and a weight decay

of 1e ´ 5. We also enforce a grad-norm of 5 and train for 20 epochs across 5 random seeds.

Similar to Guerreiro and Martins (2021) we select the model with the highest F1-macro score

on the development set and find that tuning the Lagrangian relaxation algorithm parameters

beneficial to model predictive performance. We also attempted training HardKuma models
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Trained On Tested On BERT-base bi-LSTM

F1 ECE F1 ECE

SST

SST 90.1 (0.3) 4.4 (0.7) 81.7 (0.9) 3.2 (0.7)

IMDB 84.3 (0.6) 7.1 (0.6) 71.9 (0.9) 4.9 (2.8)

Yelp 87.9 (2.3) 4.2 (2.3) 68.7 (3.2) 5.8 (5.1)

IMDB

IMDB 91.1 (0.4) 4.7 (0.6) 87.4 (0.9) 4.7 (1.8)

SST 85.8 (2.0) 5.8 (0.8) 77.5 (2.0) 6.2 (1.4)

Yelp 91.0 (1.2) 0.9 (0.2) 41.0 (5.3) 39.4 (7.3)

Yelp

Yelp 96.9 (0.1) 2.2 (0.1) 96.0 (0.0) 0.5 (0.2)

SST 86.8 (1.7) 8.5 (0.9) 80.4 (0.8) 1.9 (0.7)

IMDB 88.6 (0.3) 7.9 (0.6) 84.5 (1.0) 5.0 (1.3)

AmazDigiMu

AmazDigiMu 70.6 (0.9) 2.3 (0.1) 67.6 (0.3) 0.5 (0.1)

AmazInstr 61.2 (1.8) 5.4 (0.2) 54.2 (1.1) 2.6 (0.6)

AmazPantry 64.6 (1.0) 4.3 (0.4) 55.3 (0.4) 1.9 (0.5)

AmazPantry

AmazPantry 70.2 (1.1) 3.8 (0.4) 67.9 (0.4) 0.7 (0.4)

AmazDigiMu 59.5 (0.7) 3.2 (0.5) 50.9 (1.9) 1.9 (0.6)

AmazInstr 64.5 (2.6) 4.9 (0.9) 55.9 (2.2) 2.8 (0.9)

AmazInstr

AmazInstr 71.5 (0.4) 3.9 (0.5) 67.2 (0.7) 1.2 (0.4)

AmazDigiMu 61.3 (0.3) 3.2 (0.2) 54.3 (1.4) 1.1 (0.1)

AmazPantry 68.2 (0.7) 4.1 (0.5) 61.1 (1.5) 1.5 (0.6)

Table 5.2: F1 macro performance and Expected Calibration Error (ECE) (five runs) with stan-

dard deviation, of full-text BERT-base and bi-LSTM models.

with BERT-base, similar to Jain et al. (2020), however we found performance to be at

best comparable with our LSTM variant, as in Guerreiro and Martins (2021), even after

hyperparameter tuning.

Full-text LSTM: In Table 5.2 we also present for reference the performance of a 200-

dimensional bi-LSTM classifier trained on full-text. We train the full-text LSTM for 20

epochs across 5 random seeds and select the model with the highest F1-macro performance

on the development set. We use the Adam optimizer with a learning rate of 1e´3 and 1e´5

weight decay. We report predictive performance and ECE scores on the test-set.
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All experiments are run on a single NVIDIA Tesla V100 GPU.

5.3.3 Evaluating Out-of-Domain Explanations

Post-hoc Explanations: We evaluate explanation faithfulness using the previously de-

scribed approaches (see Section 2.6 for details): (1) Normalised Sufficiency (NormSuff) and

(2) Normalised Comprehensiveness (NormComp). To measure sufficiency and comprehen-

siveness across different explanation lengths we compute the “Area Over the Perturbation

Curve” (AOPC) following DeYoung et al. (2020). We therefore compute and report the av-

erage normalized sufficiency and comprehensiveness scores when keeping (for sufficiency) or

masking (for comprehensiveness) the top 2%, 10%, 20% and 50% of tokens extracted by an

importance attribution function.

We omit from our evaluation the Remove-and-Retrain method (Madsen et al., 2021a)

as it requires model retraining. Whilst this could be applicable for in-domain experiments

where retraining is important, in this work we evaluate explanation faithfulness in zero-shot

out-of-domain settings.

Select-then-Predict Models: We first train select-then-predict models in-domain and

then measure their predictive performance on the in-domain test set and on two out-of-domain

test-sets (Jain et al., 2020; Guerreiro and Martins, 2021). Our out-of-domain evaluation is

performed without re-training (zero-shot). Similar to full-text trained models, we expect that

predictive performance deteriorates out-of-domain. However, we assume that explanations

from a select-then-predict model should generalize better in out-of-domain settings when the

predictive performance approaches that of the full-text trained model.

We do not conduct human experiments to evaluate explanation faithfulness, since that is

only relevant to explanation plausibility (i.e. how intuitive to humans a rationale is (Jacovi

and Goldberg, 2020)) and in practice faithfulness and plausibility do not correlate (Atanasova

et al., 2020).
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Train Test Full-text AOPC NormSuff AOPC NormComp

F1 Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST

SST 90.1 .38 .51 .42 .42 .40 .41 .19 .39 .22 .25 .26 .26

IMDB 84.3 .31 .53 .39 .32 .31 .32 .23 .54 .34 .27 .27 .28

Yelp 87.9 .32 .56 .40 .35 .33 .34 .21 .48 .28 .24 .24 .25

IMDB

IMDB 91.1 .32 .55 .46 .36 .36 .36 .16 .48 .31 .25 .23 .24

SST 85.8 .24 .35 .28 .28 .27 .27 .27 .46 .32 .33 .33 .33

Yelp 91.0 .35 .48 .41 .36 .36 .36 .21 .45 .32 .26 .26 .26

Yelp

Yelp 96.9 .23 .32 .31 .29 .24 .25 .12 .20 .14 .16 .15 .16

SST 86.8 .41 .45 .43 .44 .41 .41 .17 .24 .18 .21 .22 .22

IMDB 88.6 .18 .34 .32 .25 .22 .22 .19 .34 .29 .23 .23 .24

AmazDigiMu

AmazDigiMu 70.6 .34 .56 .34 .31 .41 .39 .13 .32 .14 .10 .16 .17

AmazInstr 61.2 .29 .54 .32 .31 .33 .32 .19 .47 .23 .19 .22 .23

AmazPantry 64.6 .33 .55 .33 .31 .37 .36 .21 .46 .22 .17 .23 .25

AmazPantry

AmazPantry 70.2 .25 .46 .36 .19 .28 .27 .20 .42 .31 .15 .25 .25

AmazDigiMu 59.5 .24 .47 .37 .19 .27 .26 .19 .41 .32 .15 .23 .24

AmazInstr 64.5 .17 .42 .30 .15 .20 .20 .24 .52 .40 .23 .30 .30

AmazInstr

AmazInstr 71.5 .16 .34 .18 .21 .18 .17 .26 .52 .26 .29 .28 .29

AmazDigiMu 61.3 .21 .38 .21 .22 .24 .22 .23 .46 .20 .22 .24 .25

AmazPantry 68.2 .22 .39 .21 .23 .24 .23 .27 .51 .22 .25 .27 .29

Table 5.3: AOPC Normalized Sufficiency and Comprehensiveness (higher is better) in-domain

and out-of-domain for five feature attribution approaches and a random attribution baseline.

5.4 Results

5.4.1 Post-hoc Explanation Faithfulness

Table 5.3 presents the normalized comprehensiveness and sufficiency scores for post-hoc expla-

nations on in-domain and out-of-domain test-sets, using five feature attribution methods and

a random baseline. For reference, we include the averaged F1 performance across 5 random

seeds, of a BERT-base model finetuned on the full text and evaluated in- and out-of-domain

(Full-text F1).

