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Abstract

In this thesis, functional analytical methods are applied to the study of Lévy and
Feller processes on manifolds. In the case of a compact Riemannian manifold,
we prove that the Feller semigroup and generator of an isotropic Lévy process
extend to Lp, and are self-adjoint in the case p = 2. When there is a non-trivial
Brownian motion component to the process, we find that the generator has a
discrete spectrum of non-positive eigenvalues, and that the semigroup is trace-
class.
We also consider the case where the underlying manifold is a Riemannian symmet-
ric space of noncompact type. Considering first the Lévy case, we use harmonic
analysis to prove a sufficient condition for the associated convolution semigroup to
possess an L2 density, and calculate the spectrum of a self-adjoint Lévy generator.
We then move on to consider Feller processes on a symmetric space of noncompact
type. We develop a theory of pseudodifferential operators in this setting, prove
that the semigroup and generator of a Feller process are both pseudodifferential
operators in the sense we have defined, and calculate their symbols. Using the
Hille–Yosida–Ray theorem, sufficient conditions are developed for a pseudodiffer-
ential operator to have a closed extension that generates a sub-Feller process. To
demonstrate that these conditions are reasonable, we present a class of examples
for which they are satisfied.
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Introduction

The study of stochastic processes on manifolds is rich and diverse, and combines approaches
from probability, geometry and analysis. On the one hand, one may study these probabilistic
objects directly, using stochastic geometry [25, 26, 67]. On the other hand, one may apply
techniques from functional analysis to study processes via their operator semigroups and
infinitesimal generators. In this thesis, the latter approach is taken to the study of Lévy and
Feller processes on Riemannian manifolds.

Roughly speaking, Lévy processes resemble Brownian motion interspersed with random jumps
at random times. Viewed in this way, Lévy processes are comprised of a diffusion part and a
jump part. The study of diffusion processes on manifolds has so far received more attention
than the case in which processes are permitted to have jumps, although both are defined
via the theory of stochastic differential equations [42, 51]. One important example of this is
the construction of Brownian motion on a Riemannian manifold. First proposed by David
Elworthy [24], this construction transfers sample paths of an Rd-valued Brownian motion onto
a manifold via stochastic development, or “rolling without slipping” ([42] pp. 44–51). In the
more general Lévy case, Applebaum and Estrade [11] used rolling without slipping to develop
the notion of a Lévy process on a Riemannian manifold. This topic is expanded further in
Chapter 1, and some operator theoretic results are established concerning the infinitesimal
generators of these processes (§1.3–§1.5). This work has now appeared as a publication, see
[17].

When the manifold is a Lie group, the presence of a group law enables a more familiar defini-
tion of a Lévy process, as a stochastically continuous process with stationary and independent
increments (see [12, 53] or §3.1.1). This definition can be extended to Riemannian symmetric
spaces, by the identification of such a space with a homogeneous space G/K, where G is
a connected real Lie group and K is a compact subgroup [54]. A process on G/K is then
called a Lévy process if it is the projection of a Lévy process on G, under the projection map
π : G → G/K (c.f. Definition 3.1.5). Results concerning Lévy processes on Lie groups have
immediate implications for process on G/K.

A key advantage of the symmetric space setting is the presence of the Helgason–Harish-
Chandra spherical transform in this setting [33, 34, 37]. Defined as an integral transform with
respect to particular class of K-invariant function, the spherical transform may be used in
place of the Fourier transform to apply classical Fourier analytic arguments to the study of
Lévy and Feller processes on manifolds. One important example of its use in probability is
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Introduction

Gangolli’s Lévy–Khinchine formula [29], a result that expresses the spherical transform of the
law of a Lévy process in terms of a unique function, known as the Gangolli exponent of the
process. This result is a direct analogue of the classical Lévy–Khinchine formula, and much of
the theory of Lévy processes carries over. In particular, a Lévy process is uniquely determined
by its Lévy characteristics, a triple (b, a, ν), where b ∈ Rd, a = (aij) is a non-negative definite
symmetric d×d matrix, and ν is a Lévy measure on G (to be defined — see Definition 3.1.9).
The Lévy characteristics of a Lévy process also determine its infinitesimal generator (see [43]
Theorem 5.1 or Theorem 3.1.10 of this work). If the characteristics are permitted spatial
dependence, the corresponding Lévy-type operator satisfies the positive maximum principle,
and is an example of what will later be referred to as a Gangolli operator. The generators
of a large class of Feller process take this form, and for this reason Feller processes are often
considered to be spatially dependent generalisations of Lévy processes. When X = Rd, this
characterisation of Feller processes has been known for some time, and is a natural corollary
of the much-celebrated Courrège theorem [21], which gives necessary and sufficient conditions
for a densely defined linear operator to satisfy the positive maximum principle. More recently,
Applebaum and Le Ngan [15, 16] have proven a generalised Courrège theorem that applies
in symmetric spaces more generally, allowing Feller generators to be understood this way.
This work built on that of Bony, Courrège and Priouret [20], who proved a generalisation of
the Courrège theorem for manifolds, though their results are somewhat limited in that they
are stated in terms of local coordinates. In contrast, the global form found in [15, 16] for
operators satisfying the positive maximum principle is far better suited to a global harmonic
analytical approach.
A natural question to ask is when does the reverse hold. That is, given a Gangolli operator,
what conditions are sufficient for there to be a closed extension that generates a Feller pro-
cess? When the manifold is Rd, the answer to this question is known. In [45], Niels Jacob uses
the theory of pseudodifferential operators to prove sufficient conditions for a given pseudod-
ifferential operator to generate an Rd-valued sub-Feller process. In Chapter 4 of this work,
we apply similar methods to the symmetric space setting, developing a theory of pseudodif-
ferential operators on symmetric spaces of noncompact type in the process. In particular, we
prove that Gangolli operators are pseudodifferential operators in the sense defined, and use
the Hille–Yosida–Ray theorem to find sufficient conditions on the symbol for a given pseu-
dodifferential operator to extend to the generator of a sub-Feller process. This work has been
submitted for publication — see [64].
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Notation

For a locally compact Hausdorff topological space X, B(X) will denote the Borel σ-algebra
associated with X, and M(X) the space of all Borel measures on X. Let F(X) denote the
set of all functions from X → F, where F = R or C. Given f ∈ F(X), the support of f is

Supp(f) := {x ∈ X : f(x) 6= 0}.

Let B(X) denote the space of Borel measurable functions, and Bb(X) the subspace of bounded
Borel functions. Bb(X) is a Banach space with respect to the supremum norm ‖ · ‖∞, defined
by

‖f‖∞ := sup
x∈X

|f(x)| ∀f ∈ Bb(X).

We write Cb(X) for the closed subspace of Bb(X) consisting of continuous bounded function,
C0(X) for the closed subspace of Bb(X) consisting of continuous functions vanishing at infinity,
and Cc(X) for the subspace consisting of compactly supported continuous functions. It is
well-known that Cc(X) is dense in C0(X).
If X is a smooth manifold and k ∈ N ∪ {∞}, then we write Ck(X) for the space of k-times
continuously differentiable functions on X, and Ckc (X) = Cc(X) ∩ Ck(X).
If (X,Σ, µ) is a measure space and 1 ≤ p < ∞, then the associated Lp space is denoted
Lp(X,Σ, µ), and consists of equivalence classes of measurable functions whose pth power is
absolutely integrable, and where functions that agree almost everywhere are identified.
Each Lp space is a Banach space with respect to the p-norm ‖ · ‖p, given by

‖f‖p :=
(∫

X
|f(x)|pµ(dx)

) 1
p

, ∀f ∈ Lp(X,Σ, µ).

In the case p = 2, L2(X,Σ, µ) is also a Hilbert space, with inner product defined in the usual
way.
In this work, all measures we consider will be Borel measures, in the sense that Σ = B(X).
We therefore suppress Σ in notation, and just write Lp(X,µ). We may also suppress µ and
just write Lp(X), in cases where the measure is clear from the context.
For the majority of this thesis, we will take F = R. The main exception to this rule is §2.4,
where we introduce some prerequisites from the harmonic analysis of Riemannian symmetric
spaces.
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Notation

If E is a complex Banach space, and L a linear operator on E, then Dom(L) will denote the
domain of L, and Ran(L) its range. The resolvent set of L is the set

ρ(L) := {λ ∈ C : λI − L is invertible with bounded inverse}, (0.0.1)

and the spectrum is
Spec(L) := C \ ρ(L).

Note that ρ(L) is an open subset of C, and hence Spec(L) is a closed subset of C.
Let d ∈ N. By the standard basis of Rd, we will mean the vectors e1, . . . , ed ∈ Rd, defined for
each 1 ≤ i ≤ d by

ei = (0, . . . , 0, 1, 0, . . . , 0),

where 1 is in the ith position, and all other entries are zero.

x



Chapter 1

Lévy processes on compact
Riemannian manifolds

We begin by investigating the case of a Lévy process on a general manifold. In this chapter,
attention is restricted to the compact case, and we build on the work initially developed by
Applebaum and Estrade [11]. This work has now been published — see [17].

§ 1.1 Preliminaries

1.1.1 Riemannian manifolds and the bundle of orthonormal frames

We summarise some notions from Riemannian geometry, needed in Section 1.2 when we con-
sider Lévy processes on manifolds. For a more thorough exposition of the concepts discussed
in this section, see Kobayashi and Nomizu [50] Chapters I–IV. Chapter II of David Elworthy’s
monograph [24] is also an excellent resource.

Let (M, g) be a connected Riemannian manifold of dimension d ∈ N. For each p ∈M , let OMp

denote the vector space of all linear isometries r : Rd → TpM , where TpM denotes the tangent
space of M at p. Each element r ∈ OMp may be identified with a choice of orthonormal basis
of TpM , by taking the image under r of the standard basis vectors e1, . . . , ed. The disjoint
union

OM =
∐
p∈M

OMp

is called the bundle of orthonormal frames for M . The orthogonal group O(d) acts on OM
by change of basis. This gives OM the structure of a principle fibre bundle over M — see
Chapter I.5 of [50] for background.

For a smooth map ψ :M → N between smooth manifolds M and N , the differential of ψ will
be denoted by dψ : TM → TN , and is a vector bundle homorphism from the tangent bundle
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Chapter 1. Lévy processes on compact Riem. manifolds

of M to the tangent bundle of N . Explicitly, for each p ∈M , dψ acts on TpM via

dψp : TpM → Tψ(p)N ; dψp(X)(f) := X(f ◦ ψ),

for all X ∈ TpM and all f ∈ C∞(N). Writing π : OM → M for the projection map, the
vertical subspace at r ∈ OMp is defined by

VrOM = {X ∈ TrOM : dπr(X) = 0},

and is a linear subspace of TrOM . A connection of M is a specification of a complementary
horizontal subspace HrOM at every frame r ∈ OM , so that each tangent space may be
decomposed as a direct sum

TrOM ∼= HrOM ⊕ VrOM, ∀r ∈ OM. (1.1.1)

By Theorem 2.2 in Chapter IV of [50], the Riemannian structure of M gives rise to a unique
torsion-free metric connection, called the Levi-Civita connection ofM . We use this connection
in what follows. For more details regarding connections more generally, see [50] Chapter II.
Observe that for r ∈ OMp, the restriction of dπr to HrOM defines a linear isomorphism
HrOM ∼= TpM . Given X ∈ TpM , the horizontal lift of X is the unique X∗ ∈ HrOM such
that dπr(X∗) = X. This construction extends naturally to vector fields.
The canonical horizontal vector fields {Hx : x ∈ Rd} of OM are defined by

Hx(r) = r(x)∗, (1.1.2)

for each r ∈ OM and x ∈ Rd. Writing Hi = Hei for each 1 ≤ i ≤ d, where ei denotes the ith
standard basis vector of Rd, it is clear that {Hi : 1 ≤ i ≤ d} is a basis for HOM .
It is a standard result that the Lie algebra o(d) associated with the Lie group O(d) consists
of all real-valued skew-symmetric matrices. Given A ∈ o(d), the fundamental vector field of
A is the vector field A∗ on OM associated with the action of the one-parameter subgroup
at = exp(tA), so that for each r ∈ OM , A∗(r) is the tangent vector to the curve rat at
r. Fundamental vector fields are invariant under the action of O(d), and are hence always
vertical.
The canonical form of OM is the Rd-valued 1-form θ given by

θ(X) = r−1(dπr(X)),

for each X ∈ TrOM . Observe that θ(Hx(r)) = x for all r ∈ OM and x ∈ Rd.
The connection form of OM is the o(d)-valued 1-form ω defined uniquely by the requirement
that ω(X)∗ is equal to the vertical part of X, for all X ∈ TM .
These 1-forms give rise to a trivialisation of the tangent bundle TOM , given fibre-wise by the
following linear isomorphism

ψr : TrOM → Rd × o(d); X 7→ (θ(X), ω(X)), (1.1.3)

2



1.1. Preliminaries

for each r ∈ OM (see Elworthy [24] Chapter II Section 10 for details). Equipping o(d) with
the inner product

〈A,B〉o(d) = −1

2
tr(AB), ∀A,B ∈ o(d),

we may define a metric g̃ on OM by requiring that (1.1.3) be an isometry, as in Elworthy [24]
Chapter III Section 4. Specifically,

g̃(X,Y ) = θ(X) · θ(Y )− 1

2
tr(ω(X)ω(Y )), ∀r ∈ OM, ∀X,Y ∈ TrOM.

Given r ∈ OM and X,Y ∈ HrOM , we have ω(X) = ω(Y ) = 0, and so

g̃(X,Y ) = r−1(dπr(X)) · r−1(dπr(Y )) = g(dπr(X), dπr(Y )),

using the fact that r−1 : Tπ(r)M → Rd is an isometry. It follows that for each p ∈ M and
r ∈ OMp, dπr : HrOM → Tp(M) is an isometric isomorphism.

Since we have given OM the structure of a Riemannian manifold, we may consider the as-
sociated Riemannian measure µ̃ on OM , which is called Liouville measure in the literature.
By the above considerations, Liouville measure is projected down onto Riemannian measure
µ via π, so that

µ = µ̃ ◦ π−1. (1.1.4)

Given a curve xt on M and an initial frame r0 ∈ OMx0 , there is a unique horizontal curve rt
on OM for which xt = π(rt), called the horizontal lift of xt (see [50] Chapter II.3 for a proof).
Parallel transport along xt from a point p = xt0 to a point q = xt1 is given by

rt1r
−1
t0

: TpM → TqM.

The anti-development of xt is the curve yt in Rd given by

yt =

∫ t

0
r−1
s ẋsds.

Equivalently, horizontal lift and anti-development are characterised by the following ordinary
differential equation on OM :

ṙt = Hi(rt)ẏ
i
t. (1.1.5)

In Section 1.2 we consider a stochastic version of this construction.

For each p ∈ M , let Expp denote the Riemannian exponential map at p, defined in a neigh-
bourhood U of 0 ∈ TpM as follows. Given v ∈ TpM , there is a unique geodesic γX,v for which
γ(0) = p and γ̇(0) = v. If ‖v‖ is sufficiently small, γX,v may be defined up to time 1, and we
may define

Expp(v) = γ(1). (1.1.6)

3



Chapter 1. Lévy processes on compact Riem. manifolds

1.1.2 Some concepts from stochastic calculus

Given a probability space (Ω,F , P ), a family of sub-σ-algebras {Ft, t ≥ 0} of F is called a a
filtration if Fs ⊆ Ft whenever 0 ≤ s ≤ t. A stochastic process X = {X(t), t ≥ 0} taking values
on a locally compact Hausdorff space E is adapted to this filtration ifX(t) is Ft-measurable for
all t ≥ 0. Every process X is adapted to its natural filtration, FX = (FX

t , t ≥ 0}, where each
FX
t is taken to be the smallest sub-σ-algebra for which X(s) is measurable for all 0 ≤ s ≤ t.

Markov and Feller processes

An adapted processX taking values on a locally compact Hausdorff space E is called a Markov
process if for all f ∈ Bb(E) and 0 ≤ s ≤ t,

E(f(X(t))|Fs) = E
(
f(X(t))

∣∣X(s)
)
. (1.1.7)

For our purposes, E will usually be a manifold. The transition semigroup of a Markov process
X is a family (Tt, t ≥ 0) of bounded linear operators on Bb(E), defined by

Ttf(x) = E(f(X(t))|X(0) = x), ∀t ≥ 0, f ∈ Bb(E), x ∈ E.

It may be shown using the Markov property (1.1.7) that (Tt, t ≥ 0) is an algebraic operator
semigroup on Bb(E), in the sense that

T0 = I, and TtTs = Tt+s, ∀t, s ≥ 0 (1.1.8)

— see [6] Chapter 3 for more details.

For each x ∈ E, t ≥ 0 and A ∈ B(E), let

pt(x,A) = P(X(t) ∈ A|X(0) = x).

The mappings pt : E × B(E) → [0, 1] are called the transition probabilities of X. Note that
the transition semigroup may be expressed

Ttf(x) =

∫
E
f(y)pt(x, dy), ∀t ≥ 0, f ∈ Bb(E), x ∈ E.

We say that a Markov process X is a Feller process if the restriction of (Tt, t ≥ 0) to C0(E)
forms a strongly continuous operator semigroup. In the presence of (1.1.8), it is sufficient that
the transition semigroup satisfy

1. For all t ≥ 0, Tt
[
C0(E)

]
⊆ C0(E),

2. For all f ∈ C0(E),
lim
t→0

‖Ttf − f‖∞ = 0. (1.1.9)

4



1.1. Preliminaries

The infinitesimal generator of a Feller process X is a (typically unbounded) linear operator
L with domain

Dom(L) =
{
f ∈ C0(E) : ∃gf ∈ C0(E) s.t. lim

t→0

∥∥∥∥Ttf − f

t
− gf

∥∥∥∥
∞

= 0

}
,

defined by
Lf(x) = gf (x) = lim

t→0

Ttf(x)− f(x)

t
, ∀f ∈ Dom(L), x ∈ E

The infinitesimal generator describes the local behaviour of a Feller process. For more details
on Markov and Feller semigroups and their generators, see [10] Chapter 7.

Martingales and semimartingales

An adapted, integrable, Rd-valued process X is a martingale if

E(X(t)|Fs) = X(s) a.s. (1.1.10)

whenever 0 ≤ s < t <∞.
A stopping time is a random variable τ : Ω → [0,∞] such that {τ ≤ t} ∈ Ft for all t ≥ 0.
A local martingale is an adapted Rd-valued process X for which there is an almost surely
increasing sequence (τn) of stopping times tending to infinity and such that {X(t∧ τn), t ≥ 0}
is a martingale. More generally still, an adapted Rd-valued process Y is a semimartingale
if there is a local martingale X and a right-continuous adapted process V of finite variation
such that

Y (t) = Y (0) +X(t) +A(t) (1.1.11)

for all t ≥ 0. For more details, see Protter [58].
Semimartingales taking values on a d-dimensional Riemannian manifold M may also be con-
sidered, although one must then address the possibility that the process leaves the manifold
in finite time. To resolve this issue, processes X are generally defined up to a stopping time
η. An M -valued, adapted process X = (X(t), 0 ≤ t < η) is called a semimartingale if f(X) is
a real-valued semimartingale on [0, η) for all f ∈ C∞(M).

Lévy processes on Rd

Given an Rd-valued process Y = (Y (t), t ≥ 0), the random variables Y (t)− Y (s), where 0 ≤
s ≤ t, are called the increments of Y . Y is said to have independent increments if Y (t)−Y (s) is
independent of FY

s , for all t > s ≥ 0, and stationary increments if Y (t)−Y (s) ∼ Y (t−s)−Y (0),
for all t ≥ s ≥ 0.

Definition 1.1.1. Y is called an Lévy process if the following are satisfied:

(i) Y (0) = 0 a.s.,

5



Chapter 1. Lévy processes on compact Riem. manifolds

(ii) Y has stationary and independent increments.

(iii) (Stochastic continuity) For all s ≥ 0 and all ε > 0,

lim
t→s

P (|Y (t)− Y (s)| > ε) = 0.

One of the most important Lévy processes is Brownian motion. Suppose a = (aij) is a non-
negative definite symmetric d × d matrix. An Rd-valued Lévy process Ba = (Ba(t), t ≥ 0) is
called a Brownian motion with covariance matrix a on Rd if it has continuous sample paths,
and if Ba(t) ∼ N(0, ta) for all t ≥ 0. In the case where a is the d× d identity matrix I, Ba is
called a standard Brownian motion on Rd, usually denoted by B = (B(t), t ≥ 0).
Suppose now that B is a standard Brownian motion on Rm, where 1 ≤ m ≤ d. Since a is
non-negative definite and symmetric, we may choose a d × m matrix q such that a = qqT .
Then (qB(t), t ≥ 0) is a Brownian motion on Rd with covariance matrix a.
A Borel measure ν is called a Lévy measure if ν({0}) = 0 and

∫
Rd 1 ∧ |x|2dx <∞.

Theorem 1.1.2 (Lévy–Khinchine formula). Let Y be a Lévy process on Rd. Then, there
exists b ∈ Rd, a non-negative definite symmetric d× d matrix a = (aij), and a Lévy measure
ν,

E
(
eiu·Y (0)

)
= e−η(u), (1.1.12)

for all u ∈ Rd, where

η(u) = −ib · u+
1

2
u · (au) +

∫
Rd

(
1− eiu·x − 1|x|<1 iu · y

)
ν(dx). (1.1.13)

Conversely, given a mapping η of this form, u 7→ e−η(u) is the characteristic function of some
Lévy process on Rd.

For a proof of this theorem, see for example Sato [62] Chapter 2. We call the triple (b, a, ν)
the Lévy characteristics of Y . In Chapter 3, we will see a generalisation of this theorem for
Lévy processes on symmetric spaces, known as Gangolli’s Lévy–Khinchine formula (see [29]).
Let Y be a Lévy process on Rd. Every Lévy process has a càdlàg modification. If such
a modification has been chosen, we may define the jump process ∆Y of Y by ∆Y (t) =
Y (t)− Y (t−). For each t ≥ 0, and for A ∈ B(Rd) bounded away from zero, there are at most
finitely many 0 ≤ s ≤ t such that ∆Y (s) ∈ A. We define

N(t, A) := |{0 ≤ s ≤ t : ∆Y ∈ A}|, and N(t, {0}) = 0. (1.1.14)

Then N is a Poisson random measure on [0,∞)×Rd with intensity dt⊗ν, where dt is Lebesgue
measure on [0,∞) and ν is as in Theorem 1.1.2. The associated compensated Poisson random
measure is defined

Ñ(t, A) = N(t, A)− tν(A). (1.1.15)

See Applebaum [6] §2.3, pp. 99–112, for more details.
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1.2. Lévy processes on manifolds

Theorem 1.1.3 (Lévy–Itô representation). Let Y be a Lévy process with characteristics
(b, a, ν). Then

Y (t) = bt+Ba(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx), ∀t ≥ 0, (1.1.16)

where Ba is a Brownian motion with covariance matrix a, and N and Ñ are given by (1.1.14)
and (1.1.15).

Lévy processes form an important class of Feller process on Rd. Their Feller semigroups
correspond precisely with the convolution semigroups of probability measures (µt, t ≥ 0) on
Rd (see Definition 2.4.3), via

µt(A) = P(X(t) ∈ A), t ≥ 0, A ∈ B(Rd.

Lévy processes are also semimartingales, in the sense of (1.1.11). If Y is given by (1.1.16),
then the martingale part is Ba(t) +

∫
|x|<1 xÑ(t, dx), and bt +

∫
|x|≥1 xN(t, dx) is a process of

bounded variation. See [6] Proposition 2.7.1, pp. 137, for a proof.

§ 1.2 Lévy processes on manifolds

Suppose now thatM is a compact Riemannian manifold. One can easily show that OM is also
compact, using the fact that both its base manifold and structure group O(d) are compact.
In particular, both M and OM are complete, and µ and µ̃ are finite measures. Note also that
Cc(M) = C(M) = C0(M), and Cc(OM) = C(OM) = C0(OM).
Since OM is complete, the vector fields {Hx : x ∈ Rd} (see (1.1.2)) are complete; we write
exp(tHx) for the associated flows of diffeomorphisms. These flows are related to the Riemann
exponential map (1.1.6) by

π
(
exp(Hx)(r)

)
= Expp r(x), ∀x ∈ Rd, p ∈M, r ∈ OMp. (1.2.1)

Let Y = (Y (t), t ≥ 0) be a Rd-valued Lévy process, let r ∈ OM , and consider the stochastic
differential equation (SDE)

dR(t) =
d∑
i=1

Hi(R(t−)) � dYi(t), t ≥ 0; R(0) = r (a.s.) (1.2.2)

where � denotes the Marcus canonical integral, defined in terms of the Itô integral by
d∑
i=1

∫ t

0
Hif(R(s−)) � dYi(s)

= f(r) +
d∑
i=1

∫ t

0
Hif(R(s−))dYi(s) +

1

2

d∑
i,j=1

∫ t

0
aijHiHjf(R(s))ds

+
∑
s≤t

{
f
(
exp

(
H∆Y (s)R(s−)

))
− f

(
R(s−)

)
−H∆Y (s−)f

(
R(s−)

)}
,

(1.2.3)
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Chapter 1. Lévy processes on compact Riem. manifolds

for each f ∈ C∞(OM). For more information regarding the Itô integral, see for example [6]
Chapter 4.

An OM -valued cádág semimartingale R defined up to a stopping time η is called a solution
to (1.2.2) if

f(R(t)) =
d∑
i=1

∫ t

0
Hif(R(s−)) � dYi(s),

for all f ∈ C∞(OM) and 0 ≤ t < η.

The Marcus integral is the best choice in this setting because it is invariant under changes
in local coordinates (see [6] §6.10, pp. 417 or Protter [58] Theorem 36, pp. 82). For more
information regarding SDEs on manifolds driven by processes with jumps, see Kunita [51]
Chapter 7. When the driving process Y is continuous, the Marcus integral coincides with the
Stratonovich integral.

It is proven in [3] that (1.2.2) has a unique càdlàg solution, defined up to an explosion time
η. In [11], it is shown that η = ∞ almost surely, and that R is a Feller process on OM , with
infinitesimal generator L given by

Lf(r) =
d∑
i=1

biHif(r) +
1

2

d∑
i,j=1

aijHiHjf(r)

+

∫
Rd

{
f(exp(Hx)(r))− f(r)− 1|x|<1Hxf(r)

}
ν(dx)

for all f ∈ C∞(OM) and r ∈ OM . We call R a horizontal Lévy processes with initial frame r.

As in [11], we impose the assumption that the driving process Y is isotropic, in that its law is
O(d)-invariant. This assumption is sufficient for the process X = π(R) obtained by projection
onto the base manifold to be a Feller process on M ([11] Theorem 3.1). We call the projected
process X an isotropic Lévy process on M .

Example 1.2.1. (Brownian motion) An important example of the above construction is
when Y is a standard Brownian motion on Rd. In this case, the solution to (1.2.2) is called a
horizontal Brownian motion on OM . Its generator is 1

2∆H , where

∆H :=

d∑
i=1

H2
i

denotes Bochner’s horizontal Laplacian. The projected process X is then precisely the Eels–
Elworthy construction of Brownian motion on M (see [24] or [42]). Its infinitesimal generator
is 1

2∆, where
∆ := div ◦ grad (1.2.4)

denotes the Laplace–Beltrami operator on M (see [60] for more information regarding this
operator).
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1.2. Lévy processes on manifolds

Returning to the general Lévy case, since Y is isotropic, its Lévy characteristics take the
form (0, aI, ν), where a ≥ 0, and ν is O(d)-invariant (see [6] Corollary 2.4.22, pp. 128). The
infinitesimal generators of R and X are then

L =
1

2
a∆H + LJ (1.2.5)

and

A =
1

2
a∆+AJ , (1.2.6)

respectively, where the jump parts LJ and AJ are given by

LJg(r) =
∫
Rd

{
g
(
exp(Hx)(r)

)
− g(r)− 1|x|<1Hxg(r)

}
ν(dx), (1.2.7)

for all g ∈ C∞(OM) and r ∈ OM , and

AJf(p) =

∫
TpM

{
f(Expp y)− f(p)− 1|y|<1 yf(p)

}
νp(dy), ∀f ∈ C∞(M), p ∈M.

Here, the family of Lévy measures {νp : p ∈ M} act on each tangent space TpM , and are
defined by νp = ν ◦ r−1 for any frame r ∈ OMp. The two generators also satisfy

Af(p) = L(f ◦ π)(r), ∀f ∈ C∞(M), p ∈M, r ∈ OMp.

Observe that since ν is O(d)-invariant, the right hand side of (1.2.7) is invariant under the
change of variable x 7→ −x, and hence for all f ∈ C∞(OM) and r ∈ OM ,

LJg(r) =
∫
Rd

{
g
(
exp(H−x)(r)

)
− g(r) + 1|x|<1Hxg(r)

}
ν(dx), (1.2.8)

where we have used the fact that H−xf = −Hxf . Summing (1.2.7) and (1.2.8) and dividing
by two,

LJg(r) =
1

2

∫
Rd

{
g
(
exp(Hx)(r)

)
− 2g(r) + g

(
exp(H−x)(r)

)}
ν(dx) (1.2.9)

for all g ∈ C∞(OM) and r ∈ OM . It follows that

AJf(p) =
1

2

∫
TpM

{
f(Expp y)− 2f(p) + f(Expp(−y))

}
νp(dy) (1.2.10)

for each f ∈ C∞(M) and p ∈M . Note the analogous expression (5.4.16) in [8] for symmetric
Lévy motion on a Lie group.
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Chapter 1. Lévy processes on compact Riem. manifolds

§ 1.3 Lp properties of the semigroups

Let (St, t ≥ 0) and (Tt, t ≥ 0) denote, respectively, the transition semigroups of R and X, as
defined in Section 1.1.2. Since X = π(R), it is immediate that

Ttf(p) = St(f ◦ π)(r), (1.3.1)

for all t ≥ 0, f ∈ Bb(M) and p = π(r) ∈M . Since R andX are Feller processes, the restriction
of (St, t ≥ 0) and (Tt, t ≥ 0) to C(OM) and C(M), respectively, form strongly continuous
contraction semigroups.
Any Riemannian manifold has a natural Lp structure arising from its Riemannian measure,
and so we may consider the spaces Lp(OM) and Lp(M) for 1 ≤ p ≤ ∞. For p <∞, we prove
that (St, t ≥ 0) and (Tt, t ≥ 0) extend to strongly continuous contraction semigroups on these
spaces, and that they are self-adjoint when p = 2.
We begin by considering the semigroup (St, t ≥ 0) associated with the horizontal process R;
analogous results for (Tt, t ≥ 0) are later obtained by projection down onto M .

Theorem 1.3.1. For all 1 ≤ p < ∞, (St, t ≥ 0) extends to a strongly continuous semigroup
of contractions on Lp(OM).

Proof. Let qt(·, ·) denote the transition probabilities of R, so that

Stf(r) =

∫
OM

f(u)qt(r, du), ∀t ≥ 0, f ∈ C(OM), r ∈ OM.

The horizontal fields Hx are divergence free for all x ∈ Rd (Proposition 4.1 of [56]), and so by
Theorem 3.1 of [13], µ̃ is invariant for St, in the sense that∫

OM
(Stf)(r)µ̃(dr) =

∫
OM

f(r)µ̃(dr), ∀t ≥ 0, f ∈ C(OM).

Therefore, by Jensen’s inequality,

‖Stf‖pp =
∫
OM

∣∣∣∣∫
OM

f(u)qt(r, du)

∣∣∣∣p µ̃(dr) ≤ ∫
OM

∫
OM

|f(u)|pqt(r, du)µ̃(dr)

=

∫
OM

(St|f |p)(r)µ̃(dr) =
∫
OM

|f(r)|pµ̃(dr) = ‖f‖pp

for all t ≥ 0 and f ∈ C(OM). Each St has domain C(OM), which is a dense subspace of
Lp(OM) for all 1 ≤ p < ∞. It follows that each St extends to a unique contraction defined
on the whole of Lp(OM), which we also denote by St. By continuity, the semigroup property

StSs = St+s, ∀s, t ≥ 0

continues to hold in this larger domain. It remains to prove strong continuity, i.e. that

lim
t→0

‖Stf − f‖p = 0 (1.3.2)
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1.4. The Case p = 2

for all f ∈ Lp(OM). By density of C(OM) in Lp(OM), it is sufficient to verify this for
f ∈ C(OM). The map t 7→ St is strongly continuous in C(OM), and so limt→0 ‖Stf−f‖∞ = 0
for all f ∈ C(OM). Since (OM,B(OM), µ̃) is a finite measure space,

‖Stf − f‖p ≤ µ̃(OM)
1
p ‖Stf − f‖∞,

for all f ∈ C(OM). Equation (1.3.2) now follows.

Remark 1.3.2. The final part of the above proof applies more generally, in that if X is a
compact space equipped with a finite measure m, and if (Pt, t ≥ 0) is a Feller semigroup on
X, then (Pt, t ≥ 0) is strongly continuous in Lp(X,m).

Projection down onto the base manifold yields the following.

Theorem 1.3.3. For all 1 ≤ p < ∞, (Tt, t ≥ 0) extends to a strongly-continuous semigroup
of contractions on Lp(M).

