
The
University

• Of
~ Sheffield.

A Study of Polynomial Residue
Number Systems over Binary Galois

Fields GF(2m) for Cryptography

By
Junfeng Chu

A Thesis submitted to the University of Sheffield in
partial fulfilment of the requirements for the degree of

Doctor of Philosophy.

January 2012

Abstract

This thesis is concerned with GF(2m) Polynomial Residue Number Systems (PRNS)

and their application in cryptography to provide resistance against side-channel­

analysis and protection against fault attacks.

PRNS operations over GF(2m) required in a number of cryptography primitives are

investigated. A partial-conversion method is introduced to simplify the costly

conversion operation and this is then combined with a partial modular reduction

technique and applied to design and implement a PRNS based GF(2m) multiplier with

improved performance.

The Advanced Encryption Standard (AES) is used as vehicle to analyse and quantify

the PRNS overhead where different AES architectures are proposed and implemented.

The PRNS based AES is shown to achieve excellent multiple error coverage with a

reasonable overhead. It is also argued in the thesis, that PRNS AES designs provide

an intrinsic resistance against probing attacks and, due to the introduction of

redundant information and the residue representation replacing the original

representation, exhibit increased confusion and hence enhanced design security.

fuNIVERSITY
OF SHEFFIELD

LIBRARY

Acknowledgements

I would like to thank my supervisor Dr. Mohammed Benaissa for his patience,

guidance and constructive suggestions throughout the research period, for the freedom

of research and frequent discussions that made the whole PhD journey such an

enjoyable experience. Acknowledgement is also given to the University of Sheffield

for all kinds of support.

I wish to express my gratitude to my colleagues: Nabil, Stas and Zia for their help and

encouragement during my study. I also need to thank Neil Powell for his help while I

was doing lab demonstrating.

To my lovely flat mates, I thank you all for putting up with my annoying living habits

and sharing a wonderful life in Sheffield with me. A big thank you to all my friends I

have come to know and rely on over these years. A special thanks is given to Xiaoshu,

who helped me with my writing up and took care of me in the last stage of my PhD

study.

To my best friend Chang Liu, who sadly passed away when I was studying in the UK.

Finally, a special sincere thanks goes to my parents for their enduring love, tolerance

and support throughout my education. I wouldn' t be here if it wasn 't for you mum and

dad, thanks. I am proud of you! I love you!

ii

Sincerely

Junfeng Chu

F'Feb. 2012

Dedication

To my parents, Jianming Zhang and Chengdong Chu, whose unconditional love and

unwavering support has allowed me to embark on this inspiring doctoral journey

To the memory ofmy best.friend, Chang Liu.

To those who are loving me

To those who loved me

iii

Table of Contents

Abstract .. i

Acknowledgements .. ii

Dedication ... iii

Table of Contents .. iv

Thesis Figure Captions ... viii

Thesis Table Captions ... x

Thesis Algorithm Captions ... xi

Acronyms ... xii

Chapter 1: Introduction .. 1

1.1 Introduction .. 1

1.2 Main Research Contributions ..•............. 4

1.3 List of Papers ... 6

1.4 Overview of Thesis .. 7

Chapter 2: Background Theory ... 8

2.1 Introduction .. 8

2.2 Galois Fields Theory .. 9

2.2.1 The Galois Field GF(2m) ... 10

2.2.2 GF(2m) Representations .. 11

2.2.3 GF(2m) Arithmetic 13

2.3 Residue Number System Theory .. 19

2.3.1 Residue Number System Representation .. 20

2.3.2 Residue Number System Arithmetic .. 22

2.3.3 Residue Number System Converter ... 23

2.4 Polynomial Residue Number System over GF(2m) .. 26

2.4.1 Polynomial Residue Number System Representation .. 26

iv

2.4.2 Polynomial Residue Number System Arithmetic ... 28

2.5 The Advanced Encryption Standard ... 30

2.5.1 SubBytes and lnvSubBytes 32

2.5.2 ShiftRow and lnvShiftRow 33

2.5.3 MixColumn and lnvMixColumn ... 33

2.5.4 AddRoundKey 34

2.5.5 KeyExpansion 35

2.6 Design, Validation and Verification .. 37

2.7 Research Proposal ... 37

Chapter 3: PRNS Multiplication over GF(2m) ... 40

3.1 Introduction .. 40

3.2 GF(2163
) Multiplication using PRNS .. 42

3.2.1 Dynamic Range and Moduli Set 42

3.2.2 Channel-Serial PRNS Multiplier over GF(2163
) 44

3.2.3 Channel-Parallel PRNS Multiplier over GF(2163
) 47

3.2.4 Synthesis Results and Comparisons 48

3.3 Partial Conversion and Modular Reduction using PRNS 49

3.4 GF(2163
) Multiplication using Trinomial based PRNS 53

3.4.1 Dynamic Range and Moduli Set 53

3.4.2 Channel Multiplier Design 54

3.4.3 Multiplying by Mi Operation 55

3.4.4 GF(2163
) Modular Reduction and to PRNS Converter ... 56

3.4.5 Architecture of the Proposed PRNS GF(2163
} Multiplier 57

3.4.6 Hardware Results and Comparisons .. 58

3.5 Functional Testing ... 60

3.6 Conclusions•.. 61

Chapter 4: PRNS for Error Detection and Fault Tolerance•..•.... 60

4.1 Introduction•... 62

4.2 The RPRNS Based Error Detection .. 64

V

4.3 GF(2m) Multiplier using RPRNS Based Error Detection 67

4.3.1 Example on RPRNS Based Error Detection ... 67

4.3.2 Implementation of GF(28
) Error Detection Multiplier Using RPRNS 70

4.3.3 Implementation Results .. 75

4.3.4 Error Coverage Analysis .. 77

4.4 The RPRNS Based Fault Tolerance .. 79

4.5 GF(2m) Multiplier using RPRNS Based Fault Tolerance 81

4.5.1 Implementation of Fault Tolerant GF(2163
) Multiplier .. 81

4.5.2 Synthesis Result of the Fault Tolerant GF(2163
) Multiplier 82

4.6 Conclusions ... 84

Chapter 5: Low Area Design of the AES ... 83

5.1 Introduction .. 85

5.2 Review of the Previous AES Designs .. 87

5.3 The Proposed Design of the Low Area AES ... 88

5.3.1 FPGA Specific Optimizations ... 88

5.3.2 Top Level Architecture .. 89

5.3.3 Design of ShiftRow ... 90

5.3.4 Design of Sbox .. 92

5.3.5 Design of MixColumn .. 97

5.3.6 Design of KeySchedule .. 99

5.3. 7 Design of Top Level Control ... 101

5.4 Implementation Results and Comparisons ... 102

5.5 Function Testing .. 104

5.6 Conclusions ..•................................ 105

Chapter 6: Error Detecting AES using PRNS ... 104

6.1 Introduction .. 106

6.2 Review of Existing AES Error Detection Scheme ... 108

6.3 PRNS based Error Detection AES .. 109

6.3.1 Top Architecture and PRNS Representation ... 109

vi

6.3.2 SubBytes Transformation using PRNS .. 111

6.3.3 MixColumn Transformation using PRNS 114

6.3.4 Other Transformations using PRNS ... 116

6.3.5 Error Detecting Mechanism•......... ..•. 116

6.4 Design of GF{24
) AES Core .. 117

6.4.1 32-bit Data Path AES using PRNS 117

6.4.2 8-bit Data Path AES using PRNS ... 119

6.5 Hardware Implementation and Results ... 120

6.6 Error Coverage Analysis and Comparison ... 122

6.7 Conclusions ... 123

Chapter 7: Conclusions and Further Work ... 124

7.1 Conclusions ... 124

7 .2 Further Work ... 127

Chapter 8: References .. 129

Appendix A: The Moduli Set and Constant Values for 37-channel PRNS GF{2163
)

Multiplier ... 141

Appendix B: The Moduli Set and Constant Values for 4-channel PRNS GF{2163
)

Multiplier ... 144

Appendix C: The Moduli Set and Constant Values for Fault Tolerant 5-channel

RPRNS GF{2163
) Multiplier ... 145

vii

Thesis Figure Captions

Figure 2-1: 4-bit bit-serial multiplier over GF(24
) generated by

F(x) = x4 + x + 1 .. 14

Figure 2-2: 4-bit bit-parallel multiplier over GF(24
) generated by

F(x) = x4 + x + 1 .. 15

Figure 2-3: State and RoundKey Notation ... 32

Figure 2-4: ShiftRow Operation for Encryption and Decryption 33

Figure 2-5: Add Round Key Transformation ... 35

Figure 3-1: Architecture of the Channel-serial PRNS Multiplier over GF(2163
)

..................•..••.. 44

Figure 3-2: Implementation of Digital-serial Modular Reduction Algorithm 46

Figure 3-3: Architecture of the Channel-parallel PRNS Multiplier over GF(2163
) 47

Figure 3-4: XOR Network for the Operation of Multiplying by M 1 56

Figure 3-5: Architecture for the PRNS GF(2163
) Multiplier using Trinomials 57

Figure 3-6: Testing Circuits for the PRNS GF(2m) Multiplier 60

Figure 4-1: Implementation Example of Multiplying by Ii Operation 72

Figure 4-2: Architecture of the GF(28
) RPRNS Error Detection Multiplier 74

Figure 4-3: Architecture of RPRNS Based Fault Tolerance 80

Figure 4-4: Architecture of RPRNS Based Fault Tolerance GF(2163
) Multiplier

... 81

Figure 4-5: Architecture of the SRC Block .. 82

Figure 5-1: LUT Based Addressable 16-bit Shift Register (SRL16) 88

Figure 5-2: AES Encryption Core Architecture for 8-bit Data Path 89

Figure 5-3: SRL16 Based ShiftRow ... 90

Figure 5-4: SRL32 Based ShiftRow ... 91

viii

Figure 5-5: Demonstration of the ShiftRow Transformation 91

Figure 5-6: Sub Bytes Transformation using Composite Field Arithmetic 94

Figure 5-7: GF(24
} Multiplication Using Composite Field .. 95

Figure 5-8: MixColumn Using 8-bit Data Path .. 98

Figure 5-9: On-the-fly KeySchedule with 8-bit Data Path 100

Figure 5-10: Reon Generation ... 100

Figure 6-1: Top Architecture of the PRNS based AES .. 110

Figure 6-2: State Block in PRNS Representation .. 110

Figure 6-3: GF(24
} AES Encryption Core Architecture for 32-bit Data Path

... 117

Figure 6-4: GF(24
} AES KeyExpansion Architecture for 32-bit Data Path 118

Figure 6-5: GF(24
} AES Encryption Core Architecture for 8-bit Data Path 119

ix

Thesis Table Captions

Table 2-1: Representations of the elements of GF(24
) that is generated by the

irreducible polynomial F(x) = x4 + x + 1. .. 12

Table 2-2: RNS representations of unsigned and signed integers•.............. 22

Table 2-3: PRNS representations of GF(24
} elements ... 27

Table 2-4: Number of Round Transformations with respect to Nk••························ 31

Table 3-1: 37-Channel PRNS GF(2m) Multiplier Synthesis Results 48

Table 3-2: Demonstration of the Partial Conversion Method 49

Table 3-3: Synthesis Results of the 4-Channel PRNS GF(2163
) Multiplier 59

Table 3-4: Comparisons with other GF{2163
} Implementation 59

Table 4-1: GF(28
} Multiplier Synthesis Results ... 75

Table 4-2: GF(2163
} Multiplier Synthesis Results ... 76

Table 4-3: Error Coverage for the Proposed Designs of GF Multiplier 78

Table 4-4: Synthesis Result of the Fault Tolerance GF(2163
) Multiplier 83

Table 5-1: ShiftRow Operation .. 92

Table 5-2: SubBytes Look Up Table .. 93

Table 5-3: 8-bit MixColumn Operations .. 99

Table 5-4: Low Area AES Design Synthesis Results Comparisons ..••...................... 102

Table 5-5: Synthesis Results Comparisons with Industry Products ...•................... 103

Table 6-1: Sbox over GF(2
4

} x4 + x + 1 for Core 1 •• 112

Table 6-2: Sbox over GF(2
4

} x4 + x 3 + 1 for Core 11 ••• 112

Table 6-3: Sbox over GF(2
4

} x4 + x3 + x2 + x + 1 for Core 111 113

Table 6-4: PRNS Error Detection AES Synthesis Results 120

Table 6-5: AES Error Detection Scheme Comparison .. 122

X

Thesis Algorithm Captions

Algorithm 2-1: Multiplication in GF(2m) with interleaved modular reduction 14

Algorithm 2-2: Finding Multiplicative Inversion using Fermat's Little Theorem

... 17

Algorithm 2-3: Finding Multiplicative Inversion using Euclid's Greatest Common

Divisor algorithm .. 17

Algorithm 2-4: AES Round Transformations .. 31

Algorithm 2-5: AES Algorithm (Encryption) ... 31

Algorithm 2-6: KeyExpansion Algorithm (128-bit Key)•............. 35

Algorithm 3-1: Digit-serial Modular Reduction Algorithm 45

xi

Acronyms

AES
ASIP
CFB
CRT
CTR
DSP
DUT
ECC
FIPS
FLT
FPGA
GCD
GF
LCM
LSB
LUT
MRC
MRD
MRS
MSB
MUX
NB
NIST
OFB
PB
PRNS
RESO
RNS
RPRNS
RTL
SoC
SRC
VHDL

Advanced Encryption Standard
Application Specific Instruction Processor
Cipher Feedback Mode
Chinese Remainder Theorem
Counter Mode
Digital Signal Processing
Design Under Test
Elliptic Curve Cryptography
Federal Information Processing Standard
Fermat's Little Theorem
Field Programmable Gate Array
Greatest Common Divisor
Galois Field
Least Common Multiple
Least Significant Bit
Look Up Table
Mixed Radix Conversion
Mixed Radix Digit
Mixed Radix Number System
Most Significant Bit
Multiplexer
Normal Basis
National Institute of Standards and Technology
Output Feedback Mode
Polynomial Basis
Polynomial Residue Number System
Re-computing with Shifted Operands
Residue Number System
Redundant Polynomial Residue Number System
Register Transfer Level
System on Chip
Single Radix Conversion
Very High Speed Integrated Circuit Hardware Description Language

xii

Chapter 1
Introduction

1.1 Introduction

Chapter 1: Introduction

Polynomial Residue Number System (PRNS) over binary fields 1 is a form of Residue

Number System (RNS), where in each PRNS channei2 the modular ring is generated

by an irreducible polynomial rather than a primitive number as in normal RNS over

integers. The Chinese Remainder Theorem (CRT), which is applicable in RNS, is

applicable to PRNS as well [1]. RNS structures have the advantages of less power

dissipation and less time consumption compared to traditional systems by using

smaller operands and reducing the complexity of circuits [2]. Due to the nature of

independence between RNS channels and scope for randomisation, RNS architectures

have also been advocated for improving side-channel resistance in cryptosystems [3]

and implementing fault tolerance in DSP and communication systems [4].

PRNS over binary field shares most of the attractive properties with the normal RNS

over integers. The main aim of the research in this thesis is to explore and apply those

attractive properties to the cryptography area to enhance the security level of

cryptosystems by providing improved protection against fault and a number of side­

channel attacks.

GF(2m) Multiplication 1s the most frequently used field operation m most

1 GF(2m) is also known as binary field
2 Each independent unit in PRNS or RNS is often referred to as a channel

1

Chapter 1: Introduction

cryptography primitives and as such the design of PRNS GF(2m) multiplier is crucial

to the overall performance. The normal modular reduction operation in normal

GF(2m), which requires weighted polynomial information of the intermediate product,

needs the conversion from PRNS. This conversion from PRNS is particularly costly

and, hence, it acts as an obstacle to the acceptance of PRNS. To overcome this and to

simplify the conversion circuit, research was undertaken into trying different

irreducible polynomial sets for the PRNS channels. Broadly speaking, field­

generating polynomials are characterized as either being generic or special. In

contrast to generic irreducible polynomials the modular reduction process for special

irreducible polynomial is simplified, a typical example is using irreducible trinomials.

The experimental results obtained show that using trinomials as the channel

irreducible polynomials greatly reduces the complexity of the conversion, therefore

improving the performance of the PRNS GF(2m) arithmetic and ultimately the whole

cryptography primitive. To fully understand the performance of the PRNS GF(2m)

multiplication, a thorough investigation is carried out including actual implementation

results under a range of scenarios; for example the case where the proposed multiplier

uses different PRNS channel arithmetic architectures: bit-serial and bit-parallel.

Another comparison between different architectures for the PRNS channels is also

provided: architectures where the channel operations are performed in serial by

sharing one generic channel and architectures where individual channels are used to

perform all the channel operations in parallel. A novel modular reduction method for

the PRNS multiplier is introduced to further simplify the conversion circuit, namely

the partial conversion method, where only part of the intermediate product is

converted and the final result remains in the PRNS format.

To apply the devised PRNS to cryptography systems, the AES algorithm has been

2

Chapter 1: Introduction

implemented using a full PRNS architecture. Due to the flexibility of implementing

the AES, different architectures are constructed to analyse the performance of the

PRNS based AES: a very low area 8-bit data path AES and a normal 32-bit data path

AES are implemented as reference designs to analyse the additional overheads. By

adding a redundant channel, the proposed PRNS based AES is capable of detecting

multiple errors with a reasonable overhead. The PRNS AES cores have an intrinsic

resistance against probing attacks because all the transformations are performed

independently in distributed PRNS channels. In addition, due to the introduction of

the redundant channel and the residue representation replacing the original

representation, more confusion is added to the system, which will also enhance the

system's security level.

3

Chapter 1: Introduction

1.2 Main Research Contributions

The PRNS architecture brings a novel way of realising GF(2m) circuits, it changes the

architecture of cryptography schemes that uses GF(2m) arithmetic from the bottom

level. This research started by studying and implementing the basic GF(2m) arithmetic

using PRNS architecture; then the error detection and error correction capability

provided by the PRNS architecture is explored; the PRNS architecture is then applied

to the selected cryptography scheme which is the AES to provide the crypto-system

with anti-fault-attack capability and other side channel analysis resistance. To the

author's knowledge, the low area AES work that is proposed in Chapter 5 is known as

the smallest FPGA AES design so far. The proposed PRNS architecture AES (Chapter

6) is shown to have excellent error detecting rate with promising overhead in

hardware. The 8-bit PRNS AES design is known as the smallest AES scheme with

multiple error detection capability over FPGA platforms.

The main contributions of the research that will be outlined in this thesis include:

• Design and implementation of a PRNS GF(2m) multiplier using generic

moduli sets, where m is 163, which is designed particularly for ECC

(Elliptic Curve Cryptography) operations. Channel serial and channel

parallel architecture of PRNS are implemented and the synthesis results

are compared.

• Design and implementation of a PRNS GF(2m) multiplier using special

moduli sets. In this case, irreducible trinomials are selected as channel

generating polynomials to improve the multiplier's performance and

simplify the conversion circuit.

• Design and introduction of a new partial conversion method, which is

4

Chapter 1: Introduction

used to simplify the convers10n circuits for the PRNS m modular

reduction process.

• Introduction of Redundant PRNS (RPRNS) over binary fields, by which

error detection and error correction capability is added to the GF(2m)

arithmetic circuits.

• Design and implementation of the smallest reported memory free AES

(Advanced Encryption Standard) encryption core over FPGA platform by

exploring the use of LUT (look-up table) based shift registers. This design

only requires 184 slices on a Xilinx Spartan 3 (XC3 S50) device, and 80

slices on a Spartan 6 (XC6SLX4) device while achieving throughputs of

36.5Mbps and 58. l 3Mbps respectively.

• Application of the PRNS to the AES. An 8-bit data path AES and a 32-bit

data path AES are constructed to analyse the overhead that is brought by

the PRNS architecture.

• Application of the RPRNS architecture to the AES to provide multiple

error detection capability. Design of a PRNS based Sbox table look-up

method.

• Design and implementation of the world's first PRNS based error­

detecting AES encryption core. This design is capable of detecting 100%

channel errors and 93.75% multiple errors that may occur cross different

PRNS channels with an overhead of 58%. In addition, the RPRNS

architecture provides this design an intrinsic resistance against probing

attacks and higher level of confusion. To the author's knowledge the 8-bit

PRNS AES design is known as the smallest AES scheme with multiple

error detection capability over FPGA platforms.

5

Chapter 1: Introduction

1.3 List of Papers

• J. Chu, M.Benaissa, GF(2m) Multiplier using Polynomial Residue Number

System. IEEE APCCAS 2008 , 30 Nov-4 Dec, Macao, China.

• J. Chu, M . Benaissa, "Polynomial residue number system GF(2m)

multiplier using trinomials", 17'" European Signal Processing Conference,

August 24-28 2009 , Glasgow Scotland.

• J. Chu, M. Benaissa, "A Novel Architecture of Implementing Error

Detecting AES using PRNS", The 14th Euromicro Conference on Digital

System Design, August 31st to September 2nd, 2011, Oulu, Finland.

• J. Chu, M. Benaissa, "Error Detecting AES using Polynomial Residue

Number Systems", accepted by special issue of the Microprocessors and

Microsystems: Embedded Hardware Design.

• J. Chu, M. Benaissa, "Low Area Memory-free FPGA Implementation of

the AES Algorithm", accepted by The International Conference on Field

Programmable Logic and Applications FPL 2012, August 2012, Oslo,

Norway.

• J. Chu, M. Benaissa, "Low Area Error Detecting AES", submitted for

review, IEEE TCAS-2.

6

Chapter 1: Introduction

1.4 Overview of Thesis

The contents of this thesis can be summarized as follows:

• Chapter 2: Provides background theory on GF(2m) arithmetic and RNS,

introduces PRNS and its support theory and a brief introduction of the

AES algorithm.

• Chapter 3: Presents the proposed PRNS multiplication algorithm and its

implementations. Comparisons of different multiplier architectures are

made.

• Chapter 4: Presents the proposed RPRNS error detection and error

correction method for GF(2m) arithmetic. Examples and implementations

of using the proposed approach to achieve error detection and error

correction in GF(2m) multiplication are given.

• Chapter 5: Overviews the AES implementations and presents the detailed

design information for the proposed low area AES encryption core with

the implementation results.

• Chapter 6: Describes the application of RPRNS in the AES to achieve

multiple error detection and gives detailed implementation results.

Comparisons of different AES architectures are made.

• Chapter 7: Concludes the thesis and presents a direction for further

research.

7

Chapter 2: Background Theory

Chapter 2
Background Theory

2.1 Introduction

This chapter gives a brief overview of the background theories and algorithms that

will be needed throughout this thesis. lt starts with presenting the fundamental theory

behind Galois Fields, also known as Finite Fields and the Residue Number Systems

before introducing the proposed Polynomial Residue Number Systems over binary

fields . To support the proposed AES design, an overview of the AES algorithm is also

given.

For reasons of brevity, only information relating to the implementation of the

proposed architectures will be presented. Interested readers can follow up on the

theories using the references provided. Chapter 2.2 outlines the theory of Galois

Fields GF(2m), with emphasis on its arithmetic and typical arithmetic circuits. Chapter

2.3 introduces the theories behind RNS and PRNS with corresponding architecture's

properties and their applications. Chapter 2.4 describes the basic operations of the

AES algorithm.

8

Chapter 2: Background Theory

2.2 Galois Fields Theory

Galois Fields Theory has been widely used in modem communication and electronic

systems. For example in:

• Error-control coding, e.g. Reed-Solomon codes [5]

• Cryptographic schemes, e.g. the Rijndael Algorithm for the AES [6] and ECC

over binary field [7]

• Digital signal processing [8]

• Random number generation [9]

• VLSI testing [1 OJ

The basis of Galois Fields is constructed from an algebraic system, called a Group. It

consists of a set G, where an operation o defined on G satisfying the following

properties [11] :

• Abelian: for x, y E G, (x o y) =(y O x), then G is said to be an abelian group;

• Associativity: for x, y, z E G, (x o y) o z = x o 6' o z);

• Identity: in G, there is an element e satisfying (x O e) = (e o x) = x for all

XE G;

• Inverse: m G, there exists an umque element x-1
E G, satisfying

- I - I
X o X = X o X = e;

• Closure: for all the elements in the set G, an operation between any pair of

elements will result in another element with in the same group G, for x, y E G,

(x o y) E G.

A Galois Field is an algebraic system consisting of a finite number of elements. The

9

Chapter 2: Background Theory

finite set F and two defined field operations + (addition) and x (multiplication) have

the following properties [11]:

• Fis an abelian group with respect to the operation +;

• F with the additive element {OJ removed is an abelian group with respect to

the operation x;

• Distributivity: for x, y, z E F, {x x (y + z) = (x x y) + (x x z)}, {(x + y) x z = (x

x z) + (y x z)} and vice versa.

The order q of the field indicates the number of elements in the field. According to the

finite field theory, it states that there exists a finite field of order q, if and only if q is

either a prime number or a prime power, and this field is denoted as GF(q) . If q = p m,

where p is a prime number and m is a positive integer, p is then called the field

characteristic and m is named as the extension degree of such field. The Galois Fields

with characteristic of '2 ' is known as binary field and its extension field is denoted as

GF(2m). Such GF(2m) is of particular interest in this thesis as all the proposed

architectures and designs are based on this finite field .

2.2.1 The Galois Field GF(2m)

The Galois Field GF(2m) is a finite field with the characteristic of ' 2 ' and the

extension degree of m. It can be viewed as a vector space of dimension m over GF(2)

[12]. An element of GF(2m) A can be denoted uniquely in a vector format as

m-1

A = L aiai , where ai E {O, 1}
i=O

10

Chapter 2: Background Theory

The vector {am-I, am-2, ···, a,, ao} is called a basis of GF(2m) over binary field.

2.2.2 GF(2 111) Representations

There are several methods to represent an element over Galois Field. The two most

commonly used representations of GF(2m) elements are using the polynomial basis

and the normal basis [13 , 14].

• Polynomial Basis (PB or standard basis)

The field GF(2m) is generated using an irreducible polynomial of degree m

over GF(2), written as:

m-1

F(x) = xm + L fixi, where[;_ E GF(2)
i=O

For each irreducible polynomial, there exists a polynomial basis

representation, where an element of the defined GF(2m) field can be uniquely

mapped to a binary polynomial of degree less than m. If an element

A E GF(2m), it can be represented by a polynomial as:

m-1

A = L aixi = Um- 1xm-i + ··· + a1 x + a0 , where ai E {O, 1}
i=O

Usually, A can be denoted by a m-bit bit vector using the coefficients of the

above polynomial as {Um-i, am-z, · ··, ai, a0 }. There exists a smallest positive

integer n such that An = 1, then the n is defined as the order of an element A

in the field GF(2m). If n = 2m - 1, then A is known as a primitive element,

where the polynomial basis is given by the set {1,A,A2 , ··· ,Am- 1 } , and all

other non-zero elements of such field can be generated by (2m - 1)

consecutive powers of the primitive element A.

Polynomial basis representation is by far the most versatile representation

11

Chapter 2: Background Theory

since it is able to offer appropriate solutions to most computational problems

[13]. A detailed example of polynomial basis representation is given in Table

2-1.

Table 2-1: Representations of the elements of GF(24
) that is generated by the

irreducible polynomial F(x) = x4 + x + 1

Power Representation Polynomial Bit Vector
Representation Representation

0 0 0000
A0 = 1 1 0001

Al X 0010
A2 x2 0100
A3 x3 1000
A4 x+l 0011
As X2 + X 0110
A6 x3 + x2 1100
A7 x 3 + X + 1 1011
As x 2 + 1 0101
A9 x 3 +x 1010
A10 X2 + X + 1 0111
All x 3 + x 2 + x 1110
A12 x 3 + x 2 + x + 1 1111
A13 x 3 + x 2 + 1 1101
A14 x 3 + 1 1001

A1s =Ao= 1 1 0001

• Normal Basis (NB)

If f] is a primitive element of GF(2m), in another word p2
m-

1 = 1, the normal

basis of this field is of the form {/l, {] 2 , • • ·, f] 2m-i}. Each element A in the field

GF(2m) can be written as:

m-1

A = L aifl 2
i , where ai E {O, 1}

i=O

Squaring operation of an element can be easily implemented by a simple

cyclic shift of the coordinates of the normal basis representation; however, the

multiplication in the normal basis is more complicated than using polynomial

12

Chapter 2: Background Theory

basis. For reasons of brevity, the detailed information on normal basis

representation refers to [12].