In-domain results show that feature attribution performance varies largely across datasets.
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This is in line with the findings of Atanasova et al. (2020) and Madsen et al. (2021a)

when masking rationales (i.e. comprehensiveness). We find the only exception to be α∇α,

which consistently achieves the highest comprehensiveness and sufficiency scores across all

in-domain datasets. For example α∇α evaluated on in-domain AmazDigiMu, results in suf-

ficiency of 0.56 compared to the second best of 0.39 with IG.

Contrary to our expectations, results show that post-hoc explanation sufficiency and com-

prehensiveness are in many cases higher in out-of-domain test-sets compared to in-domain.

For example using DeepLift, comprehensiveness for the in-domain test-set in Yelp (0.16) is

lower compared to the out-of-domain test-sets (0.21 for SST and 0.23 for IMDB). This is also

observed when measuring sufficiency with α∇α, scoring 0.32 when tested in-domain on Yelp

and 0.45 for the out-of-domain SST test-set. We hypothesize that this is due to a low lexical

and semantic overlap with the training set, when in out-of-domain settings. We assume that

this therefore leads to the model assigning higher weights to the shared “lexicon”, making it

more likely to be important for a prediction.

Apart from increased sufficiency and comprehensiveness scores in out-of-domain post-hoc

explanations, we also observe increased scores obtained by our random baseline. In fact,

the random baseline outperforms several feature attribution approaches in certain cases in

out-of-domain settings. As an example, consider the case where the model has been trained

on AmazInstr and tested on AmazPantry. Our random baseline achieves a comprehensive-

ness score of 0.27 while α, DeepLift, x∇x perform similarly or lower (0.22, 0.25 and 0.27

respectively). Similarly, using a model trained on Yelp and tested on SST, the random

baseline produces equally sufficient rationales to x∇x and IG, with all of them achieving

0.41 normalized sufficiency. A glaring exception to this pattern is α∇α, which consistently

outperforms both the random baseline and all other feature attribution approaches in in-

and out-of-domain settings, suggesting that it produces the more faithful explanations. For

example with out-of-domain AmazPantry test data, using a model trained on AmazInstr

results in sufficiency scores of 0.39 with α∇α. This is a 0.15 point increase compared to the

second best (x∇x with 0.24).

We recommend considering a feature attribution for producing faithful explanations out-

of-domain, if it only scores above a baseline random attribution. We suggest that the higher

the deviation from the random baseline, the more faithful an explanation is.
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Train Test Full-text HardKuma

F1 F1 L (%)

SST

SST 81.7 (0.9) 77.6 (1.4) 56.8 (26.2)

IMDB 71.9 (0.9) 65.7(15.1) 39.5 (33.5)

Yelp 68.7 (3.2) 67.7(11.6) 32.7 (30.7)

IMDB

IMDB 87.4 (0.9) 82.0 (0.6) 1.9 (0.2)

SST 77.5 (2.0) 73.6 (2.2) 16.8 (2.7)

Yelp 41.0 (5.3) 47.2(5.8) 3.1 (2.0)

Yelp

Yelp 96.0 (0.0) 92.4 (0.3) 7.4 (0.7)

SST 80.4 (0.8) 72.4 (0.8) 14.1 (1.2)

IMDB 84.5 (1.0) 73.3 (3.5) 4.7 (0.7)

AmazDigiMu

AmazDigiMu 67.6 (0.3) 66.8 (0.5) 18.4 (0.5)

AmazInstr 54.2 (1.1) 53.3(1.2) 25.8 (6.1)

AmazPantry 55.3 (0.4) 54.7(1.4) 27.8 (3.6)

AmazPantry

AmazPantry 67.9 (0.4) 66.6 (0.5) 18.9 (1.1)

AmazDigiMu 50.9 (1.9) 51.0(0.6) 11.2 (3.3)

AmazInstr 55.9 (2.2) 57.4(1.2) 18.2 (1.3)

AmazInstr

AmazInstr 67.2 (0.7) 66.7(0.8) 19.2 (1.5)

AmazDigiMu 54.3 (1.4) 53.7(1.2) 13.9 (2.9)

AmazPantry 61.1 (1.5) 59.5(1.4) 24.4 (2.8)

Table 5.4: F1 macro performance (five runs) with standard deviation for HardKuma models and

the selected rationale length (L). Bold denotes no significant difference between HardKuma and

Full-text (t-test; p ą 0.05).

5.4.2 Select-then-predict Model Performance

HardKuma: Table 5.4 presents the F1-macro performance of HardKuma models (Bastings

et al., 2019) and the average rationale lengths (the ratio of the selected tokens compared to

the length of the entire sequence) selected by the model. For reference, we also include the

predictive performance of a full-text trained bi-LSTM. Results are averaged across 5 runs

including standard deviations in brackets.

As expected, predictive performance of HardKuma models degrades when evaluated on

out-of-domain data. Surprisingly, though, we find that their performance is not significantly

different (t-test; p-value ą 0.05) to that of the full-text LSTM in 9 out of the 12 out-of-domain
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dataset pairs. For example, by evaluating the out-of-domain performance of a HardKuma

model trained on AmazDigiMu on the AmazPantry test-set, we record on average a score

of 54.3 F1 compared to 55.3 with an LSTM classifier trained on full text. We also observe

that HardKuma models trained on SST and IMDB generalize comparably to models trained

on full-text when evaluated on Yelp, however the opposite does not apply. Our assumption

is that HardKuma models trained on Yelp, learn more domain-specific information due to

the large training corpus (when compared to training on IMDB and SST) so they fail to

generalize well out-of-domain.

Results also show, that the length of rationales selected by HardKuma models depend on

the source domain, i.e. training HardKuma on a dataset which favors shorter rationales,

leads to also selecting shorter rationales out-of-domain.1 For example, in-domain test-set

explanation lengths are on average 56.8% of the full-text input length for SST. In comparison,

training a model on Yelp and evaluating on SST results in rationale lengths of 14.1%. We

observe that in certain cases, HardKuma models maintain the number of words, not the ratio

to the sequence in out-of-domain settings. For example, in-domain Yelp test-set rationales

are about 11 tokens long that is the similar to the length selected when evaluating on IMDB

using a model trained on Yelp. This is also observed where in-domain AmazInstr test-set

rationales are on average 5 tokens long, which is the same rationale length when evaluating

on AmazDigiMu using a model trained on AmazInstr.

In general, our findings show that in the majority of cases, using HardKuma in out-of-

domain data leads to comparable performance with their full-text model counterparts. This

suggests that HardKuma models can be used in out-of-domain settings, without significant

sacrifices in predictive performance whilst also offering faithful rationales.

FRESH: Table 5.5 shows the averaged F1-macro performance across 5 random seeds for

FRESH classifiers on in- and out-of-domain using TopK rationales.2 We also include the

a priori defined rationale length in parentheses and the predictive performance of the Full-

Text model for reference. When evaluating out-of-domain, we use the rationale length of

the dataset we evaluate on. This makes FRESH experiments comparable with those of

1We also hypothesize that the short rationale lengths (e.g. 2% , «6 tokens in IMDB), indicates a more

coherent dataset and a simlper task (e.g. when comparing to SST or Yelp).
2For clarity we include standard deviations and Contiguous results in Appendix C.3
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Train Test Full-Text F1

α∇α α DeepLift x∇x IG

SST (20%)

SST 90.1 (0.3) 87.7 (0.4) 81.1 (1.0) 84.4 (0.7) 76.3 (0.5) 76.8 (0.3)

IMDB 84.3 (0.6) 81.8 (0.2) 52.6 (2.1) 64.0 (2.1) 55.0 (1.7) 56.3 (0.4)

Yelp 87.9 (2.3) 88.1(0.0) 72.6 (4.0) 75.4 (2.3) 59.6 (3.8) 63.9 (1.1)

IMDB (2%)

IMDB 91.1 (0.4) 87.9 (0.2) 80.4 (0.9) 87.2 (0.4) 59.8 (0.2) 59.7 (0.6)

SST 85.8 (2.0) 80.9 (0.5) 71.8 (1.0) 70.1 (0.5) 69.6 (0.5) 70.7 (1.7)

Yelp 91.0 (1.2) 87.8 (0.1) 82.0 (0.2) 79.4 (1.4) 69.0 (0.6) 69.1 (0.4)

Yelp (10%)

