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Abstract

Presently, tree populations worldwide face unprecedented threats from invasive pests and

pathogens endangering biodiversity, timber production and human wellbeing. From first

principles, this thesis incrementally extends a simple percolation model of forest-based

epidemics into a more involved stochastic dispersal framework combined with tree canopy

data. The approach developed here couples two spatially-explicit epidemic models at dif-

ferent scales. First, a non-local stochastic model of pathogen dispersal between trees is

constructed. Second, the small-scale epidemic model is projected onto a large-scale dis-

tribution of host abundance, resulting in an R0-map across Great Britain. Subsequently,

a clustering algorithm is employed to identify high-risk regions in the R0-map. Initial

results indicate a global epidemic phase transition across the distribution, conditional on

an infectivity parameter. The approach to ‘spatially scale-up’ an epidemic model over

the entire landscape is computationally efficient, flexible and adaptable to many pests

and pathogens. In addition, numerous studies have sought to understand and optimise

epidemic control in botanical populations. The mainstream control paradigm generally

seeks to optimise an ‘eradication radius’ about infected symptomatic trees over a rel-

atively small spatial scale. However, large-scale epidemic control based solely on the

spatial distribution of hosts has yet to be explored in depth. As such, this thesis will also

examine how host heterogeneity, combined with targeted epidemic control, can give rise

to natural ‘pinch-points’ that may slow the epidemic spread between regions. Ultimately,

this investigation intends to help policymakers reach informed decisions about where to

focus control in the landscape of Great Britain.
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Chapter 1

Introduction

Currently, pests and pathogens threaten the survival of numerous tree species around the

globe. An upsurge in the trade and transport of non-native plants and the widespread

adoption of monoculture plantations have drastically increased the risk of large-scale

outbreaks in native tree populations. Moreover, following the effects of climate change

and increased temperatures, the threats posed by invasive non-indigenous pathogens are

only set to increase. Accordingly, efforts to understand the precise mechanisms that

underpin epidemics in tree populations are essential for human wellbeing and ecosystem

stability.

When an epidemic takes hold, numerous challenges complicate an effective on-the-ground

response. In addition, epidemic drivers are multifaceted, hard to quantify, and often

unknown. Consequently, epidemic models are significantly challenging to parameterise.

Further still, communicating research insight to policymakers and stakeholders poses a

significant challenge for modellers even with accurate parameterisation.

Despite the complex challenges that threaten tree health, scientists, policymakers, and

stakeholders can cooperate to prevent the spread of emergent infectious tree diseases

within a country. Notably, the output from mathematical models can help advise practi-
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cal management strategies to control epidemics through rural and urban tree populations.

Accurate epidemic models can also help forest and woodland managers structure plan-

tations to minimise epidemic impact. Aiding forest managers with mathematical models

has become particularly vital given the UK government’s recent measures to sequester

carbon from the atmosphere with land-use change and afforestation, thereby increasing

tree coverage throughout Great Britain.

This Chapter introduces the reasons, challenges, and value in modelling tree disease

epidemics. First, the overarching rationale behind researching tree disease models is

highlighted, followed closely by reviewing the most pressing epidemic drivers. Second,

the challenge of implementing epidemic control is summarised, along with the principal

socioeconomic relationships between modellers, policymakers and stakeholders. Finally,

the Chapter concludes by outlining the topics covered in this thesis.

1.1 Invasive tree diseases

The modern world relies heavily on imports and exports characterised by global trade

networks. Unfortunately, the trade and transport of foreign plant material can introduce

invasive pests and pathogens into non-native landscapes. As such, crops, flowering plants

and tree populations that lack evolutionary adaptations to these invasive (pathogenic)

species face unprecedented perils [Wingfield et al., 2010]. Epidemics through botanical

populations can be devastating. Classic historical examples include Irish potato blight,

Dutch elm disease (DED) [Harwood et al., 2011] and North American chestnut blight

[Worthen et al., 2010]. Two high-profile epidemics currently underway in the UK include

ash dieback (ADB) affecting European ash Fraxinus excelsior (FE) [Hill et al., 2019],

and Phytophthora ramorum (PR), a prevalent disease affecting over 150 plant species,

including oak, larch, and sweet chestnut [Brasier and Webber, 2010].

Given the fundamental significance of tree populations in terrestrial ecosystems, ensuring

tree health forms a critical challenge for society to address. In particular, policymakers

can lead control initiatives to help impede the spread of disease [Gilligan, 2002]. However,

1.1. INVASIVE TREE DISEASES 2
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implementing an uninformed and ineffective management strategy is costly and does little

to stop the spread. Accordingly, research into optimal disease management underpins the

central issue of botanical epidemiology, where research should ideally seek to minimise

both epidemic and economic impact [Hill et al., 2019, Freer-Smith and Webber, 2017,

Boyd et al., 2013a, Tyrväinen et al., 2005]. Frequently, control strategies include reduc-

ing tree densities [Pietzsch et al., 2021, Cobb et al., 2017] and planting genetically diverse

host distributions [Sconyers et al., 2005, Zhu et al., 2000, Huang et al., 1980].

1.1.1 Epidemic drivers

The terms ‘pest’ and ‘pathogen’ describe a broad spectrum of taxonomically diverse or-

ganisms. Pests denote any organism that harms humans or human interests, such as crops

or livestock [Buckle and Smith, 2015, Oerke, 2006, De Bach et al., 1964]. Overwhelm-

ingly, insects constitute the main pest threats to tree species [Metcalf and Luckmann, 1994].

In Great Britain (GB), the Asian longhorn beetle (ALB) [Haack et al., 2010], and oak

processionary moth (OPM) [Tomlinson et al., 2015] are two such pests that currently

threaten tree health. In contrast, the term ‘pathogen’ describes any organism that

induces disease. In the context of tree populations, diseases include fungi, bacteria,

viruses, and oomycetes [Balloux and van Dorp, 2017, Boyd et al., 2013b]. Presently, the

oomycete P. ramorum [Brasier et al., 2005], and ADB caused by the fungus H. fraxineus

(HF) [Hill et al., 2019, Mitchell et al., 2014] are two pathogens that threaten tree-health

in GB.

Tree pathogens have evolved diverse reproductive modes and epidemiologies, character-

ising a distinctive challenge when controlling tree-based pathogens. Two contrasting

examples include chestnut blight caused by the bark pathogen fungus Cryphonectria

parasitica and the xylem inhibiting bacterium Xylella fastidiosa1. Chestnut blight dev-

astated American chestnut populations in the 1930s [Worthen et al., 2010], and more

recently, infections have been spreading through European chestnuts, albeit to a lesser

1Several diseases are symptomatic expressions of X. fastidiosa, including phoney peach disease, quick
olive decline, coffee leaf scorch, and most notably, Pierce’s disease affecting Grapes and citrus variegated
chlorosis [Hopkins and Purcell, 2002].
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extent [Heiniger and Rigling, 1994]. The principal infection mechanism of C. parasitica

occurs through windborne spore dispersal into wounds or openings in bark. In contrast,

transmission of the bacterium X. fastidiosa is thought to occur exclusively through sap-

sucking insect vectors, e.g leafhoppers of the genus Homoptera [Redak et al., 2004]. One

remarkable facet of X. fastidiosa is its ability to infect numerous tree species. Current

estimates indicate the host range of X. fastidiosa is upwards of 611 different plant species

[(EFSA) et al., 2022], whereas C. parasitica predominantly infects chestnut species and

occasionally nearby oak [Rigling and Prospero, 2018].