As in this thesis, most of the algorithms and implementations are using polynomial

basis representation. In the following section, polynomial basis is used to demonstrate

the basic arithmetic over GF(2m)_ For the arithmetic using other basis, interested

reader can refer to [13 , 14].

2.2.3 GF(2 01) Arithmetic

The basic arithmetic over GF(2m) that is being used in this thesis includes: addition,

multiplication, squaring, modular reduction and inversion.

The addition and subtraction in GF(2m) can be implemented as bitwise XOR

operation, which performs the modular 2 operation, because the field characteristic is

'2 ' . A very attractive property can be revealed here: the addition operation will not

generate a carry signal, which means the lower bits will not affect the higher bits

while doing additions. The property will be further exploited and applied to the

proposed partial conversion method.

The crux of GF(2m) arithmetic is the multiplication. It can be demonstrated as the

following equation: Let A, B E GF(2m), then their product C

C = AB mod f (x) , where f(x) is the generating irreducible polynomial of the field .

f(x) is used to perform degree reduction to ensure that C is also in GF(2m) and the

multiplication is closed. The multiplication algorithm is expressed as m

Algorithms 2-1 , which is also known as "shift-and-add" algorithms [52, 53, 54]:

13

Cha ter 2: Back round Theor

Input: A(x), B(x) E GF(2m), irreducible polynomial F(x) of degree m

Output: C(x) = A(x) · B(x) mod F(x)

1: C(x) <= 0

2: for i = m - l to Odo

C(x) <= C(x) · x + A(x)bi

C(x) <= C(x) + F(x)cm

end for

3: return C(x)

Al orithm 2-1: Multi lication in GF 2m with interleaved modular reduction

The typical hardware architecture of implementing GF(2m) multiplier is usually in one

of three ways:

• Bit-serial multiplication performs one GF(2m) multiplication including the

modular reduction operation within m clock cycles. The operand is fed

bitwisely. The complexity is defined using a linear function O(m), which is

relatively low. Typical example can be found in [13, 15]. Figure 2-1

demonstrate a MSB first 4-bit bit-serial multiplier generated using

F(x) = x 4 + x + lover GF(24
).

Fi ure 2-1: 4-bit bit-serial multi lier over GF 24 enerated b
F x = x4 +x + 1

14

Chapter 2: Background Theory

• Bit-parallel multiplication performs the GF(2m) multiplication using one clock

cycle, or in another word, it can be constructed using pure combinational logic

circuit. All the operands are fed in parallel, to reduce the latency of performing

such multiplication. The modular reduction process is usually done by

multiplying a modular reduction matrix, which is derived from the field

generating polynomial. The complexity of this architecture is relatively high

compared with bit-serial architecture, hence it is usually defined using a

quadratic function O(m2
). Systolic architecture can also be adopted for bit­

parallel multiplication in some designs [16]. Further references refer to [17,

18, 19, 20]. A typical bit-parallel multiplier example is shown in Figure 2-2.

The AND network and the first level of XOR network calculate the

intermediate product s; the last level of XORs performs the modular reduction

using F(x) = x 4 + x + 1 over GF(24
) .

bo b1 b2 b3

a.3
S6

a,2

S5
::::$-

a. 1

3 ~ S4

a.o
4 > C3

s2 c2

~
CJ

::::$-
S J

so co

Figure 2-2: 4-bit bit-parallel multiplier over GF(24
) generated by

F(x) = x4 + x + 1

• Digit-serial/parallel multiplication is a compromising method between the bit­

serial and bit-parallel architecture. By using the adjustable digit/word length, it

15

Chapter 2: Background Theory

reduces the number of clock cycles of the bit-serial multiplier and lowers the

area of bit-parallel multiplier [21 , 22].

The squanng operation over GF(2m) is derived by, firstly rerouting the input to

generate the intermediate product and then performing the modular reduction. Several

efficient architectures are reviewed during the study. In [20], it is presented a pure

combinational logic squarer with short critical paths and low complexity. However, it

can be only applied for certain Galois fields, which are generated by irreducible

trinomials. In [23] , the squarer is developed from the multiplication circuits by adding

an adapter to reroute the operands. It achieves better speed performance over

multiplication alone.

Inversion is the most computationally complex and most expensive operation m

hardware to implement among all Galois field arithmetic, however it is a very

important operation in the cryptography area mainly because of its nonlinearity, e.g.

the SubBytes operation in the AES. The division operation over GF(2m) needs the

modular inversion as well, it is usually performed by calculating one operand 's

inversion followed by a multiplication in most of the applications, e.g. the point

operations in the ECC.

There are two main algorithms that are used to implement the modular inversion,

which are Fermat's Little Theorem (FLT) and Euclid's Greatest Common Divisor

(GCD) algorithm [24, 25]. Using Fermat's Theorem to find the inversion, also known

as the Multiplication and Square method, can be implemented using a multiplication

and square chain, which varies according to the used algorithm. Typical square and

multiplication algorithm is expressed as following :

16

Chapter 2: Background Theory

For every a E GF(2m) and a * 0,

According to FLT, a 2m = a

Therefore a-1 = a 2m-z
'

Further 2m - 2 = 2 + 22 + 2 3 + ... + 2m- 1

'

Algorithm 2-2: Finding Multiplicative Inversion using Fermat's Little Theorem

Input: A(x) E GF(2m) and A(x) * 0, irreducible polynomial F(x) of
degree m

Output: U = A-1 (x) , such that A- 1 (x) · A(x) mod F(x) = 1

1: S ~ F(x),R ~ A(x), V ~ O,U ~ l,delta ~ 0

2: for i = l to 2m do

if Tm= 0 then

R ~ x · R; U ~ (x · U) mod F; delta~ delta+ l;

else

end if

end for

3: return U

if Sm= 1 then

S ~ S - R; V ~ (V - U) mod F;

end if

S~x·S;

if delta= 0 then

else

R <=> S; U <=> V; (exchange polynomials)

U ~ (x · U) mod F;

delta ~ delta + l;

U ~ (U/x) mod F;

delta ~ delta - l;

end if

Algorithm 2-3: Finding Multiplicative Inversion using Euclid's Greatest

Common Divisor algorithm [26)

17

Chapter 2: Background Theory

The Euclid's GCD algorithm is initially used to find the greatest common divisor

between two numbers; it can be adopted to calculate the modular inversion as well.

There are several variations of modified Euclid's algorithm to perform the modular

inversion operation. The Algorithm 2-3 demonstrates one of those algorithms [26].

Most GF(2m) arithmetic can be implemented in the Montgomery domain as well, e.g.

the multiplication, the exponentiation and the inversion. Since the Montgomery

domain arithmetic is not being used in this thesis, here only lists a few references for

the interested reader. Typical papers are [27, 28, 29].

18

Chapter 2: Background Theory

2.3 Residue Number System Theory

1f to/] :;f ~□ ~ ~ '
- -=-~Zftl= ,
.n.n~z.Jtl.=. ,
-t-t~Z.fiJ=o

fa] to/J fL 1iiJ ?
- ((J,j,~~~))

In the 4th century, the above math puzzle appeared in the Chinese scholar Sun Zi's

mathematical manual titled Sun Zi Suanjing (or commonly known as Sun Tzu Suan­

ching in RNS literatures [30]). Its English translation is as following [31]:

There are an unknown number of things,
If we count by threes, there is a remainder of 2,
If we count by fives , there is a remainder of 3,
If we count by sevens, there is a remainder of 2,

Find the number of things.

This math puzzle actually described a three-modulus Residue Number System (RNS).

The answer to this puzzle is 23 . The process of obtaining the answer, which was

outlined in this ancient literature, became known as the Chinese Remainder Theorem

(CRT) in honour of its Chinese origins. The Greek mathematician Nichomachus is

also credited with independently discovering the CRT. The complete solution to the

CRT was further developed by another Chinese mathematician named Jiushao Qin in

the 13 th century [31]. A proof of this theorem was published by Hsin Tai-Wei of the

Ming Dynasty of China [32]. Finally, another proof was published by Euler in 1734.

A small group of Czechoslovakian researchers published the first works on residue

arithmetic in 1950s, where their study was to explore RNS 's natural fault tolerant

property to design an RNS computer [33]. After the birth of the transistor-based

computer in the 1960s, the research into RNS computer was pushed into the

background. The focus of RNS studies then shifted to digital signal processing (DSP)

19

Chapter 2: Background Theory

due to its easy implementation of additions and multiplications. The work carried out

until 1986 was collected in an IEEE press compilation of papers [32] , which serves as

an excellent reference on the historical development of RNS.

Nowadays, RNS has been widely studied and applied in many areas, from digital

signal processing to communications. In RNS, a large integer is decomposed into a set

of co-independent smaller integers, so that a large calculation can be performed as a

number of smaller calculations in parallel. It reduces complexity of the arithmetic

units especially when large bit lengths operands are encountered [34]. In addition, the

digit-parallel property of RNS has the advantage of consuming less switching power,

which is the main component of power dissipation for current technological processes

[35, 42, 43, 44]. This is an important characteristic for portable and wireless devices.

In the field of cryptography, the parallel independent nature of RNS provides a

different dimension to data randomization [35] , which has been advocated for

combating side-channel analysis, such as: simple/differential power analysis,

simple/differential electromagnetic analysis and probing attack [3 , 36]. The nature of

fault tolerance provided by the RNS, which has already been widely applied in DSP

and communication systems, is a great attraction for implementing error free crypto­

systems, which is useful to fight against fault induction attack.

2.3.1 Residue Number System Representation [35]

RNS is a non-weighted number system defined by a base, which is constructed by

N-tuple of positive integers: (m0, m1, · · ·, mN_1), known as the moduli of the system

[37]. As it can be seen from the above notation, the base of RNS consists multiple

radixes, unlike a fixed-radix number system (e.g. decimal, binary, etc.).

20

Chapter 2: Background Theory

For a given base, the maximum representational coverage (also known as the dynamic

range) of such RNS is defined by the least common multiple (LCM) of the moduli,

and is denoted by:

Hence, for maximum representational efficiency m RNS, it 1s imperative for all

moduli to be relatively prime, which is denoted as:

1GCD(mi, mi)= 1, for i * j, where i,j E [O, N - 1]

In this case, the dynamic range of the given RNS is:

N-1

M= TT mi
i=O

If an unsigned integer X stays in the dynamic range [O, M - 1], it can be represented

uniquely in the defined RNS by using its remainders:

RNS
X ~ {x0, Xv···, xN_1} where xi = X mod mi, for i = 0,1,2, · ··, N - 1

If the RNS is used to present a signed integer, the dynamic range is then divided into

positive and negative regions. It is defined as:

{[

M -1 M -11 -
2

,
2

for M is odd

[- ; , ; - 1] for M is even

Negative values are mapped into the upper-half of the interval [O, M - 1] in RNS. A

1 GCD represents the greatest common divisor

21

Chapter 2: Background Theory

negative integer is congruent to its additive inverse, which is described algebraically

as:

An example of the (3, 5) RNS to represent the unsigned and signed numbers 1s

demonstrated in the following table:

Table 2-2: RNS representations of unsigned and signed integers

Signed Unsigned (3, 5) RNS Signed Unsigned (3, 5) RNS
0 0 {0,0} -7 8 {2,3}
1 1 {1, 1} -6 9 {0,4}
2 2 {2,2} -5 10 {1,0}
3 3 {0,3} -4 11 {2,1}
4 4 {1,4} -3 12 {0,2}
5 5 {2,0} -2 13 {1,3}
6 6 {0,1} -1 14 {2,4}
7 7 {1,2} -8 15 out of range

2.3.2 Residue Number System Arithmetic

The most basic arithmetic in RNS includes: addition, subtraction, multiplication and

the conversion to and from RNS. Let O denote the operation of addition, subtraction or

multiplication. If X, Y and their result Z (as the operations in RNS are closed) are in

the dynamic range [0, M - 1], that is defined by the given RNS, the operation

between X and Y to obtain Z is expressed as following: For X , Y and Zin their RNS

obtain Z = X o Yin RNS:

Note that zi is solely dependent upon xi and Yi from the above equation; hence the

22

Chapter 2: Background Theory

RNS operation can be performed in parallel without any data dependency between

different RNS channels. The operands used for the RNS operation are the remainders

of the original data, those residue digits have smaller bit length compared with the

normal weighted operands. This property is often referred to as the "carry-free"

property, but this is somewhat misleading since carries may still exist in computations

involving residue digits, as in each residue channel it uses weighted number system.

The fact is that, in the RNS, carries have not totally disappeared, however the carry

propagation delay has been cut short due to using smaller bit length operands, which

avoids the main temporal constraint in traditional arithmetic implementation [38]. As

a direct consequence of this property, RNS architecture is capable of performing

faster addition and multiplication relative to equivalent two's complement operations

[35].

Observe from the above equation, a mod operation is needed in each channel's o

operation. To perform the mod operation, modular arithmetic circuits are needed to be

constructed for different modular operations, e.g. modular adder, modular multiplier,

etc. The implementation of the modular arithmetic circuits is a big area of research

and has been widely studied. Since in this thesis most of the modular operations are

not in the integer domain, due to the reason of brevity, only some work that is related

to the implementation of the modular arithmetic is listed for interested readers.

Typical works can be found in [30, 32, 35, 38].

2.3.3 Residue Number System Converter

To apply the RNS to normal weighted number systems, it is necessary to build the

converter to and from the RNS. Moreover, due to the fact that the magnitude and sign

determination cannot be performed directly from RNS, and in order to prevent

23

Chapter 2: Background Theory

overflow or to perform error detection m some operations, a conversion back to

normal representation seems crucial.

The conversion to RNS is simple in math, which is just a mod operation. However,

the conversion from RNS back to normal weighted number system is complicated and

expensive in hardware. This conversion is made possible by the CRT, where it states:

for a given group of co-prime positive integers m0, mi,···, mN-i , there exists an

integer X satisfying the following system of simultaneous congruence:

X = x1 (mod m1)

X = x 2 (mod m 2)

Furthermore, all solutions X of this system are congruent modulo to the product

M TIN-1 = i=O mi.

There are two commonly used algorithms to obtain the solution X, in other words, to

convert or to decode the residue representations. They are the CRT and the Mixed

Radix Conversion (MRC).

Below are various equivalent algebraic representations of the CRT [35, 37, 39)

X=
M

24

Chapter 2: Background Theory

is the residue representation of X, and where q E [0, N - 1].

It is observed that, the operations in CRT are performed in parallel, which is attractive

property for fast designs. However, the major difficulty of implementing it is the fmal

mod M operation, as M can be a large and arbitrary number. Several innovative

solutions have appeared in the literature that aims to address this problem. Readers

can refer to [35, 40, 41] for more information.

To use MRC to calculate the value of X, firstly, the residue representation has to be

translated to a mixed-radix representation. If the mixed-radix number system (MRS)

is combined with the RNS, obtaining X can be expressed as:

N-2

X = aN-1 n mi+ ... + a2m1mo + a1mo + ao
i=O

where the mi are the moduli of the RNS and the ai 's (0 ~ ai ~ mi) are the mixed

radix digits (MRDs). The classic algorithm to obtain the MRDs (a/ s) is a sequential

process that was proposed by Szabo and Tanaka [37] , expressed as:

~-1 - ai-1 ~=----
mi-1

where Y0 = X,a0 = x 0 and i E [1, N - 1].

In contrast to the CRT, the derivation of the MRSs reqmres N-1 stages, which

consumes more time while the number of moduli increases. However, it is useful to

note that the arithmetic operations in the MRC algorithm are processed using residue

hardware and the mod M operation is avoided.

The proposed PRNS over binary field shares most of the characteristics, arithmetic

and algorithms with the RNS, it is gomg to be discussed in the next section.

25

Chapter 2: Background Theory

2.4 Polynomial Residue Number System over GF(Zm)

PRNS were first used to achieve better performance in signal processing with a high

degree of parallelism (45, 46, 47]. A PRNS over GF(2m) that is similar to normal RNS

over integers, was firstly introduced in [48] to construct a GF(2m) multiplier. In the

PRNS, each channel is generated by a polynomial instead of a prime number as in the

typical RNS. The Chinese Remainder Theorem (CRT), which is valid in RNS, can

also be applied to PRNS (1].

2.4.1 Polynomial Residue Number System Representation

A list of irreducible polynomials over binary fields is selected as the field generating

polynomials for PRNS channels. The list is written in polynomial representation as:

m 1 (x), m 2 (x), · ··, mN (x), where N is the number of channels. The degree of each mi

is di. The dynamic range of the given PRNS is constrained by the product polynomial

M(x), denoted as:

N

M(x) = n mi(x)
i=l

In order to represent an arbitrary GF(2m) element uniquely using its residues, the

degree D of the product polynomial M(x) should be no less than m, that is

N

D = L di~ m
i=l

If the PRNS is used for GF(2m) multiplication, the dynamic range covered by the

selected PRNS should satisfy the following inequation, because it should cover the

intermediate product of two arbitrary field elements:

26

Chapter 2: Background Theory

N

D = Ldi 2:: 2m
i=l

Within the dynamic range, then a polynomial basis field element p(x) can be

represented uniquely in PRNS format using a list of its polynomial remainders:

Wherep(x)=p(x)modmi(x)fori = 1,2, ... ,N.

An example is given in Table 2-3 to demonstrate the PRNS representation. In this

example, x 2 + x + l and x3 + x + l are selected as the residue channel generating

polynomial m 1 (x) and m2 (x) respectively. The given moduli set is being used to

represent an arbitrary element over GF(24
):

Table 2-3: PRNS representations of GF(24
) elements

GF(24
) PRNS

Gf (24
) element in element in

PRNS Representation in PB
Representation

PB binary in binary
vector vector

0 0000 {0,0} {00,000}
1 0001 fl,11 {01,0011

X 0010 {x,x} fl0,010}

x+l 0011 {x + l,x+ 1} {11,011}
x2 0100 {x + 1,x2 } {11,100}

x 2 + 1 0101 {x,x 2 +11 {10,101}

x 2 +x 0110 {l,x2 + x1 {01,1101

x 2 + x + l 0111 {0, x2 + x + l} {00,111}
x3 1000 {l,x + l} {01,011}

x 3 + 1 1001 {0,x} {00,010}

x3 +x 1010 {x + 1, l} {11,001}

x 3 + x + l 1011 {x,01 {10,0001
x3 + x2 1100 {x,x 2 + x + 1} {10,111}

x 3 + x 2 + 1 1101 {x+l,x2 +x1 {11,110}

x 3 + x 2 + x 1110 {0,x 2 +1} {00,101}

x 3 + x 2 + x + l 1111 {1, x 21 {01,100}

27

Chapter 2: Background Theory

2.4.2 Polynomial Residue Number System Arithmetic

In PRNS over GF(2m), as in normal RNS, the most commonly used arithmetic is

addition/subtraction and multiplication. Those operations can be performed in parallel

as: for A, Band their results are all covered by the given dynamic range

A± B = {(a1 XOR b1)m
1

, ... , (aN XOR bN)mN}

AxB = {(a1 X b1)m
1

, ... ,(aN X bN)mJ

where ai and bi for i E [1, N] are the PRNS representation of A and B.

Due to the fact that addition and subtraction operations are performed by bitwise XOR

in binary field (which performs mod 2 operation), there exists no overflow problems,

hence modular reduction using mi(x) is not needed in addition and subtraction

operations. However the channel multiplication's mod mi (x) operation is not

avoidable, since the arithmetic of each residue channel is over GF(2) as well, basic

GF(2) multiplication circuit can be used to implemented the residue channel

multiplier.

It has to be noticed that the modular reduction over GF(2m) is still necessary for

multiplications to ensure all operations are closed. Since the magnitude determination

cannot be performed directly from PRNS, and in order to prevent overflow, a

conversion back to polynomial representation is necessary before performing the

GF(2m) modular reduction. Meanwhile, the conversion is also required by the error

detection to check if there is any overflow.

The conversion to PRNS can be implemented straight forward using GF(2) modular

reduction circuits. The conversion from PRNS format to weighted polynomial

28

Chapter 2: Background Theory

representation is based on the extension of the CRT to polynomials. The Single Radix

Conversion (SRC) algorithm is introduced to perform the conversion in this thesis. It

is described as [48]:

N

p(x) = L[Pi(x) · Ii(x)mod mi(x)] · Mi(x)
i=l

li(x) is the multiplicative inversion of Mi(x) mod mi. Usually, in the implementation,

//x) and Mi(x) are pre-calculated according to the given PRNS.

The SRC algorithm is the extension of the CRT algorithm to binary field. Due to the

carry-free property in binary field, the final (mod M) operation, which exists in CRT

for integers [35, 37, 39], is not necessary in SRC over binary field. A detailed example

is given in Appendix B to demonstrate the SRC algorithm.

29

Chapter 2: Background Theory

2.5 The Advanced Encryption Standard

The Rijndael cipher algorithm, introduced by Vincent Rijmen and Joan Daemen was

selected as the Advanced Encryption Standard (AES) by the National Institute of

Standards and Technology (NIST) in 2000. In the following year, this algorithm

became the Federal Information Processing Standard FIPS-197. The reader is referred

to FIPS-197 [6] , which is the original official documents of the AES algorithm, for a

detailed description.

The AES is a symmetric block cipher, which uses the same key for both encryption

and decryption. It has been broadly used for different applications, including smart

cards and cellular phones, website servers and automated teller machines etc. Similar

to other symmetric cyphers, the AES applies round operations iteratively to the

plaintext to generate the ciphertext. Operations in the Rijndael cipher are defined over

the Gf (28
) in the polynomial basis with a non-primitive irreducible polynomial

m(x) = x 8 + x 4 + x 3 + x + 1. In line with the original document, this section

follows the notation and definition of terms in FIPS-197 [6].

The round operations are applied to a 128-bit state, which is organized into 4 columns

of 4 bytes (in total 16 bytes). The cipher key can have three different bit sizes 128,

192 or 256 bits to achieve different level of security; it is also organized into Nk (4, 6

or 8) columns of 4 bytes each. The number of round operations, denoted as Nr, is

determined by the length of the cipher key Nk (shown in Table 2-4). The round

operation consists of four sub-transformations: SubBytes, ShiftRow, MixColumn and

AddRoundKey (shown in Algorithm 2-4). Derived from the cipher key, each round

key is generated by an extra KeyExpansion function.

30

Chapter 2: Background Theory

Table 2-4: Number of Round Transformations with respect to Nk

Key Length
Nk = 4 (128 bits)
Nk = 6 (192 bits)
Ni, = 8 (256 bits)

RoundTransform (State, RoundKey)
{ SubBytes (State);

ShiftRow (State);
MixColumn (State);

Nr
10
12
14

AddRoundKey (State, RoundKey); }

Algorithm 2-4: AES Round Transformations

The full AES algorithm (encryption process) is described in Algorithm 2-5:

AES (Plaintext, CipherKey)
{-- Initializing

RoundKey = CipherKey;
State = Plaintext;

-- Add the original key
AddRoundKey (State, RoundKey);

-- Round Transformation
for I in 1 to Nr - I loop

RoundKey = KeyExpansion (RoundKey, RC);
RoundTransform (State, RoundKey);

End loop;
-- Final Round

RoundKey = KeyExpansion (RoundKey, RC);
SubBytes (State);
ShiftRow (State);
AddRoundKey (State, RoundKey);
Output= State;
}

Algorithm 2-5: AES Algorithm (Encryption)

It has to be noticed that, each round transformation contains four sub operations and a

RoundKey computation, with the exception of the final round, where the only

difference in the last round is the absence of a MixColumn operation. The decryption

process using the AES performs the encryption process in a straightforward reversed

order. The sub round operations are explained individually in details in the following

31

Chapter 2: Background Theory

sections. For the reason of convenience, the 128-bit State and RoundKey are denoted

using a 4x4 matrix as:

5 o,o 5 0,1 5 o,z 5 o,3 ko,o ko1 koz ko3

State:
5 1,o 5 1,1 5 1,2 5 1,3 , RoundKey:

k1,o k11 k12 k1,3

5 z,o Sz,1 5 2,2 Sz,3 kz,o k2,1 kz,z kz,3
S3,0 S3,1 S3,z S3,3 k3 o k3,1 k3,z k3,3

Figure 2-3: State and RoundKey Notation

2.5.1 SubBytes and InvSubBytes

The SubBytes transformation is the only non-linear operation among all AES

transformations. It substitutes every byte of an AES State to another byte. The

forward SubBytes operation is used for the encryption and the inverse SubBytes is for

the decryption process. The substitution follows the following rule: the forward

SubBytes operation applies a Forward Affine Transformation1 to a multiplicative

inverse of a byte; the inverse SubBytes, denoted as InvSubBytes, plays an Inverse

Affine Transformation to a byte first, then computes its multiplicative inversion. It can

be expressed as:

SubBytes:

s{J = Forward Affme Transformation (Multiplicative Inverse (si,j))

InvSubBytes:

s{,j = Multiplicative Inverse (Inverse Affine Transformation (si,j))

The affine transformation can be expressed as:

bI = bi ffi b(i+4) mod 8 ffi ho+s) mod 8 E9 b(i+6) mod 8 E9 b(i+7) mod 8 ffi ci

'Affine Transformation is a reversible linear transformation as y = ax + b . In the AES, equation
y = ax + b is expressed in matrix.

32

Chapter 2: Background Theory

for O ::;; i ::;; 8 and bi is the i th bit of a byte ci is the ith bit of the byte with

hexadecimal value [63]HEX·

or using matrix form as:

ho'
1 0 0 0 1 1 1 1 ho 1

bi' 1 1 0 0 0 1 1 1 b1 1
bz' 1 1 1 0 0 0 1 1 b2 0
b/ 1 1 1 1 0 0 0 1 b3

+ 0
b/ 1 1 1 1 1 0 0 0 b4 0

bs' 0 1 1 1 1 1 0 0 bs 1

b/ 0 0 1 1 1 1 1 0 b6 1

b/
0 0 0 1 1 1 1 1 b7 0

2.5.2 ShiftRow and InvShiftRow

The ShiftRow transformation cyclically shifts the rows of the state with different

number of bytes according to the row number. Row O is not shifted, Row 1 is shifted

by 1 byte, Row 2 is shifted by 2 bytes and Row 3 is shifted by 3 bytes. The ShiftRow

shifts the byte cyclically towards left in the encryption process, while shifts to the

opposite direction in the decryption process, denoted as InvShiftRow. The shifting

process is demonstrated as Figure 2-4:

so,o S0,1 S0,2 So,3 so,o S0,1 S0,2 So,3 so,o S0,1 S0,2 5 o,3

S1,3 S1,0 S1,1 S1,2 InvShiftRow S1,0 S1,1 5 1,2 S1,3 ShiftRow S1,1 S1,2 5 1,3 S1,0
~

Sz,2 Sz,3 Sz,o Sz,1 Sz,o Sz,1 Sz,2 Sz,3 Sz,2 Sz,3 Sz,o Sz,1

S3,1 5 3,2 S3,3 S3,0 S3,0 S3,1 S3,2 S3,3 5 3,3 S3,0 S3,1 S3,2

Figure 2-4: ShiftRow Operation for Encryption and Decryption

2.5.3 MixColumn and InvMixColumn

The MixColumn transformation, just as its name implies, is a column based operation

to the State. It treats each column as a four-term polynomial and performs

33

Chapter 2: Background Theory

multiplication with a fixed polynomial a(x) followed by a modulo x 4 + 1 operation.

