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Summary: 

Ceramic is a widely used veneering material in dentistry due to its outstanding 

properties of biocompatibility and aesthetics. One of the most used dental 

restorations is the porcelain fused to metal (PFM) restoration, after which 

developed the current range of all-ceramic restorations. Different tough 

ceramic cores are used and one of the newest core materials used in all-

ceramic restoration is zirconia. 

Problem: Zirconia/ceramic restorations have excellent aesthetic properties 

but they also prone to damage due to the veneer ceramic chipping. Ceramic 

may be repaired by adding composite but this is a difficult technique and a 

sensitive procedure. A further drawback with zirconia/ceramic restorations is 

the exaggerated tooth wear that they may cause and possible discomfort 

caused by the ceramic veneer with strong bite patients. 

Aim and objectives: Investigate and optimise zirconia/composite veneered 

dental prosthesis that combines the advantages of the two materials. Zirconia 

is a strong core to protect the underlying tooth, Composite an aesthetic, less 

abrasive material that is easily reparable.  

Methods: Specimens shaped as discs and crowns (n=10) were fabricated of 

different materials and tested. The same samples were designed digitally and 

Finite Element Analysis (FEA) was carried out to compare with the mechanical 

testing. 

Materials used: 

• Zirconia: VITA In-Ceram YZ CUBES for CEREC. 

• Composite: VITA VMLC and 3M ESPE Sinfony. 

• Ceramic: VITABLOCS Mark II for CEREC and VITAVM9 veneering material. 

Results and Conclusion: Based on testing conditions in-vitro, 

zirconia/composite laminates showed acceptable results when compared to 

single composite structures and zirconia/ceramic laminates. A good bond was 

observed between composite and zirconia that is observed even after sample 

fracture. Veneering zirconia seems to cause higher stress to the zirconia 

substrate in both Biaxial Flexural Strength calculations and FEA modelling. 

More tests need to be completed, taking into account the conditions in-vivo. 
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1 Introduction: 

Dental Technology is the science and art of designing and making oral 

appliances and restorations to restore function and improve aesthetic 

appearance. Such devices include crowns, bridges, dentures and maxillofacial 

appliances.  

Dental devices are custom made from various materials depending on the 

requirements of the clinical application. They may be considered in several 

categories: 

• Fixed prosthetics: permanently cemented restorations such as crowns, 

bridges, veneers, inlays and onlays.  

• Removable prosthetics: removable complete or partial dentures. 

• Orthodontic appliances: retainers, habit breaking appliances and space 

maintainers.  

• Maxillofacial appliances: extra-oral appliances including: artificial (nose, 

ear and eye) and inter-oral appliances such as obturators, splints and 

surgical stents.  

• Dental implants: Comprise fixture, abutment and restoration 

supported. 

The use of replacement materials in dentistry started more than 6500 years 

ago using different materials such as beeswax (Bernardini et al., 2012).  In 

modern dentistry metal alloys, composites and ceramics are the most 

significant materials for replacement of tooth tissue, the latter due to its 

aesthetic and physical properties being close to that of the natural tooth.  

Ceramics, or dental porcelain have evolved since their inception in 1838, when 

dental porcelain that almost mimics natural teeth was produced by Elias 

Wildman (Southan, 1970). Crowns and bridges incorporating ceramic have 

become one of the most popular treatments to restore teeth. The Adult 

Dental Health survey in the UK in 1998 revealed that around 33% of elderly 

people had at least one crown and about 50% of the adults aged between 45 

to 54 years old had one or more crowns (Smith and Howe, 2007).   
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Indications for using indirect restorations:  

The most common oral disease treated with dental restorations is dental 

caries (Deligeorgi et al., 2001) but it is not the only indication for making 

indirect restorations. Other common reasons are: 

• Badly broken teeth. 

• Primary trauma. 

• Tooth wear. 

• Appearance: To change the shape, size or inclination of teeth. 

• As part of another restoration.  

 

Restoration materials should comprise certain critical characteristics such as 

(van Noort, 2007): 

• Biocompatibility, with the surrounding oral tissues. 

• Longevity and resistance to fracture. 

• Appearance, to be aesthetically acceptable.  

 
These restorations may be made from a range of materials using different 

processing routes. We can divide them in to the following categories 

(Shillingburg, 1997): 

• Full metal crowns: 

• Metal-Ceramic Crowns or Porcelain Fused to metal crowns (PFM). 

• All-ceramic crowns. 

• Resin-bonded crowns 

 

Full metal crowns: 

Full metal dental restorations were one of the first restorations used to 

restore teeth. These restorations are usually used for posterior teeth where 

aesthetics is not of concern. They allow less tooth preparation even in patients 

with a strong bite due to the strength of the material (Walmsley, 2007). They 

can be made out of different alloys with gold alloys being the most widely 

known. Gold alloys are favoured due to their biocompatibility and corrosion 
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resistance. These restorations are typically made using the lost wax technique. 

The principle of this technique is to design and shape the desired restoration 

in wax on a model of the prepared tooth. A mould is produced from the wax 

pattern and the alloy fills the mould. The primary disadvantage of such crowns 

and bridges is the lack of aesthetics (Smith and Howe, 2007). 

 

Metal-Ceramic Crowns: 

Also known with different names such as ceramco crown, porcelain veneer 

crown (PVC), porcelain fused to gold (PFG) and metal ceramic crown (Smith 

and Howe, 2007). Such restorations are made of two parts: the framework or 

substructure (metal) and veneer or overlay (ceramic) bonded to it. The metal 

framework is typically produced via a lost wax technique after producing a 

wax pattern manually, or using a CAD/CAM system to mill a ‘plastic’ pattern.  

Alternative production routes using CAD data are Direct Metal Laser Sintering 

(DMLS) and milling from a block (van Noort, 2012). 

Typically a substructure is produced from metal alloys to support the ceramic 

from possible breakage under tensile and shear stress situation. Alloys are 

divided into three types depending on the percentage of noble metal 

contained such as gold, platinum, palladium, ruthenium and iridium (Anusavice 

and Phillips, 2003). The first type is high-noble alloys which contain a high 

percentage of noble metal elements (between 40% and 60%). The second 

type is semi-noble alloys which contain more silver and less percentage of 

gold or platinum, but still contain over 25% noble metals. The third type is 

base metal alloys which have high percentage of nickel or chromium (less than 

25% of noble metal elements) (van Noort, 2007). 

According to (Knosp et al., 2003), these ‘Bonding’ alloys differ to the alloys 

used for full metal crowns in that they must:  

• Have a sufficient melting temperature to prevent sagging in the 

ceramic furnace when firing veneer. 

• Produce an oxide layer to aid ceramic bonding. 

• Be stiff to prevent the ceramic cracking. 
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• Have a coefficient of thermal expansion (CTE) that matches that of the 

veneering ceramic to eliminate any thermal stresses that may arise 

when cooling from high firing temperatures.  

For veneering the metal framework, ceramic is used which is a powder 

mixture of oxide elements such as silica, alumina, potash and soda. Metal 

oxides are added to the mix before fusing it and quenching the molten mix in 

water, this procedure is called fritting. After that the mix is crushed to 

produce the ceramic powder (van Noort, 2007).  

The veneering ceramics that are used for the different types of restoration all 

share some properties. There are different translucencies available, opaque, 

dentine and enamel (translucent). They may be produced via sintering, 

pressing or milling and most have similar mechanical properties.  

 

The metal-ceramic restoration is one of the most versatile and reliable 

restorations because of their high successful rate (only 8% failure in 10 years) 

(Scurria et al., 1998), but yet, they are susceptible to failure (Ozcan, 2003). 

Some common PFM restoration failure causes are: CTE mismatch between 

substructure and veneer, inadequate built substructure and over thickened 

unsupported veneer (Diaz-Arnold et al., 1989). The other limitations relate to 

the limited aesthetic appearance of PFM restorations for anterior restorations 

in comparison to all-ceramic restorations (Bello and Jarvis, 1997).  

 

All-Ceramic Crowns: 

The new advances in dental materials and technology aim to conserve tooth 

structure by removing less tooth and often utilising advances in bonding of 

ceramic to teeth rather than relying on mechanical retention to achieve this. 

Adhesive bonding of materials has improved the reliability of all ceramic 

restorations. Early trials to make reliable all ceramic restorations started with 

techniques such as building ceramic on foil in 1903 by Dr. Land using 

feldspathic porcelain (Land, 1903). The same method was used in making 

veneers for Hollywood actors in the 1930’s by Dr. Pincus (Pincus, 1938). Both 

resulted in crowns and veneers that were brittle with a high rate of fracture. 
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To overcome this weakness, feldspathic restorations are either bonded to the 

underlying tooth structure resulting in a resin bonded restoration, 

alternatively the feldspathic ceramic is supported by a tougher core material. 

Early attempts in making a stronger core material used alumina added to the 

feldspathic porcelain which resulted in the porcelain jacket crown (PJC) (van 

Noort, 2007). The PJC core is made by making a slurry and either adapting it 

to a die made of a refractory material before being fired or using a platinum 

foil to support the green state ceramic during firing.  

Using a similar technique, Vita In-Ceram (VITA Zahnfabrik H. Rauter GmbH & 

Co.KG) can be produced as a substructure material for all-ceramic 

restorations. Three types of In-ceram were initially developed (Anusavice and 

Phillips, 2003):  

• In-ceram Spinell for anterior single unit restorations. 

• In-ceram Alumina for anterior and posterior restorations. 

• In-ceram Zirconia for posterior bridges.  

The materials are now processed using CAD/CAM rather than slip casting but 

the indications remains the same. Slip cast materials were fabricated by 

adapting a slurry ceramic on to a refractory die. This  slurry is dried before an 

initial firing cycle is carried out. The result is a porous material that is 

infiltrated with glass to improve the mechanical and aesthetic properties 

(Deany, 1996). 

An alternative route was to cast ceramic; in 1968 MacCulloch made denture 

teeth using glass ceramic for cookware (MacCulloch, 1968). The most 

significant result was the production of a castable ceramic system called Dicor 

in the 1980’s, which was easy for technologists to adopt due to using the same 

wax up procedure used with conventional lost wax techniques (Shillingburg, 

1997). 

Hot-pressing technique is another method similar to lost wax technique but 

use a ceramic ingot which is heated before being pressed to form the 

substructure (Griggs, 2007). Common materials with this technique are those 

from Ivoclar (Ivoclar Vivadent AG) the IPS Empress (Leucite reinforced 

porcelain) and IPS Empress II (lithium-disilicate glass). 
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Newer materials were introduced later, mostly for all-ceramic frameworks, 

such as alumina and zirconia (van Noort, 2007). CAD/CAM has helped with the 

increasing popularity of zirconia based substructure materials by overcoming 

the difficulties of handling such materials manually. CAD/CAM’s contribution in 

zirconia popularity as dental restorative material will be is discussed later. 

On the other hand, veneer chipping off and framework fracture of all-ceramic 

fixed dentures are considered as major disadvantage unlike conventional 

ceramic-metal FPD’s (Sailer et al., 2007). 

1.1.1 General guidelines when making crowns: 

Dental technologists manually fabricate most types of restorations, which is 

time demanding and skilled work. Increasingly dental restorations are being 

produced using computer-aided design and computer aided manufacturing 

(CAD/CAM), particularly for high strength materials. 

There are two procedures when making dental restorations: clinical and 

laboratory procedures. The clinical procedure is similar for all types of 

crowns, differing in the amount of tooth reduction and design of margins for 

example. An impression of the prepared tooth is taken using an accurate 

impression material. The impression is then sent to the dental laboratory to 

design and make the restoration. 

 

In the dental laboratory, materials and production methods differ from one 

type of crown and another.  

The conventional method for making a PFM crown is to pour a class IV stone 

to produce a replica of the patient's teeth. Each prepared tooth (die) is 

separated to produce a sectional model making the die easier to remove and 

handle. The wax pattern of the substructure is produced and used to create a 

mould by pouring investment material around the pattern within a casting 

ring.  

The wax is removed from the pattern and replaced with molten alloy. The 

sprues are removed using abrasive cut-off discs and the metal framework is 

prepared for ceramic application.  

The ceramic is applied in stages (Shillingburg, 1997):   
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1. Opaque: used to block the metal, establish the bond and initiate the 

colour. 

2. Dentine: used to build the body of the crown and provide the colour  

3. Enamel: used to give translucency along the incisal edge and to the 

mesial and distal aspects of the crown.  

Finally staining colours are added to the crown to mimic its natural adjacent 

teeth and glaze is added to give it the natural tooth shine and seal porosities.  

Production of High Strength Ceramic Crowns differs by replacing the metal 

substructure with a ceramic core, which is usually veneered with a feldspathic 

porcelain in the same way done with PFM crowns. Those ceramic substrates 

are mostly made using CAD/CAM or by injection moulding technique.  

For a less destructive tooth preparation and areas with low occlusal load and 

aesthetic demand like in the anterior, resin bonded crowns may be used. 

Reliability of such thin crowns rely mostly on resin bonding since no strong 

core is present (Blair et al., 2002). 
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2 Review of literature: 

2.1 CAD/CAM: 

Computer Aided Design/Computer Aided Manufacture (CAD/CAM) or Rapid 

Prototyping is a technique that has been used in industry since the 1950s, 

mainly for large simple shapes, unlike dental restorations but the same system 

could be used to create dental crowns (Rekow, 2006).  CAD/CAM was first 

used in the dental field in the 1970’s but with limitations, according to 

(Miyazaki et al., 2009): 

• CAD/CAM camera resolution was limited and difficulties in identifying 

the prepared tooth margin as well as antagonist and proximate teeth 

were experienced.  

• Milling restorations with sharp edges and thin margins was unreliable 

due to chipping of the ceramic material. 

• The CAD/CAM milling units were too large and expensive for dental 

laboratories, compared to conventional production routes.  

• Designing and producing restorations was a lengthy process. Early 

design software was rudimentary and not suitable for designing 

sophisticated tooth anatomy.  

CAD/CAM in the dental field really started in the seventies and eighties when 

Duret, Moermann and Andersson were all developing CAD/CAM systems. 

Duret was one of the early developers of CAD/CAM in dentistry making 

restorations using different systems with simple occlusal surfaces from as 

early as 1971 leading to the Sopha system. That system contributed later in the 

development of CAD/CAM in the field of dental technology (Duret and 

Preston, 1991). 

Moermann developed the CEREC CAD/CAM system focusing on using 

CAD/CAM in the dental clinic. The prepared tooth was measured inside the 

patient’s mouth using an optical camera. The data was then used in the 

CAD/CAM machine that designs and mills the ceramic restoration while the 

patient waits (Mormann et al., 1989). 
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The Procera system, developed by Andersson in early 1980’s, tackled the 

production process differently by having one centralised production centre 

where electronic data could be sent (Andersson and Oden, 1993).  

As a result CAD/CAM systems may be considered as chair-side, lab-based or 

milling centre.  Where a milling centre is involved, the scanning and design 

procedure is carried out within the dental laboratory, and the data sent to an 

external centre for milling or sintering. Chair side systems tend to be limited 

to single unit restorations, whereas laboratory CAD/CAM systems allow full 

models to be scanned and long span restorations to be produced.  

There are three main components common to all CAD/CAM: 

• Data acquisition; using a optical or laser scanner,  

• Restoration design; using CAD software 

• Restoration production; using CAM software and a milling, sintering or 

3d printing unit.  

 
Figure 1: Steps when using CAD/CAM in fabricating restorations. 

As shown in (Figure 1), the CAD/CAM system works in the following steps: 

scan, design and milling (fabrication). 

Data acquisition in chair side systems involves the use of an Intra-oral camera 

whereas laboratory based systems use a scanner that scans either the model 

or the impression of the teeth.  

Data is sent to specially designed software, where it may be manipulated and 

the restoration deigned. CAD software enables manipulation of restoration 
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design to build-up, smooth and cut the restoration design, mimicking the 

conventional method by hand. 

Once complete the design is sent to the milling or sintering unit. In milling 

units a block or blank of material is fixed and reduced by a conventional milling 

process. Materials that are milled range from metals such as titanium, to pre-

sintered zirconia and fully compacted glass ceramics. Alternatively a wax 

substitute may be milled to enable conventional casting methods to be used.  

An alternative production route is to send the design to an external processing 

centre to be milled, or produced by additive manufacture. Unlike the 

subtractive manufacturing in conventional CAD/CAM systems, additive 

manufacturing uses different techniques to build up the desired shape instead 

of carving it out of a block.  Examples of additive technique: selective electron 

beam melting, laser powder forming and inkjet printing (van Noort, 2012). 

 

CAD/CAM can save time in the production of high strength materials such as 

alumina and zirconia that are difficult to produce using conventional 

techniques. Eventually these will increase the life of the restoration in the 

mouth (Strub et al., 2006). 