Yelp 96.9 (0.1) 94.0 (0.0) 90.4 (0.2) 93.6 (0.3) 70.5 (0.2) 71.9 (0.1)

SST 86.8 (1.7) 59.3 (0.6) 69.8 (1.1) 67.2 (1.5) 67.7 (0.5) 69.3 (0.8)

IMDB 88.6 (0.3) 78.0 (0.4) 64.5 (0.3) 66.6 (0.5) 53.0 (0.4) 55.8 (0.1)

AmazDigiMu (20%)

AmazDigiMu 70.6 (0.9) 66.1 (1.8) 63.4 (1.0) 65.8(2.6) 51.9 (2.0) 65.8 (2.6)

AmazInstr 61.2 (1.8) 58.0(0.8) 57.2(1.2) 57.4(1.2) 46.0 (0.6) 57.2 (1.2)

AmazPantry 64.6 (1.0) 59.1 (0.3) 56.5 (1.2) 56.5 (1.7) 44.8 (0.8) 44.8 (0.8)

AmazPantry (20%)

AmazPantry 70.2 (1.1) 67.3 (0.5) 62.6 (1.0) 67.2 (0.0) 48.6 (1.7) 48.7 (2.7)

AmazDigiMu 59.5 (0.7) 57.7(0.6) 54.6 (0.9) 56.2 (0.0) 41.2 (0.4) 57.7 (0.6)

AmazInstr 64.5 (2.6) 63.8(0.4) 58.0 (1.9) 63.6(0.2) 40.1 (1.1) 40.3 (2.5)

AmazInstr (20%)

AmazInstr 71.5 (0.4) 69.8 (0.3) 62.1 (2.3) 69.7 (0.3) 45.6 (4.7) 48.6 (2.7)

AmazDigiMu 61.3 (0.3) 60.0(0.7) 53.2 (1.7) 57.8 (0.4) 43.8 (3.3) 60.0 (0.7)

AmazPantry 68.2 (0.7) 64.5 (0.7) 56.3 (1.9) 63.1 (0.3) 44.6 (3.9) 47.6 (2.6)

Table 5.5: Average F1 macro performance of FRESH models (with standard deviation across

five runs) with the a priori defined rationale length in the brackets and TopK rationales. Bold

denotes no significant difference between FRESH and Full-text (t-test; p ą 0.05).

HardKuma.

We first observe that in-domain predictive performance varies across feature attribution

approaches with attention-based metrics (α∇α, α) outperforming the gradient-based ones

(x∇x, IG), largely agreeing with Jain et al. (2020). We also find that α∇α and DeepLift are

the feature attribution approaches that lead to the highest predictive performance across all

datasets.

As we initially hypothesized, performance of FRESH generally degrades when testing on

out-of-domain data similarly to the behavior of models trained using the full text. The only

exceptions are when using x∇x and IG in IMDB. We argue that this is due to these feature
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attribution methods not being able to identify the appropriate tokens relevant to the task

using a rationale length 2% of the original input. Increasing the rationale length to 20% (SST)

and 10% (Yelp) also increases the performance. Results also suggest that α∇α and DeepLift

outperform the rest of the feature attributions, with α∇α being the best performing one in

the majority of cases. In fact when using α∇α or DeepLift, the out-of-domain performance

of FRESH is not significantly different to that of models trained on full text (t-test; p-value

ą 0.05) in 5 cases. For example, a FRESH model trained on AmazPantry and evaluated on

AmazInstr records 63.6 F1 macro (using DeepLift) compared to 64.5 obtained by a full-text

model. However, this does not apply to the other feature attribution methods (α; x∇x; IG).

To better understand this behavior, we conduct a correlation analysis between the im-

portance rankings using any single feature attribution from (1) a model trained on the same

domain with the evaluation data; and (2) a model trained on a different domain (out-of-

domain trained model). High correlations suggest that if a feature attribution from an out-

of-domain trained model produces similar importance distributions with that of an in-domain

model, it will also lead to high predictive performance out-of-domain. Contrary to our initial

assumption we found that the lower the correlation, the higher the predictive performance

with FRESH. Results show low correlations when using α∇α and DeepLift (highest FRESH

performance). Surprisingly, IG and x∇x (lowest FRESH performance) showed consistently

strong correlations across all dataset pairs. Thus, we conclude that lower correlation scores

indicate lower attachment to spurious correlations learned during training. We expand our

discussion and show results for the correlation analysis in Appendix C.1.

Our findings therefore suggest that using FRESH in out-of-domain settings, can result to

comparable performance with a model trained on full-text. However this highly depends on

the choice of the feature attribution method.

HardKuma vs. FRESH: We observe that HardKuma models are not significantly dif-

ferent compared to models trained on the full text in out-of-domain settings in more cases,

when compared to FRESH (9 out of 12 and 5 out of 12 respectively). However, FRESH with

α∇α or DeepLift records higher predictive performance compared to HardKuma models (both

in- and out-of-domain) in all cases. We attribute this to the underlying model architectures,

as FRESH uses BERT and HardKuma a bi-LSTM. As we discussed in §5.2.2, we attempted

using BERT for HardKuma models in the extractor and classifier similar to Jain et al. (2020).
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Train Test ρ

FRESH Sufficiency Comprehen.

SST

SST 0.97 0.15

IMDB 0.36 0.21

Yelp 0.90 0.56

IMDB

IMDB 0.69 0.87

SST 0.65 0.23

Yelp 0.92 0.92

Yelp

Yelp 0.82 0.55

SST -0.67 -0.67

IMDB 0.87 0.56

AmazDigiMu

AmazDigiMu -0.11 0.22

AmazInstr 0.23 0.69

AmazPantry 0.11 0.11

AmazPantry

AmazPantry 0.16 0.16

AmazDigiMu 0.05 0.41

AmazInstr 0.16 0.16

AmazInstr

AmazInstr 0.79 0.55

AmazDigiMu 0.24 0.67

AmazPantry 0.21 0.20

Table 5.6: Spearman’s ranking correlation (ρ) between FRESH performance and comprehensive-

ness, sufficiency across all feature attribution approaches. Bold denotes statistically significant

(p-value ď 0.05) correlations.

However, the performance of HardKuma with BERT is at most comparable to when using a

bi-LSTM similar to findings of Guerreiro and Martins (2021).

5.4.3 Correlation between Post-hoc Explanation Faithfulness and

FRESH Performance

We hypothesize that a feature attribution with high scores for sufficiency and comprehen-

siveness, should extract rationales that result in high FRESH predictive performance. We

expect that if our hypothesis is valid, faithfulness scores can serve as early indicators of

FRESH performance, both on in-domain and out-of-domain settings.

Table 5.6 shows the Spearman’s ranking correlation (ρ) between FRESH F1 performance
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M Trained On Example

(1)

AmazInstr (ID) Work great and sound good

AmazDigiMu Work great and sound good

AmazPantry Work great and sound good

(2)

AmazPantry (ID) Delicious and at a good price . would recommend .

AmazDigiMu Delicious and at a good price . would recommend .

AmazInstr Delicious and at a good price . would recommend .

(3)

SST (ID) A painfully funny ode to bad behavior

IMDB A painfully funny ode to bad behavior

Yelp A painfully funny ode to bad behavior

(4)

Yelp (ID) The kouign - amann is so amazing ... must taste to appreciate .

SST The kouign - amann is so amazing ... must taste to appreciate .

IMDB The kouign - amann is so amazing ... must taste to appreciate .

Table 5.7: True examples of highlights with α∇α using a model trained on data from the same

distribution as the example(ID; with blue highlights ) and two models trained on a different

dataset (with red highlights ).

