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Abstract 

This thesis is concerned with GF(2m) Polynomial Residue Number Systems (PRNS) 

and their application in cryptography to provide resistance against side-channel­

analysis and protection against fault attacks. 

PRNS operations over GF(2m) required in a number of cryptography primitives are 

investigated. A partial-conversion method is introduced to simplify the costly 

conversion operation and this is then combined with a partial modular reduction 

technique and applied to design and implement a PRNS based GF(2m) multiplier with 

improved performance. 

The Advanced Encryption Standard (AES) is used as vehicle to analyse and quantify 

the PRNS overhead where different AES architectures are proposed and implemented. 

The PRNS based AES is shown to achieve excellent multiple error coverage with a 

reasonable overhead. It is also argued in the thesis, that PRNS AES designs provide 

an intrinsic resistance against probing attacks and, due to the introduction of 

redundant information and the residue representation replacing the original 

representation, exhibit increased confusion and hence enhanced design security. 
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Chapter 1 
Introduction 

1.1 Introduction 

Chapter 1: Introduction 

Polynomial Residue Number System (PRNS) over binary fields 1 is a form of Residue 

Number System (RNS), where in each PRNS channei2 the modular ring is generated 

by an irreducible polynomial rather than a primitive number as in normal RNS over 

integers. The Chinese Remainder Theorem (CRT), which is applicable in RNS, is 

applicable to PRNS as well [1]. RNS structures have the advantages of less power 

dissipation and less time consumption compared to traditional systems by using 

smaller operands and reducing the complexity of circuits [2]. Due to the nature of 

independence between RNS channels and scope for randomisation, RNS architectures 

have also been advocated for improving side-channel resistance in cryptosystems [3] 

and implementing fault tolerance in DSP and communication systems [4]. 

PRNS over binary field shares most of the attractive properties with the normal RNS 

over integers. The main aim of the research in this thesis is to explore and apply those 

attractive properties to the cryptography area to enhance the security level of 

cryptosystems by providing improved protection against fault and a number of side­

channel attacks. 

GF(2m) Multiplication 1s the most frequently used field operation m most 

1 GF(2m) is also known as binary field 
2 Each independent unit in PRNS or RNS is often referred to as a channel 
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Chapter 1: Introduction 

cryptography primitives and as such the design of PRNS GF(2m) multiplier is crucial 

to the overall performance. The normal modular reduction operation in normal 

GF(2m), which requires weighted polynomial information of the intermediate product, 

needs the conversion from PRNS. This conversion from PRNS is particularly costly 

and, hence, it acts as an obstacle to the acceptance of PRNS. To overcome this and to 

simplify the conversion circuit, research was undertaken into trying different 

irreducible polynomial sets for the PRNS channels. Broadly speaking, field­

generating polynomials are characterized as either being generic or special. In 

contrast to generic irreducible polynomials the modular reduction process for special 

irreducible polynomial is simplified, a typical example is using irreducible trinomials. 

The experimental results obtained show that using trinomials as the channel 

irreducible polynomials greatly reduces the complexity of the conversion, therefore 

improving the performance of the PRNS GF(2m) arithmetic and ultimately the whole 

cryptography primitive. To fully understand the performance of the PRNS GF(2m) 

multiplication, a thorough investigation is carried out including actual implementation 

results under a range of scenarios; for example the case where the proposed multiplier 

uses different PRNS channel arithmetic architectures: bit-serial and bit-parallel. 

Another comparison between different architectures for the PRNS channels is also 

provided: architectures where the channel operations are performed in serial by 

sharing one generic channel and architectures where individual channels are used to 

perform all the channel operations in parallel. A novel modular reduction method for 

the PRNS multiplier is introduced to further simplify the conversion circuit, namely 

the partial conversion method, where only part of the intermediate product is 

converted and the final result remains in the PRNS format. 

To apply the devised PRNS to cryptography systems, the AES algorithm has been 

2 



Chapter 1: Introduction 

implemented using a full PRNS architecture. Due to the flexibility of implementing 

the AES, different architectures are constructed to analyse the performance of the 

PRNS based AES: a very low area 8-bit data path AES and a normal 32-bit data path 

AES are implemented as reference designs to analyse the additional overheads. By 

adding a redundant channel, the proposed PRNS based AES is capable of detecting 

multiple errors with a reasonable overhead. The PRNS AES cores have an intrinsic 

resistance against probing attacks because all the transformations are performed 

independently in distributed PRNS channels. In addition, due to the introduction of 

the redundant channel and the residue representation replacing the original 

representation, more confusion is added to the system, which will also enhance the 

system's security level. 

3 



Chapter 1: Introduction 

1.2 Main Research Contributions 

The PRNS architecture brings a novel way of realising GF(2m) circuits, it changes the 

architecture of cryptography schemes that uses GF(2m) arithmetic from the bottom 

level. This research started by studying and implementing the basic GF(2m) arithmetic 

using PRNS architecture; then the error detection and error correction capability 

provided by the PRNS architecture is explored; the PRNS architecture is then applied 

to the selected cryptography scheme which is the AES to provide the crypto-system 

with anti-fault-attack capability and other side channel analysis resistance. To the 

author's knowledge, the low area AES work that is proposed in Chapter 5 is known as 

the smallest FPGA AES design so far. The proposed PRNS architecture AES (Chapter 

6) is shown to have excellent error detecting rate with promising overhead in 

hardware. The 8-bit PRNS AES design is known as the smallest AES scheme with 

multiple error detection capability over FPGA platforms. 

The main contributions of the research that will be outlined in this thesis include: 

• Design and implementation of a PRNS GF(2m) multiplier using generic 

moduli sets, where m is 163, which is designed particularly for ECC 

(Elliptic Curve Cryptography) operations. Channel serial and channel 

parallel architecture of PRNS are implemented and the synthesis results 

are compared. 

• Design and implementation of a PRNS GF(2m) multiplier using special 

moduli sets. In this case, irreducible trinomials are selected as channel 

generating polynomials to improve the multiplier's performance and 

simplify the conversion circuit. 

• Design and introduction of a new partial conversion method, which is 

4 



Chapter 1: Introduction 

used to simplify the convers10n circuits for the PRNS m modular 

reduction process. 

• Introduction of Redundant PRNS (RPRNS) over binary fields, by which 

error detection and error correction capability is added to the GF(2m) 

arithmetic circuits. 

• Design and implementation of the smallest reported memory free AES 

(Advanced Encryption Standard) encryption core over FPGA platform by 

exploring the use of LUT (look-up table) based shift registers. This design 

only requires 184 slices on a Xilinx Spartan 3 (XC3 S50) device, and 80 

slices on a Spartan 6 (XC6SLX4) device while achieving throughputs of 

36.5Mbps and 58. l 3Mbps respectively. 

• Application of the PRNS to the AES. An 8-bit data path AES and a 32-bit 

data path AES are constructed to analyse the overhead that is brought by 

the PRNS architecture. 

• Application of the RPRNS architecture to the AES to provide multiple 

error detection capability. Design of a PRNS based Sbox table look-up 

method. 

• Design and implementation of the world's first PRNS based error­

detecting AES encryption core. This design is capable of detecting 100% 

channel errors and 93.75% multiple errors that may occur cross different 

PRNS channels with an overhead of 58%. In addition, the RPRNS 

architecture provides this design an intrinsic resistance against probing 

attacks and higher level of confusion. To the author's knowledge the 8-bit 

PRNS AES design is known as the smallest AES scheme with multiple 

error detection capability over FPGA platforms. 
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Chapter 1: Introduction 

1.4 Overview of Thesis 

The contents of this thesis can be summarized as follows: 

• Chapter 2: Provides background theory on GF(2m) arithmetic and RNS, 

introduces PRNS and its support theory and a brief introduction of the 

AES algorithm. 

• Chapter 3: Presents the proposed PRNS multiplication algorithm and its 

implementations. Comparisons of different multiplier architectures are 

made. 

• Chapter 4: Presents the proposed RPRNS error detection and error 

correction method for GF(2m) arithmetic. Examples and implementations 

of using the proposed approach to achieve error detection and error 

correction in GF(2m) multiplication are given. 

• Chapter 5: Overviews the AES implementations and presents the detailed 

design information for the proposed low area AES encryption core with 

the implementation results. 

• Chapter 6: Describes the application of RPRNS in the AES to achieve 

multiple error detection and gives detailed implementation results. 

Comparisons of different AES architectures are made. 

• Chapter 7: Concludes the thesis and presents a direction for further 

research. 
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Chapter 2: Background Theory 

Chapter 2 
Background Theory 

2.1 Introduction 

This chapter gives a brief overview of the background theories and algorithms that 

will be needed throughout this thesis. lt starts with presenting the fundamental theory 

behind Galois Fields, also known as Finite Fields and the Residue Number Systems 

before introducing the proposed Polynomial Residue Number Systems over binary 

fields . To support the proposed AES design, an overview of the AES algorithm is also 

given. 

For reasons of brevity, only information relating to the implementation of the 

proposed architectures will be presented. Interested readers can follow up on the 

theories using the references provided. Chapter 2.2 outlines the theory of Galois 

Fields GF(2m), with emphasis on its arithmetic and typical arithmetic circuits. Chapter 

2.3 introduces the theories behind RNS and PRNS with corresponding architecture's 

properties and their applications. Chapter 2.4 describes the basic operations of the 

AES algorithm. 
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Chapter 2: Background Theory 

2.2 Galois Fields Theory 

Galois Fields Theory has been widely used in modem communication and electronic 

systems. For example in: 

• Error-control coding, e.g. Reed-Solomon codes [5] 

• Cryptographic schemes, e.g. the Rijndael Algorithm for the AES [6] and ECC 

over binary field [7] 

• Digital signal processing [8] 

• Random number generation [9] 

• VLSI testing [ 1 OJ 

The basis of Galois Fields is constructed from an algebraic system, called a Group. It 

consists of a set G, where an operation o defined on G satisfying the following 

properties [11] : 

• Abelian: for x, y E G, (x o y) =(y O x), then G is said to be an abelian group; 

• Associativity: for x, y, z E G, (x o y) o z = x o 6' o z); 

• Identity: in G, there is an element e satisfying (x O e) = (e o x) = x for all 

XE G; 

• Inverse: m G, there exists an umque element x-1 
E G, satisfying 

- I - I 
X o X = X o X = e; 

• Closure: for all the elements in the set G, an operation between any pair of 

elements will result in another element with in the same group G, for x, y E G, 

(x o y) E G. 

A Galois Field is an algebraic system consisting of a finite number of elements. The 

9 



Chapter 2: Background Theory 

finite set F and two defined field operations + (addition) and x (multiplication) have 

the following properties [ 11]: 

• Fis an abelian group with respect to the operation +; 

• F with the additive element {OJ removed is an abelian group with respect to 

the operation x; 

• Distributivity: for x, y, z E F, {x x (y + z) = (x x y) + (x x z)}, {(x + y) x z = (x 

x z) + (y x z)} and vice versa. 

The order q of the field indicates the number of elements in the field. According to the 

finite field theory, it states that there exists a finite field of order q, if and only if q is 

either a prime number or a prime power, and this field is denoted as GF(q) . If q = p m, 

where p is a prime number and m is a positive integer, p is then called the field 

characteristic and m is named as the extension degree of such field. The Galois Fields 

with characteristic of '2 ' is known as binary field and its extension field is denoted as 

GF(2m). Such GF(2m) is of particular interest in this thesis as all the proposed 

architectures and designs are based on this finite field . 

2.2.1 The Galois Field GF(2m) 

The Galois Field GF(2m) is a finite field with the characteristic of ' 2 ' and the 

extension degree of m. It can be viewed as a vector space of dimension m over GF(2) 

[12]. An element of GF(2m) A can be denoted uniquely in a vector format as 

m-1 

A = L aiai , where ai E {O, 1} 
i=O 

10 



Chapter 2: Background Theory 

The vector {am-I, am-2, ···, a,, ao} is called a basis of GF(2m) over binary field. 

2.2.2 GF(2 111 ) Representations 

There are several methods to represent an element over Galois Field. The two most 

commonly used representations of GF(2m) elements are using the polynomial basis 

and the normal basis [13 , 14]. 

• Polynomial Basis (PB or standard basis) 

The field GF(2m) is generated using an irreducible polynomial of degree m 

over GF(2), written as: 

m-1 

F(x) = xm + L fixi, where[;_ E GF(2) 
i=O 

For each irreducible polynomial, there exists a polynomial basis 

representation, where an element of the defined GF(2m) field can be uniquely 

mapped to a binary polynomial of degree less than m. If an element 

A E GF(2m), it can be represented by a polynomial as: 

m-1 

A = L aixi = Um- 1xm-i + ··· + a1 x + a0 , where ai E {O, 1} 
i=O 

Usually, A can be denoted by a m-bit bit vector using the coefficients of the 

above polynomial as {Um-i, am-z, · ··, ai, a0 }. There exists a smallest positive 

integer n such that An = 1, then the n is defined as the order of an element A 

in the field GF(2m). If n = 2m - 1, then A is known as a primitive element, 

where the polynomial basis is given by the set {1,A,A2 , ··· ,Am- 1 } , and all 

other non-zero elements of such field can be generated by (2m - 1) 

consecutive powers of the primitive element A. 

Polynomial basis representation is by far the most versatile representation 
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since it is able to offer appropriate solutions to most computational problems 

[13]. A detailed example of polynomial basis representation is given in Table 

2-1. 

Table 2-1: Representations of the elements of GF(24
) that is generated by the 

irreducible polynomial F(x) = x4 + x + 1 

Power Representation Polynomial Bit Vector 
Representation Representation 

0 0 0000 
A0 = 1 1 0001 

Al X 0010 
A2 x2 0100 
A3 x3 1000 
A4 x+l 0011 
As X2 + X 0110 
A6 x3 + x2 1100 
A7 x 3 + X + 1 1011 
As x 2 + 1 0101 
A9 x 3 +x 1010 
A10 X2 + X + 1 0111 
All x 3 + x 2 + x 1110 
A12 x 3 + x 2 + x + 1 1111 
A13 x 3 + x 2 + 1 1101 
A14 x 3 + 1 1001 

A1s =Ao= 1 1 0001 

• Normal Basis (NB) 

If f] is a primitive element of GF(2m), in another word p2
m-

1 = 1, the normal 

basis of this field is of the form {/l, {] 2 , • • ·, f] 2m-i}. Each element A in the field 

GF(2m) can be written as: 

m-1 

A = L aifl 2
i , where ai E {O, 1} 

i=O 

Squaring operation of an element can be easily implemented by a simple 

cyclic shift of the coordinates of the normal basis representation; however, the 

multiplication in the normal basis is more complicated than using polynomial 
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basis. For reasons of brevity, the detailed information on normal basis 

representation refers to [ 12]. 

As in this thesis, most of the algorithms and implementations are using polynomial 

basis representation. In the following section, polynomial basis is used to demonstrate 

the basic arithmetic over GF(2m)_ For the arithmetic using other basis, interested 

reader can refer to [13 , 14]. 

2.2.3 GF(2 01) Arithmetic 

The basic arithmetic over GF(2m) that is being used in this thesis includes: addition, 

multiplication, squaring, modular reduction and inversion. 

The addition and subtraction in GF(2m) can be implemented as bitwise XOR 

operation, which performs the modular 2 operation, because the field characteristic is 

'2 ' . A very attractive property can be revealed here: the addition operation will not 

generate a carry signal, which means the lower bits will not affect the higher bits 

while doing additions. The property will be further exploited and applied to the 

proposed partial conversion method. 

The crux of GF(2m) arithmetic is the multiplication. It can be demonstrated as the 

following equation: Let A, B E GF(2m), then their product C 

C = AB mod f (x ) , where f(x) is the generating irreducible polynomial of the field . 

f(x) is used to perform degree reduction to ensure that C is also in GF(2m) and the 

multiplication is closed. The multiplication algorithm is expressed as m 

Algorithms 2-1 , which is also known as "shift-and-add" algorithms [52, 53, 54]: 

13 



Cha ter 2: Back round Theor 

Input: A(x), B(x) E GF(2m), irreducible polynomial F(x) of degree m 

Output: C(x) = A(x) · B(x) mod F(x) 

1: C(x) <= 0 

2: for i = m - l to Odo 

C(x) <= C(x) · x + A(x)bi 

C(x) <= C(x) + F(x)cm 

end for 

3: return C(x) 

Al orithm 2-1: Multi lication in GF 2m with interleaved modular reduction 

The typical hardware architecture of implementing GF(2m) multiplier is usually in one 

of three ways: 

• Bit-serial multiplication performs one GF(2m) multiplication including the 

modular reduction operation within m clock cycles. The operand is fed 

bitwisely. The complexity is defined using a linear function O(m), which is 

relatively low. Typical example can be found in [13, 15]. Figure 2-1 

demonstrate a MSB first 4-bit bit-serial multiplier generated using 

F(x) = x 4 + x + lover GF(24
). 

Fi ure 2-1: 4-bit bit-serial multi lier over GF 24 enerated b 
F x = x4 +x + 1 
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• Bit-parallel multiplication performs the GF(2m) multiplication using one clock 

cycle, or in another word, it can be constructed using pure combinational logic 

circuit. All the operands are fed in parallel, to reduce the latency of performing 

such multiplication. The modular reduction process is usually done by 

multiplying a modular reduction matrix, which is derived from the field 

generating polynomial. The complexity of this architecture is relatively high 

compared with bit-serial architecture, hence it is usually defined using a 

quadratic function O(m2
). Systolic architecture can also be adopted for bit­

parallel multiplication in some designs [ 16]. Further references refer to [ 17, 

18, 19, 20]. A typical bit-parallel multiplier example is shown in Figure 2-2. 

The AND network and the first level of XOR network calculate the 

intermediate product s; the last level of XORs performs the modular reduction 

using F(x) = x 4 + x + 1 over GF(24
) . 

bo b1 b2 b3 

a.3 
S6 

a,2 

S5 
::::$-

a. 1 

3 ~ S4 

a.o 
4 > C3 

s2 c2 

~ 
CJ 

::::$-
S J 

so co 

Figure 2-2: 4-bit bit-parallel multiplier over GF(24
) generated by 

F(x) = x4 + x + 1 

• Digit-serial/parallel multiplication is a compromising method between the bit­

serial and bit-parallel architecture. By using the adjustable digit/word length, it 

15 



Chapter 2: Background Theory 

reduces the number of clock cycles of the bit-serial multiplier and lowers the 

area of bit-parallel multiplier [21 , 22]. 

The squanng operation over GF(2m) is derived by, firstly rerouting the input to 

generate the intermediate product and then performing the modular reduction. Several 

efficient architectures are reviewed during the study. In [20], it is presented a pure 

combinational logic squarer with short critical paths and low complexity. However, it 

can be only applied for certain Galois fields, which are generated by irreducible 

trinomials. In [23] , the squarer is developed from the multiplication circuits by adding 

an adapter to reroute the operands. It achieves better speed performance over 

multiplication alone. 

Inversion is the most computationally complex and most expensive operation m 

hardware to implement among all Galois field arithmetic, however it is a very 

important operation in the cryptography area mainly because of its nonlinearity, e.g. 

the SubBytes operation in the AES. The division operation over GF(2m) needs the 

modular inversion as well, it is usually performed by calculating one operand 's 

inversion followed by a multiplication in most of the applications, e.g. the point 

operations in the ECC. 

There are two main algorithms that are used to implement the modular inversion, 

which are Fermat's Little Theorem (FLT) and Euclid's Greatest Common Divisor 

(GCD) algorithm [24, 25]. Using Fermat's Theorem to find the inversion, also known 

as the Multiplication and Square method, can be implemented using a multiplication 

and square chain, which varies according to the used algorithm. Typical square and 

multiplication algorithm is expressed as following : 
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For every a E GF(2m) and a * 0, 

According to FLT, a 2m = a 

Therefore a-1 = a 2m-z 
' 

Further 2m - 2 = 2 + 22 + 2 3 + ... + 2m- 1 

' 

Algorithm 2-2: Finding Multiplicative Inversion using Fermat's Little Theorem 

Input: A(x) E GF(2m) and A(x) * 0, irreducible polynomial F(x) of 
degree m 

Output: U = A-1 (x) , such that A- 1 (x) · A(x) mod F(x) = 1 

1: S ~ F(x),R ~ A(x), V ~ O,U ~ l,delta ~ 0 

2: for i = l to 2m do 

if Tm= 0 then 

R ~ x · R; U ~ (x · U) mod F; delta~ delta+ l; 

else 

end if 

end for 

3: return U 

if Sm= 1 then 

S ~ S - R; V ~ (V - U) mod F; 

end if 

S~x·S; 

if delta= 0 then 

else 

R <=> S; U <=> V; (exchange polynomials) 

U ~ (x · U) mod F; 

delta ~ delta + l; 

U ~ (U/x) mod F; 

delta ~ delta - l; 

end if 

Algorithm 2-3: Finding Multiplicative Inversion using Euclid's Greatest 

Common Divisor algorithm [26) 
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The Euclid's GCD algorithm is initially used to find the greatest common divisor 

between two numbers; it can be adopted to calculate the modular inversion as well. 

There are several variations of modified Euclid's algorithm to perform the modular 

inversion operation. The Algorithm 2-3 demonstrates one of those algorithms [26]. 

Most GF(2m) arithmetic can be implemented in the Montgomery domain as well, e.g. 

the multiplication, the exponentiation and the inversion. Since the Montgomery 

domain arithmetic is not being used in this thesis, here only lists a few references for 

the interested reader. Typical papers are [27, 28, 29]. 
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2.3 Residue Number System Theory 

1f to/] :;f ~□ ~ ~ ' 
- -=-~Zftl= , 
.n.n~z.Jtl.=. , 
-t-t~Z.fiJ=o 

fa] to/J fL 1iiJ ? 
- ((J,j,~~~)) 

In the 4th century, the above math puzzle appeared in the Chinese scholar Sun Zi's 

mathematical manual titled Sun Zi Suanjing (or commonly known as Sun Tzu Suan­

ching in RNS literatures [30]). Its English translation is as following [31]: 

There are an unknown number of things, 
If we count by threes, there is a remainder of 2, 
If we count by fives , there is a remainder of 3, 
If we count by sevens, there is a remainder of 2, 

Find the number of things. 

This math puzzle actually described a three-modulus Residue Number System (RNS). 

The answer to this puzzle is 23 . The process of obtaining the answer, which was 

outlined in this ancient literature, became known as the Chinese Remainder Theorem 

(CRT) in honour of its Chinese origins. The Greek mathematician Nichomachus is 

also credited with independently discovering the CRT. The complete solution to the 

CRT was further developed by another Chinese mathematician named Jiushao Qin in 

the 13 th century [31]. A proof of this theorem was published by Hsin Tai-Wei of the 

Ming Dynasty of China [32]. Finally, another proof was published by Euler in 1734. 

A small group of Czechoslovakian researchers published the first works on residue 

arithmetic in 1950s, where their study was to explore RNS 's natural fault tolerant 

property to design an RNS computer [33]. After the birth of the transistor-based 

computer in the 1960s, the research into RNS computer was pushed into the 

background. The focus of RNS studies then shifted to digital signal processing (DSP) 
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due to its easy implementation of additions and multiplications. The work carried out 

until 1986 was collected in an IEEE press compilation of papers [32] , which serves as 

an excellent reference on the historical development of RNS. 