The trade and transport of non-native plant material are widely recognised to risk intro-

ducing invasive pests and pathogens into native landscapes [Potter and Urquhart, 2017,

Lovett et al., 2016, Roy et al., 2014]. Ensuing epidemics can overwhelm botanical species

lacking genetic resistance to the invasive species [Desprez-Loustau et al., 2016], better

understood from an evolutionary perspective: in a natural environment unaltered by hu-

man transportation, tree species co-evolve with invasive pathogens in a ‘gene-for-gene’

arms race [Thrall and Burdon, 2003, Dangl and Jones, 2001, Flor, 1971]. The spread of

Dutch elm disease in the UK [Harwood et al., 2011] and chestnut blight in North America

[Worthen et al., 2010] are two classic examples that shook the world.

Trade regulations on plant imports are essential to prevent the initial introduction of

invasive pathogens [Rodoni, 2009], exemplified by the Dutch elm disease epidemic in the

UK. Had more stringent regulations been active in the 1960s, elm timber infected with

scolytid bark beetles (carrying the fungus Ophiostoma novo-ulmi) might have prevented

the devastating outbreak [Harwood et al., 2011]. Ordinarily, these preventative measures

take the form of customs checks on imported/exported timber, crops or horticultural

goods. Recently, the European Commission enacted plant passports to regulate how

growers and traders can transport plant material between countries [Wulfert et al., 2010].

If checks and policy implementations fail, a pathogen might be introduced into the land-

scape and spread through natural dispersal pathways. Alternatively, a pathogen might be

transported into foreign ecosystems through atmospheric long distance dispersal (LDD)
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[Brown and Hovmøller, 2002]. In any case, biological control becomes necessary. The

biological control of plant-based disease can be achieved in numerous ways. Commonly,

this involves chemical agents such as pesticides, predatory insects or planting genetically

resistant cultivars [Pal and Gardener, 2006, Baker et al., 1974].

In this work, we aim to construct epidemic models and investigate eradication strategies

entailing the removal of trees through sanitation felling. In this pursuit, three questions

are vital to consider: (1) How do we effectively identify an infected tree? (2) How can we

optimise tree felling to slow the spread of disease given limited resources/budgets? (3)

What is the risk that a large-scale epidemic will result from the initial observations of

diseased trees?

1.2 Modelling and policy

The benefit of controlling an epidemic should outweigh the costs of letting an outbreak

spread unchecked. Plant disease modellers can help infer well-designed control policies

that maximally reduce epidemic impact and minimise the expenditure of resources—both

natural and economic. However, achieving this in practice is problematic due to various

unknowns [Cunniffe et al., 2015a], and history gives examples of insufficient control poli-

cies that fail to halt pathogen spread. Prominent examples include the mismanagement

of Dutch elm disease in the late 1960s and early 1970s [Tomlinson and Potter, 2010], and

more recently citrus canker in Florida [Schubert et al., 2001].

We can attempt to understand what dictates the optimal control of tree disease epi-

demics with mathematical models. Control strategies have been explored on both smaller

[Hyatt-Twynam et al., 2017] and larger landscapes [Forster and Gilligan, 2007]. On all

spatial scales, consensus agrees that the effort and resources required to control an

epidemic depend significantly on the scale of the epidemic at hand. That is, ’aggres-

sive pathogens should be met with aggressive control’, as confirmed by modelling stud-

ies [Gilligan et al., 2007a, Cunniffe et al., 2015b]. In any scenario, an on-the-ground re-

sponse must be carried out swiftly. Otherwise, the likelihood of successful management
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decreases rapidly, and the cost of inaction soars.

Conventional eradication strategies involve detecting symptomatic trees and culling neigh-

bours within a radius, e.g. [Cunniffe et al., 2015b]. A naive strategy that indiscrimi-

nately culls hosts can be fine-tuned and optimised to reduce the epidemic impact max-

imally. For example, one strategy prioritises targets by ranking hosts according to the

expected number of secondary infections [Hyatt-Twynam et al., 2017]. Over larger spa-

tial scales, models of sudden oak death (SOD) in California indicate that epidemics are

most effectively controlled by targeting infected trees either at or ahead of the infectious

wave-front [Cunniffe et al., 2016]—see section 2.2.2 for a more in-depth discussion of the

manuscript. Nevertheless, various factors complicate eradication regardless of the spatial

scale, such as the cryptic nature of tree diseases and fluctuating government budgets

[Bussell et al., 2019, Bussell and Cunniffe, 2020].

The management of citrus huanglongbing (HLB) disease epidemics in California provides

an insightful example of how these mathematical models can help determine practical reg-

ulations to suppress the spread of disease, see [McRoberts et al., 2019]. Another relevant

example comes from SOD management in California (mentioned above). In particu-

lar, modelling SOD epidemics in California indicates that culling infested trees on the

disease front’s leading-edge is more effective [Cunniffe et al., 2016]. Subsequently, this

work helped inform targeting control in the work plan put forward by the California Oak

Mortality Task Force2 between 2017-2022.

Enhanced surveillance and monitoring strategies also seek to optimise resource alloca-

tions. Surveillance aims to detect infected individuals and disease incidence, generally

requiring the collection and analysis of epidemic data [Parnell et al., 2017]. Ultimately,

surveillance and monitoring comprise the last line of defence after preemptive border

checks and inspections have failed to prevent the introduction of disease. Statistical

approaches have been adopted to optimise the number of samples/surveys required to

infer disease incidence accurately [Yamamura et al., 2016]. Moreover, optimal surveil-

2The reader can find further information on the California Oak Mortality Task Force here
[Palmieri and Frankel, 2006], and download the work plan by visiting https://www.suddenoakdeath.org/
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lance strategies have been examined with logistic [Parnell et al., 2012] and mechanistic

[Cunniffe et al., 2015b] epidemic models—the next Chapter offers a more in-depth review

of these modelling paradigms.

Whether collaboratively or individually, several governmental bodies have a stake in

the UK’s surveillance and tree health monitoring. For example, the National Forest

Inventory (NFI) conduct general surveys to determine tree distributions and woodland

composition—discussed more in section 4.2. Subsequently, output from NFI surveys is

utilised by ’Forestry Research’ (FR), the research agency of the Forestry Commission

(FC). In addition, the FC plays a vital role in surveying landscapes for infectious tree

diseases in the UK [Ryle et al., 1969, James et al., 1990], often responding to high-risk

invasions in a more targeted capacity. Historically, the UK government has tasked the FC

to undertake comprehensive large-scale surveys in response to Dutch elm disease in the

1960s-1970s [Potter et al., 2011] and ash dieback in 2012 [Tomlinson, 2016]. However,

more recently, citizen science approaches have become increasingly utilised to monitor

tree health [Brown et al., 2020], exemplified by the monitoring tool ’TreeAlert’, a website

owned by FR designed to collect information about tree health in woodlands and forests

through user reports.