The a(x) is given by:

a(x) = {03}x3 + {0l}x2 + {0l}x + {02}

For easier implementation, the polynomial multiplication is usually written in matrix

format. See the following equation, it shows the Mix Column transformation of the /h

column of a State using matrix multiplication:

[

So,i:] [02
Su _ 01
s2/ - 01
s , 03 3,i

03
02
01
01

01
03
02
01

011 [so,i l 01 , S1,i
03 Sz,i

02 s3,i

Due to the fact that the polynomial a(x) is co-pnme to x 4 + 1, there exists its

inversion a- 1 (x). It is calculated as:

a- 1 (x) = {0b}x3 + {0d}x2 + {09}x + {0e}

In the decryption process, the Inverse MixColumn transformation (written as

InvMixColumn), multiplies a column with the polynomial a-1 (x), then performs a

modulo x 4 + 1 operation. In matrix format, the InvMixColumn is demonstrated as:

[:::: :1- r~; ~~ ~i
s2 / - 0d 09 0e
s ' ., 0b 0d 09

3,t

091 [so,il 0d . su
Ob Sz,i

0e s3,i

2.5.4 AddRoundKey

The AddRoundKey transformation performs the addition over GF(28
) of each byte in

a State with a suitable RoundKey that is generated by the KeyExpansion function (see

34

Chapter 2: Background Theory

Figure 2-5). The addition over binary field can be implemented using bit-wise XOR

operation, as it acts as a modular 2 adder. The AddRoundKey transformation is

identical for both encryption and decryption process.

So,o
I

S0,1
I

So,2
I

So,3
I

koo ko 1 ko,2 ko,3 5 o,o 5 0,1 5 0,2 5 o,3

5 1,o
I

5 1,1
I

5 1,2
I

5 1,3
I

k1,o k1,1 k1,2 k1,3 5 1,o 5 1,1 S1,2 S1,3
EB

Sz,o
I

S2,1
I

S2,2
I

Sz,3
I 5 2,o 5 2,1 5 2,2 5 2,3 k20 k21 k22 k2 3

5 3,0
I

5 3,1
I

5 3,2
I

5 3,3
I S3,0 S3 ,1 5 3,2 S3 ,3 k3,o k 3,1 k32 k3 3

Figure 2-5: AddRoundKey Transformation

2.5.5 Key Expansion

The KeyExpansion (or known as KeySchedule in some works) produces the

RoundKeys that are used in the AddRoundKey operation. The total number of

RoundKeys in columns is equal to the block length multiplied by the number of

rounds. A new RoundKey is derived from the Round.Key from the previous round.

The Key Expansion algorithm is shown in Algorithm 2-6:

KeyExpansion (Round.Key [Oto 3], RC)
--The RoundKey is organized as 4 columns of 4 bytes each
{-- Initializing

Reon= (RC, '00' , '00' , ' 00 ') ;
temp = Round.Key [3] ;

-- Key Generating
temp= SubBytes (RotByte(temp)) XOR Reon;
NextRoundKey [0] = RoundKey [0] XOR temp ;
NextRoundKey [1] = RoundKey [1] XOR NextRoundKey [0] ;
NextRoundKey [2] = RoundKey [2] XOR NextRoundKey [1] ;
NextRoundKey [3] = RoundKey [3] XOR NextRoundKey [2] ;

-- Calculating RC
RC = (RC · x) mod x 8 + x 4 + x 3 + x + 1 ;

-- Output
Return (NextRoundKey, RC) ;
}
Algorithm 2-6: KeyExpansion Algorithm (128-bit Key)

There requires two sub-functions in the above algorithm: RotByte and SubBytes. The

35

Chapter 2: Background Theory

RotByte rearranges the location of four bytes in one column by cyclically shifting the

column by 1 byte. The SubBytes function is the same as the SubBytes described in

Chapter 2.5.1, although it is on a smaller scale i.e. one column instead of one state.

KeyExpansion also contains a calculation of the round constant value Reon, it is

defined as Rcon[i] = (RC[i], '00', '00', '00') , wher i indicates the round number.

RC[i] represents an element in GF(28
) with a value of xi-i _ The mod operation in the

calculating of Reon ensures there is no overflow and all the value stays in GF(28
).

36

Chapter 2: Background Theory

2.6 Design, Validation and Verification

The proposed designs in this thesis that will be described in the next a few chapters

are carried out using VHDL (Very High Speed Integrated Circuit Hardware

Description Language) [49, 50]. VHDL together with Verilog, are two of the most

popular hardware description languages in today's digital design.

Design validation and verification are realized using a combination of high-level

simulation by using ModelSim [51], which is a powerful simulator from Mentor

Graphics, and Field Programmable Gate Array prototyping, using the Xilinx ISE

design suite. In both cases, synthesizable Register Transfer Level (RTL) VHDL code

is written to enable a smooth transition between high-level simulation using

ModelSim and FPGA prototyping.

In order to verify the correctness of the proposed architectures and designs, valid

testing vectors are generated either from third party open source C libraries or from

the official standards (e.g. the testing vectors for the AES from FIPS-197). The testing

vectors are run through the design using a ModelSim based test bench in VHDL for

functional verification, where the test bench has three main purposes:

• To generate stimuli for simulation

• To apply these stimuli to the design under test (DUT)

• To compare the output of the DUT with the expected values

In addition, to simplify the testing and verification process in some cases, extra testing

circuits are built to connect with the DUT to verify the results.

37

Chapter 2: Background Theory

2. 7 Research Proposal

After Rijndael cipher algorithm being selected as the AES by the National Institute of

Standards and Technology (NIST) in 2000, this crypto-scheme has been widely

adopted for various applications from high-end computers to low power portable

devices. In recent years, numerous attacks have been introduced to break cryptographic

systems and extract secret information via; side-channel-analysis by analysing or

manipulating the observations of physical characteristics of the electronic

cryptographic system. Typical examples are timing attacks [94], power attacks [95],

electromagnetic radiation attacks [96] and fault attacks [97, 98]. Prior work has shown

that even a single transient error occurring during the AES round operations will very

likely result in a large number of errors in the final data [68]. In addition, most of the

attack scenarios have shown that the AES is quite vulnerable to fault attacks [68, 69,

70, 71, 72] . Hence it is necessary to provide error detection mechanisms to the AES

design to achieve higher level of reliability and security. There are several approaches

to achieve error detection for cryptographic systems . Generic solutions are duplication

and repeated computation, however these solutions either double hardware overhead or

latency and they are not protective against permanent faults . Error detecting codes are

widely used by engineers to implement error proof designs. A good review of the

existing error detecting method for the AES can be found in (99], where it summarises

two solutions: parity code based schemes (68, 100, 101] and residue code based

schemes (102, 103]. The first group of schemes have low overhead but are weak for

multiple faults detection; the latter ones yield good multiple error coverage but are

weak in single fault detection and become very hardware consuming when predicting

the residue codes for non-linear operations such as SubBytes.

38

Chapter 2: Background Theory

Since security is becoming an essential part of modern communication. However, to

the author's knowledge, there are rare solutions that can provide full protection

against attacks to crypto-schemes, where the solutions are either focused on fault

attacks or focused on reducing the information leaking from side-channels. Hence it is

necessary to look for an all-in-one solution that can provide the crypto-systems with

both fault resistance and side-channel-attack resistance with reasonable hardware

overhead and good error coverage. In this research, the RNS architecture over binary

field (PRNS) is proposed to achieve such goals for the selected AES scheme. The two

main reasons are as follows:

• RNS architecture for error detection and correction has a good balance

between error coverage and hardware overhead, which has already been

widely applied in DSP and communication systems.

• The parallel independent nature of RNS architecture provides a different

dimension to data randomization [35], which has been advocated for

combating side-channel analysis, such as: simple/differential power analysis,

simple/differential electromagnetic analysis and probing attack [3, 36].

Furthermore, to minimize the hardware overhead and to achieve quick prototyping,

the LUT based shift registers that is provided by the latest FPGA technologies is

proposed for realising the shifting operations in the AES over FPGA platforms in this

research.

39

Chapter 3: PRNS Mult iplication over GF(2m)

Chapter 3
PRNS Multiplication over GF(2m)

3.1 Introduction

Many researchers have been encouraged by the escalating use of Galois fields GF(2m)

arithmetic in digital signal processing, cryptography, coding theory and computer

algebra to investigate different architectures and novel algorithms to advance Galois

field circuits. In this chapter, the GF(2m) multiplication is investigated and a novel

GF(2m) multiplier architecture and corresponding implementation over GF(2 163
) that is

based on the proposed PRNS is presented.

Consider the example application of the proposed multiplier in the context of public

key cryptosystems, in particular elliptic curve cryptography (ECC) where the required

large operands impose many design challenges. The curve K-163 presented in Fips-

186 [7] is chosen as a standardized curve for ECC over the binary field. It uses the

field generating polynomial f(x) = x 163 +x7 + x 6 + x 3 + 1 over GF(l1 63
). A

GF(2 163
) multiplier is constructed to demonstrate the proposed PRNS architecture.

To obtain a good analysis of the PRNS architecture based multiplier, a channel-serial

and a channel-parallel PRNS multiplier are constructed individually to compare the

synthesis results. To further improve the performance of the propose PRNS multiplier,

a set of special moduli, which are all trinomials, is selected as the channel generating

polynomials to reduce the complexity of the conversion circuit. Furthermore, a novel

approach of performing the modular reduction over GF(2 163
) using PRNS is proposed

40

Chapter 3: PRNS Multiplication over GF(2m)

to simplify the modular reduction circuit.

The organization of this chapter is as follows. Firstly, architectural descriptions are

provided for the proposed channel-serial and channel-parallel PRNS multiplier over

GF(2m). Thereafter, the derivation of the proposed partial modular reduction method

is introduced, followed by the description of the improved PRNS GF(2m) multiplier.

Before conclusions are drawn, the FPGA implementation results are presented and

compared between different GF(2m) multiplier architectures.

41

,'UNIVERSITY
\OF SHEFFIE' :

LIBRAR\

Chapter 3: PRNS Multiplication over GF(2m)

3.2 GF(2 163) Multiplication using PRNS

3.2.1 Dynamic Range and Moduli Set

To cover the whole dynamic range of two arbitrary field elements ' multiplication, 37

9-degree irreducible polynomials are selected as the PRNS channels. This satisfies the

inequation dxN 2:'. 2m, whered = 9, N = 37, m = 163. The reasons why 9-degree

irreducible polynomials are selected are, firstly, from the exhaustive list of irreducible

polynomials [51], the degree 9 irreducible polynomials satisfy the inequation

dxN 2:'. 2m (Chapter 2.4.1) with the smallest degree. In other words, let's say if degree

8 irreducible polynomials are chosen, from the exhaustive list there exists 30

irreducible polynomials with degree 8, since (30x8 = 240 < 2x163), these

polynomials cannot cover the whole dynamic range over GF(l1 63
) multiplication and

neither do the polynomials with even smaller degree. The second reason is that,

smaller degree means shorter operands and shorter channel length; in other words, it

will lead to simpler channel circuit.

However, there are trade-offs between the channel length and the number of channels.

To cover the same dynamic range, shorter channel length requires more channels,

which leads to more parallelism or more cycles according to different channel

architecture.

With the given moduli set, assuming the result is q(x), the GF(l1 63
) multiplication is

performed as :

42

Chapter 3: PRNS Multiplication over GF(2m)

q(x) = p(x) mod f(x), where f(x) = x163 +x 7 + x 6 + x 3 + 1

Due to the fact that multiplication over Galois field is closed, to prevent overflow,

modular reduction is performed following the calculation of the intermediate product

using the field generating polynomial f(x) , whose degree is equal to 163. Since the

magnitude of the intermediate product cannot be determined directly from the PRNS

format, a conversion back to normal polynomial representation is required before

performing the modular reduction using f (x). The conversion uses the SRC

algorithm that is introduced in Chapter 2.4.2, written according to the chosen moduli

set as:

37

p(x) = L (pJx) · Ii(x) mod mi(x)) · MJx)
i=l

From the above equation, as the moduli set is predefined, the Mi(x) 's and Ii(x) 's can

be pre-calculated and used as constant value in the conversion implementation. The

detailed information on the selection of mi (x) 's and the value of the MJx) 's and

Ii (x) 's are listed in Appendix A.

Assuming the input and output data of the proposed multiplier are all in PRNS format,

the procedure of performing the GF(i1 63
) multiplication is, firstly performing the

channel multiplication, thereafter applying the SRC algorithm to determine the

intermediate product p(x) ; then performing the modular reduction using f (x) to p(x)

to obtain q (x) , in the end converting the result back to PRNS representation to

maintain the consistency.

43

Chapter 3: PRNS Multiplication over GF(2m)

3.2.2 Channel-Serial PRNS Multiplier over GF(2 163)

The channel-serial PRNS, just as its name implies, performs the channel operations in

serial by sharing a generic channel arithmetic unit. To perform the channel

multiplication, a parallel generic GF(29
) multiplier is constructed, which treats the

channel generating polynomials as an input.

To perform the SRC conversion algorithm, Mi(x)'s and Ii(x)'s are pre-computed and

stored into memories. Addresses are used to ensure the pre-stored information is

forwarded correctly.

a
--+ GF(29

) 333bits 9bits GF(2163J
---!?.. Multiplier Modular

9bits
333bits Reduction

9bits
163bits

9bits

ToPRNS
Converter

11 M;
Control

Rom Rom elk Ctrl/Addrcss

9*37bits 9*37bits 324*37bits

Figure 3-1: Architecture of the Channel-serial PRNS Multiplier over GF(2 163
)

Figure 3-1 shows the full architecture of the channel-serial PRNS multiplier over

GF(l1 63
). The GF(29

) multiplier on the left performs PRNS channel modular

multiplication, the one on the right performs part of SRC algorithm which is the

multiplication with Ii (x). The block of Mul_ M performs the multiplication with

Mi(x), it is constructed by pure AND and XOR networks. The following XOR and

register calculates the sum of Mi(x), which is the last step of the SRC algorithm.

When the SRC algorithm finishes, the register stores the weighted polynomial

representation of the intermediate product.

44

Chapter 3: PRNS Multiplication over GF(2m)

The GF(i 63
) Modular Reduction block reduces the degree of the intermediate product

from 332 to 162. Focusing on polynomial basis multiplications over GF(2m), several

approaches have been reported for the modular reduction, such as "shift-and-add"

algorithms [52, 53, 54], look-up-table (LUT) based algorithms [27, 55], ltoh-Tsujii

algorithm based reduction method [56], etc.

In this proposed multiplier architectures, a digit-serial modular reduction method

based on the conventional iterative reduction scheme is adopted, because it has the

capability of providing significant versatility and scalability, which balances the trade­

offs between area and operation time [57]. The modular reduction is to reduce the

2m - 1 bits intermediate product into m bits using the generating polynomial f (x).

Assuming the digit length is l, then the digit-serial modular reduction algorithm can

be described as follow:

Input: the intermediate product p (x) with the degree of 2m - 2, irreducible
polynomial f(x) of degree m

Output: q(x) with degree of m - 1

In binary vector format:

1: tmp(m - 1 ··· 0) <= p(m - 1 ... O)

2: for i in O to l m;l - 1 j do

tmp <= tmp XOR {p[(2m - 2 - i · l) ... (2m - 2 - i · l - l)] · f(m - 1--· O)}

end for

3: q(x) <= tmp

4: return q(x)

Algorithm 3-1: Digit-serial Modular Reduction Algorithm

Normally, the digit length l is chosen so as m;i is an integer to simplify the reduction

circuit. Furthermore, the selection off (x) has the potential of providing significant

45

Chapter 3: PRNS Multiplication over GF(2m)

simplification m circuit complexity, which is further discussed m the following

section.

In this design, the digit length l is selected as 10, such that it needs
332

-
162 = 17

10

cycles to reduce the degree from 332 to 162. By analysing the generating polynomial

of the field, which is f (x) = x163 + x 7 + x 6 + x 3 + l , the digit-serial reduction

approach is further simplified. By ignoring the MSB in f (x), an 8x10 constant

multiplier is used to replace the 163x10 multiplier. This multiplier is constructed by

simple AND and XOR networks. Figure 3-2 shows the detailed implementation of the

proposed modular reduction:

332 .. 170

162 .. 0

159 .. 150

162 .. 0

9 .. 0

172 .. 163

10x8

[

Multiplier

GP=t7+t6+r+l

Figure 3-2: Implementation of Digital-serial Modular Reduction Algorithm

The To PRNS Converter in Figure 3-1 converts the polynomial representation back - -

to PRNS again after the GF(i 63
) modular reduction. It takes 37 cycles to complete

the whole conversion, because the number of channels is 37. The Control unit is

simply implemented using a binary counter, which generates the control signals and

addresses of the block memory. The entire channel-serial multiplier requires 93 cycles

46

Chapter 3: PRNS Multiplication over GF(2m)

to perform a multiplication.

In this architecture, the data of each channel is forwarded into and out of the

multiplier serially. By sharing the channel modular multipliers, this serial architecture

greatly reduces the requirements of hardware resources.

3.2.3 Channel-Parallel PRNS Multiplier over GF(2 163)

Compared with the channel-serial architecture, the channel-parallel architecture

performs the channel modular multiplication in parallel. By modifying the channel­

serial architecture, the channel-parallel multiplier is constructed as follows .

See Figure 3-3.

31
GF(29

) GF(29
)

b1 Multiplier Multiplier
l1

32
GF(29

) GF(29
)

b2 Multiplier Multiplier
Ii To

Mui M
a

GF(29
) GF(29

)

bJz 1111 Multiplier Multiplier

h1

Figure 3-3: Architecture of the Channel-parallel PRNS Multiplier over GF(2 163
)

Following the parallel channel multipliers, the data is forwarded to the Mui_ M block,

after which the circuit is the same with channel-serial architecture. The rest of the

architecture which is not shown in Figure 3-3 finishes the SRC algorithm and conduct

the to PRNS conversion.

By making comparison with the channel-serial architecture, this architecture uses a

47

Chapter 3: PRNS Multiplication over GF(2m)

multiple of channel modular multipliers, which increases the hardware cost. However,

due to the parallelization of channels, it provides a novel method of parallelization of

the multiplication operation over GF(2m). According to this architecture, 93 cycles is

used to perform the multiplication.

3.2.4 Synthesis Results and Comparisons

Xilinx Spartan 3-3s1500lfg320-4 FPGA is used for synthesis and implementation.

Table 3-1: 37-Channel PRNS GF(2m) Multiplier Synthesis Results

Channel-serial Channel-Parallel
FF 1010 1350

LUT 5274 8675
Slices 2752 4625

Frequency (MHz) 5.179 5.119
Cycles 130 93

Time-Area Product
0.069 0.084

(Slices x second)

The proposed architecture is resource intensive as expected due to dynamic range

coverage and conversion. However, conversion can become a shamble resource for

most intended applications, for example in a real ECC design the conversions are

required in two ends of the operation [34]. The advantages of a channel serial

architecture are also apparent if the timexarea product is considered.

From the FPGA synthesis results, it can also be noted that, the speed bottleneck

resides in the SRC algorithm and the to-PRNS conversion, resulting in a comparable

maximum operating frequency.

To the author's knowledge, there are not any hardware synthesis results for such

PRNS architectured GF(2m) multipliers to compare with.

48

Chapter 3: PRNS Multiplication over GF{2m)

3.3 Partial Conversion and Modular Reduction using
PRNS

The main purpose of introducing such Partial Modular Reduction method is to reduce

the complexity of the PRNS conversion and modular reduction circuits, thereby to

improve the performance of the PRNS architecture. The feasibility of this method is

based on the carry-free property of binary field addition. Let us see an example:

Assume an GF(28
) element a(x) is represented using polynomial moduli set

{x4 + x + 1, x4 + x 3 + 1} as {a1 (x), a2 (x)} or in binary vector format as

perform the SRC algorithm, the constant values are calculated as:

Table 3-2: Demonstration of the Partial Conversion Method

Channel 1 Channel 2
Input (a1(0),a1(1),a1(2),a1(3)) (a2 (0),a2 (1),a2 (2),a2 (3))

q1 (0) = a1 (1) EB a1 (2) qz(0) = a2(0) EB a2(1) EB a2(2)

qi(x)
q1 (1) = a1 (1) EB a1 (3) qz(l) = a2(0) EB a2(1) EB a2(2) EB a2(3)
q1 (2) = a1 (0) EB a1 (2) qz(2) = a2(1) EB a2(2) EB a2(3)
Q1 (3) = a1 (0) EB a1 (1) EB a1 (3) Q1(3) = a1(0) EB a1(1) EB a1(3)

P1 (0) = ql (0) pz(0) = q2(0)
P1Cl) = q1(1) Pz (1) = qz (0) EB qz (1)
P1 (2) = ql (2) P2(2) = qz(l) EB qz(2)

Pi(x)
P1 (3) = ql (0) EB ql (3) pz(3) = q2(2) EB q2(3)
P1(4) = q1(1) EB q1(0) P2(4) = qz(0) EB qz(3)
P1 (S) = ql (1) EB ql (2) P2(S) = qz(l)
P1(6) = q1(2) EB q1(3) P2(6) = qz(2)
P1 (7) = q1 (3) Th (7) = Q1 (3)

a(x) a(i) = P1 (i) EB p7 (i), for i = 0 to 7
EE) indicats XOR operation

49

Chapter 3: PRNS Multiplication over GF(2m)

As Ii (x) and Mi (x) are pre-calculated constant value, multiplying by them can be

implemented by using fixed XOR network as demonstrated in Table 3-2.

For example, if we want to determine the Most Significant Bit (MSB) of a(x) from

its PRNS representation, according the above table, the computation is straight

forward as:

a(7) = p 1 (7) EB p
2
(7) = q1 (3) EB qz(3)

= a1(0) EB a1(l) EB a1(3) EB az(O) EB az(l) EB a2 (3)

The proposed GF(2m) modular reduction method for the PRNS is based on the

feasibility of the partial conversion. It is derived as follows:

Over GF(2m), which is generated by f (x), the multiplication is expressed as:

pdt(x) = a(x) · b(x) mod f(x) (1)

The intermediate product, a(x) · b(x) can be expressed in polynomial forms as

a(x) · b(x) = Czm-zXzm-z + Czm-3Xzm-3 + ··· + CmXm + Cm_1xm-l + ··· + c1x

+ Co

Then, equation (1) can be written as

pdt(x) = (Czm-zXzm-z + Czm-3Xzm-3 + ··· + CmXm + Cm-1Xm-l + ... + C1X +

c0) mod f(x) = (Czm-zXzm-z + Czm-3x 2m-3 + ··· + CmXm) mod f(x) +

(cm_ 1xm-l + ··· + c1x + c0) mod f(x) (2)

Since f (x) is a polynomial with degree m, then derived from equation (2)

so

Chapter 3: PRNS Multiplication over GF(2m)

pdt(x) =

(3)

In GF(2), 1 + 1 = 0, so (Czm-zXzm-z + c 2m_3x2m-3 + ... + CmXm) can be added to

the left side of the equation (3) twice without changing its value, as following:

pdt(x) =

(4)

Rearranging (4):

+ (2m-2 + 2m-3 + + m) + (2m-2 Czm-zX Czm-3X • •• CmX Czm-zX

Rewrite the above equation in binary vector format:

pdt(x) =

(czm-z, Czm-3, ···, Cm, 0, ··· ,0) mod f(x) + (Czm-z, Czm-3, ···, Cm, 0, ··· ,0) +

(5)

Assume the result after the mod f (x) operation is donated as (c'm-v ···, c' 1, c' 0), then

from the equation (5):

51

Chapter 3: PRNS Multiplication over GF(2m)

pdt(x) =

(c' m-1' ... , c' i, c' o) + (Czm-2, Czm-3• ... , Cm, 0, ... ,0) +

(Czm-2, Czm-3• .. ·, Cm, c' m-1> .. ·, c' i, c' o) + (Czm-2, Czm-3• ... , Cm, Cm-1> "·, Ci, Co)

(6)

Both components in (6) can be expressed using PRNS representation. To obtain that,

firstly, it is needed to partially convert the most significant m - 1 bit of the

intermedia product to normal polynomial representation, then perform the modular

reduction using f(x) to calculate c\ (i E [0, m - 1]), after which a to PRNS

conversion 1s applied to the combination of cj and c' i (i E [0, m - 1],

j E [m, 2m - 2]) to find its PRNS representation. The second addend of the addition

in (6) is in PRNS already, which are the results from the PRNS channel multiplier.

Then the modular reduction over GF(2m) can be finally performed by PRNS addition

with those component in (6).

The advantage of this approach is that, firstly, it reduces the complexity of the SRC

conversion circuit as only half length of the intermediate product is converted,

secondly, due to the partial conversion (lowers the probability of leaking the full

information) and the adoption of the PRNS architecture, this approach is effective in

preventing leaking information while performing the conversion and modular

reduction. A detailed implementation of this method is shown in the next section.

In addition, the partial conversion method has found broad usage in overflow

detection (for the PRNS error detection) and overflow prediction (used for the PRNS

based AES) for the PRNS architecture, which will be further discussed in the

following chapters.

52

Chapter 3: PRNS Multiplication over GF(2m)

3.4 GF(2 163) Multiplication using Trinomial based PRNS

This section introduces a improved design of implementing GF(2m) multiplication

using the PRNS. Irreducible trinomials are selected as the generating polynomials for

the PRNS channels to enable conversion to-and-from PRNS to be implemented using

simple XOR networks, thereby resulting in significant improvement in speed and area.

The previously introduced PRNS modular reduction method over GF(2m) is also

adopted to achieve better performance.

3.4.1 Dynamic Range and Moduli Set

This design implements a GF(2 163
) multiplier in PRNS (the same as previously

introduced design in Chapter 3.2), aiming the application of the ECC using curve K-

163. The large operands of such multiplier impose many design challenges.

To cover the whole dynamic range, four 84-degree irreducible trinomials are selected

as the PRNS channels. This satisfies the dynamic range dxN 2:: 2m equation, where

d = 84, N = 4, m = 163. There are two main reasons why trinomials are chosen.

Firstly, in Galois field multiplications, using trinomials achieves the lowest hardware

complexity in modular reduction, especially when the trinomials are of the form

xm + xk + 1, where k ::; : [20]. This property of trinomials is also attractive when

building the PRNS converter. Secondly, in the SRC algorithm, it can be seen that Mi,

which is a constant value in the given PRNS, is the product of several channel­

generating polynomials. To make the multiplying by Mi operation simple, it is

necessary to require that Mi should have a smaller number of' 1 's and this can be best

achieved by using trinomials, because they are the irreducible polynomials with the

fewest '1 's over binary field.

53

Chapter 3: PRNS Multiplication over GF(2m)

However, trade-offs are required between the channel length and the channel number

for an optimized design. To cover the same dynamic range, shorter channel lengths

require more channels, which may lead to consuming more hardware resources and to

more complex converter design. In addition, irreducible trinomials only appear in

certain degrees and the number of trinomials, which satisfy k ~ ?!!:., is even smaller.
2

That is the reason why four 84-degree irreducible trinomials are selected for this

design.

For the given PRNS, the GF(l1 63
) multiplication and the SRC conversion is then

described as:

q(x) = p(x) mod f(x), where f(x) = x 163 +x7 + x 6 + x 3 + 1

4

p(x) = _L (Pi(x) · Ii(x) mod mi(x)) · Mi(x)
i=1

The detailed information on the selection of mi (x) 's and the value of the Mi (x) 's and

Ilx) 's are listed in the Appendix B.