Proof. Let 1 ≤ p < ∞. By equations (1.1.4) and (1.3.1), many of the conditions we must
check follow from their analogues on the frame bundle. Indeed, for all f ∈ C∞(M) and t ≥ 0,
we have

‖Ttf‖pLp(M) =

∫
M

|Ttf(p)|pdµ =

∫
OM

|St(f ◦ π)(r)|pdµ̃ = ‖St(f ◦ π)‖pLp(OM),

and so, using the fact that St is a contraction of Lp(OM),

‖Ttf‖Lp(M) = ‖St(f ◦ π)‖Lp(OM) ≤ ‖f ◦ π‖Lp(OM) = ‖f‖Lp(M).

Hence Tt extends to a contraction of Lp(M) for all t ≥ 0. It is clear by continuity that the
semigroup property continues to hold on this larger domain, as does equation (1.3.1). Strong
continuity follows by Remark 1.3.2, or alternatively can be seen by the observation

‖Ttf − f‖Lp(M) = ‖St(f ◦ π)− f ◦ π‖Lp(OM) ∀f ∈ Lp(M).

Thus (Tt, t ≥ 0) extends to a contraction semigroup on Lp(M) for all 1 ≤ p <∞.

We continue to denote the generators of (St, t ≥ 0) and (Tt, t ≥ 0) by L and A, respectively.
Note that by Lemma 6.1.14 of [23], L and A are both closed operators on Lp(OM).

§ 1.4 The Case p = 2

For the remainder of this chapter we focus on the case p = 2. Our aim in this section is to
prove that the semigroups (St, t ≥ 0) and (Tt, t ≥ 0) are self-adjoint semigroups on L2(OM)
and L2(M), respectively. By a standard result from semigroup theory ([22] Theorem 4.6,
pp. 99), it will follow that L and A are self-adjoint linear operators.
Let us first impose the assumption that the Lévy measure ν is finite. In this case, AJ is the
generator of a compound Poisson process on M (see [11]).
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Chapter 1. Lévy processes on compact Riem. manifolds

Lemma 1.4.1. If ν is finite, then L is a self-adjoint operator on L2(OM).

Proof. Since ν is finite, LJ is a bounded linear operator on L2(OM), and so equation (1.2.9)
extends by continuity to the whole of L2(OM). It follows that L is a bounded perturbation
of the horizontal Laplacian, and so its domain is Dom(∆H). Clearly L is symmetric on this
domain.

Since L is a closed, symmetric operator, by Theorem X.1 on page 136 of Reed and Simon
[59], the spectrum Spec(L) of L is equal to one of the following:

1. The closed upper-half plane.

2. The closed lower-half plane.

3. The entire complex plane.

4. A subset of R.

Moreover, L is self-adjoint if and only if Case 4 holds. By Theorem 8.2.1 of [23],

σ(L) ⊆ (−∞, 0], (1.4.1)

from which we see that Case 4 is the only option.

We now drop the assumption that ν is finite.

Theorem 1.4.2. (St, t ≥ 0) and (Tt, t ≥ 0) are self-adjoint semigroups of operators on
L2(OM) and L2(M), respectively.

Proof. We will find it convenient to rewrite the process R(t) (with initial condition R(0) = r
(a.s.)) as the action of a stochastic flow ηt on the point r, as in [11]. Then as shown in Section
4 of [11], there is a sequence (η

(n)
t ) of stochastic flows on OM such that each η(n)t is the flow

of a horizontal Lévy process with finite Lévy measure, and

lim
n→∞

η
(n)
t (r) = ηt(r) (a.s.),

for all r ∈ OM and t ≥ 0.

Let (S(n)
t , t ≥ 0) be the transition semigroup corresponding to the flow (η

(n)
t , t ≥ 0), for each

n ∈ N. By Lemma 1.4.1, each (S
(n)
t , t ≥ 0) has a self-adjoint generator, and hence is a

self-adjoint semigroup on L2(OM), by Theorem 4.6 on page 99 of [22].

By the dominated convergence theorem, for each f ∈ C(OM) and t ≥ 0, we have

lim
n→∞

∥∥∥Stf − S
(n)
t f

∥∥∥2
L2(OM)

= lim
n→∞

∫
OM

∣∣∣E(f (ηt(r))− f
(
η
(n)
t (r)

))∣∣∣2 µ̃(dr) = 0.
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1.5. Spectral properties of the generator

Then by the density of C(OM) in L2(OM), and a standard ε/3 argument (using the fact that
S
(n)
t is an L2-contraction), we deduce that for all f ∈ L2(OM),

lim
n→∞

∥∥∥Stf − S
(n)
t f

∥∥∥
L2(OM)

= 0.

So St is the strong limit of a sequence of bounded self-adjoint operators, and hence is itself
self-adjoint. To see that (Tt, t ≥ 0) is also self-adjoint, let t ≥ 0 and f, g ∈ L2(M), and observe
that by (1.1.4) and (1.3.1),

〈Ttf, g〉L2(M) = 〈St(f ◦ π), g ◦ π〉L2(OM) = 〈f ◦ π, St(g ◦ π)〉L2(OM) = 〈f, Ttg〉L2(M).

By Theorem 4.6 of Davies [22], −L and −A are positive self-adjoint operators on L2(OM)
and L2(M), respectively.

§ 1.5 Spectral properties of the generator

For this final section of Chapter 1, we restrict attention to the case in which X has non-
trivial Brownian part (that is, when a > 0), and prove some spectral results that are already
well-established for the case of Brownian motion and the Laplace–Beltrami operator ∆ (see
(1.2.4)). For example, it is well known that ∆ has a discrete spectrum of eigenvalues. Each
eigenspace is finite-dimensional, and the eigenvectors may be normalised so as to form an
orthonormal basis of L2(M) (see for example Lablée [52] Theorem 4.3.1). Moreover, such an
eigenbasis (ψn) can be ordered so that the corresponding sequence of eigenvalues decreases
to −∞. For each n ∈ N, write −µn for the eigenvalue associated with ψn, so that the real
sequence (µn) satisfies

0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µn → ∞ as n→ ∞. (1.5.1)

We prove an analogous result for A, using a generalisation of the approach used by Lablée
[52].

Theorem 1.5.1. Let X be an isotropic Lévy process on M with non-trivial Brownian part.
Then its generator A has a discrete spectrum

Spec(A) = {−λn : n ∈ N},

where (λn) is a sequence of real numbers satisfying

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn → ∞ as n→ ∞. (1.5.2)

Moreover, each of the associated eigenspaces is finite-dimensional, and there is a corresponding
sequence (φn) of eigenvectors that forms an orthonormal basis of L2(M).
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Chapter 1. Lévy processes on compact Riem. manifolds

Remark 1.5.2. We will generally assume that (1.5.2) is listed with multiplicity, so that for all
n ∈ N, −λn is the eigenvalue associated with φn.

Proof. Without loss of generality, assume that a = 2 so that

A = ∆+AJ , (1.5.3)

where AJ is given by (1.2.10). Both A and AJ are generators of self-adjoint contraction
semigroups, and hence −A and −AJ are positive, self-adjoint operators ([22] Theorem 4.6).
For f, g ∈ DomA, define

〈f, g〉A = 〈f, g〉2 − 〈Af, g〉2. (1.5.4)

The operator I −A is also positive and self-adjoint, and so by Theorem 11 of [19], there is a
unique positive self-adjoint operator B such that B2 = I −A. By (1.4.1), I −A is invertible,
and hence B is injective. Moreover,

〈f, g〉A = 〈Bf,Bg〉2, ∀f, g ∈ DomA,

from which it is easy1 to check that 〈·, ·〉A defines an inner product on DomA.

Let V denote the completion of C∞(M) with respect to 〈·, ·〉A. By (1.5.3), we have

〈f, g〉A = 〈f, g〉H1 − 〈AJf, g〉2 ∀f, g ∈ C∞(M),

and since −AJ is a positive operator, it follows that ‖f‖A ≥ ‖f‖H1 for all f ∈ C∞(M).
Similarly, (1.5.9) implies ‖f‖H1 ≥ ‖f‖2 for all f ∈ C∞(M). Hence

V ⊆ H1(M) ⊆ L2(M),

and
‖f‖2 ≤ ‖f‖H1 ≤ ‖f‖A, ∀f ∈ V. (1.5.5)

In particular, the inclusion V ↪→ H1(M) is bounded. By Rellich’s theorem (see Lablée [52]
pp. 68), the inclusion H1(M) ↪→ L2(M) is compact, and hence so is the inclusion i : V ↪→
L2(M) (it is the composition of a compact operator with a bounded operator).

Let f ∈ L2(M) and consider l ∈ V ∗ given by

l(g) = 〈f, g〉2 ∀g ∈ V.

For all g ∈ V we have by the Cauchy-Schwarz inequality

|l(g)| ≤ ‖f‖2‖g‖2 ≤ ‖f‖2‖g‖A.

Hence
‖l‖V ∗ ≤ ‖f‖2, (1.5.6)

1Bilinearity and symmetry are clear, and positive-definiteness is immediate by injectivity of B.
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where ‖ · ‖V ∗ denotes the norm of V ∗. By the Riesz representation theorem, there is a unique
vf ∈ V for which

〈vf , g〉A = l(g), ∀g ∈ V.

Moreover,
‖vf‖A = sup

g∈V \{0}

|〈vf , g〉A|
‖g‖A

= ‖l‖V ∗ .

Define T : L2(M) → V by Tf = vf for all f ∈ L2(M). Then

〈Tf, g〉A = 〈f, g〉2 ∀f ∈ L2(M), g ∈ V, (1.5.7)

and T is bounded, since by (1.5.6),

‖Tf‖A = ‖l‖V ∗ ≤ ‖f‖2,

for all f ∈ L2(M). By (1.5.5),

‖Tf‖A ≤ ‖f‖A ∀f ∈ V,

and so T |V is a bounded operator on V . We also have

T |V = T ◦ i,

and, since i is compact, so too is T |V . By symmetry of inner products and equation (1.5.7),
T is self-adjoint. Equation (1.5.7) also implies that T |V is a positive operator, and that 0 is
not an eigenvalue of T |V (indeed, if Tf = 0, then ‖f‖22 = 〈Tf, f〉A = 0).
By the Hilbert–Schmidt theore (Simon [65] Section 3.2), the spectrum of T |V consists of a
sequence (αn) of positive eigenvalues that decreases to 0. Each eigenspace is finite-dimensional,
and the corresponding eigenvectors can be normalised so as to form an orthonormal basis (vn)
of (V, 〈·, 〉A).
In fact, it is easy to see from the definition of 〈·, ·〉A that

T = (I −A)−1, (1.5.8)

and hence the spectrum of A is just {1− α−1
n : n ∈ N}, with corresponding eigenvectors still

given by the vn. Moreover, we may scale these eigenvectors so that they are L2-orthonormal.
Indeed, for each n ∈ N, let

φn =
1

√
αn
vn.

Then for all m,n ∈ N,

〈φn, φm〉2 =
1

√
αnαm

〈Tvn, vm〉A =

√
αn
αm

〈vn, vm〉A = δm,n.

By denseness of V in L2(M), the φn form an orthonormal basis of L2(M).
Finally, let λn = α−1

n − 1 for each n ∈ N. Then (λn) satisfies equation (1.5.2), since −A is a
positive operator, and (αn) is a positive sequence that decreases to 0.
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Remark 1.5.3. The Hilbert space V introduced in the proof of Theorem 1.5.1 is a “Lévy
analogue” of the Sobolev space H1(M) considered in Lablée [52] or Grigor’yan [32], where
the completion is instead taken with respect to the Sobolev inner product

〈f, g〉H1 = 〈f, g〉2 − 〈∆f, g〉2, ∀f, g ∈ C∞(M). (1.5.9)

In the case when M = Rd, spaces of this type are discussed in Section 3.10 of Jacob [46], who
refers to them as anisotropic Sobolev spaces. We will encounter generalisations of these spaces
in Section 4.1.2, when we consider operators on Riemannian symmetric spaces of non-compact
type.

It is well-known that the heat semigroup (Kt, t ≥ 0) associated with Brownian motion on a
compact manifold is trace-class, and possesses an integral kernel. The final two results of this
section extend this to the Lévy semigroup (Tt, t ≥ 0), subject to the assumption that a > 0.

Theorem 1.5.4. Let X be an isotropic Lévy process on M with non-trivial Brownian part.
Then the transition semigroup operator Tt is trace-class for all t > 0.

Proof. We again assume a = 2, so that A has the form (1.5.3). The case for general a > 0 is
very similar.
Let (λn) and (φn) be as in the statement of Theorem 1.5.1, and let (µn) and (ψn) be the
analogous sequences for ∆, so that ψn is the nth eigenvector of ∆, with associated eigenvalue
−µn.
Let (Kt, t ≥ 0) denote the heat semigroup associated with Brownian motion on M . This
operator semigroup is known to possess many wonderful properties, including being trace-
class. It follows that

trKt =
∞∑
n=1

〈Ktψn, ψn〉 =
∞∑
n=1

e−tµn <∞ (1.5.10)

for all t > 0. As an element of [0,∞], the trace of each Tt is given by

trTt =
∞∑
n=1

〈Ttφn, φn〉 =
∞∑
n=1

e−tλn . (1.5.11)

By the min-max principle for self-adjoint semibounded operators ([65] pp. 666), we have for
all n ∈ N,

λn = − sup
f1,...,fn−1∈C∞(M)

[
inf

f∈{f1,...,fn−1}⊥, ∥f∥=1
〈Af, f〉

]
,

and
µn = − sup

f1,...,fn−1∈C∞(M)

[
inf

f∈{f1,...,fn−1}⊥, ∥f∥=1
〈∆f, f〉

]
.

As noted in the proof of Theorem 1.5.1, for all f ∈ C∞(M),

−〈Af, f〉 ≥ −〈∆f, f〉 ≥ 0,
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1.5. Spectral properties of the generator

and hence λn ≥ µn for all n ∈ N. But then e−tλn ≤ e−tµn for all t > 0 and n ∈ N, and so,
comparing (1.5.11) with (1.5.10),

trTt < trKt <∞

for all t > 0.

By Lemma 7.2.1 of Davies [23], we immediately obtain the following.

Corollary 1.5.5. Let X be an isotropic Lévy process on M with non-trivial Brownian part.
Then its semigroup (Tt, t ≥ 0) has a square-integrable kernel. That is, for all t > 0 there is a
map pt ∈ L2(M ×M) such that

Ttf(x) =

∫
M
f(y)pt(x, y)µ(dy)

for all f ∈ L2(M) and x ∈M . Moreover, we have the following L2-convergent expansion:

pt(x, y) =
∞∑
n=1

e−λntφn(x)φn(y), ∀x, y ∈M, t ≥ 0.

It is natural to wonder whether similar results might hold in the pure jump case when a = 0
— perhaps under some further condition on ν. When M is a compact symmetric space,
we can find an orthonormal basis of eigenfunctions that are common to the L2–semigroups
associated with all isotropic Lévy processes (see the results in Section 5 of [14]) . The key tool
here, which enables a precise description of the spectrum of eigenvalues, is Gangolli’s Lévy–
Khinchine formula [29]. In the more general case considered in this chapter, such methods
are not available, and we have been unable to make further progress at the present time.
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Chapter 2

Analysis on Lie groups and
Riemannian symmetric spaces

In the previous chapter, we considered Lévy processes on general manifolds, taking a functional
analytic view and deriving properties of the generator and semigroup. However, progress was
impeded, in part due to the lack of an analogue to the Lévy–Khinchine formula. To make
progress, we refocus attention towards a different class of Riemannian manifold, known as
Riemannian (globally) symmetric spaces.
In this chapter, we review key notions from the theory of Riemannian symmetric spaces, and
establish necessary tools that will be useful in later chapters. For more information regarding
these spaces, see Harish-Chandra [33], Helgason [39, 37, 36], Knapp [48] and Gangolli and
Varadarajan [30].

§ 2.1 Lie groups and Lie algebras

We begin with a short section defining some notions from Lie group theory, which will soon
be applied in the study of Riemannian symmetric spaces. A more detailed introduction to
the subject may be found in Helgason [39] Chapter II.
A group G is called a Lie group if it is also a finite dimensional smooth manifold, and if
(g, h) 7→ gh−1 is an infinitely differentiable mapping from G × G → G. In this work, all Lie
groups will be real. A Lie algebra over a field F, where F = R or C, consist of a set l together
with an antisymmetric bilinear mapping [·, ·] : l × l → l for which the Jacobi identity holds,
i.e.

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 ∀X,Y, Z ∈ l. (2.1.1)

The map [·, ·] is called the Lie bracket of l. All Lie algebras considered in this thesis will be
over R, unless stated otherwise.
If [X,Y ] = 0 for all X,Y ∈ l, then l is called Abelian. An ideal of l is a linear subspace i ⊆ l
for which [X,Y ] ⊆ i whenever X ∈ i and Y ∈ l. We say that l is simple if it is non-Abelian,
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2.1. Lie groups and Lie algebras

and its only ideals are itself and {0}. It is semisimple if it can be written as a finite direct
sum of simple ideals.

Let G be a Lie group, and for each g ∈ G, let lg : G → G; lg(x) = gx denote left translation
by g. A vector field X on G is left invariant if dlgXh = Xgh for all g ∈ G. The set g of all left
invariant vector fields forms a Lie algebra, called the Lie algebra of G, with bracket operation
given by the Lie derivative

[X,Y ] = XY − Y X, ∀X,Y ∈ g.

We identify g with the tangent space at the identity e ∈ G in the usual way.

The Lie exponential map is the smooth mapping exp : g → G, defined for each X ∈ g by

exp(X) := γX(1),

where γX : R → G is the unique solution to the initial valued problem

γ̇(t) = Xγ(t), ∀t ∈ R; γ(0) = e.

The Killing form of g is the symmetric bilinear form B : g× g → R given by

B(X,Y ) := tr(adX adY ) ∀X,Y ∈ g.

Here, ad denotes the adjoint representation of g, defined by

ad(X)Y := [X,Y ], ∀X,Y ∈ g.

A related concept is the adjoint representation of G, which is denoted Ad, and defined by

Ad(g) := (dcg)e ∀g ∈ G,

where for each g ∈ G, cg : G→ G is conjugation by g, given by

cg(h) := ghg−1 ∀h ∈ G.

One can show that ad = dAde (see Helgason [39] pp. 128).

The following property of the Lie bracket and Killing form will occasionally be useful:

B([X,Y ], Z) = B([Y, Z], X), X, Y, Z ∈ g. (2.1.2)

See for example equation (2) on page 131 of [39].
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Chapter 2. Analysis on Lie groups and Riemannian symmetric spaces

§ 2.2 Riemannian Symmetric Spaces

Let (M, g) be a Riemannian manifold. An isometry s of M is called an involution if s2 = Id.
M is called a Riemannian (globally) symmetric space if every point p ∈M is the unique fixed
point of a non-trivial involution sp of M . In fact, for such a space, each sp is unique, and is
geodesic reversing in the sense that it acts as minus the identity on TpM .
A key advantage that Riemannian symmetric spaces have over more general manifolds is
their Lie theoretic description. Let I(M) denote the isometry group of M , considered with
the compact–open topology. By Theorem II.2.5 and Lemma IV.3.2 of Helgason [39], this gives
I(M) the structure of a Lie transformation group, in the sense that it is a Lie group, and
its action on M is smooth (c.f. [39] Ch. II §3). By Theorem IV.3.3(i) of Helgason [39], for
any point o ∈M , M is diffeomorphic to a homogeneous space G/K, where G = I0(M) is the
identity component of I(M), and K is the subgroup of G leaving o fixed, a compact subgroup
of G. This isomorphism is given by the mapping

G/K
∼=→M ; gK 7→ g · o.

The chosen point o ∈ M is sometimes called the “origin” of M . Note that o = π(K), where
π : G→ G/K denotes the natural surjection.
Let Θ : G→ G; g 7→ sogso. Then Θ is an involutive automorphism of G, and satisfies

GΘ
0 ⊆ K ⊆ GΘ, (2.2.1)

where GΘ is the fixed point set of Θ, and GΘ
0 is the identity component of GΘ. Alternatively,

given any connected Lie group G with compact subgroup K, if there is an involutive auto-
morphism Θ on G for which (2.2.1) is satisfied, we will call (G,K) a Riemannian symmetric
pair. By Proposition IV.3.4 of [39], if (G,K) is a Riemannian symmetric pair, then subject to
a choice of G-invariant Riemannian structure on G, G/K is a Riemannian symmetric space.
Let θ := dΘe denote the differential of Θ at e, an involution of g. By [39] Theorem IV.3.3(ii),
the Lie algebra k of K is the +1-eigenspace of θ,

k = {X ∈ g : θ(X) = X}.

If p denotes the −1-eigenspace of θ, then we have the direct sum

g = p⊕ k. (2.2.2)

One can check that
[k, p] ⊆ p, and [p, p] ⊆ k. (2.2.3)

Indeed, if X ∈ p and Y ∈ k, then

θ([X,Y ]) = [θ(X), θ(Y )] = [−X,Y ] = −[X,Y ].

The other assertion is proved similarly.
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2.3. Symmetric spaces of noncompact type

Consider the natural surjection P : G → M ; g 7→ g · o associated with the G-action on M .
By [39] Theorem IV.3.3(iii), its differential dPe maps k to {0} and its restriction to p yields
an isomorphism p ∼= ToM . Moreover, for each X ∈ p, the curve γ(t) = exp(tX) · o is the
geodesic starting at o and with initial velocity dPe(X). Parallel translation along γ is given
by d[exp(tX)]o.

To relate these notions to those of the previous chapter, the quotient map π : G → G/K
gives G the structure of a principle K-bundle over G/K, so that (2.2.2) may be viewed as a
symmetric space analogue of (1.1.1). Moreover, provided G acts effectively on M = G/K, in
the sense that e is the only element of G fixing every point of M , then G viewed this way is a
bundle reduction of OM . That is, there is an injective bundle homomorphism from G→ OM .
Taking G = I0(M), as above, ensures that the G-action on M is effective.

We say that M is irreducible if the action of K on ToM is irreducible, i.e. if ToM has no
non-trivial K-invariant subspaces. Equivalently, M is irreducible if the action of Ad(K) on p
is irreducible.

Integration on G and G/K

Every locally compact Hausdorff topological group has a nontrivial left (resp. right) invariant
Radon measure that is unique up to multiplicative constants, called left (resp. right) Haar
measure. The default measure for integration on G will be its left Haar measure, µG, nor-
malised so that its restriction to K is a probability measure. This is possible, since K is
compact, and Radon measures are finite on compact sets. In work to come, we will frequently
find it useful to assume that G is semisimple. By [37] Proposition I.1.6, pp. 88, semisimple
Lie groups are unimodular, in that every left Haar measure is also a right Haar measure. In
this case, we just refer to it as Haar measure, denoted dg.

Integration on G/K will be with respect to the G-invariant measure induced by Haar measure
on G,

µG/K = µG ◦ π−1. (2.2.4)

G-invariant measures on G/K are unique up to a constant factor (c.f. [54] Proposition 1.10,
pp. 12) and hence µG/K is proportional to the Riemannian measure of G/K — indeed, that
Riemannian measure on G/K is G-invariant follows from the fact that Riemannian measure
is invariant under all isometries (c.f. [37] Proposition 1.3, pp. 84).

For notational convenience, we will usually denote µG by dσ (for a variable σ ∈ G), and µG/K
by dx (for a variable x ∈ G/K).

§ 2.3 Symmetric spaces of noncompact type

We say that a symmetric space M = G/K is of

1. Euclidean type if p is an Abelian ideal of g,
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Chapter 2. Analysis on Lie groups and Riemannian symmetric spaces

2. Compact type if B is negative definite,

3. Noncompact type if B is negative definite on k and positive definite on p.

Example 2.3.1. 1. Rd is a symmetric space of Euclidean type, for all d ∈ N. In fact,
every symmetric space of Euclidean type has sectional curvature zero ([39] Theorem
V.3.1(iii)), and hence is isomorphic to Rd.

2. The d-sphere Sd is a symmetric space of compact type, for all d ∈ N. The identity
component of its isotropy group is I0(Sd) = SO(d + 1), and for any point x ∈ Sd, the
subgroup of SO(d+1) that fixes x is isomorphic to SO(d). Hence Sd ∼= SO(d+1)/SO(d).

3. Hyperbolic space Hd is a symmetric space of noncompact type, for all d ∈ N. Consider
the hyperboloid model

Hd =
{
x ∈ Rd+1 : x21 − x22 − . . .− x2d+1 = 1, and x1 > 0

}
,

which is a Riemannian manifold, with Riemannian metric given in geodesic polar coor-
dinates by

dr2 + (sinh2 r)dα2,

where r > 0, α ∈ Sd, and x = (cosh r, (sinh r)α).
Let

J :=

(
1 0
0 −Id

)
,

where Id denotes the d × d identity matrix. The indefinite orthogonal group, O(d, 1),
consists of all (d + 1) × (d + 1) real matrices A that satisfy ATJA = J . This group
acts on Rd+1 in the usual way, and the subgroup preserving the first coordinate of
x ∈ Rd+1 is called the orthochronous Lorentz group, denoted as O+(d, 1). This group
preserves Hd, and in fact, I(Hd) = O+(d, 1). The connected component containing the
identity is I0(Hd) = SO+(1, d), the subgroup of O+(1, d) consisting of all elements with
determinant 1. The subgroup of SO+(1, d) that fixes the “origin” o := (1, 0, . . . , 0) is
isomorphic to SO(d), and hence Hd ∼= SO+(d, 1)/SO(d).

Due to classification results (see [39] Chapter X), the study of probabilistic objects taking
values on G/K can be simplified by assuming that G/K is one of these three types, without
any reduction in generality. The Euclidean type is perhaps the least interesting, since they
are all isomorphic to Euclidean space. Of the other two cases, the compact case has received
more attention than the noncompact, from a probabilistic standpoint — see Trang Le Ngan’s
thesis [57], as well as papers by Applebaum and Le Ngan [14, 16], for more information. In
work to come, we will focus on symmetric spaces of noncompact type.
Note that if G/K is of noncompact type, then G is simply connected, semisimple and non-
compact. Moreover, B is nondegenerate, and so θ is a Cartan involution of g, in the sense
that the bilinear form

Bθ(X,Y ) = −B(X, θY ) ∀X,Y ∈ g
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2.3. Symmetric spaces of noncompact type

is strictly positive definite. The associated Cartan decomposition is (2.2.2).

Fix an Ad(K)-invariant inner product 〈·, ·〉 on g, chosen so that restriction to p induces the
Riemannian structure of G/K. The space p is the orthogonal complement of k, with respect
to this inner product.

2.3.1 The Iwasawa decomposition of (G,K)

Suppose now that (G,K) is a Riemannian symmetric pair of noncompact type. We discuss an
improvement to the decomposition (2.2.2), known as the Iwasawa decomposition, that will be
of particular use in this setting. This decomposition expresses g as a orthogonal direct sum of
three subspaces, one nilpotent, one Abelian, and one compact. The compact Lie algebra k we
have already met. We now outline the construction of the nilpotent and Abelian subspaces,
defined using the (restricted) root spaces of g.

Let a be a maximal Abelian subspace of p. One can show that all such subspaces are isomor-
phic. By Lemma 1.2 on page 253 of Helgason [39], for each X ∈ p, adX is symmetric, in the
sense that

Bθ(ad(X)Y, Z) = Bθ(Y, ad(X)Z) ∀Y, Z ∈ g.

Therefore, the commutative family {adH : H ∈ a} is simultaneously diagonalizable, by a
choice of basis of a. In particular, these operators all have the same eigenvectors. For each
λ ∈ a∗ define

gλ = {X ∈ g : ad(H)X = λ(X)X ∀H ∈ a}.

If λ 6= 0 and gλ 6= {0}, then λ is called a root of g with respect to a, and gλ is the corresponding
root space. Let Σ denote the set of all roots.
Remark 2.3.2. In the literature, some authors (for example Helgason [39] Chapter VI §3,
pp. 257–264) first consider root space decompositions of gC, and as a result, the associated
roots belong to a∗C rather than a∗. Restricting the domain of these roots to a then gives the
roots as defined above. Elements of Σ are then referred to as restricted roots, to distinguish
them from roots defined on the whole aC. Since the complexification gC will not feature
explicitly in this work, we do not need to make this distinction.

Observe that for all λ, µ ∈ a∗,

θ(gλ) = g−λ, and [gλ, gµ] ⊂ gλ+µ. (2.3.1)

Indeed, the first statement follows by noting that for all H ∈ a and X ∈ gλ,

θ(ad(H)X) = ad(θ(H))θ(X) = − ad(H)θ(X),

and the second statement follows from the Jacobi identity (2.1.1). Subject to an ordering
on a∗, one may then identify a set Σ+ ⊂ Σ of positive roots for g. Let Σ− = Σ \ Σ+, the
complementary set of negative roots.
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Chapter 2. Analysis on Lie groups and Riemannian symmetric spaces

The simultaneous diagonalisation discussed above then gives rise to the direct sum

g = g0 ⊕
⊕
λ∈Σ

gλ.

It is usedful to decompose g further. By (2.2.2)

g0 = (k ∩ g0)⊕ (p ∩ g0) = (k ∩ g0)⊕ a, (2.3.2)

the second equality being due to the fact that a is a maximal Abelian subalgebra of p.

A Lie algebra n is called nilpotent if there exists n ∈ N such that adX1 ◦ . . . ◦ adXn = 0 for all
X1, . . . Xn ∈ n. By Engel’s theorem ([39] Theorem III.2.4, pp. 160), n is nilpotent if and only
if there is n ∈ N such that (adX)n = 0 for all X ∈ n. By (2.3.1), the direct sum of positive
root spaces

n =
⊕
λ∈Σ+

gλ

forms a nilpotent Lie subalgebra of g.

If X ∈
∑

λ∈Σ− gλ, then θ(X) ∈ n (by (2.3.1)), and θ(X)−X ∈ k, since it is a −1-eigenvector
of θ. Therefore

X = θ(X) + (X − θ(X)) ∈ n⊕ k,

and combining (2.2.2) and (2.3.2), we have

g = n⊕ a⊕k. (2.3.3)

A decomposition of Lie algebras of this kind is known as an Iwasawa decomposition.

On the level of Lie groups, we have the following global form. For a proof, see page 271 of
Helgason [39]. Knapp [48] Chapter V, §2, (pp. 116–121) is another excellent reference for the
ideas we have been discussing.

Theorem 2.3.3 (Iwasawa decomposition). Let (G,K) be a Riemannian symmetric pair of
noncompact type, and let a and n be as above. Let A and N be connected Lie subgroups of G
with Lie algebras a and n, respectively. Then the mapping (n, a, k) 7→ nak is a diffeomorphism
from N ×A×K onto G. The groups A and N are simply connected.

Remark 2.3.4. It is common to write the decomposition of Theorem 2.3.3 as G = NAK.
There is an equally valid statement in which G is instead decomposed as G = KAN .

For each σ ∈ G, let A(σ) denote the unique element of a such that

σ = neA(σ)k (2.3.4)

for some k ∈ K and n ∈ N . We will need this notation later, for example when discussing
spherical functions.
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2.3. Symmetric spaces of noncompact type

2.3.2 The Cartan decomposition of (G,K)

The second decomposition of G that we would like to use is the Cartan decomposition1 of G.
In order to state this result, we introduce the Weyl group and associated Weyl chambers. For
more details concerning these definitions, see [48] Chapter 5 §3, pp. 121–126.
We continue to consider a Riemannian symmetric pair of noncompact type, (G,K), with a
fixed a choice of Iwasawa decomposition (2.3.3). The group K acts on a via Ad; let the
normaliser and centraliser of for this action be denoted

NK(a) = {k ∈ K : Ad(k) a ⊆ a} and ZK(a) = {k ∈ K : Ad(k)H = H ∀H ∈ a}.

The Weyl group is then defined by

W := NK(a)/ZK(a). (2.3.5)

W acts on a via Ad, and on a∗ by duality.
For each root λ ∈ Σ, one can consider the hyperplane Pλ in a of all H ∈ a for which λ(H) = 0.
The connected components of a \

(⋃
λ∈Σ Pλ

)
are called the Weyl chambers of a. There is one

Weyl chamber of particular importance, namely the positive Weyl chamber

a+ = {H ∈ a : λ(H) > 0, ∀λ ∈ Σ+}, (2.3.6)

uniquely determined by the choice Σ+ of positive roots.
If λ ∈ Σ and c ∈ R, then cλ ∈ Σ implies c ∈ {±1

2 ,±1,±2} (see Corollary 2.17 of Helgason
[39] pp. 291). A root λ is called indivisible (or short — see Gangolli and Varadarajan [30]
pp. 62) if neither of ±1

2λ are roots. Let Σ0 denote the set of all indivisible roots, and let
Σ+
0 = Σ0 ∩ Σ+. Then Σ+

0 indexes the set of hyperplanes Pλ.
There is another characterisations of the Weyl group that will be of use. For each λ ∈ Σ,
define sλ : a∗C → a∗C by

sλ(µ) = µ− 2〈µ, λ〉
〈λ, λ〉

∀µ ∈ a∗C . (2.3.7)

Then each sλ is a reflection in the hyperplane Pλ, and together the sλ generate a finite group
of transformations of a∗, that acts on a by permuting Weyl chambers. One can show (see
Knapp [48], pp. 125) that this group is isomorphic to W as defined above, and is sometimes
used as the definition of the Weyl group instead of (2.3.5).
By Theorem 2.12 on page 288 of Helgason [39], elements of W permute Weyl chambers, and
W is simply transitive on the set of all Weyl chambers in a. In particular, |W | is equal to the
number of Weyl chambers of G/K For more details on how the Weyl group is constructed,
see Helgason [39] pages 284 and 456.