Problems with CAD/CAM that have been highlighted by Trost et al., 2006 are:  

• The scanner or oral camera sometimes fails to detect the finish line of 

the prepared tooth that leads to a restoration with an open margin, 

which causes gingival irritation. 

• The high cost of equipment and training for both dentists and 

technicians. 

Dental CAD/CAM systems are starting to expand all around the world. 

Different systems are available from different companies. These systems may 

share the same principle but are different in the technique and materials. 

 

CEREC system: Was one of the first dental CAD/CAM systems, produced by 

Sirona in 1985. Many updates and new models have been released to date 

(Figure 2). This system can fabricate restorations in just one hour (Miyazaki et 

al., 2009). CEREC offers different materials to be used for crowns and bridges 



 21 

such as feldspar ceramics, glass ceramics, high-performance polymers and 

composites for temporary crowns and bridges.    

 
Figure 2: CEREC milling unit (left) and acquisition unit (right). 

Procera system: In this system the scanner is purchased alone without the 

milling unit. It is suitable for laboratories that cannot afford to buy a whole 

CAD/CAM system. The die is scanned in the laboratory and designed using 

Procera software. The data is then sent to the lab electronically where the 

restoration framework is milled and sintered. Then completed framework is 

sent back to the laboratory by mail (Miyazaki et al., 2009) to be veneered and 

finished. Restorations in this system can be made from different kinds of 

materials such as zirconia used in making crowns, bridges and implants. 

Zirconia is known with its high flexural strength, 1200 MPa. Other material is 

alumina used for anterior crowns, bridges and veneers with a flexural strength 

of 700 MPa. Finally, titanium is used for making implant bridges (Nobel Biocare 

Services AG, 2012). 

 

Cercon system: This system is produced by DENTSPLY Ceramco company. It 

is consisted of these three parts: Cercon Eye, Cercon Art and Cercon Brain. 

Cercon Eye scans prepared stone models using a three-camera system and a 

laser (DENTSPLY, 2012). The Cercon Art is software to design the restoration 

and after the design, the data is sent to the Cercon Brain for milling. Zirconium 
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oxide blocks are used for milling crowns and bridges. Dental labs can also use 

the Cercon Eye and Cercon Art and receive the zirconium oxide restoration by 

mail from DENTSPLY milling centre after sending the design without the need 

of purchasing the Cercon Brain (Beuer et al., 2008). 

 

KaVo Everest system: Is produced by KaVo Dental GmbH and it consist of 

four parts: Everest scan pro, Everest engine, Everest therm and Everest 

elements. This in-lab 5 axes system is capable of milling metal and ceramic 

materials along with other materials such as (KaVo Dental GmbH, 2012): 

• Cam select (nickel-free cobalt chrome).  

• Everest ZS (pre-sintered zirconium oxide). 

• Everest ZH (sintered pressed zirconium oxide).  

• IPS. e.max. CAD (innovative lithium disilicate glass ceramic). 

• VITABLOCKS mark2 (feldspar ceramic).  

• Everest C-Temp (high-performance polymer plastic). 

• Everest C-Cast (Polymethylmethacrylate) used to be invested. 

• Everest T (Grade 2 pure surgical titanium). 

• Everest G (Leucite-reinforced glass ceramic). 
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2.2 Zirconia 

Zirconium oxide (ZrO2), partially stabilized zirconia or simply zirconia, is 

considered one of strongest ceramic core materials with a BFS of about 

1000MPa (Guess et al., 2008) and a fracture strength peaking around 2000N 

(Ozcan et al., 2011). It is also one of the most recently developed materials 

used in dentistry and other medical fields. It is widely used in industry in 

different applications, such as machinery parts, furnace elements, and 

aerospace industry (Lee and Rainforth, 1994). Due to the material’s 

biocompatibility it is used widely in the medical field in making hip and joint 

replacements. Until 1997, about 300,000 hip joints made of zirconia in Europe 

and USA were implanted (Ghevalier et al., 1997).  

Zirconia can be found from natural sources such as zircon and baddeleyite 

(Figure 3). Zirconium oxide ZrO2 was first recognised in 1789 a German 

chemist called Martin Heinrich Klaproth (Vagkopoulou et al., 2009). As a 

biomaterial, zirconia was first presented in 1969 by Helmer and Driskell as a 

substitute for titanium and alumina in making femolar heads (Helmer and 

Driskell, 1969). 

 
Figure 3: Baddeleyite. (Source: www.wpclipart.com) 

Zirconia comes in a monoclinic phase at room temperature and can transfer 

to tetragonal then to cubic phases above 1170 and 2370˚C respectively. On 

cooling, phase transformation occurs from tetragonal to monoclinic causing 

expansion of about 3 to 4%. This increase in size prompts stresses and 

eventually causes zirconia to fracture (Piconi and Maccauro, 1999).  Its 
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capabilities can be improved by small changes in its composition or subjecting 

it to heat treatment; an example is stabilizing of zirconia with different oxides. 

This is essential when producing a manufacturing material. An example is to 

stabilize at room temperature by incorporating yttrium oxide (Ozcan et al., 

2011). Other stabilizers can be used such as Calcium and Magnesium.  

There is concern regarding zirconia’s biocompatibility and the possibility of 

forming microcracks caused by something called low temperature 

degradation LTD (Swab, 1991). This phenomenon reduces zirconia’s strength 

and is increased in wet conditions elevating the tetragonal to monoclinic 

phase transformation causing microcracks (Piconi et al., 1998). A possible way 

to overcome such a problem is to ensure full coverage of zirconia 

substructure from oral fluids and environment (Koutayas et al., 2009). 

Another phenomena involves reverse transformation from tetragonal to 

monoclinic phase called transformation toughening. An expansion is 

associated with the transformation acting in favour of closing cracks 

(Papanagiotou et al., 2006). 

Sintering is an important step in processing zirconia; the zirconia is raised to a 

high temperature (about 1500ºC) having the furnace raising temperature in a 

steady rate. The process results in pores being reduced between particles 

(Figure 4), increasing strength but results in shrinkage of the structure (Lee 

and Rainforth, 1994). 

 
Figure 4: Microscopic image of pre-sintered zirconia (left) and and after sintering (right). (Source: 

VITA In-ceram YZ manual). 
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2.2.1 Zirconia in Dentistry: 

Zirconia can be used to replace metal in the conventional PFM restorations. It 

has adequate mechanical properties of metal with its outstanding flexural 

strength but there are some drawbacks. It is considered to be a non-etchable 

ceramic surface that may effect restoration fit in the patients’ mouth and 

therefore leakage (Ozcan et al., 2008). 

Zirconia has become easy to fabricate since the introduction of CAD/CAM 

although other techniques for fabricating zirconia restorations (used with 

cerium-tetragonal polycrystal), are available using an additive technique called 

electrophoretic deposition (Koutayas et al., 2009). 

As a result zirconia based frameworks and restorations are increasing in 

popularity such that demand is growing at approximately 12% annually 

(Chevalier, 2006). Zirconia material is presented in the form of pre-sintered 

pressed CAD/CAM blocks or discs (Figure 5), the blocks are produced in 

different sizes depending on the restoration kind and number of units milled.  

 
Figure 5: Different sizes of zirconia blocks and disc. (With permission from Bloomden Bioceramics 

Co.,Ltd). 

Milled restorations always require some manual finishing including the 

framework being separated from the remaining block and the remaining 

rough surface can be finished using a diamond bur. The framework is heat 

treated (sintered) in a furnace to 1530ºC for 2 hours before gradually cooling 

to room temperature. Sintering causes a strong bond between the particles 
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and closes the pores between them (Lee and Rainforth, 1994) which causes 

the framework to shrink for about 20%.  This shrinkage is compensated for in 

the software and calculated when designing the restoration by milling an over 

sized framework (Figure 6). The sintered zirconia framework is extremely 

tough (compared to pre-sintered ones) with an opaque white colour.  

 
Figure 6: Pre-sintered coping (left) and sintered coping (right) with about 21% change in volume. 

In a study of posterior restorations lasted 3 years, Suarez stated that zirconia 

ceramic can act as a dependable restorative material in clinic (Suarez et al., 

2004).  Zirconia frameworks are considered for both anterior and posterior 

application unlike the rest of all-ceramic materials, which are only 

recommended for use in anterior (Raigrodski, 2004). 

Zirconia is usually veneered with feldspathic porcelain via sintering or 

pressing.  The ceramic veneer provides greater aesthetic wear properties but 

is susceptible to chipping (Koutayas et al., 2009). Such veneer chipping and 

fracture is considered as a common drawback in zirconia dental FPD’s (Sailer 

et al., 2006), (Manicone et al., 2007) and (Hammond, 2009). Another possible 

drawback is that such veneers may cause wear of the opposing teeth 

(Stawarczyk et al., 2011). Also replacing damaged restoration requires more 
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tooth reduction which in the long run may cause remaining tooth to break of 

or even be extracted (Sharif et al., 2010). 

 

Techniques for ceramic repair using light cure composite on the ceramic after 

various chemical and, or mechanical surface treatments have been discussed 

by (Kim et al., 2005). Kim et al outlines that the repair is mostly done 

combining shot-blasting, hydrofluoric etching and silanes on the ceramic 

surface to establish a durable bond to repairing composite. Kim showed that 

most studies reviewed concerned feldspathic ceramic rather than alumina 

and zirconia ceramics, which are not adequately responding to such 

techniques, as stated by other studies they reviewed.   

Table 1 shows types of zirconia used in fabricating dental prosthesis and their 

operating systems. 
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Table 1: Typical zirconia used in fabricating prostheses and their systems from companies’ websites.  

System Material Company 

densir® 

Hot Isostatic Pressed Yttrium Oxide 
Stabilized Zirconium Dioxide blocks 
milled at the company’s milling centre 
and sent to the dental technologist to be 
veneered. 

Cad.esthetics AB, 
Sweden 

ceramill zi Pre-sintered Y-TZP zirconium-oxide 
Amann Girrbach AG, 
Austria 

Cercon® 
Zirconia 

Yttria-stabilized tetragonal zirconia 
which can be milled either inlab or at the 
company’s milling centre. 

DeguDent GmbH, 
Germany 

DentaCAD 
Hint-ELs ZrO2 HIP/ W/ G is the product 
name of the zirconium dioxide used with 
the DentaCAD system. 

Hint-ELs® GmbH, 
Germay 

Kavo-
everest 

Pre-sintered, yttrium-stabilised 
zirconium oxide (Everest ZS) and 
sintered, yttrium-stabilised pressed 
zirconium oxide (Everest ZH) 

KaVo Dental GmbH, 
Germany 

GC Aadva 
CAD/CAM 

Aadva Zr Blocks (Yttria stabilized 
zirconia) are milled to produce 
abutments and copings at the company’s 
milling canters. 

GC Corporation, 
Japan 

CEREC® 
VITA In-Ceram YZ yttrium-stabilized 
Zirconia comes as a pre-sintered block 
and milled using in-lab milling machine. 

VITA Zahnfabrik H. 
Rauter GmbH & Co, 
Germany 
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2.3 Composites: 

Composites have been used in dentistry for more than forty years (Bowen, 

1962) and in that time have become the most widely used material for direct 

restorations, mainly due to their aesthetic capability when compared to 

amalgams. They are defined as a mixture of two or more different parts to 

achieve the desired features (Ferracane, 1995). The material is versatile and 

may be used both as a direct restoration material and as a laboratory 

produced indirect restoration. Prior to the introduction of composites, 

clinicians were limited to using materials such as amalgam or acrylic resins, 

both of which do not fulfil the ideal requirements of a restorative material 

(Craig and Powers, 2002). Drawbacks such as marginal gap, discoloration and 

relative weakness of acrylic resins (Fusayama et al., 1971), whereas amalgam 

causes concern regarding the mercury in its composition and the destructive 

nature of the cavity preparation required (Hengchang et al., 1990) (Bates, 

2006) .  

Composites excel with their aesthetic life-like shades, relative ease of use and 

repair, good wear characteristics and minimal preparation requirements 

(Shahdad and Kennedy, 1998) and (Rathke et al., 2009). 

Composites are made of three parts (Peutzfeldt, 1997):  

• Organic matrix:  a fluid monomer that is transformed to a rigid polymer 

by a radical addition reaction. These monomers are usually related to 

metacrylate monomers such as Bis-GMA and UDMA (bisphenol A 

diglycidylether methacrylate and urethane dimethacrylates) are 

examples of widely used monomers.  

• Inorganic filler: which improves the composite’s strength and hardness 

properties. The filler also impacts on the optical and thermal 

characteristics.  

• Coupling agent: are silanes that bond filler to matrix in order to get a 

mechanically reliable composite.  

An activation process is required to initiate the polymerisation of the 

composite. Composites can be chemically activated, mixing (powder/paste) 
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and liquid, or light cured using an external light source. Usually in the chemical 

activated system, the powder or paste contains the fillers whiles the liquid 

activates the reaction. The paste contains 1% of peroxide initiator and the 

liquid 0.5% of tertiary amine activator.  

Ultraviolet light activated composite has an initiator, typically benzoin methyl 

ether. While in the visible-light cured composite, the initiator is a mixture of 

amine and dikitone (McCabe and Walls, 2008). 

Light cure activation, developed in the 1970’s (Mount and Hume, 1998), is 

commonly used mainly due to longer working time and on-demand hardening 

(Walmsley, 2007).  Light curing can be affected by the distance between light 

source and composite surface, and the shade of the composite can affect the 

depth of cure. UV light curing systems had few drawbacks mainly the depth of 

cure, causing the production of the of visible light curing (VLC) system (Alvim 

et al., 2007).  

Curing units produce light with a wavelength of around 470nm, the point 

where camphoroquinone absorbs the light and initiates polymerization of the 

composite (Alvim et al., 2007).  Available as a desktop box or a hand held unit, 

both require cooling, a filter to eliminate harmful spectrum and a timer. In 

both types, halogen bulbs can be used. A newer light source is the light 

emitting diode (LED), which is considered convenient since no heat is 

generated, and light spectrum can be customised to specific range (McCabe 

and Walls, 2008).  

 

The British Standards Institution has classified dental polymer-based 

restorative materials (BS EN ISO 4049-2009) into three classes as detailed in 

(Figure 7) below. 
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Figure 7: Classification of dental polymer-based restorative materials (BS EN ISO 4049:2009) 
according to British Standard Institution. 

 

Researchers indicated different composite classifications depending on 

various criteria. One classification of composites depending on the fillers is: 

macro filler, micro filler and hybrid composite (Lutz and Phillips, 1983).  

Another way of classifying composites is the one used by companies were they 

class composites into: flowable composites and packable composites. 

Choosing which one depends on the patient’s case and the application feature 

(McCabe and Walls, 2008). 

Class 1 

Self cured materials 
(mixing activator 

and initiator) 

Class 2 

Materials externally 
set: using light or 

heat 

Group 1:  

Intra-orally  
applied energy 

Group 2: 

Extra-orally applied 
energy 

Class 3 

Dual cured 
materials: can be 
self cured or by 

applying external 
energy 
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2.4 Bonding methods: 

In restorative dentistry, bonding two materials together or to the remaining 

tooth tissue is essential to the success of restoring teeth with conservative 

preparations for composite to minimal preparation applications such as 

veneers or minimal preparation bridges that rely on micro-mechanical 

features (Smith and Howe, 2007).  

Bonding to enamel, dentine, resin and other materials such as ceramic and 

metal has become of great interest to material developers, particularly with 

the advent of high strength ceramic materials.   

According to (McCabe and Walls, 2008), bonding can be characterised to: 

1. Micro-mechanical: an example using acid-etching technique. 

2. Chemical adhesion: an example using coupling agents and cements. 

3. Complex mechanism: including wetting, penetration and forming a 

layer bonding two surfaces. 

Examples of such bonding in dental restorations: 

 

Micro mechanical retenion in non-precious metals can be achieved by etching 

the metal fitting surface, or using a complex method of bonding by forming 

silica layer prior using silane coupling agent (McCabe and Walls, 2008). In 

ceramics, silanes shows better results bonding in ceramics than metals and 

enhances the composite bond to ceramic by 25% (Matinlinna et al., 2004).  

An example of silane commonly used in dentistry is 3-

methacryloyloxypropyltrimethoxysilane  (Figure 8) (Aboushelib et al., 2008). 

 

Another bonding enhancement in dentistry is something called primer, an 

example of a primer is the one used to cover wood before adding fixative (van 

Noort, 2007). In dentistry, primers are silanes that act as bond promoters 

between different materials, organic or inorganic. Besides dentistry, silanes 

have been used in other applications for around 40 years (Matinlinna et al., 

2004). These primers are usually an alcohol-based solution with different 

component composition. Recent modifications to primers include the addition 
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of an etching component that allows the solutions to bond and etch the 

surface at the same time (McCabe and Walls, 2008). 