Even supposing an accurate and well-informed control strategy, a response on the ground

only ensues when stakeholders implement control initiatives [Reed et al., 2018]. Here,

the term ‘stakeholder’ is extensive, reflecting any interested individual, collective, or or-

ganisation with a stake in tree health that has the potential to influence or affect a

policy direction or control decision [Brugha and Varvasovszky, 2000]. The UK’s stake-

holder landscape for tree health is equally broad, encompassing diverse governmental and

private sector organisations and individuals. A conceptual framework for stakeholder cat-

egorisation was put forward by [Dandy et al., 2017], alongside a case study of who had

a stake in ash dieback in the UK. In their analysis, [Dandy et al., 2017] listed various

affected stakeholders:

• governmental: DEFRA, FERA, FC, FR and various local authorities
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• civil society/third sector: National Trust, Wildlife Trust, Woodland Trust

• private sector: private land managers, outdoor recreationists, forest owners, citi-

zen scientists, and the general public

Figure 1.1 presents a simplified view of the interactions which dictate research output,

public awareness, policymaking and the eventual epidemic control in the UK3. Scientists

in several disciplines, from molecular biology to mathematics, receive funding from and

collaborate with policymakers and other research bodies, e.g. the Department for En-

vironment Food & Rural Affairs (DEFRA). Policymaker-led control initiatives, resource

allocation and recommendations then help to direct on-the-ground stakeholder responses.

However, it is worthwhile to remark that stakeholder participation can be either voluntary

or compelled by law in the UK. Typically, if the pest or pathogen possesses a significant

risk, plant health authorities (e.g. FC and DEFRA) may serve a statutory plant Health

notice (SPHN) to the landowner, thus mandating action.

Alternatively, scientists can engage stakeholders directly (discussed more below) or in-

fluence public opinion through outreach and scientific communication. In turn, the pub-

lic can influence the decisions of policymakers by mounting sufficient political pressure

[Fuller et al., 2016]. Unfortunately, several obstacles inhibit a well-informed, timely and

effective response. In particular, poor accessibility to scientific research is widely-known

to inhibit policy adoption, primarily because disseminating scientific information requires

in-depth domain knowledge and technical skill [Jones and Kleczkowski, 2020]. In a bid

to make their work more accessible to policymakers and stakeholders, modellers have en-

deavoured to construct user-friendly interfaces4 [Cunniffe et al., 2015b]. Other strategies

to leverage scientific output involve directly facilitating discourse between modellers and

stakeholders, categorised as ‘participatory modelling’ (PM).

Recently, PM has become popular in ‘risk and natural disaster’ modelling research

[Hämäläinen et al., 2020, Ravera et al., 2020, Hedelin et al., 2017]. Nonetheless, PM ap-

3In part, Figure 1.1 was informed by interviewing civil servants, researchers and policymakers at
DEFRA and FERA as part of this thesis.

4The reader can find the user-friendly modelling interface constructed by [Cunniffe et al., 2015b] at
http://www.webidemics.com
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Policymakers 
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collaborations

Stakeholder engagement, e.g. 
participatory modelling

Stakeholders 
e.g. Governmental 

bodies, private sector 
growers, landowners, &


forest managers

Management 
response,  

e.g. sanitation felling,

fungicide/pesticides 

treatments

Resource allocation, control initiatives, 
& response recommendations

Research 
councils & civil 

societies

Funding

Action on 
the ground

Figure 1.1: A simplified model representing the major socioeconomic interactions between
the general public, scientists, policymakers and stakeholders in the UK. Scientists receive
funding from and collaborate with Governmental bodies/policymakers. Policymakers
make decisions and allocate resources to lead control initiatives to protect tree health.
Affected stakeholders in the UK can choose to join voluntary control initiatives or be
legally obliged to take action if served a statutory plant health notice.
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proaches are rare in the context of plant disease, as reviewed by [Gaydos et al., 2019]. In

addition to a literature review, [Gaydos et al., 2019] held an interactive workshop with

stakeholders regarding the spread of P. ramorum in the United States. The workshop fa-

cilitated stakeholder engagement with an epidemic model [Tonini et al., 2017]—reviewed

in Chapter 2. In particular, the authors reported that the stakeholders engaged well

with the model and confirmed that the results were broadly consistent with observations

in the field. However, and most interestingly, stakeholders with expert knowledge of the

landscape remained sceptical of the host distributions’ accuracy and resolution. In partic-

ular, stakeholders with domain knowledge on the ground thought that these inaccuracies

could influence spatial dynamics in the simulation. Such insights are hard to deduce

for modellers who generally remain less connected to the actual landscape. As such,

[Tonini et al., 2017] demonstrated a positive motivation to facilitate the collaboration

between plant-health modellers and stakeholders through PM.

An effective response generally relies on widespread adoption of voluntary policies among

multiple stakeholders, which is thought to depend on several additional factors. As an

example, [Milne et al., 2020] coupled an epidemic model of citrus huanglongbing disease

(HLB) and stakeholder opinion dynamics. In the behaviour model, stakeholder opinions

depended on research, other citrus growers, consultants, and the media. The perception

of risks and trust in area-wide control led the stakeholders to join an area-wide control

initiative. Subsequently, the analysis of [Milne et al., 2020] suggests that the efficiency of

epidemic control led to more stakeholder-engagement than the perceived risks, and that

frequent contact between stakeholders and advisors increases the probability of successful

control.
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1.3 Chapter summary

In this thesis, our motivation is to develop robust epidemic models of infectious tree

disease epidemics to predict epidemic severity over GB and help guide policymakers.

Firstly, we begin with a simple two-parameter percolation, from which more realistic

and elaborate dispersal models follow. In particular, previous large-scale investiga-

tions have focused on specific pathosystems in a dynamic metapopulation-like setting

[Cunniffe et al., 2016, Meentemeyer et al., 2011, Harwood et al., 2009]. We take an al-

ternative approach and develop a general-purpose framework to spatially scale up a

small-scale epidemic model (between individual trees) over large areas. The result is

an R0-map across GB with closer parallels to the emerging field of Infectious Disease

Cartography in human and livestock diseases [Otieno et al., 2021, Kraemer et al., 2016,

Messina et al., 2016].

Chapter 2 begins by outlining several requisite modelling themes. First, the review exam-

ines several seminal works that founded the field of quantitative botanical epidemiology.

Following this, a suite of small, large and multi-scale spatial epidemic models are reviewed.

Lastly, a case study of the emerging ash dieback epidemic is presented.

Chapter 3 sets the scene with a percolation-based simple lattice model (SLM) of tree

disease spreading through a dense forest [Orozco-Fuentes et al., 2019]. The model is com-

partmentalised into a susceptible-infected-removed (SIR) framework and demonstrates a

sharp transition threshold above which an epidemic will propagate. Above the threshold

of transition, a travelling wave-like behaviour is demonstrated.

Chapter 4 builds on the percolation model constructed in Chapter 3. Firstly, we extend

the work of [Orozco-Fuentes et al., 2019] and present an alternative method to detect

an early warning signal in two-dimensional parameter space. Then, the Chapter moves

toward a more applied setting by introducing several available host datasets in GB before

proceeding with the maps of predicted abundance given by [Hill et al., 2017]. Thus, the

percolation model is coupled with a map of predicted oak abundance over GB to outline
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a large-scale ‘toy’ model. Chapter 4 demonstrates that nearest-neighbour interactions

are insufficient for describing epidemics through low tree densities across GB.