Theorem 2.3.5 (Cartan decomposition). Let G, K and A be as above. Then every σ ∈ G
has a decomposition σ = k1ak2, where k1, k2 ∈ K and a ∈ A. Moreover, this decomposition is
uniquely determined up to conjugation of a by elements of W .

1This is not to be confused with (2.2.2), the Cartan decomposition of g.
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For a proof, see Knapp [48] pp. 127. Because the A component is only determined up to
W -conjugation, Theorem 2.3.5 is often instead expressed as

G = K · exp(a+) ·K (2.3.8)

(see Theorem 6.7 on page 249 of Helgason [39]). This decomposition will be especially useful
in calculations involving K-bi-invariant functions, which by (2.3.8) are determined entirely by
their action on exp(a+).
The following notation will be useful. For each σ ∈ G, let H(σ) denote the unique element of
a+ such that

σ = keH(σ)k′ (2.3.9)
for some k, k′ ∈ K.

2.3.3 Associated integral formulae

We finish this section with a theorem that captures how the Iwasawa and Cartan decompo-
sitions of G affect Haar measure. Given a root λ ∈ Σ, the multiplicity of λ is defined

mλ := dim gλ.

We also introduce the half-sum of positive roots

ρ :=
1

2

∑
λ∈Σ+

mλλ, (2.3.10)

an element of a∗ that will appear in many formulae to come.

Theorem 2.3.6. 1. For all f ∈ Cc(G),∫
G
f(σ)dσ =

∫
N

∫
A

∫
K
f(nak)e−2ρ(log a)dkdadn

=

∫
K

∫
A

∫
N
f(kan)e2ρ(log a)dndadk,

(2.3.11)

Here, log a denotes the unique element H ∈ a for which a = eH , for all a ∈ A.

2. For all f ∈ Cc(G),∫
G
f(σ)dσ =

∫
K

∫
a+

∫
K
f(k1e

Hk2)δ(H)dk2dHdk2, (2.3.12)

where
δ(H) =

∏
λ∈Σ+

(
sinhλ(H)

)mλ ,
for all H ∈ a+.

For a proof of both of these formulae, see Helgason [37] Chapter I, §5 (pp. 181, 186).
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§ 2.4 Harmonic analysis on symmetric spaces of noncompact type

Riemannian symmetric spaces come equipped with an important integral transform, called
the spherical transform. The spherical transform generalises the classical Fourier transform
to symmetric spaces, though with the slightly more limited scope that functions must be K-
invariant. We present some background in this theory next. In later chapters, we will apply
it to the study of Lévy-type operators on symmetric spaces.

In this section only, we take F = C, so that functions may be complex-valued.

2.4.1 Functions, measures and convolution semigroups

For each g ∈ G, let lg, rg : G→ G denote left and right multiplication by g, respectively. Let
Lg and Rg denote the corresponding action on functions, so that for each f ∈ F(G),

Lgf(x) = f ◦ lg, and Rgf = f ◦ rg.

A function f ∈ F(G) is said to be K-right-invariant if Rkf = f for all k ∈ K and K-left-
invariant if Lkf = f for all k ∈ K. If f is K-right-invariant and K-left-invariant, we say it is
K-bi-invariant. There is a one to one correspondence between the space of K-right-invariant
functions on G and the space of all functions on G/K. We identify F(G/K) with the set of
all K-right-invariant functions on G.

The group G acts on G/K by left multiplication. A function f ∈ F(G/K) is said to be K-
invariant if f(k · x) = f(x) for all k ∈ K and x ∈ G/K. The set F(K|G|K) of all real-valued
functions on the double coset space

K|G|K = {KgK : g ∈ G},

can (and will) be identified with the set of all K-invariant elements of F(G/K). As such,
elements of F(K|G|K) can be viewed as K-bi-invariant functions on G.

These conventions will be carried through to other important spaces of functions and measures,
where applicable. For example, the space C(G/K) of continuous functions on G/K will more
often be viewed as the space of K-right-invariant functions on G.

We will also use some Lp spaces, where 1 ≤ p ≤ ∞. Unless stated otherwise, these will be
taken with respect to Haar measure on G and its projection onto G/K (see (2.2.4)).

The convolution product on G and G/K

Given f, g,∈ L1(G), the convolution of f1 and f2 is denoted f1 ∗ f2, and defined by

(f1 ∗ f2)(σ) =
∫
G
f1(τ)f2(τ

−1σ)dτ, ∀σ ∈ G. (2.4.1)
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The convolution of two functions f1, f2 ∈ L1(G/K) is defined by

(f1 ∗ f2)(x) =
∫
G
f1(τK)f2(τ

−1x)dτ, (2.4.2)

for all x ∈ G/K. Substituting x = σK into (2.4.2) and comparing with (2.4.1), it is clear that

(f1 ∗ f2) ◦ π = (f1 ◦ π) ∗ (f2 ◦ π), (2.4.3)

for all f1, f2 ∈ L1(G/K).
Equipped with convolution defined this way, one can prove using a standard argument that
L1(G) and L1(G/K) are Banach algebras.
For the purposes of the next proposition only, let L1

right(G), L
1
bi(G) denote the closed subspaces

of L1(G) consisting, respectively, of K-right- and K-bi-invariant elements, and let L1
K(G/K)

denote the closed subspace of L1(G/K) consisting of K-invariant elements.
A measurable map S : G/K → G with the property that π ◦ S is the identity map on G/K
is called a section map. Such a map always exists, and may even be chosen to be smooth in
a chosen neighbourhood of G/K, if desired. For a proof of this, see [39] Lemma 4.1, pp. 123,
combined with [54] Proposition A.2, pp. 352.

Proposition 2.4.1. The Banach algebras L1(G/K) and L1
right(G) are isomorphic via the

mapping
π∗ : f 7→ f ◦ π.

Moreover, restriction of π∗ to L1
bi(G) gives an isomorphism of the Banach algebras L1

K(G/K)
and L1

bi(G).

Proof. Clearly π∗ is a linear isometry, and by (2.4.3), it is also multiplicative. We prove that
π∗ is bijective by showing that it has a well-defined inverse. Suppose f̃ ∈ L1

right(G). Then
for any section map S, we may take f ∈ L1(G/K) to be given by f = f̃ ◦ S, and obtain
f̃ = π∗f . Since f̃ is right-K-invariant, this choice of f is independent of our choice of section
map S: indeed, if S′ were some other section map, then for each x ∈ G/K there would be
some kx ∈ K such that S′(x) = S(x)kx. But then f̃(S′(x)) = f̃(S(x)kx) = f(S(x)) for almost
all x ∈ G/K, and so f̃ ◦ S = f̃ ◦ S′. Therefore π∗ has a well-defined inverse.

Proposition 2.4.1 shows we may adopt notational conventions consistent with those described
at the beginning of the section, and identify Banach algebras L1(G/K), L1

right(G), using
L1(G/K) to denote both. Similarly, the space L1(K|G|K) will denote both L1

bi(G) and
L1
K(G/K).

Since (G,K) is a Gelfand pair, the space L1(K|G|K) is a commutative Banach algebra — see
for example Wolf [69] Chapter 8 for more details.
Recall that for a locally compact Hausdorff space X, M(X) denotes the set of all Borel
measures on X. A measure µ ∈ M(G) is said to be K-right-invariant if µ(Ak) = µ(A) for all

28



2.4. Harmonic analysis on symmetric spaces of noncompact type

A ∈ B(G) and all k ∈ K, and K-left-invariant if µ(kA) = µ(A) for all A ∈ B(G) and k ∈ K.
It is called K-bi-invariant if it is both K-right-invariant and K-left-invariant.

Given two measures µ1, µ2 ∈ M(G), we define their convolution product to be the measure
µ1 ∗ µ2 ∈ M(G) given by

(µ1 ∗ µ2)(B) =

∫
G

∫
G
1B(στ)µ1(dσ)µ2(dτ), (2.4.4)

for all B ∈ B(G). Note that since G is unimodular, this operation is commutative. It is also
clear from the definition that µ1 ∗ µ2 is K-bi-invariant whenever µ1 and µ2 are.

One may also consider convolution on M(G/K). Let S : G/K → G be a section map. The
convolution of two measures µ1, µ2 ∈ M(G/K) is

(µ1 ∗ µ2)(B) =

∫
G/K

∫
G/K

∫
K
1B(S(x)ky)dkµ1(dx)µ2(dy) (2.4.5)

for all B ∈ B(G/K). Note that this definition is independent of our choice of section map: if
S′ is another section map, then for each x ∈ G/K there is kx ∈ K such that S′(x) = S(x)kx.
Replacing S(x) with S′(x) in (2.4.5) does not change the value of the right-hand side, as Haar
measure dk on K is invariant under the change of variable k 7→ k−1

x k.

If µ1 and µ2 have densities f1 and f2 with respect to Riemannian measure on G/K, then by
(2.2.4),

(µ1 ∗ µ2)(B) =

∫
G/K

∫
G/K

1B(S(x)ky)f1(x)f2(y)dkdxdy

=

∫
G

∫
G

∫
K
1B(τkσK)f1(τK)f2(σK)dkdτdσ

=

∫
K

∫
G

∫
G
1B(τkσK)f1(τK)f2(σK)dτdσdk,

for all B ∈ B(G/K), where on the last line we have used Fubini’s theorem to change the order
of integration. Applying the change of variable τ 7→ τk−1, it follows that

(µ1 ∗ µ2)(B) =

∫
G

∫
G
1B(τσK)f1(τK)f2(σK)dτdσ

=

∫
G

∫
G
1B(σK)f1(τK)f2(τ

−1σK)dτdσ =

∫
B
(f1 ∗ f2)(x)dx

for all B ∈ B(G/K). That is µ1 ∗ µ2 has density f1 ∗ f2 with respect to Riemannian measure
on G/K.

The proof of the following proposition is very similar to that of Proposition 2.4.1, and in
particular (2.4.6) can be verified in a similar manner to (2.4.3). See Proposition 1.9 of Liao
[54], pp. 11 for details.
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Proposition 2.4.2. The map µ 7→ µ◦π−1 defines a bijection from the set of K-right-invariant
Borel measures on G onto M(G/K), and from the set of K-bi-invariant Borel measures on
G onto the set of K-invariant Borel measures on G/K. It preserves convolution in the sense
that

(µ1 ∗ µ2) ◦ π−1 =
(
µ1 ◦ π−1

)
∗
(
µ2 ◦ π−1

)
, (2.4.6)

for all K-right-invariant measures µ1, µ2 ∈ M(G).

In light of Proposition 2.4.2, we identify M(G/K) with the subspace of M(G) consisting
of K-right-invariant measures. Similarly, we identify the subspace of M(G) consisting of all
K-bi-invariant Borel measures on G with the subspace of M(G/K) consisting of K-invariant
Borel measures on G/K, and denote both by M(K|G|K).

Convolution semigroups

A sequence (µn) in M(G) is said to converge weakly to µ ∈ M(G) if for all f ∈ Cb(G),

lim
n→∞

∫
G
fdµn =

∫
G
fdµ. (2.4.7)

If instead (2.4.7) holds for all f ∈ C0(G), we say µn → µ vaguely.

Definition 2.4.3. A family (µt, t ≥ 0) of finite measures in M(G) will be called a convolution
semigroup (of probability measures) if

1. µt(G) = 1 for all t ≥ 0,

2. µs+t = µs ∗ µt for all s, t ≥ 0, and

3. µt → µ0 vaguely as t→ 0.

Here, ∗ denotes convolution, as defined in (2.4.4). It is well-known that Definition 2.4.3 (2)
and (3) together imply that µs → µt vaguely as s→ t, for any t ≥ 0.
Some authors prefer to use weak convergence when defining convolution semigroups of prob-
ability measures. In fact, for probability measures in M(G), weak convergence is equivalent
to vague convergence — see Heyer [40] Theorem 1.1.9, pp. 25, for a proof of this. Since vague
convergence is defined with reference to C0(G), we find it to be the natural choice for working
with Feller semigroups.
Note that by Definition 2.4.3 (2), µ0 must be an idempotent measure, in the sense that
µ0 ∗ µ0 = µ0. By [40] Theorem 1.2.10, pp. 34, µ0 must coincide with Haar measure on a
compact subgroup of G. In the literature, it is very common to take µ0 = δe, the delta mass
at the identity. This is advantageous in the Lie group setting, since the corresponding family
of convolution operators will form a strongly continuous operator semigroup on C0(G) (see
Proposition 2.4.5). For similar reasons, we will see that in the symmetric space setting, a
natural choice for µ0 is normalised Haar measure on K, so that the the image of µ0 after
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projecting onto G/K is δo, the delta mass at o. The corresponding family of convolution
operators will form a strongly continuous operator semigroup on C0(G/K).

A family (µt, t ≥ 0) of probability measures on G/K will be called a convolution semigroup
(of probability measures) if it satisfies properties (1), (2) and (3) of Definition 2.4.3, but with
convolution instead given by (2.4.5). By Proposition 2.4.2, convolution semigroups on G/K
correspond precisely with the K-right-invariant convolution semigroups on G. Interestingly,
a convolution semigroup on G is K-right-invariant if and only if it is K-left-invariant — see
[54] Proposition 1.12, pp. 13 for more details as well as a proof of this. Therefore convolution
semigroups on G/K correspond precisely with the K-bi-invariant convolution semigroups on
G.

Given a probability measure µ ∈ M(G), the associated (left) convolution operator Tµ :
Bb(G) → Bb(G) is defined by

Tµf(σ) := (f ∗ µ)(σ) =
∫
G
f(στ)µ(dτ), ∀f ∈ Bb(G), σ ∈ G. (2.4.8)

By [8] Propositions 4.7.1, Tµ is a contraction, maps C0(G) into itself, is conservative (i.e. Tµ1 =
1), and positive (i.e. f ≥ 0 implies Tµf ≥ 0).

Definition 2.4.4. The family of convolution operators arising from a convolution semigroup
are called Hunt semigroups in honour of Gilbert Hunt and his groundbreaking paper [43].

We state some of the above results more formally, for this specific class of convolution operator.

Proposition 2.4.5. Let (µt, t ≥ 0) be a convolution semigroup of probability measures on G,
and let (Tt, t ≥ 0) be its Hunt semigroup. For all t ≥ 0,

1. Tt1 = 1,

2. f ≥ 0 =⇒ Ttf ≥ 0, for all f ∈ C0(G),

3. LgTt = TtLg, for all g ∈ G.

Moreover, if µ0 = δe, then T0 = I, and the restriction of (Tt, t ≥ 0) to C0(G) defines a strongly
continuous semigroup of contractions on C0(G).

Proof. Proposition 2.4.5 (3) is an easy check. The rest of the proposition is proved in exactly
the same manner as [8] Propositions 4.7.1 and 5.3.1 pp. 107–8, 124.

Remark 2.4.6. In Section 3.1.1, we explore the relationship between convolution semigroups,
Hunt semigroups and Lévy processes on G and G/K.
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2.4.2 Spherical functions and the spherical transform

Before defining spherical functions, we introduce some important spaces of invariant differen-
tial operators.

We define a differential operator on a smooth manifold M to be a linear mapping D :
C∞
c (M) → C∞(M) that decreases supports, in the sense that

Supp(Df) ⊆ Supp(f) ∀f ∈ C∞
c (M).

For more information, see for example [39] pp. 239.

Let G again denote a Lie group. A differential operator D on G is said to be left invariant
if DLg = LgD for all g ∈ G, and K-right-invariant if DRk = RkD for all k ∈ K. Let D(G)
denote the space of all left-invariant differential operators on G, let D(G/K) denote the space
of all G-invariant differential operators on G/K, and let DK(G) denote the subspace of D(G)
consisting of those operators that are also K-right-invariant.

The following result is essentially Theorem 4.6, from Helgason [37] Ch. II, pp. 285.

Theorem 2.4.7. The mapping ψ : DK(G) → D(G/K), where

ψ(L)f := L(f ◦ π) ∀f ∈ C∞(G/K)

is a surjective homomorphism with kernel DK(G)∩D(G)k. As such, ψ induces an isomorphism

D(G/K) ∼= DK(G)/DK(G) ∩D(G)k.

In light of our convention to identify functions on G/K with K-right-invariant functions on
G, when restricted to C∞(G/K), DK(G) becomes indistinguishable from D(G/K). We will
often choose to view elements of D(G/K) as elements of DK(G) that have been restricted to
C∞(G/K).

We are now ready to state the definitions of the spherical functions on G/K and spherical
functions on G.

Definition 2.4.8. A mapping φ : G → C is called spherical if it is K-bi-invariant, satisfies
φ̃(e) = 1, and if it is a simultaneous eigenfunction of every element of DK(G).

A mapping φ̃ : G/K → C is called spherical if it is K-invariant, if φ̃(o) = 1, and if it is a
simultaneous eigenfunction of every element of D(G/K).

By Theorem 2.4.7, as well as other previous considerations, one can check that φ : G/K → C
is spherical if and only if φ ◦ π is spherical on G.

There is a beautiful integral formula characterisation for spherical functions, which will prove
useful in many calculations to come. A proof can be found in Helgason [37] pp. 400–402.
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Proposition 2.4.9. A function φ : G→ C is spherical if and only if

φ(σ)φ(τ) =

∫
K
φ(σkτ)dk (2.4.9)

for all σ, τ ∈ G.

Since we are assuming (G,K) is of noncompact type, we have the Iwasawa decomposition at
our desposal. The following result is proved on page 418 of Helgason [37], and gives a famous
formula relating spherical functions on G to a chosen Iwasawa decomposition.

Theorem 2.4.10 (Harish-Chandra Integral Formula). Let G = NAK be an Iwasawa decom-
position of G, and for each σ ∈ G let A(σ) ∈ a be as in (2.3.4). For λ ∈ a∗C, define φλ : G→ C
by

φλ(σ) =

∫
K
e(iλ+ρ)(A(kσ))dk, ∀σ ∈ G. (2.4.10)

Then φλ is a spherical function, and all spherical functions on G arise this way. Moreover,
given λ, ν ∈ a∗, we have φλ = φν if and only if λ = s · ν, for some s ∈W .

By Corollary 11.5.11 on page 254 of Wolf [69], φλ is positive definite whenever λ ∈ a∗. By
definition, this means that for all n ∈ N, x1, . . . , xn ∈ G and z1, . . . , zn ∈ C, we have∑

1≤j,k≤n
φλ(x

−1
j xk)zjzk ≥ 0. (2.4.11)

Proposition 2.4.11. For all λ ∈ a∗ and σ ∈ G,

1. φλ(σ) = φ−λ(σ) = φλ(σ
−1)

2. |φλ(σ)| ≤ 1

3. 1− Re(φλ(σ)) ≥ 0

Proof. 1. The first equality is immediate from (2.4.10). The second equality follows by
noting that in (2.4.11), the n× n matrix with (j, k)th entry φλ(x−1

j xk) is Hermitian.

2. Substituting n = 2, x1 = e, x2 = σ, z1 = −φλ(σ), z2 = 1 into (2.4.11),

−φλ(σ)φλ(σ)− φλ(σ
−1)φλ(σ) + φ(e)φλ(σ)φλ(σ) + φ(e) ≥ 0

for all σ ∈ G. Since φλ is a spherical function, φ(e) = 1. Using Proposition 2.4.11 (1),
the above simplifies to give

1− |φλ(σ)|2 ≥ 0.

Proposition 2.4.11 (2) follows.

3. This follows from Proposition 2.4.11 (2), since Re(φλ(σ)) ≤ |φλ(σ)|, for all σ ∈ G and
λ ∈ a∗.
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Remark 2.4.12. Note that Proposition 2.4.11 (2) and (3) hold for positive definite functions
on G more generally — see [57] §2.4.

For each D ∈ D(G/K) and each λ ∈ a∗, let β(D,λ) denote the eigenvalue of D associated
with eigenfunction φλ. Below, we state a beautiful formula due to Harish-Chandra, that
characterises these eigenvalues as polynomial functions on a∗.
Before stating the result, we introduce some notation. Let T (a) denote the tensor algebra of
a, and let I ⊂ T (a) denote the two-sided ideal of T (a) generated by X ⊗ Y − Y ⊗ X. The
quotient Sym(a) := T (a)/I is called the symmetric algebra of a. Given any basis H1, . . . , Hm

of a, Sym(a) may be identified with the algebra of polynomials in these basis vectors. As
such, elements of Sym(a) will usually be viewed as polynomial functions on a.
Recall that the Weyl groupW acts on a by permuting Weyl chambers. This action induces an
action on Sym(a); let Sym(a)W ⊂ Sym(a) denote the subalgebra of W -invariants. By duality,
we may view elements of Sym(a)W as polynomial functions on a∗.
The following theorem is due to Harish-Chandra, see Section 4 of [33], pp. 260–263. A detailed
account of this proof can also be found in Helgason [36] Chapter X, §6. Equation (2.4.12)
corresponds to equation (12) on page 431 of [36].

Theorem 2.4.13. There exists an algebra isomorphism Γ : D(G/K) → Sym(a)W , such that
for each D ∈ D(G/K) and each λ ∈ a∗,

Dφλ = Γ(D)(iλ)φλ, (2.4.12)

In particular, each of the eigenvalues β(D,λ) is a W -invariant polynomial function on a∗,
with complex coefficients, and with degree equal to that of D.

Remark 2.4.14. In (2.4.12), the domain of the polynomial Γ(D) has been extended to the
complexification a∗C in the obvious way.

Example 2.4.15. The Laplace–Beltrami operator ∆ on G/K belongs to D(G/K). Viewed
as an element of DK(G), it satisfies the famous eigenrelation

∆φλ = −(|ρ|2 + |λ|2)φλ, ∀λ ∈ a∗ (2.4.13)

For more information, see [37] (7), pp. 427, as well as associated discussion.

The spherical transform

Definition 2.4.16. Let f ∈ L1(K|G|K). The spherical transform of f is the mapping
f̂ : a∗ → C given by

f̂(λ) =

∫
G
φ−λ(σ)f(σ)dσ, ∀λ ∈ a∗ . (2.4.14)

Let µ ∈ M(K|G|K) and suppose µ is finite. The spherical transform of µ is the mapping
µ̂ : a∗ → C given by

µ̂(λ) =

∫
G
φ−λ(σ)µ(dσ), ∀λ ∈ a∗ . (2.4.15)
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Observe that if the measure µ has a density f ∈ L1(K|G|K) with respect to Haar measure,
then µ̂ = f̂ .

The next proposition demonstates that the spherical transform satisfies many of the properties
we would expect for a generalisation of the Fourier transform.

Proposition 2.4.17. 1. For all f, g ∈ L1(K|G|K) and all a, b ∈ R,

(af + bg)∧ = af̂ + bĝ.

2. For all finite measures µ1, µ2 ∈ M(K|G|K),

(µ1 ∗ µ2)∧(λ) = µ̂1(λ)µ̂2(λ) ∀λ ∈ a∗ .

3. For all f1, f2 ∈ L1(K|G|K),

(f1 ∗ f2)∧(λ) = f̂1(λ)ĝ2(λ) ∀λ ∈ a∗ .

Proof. The linearity property (1) is clear from the definition, and (3) will follow from (2) by
taking µj(dσ) = fj(σ)dσ, for j = 1, 2. We verify (2). Given λ ∈ a∗,

(µ1 ∗ µ2)∧(λ) =
∫
G
φ−λ(σ)(µ1 ∗ µ2)(dσ) =

∫
G

∫
G
φ−λ(στ)µ1(dσ)µ2(dτ)

=

∫
K

∫
G

∫
G
φ−λ(σkτ)µ1(dσ)µ2(dτ)dk,

since µ1 is invariant under the change of variable σ 7→ σk−1, for all k ∈ K. All measures
involved are finite, and |φ−λ| ≤ 1, so we may apply the Fubini theorem to exchange the order
of integration. Then by Proposition 2.4.9,

(µ1 ∗ µ2)∧(λ) =
∫
G

∫
G

∫
K
φ−λ(σkτ)dkµ1(dσ)µ2(dτ)

=

∫
G

∫
G
φ−λ(σ)φ−λ(τ)µ1(dσ)µ2(dτ) = µ̂1(λ)µ̂2(λ).

Recall from the discussion surrounding (2.3.7) that the Weyl groupW acts on a∗ via reflection
in hyperplanes orthogonal to each root. This action induces an action on functions on a∗; we
use the superscript W to indicate invariance under this action. For example, given a Borel
measure ω on a∗, L2(a∗, ω)W will denote the space of all W -invariant, square-ω-integrable
functions on a∗.

A proof of the next theorem may be found in Helgason [37], page 454. We first need a
definition.
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Definition 2.4.18. Let Σ+
0 denote the set of all positive indivisible roots, as in Section 2.3.1.

By results proven in Helgason [37] Ch. IV §6, the mapping

c(λ) = c0
∏
α∈Σ+

0

2−i⟨λ,α0⟩Γ
(
〈iλ, α0〉

)
Γ
(
1
2(

1
2mα + 1 + 〈iλ, α0〉)

)
Γ
(
1
2(

1
2mα +m2α + 〈iλ, α0〉)

) , (2.4.16)

where α0 := α
|α|2 and c0 is a constant chosen so that c(−iρ) = 1, defines a meromorphic

function on a∗C, called Harish-Chandra’s c-function.

Theorem 2.4.19 (Spherical Inversion). There exists a Borel measure ω on a∗ such that for
all f ∈ C∞

c (K|G|K) and σ ∈ G,

f(σ) =

∫
a∗
φλ(σ)f̂(λ)ω(dλ). (2.4.17)

This measure, known as Plancherel measure is given by

ω(dλ) = c| c(λ)|−2dλ, (2.4.18)

where c > 0 is a constant, and c is Harish-Chandra’s c-function. Furthermore, we have

‖f‖L2(K|G|K) = ‖f̂‖L2(a∗,ω) ∀f ∈ C∞
c (K|G|K). (2.4.19)

Let L2(a∗, ω)W denote the subspace of L2(a∗, ω) consisting of W -invariants. Then the image
of C∞

c (K|G|K) under spherical transformation is a dense subspace of L2(a∗, ω)W , and as
such the spherical transform extends to an unitary isomorphism between the Hilbert spaces
L2(K|G|K) and L2(a∗, ω)W .

Equation (2.4.19) is known as the Plancherel formula, and generalises the famous formula of
the same name associated with the Euclidean Fourier transform on Rd. The unitarity of the
spherical transform, i.e.∫

G
f(σ)g(σ)dσ =

∫
a∗
f̂(λ)ĝ(λ)ω(dλ) ∀f, g ∈ L2(K|G|K), (2.4.20)

will be referred to as Parseval’s identity, and can be derived from (2.4.19) in the usual way
using the polarisation identity for inner product spaces.

To simplify notation, from now on we will suppress subscripts for the inner product and
norm of L2(K|G|K); all other norms and inner products will be identified using subscripts to
minimise confusion.

Harish-Chandra’s c-function has many remarkable properties and connections, see for example
the expository paper [38]. Its role in this work will primarily be through Plancherel measure.

The following estimate will be extremely useful in later work. See Helgason [37] page 450 for
a proof.
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Proposition 2.4.20. There exist constants C1, C2 > 0 such that

| c(λ)|−1 ≤ C1 + C2|λ|(dimN)/2 (2.4.21)

for all λ ∈ a∗.

There is a version of the Paley–Wiener theorem for the spherical transform:

Theorem 2.4.21 (Spherical Paley–Wiener theorem). Given f ∈ C∞
c (K|G|K) and n ∈ N,

there is a constant kn > 0 such that

|f̂(λ)| ≤ kn(1 + |λ|)−n

for all λ ∈ a∗.

For a proof, see Helgason [37] page 450.

2.4.3 Schwartz spaces on G and a∗

The main sources for this section are Gangolli and Varadarajan [30] Chapter 6, and Helgason
[37] page 489, exercise 6*.

Definition 2.4.22. Given σ ∈ G, let |σ| denote the geodesic distance between the cosets K
and σK in G/K.

Geodesic distance on G/K is invariant under the left action of K, and hence | · | is K-bi-
invariant. In particular,

|σ| := |H(σ)|, ∀σ ∈ G,

where H(σ) ∈ a+ is as defined in (2.3.9) — see also Theorem 2.3.5.

The following is contained in Proposition 4.6.11 of Gangolli and Varadarajan [30], pp. 167.

Proposition 2.4.23. 1. The mapping σ → |σ| is continuous and K-bi-invariant,

2. For all σ ∈ G,
∣∣σ−1

∣∣ = |σ|,

3. For all σ, τ ∈ G, |στ | ≤ |σ|+ |τ |,

4. Let A : G→ a be as in (2.3.4). Then

‖A(σ)‖ ≤ C|σ| ∀σ ∈ G,

for some constant C > 0.

Combining Theorems 4.6.4 and 4.6.5 of Gangolli and Varadarajan, pp. 161–2, we also have:
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Theorem 2.4.24. There exists C > 0 such that for all σ ∈ G

e−ρ(H(σ)) ≤ φ0(σ) ≤ Ce−ρ(H(σ))(1 + |σ|)|Σ0|

where H(σ) is as in (2.3.9), and Σ0 denotes the set of all indivisible roots (defined in Section
2.3.2).

Definition 2.4.25. A function f ∈ C∞(G) is called rapidly decreasing if

sup
σ∈G

(1 + |σ|)qφ0(σ)−1(Df)(σ) <∞, ∀D ∈ D(G), q ∈ N ∪ {0}. (2.4.22)

By Theorem 2.4.24, a function f ∈ C∞(G) is rapidly decreasing if and only if

f(a) = O
(
e−ρ(log a)(1 + |a|)q

)
(2.4.23)

for all q ∈ N ∪ {0} and all a ∈ exp a+.

The factor of the e−ρ(log a) in (2.4.23) may seem at odds with the classical definition of a
rapidly decreasing function. In fact, its presence is necessary if f is to be square-integrable.
Recall the integral formulae (2.3.11) and (2.3.12). In both cases, integration over G is related
to integration over A, and the associated Jacobian factors are each asymptotically equivalent
to eρ(log a). See Gangolli and Varadarajan [30] pp. 250–253 for more details.

The space S(G) of all rapidly decreasing functions f ∈ C∞(G) is called the Schwartz space of
G. For f ∈ S(G), denote the left-hand side of (2.4.22) by ‖f‖D,q. One can check that ‖ · ‖D,q
is a seminorm on S(G) for all D ∈ D(G) and q ∈ N ∪ {0}. The subspace

S(K|G|K) := S(G) ∩ F(K|G|K)

will be called the Schwartz space of K-bi-invariant functions on G.

By Proposition 6.1.3 on page 253 of [30], S(G) is a Frechét space with respect to the family
of seminorms {‖ · ‖D,q : D ∈ D(G), q ∈ N∪{0}}, and S(K|G|K) is a closed subspace of S(G).

Other useful facts proven in Section 6.1 of [30] include the following.

Proposition 2.4.26. C∞
c (G) is a dense subspace of S(G), and we have continuous inclusions

C∞
c (G) ⊆ S(G) ⊆ L2(G).

Similarly, C∞
c (K|G|K) is a dense subspace of S(K|G|K), and we have continuous inclusions

C∞
c (K|G|K) ⊆ S(K|G|K) ⊆ L2(K|G|K).

Remark 2.4.27. Some authors use a pair of elements a, b in the universal enveloping algebra
U(g) to characterise S(G) instead of a differential operator D ∈ D(G), so that afb appears
in the place of Df in (2.4.22). See [30] §2.6 pp. 84 for discussion of this.
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Given f, g ∈ S(G), recall the convolution of f and g, as defined by (2.4.1).
The next result is stated as Theorem 6.1.10 in [30] page 255.

Theorem 2.4.28. Convolution defines a continuous mapping from S(G) × S(G) → S(G).
Moreover, S(G) is an algebra under convolution of functions, and S(K|G|K) is a commutative
subalgebra.

The space a∗ is a finite dimensional vector space, and so we may also consider the classical
Schwartz space S(a∗), consisting of all rapidly decreasing maps f on a∗. Let S(a∗)W denote
the closed subspace of S(a∗) consisting of all functions that are invariant under the action of
the Weyl group W . We regard S(a∗)W as an algebra under pointwise multiplication.

Theorem 2.4.29. The spherical transform defines a topological algebra isomorphism from
S(K|G|K) onto S(a∗)W .

For a proof, see [30] page 274.
It is also useful to consider the classical Schwartz space S(a), as well as the subspace S(a)W
comprising all maps in S(a) that are invariant under the action of W . The Euclidean Fourier
transform

F(f)(λ) =

∫
a
e−iλ(H)f(H)dH, ∀f ∈ S(a), λ ∈ a∗ (2.4.24)

defines a topological isomorphism between the classical Schwartz spaces S(a) and S(a∗), and
the usual convolution/pointwise product relations hold (c.f. [70] Ch.VI.1, pp. 146).
There is an interesting connection between this isomorphism and the isomorphism of Theorem
2.4.29. Given f ∈ S(K|G|K) and H ∈ a, the Abel transform is defined by

Af(H) = eρ(H)

∫
N
f((expH)n)dn.