(see Table 5.5) and comprehensiveness and sufficiency (see Table 5.3). Correlation is com-

puted using all feature scoring methods for each dataset pair. Results show that only 4 cases

achieve statistically significant correlations (p-value ă 0.05) with only 3 out-of-domain and

mostly between sufficiency and FRESH performance. We do not observe high correlations

with comprehensiveness which is expected, as comprehensiveness evaluated the rationale’s

influence towards a model’s prediction. Our findings refute our initial hypothesis and suggest

that there is no clear correlation across all cases, between post-hoc explanation faithfulness

and FRESH predictive performance. Therefore, sufficiency and comprehensiveness scores

cannot be used as early indicators of FRESH predictive performance.
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5.4.4 Qualitative Analysis

In Table 5.7 we present examples from a qualitative analysis we performed, to understand

better the performance out-of-domain of post-hoc explanations. Rows with highlights in

blue are from a model trained in the same domain as the presented example (ID), whilst

those with red are from models trained in a different domain. Importance scores computed

using scaled attention (∇α∇).

From Example (1) we can observe that models trained on two closely related tasks

(AmazInstr and AmazDigiMu) are able to attend to the phrase “sound good”. On the

contrary, the model trained on AmazPantry which has not encountered such phrases focused

only on “Work great” as expected. Similarly, observing Example (2) from the AmazPantry

dataset, the in-domain model focused on a domain-specific word “delicious”. On the other

hand, the other two models trained on music-related tasks focus on more generic terms such as

“good” and “would recommend”. On Example (3) the model trained on Yelp focuses mostly

on the word “behavior”, a term we consider more relevant to restaurant reviews rather than

movie reviews. In comparison, the other models which are both trained on movie reviews

focus both on the term “funny”. Whilst as expected, in Example (4) again the two movie-

review models focus on more generic terms (i.e. “amazing”) compared to “must taste” as in

the model trained on Yelp.

Overall results show that models applied to a different domain (than that they were

trained for), extract as rationales features that are mostly present within the domain they

were trained for. This partly explains the performance of out-of-domain FRESH classifiers,

where our assumption is that a model’s inability to generalise to other domains is based on

it latching on to spurious features from the training dataset (Adebayo et al., 2020).

5.5 Summary

We conducted an extensive empirical study to assess the faithfulness of post-hoc explana-

tions (i.e. using feature attribution approaches) and performance of select-then-predict (i.e.

inherently faithful) models in out-of-domain settings. Our findings highlight, that using suf-

ficiency and comprehensiveness to evaluate post-hoc explanation faithfulness out-of-domain
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can be misleading. To address this issue, we suggest using a random attribution as reference

for a more reliable evaluation. We also show that select-then-predict models, which are in-

herently faithful, perform surprisingly well in out-of-domain settings. Despite performance

degradation, in many cases their performance is comparable to those of full-text trained

models.
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Chapter 6

Conclusion and Final Remarks

This thesis addressed challenges related to extracting and evaluating faithful explanations

in NLP. This chapter concludes this thesis, by summarising the findings and contributions

presented throughout and finally indicates possible directions for future work.

6.1 Summary of Thesis

Chapter 2 first presented popular NLP task setups used, different neural text encoders and

attention mechanisms. Following this prerequisite knowledge, we introduced model inter-

pretability by showing how it is defined by previous studies and the definition adopted by

this work, which is focused on faithful rationale extraction. We consider and describe two

popular approaches for rationale extraction: post-hoc faithful explanations and inherently

faithful select-then-predict models. We then reviewed approaches in literature for extracting

explanations and evaluating their faithfulness. Finally, we described how past studies tackled

improving explanations and their limitations.

Chapter 3 presented two novel approaches for improving the faithfulness of post-hoc ex-

planations. In Section 3.1, our first proposed approach attempts to improve the faithfulness

of attention-based explanations. As such, we introduced a family of encoder-independent

mechanisms (TaSc) that scale the attention weights to reduce contextualisation. This is

achieved by computing a non-contextualised score using the word embeddings. We then use
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that score alongside attention weights, to compute the sequence representation. Evaluation

on a battery of experiments for explanation faithfulness, showed that our proposed mech-

anisms are consistently more faithful compared to post-hoc explanations extracted without

TaSc. The second part of this chapter (Section 3.2), proposes an auxiliary loss function for

guiding the multi-head attention mechanism during training to be close to salient informa-

tion extracted using TextRank. Experiments on explanation faithfulness across five datasets,

show that models trained with our proposed method consistently provide more faithful expla-

nations across four different feature attribution methods compared to vanilla BERT. We also

show that extracting rationales from models trained with SaLoss, results to higher predic-

tive performance compared to rationales extracted from models without SaLoss when using

FRESH.

In Chapter 4, we propose a novel method for selecting each instance in a dataset a

specific feature attribution, rationale length and type. Inspired by word erasure approaches,

we achieve this by iteratively masking tokens in decreasing importance. We then measure

the divergence between the output distributions of a model using a full-text as input and

with the rationale masked. We assume that the higher the divergence, the more important

a rationale is to a model and base our selection of these parameters off that. We empirically

demonstrated that rationales extracted using our proposed method are on average shorter

compared to rationales with fixed pre-defined parameters, whilst being more comprehensive

and highly sufficient. We also show that our approach is flexible and scales with increasing

feature attribution approaches and rationale lengths.

Chapter 5 presents an empirical study of explanations in out-of-domain setting. To study

explanation faithfulness, we evaluated both post-hoc explanation faithfulness from feature

attributions and the performance of select-then-predict models. We used two dataset triplets

for these experiments, showing first that metrics such as sufficiency and comprehensiveness

are misleading in out-of-domain settings. For this purpose, we suggest interpreting any

measure of faithfulness alongside a random feature attribution for reference. On the contrary,

both select-then-predict model variants employed exhibit comparable predictive performance

with full-text trained models.
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6.2 Future Directions

The findings of this thesis, open the following future research directions:

• The family of mechanisms proposed in Section 3.1 can be extended to other NLP

applications to reduce contextualisations in attention mechanisms and subsequently

improve faithfulness.

• The auxiliary objective presented in Section 3.2, uses TextRank scores to influence

transformer-based language models towards other informative importance distributions

and in turn results to more faithful rationales. Finding other informative distributions

that can be extracted in an unsupervised manner a priori, or improving the loss function

of this objective is an interesting direction for future research.

• The novel method proposed in Chapter 4, produced instance-specific explanations that

were highly sufficient and on average more comprehensive compared to explanations

that used pre-defined feature attribution, length and type. This method can be poten-

tially modified to further improve on the sufficiency of rationales. Furthermore, whilst

our approach has been demonstrated to be significantly more computationally efficient

than computing importance scores using certain feature attribution approaches, there is

still room for improvement in terms of the time taken to compute the rationale length.

• The empirical study of post-hoc explanation faithfulness and select-then-predict per-

formance in Chapter 5, showed that metrics such as sufficiency and comprehensiveness

are not reliable in out-of-domain settings. We consider an interesting direction of future

study in this area, exploring methods for improving the evaluation of faithfulness for

out-of-domain post-hoc explanations.
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Radim Řeh̊uřek and Petr Sojka. 2010. Software Framework for Topic Modelling with Large

Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frame-

works, pages 45–50.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “why should I trust you?”: Ex-

plaining the predictions of any classifier. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Demonstra-

tions, pages 97–101, San Diego, California. Association for Computational Linguistics.
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Marcos Treviso and André F. T. Martins. 2020. The explanation game: Towards prediction

explainability through sparse communication. In Proceedings of the Third BlackboxNLP

Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 107–118, Online.

Association for Computational Linguistics.

Martin Tutek and Jan Snajder. 2020. Staying true to your word: (how) can attention become

explanation? In Proceedings of the 5th Workshop on Representation Learning for NLP,

pages 131–142, Online. Association for Computational Linguistics.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh Tomar, and Manaal Faruqui. 2019. At-

tention interpretability across NLP tasks. arXiv preprint arXiv:1909.11218.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

 L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 30, pages 5998–6008. Curran Associates,

Inc.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019. Analyzing

multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 5797–5808, Florence, Italy. Association for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix

Hill, Omer Levy, and Samuel Bowman. 2019. Superglue: A stickier benchmark for general-

purpose language understanding systems. In Advances in Neural Information Processing

Systems, pages 3266–3280.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.

2018. GLUE: A multi-task benchmark and analysis platform for natural language un-

derstanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and

Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium. Association for

Computational Linguistics.