Chapter 5 introduces a generic Gaussian dispersal kernel into the epidemic model, denoted

as the non-local model (NLM). Ensuing epidemics in the NLM are demonstrated to spread

at lower tree densities, frequent across GB, thereby overcoming the inherent nearest-

neighbour limitations witnessed in Chapters 3-4. Disease spread is then examined over a

range of dispersal parameters and compared to the standard SIR model. Next, a spatially-

explicit analytic expression for R0 is derived and compared to a ‘contact tracing ’ method

of calculating R0. Both methods of determining the reproductive ratio are shown to

demonstrate a threshold at R0 = 1.

Chapter 6 develops the dispersal model of Chapter 5 towards a mechanistic model reflect-

ing the life cycle of ash dieback. The model involves susceptible-exposed-infected-removed

(SEIR) compartments that repeat annually according to the sexual reproduction of ash

dieback. Consequently, a method is presented to compose R0-maps across GB using

the map of predicted ash abundance given by [Hill et al., 2017]. Lastly, a connected-

component-analysis (CCA) algorithm is used to visualise clustering and risk in the R0-

map. Examining the clustering as a function of infectivity reveals behaviour akin to a

global epidemic phase transition across the map. That is, below a certain infectivity

threshold, the pathogen would not be able to invade GB.

Chapter 7 proceeds from observations discussed in Chapter 6. Namely, Chapter 7 presents

the first steps toward a novel landscape-level control strategy based on the large-scale host

structure. More specifically, the epidemic control strategy targets natural pinch-points

and fault lines in the spatial distribution of hosts to bottleneck the epidemic spread

between at-risk regions. The Chapter ends by discussing the major assumptions in the

control method and presents a series of research questions that need to be addressed

before the control method is demonstrated sufficiently.

Finally, Chapter 8 presents a concrete view of the limitations and future developments

of the work presented in this thesis.
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Chapter 2

Interdisciplinary tree disease

epidemics

Understanding modern-day tree disease epidemics requires a holistic, interdisciplinary

approach, made possible only by the convergence of numerous scientific fields. Conse-

quently, this Chapter reviews several key modelling themes. Models of tree disease aim

to help design effective control policies and inform policymakers. Well-informed poli-

cymakers can help maintain tree health in rural, urban and commercial environments.

However, myriad environmental, biological and anthropomorphic factors complicate the

scientific understanding and thus effective disease control.

Here, the review begins by narrating some early historical developments in human and

botanical epidemiology before presenting a variety of present-day modelling frameworks.

After introducing the mainstream paradigm of plant-based epidemic models, an inspec-

tion of dispersal, thresholds, and epidemic control follow naturally. Finally, the Chapter

ends with a case study of ash dieback, reflecting the multi-faceted difficulties posed by a

recent emergent epidemic.
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CHAPTER 2. INTERDISCIPLINARY TREE DISEASE EPIDEMICS

2.1 Historical perspectives

Historically, plant pathology and mathematical epidemiology fields existed in different

spheres. Plant pathology research focused on understanding pathogen biology (e.g.

[Walker, 1963]), not developing predictive mathematical theories. However, pioneering

discoveries in mathematical epidemiology permitted a more quantitative treatment of

botanical diseases. In particular, the seminal SIR model of [Kermack and McKendrick, 1927]

provided a foundation to examine plant-based epidemics mathematically.

2.1.1 Standard SIR

The [Kermack and McKendrick, 1927] (K & M) model involves three compartmentalised

fields, susceptible S(t), infected I(t) and removed R(t). Each field models the evolution

of a closed population of size N , where N = S(t) + I(t) + R(t). A coupled system of

ODEs then follow:

dS

dt
= −βSI (2.1)

dI

dt
= βSI − µI (2.2)

dR

dt
= µI (2.3)

where the term βSI dictates the flow of susceptible hosts into the infected compartment

according to the rate β. Likewise, µI controls the transition of infected hosts into the

removed compartment through a removal rate µ. Figure 2.1(a) illustrates the coupled

SIR system for fixed µ and four values of β.

The coupled differential system of Equations (2.1-2.3) rely on several assumptions, includ-

ing: (1) a closed population with no births or deaths (2) no exposed/incubation period (3)

lifetime immunity following recovery (4) mass action population mixing, where contact

mixing rates between individuals in S and I are proportional to the number of individuals

in either field.
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Today, countless articles have relaxed these assumptions and extended the standard SIR

framework1. Nevertheless, a keystone result emerged from Equations (2.1-2.3), namely

the existence of a critical epidemic threshold, captured through either:

R0 =
β

µ
(2.4)

Re =
S(t)

N

β

µ
(2.5)

where R0 and Re are referred to as the basic and effective reproduction numbers, respec-

tively. Following the introduction of one infected host at t = 0, N ∼ S(0) and we have

Re =
(
(N − 1)/N

)
β/µ. Therefore, in the limit of a large population at t = 0, the term

(N − 1)/N approximates unity and Re = R0, otherwise Re =
(
S(t)/N

)
R0.

Both quantities R0 and Re describe an epidemic threshold, though Re captures the thresh-

old in the face of a (finite) declining susceptible population by including the ratio S(t)/N .

Equation 2.5 defines a critical threshold by the simple criterion2: (1) when Re > 1, then

I(t) rises sharply, culminating in an epidemic before declining in the absence of newly

infected hosts (2) if Re ≤ 1, then I(t) quickly declines to zero as t→ 0 and the outbreak

subsides.

2.1.2 Logistic growth

Numerous growth models have been used to describe plant disease, primarily based on

the Gompertz [Berger, 1981], monomolecular [Neher and Campbell, 1992] and logistic

[Kushalappa and Ludwig, 1982] growth equations. However, [Van der Plank, 1963] was

the first to firmly establish ties between plant pathology and mathematical epidemiol-

ogy using logistic growth. Fundamentally, Van der Plank modelled the growth of plant

pathogens (or ‘inoculum’) by:

dI

dt
= rI(1− I) (2.6)

1Indeed, following the COVID-19 pandemic, SIR-type models remain an active field of research and
dominate present-day epidemic literature [Atkeson et al., 2020].

2For a more comprehensive mathematical proof of SIR model thresholds, the reader is directed towards
[Weiss, 2013]

2.1. HISTORICAL PERSPECTIVES 15



CHAPTER 2. INTERDISCIPLINARY TREE DISEASE EPIDEMICS

where r describes the rate of pathogen growth and I reflects the proportion of infected

tissue. In Equation 2.6, the amount of infected tissue I snowballs at first, in proportion

to the amount of inoculum. Then, as time passes and I grows, (1−I) approximates zero,

and the system plateaus as all susceptible tissue becomes infected. The essential model

behaviour is shown in Figure 2.1(b) over 10 growth rates parameters. From Equation

2.6, a simple method to determine the rate r follows:

r =
1

t2 − t1

[
loge(

I2

1− I2

)− loge(−
I1

1− I1

)
]

(2.7)

where I1 and I2 ∈ [0, 1] are the proportions of infected tissue at times t1 and t2 respectively.