The Abel transform is fascinating in its own right, and we refer to Sawyer [63] for more
information. However, for our purposes we are mainly interested in its role in the following:

Theorem 2.4.30. Writing H for the spherical transform, the diagram

S(a∗)W

S(a)WS(K|G|K)

FH

A

commutes, up to normalizing constants. Each arrow describes an isomorphism of Fréchet
algebras.

This result is Proposition 3 in Anker [1]; see also Gangolli and Varadarajan [30] page 265,
and Helgason [37] 450.
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Chapter 2. Analysis on Lie groups and Riemannian symmetric spaces

L2 characterisation and tempered distributions

One of the most useful properties of classical Schwartz spaces are their relationship to L2

spaces. The following analogous result is Theorem 6.1.16 in [30] (pp. 257). For a proof, see
[68] Section II.9.4, pp. 345–348.

Theorem 2.4.31. Let f ∈ C∞(G). Then f ∈ S(G) if and only if (1 + | · |)mDf ∈ L2(G) for
all m ∈ N ∪ {0} and all D ∈ D(G). Moreover, the family of L2-norms

f 7→ ‖(1 + | · |)mDf‖L2(G), m ∈ N ∪ {0}, D ∈ D(G),

induce the topology of S(G).

The corresponding L2 characterisation of S(K|G|K) may be arrived at by imposing K-bi-
invariance in the usual way.
A distribution φ : C∞

c (G) → C on G is tempered if it is the restriction to C∞
c (G) of a

continuous linear functional on S(G). Linear functionals on C∞
c (K|G|K) will be referred to

as K-bi-invariant distributions on G. We call the topological dual of S(G), denoted S ′(G),
the (Schwarz) space of tempered distributions on G on G. The dual of S(K|G|K) is the
(Schwartz) space of K-bi-invariant tempered distributions, denoted by S ′(K|G|K).
Theorem 2.4.31 may be used to develop the theory of tempered distributions in much the
same way as in the classical case — see [30] pp. 257–262 for more details. We will encounter
S ′(K|G|K) again in §4.1.2, where we use it to define spherical anisotropic Sobolev spaces.
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Chapter 3

Lévy processes on Lie groups and
symmetric spaces

Having developed the necessary background in symmetric space theory and its associated
harmonic analysis, we are now ready to discuss Lévy processes on a Riemannian symmetric
space M . We continue to view M as a homogeneous space G/K, where the Lie groups G and
K are as described in §2.2. As with many objects defined on symmetric spaces, Lévy processes
may be defined either directly as G/K-valued processes satisfying particular properties, or
as the image under the projection map π : G → G/K of Lévy processes on G. We opt for
the latter approach (c.f. Definition 3.1.5), and will often identify processes on G/K with K-
right-invariant processes on G, in much the same way as we have for for functions, measures
and operators in §2.4. Under this identification, Lévy processes on G/K coincide with K-bi-
invariant Lévy processes on G. This is because, as we shall see, the laws of Lévy processes on
G/K are automatically K-invariant (see also [54] Proposition 1.12).

§ 3.1 Background

We summarise key definitions and results from the theory of Lévy processes on Lie groups
and Riemannian symmetric spaces.

3.1.1 Lévy processes on Lie groups

Let G be a Lie group, and let Y = (Y (t), t ≥ 0) a stochastic process taking values on G. The
random variables

Y (s)−1Y (t), 0 ≤ s ≤ t,

are called the increments of Y . Let FY denote the natural filtration of Y .

Definition 3.1.1. Y is called an Lévy process if the following are satisfied:
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Chapter 3. Lévy processes on Lie groups and symmetric spaces

(i) (Independent increments) Y (s)−1Y (t) is independent of FY
s , for all t > s ≥ 0,

(ii) (Stationary increments) Y (s)−1Y (t) ∼ Y (0)−1Y (t− s) for all t ≥ s ≥ 0.

(iii) (Stochastic continuity) For all s ≥ 0 and all B ∈ B(G) with e /∈ B,

lim
t→s

P (Y (s)−1Y (t) ∈ B) = 0.

Remark 3.1.2. Observe the similarity with the definition of a Lévy process given in §1.1.2.

Let Y be a Lévy process on G, and for each t ≥ 0, let µt denote the law of Y (0)−1Y (t). By
Theorem 1.7 on page 8 of [54], (µt, t ≥ 0) is a convolution semigroup of probability measures
on G (c.f. Definition 2.4.3).

Definition 3.1.3. We call (µt, t ≥ 0) the convolution semigroup associated with Y .

Note that if (µt, t ≥ 0) is the convolution semigroup associated with a Lévy process Y on
G, then µ0 = δe, irrespective of the initial distribution of Y . Moreover, given a convolution
semigroup of probability measures (µt, t ≥ 0) that satisfies µ0 = δe, it may be shown using
Kolmogorov’s construction that there exists a Lévy process on G with (µt, t ≥ 0) as its
associated convolution semigroup — see [8] pp. 123 for further discussion of this.
A Feller process is called left invariant if its Feller semigroup (Tt, t ≥ 0) satisfies LgTt = TtLg
for all g ∈ G and t ≥ 0.

Proposition 3.1.4. Let Y be a Lévy process on G with convolution semigroup (µt, t ≥ 0).
Then Y is a left invariant Feller process, with Feller semigroup (Tt, t ≥ 0) given by the Hunt
semigroup of (µt, t ≥ 0) (c.f. Definition 2.4.4).
Conversely, every left invariant Feller process is equal in law to a Lévy process on G.

Proposition 3.1.4 generalises the well known classical result for Rd-valued Lévy processes, and
is proved in a very similar way. See [6] pp. 160–161 for the classical result, and [57] pp. 82–83
for a proof in the Lie group setting.

3.1.2 Lévy processes on symmetric spaces

Suppose now that M = G/K is a Riemannian symmetric space, and continue to denote the
associated canonical surjection map by π : G→ G/K.

Definition 3.1.5. A G/K-valued process Y is called a Lévy process if Y = π(X) for some
Lévy process X on G.

Remarks 3.1.6. 1. This definition is consistent with previous work, in the sense that every
Lévy process on G/K may be realised as a solution to an SDE of the form (1.2.2). When
G acts effectively on G/K, this may be made explicit using the bundle reduction of OM
to G — for details, see Applebaum [4] §5.
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3.1. Background

2. Definition 3.1.5 is less restrictive than the assumptions made in Chapter 1, because the
Lévy processes are not required to be isotropic.

3. By Proposition 3.1.4, Lévy processes on G/K correspond precisely to the G-invariant
Feller processes on G/K.

Let Y be a Lévy process on G/K, and X a Lévy process on G for which Y = π(X). Let
(pt, t ≥ 0) and (qt, t ≥ 0) denote the transition probabilities of Y and X, respectively. Then
for all t ≥ 0, σ ∈ G and A ∈ B(G/K),

pt(σK,A) = P
(
π
(
X(t)

)
∈ A

∣∣π(X) = σK
)
= qt

(
σ, π−1(A)

)
.

In particular, the prescription
νt := pt(o, ·), ∀t ≥ 0

defines a convolution semigroup (νt, t ≥ 0) on G/K. By [54] Proposition 1.12, pp. 13, (νt, t ≥
0) is K-invariant, and there is a K-bi-invariant convolution semigroup (µt, t ≥ 0) on G for
which

νt = µt ◦ π−1, ∀t ≥ 0. (3.1.1)
It may be tempting to think that (µt, t ≥ 0) should be the convolution semigroup of X. In
fact, this is not the case: if it were, then we would have µ0 = δ0, which is not a K-bi-invariant
measure on G. However, if we denote the convolution semigroup of X by (µet , t ≥ 0), and
normalised Haar measure on K by ρK , then by [54] Theorem 3.14, pp. 88,

µt := ρK ∗ µet , ∀t ≥ 0

is a suitable choice for the K-bi-invariant convolution semigroup (µt, t ≥ 0) on G, for which
(3.1.1) is satisfied. In particular, µ0 = ρK .
In this way, Lévy processes on G/K may be understood through the study of K-bi-invariant
convolution semigroups on G. The corresponding Lévy processes on G are called K-bi-
invariant Lévy processes.
Let (µt, t ≥ 0) is a K-bi-invariant convolution semigroup on G associated to a Lévy process
Y on G/K. Let (Tt, t ≥ 0) denote the corresponding Hunt semigroup viewed as a family
of operators acting on C0(G/K). Then since µ0 = ρK , we have T0 = I. Moreover, in
light of Proposition 2.4.5, (Tt, t ≥ 0) forms a strongly continuous operator semigroup on
C0(G/K), and the restriction of each Tt to C0(K|G|K) yields a strongly continuous semigroup
on C0(K|G|K).
Restricting to the K-bi-invariant functions in this way will be advantageous, as we have the
spherical transform at our disposal. As an early application of this, we prove the following
useful eigenvalue relation for the Hunt semigroup of a K-bi-invariant convolution semigroup.

Proposition 3.1.7. Let (µt, t ≥ 0) be a K-bi-invariant convolution semigroup on G, and let
(Tt, t ≥ 0) denote the the restriction to C0(K|G|K) of the Hunt semigroup associated with
(µt, t ≥ 0). Then for all t ≥ 0, λ ∈ a∗ and σ ∈ G,

Ttφλ(σ) = µ̂t(λ)φλ(σ).
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Proof. Let t ≥ 0, λ ∈ a∗ and σ ∈ G. Then

Ttφλ(σ) =

∫
G
φλ(στ)µt(dτ)

Observe that since µt is invariant under all translations by K, for all k ∈ K we have

Ttφλ(σ) =

∫
G
φλ(σkτ)µt(dτ).

Integrating over K, it follows that

Ttφλ(σ) =

∫
K

∫
G
φλ(σkτ)µt(dτ)dk.

All the measures being considered are finite, and |φλ| ≤ 1. Therefore, by Fubini’s theorem
and Proposition 2.4.9,

Ttφλ(σ) =

∫
G

∫
K
φλ(σkτ)dkµt(dτ) =

∫
G
φλ(σ)φ(τ)µt(dτ) = φλ(σ)µ̂t(λ),

as desired.

Hunt’s formula for the generator

The infinitesimal generator of a Lévy process Y on G is given by the celebrated Hunt formula
([43] Theorem 5.1). We describe a version of this next, specialising to the K-bi-invariant case
most relevant to our work on symmetric spaces. We first introduce a local coordinate system
on G, defined in terms of the orthogonal decomposition (2.2.2).

Definition 3.1.8. Let X1, . . . , Xl be an orthonormal basis of g, ordered according to (2.2.2),
so that X1, . . . , Xd is a basis of p and Xd+1, . . . , Xl is a basis of k.

A collection {x1, . . . , xl} of smooth functions of compact support is called a system of expo-
nential coordinate functions if there is a neighbourhood U of e for which

σ = exp

(
l∑

i=1

xi(σ)Xi

)
∀σ ∈ U. (3.1.2)

The xi may be chosen so as to be K-right-invariant for i = 1, . . . , d, and such that

d∑
i=1

xi(kσ)Xi =

d∑
i=1

xi(σ)Ad(k)Xi ∀k ∈ K.

We assume this is the case in what follows. For more details, see Liao [54] pp.36–37, 83.
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3.1. Background

The choice of basis of p enables us to view Ad(k) as a d× d matrix, for each k ∈ K. A vector
b ∈ Rm is said to be Ad(K)-invariant if

b = Ad(k)T b, ∀k ∈ K.

Similarly, a d× d real-valued matrix a = (aij) is Ad(K)-invariant if

a = Ad(k)TaAd(k) ∀k ∈ K.

Definition 3.1.9. A Borel measure ν on G is called a Lévy measure if ν({e}) = 0, ν(U c) <∞,
and

∫
G

∑l
i=1 xi(σ)

2ν(dσ) <∞.

Note that this definition is independent of the choice of basis X1, . . . , Xl of } and coordinate
functions x1, . . . , xl ∈ C∞

c (G) — see [54] pp. 38.

Theorem 3.1.10. Let A be the infinitesimal generator associated with a Lévy process Y on
G/K. Then C∞

c (G/K) ⊆ DomA, and there is an Ad(K)-invariant vector b ∈ Rd, an Ad(K)-
invariant, non-negative definite, symmetric d×d matrix a := (aij), and a K-bi-invariant Lévy
measure ν such that

Af(σ) =
d∑
i=1

biXif(σ) +
d∑

i,j=1

aijXiXjf(σ)

+

∫
G

(
f(στ)− f(σ)−

d∑
i=1

xi(τ)Xif(σ)

)
ν(dσ),

(3.1.3)

for all f ∈ C∞
c (G/K) and σ ∈ G. Moreover, the triple (b, a, ν) is completely determined by

A, and independent of the choice of exponential coordinate functions xi, i = 1, . . . , d.

Conversely, given a triple (b, a, ν) of this kind, there is a unique K-bi-invariant convolution
semigroup of probability measures on G with infinitesimal generator given by A.

Remarks 3.1.11. 1. If the assumption of K-bi-invariance is dropped in Theorem 3.1.10,
the generator still takes the form (3.1.3), but without the Ad(K)-invariance and K-bi-
invariance restrictions. This more general result is known as the Hunt formula, first
proven by Gilbert Hunt in [43]. For more details regarding the K-bi-invariant case,
including a proof of Theorem 3.1.10, see [54] Section 3.2, pp. 78.

2. In fact, equation (3.1.3) is well-defined for any f ∈ C2
b (G). Indeed, by Lemma 2.3 on

page 39 of [54], the integrand on the right-hand side of (3.1.4) is absolutely integrable
with respect to ν, for all f ∈ Cb(G). The diffusion term is well-defined for any twice
continuously differentiable function. We will sometimes use this fact when discussing
certain eigenvalue relations that hold on a larger domain — see for example equation
(3.1.7).

We call (b, a, ν) from Theorem 3.1.10 the Lévy characteristics of Y .
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Gangolli’s Lévy–Khinchine formula

Let G/K be a symmetric space of noncompact type. Recall that in this case, G is semisimple.
The following result is well-known in the literature. Its proof is identical to the argument
made in the latter part of the proof of [55] Theorem 2, and is included for clarity.

Lemma 3.1.12. p has no non-zero Ad(K)-invariant elements.

Proof. Suppose X ∈ p is Ad(K)-invariant. Then [Y,X] = 0 for all Y ∈ k. By (2.2.3),
[X,Z] ∈ k for all Z ∈ p. Also, by (2.1.2),

B([X,Z], Y ) = B(Z, [Y,X]) = 0 ∀Y ∈ k, Z ∈ p.

That is, [X,Z] is an element of k, and is orthogonal to every other element of k. It follows
that [X,Z] = 0 for all Z ∈ p. But then ad(X) = 0, and since G is semisimple, it follows that
X = 0.

An immediate consequence of Lemma 3.1.12 is that every K-bi-invariant Lévy process on G
has a vanishing drift term. Specifically, the generator A takes the form

Af(σ) =
d∑

i,j=1

aijXiXjf(σ) +

∫
G

(
f(στ)− f(σ)−

d∑
i=1

xi(τ)Xif(σ)

)
ν(dσ), (3.1.4)

for all f ∈ C∞
c (G), where a = (aij) is an Ad(K)-invariant, non-negative definite symmetric

matrix, and ν is a K-bi-invariant Lévy measure.

Proposition 3.1.13.
∑d

i,j=1 aijXiXj ∈ DK(G).

Proof. For brevity, we write AD :=
∑d

i,j=1 aijXiXj (the “diffusion part” of A). Left invariance
is clear, since the Xi belong to g. We show that AD is K-right-invariant. Let k ∈ K, and let
Ck denote the conjugation operator, so that Ckf = f ◦ ck, for all f ∈ F(G). By definition of
Ad,

XCkf = Ck Ad(k)Xf,

for all X ∈ g, f ∈ C∞
c (G). Therefore, for f ∈ C∞

c (G),

ADCkf =
d∑

i,j=1

aijXiXjCkf =
d∑

i,j=1

aijCk[Ad(k)Xi][Ad(k)Xj ]f

=
d∑

i,j=1

[
Ad(k)TaAd(k)

]
ij
CkXiXjf.

Since a is Ad(K)-invariant, it follows that ADCk = CkAD. But then, using Ck = L−1
k Rk and

left invariance,
ADRk = ADLkCk = LkCkAD = RkAD.

That is, AD is K-right-invariant. Hence AD ∈ DK(G).
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It follows from the definition of a spherical function (Definition 2.4.8) that each φλ is an
eigenfunction of

∑d
i=1 aijXiXj .

The following result was first proven by Ramesh Gangolli (see [29] Theorem 5.1), and is a
direct generalisation of Theorem 1.1.2. For a proof of the specific statement below, see [54],
pp. 139.

Theorem 3.1.14 (Gangolli’s Lévy–Khinchine formula). Let (µt, t ≥ 0) be a K-bi-invariant
convolution semigroup of probability measures on G with infinitesimal generator A, given by
(3.1.4). Then

µ̂t = e−tψ,

where
ψ(λ) = −βa(λ) +

∫
G
(1− φλ(σ))ν(dσ) ∀λ ∈ a∗, (3.1.5)

and βa(λ) denotes the φλ-eigenvalue of
∑d

i,j=1 aijXiXj.

Remarks 3.1.15. 1. By Proposition 3.1.7, if (Tt, t ≥ 0) denotes the Hunt semigroup of
(µt, t ≥ 0), then

Ttφλ = e−tψ(λ)φλ (3.1.6)

for all t ≥ 0 and λ ∈ a∗.

2. By Theorem 2.4.13, βa is a W -invariant quadratic polynomial function on a∗.

Definition 3.1.16. The function ψ : a∗ → C given by (3.1.5) will be called the Gangolli
exponent of the process Y . It is uniquely determined by the Lévy characteristics of Y .

If the domain of a Lévy generator A is extended so as to include C2
b (K|G|K) (c.f. Remark

3.1.11 (2)), we will see that in this larger domain, A satisfies the eigenrelation

Aφλ = −ψ(λ)φλ ∀λ ∈ a∗ . (3.1.7)

Indeed, the proof of this relation is a special case of the proof of Theorem 4.2.7, to come.
Moreover, (3.1.7) together with the spherical inversion formula imply that

(Af)∧(λ) = −ψ(λ)f̂(λ), ∀f ∈ C∞
c (K|G|K), λ ∈ a∗ . (3.1.8)

This “Fourier multiplier” type relationship is something we will explore further in Chapter 4,
when we consider pseudodifferential operators.

Note also that since φλ(e) = 1, (3.1.7) implies

ψ(λ) = −Aφλ(e), ∀λ ∈ a∗ .

Example 3.1.17. We list some examples of well-known Lévy processes and their associated
generators and Gangolli exponents.
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1. Brownian motion. The Laplace–Beltrami operator on G/K may be viewed as a K-
right-invariant operator on G in the usual way. It is then given by

∆ =
d∑
i=1

X2
i

(recall that the Xi have been ordered so that X1, . . . , Xd is a basis of p).
Standard Brownian motion on G/K has generator 1

2∆, and Lévy characteristics (0, I, 0).
By (2.4.13), the Gangolli exponent associated with standard Brownian motion is

ψ(λ) =
1

2
(|ρ|2 + |λ|2), ∀λ ∈ a∗ .

The associated convolution semigroup (µt, t ≥ 0) satisfies

µ̂t(λ) = e−
1
2
t(|ρ|2+|λ|2), (3.1.9)

for all λ ∈ a∗.

2. Stable-like processes. Let α ∈ (0, 2), and let S = (S(t), t ≥ 0) denote the α
2 -stable

subordinator, so that S is a one-dimensional non-decreasing Lévy process on [0,∞)
with symbol given by

η(u) = (−iu)
α
2 =

α/2

Γ (1− α/2)

∫ ∞

0
(1− eiut)t−1−αdt, ∀u ≥ 0

(see [6] Section 1.7, page 80 for discussion of this fractional powers formula). Let B =
(B(t), t ≥ 0) denote a Brownian motion on G/K with generator ∆ (the factor of 1

2
is now omitted for convenience). Let Y = (Y (t), t ≥ 0 denote the process on G/K
obtained by subordinating B by S, so that Y (t) = B(S(t)) almost surely, for all t ≥ 0.
Such a process is called an α-stable-like process on G/K. By standard results from the
theory of subordination, Y is generated by − (−∆)

α
2 , and has Gangolli exponent

ψα(λ) = (|ρ|2 + |λ|2)
α
2 , ∀λ ∈ a∗ . (3.1.10)

Observe that

ψα(λ) =
α/2

Γ(1− α/2)

∫ ∞

0
t−1−α/2

(
1− e−(|λ|2+|ρ|2)t

)
dt

=
α/2

Γ(1− α/2)

∫ ∞

0

∫
G
(1− φλ(σ))t

−1−α/2ht(σ)dσdt

for all λ ∈ a∗. Therefore the α-stable-like Lévy measure is given by

να(A) =
α/2

Γ(1− α/2)

∫ ∞

0

∫
A
(1− φλ(σ))t

−1−α/2ht(σ)dσdt, (3.1.11)
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for each A ∈ B(G \ {e}), and να({e}) = 0. The convolution semigroup (µt, t ≥ 0) is
related to the convolution semigroup (mt, t ≥ 0) of S by

µt(A) =

∫ ∞

0
µs(A)mt(ds) ∀t ≥ 0, A ∈ B(G),

By Theorem 3.1.14,

µ̂t(λ) = e−t(|ρ|
2+|λ|2)α/2 = exp

{
−t
∫
G
(1− φλ(σ))να(dσ)

}
. (3.1.12)

In particular, since there is no diffusion term in this representation, Y is a pure jump
process.

3. Compound Poisson process. Let Y1, Y2, . . . be a sequence of i.i.d. random variable taking
values in G, such that the common law µ of the Yn is K-bi-invariant. Let N = (N(t), t ≥
0) be a Poisson process with intensity α > 0, which is independent of each of the Yn.
Let Π = (Π(t), t ≥ 0) be the process on G defined by

Π(t) = Y0 · Y1 · Y2 · . . . YN(t), ∀t > 0,

where Y0 is uniformly distributed on K. Then Π is called a K-bi-invariant compound
Poisson process on G. The projection of Π onto G/K is called a compound Poisson
process on G/K. Note that since Y0 is uniformly distributed on K, the projection of
Π(0) is o := eK, almost surely. See Applebaum [4] for more details. Note that Π could
instead have been defined directly on G/K, by choosing a sequence of i.i.d. random
variables on G/K, and constructing their product via a section map.
The generator A of the semigroup associated with Π is given by

Af(σ) =
∫
G
(f(στ)− f(τ))αµ(dτ) ∀f ∈ Cc(K|G|K), σ ∈ G,

(see Theorem 1 of [4]), and hence the Gangolli exponent of Π is

ψ(λ) =

∫
G
(1− φλ(σ))αµ(dσ), ∀λ ∈ a∗ .

In particular, Π is a pure jump process with Lévy characteristics (0, 0, αµ).

Remark 3.1.18. Many of the results in this section have immediate analogues for the case
where processes are allowed killing — that is, when they are defined up to a stopping time,
so that their laws may have total mass less than 1. We follow convention and indicate that
killing is in play by using the prefix “sub-”; for example, sub-diffusion processes, sub-Feller
processes, and so on. In the case of killed K-bi-invariant Lévy processes, both Theorem 3.1.10
and Theorem 3.1.14 have direct analogues in which the generator (3.1.3) and symbol (3.1.5)
gain a constant term. We investigate these more general formulae further in Chapter 4, where
we consider the Feller case. For explicit discussion of the killed Lévy case, see [15] Theorem
4.5 and the preceding discussion.
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Chapter 3. Lévy processes on Lie groups and symmetric spaces

§ 3.2 L2 densities of convolution semigroups

Having introduced the topic of Lévy processes on symmetric spaces of noncompact type, we
present a few new results on this topic.

Let G/K be a symmetric space of noncompact type. The following theorem is a generalisation
of [8] Theorem 4.5.1 (see also [5]).

Theorem 3.2.1. A K-bi-invariant probability measure µ on G has a square-integrable density
if and only if µ̂ ∈ L2(a∗, ω). The density, when it exists, is given by

f =

∫
a∗
µ̂(λ)φλω(dλ), a.e. (3.2.1)

Remark 3.2.2. Of course if µ̂ ∈ L2(a∗, ω), then in fact µ̂ ∈ L2(a∗, ω)W : W -invariance is
immediate from (2.4.15), since φs(λ) = φλ for all s ∈W .

Proof of Theorem 3.2.1. First note that if µ has density f ∈ L2(G), then comparing (2.4.15)
with (2.4.14), we have µ̂ = f̂ . By the Plancherel formula (2.4.19),∫

a∗
|µ̂(λ)|2ω(dλ) =

∫
G
|f(σ)|2dσ <∞,

and so µ̂ ∈ L2(a∗, ω).

Conversely, let µ be a K-bi-invariant probability measure on G for which µ̂ ∈ L2(a∗, ω), and
let f be given by (3.2.1). K-bi-invariance of f follows immediately from that of φλ. By
Theorem 2.4.19, we must have f̂ = µ̂ and∫

G
|f(σ)|2dg =

∫
a∗
|µ̂(λ)|2ω(dλ) <∞.

Thus f ∈ L2(K|G|K).

It remains to show µ(dσ) = f(σ)dσ. For g ∈ L2(K|G|K) and σ ∈ G, we have by Parseval’s
identity (2.4.20),∫

G
g(σ)f(σ)dσ =

∫
a∗
ĝ(λ)µ̂(λ)ω(dλ) =

∫
a∗
ĝ(λ)

∫
G
φ−λ(σ)µ(dσ)ω(dλ)

=

∫
a∗

∫
G
ĝ(λ)φλ(σ)µ(dσ)ω(dλ),

where we have used Proposition 2.4.11 (1) in the last line. By Proposition 2.4.11 (2), |φλ| ≤ 1
for all λ ∈ a∗, and so we may use Fubini’s theorem to exchange the order of integration.
Hence, ∫

G
g(σ)f(σ)dσ =

∫
G

∫
a∗
ĝ(λ)φλ(σ)ω(dλ)µ(dσ),
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3.2. L2 densities of convolution semigroups

and by spherical inversion (2.4.17),∫
G
g(σ)f(σ)dσ =

∫
G
g(σ)µ(dσ)

for all g ∈ L2(K|G|K). To extend this to all g ∈ L2(G), write

g♮(σ) =

∫
K

∫
K
g(k1σk2)dk1dk2, ∀σ ∈ G.

A straightforward check (see [57] Corollary 2.2.3, pp. 19) shows that map g 7→ g♮ is orthogonal
projection of L2(G) onto L2(K|G|K). By K-bi-invariance of µ and Fubini’s theorem,∫

G
g♮(σ)µ(dσ) =

∫
G

∫
K

∫
K
g(k1σk2)dk1dk2µ(dσ) =

∫
K

∫
K

∫
G
g(k1σk2)µ(dσ)dk1dk2

=

∫
K

∫
K

∫
G
g(σ)µ(dσ)dk1dk2

=

∫
G
g(σ)µ(dσ)

for all g ∈ L2(G). Similarly, K-bi-invariance of f implies∫
G
h♮(σ)f(σ)dσ =

∫
G
g(σ)f(σ)dσ,

for all g ∈ L2(G). Hence by the previous calculation,∫
G
g(σ)f(σ)dσ =

∫
G
g(σ)µ(dσ),

for all g ∈ L2(G). In particular, this holds for all g ∈ Cc(G). By the Riesz representation
theorem, f is real-valued, and µ is absolutely continuous with respect to Haar measure, with
density f ∈ L2(K|G|K). By the Jordan decomposition theorem for signed measures, f is
non-negative almost everywhere.

Having proven Theorem 3.2.1, we immediately obtain a result about K-bi-invariant Lévy
processes and their convolution semigroups.

Corollary 3.2.3. Let Y be a K-bi-invariant Lévy process on G, with convolution semigroup
(µt, t ≥ 0) and Gangolli exponent ψ. The random variable Y (t) has a square-integrable
probability density function for each t > 0 if and only if µ̂t ∈ L2(a∗, ω) for all t > 0. If so,
for each t > 0, the density is given by

ft =

∫
a∗
e−tψ(λ)φλω(dλ), a.e.

Note that this formula is consistent with Theorem 4 of [55].
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Chapter 3. Lévy processes on Lie groups and symmetric spaces

Example 3.2.4. The following are some standard examples of convolution semigroups with
L2 densities.

1. Brownian motion. Let (µt, t ≥ 0) be the convolution semigroup associated with a
standard Brownian motion on G/K, as discussed in Example 3.1.17 (1). We show that
for all t > 0, µ̂t ∈ L2(a∗, ω)W . Weyl group invariance is immediate from the fact that
each µt is K-bi-invariant. Corollary 3.2.3 may be applied to show that µt has a square-
integrable density for all t > 0, by proving that µ̂t ∈ L2(a∗, ω)W for all t > 0. By (3.1.9),
for all t ≥ 0 and λ ∈ a∗,

|µ̂t(λ)|2 =
∣∣∣e−t(|ρ|2+|λ|2)

∣∣∣ .
By (2.4.18) and (2.4.21), Plancherel measure ω has density function c| c)λ)|−2 with
respect to Lebesgue measure on a∗, and for some C > 0,

c| c(λ)|−2 ≤ C(1 + |λ|dimN ), ∀λ ∈ a∗ . (3.2.2)

Claim. For all s ≥ 0 and t > 0,∫
a∗
e−t|λ|

2 |λ|sdλ =
Vol(Sd−1)

2
t−

s+d
2 Γ

(
s+ d

2

)
. (3.2.3)

Proof of Claim. This is a fairly straightforward exercise in integration by substitution.
First note that, using the spherical polar substitution λ = rθ, where r > 0 and θ ∈ Sd−1,∫

a∗
e−t|λ|

2 |λ|sdλ = Vol(Sd−1)

∫ ∞

0
e−tr

2
rs+d−1dr. (3.2.4)

If we then substitute u = tr2, we have∫ ∞

0
e−tr

2
rs+d−1dr =

1

2t

∫ ∞

0
e−u

(u
t

) s+d−2
2

du =
1

2
t−

s+d
2

∫ ∞

0
e−uu

s+d
2

−1du.

Since Re
(
s+d
2

)
> 0, the integral on the far right-hand side is finite and equal to Γ

(
s+d
2

)
.

Combining with (3.2.4), the claim is proved.

Using the claim and (3.2.2), for all t > 0,∫
a∗
|µ̂t(λ|2ω(dλ) ≤ C

∫
a∗
e−t(|ρ|

2+|λ|2)
(
1 + |λ|dimN

)
dλ

= C
Vol(Sd−1)

2
e−t|ρ|

2

{
t−

d
2Γ

(
d

2

)
+ t−

dimN+d
2 Γ

(
dimN + d

2

)}
<∞.

That is, µ̂t ∈ L2(a∗, ω)W for all t > 0. By Corollary 3.2.3, µt posesses a square-integrable
density for each t > 0, given by

ht =

∫
a∗
e−

t
2
(|ρ|2+|λ|2)φλω(dλ), a.e.
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3.2. L2 densities of convolution semigroups

This density is usually known as the heat kernel. Closed form expressions for the heat
kernel on a symmetric space are rarely available. However, one can study (ht, t ≥ 0)
using Gaussian estimates, such as the following, proven by Anker and Ostellari in [2]:

ht(e
H) � t−d/2

∏
λ∈Σ+

0

(1 + λ(H))(1 + t+ λ(H))
mλ+m2λ

2
−1e−|ρ|2t−ρ(H)− |H|2

4t , (3.2.5)

for all H ∈ a+ and t ≥ 0, where Σ+
0 = {λ ∈ Σ+ : λ2 /∈ Σ+} denotes the set of positive,

indivisible roots of (G,K).

2. Stable-like processes. Let α ∈ (0, 2), and recall the definition of an α-stable-like process
on G/K, from Example 3.1.17 (2). Let (µαt , t ≥ 0) be the convolution semigroup asso-
ciated with such a process. We show that µ̂αt ∈ L2(a∗, ω), for all t > 0, and hence has
an L2 density. By (3.1.12), |µ̂αt |2 = e−2t(|ρ|2+|λ|2)α/2 , and so

|µ̂αt |
2 ≤ e−2t|λ|α ∀λ ∈ a∗ .

Using an almost identical proof to that of (3.2.3), one can check that∫
a∗
e−t|λ|

α |λ|sdλ =
Vol(Sd−1)

α
t−

s+d
α Γ

(
s+ d

α

)
, ∀s ≥ 0, t > 0.

Therefore, for C as in (3.2.2),∫
a∗
|µ̂αt |

2 ω(dλ) ≤ C

∫
a∗
e−2t|λ|α

(
1 + |λ|dimN

)
dλ

= C
Vol(Sd−1)

α

{
(2t)−

d
αΓ

(
d

α

)
+ (2t)−

dimN+d
α Γ

(
dimN + d

α

)}
<∞.

That is, µ̂αt ∈ L2(a∗, ω)W , for all t > 0. By Corollary 3.2.3, µαt posesses a square-
integrable density hαt for each t > 0, given by

hαt =

∫
a∗
e−t(|ρ|

2+|λ|2)α/2φλω(dλ), a.e.

In fact, one can show using subordination methods that

hαt (σ) =

∫ ∞

0
hs(σ)θt(ds),

where (θt, t ≥ 0) denotes the convolution semigroup associated with the α
2 -stable sub-

ordinator — see [6] Theorem 3.3.15, pp. 145.