Nowadays, RNS has been widely studied and applied in many areas, from digital 

signal processing to communications. In RNS, a large integer is decomposed into a set 

of co-independent smaller integers, so that a large calculation can be performed as a 

number of smaller calculations in parallel. It reduces complexity of the arithmetic 

units especially when large bit lengths operands are encountered [34]. In addition, the 

digit-parallel property of RNS has the advantage of consuming less switching power, 

which is the main component of power dissipation for current technological processes 

[35, 42, 43, 44]. This is an important characteristic for portable and wireless devices. 

In the field of cryptography, the parallel independent nature of RNS provides a 

different dimension to data randomization [35] , which has been advocated for 

combating side-channel analysis, such as: simple/differential power analysis, 

simple/differential electromagnetic analysis and probing attack [3 , 36]. The nature of 

fault tolerance provided by the RNS, which has already been widely applied in DSP 

and communication systems, is a great attraction for implementing error free crypto­

systems, which is useful to fight against fault induction attack. 

2.3.1 Residue Number System Representation [35] 

RNS is a non-weighted number system defined by a base, which is constructed by 

N-tuple of positive integers: (m0, m1, · · ·, mN_1), known as the moduli of the system 

[37]. As it can be seen from the above notation, the base of RNS consists multiple 

radixes, unlike a fixed-radix number system (e.g. decimal, binary, etc.). 
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For a given base, the maximum representational coverage (also known as the dynamic 

range) of such RNS is defined by the least common multiple (LCM) of the moduli, 

and is denoted by: 

Hence, for maximum representational efficiency m RNS, it 1s imperative for all 

moduli to be relatively prime, which is denoted as: 

1GCD(mi, mi)= 1, for i * j, where i,j E [O, N - 1] 

In this case, the dynamic range of the given RNS is: 

N-1 

M= TT mi 
i=O 

If an unsigned integer X stays in the dynamic range [O, M - 1], it can be represented 

uniquely in the defined RNS by using its remainders: 

RNS 
X ~ {x0, Xv···, xN_1} where xi = X mod mi, for i = 0,1,2, · ··, N - 1 

If the RNS is used to present a signed integer, the dynamic range is then divided into 

positive and negative regions. It is defined as: 

{[ 

M -1 M -11 -
2 

, 
2 

for M is odd 

[- ; , ; - 1] for M is even 

Negative values are mapped into the upper-half of the interval [O, M - 1] in RNS. A 

1 GCD represents the greatest common divisor 
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negative integer is congruent to its additive inverse, which is described algebraically 

as: 

An example of the (3, 5) RNS to represent the unsigned and signed numbers 1s 

demonstrated in the following table: 

Table 2-2: RNS representations of unsigned and signed integers 

Signed Unsigned (3, 5) RNS Signed Unsigned (3, 5) RNS 
0 0 {0,0} -7 8 {2,3} 
1 1 {1, 1} -6 9 {0,4} 
2 2 {2,2} -5 10 {1,0} 
3 3 {0,3} -4 11 {2,1} 
4 4 {1,4} -3 12 {0,2} 
5 5 {2,0} -2 13 {1,3} 
6 6 {0,1} -1 14 {2,4} 
7 7 {1,2} -8 15 out of range 

2.3.2 Residue Number System Arithmetic 

The most basic arithmetic in RNS includes: addition, subtraction, multiplication and 

the conversion to and from RNS. Let O denote the operation of addition, subtraction or 

multiplication. If X, Y and their result Z (as the operations in RNS are closed) are in 

the dynamic range [0, M - 1], that is defined by the given RNS, the operation 

between X and Y to obtain Z is expressed as following: For X , Y and Zin their RNS 

obtain Z = X o Yin RNS: 

Note that zi is solely dependent upon xi and Yi from the above equation; hence the 
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RNS operation can be performed in parallel without any data dependency between 

different RNS channels. The operands used for the RNS operation are the remainders 

of the original data, those residue digits have smaller bit length compared with the 

normal weighted operands. This property is often referred to as the "carry-free" 

property, but this is somewhat misleading since carries may still exist in computations 

involving residue digits, as in each residue channel it uses weighted number system. 

The fact is that, in the RNS, carries have not totally disappeared, however the carry 

propagation delay has been cut short due to using smaller bit length operands, which 

avoids the main temporal constraint in traditional arithmetic implementation [38]. As 

a direct consequence of this property, RNS architecture is capable of performing 

faster addition and multiplication relative to equivalent two's complement operations 

[35]. 

Observe from the above equation, a mod operation is needed in each channel's o 

operation. To perform the mod operation, modular arithmetic circuits are needed to be 

constructed for different modular operations, e.g. modular adder, modular multiplier, 

etc. The implementation of the modular arithmetic circuits is a big area of research 

and has been widely studied. Since in this thesis most of the modular operations are 

not in the integer domain, due to the reason of brevity, only some work that is related 

to the implementation of the modular arithmetic is listed for interested readers. 

Typical works can be found in [30, 32, 35, 38]. 

2.3.3 Residue Number System Converter 

To apply the RNS to normal weighted number systems, it is necessary to build the 

converter to and from the RNS. Moreover, due to the fact that the magnitude and sign 

determination cannot be performed directly from RNS, and in order to prevent 
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overflow or to perform error detection m some operations, a conversion back to 

normal representation seems crucial. 

The conversion to RNS is simple in math, which is just a mod operation. However, 

the conversion from RNS back to normal weighted number system is complicated and 

expensive in hardware. This conversion is made possible by the CRT, where it states: 

for a given group of co-prime positive integers m0, mi,···, mN-i , there exists an 

integer X satisfying the following system of simultaneous congruence: 

X = x1 (mod m1 ) 

X = x 2 (mod m 2 ) 

Furthermore, all solutions X of this system are congruent modulo to the product 

M TIN-1 = i=O mi. 

There are two commonly used algorithms to obtain the solution X, in other words, to 

convert or to decode the residue representations. They are the CRT and the Mixed 

Radix Conversion (MRC). 

Below are various equivalent algebraic representations of the CRT [35, 37, 39) 

X= 
M 
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is the residue representation of X, and where q E [0, N - 1]. 

It is observed that, the operations in CRT are performed in parallel, which is attractive 

property for fast designs. However, the major difficulty of implementing it is the fmal 

mod M operation, as M can be a large and arbitrary number. Several innovative 

solutions have appeared in the literature that aims to address this problem. Readers 

can refer to [35, 40, 41] for more information. 

To use MRC to calculate the value of X, firstly, the residue representation has to be 

translated to a mixed-radix representation. If the mixed-radix number system (MRS) 

is combined with the RNS, obtaining X can be expressed as: 

N-2 

X = aN-1 n mi+ ... + a2m1mo + a1mo + ao 
i=O 

where the mi are the moduli of the RNS and the ai 's (0 ~ ai ~ mi) are the mixed 

radix digits (MRDs ). The classic algorithm to obtain the MRDs ( a/ s) is a sequential 

process that was proposed by Szabo and Tanaka [37] , expressed as: 

~-1 - ai-1 ~=----
mi-1 

where Y0 = X,a0 = x 0 and i E [1, N - 1]. 

In contrast to the CRT, the derivation of the MRSs reqmres N-1 stages, which 

consumes more time while the number of moduli increases. However, it is useful to 

note that the arithmetic operations in the MRC algorithm are processed using residue 

hardware and the mod M operation is avoided. 

The proposed PRNS over binary field shares most of the characteristics, arithmetic 

and algorithms with the RNS, it is gomg to be discussed in the next section. 
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2.4 Polynomial Residue Number System over GF(Zm) 

PRNS were first used to achieve better performance in signal processing with a high 

degree of parallelism (45, 46, 47]. A PRNS over GF(2m) that is similar to normal RNS 

over integers, was firstly introduced in [ 48] to construct a GF(2m) multiplier. In the 

PRNS, each channel is generated by a polynomial instead of a prime number as in the 

typical RNS. The Chinese Remainder Theorem (CRT), which is valid in RNS, can 

also be applied to PRNS (1]. 

2.4.1 Polynomial Residue Number System Representation 

A list of irreducible polynomials over binary fields is selected as the field generating 

polynomials for PRNS channels. The list is written in polynomial representation as: 

m 1 (x), m 2 (x), · ··, mN (x), where N is the number of channels. The degree of each mi 

is di. The dynamic range of the given PRNS is constrained by the product polynomial 

M(x), denoted as: 

N 

M(x) = n mi(x) 
i=l 

In order to represent an arbitrary GF(2m) element uniquely using its residues, the 

degree D of the product polynomial M(x) should be no less than m, that is 

N 

D = L di~ m 
i=l 

If the PRNS is used for GF(2m) multiplication, the dynamic range covered by the 

selected PRNS should satisfy the following inequation, because it should cover the 

intermediate product of two arbitrary field elements: 
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N 

D = Ldi 2:: 2m 
i=l 

Within the dynamic range, then a polynomial basis field element p(x) can be 

represented uniquely in PRNS format using a list of its polynomial remainders: 

Wherep(x)=p(x)modmi(x)fori = 1,2, ... ,N. 

An example is given in Table 2-3 to demonstrate the PRNS representation. In this 

example, x 2 + x + l and x3 + x + l are selected as the residue channel generating 

polynomial m 1 (x) and m2 (x) respectively. The given moduli set is being used to 

represent an arbitrary element over GF(24
): 

Table 2-3: PRNS representations of GF(24
) elements 

GF(24
) PRNS 

Gf (24
) element in element in 

PRNS Representation in PB 
Representation 

PB binary in binary 
vector vector 

0 0000 {0,0} {00,000} 
1 0001 fl,11 {01,0011 

X 0010 {x,x} fl0,010} 

x+l 0011 {x + l,x+ 1} {11,011} 
x2 0100 {x + 1,x2 } {11,100} 

x 2 + 1 0101 {x,x 2 +11 {10,101} 

x 2 +x 0110 {l,x2 + x1 {01,1101 

x 2 + x + l 0111 {0, x2 + x + l} {00,111} 
x3 1000 {l,x + l} {01,011} 

x 3 + 1 1001 {0,x} {00,010} 

x3 +x 1010 {x + 1, l} {11,001} 

x 3 + x + l 1011 {x,01 {10,0001 
x3 + x2 1100 {x,x 2 + x + 1} {10,111} 

x 3 + x 2 + 1 1101 {x+l,x2 +x1 {11,110} 

x 3 + x 2 + x 1110 {0,x 2 +1} {00,101} 

x 3 + x 2 + x + l 1111 {1, x 21 {01,100} 
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2.4.2 Polynomial Residue Number System Arithmetic 

In PRNS over GF(2m), as in normal RNS, the most commonly used arithmetic is 

addition/subtraction and multiplication. Those operations can be performed in parallel 

as: for A, Band their results are all covered by the given dynamic range 

A± B = {(a1 XOR b1 )m
1

, ... , (aN XOR bN)mN} 

AxB = {(a1 X b1)m
1

, ... ,(aN X bN)mJ 

where ai and bi for i E [1, N] are the PRNS representation of A and B. 

Due to the fact that addition and subtraction operations are performed by bitwise XOR 

in binary field (which performs mod 2 operation), there exists no overflow problems, 

hence modular reduction using mi(x) is not needed in addition and subtraction 

operations. However the channel multiplication's mod mi (x) operation is not 

avoidable, since the arithmetic of each residue channel is over GF(2) as well, basic 

GF(2) multiplication circuit can be used to implemented the residue channel 

multiplier. 

It has to be noticed that the modular reduction over GF(2m) is still necessary for 

multiplications to ensure all operations are closed. Since the magnitude determination 

cannot be performed directly from PRNS, and in order to prevent overflow, a 

conversion back to polynomial representation is necessary before performing the 

GF(2m) modular reduction. Meanwhile, the conversion is also required by the error 

detection to check if there is any overflow. 

The conversion to PRNS can be implemented straight forward using GF(2) modular 

reduction circuits. The conversion from PRNS format to weighted polynomial 
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representation is based on the extension of the CRT to polynomials. The Single Radix 

Conversion (SRC) algorithm is introduced to perform the conversion in this thesis. It 

is described as [ 48]: 

N 

p(x) = L[Pi(x) · Ii(x)mod mi(x)] · Mi(x) 
i=l 

li(x) is the multiplicative inversion of Mi(x) mod mi. Usually, in the implementation, 

//x) and Mi(x) are pre-calculated according to the given PRNS. 

The SRC algorithm is the extension of the CRT algorithm to binary field. Due to the 

carry-free property in binary field, the final (mod M) operation, which exists in CRT 

for integers [35, 37, 39], is not necessary in SRC over binary field. A detailed example 

is given in Appendix B to demonstrate the SRC algorithm. 
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2.5 The Advanced Encryption Standard 

The Rijndael cipher algorithm, introduced by Vincent Rijmen and Joan Daemen was 

selected as the Advanced Encryption Standard (AES) by the National Institute of 

Standards and Technology (NIST) in 2000. In the following year, this algorithm 

became the Federal Information Processing Standard FIPS-197. The reader is referred 

to FIPS-197 [6] , which is the original official documents of the AES algorithm, for a 

detailed description. 

The AES is a symmetric block cipher, which uses the same key for both encryption 

and decryption. It has been broadly used for different applications, including smart 

cards and cellular phones, website servers and automated teller machines etc. Similar 

to other symmetric cyphers, the AES applies round operations iteratively to the 

plaintext to generate the ciphertext. Operations in the Rijndael cipher are defined over 

the Gf (28
) in the polynomial basis with a non-primitive irreducible polynomial 

m(x) = x 8 + x 4 + x 3 + x + 1. In line with the original document, this section 

follows the notation and definition of terms in FIPS-197 [6]. 

The round operations are applied to a 128-bit state, which is organized into 4 columns 

of 4 bytes (in total 16 bytes). The cipher key can have three different bit sizes 128, 

192 or 256 bits to achieve different level of security; it is also organized into Nk ( 4, 6 

or 8) columns of 4 bytes each. The number of round operations, denoted as Nr, is 

determined by the length of the cipher key Nk (shown in Table 2-4). The round 

operation consists of four sub-transformations: SubBytes, ShiftRow, MixColumn and 

AddRoundKey (shown in Algorithm 2-4). Derived from the cipher key, each round 

key is generated by an extra KeyExpansion function. 
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Table 2-4: Number of Round Transformations with respect to Nk 

Key Length 
Nk = 4 (128 bits) 
Nk = 6 (192 bits) 
Ni, = 8 (256 bits) 

RoundTransform (State, RoundKey) 
{ SubBytes (State); 

ShiftRow (State); 
MixColumn (State); 

Nr 
10 
12 
14 

AddRoundKey (State, RoundKey); } 

Algorithm 2-4: AES Round Transformations 

The full AES algorithm (encryption process) is described in Algorithm 2-5: 

AES (Plaintext, CipherKey) 
{-- Initializing 

RoundKey = CipherKey; 
State = Plaintext; 

-- Add the original key 
AddRoundKey (State, RoundKey); 

-- Round Transformation 
for I in 1 to Nr - I loop 

RoundKey = KeyExpansion (RoundKey, RC); 
RoundTransform (State, RoundKey); 

End loop; 
-- Final Round 

RoundKey = KeyExpansion (RoundKey, RC); 
SubBytes (State); 
ShiftRow (State); 
AddRoundKey (State, RoundKey); 
Output= State; 
} 

Algorithm 2-5: AES Algorithm (Encryption) 

It has to be noticed that, each round transformation contains four sub operations and a 

RoundKey computation, with the exception of the final round, where the only 

difference in the last round is the absence of a MixColumn operation. The decryption 

process using the AES performs the encryption process in a straightforward reversed 

order. The sub round operations are explained individually in details in the following 
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sections. For the reason of convenience, the 128-bit State and RoundKey are denoted 

using a 4x4 matrix as: 

5 o,o 5 0,1 5 o,z 5 o,3 ko,o ko1 koz ko3 

State: 
5 1,o 5 1,1 5 1,2 5 1,3 , RoundKey: 

k1,o k11 k12 k1,3 

5 z,o Sz,1 5 2,2 Sz,3 kz,o k2,1 kz,z kz,3 
S3,0 S3,1 S3,z S3,3 k3 o k3,1 k3,z k3,3 

Figure 2-3: State and RoundKey Notation 

2.5.1 SubBytes and InvSubBytes 

The SubBytes transformation is the only non-linear operation among all AES 

transformations. It substitutes every byte of an AES State to another byte. The 

forward SubBytes operation is used for the encryption and the inverse SubBytes is for 

the decryption process. The substitution follows the following rule: the forward 

SubBytes operation applies a Forward Affine Transformation1 to a multiplicative 

inverse of a byte; the inverse SubBytes, denoted as InvSubBytes, plays an Inverse 

Affine Transformation to a byte first, then computes its multiplicative inversion. It can 

be expressed as: 

SubBytes: 

s{J = Forward Affme Transformation (Multiplicative Inverse (si,j)) 

InvSubBytes: 

s{,j = Multiplicative Inverse (Inverse Affine Transformation (si,j)) 

The affine transformation can be expressed as: 

bI = bi ffi b(i+4) mod 8 ffi ho+s) mod 8 E9 b(i+6) mod 8 E9 b(i+7) mod 8 ffi ci 

'Affine Transformation is a reversible linear transformation as y = ax + b . In the AES, equation 
y = ax + b is expressed in matrix. 
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for O ::;; i ::;; 8 and bi is the i th bit of a byte ci is the ith bit of the byte with 

hexadecimal value [63]HEX· 

or using matrix form as: 

ho' 
1 0 0 0 1 1 1 1 ho 1 

bi' 1 1 0 0 0 1 1 1 b1 1 
bz' 1 1 1 0 0 0 1 1 b2 0 
b/ 1 1 1 1 0 0 0 1 b3 

+ 0 
b/ 1 1 1 1 1 0 0 0 b4 0 

bs' 0 1 1 1 1 1 0 0 bs 1 

b/ 0 0 1 1 1 1 1 0 b6 1 

b/ 
0 0 0 1 1 1 1 1 b7 0 

2.5.2 ShiftRow and InvShiftRow 

The ShiftRow transformation cyclically shifts the rows of the state with different 

number of bytes according to the row number. Row O is not shifted, Row 1 is shifted 

by 1 byte, Row 2 is shifted by 2 bytes and Row 3 is shifted by 3 bytes. The ShiftRow 

shifts the byte cyclically towards left in the encryption process, while shifts to the 

opposite direction in the decryption process, denoted as InvShiftRow. The shifting 

process is demonstrated as Figure 2-4: 

so,o S0,1 S0,2 So,3 so,o S0,1 S0,2 So,3 so,o S0,1 S0,2 5 o,3 

S1,3 S1,0 S1,1 S1,2 InvShiftRow S1,0 S1,1 5 1,2 S1,3 ShiftRow S1,1 S1,2 5 1,3 S1,0 
~ 

Sz,2 Sz,3 Sz,o Sz,1 Sz,o Sz,1 Sz,2 Sz,3 Sz,2 Sz,3 Sz,o Sz,1 

S3,1 5 3,2 S3,3 S3,0 S3,0 S3,1 S3,2 S3,3 5 3,3 S3,0 S3,1 S3,2 

Figure 2-4: ShiftRow Operation for Encryption and Decryption 

2.5.3 MixColumn and InvMixColumn 

The MixColumn transformation, just as its name implies, is a column based operation 

to the State. It treats each column as a four-term polynomial and performs 
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multiplication with a fixed polynomial a(x) followed by a modulo x 4 + 1 operation. 

The a(x) is given by: 

a(x) = {03}x3 + {0l}x2 + {0l}x + {02} 

For easier implementation, the polynomial multiplication is usually written in matrix 

format. See the following equation, it shows the Mix Column transformation of the /h 

column of a State using matrix multiplication: 

[

So,i:] [02 
Su _ 01 
s2/ - 01 
s , 03 3,i 

03 
02 
01 
01 

01 
03 
02 
01 

011 [so,i l 01 , S1,i 
03 Sz,i 

02 s3,i 

Due to the fact that the polynomial a(x) is co-pnme to x 4 + 1, there exists its 

inversion a- 1 (x). It is calculated as: 

a- 1 (x) = {0b}x3 + {0d}x2 + {09}x + {0e} 

In the decryption process, the Inverse MixColumn transformation (written as 

InvMixColumn), multiplies a column with the polynomial a-1 (x), then performs a 

modulo x 4 + 1 operation. In matrix format, the InvMixColumn is demonstrated as: 

[:::: :1- r~; ~~ ~i 
s2 / - 0d 09 0e 
s ' ., 0b 0d 09 

3,t 

091 [so,il 0d . su 
Ob Sz,i 

0e s3,i 

2.5.4 AddRoundKey 

The AddRoundKey transformation performs the addition over GF(28
) of each byte in 

a State with a suitable RoundKey that is generated by the KeyExpansion function (see 
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Figure 2-5). The addition over binary field can be implemented using bit-wise XOR 

operation, as it acts as a modular 2 adder. The AddRoundKey transformation is 

identical for both encryption and decryption process. 

So,o 
I 

S0,1 
I 

So,2 
I 

So,3 
I 

koo ko 1 ko,2 ko,3 5 o,o 5 0,1 5 0,2 5 o,3 

5 1,o 
I 

5 1,1 
I 

5 1,2 
I 

5 1,3 
I 

k1,o k1,1 k1,2 k1,3 5 1,o 5 1,1 S1,2 S1,3 
EB 

Sz,o 
I 

S2,1 
I 

S2,2 
I 

Sz,3 
I 5 2,o 5 2,1 5 2,2 5 2,3 k20 k21 k22 k2 3 

5 3,0 
I 

5 3,1 
I 

5 3,2 
I 

5 3,3 
I S3,0 S3 ,1 5 3,2 S3 ,3 k3,o k 3,1 k32 k3 3 

Figure 2-5: AddRoundKey Transformation 

2.5.5 Key Expansion 

The KeyExpansion (or known as KeySchedule in some works) produces the 

RoundKeys that are used in the AddRoundKey operation. The total number of 

RoundKeys in columns is equal to the block length multiplied by the number of 

rounds. A new RoundKey is derived from the Round.Key from the previous round. 

The Key Expansion algorithm is shown in Algorithm 2-6: 

KeyExpansion (Round.Key [Oto 3], RC) 
--The RoundKey is organized as 4 columns of 4 bytes each 
{-- Initializing 

Reon= (RC, '00' , '00' , ' 00 ') ; 
temp = Round.Key [3] ; 

-- Key Generating 
temp= SubBytes (RotByte(temp)) XOR Reon; 
NextRoundKey [0] = RoundKey [0] XOR temp ; 
NextRoundKey [1] = RoundKey [1] XOR NextRoundKey [0] ; 
NextRoundKey [2] = RoundKey [2] XOR NextRoundKey [1] ; 
NextRoundKey [3] = RoundKey [3] XOR NextRoundKey [2] ; 

-- Calculating RC 
RC = (RC · x) mod x 8 + x 4 + x 3 + x + 1 ; 

-- Output 
Return (NextRoundKey, RC) ; 
} 
Algorithm 2-6: KeyExpansion Algorithm (128-bit Key) 

There requires two sub-functions in the above algorithm: RotByte and SubBytes. The 
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RotByte rearranges the location of four bytes in one column by cyclically shifting the 

column by 1 byte. The SubBytes function is the same as the SubBytes described in 

Chapter 2.5.1, although it is on a smaller scale i.e. one column instead of one state. 