3.4.2 Channel Multiplier Design

From the previous literature review, there are several approaches that can be adopted

for implementing the PRNS channel multipliers, such as bit-serial architecture, bit­

parallel architecture and digital serial/parallel architecture. Since the selected field

length for PRNS channels is quite large, which is degree of 84, the bit-serial

54

Chapter 3: PRNS Multiplication over GF(2m)

architecture is adopted here in order to achieve the lowest hardware complexity. In

Chapter 2, Figure 2-1 illustrates an MSB-first bit-serial multiplier over GF(24
)

generated by trinomial x 4 + x + 1 to demonstrate the architecture.

In addition, such multiplier is not only suitable for performing channel multiplication,

but also for calculating (plx) · h(x) mod mlx)) in the SRC algorithm.

3.4.3 Multiplying by Mi Operation

Consider the following example where M1 is written in polynomial form as:

Mi (x) = x2s2 + x1s1 + x179 + x177 + x168 + x1os + x106 + x104 + x84 + x33 +

x24 + x22 + x20 + x13 + x11 + x9 (7)

(It is a product of all channels generating polynomials except the one for Channel 1.

Those polynomials are x
84 + x 9 + 1, x

84 + x 11 + 1, x
84 + x 13 + 1)

According to equation (5) and (6) in Chapter 3.3, since a partial convers10n IS

performed to calculate the most significant 162 bits of the intermediate product, the

component with the degree smaller than 84 can be ignored in (7), because they do not

contribute to the final partial conversion result. So multiplying by M 1 can be done by

multiplying by the following polynomial instead:

x2s2 + x1s1 + x179 + x177 + x168 + x1os + x106 + x104 + xs4

It is assumed that the multiplicand is a(x) which Is m a PB representation. The

multiplication is as follows:

a(x). (x2s2 + x1s1 + x179 + x177 + x168 + xios + xlo6 + x104 + x84)

= a(x) · x 252 + a(x) · x 181 + a(x) · x 179 + a(x) · x 177 + a(x) · x 168 + a(x) ·

SS

Chapter 3: PRNS Multiplication over GF(2m)

x1os + a(x) . x106 + a(x). x104 + a(x). xB4 (8)

It is simple to implement (8) by using an XOR network and routing a(x) to the

correct position as illustrated by Figure 3-4.

252 84 0
0 I ore • x 252

XOR 84 0
0 0 I ore • x1 s1

XOR 84 0
0 0 I ore • x 119

XOR 104 84 0
ore • x 101

0
ore •xB4

D 163
Ignore

Figure 3-4: XOR Network for the Operation of Multiplying by M1

3.4.4 GF(2 163) Modular Reduction and to_PRNS Converter

A bit-parallel modular reduction method is adopted to perform the field modular

reduction to reduce the (czm-z, Czm-3, ···,Cm, 0, .. · ,0) component to a degree smaller

than m, the result is written in binary vector format as (c' m-l' ... , c' i, c' 0) , which

implements the calculation of the first component in equation (6).

The to _PRNS converter is implemented by simple modular reduction usmg the

selected trinomials. The detailed implementation approach can be found in [20].

Both modular reduction and conversion are implemented usmg a simple XOR

network.

56

Chapter 3: PRNS Multiplication over GF(2m)

3.4.5 Architecture of the Proposed PRNS GF(2 163) Multiplier

1, J
Channcl_2a 'ii Mui ~r :_:1 ~ Channcl_2b--j~ en

j I,

Channcl_3a -J Mui t ~ I;~ ~ Channcl_Jb); ~en
~

Channel_ 4tL'<i Mui ;j!d ~. Channel_ 4b :ii .__,.._ , en 1 ~

..
~ Mui

M2
L____,

1 %~1
I

'------'

~ Mui
M, r

S!art • Control . ➔
'f

173

Partial f . To PRNS I
Reduction J it 1Converter

XOR

elk

~egl enable

Reg2 enable

rshift-reg
enable

Figure 3-5: Architecture for the PRNS GF(2 163
) Multiplier using Trinomials

Figure 3-5 shows the full architecture of the proposed PRNS multiplier over GF(2 163
).

It is assumed that the input and the output of the multiplier are all in PRNS

representations.

The Gf (284
) multipliers on the left hand side perform PRNS channel modular

multiplication, the one on the right performs part of SRC algorithm which is

(pJx) · Ii(x) mod mi(x)) operation. Ii(x)'s are pre-calculated and stored into the

shift registers. When there is a valid signal on the Shift-reg enable, the shift register

starts to forward /i(x)bitwisely to the second GF(2 84
) multiplier acting as a bit-serial

input.

The module Mui Mi, Partial_Reduction and To_PRNS_Converter are constructed

using pure XORs. According to equation (6), the output of the To_PRNS_Converter is

the PRNS representation of (c2m-2, Czm-3, ···, cm, c' m-v ···, c' i, c' 0) , the output of

the first level of registers IS the PRNS representation of

(czm-z, Czm-3 , ···, Cm, Cm-1, ···, Ci, Co). The final product after GF(2 163
) modular

reduction is generated by a PRNS addition operation, which is implemented as

57

Chapter 3: PRNS Multiplication over GF(2m)

bitwise XORs.

It takes 168 clock cycles to finish a multiplication operation. This includes 83 clock

cycles performing channel multiplication, another 83 clock cycles performing

multiplication by Ii (x) and 2 clock cycles on the data propagating through two

registers.

As it can be seen from Figure 3-5, all channels are separate, similar and their

operations are performed in parallel hence offering an inherent mechanism for

masking, randomization and fault tolerance (if redundant channels are added) which

could help improve protection against any potential side channel leakage or analysis

[3].

3.4.6 Hardware Results and Comparisons

Xilinx Spartan 3-3sl500lfg320-4 FPGA is used for synthesis and implementation to

enable a fair comparison. Table 3-3 shows the synthesis results of the proposed

multipliers compared with the design that has been introduced in Chapter 3.2, which

is the first reported implementation of a PRNS multiplier over binary fields.

From the results, the work that uses trinomials as the channel generating polynomials

shows significant improvements both in hardware consumption and speed compared

with our previous work. The figures indicate that this work consumes half and one

third area consumption compared with the channel-serial and channel-parallel

architecture respectively. The highest operating frequency is improved by over 30

times due to the reduction of the maximum combinational delay. The total delay is

improved by 25 times over the channel-serial architecture and by 17 times over the

channel-parallel architecture. These figures also show a 47 times' Time-Area Product

58

Chapter 3: PRNS Multiplication over GF(2m)

improvement over the channel-serial architecture, a 57 times' improvement over the

channel-parallel architecture.

Table 3-3: Synthesis Results of the 4-Channel PRNS GF(2 163
) Multiplier

Channel- Channel-
This work

Serial Parallel

FF 1010 1350 1691

LUT 5274 8675 2588

Slices 2752 4625 1429

Frequency (MHz) 5.179 5.119 164.015

Cycles 130 93 168

Delay (ms) 25.1 *10-3 18.2* 10·3 1.024*10"3

Time-Area
Product 69*10-3 84*10"3 1.463*10·3

(Slices*second)

As mentioned in Chapter 3 .4.1, using trinomials simplifies the modular reduction and

the To _PRNS conversion operations. Furthermore, together with the partial

conversion method, using trinomials breaks down the bottleneck in multiplying by

Mi (x) operation; hence it achieves higher speed and uses less resource.

Table 3-4: Comparisons with other GF(2 163
) Implementation

Work implemented by [61] Platform Slices Delay

Proposed by [58] Virtex 2 5307 12.56µs

Proposed by [59] Virtex 2 5409 13.37µs

Proposed by [60] Virtex 2 5840 14.73µs

This work Spartan 3 1429 1.024µs

Table 3-4 shows the comparisons with some other 163 bits parallel GF(2m) multipliers.

The figures indicate that this work shows great improvements both in area and speed.

Though this multiplier is neither optimal on high speed nor on low area, it provides

the potential to countermeasure side-channel-attacks as well as a feasible option to

implement parallel architectures.

59

Chapter 3: PRNS Multiplication over GF(2m)

3.5 Functional Testing

The correctness of the proposed design in this chapter has been verified usmg

ModelSim based test bench in VHDL. Since there are no direct testing vectors for

such PRNS architecture, extra pre-tested error-free testing circuits are built to help

with the testing process. The testing circuit setup is shown in Figure 3-6:

----------1 Generic GF(2m)

a--+--1

b

toPRNS

--- Converter

M u I tip lie r
i---------

Result Comparison -

Test Result
fromPRNS

...... --Converter

Figure 3-6: Testing Circuits for the PRNS GF(2m) Multiplier

The testing process is simple. There are two branches of the testing circuits, the first

one calculates a GF(2m) multiplication using normal polynomial representation, the

other branch calculates the multiplication using the proposed PRNS multiplier using

the same operands which are previously converted to PRNS fonnat through the

to _PRNS Conve1ier. When the calculation is done, the results from the two branches

are compared to check if they are identical to verify the design. The input testing

vectors are chosen from random GF(2m) elements, while the referencing testing

results are generated on the fly from the Generic GF(2m) Multiplier.

60

Chapter 3: PRNS Multiplication over GF(2m)

3.6 Conclusions

This chapter described the design of a novel PRNS based GF(2m) multiplier. Three

different architectures together with the implementation results are given. From the

synthesis results, it is noticed that the conversion circuit causes main overhead in such

PRNS multiplier. To overcome this obstacle, a novel conversion and modular

reduction method is introduced to the PRNS architecture, namely partial modular

reduction method. A new implementation of such multiplier adopting the partial

modular reduction method is presented together with its hardware results. From the

comparison of different PRNS multipliers, the partial modular reduction method

enables great reduction in the use of area and the combinational delay, thereby

improves the performance, which makes such PRNS multiplier feasible for the

mentioned application ECC using curve K-163.

The next chapter will look into the error detection and fault tolerant property that is

brought by the PRNS architecture. The error detection and fault tolerance GF(2m)

multiplier designs are also presented.

61

Chapter 4: PRNS for Error Detection and Fault Tolerance

Chapter 4
PRNS for Error Detection and Fault
Tolerance

4.1 Introduction

The increasing use of Galois fields GF(2m) arithmetic in cryptographic applications

requires the implementation of GF(2m) circuits to have higher level of reliability.

Furthermore, in recent years, a new approach of attacking a cryptographic system

named fault attacks uses the leaking information generated by the system's faulty

operations to obtain the analytical results of the secret information [62]. Preventing

faulty operations is becoming an important issue in cryptographic applications design.

The ECC and AES are both shown to be vulnerable to fault attacks in literatures.

Works in [63, 64] present a few fault attack schemes against the public key scheme

ECC. In the AES, prior work has shown that even a single transient error occurring

during the AES round operations will very likely result in a large number of errors in

the final data [68]. In addition, a few attack scenarios have shown that the AES is quite

vulnerable to fault attacks as well [68, 69, 70, 71, 72]. Hence it is necessary to provide

error detection mechanisms to the cryptography designs to achieve higher level of

reliability and security.

Since GF(2m) multiplication is the crux operation in ECC, some work have been done

by researchers to incorporate error detection or correction to the multiplier over

GF(2m). Works in [65, 66] use parity-based approaches to achieve error detection and

62

Chapter 4: PRNS for Error Detection and Fault Tolerance

[67] uses an alternative method based on a re-computing with shifted operands

(RESO) method.

In this chapter, a new approach using the PRNS architecture to implement the GF(2m)

multiplier with error detection capability is presented. In this approach, error detection

in the multiplication over GF(2m) is achieved by using PRNS representation and

extended bases (or called the Redundant PRNS, RPRNS). The background theories

and mathematic proof is given in the first part of this chapter, followed by a detailed

FPGA implementation of a GF(28
) error detection multiplier as a demonstration of the

proposed error detection method. Furthermore, based on the error detection capability

that is provided by the RPRNS, concurrent error correction (or known as the fault

tolerance) is achieved by adding two or more redundant channels. An example of such

fault tolerance GF(2163
) multiplier design (for the ECC scheme) together with its

implementation results are also presented. This chapter is concluded with the overhead

and error coverage analysis.

63

Chapter 4: PRNS for Error Detection and Fault Tolerance

4.2 The RPRNS Based Error Detection

The PRNS over GF(2m) based error detection is similar to RNS error detection over

integers, the proof of which is given in [73]: by adding a redundant polynomial residue

channel, the whole representation range is then divided into two intervals: the

legitimate range and illegitimate range [74]. Any error in a single channel can be

detected if its conversion result belongs to the illegitimate range.

The Redundant PRNS (RPRNS) is defined usmg a normal PRNS that uses the

irreducible polynomial set m1 (x), m2 (x), ···, mN(x) and the sum of its degree satisfies

the }:f=1 di 2:: 2m equation, which covers the dynamic range of the intermediate

product, added with one additional polynomial moduli channel using the polynomial

mN+i (x) with the degree dN+l 2:: di for i E [1, N].

The product polynomial M(x)= [Jf= 1 m/x) represents the legitimate range, where the

possible highest degree is denoted as D = Lf=i di. After adding the module mN+i, the

whole representation range is then described as M'(x) = m=+l mi (x)' where the

possible highest degree of M'(x) is denoted as D' = Lf=+l di. Those polynomials with

the highest degree greater or equal to D and smaller than D' constitutes the illegitimate

range, which indicates an error. The proof is given below:

Assuming the intermediary product of two arbitrary GF(2m) elements' multiplication X

is represented in redundant RPRNS form as {xi, x 2 , ···, xN, XN+d, which belongs to

the legitimate range with the degree no higher than D, when a single channel error

occurs in the ith channel while multiplying, the result yields a faulty RPRNS

representation of X as {xv···, Xi, ···, XN+1l The X can be represented using its correct

value X added by the error value E as:

64

Chapter 4: PRNS for Error Detection and Fault Tolerance

X = X + E or in PRNS format as:

{X1 ... X· ... XN 1} = {x1 ... X· ..• XN 1} + {O ... ev· ... O} , ,i,} + , ,p' + ',p,

Since X represent the intermediary product of two arbitrary elements' multiplication

over GF(2m), its degree will not exceed 2m-2, in another word, X belongs to the

legitimate range. By converting E(x) 's RPRNS representation back to weighted

polynomial representation using the SRC algorithm, it yields:

The highest degree of M/ (x) 1s If=+/ di - di and the degree of

(t\ (x) · I/ (x) mod mi (x)) is from O to di - l, so the possible highest degree of E (x),

For i E (1 to N), (error occurs in the normal RPNS channal) then

LN+1 LN+1
d· - d- < D~ < d- - 1 l l - E - l

i=1 i=l

65

Chapter 4: PRNS for Error Detection and Fault Tolerance

Since dN+I 2:: di> 1 for i E (1 to N),

D ~De< D'

For i = N + l, (error occurs in the redundant channel) then

All possible cases indicate that the error vector E belongs to the illegitimate range,

hence the faulty intermediate product X = X + E belongs to the illegitimate range.

An example to demonstrate the proposed RPRNS based error detection using a GF(28
)

multiplier is given in the following section.

66

Chapter 4: PRNS for Error Detection and Fault Tolerance

4.3 GF(Zm) Multiplier using RPRNS Based Error
Detection

4.3.1 Example on RPRNS Based Error Detection

In this section, an example is illustrated by using the multiplication over GF(28
)

generated by the irreducible polynomial f(x) = x 8 + x 4 + x 3 + x + 1, which is the

officially defined binary field for the AES algorithms. The binary vector form of

Polynomial Representation for GF elements is adopted to simplify the representation.

To construct the redundant PRNS, the following channel generating polynomials are

selected, such that }:f=i di 2::: 2m and dN+l 2::: di for i = 1 to 3:

m1 (x) = x 6 + x + 1 (1000011)

m 2 (x) = x 6 + x 5 + 1 (1100001)

m3 (x) = x 6 + x 3 + 1 (1001001)

m4 (x) = x 6 + x 4 + x 2 + x + 1 (1010111)

The constant value of Mi and Ii is pre-calculated and listed as:

M1 = 1110011100100001111

M2 = 1011111001010110001

M3 = 1111111110001011001

M4 = 1101110011100111011

11 = M11 (mod m1) = 100011

12 = M21 (mod m2) = 000110

/ 3 = M31 (mod m3) = 100000

/ 4 = M41 (mod m4) = 000010

For example, A and Bare elements in the defined GF(28
) field, which is (10011101)

and (01100111) respectively. A and Bare written in RPRNS format as:

67

Chapter 4: PRNS for Error Detection and Fault Tolerance

Ai = A mod mi, for i = 1 to 4

A1 = (10011101) mod (1000011) 011011

A2 = (10011101) mod (1100001) = 111110

A3 = (10011101) mod (1001001) = 001111

A4 = (10011101) mod (1010111) 110011

Similarly, B's RPRNS representation can also be obtained:

B1 = 100100,B2 = 000110

B3 = 101110,B4 = 110000

Then the multiplication is performed in RPRNS as, Pdt is used to present the correct

product of the multiplication, which is also in the RPRNS form:

Pdt = PxQ = {(A1 X B1)m1 , (A2 x B2)m2 , (A3 X B3)m
3

, (A4 X B4)mJ

= {(011000), (100111), (001100), (100000)}

If Pdt is converted back to weighted polynomial representation, the result will stay in

the legitimate range. Let's verify it:

4

Pdt = L (Pdti · Ii mod mJ · Mi
i=l

= [(011000X 100011)mod(1000011)] x (1110011100100001111)

+ [(100111 x 100011)mod(1100001)] X(1011111001010110001)

+ [(001100X 100011)mod(1001001)] x (1111111110001011001)

+ [(l00000x 10001 l)mod(l0 10111)] x(l 101110011100111011)

= 101100011001110101010100 XOR 010111110010101100010000
XOR100100000100011101100110 XOR 011111101100011000010001

= (000000000)011011100110011

The most significant 9 bits of the intermediate product indicates whether this product

stays in the legitimate range. If any error, either stuck at 'I' or '0' error or multiple

errors, occurs in one channel, there will be at least one '1' in the most significant 9

bits of the product to indicate an error occurring.

68

Chapter 4: PRNS for Error Detection and Fault Tolerance

For example, there is a single bit error that occurs in the third channel, which may be

either caused by natural reasons such as abnormal temperature, power supply

variations, electromagnetic interference, or by an adversary fault injection. Its value

changes from 001100 to 001101. Then the faulty intermediate product Pdt' is

calculated as:

4

Pdt' - ~(Pdt' · · J. mod m·) · M-- L l l l l

i=l

= [(011000x100011)mod(1000011)]x(1110011100100001111)

+ [(10011 lX 10001 l)mod(l 100001)] x (1011111001010110001)

+ [(001101 x 100011)mod(1001001)] x (1111111110001011001)

+ [(l00000x 100011)mod(1010111)] x (1101110011100111011)

= 101100011001110101010100 XOR 010111110010101100010000
XOR011011111100110001000110 XOR 011111101100011000010
= (111111111)011110000010011

The above bold digits indicate how the faulty channel results will influence the

conversion result. Those 'I's in bracket shows the error occurs.

Let's see another example, also in Channel 3 where multiple bits error occurs. The

value from Channel 3 changes from 001100 to 110101, then the faulty intermediate

product Pdt" is computed as:

4

Pdt" = L (Pdt'\ . Ii mod ma . Mi

i=l

= [(0ll000x 100011)mod(1000011)] x(l 110011100100001111)

+ [(100111X 100011)mod(1100001)] x (1011111001010110001)

+ [(110101X 100011)mod(1001001)]x (1111111110001011001)

+ [(l00000x 100011)mod(1010111)] x(1101110011100111011)

= 101100011001110101010100 XOR 010111110010101100010000
XOR100001111011001011101001 XOR 011111101100011000010001

= (000101111)100001010111100

69

Chapter 4: PRNS for Error Detection and Fault Tolerance

As it can be seen from the result, there are still '1 's in the most significant 9 bits, by

which an error can be determined.

Two examples indicate that, the PRNS based error detection scheme is capable of

detecting single bit errors and multiple bits errors that occurs in one channel.

4.3.2 Implementation of GF(2 8) Error Detection Multiplier Using
RPRNS

In this section, a detailed implementation of the GF(28
) error detection multiplier

using the irreducible polynomial f (x) = x 8 + x 4 + x 3 + x + l , which is the

officially defined binary field for the AES algorithm, is presented to demonstrate the

proposed PRNS architecture. This multiplier can be used to provide the AES designs

with error detection capability.

In order to cover the whole dynamic range, the equations Lf:1 di :2:: 2x8 = 16 and

dN+i :2:: di need to be satisified. Furthermore, taking the complexity of the channel

multipliers into account, using trinomials achieves the lowest hardware complexity in

modular reduction [20] and shows further advantages in building the PRNS converter

(Chapter 3.4). As a result, the following irreducible polynomials are chosen as the

moduli set:

m1 (x) = x 6 + x + l (1000011)

m2 (x) = x 6 + x 5 + l (1100001)

m3 (x) = x 6 + x 3 + l (1001001)

m4 (x) = x 6 + x 4 + x 2 + x + l (1010111) (redundant moduli)

Then the multiplication is denoted as:

70

Chapter 4: PRNS for Error Detection and Fault Tolerance

For the channel multiplier, since the field length for each channel is short, bit-parallel

architecture introduced in [20] is adopted to implement the channel multiplier.

Taking Channel l, which is generated by m1 (x) = x 6 + x + 1, as an example:

Assuming a(x) and b(x) are elements over GF(26
), c(x) is the product, the

multiplication performs as:

Where ci = 0 or 1 for i = 0 to 10 , which 1s the coefficient of the polynomial

representation of the intermediary product.

The conversion follows the SRC algorithm that is introduced in Chapter 2.4.2 as:

4

p(x) = L (Pi(x) · Ii(x) mod mi(x)) · Mi (x)
i=l

Tliis converter performs the conversion from PRNS representation to normal weighted

polynomial representation, which is also needed for the error detection.

From the above equation, there are three main operations to perform the conversion:

the modular multiplication with pre-calculated constant Ji (x) , the normal

multiplication with Mi (x) that is also a constant value generated by the chosen moduli

71

Chapter 4: PRNS for Error Detection and Fault Tolerance

set and the final sum operation. For the detailed information of the constant values,

please refer to the previous section Chapter 4 .3 .1.

The implementation of the modular multiplication with Ii (x) applies the same

technique that presented in [56]. Taking Channel 2, which is generated by m 2 (x) as an

example: the /2 is x 2 + x in its PB representation, the modular multiplication is

demonstrated as follows: assuming the result is y(x),

y(x) = [a(x)x !2 (x)]mod m2 (x)
= (a5x5 + a4 x4 + a3 x 3 + a 2x2 + a1 x + a0) · (x2 + x)mod (x6 + x5 + 1)
= [a 5x 7 + (a4 + a5)x

6 + (a 3 + a4)x5 + (a2 + a3)x4 + (a1 + a2)x3

+ (a0 + a1)x 2 + a0 x]mod (x 6 + x5 + 1)
= a3 x 5 + (a2 + a3)x4 + (a1 + a2)x 3 + (a0 + a1)x 2 + (a0 + a5)x + a4

The above calculation can be implemented using simple XOR network as showed in

Figure 4-1.

a a a a

Ys

Figure 4-1: Implementation Example of Multiplying by Ii Operation

The implementation of the multiplying by Mi (x) operation adopts the same method

that introduced in the previous chapter (see Chapter 3.4.3). The final sum operation of

the SRC algorithm is implemented using simple bitwise XOR operation.

To use the proposed RPRNS error detection method, firstly, the operands of the

multiplication need to be converted to the RPRNS format according to the selected

channel generating polynomials. The to PRNS converter converts the original

72

Chapter 4: PRNS for Error Detection and Fault Tolerance

weighted polynomial representation over GF(28
) to the RPRNS representation by

using four GF(26
) elements which are the residues of m 1 (x), m 2 (x), m 3 (x), m4 (x)

respectively. The conversion is performed as the modular reduction operation over

GF(26
). The same modular reduction method used for designing the channel

multiplier can be applied for the converter.

For example, the original GF(28
) representation is written as o(x), the converted

RPRNS representation for Channel 3 using m3 (x 6 + x 3 + 1) is z(x)

Then the conversion to the RPRNS is done as:

z(x) = o(x) mod m3 (x)

= 07X
7 + o6x6 + 05X

5 + 04X
4 + 03X

3 + OzX
2 + 01X + Oo mod (x6 + x 3 + 1)

= 05X
5 + (07 + 04)X

4 + (06 + 03)X
3 + 02X

2 + (07 + 01)X + (06 + Do)

This operation can be implemented using simple XOR network, similar architecture

as shown in Figure 4-1. The same design methodology is applied to other channels as

well and all the channel multiplication are performed in parallel.

To ensure the multiplication is closed, a modular reduction operation usmg

f(x) = x 8 + x 4 + x 3 + x + 1 is required.

According to [56], the modular reduction can be implemented as:

Assuming the intermediate product is denoted as p(x) which is with the highest

degree 2x8 - 2 = 14 and the results after modular reduction as z(x), let's use their

polynomial coefficients' binary vector form to simplify the expression, where

p(x) = (p14p13 ··· p1p0), z(x) = (z7z6 ... z1z0), then:

z6 = P6 + Pio + Pu + p13,

73

Chapter 4: PRNS for Error Detection and Fault Tolerance

Zs = Ps + P9 + P10 + P12,

Zz = Pz + P9 + P10 + p13,

Zo = Po + Pa + P12 + PB·

Figure 4-2 shows the full architecture of the proposed error detection PRNS multiplier

c = ab mod f (x) over GF(28
). The validity of this multiplier is based on the

following assumptions: the conversion circuit, final modular reduction circuit and the

error detection module can be made fault free.

a

To PR\/S

b To
PR!'iS

b4 abmodm,

From PR\/S Converter

Modular c
Reduction

Error
Detection

Figure 4-2: Architecture of the GF(28
) RPRNS Error Detection Multiplier

The error detection module checks if the highest degree of the converted weighted

polynomial is in the illegitimate range. If all the inputs are 'O', which indicates the

degree of the polynomial is smaller than those in illegitimate range, the output will

give a 'no error' signal; however, if a '1' (or more than one '1 ') appears in the input,

which means the highest degree is in the illegitimate range, the error detection module

will yield a 'error' signal. A 9-bit OR gate is used to achieve above function in this

design.

As the multiplication 1s over small Galois fields, the proposed architecture 1s

74

Chapter 4: PRNS for Error Detection and Fault Tolerance

constructed using pure combinational logic circuits. As it can be seen from Figure 4-2,

all channels are separate, similar and their operations are performed in parallel hence

offering an inherent mechanism for masking, randomization and which could help

improve protection against any potential side channel leakage or analysis.

4.3.3 Implementation Results

Xilinx Spartan 3-3s 1500lfg320-4 FPGA is used for synthesis and implementation for

the propose error detection multiplier.

Table 4-1 shows the synthesis results of the proposed PRNS error detection multiplier.

To the authors' knowledge, there are not any hardware synthesis results for such PRNS

architecture error detecting GF(2m) multipliers to compare with. The comparison with

a standard bit parallel GF(2m) multiplier and a PRNS GF(2m) multiplier without error

detection is made to analyse the overhead of the error detection functionality.

Table 4-1: GF(28
) Multiplier Synthesis Results

Slices LUTs Max Combinational Delay
i. 141 246 28.766ns
ii. 99 173 28.851ns
m. 31 55 16.991ns

i. The implementation of the GF(28) error detecting multiplier using RPRNS

ii. The implementation of a Gf (28
) multiplier using three 6-bit PRNS channels,

without error detecting capability

iii. The implementation of a bit-parallel GF(28
) multiplier using the method that is

introduced in [56]

As it can be seen from the above table, as expected, the PRNS architecture has higher

level of complexity than a standard GF(2m) multiplier that results in larger area

consumption and longer operating delay. However, due to the nature of independence

between PRNS channels and scope for randomisation, this architecture has much

more scope for improving side-channel resistance in cryptosystems. In addition, by

75

Chapter 4: PRNS for Error Detection and Fault Tolerance

introducing redundant channels, error detection can be achieved and if more

redundant channels are introduced within the PRNS architecture, fault tolerant design

can also be implemented with a cost of a larger overhead. Compared with a PRNS

multiplier, there is a 40% overhead on area to achieve error detection caused by

introducing the redundant channel and the increased complexity of the converter.