127

https://www.aclweb.org/anthology/2020.blackboxnlp-1.10
https://www.aclweb.org/anthology/2020.blackboxnlp-1.10
https://doi.org/10.18653/v1/2020.repl4nlp-1.17
https://doi.org/10.18653/v1/2020.repl4nlp-1.17
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. 2016. Attention-based LSTM for

aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, pages 606–615.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On the practical computational power of

finite precision RNNs for language recognition. In Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 2: Short Papers), pages 740–745,

Melbourne, Australia. Association for Computational Linguistics.

Paul Werbos. 1974. Beyond regression:” new tools for prediction and analysis in the behav-

ioral sciences. Ph. D. dissertation, Harvard University.

Paul J Werbos. 1990. Backpropagation through time: what it does and how to do it. Pro-

ceedings of the IEEE, 78(10):1550–1560.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not not explanation. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages

11–20.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3):229–256.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
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Appendix A

Improving Attention-based

Explanations

A.1 Predictive Performance

In Table A.1 we present predictive performances on the validation checks for reproducibility

on models with TaSc and models without (No-TaSc).

A.2 Across Evaluation Metrics

We compare the performance of our proposed TaSc mechanisms, across a larger range of

post-hoc explanation faithfulness evaluation metrics. This analysis aims to examine whether

observations hold across evaluation approaches. For this purpose, alongside Fraction of To-

kens (lower is better) we also employ AOPC Normalised Sufficiency (AOPC NormSuff; higher

is better) and Normalised Comprehensiveness (AOPC NormComp; higher is better). For

more details on these approaches, see Section 2.6. In Figures A.1 and A.2 we compare results

across the three evaluation metrics when using α and ∇α respectively.

Comparing first results for α in Figure A.1, we can observe that they are largely in agree-

ment across all three evaluation metrics. For example, Feat-TaSc and Lin-TaSc with BERT
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Dataset Enc() No-TaSc Lin-TaSc Feat-TaSc Conv-TaSc
Dot Tanh Dot Tanh Dot Tanh Dot Tanh

SST

BERT .89 .90 .90 .87 .87 .87 .90 .90
LSTM .77 .78 .77 .78 .77 .80 .79 .80
GRU .78 .78 .78 .79 .78 .79 .78 .79
MLP .75 .77 .78 .78 .80 .80 .79 .81
CNN .77 .77 .79 .80 .80 .79 .79 .78

ADR

BERT .81 .81 .81 .79 .80 .80 .80 .81
LSTM .74 .75 .77 .76 .77 .77 .78 .76
GRU .76 .75 .77 .77 .76 .79 .77 .77
MLP .73 .78 .76 .76 .78 .77 .76 .76
CNN .74 .73 .77 .76 .77 .77 .78 .78

IMDB

BERT .92 .92 .93 .92 .92 .92 .92 .92
LSTM .90 .89 .89 .89 .89 .89 .89 .89
GRU .90 .90 .89 .90 .89 .90 .89 .89
MLP .88 .88 .88 .88 .89 .88 .89 .88
CNN .89 .89 .90 .89 .89 .89 .89 .89

AG

BERT .95 .95 .94 .94 .95 .95 .94 .95
LSTM .93 .93 .92 .93 .93 .93 .93 .93
GRU .93 .93 .93 .93 .93 .93 .93 .93
MLP .93 .93 .93 .92 .93 .92 .93 .93
CNN .93 .93 .93 .93 .93 .93 .93 .93

MIMIC

BERT .84 .83 .85 .84 .86 .84 .85 .83
LSTM .88 .89 .89 .89 .89 .90 .90 .90
GRU .89 .90 .89 .89 .90 .90 .90 .90
MLP .90 .89 .88 .88 .89 .88 .89 .89
CNN .90 .89 .90 .90 .90 .90 .89 .90

Table A.1: Validation set F1-macro average scores (3 runs) across datasets, encoders and at-

tention mechanisms for models with and without TaSc (No-TaSc). Standard deviations do not

exceed 0.01.

result in more comprehensive and sufficient rationales compared to No-TaSc and require a

lower fraction of tokens to cause a prediction switch. This is also observed when compar-

ing across datasets, with Feat-TaSc and Lin-TaSc resulting to more faithful explanations in

IMDB across all three metrics.

In Figure A.2, we also observe agreement between metrics in regards to post-hoc ex-

planation faithfulness using ∇α. For example, our proposed TaSc mechanisms require a

lower fraction of tokens to cause a decision flip with LSTM and also result to higher AOPC

NormComp and AOPC NormSuff scores. Comparing between the two feature attribution

approaches (α, ∇α), all three evaluation metrics agree that ∇α results to more faithful post-

hoc explanations compared to α. Overall, our findings show that using either evaluation

metric TaSc results to more faithful attention-based explanations.
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(a) AOPC NormSuff (b) AOPC NormComp (c) Fraction of Tokens

Figure A.1: Mean AOPC Normalised Sufficiency (higher is better), AOPC Normalised Compre-

hensiveness (higher is better) and Fraction of Tokens (lower is better) occurred by removing the

most informative token, using the three TaSc variants and No-TaSc across encoders (first row)

and datasets (second row), using α.
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(a) AOPC NormSuff (b) AOPC NormComp (c) Fraction of Tokens

Figure A.2: Mean AOPC Normalised Sufficiency (higher is better), AOPC Normalised Compre-

hensiveness (higher is better) and Fraction of Tokens (lower is better) occurred by removing the

most informative token, using the three TaSc variants and No-TaSc across encoders (first row)

and datasets (second row), using ∇α.
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Appendix B

Improving Transformer-based

Explanations

B.1 PoS Importance Allocation

We also conduct an analysis whereby we record the average importance scores under each

Part of Speach (PoS) tag. We run a pretrained PoS tagger from spaCy (Honnibal et al.,

2020) across the text and compute average importance calculated from a feature attribution

approach for each PoS tag. We therefore aim to observe differences in allocation of importance

in linguistic features between models trained with out our proposed approach (Baseline) and

with (SaLoss). In Figure B.1 we present distribution of importance (calculated with α∇α)

across PoS tags, on three datasets (SST, AG and Ev.Inf.).

Observing Figure B.1a, we can see that α∇α with SaLoss places greater importance on

proper nouns (PROPN), auxiliary words (AUX), pronouns (PRON) and interjections (INTJ).

In comparison the most prominent tags with Baseline are INTJ, PROPN, coordinating con-

junctions (CCONJ) and nouns (NOUN). In a sentiment analysis task, it is notable that

both Baseline and SaLoss base high importance on average on interjections, which typically

demonstrate feelings or emotions. Both appear to highlight particularly well adjectives, which

we consider more important for sentiment analysis as they name attributes of other words.

On the other end we also observe that SaLoss places lower importance on average to CCONJ
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and punctuation (PUNCT) compared to Baseline This suggests that for SST, SaLoss models

possibly shift their importance to more informative for the task word groups.

Moving on to Figure B.1b, we observe a very high peak on proper nouns (PROPN) and

unidentified tokens (X) with SaLoss compared to Baseline. In a news classification task

proper nouns such as “NATO” and other organization or city names can indicate the topic

of a sequence. We assume that for SaLoss to place such great importance on proper nouns,

we manage with our approach to shift the model’s attention to more informative for the task

tokens. However we also observe unidentified symbols having large average importance scores

with SaLoss. Whilst we do not study plausibility (human understandability of explanations),

we consider this a limitation and we consider exploring and addressing this an interesting

direction for future work.

Finally, examining Figure B.1c, we observe that both SaLoss and Baseline place very

high importance on particle (PART) words such as not. We consider this encouraging, as

large parts of the task is to infer if there was a significant difference or not based on an

observation in the text. Additionally, we observe that SaLoss attends highly to subordinating

conjunction (SCONJ) words such as than, which if placed in the context of ”significantly

higher than” directly relates to our task. Also with SaLoss we observe a reduction in attention

to pronouns (PRON) compared to Baseline, which we consider encouraging as PRON words

are not directly related to the task of infering relationships. This indicates that our proposed

objective manages to guide the model’s attention away from uninformative tokens such as

others and punctation, and towards more informative for the task token types (SCONJ,

CCONJ).
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(a) (SST)

(b) (AG)

(c) (Ev.Inf.)