 

 
 

Figure 8: 3-methacryloyloxypropyltrimethoxy silane. Source: (Matinlinna et al., 2006). 

 

2.4.1 Bonding composite to zirconia: 

 

There have been many researchers trying different techniques and methods 

to establish a reliable bond to oxide ceramics and in particular between these 

two materials. Using bonding resins seems essential for a more durable 

bonding between composite and zirconia, depending on various studies (Ural 

et al., 2010).     

There is some debate on certain methods that they may affect the properties 

of bonded material. For ceramics such as zirconia and alumina, shot-blasting 

them with Al2O3 is considered an effective way to bond to them but some 

suggest that this causes micro cracks in the surface resulting in weakness of 

the core material (Ural et al., 2010). Conversely, roughening the zirconia 

surface can increase the bonding surface and promote the bond by 

interlocking with the other material (mechanical bonding). (Guazzato et al., 

2005), (Vagkopoulou et al., 2009) and (Qeblawi et al., 2010) showed the effect 

of zirconia surface treatment on flexural strength and shear bond strength on 

a resin cement. The flexural strength increases when the zirconia surface was 

mechanically treated. Other workers show that roughening the surface 

increases the bonding area and thereby promote bonding (Ozcan et al., 2008).  
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Metal primers were used with zirconia as bond promoters after shot-blasting 

the surface but the strong bond may not stand wet conditions (Ozcan et al., 

2008).  

Micro-mechanical retention cannot be created on zirconia surface using 

hydrofluoric acid due to the glass-free structure of zirconia making it a non-

etchable material. Attempts have been made to change the zirconia surface 

characteristics by airborne particle abrasion prior silanisation, but this air-

borne abrasion has been criticised for possibility of causing crack growth in 

zirconia (Ozcan et al., 2008). Effective bonding can be achieved using silane 

coupling agents which lowers the surface tension, wet and raise the surface 

energy (Matinlinna et al., 2006). 

Metal primer was recommended as a cheap and easy to apply method to 

promote zirconia bonding after air-borne abrasion. They seem to exhibit a 

strong bond in dry environments but some debate its performance in wet 

conditions (Ozcan et al., 2008).  

Table 2 in page 36 summarises the different bonding methods explored by 

other workers.  

Simple in-lab bonding trials between composite (VITA VM LC) and zirconia 

(VITA In-Ceram YZ) to create a laminate disc was summarised table 3.  The 

best method was observed when combining micromechanical bonding (by 

shot-blasting) and chemical bonding (universal primer) to bond composite to 

zirconia as stated in literature by (Kern et al., 2009), (Yun et al., 2010), (Yang 

et al., 2010) and (Attia et al., 2011). 

A different method was to bond composite to zirconia using airborne particle 

silica coating system (3M Rocatec system)!. The system claims to form a silica 

layer by shot-blasting the surface using alumina particles coated with silica. 

Sintered zirconia discs were blasted in 40-psi pressure for about 5 seconds in 

about 5 cm distance and cleaned with oil-free air. After that 3M ESPE Si 

(silane) was applied on the blasted surface and left for 10 minutes prior 

building composite starting with opaque than dentine. This laminate disc de-
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bonded even before trying to test the specimens. The same procedure was 

done using different composite (3M ESPE Sinfony) where it showed a slightly 

better bond but not enough to last for testing its biaxial flexural strength. 

There were studies that stated silica coating did not improve bong to zirconia 

compared to alumina (Kern and Wegner, 1998). 
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Table 2: Bonding composite to zirconia trials done by others. 
 

Bonding method Description Result Done by 

Applying directly  After shot-blasting 
Primary bond which failed 
afterwards  

Kern M. and Wegner SM. 
1998 

Adding silane 
Espe-Sil, 3-methacryloyloxypropyl trimethoxysilane in isopropanol before 
applying composite 

Primary bond which failed 
afterwards 

Kern M. and Wegner SM. 
1998 

Tribochemical silica 
coat 

After cleaning by shot-blasting with 100 µm Al2O3 at 2.5 bars (0.25 MPa). It is 
shot-blasted with special silica particle containing 110µm Al2O3  (Rocatec-Plus 
powder) and cleaned in isopropanol ultrasonically. The surface is silanated 
(Espe-Sil) prior to the application of composite. 

Primary bond which 
reduced obviously  

Kern M. and Wegner SM. 
1998 

Acylizing  Applying acryle (Kevloc oven method) before adding the composite 
Primary bond which failed 
afterwards 

Kern M. and Wegner SM. 
1998 

Panavia EX 
A chemical cured phosphate monomer modified resin composite was 
applied directly to the shot-blasted ceramic surface.  

Strong bond 
Kern M. and Wegner SM. 
1998 

Paniva 21 EX 
Chemical cured with MDP modified resin composite was applied directly to 
the shot-blasted ceramic surface. 

Strong bond 
Kern M. and Wegner SM. 
1998 

Dyract Cem 
Chemical cured polyacid modified resin composite was used directly on the 
shot-blasted ceramic surface 

Primary bond which 
reduced obviously  

Kern M. and Wegner SM. 
1998 

No air abrasion and 
no primer 

------ 
Debonded   eventually after 
stored in water  

M. Kern, A. Barloi and B. 
Yang 
2009 

No air abrasion with 
primers 

! Metal/zirconia primer (MZP) 
! Alloy primer (AP) 
! Clearfield ceramic primer (CCP) 

Enhanced primary bond, 
which eventually weakened 
after storage.  

M. Kern, A. Barloi and B. 
Yang 
2009 

After air abrasion 
with groups AP and 
CCP  

Air abrasion with 0.05 MPa or 0.25 MPa with groups contained: 
10-methacryloyloxy-decyldihydrogenphosphate monomer in AP and CCP 
primers 

Higher tensile bond 
strength than MZP primer 
group containing 
phosphoric acid acrylate  

M. Kern, A. Barloi and B. 
Yang 
2009 
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Table 3: Bonding VITA YZ disks to VITA LC trials 

 
Bonding material Description Result 

No material used 
Applying Vita LC directly out of the syringe to the YZ disks with the assist of solfane paper and a 
flat piece of glass to flatten the composite then light cure it for 4 min using (Complex Lux S 8, 
Pressing Dental) 

A very weak bond between 
composite and zerconia disk. 

VM9 EFFECT 
BONDER 

YZ disk bonding side is washed with Vita VM9 effect bonder (powder & liquid) and fired (table) 
and the Vita LC directly adapted to the EFFECT BONDER surface with the assist of solfane paper 
and a flat piece of glass to flatten the composite then light cure it for 4 min using (Complex Lux S 8, 
Pressing Dental) 

Very poor primary bond 

VM9 EFFECT 
BONDER with 
rough surface 

Same as previous procedure but before firing EFFECT BONDER a thin layer of the EFFECT BODER 
powder is sprinkled on it to give rough surface after firing and to initiate mechanical bonding. 

Stronger primary mechanical 
bond was initiated. 

Shot-blasting & 
VM9 EFFECT 
BONDER 

A fired layer of EFFECT BONDER on a YZ disk was shot-blasted with 50µm and LC was adapted on 
top of it and light cured it for 4 min using (Complex Lux S 8, Pressing Dental) 

Very poor primary bond 

Vita LC opaque 
LC opaque (powder & liquid) were mixed according to manual and, with a brush, applied on 
bonding surface of the YZ disk and light curd for 6.00 minutes using (Complex Lux S 8, Pressing 
Dental) and composite is placed on top of the opaque as done before. 

Very poor primary bond 

Vita LC bonder 
After applying LC bonder to YZ disc, it was kept under 60w lamp at a distance of about 10 cm for 
20 minutes and composite was applied as done in previous trials. 

A poor primary bond but better 
than the one with LC opaque 

Applying composite with the use of VITA modelling liquid and a plastic 
spatula. 

Very poor primary bond 

Roughing surface 
before sintering 

Shot-blasting bonding 
surface (50µm 
alumina) with a fine 
mesh hold against it 
and sintered as done 
before. 

Applying composite after firing a rough layer of effect bonder, using 
modelling liquid and plastic spatula. 

Stronger primary mechanical 
bond was initiated. 

Universal primer 
(Monobond plus) 

Zirconia bonding surface was shot-blasted with 50µm alumina and a layer of primer was applied 
using a disposable brush and left for 10 minutes before building composite layer.  

Strongest primary mechanical 
bond was initiated. 
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2.5 Biaxial Flexural Strength: 

Mimicking the conditions that a restorative material is subjected to in the 

human mouth in order to examine restoration behaviour is difficult to achieve 

and as such there is no method used in vitro that can fulfil all of the necessary 

requirements (Anusavice et al., 2007). 

The BFS is an evaluation that combines three measurements (tensile, 

compressive and shear stresses) at the same time. When testing ceramics 

such evaluation is preferred with these brittle materials (Anusavice and 

Phillips, 2003). 

BFS testing is advantageous over the three-point test, which is not preferable 

due imperfection of results caused by defects in sample edges and therefore, 

shaping samples as discs can reduce disparity in results (Wagner and Chu, 

1996). Such evaluation can be achieved by applying load using a ball shaped 

indenter on disc samples supported by a rounded metallic ring (Johnson et al., 

2000). The max strength (load at fracture N) recorded in the machine in used 

in an equation to work out the biaxial flexural strength BFS in MPa. Different 

equations were found for calculating the BFS of single layered discs, some 

include the Poisson’s ratio of the material (Pagniano et al., 2005) and some do 

not (Piddock et al., 1986). 

 

For the monolayer samples, BFS was calculated according to the following 

Equation A (Piddock et al., 1986) 

 

 

Equation A 

 

 

 

 

 

! 

"max =
P
h2
[0.606loge (a /h) +1.13]
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However, for bi-layered or multi-layered samples other methods for 

calculating BFS have been used by different researchers. These differ to the 

single layer equation by involving the elastic modulus and Poisson’s ratio.  

(Hsueh and Kelly, 2009) in a paper titled: ”Simple solutions of multilayered 

discs subjected to biaxial moment loading” used Equation B for bi-layered 

samples: 

 
Equation B 

With the value of M and v equals respectively: 

 

 

 

 

 

Where: E= elastic modulus, v= Poisson’s ratio, P= fracture load, t1= thickness of 

bottom surface, t2= thickness of top surface, a=radius of ring support, c= 

radius of piston and R= radius of sample.  

 

From Hsueh and Kelly equation B, an equation was derived to calculate the 

BFS for single layered disc such as that:  
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Using equation C to calculate BFS for monolayers gave irregular results to the 

known BFS of tested materials. This gave the reason to look for different bi-

layed BFS equations.  

 

A further equation was used to calculate BFS for Bi-layered by Hsueh et al., 

2006 in their paper titled: Analyses of multilayered dental ceramics subjected 

to biaxial flexure tests. In this paper they requested to replace the radius of 

the piston value with one third of sample thickness when using ball on ring 

method, which was not mentioned in the previous article and led to the 

assumption to piston on ring configurations.  The BFS equations for bi-layered 

structures are: 
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No definitive method, so calculations using each equation to compare with 

real world testing would be ideal. This thesis will test both bi-layered BFS 

equations on different laminate disc samples.   
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2.6 Occlusal Fracture Resistance “Crunch the Crown” test 

 One way of testing dental restorations is to use a universal testing machine to 

evaluate their fracture resistance. Since the crown shape is irregular and 

variable, and the dimension and materials likewise, this may affect the results 

compared with other regular shaped specimens (Casson et al., 2001). 

This testing method is under discussion between researchers as to whether it 

is a useful tool to test brittle ceramic’s performance and how relevant it is to a 

crowns behaviour in the mouth (Isgro et al., 2011). Consideration must be 

given to the argument that a materials strength data does not necessarily 

reflect crown irregular structures behaviour (Kelly, 1995). Also the restoration 

strength may be affected because of variables such as the thickness of veneer 

and coping, cement and underlying abutment (Scherrer and de Rijk, 1992). 

Several researchers have studied the forces of mastication inside the mouth 

and tried recording it. Such force varies largely depending on gender and age, 

but all agree that the molar region has a higher bite force than the incisal area 

(Tinschert et al., 2001). 

Different configurations have been described by different researchers; such 

as using a ball indenter rather than vertical bar or changing the material that 

the crowns are mounted to. Examples are extracted teeth, resin, metals or 

dies made of gypsum.  

A recommendation by Körber and Ludwig was that any restoration in molar 

area should be able to sustain an occlusal load of about 500N (Körber and 

Ludwig, 1983).  

Therefore when evaluating crowns in-vitro, it was thought that a posterior 

metal-free restorations should withstand an occlusal force of at least 1000N, 

with the assumption that the mastication forces in the moist oral environment 

may weaken the restoration up to half its known fracture resistance force 

(Mehl et al., 2010). 

Table 14 below summarises results of fracture resistance from different 

studies and materials.  
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Table 4: Results of crown fracture resistance done by others using different materials.  

Author Type of crown Type of die n= 
Fracture 

force N 
SD 

In-ceram Co/Cr-alloy 6 964.3 - 

IPS Empress layered Co/Cr-alloy 6 750.6 - 
(Probster, 

1992) 
Metal-ceramic Co/Cr-alloy 6 1494.1 - 

IPS Empress Resin die 10 2180 480 

In-Ceram Resin die 10 2145.6 354 
(Neiva et al., 

1998) 
Procera AllCeram Resin die 10 1904 369 

VITA Mark II Resin die 10 1272 109 (Zahran et al., 

2008) In-Ceram YZ Resin die 10 1459 492 

Procera AllCeram 

Non 

precious 

metal alloy 

10 1954 211 

(Al-Makramani 

et al., 2009) 

In-Ceram 

Non 

precious 

metal alloy 

10 2042 200 

(Burke, 1999) 
Leucite-reinforced 

ceramic 

Natural 

tooth 
10 880 284 
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2.7 Finite Element Analysis: 

Finite Element Analysis FEA, work can be simply explained as: the ability to 

calculate the stress distribution in virtually complicated frameworks (Hsu et 

al., 2009). The use of computer software to design the proposed geometry 

can save time and materials and quickly explain the failure that occurs on test 

samples.   

The FEA was firstly used to overcome manufacture drawbacks in the field on 

aviation more than 50 years ago and since than it was used in most industries 

to optimise their production (Geng et al., 2001). 

 

In dentistry, FEA has gained popularity as it helps in understanding how teeth 

react with different restoration designs and materials in a non-damaging or 

time consuming way (Ausiello et al., 2002) (Thompson et al., 2011).  It also 

contributes in overcoming the ethical problems of testing materials intra-

orally and the cost of such experiments (Magne, 2007). Early attempts to 

analyse the stress in dental restorations was by using different techniques on 

actual physical models, which resulted in insufficient results (Yettram et al., 

1976). 

Using a computer, a mathematical model is designed then a virtual load is 

applied to analyse the stress created.  One of the common software packages 

used in dental research is ANSYS (ANSYS Inc., PA, USA) (DeHoff and 

Anusavice, 2004). 
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3 Summary of the literature review: 

The advances in dental materials have led to the all-ceramic restoration being 

considered a desirable method in restoring teeth replacing the conventional 

PFM restorations, with various materials and fabrication methods to choose 

from.  

 

Zirconia based restorations are usually veneered with feldspathic porcelain 

benefiting from the outstanding aesthetic results and acceptable bond 

between veneer and core. Possible chipping of veneer and wear of the 

opposing teeth remain of concern. More tooth reduction to restore broken 

crowns can cause remaining tooth to break of or even be extracted. 

 

Composites are widely used in dental clinics as filling material replacing parts 

of fractured teeth but rarely used as definitive full coverage crowns, especially 

in the posterior region, due to the lack of strength. Composite restorations 

have the benefit that fractures may be repaired intra-orally with the same 

material, avoiding the need of restoration removal or tooth preparation.  

 

The introduction of universal primers shortened the steps for bonding 

composite to zirconia and saved the time as well. Most literature found was 

about bonding cement copings bonding and not much found about composite 

as a veneer of a metal-free restoration.  

 

Till now, no single in-vitro test was found that might imitate conditions inside 

the human mouth, but other in-vitro tests can be carried out for such 

restorative materials. Another non-destructive method is Finite Element 

Analysis which can be used to analyse the stress on different materials with 

different geometry designs using computer software.  
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4 Aims and Objectives: 

The aim of this research is to overcome some of the drawbacks in all-ceramic 

zirconia based and composite restorations by proposing a restoration made of 

zirconia core and veneered with in-lab light cured composite.  

Such restoration benefits: 

! The zirconia biocompatible aesthetic strong substructure. 

! The aesthetic, easy to handle and intra-oral repairable composite. 

! Better wear characteristics. 

And the objectives are: 

! Explore literature for possible methods to bond composite to zirconia 

and apply it in-vitro on discs specimens.  

! Compare the strength of feldspathic ceramic, zirconia and composite 

materials solely and as laminates after bonding ceramic and composite 

to zirconia. 