KeyExpansion also contains a calculation of the round constant value Reon, it is 

defined as Rcon[i] = (RC[i], '00', '00', '00') , wher i indicates the round number. 

RC[i] represents an element in GF(28
) with a value of xi-i _ The mod operation in the 

calculating of Reon ensures there is no overflow and all the value stays in GF(28
). 
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2.6 Design, Validation and Verification 

The proposed designs in this thesis that will be described in the next a few chapters 

are carried out using VHDL (Very High Speed Integrated Circuit Hardware 

Description Language) [49, 50]. VHDL together with Verilog, are two of the most 

popular hardware description languages in today's digital design. 

Design validation and verification are realized using a combination of high-level 

simulation by using ModelSim [51], which is a powerful simulator from Mentor 

Graphics, and Field Programmable Gate Array prototyping, using the Xilinx ISE 

design suite. In both cases, synthesizable Register Transfer Level (RTL) VHDL code 

is written to enable a smooth transition between high-level simulation using 

ModelSim and FPGA prototyping. 

In order to verify the correctness of the proposed architectures and designs, valid 

testing vectors are generated either from third party open source C libraries or from 

the official standards ( e.g. the testing vectors for the AES from FIPS-197). The testing 

vectors are run through the design using a ModelSim based test bench in VHDL for 

functional verification, where the test bench has three main purposes: 

• To generate stimuli for simulation 

• To apply these stimuli to the design under test (DUT) 

• To compare the output of the DUT with the expected values 

In addition, to simplify the testing and verification process in some cases, extra testing 

circuits are built to connect with the DUT to verify the results. 
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2. 7 Research Proposal 

After Rijndael cipher algorithm being selected as the AES by the National Institute of 

Standards and Technology (NIST) in 2000, this crypto-scheme has been widely 

adopted for various applications from high-end computers to low power portable 

devices. In recent years, numerous attacks have been introduced to break cryptographic 

systems and extract secret information via; side-channel-analysis by analysing or 

manipulating the observations of physical characteristics of the electronic 

cryptographic system. Typical examples are timing attacks [94], power attacks [95], 

electromagnetic radiation attacks [96] and fault attacks [97, 98]. Prior work has shown 

that even a single transient error occurring during the AES round operations will very 

likely result in a large number of errors in the final data [68]. In addition, most of the 

attack scenarios have shown that the AES is quite vulnerable to fault attacks [68, 69, 

70, 71, 72] . Hence it is necessary to provide error detection mechanisms to the AES 

design to achieve higher level of reliability and security. There are several approaches 

to achieve error detection for cryptographic systems . Generic solutions are duplication 

and repeated computation, however these solutions either double hardware overhead or 

latency and they are not protective against permanent faults . Error detecting codes are 

widely used by engineers to implement error proof designs. A good review of the 

existing error detecting method for the AES can be found in (99], where it summarises 

two solutions: parity code based schemes (68, 100, 101] and residue code based 

schemes (102, 103]. The first group of schemes have low overhead but are weak for 

multiple faults detection; the latter ones yield good multiple error coverage but are 

weak in single fault detection and become very hardware consuming when predicting 

the residue codes for non-linear operations such as SubBytes. 
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Since security is becoming an essential part of modern communication. However, to 

the author's knowledge, there are rare solutions that can provide full protection 

against attacks to crypto-schemes, where the solutions are either focused on fault 

attacks or focused on reducing the information leaking from side-channels. Hence it is 

necessary to look for an all-in-one solution that can provide the crypto-systems with 

both fault resistance and side-channel-attack resistance with reasonable hardware 

overhead and good error coverage. In this research, the RNS architecture over binary 

field (PRNS) is proposed to achieve such goals for the selected AES scheme. The two 

main reasons are as follows: 

• RNS architecture for error detection and correction has a good balance 

between error coverage and hardware overhead, which has already been 

widely applied in DSP and communication systems. 

• The parallel independent nature of RNS architecture provides a different 

dimension to data randomization [35], which has been advocated for 

combating side-channel analysis, such as: simple/differential power analysis, 

simple/differential electromagnetic analysis and probing attack [3, 36]. 

Furthermore, to minimize the hardware overhead and to achieve quick prototyping, 

the LUT based shift registers that is provided by the latest FPGA technologies is 

proposed for realising the shifting operations in the AES over FPGA platforms in this 

research. 
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Chapter 3 
PRNS Multiplication over GF(2m) 

3.1 Introduction 

Many researchers have been encouraged by the escalating use of Galois fields GF(2m) 

arithmetic in digital signal processing, cryptography, coding theory and computer 

algebra to investigate different architectures and novel algorithms to advance Galois 

field circuits. In this chapter, the GF(2m) multiplication is investigated and a novel 

GF(2m) multiplier architecture and corresponding implementation over GF(2 163
) that is 

based on the proposed PRNS is presented. 

Consider the example application of the proposed multiplier in the context of public 

key cryptosystems, in particular elliptic curve cryptography (ECC) where the required 

large operands impose many design challenges. The curve K-163 presented in Fips-

186 [7] is chosen as a standardized curve for ECC over the binary field. It uses the 

field generating polynomial f(x) = x 163 +x7 + x 6 + x 3 + 1 over GF(l1 63
). A 

GF(2 163
) multiplier is constructed to demonstrate the proposed PRNS architecture. 

To obtain a good analysis of the PRNS architecture based multiplier, a channel-serial 

and a channel-parallel PRNS multiplier are constructed individually to compare the 

synthesis results. To further improve the performance of the propose PRNS multiplier, 

a set of special moduli, which are all trinomials, is selected as the channel generating 

polynomials to reduce the complexity of the conversion circuit. Furthermore, a novel 

approach of performing the modular reduction over GF(2 163
) using PRNS is proposed 
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to simplify the modular reduction circuit. 

The organization of this chapter is as follows. Firstly, architectural descriptions are 

provided for the proposed channel-serial and channel-parallel PRNS multiplier over 

GF(2m). Thereafter, the derivation of the proposed partial modular reduction method 

is introduced, followed by the description of the improved PRNS GF(2m) multiplier. 

Before conclusions are drawn, the FPGA implementation results are presented and 

compared between different GF(2m) multiplier architectures. 
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3.2 GF(2 163) Multiplication using PRNS 

3.2.1 Dynamic Range and Moduli Set 

To cover the whole dynamic range of two arbitrary field elements ' multiplication, 37 

9-degree irreducible polynomials are selected as the PRNS channels. This satisfies the 

inequation dxN 2:'. 2m, whered = 9, N = 37, m = 163. The reasons why 9-degree 

irreducible polynomials are selected are, firstly, from the exhaustive list of irreducible 

polynomials [51], the degree 9 irreducible polynomials satisfy the inequation 

dxN 2:'. 2m (Chapter 2.4.1) with the smallest degree. In other words, let's say if degree 

8 irreducible polynomials are chosen, from the exhaustive list there exists 30 

irreducible polynomials with degree 8, since (30x8 = 240 < 2x163 ), these 

polynomials cannot cover the whole dynamic range over GF(l1 63
) multiplication and 

neither do the polynomials with even smaller degree. The second reason is that, 

smaller degree means shorter operands and shorter channel length; in other words, it 

will lead to simpler channel circuit. 

However, there are trade-offs between the channel length and the number of channels. 

To cover the same dynamic range, shorter channel length requires more channels, 

which leads to more parallelism or more cycles according to different channel 

architecture. 

With the given moduli set, assuming the result is q(x), the GF(l1 63
) multiplication is 

performed as : 
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q(x) = p(x) mod f(x), where f(x) = x163 +x 7 + x 6 + x 3 + 1 

Due to the fact that multiplication over Galois field is closed, to prevent overflow, 

modular reduction is performed following the calculation of the intermediate product 

using the field generating polynomial f(x) , whose degree is equal to 163. Since the 

magnitude of the intermediate product cannot be determined directly from the PRNS 

format, a conversion back to normal polynomial representation is required before 

performing the modular reduction using f (x). The conversion uses the SRC 

algorithm that is introduced in Chapter 2.4.2, written according to the chosen moduli 

set as: 

37 

p(x) = L (pJx) · Ii(x) mod mi(x)) · MJx) 
i=l 

From the above equation, as the moduli set is predefined, the Mi(x) 's and Ii(x) 's can 

be pre-calculated and used as constant value in the conversion implementation. The 

detailed information on the selection of mi (x) 's and the value of the MJx) 's and 

Ii (x) 's are listed in Appendix A. 

Assuming the input and output data of the proposed multiplier are all in PRNS format, 

the procedure of performing the GF(i1 63
) multiplication is, firstly performing the 

channel multiplication, thereafter applying the SRC algorithm to determine the 

intermediate product p(x) ; then performing the modular reduction using f (x) to p(x) 

to obtain q (x) , in the end converting the result back to PRNS representation to 

maintain the consistency. 
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3.2.2 Channel-Serial PRNS Multiplier over GF(2 163) 

The channel-serial PRNS, just as its name implies, performs the channel operations in 

serial by sharing a generic channel arithmetic unit. To perform the channel 

multiplication, a parallel generic GF(29
) multiplier is constructed, which treats the 

channel generating polynomials as an input. 

To perform the SRC conversion algorithm, Mi(x)'s and Ii(x)'s are pre-computed and 

stored into memories. Addresses are used to ensure the pre-stored information is 

forwarded correctly. 

a 
--+ GF(29

) 333bits 9bits GF(2163J 
---!?.. Multiplier Modular 

9bits 
333bits Reduction 

9bits 
163bits 

9bits 

ToPRNS 
Converter 

11 M; 
Control 

Rom Rom elk Ctrl/Addrcss 

9*37bits 9*37bits 324*37bits 

Figure 3-1: Architecture of the Channel-serial PRNS Multiplier over GF(2 163
) 

Figure 3-1 shows the full architecture of the channel-serial PRNS multiplier over 

GF(l1 63
). The GF(29

) multiplier on the left performs PRNS channel modular 

multiplication, the one on the right performs part of SRC algorithm which is the 

multiplication with Ii (x). The block of Mul_ M performs the multiplication with 

Mi(x), it is constructed by pure AND and XOR networks. The following XOR and 

register calculates the sum of Mi(x), which is the last step of the SRC algorithm. 

When the SRC algorithm finishes, the register stores the weighted polynomial 

representation of the intermediate product. 
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The GF(i 63
) Modular Reduction block reduces the degree of the intermediate product 

from 332 to 162. Focusing on polynomial basis multiplications over GF(2m), several 

approaches have been reported for the modular reduction, such as "shift-and-add" 

algorithms [52, 53, 54], look-up-table (LUT) based algorithms [27, 55], ltoh-Tsujii 

algorithm based reduction method [56], etc. 

In this proposed multiplier architectures, a digit-serial modular reduction method 

based on the conventional iterative reduction scheme is adopted, because it has the 

capability of providing significant versatility and scalability, which balances the trade­

offs between area and operation time [57]. The modular reduction is to reduce the 

2m - 1 bits intermediate product into m bits using the generating polynomial f (x). 

Assuming the digit length is l, then the digit-serial modular reduction algorithm can 

be described as follow: 

Input: the intermediate product p (x) with the degree of 2m - 2, irreducible 
polynomial f(x) of degree m 

Output: q(x) with degree of m - 1 

In binary vector format: 

1: tmp(m - 1 ··· 0) <= p(m - 1 ... O) 

2: for i in O to l m;l - 1 j do 

tmp <= tmp XOR {p[(2m - 2 - i · l) ... (2m - 2 - i · l - l)] · f(m - 1--· O)} 

end for 

3: q(x) <= tmp 

4: return q(x) 

Algorithm 3-1: Digit-serial Modular Reduction Algorithm 

Normally, the digit length l is chosen so as m;i is an integer to simplify the reduction 

circuit. Furthermore, the selection off (x) has the potential of providing significant 
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simplification m circuit complexity, which is further discussed m the following 

section. 

In this design, the digit length l is selected as 10, such that it needs 
332

-
162 = 17 

10 

cycles to reduce the degree from 332 to 162. By analysing the generating polynomial 

of the field, which is f (x) = x163 + x 7 + x 6 + x 3 + l , the digit-serial reduction 

approach is further simplified. By ignoring the MSB in f (x), an 8x10 constant 

multiplier is used to replace the 163x10 multiplier. This multiplier is constructed by 

simple AND and XOR networks. Figure 3-2 shows the detailed implementation of the 

proposed modular reduction: 

332 .. 170 

162 .. 0 

159 .. 150 

162 .. 0 

9 .. 0 

172 .. 163 

10x8 

[ 

Multiplier 

GP=t7+t6+r+l 

Figure 3-2: Implementation of Digital-serial Modular Reduction Algorithm 

The To PRNS Converter in Figure 3-1 converts the polynomial representation back - -

to PRNS again after the GF(i 63
) modular reduction. It takes 37 cycles to complete 

the whole conversion, because the number of channels is 37. The Control unit is 

simply implemented using a binary counter, which generates the control signals and 

addresses of the block memory. The entire channel-serial multiplier requires 93 cycles 
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to perform a multiplication. 

In this architecture, the data of each channel is forwarded into and out of the 

multiplier serially. By sharing the channel modular multipliers, this serial architecture 

greatly reduces the requirements of hardware resources. 

3.2.3 Channel-Parallel PRNS Multiplier over GF(2 163) 

Compared with the channel-serial architecture, the channel-parallel architecture 

performs the channel modular multiplication in parallel. By modifying the channel­

serial architecture, the channel-parallel multiplier is constructed as follows . 

See Figure 3-3. 

31 
GF(29

) GF(29
) 

b1 Multiplier Multiplier 
l1 

32 
GF(29

) GF(29
) 

b2 Multiplier Multiplier 
Ii To 

Mui M 
a 

GF(29
) GF(29

) 

bJz 1111 Multiplier Multiplier 

h1 

Figure 3-3: Architecture of the Channel-parallel PRNS Multiplier over GF(2 163
) 

Following the parallel channel multipliers, the data is forwarded to the Mui_ M block, 

after which the circuit is the same with channel-serial architecture. The rest of the 

architecture which is not shown in Figure 3-3 finishes the SRC algorithm and conduct 

the to PRNS conversion. 

By making comparison with the channel-serial architecture, this architecture uses a 
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multiple of channel modular multipliers, which increases the hardware cost. However, 

due to the parallelization of channels, it provides a novel method of parallelization of 

the multiplication operation over GF(2m). According to this architecture, 93 cycles is 

used to perform the multiplication. 

3.2.4 Synthesis Results and Comparisons 

Xilinx Spartan 3-3s1500lfg320-4 FPGA is used for synthesis and implementation. 

Table 3-1: 37-Channel PRNS GF(2m) Multiplier Synthesis Results 

Channel-serial Channel-Parallel 
FF 1010 1350 

LUT 5274 8675 
Slices 2752 4625 

Frequency (MHz) 5.179 5.119 
Cycles 130 93 

Time-Area Product 
0.069 0.084 

(Slices x second) 

The proposed architecture is resource intensive as expected due to dynamic range 

coverage and conversion. However, conversion can become a shamble resource for 

most intended applications, for example in a real ECC design the conversions are 

required in two ends of the operation [34]. The advantages of a channel serial 

architecture are also apparent if the timexarea product is considered. 

From the FPGA synthesis results, it can also be noted that, the speed bottleneck 

resides in the SRC algorithm and the to-PRNS conversion, resulting in a comparable 

maximum operating frequency. 

To the author's knowledge, there are not any hardware synthesis results for such 

PRNS architectured GF(2m) multipliers to compare with. 
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3.3 Partial Conversion and Modular Reduction using 
PRNS 

The main purpose of introducing such Partial Modular Reduction method is to reduce 

the complexity of the PRNS conversion and modular reduction circuits, thereby to 

improve the performance of the PRNS architecture. The feasibility of this method is 

based on the carry-free property of binary field addition. Let us see an example: 

Assume an GF(28
) element a(x) is represented using polynomial moduli set 

{x4 + x + 1, x4 + x 3 + 1} as {a1 (x), a2 (x)} or in binary vector format as 

perform the SRC algorithm, the constant values are calculated as: 

Table 3-2: Demonstration of the Partial Conversion Method 

Channel 1 Channel 2 
Input (a1(0),a1(1),a1(2),a1(3)) (a2 (0),a2 (1),a2 (2),a2 (3)) 

q1 (0) = a1 (1) EB a1 (2) qz(0) = a2(0) EB a2(1) EB a2(2) 

qi(x) 
q1 (1) = a1 (1) EB a1 (3) qz(l) = a2(0) EB a2(1) EB a2(2) EB a2(3) 
q1 (2) = a1 (0) EB a1 (2) qz(2) = a2(1) EB a2(2) EB a2(3) 
Q1 (3) = a1 (0) EB a1 (1) EB a1 (3) Q1(3) = a1(0) EB a1(1) EB a1(3) 

P1 (0) = ql (0) pz(0) = q2(0) 
P1Cl) = q1(1) Pz (1) = qz (0) EB qz (1) 
P1 (2) = ql (2) P2(2) = qz(l) EB qz(2) 

Pi(x) 
P1 (3) = ql (0) EB ql (3) pz(3) = q2(2) EB q2(3) 
P1(4) = q1(1) EB q1(0) P2(4) = qz(0) EB qz(3) 
P1 (S) = ql (1) EB ql (2) P2(S) = qz(l) 
P1(6) = q1(2) EB q1(3) P2(6) = qz(2) 
P1 (7) = q1 (3) Th (7) = Q1 (3) 

a(x) a(i) = P1 (i) EB p7 (i), for i = 0 to 7 
EE) indicats XOR operation 
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As Ii (x) and Mi (x) are pre-calculated constant value, multiplying by them can be 

implemented by using fixed XOR network as demonstrated in Table 3-2. 

For example, if we want to determine the Most Significant Bit (MSB) of a(x) from 

its PRNS representation, according the above table, the computation is straight 

forward as: 

a(7) = p 1 (7) EB p
2
(7) = q1 (3) EB qz(3) 

= a1(0) EB a1(l) EB a1(3) EB az(O) EB az(l) EB a2 (3) 

The proposed GF(2m) modular reduction method for the PRNS is based on the 

feasibility of the partial conversion. It is derived as follows: 

Over GF(2m), which is generated by f (x), the multiplication is expressed as: 

pdt(x) = a(x) · b(x) mod f(x) (1) 

The intermediate product, a(x) · b(x) can be expressed in polynomial forms as 

a(x) · b(x) = Czm-zXzm-z + Czm-3Xzm-3 + ··· + CmXm + Cm_1xm-l + ··· + c1x 

+ Co 

Then, equation ( 1) can be written as 

pdt(x) = (Czm-zXzm-z + Czm-3Xzm-3 + ··· + CmXm + Cm-1Xm-l + ... + C1X + 

c0) mod f(x) = (Czm-zXzm-z + Czm-3x 2m-3 + ··· + CmXm) mod f(x) + 

(cm_ 1xm-l + ··· + c1x + c0) mod f(x) (2) 

Since f (x) is a polynomial with degree m, then derived from equation (2) 

so 
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pdt(x) = 

(3) 

In GF(2), 1 + 1 = 0, so (Czm-zXzm-z + c 2m_3x2m-3 + ... + CmXm) can be added to 

the left side of the equation (3) twice without changing its value, as following: 

pdt(x) = 

(4) 

Rearranging ( 4): 

+ ( 2m-2 + 2m-3 + + m) + ( 2m-2 Czm-zX Czm-3X • •• CmX Czm-zX 

Rewrite the above equation in binary vector format: 

pdt(x) = 

(czm-z, Czm-3, ···, Cm, 0, ··· ,0) mod f(x) + (Czm-z, Czm-3, ···, Cm, 0, ··· ,0) + 

(5) 

Assume the result after the mod f (x) operation is donated as (c'm-v ···, c' 1, c' 0), then 

from the equation (5): 
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pdt(x) = 

( c' m-1' ... , c' i, c' o) + (Czm-2, Czm-3• ... , Cm, 0, ... ,0) + 

( Czm-2, Czm-3• .. ·, Cm, c' m-1> .. ·, c' i, c' o) + ( Czm-2, Czm-3• ... , Cm, Cm-1> "·, Ci, Co) 

(6) 

Both components in ( 6) can be expressed using PRNS representation. To obtain that, 

firstly, it is needed to partially convert the most significant m - 1 bit of the 

intermedia product to normal polynomial representation, then perform the modular 

reduction using f(x) to calculate c\ (i E [0, m - 1]), after which a to PRNS 

conversion 1s applied to the combination of cj and c' i (i E [0, m - 1], 

j E [m, 2m - 2]) to find its PRNS representation. The second addend of the addition 

in (6) is in PRNS already, which are the results from the PRNS channel multiplier. 

Then the modular reduction over GF(2m) can be finally performed by PRNS addition 

with those component in (6). 

The advantage of this approach is that, firstly, it reduces the complexity of the SRC 

conversion circuit as only half length of the intermediate product is converted, 

secondly, due to the partial conversion (lowers the probability of leaking the full 

information) and the adoption of the PRNS architecture, this approach is effective in 

preventing leaking information while performing the conversion and modular 

reduction. A detailed implementation of this method is shown in the next section. 

In addition, the partial conversion method has found broad usage in overflow 

detection (for the PRNS error detection) and overflow prediction (used for the PRNS 

based AES) for the PRNS architecture, which will be further discussed in the 

following chapters. 
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3.4 GF(2 163) Multiplication using Trinomial based PRNS 

This section introduces a improved design of implementing GF(2m) multiplication 

using the PRNS. Irreducible trinomials are selected as the generating polynomials for 

the PRNS channels to enable conversion to-and-from PRNS to be implemented using 

simple XOR networks, thereby resulting in significant improvement in speed and area. 

The previously introduced PRNS modular reduction method over GF(2m) is also 

adopted to achieve better performance. 

3.4.1 Dynamic Range and Moduli Set 

This design implements a GF(2 163
) multiplier in PRNS (the same as previously 

introduced design in Chapter 3.2), aiming the application of the ECC using curve K-

163. The large operands of such multiplier impose many design challenges. 

To cover the whole dynamic range, four 84-degree irreducible trinomials are selected 

as the PRNS channels. This satisfies the dynamic range dxN 2:: 2m equation, where 

d = 84, N = 4, m = 163. There are two main reasons why trinomials are chosen. 

Firstly, in Galois field multiplications, using trinomials achieves the lowest hardware 

complexity in modular reduction, especially when the trinomials are of the form 

xm + xk + 1, where k ::; : [20]. This property of trinomials is also attractive when 

building the PRNS converter. Secondly, in the SRC algorithm, it can be seen that Mi, 

which is a constant value in the given PRNS, is the product of several channel­

generating polynomials. To make the multiplying by Mi operation simple, it is 

necessary to require that Mi should have a smaller number of' 1 's and this can be best 

achieved by using trinomials, because they are the irreducible polynomials with the 

fewest '1 's over binary field. 
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However, trade-offs are required between the channel length and the channel number 

for an optimized design. To cover the same dynamic range, shorter channel lengths 

require more channels, which may lead to consuming more hardware resources and to 

more complex converter design. In addition, irreducible trinomials only appear in 

certain degrees and the number of trinomials, which satisfy k ~ ?!!:., is even smaller. 
2 

That is the reason why four 84-degree irreducible trinomials are selected for this 

design. 