Table 4-2: GF(2163
) Multiplier Synthesis Results

Slices Clock Max Frequency (MHz)
Cycle

i. 1429 168 164.015
ii. 3173 168 164.015
iii. 2245 254 163.639

i. The implementation of GF(2163) PRNS multiplier using four 84-bit channels
(Chapter 3.4)

ii. The implementation of a GF(l1 63
) RPRNS multiplier using five 84-bit

channels, with error detecting capability, using the proposed method

iii. The implementation of a GF(2 163
) RPRNS multiplier using four 127-bit

channels, with error detecting capability, using the proposed method

Table 4-2 shows the synthesis results of the GF(l1 63
) PRNS multipliers which are

suitable for ECC applications. Along with the increasing number of channels, the area

consumption increases dramatically. By looking at the design i. and ii., the

introducing of a redundant channel increases the parallelism of the design and the

complexity of the conversion circuit which causes over I 00% overhead in hardware.

To improve the performance, design iii. uses a smaller number of channels, but, in

order to cover the same dynamic range, it increases the channel length at the same

time. Synthesis results show implementation iii. has much smaller overhead in area

compared with implementation ii .. It is to say, the overhead that is needed to achieve

error detection is adjustable according to the number of channels and channel

complexity such as channel length and channel generating polynomials, which offers

the designer great flexibility to construct the error detecting multiplier.

76

Chapter 4: PRNS for Error Detection and Fault Tolerance

4.3.4 Error Coverage Analysis

The correctness of the proposed error detecting strategy is based on the assumptions

that the conversion and modular reduction unit (as shown in Figure 4-2) are

implemented in a secure environment - either hardware or software, where no error or

fault can be injected.

The proposed error-detecting scheme is capable of detecting 100% single bit errors

and 100% channel errors, where error occurs only in one channel, up to X-bit multiple

errors where X is the channel field length. If multiple faults occur across different

channels, the probability of detecting the error by this scheme is (only those error

patterns that stay in the legitimate range will be missed) calculated as:

Where di indicates the degree of the channel generating polynomial, N is the number

of channels of the RPRNS.

To simplify the expression, both the numerator and denominator of the above

N

equation divide 2 I i=1 di, it yields:

2dN+1 - 1
Error Detection Probability = --d--

2 N+1

Where dN+i is the degree of the redundant channel.

According to the above equation, the error detection probability of cross channel

multiple errors for the proposed design is calculated as shown in Table 4-3:

77

Chapter 4: PRNS for Error Detection and Fault Tolerance

Table 4-3: Error Coverage for the Proposed Designs of GF Multiplier

Designs

i. GF(28
) multiplier using four 6-bit PRNS channels

ii. GF(2 163
) multiplier using five 84-bit PRNS channels

iii. GF(i 63
) multiplier using four 127-bit channels

Error Detection
Probability

26 -1
26

= 98.4375%
284 -1

284

~ 100%
2127 - 1

2127

~ 100%

As it can be seen from Table 4-3, the probability of undetected errors decreases

exponentially when the channel length increases. The probability of undetected error

patterns in design ii. is
2

~
4
~ 5.16x10-26 while the probability in design iii. is

21
\ 7 ~ 5.88x10-39 , hence the error detection probability in these two designs tends

towards 100%.

78

Chapter 4: PRNS for Error Detection and Fault Tolerance

4.4 The RPRNS Based Fault Tolerance

The fault tolerant capability (or error correction capability) that is provided by the

PRNS is based on the data independency of each channel and the reduplicative

residue representation of the original data. In other words, the original data is

represented reduplicatively using different PRNS channel combinations, if error

occurs in one channel, the PRNS architecture will ignore the data from the faulty

channel, use the error free residue representation of the original data to carry on with

other operations. To perform the error correction, firstly, it is needed to locate the

channel in which the error occurs; then, convert the PRNS representation back to

normal representation bypassing the faulty channel, where the rest channels can still

cover the dynamic range; in the end, convert the error free normal representation back

to PRNS representation and use the correct data to replace the faulty channel data.

To achieve fault tolerance, it requires at least two additional moduli with respect to

the normal PRNS representation, one additional channel is to detect an error, the other

additional is used to locate in which channel the error occurs; hence the moduli set for

such RPRNS multiplier can be denoted as

m1 (x), m 2 (x), ···, mN(x), mN+l (x), mN+zCx), where the sum of its degree satisfies

the Lf=i di 2:'. 2m equation and dj 2:'. di for i E [1, N],

j E [N + 1, N + 2]. In such RPRNS, arbitrary N + 1 channels are capable of covering

the entire dynamic range of the multiplication and providing error detection, so that

N + 2 sets of SRC conversion are required to locate the erroneous channel, where

each SRC conversion IS constructed usmg moduli

m1(x),m2 (x),···,mi-i(x),mi+1Cx),···,mN+zCx), where i indicates the SRC set

number. Figure 4-3 demonstrates a fault tolerant RPRNS architecture with 3 normal

79

Chapter 4: PRNS for Error Detection and Fault Tolerance

PRNS channels and 2 redundant channels:

~ <>m,

~ <>m2

-<>m3 - - ---<>m4 - - - - - --
~ <>ms] - - - - - - - - -

! ! ! ! ,

SRCs SRC SRC SRC2 SRC

- choose --legitimate

Figure 4-3: Architecture of RPRNS Based Fault Tolerance

For example, if an error occurs in a channel, say Channel 3, after the SRC

conversions, the results from the SRC blocks which contains Channel 3, will fall into

the illegitimate range (see Chapter 4.3), which indicates a channel error, except the

result from the SRC3 block because it bypasses the faulty channel. The

choose legitimate block will compare the results and choose the error free result,

which is in the legitimate range, for further operations. The choose_legitimate block

can be constructed using AND gates to detect the overflow in the illegitimate range

and a simple multiplexer to forward the error free result.

80

Chapter 4: PRNS for Error Detection and Fault Tolerance

4.5 GF(Zm) Multiplier using RPRNS Based Fault
Tolerance

4.5.1 Implementation of Fault Tolerant Gf (2 163) Multiplier

The implementation of a fault tolerant GF(l1 63
) multiplier using five 127-bit channel

RPRNS is presented in this section. The fault tolerant design is based on the four 127-

bit channel error detection design that has been presented in Chapter 4.3 .3. By adding

another redundant channel to the error detection design, the new multiplier is capable

of providing fault tolerance to against internal errors and fault injections. The detailed

information of the selected channel generating polynomials and the constant values

for the SRC conversion are listed in Appendix C.

The proposed architecture of the fault tolerant multiplier is shown in Figure 4-4:

- ab mod m 1 ---.-----,--------,-----,

--I
ab mod~ ----,-- 1'----r'l'--~_.,,..,__ __ __,,l"---~

--, ab modm3

= ab modm4

___J
ab modm5

SRC

Figure 4-4: Architecture of RPRNS Based Fault Tolerance GF(2163
) Multiplier

81

Chapter 4: PRNS for Error Detection and Fault Tolerance

Each SRC block is constructed as shown in Figure 4-5:

\ -G-B-~ \

\

X M3 I
B-B_j

Figure 4-5: Architecture of the SRC Block

In Figure 4-4 each channel arithmetic block performs the channel multiplication over

GF(i1 27), the SRC blocks convers the selected channels back to the normal

polynomial representation, the Overflow _Detection block checks if the results from

the SRCs are in the legitimate range and generates the right selection signal for the

MUX to propagate the error free result to the Modular_ Reduction which performs the

modular reduction over GF(i1 63
). Each SRC block performs 4 multiplying by the

constant value Ii (x) 's and 4 multiplying by Mi (x) 's in parallel followed by a final

XOR operation to calculate the sum.

This multiplier is capable of locating a channel error (signal bit error or multiple bit

errors up to 127 bits) and generating the correct result by bypassing the faulty

channel.

4.5.2 Synthesis Result of the Fault Tolerant GF(2 163) Multiplier

The FPGA synthesis result of the designed multiplier together with the comparison

with the normal PRNS multiplier and the RPRNS based error detection architecture

82

Chapter 4: PRNS for Error Detection and Fault Tolerance

are presented in Table 4-4:

Table 4-4: Synthesis Result of the Fault Tolerant GF(2163
) Multiplier

Slices Clock Max Frequency (MHz)
Cycle

iv. 1429 168 164.015
v. 3173 168 164.015
vi. 2245 254 163.639
vii. 10307 254 163.345

iv. The implementation of GF(i 63) PRNS multiplier using four 84-bit channels
(Chapter 3.4)

v. The implementation of a error detection GF(2 163
) RPRNS multiplier using five

84-bit channels

vi. The implementation of a error detection GF(2 163
) RPRNS multiplier using four

127-bit channels

vii. The implementation of the proposed fault tolerant GF(l1 63
) multiplier using

five 127-bit RPRNS channels

As it can be seen from the above table, the hardware overhead dramatically increases

in the fault tolerant design (almost 400% overhead compared with the error detection

design). The main overhead is related to the implementation of the SRC conversion

blocks. For a RPRNS with N + 2 channels, it needs N + 2 SRC blocks, each of which

is composed by:

• N + 1 modulo mi(x) constant multipliers to calculate a(x) · li(x) mod mi(x)

• N + 1 constant multiplier for Mi

• N XOR operations to calculates the sum

Therefore, the overall overhead due to the SRC conversions grows quadratically with

the number of channels. Due to using the same architecture, the proposed designs

achieve similar level of the maximum operating frequency.

83

Chapter 4: PRNS for Error Detection and Fault Tolerance

4.6 Conclusions

This chapter introduced the error detection and error correction capability that is

provided by the PRNS architecture. The mathematic proof of the error detection

capability is given in the first place, followed by a detailed example and

implementation of an 8-bit multiplier. Then the implementation result of such error

detection multiplier for GF(2 163
) is also presented together with the error coverage

analysis. Based on the PRNS 's error detection capability, the error correction method

is introduced by adding one redundant moduli to the error detection module,

following which the implementation of such GF(l1 63
) multiplier with error correction

capability is presented.

Shown from the hardware implementation results of the error detection multiplier

designs, different combinations of number of channels and the channel length of the

PRNS architectures yield different synthesis result. For the same dynamic range,

smaller number of channels provides smaller overhead in hardware with the cost of

the increased channel length. In addition, from the error coverage analysis, the

increased channel length helps to improve the multiple error-detecting rate. The

implementation of the fault tolerant design has shown significant overhead in

hardware, which is mainly because of the reduplicative SRC conversion circuits. The

proposed GF(l1 63
) error detection multiplier and error correction multiplier is suitable

for the ECC designs that require high level of security where hardware consuming is

not a main issue. In the following two chapters, the proposed PRNS architecture will

be applied to the AES application, where the field length is small and the hardware

overhead is manageable.

84

Chapter 5: Low Area Design of the AES

Chapter 5
Low Area Design of the AES

5.1 Introduction

The Rijndael cipher algorithm, introduced by Vincent Rijmen and Joan Daemen, was

selected as the Advanced Encryption Standard (AES) by the National Institute of

Standards and Technology (NIST) in 2000. In the following year, this algorithm

became the Federal Information Processing Standard FIPS-197 [6]. As the AES has

been widely adopted for various applications from high-end computers to low power

portable devices, numerous hardware architectures to implement the AES were

proposed to meet different requirements. Typical examples are high-throughput design

and low-area design. The former aims to achieve highest operating frequency and

throughput. The latter devotes most efforts to minimize the size of the design and

lower the power consumption.

FPGA platforms have emerged recently as a viable low cost alternative to ASICs in

many domains which have seen a trend of using FPGAs for actual production rather

than just prototyping due to their advantages in terms of reconfigurability (flexibility

with low cost); shorter time to market (easy to debug and short development cycle);

increasingly efficient fabric (advanced processes); and also the fact that FPGA

manufacturers provide mask programmed versions of their technologies. Optimal

FPGA designs for cryptography are particularly desirable when scalability or

compatibility with different applications is required in secure applications or when

design IP protection is sought. Area (and energy) optimality is the most challenging in

85

Chapter 5: Low Area Design of the AES

the design space. Therefore low resource, but with acceptable performance,

cryptography primitives such as the AES on FPGA are key enablers for many

applications to implement strong security or protection.

In this chapter, a compact AES FPGA encryption core is proposed based on an

iterative round-looping architecture as in [75] where the shifting operations are re­

designed to exploit the FPGA fabric in Spartan 3 and Spartan 6 generations to reduce

overall area and improve speed. The proposed design only occupies 184 slices of a

XC3S50 FPGA, achieves a throughput of 36.5Mbps; on a Spartan 6 XC6SLX4

FPGA, this design occupies 80 slices with a throughput of 58.13Mbps. Since most

useful modes (OFB 1
, CTR2 and CFB3

) [76, 77, 78] can all provide data encryption

and decryption using only an encryption-primitive, it was decided to implement a

design that performs AES encryption only, as this is the minimum requirement for

three useful modes. To the authors' knowledge, the proposed design is believed to be

the smallest memory free FPGA implementation of the AES encryption in literature.

For the mathematical background information of the AES algorithm, the reader is

referred to Chapter 2.5. The rest of this chapter is organized as follows: firstly,

previous work on the AES is reviewed as references, then the detailed design of the

proposed AES architectures is presented with the FPGA specific optimizations, the

hardware results and comparisons with previous reported works are given before

conclusions are drawn.

1 OFB, Output Feedback Mode
2 CTR, Counter Mode
3 CFB, Cipher Feedback Mode

86

Chapter 5: Low Area Design of the AES

5.2 Review of the Previous AES Designs

Speed and resource consumption are the key system requirements to implement the

AES algorithm, which drove most of the previous works focus either on high

throughput or low area.

Pipelined (or sub-pipelined) and loop-unrolled architectures with large data path

(usually 128-bit) are usually adopted to enable high-speed in the throughput focused

AES designs. Typical examples can be found in [79, 80], where their designs achieve

the throughput over 20Gbps. The drawback of high throughput designs is that they

occupy large hardware resources and consume high power; in addition, these

architectures are not suitable for feedback modes in some operations [80, 81].

Round-looping and sub-function-sharing are the mostly used technique to implement

the low area AES. The data path is also reduced from 128-bit to 32-bit or even 8-bit to

decrease the parallelism of operations therefore reduces the hardware consumption.

Typical 32-bit low area AES design can be found in [82, 83, 84], where the smallest

one uses 222 slices and 9600-bit block RAM (totally equivalent to 522 slices) and

achieves l 66Mbps throughput. Some 8-bit designs have better performance in term of

area, such as the ASIP (application specific instruction processor) design proposed in

[80], it only uses 124 slices and 4480-bit block RAM (totally equivalent to 264

slices), achieves a throughput of 2.2Mbps. To the author's knowledge, the work in

[80] is so far the smallest FPGA implementation of the AES in the literature. The

work presented in this chapter only consumes 184 slices and does not require any

block memory; furthermore the proposed design achieves a much higher (36.5Mbps)

throughput compared with the smallest design in [80].

87

Chapter 5: Low Area Design of the AES

5.3 The Proposed Design of the Low Area AES

5.3.l FPGA Specific Optimizations

This design explores the FPGA fabric technology in Spartan 3 and Spartan 6

generations, which can configure the LUT in one slice as a shift register instead of

using the available flip-flops of each slice, to optimise the design by improving the

performance of the shifting operations in the AES.

In such LUT based shift registers, the shift-input operations are synchronous with the

clock, and output length can be selected dynamically using variable taps [85, 86]. The

example schematic diagram of such addressable shift register (SRL16 in Spartan 3

FPGAs) is shown in Figure 5-1. The 32-bit LUT based shift registers, SRL32, in the

Spartan 6 FPGA family, using the same architecture, doubles the shift register length

with an additional address signal.

i 1 out

in 1

•••
clock __ ,__ __ __._ ___ ..._ _____ __,

address ---;4"-+-----------------------'
i ...•.•....... ··············•···••··········•·•·•·······•••·······••····· ... ,•.•.•..........•.................. ···'

Figure 5-1: LUT Based Addressable 16-bit Shift Register (SRL16)

Using SRL16 to implement an 8-bit wide, 16-bit long shift register only requires 4

slices in a Spartan 3 device, which leads to great cost saving. In addition, the address

taps give a convenient way to select the wanted output and are very suitable for the

ShiftRow implementation. Similar technology exists in Spartan 6 devices, LUTs can

be configured as either 16-bit shift registers (SRL16) or 32-bit shift registers (SRL32).

88

Chapter 5: Low Area Design of the AES

5.3.2 Top Level Architecture

text in
)

data out

round_key

key_in last_key

Figure 5-2: AES Encryption Core Architecture for 8-bit Data Path

The mam architecture of this design adopts an iterative pipelined-round-looping

architecture with an 8-bit data path. All the sub-functions are performed in parallel in

order to reduce the number of clock cycles. The design supports 128-bit keys and

requires 160 clock cycles to finish encrypting one 128-bit block. The top-level

architecture is shown in Figure 5-2.

It mainly consists of five sub-function blocks: ShiftRow, Sbox, MixColumn,

KeySchedule and the input Delay. In this work, the ShiftRow, Delay and

KeySchedule blocks are redesigned and constructed using SRL16/32 to minimize the
I

consumption of the number of FPGA slices. Both input for the plain text (text_in) and

the key (key _in) are required to be 8-bit, the final data_out is given as an 8-bit vector

as well. The KeySchedule block performs the KeyExpansion transformation and

generates new roundkeys every 16-cycles. The input Delay block uses a shift register

to propagate the plain text with 4 cycles delay, in order to synchronize with the other

operands (the RoundKey) of the AddRoundKey operation, which is implemented

89

Chapter 5: Low Area Design of the AES

using the XOR operation on the left side of Figure 5-2. The final XOR operation (on

the right side of Figure 5-2) performs the AddRoundKey transformation for the last

round as the last round transformation bypasses the MixColurnn transformation.

5.3.3 Design of ShiftRow

The ShiftRow operation rearranges the location of each byte in the block text. In the

proposed architecture, two sets of SRL 16 are cascaded to construct an addressable 32-

bit shift register to perform the shifting operation in Spartan 3 FPGA, where only one

single SRL32 is used as an addressable 32-bit shift register in the Spartan 6 FPGA

design; eight such shift registers works in parallel with sharing address taps . Detailed

structure is shown in Figure 5-3. In Spartan 6 FPGA, eight SRL32 are working in

parallel to perform the shifting operation Figure 5-4.

in

out

Figure 5-3: SRL16 Based ShiftRow

90

Chapter 5: Low Area Design of the AES

As

m

out

Figure 5-4: SRL32 Based ShiftRow

While data is shifted through the shift registers, the address taps select the reordered

date to the output. The ShiftRow block is naturally pipelined; it has 12 clock cycles

latency, but when fully filled with data it can deal with continuous data input. Here is

an example to demonstrate how ShiftRow module works. To perform the shifting

operation shown in Figure 5-5, 12 clock cycles are required to shift the first three

columns of data (a0 to a11) into the shift register. After 12 cycles, every cycle, there

will be one byte coming from the output in the order that is shown as the right block

in Figure 5-5. This ShiftRow design is naturally pipelined and capable of dealingwith

continuous data. Assuming the data after ai 's is the next state, denoted as bi's, the

detailed operation is listed in Table 5-1.

ao a4 as a12 ao a4 as a12
a1 as a9 an as a9 a13 a1
a2 a6 ao a14 a10 a14 a2 a6
a3 a7 au a1s a1s a3 a1 a11

Figure 5-5: Demonstration of the ShiftRow Transformation

As it can be seen from Table 5-1, the address taps A I and Ao are constantly 'I' during

the shifting operation, hence a 4-bit state machine is constructed to generate the

correct address signal for As to A2 and it repeats the states every 16 clock cycles. This

SRL16/32 based ShiftRow block, including the address generating state machine,

91

Chapter 5: Low Area Design of the AES

only occupies 20 slices and can be operated at 265MHz solely on a Spartan III

XC3S50 FPGA.

Table 5-1: ShiftRow Operation

t in Ro R, R, R, R, Rs R6 R, Ra R, Rio Ru R12 Rl3 R14 R1s Rt6 R11 Ria R19 R20 R21 R22 R23 As A, A, A, A, Ao out

1 a12 a11 a10 ag a, a, a6 as a, a, a, a, ao X X X X X X X X X X X X 0 0 1 0 1 1 ao

2 a" a12 au a10 ag a, a, a, as a, a, a, a, ao X X X X X X X X X X X 0 0 0 1 1 1 as

3 a" a13 a12 a11 a10 a9 a, a, a, as a, a, a, a, ao X X X X X X X X X X 0 0 0 0 1 I a,o

4 315 a14 a13 a12 a11 a10 a9 a, a, 86 as a, a, a, a, ao X X X X X X X X X 1 X X X X X a1s

5 ho a1s a14 a13 a12 a11 a10 ag a, a, a, a, a, a, a, a, ao X X X X X X X X 0 0 1 0 1 1 a,

6 h, ho a1s a14 313 a12 a11 a10 ag a, a, 86 as a, a, a, a, ao X X X X X X X 0 0 0 1 1 1 a,

7 h, h, ho a1s a11 313 an au a10 ag a, a, a6 as a, a, a, a, ao X X X X X X 0 0 0 0 1 1 8H

8 h, h, h, ho a1s a14 an a12 a11 a10 a9 a, a, 86 as a, a, a, a, ao X X X X X 0 0 1 1 1 1 a,

9 h, h, h, h, ho a1s a14 an a12 a11 a10 a9 a, a, 36 as a, a, a, a, ao X X X X 0 0 1 0 1 1 a,

10 hs h, b, h2 h, ho a1s 314 au a12 au a10 39 a, a, 86 as a, a, a, a, ao X X X 0 0 0 1 1 1 .,,
11 h6 hs b, h, h, b, ho a1s a11 a13 a12 a11 a10 39 a, a, 36 as a, a, a, a, ao X X 0 1 0 0 1 1 a,

12 b, h6 bs h, b, h, h, bo a1s 314 313 a12 au a10 ag a, a, 86 as a, a, a, a, ao X 0 0 1 1 1 1 a,

13 ho h, h6 hs h, h, h2 h, ho a1s a11 a13 a12 a11 a10 ag a, a, 36 as a, a, a, a1 ao 0 0 1 0 1 1 312

14 h, h, h, h, hs h, h, b, h, ho 315 a14 au a12 au a10 ag a, a, a, as a, a, 32 31 0 1 0 1 1 1 a,

15 b,o h, b, h, b6 hs b, h, b, h, bo 315 314 313 312 311 310 39 a, a, 36 a, a, a3 az 0 1 0 0 1 1 a6

16 b11 b,o b, h, b, b6 bs b, b, h, h, ho a1s a14 313 a12 au a10 39 a, a, 36 as 34 33 0 0 1 1 1 1 a11

17 h12 h11 h,o h, h, h, h, hs h, h, h, h, bo a1s 314 an a12 au a10 39 a, a, 36 as 34 Repeating ho

5.3.4 Design of Sbox

The Sbox performs the SubBytes transformation. The SubBytes transformation is the

only non-linear operation among all AES transformations, which contains a

multiplicative inversion calculation followed by an affine transformation. The crux of

implementing the SubBytes is the implementation of the multiplicative inversion over

GF(28
). There are mainly three ways to implement the SubBytes transformation that

have been appeared in literature:
f

• Direct calculation: it computes the multiplicative inversion over GF(28
)

directly using either multiplication and square algorithm or Itoh and Tsujii's

algorithm. This method often appears in the design of the general GF(2m)

processor for cryptography, a typical example is given in [12].

• LUT approach: it uses a table looking up method to substitute a byte with its

92

X

!

0
1
2
3
4
5
6
7
8
9
a
b
C

d
e
f

Chapter 5: Low Area Design ofthe AES

substitution value from an 8-bit x 256 pre-stored table. This table is given in

the official AES paper FIPS-197 [6], as shown in Table 5-2:

Table 5-2: SubBytes Look Up Table

y
o, 1 2 31 4 5 6 7 ' 8 9: a b cl d e f

63 7c 77 7b f2 6b 6f cS 30 01 67 2b fe d7 ab 76
ea 82 c9 7d fa 59 47 fO ad d4 a2 af 9c a4 72 co
b7 fd 93 26 36 3f f7 cc 34 as e5 f1 71 dB 31 15
04 c7 23 cl 18 96 05 9a 07 12 80 e2 eb 27 b2 75
09 83 2c la lb 6e Sa aO 52 3b d6 b3 29 e3 2f 84
53 dl 00 ed 20 fc bl Sb 6a cb be 39 4a 4c 58 cf
dO ef aa fb 43 4d 33 85 45 f9 02 7f so Jc 9f a8
51 a3 40 Bf 92 9d 38 fS be b6 da 21 10 ff f3 d2
cd Oc 13 ec Sf 97 44 17 c4 a7 7e 3d 64 Sd 19 73
60 81 4f de 22 2a 90 88 46 ee b8 14 de Se Ob db
eO 32 Ja Oa 49 06 24 Sc c2 d3 ac 62 91 95 e4 79
e7 c8 37 6d 8d dS 4e a9 6c 56 f4 ea 65 7a ae 08
ba 78 25 2e le a6 b4 c6 e8 dd 74 lf 4b bd Sb Ba
70 le b5 66 48 03 f6 Oe 61 35 57 b9 86 cl ld 9e
el f8 98 11 69 d9 Se 94 9b le 87 e9 ce 55 28 df
Sc al 89 Od bf e6 42 68 41 99 2d Of bO 54 bb 16

• Composite field arithmetic approach: to simplify the inversion calculation,

this approach first decomposes the GF(28
) into field GF(24

) (or decomposes

even further using GF(22
)), then computes the multiplicative inversion over

the smaller field, in the end maps the inversion back to GF(28
) before the

affine transformation. This method is first proposed in [14] and has been

further developed in many works for both low cost AES designs [80, 83, 88]

and the sub-pipelined high throughput AES designs [79].

In the proposed low area AES design, the pure combinational logic constructed

composite field arithmetic approach is adopted to achieve the lowest possible slice

consumption of the FPGA implementation of the SubBytes transformation. The

mathematic background of the composite field arithmetic is referenced in [14, 79, 87,

88] for interested reader. The implementation of the forward SubBytes transformation

using composite field arithmetic is demonstrated in Figure 5-6:

93

Chapter 5: Low Area Design of the AES

multiplicative inversion

8 6- 1 X
affine

ransformation

Figure 5-6: SubBytes Transformation using Composite Field Arithmetic [79]

The multiplicative inversion section of the above figure shows the GF(28
) inversion

computation in the decomposed field GF((24)2). In order to perform an equivalent

inversion in composite field arithmetic, additional isomorphic mapping function

(denoted as ox) and its inverse (denoted as 5- 1 x) need to be applied to map the

representation of an element in GF(28
) to its composite field and vice versa. Both o

and 5-1 are represented using 8 x 8 binary matrix (as following) that are generated

from the irreducible polynomial m(x) = x 8 + x 4 + x 3 + x + 1 over GF(28
):

1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0
0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0
0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1

8 = 0 1 1 0 0 0 1 1 5- 1 = 0 1 1 1 1 1 0 0
0 1 1 1 0 1 0 1 I 0 1 1 0 1 1 1 0
0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0
0 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1

In Figure 5-6, the x 2
, x A, x - 1 and X represent square operation, multiplication with

constant A, multiplicative inversion, multiplication operation over GF(24
) respectively.