! Within the composite-zirconia laminates:  

a. Compare different zirconia surface modification in the bond to 

composite. 

b. Use different types of composite (flowable and packable) for 

bonding to zirconia.  

! Create crown samples using the best method found to bond composite 

to zirconia in previous disc samples to bond the veneer to coping. 

Zirconia core will be milled out a pre-sintered block using CAD/CAM 

and manually build the outer veneer surface using a light cure paste 

composite. The crowns will be cemented to stone models and 

subjected to load to fracture with a ball indenter using a universal 

machine (n=10). 

! Analyse the stress on previous different sample shapes and material. 

Virtual samples and Finite Element Analysis FEA will be carried out using 

computer software called ANSYS (ANSYS, USA), where the virtual 

samples are designed and stress within them is analysed. 



 47 

5 Methods:  

5.1 Biaxial Flexural Strength and Fracture Resistance of disc 

samples: 

Groups of 10 specimens of single and double layered discs were fabricated to 

a dimension of 12mm diameter and 1mm thick disc.  

Firstly, each of zirconia, composite and felspathic ceramic discs will be tested 

alone. Further disc samples were produced as laminates of zirconia veneered 

with feldpathic porcelain, and zirconia veneered with light cured composite. A 

summary of the materials used can be found in Table 5. 

The first assessment was the Fracture Resistance (N) and the Biaxial Flexural 

Strength (MPa) of a disc samples (n=10) for each group, single and laminates 

ones.   

The samples were tested using a Lloyd LRX universal testing machine (Figure 

10) to record the maximum load that the disc could withstand before 

fracturing. This data was used to calculate the biaxial flexural strength BFS. 

The disc samples were fractured by applying load using the ball on ring 

technique at a cross-head speed of 1 mm/min (Figure 9). For bi-layer samples, 

the veneer faced the ball and zirconia layer rested on the ring.  

The load (N), the specimens could withstand before fracturing, was recorded 

using the universal machine along with other measurements such as the 

sample deflection in mm. Using the recorded fracture load the BFS (MPa) was 

determined using equations for monolayer (Equation A) and bi-layered 

samples (Equation B and Equation C).   In bi-layered samples, the veneering 

material is facing upwards when tested, as it is the surface subjected to outer 

affects in dental restoration functioning inside mouth. 
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Table 5: Main materials used in the Biaxial Flexural Strength and Fracture Resistance tests.  

Type Brand name Description 

Zirconia 
VITA In-Ceram® 

YZ CUBES for 
CEREC® 

zirconium dioxide (ZrO2), yttrium oxide 
(Y2O3) 5%, 

hafnium oxide (HfO2) < 3%, aluminium oxide 
(Al2O3) 

and silicon dioxide (SiO2) <1% (weight 
percentage) 

Composite VITA VMLC  
UDMA, TEGMA, Silica, primary paricle (40-
50nm) 

Composite 3M ESPE Sinfony 

HEMA and 10% to 30% (octahydro-4,7-
methano-1H-indenediyl) 
bis(methylene)diacrylate), strontium-
aluminium borosilicate glass, silicon oxide, 
silane and photoinitiators.  

Ceramic 
VITABLOCS® 

Mark II for 
CEREC® 

Mixture of feldspathic crystalline 

particles embedded in a glassy matrix 

Ceramic 
VITAVM9 veneering 
material 

High-fusing, fine structure feldspathic 
ceramic for veneering zirconia substrates 
benifeting a CTE similar to YZ ceramic. 

Primer Monobond® Plus 
Alcohol solution of: 3-methacryloxyprophyl-
trimethoxysilane, phosphoric acid 
methacrylate and sulphide methacrylate.  
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Figure 9: Ball shaped indenter repositioned on zirconia disc sample.  

 
 
 

 
Figure 10: Lloyd LRX universal testing machine. 
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5.1.1 Fabrication of specimens: 

All prepared samples were 1.0mm thick (excluding two groups in zirconia, 

0.5mm and 0.5mm primed) and 12.0mm diameter round discs for all materials 

single and veneered ones. Beginning with single layered discs the fabrication 

process carried out in dental laboratory is mentioned in detail, followed by the 

veneered discs.    

Mono-layered Disc Samples: 

 

Zirconia, ceramic and composite, were evaluated individually as shown in 

(Figure 11). 

Composite: 

• VITA VM LC (LC): 

10 discs of LC were prepared using a template made from a translucent plastic 

plate 1.0mm thick. The plate was drilled using a 12.0mm diameter-drilling bur 

and a vent created using a thin cutting disc to allow excess composite to 

escape. The composite (Base dentine, VITA VM LC) was placed in the drilled 

hole out of the syringe packing and covered with a polythene sheet (Isofolan 

Scheu) before gently pressing on top by hand using a flat piece of glass (Figure 

12). Polymerisation was carried out using a halogen light-curing unit 
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Figure 11: Mono-layered disc samples tested groups. 
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(coltolux75, Coltène Whaledent Group, Switzerland) (Figure 13) and initially 

light cured for 1 minute and repeated again after being removed out of the 

plastic mould. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Preparing composite samples using glass to press them before light curing. 

Figure 13: Halogen light curing unit. 
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• 3M Sinfony (Sin): 

The flowable composite 3M ESPE Sinfony Indirect lab composite, was 

prepared using a silicone mould of a 1.0mm thick discs and 12.0mm in 

diameter (Figure 14). The composite is shaped in the moulds and the top 

surface is light cured for four minutes followed by light curing under vacuum 

for a further four minutes (program 4) using Visio™ Beta Vario Light Unit 

(Vacuum polymerization for light-cured composite, USA) (Figure 15). The 

same program was repeated for the other side and a final light curing for all 

samples was carried on for 1 minute and vacuumed and light cured for 14 

minutes (program 1). Samples are finished using SiC paper (P400 grit) under 

water. 

 

 

 
Figure 14: Filling composite on top zirconia disc in the silicon mould. 
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Figure 15: Visio™ Beta Vario Light Unit 

Ceramic: 

VITA mark II (Mk II) block for CEREC (12 ! 14 ! 18 mm) was drilled using a 12.0 

mm diameter core drill to produce a 12.0 mm cylindrical block to be sliced 

afterwards acquiring disc specimens. A diamond blade 127mm ! 0.4 mm 

(Buehler diamond wafering blade, USA) was used for cutting in a precision 

diamond saw (Leco VC-50) under water-cooling to produce the 12.0mm ! 

1.0mm discs (10 samples).  

 
 

Figure 16: VITA Mark II cerec block and sample disc. 
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Zirconia: 

All zirconia samples were produced from CEREC blocks (VITA In-ceram 

CAD/CAM blocks)(YZ) but with different thickness and surface finishing.  

Group 1.  Zirconia 1.0mm:  

VITA In-Ceram YZ CEREC blocks were sliced using a 127mm ! 0.4mm diamond 

blade (Buehler diamond wafering blade, USA) in a precision diamond saw 

(Leco VC-50) under water-cooling to a 1.2mm thick squared slice. Using a fine 

diamond bur at low speed, the square slices were rounded with the assistance 

of a metal template disc to a diameter of 15mm.  The metal template was 

waxed, invested and casted. The zirconia discs were sintered in tube furnace 

at 1530°c with a heating rate of 10°c per minute for two hours before cooling 

down in the same rate to room temperature. The shrinkage of the samples 

caused by the sintering (approximately 20%) resulted in the final sample 

thickness of 1.0mm and diameter of 12mm.  

This group of unmodified sintered zirconia was to be compared with other 

groups of monolayer ceramic and composites. 

 

 
Figure 17: Tube furnace with closed ends used for sintering zirconia samples. 
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Figure 18: Zirconia sample stages from the CAD/CAM block. 

Group 2:  Zirconia 0.5mm were produced using the same method but with a 

pre-sintered thickness of 0.7mm to result after sintering in a 0.5mm thick 

12mm diameter zirconia disc. At first, different trials were done to achieve the 

correct diameter and thickness after calculating the 20% shrinkage 

mentioned in manufacturer manual.              

Using this group, a comparison will be made between these discs and the 

affect of adding another 0.5mm top layer of either ceramic or composite.  

 
Figure 19: 10 samples of zirconia 0.5mm discs. 
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Two other zirconia samples were prepared with different surface treatments 

prior and after heat treatment.  

Group 3: Pre-sintered roughened zirconia: These samples were produced 

with mechanical retention on the surface prior to sintering. The retention 

was achieved by shot-blasting the pre-sintered zirconia discs through a 

fine plastic mesh using 50µm Alumina. The dimensions after sintering were 

1.0mm thick and 12 mm diameter disc. Retentive features are shaped as a 

square of 0.5mm length (Figure 19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 19: Creating the mechanical retention by shot-blasting the pre-sintered 
zirconia through the plastic mesh (top) and 2x-magnified surface of the pre-

sintered roughened zirconia (bottom).  
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Group 4: Primed zirconia: Sintered 0.5 mm zirconia discs were lightly shot 

blasted for 5 seconds using 50µm Al2O3 particles under 35bar pressure 

and 10mm distance between nozzle and sample. The discs were rinsed 

with water and dried with oil free air. Finally a layer of primer 

(Monobond® plus) was applied on the bonding surface using a disposable 

brush and left to set for at 10 minutes. 

 

 
Figure 20: Applying the primer on the 0.5mm zirconia disc. 
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5.1.2 Bi-layered Disc Samples: 

 

 

 

 

 

Zirconia/Ceramic laminates: 

The zirconia samples were veneered using a feldspathic porcelain, (VITA VM9) 

which has a thermal expansion coefficient that matches that of the zirconia. 

The sintered zirconia discs first had a layer of VITA VM9 effect bonder 

(powder & liquid) sintered to the surface before the veneering ceramic was 

built to full thickness. Base dentine was layered on with the disc in a silicon 

mould to aid shaping the dentine layer. After dentine firing at 910ºC in a 

vacuum furnace (VITA VACUMAT 40 T), the veneer was finally polished using 

silicone carbide paper P600 grit to a final thickness of 1.0mm. 

 
Figure 22: Ceramic (powder/liquid) used to veneer zirconia samples. 

Figure 21: Bi-layered disc samples tested groups 

Control group 

Veneers 



 59 

 

Zirconia/Composite laminates: 

The composite was bonded to the zirconia using a universal primer 

Monobond® plus (Ivoclar Vivadent AG). 

Three groups were fabricated using same composite to test the difference in 

bond strength as a result of differing surface finishes of zirconia.  

Groups compared were:  

a. Primer + mechanical retention (shot blasted). 

b. Mechanical retention only (on pre-sintered zirconia). 

c. Primer + mechanical retention (on pre-sintered zirconia and shot 

blasted after sintering). 

A further group was produced using flowable composite (3M Sinfony). 

 

VITA VM LC: This composite was used in fabricating the three 

zirconia/composite laminates a, b and c mentioned above.  

A total of 10 samples for each of the three groups were prepared as follows: 

For groups a and c, zirconia surface was slightly shot blasted after sintering 

with 50µm Alumina particles and rinsed with water before left to dry. Then a 

thin layer of primer was applied on the zirconia-bonding surface and left for 10 

minutes to set up. 

In group b, the zirconia base was prepared as done previously in: pre-sintered 

roughened zirconia in 5.1.1.3 Zirconia. For all three groups, the opaque layer is 

established after mixing the powder and liquid (1:1 ratio) and light cured for 1 

minute. The composite dentine was shaped on top of the opaque layer and 

gently pressed with a flat piece of glass and light cured for 2 minutes. The final 

thickness of the laminate disc is finished to 1.0mm using a 400-grit silicon 

grinding paper (Buehler). 

 

3M Sinfony: This composite is relatively flowable compared to the first 

composite so an idea of a better interlocking with shot-blasted zirconia 

surface is taken in mind. After shot blasting and cleaning zirconia discs, primer 

is brushed and left for 10 minutes to set. Composite opaque was applied on 
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the zirconia surface and light cured using 3M visio beta vario for 7 minutes 

(program 2). Then samples are placed in the mould with the opaque surface 

facing outwards for the dentine to be applied and shaped on top of it. Program 

1 is chosen for final polymerizing.  
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5.1.3 Results: 

Monolayer groups: 

Fracture resistance of single layer (1.0mm thick) groups is shown in (Figure 

23) below, with a highest result recorded for zirconia core material.  

A thinner zirconia 0.5mm showed fractured in an average load of about 128N.   

 

 
Figure 23: Max strength (N) that single layered 1.0mm thick specimens withstands before fracturing. 

 

Table 5 shows the BFS of all tested monolayer specimens with the mean and 

standard deviation for each group.  

Zirconia demonstrated a high biaxial flexural strength of 1011.2 and 1005.6MPa 

in specimens of 1.0mm and 0.5mm thickness respectively with a standard 

deviation of 173.9 and 93.7 respectively.  

 
 
 
 
 
 
 
 
 
Table 6: BFS results of all single layer groups (MPa) calculated using the first single layer Equation A. 
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Ceramic Composite Zirconia 
No. 

(1.0mm) 
LC 

(1.0mm) 
Sinfony 
(1.0mm) 

(1.0mm) 
P.RS 

(1.0mm) 
(0.5mm) 

Primed 
(0.5mm) 

1 194.0 112.4 189.6 1085.9 804.1 1317.5 1115.7 
2 156.9 106.1 162.9 905.1 790.2 969.9 1240.5 
3 185.4 125.8 182.1 1190.0 880.1 908.6 960.8 
4 174.7 116.8 180.8 1032.9 1047.3 995.0 1117.6 
5 172.4 113.6 156.5 1013.0 938.1 1134.6 1404.7 
6 187.8 116.0 169.9 578.4 1012.6 979.5 1404.1 
7 174.4 97.3 183.0 1010.8 809.9 701.4 1030.8 
8 182.9 103.9 199.3 1028.1 864.0 1266.7 1144.4 
9 171.0 139.9 186.3 1098.2 909.0 857.1 805.4 
10 185.1 105.0 178.1 1169.9 1011.9 925.9 1155.0 

Mean 178.5 113.7 178.9 1011.2 906.7 1005.6 1137.9 
STDEV 10.7 12.2 12.7 173.9 93.7 186.9 184.7 

 
 

 
Figure 24: BFS (MPa) of monolayer groups of zirconia (YZ), ceramic (Mark II) and composite (Sinfony 

and LC). 

The pre-sintered mechanical retention group showed lower BFS than first two 

groups at 906.7MPa, whereas the 0.5mm shot blasted and primed discs 

exhibited a BFS of 1137.9MPa. 
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Figure 25: BFS of 1.0mm thick YZ discs of two different groups 

 
Figure 26: BFS of 0.5mm thick YZ discs of two different groups 

 
Monolayer specimens of Vita Mark II were produced from such blocks 

showing an average BFS of 178.5MPa for the ten ceramic discs as shown in 

(Table 6) and (Figure 24). 

Two indirect light cure composites were tested, VITA VMLC and 3M Sinfony. 

The first group showed an average BFS of 113.7MPa and 178.9MPa for the 

second composite group for a 1.mm thick specimens as shown in Table 6. 
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Bi-layered groups: 

Table 7 shows the Fracture Resistance of all veneered (bi-layered) discs. 

Zirconia/ceramic group was used as a control group as this is used in dental 

practice. VITA VM9 (feldspahtic porcelain for veneering zirconia) was bonded 

to zirconia and these laminate discs fractured at an average load of about 

377N. 

Table 7: Fracture resistance of all veneered 1.0mm thick discs groups in (N). 

No. Ceramic+zirconia Composite+zirconia 

Control group LC  
Veneer 

VM9 
Sin 

Primer 
Mechanical 

+Primer 
Mechanical 

1 424 269 238 134 175.8 
2 442 282.5 210.9 234 158.3 
3 407.8 289.6 229.5 243.8 148.8 
4 380.6 110.5 240.3 272.7 175.6 
5 367 205.5 299 232.7 210 
6 384 227 249 190 114 
7 297.6 241.5 257 193.8 131.7 
8 344.6 243 200 169.5 209 
9 395.5 199.5 251 152 148 
10 332.9 187 253 243.6 141.5 

Mean 377.6 225.5 242.7 206.6 161 
STDEV 43.6 53 27 45 31 

 
 

Three groups of a zirconia veneered with composite with different 

modifications were tested as a start. Slightly shot-blasted with Al2O3 and 

primed zirconia (chosen best method) for bonding composite group exhibit 

an average fracture resistance of 242.7N. The other two had the zirconia 

roughened prior to sintering and one of them combined all the pre-sintered 

roughening, shot blasting after sintering and primed. The mean load at 

fracture was around 161N and 206.6N respectively. With the pre-sintering 

roughened zirconia/composite samples, veneers were separated from 

zirconia in most samples almost completely.  
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Figure 27: Zirconia/composite (YZ/LC) broken specimen. The bond was established by shot blasting 
and using universal primer, and as seen that both layers are still bonded after applying the occlusal 

load.  