Equation 2.7 is valid for all values of t, expect when t1 = t2 (see [Van der Plank, 1963]

Chapter 3). Importantly, both I1 and I2, and by extension the infection rate r, are

measurable in laboratory conditions. In Equation 2.6, newly infected tissue becomes

infectious immediately following infection. Realistically, infectious tissue (and symptom

expression) takes time to develop, described by an ‘incubation period’. Accordingly, Van

der Plank adapted Equation 2.6 to a delay differential equation (DDE):

dIt
dt

= RIt−p(1− It) (2.8)

where It and It−p describe the infectious tissue at times t and t−p and p is the incubation

period. Hence, infectious tissue grows in response to the factor RIt−p, and saturates

according to the logistic term (1− It). The parameter R now describes pathogen growth

at step t − p, as opposed to r that describes the spread of disease at step t, leading to

the ratio:

R

r
=

xt
xt−p

(2.9)

where xt represents the proportion of inoculum at time t, along with both r and R that

denote the ‘apparent’ infection rate (measurable in laboratories from Equation 2.7) and

the ‘basic’ infection rate, respectively. As Van der Plank explained, one usually seeks to

determine R from the constant r. If r indeed stays constant over the epidemic, the basic
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Figure 2.1: (a) The SIR model as presented by [Kermack and McKendrick, 1927] is shown
for fixed removal rate µ = 0.20 and variations of β. The coupled system of ODEs can be
solved numerically with Euler’s method. Here, simulations begin with 2500 susceptible
and one infected individuals, and evolve for t = 200 steps. (b) The logistic growth model
[Van der Plank, 1963] used to describe the growth of infected plant material. Simulations
are numerically computed with a forward-time finite difference method for 10 different
growth rates r.
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infection rate R must decrease as xt/xt−p gets progressively smaller, i.e. as xt−p → xt. At

this point, the basic infection rate R begins to resemble the effective reproduction ratio

Re from Equation 2.5 because it takes into account a changing population.

Equation 2.8 describes a system where infections incubate for a period p before inducing

the growth of more infectious plant tissue. However, it does not describe the infectious

period (where infected tissue remains before becoming epidemiologically inert), which

lead Van der Plank to extend Equation 2.8 to:

dIt
dt

= Rc(It−p − It−i−p)(1− It) (2.10)

where Rc is the basic infection rate ‘corrected’ for removals and i is the infectious period.

In this DDE, a unit of latently infectious tissue starts becoming infectious after p steps,

and stops becoming infectious i steps. More formally, as It−i−p → It−p, the rate of

infectious tissue growth approaches zero, dIt/dt→ 0.

2.1.3 Contrasting approaches

The SIR model does not include an incubation period, and therefore differs from the

delayed differential formulation of Equation 2.10. Nonetheless, the compartmentalised

SIR is easy to extend, leading to an SEIR system:

dS

dt
= −βSI (2.11)

dE

dt
= βSI − γE (2.12)

dI

dt
= γE − µI (2.13)

dR

dt
= µI (2.14)

where Equation 2.12 describes the population of latently (or exposed) infected hosts.

Susceptible hosts transition into the exposed compartment at the same rate as before,

namely βSI, but now have an exponentially distributed latency period of γ−1 before

transitioning into I.
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Both equations 2.11-2.14 and 2.10 outline similar behaviour, namely an incubatory pe-

riod following infection. However, infected tissue in Equation 2.10 remains infectious

for precisely i units, which contrasts with the exponentially distributed exposed lifetime

implicit within Equation 2.12. Nevertheless, [Segarra et al., 2001] illustrated how Van

der Plank’s DDE and the SEIR system are both special cases of the SIR model pro-

posed by [Kermack and McKendrick, 1927], when the SIR model incorporates a sporu-

lation function, φ(τ). The sporulation function appropriately models spore production

in plant pathogens. In particular, if φ(τ) = 0 for small t, φ(τ) can model incubation

periods. Similarly, if φ(τ) = 0 for large t, we recover an infectious period. More recently,

[Cunniffe et al., 2012] simplified the analysis of [Segarra et al., 2001], showing that both

Van der Plank’s DDE and the SEIR model can be recovered with an SEnImR model. In

an SEnImR framework, both n and m represent an arbitrary number of distinct exposed

and infectious compartments:

S → E1 → E2 → . . .→ En → I1 → I2 → . . . Im

Here, the SEIR model is recovered when n = 1 and m = 1. However, when n,m → ∞,

[Cunniffe et al., 2012] demonstrated that we recover an expression equivalent to the DDE

in Equation 2.10. Despite the equivalence of both DDE and SEIR formulations, the

overarching theme of modern epidemiology is overwhelmingly compartmentalised, owing

to the increased flexibility and easier analysis of compartmental models.

2.1.4 Progressive botanical epidemiology

After [Van der Plank, 1963] moved the field of botanical diseases into a more quanti-

tative discipline, theoretical investigations (alongside the adoption of computer simula-

tions) characterised the next few decades. Van der Plank’s DDE was applied to numer-

ous pathosystems, halo blight in beans [Taylor et al., 1979] and grape powdery mildew

[Sall, 1980] to name a few. In particular, [Sall, 1980] adapted the logistic approach to

include a time-varying infection rate r(t). Moreover, diverse mathematical techniques,
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including multiple regression analysis, were incorporated into mainstream plant epidemi-

ology [Butt and Royle, 1974]. Subsequently, [Zadoks et al., 1979] consolidated various

early mathematical models of plant disease alongside [Jeger, 1984].

Developments in computing compounded advances in plant epidemiology through this

period. Improved accessibility and computer architectures permitted faster calculations

and more intensive models. The first epidemic simulator (EPIDEM) written in FOR-

TRAN IV came by [Waggoner et al., 1969]. EPIDEM modelled the fungi Alternaria

solani spreading through infected potato and tomato leaf tissue under different environ-

mental conditions.

An interesting early simulator (EPIMUL76) developed by [Zadoks and Kampmeijer, 1977]

adapted Van der Plank’s logistic growth model into a spatio-temporal framework of two

spatial dimensions. EPIMUL76 simulated the spread of disease on a two-dimensional

domain, subdivided into 20×20 host units referred to as ‘compartments’, that took place

inside a computer with 128K of memory. Arguably, subdividing the domain into separate

compartments could be considered as an early agent-based model.

In their analysis, [Zadoks and Kampmeijer, 1977] alluded to the problem of scale in plant

disease, as spatial scales were conceptualised as ‘microscales’ (≤ 1m), ‘mesoscales’ (102m)

and ‘macroscales’ (106m). In this picture, microscales ranged from plant leaves to indi-

vidual plants, mesoscales reflected crop fields, and macroscales described large regional

expanses over an entire country. Moreover, the probability of dispersal between infected

hosts assumed a Gaussian distribution, in contrast to [Gregory, 1968].

In general, the ability to simulate more intricate models grew in proportion to the

amount of computer memory available. For a review of early plant disease simulators,

see [Teng, 1985].

2.1.5 Percolation: from forest fires to epidemics

Research on percolation occurred alongside the developing field of plant disease mod-

elling. The development of percolation theory marked an early approach to modelling
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epidemic systems that are both spatially explicit and stochastic. The original formula-

tion of percolation described the gelation of a fluid by modelling the bonds that form

between molecules [Broadbent and Hammersley, 1957]. Moreover, these early formula-

tions of percolation relied on a graph—illustrated in terms of vertices and edges. How-

ever, physicists studying material sciences put forward re-interpretations, naturally on a

lattice [Essam, 1980].