The multiplying by constant A operation can be implemented as following: assuming

the input and output are denoted in binary vector format as (a 3 a 2 a1 a0) and

94

Chapter 5: Low Area Design of the AES

c3 = a0 EB a2, c2 = a0$ a1 EBa2 EBa3 ,

C1 = a3, Co = a2

For the square operation, multiplicative inversion and multiplication operation, since

they are all over GF(24
) , there are two options to implement them: implementing them

directly in GF(24
) or using composite field arithmetic further decomposing the field

into GF(22
). According to [79, 87] , the squarer over GF(24

) can be constructed using

very simple XORs, so it is implemented as:

C3 = a3, Cz = a2$a3,
c1 = a1 EBa2 , c0 = a0 EBa1 EBa3

The multiplication over GF(24
) can be performed directly using the logic that is given

output.

c0 = a0 b0 E9 a3 b1 E9 Ca2 E9 a3)b2 E9 Ca1 E9 az)b3

c1 = a1 b0 E9 Ca0 E9 a 3)b1 E9 a2 b2 E9 a1 b3

c2 = a2 b0 E9 a1 b1 E9 Cao E9 aJb2 E9 (a2 E9 a 3)b3

c3 = a3 b0 E9 a2 b1 E9 a1 b2 E9 Cao E9 a 3)b3

The composite field arithmetic based multiplication over GF(24
) is given in [79] , the

implementation is demonstrated in Figure 5-7:

2

4 xcp

2

2

4
4

2

Figure 5-7: GF(24
) Multiplication Using Composite Field [79]

In Figure 5-7, the xq, block is constructed according to the following equation:

95

Chapter 5: Low Area Design of the AES

The GF(22
) multiplication block (the [8J block) 1s constructed according to the

following equations:

Co = (a1 EB ao)(b1 EB ho) EB aobo
c1 = a1 b1 EB a0 b0

From the experimental result, the synthesis results show both approaches of realizing

the GF(24
) multiplication occupy the same FPGA area, which is 7 slices over a

Spartan III device, however, when the entire SubBytes block is synthesised, the result

shows the composite field approach has better performance in terms of area, which is

35 slices to 41 slices that uses the direct GF(24
) multiplication over the same FPGA

platform.

To implement the multiplicative inversion in Figure 5-6, [79] shows three approaches,

which are composite field approach, square and multiplication approach and the truth

table approach. The composite field approach, firstly convert GF(24
) to the composite

field GF((22
)

2
) and then calculate the inversion over GF(22

) followed by a conversion

back to GF(24
) to obtain the inversion over GF(24

). However, though the composite

field decomposition can reduce the hardware complexity significantly when the order

of the field involved is large, for small fields, such as GF(24
), further decomposition

may not be the optimum approach for the inversion calculation as the conversion

circuit costs more resources [79]. The square and multiplication approach calculate

the inversion using Fermat's Little Theorem as a-1 = a 14 = a 2 • a 22
• a 23 over

GF(24
), it requires two GF(24

) multipliers and three squarers. This approach shows

largest area consumption and combinational delay among the three approaches. The

truth table approach uses the equations, that are derived from the truth table of

calculating the GF(24
) inversion, to directly compute the multiplicative inversion. As

96

Chapter 5: Low Area Design of the AES

it has been shown in [79], this approach achieves smallest number of gates with

smallest critical path. Thus, the calculation of the multiplicative inversion over GF(24
)

is performed as following equations in the proposed design:

c3 = a3 E9 a3 a2 a1 E9 a3 a0 E9 a 2

c2 = a3 a2 a1 E9 a3 a2 a0 E9 a3 a0 E9 a 2 E9 a2 a1

c1 = a3 E9 a3 a2 a1 E9 a3 a1 a0 E9 a 2 E9 a2 a0 E9 a1

c0 = a3 a2 a1 E9 a3 a2 a0 E9 a3 a1 E9 a3 a1 a0 E9 a3 a0 E9 a2 E9 a 2 a1 E9 a2 a1 a0

E9 a1 E9 ao

To complete the byte substitution of the SubBytes using composite field arithmetic, a

isomorphism conversion from GF((24)2) back to GF(28
) followed a affine

transformation that is defined by the AES algorithm is required. The isomorphism and

affine transforms may be combined into one single transform [88]. This results in the

following matrix:

1 1 1 0 0 0 1 1 Xo 1
1 0 0 0 0 0 0 1 X1 1
1 0 1 1 1 1 1 0 Xz 0

5- 1A(x) = 1 1 1 0 0 0 0 0 X3
+ 0

1 1 0 0 1 0 0 1 X4 0
0 0 1 0 0 0 0 1 X5 1
0 0 0 0 1 1 1 1 x6 1
0 0 1 1 0 0 0 1 X7 0

The proposed design of the SubBytes operation occupies 35 slices over the Spartan III

device, where the LUT based implementation occupies 8 x 256 = 2k bits block

memory or 64 slices for distributed memory.

5.3.5 Design of MixColumn

The MixColumn design adopts the architecture that 1s introduced m [75]. The

architecture is demonstrated in Figure 5-8:

97

Chapter 5: Low Area Design of the AES

111

Figure 5-8: MixColumn Using 8-bit Data Path

In this module, one column of a state date is treated at a time in four clock cycles.

Each clock cycle a new byte is fed to the unit, the four registers (Ro to R3) store the

intem1ediate results of the MixColumn calculation. Every four cycles, upon the

completion, the 32-bit output is fed to the parallel-to-serial converter (parallel load

shift register R's), after which the output of the MixColumn block becomes 8-bit per

cycle. The {03} and {02} block performs the multiplication by constant 03HEX and

02HEX over GF(28
) respectively. They are constructed according to the following

equations:

{02} · a(x) = a6 x 7 + a5x 6 + a4 x 5 + (a3 + a7)x4 + (a2 + a7)x 3 + a1 x 2 + (a0

+ a7)x + a7

{03} · a(x) = (a6 + a7)x
7 + (a5 + a6)x6 + (a4 + a5)x 5 + (a3 + a 4 + a7)x4 + (a 2

+ a3 + a7)x 3 + (a1 + a2)x 2 + (a0 + a 1 + a7)x + (a0 + a7)

This MixColumn architecture is naturally pipelined and capable of dealing with

continuous data streaming with a latency of 4 clock cycles. The detailed operational

procedure of the MixColumn transformation that uses the above architecture is

demonstrated in Table 5-3:

98

Chapter 5: Low Area Design of the AES

Table 5-3: 8-bit MixColumn Operations

T=0 T=l T=2 T=3
Ro Co Co$C1 {03}coE9c1 EBc2 {02}c0 E9{03}c1 E9c2E9c3
R1 Co {03}coE9C1 {02}coE9{03}c1 EBc? CoE9{02}c1 E9{03}c:;,E9c~
R2 {03}c0 {02}c0 E9{03}c1 CoE9{02}c1 {03}c? c0 E0c1 E9{02}c?E9{03}c~
R3 {02}c0 c0 E9{02}c1 c0 E9c1 E9{02}c2 {03}c0 E9c1 E9c2E9{02}c3

Where T indicates the clock cycles, Ri is the intermediate result, ci is the number of
bytes in a column of a state.

5.3.6 Design of KeySchedule

The KeySchedule expands the original cipher key to derive the roundkeys for each

AddRoundKey transformation. There are two approaches of implementing it: pre­

computing approach and on-the-fly key generating approach. In the first approach, all

roundkeys are pre-generated and stored before the AES encryption process starts;

typical example can be found in literature [80, 81, 82, 83, 89]. The drawback of this

approach is the consumption of a considerable amount of storage space, however, this

approach is suitable for high throughput focused designs and is more energy efficient

in the long run, if the key is not changed [75]. The on-the-fly approach generates the

roundkeys alongside of the round transformations; it requires area only for a single

KeyExpansion mechanism without extra storage. The on-the-fly approach is usually

adopted by low area designs, examples can be found in [84, 90, 91]. It should be

noted that when using the same cipher key to encrypt more than one block of plain

text, this approach continuously repeats the work already done, which results in more

power consumption.

The proposed low area AES design adopts an on-the-fly architecture with 8-bit data

path. The architecture is shown in Figure 5-9:

99

key_ in

Chapter 5: Low Area Design of the AES

RoundKey
out

, SRL16x8 ; , _______ _

Sbox RoundKey
out (last)

I
, , ________ SRL16x8 ________ _) : SRL16x8 1

-----------✓

Figure 5-9: On-the-fly KeySchedule with 8-bit Data Path

As it can be seen from Figure 5-9, an additional Sbox block is introduced to the

KeySchedule, that is because the Sbox block in the round transformation is fully

occupied while encrypting data due to the pipelined architecture, which makes it

un-shareable with other operations. The introduction of the extra Sbox does not

significantly increase the total area due to its compact design. It is designed using the

same method that has been introduced in Chapter 5.3.4.

The Reon block generates the round constant and can be constructed using an 8-bit

linear feedback shift register (see Figure 5-10). The shift register is initialized as

OlHEX and shifts one time for each roundkey generation.

Figure 5-10: Reon Generation

In the Key Schedule unit, three sets of SRL 16 based shift registers are used as shown

in Figure 5-9 to optimize the performance on FPGA platform, where the SRL16's

address taps are fixed to a constant value. It takes 16 clock cycles for the

KeySchedule module to generate a new roundkey and store them in the intermediate

registers. The RoundKey _out forward roundkeys out to the AddRoundKey

transformation of the nonnal round operations; the Last_ RoundKey _ out is only used

100

Chapter 5: Low Area Design of the AES

for the last AddRoundKey operation. This KeySchedule design occupies 81 slices on

a Spartan III XC3S50 device with a highest possible operating frequency of

46.035MHz.

5.3.7 Design of Top Level Control

Due to the fully pipelined looping architecture, this design does not require complex

control signals. A simple 8-bit binary counter, which counts from Oto 160, is build to

generate the enable signals to the built-in state machines that are located in the

ShiftRow, MixColumn blocks. Followed by a simple decoder, this counter also

generates the data flow selection signals in the KeySchedule block.

101

Chapter 5: Low Area Design of the AES

5.4 Implementation Results and Comparisons

The synthesis, placing and routing of the complete design were done using Xilinx ISE

I I. I. Table 5-4 shows the synthesis results of the proposed FPGA AES encryption

core. This design is the smallest memory free FPGA implementation of the AES

encryption core to date. Comparisons with other low cost work are also listed in Table

5-4.

Table 5-4: Low Area AES Design Synthesis Results Comparisons

Chodowiec Rouvroy et Pramstaller T.Good& Picoblaze Yong Sung Jeon
This design

&Gaj [82] al [83] etal [84] M.Benaissa [80] based [80] etal [92]

Spartan II Spartan III Virtex-E Spartan II Spartan II Spartan II Spartan III
FPGA

XC2S30-6 XC3S50-4 XCVI000E XC2S15-6 XC2Sl5-6 XC2S30-6 XC3S50-5

Clock Frequency (MHz) 60 71 161 67 90 66 45.642

Data path 32 32 32 8 8 8 8

No. of Clock Cycles 44 46 92 3691 13546 352 160

Slices 222 163 1125 124 119 258 184

No. of Block RAMs 3 3 0 2 2 0 0

Block RAM Size (kbits) 4 18 0 4 4 0 0

Bits of block RAM used 9600 34176 0 4480 10666 0 0

Total Equivalent Slices 522 1231 1!25 264 452 258 184

Throughput (Mbps) 166 208 215 2.2 0.71 24 36.5

Throughput/slice (kbps/slice) 318 169 191 8.3 1.9 93 198

Summary Best - Fastest ASIP Software Smallest
speed/area

It can be seen from Table 5-4, that this design also achieves much higher throughput

than the listed 8-bit ASIP and PicoBlaze designs but is not as high as the 32-bit

designs due mainly to the narrowed data path and more clock cycles.

Table 5-5 shows the hardware and performance companson with the Helion

Company's Tiny AES core family, which are announced to be the smallest

commercial AES solutions [93]. To have a fair comparison, the proposed architecture

has been implemented on to a Spartan 6 FPGA using 32-bit LUT based shift registers

(SRL32). This design only occupies 80 slices of a Spartan 6 device with the

throughput doubled to the commercial AES core.

102

Chapter 5: Low Area Design of the AES

Table 5-5: Synthesis Results Comparisons with Industry
Products

FPGA
MAX

Slices
Block

Throughput RAM
Tiny AES Spartan 3E 30 Mbps 166 1
cores [93] Spartan 6 29 Mbps 91 0

This work
Spartan 3 36.5 Mbps 184 0
Spartan 6 58.13 Mbps 80 0

103

Chapter 5: Low Area Design of the AES

5.5 Function Testing

This design has been tested and verified using the ModelSirn based testbench. The test

vectors are provided by the official AES paper FIPS-197 [6], where the detailed step­

by-step test vectors can also be found.

104

Chapter 5: Low Area Design of the AES

5.6 Conclusions

In this chapter, a compact AES encryption core on FPGA is presented. Thanks to the

specific features brought by Spartan 3/6 FPGA platform, an AES design with the

lowest area is achieved. The low-cost implementation and moderate throughput make

this solution practically suitable for security focused low resource applications.

Although this design is for AES encryption only, it still can satisfy most applications,

for it is estimated that 25% additional area consumption will be required to add the

decryption functionality to this design.

The next chapter will look into the application of the PRNS architecture onto the

AES, especially to explore the error control capability brought by the PRNS and its

applications in the AES designs.

105

Chapter 6: Error Detecting AES using PRNS

Chapter 6
Error Detecting AES using PRNS

6.1 Introduction

A new method using PRNS is introduced in this chapter to protect the AES against

faults attacks. By using PRNS, the byte based AES operations over GF(28
) are

decomposed into several parallel operations that use its residues over smaller fields.

Three GF(24
) irreducible polynomials are selected as the moduli set for the chosen

PRNS, including a redundant modulus to achieve error detection. Three GF(24
) AES

cores are constructed individually according to the chosen moduli.

This PRNS architecture brings several advanced features to AES design from the scope

of anti-side-channel analysis. The proposed error detecting scheme can detect 100%

single bit errors and up to 4 bit errors that occur in a single GF(24
) AES core, and

93.75% multiple errors across different AES cores for each byte based operation. The

error detection mechanism is constructed using a simple XOR-AND network, which is

quite low in hardware cost. In addition, the original AES operations are distributed

across three GF(24
) AES cores, each of which has its own data path, so it adds to the

AES design built-in resistance against probing attacks. Furthermore, a unique SBox

look-up-table (LUT) is constructed for each GF(24
) AES core where redundant

information is added; hence it boosts the confusion level of the system. Detailed design

information is shown in Chapter 6.3. Two different architectures that apply PRNS to

the AES are demonstrated in this chapter, one is based on a 32-bit data path AES, the

other uses an 8-bit data path round-looping architecture to implement the AES.

106

Chapter 6: Error Detecting AES using PRNS

Hardware overhead is compared and analysed for the different architectures before the

conclusion is drawn. Error coverage analysis and comparisons with other AES error

detection schemes are given in Chapter 6.5.

107

Chapter 6: Error Detecting AES using PRNS

6.2 Review of Existing AES Error Detection Scheme

As the AES has been widely adopted for different applications, higher reliability of the

AES design is required. In recent years, numerous attacks have been introduced to

break cryptographic systems and extract secret information via side-channel-analysis

by analysing or manipulating the observations of physical characteristics of the

electronic cryptographic system. Typical examples are timing attacks [94], power

attacks [95], electromagnetic radiation attacks [96] and fault attacks [97, 98].

Prior work has shown that even a single transient error occurring during the AES round

operations will very likely result in a large number of errors in the final data [68]. In

addition, a few attack scenarios have shown that the AES is quite vulnerable to fault

attacks [68, 69, 70, 71, 72]. Hence it is necessary to provide error detection

mechanisms to the AES design to achieve higher level of reliability and security.

There are several approaches to achieve error detection for cryptographic systems.

Generic solutions are duplication and repeated computation, however these solutions

either double hardware overhead or latency and they are not protective against

permanent faults. Error detecting codes are widely used by engineers to implement

error proof designs. In [99], an overview of error detecting codes based protection

mechanisms for AES implementations can be found. There are mainly two solutions:

parity code based schemes [68, 100, 101] and residue code based schemes [102, 103].

The parity-based methods have low hardware overhead but are weak for multiple

faults detection; the residue code based error detection schemes have good multiple

faults coverage but are weak in single fault detection and become very complicated

and hardware consuming when predicting the residue codes for non-linear operations

such as the SubBytes operation in the AES.

108

Chapter 6: Error Detecting AES using PRNS

6.3 PRNS based Error Detection AES

6.3.1 Top Architecture and PRNS Representation

To implement the PRNS architecture, three GF(24
) AES cores are individually

constructed. They perform the AES transformations (both round transformations and

key generation) using the original data's residue representation. According to PRNS

theory, an arbitrary GF(28
) element can be uniquely represented using its two GF(24

)

residues. A redundant GF(24
) AES core is introduced to construct the illegitimate range

for error detection (see Chapter 4.2). The error detection mechanism converts the

residue representation back to normal representation and performs the overflow

detection.

Apart from the non-linear SubBytes transformation, the only operation that has the

potential of exceeding the dynamic range that is covered by the given PRNS, among

all the AES transformations is the MixColumn transformation, where it contains

multiplying by constant 02HEX and 03HEX operation over GF(28
) for the AES

encryption. A clever approach is introduced in Chapter 6.3.3 to achieve the overflow

prediction for the MixColumn transformation using partial conversion method that has

been introduced in Chapter 3.3. To avoid the non-linear transformation and the

conversion to-and-from PRNS representation, the SubBytes transformation over PRNS

is implemented using LUT approach, the detailed information will be given m

Chapter 6.3.2. The top architecture of the proposed design is shown in Figure 6-1.

109

Chapter 6: Error Detecting AES using PRNS

GF(24)

AES core

I
Core communication

Error
Detection

GF{24) GF(24)

AES core ---------• AES core

II ill

Figure 6-1: Top Architecture of the PRNS based AES

The PRNS representation of the original data is used for each AES core. Irreducible

polynomials m1 : x 4 + x + 1, m 2 : x 4 + x 3 + 1 and m3 : x 4 + x 3 + x 2 + x + 1 are

selected to compute the residues for each core. So each byte in the original block is

represented using three residues. After the modular operation, the original 128-bit

block becomes three 64-bit blocks. Each 64-bit block is processed by a GF(24
) AES

core. An example is demonstrated in Figure 6-2.

00 44 88 cc
11 55 99 DD

22 66 AA EE

33 77 88 FF

~Q 0,,-

x'), + +,, "' X

><+" +x+ + .,
><+.,, X

o°' "O "+.
~ a x-,,

E

0 8 3 8 0 8 F 4 0 6 C A

2 A 1 9 8 3 7 C E 8 2 4

4 C 7 F 9 2 6 D 3 5 F 91

6 E 5 D 1 A E 5 D 8 1 7

Figure 6-2: State Block in PRNS Representation

110

Chapter 6: Error Detecting AES using PRNS

6.3.2 SubBytes Transformation using PRNS

SubBytes transformation is the only non-linear operation in the AES, which computes

the multiplicative inverse of each byte of the state block followed by an affine

transformation. It is very expensive in hardware if it is computed directly in PRNS

form; therefore a judicious LUT approach is adopted to implement SubBytes (Sbox)

for the proposed design. Each AES core contains a unique Sbox LUT. It is constructed

by firstly generating the original Sbox's residue representation according to the

selected irreducible polynomial, then re-arranging each entry's location in the table

according to the new address to form a new table. Each table has 256 entries, each of

which contains a 4-bit word. In the selected redundant PRNS, each 8-bit word is

represented using three 4-bit residues. Due to the existence of the redundant residue,

any two residues from the three-residue representation can uniquely represent an 8-bit

word. Each Sbox LUT uses two residues as its address.

Here is an example to demonstrate how this table-look-up method works:

SubBytes([AA]) = [AC]

This result is looked up from the original offical Sbox in Table 5-2, where [AA] and

[AC] is normal hex decimal numbers. The PRNS representation of [AA] is (7, 6, F).

Now we use its residues as address for table look up:

TABLE !(6,7) = 1,TABLE II(F,6) = O,TABLE Il/(7,F) = 9

So, in the selected PRNS,

SubBytes(7, 6, F) = (1, 0, 9)

111

Chapter 6: Error Detecting AES using PRNS

If the result (1, 0, 9) is converted back to its normal representation usmg SRC

algorithm, the result is equal to [AC], which is the same as the result from the original

Sbox, indicating the validity of the proposed PRNS Sbox LUT.

Table 6-1: Sbox over GF(24
) x4 + x + 1 for Core I

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 9 9 2 F D B B 5 B F 0 1 4 3 F 9
1 D 5 9 0 9 3 4 F 4 F 6 0 4 8 9 1
2 A 2 E 5 A 4 6 C 2 4 D 6 6 D F 8
3 F 0 0 2 0 1 B 1 2 F E 1 C E 1 0
4 8 3 6 5 0 5 C D D 6 4 7 5 0 9 F
5 4 2 2 7 7 1 2 5 4 0 3 E C 5 6 4
6 A B 7 E D E 5 1 7 0 C C 7 7 E C
7 E F 4 E D 3 8 2 1 9 8 A 2 B 5 B
8 2 7 9 3 A 0 F 4 5 5 8 D 5 0 8 B
9 8 D F D B A 1 9 6 1 5 C B A 3 3
A 4 8 7 6 7 3 2 F D 4 D 2 4 7 7 7
B 3 E 0 C 8 5 9 E 8 3 3 D 1 C 8 D
C 8 B 9 F E 0 6 9 E 6 3 C C 1 B 9
D 5 7 B B C 2 6 8 D E C 8 7 3 A E
E 2 A A A 2 B 1 0 A A 4 6 A 8 6 F
F 1 6 3 3 6 B C 7 1 A E C 9 9 A F

Table 6-2: Sbox over GF(24
) x4 + x3 + 1 for Core II

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 7 9 E 9 A D 8 1 7 6 7 3 7 7 1 E
1 5 1 9 7 D 9 6 F 6 5 5 2 3 8 9 E
2 6 B A 9 8 C 8 D D 7 C A 5 8 8 9
3 E F 3 6 1 2 9 D E D F 1 0 A 4 C
4 8 A 3 2 8 9 5 5 7 C E 2 9 0 D 3
5 B 6 1 E 3 F C 2 C 1 8 5 3 1 E 4

6 5 2 2 8 E A B B F 1 7 2 4 B 0 A
7 C 1 F 2 F F A D 7 5 A B B D 8 4

8 C B 9 6 5 7 C 5 2 C B 0 E D A 2
9 F D B 6 6 4 9 D 3 1 B D 0 3 2 8
A B D 2 4 4 4 1 4 E 0 3 A F 3 3 6
B 4 6 7 0 0 8 9 8 E D F 0 A 0 4 6
C 8 4 9 1 3 2 9 0 A F 0 4 4 7 A C
D 3 B 5 6 A 7 5 C E 0 1 1 F 6 B 5
E B A 4 2 C E E 6 5 E 7 1 D 3 7 F
F 4 C 0 F 0 3 0 C 6 2 9 5 F C 8 B

112

Chapter 6: Error Detecting AES using PRNS

Table 6-3: Sbox over GF(24
) x4 + x3 + x2 + x + 1 for Core III

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 0 9 4 B C 0 F E 2 D D 1 A 8 3
1 E 0 9 5 6 8 A 6 3 A 7 D 3 F 2 4
2 E 2 B 3 E 8 6 0 8 1 5 7 E 2 6 E
3 B 8 3 7 1 3 3 6 5 4 1 3 2 0 E C
4 C 7 0 8 A F 7 7 8 C F F A 4 0 1
5 F D 7 A 4 8 3 4 0 5 6 5 D 4 4 B
6 F D F B D B C 4 F 0 4 F 5 5 1 D
7 5 A B B 2 9 0 3 7 9 5 2 2 1 2 9
8 6 F C 6 A 2 4 B E E 6 3 C 6 1 F
9 3 B C F 7 7 C D F 1 5 B C C A 0
A 3 9 1 9 7 C D 2 4 D 4 7 E D 9 B
B 8 2 8 5 B 5 5 8 5 1 9 A 1 3 2 C
C 6 2 9 8 C D 1 D 9 6 8 2 6 0 A 3
D B E 6 7 1 7 7 9 9 E 9 8 8 E B 0
E D C 1 A A 5 A 1 6 A 0 D 8 B E 4
F 2 5 3 7 4 9 F 4 0 9 6 E C E F A

It can be noticed that, in this approach, all the table look up operations are done by

using PRNS representations as addresses, and the results form the SubBytes

transformation are in PRNS as well. Thus, no conversion circuit is needed; this can

also lower the potential of information leaking from the conversion circuit.

Three LUTs are operated individually in parallel. Attackers need to trace the

information from at least two tables to obtain enough information, thus this adds more

difficulties to crack the system.

Furthermore, as it can be seen from the contents repetitively in the tables, even if an

attacker obtains the LUT output, it is not easy for the attacker to trace the input

address, because there are several different entries with the same value. Hence, the

PRNS Sbox has higher level of confusion compared with the original Sbox LUT. It

enhances the security level of the proposed architecture.

113

Chapter 6: Error Detecting AES using PRNS

6.3.3 MixColumn Transformation using PRNS

MixColumn transformation can be seen as a matrix multiplication operation. It

contains a few multiplying by constant x and x + 1 operations. It is easy to

implement these operations in normal weighted polynomial representation, however,

as the dynamic range that is covered by the selected PRNS is only 8-bit for this design

(not including the redundant modulus, which is used for error detection), overflow

may occur and a modular reduction over GF(28
) using the field generating

polynomial m(x) = x 8 + x 4 + x 3 + x + 1 is needed to correct the result.

Here introduces a clever way of implementing the multiplication by x and x + 1

operations to avoid complicated conversion between PRNS and normal representation

and restrict the operations to the dynamic range that is covered by the chosen PRNS.

This approach adopts the partial conversion method that has been described in

Chapter 3 .3.

The main idea is derived from the observation that the highest possible degree of a

GF(28
) element that is multiplied by x and x + 1 will be 8, which indicates the

possible overflow will be 1 bit only. The overflow can be predicted directly from the

operand before the multiplication is done. Only if the highest degree of the operand is

equal to 7, after the multiplication, the highest degree will exceed 7 and cause

overflow. The prediction mechanism partially converts the MSB, which is the highest

degree bit, from the PRNS representation to determine if a modular reduction over

GF(28
) is needed.

Taking multiplying by x as an example:

114

Chapter 6: Error Detecting AES using PRNS

and its PRNS representation (A1)m
1

, (A2)m
2

, (A 3)m
3

, the multiplication is performed

as follows:

Where m 1 : x
4 + x + 1, m 2 : x

4 + x 3 + 1, m 3 : x 4 + x 3 + x 2 + x + 1 and

m: x 8 + x4 + x 3 + x + 1

(a7X 7 + a6x6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + ll1X + ao). X mod m (1)

[a7x 8 + (a6x6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + ll1X + ao) "x]mod m

(a7x 8 mod m) + (a6x 6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + a1X + ao) · X

la7(x4 + x3 + x + l)j<D

+ I (a6x6 + a 5x
5 + a 4 x

4 + a 3 x
3 + a2x 2 + a1x + a0) · xt~l

From the above equation, none of CD and ~ will exceed the defined dynamic range,

and the addition over binary field will not cause over flow, so it can be computed

correctly using the selected PRNS.

In the PRNS, taking the field GF(24
) defined by m1 : x 4 + x + 1 as an example (in this

field x 7 = x 4 + x + 1, which will be used in the following equation transformations),

after the conversion to the PRNS using mi, equation (1) yields:

(2)

~: (a6x 6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + ll1X + ao) "X mod m1

= (a7x 7 + a6x6 + ll5X
5 + ll4X

4 + ll3X
3 + llzX

2 + ll1X + ao + ll7X7) "X mod m1

={[(A+ a7 x 7) • x] mod m 1 }

(3)

115

Chapter 6: Error Detecting AES using PRNS

Using equation (2) and (3), the multiplying by x operation can be done using PRNS

without causing any overflow. It is only required to convert one bit to normal

representation. Using the partial conversion method simplifies the calculation of a7 ,

because there is no carry effect over binary fields.