 
Figure 28: Zirconia/composite (YZ/LC) broken specimen. The bond was purely mechanically and was 

enhanced by the grooves created prior sintering zirconia, and as seen that layers almost separated 
completely after applying the occlusal load.  

Group 2 was veneered with 3M Sinfony in-lab light cure composite using 

primer to promote bonding to zirconia disc. This group showed a fracture 

resistance of about 225.5N, as seen in Table 7.  

The chart below reveals the average load fracturing specimens (1.0mm) of bi-

layered groups and monolayer groups.   
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Figure 29: Load at fracture N for monolayer groups 1.0mm (YZ,Mk II, Sin and LC) and bi-layered 

groups (0.5mm each) of groups YZ/VM9, YZ/Sin and YZLC. 

 

The depth of the sample deflection caused by the ball indenter in mm is 

shown in Table 8 and Table 9. The average deflection and standard deviation 

of ten specimens was calculated for each group. All samples in table 7 were 

the same thicknesses of 1.0mm for mono and bi-layered samples. The greatest 

deflection before fracture was demonstrated by the YZ/LC system. In table 8, 

the YZ/LC laminates bonded with primer also showed the highest deflection 

value. 

Table 8: Average deflection (mm) 

 YZ Mk II Sin LC YZ/VM9 YZ/Sin YZ/LC 
Mean mm 0.69 0.26 0.41 0.48 0.61 0.51 1.0 

STD 0.12 0.09 0.07 0.05 0.18 0.04 0.04 
 
 

Table 9: deflection in mm for YZ/LC with different surface treatment. 

YZ/LC  
Primer Mechanical+Primer Mechanical 

Mean mm 1.0 0.98 0.46 
STD 0.04 0.05 0.11 
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Two different equations (equation B and D) were used in calculating the 

biaxial flexural strength for the bi-layered samples. Table below show the BFS 

for zirconia/ceramic (YZ/VM9) laminates and zirconia/composite (YZ/LC) 

laminates groups. Table 10 displays the fracture resistance and the BFS of 

each layer in both zirconia laminate systems (ceramic and composite 

veneered) using equation B.  

 
Table 10: BFS results for bi-layered groups using equation B by (Hsueh and Kelly, 2009). 

Sample 
Load to fracture 

N 
Bottom layer (core) 

MPa 
Top layer (veneer) 

MPa 
YZ/LC 242 791±88 45±5 

YZ/VM9 377 548±63 263±30 
 

 

Using equation D gave the BFS of each layer of both zirconias laminates system 

(ceramic and composite veneered) as shown in (Table 11). 

 

Table 11: BFS results for bi-layered groups using equation B by (Hsueh et al., 2006). 

Sample 
Load to fracture 

N 
Bottom layer (core) 

MPa 
Top layer (veneer) 

MPa 
YZ/LC 242 1682±187 35±3 

YZ/VM9 377 1128±130 326±37 
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5.1.4 Discussion: 

All samples were produced as accurately as manually possible. Difficulties in 

producing zirconia discs was resolved using a cast metal disc as a guideline to 

the diameter required. 

 

The results for the single layered discs, demonstrate the difference between 

the materials. Zirconia showed highest biaxial flexural strength among ceramic 

and composite.   

Comparable results were found of zirconia, ceramic and composite 

performance after bonded together as laminate discs. In the bi-layered 

groups, zirconia is considered as the substructure of the disc (bottom layer) 

and the composite or ceramic is the veneer (top layer). Ceramic (feldspathic 

porcelain) is already used in dental laboratory to veneer zirconia-based all-

ceramic restorations and some brands are commercially produced for this 

purpose. And because of that it has been tested along side with zirconia-

composite specimens to be compared with. 

A feldspathic industrially sintered and pressed ceramic blocks (VITA Mark II) 

will give the optimum performance compared to liquid/powder lab base ones. 

 

After the initial bonding trials, the method chosen for the composite zirconia 

laminates was to use a universal primer after shot-blasting zirconia surface to 

enhance the micromechanical boning.  This resulted in a good bond as 

demonstrated in (Figure 27), were the fractured discs pieces showed the 

composite still bonded to zirconia after failure. The technique is supported by 

(Kern et al., 2009), (Yun et al., 2010), (Yang et al., 2010) and (Attia et al., 2011). 

These samples were tested in dry conditions and were not exposed to thermal 

or moisture variables.  

 

Some literature; (Kosmac et al., 1999), (Zhang et al., 2004) and (Phark et al., 

2009) have criticised any mechanical roughening of a sintered zirconia surface 

by either shot-blasting of using rotary bur. They stated that such surface 

modification might lead to damaging ceramic surface and hence drop in its 
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fracture resistance. The manufactures do not recommend any surface 

modification of zirconia after sintering although if necessary a diamond bur in 

low speed and wet condition can be used (VITA manual). 

 

(Guazzato et al., 2005), contradicts this showing that mechanical surface 

modification of zirconia may weaken it. This study found that higher strength 

was observed after shot blasting and grinding zirconia surface. Also supported 

by (Vagkopoulou et al., 2009) and (Qeblawi et al., 2010).  

Two groups were prepared to test if there is any effect on fracture resistance 

and biaxial flexural strength of zirconia discs when shot-blasted with 50µm 

Alumina particles and primer added. Two groups of 0.5mm zirconia discs 

were tested. First group was treated, as composite will be bonded to. The 

sintered disc was shot-blasted using 50µm Al2O3 for a short time, rinsed with 

water and dried before applying the primer using a disposable brush and left 

for at least 10 minutes before testing them. And second was tested after 

sintering with no surface modification. The primed group showed a higher BFS 

of 1137MPa compared to 1005MPa, but with no significant difference according 

to one-way ANOVA test (see Appendix).   

From the previous literature (Mirmohammadi et al., 2010), an idea was to try 

to create retentive surface on the pre-sintered zirconia. This study compared 

samples produced with and without mechanical retentive surfaces created 

before and after sintering on the fracture and strength of the laminate. The 

purpose of the roughened surface is to increase the bonding surface and to 

promote mechanical interlock between core and veneer materials. The first 

step was to compare the zirconia samples with mechanical retention created 

pre-sintering with non-modified zirconia to give an idea on the influence on 

the core material before comparing the laminates.  The results showed that 

the modified zirconia (all 1.0mm thick) showed a lower BFS of 906MPa 

compared to 1011MPa, which is a 10% percentage decrease.  
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The effect of the surface modifications was compared in the 

zirconia/composite laminates with three different zirconia surface 

modifications:  

• Primer after shot blasted with 50µm Al2O3. 

• Mechanical retention only (on pre-sintered zirconia). 

• Primer + mechanical retention (on pre-sintered zirconia and shot 

blasted after sintering). 

 

The lowest result was recorded with samples not primed (mechanical 

retention on pre-sintered zirconia) that fractured at a load of 160N and BFS of 

as shown in Table 7. 

Groups using primer showed an average fracture resistance of about 240N 

and about 200N when combined with mechanical retention. The weakest 

group (mechanical only) showed major delamination between composite and 

zirconia layer after applying load unlike the other two (with primer) were 

some samples showed minor delamination.  

This roughening to the pre-sintered zirconia did improve the bonding. In both 

single layer and in the laminates, it weakened the zirconia disc. This is most 

probably due to the decrease in thickness and the modified shape, giving rise 

to crack initiation sites. 

 

For veneering materials, two in-lab light cured composites were used and 

characterised to: Flowable composite (Sin) and packable composite (LC) and 

they showed average BFS of about 178MPa and 113MPa respectively. Ceramic 

was tested (VITA mark II) and showed a BFS around 170MPa and both ceramic 

and composite showed expected lower results than the zirconia with a BFS of 

approximately 1000MPa (Figure 24). These results were calculated using 

Equation A (Piddock et al., 1986). All Biaxial Flexural Strength equations were 

discussed previously in page 38. 

 

 



 71 

 

 

When comparing fracture resistance, the load at fracture was recorded and 

different groups can be compared without any computation. The results are 

shown in (Figure 30). Considering a 1mm thick disc, comparison between 

discs differing only in the material made of, the whole sample could be from a 

single material or laminates out of 0.5mm thick materials bonded to form 1mm 

thick disc.  

As expected the 1mm zirconia showed a high fracture resistance (497N) to the 

ball indenter when supported by a ring, and the 1.0mm ceramic and composite 

showed significantly lower strengths of 85N and 56N, respectively. These 

results come in sequence with the zirconia, ceramic and composite different 

stiffness, which accordingly are 210, 65 and 4.5Gpa. Replacing the top 0.5mm 

zirconia with ceramic gives a 1.0mm thick laminate that fractures at an average 

load of around 370N, and when replaced with a much less stiff 0.5 thick 

composite the result was around 240N when using VITA VM LC and 225N with 

3M Sinfony (elastic modulus of 3.1Gpa).   

 

As for the BFS of bi-layered groups, the results when using Equation B (Hsueh 

and Kelly, 2009) demonstrated an anomaly since the fracture resistance of the 

zirconia/ceramic (377N) laminate was higher than the zirconia-composite 

(242N), which contradicted the BFS calculated using this equation (548MPa 

and 791MPa respectively). 

However when using the single layer equation (Equation C), the one derived 

from (Hsueh and Kelly, 2009 et al, Equation B), for calculating BFS for single 

layer groups gave different results than the ones acquired from Equation A.  

497N 85N 56N 

0.5mm 

125N 377N 242N 

Zirconia Ceramic Composite 

Figure 30: Illustration showing the max fracture load N between different specimens of different materials and 
thicknesses. 

Max fracture load (n=10) 
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For instance, it showed a BFS in MPa for the 1mm thick samples of zirconia, 

ceramic and composite of 490, 79, 55, respectively, which are almost half of 

their known BFS. Such finding may give a reason to doubt the outcome of 

equations B and C. 

 

Equation D was the other bi-layered BFS equation (Hsueh et al., 2006) used in 

this study. Zirconia/ceramic laminate showed some how reasonable result 

(1128MPa) with the bottom layer BFS equals the known zirconia strength. On 

the other hand the zirconia/composite laminates showed a much higher BFS 

(1682MPa) than all other single and layered samples.  
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5.2 Occlusal Fracture Resistance “Crunch The Crown Test”: 

Producing zirconia crowns veneered with composite and testing the fracture 

resistance was carried out to assess the force that the completed restoration 

can withstand before failure. This differs to the disc test due to the irregular 

shape of the crown, which give rise to a test of the bond and the material 

properly after processing into the crown form.  

5.2.1 Materials and methods: 

Crowns were fabricated using a CAD/CAM system to produce the zirconia 

substructure and a silicone matrix was used to produce the veneer overlay, in 

order to make the crowns as consistent as possible.  The crowns were tested 

using a universal testing machine (Lloyd LRX universal testing machine) having 

a ball indenter pressing occlusally in the middle of crown (fossa) at a 

crosshead speed of 1 mm/min using a 2000N load cell and 100.6% sensitivity. 

The first fracture was recorded either by watching, hearing or machine sensor 

before recording final load at crown failure by testing machine.  

 
Table 12: Main materials used in the fracture resistance test. 

Type Brand name Composition 

Zirconia 
VITA In-Ceram® 
YZ CUBES for 
CEREC® 

Zirconium dioxide (ZrO2), yttrium oxide 
(Y2O3) 5%, Hafnium oxide (HfO2) < 3%, 
aluminium oxide (Al2O3) and silicon dioxide 
(SiO2) <1% (weight percentage) 

Composite VITA VMLC 
UDMA, TEGMA, Silica, primary paricle (40-
50 nm) 

Die stone 
Dentona esthetic-
base gold 

Type IV extra-hard dental stone. 

Primer Monobond® Plus 
Alcohol solution of: 3-methacryloxyprophyl-
trimethoxysilane, phosphoric acid 
methacrylate and sulphide methacrylate. 

Cement 
Pavavia 21, Kuraray 
Co. Japan 

Catalyst Paste and Universal Paste. 

More information available in Appendix. 
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An ideal preparation and a silicone mould were used to produce stone casts 

for the test from a master model.  All test models were produced by pouring 

dental stone after mixing with water in a vacuum mixer.  

VITA In-Ceram® YZ blocks were used to produce the coping using CEREC® 

CAD/CAM system. To gain an ideal design of substructure, the prepared tooth 

along with neighbouring teeth were scanned using the CEREC scanner. The 

CEREC software was used to produce a cutback substructure design 

according to the scanned data of the opposing dentition. After the milling 

process had finished (Figure 31), the sample was removed from the milling 

chamber and the substructure separated using a round cutting disc in a 

micromotor. The sprue was evened with the rest using diamond bur in 

medium speed. The coping in this stage is over sized and brittle, so cautious 

handling is important to avoid cracks.  The Zirconia sample was then heat 

treated (sintering) using a furnace (Figure 17) with temperature rising 10ºC 

per minute until it reached 1530ºC were it was held for two hours before 

cooling to room temperature at the same rate. After this treatment, the 

sample had reduced in size to the desired measurement, approximately 20%.  

 
Figure 31: Zirconia coping inside CEREC milling chamber. 

The veneering composite was added by using universal primer after lightly 

shot-blasting the sintered zirconia surface with 50µm particle size Al2O3 under 

40psi with a distance of about 5mm. The coping was cleaned by rinsing with 
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water and left to dry. A thin layer of the universal primer (Monobond® plus) is 

applied on the outer surface of coping using a disposable brush (Figure 32) 

and left for 10 minute to set. 

 
Figure 32: Adding a layer of universal primer using a disposable brush. 

 
Figure 33: Opaque layer on zirconia coping. 

An opaque composite was first added to create the initial bond, which is a 

powder, and liquid mixed in 1:1 ratio. A layer of composite opaque is painted on 

top of the primer surface (Figure 33) and light cured using hand held curing 

unit for one minute on each side (five sides). 
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After that the dentine layer is applied on top of the opaque, which is a paste 

like materials comes in a black plastic tubes to prevent it from being 

composed to light. Using a silicon impression and a small spatula, the outer 

contact surface of the crown is shaped (Figure 34). Drops of modelling liquid 

are used to ease up shaping the tooth by simply wetting the spatula. After the 

desired shape is built-up comes the polymerising step by light curing each side 

for one minute. After composite sets, adding and removing composite is 

possible by grinding using a carbide bur in a medium speed micro-motor. In 

most cases, a second layer of dentine is added and light cured. Finally finishing 

and polishing of the crown is done using a rubber silicon wheel and brush 

wheel with polishing gel resulting in a finely polished tooth (Figure 35). 

 

 
Figure 34: Shaping outer surface before polymerising the composite using spatula. 



 77 

 
Figure 35: Completed crown after polishing. 

 
The crowns were cemented on stone models using Panavia resin cement 

(Kuraray Co. Japan) after the fitting surface was shot blasted with Al2O3 and 

rinsed with water and dried afterwards. The cement is a two-paste system 

that is mixed and packed inside fitting surface before fixing on prepared tooth. 

The excess mix was cleaned around the margin and an OXYGUARD gel was 

applied on it.  

Tested groups: 

Twenty zirconia/composite crowns were produced differing only in the 

thickness of the zirconia:  

Group 1: Zirconia 1.0mm and 0.5mm of composite (Figure 36). 

Group 2: Zirconia 0.7mm and 0.5mm composite (Figure 37). 

All composite veneers were built the minimum thickness indicated by the 

manufacturer for posterior applications: 0.5mm according to manufacturer 

manual (VITAVM®LC Working Instructions) to optimise the strength of the 

restoration.  
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Figure 36: 1st group 1.0mm zirconia and 0.5mm composite. 

 

 
Figure 37: 2nd group 0.7mm zirconia and 0.5mm composite. 
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5.2.2 Results: 

 
The test was carried out and the failure was recorded in two levels: first 

fracture and load at restoration failure.  

Most samples demonstrated first fracture within the composite veneer, with 

only some samples fracturing completely at once.  

In the first group 1.0mm zirconia, the 10 crowns samples showed an average 

load at fracture of 1470N with an average of first fracture recorded in 6 

crowns of about 1100N (Table 13).  

Similar results were found in the second group with the 0.7mm zirconia 

coping, an average load at fracture of 1460N. First fracture was recorded for 

all ten samples with an average of around 1000N (Table 14).  

The test in all twenty crowns specimens was carried to major fracture and few 

minor veneer chipping of were observed. All samples demonstrated the 

composite veneer was still bonded to zirconia coping (Figure 40 and Figure 41) 

with the exception of one (Figure 42).  

 
 

 
Figure 38: Tested crowns of group 1 with 1.0mm thick zirconia coping. 
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Figure 39: Tested crowns of group 2 with 0.7mm thick zirconia coping 

 
 

 

 
Figure 40: Ball indentor positioned in middle of occlusal surface of crown just after fracture. 
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Figure 41: Fracture line in crown with veneer and coping still bonded to each other. 