We now use Theorem 3.2.1 to prove another result concerning square-integrable densities of
K-bi-invariant convolution semigroups.
The following is a generalisation Theorem 4.1 of [5].
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Chapter 3. Lévy processes on Lie groups and symmetric spaces

Theorem 3.2.5. Let (µt, t ≥ 0) be a K-bi-invariant convolution semigroup of probability
measures, and suppose that the Gangolli exponent ψ takes the form

ψ(λ) = −c(|λ|2 + |ρ|2) +
∫
G
(1− φλ(σ))ν(dσ), (3.2.6)

where c ≥ 0 and ν is the Lévy measure of (µt, t ≥ 0). Let να be as in (3.1.11), and suppose
that for some for some α ∈ (0, 2), ν dominates να, in the sense that

ν(U) ≥ να(U) (3.2.7)

whenever U ∈ B(G) is bounded away from e (that is, e /∈ U). Then µt has a square-integrable
density for each t > 0.

Remark 3.2.6. In the special case where G/K is irreducible with dim(G/K) > 1, the diffusion
part of the generator must be a non-negative multiple of ∆ (see Liao [54] Proposition 5.6,
pp. 140), and so every Gangolli exponent takes the form (3.2.6).

Proof. Proceed as in [5], and consider Re(ψ), where ψ is the Gangolli exponent of (µt, t ≥ 0).
Then ψ takes the form (3.2.6), and µ̂t = e−tψ. Recall from Proposition 2.4.11 that

1− Re {φλ(σ)} ≥ 0, (3.2.8)

for all λ ∈ a∗ and σ ∈ G. Let (Un) be an increasing sequence of Borel subsets of G, each
bounded away from e, and such that Un ↑ G as n→ ∞. Then by (3.2.8), for all n ∈ N,

Re {ψ(λ)} = c(|λ|2 + |ρ|2) +
∫
Un

(1− Re {φλ(σ)})ν(dσ) +
∫
G\Un

(1− Re {φλ(σ)})ν(dσ)

≥
∫
Un

(1− Re {φλ(σ)})ν(dσ).

Hence by (3.2.7),
Re {ψ(λ)} ≥

∫
Un

(1− Re {φλ(σ)})να(dσ).

Taking the limit as n→ ∞, for all λ ∈ a∗,

Re {ψ(λ)} ≥
∫
G
(1− Re {φλ(σ)})να(dσ) = ψα(λ)

where ψα denotes the α-stable-like symbol, as in (3.1.10). It follows that for all t ≥ 0,

|µ̂t| = e−tRe{ψ} ≤ e−tψα = µ̂αt . (3.2.9)

In Example 3.2.4 (2), we proved that µ̂αt ∈ L2(a∗, ω)W for all t > 0. Hence by (3.2.9),
µt ∈ L2(a∗, ω)W for all t > 0, and the result follows by Theorem 3.2.1.

To conclude this subsection, we make the following observation that convolution operators on
a symmetric space of noncompact type cannot be Hilbert–Schmidt.
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3.2. L2 densities of convolution semigroups

Proposition 3.2.7. Let µ be a K-bi-invariant probability measure on G, and let Tµ be the
associated convolution operator on L2(G), so that

Tµf(σ) =

∫
G
f(στ)µ(dτ), ∀f ∈ L2(G).

Then Tµ is not Hilbert–Schmidt.

Proof. Suppose Tµ is Hilbert–Schmidt. Then Tµ has an L2 integral kernel (see [65] Theorem
3.8.5, pp. 157). That is, there is kµ ∈ L2(G×G) such that

Tµf(σ) =

∫
G
f(τ)kµ(σ, τ)dτ, ∀f ∈ L2(G), σ ∈ G. (3.2.10)

Claim. µ has a square-integrable density, m ∈ L2(K|G|K), given by m(τ) = kµ(e, ·).
Proof of Claim. Let m = kµ(e, ·). That m belongs to L2(G) is clear, since kµ ∈ L2(G × G).
Moreover, if µ′ is the Borel measure with density m, then for all U ∈ B(G),

µ(U) = Tµ 1U (e) =

∫
G
1U (σ)kµ(e, σ)dσ =

∫
G
1U (σ)m(σ)dσ = µ′(U).

Hence µ(dσ) = m(σ)dσ. It remains to show that m is K-bi-invariant. For all k1, k2 ∈ K and
all U ∈ B(G),

µ(k1Uk2) =

∫
G
1U (k

−1
1 gk−1

2 )m(σ)dσ =

∫
G
1U (σ)m(k1σk2)dσ,

by unimodularity of G. But also,

µ(k1Uk2) = µ(U) =

∫
G
1U (σ)m(σ)dσ.

Since U was arbitrary, m must be K-bi-invariant. Thus m ∈ L2(K|G|K), and the claim is
proved.

Observe that by translation invariance of Haar measure, for all f ∈ L2(G),

Tµf(σ) =

∫
G
f(στ)m(τ)dτ =

∫
G
f(τ)m(σ−1τ)dτ.

Comparing with (3.2.10), it follows by the Riesz representation theorem thatm(στ) = kµ(σ, τ)
for almost all σ, τ ∈ G. In particular, the mapping (σ, τ) 7→ m(σ−1τ) belongs to L2(G×G).
That is, ∫

G

∫
G
m(σ−1τ)2dτdσ <∞.

But using translation invariance once again, we have that for all σ ∈ G,∫
G
m(σ−1τ)2dτ =

∫
G
m(τ)2dτ = ‖m‖2.
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Chapter 3. Lévy processes on Lie groups and symmetric spaces

Therefore, ∫
G

∫
G
m(σ−1τ)2dτdσ = ‖m‖2

∫
G
dσ

which cannot be finite, since G is noncompact. Hence we have reached a contradiction, and
Tµ cannot be Hilbert–Schmidt.

Remarks 3.2.8. 1. Since every trace-class operator is Hilbert–Schmidt, Tµ cannot be trace-
class either.

2. It is interesting to compare Proposition 3.2.7 with [8] Theorem 4.7.1 on page 111, in
which it is proven that a convolution operator Tµ on a compact Lie group is Hilbert–
Schmidt if and only if µ has a square-integrable density. The proof of the claim in
Proposition 3.2.7 follows a similar argument to the “only if” direction of [8] Theorem
4.7.1.

3. Replacing µ with µt, for some K-bi-invariant convolution semigroup (µt, t ≥ 0), Propo-
sition 3.2.7 says that the corresponding Hunt semigroup (Tt, t ≥ 0) cannot be Hilbert–
Schmidt; indeed, Tt cannot be Hilbert–Schmidt for any t ≥ 0.

§ 3.3 The spectrum of a self-adjoint Lévy generator

In this last section of Chapter 3, we present another new result, Theorem 3.3.1, connecting
the spectrum of a self-adjoint Lévy generator to the range of its symbol. It is a symmetric
space generalisation of a known result in Rd — see Applebaum [9] Theorem 3.2.

Let G/K be a symmetric space of noncompact type, and (µt, t ≥ 0) a K-bi-invariant con-
volution semigroup of probability measures on G. Suppose that (µt, t ≥ 0) is symmetric, in
the sense that µt

(
B−1

)
= µt(B) for all t ≥ 0. Then by [8] Theorem 5.4.1, pp. 140, the Lévy

generator A associated with (µt, t ≥ 0) is a self-adjoint linear operator on L2(K|G|K), and
takes the form

Af(σ) =
d∑

i,j=1

aijXiXjf(σ) +
1

2

∫
G
(f(στ)− 2f(σ) + f(στ−1))ν(dτ), ∀f ∈ C2

c (K|G|K),

where a = (aij) is an Ad(K)-invariant, non-negative definite, symmetric d×d matrix, and ν is
a K-bi-invariant symmetric Lévy measure. Note also that the Gangolli exponent ψ associated
with (µt, t ≥ 0) must be real-valued — indeed, by (3.1.8) and Parseval’s identity (2.4.20), for
all f, g ∈ L2(K|G|K),

〈Af, g〉 =
〈
(Af)∧, ĝ

〉
L2(a∗,ω)W

= −
∫
a∗
ψ(λ)f̂(λ)ĝ(λ)ω(dλ),

while
〈f,Ag〉 =

〈
f̂ , (Ag)∧

〉
L2(a∗,ω)W

= −
∫
a∗
ψ(λ)f̂(λ)ĝ(λ)ω(dλ).
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3.3. The spectrum of a self-adjoint Lévy generator

By self-adjointness, ψ = ψ.
Let βa(λ) again denote the φλ-eigenvalue of

∑d
i,j=1 aijXiXj , as in (3.1.5). Then

ψ(λ) = βa(λ) +

∫
G

(
Re(1− φλ(σ))

)
ν(dσ), ∀λ ∈ a∗ .

By an argument analogous to that in Theorem 5.3.4 of [8], C∞
c (K|G|K) is a core for A. Using

this, one can show that (3.1.8) holds on the entire domain of A. This together with Theorem
2.4.19 implies that the DomA is the anisotropic Sobolev space Hψ,2, to be introduced in
Section 4.1.2.
The following result is a generalisation of [9] Theorem 3.2.

Theorem 3.3.1. Spec(A) = Ran(−ψ).

Proof. First observe that by taking spherical transforms, an element α ∈ C belongs to the
resolvent set ρ(A) (c.f. equation (0.0.1)) if and only if the following condition holds:

∀f ∈ L2(K|G|K),∃u ∈ Hψ,2 s.t. (α+ ψ)û = f̂ . (3.3.1)

To prove that Ran(−ψ) ⊆ Spec(A), let α ∈ Ran(−ψ), and choose λ ∈ a∗ such that −ψ(λ) = α.
If α /∈ Spec(A), then (3.3.1) holds. Evaluating at λ, we have f̂(λ) = 0 for all f ∈ L2(K|G|K).
But since the spherical transform defines an isomorphism of L2(K|G|K) with L2(a∗, ω)W ,
this implies that every element of L2(a∗, ω)W vanishes at λ, which is false. It follows that
Ran(−ψ) ⊆ Spec(A). Taking closures, we get that Ran(−ψ) ⊆ Spec(A).
We show that Spec(A) ⊆ Ran(−ψ) by showing that C\Ran(−ψ) ⊆ ρ(A). Since −A is positive
and self-adjoint, Spec(−A) ⊆ [0,∞), and so Spec(A) ⊆ (−∞, 0]. Therefore C \ (−∞, 0] ⊆
ρ(A). Also, by the first part of the proof, Ran(−ψ) ⊆ (−∞, 0], and hence it is sufficient to
prove that (−∞, 0] \ Ran(−ψ) ⊆ ρ(A). Let α ∈ (−∞, 0] \ Ran(−ψ). There are two cases to
consider:

• Case 1: Ran(−ψ) = (−∞, 0]. Then (−∞, 0] ⊆ Spec(A) by the (⊇) direction. We have
already noted that Spec(A) ⊆ (−∞, 0], and so we are done.

• Case 2: Ran(−ψ) = (−K, 0] for some K ≥ 0. Then α ∈ (−∞,−K). Choose ε > 0 such
that α ∈ (−∞,−K − ε). Then for all λ ∈ a∗,

1

|α+ ψ(λ)|
≤ 1

ε
,

and so 1
α+ψ is a bounded map. Given f ∈ L2(K|G|K), we may define u to be the inverse

spherical transform of f̂
α+ψ and see that (3.3.1) is valid. Thus α ∈ ρ(A).

57



Chapter 4

Pseudodifferential operators that
generate sub-Feller semigroups

A strongly continuous semigroup (Tt, t ≥ 0) defined on C0(E), for some locally compact
Hausdorff space E, is called sub-Feller if for all f ∈ C0(E), and all t ≥ 0,

0 ≤ f ≤ 1 ⇒ 0 ≤ Ttf ≤ 1.

Such semigroups naturally arise as transition semigroups of sub-Feller processes on E. The
Hille–Yosida–Ray theorem (see Theorem 4.2.1) gives necessary and sufficient conditions for a
densely defined linear operatorA to be the generator of a sub-Feller semigroup. In Chapter 4 of
his Habilitationsschrift [41], Walter Hoh uses this theorem to find a class of pseudodifferential
operators on Rn that generate sub-Feller semigroups. This work built on a range of papers by
Niels Jacob, see for example [44], [45]. In this chapter, we seek to generalise Hoh and Jacob’s
approach to the setting of symmetric spaces of noncompact type.

To do this, we first require a notion of a pseudodifferential operator on G/K; this will be the
focus of Section 4.1. In Section 4.2, we introduce the Hille–Yosida–Ray theorem, and state
a theorem due to Applebaum and Ngan [16] giving necessary and sufficient conditions for
an operator on a symmetric space to satisfy the positive maximum principle. We prove that
operators satisfying the criteria of this theorem are psudodifferential operators in the sense we
have introduced, obtaining as a result a large class of examples of pseudodifferential operators
on symmetric spaces of noncompact type. Section 4.3 is concerned with seeking sufficient
conditions for a psudodifferential operator q(σ,D) to extend to the generator of a sub-Feller
semgrioup of operators on C0(K|G|K). Informed by the work of the previous section, as well
as the Hille–Yosida–Ray theorem, we will see that this amounts to finding conditions that
ensure

Ran(αI + q(σ,D)) = C0(K|G|K)

for some α > 0 (see Theorem 4.2.1 (3)).
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4.1. Operators and symbols

§ 4.1 Operators and symbols

Let G/K be a symmetric space of noncompact type. In this section, we develop a theory of
pseudodifferential operators (ΨDOs) on G/K. In keeping with previous conventions, we will
view these operators as K-bi-invariant operators on G. In the compact setting, Ruzhansky
and Turunen [61] have developed a theory of pseudodifferential operators on compact Lie
groups. Applebaum and Ngan [15, 16] applied this theory to consider certain classes of
pseudodifferential operators on compact Lie groups and symmetric spaces, as part of their
study of the positive maximum principle. In the noncompact setting, we adopt a similar
approach, and study densely defined operators q(σ,D) on L2(K|G|K) of the form

q(σ,D)f(σ) =

∫
a∗
q(σ, λ)φλ(σ)f̂(λ)ω(dλ), ∀f ∈ C∞

c (K|G|K), σ ∈ G,

where q : G × a∗ → C belongs to some suitable class of symbols, to be defined rigorously in
due course. Before we can do this, we require some results from the theory of positive and
negative definite functions.

4.1.1 Positive and negative definite functions

By viewing a∗ as a finite-dimensional real vector space, we may consider positive and negative
definite functions on a∗.

Definition 4.1.1. A mapping ψ : a∗ → C is positive definite if for all n ∈ N, λ1 . . . , λn ∈ a∗,
and c1, . . . , cn ∈ C,

n∑
i,j=1

ψ(λi − λj)cicj ≥ 0,

and negative definite if for all n ∈ N, λ1 . . . , λn ∈ a∗, and c1, . . . , cn ∈ C,
n∑

i,j=1

(ψ(λi) + ψ(λj)− ψ(λi − λj))cicj ≥ 0. (4.1.1)

Remarks 4.1.2. 1. Some authors use the term conditionally negative definite where we use
negative definite.

2. One can check that (4.1.1) is equivalent to the condition that
n∑

i,j=1

ψ(λi − λj)cicj ≤ 0 whenever
n∑
i=1

ci = 0 (4.1.2)

(hint: for n ≥ 2, replace cn with −c1 − . . .− cn−1 in (4.1.2)).

We have already seen in Section 2.4.2 that φλ is positive definite as a function on G. In fact,
(λ, σ) 7→ φλ(σ) is positive definite in both of its arguments.
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Chapter 4. Pseudodifferential Operators

Proposition 4.1.3. 1. For all σ ∈ G, λ 7→ φλ(σ) is positive definite.

2. Let µ be a finite K-bi-invariant Borel measure. Then µ̂ is positive definite.

Proof. Let σ ∈ G, n ∈ N, λ1, . . . , λn ∈ a∗, and c1, . . . , cn ∈ C, and note that
n∑

α,β=1

cαcβe
(i(λα−λβ)+ρ)A(kσ) =

∣∣∣∣∣
n∑

α=1

cαe
(iλα+

ρ
2
)A(kσ)

∣∣∣∣∣
2

≥ 0.

Therefore, by the Harish-Chandra integral formula (2.4.10),
n∑

α,β=1

cαcβφλα−λβ (σ) =

∫
K

n∑
α,β=1

cαcβe
(i(λα−λβ)+ρ)A(kσ)dk ≥ 0. (4.1.3)

Proposition 4.1.3 (1) follows.
For Proposition 4.1.3 (2), observe that since (4.1.3) holds for all c1, . . . , cn ∈ C, we can replace
each cj by its complex conjugate. Therefore,

∑n
α,β=1 cαcβφλα−λβ (σ) ≥ 0 for all σ ∈ G, n ∈ N,

λ1, . . . , λn ∈ a∗, and c1, . . . , cn ∈ C. Taking complex conjugates,
n∑

α,β=1

cαcβφ−(λα−λβ)(σ) =

n∑
α,β=1

cαcβφλα−λβ ≥ 0,

for all σ ∈ G, n ∈ N, λ1, . . . , λn ∈ a∗, and c1, . . . , cn ∈ C, and hence
n∑

α,β=1

cαcβµ̂(λα − λβ) =

∫
a∗

n∑
α,β=1

cαcβφ−(λα−λβ)(σ)µ(dσ) ≥ 0.

By choosing a basis of a∗, we may identify it with Rm, and apply classical results about
positive (resp. negative) definite functions on Euclidean space to functions on a∗, to obtain
results about positive (resp. negative) definite functions in this new setting.
One useful application of this is to the Schoenberg correspondence: a map ψ : a∗ → C is
negative definite if and only if ψ(0) ≥ 0 and e−tψ is positive definite for all t > 0. This is
immediate by the Schoenberg correspondence on Rm — see [18] page 41 for a proof.
Proposition 4.1.4. Let ψ : a∗ → C be the Gangolli exponent of a K-bi-invariant convolution
semigroup on G. Then ψ is negative definite.

Proof. Let (µt, t ≥ 0) be a K-bi-invariant convolution semigroup on G with Gangolli exponent
ψ. By Proposition 4.1.3, for each t ≥ 0, µ̂t is positive definite. Therefore, by the Schoenberg
correspondence, for each t ≥ 0, there is a negative definite function ψt : a

∗ → C such that
ψt(0) ≥ 0 and µ̂t = e−ψt . But since (µt, t ≥ 0) is a convolution semigroup,

µ̂t = e−tψ1 , ∀t ≥ 0.

By uniqueness of Gangolli exponents, ψ = ψ1, which is a negative definite function.
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4.1. Operators and symbols

We finish this subsection with a collection of results about negative definite functions, which
will be useful in later sections.

Proposition 4.1.5. Let ψ : a∗ → C be a continuous negative definite function. Then

1. For all λ, η ∈ a∗, ∣∣∣√|ψ(λ)| −
√

|ψ(η)|
∣∣∣ ≤√|ψ(λ− η)|

2. (Generalised Peetre inequality) For all s ∈ R and λ, η ∈ a∗,(
1 + |ψ(λ)|
1 + |ψ(η)|

)s
≤ 2|s|(1 + |ψ(λ− η)|)|s|.

3. There is a constant cψ > 0 such that

|ψ(λ)| ≤ cψ(1 + |λ|2) ∀λ ∈ a∗ . (4.1.4)

Proof. These results follow from their Euclidean analogues (see [41] pp. 16), by identifying a∗

with Rm through a choice of basis.

4.1.2 Spherical anisotropic Sobolev spaces

First introduced by Niels Jacob (see for example [45]), and developed further by Hoh in
[41], anisotropic Sobolev spaces are used in the Euclidean space setting to consider certain
regularity properties for Lévy-type operators and generators of Feller processes (Lévy-type
operators in this case are analogous to Gangolli operators on G/K). In this section, we define
anisotropic Sobolev spaces on symmetric spaces of noncompact type, and prove results that
will be useful in Section 4.3.
Suppose ψ is a real-valued continuous negative definite function, and let s ∈ R. We define
the (spherical) anisotropic Sobolev space associated with ψ and s to be

Hψ,s :=

{
u ∈ S ′(K|G|K) :

∫
G
(1 + ψ(λ))s|û(λ)|2ω(dλ) <∞

}
,

where S ′(K|G|K) denotes the space of K-bi-invariant tempered distributions on G, defined
in §2.4.3.
One can check that each Hψ,s is a Hilbert space with respect to the inner product

〈u, v〉ψ,s :=
∫
a∗
(1 + ψ(λ))sû(λ)v̂(λ)ω(dλ), ∀u, v ∈ Hψ,s.

These spaces are a generalisation of the anisotropic Sobolev spaces first introduced by Niels
Jacob, see [44], and developed further by Hoh, see [41]. For the special case ψ(λ) = |ρ|2+ |λ|2,
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Chapter 4. Pseudodifferential Operators

we will write Hψ,s = Hs. Note also that Hψ,0 = L2(K|G|K), by the Plancherel theorem. In
this case, we will omit subscripts and just write 〈·, ·〉 for the L2 inner product.
Note that ψ is a non-negative function, since it is negative definite and real-valued. We impose
an additional assumption, namely that there exist constants r, c > 0 such that

ψ(λ) ≥ c|λ|2r ∀λ ∈ a∗, |λ| ≥ 1. (4.1.5)

Analogous assumptions are made in [45] (1.5) and [41] (4.2), and the role of (4.1.5) will be
similar to its role therein.

Theorem 4.1.6. Let ψ be a real-valued, continuous negative definite symbol, satisfying (4.1.5).
Then

1. C∞
c (K|G|K) and S(K|G|K) are dense in each Hψ,s, and we have continuous embeddings

S(K|G|K) ↪→ Hψ,s ↪→ S ′(K|G|K)

2. We have continuous embeddings

Hψ,s2 ↪→ Hψ,s1

whenever s1, s2 ∈ R with s2 ≥ s1. In particular, Hψ,s ↪→ L2(K|G|K) for all s ≥ 0.

3. Under the standard identification of L2(K|G|K) with its dual, the dual space of each
Hψ,s is isomorphic to Hψ,−s, with

‖u‖ψ,−s = sup

{
|〈u, v〉|
‖v‖ψ,s

: v ∈ C∞
c (K|G|K), v 6= 0

}
, (4.1.6)

for all s ∈ R.

4. For r > 0 as in equation (4.1.5), we have continuous embeddings

Hs ↪→ Hψ,s ↪→ Hrs,

for all s ≥ 0.

5. Let s3 > s2 > s1. Then for all ε > 0, there is c(ε) ≥ 0 such that

‖u‖ψ,s2 ≤ ε‖u‖ψ,s3 + c(ε)‖u‖ψ,s1 (4.1.7)

for all u ∈ Hψ,s3.

6. There exist continuous embeddings

Hψ,s ↪→ C0(K|G|K)

for all s > d
r , where d = dim(G/K).
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4.1. Operators and symbols

For brevity, let
〈λ〉 :=

√
1 + |λ|2, ∀λ ∈ a∗, (4.1.8)

and
Ψ(λ) :=

√
1 + ψ(λ), ∀λ ∈ a∗ . (4.1.9)

The proof of Theorem 4.1.6 will be given after the next lemma.

Lemma 4.1.7. Let M > d := dim(G/K). Then 〈·〉−M ∈ L1(a∗, ω).

Proof. First observe that
∫
Rd〈ξ〉

−Mdξ < ∞, for all M > d. Indeed, for R > 0, then using
spherical polar coordinates (r, θ) ∈ [0,∞)× Sd−1,∫

BR(0)
〈ξ〉−Mdξ = Vd−1

∫ R

0

rd−1

(1 + r2)M/2
dr = Vd−1

∫ R

0

(r2)(d−1)/2

(1 + r2)M/2
dr

≤ Vd−1

∫ R

0

(1 + r2)(d−1)/2

(1 + r2)M/2
dr

= Vd−1

∫ R

0

(
1√

1 + r2

)M−d+1

dr,

where V d−1 denotes the volume of the unit (d− 1)-ball in Rd. Assuming R > 1 and M > d,
we then get∫

BR(0)
〈ξ〉−Mdξ ≤ Vd−1

(∫ 1

0

(
1√

1 + r2

)M−d+1

dr +

∫ R

1

(
1√

1 + r2

)M−d+1

dr

)

≤ Vd−1

(∫ 1

0
dr +

∫ R

1

(
1√

1− 2r + r2

)M−d+1

dr

)

= Vd−1

(
1 +

∫ R

1
(r − 1)−(M−d+1)dr

)
= Vd−1

(
1− (R− 1)−(M−d)

M − d

)
(4.1.10)

Since M > d, the expression on the last line of (4.1.10) converges as R → ∞, and thus∫
Rd〈ξ〉

−Mdξ <∞.

Next, writing p = dimN
2 , we have d = dim a∗+2p, and hence

∫
a∗〈λ〉

−M+2pdλ < ∞ whenever
M > d. Noting (2.4.21), we may choose C > 0 such that

| c(λ)|−1 ≤ C(1 + |λ|2)p ∀λ ∈ a∗ .

Then ∫
a∗
〈λ〉−Mω(dλ) =

∫
a∗
〈λ〉−M | c(λ)|−2dλ ≤ C

∫
a∗
〈λ〉−M+2pdλ <∞,

whenever M > d.
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Chapter 4. Pseudodifferential Operators

Proof of Theorem 4.1.6. Much of this theorem may be proved by adapting proofs from the
Rd case.

1. Following the proof of Theorem 3.10.3 on page 208 of Jacob [46], let Lψ,s denote the
space of all measurable functions v on a∗ for which Ψsv ∈ L2(a∗, ω)W . Each Lψ,s is a
Hilbert space, with inner product given by

〈u, v〉 =
∫
a∗
Ψ(λ)2su(λ)v(λ)ω(dλ), ∀u, v ∈ Lψ,s.

By Proposition 4.1.5 (3), there is a constant c > 0 such that

Ψ(λ)s ≤ c〈λ〉|s| ∀λ ∈ a∗ . (4.1.11)

It follows that S(a∗)W ↪→ Lψ,s in the sense of continuous embeddings. Indeed, that
S(a∗)W ⊆ Lψ,s is clear by (4.1.11), and if (vn) is a sequence in S(a∗)W converging to
v ∈ S(a∗)W , then

‖vn − v‖Lψ,s = ‖Ψs(vn − v)‖L2(a∗,ω) ≤ c‖〈·〉|s|(vn − v)‖L2(a∗,ω)

= c

∫
a∗
〈λ〉2s|vn(λ)− v(λ)|ω(dλ),

for all n ∈ N. But then by Proposition 2.4.20, writing p = dimN
2 ,

‖vn − v‖Lψ,s ≤ cc0

∫
a∗
〈λ〉2s(C1 + C2|λ|p)|vn(λ)− v(λ)|dλ

≤ c′
∫
a∗
〈λ〉2s+p|vn(λ)− v(λ)|dλ

= c′
∫
a∗
〈λ〉−(d+1) · 〈λ〉2s+p+d+1|vn(λ)− v(λ)|dλ,

for some constant c′ > 0. Now, 〈·〉−(d+1) ∈ L1(a∗, ω) by Lemma 4.1.7, and

sup
λ∈a∗

〈λ〉2s+p+d+1|vn(λ)− v(λ)|

is finite and tends to 0 as n→ ∞, since vn → v in the Schwartz space topology. Thus

‖vn − v‖Lψ,s ≤ c′
∥∥∥〈·〉−(d+1)

∥∥∥
L1(a∗,ω)

sup
λ∈a∗

〈λ〉2s+p+d+1|vn(λ)− v(λ)|dλ→ 0

as n→ ∞. That is, vn → v as a sequence in Lψ,s.
To prove Lψ,s ↪→ S ′(a∗)W , observe that by Cauchy–Schwarz, for all φ ∈ S(a∗)W and
v ∈ Lψ,s,∣∣∣∣∫

a∗
φ(λ)v(λ)ω(dλ)

∣∣∣∣ ≤ ∥∥Ψ−sφ
∥∥
L2(a∗,ω)

‖Ψsv‖L2(a∗,ω) ≤ c
∥∥∥〈·〉|s|φ∥∥∥

L2(a∗,ω)
‖v‖Lψ,s .
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It follows that
S(a∗)W ↪→ Lψ,s ↪→ S ′(a∗)W

in the sense of continuous embeddings. The spherical transform maps S(K|G|K) bi-
jectively onto S(a∗)W , and S ′(K|G|K) bijectively onto S ′(a∗)W . Theorem 4.1.6 (1)
follows.

2. Suppose s2 ≥ s1. Then Ψs2 ≥ Ψs1 , since ψ ≥ 0. Therefore, for all u ∈ C∞
c (K|G|K),

‖u‖ψ,s1 = ‖Ψs1 û‖ ≤ ‖Ψs2 û‖ = ‖u‖ψ,s2 . (4.1.12)

By density of C∞
c (K|G|K) in each of the spaces Hψ,s1 and Hψ,s2 , it follows that Hψ,s2 ⊆

Hψ,s1 , and (4.1.12) is valid for all u ∈ Hψ,s2 .

3. By symmetry, it is sufficient to consider s ≥ 0, so that Hψ,s ⊆ L2(K|G|K). Under the
standard identification of L2(K|G|K) with its dual, each u ∈ Hψ,s is identified with the
functional Fu defined by Fu(f) = 〈u, f〉. Restriction of Fu to Hψ,s yields an element of
(Hψ,s)′ if and only if u ∈ Hψ,−s, since

Fu(f) = 〈u, f〉 = 〈Ψ−su,Ψsf〉L2(a∗,ω)W .

Equation 4.1.6 is immediate from the definition of the operator norm.

4. Let s ≥ 0, and observe that by (4.1.5) and Proposition 4.1.5 (3), there are constants
c1, c2 > 0 such that

c1〈λ〉rs ≤ Ψ(λ)s ≤ c2〈λ〉s,
for all λ ∈ a∗. Hence Hs ⊆ Hψ,s ⊆ Hrs, with

c1‖u‖rs ≤ ‖u‖ψ,s ≤ c2‖u‖s

for all u ∈ Hs.

5. To prove (4.1.7), let ε > 0 and s3 > s2 > s1. Observe that

Ψ(λ)s2−s1 − εΨ(λ)s3−s1 → −∞

as |λ| → ∞. Indeed, for |λ| large, −εψ(λ)(s3−s1)/2 dominates this expression, and by
(4.1.5),

−εψ(λ)(s3−s2)/2 ≤ −εc
(
|ρ|2 + |λ|2

)r(s3−s2) → −∞
as |λ| → ∞.
The mapping Ψs2−s1 − εΨs3−s1 is continuous, and hence is bounded above. Let c(ε) > 0
such that

Ψ(λ)s2−s1 − εΨ(λ)s3−s1 ≤ c(ε),

for all λ ∈ a∗. Then
Ψs2 ≤ εΨs3 + c(ε)Ψs1 ,

and so for all u ∈ Hψ,s3 ,

‖u‖ψ,s2 = ‖Ψs2 û‖ ≤ ‖(εΨs3 + c(ε)Ψs1) û‖
≤ ε‖Ψs3 û‖+ c(ε)‖Ψs1 û‖ = ε‖u‖ψ,s3 + c(ε)‖u‖ψ,s1 .
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6. By Theorem 4.1.6 (4) above, it suffices to prove that there is a continuous embedding

Hs ↪→ C0(K|G|K)

for all s > d, where d = dim(G/K). Suppose s > d, and observe that by Lemma 4.1.7,
we have 〈·〉−s ∈ L2(a∗, ω). Given u ∈ S(K|G|K), we have for all σ ∈ G,

|u(σ)| =
∣∣∣∣∫

a∗
φλ(σ)û(λ)ω(dλ)

∣∣∣∣ ≤ ∫
a∗
|û(λ)|ω(dλ)

=

∫
a∗
〈λ〉−s〈λ〉s|û(λ)|ω(dλ),

by the spherical inversion formula. But then by the Cauchy–Schwarz inequality, for all
σ ∈ G,

|u(σ)| ≤ ‖〈·〉−s‖L2(a∗,ω)‖〈·〉sû‖L2(a∗,ω) = C‖u‖s,

where C = ‖〈·〉−s‖L2(a∗,ω). It follows that

‖u‖C0(K|G|K) := sup
σ∈G

|u(σ)| ≤ C‖u‖s. (4.1.13)

Let u ∈ Hs, and suppose (un) is a sequence in S(K|G|K) converging to u in Hs. Then
(un) is a Cauchy sequence in Hs, and, by applying (4.1.13) to uj − uk (j, k ∈ N), it is
immediate that (un) is also Cauchy as a sequence in C0(K|G|K). By completeness, (un)
converges to some element u0 ∈ C0(K|G|K). Recall that we have continuous embed-
dings Hs ↪→ L2(K|G|K) and C0(K|G|K) ↪→ L2(K|G|K). Therefore, as a sequence in
L2(K|G|K), we have un → u and un → u0. It follows that u = u0 almost everywhere.

4.1.3 Pseudodifferential operators and their symbols

A measurable mapping q : G× a∗ → C will be called a negative definite symbol if it is locally
bounded, and if for each σ ∈ G, q(σ, ·) is negative definite and continuous. If in addition q is
continuous in its first argument, we will call q a continuous negative definite symbol.
Let B(G) denote the set of all Borel measurable functions on G.