Multiplying by x + 1 operation can apply the same method, because it generates the

same overflow as multiplying by x operation.

6.3.4 Other Transformations using PRNS

Both ShiftRow and AddRoundKey are linear operations and will not cause any

overflow problems, so can be implemented using PRNS directly. The round constant

Reon for the proposed PRNS architecture is generated from the normal Reon

generation over GF(28
) followed by a to PRNS conversion.

6.3.5 Error Detecting Mechanism

Error detection performs the SRC algorithm using partial conversion method followed

by overflow detection. For one byte, the overflow only occurs in the most significant

4 bits, so only partial conversion is needed. Partial conversion brings several

advantages to the design. It lowers the potential of leaking information, simplifies the

conversion circuit and saves hardware resources. The detailed partial conversion

method is demonstrated in Chapter 3.3. Overflow detection checks ifthere are '1 's in

the most significant 4 bits, a simple 4-bit AND gate can be used for this.

116

Chapter 6: Error Detecting AES using PRNS

6.4 Design of GF(24) AES Core

6.4.1 32-bit Data Path AES using PRNS

The first attempt of constructing an AES encryption core using PRNS architecture

adopts a 32-bit data path and column transformation based approach to trade-off

hardware consumption and throughput. Due to the use of a PRNS representation, each

GF(24
) AES core uses a 16-bit data path. The architecture introduced in [104] is

adopted.

Key in 16-bit bus

Data in

To Error Detection

Sbox Key out

Figure 6-3: GF(24
) AES Encryption Core Architecture for 32-bit Data Path

The encryption core mainly consists a StateRAM, Sbox, Mixcolumn and several

XORs for AddRoundKey transformation. The StateRAM is constructed using four

8x4bit dual-port RAM, where address is individually generated in order to perform

the ShiftRow transformation. The Sbox contains four PRNS Sbox LUTs, which can

perform SubBytes transformation for a column. Sbox is also shared with the

117

Chapter 6: Error Detecting AES using PRNS

KeyExpansion. To process a block plaintext for a round, it needs four cycles to finish

SubBytes and ShiftRow operations and another four cycles to perform MixColumn

and AddRoundKey. The design of the 32-bit MixColumn applies the substructure

sharing method that has been introduced in [79].

Key in

K yout

Figure 6-4: GF(24
) AES KeyExpansion Architecture for 32-bit Data Path

The KeyExpansion uses an on-the-fly approach to generate round keys. StateA RAM

and StateB RAM are the same size, each of which contains four 4x4bit RAM. New

round key is generated in four cycles during the SubBytes operation and stored in

StateA RAM. During the AddRoundKey transformation, the round key is sent to the

encryption core column by column; at the same time, the round key is transferred to

StateB RAM preparing to generate the key for the next round. At the beginning of

each round operation, an extra cycle is needed by KeyExpansion to perform SubBytes

transformation for roundkeys.

In the proposed 32-bit PRNS AES, four conversion circuits work in parallel to detect

the errors for four bytes (32-bit) in one column.

118

Chapter 6: Error Detecting AES using PRNS

6.4.2 8-bit Data Path AES using PRNS

The second attempt to implement the error detection AES using PRNS adopts a low

area iterative round-looping architecture with an 8-bit data path that has been

introduced in Chapter 5.

to_ error_ detection

text_in

round_key

key in -)
last_key

Figure 6-5: GF(24
) AES Encryption Core Architecture for 8-bit Data Path

It mainly consists of five sub-function blocks: ShiftRow, Sbox, MixColumn,

KeySchedule and the input Delay (Figure 6-5). The data path for this core is 4-bit.

The error detection is performed after the ShiftRow transformation.

In this architecture, apart from the Sbox, which is constructed using the proposed

PRNS table look up method, the rest blocks are using the same architecture that has

been introduced in Chapter 5.

119

Chapter 6: Error Detecting AES using PRNS

6.5 Hardware Implementation and Results

Table 6-4 shows the synthesis results of the proposed PRNS error detection AES. To

the authors' knowledge, this is the first attempt for the AES design using such PRNS

error detection scheme. To enable a fair comparison, a normal 32-bit AES and a normal

8-bit AES, which adopts the same architecture as the PRNS core design, are

implemented onto the same platform (Xilinx Spartan 3-3s1500fg320-4 FPGA).

Comparisons are listed below:

Table 6-4: PRNS Error Detection AES Synthesis Results

LUT LUT
Max.

AES Design Slices used for used for
Frequency

Logic RAM
32-bitAES 590 1190 160 103.595MHz

32-bit
Non-redundant PRNS 711 1345 160 101.204MHz

AES
32-bit Redundant PRNS

1068 2095 240 103.767MHz
AES

8-bitAES 243 466 0 62.344MHz
8-bit Redundant PRNS

385 739 0 51.794MHz
AES

It can be seen from the above table, as expected, due to the use of the same architecture

for the PRNS cores, the PRNS designs achieve similar operating frequency to the

normal AES designs. The maximum operating frequency in the 32-bit PRNS AES that

is slightly higher than the normal 32-bit AES design is due to different routing delays

of the FPGA implementation. The operating frequency of the 8-bit PRNS AES design

is lower than the normal AES is mainly because the PRNS conversion and error

detection circuits add extra logic to the critical path, therefore increase the maximum

combinational delay, and lower the frequency. In terms of added hardware overhead,

the 32-bit PRNS AES design adds 81 % overhead and the 8-bit PRNS AES adds about

120

Chapter 6: Error Detecting AES using PRNS

58% overhead compared with the standard AES, which is quite acceptable for a

multiple error detection scheme. The reason why the proposed 32-bit PRNS AES has

larger overhead percentage than the 8-bit PRNS AES is that in the 32-bit design four

conversion circuits are build to deal with 32-bit data, whereas only one conversion is

needed in the 8-bit design.

121

Chapter 6: Error Detecting AES using PRNS

6.6 Error Coverage Analysis and Comparison

For the AES byte operation, the proposed error-detecting scheme is capable of

detecting 100% single bit errors and 100% single core errors (where error occurs only

in one core, up to 4-bit multiple errors). If multiple faults occur across different cores,

the probability of detecting the error by this scheme is (only those errors that do not

cause overflow will be missed)

212 _ 2a
---=93.75% zi2

Comparisons with other error detection schemes are shown in the following Table 6-5.

As it can be seen, though having quite large hardware overhead, the advantages

brought by this design are apparent. Firstly it not only covers 100% single bit faults,

but has excellent multiple faults coverage as well; secondly, unlike those code­

predicting schemes [100, 101, 103], PRNS error detection can be performed directly

without extra predicting mechanisms, so it adds no extra clock cycles overhead.

Table 6-5: AES Error Detection Scheme Comparison

Single Multiple
Hardware Delay

Method Fault Fault
Detection Detection

Overhead Overhead

Single parity bit [100, 101] 100% no +7.4% +6.4%

Double
faults

Multiple parity bits (n= 16)[68] 100% masked +20% -
with

1 p 0(-
r,

Linear+non-linear codes [102] Weak Good +35% -
Good, Good,

Non-linear r-bit codes (r=28) missed missed
+77% +15%

[103] with with
p oc z-2r p oc z-2r

Redundant PRNS
100% 93.75% +81%

(32-bit)
-

Redundant PRNS 100% 93.75% +58%
(8-bit)

-

122

Chapter 6: Error Detecting AES using PRNS

6. 7 Conclusions

In this Chapter, the PRNS implementations of the AES have been advocated for error

detection and protection against side-channel and fault attacks. The proposed error­

detecting scheme yields very good error coverage; Furthermore, the distribution and

parallelism characteristic of a PRNS architecture itself yields intrinsic resistance to

some side-channel attacks. A proposed PRNS based Sbox implementation is believed

to offer higher level of confusion.

The PRNS architecture brings a new design methodology to implement the AES.

Besides the error detection capability, the non-error-detection PRNS AES can provide

improved side-channel-attack resistance with only 20% hardware overhead, which is

quite remarkable from the security and hardware implementation point of view. In

addition, due to the flexible selection of PRNS generating polynomials and number of

PRNS channels, random PRNS channel selection can be used to bring more

randomization and confusion to the system, which can be a strong weapon against

power analysis.

According to the attempted implementations, an 8-bit architecture offers the most

optimal option in terms of added overhead.

123

Chapter 7: Conclusions and Further Work

Chapter 7
Conclusions and Further Work

7.1 Conclusions

This thesis has concentrated on research dealing with the Polynomial Residue

Number System (PRNS) over the domain of GF(2m), for applications within the sub

domain of cryptography. The first part of the thesis focused mainly on the arithmetic

side of the PRNS implementations; in Chapter 3, the designs of the PRNS based

GF(2m) multiplier were presented. A number of different architectures spanning

different moduli types have been proposed together with the corresponding hardware

implementation results. It was found that the conversion circuit (mainly the from

PRNS conversion circuit) was the source of the main overhead in such PRNS

multiplier. To overcome this obstacle, a novel conversion and modular reduction

method has been introduced to the PRNS architecture, namely partial modular

reduction method. A new implementation of such multiplier adopting the partial

modular reduction method has been presented together with its hardware results.

From the comparison of different PRNS multiplier architectures, the partial modular

reduction method enables great reduction in the use of area and the combinational

delay, thereby improving the performance, which makes such PRNS multiplier

feasible, as shown, for extensive cryptography primitives such as ECC using curve

K-163. Chapter 4 introduced the error detection and error correction capability that is

provided by the PRNS architecture. The mathematic proof of the error detection

capability was given in the first place, followed by a detailed example and the

124

Chapter 7: Conclusions and Further Work

implementation of an 8-bit GF multiplier. The implementation details of such error

detection multiplier over GF(i 63
) also has been presented together with the error

coverage analysis. Based on the PRNS 's error detection capability, the proposed error

correction (fault tolerance) method has been introduced by adding one extra

redundant moduli to the error detection module. A detailed description of a fault

tolerant GF(2 163
) multiplier, together with its FPGA synthesis results, have been given

in Chapter 4 as a demonstration of the proposed error correction method. It was

shown from the hardware implementation results of the error detection multiplier

designs, that different combinations of number of channels and the channel length of

the PRNS architectures yield different synthesis result. For the same dynamic range,

smaller number of channels provided smaller overhead in hardware with the cost of

the increased channel length. In addition, from the error coverage analysis, it was

concluded that the increased channel length helps to improve the multiple error­

detecting rate. The implementation of the fault tolerant design has shown significant

overhead in hardware, which is mainly due to the reduplicative SRC conversion

circuits. A proposed GF(2163
) error detection multiplier and error correction multiplier

is shown to be suitable for ECC designs that require high level of security where

hardware consumption is not a main issue.

The second part of the thesis concentrated on the application side of the PRNS

implementations. The Advanced Encryption Standard (AES) algorithm has been

selected as the target application. Before applying the PRNS architecture to the AES

design, Chapter 5 presented a very low area AES design on an FPGA platform as a

reference to the PRNS based AES. By exploiting the specific features brought by

Spartan 3/6 FPGA fabric, which are the LUT based shift registers, the proposed AES

core has achieved the lowest area ever reported on an FPGA platform without using

125

Chapter 7: Conclusions and Further Work

any block memory. The design only reqmres 184 slices on a Xilinx Spartan 3

(XC3S50) device, and 80 slices on a Spartan 6 (XC6SLX4) device while achieving

throughputs of 36.5Mbps and 58.13Mbps respectively. The low-cost implementation

and moderate throughput make this solution practically suitable for security focused

low resource applications. In Chapter 6, the PRNS implementations of the AES have

been advocated for error detection and protection against side-channel and fault

attacks. The proposed PRNS error-detecting scheme, which applies the PRNS

architecture to the AES core, yields very good error coverage; furthermore, the

distribution and parallelism characteristic of a PRNS architecture itself yields intrinsic

resistance to some side-channel attacks. A proposed PRNS based Sbox

implementation is believed to offer higher level of confusion. The PRNS architecture

brings a new design methodology to implement the AES. Besides the error detection

capability, the non-error-detection PRNS AES can provide improved side-channel­

attack resistance with only 20% hardware overhead, which is quite remarkable from

the security and hardware implementation point of view. The proposed low area error

detection AES, which is based on the low area AES design that has been presented in

Chapter 5, only occupies 385 slices on a Spartan III device with the maximum

operating frequency of 51. 794MHz, which is particularly suitable for area constrained

cryptography designs, embedded systems and SoC (System on Chip) designs, when

higher level of security are required.

126

Chapter 7: Conclusions and Further Work

7.2 Further Work

The PRNS architecture over GF(2m) brings an entire new design methodology for

GF(2m) circuits and applications. There are a number of directions that can be

explored further.

• Fault Tolerant Cryptography Applications:

By adding an extra redundant channel to the proposed design in Chapter 6,

the PRNS based AES is capable of providing error correcting capability with

an estimated overhead of 1/3. Furthermore, the proposed PRNS GF(l1 63
)

fault tolerant multiplier (Chapter 4) is suitable for ECC applications using

curve K-163 over binary field to fight against fault attacks.

• Randomization and Masking for Cryptography Applications:

Due to the flexible selection of PRNS generating polynomials and number of

PRNS channels, random PRNS channel selection can be used to bring more

randomization and confusion to the system, which can be a strong weapon

against power analysis. It is possible to add redundant PRNS channels to the

target application and use the redundant channels to process trash

information. Due to the similarity of the PRNS channel constructions and the

added 'noise' by the redundant channels, this PRNS architecture with will

provide natural masking capability to the internal cryptography

transformations, by which the security of the crypto-system is enhanced. It

has to be noted that, the difficulty locates in the generation of the conversion

circuit for the randomly selected channel generating polynomials. Possible

solution may be found in the scope of software and hardware combined

architecture, where the software side pre-computes the constant values that

127

Chapter 7: Conclusions and Further Work

are needed according to the randomly selected irreducible polynomials, the

hardware side provides a generic architecture, which does not vary to

different channel selections.

• Scalable Designs:

Different combination of the number of channels and the channel length of

the PRNS architecture will provide different dynamic range coverage. This

property can be further explored for scalable designs where the same

hardware architecture is capable of dealing with altered field length. For

example, there are five curves over binary field that are recommended by the

NIST (National Institute of Standards and Technology), for field length equal

163, 233, 283, 409, and 571. It is possible to find a PRNS set to cover the

dynamic range that is provided by the largest field, and use partial of the

PRNS set to process the smaller field.

• System on Chip Designs:

The proposed low area AES design (in Chapter 5) and the low area error

detecting AES design (in Chapter 6) are suitable for low cost SoC designs that

aim to implement one or several particular crypto-protocols on a single chip.

Works can be done to find the utilities for the proposed AES cores in such

designs.

128

Chapter 8
References

Chapter 8: References

[1] M. C. Yang, J. L. Wu. "A New Interpretation of Polynomial Residue Number

System," IEEE Transactions on Signal Processing. Vol.42, No.8, August 1994.

[2] J. Chu, "Public Key Cryptography using Residue Number Systems on FPGA,"

MSc dissertation, The University of Sheffield, Sheffield, UK, 2007.

[3] M. Ciet, M. Neve, E. Peeters, J. Quisquater, "Parallel FPGA implementation

of RSA with Residue Number Systems: can side-channel threats be avoided?" IEEE

Midwest Symposium on Circuits and Systems, Dec. 2003, Egypt.

[4] M. G. Parker and M. "Benaissa, Fault-Tolerant Linear Convolution using

Residue Number Systems," Proc of ISCAS'94, London, Vol 2, pp 441-445, May 1994.

[5] S. B. Wicker, Error Control Systems for Digital Communication and Storage,

Prentice-Hall International, 1995, ISBN: 0132008092.

[6] National Institute of Standards and Technology (NIST), Advanced Encryption

Standard (AES) Federal Information Processing Standards Publication 197 (FIPS

PUB 197), Nov. 2001.

[7] National Institute of Standards and Technology (NIST), Digital Signature

Standard (DSS) Federal Information Processing Standards Publication 186 (FIPS

PUB 186-3), June. 2009.

[8] R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley,

Reading, Massachusetts, 1985

[9] C. C. Wang, D. Pei, "A VLSI design for computing exponentiation in GF(2m)

129

Chapter 8: References

and its application to generate pseudorandom number sequences." IEEE Transactions

on Computers, C-39(2):258-262. Feb. 1985.

[1 0] T. A. Gulliver, M. Serra, V. K. Bhargava, "The generation of primitive

polynomials in GF(q) with independent roots and their application for power residue

codes, VLSI teasing and finite field multipliers using normal bases." Int. J

electronics, 71(4):559-576, 1991.

[11] L. Rudolf, N. Harald, Finite Fields (2nd ed), Cambridge University Press,

1997, ISBN 0-521-39231-4.

[12] W. M. Lim, "Design of Application Specific Instruction Set Processors for the

Domain of GF(2m)," PhD thesis, The University of Sheffield, Sheffield, UK, 2004.

[13] E. Mastrovito, "VLSI Architectures for Computations in Galois Fields," Ph.D

thesis, Linkoeping University, Linkoeping, Sweden, 1991.

[14] C. Paar, "Efficient VLSI architecture for bit-parallel computations in Galois

field," Ph.D. dissertation, Institute for Experimental Mathematics, University of

Essen, Essen, Germany, 1994.

[15] P. A. Scott, S . E. Tavares, and L. E. Peppard, "A fast VLSI multiplier for

GF(2m)," IEEE J Select. Areas Commun., vol. SAC-4, pp. 62-66, Jan. 1986.

[16] C. Y. Lee, C. W. Chiou, J. M. Lin and C. C. Chang, "Scalable and systolic

Montgomery multiplier over GF(2m) generated by trinomials," JET Circuits Devices

Syst., 2007, 1, (6), pp. 477-484

[17] Jain, S.K. Parhi, K.K., "Low latency standard basis GF(2m) multiplier and

squarer architectures," JCASSP-95, May 1995, Detroit, MI, USA.

[18] C. Paar, "A New Architecture for a Parallel Finite Field Multiplier with Low

Complexity Based on Composite Fields," IEEE Transactions on Computers, Vol. 45,

No. 7, July 1996.

130

Chapter 8: References

[19] H. Wu, M.A. Hasan, "Low Complexity Bit-Parallel Multipliers for a Class of

Finite Fields," IEEE Transactions on Computers, Vol. 47, No.8, pp. 883-887, 1998.

[20] H. Wu, "Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial

Basis," IEEE Transactions on Computers, Vol. 51, No.7, July 2002.

[21] G. Orlando, C. Paar, "A super-serial Galois fields multiplier for FPGAs and its

application to public-key algorithms," FCCM 1999, Napa Valley, CA, USA. April

1999

[22] L. Song, K. K. Parhi, "Low-Energy Digit-Serial/Parallel Finite Field

Multipliers," Journal of VLSI Signal Processing, Vol. 19, pp. 149-166, 1998

[23] G. Orlando, C. Paat, "Squaring architecture for GF(2m) and its applications in

cryptographic systems," Electronics Letters, Vol. 36, No. 13, June 2000 .

[24] H. Eberle, A. Wander, N. Gura, S. Chang-Shantz, "Architectural extensions for

elliptic curve cryptography over GF(2m)," July 2004, Available at:

https ://research. sun.corn/ sunlabsday / docs.2004/Micro. pdf

[25] H. Brunner, A. Curiger, and M. Hofstetter, "On computing multiplicative

inverses in GF(2m)," IEEE Transactions on Computers, Vol. 42, No. 8, pp. 1010-

1015, 1993.

[26] J. Wang and A. Jiang, "An Area-Efficient Design for Modular Inversion in

GF(2m)," IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp.

1496-1499, 2006.

[27] C. K. Koc, T. Acar, "Montgomery multiplication in GF(2k)," Designs, Codes

and Cryptography, 14(1):57-69, April 1998.

[28] P. L. Montgomery, "Modular multiplication without trial division,"

Mathematics of Computation, 44(170): 519-521, April 1985.

131

Chapter 8: References

[29] H. Wu, "Montgomery Multiplier and Squarer in GF (2m)," Proceedings of the

Second International Workshop on Cryptographic Hardware and Embedded Systems,

2000, ISBN: 3-540-41455-X.

[30] F. J. Taylor, "Residue arithmetic: a tutorial with examples," Computer, Vol 17,

No. 5, pp.50-63, May 1984.

[31] L. L. Yong, A. T. Se, Fleeting Footsteps: tracing the conception of arithmetic

and algebra in ancient China (Revised edition), Singapore, River Edge NJ: World

Scientific Publishing Co., 2004.

[32] M. A. Soderstrand, et al., Residue Number System arithmetic: modern

applications in digital signal processing, New York: IEEE Press, 1986.

[33] A. Svoboda, M. Valach, "Operational Circuits," Stroje na Zpracovani

Informaci, Sbomik III, Nakl. CSAV, Prague, 1955, pp.247-295.

[34] D. M. Schinianakis, A. P. Kakarountas, T. Stouraitis, "A new approach to

elliptic curve cryptography: an RNS architecture," IEEE MELECON 2006, May 16-

19, Benalmadena (Malaga), Spain.

[35] A. P. Riyaz, "A study and implementation of parallel-prefix modular adder

architechtures for the Residue Number System," Ph.D. dissertation, The University of

Sheffield, Sheffield, UK, 2006.

[36] J. C. Bajard, L. Imbert, P. Y. Liardet, "Leak resistant arithmetic," LIRMM,

Tech. Rpt. No. 03021. Oct. 2003.

[37] N. S. Szabo, R. I. Tanaka, Residue arithmetic and its applications to computer

technology, New York: McGraw Hill, 1967.

[38] B. Parhami, Computer arithmetic: algorithms and hardware designs, Oxford:

Oxford University Press, 2000.

132

Chapter 8: References

[39] W. K. Jenkins, Handbook for digital signal processing, ed. S. K. Mitra and J.

F. Kaiser. NY: John Wiley & Sons, Inc., 1993

[40] T. V. Vu, "Efficient implementation of the Chinese remainder theorem for sign

detection and residue decoding," IEEE Transactions on Computers, Vol. C-34, No.7,

pp. 646-51, Jui. 1985.

[41] S. J. Piestrak, "Design of high-speed residue-to-binary number system

converter based on Chinese Remainder Theorem," in Proc. IEEE lnt. Conf. Comput.

Design (ICCD 1994), Cambridge, MA USA, pp. 508-511, Oct. 1994.

[42] A. D'Amora, et al, "Reducing power dissipation in complex digital filters by

using the quadratic residue number system," in Conf. Record IEEE 34th Asif. Conf.

Signals, Syst. Comput. (ACSSC 2000), Vol. 2, Pacific Grove, CA USA, pp. 879-83,

Oct-Nov. 2000.

[43] W. L. Freking, K. K. Parhi, "Low-power FIR digital filters using residue

arithmetic," Conf Record IEEE 31th Asif. Conf Signals, Syst. Comput. (ACSSC

1997), Vol. I, Pacific Grove, CA USA, pp. 739-43, Nov. 1997.

[44] T. Stouraitis, V Paliouras, "Considering the alternatives in low-power design,"

IEEE Circuits Devices Mag., Vol. 17, No. 4, pp. 22-9, Jui. 2001.

[45] A. Skavantzos, F. J. Taylor, "On the Polynomial Residue Number System,"

IEEE Transctions on Signal Processing, Vol. 39, No. 2, February 1991.

[46] M. G. Parker, M. Benaissa, "GF(pm) multiplication using polynomial residue

number systems," IEEE Transactions on Circuit and Systems II: Analog and Digital

Signal Processing, Vol.42, No. 11, pp. 718-721, 1995.

[4 7] A. Skavantzos, T. Stouraitis, "Polynomial Residue Complex Signal

Processing," IEEE Transactions on Circuits and Systems -11, Vol 40, No 5, pp. 342 -

344, May 1993.

133

Chapter 8: References

[48] A. Halbutogullari, C. K. KOC, "Parallel multiplication m GF(2k) usmg

polynomial residue arithmetic," Designs, Codes and Cryptography, Vol. 20 No. 2, pp.

155-173, June 2000.

[49] P. J. Ashenden, The Designer's Guide to VHDL, Morgan Kaufmann, 1996,

ISBN: 1558602704

[50] D. L. Perry, VHDL, 3rd Edition ed, Computer Science Series. New Delhi:

McGraw-Hill International Editions, 1999.

[50] Mentor-Graphic, "ModelSim", Available at: http://www.model.com/

[51] Irreducible and primitive polynomials over GF(2), Available at:

http ://fchabaud. free. fr/English/ default. php ?CO UNT=2&FILE0= Poly &FILE 1 =G F (2)

[52] Y. Han, P. C. Leong, P. C. Tan, J. Zhang, "Fast algorithms for elliptic curve

cryptosystems over binary finite field," In Advances in Cryptology -

ASIACRYPT '99, LNCS 1716, pp. 75-85. SpringerVerlag, 1999.

[53] M.A. Hasan, "Look-up table-based large finite field multiplication in memory

constrained cryptosystems," IEEE Transactions on Computers, 49(7):749-758, July

2000.

[54] J. C. Lopez Hernandez, R. Dahab, "High-speed software multiplication in IF

(2m)," In Progress in Cryptology - INDOCRYPT 2000, LNCS 1977, pp. 203-212,

Springer Verlag, 2000.

[55] N. P. Smart, "A companson of different finite fields for elliptic curve

cryptosystems," Computers and Mathematics with Applications, 42(1-2):91-100, July

2001.

[56] S. V. Bharathwaj, K. L. Narasimhan, "An alternate approach to modular

multiplication for finite fields GF(2m) using Itoh Tsujii algorithm," IEEE-NEWCAS

Conference, pp. I 03-105, June 2005.

134

Chapter 8: References

[57] M. Hutter, J. GroBschadl and G. A. Kamendje, "A Versatile and Scable Digit­

Serial/Parallel Multiplier Architecture for Finite Field GF(2m)," The International

Conference on Information Technology: Computers and Communications, 2003.

[58] N. S. Chang, C. H. Kim, Y. H. Park, and J. Lim, "A Non-Redundant and

Efficient Architecture for Karatsuba-Ofman Algorithm," In Information Security, 8th

International Conference, /SC 2005, Singapore, September 20-23, 2005, Proceedings,

Vol. 3650 of Lecture Notes in Computer Science, pages 288-299. Springer, 2005.

[59] S. Erdem, C. K. Koc, "A Less Recursive Variant of Karatsuba-Ofman

Algorithm for Multiplying Operands of Size a Power of Two," In 16th IEEE

Symposium on Computer Arithmetic (Arith-16 2003), Santiago de Compostela, Spain,

pp. 28-35, 15-18 June 2003.

[60] F. Rodnguez-Hennquez, C. K. Koc, "Parallel Multipliers Based on Special

Irreducible Pentanomials," IEEE Transactions on Computers, 52(12):1535-1542,

2003.

[61] V. Serrano-Hernandez, F. Rodnguez-Hennquez, "An FPGA Evaluation of

Karatusba-Ofman Multiplier Variants (in spanish)," Technical Report

CINVESTAV COMP 2006-2, 12 pages, Computer Science Department

CINVESTAVIPN, Mexico, May 2006.

[62] D. Boneh, "On the importance of eliminating errors m cryptographic

computations," J Cryptol., 2001, 14, pp. 101-119.

[63] M. Ciet, M. Joye, "Elliptic curve cryptosystems in the presence of permanent

and transient faults", Des. Codes Cryptogr., 2005, 36, pp. 33-43.

[64] I. Biehl, B. Meyer and V. Muller, "Differential Fault Attacks on Elliptic Curve

Cryptosystems," Lecture Notes In Computer Science; Vol.1880. Proceedings of the

20th Annual International Cryptology Conference on Advances in Cryptology, 2000,

pp.131-146.