 
 
 

 
Figure 42: Fractured crown with major delamination between composite veneer and zirconia coping. 
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Table 13: Fracture loads N for first group tested 1.5mm thick crowns (1.0 zirconia and 0.5 composite). 

1st Group 
No. 1st recorded 

fracture 
Failure  

1 700 1562.8 
2 1300 1577.7 
3 1900 2101.7 
4 1100 1642.4 
5 - 1858.4 
6 1000 907.44 
7 1100 1098.4 
8 - 1325.3 
9 - 1225 
10 - 1474.2 

Avg 1183.3 1477.3 
STD 402 355 

 

 

Table 14: Fracture loads N for second group tested 1.3mm thick crowns (0.7 zirconia and 0.5 
composite). 

2nd Group 
No. 1st recorded 

fracture 
Failure  

1 1000 1167.5 
2 1400 1572 
3 800 1152.2 
4 740 975.11 
5 500 1639 
6 659 1355 
7 1124 2037 
8 1113 1387.2 
9 1300 1371 
10 1500 1997.4 

Avg 1013.6 1465.3 
STD 333.3 350.5 
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5.2.3 Discussion:  

The so called “Crunch The Crown test” configurations and fabrication process 

differ between one research and another; Variations include using ball or a bar 

to apply load (Casson et al., 2001). With the differences effecting the occlusal 

fracture resistance results of dental restorations and may explain the big 

variation between different investigations (Al-Makramani et al., 2009). It has 

been stated that the structure and thickness of coping and veneer may affect 

the fracture resistance of crowns along with mechanical properties of 

coping/veneer material (Sundh and Sjogren, 2004).   

In this study, standardising samples was carried out as much as possible in the 

hand-built outer veneer since the coping is machined using CAD/CAM. All 

specimens were fabricated as a clinically expected full contour crown in 

diameter, shape and cemented to the die as described by (Kelly, 1999). The 

idealised crown was measured in all sides and recorded with special attention 

to middle fossa of occlusal surface were ball is placed. 

The results gained out of such in-lab based test cannot be directly applied into 

oral cavity since there are differences in magnitude, direction and repetition 

of load. Similarly there are differences in the supporting structure and the 

environment, for example this was a dry condition test. 

The results were divided into first fracture, second fracture and finally load 

during complete restoration failure. First and second fractures were recorded 

visually and testing machine sensor (Kelly, 1999). However bite force inside 

human mouth and precisely in posterior region differ but average bite force of 

500N is considered depending on various research (Tinschert et al., 2001). 

Research by (Casson et al., 2001) tested the fracture load of 10 human 

extracted teeth mounted in die stone loaded using a bar in cross speed of 1 

mm/min and recorded an average of 754N with a standard deviation of 150. 

 

As for the test conditions, the composite zirconia based crowns showed an 

average resistance higher than the average human bite. In most samples, a 

minor chipping of the composite veneer occurred which was recorded as the 

first and second fracture and the lowest recorded first fracture was 500N in 
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one the second group crowns. In contrast, the highest first fracture was 

recorded in one of the first group crowns with 1900N. The rest of the crowns 

just fractured at once through the veneer and coping. 

 

A similar study by (Zahran et al., 2008) tested the fracture resistance of all-

ceramic crown made out of yttrium-stabilized zirconium oxide and feldspathic 

ceramic gave comparable results to composite zirconia based crowns. 

Zahran’s 0.7mm zirconia copings veneered with a 0.8mm VM9 feldspathic 

porcelain (n=10) gave an average fracture resistance to a ball indenter in a 

crosshead speed of 1 mm/min of about 1460N with a standard deviation of 

around 490. The other all-ceramic (n=10) samples were made of VITA mark II 

with a thickness of 1.5mm in middle fossa showed an average of about 1270N 

and SD of around 100.  
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5.3 Finite Element Analysis:  

In this research, the use of stress analysis was to give an idea of what 

happened in the different tested samples and how the different materials in 

our laminated samples reacted as one structure.  

5.3.1 Materials and methods: 

ANSYS 11.0 (ANSYS, Inc. USA) programme was used to design the specimens 

and analyse the stress on them. The geometry was built and a virtual load was 

applied to the structure and the results are shown in pictured colouring 

different parts of the tested structure. 

Discs: 

For the disc samples, the first step for building a virtual specimen was to 

determine the structure properties such as the materials’ elastic modulus and 

Poisson’s ratio, by choosing elastic than isotropic from the sliding menu on the 

left of screen. Also from preferences, structural and h+method was chosen 

and then by pressing element edit: solid and choose: 8 node 185 for the 3D 

structure. 

The disc sample was then drawn manually by creating the key points and 

connecting them and verifying the areas before rotating the shape 180º to 

creating a half disc 3D shape. The supporting ring was taken into mind hence 

the disc surface was divided into three invisible sections in order to select one 

of them as the place of support before applying the load (Figure 43). After 

building section, the structure is then meshed (Figure 43). After meshing 

comes the solution step, which starts by defining the load, apply, structure, 

displacement on area (bottom ring supported area) and clicking on al DOF.   

The load was created along the Y-axis in the shape of circle of approximately 

4mm diameter as the actual test using the ball indenter.  All the drawing was 

according to the samples, supporting ring and ball indenter diameters. The 

material details: elastic modulus and Poisson’s ratio were used in the 

calculation.  
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Figure 43: Screen shot of disc bottom layer shape after meshing and the supported area by ring is 

shown in purple. 

The same steps are done with bi-layered discs taking in account the diameter 

differences. Coming to the solution stage, defining the load by determining the 

displacement place and type, which in this case the lower supported by ring 

surface was chosen in all DOF. The load was applied on the designed geometry 

vertically along the Y-axis (occlusally) simulating the fracture test. The force is 

then set on the Y-axis in a minus value in Newton’s and then solve by choosing 

current LS and a message will appear when the solution is done. There are 

various ways to look at the result of the force applied on the structure. In this 

study, a 1st principal stress was chosen from general post icon and a colourful 

picture of the compressed structure is shown with clear deformation caused 

by force. Different colours represent the amount of compression (blue) and 

stresses (red) in different parts of the structure with a colours guide below 

showing the values in MPa.  
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Figure 44: Screen shot after meshing the two layers: layer 1: zirconia in light green and layer 2: 

composite in purple. 

Crowns: 

To design the crown, a screen shot was taken of the zirconia coping design the 

CEREC design software and edited with a mesh to create a Y and Z axis 

(Figure 45). Depending on the actual crown thicknesses (1.5mm), the outer 

veneer is schematically drawn (0.5mm).  Manually, different points were 

recorded for the die, cement layer, zirconia coping and composite veneer and 

Y and Z-axis coordination for each point was recorded in excel files. The 

coordinates were transferred to a note document after typing in: prep7:/. 

Saving the numbers in such form allowed easy transfer of the shape into the 

ANSYS program. Doing so creates the key point in the shape of a quarter of a 

crown as in the hard copy taken CEREC screen. The points were connected to 

form 4 areas of die, cement, coping and veneer. 

The quarter of crown is then rotated 180º to create 3D half of a crown. The 

properties of each material were typed in and assigned with its area (Figure 

46). The load was defined by choosing displacement on all DOF of the base of 

structure, and than determining the force. The force was applied occlusally in 

an approximately 4mm diameter circle along the Y-axis. The drawn circle 

created a number of scattered nodes, which the applied force is equally 

divided between. Two amounts of loads were chosen, 500N as an average of 

different natural bite force (see Discussion: 5.2.3) and 1400N as the average 
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fracture recorded with crunch-the-crown test done in-lab. For displaying the 

results, 1st principal stress was chosen to point the stress distribution in the 

structure after applying virtual load to it with a colour guide below showing 

stresses values in MPa. 

 

 
Figure 45: Cross section of the coping design taken from CEREC after adding meshing, and the half 

that was used for numbering boxed in red. 

 
Figure 46: Screen shot showing the structure different layers after assigning them and meshing. 



 89 

 
Figure 47: Circle of where the force is applied on the scattered nodes. 

 
Figure 48: Screen shot showing the force applied occlusally (upper arrows) and where the structure 

base is fixed (lower arrows).  

 
Table 15: Properties of materials used in FEA. 

Material Elastic modulus 
(Gpa) 

Poisson’s ratio Reference 

Zirconia 210 0.32 VITA manual 
Composite 4.5 0.28 VITA manual 
Ceramic 65 0.20 VITA manual 
Die (dentine) 18.6 0.32 (Zarone et al., 2006) 
Cement  18.6 0.28 (Zarone et al., 2006) 
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5.3.2 Results: 

After applying the load to the designed structure, the result can be seen in 

different ways depending on the type of material and the user’s investigation. 

For this study, our attention was to observe the stress generated in our bench 

tested laminate samples and compare them. The 1st stress principal was 

chosen from general post than nodal solution drop list, to reveal compressive 

stress and tensile stress, which is one of the causes for ceramic restoration 

failure (Mollers et al., 2012).  A coloured deformed structure is then shown 

with a colour guide below the highest and lowest stress generated in the 3D 

sample after the a virtual force.  

3D virtual disc: 

Starting with three single layered discs, the virtually load was determined as 

the average fracture load of each material group in the in-lab tests. All samples 

were supported as the ring supporting area and the vertical load was divided 

equally on selected nodes occlusally. The loads were 50N, 80N and 500N on 

discs of composite, ceramic and zirconia respectively. All three single layered 

discs showed a similar stress distribution having the maximum tensile stress 

(in red) in the centre of the bottom of the disc and some part of top surface 

opposing the supporting ring. The compressive stress (in blue) where 

concentrated in the bottom surface in contact with the supporting ring. In a 

composite of a 4.5Gpa elastic modulus, the maximum tensile stress was 

around 16MPa. With a stiffer ceramic (E modulus of 65Gpa) the maximum 

tensile stress was 25MPa under a higher load. The stiff core material (zirconia, 

E-210Gpa) showed higher tensile stress of around 160MPa under 500N load.  
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Figure 49: Tensile and compressive stresses (MPa) in single and Bi layered discs under 250N load. 

 

The FEA showed a stress distribution in the bi-layered discs similar to the 

single ones for the base layer (zirconia) but with a higher tensile stress in the 

top surface when veneered with composite rather than veneered with the 

stiffer ceramic veneer. The ceramic veneer seems to gain higher tensile stress 

than the composite one in the range of 50-90MPa against steady compressive 

stress level of around 17MPa for composite veneer. All the previous stresses 

were with different loads, and when comparing them when using same loads 

of 250N the results were higher tensile stress in zirconia base layer when 

veneered with composite (220MPa) against less stress zirconia (170MPa) 

when veneered with ceramic. 
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Figure 50: 1st principal stress distribution of composite disc 
(top, bottom and cross section view). 

Figure 52: 1st principal stress distribution of ceramic disc 
(top, bottom and cross section view). 

Figure 51: 1st principal stress distribution of zirconia disc 
(top, bottom and cross section view). 
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Figure 53: 1st principal stress distribution of zirconia/composite disc (top, bottom and 
cross section view). 

Figure 54: 1st principal stress distribution of zirconia/ceramic disc (top, bottom and 
cross section view). 
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Figure 56: Cross sectional view of 1st principal stress (MPa) distribution of 
zirconia/composite crown and sphere after virtual load of 500N 

Figure 55: Cross sectional view of 1st principal stress (MPa) distribution of zirconia/ceramic 
crown and sphere after virtual load of 500N 
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3D virtual crown: 

The 1st principal stress distribution on crown and sphere was created after 

applying an imitated load of 500N occlusally in the middle fossa evenly 

distributed on the selected nodes. With crown veneered with a 4.5Gpa stiff 

composite, the highest tension point was shown under the loading area in the 

bottom of the zirconia coping in the range of 70MPa, and peaks around 35MPa 

in the composite veneer. Also in the base of the composite veneer the highest 

compression point was created around loading region of about -40MPa and 

the cement layer settling in between the tensile and compressive stresses 

peak. 

 

Under the same circumstances, the same virtual load was created on stiffer 

(65Gpa) ceramic veneered crown resulting in a high tension in the bottom of 

zirconia around 56MPa and compressive stress peaking at about -13MPa in the 

bottom of the veneer and in the cement layer. The highest tension in the 

ceramic veneer was recorded around the loading region of about 30MPa. The 

compressive stress appears more in the ceramic veneered crown than 

composite one in dentine, cement, zirconia and ceramic. But the tension in 

zirconia is higher when covered with composite rather than a stiffer ceramic.  

The load was also applied on the zirconia coping alone which showed the 

same stress distribution tensile stress zone at the base (87MPa) as when 

veneered with composite or ceramic but differing in a compression peaking in 

the top of coping at about -32MPa. 
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Figure 57: Zirconia coping 1st stress distribution under 500N load. 

Another batch was done but with an occlusal load of 1400N as the average 

fracture resistance of the in-lab test (crunch-the-crown). Almost the same 

stress distribution was found but with a higher figures as expected. Between 

the three samples the highest tensile stress was recorded in zirconia un-

veneered coping, after that comes the composite veneered and the least 

stressed was the ceramic veneered crown. As for compressive stresses, the 

highest record was with the crown veneered with composite after that comes 

the un-veneered zirconia and the least compression was with the ceramic 

veneered crown.  

In both structures (disc and crown) where the zirconia was veneered with 

composite, the tension was concentrated in the bottom of zirconia layer. This 

stress was found in almost in the same region with both zirconia/ceramic disc 

and crown but less stressed.  In table 15, the stresses (tensile or compressive) 

at the base of each top and bottom layers are summarised for disc and 

crowns of both composite and ceramic veneered zirconias. 

Table 16: The stress (MPa) in the base of each layer in disc and crown samples. 

Zirconia/Ceramic Zirconia/Composite  
Zirconia Ceramic Zirconia Composite 

Disc 250N 170 -19 219 -17 
Crown 500N 56 -13 74 -41 
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Figure 58: Zirconia-Composite crown under 1400N load Figure 59: Zirconia-Ceramic crown under 1400N load  

Figure 60: Zirconia coping under 1400N load 
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5.3.3 Discussion:  

Finite element analysis was used to simulate the in-lab tests done on our 

tested restorative materials in different shapes to display the stress points 

after applying load on those structures. The virtual schematic specimens do 

not necessarily reflect the actual samples due to the fabrication process 

which goes through different stages mainly by hand (Mollers et al., 2011). In 

this FEA study, it was assumed that a good bond between the different layers 

in the virtual bi-layered discs and veneered crowns, regardless any faults in 

actual model. Checking the stress zones is essential in most application fields 

since the stress, even if below failure point, are considered as a major cause of 

crack propagation hence system failure (Zarone et al., 2006). 

The FEA for single layered discs showed a 1st stress principle correspondingly 

distributed having the highest tension in the base of disc (Figure 50, Figure 51 

and Figure 52). With the bi-layered structure, the base zirconia layer showed a 

similar tension in the base when veneered with ceramic and composite and 

even more on top surface with composite veneer (Figure 54 and Figure 53). 

This observation matches what other studies revealed that: low stiff veneer 

passes the load to the core material and as a consequence a higher stress to 

the core is generated (Mollers et al., 2011) (Ausiello et al., 2002). 

It is believed that restoration failure is caused by high tensile stress areas that 

a crack is then initiated from and grows to the outer veneer (Mollers et al., 

2011). The same observation was founded in zirconia based laminate discs and 

crowns having the highest tension point in the bottom of zirconia base layers.  

Different effects on the zirconia layer have been observed between composite 

and ceramic veneers. When veneered with composite, higher tensile stress is 

generated at the base of zirconia in both disc and crown samples under the 

same virtual occlusal load. With ceramic veneer, stress was distributed in 

different levels having the highest point under where the load was applied. 

Such stress was not found in composite layers almost steady stress was 

shown.  
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Relatively similar to the bi-layered discs, the virtual veneered crown showed a 

higher stress to zirconia core when veneered with lower modulus composite 

than ceramic veneered ones.  
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6 General Discussion:  

Many studies discuss the idea of improving the strength of high strength all-

ceramic restorations or their veneering material (Schmitter et al., 2012) since 

fracturing while functioning inside the mouth is the biggest challenge for such 

systems. Researchers focused on the veneer chipping off, and how the CTE 

dissimilarity may contribute in system failure and as a consequence, some 

studies suggested to work on improving the veneer of all-ceramic restoration 

since the zirconia has such a high level of strength (Coelho et al., 2009). 