For the given PRNS, the GF(l1 63
) multiplication and the SRC conversion is then 

described as: 

q(x) = p(x) mod f(x), where f(x) = x 163 +x7 + x 6 + x 3 + 1 

4 

p(x) = _L (Pi(x) · Ii(x) mod mi(x)) · Mi(x) 
i=1 

The detailed information on the selection of mi (x) 's and the value of the Mi (x) 's and 

Ilx) 's are listed in the Appendix B. 

3.4.2 Channel Multiplier Design 

From the previous literature review, there are several approaches that can be adopted 

for implementing the PRNS channel multipliers, such as bit-serial architecture, bit­

parallel architecture and digital serial/parallel architecture. Since the selected field 

length for PRNS channels is quite large, which is degree of 84, the bit-serial 
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architecture is adopted here in order to achieve the lowest hardware complexity. In 

Chapter 2, Figure 2-1 illustrates an MSB-first bit-serial multiplier over GF(24
) 

generated by trinomial x 4 + x + 1 to demonstrate the architecture. 

In addition, such multiplier is not only suitable for performing channel multiplication, 

but also for calculating (plx) · h(x) mod mlx)) in the SRC algorithm. 

3.4.3 Multiplying by Mi Operation 

Consider the following example where M1 is written in polynomial form as: 

Mi (x) = x2s2 + x1s1 + x179 + x177 + x168 + x1os + x106 + x104 + x84 + x33 + 

x24 + x22 + x20 + x13 + x11 + x9 (7) 

(It is a product of all channels generating polynomials except the one for Channel 1. 

Those polynomials are x
84 + x 9 + 1, x

84 + x 11 + 1, x
84 + x 13 + 1) 

According to equation (5) and (6) in Chapter 3.3, since a partial convers10n IS 

performed to calculate the most significant 162 bits of the intermediate product, the 

component with the degree smaller than 84 can be ignored in (7), because they do not 

contribute to the final partial conversion result. So multiplying by M 1 can be done by 

multiplying by the following polynomial instead: 

x2s2 + x1s1 + x179 + x177 + x168 + x1os + x106 + x104 + xs4 

It is assumed that the multiplicand is a(x) which Is m a PB representation. The 

multiplication is as follows: 

a(x). (x2s2 + x1s1 + x179 + x177 + x168 + xios + xlo6 + x104 + x84) 

= a(x) · x 252 + a(x) · x 181 + a(x) · x 179 + a(x) · x 177 + a(x) · x 168 + a(x) · 
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x1os + a(x) . x106 + a(x). x104 + a(x). xB4 (8) 

It is simple to implement (8) by using an XOR network and routing a(x) to the 

correct position as illustrated by Figure 3-4. 

252 84 0 
0 I ore • x 252 

XOR 84 0 
0 0 I ore • x1 s1 

XOR 84 0 
0 0 I ore • x 119 

XOR 104 84 0 
ore • x 101 

0 
ore •xB4 

D 163 
Ignore 

Figure 3-4: XOR Network for the Operation of Multiplying by M1 

3.4.4 GF(2 163) Modular Reduction and to_PRNS Converter 

A bit-parallel modular reduction method is adopted to perform the field modular 

reduction to reduce the (czm-z, Czm-3, ···,Cm, 0, .. · ,0) component to a degree smaller 

than m, the result is written in binary vector format as (c' m-l' ... , c' i, c' 0) , which 

implements the calculation of the first component in equation (6). 

The to _PRNS converter is implemented by simple modular reduction usmg the 

selected trinomials. The detailed implementation approach can be found in [20]. 

Both modular reduction and conversion are implemented usmg a simple XOR 

network. 
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3.4.5 Architecture of the Proposed PRNS GF(2 163) Multiplier 

1, J 
Channcl_2a 'ii Mui ~r :_:1 ~ Channcl_2b--j~ en 

j I, 

Channcl_3a -J Mui t ~ I;~ ~ Channcl_Jb ); ~en 
~ 

Channel_ 4tL'<i Mui ;j!d ~. Channel_ 4b :ii .__,.._ , en 1 ~ 

.. 
~ Mui 

M2 
L____, 

1 %~1 
I 

'------' 

~ Mui 
M, r 

S!art • Control . ➔ 
'f 

173 

Partial f . To PRNS I 
Reduction J it 1Converter 

XOR 

elk 

~egl enable 

Reg2 enable 

rshift-reg 
enable 

Figure 3-5: Architecture for the PRNS GF(2 163
) Multiplier using Trinomials 

Figure 3-5 shows the full architecture of the proposed PRNS multiplier over GF(2 163
). 

It is assumed that the input and the output of the multiplier are all in PRNS 

representations. 

The Gf (284
) multipliers on the left hand side perform PRNS channel modular 

multiplication, the one on the right performs part of SRC algorithm which is 

(pJx) · Ii(x) mod mi(x)) operation. Ii(x)'s are pre-calculated and stored into the 

shift registers. When there is a valid signal on the Shift-reg enable, the shift register 

starts to forward /i(x)bitwisely to the second GF(2 84
) multiplier acting as a bit-serial 

input. 

The module Mui Mi, Partial_Reduction and To_PRNS_Converter are constructed 

using pure XORs. According to equation (6), the output of the To_PRNS_Converter is 

the PRNS representation of (c2m-2, Czm-3, ···, cm, c' m-v ···, c' i, c' 0) , the output of 

the first level of registers IS the PRNS representation of 

(czm-z, Czm-3 , ···, Cm, Cm-1, ···, Ci, Co). The final product after GF(2 163
) modular 

reduction is generated by a PRNS addition operation, which is implemented as 
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bitwise XORs. 

It takes 168 clock cycles to finish a multiplication operation. This includes 83 clock 

cycles performing channel multiplication, another 83 clock cycles performing 

multiplication by Ii (x) and 2 clock cycles on the data propagating through two 

registers. 

As it can be seen from Figure 3-5, all channels are separate, similar and their 

operations are performed in parallel hence offering an inherent mechanism for 

masking, randomization and fault tolerance (if redundant channels are added) which 

could help improve protection against any potential side channel leakage or analysis 

[3]. 

3.4.6 Hardware Results and Comparisons 

Xilinx Spartan 3-3sl500lfg320-4 FPGA is used for synthesis and implementation to 

enable a fair comparison. Table 3-3 shows the synthesis results of the proposed 

multipliers compared with the design that has been introduced in Chapter 3.2, which 

is the first reported implementation of a PRNS multiplier over binary fields. 

From the results, the work that uses trinomials as the channel generating polynomials 

shows significant improvements both in hardware consumption and speed compared 

with our previous work. The figures indicate that this work consumes half and one 

third area consumption compared with the channel-serial and channel-parallel 

architecture respectively. The highest operating frequency is improved by over 30 

times due to the reduction of the maximum combinational delay. The total delay is 

improved by 25 times over the channel-serial architecture and by 17 times over the 

channel-parallel architecture. These figures also show a 47 times' Time-Area Product 
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improvement over the channel-serial architecture, a 57 times' improvement over the 

channel-parallel architecture. 

Table 3-3: Synthesis Results of the 4-Channel PRNS GF(2 163
) Multiplier 

Channel- Channel-
This work 

Serial Parallel 

FF 1010 1350 1691 

LUT 5274 8675 2588 

Slices 2752 4625 1429 

Frequency (MHz) 5.179 5.119 164.015 

Cycles 130 93 168 

Delay (ms) 25.1 *10-3 18.2* 10·3 1.024*10"3 

Time-Area 
Product 69*10-3 84*10"3 1.463*10·3 

(Slices*second) 

As mentioned in Chapter 3 .4.1, using trinomials simplifies the modular reduction and 

the To _PRNS conversion operations. Furthermore, together with the partial 

conversion method, using trinomials breaks down the bottleneck in multiplying by 

Mi (x) operation; hence it achieves higher speed and uses less resource. 

Table 3-4: Comparisons with other GF(2 163
) Implementation 

Work implemented by [ 61] Platform Slices Delay 

Proposed by [58] Virtex 2 5307 12.56µs 

Proposed by [59] Virtex 2 5409 13.37µs 

Proposed by [60] Virtex 2 5840 14.73µs 

This work Spartan 3 1429 1.024µs 

Table 3-4 shows the comparisons with some other 163 bits parallel GF(2m) multipliers. 

The figures indicate that this work shows great improvements both in area and speed. 

Though this multiplier is neither optimal on high speed nor on low area, it provides 

the potential to countermeasure side-channel-attacks as well as a feasible option to 

implement parallel architectures. 
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3.5 Functional Testing 

The correctness of the proposed design in this chapter has been verified usmg 

ModelSim based test bench in VHDL. Since there are no direct testing vectors for 

such PRNS architecture, extra pre-tested error-free testing circuits are built to help 

with the testing process. The testing circuit setup is shown in Figure 3-6: 

----------1 Generic GF(2m) 

a--+--1 

b 

toPRNS 

--- Converter 

M u I tip lie r 
i---------

Result Comparison -

Test Result 
fromPRNS 

...... --Converter 

Figure 3-6: Testing Circuits for the PRNS GF(2m) Multiplier 

The testing process is simple. There are two branches of the testing circuits, the first 

one calculates a GF(2m) multiplication using normal polynomial representation, the 

other branch calculates the multiplication using the proposed PRNS multiplier using 

the same operands which are previously converted to PRNS fonnat through the 

to _PRNS Conve1ier. When the calculation is done, the results from the two branches 

are compared to check if they are identical to verify the design. The input testing 

vectors are chosen from random GF(2m) elements, while the referencing testing 

results are generated on the fly from the Generic GF(2m) Multiplier. 
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3.6 Conclusions 

This chapter described the design of a novel PRNS based GF(2m) multiplier. Three 

different architectures together with the implementation results are given. From the 

synthesis results, it is noticed that the conversion circuit causes main overhead in such 

PRNS multiplier. To overcome this obstacle, a novel conversion and modular 

reduction method is introduced to the PRNS architecture, namely partial modular 

reduction method. A new implementation of such multiplier adopting the partial 

modular reduction method is presented together with its hardware results. From the 

comparison of different PRNS multipliers, the partial modular reduction method 

enables great reduction in the use of area and the combinational delay, thereby 

improves the performance, which makes such PRNS multiplier feasible for the 

mentioned application ECC using curve K-163. 

The next chapter will look into the error detection and fault tolerant property that is 

brought by the PRNS architecture. The error detection and fault tolerance GF(2m) 

multiplier designs are also presented. 
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Chapter 4 
PRNS for Error Detection and Fault 
Tolerance 

4.1 Introduction 

The increasing use of Galois fields GF(2m) arithmetic in cryptographic applications 

requires the implementation of GF(2m) circuits to have higher level of reliability. 

Furthermore, in recent years, a new approach of attacking a cryptographic system 

named fault attacks uses the leaking information generated by the system's faulty 

operations to obtain the analytical results of the secret information [62]. Preventing 

faulty operations is becoming an important issue in cryptographic applications design. 

The ECC and AES are both shown to be vulnerable to fault attacks in literatures. 

Works in [63, 64] present a few fault attack schemes against the public key scheme 

ECC. In the AES, prior work has shown that even a single transient error occurring 

during the AES round operations will very likely result in a large number of errors in 

the final data [ 68]. In addition, a few attack scenarios have shown that the AES is quite 

vulnerable to fault attacks as well [68, 69, 70, 71, 72]. Hence it is necessary to provide 

error detection mechanisms to the cryptography designs to achieve higher level of 

reliability and security. 

Since GF(2m) multiplication is the crux operation in ECC, some work have been done 

by researchers to incorporate error detection or correction to the multiplier over 

GF(2m). Works in [65, 66] use parity-based approaches to achieve error detection and 
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[67] uses an alternative method based on a re-computing with shifted operands 

(RESO) method. 

In this chapter, a new approach using the PRNS architecture to implement the GF(2m) 

multiplier with error detection capability is presented. In this approach, error detection 

in the multiplication over GF(2m) is achieved by using PRNS representation and 

extended bases (or called the Redundant PRNS, RPRNS). The background theories 

and mathematic proof is given in the first part of this chapter, followed by a detailed 

FPGA implementation of a GF(28
) error detection multiplier as a demonstration of the 

proposed error detection method. Furthermore, based on the error detection capability 

that is provided by the RPRNS, concurrent error correction ( or known as the fault 

tolerance) is achieved by adding two or more redundant channels. An example of such 

fault tolerance GF(2163
) multiplier design (for the ECC scheme) together with its 

implementation results are also presented. This chapter is concluded with the overhead 

and error coverage analysis. 
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4.2 The RPRNS Based Error Detection 

The PRNS over GF(2m) based error detection is similar to RNS error detection over 

integers, the proof of which is given in [73]: by adding a redundant polynomial residue 

channel, the whole representation range is then divided into two intervals: the 

legitimate range and illegitimate range [74]. Any error in a single channel can be 

detected if its conversion result belongs to the illegitimate range. 

The Redundant PRNS (RPRNS) is defined usmg a normal PRNS that uses the 

irreducible polynomial set m1 (x), m2 (x), ···, mN(x) and the sum of its degree satisfies 

the }:f=1 di 2:: 2m equation, which covers the dynamic range of the intermediate 

product, added with one additional polynomial moduli channel using the polynomial 

mN+i (x) with the degree dN+l 2:: di for i E [1, N]. 

The product polynomial M(x)= [Jf= 1 m/x) represents the legitimate range, where the 

possible highest degree is denoted as D = Lf=i di. After adding the module mN+i, the 

whole representation range is then described as M'(x) = m=+l mi (x)' where the 

possible highest degree of M'(x) is denoted as D' = Lf=+l di. Those polynomials with 

the highest degree greater or equal to D and smaller than D' constitutes the illegitimate 

range, which indicates an error. The proof is given below: 

Assuming the intermediary product of two arbitrary GF(2m) elements' multiplication X 

is represented in redundant RPRNS form as {xi, x 2 , ···, xN, XN+d, which belongs to 

the legitimate range with the degree no higher than D, when a single channel error 

occurs in the ith channel while multiplying, the result yields a faulty RPRNS 

representation of X as {xv···, Xi, ···, XN+1l The X can be represented using its correct 

value X added by the error value E as: 
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X = X + E or in PRNS format as: 

{X1 ... X· ... XN 1} = {x1 ... X· ..• XN 1} + {O ... ev· ... O} , ,i,} + , ,p' + ',p, 

Since X represent the intermediary product of two arbitrary elements' multiplication 

over GF(2m), its degree will not exceed 2m-2, in another word, X belongs to the 

legitimate range. By converting E(x) 's RPRNS representation back to weighted 

polynomial representation using the SRC algorithm, it yields: 

The highest degree of M/ (x) 1s If=+/ di - di and the degree of 

( t\ (x) · I/ (x) mod mi (x)) is from O to di - l, so the possible highest degree of E (x), 

For i E (1 to N), (error occurs in the normal RPNS channal) then 

LN+1 LN+1 
d· - d- < D~ < d- - 1 l l - E - l 

i=1 i=l 
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Since dN+I 2:: di> 1 for i E (1 to N), 

D ~De< D' 

For i = N + l, (error occurs in the redundant channel) then 

All possible cases indicate that the error vector E belongs to the illegitimate range, 

hence the faulty intermediate product X = X + E belongs to the illegitimate range. 

An example to demonstrate the proposed RPRNS based error detection using a GF(28
) 

multiplier is given in the following section. 
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4.3 GF(Zm) Multiplier using RPRNS Based Error 
Detection 

4.3.1 Example on RPRNS Based Error Detection 

In this section, an example is illustrated by using the multiplication over GF(28
) 

generated by the irreducible polynomial f(x) = x 8 + x 4 + x 3 + x + 1, which is the 

officially defined binary field for the AES algorithms. The binary vector form of 

Polynomial Representation for GF elements is adopted to simplify the representation. 

To construct the redundant PRNS, the following channel generating polynomials are 

selected, such that }:f=i di 2::: 2m and dN+l 2::: di for i = 1 to 3: 

m1 (x) = x 6 + x + 1 (1000011) 

m 2 (x) = x 6 + x 5 + 1 (1100001) 

m3 (x) = x 6 + x 3 + 1 (1001001) 

m4 (x) = x 6 + x 4 + x 2 + x + 1 (1010111) 

The constant value of Mi and Ii is pre-calculated and listed as: 

M1 = 1110011100100001111 

M2 = 1011111001010110001 

M3 = 1111111110001011001 

M4 = 1101110011100111011 

11 = M11 (mod m1 ) = 100011 

12 = M21 (mod m2 ) = 000110 

/ 3 = M31 (mod m3 ) = 100000 

/ 4 = M41 (mod m4 ) = 000010 

For example, A and Bare elements in the defined GF(28
) field, which is (10011101) 

and (01100111) respectively. A and Bare written in RPRNS format as: 
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Ai = A mod mi, for i = 1 to 4 

A1 = (10011101) mod (1000011) 011011 

A2 = (10011101) mod (1100001) = 111110 

A3 = (10011101) mod (1001001) = 001111 

A4 = (10011101) mod (1010111) 110011 

Similarly, B's RPRNS representation can also be obtained: 

B1 = 100100,B2 = 000110 

B3 = 101110,B4 = 110000 

Then the multiplication is performed in RPRNS as, Pdt is used to present the correct 

product of the multiplication, which is also in the RPRNS form: 

Pdt = PxQ = {(A1 X B1)m1 , (A2 x B2)m2 , (A3 X B3)m
3

, (A4 X B4)mJ 

= {(011000), (100111), (001100), (100000)} 

If Pdt is converted back to weighted polynomial representation, the result will stay in 

the legitimate range. Let's verify it: 

4 

Pdt = L (Pdti · Ii mod mJ · Mi 
i=l 

= [(011000X 100011)mod(1000011)] x (1110011100100001111) 

+ [(100111 x 100011)mod(1100001)] X(1011111001010110001) 

+ [(001100X 100011)mod(1001001)] x (1111111110001011001) 

+ [(l00000x 10001 l)mod(l0 10111)] x(l 101110011100111011) 

= 101100011001110101010100 XOR 010111110010101100010000 
XOR100100000100011101100110 XOR 011111101100011000010001 

= (000000000)011011100110011 

The most significant 9 bits of the intermediate product indicates whether this product 

stays in the legitimate range. If any error, either stuck at 'I' or '0' error or multiple 

errors, occurs in one channel, there will be at least one '1' in the most significant 9 

bits of the product to indicate an error occurring. 
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For example, there is a single bit error that occurs in the third channel, which may be 

either caused by natural reasons such as abnormal temperature, power supply 

variations, electromagnetic interference, or by an adversary fault injection. Its value 

changes from 001100 to 001101. Then the faulty intermediate product Pdt' is 

calculated as: 

4 

Pdt' - ~(Pdt' · · J. mod m·) · M-- L l l l l 

i=l 

= [(011000x100011)mod(1000011)]x(1110011100100001111) 

+ [(10011 lX 10001 l)mod(l 100001)] x (1011111001010110001) 

+ [(001101 x 100011)mod(1001001)] x (1111111110001011001) 

+ [(l00000x 100011)mod(1010111)] x (1101110011100111011) 

= 101100011001110101010100 XOR 010111110010101100010000 
XOR011011111100110001000110 XOR 011111101100011000010 
= (111111111)011110000010011 

The above bold digits indicate how the faulty channel results will influence the 

conversion result. Those 'I's in bracket shows the error occurs. 

Let's see another example, also in Channel 3 where multiple bits error occurs. The 

value from Channel 3 changes from 001100 to 110101, then the faulty intermediate 

product Pdt" is computed as: 

4 

Pdt" = L (Pdt'\ . Ii mod ma . Mi 

i=l 

= [(0ll000x 100011)mod(1000011)] x(l 110011100100001111) 

+ [(100111X 100011)mod(1100001)] x (1011111001010110001) 

+ [(110101X 100011)mod(1001001)]x (1111111110001011001) 

+ [(l00000x 100011)mod(1010111)] x(1101110011100111011) 

= 101100011001110101010100 XOR 010111110010101100010000 
XOR100001111011001011101001 XOR 011111101100011000010001 

= (000101111)100001010111100 
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As it can be seen from the result, there are still '1 's in the most significant 9 bits, by 

which an error can be determined. 

Two examples indicate that, the PRNS based error detection scheme is capable of 

detecting single bit errors and multiple bits errors that occurs in one channel. 

4.3.2 Implementation of GF(2 8) Error Detection Multiplier Using 
RPRNS 

In this section, a detailed implementation of the GF(28
) error detection multiplier 

using the irreducible polynomial f (x) = x 8 + x 4 + x 3 + x + l , which is the 

officially defined binary field for the AES algorithm, is presented to demonstrate the 

proposed PRNS architecture. This multiplier can be used to provide the AES designs 

with error detection capability. 

In order to cover the whole dynamic range, the equations Lf:1 di :2:: 2x8 = 16 and 

dN+i :2:: di need to be satisified. Furthermore, taking the complexity of the channel 

multipliers into account, using trinomials achieves the lowest hardware complexity in 

modular reduction [20] and shows further advantages in building the PRNS converter 

(Chapter 3.4). As a result, the following irreducible polynomials are chosen as the 

moduli set: 

m1 (x) = x 6 + x + l (1000011) 

m2 (x) = x 6 + x 5 + l (1100001) 

m3 (x) = x 6 + x 3 + l (1001001) 

m4 (x) = x 6 + x 4 + x 2 + x + l (1010111) (redundant moduli) 

Then the multiplication is denoted as: 
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For the channel multiplier, since the field length for each channel is short, bit-parallel 

architecture introduced in [20] is adopted to implement the channel multiplier. 

Taking Channel l, which is generated by m1 (x) = x 6 + x + 1, as an example: 

Assuming a(x) and b(x) are elements over GF(26
), c(x) is the product, the 

multiplication performs as: 

Where ci = 0 or 1 for i = 0 to 10 , which 1s the coefficient of the polynomial 

representation of the intermediary product. 

The conversion follows the SRC algorithm that is introduced in Chapter 2.4.2 as: 

4 

p(x) = L (Pi(x) · Ii(x) mod mi(x)) · Mi (x) 
i=l 

Tliis converter performs the conversion from PRNS representation to normal weighted 

polynomial representation, which is also needed for the error detection. 

From the above equation, there are three main operations to perform the conversion: 

the modular multiplication with pre-calculated constant Ji (x) , the normal 

multiplication with Mi (x) that is also a constant value generated by the chosen moduli 
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set and the final sum operation. For the detailed information of the constant values, 

please refer to the previous section Chapter 4 .3 .1. 