Theorem 4.1.8. Let q be a negative definite symbol, and for each f ∈ C∞
c (K|G|K) and

σ ∈ G, define
q(σ,D)f(σ) =

∫
a∗
f̂(λ)φλ(σ)q(σ, λ)ω(dλ). (4.1.14)

Then

1. Equation (4.1.14) defines a linear operator q(σ,D) : C∞
c (K|G|K) → B(G).

2. If q is a continuous negative definite symbol, then q(σ,D) : C∞
c (K|G|K) → C(G).

66



4.1. Operators and symbols

3. If q is K-bi-invariant in its first argument, then q(σ,D)f is K-bi-invariant for all
f ∈ C∞

c (K|G|K).

Proof. 1. First observe that (4.1.14) is well-defined. By the spherical Paley–Wiener theo-
rem (Theorem 2.4.21), given f ∈ C∞

c (K|G|K), there exists for each n ∈ N a constant
kn > 0 such that ∣∣∣f̂(λ)∣∣∣ ≤ kn(1 + |λ|)−n, ∀λ ∈ a∗

Moreover, for each σ ∈ G, q(σ, ·) is locally bounded and negative definite, and so by
Proposition 4.1.5 (3), for all σ ∈ G we may choose κσ > 0 such that

|q(σ, λ)| ≤ κσ(1 + |λ|2), ∀λ ∈ a∗ .

Recall that ω(dλ) = c0| c(λ)|−2dλ, where c is Harish-Chandra’s c-function, and c0 > 0
is a constant. Let C1, C2 > 0 be the constants from Proposition 2.4.20, then

| c(λ)|−1 ≤ C1 + C2|λ|p, ∀λ ∈ a∗,

where p = dimN
2 . By Proposition 2.4.11, |φλ(σ)| ≤ 1 for all λ ∈ a∗ and σ ∈ G. Therefore,

for all σ ∈ G and n ∈ N, there is κn,σ > 0 such that

|f̂(λ)φλ(σ)q(σ, λ)|| c(λ)|−2 ≤ κn,σ
(1 + |λ|2)(C1 + C2|λ|p)2

(1 + |λ|)n
. (4.1.15)

For n sufficiently large, the right-hand side of (4.1.15) is integrable over a∗, and hence∫
a∗
|f̂(λ)φλ(σ)q(σ, λ)|ω(dλ) ≤ κn,σ

∫
a∗

(1 + |λ|2)(C1 + C2|λ|p)2

(1 + |λ|)n
dλ <∞.

To see that q(σ,D)f is measurable, let C ⊆ G be a compact set, and choose a constant
κC > 0 such that

|q(σ, λ)| ≤ κC(1 + |λ|2), ∀λ ∈ a∗, σ ∈ C. (4.1.16)

The map (σ, λ) 7→ 1C(σ)q(σ, λ)f̂(λ) is measurable, and it is also dσ⊗ ω(dλ)-integrable,
since

|1C(σ)q(σ, λ)f̂(λ)| ≤ κC 1C(σ)(1 + |λ|2)|f̂(λ)|,

for all σ ∈ G and λ ∈ a∗. Hence

σ 7→
∫
a∗
1C(σ)q(σ, λ)f̂(λ)ω(dλ) (4.1.17)

is measurable for all compact sets C ⊆ G. Let (Cn) be an increasing sequence of compact
sets with Cn ↑ G as n → ∞. This is always possible, since G is a connected Lie group,
and so is second countable. Alternatively, it may be shown directly, for example by
taking Cn := Cn for each n ∈ N, where C is some compact neighbourhood of e. Apply
(4.1.17) to each Cn. We have that σ 7→ 1Cn(σ)q(σ,D)f(σ) is measurable for all n ∈ N,
and hence, letting n→ ∞, so is σ 7→ q(σ,D)f(σ).
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2. Suppose q is a continuous negative definite symbol, and let f ∈ C∞
c (K|G|K). Let C ⊆ G

be compact, and choose κC > 0 satisfying (4.1.16) once again. If σ, τ ∈ C, then

|q(σ,D)f(σ)− q(τ,D)f(τ)| ≤
∫
a∗

∣∣∣f̂(λ)∣∣∣ ∣∣q(σ, λ)φλ(σ)− q(τ, λ)φλ(τ))
∣∣ω(dλ).

The integrand on the right hand side is bounded above by the map 2κC(1 + | · |2)|f̂ |,
and since f̂ is rapidly decreasing, this map belongs to L1(a∗, ω). An application of
the dominated convergence theorem then implies σ 7→ q(σ,D)f(σ) is continuous on C.
Since C was arbitrary, Theorem 4.1.8 (2) follows.

3. This is immediate from the K-bi-invariance of each spherical function φλ.

Definition 4.1.9. Operators of the form (4.1.14), where q is a negative definite symbol, will
be called (spherical) pseudodifferential operators on G.

An important subclass of these operators first appeared for irreducible symmetric spaces in
[7], with the symbol arising as the Gangolli exponent of a K-bi-invariant Lévy process. Note
that just as in the classical Euclidean case, the symbols arising from Lévy processes are
spatially independent, in the sense that they are constant in their first argument. We explore
some specific examples of this below. In Section 4.2, we introduce a large class of examples
pseudodifferential operators with spatial dependence.

Example 4.1.10. 1. Diffusion operators with constant coefficients. Since G is semisimple,
the generator of a K-bi-invariant diffusion-type Lévy process Y on G takes the form

A :=

d∑
i,j=1

aijXiXj ,

where a = (aij) is an Ad(K)-invariant, non-negative definite symmetric d × d matrix
(c.f. (3.1.4)). By Proposition 3.1.13, A ∈ DK(G); let β(A, λ) denote the φλ-eigenvalue
of A, for each λ ∈ a∗. Note that λ 7→ −β(A, λ) is the Gangolli exponent of Y .
We claim that (σ, λ) 7→ −β(A, λ) is a continuous negative definite symbol, and that
the associated pseudodifferential operator is −A. To see this, let (µt, t ≥ 0) denote
the convolution semigroup generated by A, and let (Tt, t ≥ 0) be the associated Hunt
semigroup (c.f. Definition 2.4.4). Then, given f ∈ C∞

c (K|G|K) and σ ∈ G,

Af(σ) = d

dt
Ttf(σ)

∣∣∣∣
t=0

. (4.1.18)

By the spherical inversion formula (2.4.17), for t ≥ 0,

Ttf(σ) =

∫
G
f(στ)µt(dτ) =

∫
G

∫
a∗
f̂(λ)φλ(στ)ω(dλ)µt(dτ). (4.1.19)
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Since f̂ ∈ S(a∗)W and |φλ| ≤ 1, a Fubini argument may be used to exchange the order
of integration in (4.1.19) and conclude that

Ttf(σ) =

∫
a∗
f̂(λ)Ttφλ(σ)ω(dλ).

By (3.1.6), Ttφλ = etβ(A,λ)φλ, and thus

Ttf(σ) =

∫
a∗
f̂(λ)etβ(A,λ)φλ(σ)ω(dλ).

Now, by (4.1.18),

Af(σ) = lim
t→0

∫
a∗
f̂(λ)

(
etβ(A,λ) − 1

t

)
φλ(σ)ω(dλ). (4.1.20)

Now, if t > 0 and λ ∈ a∗, then∣∣∣∣∣f̂(λ)
(
etβ(A,λ) − 1

t

)
φλ(σ)

∣∣∣∣∣ ≤ ∣∣∣f̂(λ)∣∣∣
∣∣∣∣∣etβ(A,λ) − 1

t

∣∣∣∣∣ ≤ ∣∣∣f̂(λ)∣∣∣ |β(A, λ)|.
Moreover, |f̂ ||β(A, ·)| ∈ L1(a∗, ω)W , since f̂ ∈ S(a∗)W , and β(A, ·) is a W -invariant
polynomial function. By the dominated convergence theorem, we may bring the limit
through the integral sign in (4.1.20) to conclude that

Af(σ) =
∫
a∗
f̂(λ) lim

t→0

(
etβ(A,λ) − 1

t

)
φλ(σ)ω(dλ)

=

∫
a∗
f̂(λ)φλ(σ)β(A, λ)ω(dλ)

(4.1.21)

for all f ∈ C∞
c (K|G|K) and σ ∈ G.

2. Brownian motion. As a special case of the above, −∆ is a pseudodifferential operator
with symbol |ρ|2 + |λ|2.

3. Killed diffusions. With minimal effort, the results of Example 4.1.10 (1) may be extended
to include killing. To see this, note first that such operators are always of the formA−cI,
where A is a diffusion operator of the form considered above, and c ≥ 0. The associated
φλ-eigenvalues must satisfy

β(A− c, λ) = β(A, λ)− c,

and hence using (4.1.21) as well as the spherical inversion theorem,

(A− c)f(σ) =

∫
a∗
f̂(λ)φλ(σ)β(A, λ)ω(dλ)− cf(σ)

=

∫
a∗
f̂(λ)φλ(σ)β(A− c, λ)ω(dλ),

for all f ∈ C∞
c (K|G|K) and σ ∈ G.
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Chapter 4. Pseudodifferential Operators

4. Lévy generators. More generally, if A is the infinitesimal generator of a K-bi-invariant
Lévy process on G, and if ψ is the corresponding Gangolli exponent, then (σ, λ) 7→ ψ(λ)
is a continuous negative definite symbol, and −A is the corresponding pseudodifferential
operator. This is proven in [7] Theorem 5.2 in the case where G/K is irreducible, and
later in this work as a special case of Theorem 4.2.7.

§ 4.2 Gangolli operators and the Hille–Yosida–Ray theorem

We will soon define the class of pseudodifferential operators that will be of primary interest,
namely, the Gangolli operators. We motivate their definition with a short discussion of the
Hille–Yosida–Ray theorem, and later prove that they are pseudodifferential operators in the
sense of Definition 4.1.9. We finish the section with some examples.

Given a locally compact Hausdorff space E, a linear operator A : Dom(A) → F(E) is said
to satisfy the positive maximum principle, if for all f ∈ Dom(A) and x0 ∈ E such that
f(x0) = supx∈E f(x) ≥ 0, we have Af(x0) ≤ 0.

The following theorem is an extended version of the Hille–Yosida–Ray theorem, and fully
characterises the operators that extend to generators of sub-Feller semigroups on C0(E).
Similar versions in which E = Rd may found in [41], pp. 53, and [46], pp. 333. For a proof in
the general case, see [27], pp. 165.

Theorem 4.2.1 (Hille–Yosida–Ray). A linear operator (A,Dom(A)) on C0(E) is closable
and its closure generates a sub-Feller semigroup on C0(E) if and only if the following is
satisfied:

1. Dom(A) is dense in C0(E),

2. A satisfies the positive maximum principle, and

3. There exists α > 0 such that Ran(αI −A) is dense in C0(E).

In their papers [15, 16], Applebaum and Ngan found necessary and sufficient conditions for
an operator defined on C∞

c (K|G|K) to satisfy Theorem 4.2.1 (2), for the cases E = G, G/K
and K|G|K. We will focus primarily on the case E = K|G|K, since this is the realm in which
the spherical transform is available.

A mapping ν : G × B(G) → [0,∞] will be called a K-bi-invariant Lévy kernel if it is K-bi-
invariant in its first argument, and if for all σ ∈ G, ν(σ, ·) is a K-bi-invariant Lévy measure.
Fix a system of exponential coordinate functions, as defined in Definition 3.1.8, and adopt all
of the notation conventions from that definition.

Definition 4.2.2. An operator A : C∞
c (K|G|K) → F(G) will be called a Gangolli operator

if there exist mappings c, ai,j ∈ F(K|G|K) (1 ≤ i, j ≤ d), as well as a K-bi-invariant Lévy
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4.2. Gangolli operators and Hille–Yosida–Ray

kernel ν, such that for all f ∈ C∞
c (K|G|K) and σ ∈ G,

Af(σ) = −c(σ)f(σ) +
d∑

i,j=1

ai,j(σ)XiXjf(σ)

+

∫
G

(
f(στ)− f(σ)−

d∑
i=1

xi(τ)Xif(σ)

)
ν(σ, dτ),

(4.2.1)

and if for all σ ∈ G,

1. c(σ) ≥ 0.

2. a(σ) := (ai,j(σ)) is an Ad(K)-invariant, non-negative definite, symmetric matrix.

Remarks 4.2.3. 1. Gangolli operators were first introduced in [16] for compact symmetric
spaces and with a more restrictive form of (4.2.1). By Theorem 3.2 (3) of [16], Gangolli
operators map into F(K|G|K), and satisfy the positive maximum principle.

2. Equation (4.2.1) may be viewed as a spatially dependent generalisation of (3.1.4), with
an additional killing term c. As with previously, the absence of a drift term is due to
the semisimplicity of G.

For a Gangolli operator A given by (4.2.1), and for each σ ∈ G, we will denote by Aσ the
operator obtained by freezing the coefficients of A at σ. Explicitly, for all f ∈ C∞

c (K|G|K)
and σ′ ∈ G,

Aσf(σ′) = −c(σ)f(σ′) +
d∑

i,j=1

ai,j(σ)XiXjf(σ
′)

+

∫
G

(
f(σ′τ)− f(σ′)−

d∑
i=1

xi(τ)Xif(σ
′)

)
ν(σ, dτ).

For each σ ∈ G, Aσ is the generator of a killed K-bi-invariant Lévy process on G. We continue
to adopt the notation Aσ

D for the diffusion part, and β(Aσ
D, λ) for the φλ-eigenvalue of Aσ

D.
Consider the following continuity conditions on the coefficients (b, a, ν) of A:

(c1) c, aij are continuous, for 1 ≤ i, j ≤ d.

(c2) For each f ∈ Cb(K|G|K), the mappings σ 7→
∫
U f(τ)

∑d
i=1 xi(τ)

2ν(σ, dτ) and σ 7→∫
Uc f(τ)ν(σ, dτ) are continuous from G to [0,∞).

Note that these conditions were first introduced in [15] Theorem 3.7.

Lemma 4.2.4. Let A be a Gangolli operator, and define q : G× a∗ → C by

q(σ, λ) = −β(Aσ
D, λ) +

∫
G
(1− φλ(τ))ν(σ, dτ), ∀σ ∈ G,λ ∈ a∗ . (4.2.2)

Suppose (c1) and (c2) hold. Then q is a continuous negative definite symbol.
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Chapter 4. Pseudodifferential Operators

Proof. That q is continuous in its first argument is immediate from (c1) and (c2). Fix σ ∈ G
and consider q(σ, ·) − c(σ). By Theorem 3.1.10, there is a convolution semigroup (µσt , t ≥ 0)
generated by Aσ + c(σ), and by Theorem 3.1.14, the corresponding Gangolli exponent is a
continuous negative definite mapping on a∗, given by

ψσ(λ) = q(σ, λ)− c(σ) ∀λ ∈ a∗ .

Therefore q(σ, ·) is continuous, and negative definite since for fixed σ, c(σ) is a non-negative
constant.

Definition 4.2.5. The symbols described by Lemma 4.2.4 will be referred to as Gangolli
symbols, due to their connection with Gangolli’s Lévy–Khinchine formula (Theorem 3.1.14).

Remarks 4.2.6. 1. Gangolli exponents are precisely those Gangolli symbols that are con-
stant in their first argument.

2. The set of all Gangolli symbols forms a convex cone.

Theorem 4.2.7. Let A and q be as in Lemma 4.2.4. Then −A is a pseudodifferential operator
with symbol q.

Proof. By Theorem 4.1.8 and Lemma 4.2.4, f 7→ −
∫
a∗ f̂(λ)φλ(σ)q(σ, λ)ω(dλ) is a well-defined

mapping from C∞
c (K|G|K) → C(G). We show that it is equal to A.

Let AJ denote the non-local (i.e. jump) part of A, so that

AJf(σ) =

∫
G

(
f(στ)− f(σ)−

d∑
i=1

xi(τ)Xif(σ)

)
ν(σ, dτ) (4.2.3)

for all f ∈ C∞
c (K|G|K) and σ ∈ G. We then have

Af(σ) = Aσ
Df(σ) +AJf(σ), ∀f ∈ C∞

c (K|G|K), σ ∈ G. (4.2.4)

For the diffusion part of A, note that for each σ ∈ G, Aσ
D is an operator of the form considered

in Example 4.1.10 (3), and in particular satisfies

Aσ
Df(σ) =

∫
a∗
f̂(λ)β(Aσ

D, λ)φλ(σ)ω(dλ), (4.2.5)

for all f ∈ C∞
c (K|G|K).

Consider now the jump part AJ . By Lemma 2.3 on page 39 of Liao [54], for each fixed σ ∈ G,
and for all f ∈ C2

b (K|G|K), the integrand on the right-hand side of (4.2.3) is absolutely
integrable with respect to ν(σ, ·). Therefore, (4.2.3) may be used to extend the domain of AJ

so as to include C2
b (K|G|K). We do so now, and (without any loss of precision) denote the

extension by AJ .
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4.2. Gangolli operators and Hille–Yosida–Ray

Let us proceed similarly to Applebaum and Ngan [16] Section 5, and define for each σ ∈ G a
linear functional AJ,σ : C2

b (K|G|K) → C by

AJ,σf := AJ

(
L−1
σ f

)
(σ), ∀σ ∈ G, f ∈ C2

b (K|G|K).

Then AJf(σ) = AJ,σ(Lσf), and hence

AJ,σφλ =

∫
G

(
L−1
σ φλ(στ)− L−1

σ φλ(σ)−
d∑
i=1

xi(τ)XiL
−1
σ φλ(σ)

)
ν(σ, dτ),

for all σ ∈ G and f ∈ C2
b (K|G|K). Moreover, the integrand on the right-hand side is

absolutely ν(σ, ·)-integrable, for all λ ∈ a∗ and σ ∈ G. Since φλ(e) = 1, and Xφλ(e) = 0 for
all X ∈ p (Theorem 5.3 (b) of [54]),

L−1
σ φλ(στ)− L−1

σ φλ(σ)−
d∑
i=1

xi(τ)XiL
−1
σ φλ(σ) = φλ(τ)− 1.

Thus, for all λ ∈ a∗ and σ ∈ G, φλ − 1 is absolutely ν(σ, ·)-integrable, and

AJ,σφλ =

∫
G
(φλ(τ)− 1) ν(σ, dτ). (4.2.6)

A standard argument involving the functional equation

φλ(σ)φλ(τ) =

∫
K
φλ(σkτ)dk, ∀λ ∈ a∗, σ, τ ∈ G,

for spherical functions (see [37] Proposition 2.2, pp. 400) may now be applied in precisely the
same way as in [16] (5.3)–(5.7), to infer that

AJφλ(σ) =

∫
G
(φλ(στ)− φλ(σ))ν(σ, dτ) =

∫
G
(φλ(τ)− 1)φλ(σ)ν(σ, dτ) (4.2.7)

for all σ ∈ G and λ ∈ a∗.
Finally, let f ∈ C∞

c (K|G|K), and observe that by the spherical inversion formula

AJf(σ) =

∫
G

(∫
a∗
φλ(στ)f̂(λ)ω(dλ)−

∫
a∗
φλ(σ)f̂(λ)ω(dλ)

−
d∑
i=1

xi(τ)Xi

[∫
a∗
φλf̂(λ)ω(dλ)

]
(σ)

)
ν(σ, dτ)

(4.2.8)

Claim. For all X ∈ p and f ∈ C∞
c (K|G|K),

X

[∫
a∗
φλf̂(λ)ω(dλ)

]
(σ) =

∫
a∗
Xφλ(σ)f̂(λ)ω(dλ).
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Proof of Claim. This is a fairly standard differentiation-through-integration-sign argument.
First note that by translation invariance of X, it suffices to prove the claim for σ = e. Now,

X

[∫
a∗
φλf̂(λ)ω(dλ)

]
(e) =

d

dt

∫
a∗
φλ(exp tX)f̂(λ)ω(dλ)

∣∣∣∣
t=0

= lim
t→0

∫
a∗

φλ(exp tX)− 1

t
f̂(λ)ω(dλ).

The claim will follow if we can apply the dominated convergence theorem to bring the above
limit through the integral sign. By the mean value theorem, for each t > 0 and λ ∈ a∗,

φλ(exp tX)− 1

t
= Xφλ(exp t

′X),

for some 0 < t′ < t, and hence
∣∣∣ϕλ(exp tX)−1

t

∣∣∣ ≤ ‖Xφλ‖∞ for all t > 0. By [35] Theorem 1.1
(iii), ‖Xφλ‖∞ ≤ C(1 + |λ|), for some some constant C > 0. Thus, for f ∈ C∞

c (K|G|K),
λ ∈ a∗ and t > 0, ∣∣∣∣φλ(exp tX)− 1

t
f̂(λ)

∣∣∣∣ ≤ C(1 + |λ|)|f̂(λ)|,

and clearly C(1 + | · |)f̂ ∈ L1(a∗)W , since f̂ ∈ S(a∗). Hence we may apply dominated
convergence as desired, and the claim follows.

Applying the claim to (4.2.8), for f ∈ C∞
c (K|G|K) and σ ∈ G,

AJf(σ) =

∫
G

(∫
a∗
φλ(στ)f̂(λ)ω(dλ)−

∫
a∗
φλ(σ)f̂(λ)ω(dλ)

−
d∑
i=1

xi(τ)

∫
a∗
Xiφλ(σ)f̂(λ)ω(dλ)

)
ν(σ, dτ)

=

∫
G

∫
a∗
f̂(λ)

(
φλ(στ)− φλ(σ)−

d∑
i=1

xi(τ)Xiφλ(σ)

)
ω(dλ)ν(σ, dτ).

By the Fubini theorem,

AJf(σ) =

∫
a∗
f̂(λ)

∫
G

(
φλ(στ)− φλ(σ)−

d∑
i=1

xi(τ)Xiφλ(σ)

)
ν(σ, dτ)ω(dλ)

=

∫
a∗
f̂(λ)AJφλ(σ)ω(dλ)

for all f ∈ C∞
c (K|G|K) and σ ∈ G. It follows by (4.2.7) that

AJf(σ) =

∫
a∗
f̂(λ)φλ(σ)

∫
G
(φλ(τ)− 1)ν(σ, dτ)ω(dλ) (4.2.9)

for all f ∈ C∞
c (K|G|K) and σ ∈ G.

The result now follows by substituting (4.2.9) and (4.2.5) into (4.2.4).
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Example 4.2.8. 1. Let u ∈ C(K|G|K) be non-negative, and let v : a∗ → C be a Gangolli
exponent. Then q : G× a∗ → C given by

q(σ, λ) = u(σ)v(λ) ∀σ ∈ G, λ ∈ a∗

is a continuous Gangolli symbol. Indeed, by Definition 3.1.16, there exists a sub-diffusion
operator L ∈ DK(G) and a K-bi-invariant Lévy measure ν such that for all λ ∈ a∗,

v(λ) = −β(L, λ) +
∫
G
(1− φλ(σ))ν(dτ).

Hence for all σ ∈ G and λ ∈ a∗,

q(σ, λ) = −β(u(σ)L, λ) +
∫
G
(1− φλ(σ))u(σ)ν(dτ).

If L = −c +
∑d

i,j=1 aijXiXj , where c ≥ 0 and a = (aij) is an Ad(K)-invariant, non-
negative definite symmetric matrix, then the characteristics are q are

c(σ) := u(σ)c, a(σ) = u(σ)a, and ν(σ, ·) = u(σ)ν.

Since u is non-negative, continuous andK-bi-invariant, the conditions of Definition 4.2.2
are easily verified for these characteristics, as are (c1) and (c2).

2. Hyperbolic plane. As described in [37] (pp. 29–31), the Poincaré disc model D of the
hyperbolic plane is isomorphic to SU(1, 1)/SO(2). Moreover, D is a symmetric space
of noncompact type, with spherical functions given by the Legendre functions

φλ(z) = P 1
2
+iλ

(
cosh dH(0, z)

)
, ∀z ∈ D,λ ∈ R

(see [39] Proposition 2.9, pp. 406). Since D is irreducible and dimD > 1, by Theorem
3.3 of [16], diffusion operators on D must be multiples of the Laplace–Beltrami operator,
and the symbols of Feller processes take the simplified form

q(z, λ) = c(z)

(
1

4
+ λ2

)
+

∫ ∞

0

{
1− P 1

2
+iλ(cosh r)

}
ν(z, dr),

for all z ∈ D and λ ∈ R. The constant coefficient (i.e. Lévy) case of this formula was
discovered by Getoor — see [31] Theorem 7.4.

Remark 4.2.9. Example 4.2.8 (1) will be used later in Section 4.4, when we investigate a
particular class of examples that satisfy Corollary 4.3.20.

§ 4.3 Construction of sub-Feller semigroups

In this section we tackle the third condition of Hille–Yosida–Ray (Theorem 4.2.1), when
E = K|G|K. To this end, we seek conditions on a symbol q so that, for some α > 0,

Ran(αI + q(σ,D)) = C0(K|G|K). (4.3.1)
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Chapter 4. Pseudodifferential Operators

Earlier work, especially that of Section 4.1, enables us to now apply the methods of [45] and
[41] Section 4 to this problem.

For a mapping q : G× a∗ → R and for each λ, η ∈ a∗, σ ∈ G, define

Fλ,η(σ) = φ−λ(σ)q(σ, η). (4.3.2)

Observe that if q(·, η) ∈ L2(K|G|K) for all η ∈ a∗, then Fλ,η ∈ L2(K|G|K), and we may
consider the spherical transform F̂λ,η ∈ L2(a∗, ω), given by

F̂λ,η(µ) =

∫
G
φ−µ(σ)φ−λ(σ)q(σ, η)dσ, ∀µ ∈ a∗ .

To motivate the introduction of Fλ,η, consider the case G = Rd, K = {0}. In this case, the
frequency shift property for the Fourier transform says that

F̂λ,η(µ) =
1

(2π)d/2

∫
Rd
e−iµ·xe−iλ·xq(x, η)dx

=
1

(2π)d/2

∫
Rd
e−i(µ+λ)·xq(x, η)dx = q̂(λ+ µ, η),

(4.3.3)

where ∧ denotes the Fourier transform taken in the first argument of q. [41] and [47] make
use of bounds on q̂(λ− µ, η), and F̂λ,η(−µ) will assume an analogous role in work to come.

As in previous work, let ψ : a∗ → R be a fixed real-valued, continuous negative definite
function satisfying (4.1.5) for some fixed r > 0. The next lemma is an analogue of Lemma 2.1
of [45]. See also [41] Lemma 4.2, pp. 48. The primary difference in this work is the presence
of integer powers of

√
−∆, which replace the multinomial powers of ∂

∂x1
, . . . , ∂

∂xd
of the Rd

setting.

One advantage of this approach is that (−∆)β/2 (β ∈ N) has a global definition that does not
depend on our choice of local coordinates. Another advantage is that we know its symbol —
see (4.3.8) below.

Lemma 4.3.1. Let M ∈ N, q : G× a∗ → R and suppose q(·, λ) ∈ CMc (K|G|K) for all λ ∈ a∗.
Suppose that for each β ∈ {0, 1, . . . ,M}, there is a non-negative function Φβ ∈ L1(K|G|K)
such that ∣∣∣(−∆)β/2Fλ,η(σ)

∣∣∣ ≤ Φβ(σ)〈λ〉M (1 + ψ(η)), (4.3.4)

for all λ, η ∈ a∗, σ ∈ G. Then there is a constant CM > 0 such that

∣∣∣F̂λ,η(µ)∣∣∣ ≤ CM

M∑
β=0

‖Φβ‖1〈λ+ µ〉−M (1 + ψ(η)), (4.3.5)

for all λ, µ, η ∈ a∗, where ‖ · ‖1 denotes the usual norm on the Banach space L1(K|G|K).

Remarks 4.3.2. 1. As in (4.1.8), 〈λ〉 :=
√

1 + |λ|2.
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2. The condition (4.3.4) may seem quite obscure. The role of 〈λ+µ〉 will hopefully become
apparent in the proof of Theorem 4.3.6. For examples where it is satisfied, see §4.4.

3. Under the conditions of the lemma, and using the Fubini theorem, we have the following:
for all u ∈ C∞

c (K|G|K) and λ ∈ a∗,

(q(σ,D)u)∧(λ) =

∫
G

∫
a∗
φ−λ(σ)φη(σ)q(σ, η)û(η)ω(dη)dσ

=

∫
a∗

(∫
G
φη(σ)Fλ,η(σ)dσ

)
û(η)ω(dη)

=

∫
a∗
F̂λ,η(−η)û(η)ω(dη).

(4.3.6)

Fubini’s theorem does indeed apply here — a suitable bound for the integrand on the
first line of (4.3.6) may be found by noting that, by (4.3.4),

|φ−λ(σ)φη(σ)q(σ, η)û(η)| ≤ |q(σ, η)||û(η)| ≤ Φ0(σ)
(
1 + ψ(η)

)
|û(η)|, (4.3.7)

for all λ, η ∈ a∗ and σ ∈ G. By Theorem 2.4.30, û ∈ S(a∗), and the usual bound (2.4.21)
on the density of Plancherel measure may be applied, similarly to (4.1.15), to conclude
that the right-hand side of (4.3.7) is ω(dη)× dσ-integrable.

Proof of Lemma 4.3.1. Let β ∈ {0, 1, . . . ,M} and λ, η ∈ a∗ be fixed. Recall from Examples
3.1.17 (2) that the fractional Laplacian −(−∆)β/2 generates a K-bi-invariant β-stable-like
process on G, with symbol

(
|ρ|2 + |µ|2

)β/2. In particular,(
(−∆)β/2f

)∧
(µ) =

(
|ρ|2 + |µ|2

)β/2
f̂(µ), (4.3.8)

for all f ∈ CMc (K|G|K) and µ ∈ a∗. Then, using the definition of the spherical transform,

(|ρ|2 + |µ|2)β/2f̂(µ) =
∫
G
φ−µ(σ)(−∆)β/2f(σ)dσ,

for all f ∈ CMc (K|G|K) and all µ ∈ a∗. Applying this to f = Fλ,η, we have for all µ ∈ a∗,∣∣∣(|ρ|2 + |µ|2
)β/2

F̂λ,η(µ)
∣∣∣ ≤ ∫

G
|φ−µ(σ)|

∣∣∣(−∆)β/2Fλ,η(σ)
∣∣∣ dσ

≤
∫
G
Φβ(σ)〈λ〉M (1 + ψ(η))dσ = ‖Φβ‖1〈λ〉M (1 + ψ(η)),

and summing over β,

M∑
β=0

(
|ρ|2 + |µ|2

)β/2 ∣∣∣F̂λ,η(µ)∣∣∣ ≤ M∑
β=0

‖Φβ‖1〈λ〉M (1 + ψ(η)), (4.3.9)
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for all λ, µ, η ∈ a∗. Let C ′
M > 0 be the smallest positive number such that

〈µ〉M ≤ C ′
M

M∑
β=0

(
|ρ|2 + |µ|2

)β/2 ∀µ ∈ a∗ .

Then, rearranging (4.3.9),∣∣∣F̂λ,η(µ)∣∣∣ ≤ C ′
M

M∑
β=0

‖Φβ‖1〈µ〉−M 〈λ〉M (1 + ψ(η)), (4.3.10)

for all λ, µ, η ∈ a∗.
Finally, observe that by Peetre’s inequality (see Proposition 4.1.5 (2)),

〈λ〉M 〈λ+ µ〉−M =

(
1 + |λ|2

1 + |λ+ µ|2

)M/2

≤ 2M/2(1 + |µ|2)M/2 = 2M/2〈µ〉M

for all λ, µ ∈ a∗. Therefore, for all λ, µ ∈ a∗,

〈µ〉−M 〈λ〉M ≤ 2M/2〈λ+ µ〉−M

and by (4.3.10), ∣∣∣F̂λ,η(µ)∣∣∣ ≤ 2M/2C ′
M

M∑
β=0

‖Φβ‖1〈λ+ µ〉−M (1 + ψ(η))

The result now follows by taking CM = 2M/2C ′
M .

Remark 4.3.3. The constant

CM := 2M/2 sup
λ∈a∗

〈λ〉M∑M
β=0

(
|ρ|2 + |λ|2

)β/2 (4.3.11)

appearing in the proof of Lemma 4.3.1 will remain relevant throughout this chapter.

Let now q : G × a∗ → R be a continuous negative definite symbol, K-bi-invariant in its first
argument, and W -invariant in its second (for example, q could be taken to be a Gangolli
symbol, as in (4.2.2)). Similarly to [45] §4 and [41] (4.26), we write

q(σ, λ) = q1(λ) + q2(σ, λ), ∀σ ∈ G,λ ∈ a∗, (4.3.12)

where q1(λ) = q(σ0, λ) and q2(σ, λ) = q(σ, λ)− q(σ0, λ), for some fixed σ0 ∈ G. Observe that
q1 is necessarily a negative definite symbol. Though q2 may not be, we may still define the
operator q2(σ,D) in a meaningful way, by

q2(σ,D) := q(σ,D)− q1(D) =

∫
a∗
φλ(σ)q2(σ, λ)f̂(λ)ω(dλ), ∀σ ∈ G.

By decomposing q in this way, we view it as a perturbation of a negative definite function
q1 by q2. The assumptions we place on q will control the size of this perturbation, as well
as ensuring certain regularity properties of q(σ,D) acting on the anisotropic Sobolev spaces
introduced in Section 4.1.2.
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Assumptions 4.3.4. In the notation above, we impose the following:

1. There exist constants c0, c1 > 0 such that for all λ ∈ a∗ with |λ| ≥ 1,

c0(1 + ψ(λ)) ≤ q1(λ) ≤ c1(1 + ψ(λ)). (4.3.13)

2. Let M ∈ N, M > dim(G/K), and suppose that q2(·, λ) ∈ CMc (K|G|K) for all λ ∈ a∗.
Suppose further that for β = 0, 1, . . . ,M , there exists Φβ ∈ L1(K|G|K) such that∣∣∣(−∆)β/2Fλ,η(σ)

∣∣∣ ≤ Φβ(σ)〈λ〉M
(
1 + ψ(η)

)
, (4.3.14)

for all λ, η ∈ a∗, σ ∈ G, where Fλ,η(σ) = φ−λ(σ)q2(σ, η) (c.f. (4.3.2)).