Figure B.1: Average importance across Part of Speech (PoS) tags as indicated by α∇α with

Baseline, with our proposed component SaLoss.
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Appendix C

An Empirical Analysis of Faithfulness

in Out-of-Domain Settings

C.1 Feature Attribution Correlation Analysis

We examine why x∇x and IG, do not perform as well as DeepLift and α∇α when using

FRESH. We therefore conduct a study to gain better understand this. We first fix the domain

of the data we evaluate on and then compute the correlation between importance rankings

using any single feature attribution from: (1) a model trained on the same domain with

the evaluation data and (2) a model from trained on a different distribution (out-of-domain

trained model). High correlations suggest that a feature attribution from an out-of-domain

trained model, produce similar importance distributions with that of an in-domain model

(i.e. both attend to similar tokens to make a prediction). Therefore, we assume that this

will lead to high predictive performance out-of-domain. In Figure C.1 we show Spearman’s

ranking correlation across dataset pairs, between a model trained on the same distribution as

the evaluation data (ID) and an out-of-domain trained model (OOD), such that (ID ă ´ ą

OOD).

As expected, the random baseline produced almost no correlation between models. An

interesting observation is that two of the gradient-based methods (x∇x and IG) produce

strongly correlated rankings. This suggests that these two metrics produce generalizable
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Figure C.1: Average Spearman’s ranking correlation coefficient, between feature attribution

rankings from: (1) a model trained on the same distribution as the evaluation data (ID) and (2)

from a model trained in another domain (OOD), such that ID ă ´ ą OOD.

rankings irrespective of the domain shift, when comparing to the remainder of the feature

attribution approaches. Surprisingly, Deeplift importance rankings exhibit almost low to no

correlation betweenen them, despite being also gradient-based. We hypothesize that this

happens because DeepLift considers a baseline input to compute its importance distribution,

which highly depends on the model and as such is de-facto normalized and perhaps generalizes

better.

α for out-of-domain detection?: An interesting case is that of α, where we observe mod-

erate to strong correlations across all test-cases. What is more evident, is that in the OOD

tuples we considered, it appears that stronger correlations appear where the OOD task and

the ID task are closer together. For example in the case of SST and IMDB (both sentiment

analysis tasks for movie reviews), α produces a strong correlation (0.68). This contrasts

the moderate correlation of 0.58 between SST and Yelp, which is for restaurant reviews.

This is also evident in the case of AmazDigiMu and AmazInstr, where both tasks are for

review classification, but for musical related purchases. They both score strong correlations

between them and moderate correlations with reviews for pantry purchases (AmazPantry).

This observation might suggest, that using these correlation metrics with α might be an in-

dicator of the degree of task-domain-shift. Our observation is also supported by the findings

of Adebayo et al. (2020), who show that feature attributions are good indicators of detecting

138



ID OOD Rand α∇α α DeepLift x∇x IG

SST IMDB 0.06 0.26 0.39 0.37 0.54 0.55
SST Yelp 0.07 0.11 0.27 0.29 0.46 0.49
IMDB SST 0.02 0.13 0.25 0.15 0.43 0.43
IMDB Yelp 0.02 0.08 0.16 0.09 0.43 0.43
Yelp SST 0.02 0.08 0.12 0.18 0.37 0.39
Yelp IMDB 0.02 0.05 0.12 0.10 0.40 0.41
AmazDigiMu AmazInstr 0.13 0.22 0.38 0.16 0.60 0.61
AmazDigiMu AmazPantry 0.13 0.30 0.36 0.27 0.60 0.62
AmazPantry AmazDigiMu 0.14 0.28 0.35 0.27 0.60 0.63
AmazPantry AmazInstr 0.14 0.39 0.42 0.21 0.62 0.64
AmazInstr AmazDigiMu 0.08 0.16 0.29 0.12 0.54 0.57
AmazInstr AmazPantry 0.08 0.29 0.36 0.14 0.57 0.59

Table C.1: Agreement in tokens at 2% rationale length between a feature attribution from an

ID model tested on ID and the same feature attribution trained on an OOD dataset and tested

on ID.

spurious correlation signals in computer vision tasks.Considering α∇α we observe a wide

range of correlations, ranging from low in the AmazInstr-AmazDigiMu pair to strong in the

AmazPantry-AmazInstr pair, which we cannot interpret as something meaningful.

Correlation values and FRESH: We first observe that the lowest correlated feature at-

tributions α∇α and DeepLift perform the better on FRESH, followed by α which displays

moderate correlations and at the end of the spectrum the two gradient-based methods which

display high correlations. Contrary to our initial assumption, this suggests that the attribu-

tions which generalize better (i.e. return rationales that result in higher FRESH performance)

are those which exhibit low to no correlations.

Agreement at different rationale lengths: As the correlation analysis considers the

entire length of the sequence, we now examine a scenario where we have a priori defined

rationale lengths. Similarly to the correlation analysis, we now compute the agreement in

tokens between ID feature attribution rankings to those of an OOD trained model. In Tables

C.1, C.2 and C.3 we therefore show the token agreement between in-domain and out-of-

domain post-hoc explanations (on the same data) for 2%, 10% and 20% rationale lengths.

Our findings show that across all rationale lengths, results largely agree with the correla-

tion analysis. The two gradient-based methods exhibit higher agreement than the remainder,
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ID OOD Rand α∇α α DeepLift x∇x IG

SST IMDB 0.10 0.32 0.47 0.33 0.60 0.61
SST Yelp 0.11 0.19 0.35 0.25 0.54 0.56
IMDB SST 0.10 0.29 0.41 0.17 0.60 0.61
IMDB Yelp 0.10 0.21 0.34 0.14 0.59 0.61
Yelp SST 0.10 0.18 0.28 0.16 0.55 0.57
Yelp IMDB 0.10 0.16 0.29 0.12 0.56 0.58
AmazDigiMu AmazInstr 0.17 0.29 0.47 0.16 0.66 0.68
AmazDigiMu AmazPantry 0.17 0.36 0.44 0.26 0.66 0.69
AmazPantry AmazDigiMu 0.17 0.33 0.42 0.27 0.66 0.68
AmazPantry AmazInstr 0.17 0.46 0.49 0.24 0.67 0.69
AmazInstr AmazDigiMu 0.13 0.24 0.43 0.11 0.64 0.66
AmazInstr AmazPantry 0.13 0.40 0.50 0.20 0.67 0.68

Table C.2: Agreement in tokens at 10% rationale length between a feature attribution from an

ID model tested on ID and the same feature attribution trained on an OOD dataset and tested

on ID.

ID OOD Rand α∇α α DeepLift x∇x IG

SST IMDB 0.20 0.42 0.57 0.34 0.68 0.67
SST Yelp 0.21 0.31 0.46 0.27 0.61 0.62
IMDB SST 0.20 0.39 0.52 0.26 0.69 0.69
IMDB Yelp 0.20 0.32 0.46 0.22 0.67 0.68
Yelp SST 0.20 0.29 0.41 0.24 0.64 0.66
Yelp IMDB 0.20 0.27 0.42 0.20 0.65 0.66
AmazDigiMu AmazInstr 0.23 0.37 0.55 0.21 0.71 0.73
AmazDigiMu AmazPantry 0.24 0.44 0.51 0.32 0.71 0.74
AmazPantry AmazDigiMu 0.24 0.40 0.50 0.33 0.71 0.73
AmazPantry AmazInstr 0.24 0.54 0.57 0.32 0.72 0.73
AmazInstr AmazDigiMu 0.21 0.33 0.54 0.16 0.70 0.72
AmazInstr AmazPantry 0.21 0.51 0.60 0.30 0.72 0.74

Table C.3: Agreement in tokens at 20% rationale length between a feature attribution from an

ID model tested on ID and the same feature attribution trained on an OOD dataset and tested

on ID.

with α∇α and DeepLift recording the lowest agreements. Surprisingly, the poorest perform-

ers on out-of-domain FRESH record the highest agreement in tokens with in-domain models.