The implementation of the modular multiplication with Ii (x) applies the same 

technique that presented in [56]. Taking Channel 2, which is generated by m 2 (x) as an 

example: the /2 is x 2 + x in its PB representation, the modular multiplication is 

demonstrated as follows: assuming the result is y(x), 

y(x) = [a(x)x !2 (x)]mod m2 (x) 
= (a5x5 + a4 x4 + a3 x 3 + a 2x2 + a1 x + a0 ) · (x2 + x)mod (x6 + x5 + 1) 
= [a 5x 7 + (a4 + a5)x

6 + (a 3 + a4 )x5 + (a2 + a3)x4 + (a1 + a2 )x3 

+ (a0 + a1)x 2 + a0 x]mod (x 6 + x5 + 1) 
= a3 x 5 + (a2 + a3 )x4 + (a1 + a2)x 3 + (a0 + a1 )x 2 + (a0 + a5 )x + a4 

The above calculation can be implemented using simple XOR network as showed in 

Figure 4-1. 

a a a a 

Ys 

Figure 4-1: Implementation Example of Multiplying by Ii Operation 

The implementation of the multiplying by Mi (x) operation adopts the same method 

that introduced in the previous chapter (see Chapter 3.4.3). The final sum operation of 

the SRC algorithm is implemented using simple bitwise XOR operation. 

To use the proposed RPRNS error detection method, firstly, the operands of the 

multiplication need to be converted to the RPRNS format according to the selected 

channel generating polynomials. The to PRNS converter converts the original 
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weighted polynomial representation over GF(28
) to the RPRNS representation by 

using four GF(26
) elements which are the residues of m 1 (x), m 2 (x), m 3 (x), m4 (x) 

respectively. The conversion is performed as the modular reduction operation over 

GF(26
). The same modular reduction method used for designing the channel 

multiplier can be applied for the converter. 

For example, the original GF(28
) representation is written as o(x), the converted 

RPRNS representation for Channel 3 using m3 ( x 6 + x 3 + 1) is z(x) 

Then the conversion to the RPRNS is done as: 

z(x) = o(x) mod m3 (x) 

= 07X
7 + o6x6 + 05X

5 + 04X
4 + 03X

3 + OzX
2 + 01X + Oo mod (x6 + x 3 + 1) 

= 05X
5 + (07 + 04)X

4 + (06 + 03)X
3 + 02X

2 + (07 + 01)X + (06 + Do) 

This operation can be implemented using simple XOR network, similar architecture 

as shown in Figure 4-1. The same design methodology is applied to other channels as 

well and all the channel multiplication are performed in parallel. 

To ensure the multiplication is closed, a modular reduction operation usmg 

f(x) = x 8 + x 4 + x 3 + x + 1 is required. 

According to [56], the modular reduction can be implemented as: 

Assuming the intermediate product is denoted as p(x) which is with the highest 

degree 2x8 - 2 = 14 and the results after modular reduction as z(x), let's use their 

polynomial coefficients' binary vector form to simplify the expression, where 

p(x) = (p14p13 ··· p1p0), z(x) = (z7z6 ... z1z0), then: 

z6 = P6 + Pio + Pu + p13, 
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Zs = Ps + P9 + P10 + P12, 

Zz = Pz + P9 + P10 + p13, 

Zo = Po + Pa + P12 + PB· 

Figure 4-2 shows the full architecture of the proposed error detection PRNS multiplier 

c = ab mod f (x) over GF(28
). The validity of this multiplier is based on the 

following assumptions: the conversion circuit, final modular reduction circuit and the 

error detection module can be made fault free. 

a 

To PR\/S 

b To 
PR!'iS 

b4 abmodm, 

From PR\/S Converter 

Modular c 
Reduction 

Error 
Detection 

Figure 4-2: Architecture of the GF(28
) RPRNS Error Detection Multiplier 

The error detection module checks if the highest degree of the converted weighted 

polynomial is in the illegitimate range. If all the inputs are 'O', which indicates the 

degree of the polynomial is smaller than those in illegitimate range, the output will 

give a 'no error' signal; however, if a '1' (or more than one '1 ') appears in the input, 

which means the highest degree is in the illegitimate range, the error detection module 

will yield a 'error' signal. A 9-bit OR gate is used to achieve above function in this 

design. 

As the multiplication 1s over small Galois fields, the proposed architecture 1s 
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constructed using pure combinational logic circuits. As it can be seen from Figure 4-2, 

all channels are separate, similar and their operations are performed in parallel hence 

offering an inherent mechanism for masking, randomization and which could help 

improve protection against any potential side channel leakage or analysis. 

4.3.3 Implementation Results 

Xilinx Spartan 3-3s 1500lfg320-4 FPGA is used for synthesis and implementation for 

the propose error detection multiplier. 

Table 4-1 shows the synthesis results of the proposed PRNS error detection multiplier. 

To the authors' knowledge, there are not any hardware synthesis results for such PRNS 

architecture error detecting GF(2m) multipliers to compare with. The comparison with 

a standard bit parallel GF(2m) multiplier and a PRNS GF(2m) multiplier without error 

detection is made to analyse the overhead of the error detection functionality. 

Table 4-1: GF(28
) Multiplier Synthesis Results 

Slices LUTs Max Combinational Delay 
i. 141 246 28.766ns 
ii. 99 173 28.851ns 
m. 31 55 16.991ns 

i. The implementation of the GF(28) error detecting multiplier using RPRNS 

ii. The implementation of a Gf (28
) multiplier using three 6-bit PRNS channels, 

without error detecting capability 

iii. The implementation of a bit-parallel GF(28
) multiplier using the method that is 

introduced in [56] 

As it can be seen from the above table, as expected, the PRNS architecture has higher 

level of complexity than a standard GF(2m) multiplier that results in larger area 

consumption and longer operating delay. However, due to the nature of independence 

between PRNS channels and scope for randomisation, this architecture has much 

more scope for improving side-channel resistance in cryptosystems. In addition, by 
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introducing redundant channels, error detection can be achieved and if more 

redundant channels are introduced within the PRNS architecture, fault tolerant design 

can also be implemented with a cost of a larger overhead. Compared with a PRNS 

multiplier, there is a 40% overhead on area to achieve error detection caused by 

introducing the redundant channel and the increased complexity of the converter. 

Table 4-2: GF(2163
) Multiplier Synthesis Results 

Slices Clock Max Frequency (MHz) 
Cycle 

i. 1429 168 164.015 
ii. 3173 168 164.015 
iii. 2245 254 163.639 

i. The implementation of GF(2163) PRNS multiplier using four 84-bit channels 
(Chapter 3.4) 

ii. The implementation of a GF(l1 63
) RPRNS multiplier using five 84-bit 

channels, with error detecting capability, using the proposed method 

iii. The implementation of a GF(2 163
) RPRNS multiplier using four 127-bit 

channels, with error detecting capability, using the proposed method 

Table 4-2 shows the synthesis results of the GF(l1 63
) PRNS multipliers which are 

suitable for ECC applications. Along with the increasing number of channels, the area 

consumption increases dramatically. By looking at the design i. and ii., the 

introducing of a redundant channel increases the parallelism of the design and the 

complexity of the conversion circuit which causes over I 00% overhead in hardware. 

To improve the performance, design iii. uses a smaller number of channels, but, in 

order to cover the same dynamic range, it increases the channel length at the same 

time. Synthesis results show implementation iii. has much smaller overhead in area 

compared with implementation ii .. It is to say, the overhead that is needed to achieve 

error detection is adjustable according to the number of channels and channel 

complexity such as channel length and channel generating polynomials, which offers 

the designer great flexibility to construct the error detecting multiplier. 
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4.3.4 Error Coverage Analysis 

The correctness of the proposed error detecting strategy is based on the assumptions 

that the conversion and modular reduction unit (as shown in Figure 4-2) are 

implemented in a secure environment - either hardware or software, where no error or 

fault can be injected. 

The proposed error-detecting scheme is capable of detecting 100% single bit errors 

and 100% channel errors, where error occurs only in one channel, up to X-bit multiple 

errors where X is the channel field length. If multiple faults occur across different 

channels, the probability of detecting the error by this scheme is ( only those error 

patterns that stay in the legitimate range will be missed) calculated as: 

Where di indicates the degree of the channel generating polynomial, N is the number 

of channels of the RPRNS. 

To simplify the expression, both the numerator and denominator of the above 

N 

equation divide 2 I i=1 di, it yields: 

2dN+1 - 1 
Error Detection Probability = --d--

2 N+1 

Where dN+i is the degree of the redundant channel. 

According to the above equation, the error detection probability of cross channel 

multiple errors for the proposed design is calculated as shown in Table 4-3: 
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Table 4-3: Error Coverage for the Proposed Designs of GF Multiplier 

Designs 

i. GF(28
) multiplier using four 6-bit PRNS channels 

ii. GF(2 163
) multiplier using five 84-bit PRNS channels 

iii. GF(i 63
) multiplier using four 127-bit channels 

Error Detection 
Probability 

26 -1 
26 

= 98.4375% 
284 -1 

284 

~ 100% 
2127 - 1 

2127 

~ 100% 

As it can be seen from Table 4-3, the probability of undetected errors decreases 

exponentially when the channel length increases. The probability of undetected error 

patterns in design ii. is 
2

~
4 
~ 5.16x10-26 while the probability in design iii. is 

21
\ 7 ~ 5.88x10-39 , hence the error detection probability in these two designs tends 

towards 100%. 
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4.4 The RPRNS Based Fault Tolerance 

The fault tolerant capability (or error correction capability) that is provided by the 

PRNS is based on the data independency of each channel and the reduplicative 

residue representation of the original data. In other words, the original data is 

represented reduplicatively using different PRNS channel combinations, if error 

occurs in one channel, the PRNS architecture will ignore the data from the faulty 

channel, use the error free residue representation of the original data to carry on with 

other operations. To perform the error correction, firstly, it is needed to locate the 

channel in which the error occurs; then, convert the PRNS representation back to 

normal representation bypassing the faulty channel, where the rest channels can still 

cover the dynamic range; in the end, convert the error free normal representation back 

to PRNS representation and use the correct data to replace the faulty channel data. 

To achieve fault tolerance, it requires at least two additional moduli with respect to 

the normal PRNS representation, one additional channel is to detect an error, the other 

additional is used to locate in which channel the error occurs; hence the moduli set for 

such RPRNS multiplier can be denoted as 

m1 (x), m 2 (x), ···, mN(x), mN+l (x), mN+zCx), where the sum of its degree satisfies 

the Lf=i di 2:'. 2m equation and dj 2:'. di for i E [1, N], 

j E [N + 1, N + 2]. In such RPRNS, arbitrary N + 1 channels are capable of covering 

the entire dynamic range of the multiplication and providing error detection, so that 

N + 2 sets of SRC conversion are required to locate the erroneous channel, where 

each SRC conversion IS constructed usmg moduli 

m1(x),m2 (x),···,mi-i(x),mi+1Cx),···,mN+zCx), where i indicates the SRC set 

number. Figure 4-3 demonstrates a fault tolerant RPRNS architecture with 3 normal 
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PRNS channels and 2 redundant channels: 

~ <>m, 

~ <>m2 

-<>m3 - - ---<>m4 - - - - - --
~ <>ms] - - - - - - - - -

! ! ! ! , 

SRCs SRC SRC SRC2 SRC 

- choose --legitimate 

Figure 4-3: Architecture of RPRNS Based Fault Tolerance 

For example, if an error occurs in a channel, say Channel 3, after the SRC 

conversions, the results from the SRC blocks which contains Channel 3, will fall into 

the illegitimate range (see Chapter 4.3), which indicates a channel error, except the 

result from the SRC3 block because it bypasses the faulty channel. The 

choose legitimate block will compare the results and choose the error free result, 

which is in the legitimate range, for further operations. The choose_legitimate block 

can be constructed using AND gates to detect the overflow in the illegitimate range 

and a simple multiplexer to forward the error free result. 
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4.5 GF(Zm) Multiplier using RPRNS Based Fault 
Tolerance 

4.5.1 Implementation of Fault Tolerant Gf (2 163) Multiplier 

The implementation of a fault tolerant GF(l1 63
) multiplier using five 127-bit channel 

RPRNS is presented in this section. The fault tolerant design is based on the four 127-

bit channel error detection design that has been presented in Chapter 4.3 .3. By adding 

another redundant channel to the error detection design, the new multiplier is capable 

of providing fault tolerance to against internal errors and fault injections. The detailed 

information of the selected channel generating polynomials and the constant values 

for the SRC conversion are listed in Appendix C. 

The proposed architecture of the fault tolerant multiplier is shown in Figure 4-4: 

- ab mod m 1 ---.-----,--------,-----, 

--I 
ab mod~ ----,-- 1'----r'l'--~_.,,..,__ __ __,,l"---~ 

--, ab modm3 

= ab modm4 

___J 
ab modm5 

SRC 

Figure 4-4: Architecture of RPRNS Based Fault Tolerance GF(2163
) Multiplier 
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Each SRC block is constructed as shown in Figure 4-5: 

\ -G-B-~ \ 

\ 

X M3 I 
B-B_j 

Figure 4-5: Architecture of the SRC Block 

In Figure 4-4 each channel arithmetic block performs the channel multiplication over 

GF(i1 27), the SRC blocks convers the selected channels back to the normal 

polynomial representation, the Overflow _Detection block checks if the results from 

the SRCs are in the legitimate range and generates the right selection signal for the 

MUX to propagate the error free result to the Modular_ Reduction which performs the 

modular reduction over GF(i1 63
). Each SRC block performs 4 multiplying by the 

constant value Ii (x) 's and 4 multiplying by Mi (x) 's in parallel followed by a final 

XOR operation to calculate the sum. 

This multiplier is capable of locating a channel error (signal bit error or multiple bit 

errors up to 127 bits) and generating the correct result by bypassing the faulty 

channel. 

4.5.2 Synthesis Result of the Fault Tolerant GF(2 163 ) Multiplier 

The FPGA synthesis result of the designed multiplier together with the comparison 

with the normal PRNS multiplier and the RPRNS based error detection architecture 
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are presented in Table 4-4: 

Table 4-4: Synthesis Result of the Fault Tolerant GF(2163
) Multiplier 

Slices Clock Max Frequency (MHz) 
Cycle 

iv. 1429 168 164.015 
v. 3173 168 164.015 
vi. 2245 254 163.639 
vii. 10307 254 163.345 

iv. The implementation of GF(i 63) PRNS multiplier using four 84-bit channels 
(Chapter 3.4) 

v. The implementation of a error detection GF(2 163
) RPRNS multiplier using five 

84-bit channels 

vi. The implementation of a error detection GF(2 163
) RPRNS multiplier using four 

127-bit channels 

vii. The implementation of the proposed fault tolerant GF(l1 63
) multiplier using 

five 127-bit RPRNS channels 

As it can be seen from the above table, the hardware overhead dramatically increases 

in the fault tolerant design (almost 400% overhead compared with the error detection 

design). The main overhead is related to the implementation of the SRC conversion 

blocks. For a RPRNS with N + 2 channels, it needs N + 2 SRC blocks, each of which 

is composed by: 

• N + 1 modulo mi(x) constant multipliers to calculate a(x) · li(x) mod mi(x) 

• N + 1 constant multiplier for Mi 

• N XOR operations to calculates the sum 

Therefore, the overall overhead due to the SRC conversions grows quadratically with 

the number of channels. Due to using the same architecture, the proposed designs 

achieve similar level of the maximum operating frequency. 
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4.6 Conclusions 

This chapter introduced the error detection and error correction capability that is 

provided by the PRNS architecture. The mathematic proof of the error detection 

capability is given in the first place, followed by a detailed example and 

implementation of an 8-bit multiplier. Then the implementation result of such error 

detection multiplier for GF(2 163
) is also presented together with the error coverage 

analysis. Based on the PRNS 's error detection capability, the error correction method 

is introduced by adding one redundant moduli to the error detection module, 

following which the implementation of such GF(l1 63
) multiplier with error correction 

capability is presented. 

Shown from the hardware implementation results of the error detection multiplier 

designs, different combinations of number of channels and the channel length of the 

PRNS architectures yield different synthesis result. For the same dynamic range, 

smaller number of channels provides smaller overhead in hardware with the cost of 

the increased channel length. In addition, from the error coverage analysis, the 

increased channel length helps to improve the multiple error-detecting rate. The 

implementation of the fault tolerant design has shown significant overhead in 

hardware, which is mainly because of the reduplicative SRC conversion circuits. The 

proposed GF(l1 63
) error detection multiplier and error correction multiplier is suitable 

for the ECC designs that require high level of security where hardware consuming is 

not a main issue. In the following two chapters, the proposed PRNS architecture will 

be applied to the AES application, where the field length is small and the hardware 

overhead is manageable. 
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Chapter 5 
Low Area Design of the AES 

5.1 Introduction 

The Rijndael cipher algorithm, introduced by Vincent Rijmen and Joan Daemen, was 

selected as the Advanced Encryption Standard (AES) by the National Institute of 

Standards and Technology (NIST) in 2000. In the following year, this algorithm 

became the Federal Information Processing Standard FIPS-197 [6]. As the AES has 

been widely adopted for various applications from high-end computers to low power 

portable devices, numerous hardware architectures to implement the AES were 

proposed to meet different requirements. Typical examples are high-throughput design 

and low-area design. The former aims to achieve highest operating frequency and 

throughput. The latter devotes most efforts to minimize the size of the design and 

lower the power consumption. 

FPGA platforms have emerged recently as a viable low cost alternative to ASICs in 

many domains which have seen a trend of using FPGAs for actual production rather 

than just prototyping due to their advantages in terms of reconfigurability (flexibility 

with low cost); shorter time to market (easy to debug and short development cycle); 

increasingly efficient fabric (advanced processes); and also the fact that FPGA 

manufacturers provide mask programmed versions of their technologies. Optimal 

FPGA designs for cryptography are particularly desirable when scalability or 

compatibility with different applications is required in secure applications or when 

design IP protection is sought. Area (and energy) optimality is the most challenging in 
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the design space. Therefore low resource, but with acceptable performance, 

cryptography primitives such as the AES on FPGA are key enablers for many 

applications to implement strong security or protection. 

In this chapter, a compact AES FPGA encryption core is proposed based on an 

iterative round-looping architecture as in [75] where the shifting operations are re­

designed to exploit the FPGA fabric in Spartan 3 and Spartan 6 generations to reduce 

overall area and improve speed. The proposed design only occupies 184 slices of a 

XC3S50 FPGA, achieves a throughput of 36.5Mbps; on a Spartan 6 XC6SLX4 

FPGA, this design occupies 80 slices with a throughput of 58.13Mbps. Since most 

useful modes (OFB 1
, CTR2 and CFB3

) [76, 77, 78] can all provide data encryption 

and decryption using only an encryption-primitive, it was decided to implement a 

design that performs AES encryption only, as this is the minimum requirement for 

three useful modes. To the authors' knowledge, the proposed design is believed to be 

the smallest memory free FPGA implementation of the AES encryption in literature. 

For the mathematical background information of the AES algorithm, the reader is 

referred to Chapter 2.5. The rest of this chapter is organized as follows: firstly, 

previous work on the AES is reviewed as references, then the detailed design of the 

proposed AES architectures is presented with the FPGA specific optimizations, the 

hardware results and comparisons with previous reported works are given before 

conclusions are drawn. 

1 OFB, Output Feedback Mode 
2 CTR, Counter Mode 
3 CFB, Cipher Feedback Mode 
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5.2 Review of the Previous AES Designs 

Speed and resource consumption are the key system requirements to implement the 

AES algorithm, which drove most of the previous works focus either on high 

throughput or low area. 

Pipelined ( or sub-pipelined) and loop-unrolled architectures with large data path 

(usually 128-bit) are usually adopted to enable high-speed in the throughput focused 

AES designs. Typical examples can be found in [79, 80], where their designs achieve 

the throughput over 20Gbps. The drawback of high throughput designs is that they 

occupy large hardware resources and consume high power; in addition, these 

architectures are not suitable for feedback modes in some operations [80, 81 ]. 

Round-looping and sub-function-sharing are the mostly used technique to implement 

the low area AES. The data path is also reduced from 128-bit to 32-bit or even 8-bit to 

decrease the parallelism of operations therefore reduces the hardware consumption. 

Typical 32-bit low area AES design can be found in [82, 83, 84], where the smallest 

one uses 222 slices and 9600-bit block RAM (totally equivalent to 522 slices) and 

achieves l 66Mbps throughput. Some 8-bit designs have better performance in term of 

area, such as the ASIP (application specific instruction processor) design proposed in 

[80], it only uses 124 slices and 4480-bit block RAM (totally equivalent to 264 

slices), achieves a throughput of 2.2Mbps. To the author's knowledge, the work in 

[80] is so far the smallest FPGA implementation of the AES in the literature. The 

work presented in this chapter only consumes 184 slices and does not require any 

block memory; furthermore the proposed design achieves a much higher (36.5Mbps) 

throughput compared with the smallest design in [80]. 
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5.3 The Proposed Design of the Low Area AES 

5.3.l FPGA Specific Optimizations 

This design explores the FPGA fabric technology in Spartan 3 and Spartan 6 

generations, which can configure the LUT in one slice as a shift register instead of 

using the available flip-flops of each slice, to optimise the design by improving the 

performance of the shifting operations in the AES. 

In such LUT based shift registers, the shift-input operations are synchronous with the 

clock, and output length can be selected dynamically using variable taps [85, 86]. The 

example schematic diagram of such addressable shift register (SRL16 in Spartan 3 

FPGAs) is shown in Figure 5-1. The 32-bit LUT based shift registers, SRL32, in the 

Spartan 6 FPGA family, using the same architecture, doubles the shift register length 

with an additional address signal. 

i 1 out 

in 1 

••• 
clock __ ,__ __ __._ ___ ..._ _____ __, 

address ---;4"-+-----------------------' 
i ...•.•....... ··············•···••··········•·•·•·······•••·······••····· ... , ....•.•.•..........•.................. ·····························································' 

Figure 5-1: LUT Based Addressable 16-bit Shift Register (SRL16) 

Using SRL16 to implement an 8-bit wide, 16-bit long shift register only requires 4 

slices in a Spartan 3 device, which leads to great cost saving. In addition, the address 

taps give a convenient way to select the wanted output and are very suitable for the 

ShiftRow implementation. Similar technology exists in Spartan 6 devices, LUTs can 

be configured as either 16-bit shift registers (SRL16) or 32-bit shift registers (SRL32). 
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5.3.2 Top Level Architecture 

text in 
) 

data out 

round_key 

key_in last_key 

Figure 5-2: AES Encryption Core Architecture for 8-bit Data Path 

The mam architecture of this design adopts an iterative pipelined-round-looping 

architecture with an 8-bit data path. All the sub-functions are performed in parallel in 

order to reduce the number of clock cycles. The design supports 128-bit keys and 

requires 160 clock cycles to finish encrypting one 128-bit block. The top-level 

architecture is shown in Figure 5-2. 

It mainly consists of five sub-function blocks: ShiftRow, Sbox, MixColumn, 

KeySchedule and the input Delay. In this work, the ShiftRow, Delay and 

KeySchedule blocks are redesigned and constructed using SRL16/32 to minimize the 
I 

consumption of the number of FPGA slices. Both input for the plain text (text_in) and 

the key (key _in) are required to be 8-bit, the final data_out is given as an 8-bit vector 

as well. The KeySchedule block performs the KeyExpansion transformation and 

generates new roundkeys every 16-cycles. The input Delay block uses a shift register 

to propagate the plain text with 4 cycles delay, in order to synchronize with the other 

operands (the RoundKey) of the AddRoundKey operation, which is implemented 
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using the XOR operation on the left side of Figure 5-2. The final XOR operation (on 

the right side of Figure 5-2) performs the AddRoundKey transformation for the last 

round as the last round transformation bypasses the MixColurnn transformation. 