Remarks 4.3.5. 1. These assumptions are analogues to P.1, P.2.q of [45], pp. 156, or (A.1),
(A.2.M) of [41], pp.54.

2. As noted in Remark 4.3.2 (3), the conditions in Assumption 4.3.4 (2) imply that

(q2(σ,D)u)∧(λ) =

∫
a∗
F̂λ,η(−η)û(η)ω(dη), (4.3.15)

for all λ ∈ a∗ and u ∈ C∞
c (K|G|K), a fact that will be useful several times more.

Theorem 4.3.6. Subject to Assumptions 4.3.4, for all s ∈ R, q1(D) extends to a continuous
operator from Hψ,s+2 to Hψ,s, and q(σ,D) extends to a continuous operator from Hψ,2 to
L2(K|G|K).

Proof. Since q1 is continuous, it is bounded on B1(0). Let κ = 2max{sup|λ|<1 |q1(λ)|, c1}.
Then, by (4.3.13),

q1(λ) ≤ κ(1 + ψ(λ)), (4.3.16)

for all λ ∈ a∗. Therefore, by Plancherel,

‖q1(D)u‖2ψ,s =
∫
a∗
(1 + ψ(λ))s|q1(λ)u(λ)|2ω(dλ)

≤ κ2
∫
a∗
(1 + ψ(λ))(s+2)|u(λ)|2ω(dλ) = κ2‖u‖2ψ,s+2.

Taking square roots, it follows that q1 extends continuously to an operator Hψ,s+2 → Hψ,s.
Thus the first part of the theorem is proved.

For the second part, observe that by Assumption 4.3.4 (2) we may set µ = −η in equation
(4.3.5) to obtain

∣∣∣F̂λ,η(−η)∣∣∣ ≤ CM

M∑
β=0

‖Φβ‖L1(K|G|K)〈λ− η〉−M (1 + ψ(η)), ∀λ, η ∈ a∗ .
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Let Ψ be given by (4.1.9). By (4.3.6) and the Plancherel theorem, for u, v ∈ C∞
c (K|G|K),

|〈q2(σ,D)u, v〉| =
∣∣∣∣∫

a∗
(q2(σ,D)u)∧(λ)v̂(λ)ω(dλ)

∣∣∣∣
=

∣∣∣∣∫
a∗

∫
a∗
F̂λ,η(−η)û(η)v̂(λ)ω(dη)ω(dλ)

∣∣∣∣
≤
∫
a∗

∫
a∗

∣∣∣F̂λ,η(−η)∣∣∣ |û(η)||v̂(λ)|ω(dη)ω(dλ)
≤ CM

M∑
β=0

‖Φβ‖L1(K|G|K)

∫
a∗

∫
a∗
〈λ− η〉−MΨ(η)2|û(η)||v̂(λ)|ω(dη)ω(dλ)

= CM

M∑
β=0

‖Φβ‖L1(K|G|K)

∫
a∗

[
〈·〉−M ∗

(
Ψ2|û|

)]
(λ)|v̂(λ)|ω(dλ)

≤ CM

M∑
β=0

‖Φβ‖L1(K|G|K)

∥∥〈·〉−M ∗
(
Ψ2|û|

)∥∥
L2(a∗,ω)

‖v̂‖L2(a∗,ω)

where on the last line we have used the Cauchy–Schwarz inequality. Noting that M >
dim(G/K), we have by Lemma 4.1.7 that 〈·〉−M ∈ L1(a∗, ω). By Young’s (convolution)
inequality (see Simon [66] Theorem 6.6.3, page 550),∥∥〈·〉−M ∗

(
Ψ2|û|

)∥∥
L2(a∗,ω)

‖v̂‖L2(a∗,ω) ≤
∥∥〈·〉−M∥∥

L1(a∗,ω)
‖Ψ2û‖L2(a∗,ω)‖v‖

= ‖〈·〉−M‖L1(a∗,ω)‖u‖ψ,2‖v‖.

It follows that

|〈q2(σ,D)u, v〉| ≤ CM

M∑
β=0

‖Φβ‖L1(K|G|K)‖〈·〉−M‖L1(a∗,ω)‖u‖ψ,2‖v‖,

for all u, v ∈ C∞
c (K|G|K), and hence

‖q2(σ,D)u‖ = sup{|〈q2(σ,D)u, v〉| : v ∈ C∞
c (K|G|K), ‖v‖ = 1}

≤ CM

M∑
β=0

‖Φβ‖L1(K|G|K)‖〈·〉−M‖L1(a∗,ω)‖u‖ψ,2,

for all u ∈ C∞
c (K|G|K). Thus q2(σ,D) extends to a bounded linear operator Hψ,2 →

L2(K|G|K).

Under an additional assumption, we are able to obtain a more powerful result.

Theorem 4.3.7. Suppose Assumptions 4.3.4 hold, and suppose further that s ∈ R satisfies
|s − 1| + 1 + dim(G/K) < M . Then q(σ,D) extends to a continuous linear operator from
Hψ,s+2 → Hψ,s.
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We first need a technical lemma.

Lemma 4.3.8. Let s ∈ R and M ∈ N be such that |s − 1| + 1 + dim(G/K) < M . Then for
all λ, η ∈ a∗,

|Ψ(λ)s −Ψ(η)s| ≤ Cs,ψ〈λ− η〉|s−1|+1Ψ(η)s−1, (4.3.17)

where
Cs,ψ = 2(|s−1|+2)/2(1 + cψ)

(|s−1|+1)/2|s|, (4.3.18)

and cψ is the constant from Proposition 4.1.5 (3).

Proof. Proceed as in Hoh [41] page 50. By the mean value theorem, for all x, y > 0 we have

|xs − ys| ≤ |s||x− y|(xs−1 + ys−1).

Therefore, given λ, η ∈ a∗,

|Ψ(λ)s −Ψ(η)s| ≤ |s| |Ψ(λ)−Ψ(η)|
(
Ψ(λ)s−1 +Ψ(η)s−1

)
.

Applying Proposition 4.1.5 (1), with 1 + ψ in place of ψ,

|Ψ(λ)−Ψ(η)| ≤ Ψ(λ− η),

and hence
|Ψ(λ)s −Ψ(η)s| ≤ |s|Ψ(λ− η)

(
Ψ(λ)s−1 +Ψ(η)s−1

)
.

By Proposition 4.1.5 (2), together with the fact that Ψ =
√
1 + ψ ≥ 1,

Ψ(λ)s−1 +Ψ(η)s−1 ≤ 2|s−1|/2[Ψ(λ− η)|s−1| + 1
]
Ψ(η)s−1

≤ 2 · 2|s−1|/2Ψ(λ− η)|s−1|Ψ(η)s−1.

Therefore
|Ψ(λ)s −Ψ(η)s| ≤ 2(|s−1|+2)/2|s|Ψ(λ− η)|s−1|+1Ψ(η)s−1.

Finally, by Proposition 4.1.5 (3),

|Ψ(λ)s −Ψ(η)s| ≤ 2(|s−1|+2)/2(1 + cψ)
(|s−1|+1)/2|s|〈λ− η〉|s−1|+1Ψ(η)s−1.

Proof of Theorem 4.3.7. By Theorem 4.3.6, it suffices to prove that q2(σ,D) extends to a
continuous operator from Hψ,s+2 → Hψ,s. Given u ∈ C∞

c (K|G|K),

‖q2(σ,D)u‖ψ,s = ‖Ψ(D)sq2(σ,D)u‖
≤ ‖q2(σ,D)Ψ(D)su‖+ ‖[Ψ(D)s, q2(σ,D)]u‖.

(4.3.19)

Also, by Theorem 4.3.6 and Theorem 4.1.6 (2),

‖q2(σ,D)Ψ(D)su‖ ≤ C‖Ψ(D)su‖ψ,2 = C‖u‖ψ,s+2, (4.3.20)
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where

C = CM

M∑
β=0

‖Φβ‖L1(K|G|K)‖〈·〉−M‖L1(a∗,ω).

We will estimate
‖[Ψ(D)s, q2(σ,D)]u‖.

Write Fλ,η = φ−λq2(·, η) once again. Then by (4.3.6) we have for all λ ∈ a∗,

([Ψ(D)s, q2(σ,D)]u)∧(λ) = (Ψ(D)sq2(σ,D)u)∧ (λ)− (q2(σ,D)Ψ(D)su)∧ (λ)

= Ψ(λ)s(q2(σ,D)u)∧(λ)−
∫
a∗
F̂λ,η(−η) (Ψ(D)su)∧ (η)ω(dη)

=

∫
a∗
F̂λ,η(−η)

{
Ψ(λ)s −Ψ(η)s

}
û(η)ω(dη).

Hence for all u, v ∈ C∞
c (K|G|K),

∣∣〈[Ψ(D)s, q2(σ,D)]u, v
〉∣∣ = ∣∣∣∣∫

a∗
([Ψ(D)s, q2(σ,D)]u)∧(λ)v̂(λ)ω(dλ)

∣∣∣∣
=

∣∣∣∣∫
a∗

∫
a∗
F̂λ,η(−η)

{
Ψ(λ)s −Ψ(η)s

}
û(η)v̂(λ)ω(dη)ω(dλ)

∣∣∣∣
≤
∫
a∗

∫
a∗

∣∣∣F̂λ,η(−η)∣∣∣ |Ψ(λ)s −Ψ(η)s| |û(η)||v̂(λ)|ω(dη)ω(dλ)

By Lemmas 4.3.1 and 4.3.8,∣∣〈[Ψ(D)s, q2(σ,D)]u, v
〉∣∣

≤ Cs,ψ,M

∫
a∗

∫
a∗
〈λ− η〉−M+|s−1|+1Ψ(η)s+1|û(η)||v̂(λ)|ω(dη)ω(dλ)

= Cs,ψ,M

∫
a∗

(
〈·〉−M+|s−1|+1 ∗

[
Ψs+1|û|

])
(λ)|v̂(λ)|ω(dλ),

where

Cs,ψ,M = Cs,ψCM

M∑
β=0

‖Φβ‖L1(K|G|K).

Now, we are assumingM−|s−1|−1 > dim(G/K), and so by Lemma 4.1.7, 〈·〉−(M−|s−1|−2) ∈
L1(a∗, ω). Thus by the Cauchy–Schwarz and Young inequalities,∣∣〈[Ψ(D)s, q2(σ,D)]u, v

〉∣∣ ≤ Cs,ψ,M

∥∥∥〈·〉−(M−|s−1|−1) ∗
[
Ψs+1|û|

]∥∥∥
L2(a∗,ω)

‖v‖

≤ Cs,ψ,M

∥∥∥〈·〉−(M−|s−1|−1)
∥∥∥
L1(a∗,ω)

∥∥Ψs+1|û|
∥∥
L2(a∗,ω)

‖v‖

= Cs,ψ,M

∥∥∥〈·〉−(M−|s−1|−1)
∥∥∥
L1(a∗,ω)

‖u‖ψ,s+1‖v‖.
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Finally,

‖[Ψ(D)s, q2(σ,D)]u‖ = sup
{∣∣〈[Ψ(D)s, q2(σ,D)]u, v

〉∣∣ : v ∈ C∞
c (K|G|K), ‖v‖ = 1

}
≤ Cs,ψ,M

∥∥∥〈·〉−(M−|s−1|−1)
∥∥∥
L1(a∗,ω)

‖u‖ψ,s+1,

and so combining (4.3.19) and (4.3.20),

‖q2(σ,D)u‖ψ,s ≤ CM

M∑
β=0

‖Φβ‖L1(a∗,ω)

(
‖〈·〉−M‖L1(a∗,ω)‖u‖ψ,s+2 + Cs,ψ‖u‖ψ,s+1

)
. (4.3.21)

Inclusion Hψ,s+2 ↪→ Hψ,s+1 is continuous, and so it is clear from this that

‖q2(σ,D)u‖ψ,s ≤ κ‖u‖ψ,s+2

for some constant κ.

To prove (4.3.1), we seek solutions u to the equation

(q(σ,D) + α)u = f, (4.3.22)

for a given function f and α > 0. Consider the bilinear form Bα defined by

Bα(u, v) = 〈(q(σ,D) + α)u, v〉, ∀u, v ∈ C∞
c (K|G|K).

Theorem 4.3.9. Suppose Assumptions 4.3.4 hold with M > dim(G/K)+1. Then Bα extends
continuously to Hψ,1 ×Hψ,1.

Proof. Let u, v ∈ Hψ,1. By the same argument as that of equation (4.3.16), there is κ1 > 0
such that |q1| ≤ κ1Ψ

2. Therefore, by Parseval,

|〈q1(D)u, v〉| ≤
∫
a∗
|q1(λ)||û(λ)||v̂(λ)|ω(dλ)

≤ κ1

∫
a∗
Ψ(λ)|û(λ)|Ψ(λ)|v̂(λ)|ω(dλ) ≤ κ1‖u‖ψ,1‖v‖ψ,1.

By (4.3.6),

|〈q2(σ,D)u, v〉| ≤
∫
a∗
|(q2(σ,D)u)∧(λ)||v̂(λ)|ω(dλ)

≤
∫
a∗

∫
a∗

∣∣∣F̂λ,η(−η)∣∣∣ |û(η)||v̂(λ)|ω(dη)ω(dλ)
≤ CM

M∑
β=0

‖Φβ‖L1(a∗,ω)

∫
a∗

∫
a∗
〈λ− η〉−MΨ(η)2|û(η)v̂(λ)|ω(dη)ω(dλ)
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By Proposition 4.1.5 (2) and (3),

Ψ(η) ≤
√
2Ψ(λ)Ψ(λ− η) ≤

√
2(1 + cψ)Ψ(λ)〈λ− η〉,

for all λ, η ∈ a∗. Hence, writing

κ2 = CM

√
2(1 + cψ)

M∑
β=0

‖Φβ‖L1(a∗,ω), (4.3.23)

we have

|〈q2(σ,D)u, v〉| ≤ κ2

∫
a∗
〈λ− η〉−M+1Ψ(η)|û(η)|Ψ(λ)|v̂(λ)|ω(dη)ω(dλ)

= κ2

∫
a∗

(
〈·〉−M+1 ∗Ψ|û|

)
(λ)Ψ(λ)|v̂(λ)|ω(dλ)

≤ κ2
∥∥〈·〉−M+1 ∗Ψ|û|

∥∥
L2(a∗,ω)

‖v‖ψ,1,

by the Cauchy–Schwarz inequality. By Lemma 4.1.7, 〈·〉−M+1 ∈ L1(a∗, ω), and so by Young’s
inequality,

|〈q2(σ,D)u, v〉| ≤ κ2
∥∥〈·〉−M+1

∥∥
L1(a∗,ω)

‖u‖ψ,1‖v‖ψ,1. (4.3.24)

Inclusion Hψ,1 ↪→ L2(K|G|K) is continuous, so we may choose κ3 > 0 such that ‖u‖ ≤
κ3‖u‖ψ,1. Then we have

|Bα(u, v)| ≤ |〈q1(D)u, v〉|+ |〈q2(σ,D)u, v〉|+ α |〈u, v〉|
≤ κ1‖u‖ψ,1‖v‖ψ,2 + κ2‖u‖ψ,1‖v‖ψ,2 + α‖u‖‖v‖
≤
(
κ1 + κ2 + ακ23

)
‖u‖ψ,1‖v‖ψ,2,

which proves the theorem.

Recall that a bilinear form B defined on a Hilbert space (H, 〈·, ·〉) is coercive if there is c > 0
such that

B(u, u) ≥ c〈u, u〉 ∀u ∈ H.

Theorem 4.3.10 (Lax–Milgram). Let B be a bounded bilinear form, defined on a Hilbert
space (H, 〈·, ·, 〉), and suppose B is coercive with constant c. Then given f ∈ H ′, there is a
unique u ∈ H such that

B(u, v) = f(v) ∀v ∈ H.

Proof. See for example Yosida [70] page 92.

The following assumption will ensure that for α sufficiently large, Bα is coercive on Hψ,1. We
will then use the Lax–Milgram theorem to obtain a weak solution to (4.3.22).
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Assumption 4.3.11. Let M ∈ N, M > dim(G/K) + 1, and write

γM =
(
8CM (2(1 + cψ))

1/2‖〈·〉−M+1‖L1(a∗,ω)

)−1
,

where cψ and CM are constants given by (4.1.4) and (4.3.11), respectively.
For c0 is as in Assumption 4.3.4 (1), assume that

M∑
β=0

‖Φβ‖1 ≤ γMc0.

Remark 4.3.12. See [45] P.3 and P.4, pp. 161, or [41] (A.3.M), pp. 54, for comparison. Ex-
amples where Assumption 4.3.11 is satisfied are considered in Section 4.4.

The next theorem is an analogue of Theorem 3.1 of [45].

Theorem 4.3.13. Suppose Assumptions 4.3.4 and 4.3.11 hold, with M > dim(G/K) + 1.
Then there is α0 > 0 such that

Bα(u, u) ≥
c0
2
‖u‖21,λ,

for all α ≥ α0 and u ∈ Hψ,1. In particular, Bα is coercive for all α ≥ α0.

Proof. Proceed exactly as in [41] page 57, lines 8–17. By Assumption 4.3.4 (1), there is α0 > 0
such that

q1(λ) ≥ c0Ψ(λ)2 − α0 ∀λ ∈ a∗ . (4.3.25)

Therefore, for all u ∈ Hψ,1,

〈q1(D)u, u〉 =
∫
a∗
q1(λ)|û(λ)|2ω(dλ) ≥

∫
a∗
(c0Ψ(λ)2 − α0)|û(λ)|2ω(dλ)

= c0‖u‖2ψ,1 − α0‖u‖2.

Using equations (4.3.23) and (4.3.24), as well as Assumption 4.3.11, we also have

|〈q2(σ,D)u, u〉| ≤ CM

√
2(1 + cψ)

M∑
β=0

‖Φβ‖L1(a∗,ω)

∥∥〈·〉−M+1
∥∥
L1(a∗,ω)

‖u‖2ψ,1

=
1

8γM

M∑
β=0

‖Φβ‖L1(a∗,ω)‖u‖2ψ,1 ≤
c0
8
‖u‖ψ,1

Thus,

〈q(σ,D)u, u〉 ≥ 〈q1(D)u, u〉 − |〈q2(σ,D)u, u〉|

≥ (c0 −
c0
8
)‖u‖2ψ,1 − α0‖u‖2ψ,1

≥ c0
2
‖u‖2ψ,1 − α0‖u‖2ψ,1,
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and so for all α ≥ α0,

Bα(u, u) = 〈q(σ,D)u, u〉+ α‖u‖

≥ 〈q(σ,D)u, u〉+ α0‖u‖ ≥ c0
2
‖u‖2ψ,1.

Theorem 4.3.14. Let α ≥ α0. Then (4.3.22) has a weak solution in the following sense: for
all f ∈ L2(K|G|K) there is a unique u ∈ Hψ,1 such that for all v ∈ Hψ,1,

Bα(u, v) = 〈f, v〉.

Proof. Apply the Lax–Milgram theorem (Theorem 1 of [28], pp. 297) to Bα, using the linear
functional v 7→ 〈f, v〉.

Having found a weak solution to (4.3.22), the next task is to prove that this solution is also
a strong solution, and belongs to C0(K|G|K). We use the Sobolev embedding of Theorem
4.1.6 (6).

Just as in [45] Theorem 3.1 and [41] Theorem 4.11, we have a useful lower bound for the
pseudodifferential operator q(σ,D) acting on Hψ,s, when s ≥ 0.

Theorem 4.3.15. Let s ≥ 0, and suppose the symbol q satisfies Assumptions 4.3.4 and 4.3.11,
for some M > |s− 1|+ 1 + dim(G/K). Then there is κ > 0 such that for all u ∈ Hψ,s+2,

‖q(σ,D)u‖ψ,s ≥
c0
4
‖u‖ψ,s+2 − κ‖u‖.

Proof. The proof is formally no different to the sources mentioned. Let u ∈ Hψ,s+2. By
(4.3.25),

‖q1(D)u‖ψ,s = ‖Ψsq1u‖L2(a∗,ω) ≥ ‖c0Ψs+2u− α0Ψ
su‖L2(a∗,ω)

≥ c0‖u‖ψ,s+2 − α0‖u‖ψ,s.

By Theorem 4.1.6 (5), we may choose κ1 > 0 such that

α0‖u‖ψ,s ≤
c0
2
‖u‖ψ,s+2 + κ1‖u‖,

and thus
‖q1(D)u‖ψ,s ≥

c0
2
‖u‖ψ,s+2 − κ1‖u‖. (4.3.26)
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Apply the estimate (4.3.21) of ‖q2(σ,D)u‖ψ,s from the proof of Theorem 4.3.7. By Assumption
4.3.11,

‖q2(σ,D)u‖ψ,s ≤ CM

M∑
β=0

‖Φβ‖L1(a∗,ω)

(
‖〈·〉−M‖L1(a∗,ω)‖u‖ψ,s+2 + Cs,ψ‖u‖ψ,s+1

)
≤ CMc0γM

(
‖〈·〉−M‖L1(a∗,ω)‖u‖ψ,s+2 + Cs,ψ‖u‖ψ,s+1

)
=

CMc0‖〈·〉−M‖L1(a∗,ω)‖u‖ψ,s+2

8CM
√

2(1 + cψ)‖〈·〉−M+1‖L1(a∗,ω)

+ c‖u‖ψ,s+1,

where c > 0 is a(nother) constant. Observe that, since 〈λ〉 ≥ 1 for all λ ∈ a∗, it is the case
that ‖〈·〉−M‖L1(a∗,ω) ≤ ‖〈·〉−M+1‖L1(a∗,ω), and therefore

‖q2(σ,D)u‖ψ,s ≤
c0
8
‖u‖ψ,s+2 + c‖u‖ψ,s+1.

Using Theorem 4.1.6 (5) once more, we may then choose κ2 > 0 such that

c‖u‖ψ,s+1 ≤
c0
8
‖u‖ψ,s+2 + κ2‖u‖.

Then, by the above,
‖q2(σ,D)u‖ψ,s ≤

c0
4
‖u‖ψ,s+2 + κ2‖u‖. (4.3.27)

Combining (4.3.26) and (4.3.27), we get

‖q(σ,D)u‖ψ,s ≥ ‖q1(D)u‖ψ,s − ‖q2(σ,D)u‖ψ,s

≥ c0
2
‖u‖ψ,s+2 − κ1‖u‖ −

(c0
4
‖u‖ψ,s+2 + κ2‖u‖

)
=
c0
4
‖u‖ψ,s+2 − (κ1 + κ2)‖u‖.

Putting κ = κ1 + κ2, the theorem follows.

The proof of the next theorem makes use of a particular family (Jϵ, 0 < ε ≤ 1) of bounded
linear operators on L2(K|G|K), which will play the role of a Friedrich mollifier, but in the
noncompact symmetric space setting.

First note that by identifying a with Rm via our chosen basis, it makes sense to consider
Friedrich mollifiers on a. For 0 < ε ≤ 1 and H ∈ a, let

l(H) := C0e
1

|H|2−1 1B1(0)(H), and lϵ(H) := ε−ml(H/ε),

where C0 > 0 is a constant chosen so that
∫
a l(H)dH = 1. This mollifier is used frequently in

[28] (see Appendix C.4, pp. 629), and [45] and [41] use it to pass from a weak solution result
to a strong solution result.

87



Chapter 4. Pseudodifferential Operators

Observe that l, lϵ ∈ S(a)W for all 0 < ε ≤ 1. Using Theorem 2.4.30, let j, jϵ ∈ S(K|G|K) be
such that

ĵ = F(l), and ĵϵ = F(lϵ), ∀0 < ε ≤ 1,

where F denotes the Euclidean Fourier transform (see equation (2.4.24)). For 0 < ε ≤ 1, let
Jϵ be the convolution operator defined on L2(K|G|K) by

Jϵu = jϵ ∗ u ∀f ∈ L2(K|G|K).

The most important properties of (Jϵ, 0 < ε ≤ 1) needed for the proof of Theorem 4.3.18 are
stated below, and proven in the appendix.

Proposition 4.3.16. 1. ĵϵ(λ) = ĵ(ελ) for all 0 < ε ≤ 1 and λ ∈ a∗.

2. For all 0 < ε ≤ 1, Jϵ is a self-adjoint contraction of L2(K|G|K).

3. Jϵu ∈ Hψ,s for all s ≥ 0, u ∈ L2(K|G|K) and 0 < ε ≤ 1, and if u ∈ Hψ,s, then

‖Jϵu‖ψ,s ≤ ‖u‖ψ,s.

4. For all s ≥ 0 and u ∈ Hψ,s, ‖Jϵu− u‖ψ,s → 0 as ε→ 0.

The following commutator estimate will also be useful in the proof of Theorem 4.3.18.

Lemma 4.3.17. Let s ≥ 0, and suppose q is a continuous negative definite symbol satisfying
Assumption 4.3.4 (2) for M > |s− 1|+ 1 + dim(G/K). Then there is c > 0 such that for all
0 < ε ≤ 1 and all u ∈ C∞

c (K|G|K),

‖[Jϵ, q(σ,D)]u‖ψ,s ≤ c‖u‖ψ,s+1.

Proof. Let 0 < ε ≤ 1 and u ∈ C∞
c (K|G|K), and observe that by Proposition 4.3.16 (2),

([Jϵ, q1(D)]u)∧(λ) = ĵ(ελ)q1(λ)û(λ)− q1(λ)ĵ(ελ)û(λ) = 0,

for all λ ∈ a∗, so [Jϵ, q1(D)]u = 0. For λ, η ∈ a∗, let Fλ,η = φ−λq2(·, η), as previously
(c.f. (4.3.2)). Then by (4.3.6) and Proposition 4.3.16 (1), for all λ ∈ a∗,

([Jϵ, q(σ,D)]u)∧ (λ) = (Jϵq2(σ,D)u)∧(λ)− (q2(σ,D)Jϵu)
∧(λ)

= ĵ(ελ)(q2(σ,D)u)∧(λ)−
∫
a∗
F̂λ,η(−η)(Jϵu)∧(η)ω(dη)

= ĵ(ελ)(q2(σ,D)u)∧(λ)−
∫
a∗
F̂λ,η(−η)ĵ(εη)û(η)ω(dη).

Applying (4.3.6) once more,

([Jϵ, q(σ,D)]u)∧ (λ) =

∫
a∗
F̂λ,η(−η)

(
ĵ(ελ)− ĵ(εη)

)
û(η)ω(dη), (4.3.28)

for all λ ∈ a∗.
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Claim. There is a constant c > 0 such that for all 0 < ε ≤ 1 and λ, η ∈ a∗,∣∣∣ĵ(ελ)− ĵ(εη)
∣∣∣ 〈λ〉 ≤ c〈λ− η〉. (4.3.29)

Proof of Claim. Let 0 < ε ≤ 1 and λ, η ∈ a∗. By the mean value theorem,∣∣∣ĵ(ελ)− ĵ(εη)
∣∣∣ ≤ |ελ− εη|

∣∣∣∇ĵ(ε[(1− t)λ+ tη]
)∣∣∣ ,

for some 0 < t < 1. Since ĵ is rapidly decreasing, we may choose κ > 0 such that |∇ĵ(λ)| ≤
κ(1 + |λ|2)−1/2 for all λ ∈ a∗. Suppose first that λ, η ∈ a∗ satisfy |λ− η| < |λ|

2 . Then

|(1− t)λ+ tη)| ≥ |λ| − t|λ− η| ≥ |λ| − t
|λ|
2

≥ |λ|
2
,

and hence ∣∣∣ĵ(ελ)− ĵ(εη)
∣∣∣ ≤ |ελ− εη|κ(1 + |ε2λ/2|2)−1/2 ≤ κ′

〈λ− η〉
〈λ〉

,

for some constant κ′ > 0. Note that for all λ ∈ a∗,
∣∣∣ĵ(λ)∣∣∣ ≤ C0

∫
∥H∥<1 e

1
|H|2−1dH = 1.

Therefore, if |λ− η| ≥ |λ|
2 ,∣∣∣ĵ(ελ)− ĵ(εη)
∣∣∣ 〈λ〉 ≤ 2〈λ〉 = 2

√
1 + |λ|2 ≤ 2

√
1 + 4|λ− η|2 ≤ 4〈λ− η〉.

Taking c = max{4, κ′}, we have established (4.3.29).

We can now apply the claim to (4.3.28) to get∣∣∣([Jϵ, q(σ,D)]u
)∧

(λ)
∣∣∣ ≤ ∫

a∗

∣∣∣F̂λ,η(−η)∣∣∣ ∣∣∣ĵ(ελ)− ĵ(εη)
∣∣∣ |û(η)|ω(dη)

≤ c

∫
a∗

∣∣∣F̂λ,η(−η)∣∣∣ 〈λ− η〉
〈λ〉

|û(η)|ω(dη).

for all λ ∈ a∗. By Lemma 4.3.1,

∣∣∣F̂λ,η(−η)∣∣∣ ≤ CM

M∑
β=0

‖Φβ‖L1(K|G|K)〈λ− η〉−MΨ(η)2,

for all λ, η ∈ a∗. Therefore, writing C = CM
∑M

β=0 ‖Φβ‖L1(K|G|K)c,∣∣∣([Jϵ, q(σ,D)]u
)∧

(λ)
∣∣∣ ≤ C

∫
a∗
〈λ− η〉−M+1Ψ(η)2

〈λ〉
|û(η)|ω(dη),

for all λ ∈ a∗. Let s ≥ 0 and λ ∈ a∗. Then,

Ψ(λ)s
∣∣([Jϵ, q(σ,D)]u)∧ (λ)

∣∣ ≤ C

∫
a∗
〈λ− η〉−M+1Ψ(η)2

〈λ〉
Ψ(λ)s|û(η)|ω(dη).
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By Proposition 4.1.5 (3), Ψ(λ) ≤
√
1 + cψ〈λ〉, and so

Ψ(λ)s
∣∣([Jϵ, q(σ,D)]u)∧ (λ)

∣∣ ≤ C
√

1 + cψ

∫
a∗
〈λ− η〉−M+1Ψ(η)2Ψ(λ)s−1|û(η)|ω(dη).

By Proposition 4.1.5 (2), Ψ(λ)s−1 ≤ 2|s−1|/2Ψ(η)s−1Ψ(λ− η)|s−1|, hence

Ψ(λ)s
∣∣([Jϵ, q(σ,D)]u)∧ (λ)

∣∣
≤ 2|s−1|/2C

√
1 + cψ

∫
a∗
〈λ− η〉−M+1Ψ(η)s+1Ψ(λ− η)|s−1||û(η)|ω(dη).

Applying Proposition 4.1.5 (3) once more, and relabelling the constant C,

Ψ(λ)s
∣∣([Jϵ, q(σ,D)]u)∧ (λ)

∣∣ ≤ C

∫
a∗
〈λ− η〉−M+1+|s−1|Ψ(η)s+1|û(η)|ω(dη)

= C
(
〈·〉−M+1+|s−1| ∗Ψs+1|û|

)
(λ).

By assumption, M − 1 − |s − 1| > dim(G/K), and so 〈·〉−M+1+|s−1| ∈ L1(a, ω) by Lemma
4.1.7. Hence by Parseval, Cauchy–Schwarz and Young’s inequality,

‖[Jϵ, q(σ,D)]u‖ψ,s = ‖Ψs ([Jϵ, q(σ,D)]u)∧ ‖L2(a∗,ω)

≤ C ′
∥∥∥〈·〉−M+1+|s−1| ∗Ψs+1|û|

∥∥∥
L2(a∗,ω)

≤ C ′‖〈·〉−M+1+|s−1|‖L1(a∗,ω)‖u‖ψ,s+1.

We are now ready to state and prove that, subject to our conditions, a strong solution to
(4.3.22) exists, and belongs to an anisotropic Sobolev space of suitably high order.