An essential characteristic of percolation is its ability to describe a phase transition.

More specifically, an abrupt change in the state of a system occurs when the system

reaches a percolation threshold. Interestingly, percolation thresholds are treatable with

scaling theory, used to study critical phenomena. In particular, when percolation is

around the threshold, specific characteristics (e.g. cluster size and cluster numbers) were

found to scale according to a ’critical exponent.’ Amazingly, critical exponents remain

fixed, regardless of the spatial dimension or the type of lattice geometry. Accordingly,

early work continued study percolation around criticality in terms of critical exponents

[Stauffer, 1979]. An expanded discussion of percolation theory continues in Chapter 3.

Different flavours of percolation models, such as site or bond percolation, were described

to model different processes. Nevertheless, percolation proved a convenient theory and

various phenomena including gelation, magnetism and telecommunications were described

[Adler et al., 1983]. With only a short conceptual jump from time-dependent percolation

used to study the growth of crystals [Family and Vicsek, 1985], forest fire models were

subsequently related to percolation [MacKay and Jan, 1984].

Beginning with the SIR framework, mathematical epidemiology was already well-established

around the time percolation theory was conceived [Baily, 1975]. A fire spreading through

a population of trees is not too different to a disease spreading through a population.

Hence, a general percolation-based epidemic-formalisation framework was put forward

by [Cardy and Grassberger, 1985] who proposed that epidemics might be in the same

universality class as percolation.

A fractal-like pattern of epidemics was observed by [Grassberger, 1986], shown in Figure
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Figure 2.2: A space-time representation of an epidemic spreading at the critical threshold.
The spatial (horizontal) and time (vertical) axis show self-similar propagation of diseased
individuals in grey, produced by [Grassberger, 1986]

2.2. In Figure 2.2, lighter grey sites represent removed individuals, black sites indicate

actively infected sites, and white sites indicate unaffected sites. All lattice sites in the

bottom row were initially infected, and the infection can be seen to propagate from the

bottom up. The lattice was initialised at the critical-density p ∼ pc culminating in

a fractal-like pattern. [Grassberger, 1986] did not attribute the hosts of this model to

be trees, but instead a general host-population with low mobility. The authors noted

that local interactions between hosts and infected were vast simplifications and proposed

generalising the system with long-range interactions following a power law. Although,

it must be remarked that including long-range interactions would cease to describe a

percolation based system.

Percolation models of epidemics were examined in several contexts, including renormalisation-

groups [Ohtsuki and Keyes, 1986] and Monte-Carlo methods [Janssen et al., 1988]. Stud-

ies generally focused on finding the systems critical exponents and categorising phase

transition graph that characterised an epidemic (super-critical) or extinction (sub-critical)

regimes [Grassberger, 1986]. The properties of both epidemics and forest fire percolation

models were studied together in [Cox and Durrett, 1988], highlighting their similarity.

Early ecological applications of percolation were put forward by [O’Neill et al., 1992],

who studied the effects of landscape distributions and percolation models (reflecting both

forest fire and tree disease epidemics). In their study, [O’Neill et al., 1992] combined SIR-
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like mechanics inside a percolation-based distribution of hosts and subsequently found

a narrow regime where disease epidemics would spread, thus mirroring the threshold-

like behaviour witnessed in the SIR model. Although, here, the authors considered the

possibility of host recovery.

A body of work applied percolation to model the economically damaging plant pathogen

Rhizoctonia Solani. R. Solani affects numerous botanical hosts, including potatoes, soy-

bean, and rice [Carling and Leiner, 1990, Chela Fenille et al., 2002, Kazempour, 2004,

Tsror, 2010]. Primarily, the saprotrophic fungus spreads between infected and suscepti-

ble host roots through mycelial growth [Papavizas, 1970]. The first article put forward

by [Bailey et al., 2000] relates the fungal growth dynamics of R. Solani to percolation.

In their research, [Bailey et al., 2000] assembled a matrix of interspaced nutrient sources

which together formed a triangular lattice. Experiments then sought to monitor how

the spread of R. Solani depends on the distance between sites. Subsequently, using the

conceptual percolation threshold, [Bailey et al., 2000] demonstrated the existence of a

minimum distance between sites, below which no spread occurred. This result places

constraints on the optimal proximity between hosts planted in a field.

Subsequent work on R. Solani continued to assess how random removals of nutrient sites

below the percolation threshold could prevent the spread of disease [Otten et al., 2004].

In the following years, Markov chain Monte Carlo (MCMC) methods were developed

by [Gibson et al., 2006] to estimate parameters for another percolation model applied to

R. Solani [Filipe et al., 2004]. [Pérez-Reche et al., 2011] went on to put forward further

generalisations of the percolation paradigm by incorporating synergistic interactions be-

tween hosts. Here, ‘synergy’ refers to the increased susceptibility of hosts surrounded by

multiple infected neighbours—similarly, a reduced infection pressure results when mul-

tiple susceptibles surround an infected host. Additional work by [Ludlam et al., 2012]

then formulated statistical approaches to find parameter estimates for the generalised

percolation model incorporating synergistic interactions. In a later follow-up paper,

[Poggi et al., 2013] proceeded to outline a risk-based percolation framework for soil-borne

pathogens, assessing how the probability of invasion depends on agricultural host density.
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2.2 Spatially-explicit epidemic models

Emergent infectious diseases (EIDs) in tree populations are multi-scale, spanning regional,

country or continental spatial scales. Considerable variations in landscape composition,

tree densities, population aggregation, and the climatic factors give rise to diverse spatio-

temporal patterns of disease spread [He et al., 2019, Suzuki et al., 2003]. Incorporating

spatial structure into tree disease models is therefore vital to accurately capture envi-

ronmental influences, host-pathogen interactions and dispersal [Liu et al., 2007]. This

section outlines several approaches to modelling the spread of tree disease over small,

large and multiple spatial scales.

2.2.1 Small-scale: stochastic dispersal

Pathogen dispersal through wind, watercourse or human trade underpins a key feature of

EDIs. Numerous functions have been used to model dispersal, but generally, all describe

a continuous non-negative (real-valued) function that is normalisable:
∫∞
−∞D(x)dx = 1.

Various review articles provide comprehensive functional examples [Bullock et al., 2017,

Nathan et al., 2012, Howe and Smallwood, 1982]. However, the general class of dispersal

kernels include thin-tailed Gaussian and exponential alongside fat-tailed inverse power

law variants.