5.3.3 Design of ShiftRow 

The ShiftRow operation rearranges the location of each byte in the block text. In the 

proposed architecture, two sets of SRL 16 are cascaded to construct an addressable 32-

bit shift register to perform the shifting operation in Spartan 3 FPGA, where only one 

single SRL32 is used as an addressable 32-bit shift register in the Spartan 6 FPGA 

design; eight such shift registers works in parallel with sharing address taps . Detailed 

structure is shown in Figure 5-3. In Spartan 6 FPGA, eight SRL32 are working in 

parallel to perform the shifting operation Figure 5-4. 

in 

out 

Figure 5-3: SRL16 Based ShiftRow 

90 



Chapter 5: Low Area Design of the AES 

As 

m 

out 

Figure 5-4: SRL32 Based ShiftRow 

While data is shifted through the shift registers, the address taps select the reordered 

date to the output. The ShiftRow block is naturally pipelined; it has 12 clock cycles 

latency, but when fully filled with data it can deal with continuous data input. Here is 

an example to demonstrate how ShiftRow module works. To perform the shifting 

operation shown in Figure 5-5, 12 clock cycles are required to shift the first three 

columns of data (a0 to a11 ) into the shift register. After 12 cycles, every cycle, there 

will be one byte coming from the output in the order that is shown as the right block 

in Figure 5-5. This ShiftRow design is naturally pipelined and capable of dealingwith 

continuous data. Assuming the data after ai 's is the next state, denoted as bi's, the 

detailed operation is listed in Table 5-1. 

ao a4 as a12 ao a4 as a12 
a1 as a9 an as a9 a13 a1 
a2 a6 ao a14 a10 a14 a2 a6 
a3 a7 au a1s a1s a3 a1 a11 

Figure 5-5: Demonstration of the ShiftRow Transformation 

As it can be seen from Table 5-1, the address taps A I and Ao are constantly 'I' during 

the shifting operation, hence a 4-bit state machine is constructed to generate the 

correct address signal for As to A2 and it repeats the states every 16 clock cycles. This 

SRL16/32 based ShiftRow block, including the address generating state machine, 
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only occupies 20 slices and can be operated at 265MHz solely on a Spartan III 

XC3S50 FPGA. 

Table 5-1: ShiftRow Operation 

t in Ro R, R, R, R, Rs R6 R, Ra R, Rio Ru R12 Rl3 R14 R1s Rt6 R11 Ria R19 R20 R21 R22 R23 As A, A, A, A, Ao out 

1 a12 a11 a10 ag a, a, a6 as a, a, a, a, ao X X X X X X X X X X X X 0 0 1 0 1 1 ao 

2 a" a12 au a10 ag a, a, a, as a, a, a, a, ao X X X X X X X X X X X 0 0 0 1 1 1 as 

3 a" a13 a12 a11 a10 a9 a, a, a, as a, a, a, a, ao X X X X X X X X X X 0 0 0 0 1 I a,o 

4 315 a14 a13 a12 a11 a10 a9 a, a, 86 as a, a, a, a, ao X X X X X X X X X 1 X X X X X a1s 

5 ho a1s a14 a13 a12 a11 a10 ag a, a, a, a, a, a, a, a, ao X X X X X X X X 0 0 1 0 1 1 a, 

6 h, ho a1s a14 313 a12 a11 a10 ag a, a, 86 as a, a, a, a, ao X X X X X X X 0 0 0 1 1 1 a, 

7 h, h, ho a1s a11 313 an au a10 ag a, a, a6 as a, a, a, a, ao X X X X X X 0 0 0 0 1 1 8H 

8 h, h, h, ho a1s a14 an a12 a11 a10 a9 a, a, 86 as a, a, a, a, ao X X X X X 0 0 1 1 1 1 a, 

9 h, h, h, h, ho a1s a14 an a12 a11 a10 a9 a, a, 36 as a, a, a, a, ao X X X X 0 0 1 0 1 1 a, 

10 hs h, b, h2 h, ho a1s 314 au a12 au a10 39 a, a, 86 as a, a, a, a, ao X X X 0 0 0 1 1 1 .,, 
11 h6 hs b, h, h, b, ho a1s a11 a13 a12 a11 a10 39 a, a, 36 as a, a, a, a, ao X X 0 1 0 0 1 1 a, 

12 b, h6 bs h, b, h, h, bo a1s 314 313 a12 au a10 ag a, a, 86 as a, a, a, a, ao X 0 0 1 1 1 1 a, 

13 ho h, h6 hs h, h, h2 h, ho a1s a11 a13 a12 a11 a10 ag a, a, 36 as a, a, a, a1 ao 0 0 1 0 1 1 312 

14 h, h, h, h, hs h, h, b, h, ho 315 a14 au a12 au a10 ag a, a, a, as a, a, 32 31 0 1 0 1 1 1 a, 

15 b,o h, b, h, b6 hs b, h, b, h, bo 315 314 313 312 311 310 39 a, a, 36 a, a, a3 az 0 1 0 0 1 1 a6 

16 b11 b,o b, h, b, b6 bs b, b, h, h, ho a1s a14 313 a12 au a10 39 a, a, 36 as 34 33 0 0 1 1 1 1 a11 

17 h12 h11 h,o h, h, h, h, hs h, h, h, h, bo a1s 314 an a12 au a10 39 a, a, 36 as 34 Repeating ho 

5.3.4 Design of Sbox 

The Sbox performs the SubBytes transformation. The SubBytes transformation is the 

only non-linear operation among all AES transformations, which contains a 

multiplicative inversion calculation followed by an affine transformation. The crux of 

implementing the SubBytes is the implementation of the multiplicative inversion over 

GF(28
). There are mainly three ways to implement the SubBytes transformation that 

have been appeared in literature: 
f 

• Direct calculation: it computes the multiplicative inversion over GF(28
) 

directly using either multiplication and square algorithm or Itoh and Tsujii's 

algorithm. This method often appears in the design of the general GF(2m) 

processor for cryptography, a typical example is given in [12]. 

• LUT approach: it uses a table looking up method to substitute a byte with its 
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substitution value from an 8-bit x 256 pre-stored table. This table is given in 

the official AES paper FIPS-197 [6], as shown in Table 5-2: 

Table 5-2: SubBytes Look Up Table 

y 
o, 1 2 31 4 5 6 7 ' 8 9: a b cl d e f 

63 7c 77 7b f2 6b 6f cS 30 01 67 2b fe d7 ab 76 
ea 82 c9 7d fa 59 47 fO ad d4 a2 af 9c a4 72 co 
b7 fd 93 26 36 3f f7 cc 34 as e5 f1 71 dB 31 15 
04 c7 23 cl 18 96 05 9a 07 12 80 e2 eb 27 b2 75 
09 83 2c la lb 6e Sa aO 52 3b d6 b3 29 e3 2f 84 
53 dl 00 ed 20 fc bl Sb 6a cb be 39 4a 4c 58 cf 
dO ef aa fb 43 4d 33 85 45 f9 02 7f so Jc 9f a8 
51 a3 40 Bf 92 9d 38 fS be b6 da 21 10 ff f3 d2 
cd Oc 13 ec Sf 97 44 17 c4 a7 7e 3d 64 Sd 19 73 
60 81 4f de 22 2a 90 88 46 ee b8 14 de Se Ob db 
eO 32 Ja Oa 49 06 24 Sc c2 d3 ac 62 91 95 e4 79 
e7 c8 37 6d 8d dS 4e a9 6c 56 f4 ea 65 7a ae 08 
ba 78 25 2e le a6 b4 c6 e8 dd 74 lf 4b bd Sb Ba 
70 le b5 66 48 03 f6 Oe 61 35 57 b9 86 cl ld 9e 
el f8 98 11 69 d9 Se 94 9b le 87 e9 ce 55 28 df 
Sc al 89 Od bf e6 42 68 41 99 2d Of bO 54 bb 16 

• Composite field arithmetic approach: to simplify the inversion calculation, 

this approach first decomposes the GF(28
) into field GF(24

) ( or decomposes 

even further using GF(22
)), then computes the multiplicative inversion over 

the smaller field, in the end maps the inversion back to GF(28
) before the 

affine transformation. This method is first proposed in [ 14] and has been 

further developed in many works for both low cost AES designs [80, 83, 88] 

and the sub-pipelined high throughput AES designs [79]. 

In the proposed low area AES design, the pure combinational logic constructed 

composite field arithmetic approach is adopted to achieve the lowest possible slice 

consumption of the FPGA implementation of the SubBytes transformation. The 

mathematic background of the composite field arithmetic is referenced in [14, 79, 87, 

88] for interested reader. The implementation of the forward SubBytes transformation 

using composite field arithmetic is demonstrated in Figure 5-6: 
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multiplicative inversion 

8 6- 1 X 
affine 

ransformation 

Figure 5-6: SubBytes Transformation using Composite Field Arithmetic [79] 

The multiplicative inversion section of the above figure shows the GF(28
) inversion 

computation in the decomposed field GF((24)2). In order to perform an equivalent 

inversion in composite field arithmetic, additional isomorphic mapping function 

(denoted as ox) and its inverse (denoted as 5- 1 x) need to be applied to map the 

representation of an element in GF(28
) to its composite field and vice versa. Both o 

and 5-1 are represented using 8 x 8 binary matrix (as following) that are generated 

from the irreducible polynomial m(x) = x 8 + x 4 + x 3 + x + 1 over GF(28
): 

1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 
0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 
0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 

8 = 0 1 1 0 0 0 1 1 5- 1 = 0 1 1 1 1 1 0 0 
0 1 1 1 0 1 0 1 I 0 1 1 0 1 1 1 0 
0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 
0 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 
0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 

In Figure 5-6, the x 2
, x A, x - 1 and X represent square operation, multiplication with 

constant A, multiplicative inversion, multiplication operation over GF(24
) respectively. 

The multiplying by constant A operation can be implemented as following: assuming 

the input and output are denoted in binary vector format as ( a 3 a 2 a1 a0 ) and 
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c3 = a0 EB a2, c2 = a0$ a1 EBa2 EBa3 , 

C1 = a3, Co = a2 

For the square operation, multiplicative inversion and multiplication operation, since 

they are all over GF(24
) , there are two options to implement them: implementing them 

directly in GF(24
) or using composite field arithmetic further decomposing the field 

into GF(22
). According to [79, 87] , the squarer over GF(24

) can be constructed using 

very simple XORs, so it is implemented as: 

C3 = a3, Cz = a2$a3, 
c1 = a1 EBa2 , c0 = a0 EBa1 EBa3 

The multiplication over GF(24
) can be performed directly using the logic that is given 

output. 

c0 = a0 b0 E9 a3 b1 E9 Ca2 E9 a3 )b2 E9 Ca1 E9 az)b3 

c1 = a1 b0 E9 Ca0 E9 a 3 )b1 E9 a2 b2 E9 a1 b3 

c2 = a2 b0 E9 a1 b1 E9 Cao E9 aJb2 E9 (a2 E9 a 3)b3 

c3 = a3 b0 E9 a2 b1 E9 a1 b2 E9 Cao E9 a 3 )b3 

The composite field arithmetic based multiplication over GF(24
) is given in [79] , the 

implementation is demonstrated in Figure 5-7: 

2 

4 xcp 

2 

2 

4 
4 

2 

Figure 5-7: GF(24
) Multiplication Using Composite Field [79] 

In Figure 5-7, the xq, block is constructed according to the following equation: 
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The GF(22
) multiplication block (the [8J block) 1s constructed according to the 

following equations: 

Co = (a1 EB ao)(b1 EB ho) EB aobo 
c1 = a1 b1 EB a0 b0 

From the experimental result, the synthesis results show both approaches of realizing 

the GF(24
) multiplication occupy the same FPGA area, which is 7 slices over a 

Spartan III device, however, when the entire SubBytes block is synthesised, the result 

shows the composite field approach has better performance in terms of area, which is 

35 slices to 41 slices that uses the direct GF(24
) multiplication over the same FPGA 

platform. 

To implement the multiplicative inversion in Figure 5-6, [79] shows three approaches, 

which are composite field approach, square and multiplication approach and the truth 

table approach. The composite field approach, firstly convert GF(24
) to the composite 

field GF((22
)

2
) and then calculate the inversion over GF(22

) followed by a conversion 

back to GF(24
) to obtain the inversion over GF(24

). However, though the composite 

field decomposition can reduce the hardware complexity significantly when the order 

of the field involved is large, for small fields, such as GF(24
), further decomposition 

may not be the optimum approach for the inversion calculation as the conversion 

circuit costs more resources [79]. The square and multiplication approach calculate 

the inversion using Fermat's Little Theorem as a-1 = a 14 = a 2 • a 22 
• a 23 over 

GF(24
), it requires two GF(24

) multipliers and three squarers. This approach shows 

largest area consumption and combinational delay among the three approaches. The 

truth table approach uses the equations, that are derived from the truth table of 

calculating the GF(24
) inversion, to directly compute the multiplicative inversion. As 
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it has been shown in [79], this approach achieves smallest number of gates with 

smallest critical path. Thus, the calculation of the multiplicative inversion over GF(24
) 

is performed as following equations in the proposed design: 

c3 = a3 E9 a3 a2 a1 E9 a3 a0 E9 a 2 

c2 = a3 a2 a1 E9 a3 a2 a0 E9 a3 a0 E9 a 2 E9 a2 a1 

c1 = a3 E9 a3 a2 a1 E9 a3 a1 a0 E9 a 2 E9 a2 a0 E9 a1 

c0 = a3 a2 a1 E9 a3 a2 a0 E9 a3 a1 E9 a3 a1 a0 E9 a3 a0 E9 a2 E9 a 2 a1 E9 a2 a1 a0 

E9 a1 E9 ao 

To complete the byte substitution of the SubBytes using composite field arithmetic, a 

isomorphism conversion from GF((24)2) back to GF(28
) followed a affine 

transformation that is defined by the AES algorithm is required. The isomorphism and 

affine transforms may be combined into one single transform [88]. This results in the 

following matrix: 

1 1 1 0 0 0 1 1 Xo 1 
1 0 0 0 0 0 0 1 X1 1 
1 0 1 1 1 1 1 0 Xz 0 

5- 1A(x) = 1 1 1 0 0 0 0 0 X3 
+ 0 

1 1 0 0 1 0 0 1 X4 0 
0 0 1 0 0 0 0 1 X5 1 
0 0 0 0 1 1 1 1 x6 1 
0 0 1 1 0 0 0 1 X7 0 

The proposed design of the SubBytes operation occupies 35 slices over the Spartan III 

device, where the LUT based implementation occupies 8 x 256 = 2k bits block 

memory or 64 slices for distributed memory. 

5.3.5 Design of MixColumn 

The MixColumn design adopts the architecture that 1s introduced m [75]. The 

architecture is demonstrated in Figure 5-8: 
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111 

Figure 5-8: MixColumn Using 8-bit Data Path 

In this module, one column of a state date is treated at a time in four clock cycles. 

Each clock cycle a new byte is fed to the unit, the four registers (Ro to R3) store the 

intem1ediate results of the MixColumn calculation. Every four cycles, upon the 

completion, the 32-bit output is fed to the parallel-to-serial converter (parallel load 

shift register R's), after which the output of the MixColumn block becomes 8-bit per 

cycle. The {03} and {02} block performs the multiplication by constant 03HEX and 

02HEX over GF(28
) respectively. They are constructed according to the following 

equations: 

{02} · a(x) = a6 x 7 + a5x 6 + a4 x 5 + (a3 + a7 )x4 + (a2 + a7 )x 3 + a1 x 2 + (a0 

+ a7 )x + a7 

{03} · a(x) = (a6 + a7 )x
7 + (a5 + a6 )x6 + (a4 + a5)x 5 + (a3 + a 4 + a7 )x4 + (a 2 

+ a3 + a7 )x 3 + (a1 + a2 )x 2 + (a0 + a 1 + a7 )x + (a0 + a7 ) 

This MixColumn architecture is naturally pipelined and capable of dealing with 

continuous data streaming with a latency of 4 clock cycles. The detailed operational 

procedure of the MixColumn transformation that uses the above architecture is 

demonstrated in Table 5-3: 
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Table 5-3: 8-bit MixColumn Operations 

T=0 T=l T=2 T=3 
Ro Co Co$C1 {03}coE9c1 EBc2 {02}c0 E9{03}c1 E9c2E9c3 
R1 Co {03}coE9C1 {02}coE9{03}c1 EBc? CoE9{02}c1 E9{03}c:;,E9c~ 
R2 {03}c0 {02}c0 E9{03}c1 CoE9{02}c1 {03}c? c0 E0c1 E9{02}c?E9{03}c~ 
R3 {02}c0 c0 E9{02}c1 c0 E9c1 E9{02}c2 {03}c0 E9c1 E9c2E9{02}c3 

Where T indicates the clock cycles, Ri is the intermediate result, ci is the number of 
bytes in a column of a state. 

5.3.6 Design of KeySchedule 

The KeySchedule expands the original cipher key to derive the roundkeys for each 

AddRoundKey transformation. There are two approaches of implementing it: pre­

computing approach and on-the-fly key generating approach. In the first approach, all 

roundkeys are pre-generated and stored before the AES encryption process starts; 

typical example can be found in literature [80, 81, 82, 83, 89]. The drawback of this 

approach is the consumption of a considerable amount of storage space, however, this 

approach is suitable for high throughput focused designs and is more energy efficient 

in the long run, if the key is not changed [75]. The on-the-fly approach generates the 

roundkeys alongside of the round transformations; it requires area only for a single 

KeyExpansion mechanism without extra storage. The on-the-fly approach is usually 

adopted by low area designs, examples can be found in [84, 90, 91]. It should be 

noted that when using the same cipher key to encrypt more than one block of plain 

text, this approach continuously repeats the work already done, which results in more 

power consumption. 

The proposed low area AES design adopts an on-the-fly architecture with 8-bit data 

path. The architecture is shown in Figure 5-9: 

99 



key_ in 

Chapter 5: Low Area Design of the AES 

RoundKey 
out 

, SRL16x8 ; , _______ _ 

Sbox RoundKey 
out (last) 

I 
, , ________ SRL16x8 ________ _ ) : SRL16x8 1 

-----------✓ 

Figure 5-9: On-the-fly KeySchedule with 8-bit Data Path 

As it can be seen from Figure 5-9, an additional Sbox block is introduced to the 

KeySchedule, that is because the Sbox block in the round transformation is fully 

occupied while encrypting data due to the pipelined architecture, which makes it 

un-shareable with other operations. The introduction of the extra Sbox does not 

significantly increase the total area due to its compact design. It is designed using the 

same method that has been introduced in Chapter 5.3.4. 

The Reon block generates the round constant and can be constructed using an 8-bit 

linear feedback shift register (see Figure 5-10). The shift register is initialized as 

OlHEX and shifts one time for each roundkey generation. 

Figure 5-10: Reon Generation 

In the Key Schedule unit, three sets of SRL 16 based shift registers are used as shown 

in Figure 5-9 to optimize the performance on FPGA platform, where the SRL16's 

address taps are fixed to a constant value. It takes 16 clock cycles for the 

KeySchedule module to generate a new roundkey and store them in the intermediate 

registers. The RoundKey _out forward roundkeys out to the AddRoundKey 

transformation of the nonnal round operations; the Last_ RoundKey _ out is only used 
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for the last AddRoundKey operation. This KeySchedule design occupies 81 slices on 

a Spartan III XC3S50 device with a highest possible operating frequency of 

46.035MHz. 

5.3.7 Design of Top Level Control 

Due to the fully pipelined looping architecture, this design does not require complex 

control signals. A simple 8-bit binary counter, which counts from Oto 160, is build to 

generate the enable signals to the built-in state machines that are located in the 

ShiftRow, MixColumn blocks. Followed by a simple decoder, this counter also 

generates the data flow selection signals in the KeySchedule block. 
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5.4 Implementation Results and Comparisons 

The synthesis, placing and routing of the complete design were done using Xilinx ISE 

I I. I. Table 5-4 shows the synthesis results of the proposed FPGA AES encryption 

core. This design is the smallest memory free FPGA implementation of the AES 

encryption core to date. Comparisons with other low cost work are also listed in Table 

5-4. 

Table 5-4: Low Area AES Design Synthesis Results Comparisons 

Chodowiec Rouvroy et Pramstaller T.Good& Picoblaze Yong Sung Jeon 
This design 

&Gaj [82] al [83] etal [84] M.Benaissa [80] based [80] etal [92] 

Spartan II Spartan III Virtex-E Spartan II Spartan II Spartan II Spartan III 
FPGA 

XC2S30-6 XC3S50-4 XCVI000E XC2S15-6 XC2Sl5-6 XC2S30-6 XC3S50-5 

Clock Frequency (MHz) 60 71 161 67 90 66 45.642 

Data path 32 32 32 8 8 8 8 

No. of Clock Cycles 44 46 92 3691 13546 352 160 

Slices 222 163 1125 124 119 258 184 

No. of Block RAMs 3 3 0 2 2 0 0 

Block RAM Size (kbits) 4 18 0 4 4 0 0 

Bits of block RAM used 9600 34176 0 4480 10666 0 0 

Total Equivalent Slices 522 1231 1!25 264 452 258 184 

Throughput (Mbps) 166 208 215 2.2 0.71 24 36.5 

Throughput/slice (kbps/slice) 318 169 191 8.3 1.9 93 198 

Summary Best - Fastest ASIP Software Smallest 
speed/area 

It can be seen from Table 5-4, that this design also achieves much higher throughput 

than the listed 8-bit ASIP and PicoBlaze designs but is not as high as the 32-bit 

designs due mainly to the narrowed data path and more clock cycles. 

Table 5-5 shows the hardware and performance companson with the Helion 

Company's Tiny AES core family, which are announced to be the smallest 

commercial AES solutions [93]. To have a fair comparison, the proposed architecture 

has been implemented on to a Spartan 6 FPGA using 32-bit LUT based shift registers 

(SRL32). This design only occupies 80 slices of a Spartan 6 device with the 

throughput doubled to the commercial AES core. 
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Table 5-5: Synthesis Results Comparisons with Industry 
Products 

FPGA 
MAX 

Slices 
Block 

Throughput RAM 
Tiny AES Spartan 3E 30 Mbps 166 1 
cores [93] Spartan 6 29 Mbps 91 0 

This work 
Spartan 3 36.5 Mbps 184 0 
Spartan 6 58.13 Mbps 80 0 
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5.5 Function Testing 

This design has been tested and verified using the ModelSirn based testbench. The test 

vectors are provided by the official AES paper FIPS-197 [6], where the detailed step­

by-step test vectors can also be found. 
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5.6 Conclusions 

In this chapter, a compact AES encryption core on FPGA is presented. Thanks to the 

specific features brought by Spartan 3/6 FPGA platform, an AES design with the 

lowest area is achieved. The low-cost implementation and moderate throughput make 

this solution practically suitable for security focused low resource applications. 