Whilst this suggests that they generalize better, we believe that the inhibiting factor to their

performance is their limited in-domain capabilities (i.e. they record the lowest in-domain

FRESH performance with TopK).
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Train Test AOPC NormSuff AOPC NormComp

Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST

SST 0.42 0.46 0.40 0.42 0.43 0.43 0.11 0.29 0.00 0.11 0.19 0.19

IMDB 0.35 0.40 0.33 0.35 0.34 0.35 0.11 0.39 0.14 0.13 0.17 0.18

Yelp 0.36 0.41 0.32 0.37 0.32 0.33 0.10 0.31 0.08 0.10 0.11 0.13

IMDB

IMDB 0.36 0.42 0.39 0.37 0.37 0.37 0.05 0.27 0.14 0.06 0.11 0.12

SST 0.29 0.30 0.29 0.30 0.30 0.30 0.16 0.33 0.16 0.16 0.21 0.19

Yelp 0.40 0.45 0.43 0.41 0.40 0.40 0.10 0.35 0.21 0.10 0.13 0.13

Yelp

Yelp 0.12 0.13 0.13 0.13 0.13 0.13 0.02 0.06 0.01 0.02 0.04 0.05

SST 0.47 0.46 0.46 0.48 0.47 0.47 0.08 0.09 0.00 0.09 0.12 0.12

IMDB 0.11 0.11 0.11 0.12 0.11 0.11 0.07 0.19 0.10 0.08 0.10 0.10

AmazDigiMu

AmazDigiMu 0.24 0.42 0.16 0.17 0.30 0.29 0.09 0.25 0.04 0.02 0.12 0.13

AmazInstr 0.17 0.33 0.13 0.13 0.21 0.21 0.14 0.41 0.10 0.06 0.17 0.18

AmazPantry 0.27 0.45 0.20 0.21 0.30 0.29 0.18 0.43 0.10 0.05 0.20 0.22

AmazPantry

AmazPantry 0.23 0.34 0.27 0.16 0.23 0.22 0.11 0.32 0.19 0.03 0.15 0.15

AmazDigiMu 0.22 0.35 0.29 0.16 0.22 0.22 0.10 0.29 0.19 0.03 0.12 0.12

AmazInstr 0.14 0.23 0.18 0.11 0.15 0.14 0.12 0.39 0.23 0.07 0.16 0.17

AmazInstr

AmazInstr 0.13 0.18 0.09 0.11 0.13 0.13 0.16 0.40 0.05 0.08 0.17 0.18

AmazDigiMu 0.19 0.29 0.12 0.13 0.19 0.18 0.14 0.35 0.04 0.05 0.14 0.15

AmazPantry 0.20 0.30 0.14 0.15 0.20 0.20 0.19 0.45 0.04 0.08 0.18 0.21

Table C.4: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-

of-domain at 2% rationale length, for five feature attribution approaches and a random attribu-

tion baseline.

C.2 Post-hoc Explanation Faithfulness - Extended

In Tables C.4, C.5 and C.6, we present post-hoc explanation sufficiency and comprehensive-

ness scores at 2%, 10% and 20% rationale lengths.

C.3 FRESH Model Performance

Table C.7 presents FRESH F1 macro performance for classifiers trained on Contiguous ratio-

nales, with standard deviation in brackets. We include the a priori defined rationale length
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Train Test AOPC NormSuff AOPC NormComp

Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST

SST 0.43 0.55 0.43 0.46 0.44 0.45 0.16 0.42 0.20 0.22 0.25 0.25

IMDB 0.36 0.65 0.44 0.37 0.36 0.36 0.19 0.69 0.39 0.24 0.25 0.26

Yelp 0.37 0.67 0.37 0.39 0.33 0.34 0.17 0.58 0.25 0.20 0.22 0.24

IMDB

IMDB 0.37 0.64 0.54 0.40 0.39 0.39 0.10 0.55 0.30 0.17 0.18 0.18

SST 0.28 0.32 0.29 0.30 0.30 0.30 0.23 0.48 0.29 0.29 0.30 0.29

Yelp 0.41 0.54 0.46 0.43 0.41 0.41 0.18 0.58 0.36 0.22 0.24 0.24

Yelp

Yelp 0.17 0.22 0.23 0.26 0.19 0.20 0.05 0.15 0.05 0.06 0.08 0.08

SST 0.48 0.49 0.47 0.50 0.46 0.46 0.13 0.23 0.15 0.16 0.20 0.20

IMDB 0.13 0.29 0.29 0.22 0.14 0.15 0.13 0.35 0.28 0.16 0.18 0.19

AmazDigiMu

AmazDigiMu 0.33 0.67 0.24 0.25 0.39 0.36 0.11 0.34 0.08 0.06 0.15 0.16

AmazInstr 0.28 0.67 0.22 0.26 0.29 0.28 0.19 0.57 0.19 0.15 0.22 0.24

AmazPantry 0.33 0.64 0.25 0.28 0.36 0.34 0.22 0.55 0.17 0.12 0.25 0.26

AmazPantry

AmazPantry 0.23 0.46 0.34 0.17 0.24 0.23 0.15 0.45 0.29 0.10 0.20 0.21

AmazDigiMu 0.22 0.46 0.35 0.16 0.23 0.22 0.13 0.42 0.29 0.10 0.17 0.17

AmazInstr 0.14 0.42 0.27 0.12 0.16 0.15 0.18 0.59 0.40 0.17 0.24 0.25

AmazInstr

AmazInstr 0.13 0.28 0.09 0.12 0.13 0.13 0.23 0.58 0.16 0.22 0.24 0.25

AmazDigiMu 0.19 0.32 0.12 0.14 0.20 0.18 0.18 0.47 0.10 0.14 0.20 0.20

AmazPantry 0.21 0.35 0.15 0.17 0.21 0.21 0.24 0.57 0.12 0.18 0.24 0.27

Table C.5: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-

of-domain at 10% rationale length, for five feature attribution approaches and a random attribu-

tion baseline.

in the brackets (.%) and for reference, the ID performance of the Full-Text model.

Comparing with FRESH performance with Contiguous rationales rather than TopK (see

Table 5.5), we first observe that performance degrades for most feature attribution methods.

These findings are largely in agreement with those of Jain et al. (2020). However, x∇x and

IG, which perform poorly with TopK, record surprisingly better scores with Contiguous type

rationales. For example, in-domain performance with IG becomes comparable with α∇α in

in-domain IMDB (83.2 with α∇α and 82.5 with IG). This is in sharp contrast with TopK,

where IG recorded an F1 score of only 59.7, compared to 87.9 of α∇α.

These findings also hold in out-of-domain settings, where α∇α, α and DeepLift result in
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Train Test AOPC NormSuff AOPC NormComp

Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST

SST 0.45 0.68 0.51 0.51 0.48 0.49 0.22 0.54 0.34 0.33 0.32 0.34

IMDB 0.38 0.77 0.55 0.39 0.37 0.38 0.29 0.80 0.54 0.36 0.34 0.36

Yelp 0.39 0.83 0.57 0.41 0.37 0.38 0.25 0.71 0.44 0.30 0.32 0.34

IMDB

IMDB 0.37 0.75 0.62 0.42 0.41 0.42 0.16 0.73 0.47 0.30 0.27 0.27

SST 0.26 0.40 0.31 0.31 0.31 0.30 0.32 0.65 0.42 0.41 0.42 0.42

Yelp 0.42 0.62 0.50 0.43 0.44 0.44 0.28 0.67 0.47 0.35 0.36 0.37

Yelp

Yelp 0.25 0.43 0.41 0.40 0.28 0.30 0.09 0.25 0.12 0.13 0.14 0.15

SST 0.49 0.55 0.51 0.53 0.48 0.48 0.20 0.35 0.27 0.26 0.28 0.29

IMDB 0.19 0.53 0.50 0.34 0.24 0.25 0.20 0.46 0.40 0.27 0.28 0.28

AmazDigiMu

AmazDigiMu 0.43 0.81 0.47 0.35 0.52 0.50 0.14 0.41 0.17 0.10 0.19 0.20

AmazInstr 0.37 0.79 0.49 0.42 0.43 0.42 0.24 0.63 0.33 0.23 0.28 0.30

AmazPantry 0.42 0.76 0.45 0.37 0.47 0.45 0.26 0.61 0.31 0.20 0.30 0.32

AmazPantry

AmazPantry 0.27 0.63 0.46 0.19 0.30 0.29 0.21 0.57 0.40 0.17 0.28 0.29

AmazDigiMu 0.25 0.63 0.46 0.18 0.28 0.27 0.19 0.55 0.39 0.16 0.25 0.25

AmazInstr 0.16 0.61 0.42 0.14 0.21 0.20 0.27 0.72 0.54 0.26 0.35 0.36

AmazInstr

AmazInstr 0.15 0.46 0.15 0.18 0.17 0.16 0.31 0.72 0.33 0.34 0.32 0.34

AmazDigiMu 0.21 0.46 0.16 0.17 0.23 0.20 0.24 0.60 0.22 0.22 0.26 0.27

AmazPantry 0.23 0.49 0.18 0.21 0.24 0.23 0.31 0.68 0.28 0.28 0.32 0.35

Table C.6: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-

of-domain at 20% rationale length, for five feature attribution approaches and a random attribu-

tion baseline.