Early plant disease simulators (e.g. EPIDEM and EPIMUL76) included stochastic dis-

persal—discussed at length in section 2.1.4. A more recent article by [Parnell et al., 2010]

modelled stochastic dispersal in Citrus canker to investigate the effects of landscape aggre-

gation patterns and disease progression. [Parnell et al., 2010] studied landscape patterns

of two kinds: 1) varying degrees of randomly distributed densities 2) varying degrees

of host aggregation. The epidemic model was based on a series of prior Citrus canker

works [Parnell et al., 2009a, Gilligan and van den Bosch, 2008, Cook et al., 2008]. The
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epidemic model is described by:

Pr(Si → Ii)∆t = 1− exp
[
− β

N∑
j

exp−αdij +ε
]

(2.15)

Here, a transition probability describes the ith susceptible tree becoming infected during

the step t→ t+ ∆t on account of N infected trees. Equation 2.15 assumes that dispersal

exponentially decreases with distance (i.e. exp−αdij), where α denotes the dispersal scale

parameter. Infection pressure from the jth infected tree is multiplied by an infection

rate, β. The last parameter to consider in Equation 2.15 is the primary infection rate

ε. The primary infection rate reflects the chance of infection from sources outside the

immediate system, i.e. at time t = 0, distant infected populations external to the closed

host population under consideration.

The outside exponential term of Equation 2.15 depicts a cumulative exponential threshold

above which trees become infected. Interestingly, this threshold is based on the ‘Sellke

construction’ [Sellke, 1983]. More specifically, the Sellke construction assumes that sus-

ceptives need an arbitrary (cumulative) degree of infection exposure before becoming

infectious. Using Equation 2.15, [Parnell et al., 2010] proceeded to define a control ra-

dius and found that both landscape aggregation and (randomly distributed) high host

densities increase the optimal control radius.

A later paper by [Cunniffe et al., 2015b] proceeded to generalise the Citrus canker model.

Primarily, the authors examined an SECIR model3, though several other model variants

were included. [Cunniffe et al., 2015b] contrasted both Gaussian and Cauchy dispersal

kernels. Cunniffe et al. included dispersal parameters provided by [Neri et al., 2014], who

assessed Cauchy kernels—in addition to exponential kernels. The general model followed:

φi(t) = w(t)
[
β
∑
j

K(dij;α) + ε
]

(2.16)

where w(t) is a time-dependent infectivity function, ε is the primary infection (set to zero

3Here, compartments are (S)usceptible, (E)xposed, (C)ryptic and (R)emoved) where C denotes un-
observable cryptic infections.
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in the manuscript), β is the rate of secondary infection, and K(dij;α) is the dispersal

function. However, this time, φi(t) in Equation 2.16 presents a rate of transition for

a single susceptible tree (from Si → Ei) under the influence of all infected neighbours

(represented by the jth index), as opposed to the probability of Equation 2.15 (hence its

missing outside exponential term).

Cunniffe et al. examined the effects of a cull radius similar to [Parnell et al., 2010]. Yet

this time, the results were aimed towards assessing control when ‘there is epidemic un-

certainty’. Consequently, [Cunniffe et al., 2015b] assessed different epidemic severity by

varying β, alongside numerous control parameters, e.g. eradication response time, de-

tection probabilities and revisit/survey intervals. All in all, [Cunniffe et al., 2015b] high-

lighted an intuitive result, namely, that the scale of control should reflect the “intrinsic

epidemic scale”. More succinctly, aggressive pathogens should be met with an aggressive

control strategy. Moreover, Cunniffe et al. suggested that thick-tailed dispersal kernels

(in this case, a Cauchy distribution) prove more challenging to control.

The Citrus canker models developed in Equations 2.15 and 2.16 contrast with non-spatial

analytical systems. For example, the model of pine wilt disease (PWD) constructed by

[Khan et al., 2020], who coupled a differential system of pine (H)osts and beetle (V)ectors

following:

dSH
dt

= λH − β1ΨSHIV − β2ΦαSHIV − γ1SH (2.17)

dEH
dt

= β1ΨSHIV − β2ΦαSHIV − (γ1 +m)EH (2.18)

dAH
dt

= m(1− ω)EH − γ1AH (2.19)

dIH
dt

= mωEH − (γ1 + µ)IH (2.20)

dSv
dt

= λV −KSvIH − γ2SV (2.21)

dEv
dt

= KSvIH − (γ2 + η)EV (2.22)

dIv
dt

= ηEV − γ2IV (2.23)

In this system, pine tree hosts interact with beetle vectors that carry pathogenic nema-
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todes (Bursaphelenchus xylophilus). Stepping through the system, equations 2.17-2.20

describe the host population. Naturally occurring births and deaths in the host popu-

lation occur at rates λH and γ1, respectively. Pine trees become infected by two mech-

anisms: β1Ψ that describes the incidence rate due to mature infected beetles, and β2Φ

that describes the incidence rate due to the offspring of infected beetles. Once pine hosts

become exposed, a fraction (ω) transition into the infectious symptomatic state I, while

the remaining fraction (1 − ω) become asymptomatic—both pathways occur at rate m.

Disease induced death happens at a rate µ. Equations 2.21-2.23 outline a (SEI) dynamic

for beetle vectors. Natural births and deaths in the beetle population happen with rates

λV and γ2, respectively. Furthermore, susceptible beetles become exposed by feeding on

infected pine trees at rate K and transition into the infected beetle class at rate η.

Equations 2.17-2.20 assume mass action population mixing of beetles without stochastic-

ity. Presumably, this assumption led [Khan et al., 2020] to model PWD as a non-spatial

system on account of the mobile population of Beetle vectors. In reality, a dispersal

kernel is likely to describe beetle movements more accurately than the well-mixed system

presented in Equations 2.17-2.20. Case in point, the spatio-temporal dynamics of Asian

longhorned beetle were examined by [Smith et al., 2004] who inferred a median dispersal

rate of 30m/day according to an exponential dispersal kernel (with only 2% of beetles

exceeding 920m).

The particular method of analysis constitutes a major difference between spatially explicit

stochastic models and their non-spatial analytic counterparts. Linear stability analysis

was performed on the deterministic system of Equations 2.17-2.20. Whereas the stochas-

tic spatio-temporal framework of Equations 2.15 and 2.16 were analysed by repeating

simulations inside an ensemble.

2.2.2 Large-scale: landscape spread

Ultimately, microscopic (host-pathogen) interactions propagate the spread of disease.

Although once disease-establishment has taken place, large-scale outbreaks can spread
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through vast areas, e.g. the spread of ash dieback through Europe [Alsop et al., 2015].

As a result, contemporary models of tree disease have examined the large-scale spread

over entire landscapes. The previous section outlined some small-scale models (on the

order of 1 ∼ 10km), however, in this section, we focus on large-scale epidemic models.

Over large scales, two primary disease drivers include long distance dispersal (LDD)

through wind [Golan and Pringle, 2017, Gross et al., 2014a] and trade [Hill et al., 2019,

Perrings, 2016, Harwood et al., 2009, Keeling and Eames, 2005]. However, linking hu-

man trade networks and dispersal in one large-scale model is challenging due to numerous

complex parameters and epidemiological drivers.

A framework constructed by [Harwood et al., 2009] incorporated the growth and repro-

duction, dispersal and trade of infectious plant material into a single model. The study

conducted by [Harwood et al., 2009] aimed to assess the risk of Phytophthora ramo-

rum and Phytophthora kernoviae in the UK by employing a linked network approach.