Although this design is for AES encryption only, it still can satisfy most applications, 

for it is estimated that 25% additional area consumption will be required to add the 

decryption functionality to this design. 

The next chapter will look into the application of the PRNS architecture onto the 

AES, especially to explore the error control capability brought by the PRNS and its 

applications in the AES designs. 
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Chapter 6 
Error Detecting AES using PRNS 

6.1 Introduction 

A new method using PRNS is introduced in this chapter to protect the AES against 

faults attacks. By using PRNS, the byte based AES operations over GF(28
) are 

decomposed into several parallel operations that use its residues over smaller fields. 

Three GF(24
) irreducible polynomials are selected as the moduli set for the chosen 

PRNS, including a redundant modulus to achieve error detection. Three GF(24
) AES 

cores are constructed individually according to the chosen moduli. 

This PRNS architecture brings several advanced features to AES design from the scope 

of anti-side-channel analysis. The proposed error detecting scheme can detect 100% 

single bit errors and up to 4 bit errors that occur in a single GF(24
) AES core, and 

93.75% multiple errors across different AES cores for each byte based operation. The 

error detection mechanism is constructed using a simple XOR-AND network, which is 

quite low in hardware cost. In addition, the original AES operations are distributed 

across three GF(24
) AES cores, each of which has its own data path, so it adds to the 

AES design built-in resistance against probing attacks. Furthermore, a unique SBox 

look-up-table (LUT) is constructed for each GF(24
) AES core where redundant 

information is added; hence it boosts the confusion level of the system. Detailed design 

information is shown in Chapter 6.3. Two different architectures that apply PRNS to 

the AES are demonstrated in this chapter, one is based on a 32-bit data path AES, the 

other uses an 8-bit data path round-looping architecture to implement the AES. 
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Hardware overhead is compared and analysed for the different architectures before the 

conclusion is drawn. Error coverage analysis and comparisons with other AES error 

detection schemes are given in Chapter 6.5. 
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6.2 Review of Existing AES Error Detection Scheme 

As the AES has been widely adopted for different applications, higher reliability of the 

AES design is required. In recent years, numerous attacks have been introduced to 

break cryptographic systems and extract secret information via side-channel-analysis 

by analysing or manipulating the observations of physical characteristics of the 

electronic cryptographic system. Typical examples are timing attacks [94], power 

attacks [95], electromagnetic radiation attacks [96] and fault attacks [97, 98]. 

Prior work has shown that even a single transient error occurring during the AES round 

operations will very likely result in a large number of errors in the final data [68]. In 

addition, a few attack scenarios have shown that the AES is quite vulnerable to fault 

attacks [68, 69, 70, 71, 72]. Hence it is necessary to provide error detection 

mechanisms to the AES design to achieve higher level of reliability and security. 

There are several approaches to achieve error detection for cryptographic systems. 

Generic solutions are duplication and repeated computation, however these solutions 

either double hardware overhead or latency and they are not protective against 

permanent faults. Error detecting codes are widely used by engineers to implement 

error proof designs. In [99], an overview of error detecting codes based protection 

mechanisms for AES implementations can be found. There are mainly two solutions: 

parity code based schemes [ 68, 100, 101] and residue code based schemes [ 102, 103]. 

The parity-based methods have low hardware overhead but are weak for multiple 

faults detection; the residue code based error detection schemes have good multiple 

faults coverage but are weak in single fault detection and become very complicated 

and hardware consuming when predicting the residue codes for non-linear operations 

such as the SubBytes operation in the AES. 
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6.3 PRNS based Error Detection AES 

6.3.1 Top Architecture and PRNS Representation 

To implement the PRNS architecture, three GF(24
) AES cores are individually 

constructed. They perform the AES transformations (both round transformations and 

key generation) using the original data's residue representation. According to PRNS 

theory, an arbitrary GF(28
) element can be uniquely represented using its two GF(24

) 

residues. A redundant GF(24
) AES core is introduced to construct the illegitimate range 

for error detection (see Chapter 4.2). The error detection mechanism converts the 

residue representation back to normal representation and performs the overflow 

detection. 

Apart from the non-linear SubBytes transformation, the only operation that has the 

potential of exceeding the dynamic range that is covered by the given PRNS, among 

all the AES transformations is the MixColumn transformation, where it contains 

multiplying by constant 02HEX and 03HEX operation over GF(28
) for the AES 

encryption. A clever approach is introduced in Chapter 6.3.3 to achieve the overflow 

prediction for the MixColumn transformation using partial conversion method that has 

been introduced in Chapter 3.3. To avoid the non-linear transformation and the 

conversion to-and-from PRNS representation, the SubBytes transformation over PRNS 

is implemented using LUT approach, the detailed information will be given m 

Chapter 6.3.2. The top architecture of the proposed design is shown in Figure 6-1. 
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GF(24) 

AES core 

I 
Core communication 

Error 
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GF{24) GF(24) 

AES core ---------• AES core 

II ill 

Figure 6-1: Top Architecture of the PRNS based AES 

The PRNS representation of the original data is used for each AES core. Irreducible 

polynomials m1 : x 4 + x + 1, m 2 : x 4 + x 3 + 1 and m3 : x 4 + x 3 + x 2 + x + 1 are 

selected to compute the residues for each core. So each byte in the original block is 

represented using three residues. After the modular operation, the original 128-bit 

block becomes three 64-bit blocks. Each 64-bit block is processed by a GF(24
) AES 

core. An example is demonstrated in Figure 6-2. 

00 44 88 cc 
11 55 99 DD 

22 66 AA EE 

33 77 88 FF 

~Q .... 0,,-

x'), + +,, "' X 

><+" +x+ + ., 
><+.,, X 

o°' "O "+. 
~ a x-,, 

E 

0 8 3 8 0 8 F 4 0 6 C A 

2 A 1 9 8 3 7 C E 8 2 4 

4 C 7 F 9 2 6 D 3 5 F 91 

6 E 5 D 1 A E 5 D 8 1 7 

Figure 6-2: State Block in PRNS Representation 
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6.3.2 SubBytes Transformation using PRNS 

SubBytes transformation is the only non-linear operation in the AES, which computes 

the multiplicative inverse of each byte of the state block followed by an affine 

transformation. It is very expensive in hardware if it is computed directly in PRNS 

form; therefore a judicious LUT approach is adopted to implement SubBytes (Sbox) 

for the proposed design. Each AES core contains a unique Sbox LUT. It is constructed 

by firstly generating the original Sbox's residue representation according to the 

selected irreducible polynomial, then re-arranging each entry's location in the table 

according to the new address to form a new table. Each table has 256 entries, each of 

which contains a 4-bit word. In the selected redundant PRNS, each 8-bit word is 

represented using three 4-bit residues. Due to the existence of the redundant residue, 

any two residues from the three-residue representation can uniquely represent an 8-bit 

word. Each Sbox LUT uses two residues as its address. 

Here is an example to demonstrate how this table-look-up method works: 

SubBytes([AA]) = [AC] 

This result is looked up from the original offical Sbox in Table 5-2, where [AA] and 

[AC] is normal hex decimal numbers. The PRNS representation of [AA] is (7, 6, F). 

Now we use its residues as address for table look up: 

TABLE !(6,7) = 1,TABLE II(F,6) = O,TABLE Il/(7,F) = 9 

So, in the selected PRNS, 

SubBytes(7, 6, F) = (1, 0, 9) 
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If the result (1, 0, 9) is converted back to its normal representation usmg SRC 

algorithm, the result is equal to [AC], which is the same as the result from the original 

Sbox, indicating the validity of the proposed PRNS Sbox LUT. 

Table 6-1: Sbox over GF(24
) x4 + x + 1 for Core I 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 9 9 2 F D B B 5 B F 0 1 4 3 F 9 
1 D 5 9 0 9 3 4 F 4 F 6 0 4 8 9 1 
2 A 2 E 5 A 4 6 C 2 4 D 6 6 D F 8 
3 F 0 0 2 0 1 B 1 2 F E 1 C E 1 0 
4 8 3 6 5 0 5 C D D 6 4 7 5 0 9 F 
5 4 2 2 7 7 1 2 5 4 0 3 E C 5 6 4 
6 A B 7 E D E 5 1 7 0 C C 7 7 E C 
7 E F 4 E D 3 8 2 1 9 8 A 2 B 5 B 
8 2 7 9 3 A 0 F 4 5 5 8 D 5 0 8 B 
9 8 D F D B A 1 9 6 1 5 C B A 3 3 
A 4 8 7 6 7 3 2 F D 4 D 2 4 7 7 7 
B 3 E 0 C 8 5 9 E 8 3 3 D 1 C 8 D 
C 8 B 9 F E 0 6 9 E 6 3 C C 1 B 9 
D 5 7 B B C 2 6 8 D E C 8 7 3 A E 
E 2 A A A 2 B 1 0 A A 4 6 A 8 6 F 
F 1 6 3 3 6 B C 7 1 A E C 9 9 A F 

Table 6-2: Sbox over GF(24
) x4 + x3 + 1 for Core II 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 7 9 E 9 A D 8 1 7 6 7 3 7 7 1 E 
1 5 1 9 7 D 9 6 F 6 5 5 2 3 8 9 E 
2 6 B A 9 8 C 8 D D 7 C A 5 8 8 9 
3 E F 3 6 1 2 9 D E D F 1 0 A 4 C 
4 8 A 3 2 8 9 5 5 7 C E 2 9 0 D 3 
5 B 6 1 E 3 F C 2 C 1 8 5 3 1 E 4 

6 5 2 2 8 E A B B F 1 7 2 4 B 0 A 
7 C 1 F 2 F F A D 7 5 A B B D 8 4 

8 C B 9 6 5 7 C 5 2 C B 0 E D A 2 
9 F D B 6 6 4 9 D 3 1 B D 0 3 2 8 
A B D 2 4 4 4 1 4 E 0 3 A F 3 3 6 
B 4 6 7 0 0 8 9 8 E D F 0 A 0 4 6 
C 8 4 9 1 3 2 9 0 A F 0 4 4 7 A C 
D 3 B 5 6 A 7 5 C E 0 1 1 F 6 B 5 
E B A 4 2 C E E 6 5 E 7 1 D 3 7 F 
F 4 C 0 F 0 3 0 C 6 2 9 5 F C 8 B 
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Table 6-3: Sbox over GF(24
) x4 + x3 + x2 + x + 1 for Core III 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 9 4 B C 0 F E 2 D D 1 A 8 3 
1 E 0 9 5 6 8 A 6 3 A 7 D 3 F 2 4 
2 E 2 B 3 E 8 6 0 8 1 5 7 E 2 6 E 
3 B 8 3 7 1 3 3 6 5 4 1 3 2 0 E C 
4 C 7 0 8 A F 7 7 8 C F F A 4 0 1 
5 F D 7 A 4 8 3 4 0 5 6 5 D 4 4 B 
6 F D F B D B C 4 F 0 4 F 5 5 1 D 
7 5 A B B 2 9 0 3 7 9 5 2 2 1 2 9 
8 6 F C 6 A 2 4 B E E 6 3 C 6 1 F 
9 3 B C F 7 7 C D F 1 5 B C C A 0 
A 3 9 1 9 7 C D 2 4 D 4 7 E D 9 B 
B 8 2 8 5 B 5 5 8 5 1 9 A 1 3 2 C 
C 6 2 9 8 C D 1 D 9 6 8 2 6 0 A 3 
D B E 6 7 1 7 7 9 9 E 9 8 8 E B 0 
E D C 1 A A 5 A 1 6 A 0 D 8 B E 4 
F 2 5 3 7 4 9 F 4 0 9 6 E C E F A 

It can be noticed that, in this approach, all the table look up operations are done by 

using PRNS representations as addresses, and the results form the SubBytes 

transformation are in PRNS as well. Thus, no conversion circuit is needed; this can 

also lower the potential of information leaking from the conversion circuit. 

Three LUTs are operated individually in parallel. Attackers need to trace the 

information from at least two tables to obtain enough information, thus this adds more 

difficulties to crack the system. 

Furthermore, as it can be seen from the contents repetitively in the tables, even if an 

attacker obtains the LUT output, it is not easy for the attacker to trace the input 

address, because there are several different entries with the same value. Hence, the 

PRNS Sbox has higher level of confusion compared with the original Sbox LUT. It 

enhances the security level of the proposed architecture. 
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6.3.3 MixColumn Transformation using PRNS 

MixColumn transformation can be seen as a matrix multiplication operation. It 

contains a few multiplying by constant x and x + 1 operations. It is easy to 

implement these operations in normal weighted polynomial representation, however, 

as the dynamic range that is covered by the selected PRNS is only 8-bit for this design 

(not including the redundant modulus, which is used for error detection), overflow 

may occur and a modular reduction over GF(28
) using the field generating 

polynomial m(x) = x 8 + x 4 + x 3 + x + 1 is needed to correct the result. 

Here introduces a clever way of implementing the multiplication by x and x + 1 

operations to avoid complicated conversion between PRNS and normal representation 

and restrict the operations to the dynamic range that is covered by the chosen PRNS. 

This approach adopts the partial conversion method that has been described in 

Chapter 3 .3. 

The main idea is derived from the observation that the highest possible degree of a 

GF(28
) element that is multiplied by x and x + 1 will be 8, which indicates the 

possible overflow will be 1 bit only. The overflow can be predicted directly from the 

operand before the multiplication is done. Only if the highest degree of the operand is 

equal to 7, after the multiplication, the highest degree will exceed 7 and cause 

overflow. The prediction mechanism partially converts the MSB, which is the highest 

degree bit, from the PRNS representation to determine if a modular reduction over 

GF(28
) is needed. 

Taking multiplying by x as an example: 
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and its PRNS representation (A1 )m
1

, (A2 )m
2

, (A 3)m
3

, the multiplication is performed 

as follows: 

Where m 1 : x
4 + x + 1, m 2 : x

4 + x 3 + 1, m 3 : x 4 + x 3 + x 2 + x + 1 and 

m: x 8 + x4 + x 3 + x + 1 

(a7X 7 + a6x6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + ll1X + ao). X mod m (1) 

[a7x 8 + (a6x6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + ll1X + ao) "x]mod m 

(a7x 8 mod m) + (a6x 6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + a1X + ao) · X 

la7(x4 + x3 + x + l)j<D 

+ I (a6x6 + a 5x
5 + a 4 x

4 + a 3 x
3 + a2x 2 + a1x + a0) · xt~l 

From the above equation, none of CD and ~ will exceed the defined dynamic range, 

and the addition over binary field will not cause over flow, so it can be computed 

correctly using the selected PRNS. 

In the PRNS, taking the field GF(24
) defined by m1 : x 4 + x + 1 as an example (in this 

field x 7 = x 4 + x + 1, which will be used in the following equation transformations), 

after the conversion to the PRNS using mi, equation (1) yields: 

(2) 

~: (a6x 6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + ll1X + ao) "X mod m1 

= (a7x 7 + a6x6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + ll1X + ao + ll7X7) "X mod m1 

={[(A+ a7 x 7 ) • x] mod m 1 } 

(3) 
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Using equation (2) and (3), the multiplying by x operation can be done using PRNS 

without causing any overflow. It is only required to convert one bit to normal 

representation. Using the partial conversion method simplifies the calculation of a7 , 

because there is no carry effect over binary fields. 

Multiplying by x + 1 operation can apply the same method, because it generates the 

same overflow as multiplying by x operation. 

6.3.4 Other Transformations using PRNS 

Both ShiftRow and AddRoundKey are linear operations and will not cause any 

overflow problems, so can be implemented using PRNS directly. The round constant 

Reon for the proposed PRNS architecture is generated from the normal Reon 

generation over GF(28
) followed by a to PRNS conversion. 

6.3.5 Error Detecting Mechanism 

Error detection performs the SRC algorithm using partial conversion method followed 

by overflow detection. For one byte, the overflow only occurs in the most significant 

4 bits, so only partial conversion is needed. Partial conversion brings several 

advantages to the design. It lowers the potential of leaking information, simplifies the 

conversion circuit and saves hardware resources. The detailed partial conversion 

method is demonstrated in Chapter 3.3. Overflow detection checks ifthere are '1 's in 

the most significant 4 bits, a simple 4-bit AND gate can be used for this. 
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6.4 Design of GF(24) AES Core 

6.4.1 32-bit Data Path AES using PRNS 

The first attempt of constructing an AES encryption core using PRNS architecture 

adopts a 32-bit data path and column transformation based approach to trade-off 

hardware consumption and throughput. Due to the use of a PRNS representation, each 

GF(24
) AES core uses a 16-bit data path. The architecture introduced in [104] is 

adopted. 

Key in 16-bit bus 

Data in 

To Error Detection 

Sbox Key out 

Figure 6-3: GF(24
) AES Encryption Core Architecture for 32-bit Data Path 

The encryption core mainly consists a StateRAM, Sbox, Mixcolumn and several 

XORs for AddRoundKey transformation. The StateRAM is constructed using four 

8x4bit dual-port RAM, where address is individually generated in order to perform 

the ShiftRow transformation. The Sbox contains four PRNS Sbox LUTs, which can 

perform SubBytes transformation for a column. Sbox is also shared with the 
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KeyExpansion. To process a block plaintext for a round, it needs four cycles to finish 

SubBytes and ShiftRow operations and another four cycles to perform MixColumn 

and AddRoundKey. The design of the 32-bit MixColumn applies the substructure 

sharing method that has been introduced in [79]. 

Key in 

K yout 

Figure 6-4: GF(24
) AES KeyExpansion Architecture for 32-bit Data Path 

The KeyExpansion uses an on-the-fly approach to generate round keys. StateA RAM 

and StateB RAM are the same size, each of which contains four 4x4bit RAM. New 

round key is generated in four cycles during the SubBytes operation and stored in 

StateA RAM. During the AddRoundKey transformation, the round key is sent to the 

encryption core column by column; at the same time, the round key is transferred to 

StateB RAM preparing to generate the key for the next round. At the beginning of 

each round operation, an extra cycle is needed by KeyExpansion to perform SubBytes 

transformation for roundkeys. 

In the proposed 32-bit PRNS AES, four conversion circuits work in parallel to detect 

the errors for four bytes (32-bit) in one column. 
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6.4.2 8-bit Data Path AES using PRNS 

The second attempt to implement the error detection AES using PRNS adopts a low 

area iterative round-looping architecture with an 8-bit data path that has been 

introduced in Chapter 5. 

to_ error_ detection 

text_in 

round_key 

key in - ) 
last_key 

Figure 6-5: GF(24
) AES Encryption Core Architecture for 8-bit Data Path 

It mainly consists of five sub-function blocks: ShiftRow, Sbox, MixColumn, 

KeySchedule and the input Delay (Figure 6-5). The data path for this core is 4-bit. 

The error detection is performed after the ShiftRow transformation. 

In this architecture, apart from the Sbox, which is constructed using the proposed 

PRNS table look up method, the rest blocks are using the same architecture that has 

been introduced in Chapter 5. 
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6.5 Hardware Implementation and Results 

Table 6-4 shows the synthesis results of the proposed PRNS error detection AES. To 

the authors' knowledge, this is the first attempt for the AES design using such PRNS 

error detection scheme. To enable a fair comparison, a normal 32-bit AES and a normal 

8-bit AES, which adopts the same architecture as the PRNS core design, are 

implemented onto the same platform (Xilinx Spartan 3-3s1500fg320-4 FPGA). 

Comparisons are listed below: 

Table 6-4: PRNS Error Detection AES Synthesis Results 

LUT LUT 
Max. 

AES Design Slices used for used for 
Frequency 

Logic RAM 
32-bitAES 590 1190 160 103.595MHz 

32-bit 
Non-redundant PRNS 711 1345 160 101.204MHz 

AES 
32-bit Redundant PRNS 

1068 2095 240 103.767MHz 
AES 

8-bitAES 243 466 0 62.344MHz 
8-bit Redundant PRNS 

385 739 0 51.794MHz 
AES 

It can be seen from the above table, as expected, due to the use of the same architecture 

for the PRNS cores, the PRNS designs achieve similar operating frequency to the 

normal AES designs. The maximum operating frequency in the 32-bit PRNS AES that 

is slightly higher than the normal 32-bit AES design is due to different routing delays 

of the FPGA implementation. The operating frequency of the 8-bit PRNS AES design 

is lower than the normal AES is mainly because the PRNS conversion and error 

detection circuits add extra logic to the critical path, therefore increase the maximum 

combinational delay, and lower the frequency. In terms of added hardware overhead, 

the 32-bit PRNS AES design adds 81 % overhead and the 8-bit PRNS AES adds about 
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58% overhead compared with the standard AES, which is quite acceptable for a 

multiple error detection scheme. The reason why the proposed 32-bit PRNS AES has 

larger overhead percentage than the 8-bit PRNS AES is that in the 32-bit design four 

conversion circuits are build to deal with 32-bit data, whereas only one conversion is 

needed in the 8-bit design. 
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6.6 Error Coverage Analysis and Comparison 

For the AES byte operation, the proposed error-detecting scheme is capable of 

detecting 100% single bit errors and 100% single core errors (where error occurs only 

in one core, up to 4-bit multiple errors). If multiple faults occur across different cores, 

the probability of detecting the error by this scheme is ( only those errors that do not 

cause overflow will be missed) 

212 _ 2a 
---=93.75% zi2 

Comparisons with other error detection schemes are shown in the following Table 6-5. 

As it can be seen, though having quite large hardware overhead, the advantages 

brought by this design are apparent. Firstly it not only covers 100% single bit faults, 

but has excellent multiple faults coverage as well; secondly, unlike those code­

predicting schemes [ 100, 101, 103 ], PRNS error detection can be performed directly 

without extra predicting mechanisms, so it adds no extra clock cycles overhead. 

Table 6-5: AES Error Detection Scheme Comparison 

Single Multiple 
Hardware Delay 

Method Fault Fault 
Detection Detection 

Overhead Overhead 

Single parity bit [100, 101] 100% no +7.4% +6.4% 

Double 
faults 

Multiple parity bits (n= 16)[68] 100% masked +20% -
with 

1 p 0(-
r, 

Linear+non-linear codes [102] Weak Good +35% -
Good, Good, 

Non-linear r-bit codes (r=28) missed missed 
+77% +15% 

[103] with with 
p oc z-2r p oc z-2r 

Redundant PRNS 
100% 93.75% +81% 

(32-bit) 
-

Redundant PRNS 100% 93.75% +58% 
(8-bit) 

-
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6. 7 Conclusions 

In this Chapter, the PRNS implementations of the AES have been advocated for error 

detection and protection against side-channel and fault attacks. The proposed error­

detecting scheme yields very good error coverage; Furthermore, the distribution and 

parallelism characteristic of a PRNS architecture itself yields intrinsic resistance to 

some side-channel attacks. A proposed PRNS based Sbox implementation is believed 

to offer higher level of confusion. 

The PRNS architecture brings a new design methodology to implement the AES. 

Besides the error detection capability, the non-error-detection PRNS AES can provide 

improved side-channel-attack resistance with only 20% hardware overhead, which is 

quite remarkable from the security and hardware implementation point of view. In 

addition, due to the flexible selection of PRNS generating polynomials and number of 

PRNS channels, random PRNS channel selection can be used to bring more 

randomization and confusion to the system, which can be a strong weapon against 

power analysis. 