poorer FRESH performance with Contiguous type rationales, compared to TopK. However,

IG and in many cases x∇x improves. For example with TopK rationales, evaluating on Yelp

using IG from a model trained on IMDB, results on an F1-score of 69.1. On the contrary,

with Contiguous rationales and the same set-up, IG results in FRESH performance of 87.0.

Our findings lead us to assume that, the rationale type has a large impact on FRESH per-

formance, both in-domain and on out-of-domain settings. Certain feature attribution methods

benefit from one type of rationales (e.g. DeepLift with TopK), whilst others from another (e.g.

IG with Contiguous).
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Train Test Full-Text F1

α∇α α DeepLift x∇x IG

SST (20%)

SST 90.1 (0.3) 87.1 (0.8) 80.7 (0.4) 79.7 (1.5) 77.8 (0.6) 79.7 (1.5)

IMDB 84.3 (0.6) 80.3 (0.5) 58.8 (0.4) 64.9 (1.5) 53.1 (0.7) 64.9 (1.5)

Yelp 87.9 (2.3) 88.1(0.3) 74.8 (1.0) 69.5 (0.9) 71.7 (1.1) 88.1 (0.3)

IMDB (2%)

IMDB 91.1 (0.4) 83.2 (0.1) 75.6 (0.6) 82.5 (0.8) 62.7 (0.2) 82.5 (0.8)

SST 85.8 (2.0) 80.1 (1.1) 74.7 (1.2) 66.7 (0.6) 71.6 (1.2) 80.1 (1.1)

Yelp 91.0 (1.2) 87.0 (0.3) 80.8 (1.3) 69.2 (4.4) 73.8 (0.8) 87.0 (0.3)

Yelp (10%)

Yelp 96.9 (0.1) 91.8 (0.5) 81.7 (0.3) 89.0 (0.7) 81.8 (0.2) 89.0 (0.7)

SST 86.8 (1.7) 65.5 (2.2) 71.3 (1.3) 68.4 (1.0) 68.7 (0.5) 65.5 (2.2)

IMDB 88.6 (0.3) 75.3 (1.2) 62.1 (0.9) 67.5 (0.2) 55.8 (0.4) 67.5 (0.2)

AmazDigiMu (20%)

AmazDigiMu 70.6 (0.9) 65.8 (1.5) 60.1 (2.3) 59.5 (4.0) 55.9 (2.4) 59.5 (4.0)

AmazInstr 61.2 (1.8) 57.0 (0.9) 51.8 (2.0) 50.8 (1.8) 47.5 (0.6) 51.8 (2.0)

AmazPantry 64.6 (1.0) 57.7 (0.6) 51.6 (2.0) 51.4 (2.6) 47.5 (1.2) 47.5 (1.2)

AmazPantry (20%)

AmazPantry 70.2 (1.1) 63.5(3.6) 62.0 (0.4) 58.0 (1.0) 50.0 (2.1) 58.0 (1.0)

AmazDigiMu 59.5 (0.7) 53.7(3.6) 52.0 (1.4) 46.7 (0.7) 44.4 (2.7) 53.7 (3.6)

AmazInstr 64.5 (2.6) 59.1(3.9) 56.1 (1.5) 51.4 (0.6) 42.6 (3.6) 56.1 (1.5)

AmazInstr (20%)

AmazInstr 71.5 (0.4) 66.3 (1.1) 52.2 (2.3) 60.9 (0.8) 53.4 (1.2) 60.9 (0.8)

AmazDigiMu 61.3 (0.3) 56.5 (0.6) 47.0 (1.4) 52.1 (0.3) 48.3 (1.2) 56.5 (0.6)

AmazPantry 68.2 (0.7) 62.4 (0.9) 49.2 (1.7) 57.4 (0.6) 51.0 (1.3) 51.0 (1.3)

Table C.7: F1 macro performance of FRESH models (Contiguous rationales) with standard de-

viation in brackets and Expected Calibration Error (ECE) scores. For reference we include the in-

domain performance of full-text models. Bold denotes no significant difference between FRESH

and Full-text (t-test; p ą 0.05)

144


	Introduction 
	Research Questions
	Main Contributions
	Publications
	Structure of Thesis

	Background 
	Supervised NLP Task Setup
	Attention Mechanisms 
	Neural Text Encoders 
	Multi-Layer Perceptron (MLP) 
	Recurrent Neural Networks (RNNs) 
	Convolutional Neural Networks (CNNs)
	Transformer 
	Pre-trained Transformer-based Language Models
	Training Neural Networks 

	Model Interpretability in NLP 
	Rationale Extraction 
	Feature Attribution Methods for Post-hoc Explanations 
	Select-then-Predict Models 

	Evaluating Explanation Faithfulness 
	Faithfulness of Post-hoc Explanations 

	Improving Explanations 
	Summary

	Improving the Faithfulness of Post-hoc Explanations 
	Improving Attention-based Explanations 
	Motivation
	Methodology 
	Experimental Setup 
	Results 
	Evaluation across Faithfulness Metrics
	Qualitative Analysis

	Improving Transformer-based Explanations 
	Motivation
	Methodology 
	Experimental Setup 
	Results 
	Qualitative Analysis
	Comparing Salience Distributions 
	Combining SaLoss with TaSc

	Summary 

	Instance-Specific Rationalisation for NLP Models 
	Motivation
	Methodology 
	Instance-level Feature Scoring Selection
	Instance-level Rationale Length Selection
	Divergence metrics 

	Experimental Setup 
	Datasets
	Models
	Feature Scoring Methods 
	Evaluating Explanation Faithfulness 
	Performance-Time Trade-off

	Results 
	Selecting Instance-specific Feature Scoring
	Selecting Instance-specific Rationale Length
	Selecting Instance-specific Feature Scoring, Length and Type
	Ablation Study 

	Quantitative Analysis
	Reducing Time for Computing Instance-Specific Length 
	Performance across Divergence Metrics 
	Effects of Increasing the Rationale Length Upper Bound N 

	Qualitative Analysis 
	Summary 

	An Empirical Analysis of Faithfulness in Out-of-Domain Settings 
	Motivation 
	Extracting Rationales 
	Feature Attribution Methods 
	Select-then-Predict Models 

	Experimental Setup 
	Datasets
	Models and Hyperparameters 
	Evaluating Out-of-Domain Explanations

	Results 
	Post-hoc Explanation Faithfulness
	Select-then-predict Model Performance 
	Correlation between Post-hoc Explanation Faithfulness and FRESH Performance
	Qualitative Analysis

	Summary 

	Conclusion and Final Remarks 
	Summary of Thesis
	Future Directions

	Improving Attention-based Explanations 
	Predictive Performance 
	Across Evaluation Metrics 

	Improving Transformer-based Explanations 
	PoS Importance Allocation 

	An Empirical Analysis of Faithfulness in Out-of-Domain Settings 
	Feature Attribution Correlation Analysis 
	Post-hoc Explanation Faithfulness - Extended 
	FRESH Model Performance 