Fractured ceramic veneer can be repaired intra-orally using composite with 

the risk of strength reduction and colour mismatch of the veneer (Hammond, 

2009).  Different ways were investigated in order to enhance all-ceramic 

restoration by using a strong material for the framework such as partially 

stabilized zirconium oxide blocks with yttrium oxide (zirconia for short), but 

such methods do not rule out veneer’s contribute in restoration fracture 

resistance, as found by (Guazzato et al., 2004b). In other words, zirconia 

frameworks benefits the high strength performance but it has to be taken in 

mind that the veneering material does affect the strength of whole 

restoration. Veneering zirconia substrate is a key point for achieving an 

aesthetic restoration since it is considered as an opaque material (Zhang et 

al., 2012) and abrasive to the opposing teeth. Ceramic veneers have approved 

their aesthetics, but the nature of such materials that they cannot withstand 

high tensile stresses which eventually cause ceramic to fracture (Casson et al., 

2001). Ceramic veneer chipping rate were higher with zirconia substrate than 

recorded with metal frameworks (Sailer et al., 2006). 

Some have tried veneering zirconia copings with CAD/CAM milled lithium 

disilicate ceramic (360MPa), which did improve the restoration’s fracture 

resistance compared to conventional ceramic (100MPa) veneered zirconia 

(Schmitter et al., 2012). It was concluded that using of less stiff restorative 

material, such as the low modulus composite, generate stress in tooth and 

restoration substrate (Ausiello et al., 2002) . However, (Zarone et al., 2006) 
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have concluded that using materials such as composite with a lower elasticity, 

closer to that of the natural tooth, may lower stresses generated between 

layers and therefore simulate natural teeth reaction.    

 

The problem is complex because the clinical indications for restorations differ 

and therefore some questions can arise such as: 

Is the currently used all-ceramic restoration not strong enough to with stand 

bite and chewing forces? Aren’t some of such systems contraindicated in 

strong bite zones to avoid damaging opposing natural teeth? In other words, 

crown should be weaker than the tooth in order to act as ‘fuse box’ that will 

break before the tooth.  

Or is their major drawback the veneer chipping and delaminating off the outer 

surface?  

Do we really require all the strength in a restoration? Or perhaps it is over 

toughened and over engineered to what’s needed to function inside a human 

bite, especially with people with a strong bite. Or maybe all the previous 

questions depends on the case and application conditions?  

 

Different tests were used in this study: Fracture Resistance (discs and 

crowns), BFS and FEA. Testing samples in-lab in load-to-failure methods does 

not reflect the actual failure mechanism that occurs to the restoration intra-

orally. This failure is determined by the stress zones that are highly influenced 

by the dissimilarity in geometry and modulus of elasticity (Thompson et al., 

2011). For natural teeth and crowns, such tests are performed in order to test 

the fracture resistance of those samples but contrast in methods between 

different studies is considered when comparing results (Casson et al., 2001). 

Finally, The FEA is considered a useful tool in dental research helping in 

predicting what mechanical application on restoration and teeth that 

contribute in improving materials properties and restoration designs (Ausiello 

et al., 2002). 
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In all performed in-lab and computerised virtual evaluations, the findings 

should be taken with regard to the differences between the tests controlled 

environment and the restoration in action inside human’s mouth. 

 

 The bonding between zirconia coping and composite veneer appears 

adequate in these tests but requires further investigation that will simulate a 

wider range in conditions mimicking oral cavity and chewing forces.  

In the literature, some concluded that mechanically modifying zirconia surface 

may cause weakness of material and some assumed the opposite. Specifically 

talking about shot-blasting the sintered zirconia with alumina particles 

(Qeblawi et al., 2010). Two groups of 0.5mm zirconia were tested, one shot-

blasted with Al2O3 50µ particles and the other unmodified, showed a slightly 

higher BFS of the shot-blasted group. Regardless of it improving the strength 

or not, it does appear to weaken the zirconia. Under the dry test conditions, 

using a universal primer on shot-blasted zirconia surface showed an 

observable bond between fractured parts of discs with the composite still 

bonded to zirconia.    

Testing the three single materials showed an expected fracture resistance and 

BFS results as for veneer (composite and ceramic) and core (zirconia) 

materials. When veneering the zirconia substrate, in this case disc specimens, 

the YZ/VM9 (1.0mm) showed a higher fracture resistance than ceramic alone 

and un-veneered 0.5mm zirconia. The less stiff composite veneer resulted in 

lower fracture resistance with YZ/LC and YZ/Sin laminates compared to 

ceramic veneered ones. This is in accordance with the veneers stiffness. 

Bearing in mind that the resin veneers had an elastic modulus of 4.5 and 

3.1Gpa, it did in fact raise the fracture resistance of a 0.5mm zirconia from 

about 120N to 240N when veneered with 0.5mm composite.  

 

The BFS results of bi-layered discs, two different equations were used and 

both showed different results. In both calculations zirconia/composite 

laminates showed a higher BFS than zirconia/ceramic ones even though the 

fracture load was higher with ceramic veneered ones. This is in accordance 
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with findings of FEA of bi-layered laminates, where the 1st principal stress 

distribution showed a high tensile and compressive stresses generated in 

zirconia when veneered with composite rather than ceramic with same virtual 

occlusal load. Similar findings of the higher tension restoration substrate were 

found in other studies that used low stiff veneering materials to veneer metal 

substructures (Mollers et al., 2011). The FEA of crowns showed the highest 

tensile stress zone being in the base of zirconia coping under the area of load 

in both ceramic and composite veneered samples. This may explains what 

researchers observed previously that the crack begins from the base of the 

bottom layer and continues to the top surface (Guazzato et al., 2004a).  
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7 Conclusion: 

 

In general, zirconia/composite laminate disc specimens showed comparable 

results to currently used zirconia/ceramic laminates and certainly superior 

strength than full composite structure, however: 

Veneering zirconia with composite may cause high tension in the zirconia 

compared to a zirconia veneered with ceramic (from FEA).  

Using universal primer did enhance bonding between composite and zirconia 

when applied after shot blasting sintered zirconia surface using 50µ Al2O3 

particles. The zirconia and composite showed high bond even after fracture 

and breaking into small segments.  

In this study, it was possible to produce full crown using the same methods 

used in dental laboratory practice made out of a zirconia coping and veneered 

using light-cured composite. Such crowns did withstand fracture loads close 

to that experienced with different types of fixed restorations as found in 

various studies.  

For the FEA with the assumption of a good bond between zirconia and veneer, 

virtual discs and crowns showed high tensile stress located at the base of 

zirconia coping under the area of load with ceramic veneered samples and 

even higher with composite veneered samples. This can explain fracture 

initiating from the base layer of the specimens, as observed by other 

researchers as well.  
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8 Further Work: 

 

• More tests need to be carried out to assess substructure and veneer 

bonding reliability under different conditions.  

• Other tests mimicking oral environment should be carried out on 

zirconia/composite crowns before applying it in clinics. 

• Produce three unit fixed bridge using same methods and subject them 

to different assessments.  

• Use different toughened copings with other types of composites 

veneers in the same manner and compare it with current results.   

• The current used equations to calculate Biaxial Flexural Strength for bi-

layered structures needs to be explored more in the case were lower 

elastic material is the top layer facing the load. 
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10 Appendix: 

  

Appendix table 1: Fracture resistance of 1.0mm zirconia discs (n=10) and other parameters. 

Ref 
Speed 

(mm/min) 
Maximum 
Load (gf) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(N/m) 

Load at 
Break (N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 53788.98286 0.736526169 0.097922812 1753074.612 527.6699219 0.736526169 0.097922812 

2 1 45856.97974 0.791299679 0.069253798 1756948.906 449.8569712 0.791299679 0.069253798 

3 1 61649.83914 0.701209784 0.122743633 2086404.368 604.7849219 0.701209784 0.122743633 

4 1 53514.98378 0.596173081 0.090465183 1756678.856 524.9819909 0.596173081 0.090465183 

5 1 51322.90282 0.763491125 0.083780863 2061483.654 503.4776766 0.763491125 0.083780863 

6 1 28002.66287 0.497803112 0.029057252 1740150.911 274.7061228 0.497803112 0.029057252 

7 1 48942.6958 0.862917204 0.082574825 1827757.17 480.1278457 0.862917204 0.082574825 

8 1 57281.26394 0.818323371 0.099963755 1890044.505 522.5402499 0.846653433 0.114096956 

9 1 54398.54984 0.711636604 0.095263251 1911504.763 533.649774 0.711636604 0.095263251 

10 1 56645.46171 0.511938815 0.097023042 1830795.742 555.6919793 0.511938815 0.097023042 

 
 

Appendix table 2: Fracture resistance of 1.0mm zirconia discs with pre-sinter roughening (n=10) and 
other parameters. 

Ref Speed 
(mm/min) 

Maximum 
Load (gf) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(N/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 37176.24614 0.820255073 0.056197282 2061301.599 364.6989746 0.820255073 0.056197282 

2 1 38260.15742 0.973965095 0.058234384 1712369.497 375.3321443 0.973965095 0.058234384 

3 1 43594.75444 0.998711234 0.073190759 1684226.859 427.6645411 0.998711234 0.073190759 

4 1 49557.40454 0.877023294 0.087986505 1617134.338 486.1581386 0.877023294 0.087986505 

5 1 44390.98171 0.809854877 0.071538322 1619104.615 435.4755306 0.809854877 0.071538322 

6 1 51304.25229 0.860003997 0.094712594 1758958.54 503.294715 0.860003997 0.094712594 

7 1 37442.09202 0.941312476 0.052892268 1589881.152 367.3069227 0.941312476 0.052892268 

8 1 42798.24743 0.619986786 0.066930293 1839318.468 419.8508073 0.619986786 0.066930293 

9 1 45028.83499 0.846762654 0.067900681 1854094.584 441.7328712 0.846762654 0.067900681 

10 1 48995.27462 0.716733176 0.077597932 1809081.043 480.6436441 0.716733176 0.077597932 

 
 

Appendix table 3: Fracture resistance of 1.0mm ceramic (Mark II) discs (n=10) and other parameters. 

Ref Speed 
(mm/min) 

Maximum 
Load (gf) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(N/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 8353.139571 0.438343737 0.013899056 1663839.499 81.94429919 0.438343737 0.013899056 

2 1 8493.327058 0.335406623 0.010821061 3022320.108 83.31953844 0.335406623 0.010821061 

3 1 8374.822857 0.201196478 0.006842915 2236850.79 82.15701223 0.201196478 0.006842915 

4 1 8673.752924 0.235503473 0.007933141 1627534.347 96.88733567 0.207993928 0.007907529 

5 1 7969.822626 0.153019098 0.005267402 1603705.924 78.18395996 0.153019098 0.005267402 

6 1 9091.64382 0.300694272 0.009914654 3535697.049 89.18902588 0.300694272 0.009914654 

7 1 9035.519632 0.196676306 0.00698469 1493792.404 88.63844759 0.196676306 0.00698469 

8 1 8652.67599 0.230802593 0.007747054 1615885.658 84.88275146 0.230802593 0.007747054 

9 1 9876.38488 0.207993928 0.007907529 1861761.272 96.88733567 0.207993928 0.007907529 

10 1 8760.733237 0.379868504 0.012063756 1765851.27 85.94279306 0.379868504 0.012063756 
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Appendix table 4: Fracture resistance of 1.0mm composite (LC) discs (n=10) and other parameters. 

Ref 
Speed 

(mm/min) 
Maximum 
Load (N) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(kN/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 59.70545741 0.430709556 0.008012929 352.83379 59.70545741 0.430709556 0.008012929 

2 1 52.75304083 0.46831821 0.007117798 396.7319579 52.75304083 0.46831821 0.007117798 

3 1 63.94719476 0.468070891 0.008644656 439.2880578 63.9166717 0.472186905 0.008907815 

4 1 60.67150879 0.441239099 0.007985903 356.3595679 60.67150879 0.441239099 0.007985903 

5 1 59.00524442 0.471523993 0.008227892 319.1308994 59.00524442 0.471523993 0.008227892 

6 1 47.8265085 0.576926507 0.007263013 344.0615419 47.8265085 0.576926507 0.007263013 

7 1 44.11333839 0.524656442 0.005909195 280.2272246 44.11333839 0.524656442 0.005909195 

8 1 48.25358156 0.511497983 0.006467559 291.0482718 48.25358156 0.511497983 0.006467559 

9 1 69.55023829 0.552582932 0.011768886 284.8420505 69.55023829 0.552582932 0.011768886 

10 1 54.54206593 0.44087414 0.006786648 405.1872294 54.54206593 0.44087414 0.006786648 

 
 

Appendix table 5:Fracture resistance of 1.0mm composite (Sin) discs (n=10) and other parameters. 

Ref Speed 
(mm/min) 

Maximum 
Load (N) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(kN/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 100.7133239 0.527584173 0.015859184 484.8524576 100.7133239 0.527584173 0.015859184 

2 1 79.14252285 0.430783774 0.010532076 456.4875332 79.14252285 0.430783774 0.010532076 

3 1 86.5053434 0.541632886 0.013499599 400.1751296 86.5053434 0.541632886 0.013499599 

4 1 85.86630449 0.419531488 0.013233061 368.9954149 85.86630449 0.419531488 0.013233061 

5 1 69.32794187 0.364633779 0.008485173 406.6283004 69.32794187 0.364633779 0.008485173 

6 1 80.72008399 0.360179606 0.010267893 498.4348776 80.72008399 0.360179606 0.010267893 

7 1 99.34987817 0.391740349 0.015878753 412.4692216 99.34987817 0.391740349 0.015878753 

8 1 110.522583 0.362792394 0.018265886 488.2931319 110.522583 0.362792394 0.018265886 

9 1 92.6080684 0.32716523 0.013862149 425.9914092 92.6080684 0.32716523 0.013862149 

10 1 98.78536514 0.449912133 0.014349476 475.9004182 98.78536514 0.449912133 0.014349476 

 
 

Appendix table 6: Fracture resistance of 0.5mm zirconia discs (n=10) and other parameters. 

Ref Speed 
(mm/min) 

Maximum 
Load (N) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(kN/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 174.9962053 0.556076394 0.018518523 1113.799215 174.9962053 0.556076394 0.018518523 

2 1 128.8346595 0.376787441 0.009792953 1494.928129 128.8346595 0.376787441 0.009792953 

3 1 115.9840698 0.616078159 0.01058239 1131.488515 115.9840698 0.616078159 0.01058239 

4 1 112.240502 0.684233845 0.008852866 1177.320426 112.240502 0.684233845 0.008852866 

5 1 144.8329251 0.564682572 0.012568413 1367.932177 144.8329251 0.564682572 0.012568413 

6 1 125.0432005 0.502366211 0.010536067 1143.131924 125.0432005 0.502366211 0.010536067 

7 1 93.16711324 0.512609314 0.00562961 1085.78257 93.16711324 0.512609314 0.00562961 

8 1 161.6988331 0.761194866 0.016915611 1152.893058 161.6988331 0.761194866 0.016915611 

9 1 109.4097311 0.561879817 0.008431381 1098.363936 109.4097311 0.561879817 0.008431381 

10 1 118.1850586 0.650389206 0.009208029 1433.666919 118.1850586 0.650389206 0.009208029 
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Appendix table 7: Fracture resistance of sand blasted and primed 0.5mm zirconia discs (n=10) and 
other parameters. 

Ref 
Speed 

(mm/min) 
Maximum 
Load (gf) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(N/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 192.363021 0.557391455 0.021909966 1381404.816 192.363021 0.557391455 0.021909966 

2 1 213.8759436 0.406836176 0.023805279 1146796.059 213.8759436 0.406836176 0.023805279 

3 1 137.9113061 0.382329285 0.012879695 1308966.328 137.9113061 0.382329285 0.012879695 

4 1 166.6074219 0.37035523 0.017022098 1098032.4 166.6074219 0.37035523 0.017022098 

5 1 225.4606934 0.402112352 0.026352509 1249901.715 225.4606934 0.402112352 0.026352509 

6 1 225.3651123 0.414616096 0.026684067 1178987.822 225.3651123 0.414616096 0.026684067 

7 1 159.4968475 0.370052481 0.01590661 1117891.114 159.4968475 0.370052481 0.01590661 

8 1 183.679291 0.347203919 0.020879142 986131.6147 183.679291 0.347203919 0.020879142 

9 1 138.8554688 0.32170439 0.01225586 1047448.979 138.8554688 0.32170439 0.01225586 

10 1 178.7087865 0.383851766 0.018265659 1516833.695 178.7087865 0.383851766 0.018265659 

 
 

Appendix table 8: Fracture resistance of 1.0mm YZ/VM9 laminate discs (n=10) and other parameters. 