Theorem 4.3.18. Let α0 be as in Theorem 4.3.13, let α ≥ α0, and let s ≥ 0. Suppose that
the negative definite symbol q satisfies Assumptions 4.3.4 and 4.3.11, where M > |s− 1|+1+
dim(G/K). Then for all f ∈ Hψ,s, there is a unique u ∈ Hψ,s+2 such that

(q(σ,D) + α)u = f. (4.3.30)

Proof. Let f ∈ Hψ,s. By Theorem 4.1.6 we also have f ∈ L2(K|G|K), and so by Theorem
4.3.14 there is a unique u ∈ Hψ,1 such that

Bα(u, v) = 〈f, v〉 ∀v ∈ C∞
c (K|G|K). (4.3.31)

Let us first show that u ∈ Hψ,s+2. The proof follows that of [45] Theorem 4.3, pp. 163 and
[41] Theorem 4.12, pp. 59. Proceed by induction: we prove that u ∈ Hψ,t for 1 ≤ t ≤ s + 2.
Note that since the Hψ,t are nested, it suffices to prove that if u ∈ Hψ,t for some 1 ≤ t ≤ s+1,
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then u ∈ Hψ,t+1 (the base case t = 1 is covered by Theorem 4.3.14). Suppose that u ∈ Hψ,t

for some 1 ≤ t ≤ s+ 1. We show that

sup
0<ϵ≤1

‖Jϵu‖ψ,t+1 <∞, (4.3.32)

from which u ∈ Hψ,t+1 will follow. By Theorem 4.3.15,

‖Jϵu‖ψ,t+1 ≤
4

c0

(
‖q(σ,D)Jϵu‖ψ,t−1 + κ‖Jϵu‖

)
≤ 4

c0

(
‖(q(σ,D) + α)Jϵu‖ψ,t−1 + α‖Jϵu‖ψ,t−1 + κ‖Jϵu‖

)
≤ 4

c0

(
‖(q(σ,D) + α)Jϵu‖ψ,t−1 + α‖u‖ψ,t−1 + κ‖u‖

) (4.3.33)

Claim. ‖(q(σ,D) + α)Jϵu‖ψ,t−1 is uniformly bounded in ε.
Proof of Claim. Let (un) be a sequence in C∞

c (K|G|K) converging to u in Hψ,t. Then for all
v ∈ C∞

c (K|G|K) and 0 < ε ≤ 1,

〈(q(σ,D) + α)Jϵun, v〉 = 〈Jϵ(q(σ,D) + α)un, v〉 − 〈[Jϵ, q(σ,D)]un, v〉
= 〈(q(σ,D) + α)un, Jϵv〉 − 〈[Jϵ, q(σ,D)]un, v〉,

where we have used the fact that Jϵ is a symmetric operator on L2(K|G|K). By Lemma
4.3.17, there is κ2 > 0 such that

‖[Jϵ, q(σ,D)]ui − [Jϵ, q(σ,D)]uj‖ψ,t−1 ≤ κ2‖ui − uj‖ψ,t,

for all i, j ∈ N, and this choice of κ2 is independent of ε. It follows that ([Jϵ, q(σ,D)]un) is a
Cauchy sequence in Hψ,t−1, and hence converges to some wϵ ∈ Hψ,t−1, as n→ ∞. Moreover,

‖[Jϵ, q(σ,D)]un‖ψ,t−1 ≤ κ2‖un‖ψ,t,

and hence, taking limits as n→ ∞,

‖wϵ‖ψ,t−1 ≤ κ2‖u‖ψ,t, ∀0 < ε ≤ 1.

In particular, ‖wϵ‖ψ,t−1 is uniformly bounded in ε.
From the above, for all 0 < ε ≤ 1 and v ∈ C∞

c (K|G|K),

〈(q(σ,D) + α)Jϵu, v〉 = lim
n→∞

〈(q(σ,D) + α)Jϵun, v〉

= lim
n→∞

{〈(q(σ,D) + α)un, Jϵv〉 − 〈[Jϵ, q(σ,D)]un, v〉}

= 〈f, Jϵv〉 − 〈wϵ, v〉 = 〈Jϵf − wϵ, v〉,

since Jϵ is symmetric. Therefore, using duality of the spaces Hψ,t−1 and Hψ,1−t,

‖(q(σ,D) + α)Jϵu‖ψ,t−1 = sup
{
|〈(q(σ,D) + α)Jϵu, v〉| : v ∈ C∞

c (K|G|K), ‖v‖1−t = 1
}

≤ sup
{
|〈Jϵf − wϵ, v〉| : v ∈ C∞

c (K|G|K), ‖v‖1−t = 1
}

= ‖Jϵf − wϵ‖ψ,t−1

≤ ‖Jϵf‖ψ,t−1 + ‖wϵ‖ψ,t−1 ≤ ‖f‖ψ,t−1 + κ2‖u‖ψ,t,

for all 0 < ε ≤ 1. This completes the proof of the claim.
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The claim together with (4.3.33) imply (4.3.32). Therefore, we may choose a sequence (εn)
in (0, 1], with εn → 0 as n→ ∞, such that (Jϵnu) converges weakly to some ũ ∈ Hψ,t+1. But
we also know that Jϵnu → u in Hψ,t, and since inclusion Hψ,t+1 ↪→ Hψ,t is continuous, it
follows that u = ũ ∈ Hψ,t+1. This completes the inductive step, and we may conclude that
u ∈ Hψ,s+2 (for s ≥ 0 as in the original statement of the theorem).
It remains to show that u satisfies the strong equation (4.3.30). Let (un) now denote a sequence
in C∞

c (K|G|K) converging in Hψ,s+2 to u. Then for all v ∈ C∞
c (K|G|K) and n ∈ N,

Bα(un, v) = 〈(q(σ,D) + α)un, v〉.

Letting n→ ∞, we have by continuity that

Bα(u, v) = 〈(q(σ,D) + α)u, v〉, ∀v ∈ C∞
c (K|G|K),

and hence by (4.3.31),

〈(q(σ,D) + α)u, v〉 = 〈f, v〉, ∀v ∈ C∞
c (K|G|K).

Equation (4.3.30) now follows by density of C∞
c (K|G|K) in L2(K|G|K).

Theorem 4.3.19. Let q be a continuous negative definite symbol satisfying Assumptions 4.3.4
and 4.3.11 with M > max

{
1, dr
}
+ d, where d = dim(G/K). Then for all α ≥ α0,

Ran(αI + q(σ,D)) = C0(K|G|K).

Proof. Let d
r ∧ 1 < s < M − d. By Theorem 4.1.6 (6), we have a continuous embedding

Hψ,t ↪→ C0(K|G|K) for all t ≥ s. Let A denote the linear operator on C0(K|G|K) with
domain Hψ,s+2, defined by Au = −q(σ,D)u for all u ∈ Dom(A). Note that A is well-defined,
since by Theorem 4.3.7, its image is contained in Hψ,s ⊆ C0(K|G|K).
Observe that C∞

c (K|G|K) is a operator core for A: indeed, given f ∈ Dom(A), let (fn)
be a sequence in C∞

c (K|G|K) that converges to f in Hψ,s+2. Then, since the embeddings
Hψ,s+2 ↪→ C0(K|G|K) andHψ,s ↪→ C0(K|G|K) are continuous, there are constants κ1, κ2 > 0
such that

‖fn − f‖∞ + ‖Afn −Af‖∞ ≤ κ1‖fn − f‖ψ,s+2 + κ2‖Afn −Af‖ψ,s

By Theorem 4.3.7, there is κ > 0 such that

‖fn − f‖∞ + ‖Afn −Af‖∞ ≤ κ‖fn − f‖ψ,s+2,

and hence fn → f in the graph norm for A. Thus C∞
c (K|G|K) is a core for A. It follows

that for all α ∈ R,
Ran(αI + q(σ,D)) = Ran(αI −A).

Let f ∈ C0(K|G|K), and choose a sequence (fn) in Hψ,s such that ‖fn − f‖∞ → 0 as
n → ∞. Let α0 be as in Theorem 4.3.18. Then fn ∈ Ran(αI − A) for all α ≥ α0, and thus
f ∈ Ran(αI −A) for all α ≥ α0.
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Combining Theorem 4.3.19 with the work of Section 4.2 yields the following.

Corollary 4.3.20. Let q be a Gangolli symbol that satisfies Assumptions 4.3.4 and 4.3.11
for some M > min{1, d/r} + d. Then −q(σ,D) extends to the infinitesimal generator of a
strongly continuous sub-Feller semigroup on C0(K|G|K).

Proof. By construction, −q(σ,D) is a densely defined linear operator on C0(K|G|K). It is
a Gangolli operator, and hence satisfies the positive maximum principle. By Theorems 4.2.1
and 4.3.19, −q(σ,D) is closable, and its closure generates a strongly continuous sub-Feller
semigroup.

§ 4.4 A class of examples

We now present a class of Gangolli symbols that satisfy the conditions of Corollary 4.3.20.
Let M ∈ N such that M > min{1, d/r}+ d+ 1. We consider symbols q : G× a∗ → R of the
form

q(σ, λ) = κψ(λ) + u(σ)v(λ), ∀σ ∈ G,λ ∈ a∗, (4.4.1)

where κ is a positive constant, ψ : a∗ → R is a Gangolli exponent satisfying (4.1.5), u ∈
CMc (K|G|K) is non-negative, and v : a∗ → R is a Gangolli exponent satisfying, for some
cv > 0,

|v(λ)| ≤ cv(1 + ψ(λ)) ∀λ ∈ a∗ . (4.4.2)

By Remark 4.2.6 (2) and Example 4.2.8 (1), the mappings (σ, λ) 7→ c0ψ(λ) and (σ, λ) 7→
u(σ)v(λ) are both Gangolli symbols, and hence so is q.
For each λ ∈ a∗ and σ ∈ G, let

q1(λ) = κψ(λ), and q2(σ, λ) = u(σ)v(λ). (4.4.3)

Observe that q is of the form (4.3.12): since v has compact support, Supp(v) 6= G, and if
σ0 ∈ G \ Supp(v), then q1 = q(σ0, ·).

Proposition 4.4.1. q1 satisfies Assumption 4.3.4 (1).

Proof. The upper bound of (4.3.13) may be easily verified by taking c1 = κ. For the lower
bound, suppose |λ| ≥ 1. Then by (4.1.5),

q1(λ) =
κ

2
(ψ(λ) + ψ(λ)) ≥ κ

2
(c|λ|r + ψ(λ)) ≥ κ

2
min{1, c}(1 + ψ(λ)),

and so taking c0 = κ
2 min{1, c}, the result follows.

For Assumption 4.3.4 (2), note that in the case we are considering,

Fλ,η(σ) = φ−λ(σ)u(σ)v(η), ∀σ ∈ G, λ, η ∈ a∗,
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Chapter 4. Pseudodifferential Operators

and so, for β = 0, 1, . . . ,M ,

(−∆)β/2Fλ,η(σ) = v(η)(−∆)β/2(φ−λu)(σ),

for all λ, η ∈ a∗ and σ ∈ G. By (4.4.2),∣∣∣(−∆)β/2Fλ,η(σ)
∣∣∣ = |v(η)|

∣∣∣(−∆)β/2(φ−λu)(σ)
∣∣∣ ≤ cv

∣∣∣(−∆)β/2(φ−λu)(σ)
∣∣∣ (1 + ψ(η)

)
.

Let us first introduce some notation. For each n ∈ N, a noncommutative version of the
multinomial theorem tells us that

(−∆)n(φ−λu) = (−1)n

 d∑
j=1

X2
j

n

(φ−λu) =
∑
α∈Nd0,
|α|≤r

cαX
α(φ−λu) (4.4.4)

for some coefficients cα, where |α| = α1 + . . .+ αd and Xα := Xα1
1 . . . Xαd

d . This may also be
seen by noting that (−∆)n belongs to the universal enveloping algebra U(p), and applying the
Poincaré-Birkoff–Witt theorem (see [49] Theorem 3.8, pp. 217) to write (−∆)n in the basis
{Xα : α ∈ Nd0} of U(p).
Expanding the right-hand side of (4.4.4) using the fact that each Xj is a derivation will give
a large sum of terms of the form

κX,YXφ−λY u,

where the κX,Y are constants, and X,Y ∈ D(G) are products of powers of X1, . . . , Xd, each
with degree at most 2n. Let Un be the set of all the X’s and Vn the set of all the Y ’s, so that

(−∆)n(φ−λu) =
∑

X∈Un,
Y ∈Vn

κX,YXφ−λY u. (4.4.5)

The following lemma is based on Theorem 1.1 (iii) of [35]. An earlier version in terms of the
universal enveloping algebra can be found in [33] — see Lemma 46 on page 294.

Lemma 4.4.2. For all X ∈ D(G), there is a constant CX > 0 such that

|Xφλ(σ)| ≤ CX〈λ〉degXφ0(σ), (4.4.6)

for all λ ∈ a∗ and σ ∈ G.

Proof. By Theorem 1.1 (iii) of [35], there is a constant C1 > 0 such that

|Xφλ(σ)| ≤ C ′
X(1 + |λ|)degXφi Im(λ)(σ),

for all λ ∈ a∗C and σ ∈ G. Also,

1 + |λ| ≤
√
2
√
1 + |λ|2,
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for all λ ∈ a∗. If σ ∈ G and λ ∈ a∗, then Im(λ) = 0, and hence

|Xφλ(σ)| ≤ C ′
X(1 + |λ|)degXφ0(σ) ≤ C ′

X

(√
2
√
1 + |λ|2

)degX
φ0(σ) = CX〈λ〉degXφ0(σ),

where CX = 2(degX)/2C ′
X .

Proposition 4.4.3. The mapping q2 in (4.4.3) satisfies Assumption 4.3.4 (2).

Proof. It is clear by construction that q2(·, λ) ∈ CMc (K|G|K) for all λ ∈ a∗.
To verify the rest of Assumption 4.3.4 (2), it will be useful to assume that M is even. Note
that this is an acceptable assumption, since if M is odd, we may replace it with M − 1 —
the conditions of Corollary 4.3.20 will still be satisfied. Let β ∈ {0, 1, . . . ,M}. We seek
Φβ ∈ L1(K|G|K) for which∣∣∣(−∆)β/2(φ−λu)(σ)

∣∣∣ ≤ Φβ〈λ〉M , ∀σ ∈ G, λ ∈ a∗ . (4.4.7)

Let n = bβc. Assume first that β is even, so that n = β/2. By (4.4.5) and Lemma 4.4.2,∣∣∣(−∆)β/2(φ−λu)
∣∣∣ ≤ ∑

X∈Un,
Y ∈Vn

|κX,Y ||Xφ−λ||Y u| ≤
∑

X∈Un,
Y ∈Vn

CX |κX,Y ||Y u|〈λ〉degX |φ0|

≤
∑

X∈Un,
Y ∈Vn

CX |κX,Y ||Y u|〈λ〉degX ,

since |φ0| ≤ 1. Now, degX ≤ 2n = β ≤M for all X ∈ Un, and therefore,∣∣∣(−∆)β/2(φ−λu)
∣∣∣ ≤ κβ

∑
Y ∈Vβ/2

|Y u|〈λ〉M

where
κβ = sup

{
CX |κX,Y | : X ∈ Uβ/2, Y ∈ Vβ/2

}
.

Let
Φβ := κβ

∑
Y ∈Vβ/2

|Y u|. (4.4.8)

Then Φβ ∈ L1(K|G|K), since each Y u is a continuous function of compact support. Moreover,

‖Φβ‖1 ≤ κβ
∑

Y ∈Vβ/2

‖Y u‖1 (4.4.9)

In particular, we have verified (4.4.7) when β is even.
Assume now that β is odd, so that (−∆)β/2 =

√
−∆(−∆)n. Since M is even, note also that

1 ≤ β ≤M − 1. Applying
√
−∆ to both sides of (4.4.5),∣∣∣(−∆)β/2(φλu)

∣∣∣ = ∣∣∣√−∆(−∆)n(φλu)
∣∣∣ ≤ ∑

X∈Un,
Y ∈Vn

|κX,Y |
∣∣∣√−∆

(
Xφ−λY u

)∣∣∣ . (4.4.10)
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Note that the families Un and Vn now each consist of differential operators of degree at most
2n = β − 1.

We know that (c.f. Example 3.1.17 (2)) −
√
−∆ is the infinitesimal generator of the process

obtained by subordinating Brownian motion on G/K by the standard 1
2 -stable subordinator

on R. By standard subordination theory (see [8] §5.7, pp. 154)
√
−∆ may be expressed as a

Bochner integral
√
−∆ =

1

2
√
π

∫ ∞

0+
t−3/2(1− Tt)dt, (4.4.11)

where (Tt, t ≥ 0) denotes the heat semigroup generated by ∆.

Given X ∈ Un, Y ∈ Vn and σ ∈ G,∣∣∣√−∆(Xφ−λY u)(σ)
∣∣∣ = 1

2
√
π

∣∣∣∣∫ ∞

0+
t−3/2(1− Tt)

(
Xφ−λY u

)
dt

∣∣∣∣
≤ 1

2
√
π

[ ∣∣∣∣∫ 1

0+
t−3/2(1− Tt)

(
Xφ−λY u

)
(σ)dt

∣∣∣∣
+

∣∣∣∣∫ ∞

1
t−3/2(1− Tt)

(
Xφ−λY u

)
(σ)dt

∣∣∣∣
]
.

(4.4.12)

Let (ht, t ≥ 0) denote the heat kernel associated with (Tt, t ≥ 0). For the
∫∞
1 term of (4.4.12),

note that
∫∞
1 t−3/2dt = 2, and so∣∣∣∣∫ ∞

1
t−3/2(1− Tt)

(
Xφ−λY u

)
(σ)dt

∣∣∣∣
=

∣∣∣∣∫ ∞

1
t−3/2Xφ−λ(σ)Y u(σ)dt−

∫ ∞

1
t−3/2Tt

(
Xφ−λY u

)
(σ)dt

∣∣∣∣
≤ 2|Xφ−λ(σ)||Y u(σ)|+

∣∣∣∣∫ ∞

1
t−3/2

∫
G
Xφ−λ(στ)Y u(στ)ht(τ)dτdt

∣∣∣∣ .
By Lemma 4.4.2 and the fact that degX ≤ β − 1,

|Xφ−λ| ≤ CX〈λ〉degX ≤ C〈λ〉β−1, ∀λ ∈ a∗, (4.4.13)

where CX is as in (4.4.6), and C = max{CX : X ∈ Un}. Thus∣∣∣∣∫ ∞

1
t−3/2(1− Tt)

(
Xφ−λY u

)
(σ)dt

∣∣∣∣
≤ 2|Xφ−λ(σ)||Y u(σ)|+

∫ ∞

1
t−3/2

∫
G
|Xφ−λ(στ)||Y u(στ)|ht(τ)dτdt

≤ C

(
2|Y u(σ)|+

∫ ∞

1
t−3/2

∫
G
|Y u(στ)|ht(τ)dτdt

)
〈λ〉β−1

= Φ
(1)
β,Y (σ)〈λ〉

β−1,
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where

Φ
(1)
β,Y := C

(
2|Y u|+

∫ ∞

1
t−3/2Tt

(
|Y u|

)
dt

)
. (4.4.14)

Since β − 1 ≤M and 〈λ〉 ≥ 1 for all λ ∈ a∗, it follows that for all λ ∈ a∗,∣∣∣∣∫ ∞

1
t−3/2(1− Tt)

(
Xφ−λY u

)
dt

∣∣∣∣ ≤ Φ
(1)
β,Y 〈λ〉

M . (4.4.15)

We claim that Φ
(1)
β,Y ∈ L1(K|G|K). Clearly |Y u| ∈ L1(K|G|K), since it is a continuous

function of compact support. Each of the operators Tt is a positivity preserving contraction
of L1(K|G|K), and so∫ ∞

1
t−3/2

∫
G
Tt
(
|Y u|

)
(σ)dσdt =

∫ ∞

1
t−3/2

∥∥Tt(|Y u|)∥∥1 dt ≤ ∫ ∞

1
t−3/2‖Y u‖1dt = 2‖Y u‖1.

By Fubini’s theorem,
∫∞
1 t−3/2Tt

(
|Y u|

)
dt ∈ L1(K|G|K), with∥∥∥∥∫ ∞

1
t−3/2Tt

(
|Y u|

)
dt

∥∥∥∥
L1(K|G|K)

≤ 2‖Y u‖1.

It follows by (4.4.14) that Φ(1)
β,Y ∈ L1(K|G|K), and that

‖Φ(1)
β,Y ‖1 ≤ 4C‖Y u‖1. (4.4.16)

For the
∫ 1
0+ term of (4.4.12), observe that by Lemma 6.1.12 of [23], pp. 169, as well as the

Fubini theorem,∫ 1

0+
t−3/2(1− Tt)

(
Xφ−λY u

)
dt = −

∫ 1

0+
t−3/2

∫ t

0
Ts∆

(
Xφ−λY u

)
dsdt

= −
∫ 1

0

∫ 1

s
t−3/2Ts∆

(
Xφ−λY u

)
dtds

= −
∫ 1

0
2(s−1/2 − 1)Ts∆

(
Xφ−λY u

)
ds.

Hence, using the product formula for ∆,∫ 1

0+
t−3/2(1− Tt)

(
Xφ−λY u

)
dt = −2

∫ 1

0
(s−1/2 − 1)

{
Ts
(
Xφ−λ∆Y u

)
+ 2

d∑
j=1

Ts
(
XjXφ−λXjY u

)
+ Ts

(
∆Xφ−λY u

)}
ds.

(4.4.17)
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Let C and CX be as in (4.4.13). Then for all σ ∈ G,

∣∣Ts(Xφ−λ∆Y u)(σ)∣∣ = ∣∣∣∣∫
G
Xφ−λ(στ)∆Y u(στ)hs(τ)dτ

∣∣∣∣
≤
∫
G
|Xφ−λ(στ)||∆Y u(στ)|hs(τ)dτ

≤ CX〈λ〉degX
∫
G
|∆Y u(στ)|hs(τ)dτ ≤ C〈λ〉β−1Ts|∆Y u|(σ).

In exactly the same way, for j = 1, . . . , d,∣∣Ts(XjXφ−λXjY u
)∣∣ ≤ C

(j)
X 〈λ〉degX+1Ts|XjY u| ≤ C ′〈λ〉βTs|XjY u|,

and also ∣∣Ts(∆Xφ−λY u)∣∣ ≤ C
(0)
X 〈λ〉degX+2Ts|Y u| ≤ C ′〈λ〉β+1Ts|Y u|,

where the constants C(j)
X , C(j) are chosen so that for all λ ∈ a∗ and j = 1, . . . , d,

|Xφ−λ| ≤ C
(0)
X 〈λ〉degX+2, |XjXφ−λ| ≤ C

(j)
X 〈λ〉degX+1,

and C ′ := max{C(j)
X : X ∈ Un, j = 0, 1, . . . , d}. Such constants exist by Lemma 4.4.2. Now,

〈λ〉β−1 ≤ 〈λ〉β ≤ 〈λ〉β+1

for all λ ∈ a∗, and hence by (4.4.17),∣∣∣∣∫ 1

0+
t−3/2(1− Tt)

(
Xφ−λY u

)
dt

∣∣∣∣
≤ 2

∫ 1

0
(s−1/2 − 1)

{ ∣∣Ts(Xφ−λ∆Y u)∣∣+ 2

d∑
j=1

∣∣Ts(XjXφ−λXjY u
)∣∣

+
∣∣Ts(∆Xφ−λY u)∣∣ }ds

≤ 2C ′〈λ〉β+1

∫ 1

0
(s−1/2 − 1)Ts

|∆Y u|+ 2
d∑
j=1

|XjY u|+ |Y u|

 ds.

Since β ≤M − 1, it follows that for all X ∈ Un and Y ∈ Vn,∣∣∣∣∫ 1

0+
t−3/2(1− Tt)

(
Xφ−λY u

)
dt

∣∣∣∣ ≤ Φ
(2)
β,Y 〈λ〉

M , (4.4.18)

where

Φ
(2)
β,Y = C ′

∫ 1

0
(s−1/2 − 1)Ts

|∆Y u|+ 2
d∑
j=1

|XjY u|+ |Y u|

 ds. (4.4.19)
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Observe that Φ
(2)
β,Y ∈ L1(K|G|K) for all Y ∈ Vn. Indeed, u ∈ CMc (K|G|K), and deg Y ≤

β − 1 ≤ M − 2, hence |∆Y u|,
∑d

j=1 |XjY u| and |Y u| are all continuous functions of com-
pact support. Thus Ts

(
|∆Y u| + 2

∑d
j=1 |XjY u| + |Y u|

)
∈ L1(K|G|K), and, since Ts is an

L1(K|G|K)-contraction,∥∥∥∥∥∥Ts
|∆Y u|+ 2

d∑
j=1

|XjY u|+ |Y u|

∥∥∥∥∥∥
1

≤ ‖∆Y u‖1 + 2

d∑
j=1

‖XjY u‖1 + ‖Y u‖1.

Noting that
∫ 1
0 (s

−1/2−1)ds = 1, it follows by Fubini’s theorem that Φ(2)
β,Y ∈ L1(K|G|K), with

∥∥∥Φ(2)
β,Y

∥∥∥
1
≤ C ′

X

‖∆Y u‖1 + 2
d∑
j=1

‖XjY u‖1 + ‖Y u‖1

 . (4.4.20)

Substituting (4.4.18) and (4.4.15) into (4.4.12), we obtain the pointwise estimate∣∣∣√−∆(Xφ−λY u)
∣∣∣ ≤ 1

2
√
π

(
Φ
(1)
β,Y +Φ

(2)
β,Y

)
〈λ〉M , (4.4.21)

for all X ∈ Un, Y ∈ Vn and λ ∈ a∗, where the Φ
(j)
β,Y (j = 1, 2) are given by (4.4.14) and

(4.4.19). Hence by (4.4.10), for all λ ∈ a∗,∣∣∣(−∆)β/2(φλu)
∣∣∣ ≤ ∑

X∈Un,
Y ∈Vn

|κX,Y |
∣∣∣√−∆

(
Xφ−λY u

)∣∣∣ ≤ Φβ〈λ〉M ,

where
Φβ :=

1

2
√
π

∑
X∈Un,
Y ∈Vn

|κX,Y |
(
Φ
(1)
β,Y +Φ

(2)
β,Y

)
, (4.4.22)

and β is still assumed to be odd. As already noted, Φ(1)
β,Y ,Φ

(2)
β,Y ∈ L1(K|G|K) for all Y ∈ Vn,

and hence Φβ ∈ L1(K|G|K). Moreover, by (4.4.16) and (4.4.20),

‖Φβ‖1 ≤ κ′β
∑
Y ∈Vn

(
‖∆Y u‖1 +

d∑
j=1

‖XjY u‖1 + ‖Y u‖1

)
, (4.4.23)

for some positive constant κ′β. In particular, we have verified (4.4.7) when β is odd.

Corollary 4.4.4. Let q : G×a∗ → R be of the form (4.4.1). Then for κ sufficiently large, the
conditions of Corollary 4.3.20 are satisfied. In particular, −q(σ,D) extends to the infinitesimal
generator of a strongly continuous sub-Feller semigroup on C0(K|G|K).
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Appendix A

The Friedrich Mollifier Jϵ

Recall the Friedrich mollifier on a from Section 4.3, defined for each 0 < ε ≤ 1 and H ∈ a by

lϵ(H) := ε−ml(H/ε), where l(H) := C0e
1

|H|2−1 1B1(0)(H),

where C0 > 0 is a normalising constant, and the associated mappings j, jϵ ∈ S(K|G|K) are
again given by

ĵϵ = F(lϵ), ∀0 < ε ≤ 1.

For 0 < ε ≤ 1, the operators Jϵ were defined

Jϵu = jϵ ∗ u ∀f ∈ L2(K|G|K).

This appendix will be devoted to proving Proposition 4.3.16, which we re-state below.

Proposition A.0.1. 1. ĵϵ(λ) = ĵ(ελ) for all 0 < ε ≤ 1 and λ ∈ a∗.

2. For 0 < ε ≤ 1, Jϵ is a self-adjoint contraction of L2(K|G|K).

3. Jϵu ∈ Hψ,s for all s ≥ 0, u ∈ L2(K|G|K) and 0 < ε ≤ 1, and if u ∈ Hψ,s, then

‖Jϵu‖ψ,s ≤ ‖u‖ψ,s.

4. For all s ≥ 0 and u ∈ Hψ,s, ‖Jϵu− u‖ψ,s → 0 as ε→ 0.

Proof. 1. Let 0 < ε ≤ 1 and λ ∈ a∗. Using a change of variable H 7→ ε−1H,

ĵϵ(λ) = F (lϵ)(λ) =

∫
a
e−iλ(H)ε−ml(ε−1H)dH

=

∫
a
e−iϵλ(H)l(H)dH = F (l)(ελ) = ĵ(ελ).
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2. The map l is symmetric under H 7→ −H, and hence F (l) = ĵ is real-valued. Therefore,
given u, v ∈ L2(K|G|K) and 0 < ε ≤ 1,

〈Jϵu, v〉 =
∫
a∗
ĵ(ελ)û(λ)v̂(λ)ω(dλ) =

∫
a∗
û(λ)ĵ(ελ)v̂(λ)ω(dλ) = 〈u, Jϵv〉.

To see that Jϵ is a contraction, note that |ĵϵ(λ)| = |ĵ(ελ)| ≤ ĵ(0) = 1 for all λ ∈ a∗, and
so by Plancherel’s identity

‖Jϵu‖ = ‖ĵϵû‖L2(a∗,ω) ≤ ‖û‖L2(K|G|K) = ‖u‖,

for all u ∈ L2(K|G|K) and all 0 < ε ≤ 1.

3. Let s ≥ 0 and 0 < ε ≤ 1. By Theorem 2.4.30, ĵ ∈ S(a∗)W , and hence there is κ > 0
such that

〈λ〉s
∣∣∣ĵ(ελ)∣∣∣ ≤ κ, ∀λ ∈ a∗ .

Then, using Proposition 4.1.5 (3),

Ψ(λ)s
∣∣∣ĵ(ελ)∣∣∣ ≤ c

s/2
ψ 〈λ〉s

∣∣∣ĵ(ελ)∣∣∣ ≤ c
s/2
ψ κ,

for all λ ∈ a∗. Let u ∈ L2(K|G|K). By Plancherel’s identity,∫
a∗
Ψ(λ)2s

∣∣∣ĵ(ελ)∣∣∣2 |û(λ)|2ω(dλ) ≤ csψκ
2‖u‖2 <∞.

By Proposition 4.3.16 (1), (Jϵu)∧(λ) = ĵ(ελ)û(λ), for all λ ∈ a∗, and hence∫
a∗
Ψ(λ)2s|(Jϵu)∧(λ)|2ω(dλ) <∞.

That is, Jϵu ∈ Hψ,s.
Next, suppose u ∈ Hψ,s. Then, since |ĵϵ| ≤ 1,

‖Jϵu‖ψ,s = ‖Ψsĵϵû‖L2(a∗,ω) ≤ ‖Ψsû‖L2(a∗,ω) = ‖u‖ψ,s,

as desired.

4. By Theorem 1 on page 250 of [28], for all v ∈ S(a)W , lϵ ∗v → v as ε→ 0, in the classical
Sobolev space W s(a∗), for all s ≥ 0. Therefore,

lim
ϵ→0

∫
a∗
(1 + |λ|2)s|F (lϵ ∗ v − v)(λ)|2dλ = 0, ∀s ≥ 0, v ∈ S(a)W .

Let u ∈ C∞
c (K|G|K) and v = F−1(û). Then v ∈ S(a)W , and

F (lϵ ∗ v − v) = (ĵϵ − 1)û = (Jϵu− u)∧.
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Hence limϵ→0

∫
a∗(1 + |λ|2)s|(Jϵu− u)∧(λ)|2dλ = 0, for all s ≥ 0. By (2.4.21),∫

a∗
(1 + |λ|2)s|(Jϵu− u)∧(λ)|2ω(dλ)

≤
∫
a∗
(1 + |λ|2)s|(Jϵu− u)∧(λ)|2(C1 + C2|λ|p)2dλ

≤ κ

∫
a∗
(1 + |λ|2)s+p|(Jϵu− u)∧(λ)|2dλ,

for some constant κ > 0, and where p = dimN
2 . Thus

lim
ϵ→0

∫
a∗
(1 + |λ|2)s|(Jϵu− u)∧(λ)|2ω(dλ) = 0, ∀s ≥ 0.

By Proposition 4.1.5 (3),

‖Jϵu− u‖2ψ,s =
∫
a∗
(1 + ψ(λ))s|(Jϵu− u)∧(λ)|2ω(dλ)

≤ cψ

∫
a∗
(1 + |λ|2)s|(Jϵu− u)∧(λ)|2ω(dλ) → 0

as ε→ 0. Since C∞
c (K|G|K) is dense in Hψ,s, Proposition 4.3.16 (??) follows.
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Ad(K)-invariant, 44
adjoint representation, 19
anisotropic Sobolev space, 60

bundle of orthonormal frames, 1

convolution, 27
operator, 31
semigroup, 30

effective action, 21
exponential coordinate functions, 44

Feller process, 4
Fourier transform, 38
Friedrich mollifier, 86, 99

Gangolli
exponent, 46
operator, 69
symbol, 71

Haar measure, 21
Hille–Yosida–Ray, 69
horizontal lift, 2
Hunt

formula, 44
semigroup, 31

indivisible, 25
infinitesimal generator, 5
irreducible, 21
Iwasawa decomposition

for Lie algebras, 24
for Lie groups, 24

K-...-invariant
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function, 27
Lévy kernel, 69
Lévy process, 43
measure, 29

Killing form, 19

Lévy characteristics, 45
Lévy process

on Rd, 5
on a Lie group, 41

Laplace–Beltrami operator, 8
Lax–Milgram theorem, 83

negative definite, 58
symbol, 65

nilpotent, 24

Peetre’s inequality, 60
Plancherel formula, 36
Plancherel measure, 36
positive maximum principle, 69
pseudodifferential operator, 67

resolvent set, ix
Riemannian symmetric space, 20

of noncompact type, 22
root space, 23

Schwarz space, 38
semisimple, 19
spectrum, x
spherical

function, 32
inversion formula, 36
Paley–Weiner theorem, 36
transform, 34

strongly continuous operator semigroup, 4

tempered distribution, 40

vague convergence, 30

weak convergence, 30
Weyl group, 25
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