According to the attempted implementations, an 8-bit architecture offers the most 

optimal option in terms of added overhead. 
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Chapter 7 
Conclusions and Further Work 

7.1 Conclusions 

This thesis has concentrated on research dealing with the Polynomial Residue 

Number System (PRNS) over the domain of GF(2m), for applications within the sub 

domain of cryptography. The first part of the thesis focused mainly on the arithmetic 

side of the PRNS implementations; in Chapter 3, the designs of the PRNS based 

GF(2m) multiplier were presented. A number of different architectures spanning 

different moduli types have been proposed together with the corresponding hardware 

implementation results. It was found that the conversion circuit (mainly the from 

PRNS conversion circuit) was the source of the main overhead in such PRNS 

multiplier. To overcome this obstacle, a novel conversion and modular reduction 

method has been introduced to the PRNS architecture, namely partial modular 

reduction method. A new implementation of such multiplier adopting the partial 

modular reduction method has been presented together with its hardware results. 

From the comparison of different PRNS multiplier architectures, the partial modular 

reduction method enables great reduction in the use of area and the combinational 

delay, thereby improving the performance, which makes such PRNS multiplier 

feasible, as shown, for extensive cryptography primitives such as ECC using curve 

K-163. Chapter 4 introduced the error detection and error correction capability that is 

provided by the PRNS architecture. The mathematic proof of the error detection 

capability was given in the first place, followed by a detailed example and the 
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implementation of an 8-bit GF multiplier. The implementation details of such error 

detection multiplier over GF(i 63
) also has been presented together with the error 

coverage analysis. Based on the PRNS 's error detection capability, the proposed error 

correction (fault tolerance) method has been introduced by adding one extra 

redundant moduli to the error detection module. A detailed description of a fault 

tolerant GF(2 163
) multiplier, together with its FPGA synthesis results, have been given 

in Chapter 4 as a demonstration of the proposed error correction method. It was 

shown from the hardware implementation results of the error detection multiplier 

designs, that different combinations of number of channels and the channel length of 

the PRNS architectures yield different synthesis result. For the same dynamic range, 

smaller number of channels provided smaller overhead in hardware with the cost of 

the increased channel length. In addition, from the error coverage analysis, it was 

concluded that the increased channel length helps to improve the multiple error­

detecting rate. The implementation of the fault tolerant design has shown significant 

overhead in hardware, which is mainly due to the reduplicative SRC conversion 

circuits. A proposed GF(2163
) error detection multiplier and error correction multiplier 

is shown to be suitable for ECC designs that require high level of security where 

hardware consumption is not a main issue. 

The second part of the thesis concentrated on the application side of the PRNS 

implementations. The Advanced Encryption Standard (AES) algorithm has been 

selected as the target application. Before applying the PRNS architecture to the AES 

design, Chapter 5 presented a very low area AES design on an FPGA platform as a 

reference to the PRNS based AES. By exploiting the specific features brought by 

Spartan 3/6 FPGA fabric, which are the LUT based shift registers, the proposed AES 

core has achieved the lowest area ever reported on an FPGA platform without using 
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any block memory. The design only reqmres 184 slices on a Xilinx Spartan 3 

(XC3S50) device, and 80 slices on a Spartan 6 (XC6SLX4) device while achieving 

throughputs of 36.5Mbps and 58.13Mbps respectively. The low-cost implementation 

and moderate throughput make this solution practically suitable for security focused 

low resource applications. In Chapter 6, the PRNS implementations of the AES have 

been advocated for error detection and protection against side-channel and fault 

attacks. The proposed PRNS error-detecting scheme, which applies the PRNS 

architecture to the AES core, yields very good error coverage; furthermore, the 

distribution and parallelism characteristic of a PRNS architecture itself yields intrinsic 

resistance to some side-channel attacks. A proposed PRNS based Sbox 

implementation is believed to offer higher level of confusion. The PRNS architecture 

brings a new design methodology to implement the AES. Besides the error detection 

capability, the non-error-detection PRNS AES can provide improved side-channel­

attack resistance with only 20% hardware overhead, which is quite remarkable from 

the security and hardware implementation point of view. The proposed low area error 

detection AES, which is based on the low area AES design that has been presented in 

Chapter 5, only occupies 385 slices on a Spartan III device with the maximum 

operating frequency of 51. 794MHz, which is particularly suitable for area constrained 

cryptography designs, embedded systems and SoC (System on Chip) designs, when 

higher level of security are required. 
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7.2 Further Work 

The PRNS architecture over GF(2m) brings an entire new design methodology for 

GF(2m) circuits and applications. There are a number of directions that can be 

explored further. 

• Fault Tolerant Cryptography Applications: 

By adding an extra redundant channel to the proposed design in Chapter 6, 

the PRNS based AES is capable of providing error correcting capability with 

an estimated overhead of 1/3. Furthermore, the proposed PRNS GF(l1 63
) 

fault tolerant multiplier (Chapter 4) is suitable for ECC applications using 

curve K-163 over binary field to fight against fault attacks. 

• Randomization and Masking for Cryptography Applications: 

Due to the flexible selection of PRNS generating polynomials and number of 

PRNS channels, random PRNS channel selection can be used to bring more 

randomization and confusion to the system, which can be a strong weapon 

against power analysis. It is possible to add redundant PRNS channels to the 

target application and use the redundant channels to process trash 

information. Due to the similarity of the PRNS channel constructions and the 

added 'noise' by the redundant channels, this PRNS architecture with will 

provide natural masking capability to the internal cryptography 

transformations, by which the security of the crypto-system is enhanced. It 

has to be noted that, the difficulty locates in the generation of the conversion 

circuit for the randomly selected channel generating polynomials. Possible 

solution may be found in the scope of software and hardware combined 

architecture, where the software side pre-computes the constant values that 
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are needed according to the randomly selected irreducible polynomials, the 

hardware side provides a generic architecture, which does not vary to 

different channel selections. 

• Scalable Designs: 

Different combination of the number of channels and the channel length of 

the PRNS architecture will provide different dynamic range coverage. This 

property can be further explored for scalable designs where the same 

hardware architecture is capable of dealing with altered field length. For 

example, there are five curves over binary field that are recommended by the 

NIST (National Institute of Standards and Technology), for field length equal 

163, 233, 283, 409, and 571. It is possible to find a PRNS set to cover the 

dynamic range that is provided by the largest field, and use partial of the 

PRNS set to process the smaller field. 

• System on Chip Designs: 

The proposed low area AES design (in Chapter 5) and the low area error 

detecting AES design (in Chapter 6) are suitable for low cost SoC designs that 

aim to implement one or several particular crypto-protocols on a single chip. 

Works can be done to find the utilities for the proposed AES cores in such 

designs. 
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) Multiplier 

Appendix A: The Moduli Set and Constant Values for 3 7-

channel PRNS GF(2 163) Multiplier 

iE[l,37] 
mi's: (in PB and binary vector format) 
1 x9+x4+1 1000010001 

2 x9+x5+1 1000100001 

3 x9+x4+x3+x+l 1000011011 

4 x9 +x8+x6+x5+ 1 1101100001 

5 x9 +x5 +x3 +x2 + 1 1000101101 

6 x9+x7+x6+x4+1 1011010001 

7 x9+x5+x4+x+ 1 1000110011 

8 x9 +x8+x5+x4+ 1 1100110001 

9 x9+x6+x4+x3+1 1001011001 

10 x9+x6+x5+x3+1 1001101001 

11 x9+x8+x4+x+l 1100010011 

12 x9+x8+x5+x+l 1100100011 

13 x9 +x 7 +x2+x+ 1 1010000111 

14 x9+x8+x7+x2+1 1110000101 

15 x9+x7+x4+x2+ 1 1010010101 

16 x9+x7+x5+x2+1 1010100101 

17 x9+x7+x5+x+ 1 1010100011 

18 x9+x8+x4+x2+ 1 1100010101 

19 x9 +x 7 +x5 +x3 +x2 +x+ 1 1010101111 

20 x9+x7+x5+x4+x2+x+ 1 1010110111 

21 x9 +xs+x7+xs+x4+x2+ 1 1110110101 

22 x9+x7+x5+x4+x3+x
2
+ 1 1010111101 

23 x9+x7+x6+x5+x4+x2+1 1011110101 

24 x9 +x 7 +x6+x3 +x
2 
+x+ 1 1011001111 

25 x9+x8+x7+x6+x3+x
2
+ 1 1111001101 

26 x9+x7+x6+x4+x3+x+ 1 1011011011 

27 x9+x8+x6+x5+x3+x
2
+ 1 1101101101 

28 x9+x8+x4+x3+x2+x+ 1 1100011111 

29 x9+x8+x7+x6+x
5
+x+l 1111100011 

30 x9+x8+x5+x4+x3+x+ 1 1100111011 

31 x9+x8+x6+x5+x
4
+x+ 1 1101110011 

32 x9+x8+x6+x3+x
2
+x+ l 1101001111 

33 x9+x8+x7+x6+x3+x+ 1 1111001011 

34 x9 +x8+x6+x4+x3+x+ 1 1101011011 

35 x9+x8+x6+x5+x
3
+x+ 1 1101101011 

36 x9+x8+x7+x3+x2+x+ 1 1110001111 

37 x9+x8+x7+x6+x
2
+x+ 1 1111000111 
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ii 's: (in binary vector format, 9 bit each) 

1 000101101 
2 110111010 
3 111001111 
4 100010111 
5 001101101 
6 101010110 
7 111010110 
8 111010010 
9 010111001 
10 101100001 
11 101101101 
12 001001010 
13 110010001 
14 011101100 
15 100010001 
16 001111011 
17 110001110 
18 111001110 
19 110111011 
20 111111011 
21 100101010 
22 011101010 
23 001011110 
24 101111011 
25 000010100 
26 110011110 
27 101111101 
28 110000000 
29 111111111 
30 110101100 
31 101101111 
32 011111111 
33 100110110 
34 101000111 
35 011100000 
36 011011110 
37 011111001 
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Mi's: (in Hexadecimal, 324 bits each) 

I I C70044BA86587E986055F 6C6D7D EA8B950 I C8FBC594880DD2CEE48B4A93 58 l 5D5F6C268506FOCF I 09 
2 I D4 7694BC98EB5 l E54956B3ECBFAE8D3D80FBA270580245E72A28D4F02CFI D25B8E I EI F584424656B9 
3 IC I F293B411 F8B2E4CC9B 11 DB008D24A9D2D206AC4C926145728AFE5FA5E70736D B3B61 FB5D2A 7430F 
4 l 5AFBA6989048223BD80C22BBE85ECF6688B6F5EA55B I OE2D79FD73CEFE50F4300262DBF4697 l 2B9F9 
5 I DODCA9849FDB 17D5A25E7E541 I 73104528DF3 B3276CF5 l CB4 l 2B98C7D89E58E74FC3A3828A977E505 
6 I 93262B49BE5913CE33596030 IE80D97F93E7B l 826329FA61 D83B24CA91 B6A4757BD4303 IA43FDCBC9 
7 IDB8954AC52EBEEDI C4227426EE028DD07 A0349BD3C2FDBCFOB7DB8F987274DCEAD7F3B696C3C3 l B07 
8 I 67CCF07E3C I B5D7E78 I 3658915A400C30A 79F l 408E54COA 722D9A44 l BF50E4F6D2B594FFE3 l 7 A9F29 
9 I FEF6 l 7 Al 7E57 ACC9D9073323FC6A39AABB3BBCD70B39E9B2641 EOBDA494A2E9D67DOC47DF4459A3C I 
I O I EDFA36C8DE I CBODECE I AE7E5174 l 20A4D0 I E3 7C63AA 73 B3EFF952525B E289B6C530C072AACF09007 l 
11 l 7D5C9F199B3B495895E58F2C6DD4362771AOl 995 l C902E9B385129C4624ECF8272BB7766F44FC5FA 7 
12 l 6B25C9F59 l B29D9 l 39920FAE l 3C9FF9E5CF 151B8F447 AB9705756 7 AD5091 A 71 C742725892294C2FD7 
13 I A326984B399993D876522593325077F68732226B2440ABC2A480A520867EA3D75EC5B I DF288B2 l 9B3 
14 I OF030 l 93EC04CE3BB l l l 1753BD5224994DBA6696D9F72AA225D EC983AD5D5961 EOOD3C6BBE5F81 OAD 
15 I AC3ACAB5EBB8C8D5FE I OE4 l 400098BDOOD00D73 7D963F420CF4FF79B952BDC2AA 7E3 l 8EOE27D4C43D 
16 I BE I EB36F4284BE l 4ADC7868E9423 l OOOF59A90D7 l 45EB4D 13D70 I OC098E3CEACE2265CCBD6D930C8D 
17 1 BC666EA 7584BAE5959536693805856387B02561 DDC4A24D505A89F386F5 l l 9E51 BEAFE52981475457 
18 l 7FBB27966D3 76A4077F76938CEFB42EDF8A83FEE2AD03 l B6CDOD2FBFF l 2DE6EB43FE0328B773589BD 
19 I B8850CE939F946F39 l OAD9366516945D DOD6FE7B5BCFED6 l 77452D l 4CD936A l I 39EC53F392E6 l 423B 
20 1BIOA275FAC87E376BE72D28B6C855557BCODA872C I E4ED2B734E235845C7B7BD66C80E886EE l 356C3 
21 I I 8318CBDA 7F I A 7BAFFE8CBA5E3 76FDA323DAB4 76898ABE38D I DF76A6C3E480A I A4BC943533 727B8 ID 
22 I B790D3416ED64BDB6FC281 B54B329E3EF955AE88E22ACI 2D205E3A8997BA070D5BD8AB2DD I B321015 
23 I 8C2930EAAED78 l C92CBEOOBC05AA032B552332088E29AEEEF8FBOC7F82 l 98EAC3F60B5BD l 6623E35D 
24 l 98FD9C28E4 7500F3C440AEF7 l 99FBAAEA5D I F9DA5 l 4BA811860CC4 7B9DF40 I DE988DDBC53DBOD4EDB 
25 13 B8829ED86EC08503 75D4F3A6504F08269D362EB685BE I A3D667C5A5250654AF095BF9FOE3 768B7E5 
26 l 95A3BFD22 I DDFBE l l 5C ACAA6A5902663909E694EBA86EFC9B64 l 5FBE6A52F2BA05CC08EC974689ECF 
27 l 5F3CFCEC6DE I F9EFA5 l OF08E9 I FAC6BFECA5F3E64B49738204968F388 l 8690CF7 A5B68ACFFD72AE45 
28 l 788F9D8A3600E73 78B88767FD7 AD8F2D50CFE3 785CA3854EE29A I B8431 CD960BA I 05856 l 5FOB6AACB 
29 1257184279A l 146DBA8DOAB93A9050786F5C8A883EB31249F3F9C73CEB5884428F3F42150D84A20217 
30 l 60FF21 I EAD6C6A60282FA39CF2A6F8FA9B41 l I 7BCB8CDC55A6CDBBD57FE4660CF36305858EC852FAF 
31 l 5621782AE6302A8032CA43384E26197588CD6B6F690C980BD7EAAF9374E2680C24A6FD2A48A2COD47 
32 l 45E90801 DE l 457C556DA667886 I 092632D74 l FCAC9 l B7C83E85084E66D2FE2E46E998 l 7346BEFOD5B 
33 I 39429 IA92FC5AA61 BF7043AE02A90E735416543Fl49A l 136DED2443170334CA2FD3BD91 BEl2B026 l F 
34 l 4BD4EODDOODA8E I ECC l 5C89C77753A549745F90B5AD4DF92423CB4956CD638F l 5BFE285B7DC4D054F 
35 15D DOCFCAA 76DOA I B975 l 5E3B l 2CB48AEDCCI 54A 714D9EOOC8CDFI D923E8C08280560D8B I B429F3 l 3F 
36 I 085E9B4053954 l 9FFF3 l FE08FD69A3774C44CCDEC3B 1538B I FD2 l 5475ADA 7CA59AF709A3C5271 FC9B 
37 13CCC4AC8286 l 9B I B5D6FB59 l l 42132FA4B92BD44C3F l 5B8F74EAAE2A8A28BCC64F5C2475F3C l 4FBF3 
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Appendix B: The Moduli Set and Constant Values for 4-channel PRNS GF(2 163
) Multiplier 

Appendix B: The Moduli Set and Constant Values for 4-

channel PRNS GF(2 163) Multiplier 

m1 = xB4 + xs + 1 
mz = xB4 + x9 + 1 
m3 = xB4 + xll + 1 
m4 = xB4 + x13 + 1 

M1 = m 2(x) ·mix)· m4 (x) 

4 

p(x) = L (plx) · Ii(x) mod mi(x)) · Mi(x) 
i=l 

= xzsz + x1s1 + x179 + x177 + x16B + x1os + x106 + x104 + xB4 + x33 + x24 

+ x22 + xzo + x13 + xll + x9 + 1 
Mz = m1 (x) · m 3 (x) · mix) 

= xzsz + x1s1 + x197 + x173 + x16s + x1os + x102 + x100 + xB4 + xz9 + xz4 

+ x1s + x16 + x13 + xll + xs + 1 
M3 = m1(x) · m2(x) · m4 (x) 

= xzsz + xrn1 + x177 + x173 + x16B + x106 + x102 + x9B + xB4 + x21 + xzz 
+ x1s + x14 + x13 + x9 + xs + 1 

M4 = m 1 (x) · m 2 (x) · m 3 (x) 
= xzsz + xl79 + x111 + x173 + x16B + x104 + x100 + x9B + xB4 + xzs + x21 

+ x16 + x14 + x11 + x9 + xs + 1 

11 = M11(x)(mod m1 (x)) = 
10000111011111110110001011011000011101101000100100110011100111010110001011011001 
0111 

12 = M21(x)(mod mz(x)) = 
11010100110101100111110110000010110101111000001011010111100000101101011110011000 
0100 

/3 = M31(x)(mod mix))= 
010010101101110000000110011111111011101010101110111111111011101010101110110110101 
101 

/4 = M41(x)(mod mix))= 
00011001011101010001100100100101000110111010010100011011101001010001101110010111 
1111 

144 



Appendix C: The Moduli Set and Constant Values for Fault Tolerant 5-channel PRNS GF(2 163
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Multiplier 

Appendix C: The Moduli Set and Constant Values for 

Fault Tolerant 5-channel RPRNS GF(2 163) Multiplier 

m1 = x121 + x + l 
m2 = x121 + x 7 + 1 
m3 = x121 + x1s + 1 
m4 = x121 + x30 + 1 
ms = x121 + x63 + 1 

SRC 1 (m2, m 3, m4, ms) 
M1 = (x121 + x1s + l)(x121 + x30 + l)(x121 + x63 + l) 
M2 = (x121 + x7 + l)(x121 + x30 + l)(x121 + x63 + l) 
M3 = (x121 + x7 + l)(x121 + x1s + l)(x121 + x63 + l) 
M4 = (x121 + x7 + l)(x121 + x1s + l)(x121 + x30 + l) 
11 =10001100101011000111111001100011000001000100010011000111011110011111101000011 
11110000101101000001000011100011010001000001110000 
12 =00011001000111011100011000111011100011000111000011100000111001100011100111000 
10001111011100011110000111100001001111011110001011 
/3 = 1000100000011010001101111110100101000010010110111101010011111000000010001011 
001111111011001001110110110001100110011100000011111 
/4 = 00011101101010111000111110110001110010100110111111110011011001111101011011000 
01110001010101110010110101000010111010011101100101 

SRC 2 (m1, m 3, m4, ms) 
M1 = (x121 + x1s + l)(x121 + x30 + l)(x121 + x63 + l) 
M2 = (x121 + x + l)(x121 + x30 + l)(x121 + x63 + l) 
M3 = (x121 + x + l)(x121 + x1s + l)(x121 + x63 + l) 
M4 = (x121 + x + l)(x121 + x1s + l)(x121 + x30 + l) 
4 =00101101111001100111100101001010111110010110101010111101011011101010111011000 
01010011000111000110010111101100001000110111011110 
12 = 0101111110111001101001010001101100100011100100000001111001000110101001101110 
011100100100011010000001000110100110111001101101111 
½ =10101000001111111110001100110100001101111100101100011111110111010000000101000 
01011110101110111100001000110010101011110101111001 
4 =11011010011000000011111101100101111011010011000110111100111101011101001100000 
11101110110001100001001011001111100100101010100011 

SRC 3 (mi, m 2, m4, ms) 
M1 = (x121 + x7 + l)(x121 + x3o + l)(x121 + x63 + l) 
M2 = (x121 + x + l)(x121 + x30 + l)(x121 + x63 + l) 
M3 = (x121 + x + l)(x121 + x7 + l)(x121 + x63 + l) 
M4 = (x121 + x + l)(x121 + x7 + l)(x121 + x30 + l) 
11 = 0111101100100010010110100111010110010111000001001101011100000111011001011011 
010100111101101110100000010110110000111110110110111 
12 = 0110000101010111010000000110011011011011111011000000111010111001000000011001 
110001010100011101100100010000101010111001100010000 
/3 = 0001001100100010100111110110110110110100100111011010101100100010000001011010 
111010110011010100001111101011000001111011100010110 
/4 = 0000100101010111100001010111111011111000011101010111001010011100011010001101 
000001011111111000100100101010111111110011100010100 
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) 

Multiplier 

SRC 4 (mi, m2, m3, m5 ) 

Mi = (x121 + x7 + l)(x121 + x1s + l)(x121 + x63 + l) 
Mz = (x121 + x + l)(x121 + x1s + l)(x121 + x63 + l) 
M3 = (x121 + x + l)(x121 + x7 + l)(x121 + x63 + l) 
M4 = (x121 + x + l)(x121 + x7 + l)(x121 + x1s + l) 
/1 = 1100001011000000001011000000101110110010011110110010011100100101010111100101 
010111101101010110110011111000110011011000110110101 
lz = 0001100101001011011100011100011110100110001000010100110110001101000111100010 
010010011010110110111101111010111010010110100101001 
/3 = 1010101010011110101010100111100101010101111001101010101110011110101010100111 
100101010101111011101010001110110110001010000100111 
4 =01110001000101011111011110110101010000011011110011000001001101101001101100011 
10111010101110110110000001010000011011110101100010 

SRC 5 (mi, m2 , m3, m4 ) 

Mi= (x121 + x7 + l)(x121 + x1s + l)(x121 + x30 + l) 
Mz = (x121 + x + l)(x121 + x1s + l)(x121 + x30 + l) 
M3 = (x121 + x + l)(x121 + x7 + l)(x121 + x3o + l) 
M4 = (x121 + x + l)(x121 + x7 + l)(x121 + x1s + l) 
/1 =11001001001111011010110111001010111000110100011111010100101111001111010110000 
00101011010000111000100001110100100011010100100101 
/ 2 =00101001111100011010011101111011010010011110010001001100011010000011011101110 
11101111110110001000101010000000110011101110110111 
/3 = 101010100101010101010110101010101010110101010101010110101011101010100101001 
0010100011011000110110110001101100011001010011101011 
/4 =01001010100110010101110000011011000001111111011011000010011011100110011111010 
01100111111110000110101000110001101001100001000000 
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