135

Chapter 8: References

[65] M. A. Reyhani, M. A. Hasan, "Fault detection architectures for field

multiplication using polynomial bases", IEEE Transactions on Computers, 2006, 55,

pp.1089-1103.

[66] W. Chelton, M. Benaissa, "Concurrent error detection in GF(2m)

multiplication and its application in elliptic curve cryptography," Circuits, Devices &

Systems, IET, Vol.2, Issue:3, June 2008, pp. 289-297.

[67] C. Y. Lee, C. W. Chiou, J.M. Lin, "Concurrent error detection in a polynomial

basis multiplier over GF(2m)", J Electron. Test., Theory Appl., 2006, 22, pp. 143-150.

[68] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri "Error Analysis and

Detection Procedures for a Hardware Implementation of the Advanced Encryption

Standard", IEEE Transactions on Computers, Vol. 52, No. 4, pp. 492-505, Apr. 2003.

[69] C. N. Chen, S. M. Yen S, "Differential fault analysis on AES key schedule and

some countermeasures," In Proceedings of the ACISP 2003, LNCS, Vol. 2727, pp.

118-129, 2003.

[70] P. Dusart, G. Letourneux, 0. Vivolo, "Differential Fault Analysis on AES,"

Cryptology ePrint Archive: Report 2003/010 (2003).

[71] C. Giraud, "DFA on AES," Proceedings of the AES 2004, LNCS, Vol. 3373,

pp. 27-41 (2005).

[72] D. Peacham, B. Thomas, "A DFA attack against the AES key schedule,"

Si Venture, 2006, Available on:

http://www.siventure.com/pdfs/ AES_ KeySchedule _ DFA_ whitepaper.pdf (2006).

[73] M. H. Etzel, W. K. Jenkins, "Redundant Residue Number Systems for Error

Detection and Correction in Digital Filters," IEEE Transactions on Acoustics, Speech

and Signal Processing, Vol. ASS-28, No 5, pp. 538-544, October 1980.

[74] S. Pontarelli, G. C. Cardarilli, M. Re, A. Salsano, "A Novel Error Detection

and Correction Technigue for RNS based FIR Filters", IEEE International Symposium

136

Chapter 8: References

on Defect and Fault Tolerance of VLSI Systems, 2008.

[75] P. Hamalainen, T. Alho, M. Hannikainen, T. D. Hamalainen, "Design and

Implementation of Low-Area and Low-Power AES Encryption Hardware Core," in

Proc. DSD, 2006, pp.577-583.

[76] IEEE. IEEE Standard for Local and Metropolitan Area Networks-Part 15.4:

Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications

for Low- Rate Wireless Personal Area Networks (LR-WPAN), 2003. IEEE Std

802.15.4.

[77] IEEE. IEEE Standard for Local and Metropolitan Area Networks-Specific

Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications-Amendment 6: Medium Access Control (MAC)

Security Enhancements, 2004. IEEE Std 802.11 i.

[78] ZigBee Alliance. ZigBee Specification Version 1.0, Dec. 2004.

[79] X. Zhang, K. K. Parhi, "High-speed VLSI architectures for the AES

algorithm," IEEE Transactions on VLSI Systems, Vol. 12, Iss. 9, pp. 957 - 967, Sept.

2004.

[80] T. Good, M. Benaissa, "AES on FPGA from the Fastest to the Smallest,"

Lecture Notes in Computer Science, Vol. 3659, pp. 427-440, Sep. 2005.

[81] P. Hamalainen, M. Hannikainen, and T. Hamalainen, "Efficient hardware

implementation of security processing for IEEE 802.15 .4 wireless networks," in Proc.

48th IEEE Int. Midwest Symp. on Circuits and Systems (MWSCAS 2005), pp. 484-

487, Cincinnati, OH, USA, Aug. 7-10, 2005.

[82] P. Chodowiec, K. Gaj, "Very compact FPGA implementation of the AES

algorithm," in Proc. 5th Int. Workshop on Cryptographic Hardware and Embedded

Systems (CHES 2003), pages 319-333, Cologne, Germany, Sept. 8-10, 2003.

137

Chapter 8: References

[83] G. Rouvroy, F. X. Standaert, J. J. Quisquater, J. D. Legat, "Compact and

efficient encryption/decryption module for FPGA implementation of the AES

Rijndael very well suited for small embedded applications," Procedings of the

international conference on Iriformation Technology: Coding and Computing 2004

(ITCC 2004), pp. 583 - 587, Vol. 2, April 2004.

[84] N. Pramstaller, S. Mangard, S. Dominikus, and J. Wolkerstorfer, "Efficient

AES implementations on ASICs and FPGAs," In Proc. 4th Conf. on the Advanced

Encryption Standard (AES 2004), pp. 98-112, Bonn, Germany, May 10-12, 2005.

[85] Xilinx. Using Look-Up Tables as Shift Registers (SRL16) m Spartan-3

Generation FPGAs. Available on:

www.xilinx. corn/support/ documentation/application_ notes/xapp465. pdf (2005)

[86] Xilinx. Spartan-6 FPGA Configurable Logic Block User Guide. Available on:

http:/ /www.xilinx.com/ support/ documentation/user _guides/ug3 84. pdf

[87] E. Trichina, "Combinational logic design for AES Subbyte transformation on

masked data," Available on: http://eprint.iacr.org/2003/236.pdf.

[88] A. Satoh, S. Morioka, K. Takano, S. Munetoh, "A Compact Rijndael Hardware

Architecture with S-Box Optimization," Proceedings of ASIACRYPT 2001, LNCS

Vol. 2248, pp. 239 - 254, Springer-Verlag, December 2001

[89] S. Farhan, S. Khan, H. Jamal, "Mapping of high-bit algorithm to low-bit for

optimized hardware implementation," In Proc. 16th IEEE Int. Conf. on

Microelectronics (ICM 2004), pp. 148-151, Tunis, Tunisia, Dec. 6-8, 2004.

[90] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, "Strong authentication for

RFID systems using the AES algorithm," In Proc. 6th Int. Workshop on

Cryptographic Hardware and Embedded Systems (CHES 2004), pp. 357-370, Boston,

MA, USA, Aug. 11-13, 2004.

[91] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, "AES implementation on a

138

Chapter 8: References

grain of sand," IEEE Proc. Inf Secur., 152(1):13-20, 2005.

[92] Y. S. Jeon, Y. J. Kirn, D. H. Lee, "A Compact Memory-Free Architecture for

the Aes Algorithm Using Resource Sharing Methods," Journal of Circuits, Systems,

and Computers, Vol. 19, No. 5, pp. 1109, 2010.

[93] Helion. Tiny AES Cores. Available on:

http:/ /www.heliontech.com/aes _ tiny.htrn

[94] P. C. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems," in Advances in Cryptology, CRYPTO '96, LNCS 1109.

Springer, 1996, pp. 104-113.

[95] P. C. Kocher, J. Jaffe, B. Jun, "Differential Power Analysis," in Advances in

Cryptology, CRYPTO '99, LNCS 1666. Springer, 1999, pp. 388-397.

[96] K. Gandolfi, C. Mourtel, F. Oliver, "Electromagnetic analysis: concrete

results," Proc. Cryptographic Hardware and Embedded Systems: CHES 2001, Vol.

2162 of Lecture Notes in Computer Science, pp. 251-261, Springer-Verlag, 2001.

[97] E. Biham, A. Shamir, "Differential Fault Analysis of Secret Key

Cryptosysterns," in Advances in Cryptology, CRYPTO '97, LNCS 1294. Springer,

1997, pp. 513-525.

[98] D. Boneh, R. A. DeMillo, R. J. Lipton, "On the Importance of Checking

Cryptographic Protocols for Faults (Extended Abstract)," in Advances in Cryptology,

EUROCRYPT '97, LNCS 1233. Springer, 1997, pp. 37-51.

[99] T. Malkin, F. X. Standaert, M. Yung, "A Comparative Cost/Security Analysis

of Fault Attack Countermeasures," in Fault Diagnosis and Tolerance in

Cryptography, FDTC 2006, LNCS 4236. Springer, October 2006, pp. 159-172.

[100] R. Karri, G. Kuznetsov, M. Go'ssel, "Parity-Based Concurrent Error Detection

of Substitution- Permutation Network Block Ciphers," in the Proceedings of CHES

139

Chapter 8: References

2003, Lecture Notes in Computer Science, Vol. 2779, pp. 113-124, Cologne,

Germany, September 2003.

[101] K. Wu, R. Karri, G. Kuznetsov, M. Goessel, "Low Cost Error Detection for

the Advanced Encryption Standard," in the Proceedings of ITC 2004, Oct. 2004.

[102] M. Karpovsky, K. J. Kulikowski, A. Taub in, "Differential Fault Analysis

Attack Resistant Architectures For The Advanced Encryption Standard," in the

Proceedings of CARD JS 2004, Toulouse, France, August 2004.

[103] M. Karpovsky, K. J. Kulikowski, A. Taubin, "Robust Protection against Fault

Injection Attacks on Smart Cards Implementing the Advanced Encryption Standard,"

in the Proceedings of DSN 2004, Florence, Italy, June 2004.

[104] N. Pramstaller, J. Wolkerstorfer, "A universal and efficient AES co-processor

for field programmable logic arrays," in Proc. FPL, 2004, pp. 565-574.

140

Appendix A: The Moduli Set and Constant Values for 37-channel PRNS GF(2
163

) Multiplier

Appendix A: The Moduli Set and Constant Values for 3 7-

channel PRNS GF(2 163) Multiplier

iE[l,37]
mi's: (in PB and binary vector format)
1 x9+x4+1 1000010001

2 x9+x5+1 1000100001

3 x9+x4+x3+x+l 1000011011

4 x9 +x8+x6+x5+ 1 1101100001

5 x9 +x5 +x3 +x2 + 1 1000101101

6 x9+x7+x6+x4+1 1011010001

7 x9+x5+x4+x+ 1 1000110011

8 x9 +x8+x5+x4+ 1 1100110001

9 x9+x6+x4+x3+1 1001011001

10 x9+x6+x5+x3+1 1001101001

11 x9+x8+x4+x+l 1100010011

12 x9+x8+x5+x+l 1100100011

13 x9 +x 7 +x2+x+ 1 1010000111

14 x9+x8+x7+x2+1 1110000101

15 x9+x7+x4+x2+ 1 1010010101

16 x9+x7+x5+x2+1 1010100101

17 x9+x7+x5+x+ 1 1010100011

18 x9+x8+x4+x2+ 1 1100010101

19 x9 +x 7 +x5 +x3 +x2 +x+ 1 1010101111

20 x9+x7+x5+x4+x2+x+ 1 1010110111

21 x9 +xs+x7+xs+x4+x2+ 1 1110110101

22 x9+x7+x5+x4+x3+x
2
+ 1 1010111101

23 x9+x7+x6+x5+x4+x2+1 1011110101

24 x9 +x 7 +x6+x3 +x
2
+x+ 1 1011001111

25 x9+x8+x7+x6+x3+x
2
+ 1 1111001101

26 x9+x7+x6+x4+x3+x+ 1 1011011011

27 x9+x8+x6+x5+x3+x
2
+ 1 1101101101

28 x9+x8+x4+x3+x2+x+ 1 1100011111

29 x9+x8+x7+x6+x
5
+x+l 1111100011

30 x9+x8+x5+x4+x3+x+ 1 1100111011

31 x9+x8+x6+x5+x
4
+x+ 1 1101110011

32 x9+x8+x6+x3+x
2
+x+ l 1101001111

33 x9+x8+x7+x6+x3+x+ 1 1111001011

34 x9 +x8+x6+x4+x3+x+ 1 1101011011

35 x9+x8+x6+x5+x
3
+x+ 1 1101101011

36 x9+x8+x7+x3+x2+x+ 1 1110001111

37 x9+x8+x7+x6+x
2
+x+ 1 1111000111

141

Appendix A: The Moduli Set and Constant Values for 37-channel PRNS GF(2163
) Multiplier

ii 's: (in binary vector format, 9 bit each)

1 000101101
2 110111010
3 111001111
4 100010111
5 001101101
6 101010110
7 111010110
8 111010010
9 010111001
10 101100001
11 101101101
12 001001010
13 110010001
14 011101100
15 100010001
16 001111011
17 110001110
18 111001110
19 110111011
20 111111011
21 100101010
22 011101010
23 001011110
24 101111011
25 000010100
26 110011110
27 101111101
28 110000000
29 111111111
30 110101100
31 101101111
32 011111111
33 100110110
34 101000111
35 011100000
36 011011110
37 011111001

142

Appendix A: The Moduli Set and Constant Values for 37-channel PRNS GF(2163
) Multiplier

Mi's: (in Hexadecimal, 324 bits each)

I I C70044BA86587E986055F 6C6D7D EA8B950 I C8FBC594880DD2CEE48B4A93 58 l 5D5F6C268506FOCF I 09
2 I D4 7694BC98EB5 l E54956B3ECBFAE8D3D80FBA270580245E72A28D4F02CFI D25B8E I EI F584424656B9
3 IC I F293B411 F8B2E4CC9B 11 DB008D24A9D2D206AC4C926145728AFE5FA5E70736D B3B61 FB5D2A 7430F
4 l 5AFBA6989048223BD80C22BBE85ECF6688B6F5EA55B I OE2D79FD73CEFE50F4300262DBF4697 l 2B9F9
5 I DODCA9849FDB 17D5A25E7E541 I 73104528DF3 B3276CF5 l CB4 l 2B98C7D89E58E74FC3A3828A977E505
6 I 93262B49BE5913CE33596030 IE80D97F93E7B l 826329FA61 D83B24CA91 B6A4757BD4303 IA43FDCBC9
7 IDB8954AC52EBEEDI C4227426EE028DD07 A0349BD3C2FDBCFOB7DB8F987274DCEAD7F3B696C3C3 l B07
8 I 67CCF07E3C I B5D7E78 I 3658915A400C30A 79F l 408E54COA 722D9A44 l BF50E4F6D2B594FFE3 l 7 A9F29
9 I FEF6 l 7 Al 7E57 ACC9D9073323FC6A39AABB3BBCD70B39E9B2641 EOBDA494A2E9D67DOC47DF4459A3C I
I O I EDFA36C8DE I CBODECE I AE7E5174 l 20A4D0 I E3 7C63AA 73 B3EFF952525B E289B6C530C072AACF09007 l
11 l 7D5C9F199B3B495895E58F2C6DD4362771AOl 995 l C902E9B385129C4624ECF8272BB7766F44FC5FA 7
12 l 6B25C9F59 l B29D9 l 39920FAE l 3C9FF9E5CF 151B8F447 AB9705756 7 AD5091 A 71 C742725892294C2FD7
13 I A326984B399993D876522593325077F68732226B2440ABC2A480A520867EA3D75EC5B I DF288B2 l 9B3
14 I OF030 l 93EC04CE3BB l l l 1753BD5224994DBA6696D9F72AA225D EC983AD5D5961 EOOD3C6BBE5F81 OAD
15 I AC3ACAB5EBB8C8D5FE I OE4 l 400098BDOOD00D73 7D963F420CF4FF79B952BDC2AA 7E3 l 8EOE27D4C43D
16 I BE I EB36F4284BE l 4ADC7868E9423 l OOOF59A90D7 l 45EB4D 13D70 I OC098E3CEACE2265CCBD6D930C8D
17 1 BC666EA 7584BAE5959536693805856387B02561 DDC4A24D505A89F386F5 l l 9E51 BEAFE52981475457
18 l 7FBB27966D3 76A4077F76938CEFB42EDF8A83FEE2AD03 l B6CDOD2FBFF l 2DE6EB43FE0328B773589BD
19 I B8850CE939F946F39 l OAD9366516945D DOD6FE7B5BCFED6 l 77452D l 4CD936A l I 39EC53F392E6 l 423B
20 1BIOA275FAC87E376BE72D28B6C855557BCODA872C I E4ED2B734E235845C7B7BD66C80E886EE l 356C3
21 I I 8318CBDA 7F I A 7BAFFE8CBA5E3 76FDA323DAB4 76898ABE38D I DF76A6C3E480A I A4BC943533 727B8 ID
22 I B790D3416ED64BDB6FC281 B54B329E3EF955AE88E22ACI 2D205E3A8997BA070D5BD8AB2DD I B321015
23 I 8C2930EAAED78 l C92CBEOOBC05AA032B552332088E29AEEEF8FBOC7F82 l 98EAC3F60B5BD l 6623E35D
24 l 98FD9C28E4 7500F3C440AEF7 l 99FBAAEA5D I F9DA5 l 4BA811860CC4 7B9DF40 I DE988DDBC53DBOD4EDB
25 13 B8829ED86EC08503 75D4F3A6504F08269D362EB685BE I A3D667C5A5250654AF095BF9FOE3 768B7E5
26 l 95A3BFD22 I DDFBE l l 5C ACAA6A5902663909E694EBA86EFC9B64 l 5FBE6A52F2BA05CC08EC974689ECF
27 l 5F3CFCEC6DE I F9EFA5 l OF08E9 I FAC6BFECA5F3E64B49738204968F388 l 8690CF7 A5B68ACFFD72AE45
28 l 788F9D8A3600E73 78B88767FD7 AD8F2D50CFE3 785CA3854EE29A I B8431 CD960BA I 05856 l 5FOB6AACB
29 1257184279A l 146DBA8DOAB93A9050786F5C8A883EB31249F3F9C73CEB5884428F3F42150D84A20217
30 l 60FF21 I EAD6C6A60282FA39CF2A6F8FA9B41 l I 7BCB8CDC55A6CDBBD57FE4660CF36305858EC852FAF
31 l 5621782AE6302A8032CA43384E26197588CD6B6F690C980BD7EAAF9374E2680C24A6FD2A48A2COD47
32 l 45E90801 DE l 457C556DA667886 I 092632D74 l FCAC9 l B7C83E85084E66D2FE2E46E998 l 7346BEFOD5B
33 I 39429 IA92FC5AA61 BF7043AE02A90E735416543Fl49A l 136DED2443170334CA2FD3BD91 BEl2B026 l F
34 l 4BD4EODDOODA8E I ECC l 5C89C77753A549745F90B5AD4DF92423CB4956CD638F l 5BFE285B7DC4D054F
35 15D DOCFCAA 76DOA I B975 l 5E3B l 2CB48AEDCCI 54A 714D9EOOC8CDFI D923E8C08280560D8B I B429F3 l 3F
36 I 085E9B4053954 l 9FFF3 l FE08FD69A3774C44CCDEC3B 1538B I FD2 l 5475ADA 7CA59AF709A3C5271 FC9B
37 13CCC4AC8286 l 9B I B5D6FB59 l l 42132FA4B92BD44C3F l 5B8F74EAAE2A8A28BCC64F5C2475F3C l 4FBF3

143

Appendix B: The Moduli Set and Constant Values for 4-channel PRNS GF(2 163
) Multiplier

Appendix B: The Moduli Set and Constant Values for 4-

channel PRNS GF(2 163) Multiplier

m1 = xB4 + xs + 1
mz = xB4 + x9 + 1
m3 = xB4 + xll + 1
m4 = xB4 + x13 + 1

M1 = m 2(x) ·mix)· m4 (x)

4

p(x) = L (plx) · Ii(x) mod mi(x)) · Mi(x)
i=l

= xzsz + x1s1 + x179 + x177 + x16B + x1os + x106 + x104 + xB4 + x33 + x24

+ x22 + xzo + x13 + xll + x9 + 1
Mz = m1 (x) · m 3 (x) · mix)

= xzsz + x1s1 + x197 + x173 + x16s + x1os + x102 + x100 + xB4 + xz9 + xz4

+ x1s + x16 + x13 + xll + xs + 1
M3 = m1(x) · m2(x) · m4 (x)

= xzsz + xrn1 + x177 + x173 + x16B + x106 + x102 + x9B + xB4 + x21 + xzz
+ x1s + x14 + x13 + x9 + xs + 1

M4 = m 1 (x) · m 2 (x) · m 3 (x)
= xzsz + xl79 + x111 + x173 + x16B + x104 + x100 + x9B + xB4 + xzs + x21

+ x16 + x14 + x11 + x9 + xs + 1

11 = M11(x)(mod m1 (x)) =
10000111011111110110001011011000011101101000100100110011100111010110001011011001
0111

12 = M21(x)(mod mz(x)) =
11010100110101100111110110000010110101111000001011010111100000101101011110011000
0100

/3 = M31(x)(mod mix))=
010010101101110000000110011111111011101010101110111111111011101010101110110110101
101

/4 = M41(x)(mod mix))=
00011001011101010001100100100101000110111010010100011011101001010001101110010111
1111

144

Appendix C: The Moduli Set and Constant Values for Fault Tolerant 5-channel PRNS GF(2 163
)

Multiplier

Appendix C: The Moduli Set and Constant Values for

Fault Tolerant 5-channel RPRNS GF(2 163) Multiplier

m1 = x121 + x + l
m2 = x121 + x 7 + 1
m3 = x121 + x1s + 1
m4 = x121 + x30 + 1
ms = x121 + x63 + 1

SRC 1 (m2, m 3, m4, ms)
M1 = (x121 + x1s + l)(x121 + x30 + l)(x121 + x63 + l)
M2 = (x121 + x7 + l)(x121 + x30 + l)(x121 + x63 + l)
M3 = (x121 + x7 + l)(x121 + x1s + l)(x121 + x63 + l)
M4 = (x121 + x7 + l)(x121 + x1s + l)(x121 + x30 + l)
11 =10001100101011000111111001100011000001000100010011000111011110011111101000011
11110000101101000001000011100011010001000001110000
12 =00011001000111011100011000111011100011000111000011100000111001100011100111000
10001111011100011110000111100001001111011110001011
/3 = 1000100000011010001101111110100101000010010110111101010011111000000010001011
001111111011001001110110110001100110011100000011111
/4 = 00011101101010111000111110110001110010100110111111110011011001111101011011000
01110001010101110010110101000010111010011101100101

SRC 2 (m1, m 3, m4, ms)
M1 = (x121 + x1s + l)(x121 + x30 + l)(x121 + x63 + l)
M2 = (x121 + x + l)(x121 + x30 + l)(x121 + x63 + l)
M3 = (x121 + x + l)(x121 + x1s + l)(x121 + x63 + l)
M4 = (x121 + x + l)(x121 + x1s + l)(x121 + x30 + l)
4 =00101101111001100111100101001010111110010110101010111101011011101010111011000
01010011000111000110010111101100001000110111011110
12 = 0101111110111001101001010001101100100011100100000001111001000110101001101110
011100100100011010000001000110100110111001101101111
½ =10101000001111111110001100110100001101111100101100011111110111010000000101000
01011110101110111100001000110010101011110101111001
4 =11011010011000000011111101100101111011010011000110111100111101011101001100000
11101110110001100001001011001111100100101010100011

SRC 3 (mi, m 2, m4, ms)
M1 = (x121 + x7 + l)(x121 + x3o + l)(x121 + x63 + l)
M2 = (x121 + x + l)(x121 + x30 + l)(x121 + x63 + l)
M3 = (x121 + x + l)(x121 + x7 + l)(x121 + x63 + l)
M4 = (x121 + x + l)(x121 + x7 + l)(x121 + x30 + l)
11 = 0111101100100010010110100111010110010111000001001101011100000111011001011011
010100111101101110100000010110110000111110110110111
12 = 0110000101010111010000000110011011011011111011000000111010111001000000011001
110001010100011101100100010000101010111001100010000
/3 = 0001001100100010100111110110110110110100100111011010101100100010000001011010
111010110011010100001111101011000001111011100010110
/4 = 0000100101010111100001010111111011111000011101010111001010011100011010001101
000001011111111000100100101010111111110011100010100

145

Appendix C: The Moduli Set and Constant Values for Fault Tolerant 5-channel PRNS GF(2 163
)

Multiplier

SRC 4 (mi, m2, m3, m5)

Mi = (x121 + x7 + l)(x121 + x1s + l)(x121 + x63 + l)
Mz = (x121 + x + l)(x121 + x1s + l)(x121 + x63 + l)
M3 = (x121 + x + l)(x121 + x7 + l)(x121 + x63 + l)
M4 = (x121 + x + l)(x121 + x7 + l)(x121 + x1s + l)
/1 = 1100001011000000001011000000101110110010011110110010011100100101010111100101
010111101101010110110011111000110011011000110110101
lz = 0001100101001011011100011100011110100110001000010100110110001101000111100010
010010011010110110111101111010111010010110100101001
/3 = 1010101010011110101010100111100101010101111001101010101110011110101010100111
100101010101111011101010001110110110001010000100111
4 =01110001000101011111011110110101010000011011110011000001001101101001101100011
10111010101110110110000001010000011011110101100010

SRC 5 (mi, m2 , m3, m4)

Mi= (x121 + x7 + l)(x121 + x1s + l)(x121 + x30 + l)
Mz = (x121 + x + l)(x121 + x1s + l)(x121 + x30 + l)
M3 = (x121 + x + l)(x121 + x7 + l)(x121 + x3o + l)
M4 = (x121 + x + l)(x121 + x7 + l)(x121 + x1s + l)
/1 =11001001001111011010110111001010111000110100011111010100101111001111010110000
00101011010000111000100001110100100011010100100101
/ 2 =00101001111100011010011101111011010010011110010001001100011010000011011101110
11101111110110001000101010000000110011101110110111
/3 = 101010100101010101010110101010101010110101010101010110101011101010100101001
0010100011011000110110110001101100011001010011101011
/4 =01001010100110010101110000011011000001111111011011000010011011100110011111010
01100111111110000110101000110001101001100001000000

146

	575415_001
	575415_002
	575415_003
	575415_004
	575415_005
	575415_006
	575415_007
	575415_008
	575415_009
	575415_010
	575415_011
	575415_012
	575415_013
	575415_014
	575415_015
	575415_016
	575415_017
	575415_018
	575415_019
	575415_020
	575415_021
	575415_022
	575415_023
	575415_024
	575415_025
	575415_026
	575415_027
	575415_028
	575415_029
	575415_030
	575415_031
	575415_032
	575415_033
	575415_034
	575415_035
	575415_036
	575415_037
	575415_038
	575415_039
	575415_040
	575415_041
	575415_042
	575415_043
	575415_044
	575415_045
	575415_046
	575415_047
	575415_048
	575415_049
	575415_050
	575415_051
	575415_052
	575415_053
	575415_054
	575415_055
	575415_056
	575415_057
	575415_058
	575415_059
	575415_060
	575415_061
	575415_062
	575415_063
	575415_064
	575415_065
	575415_066
	575415_067
	575415_068
	575415_069
	575415_070
	575415_071
	575415_072
	575415_073
	575415_074
	575415_075
	575415_076
	575415_077
	575415_078
	575415_079
	575415_080
	575415_081
	575415_082
	575415_083
	575415_084
	575415_085
	575415_086
	575415_087
	575415_088
	575415_089
	575415_090
	575415_091
	575415_092
	575415_093
	575415_094
	575415_095
	575415_096
	575415_097
	575415_098
	575415_099
	575415_100
	575415_101
	575415_102
	575415_103
	575415_104
	575415_105
	575415_106
	575415_107
	575415_108
	575415_109
	575415_110
	575415_111
	575415_112
	575415_113
	575415_114
	575415_115
	575415_116
	575415_117
	575415_118
	575415_119
	575415_120
	575415_121
	575415_122
	575415_123
	575415_124
	575415_125
	575415_126
	575415_127
	575415_128
	575415_129
	575415_130
	575415_131
	575415_132
	575415_133
	575415_134
	575415_135
	575415_136
	575415_137
	575415_138
	575415_139
	575415_140
	575415_141
	575415_142
	575415_143
	575415_144
	575415_145
	575415_146
	575415_147
	575415_148
	575415_149
	575415_150
	575415_151
	575415_152
	575415_153
	575415_154
	575415_155
	575415_156
	575415_157
	575415_158
	575415_159