Ref Speed 
(mm/min) 

Maximum 
Load (gf) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(N/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 43225.60376 0.747303569 0.066297098 1724188.231 424.0431729 0.747303569 0.066297098 

2 1 45142.14861 0.508122178 0.072004004 2187137.146 442.8444778 0.508122178 0.072004004 

3 1 41575.48888 1.035795561 0.063253991 1711013.569 407.855546 1.035795561 0.063253991 

4 1 38800.30764 0.633307854 0.054273312 1609972.304 380.6310179 0.633307854 0.054273312 

5 1 37415.70022 0.467389722 0.050642197 1788361.101 367.0480192 0.467389722 0.050642197 

6 1 39163.36454 0.471581875 0.05421982 1682730.997 384.1926061 0.471581875 0.05421982 

7 1 30338.0066 0.467220069 0.034823296 1677437.763 297.6158447 0.467220069 0.034823296 

8 1 35131.09217 0.469968516 0.050084197 1697240.71 344.6360142 0.469968516 0.050084197 

9 1 40321.18094 0.698930121 0.063234739 2286986.835 395.550785 0.698930121 0.063234739 

10 1 33937.21198 0.624534295 0.044939774 1694614.579 332.9240495 0.624534295 0.044939774 

 
 

Appendix table 9: Fracture resistance of 1.0mm YZ/LC laminate discs (n=10) and other parameters. 

Ref Speed 
(mm/min) 

Maximum 
Load (N) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(N/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 238.0926514 1.007585278 0.038128184 1307716.186 238.0926514 1.007585278 0.038128184 

2 1 210.9507756 0.948338322 0.031996673 1152185.956 210.9507756 0.948338322 0.031996673 

3 1 229.5322861 0.967652415 0.035073785 1094913.602 229.5322861 0.967652415 0.035073785 

4 1 240.3625993 0.982294439 0.037663084 1398091.604 240.3625993 0.982294439 0.037663084 

5 1 299.0870845 1.065839607 0.055941102 1175919.132 299.0870845 1.065839607 0.055941102 

6 1 249.0617108 0.999456359 0.040103314 1183692.127 249.0617108 0.999456359 0.040103314 

7 1 257.0673008 0.982068038 0.041034869 1174499.327 257.0673008 0.982068038 0.041034869 

8 1 200.2590637 0.98007323 0.03088501 976091.7779 200.2590637 0.98007323 0.03088501 

9 1 251.2755713 1.094685393 0.040594795 1155134.62 251.2755713 1.094685393 0.040594795 

10 1 253.3631838 1.020064264 0.041160574 1401513.522 253.3631838 1.020064264 0.041160574 
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Appendix table 10: Fracture resistance of 1.0mm YZ(roughened)/LC laminate discs (n=10) and other 
parameters. 

Ref Speed 
(mm/min) 

Maximum 
Load (N) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(N/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 161.4912495 0.964767286 0.022823961 1072845.778 134.3687358 1.008637907 0.028149829 

2 1 234.285493 1.026905271 0.04065251 1030667.208 234.285493 1.026905271 0.04065251 

3 1 243.8303295 1.065091745 0.038741853 1226280.226 243.8303295 1.065091745 0.038741853 

4 1 272.7722509 1.02419458 0.046578193 1347719.044 272.7722509 1.02419458 0.046578193 

5 1 232.768519 0.997599711 0.037382327 1210284.121 232.768519 0.997599711 0.037382327 

6 1 190.3423855 0.921593846 0.029552132 1170195.028 190.3423855 0.921593846 0.029552132 

7 1 193.8642659 1.029800972 0.028350957 1129210.399 193.8642659 1.029800972 0.028350957 

8 1 169.5363846 0.945943882 0.023712837 1254375.159 169.5363846 0.945943882 0.023712837 

9 1 152.4530087 0.895875158 0.021106986 1030065.22 152.4530087 0.895875158 0.021106986 

10 1 243.6806033 0.956682117 0.040735194 1051799.694 243.6806033 0.956682117 0.040735194 

 
 

Appendix table 11: Fracture resistance of 1.0mm YZ(roughened)/LC laminate discs (n=10) and other 
parameters, (no primer). 

Ref Speed 
(mm/min) 

Maximum 
Load (N) 

Deflection at 
Maximum 

Load (mm) 

Work to 
Maximum 
Load (J) 

Stiffness 
(N/m) 

Load at Break 
(N) 

Deflection at 
Break (mm) 

Work to Break 
(Nm) 

1 1 175.8651017 0.57978819 0.023286271 1062088.862 175.8651017 0.57978819 0.023286271 

2 1 158.3460574 0.708236498 0.018738699 1407699.952 158.3460574 0.708236498 0.018738699 

3 1 148.8162112 0.453425984 0.028070711 901639.1348 148.8162112 0.453425984 0.028070711 

4 1 175.6783481 0.413674767 0.03700663 1045264.913 175.6783481 0.413674767 0.03700663 

5 1 210.2002937 0.283203571 0.026330979 1397793.161 210.2002937 0.283203571 0.026330979 

6 1 143.8100527 0.431996947 0.014501277 2540783.89 114.1423586 0.499193999 0.020950522 

7 1 147.9193045 0.413209339 0.017808661 1006569.888 131.7354757 0.49270054 0.026443032 

8 1 209.3425527 0.4190453 0.027889773 1218615.019 209.3425527 0.4190453 0.027889773 

9 1 148.2961638 0.420118184 0.019700992 976402.2888 148.2961638 0.420118184 0.019700992 

10 1 141.5306879 0.512164705 0.01940403 996333.827 141.5306879 0.512164705 0.01940403 
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One-way ANOVA: MK2_1, LC_1, Sin_1 and YZ_1 disc groups Fracture Resistance 

(N).  

 
 
Source  DF       SS      MS       F      P 
Factor   3  1332919  444306  219.35  0.000 
Error   36    72920    2026 
Total   39  1405839 
 
S = 45.01   R-Sq = 94.81%   R-Sq(adj) = 94.38% 
 
 
                          Individual 95% CIs For Mean Based on 
                          Pooled StDev 
Level   N    Mean  StDev  --------+---------+---------+---------+- 
MK2_1  10   85.41   5.19    (-*-) 
LC_1   10   56.03   7.97  (-*-) 
Sin_1  10   90.35  12.32    (-*-) 
YZ_1   10  497.75  88.66                               (-*-) 
                          --------+---------+---------+---------+- 
                                150       300       450       600 
 
Pooled StDev = 45.01 

 
One-way ANOVA: MK2_1, LC_1, Sin_1, YZ/VM9_1, YZ/LC_1, YZ/Sin_1 and YZ 0.5-

1 disc groups Fracture Resistance (N).  

 

 
Source  DF      SS      MS       F      P 
Factor   6  796512  132752  146.04  0.000 
Error   63   57269     909 
Total   69  853781 
 
S = 30.15   R-Sq = 93.29%   R-Sq(adj) = 92.65% 
 
 
                             Individual 95% CIs For Mean Based on 
                             Pooled StDev 
Level      N    Mean  StDev  ------+---------+---------+---------+--- 
MK2_1     10   85.41   5.19     (-*) 
LC_1      10   56.03   7.97  (-*-) 
Sin_1     10   90.35  12.32     (-*-) 
YZ/VM9_1  10  377.60  43.69                                  (-*-) 
YZ/LC_1   10  242.77  27.13                    (-*-) 
YZ/Sin_1  10  225.51  53.33                   (-*) 
YZ 0.5-1  10  128.44  25.13         (-*-) 
                             ------+---------+---------+---------+--- 
                                 100       200       300       400 
 
Pooled StDev = 30.15 
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One-way ANOVA: YZ_1 and YZ-Rough-1 disc groups Fracture Resistance (N).  
  
 
Source  DF      SS     MS     F      P 
Factor   1   22803  22803  4.40  0.050 
Error   18   93289   5183 
Total   19  116093 
 
S = 71.99   R-Sq = 19.64%   R-Sq(adj) = 15.18% 
 
 
                               Individual 95% CIs For Mean Based on 
                               Pooled StDev 
Level        N    Mean  StDev  ----+---------+---------+---------+----- 
YZ_1        10  497.75  88.66                (---------*--------) 
YZ-Rough-1  10  430.22  50.05  (---------*---------) 
                               ----+---------+---------+---------+----- 
                                 400       450       500       550 
Pooled StDev = 71.99 

 
One-way ANOVA: YZ 0.5-1 and YZ 0.5 primed_1 disc groups Fracture 

Resistance (N).  

 
 
Source  DF     SS     MS      F      P 
Factor   1  14469  14469  17.20  0.001 
Error   18  15138    841 
Total   19  29606 
 
S = 29.00   R-Sq = 48.87%   R-Sq(adj) = 46.03% 
 
 
                                    Individual 95% CIs For Mean Based on 
                                    Pooled StDev 
Level             N    Mean  StDev  ------+---------+---------+---------+--- 
YZ 0.5-1         10  128.44  25.13  (------*-------) 
YZ 0.5 primed_1  10  182.23  32.41                       (-------*-------) 
                                    ------+---------+---------+---------+--- 
                                        125       150       175       200 
Pooled StDev = 29.00 
 
One-way ANOVA: YZ/VM9_1, YZ/LC_1, YZ/Sin_1 and YZ 0.5-1 disc groups 

Fracture Resistance (N).  

  
 
Source  DF      SS      MS      F      P 
Factor   3  315459  105153  68.72  0.000 
Error   36   55089    1530 
Total   39  370548 
 
S = 39.12   R-Sq = 85.13%   R-Sq(adj) = 83.89% 
 
 
                             Individual 95% CIs For Mean Based on 
                             Pooled StDev 
Level      N    Mean  StDev  -------+---------+---------+---------+-- 
YZ/VM9_1  10  377.60  43.69                                 (--*--) 
YZ/LC_1   10  242.77  27.13                (--*--) 
YZ/Sin_1  10  225.51  53.33              (--*--) 
YZ 0.5-1  10  128.44  25.13  (--*--) 
                             -------+---------+---------+---------+-- 
                                  160       240       320       400 
 
Pooled StDev = 39.12 
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One-way ANOVA: YZ/VM9_1, YZ/LC_1 and YZ/Sin_1 disc groups Fracture 

Resistance (N).  
 
Source  DF      SS     MS      F      P 
Factor   2  138695  69347  37.90  0.000 
Error   27   49405   1830 
Total   29  188100 
 
S = 42.78   R-Sq = 73.73%   R-Sq(adj) = 71.79% 
 
 
                             Individual 95% CIs For Mean Based on 
                             Pooled StDev 
Level      N    Mean  StDev  -------+---------+---------+---------+-- 
YZ/VM9_1  10  377.60  43.69                           (----*----) 
YZ/LC_1   10  242.77  27.13     (---*----) 
YZ/Sin_1  10  225.51  53.33  (----*---) 
                             -------+---------+---------+---------+-- 
                                  240       300       360       420 
Pooled StDev = 42.78 

 
One-way ANOVA: Sin_1 and YZ/Sin_1 disc groups Fracture Resistance (N).   
 
Source  DF      SS     MS      F      P 
Factor   1   91336  91336  60.97  0.000 
Error   18   26965   1498 
Total   19  118300 
 
S = 38.70   R-Sq = 77.21%   R-Sq(adj) = 75.94% 
 
 
                             Individual 95% CIs For Mean Based on 
                             Pooled StDev 
Level      N    Mean  StDev  -------+---------+---------+---------+-- 
Sin_1     10   90.35  12.32  (----*----) 
YZ/Sin_1  10  225.51  53.33                             (----*----) 
                             -------+---------+---------+---------+-- 
                                  100       150       200       250 
 
Pooled StDev = 38.70 
 
One-way ANOVA: LC_1 and YZ/LC_1 disc groups Fracture Resistance (N).  
 
Source  DF      SS      MS       F      P 
Factor   1  174352  174352  436.06  0.000 
Error   18    7197     400 
Total   19  181549 
 
S = 20.00   R-Sq = 96.04%   R-Sq(adj) = 95.82% 
 
 
                            Individual 95% CIs For Mean Based on 
                            Pooled StDev 
Level     N    Mean  StDev  ---+---------+---------+---------+------ 
LC_1     10   56.03   7.97  (-*--) 
YZ/LC_1  10  242.77  27.13                                 (-*--) 
                            ---+---------+---------+---------+------ 
                              60       120       180       240 
 
Pooled StDev = 20.00 
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One-way ANOVA: MK2_1 and YZ/VM9_1 disc groups Fracture Resistance (N).   
 
Source  DF      SS      MS       F      P 
Factor   1  426862  426862  440.97  0.000 
Error   18   17424     968 
Total   19  444286 
 
S = 31.11   R-Sq = 96.08%   R-Sq(adj) = 95.86% 
 
 
                             Individual 95% CIs For Mean Based on 
                             Pooled StDev 
Level      N    Mean  StDev  ----+---------+---------+---------+----- 
MK2_1     10   85.41   5.19  (--*-) 
YZ/VM9_1  10  377.60  43.69                                (-*-) 
                             ----+---------+---------+---------+----- 
                               100       200       300       400 
 
Pooled StDev = 31.11 

 
One-way ANOVA: YZ, MK2, LC and Sin disc groups Biaxial Flexural Strength in 

MPa.   
 

 
Source  DF       SS       MS       F      P 
Factor   3  5501005  1833668  241.39  0.000 
Error   36   273469     7596 
Total   39  5774474 
 
S = 87.16   R-Sq = 95.26%   R-Sq(adj) = 94.87% 
 
 
                          Individual 95% CIs For Mean Based on 
                          Pooled StDev 
Level   N    Mean  StDev  --------+---------+---------+---------+- 
YZ     10  1011.2  173.1                                (-*-) 
MK2    10   178.5   10.7    (-*-) 
LC     10   113.7   12.2  (-*-) 
Sin    10   178.8   12.7    (-*-) 
                          --------+---------+---------+---------+- 
                                300       600       900      1200 
 
Pooled StDev = 87.2 
One-way ANOVA: YZ and YZ-Rough disc groups Biaxial Flexural Strength in 

MPa.   
 
Source  DF      SS     MS     F      P 
Factor   1   54612  54612  2.82  0.110 
Error   18  348679  19371 
Total   19  403290 
 
S = 139.2   R-Sq = 13.54%   R-Sq(adj) = 8.74% 
 
 
                             Individual 95% CIs For Mean Based on 
                             Pooled StDev 
Level      N    Mean  StDev  --------+---------+---------+---------+- 
YZ        10  1011.2  173.1               (----------*-----------) 
YZ-Rough  10   906.7   93.7  (----------*-----------) 
                             --------+---------+---------+---------+- 
                                   880       960      1040      1120 
 
Pooled StDev = 139.2 
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One-way ANOVA: YZ 0.5 and YZ 0.5 primed disc groups Biaxial Flexural 

Strength in MPa.   
  
 
Source  DF      SS     MS     F      P 
Factor   1   87490  87490  2.53  0.129 
Error   18  621717  34540 
Total   19  709207 
 
S = 185.8   R-Sq = 12.34%   R-Sq(adj) = 7.47% 
 
 
                                  Individual 95% CIs For Mean Based on 
                                  Pooled StDev 
Level           N    Mean  StDev  --+---------+---------+---------+------- 
YZ 0.5         10  1005.6  186.9  (------------*-----------) 
YZ 0.5 primed  10  1137.9  184.8               (------------*-----------) 
                                  --+---------+---------+---------+------- 
                                  900      1000      1100      1200 
 
Pooled StDev = 185.8 
 
One-way ANOVA: YZ, YZ-Rough, YZ 0.5 and YZ 0.5 primed disc groups Biaxial 

Flexural Strength in MPa.   
 
 
Source  DF       SS     MS     F      P 
Factor   3   269306  89769  3.33  0.030 
Error   36   970396  26955 
Total   39  1239702 
 
S = 164.2   R-Sq = 21.72%   R-Sq(adj) = 15.20% 
 
                                  Individual 95% CIs For Mean Based on 
                                  Pooled StDev 
Level           N    Mean  StDev  ---+---------+---------+---------+------ 
YZ             10  1011.2  173.1          (--------*--------) 
YZ-Rough       10   906.7   93.7  (--------*-------) 
YZ 0.5         10  1005.6  186.9          (--------*--------) 
YZ 0.5 primed  10  1137.9  184.8                     (--------*--------) 
                                  ---+---------+---------+---------+------ 
                                   840       960      1080      1200Pooled 
StDev = 164.2 
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PANAVIA 21 Paste (Catalyst Paste and Universal Paste) Principal 

ingredients: 

 
(1) Catalyst Paste 
 
• 10-Methacryloyloxydecyl dihydrogen phosphate 
 
• Hydrophobic aromatic dimethacrylate 
 
• Hydrophobic aliphatic dimethacrylate 
 
• Silanated silica filler 
 
• Colloidal silica 
 
• Catalysts 
 
(2) Universal Paste 
 
• Hydrophobic aromatic dimethacrylate 
 
• Hydrophobic aliphatic dimethacrylate 
 
• Hydrophilic aliphatic dimethacrylate 
 
• Silanated titanium oxide 
 
• Silanated barium glass filler 
 
• Catalysts 
 
• Accelerators 
 
• Pigments 
 
Source: Kuraray Europe GmbH 

 
 

 
 
 