In the linked network, single grid cells of area 1km× 1km were coupled together by

a (wind-borne) dispersal kernel and a trade network. Following earlier earlier work

[Madden et al., 2007], the population inside each grid cell evolved according to an SEIS

model:

dS

dt
= µE + µI − βSI (2.24)

dE

dt
= βSI − kE − µE (2.25)

dI

dt
= kE − µI (2.26)

where host introductions were assumed to balance the total number of removals µ(S +

E + I). Then, dispersal between 1km× 1km grids took place inside a domain of size

700km× 1300km covering the UK. Here, the host population was informed by the Coun-

try side survey data—discussed more below in section 4.2. An inverse square power law

described wind-borne dispersal (with a scale constant of 2m), though parameterisation

was qualitative and uniformed by experimental data.
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In addition to wind-borne dispersal, a simulated trade network linked 1km× 1km grid

cells. In the trade network, plant nurseries and retailers were connected by LDD trade

and transport. In this manner, Phytophthora ramorum and Phytophthora kernoviae

could jump between cells. The same linked-network approach was later used to re-

construct the highly popularised 1970s Dutch elm disease epidemic in Great Britain

[Harwood et al., 2011, Potter et al., 2011].

A similar construction was put forward by [Meentemeyer et al., 2011] to forecast the

spread of sudden oak death (SOD) in California from (1990-2030). A distribution of host4

abundance was derived from previous SOD modelling work [Meentemeyer et al., 2004]

and comprised 250× 250 grid cells weighted by the relative susceptibility to P. ramorum

from 1-100. As a result, a high-resolution map of was produced throughout the state of

California detailing the ‘host index’ from 1-100.

The large-scale SOD model developed by [Meentemeyer et al., 2011] included several epi-

demiological and longer-range transmission. Local-scale dispersal were estimated using

Markov chain Monte Carlo (MCMC) methods from aerial surveys [Valachovic et al., 2008]

of P. ramorum, and positive sites (between 2001–2007) confirmed by the California

Department of Food and Agriculture were used to estimate the long-range dispersal.

[Meentemeyer et al., 2004] found that a long-range Cauchy distribution fitted the data

most appropriately over both spatial scales. Hence, a multi-scale kernel was given as:

K(d;α1, α2, γ) = γ(1 + (d/α1)2)−1 + (1− γ)(1 + (d/α2)2)−1 (2.27)

where α1 = 20.57m and α2 = 9.5km represent the short and long range dispersal ker-

nels respectively, and the ratio γ = 0.99 estimates the total contribution to short and

long-range dispersal. Using the multi-scale dispersal kernel in Equation 2.27, the epi-

demiological model between 250m× 250m grid cells assume the form:

Ψijt = β
∑
i

(
χt(fi)mitcitIit

)(
χt(fj)mjtcjtSjt/Nmax

)
×K(dij;α1, α2, γ) (2.28)

4In this context, ‘host’ refers to a wide-range species susceptible to P. ramorum [Tooley et al., 2004].
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where Ψijt represents the infection pressure from grid i to grid j in one week t intervals.

Equation 2.28 includes multiple component-functions and parameters:

• A binary-valued function χt(fi) that indicates if forest type fi can infect and become

infected at time t

• two indices mit and cit that indicate moister and temperate of patch i at time t

• Ii and Sj, the number of infected in grid i and susceptibles at j

• K(dij), the dispersal kernel from Equation 2.27

• β that models the rate of spore production per site per week.

From the model, [Meentemeyer et al., 2011] predicted which areas in California had the

highest secondary infection risk of SOD over 40 years. Simulations were ensemble-

averaged based on predicted weather conditions from 2008–2030. Climatic variations

were classified as ‘favourable’, ‘random’ and ‘unfavourable’ for pathogen growth. In all

variations, SOD was predicted to spread through California and effect 1000s of square

kilometers. However, considerable spatial and temporal variation were witnessed across

different Californian states. Additionally, [Meentemeyer et al., 2011] observed that 93%

of short-range dispersal occurred within the range of a single 250× 250 and 95% of infre-

quent long-range spread remain within 100km in their model. Although, most dispersal

remained localised < 1km.

[Meentemeyer et al., 2011] emphasised the multi-faceted parameters and processes that

one needs to consider before modelling a large-scale epidemic outbreak; these included,

host data, dispersal, and climate. [Cunniffe et al., 2016] subsequently extended the anal-

ysis of [Meentemeyer et al., 2011] to assess the large-scale effects of epidemic control, and

particular examined how to optimise eradication of SOD with limited resources. When

resources are low, the authors suggested that small localised eradication zones around

known foci optimise control; justified by the fact that small, but more numerous, control

areas about diseased areas reduces the risk of failing to treat a high-risk site that causes

many secondary infections.
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Furthermore, [Cunniffe et al., 2016] examined management strategies that target: (1)

hosts irrespective of disease status (the ”host” strategy) (2) local areas with high preva-

lence (”hazard” strategy) (3) areas with high basic reproduction numbers (”susceptible”

strategy) (4) regions ahead of the wavefront (’wavefront” strategy). Of all the manage-

ment scenarios tested, [Cunniffe et al., 2016] found that (4), treating areas ahead of the

wavefront, reduced epidemic spread the most. In this scenario, the affected area was

reduced by ∼ 2400km2 and the optimal culling radius was determined to be 362.5m.

All the large-scale models discussed above split the population into smaller (sub)girds. As

such, they share noticeable similarities to a metapopulation5 commonly used by ecologists

studying spatially-structured animal and plant populations [Hanski, 1998]. However,

plant-disease modellers increasingly utilise metapopulation settings to study the effects of

landscape features on disease progression [Benincà et al., 2020, Soubeyrand et al., 2009,

Park et al., 2002].

2.2.3 Multi-scale: disease fronts

Through the years, numerous researchers have conceptualised the spread of disease, or

more broadly, biological invasions, through the lens of diffusion, random walks, or lo-

calised dispersal. As a consequence of such ideas, we see the prediction of constant

travelling waves [Skellam, 1951, Mollison, 1977, Grassberger, 1983, Ferrandino, 1993]. A

classic example can be found in the Fisher Kolmogorov–Petrovsky–Piskunov (FKPP)

equation [Fisher, 1937].

Although recent work has called travelling waves into question for plant-based (LDD)

epidemics, as we discuss more below, the FKPP model is important from a historical

and contextual perspective; the model comprises some fundamental ‘reaction diffusion’

properties that emerge from the interplay of a populations growth and spread. In two

spatial dimensions, the FKKP model is given by a partial differential equation (PDE) of

5Metapopulation dynamics generally aim to deconstruct a spatial population into separate sub-
populations contained within a ‘patch’. Then, between-patch interactions aim to model population
migrations, connectedness and fragmentation, while within-patch dynamics aims to model colonisation,
persistence, competition, coexistence, and habitat suitability.
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the form:

∂u

∂t
= D∇u+ ru(1− u/K) (2.29)

where D is a diffusion coefficient (m2 t−1), r is a growth rate (t−1), and K is carrying

capacity. More explicitly, D represents a populations mobility, r represents how quickly

individuals in the population reproduce, and K represents the maximum number (or

concentration) of individuals can occupy a region in space at any one time. If K =

u, the whole growth term goes to zero and we only have outward diffusion (provided

neighbouring regions are not fully occupied as well).

Hence, the two terms in Equation 2.29 describe a populations logistic growth and spread,

ru(1− u/K) and D∇u respectively. The essential travelling-wave behaviour of Equation

2.29 is displayed in Figure 2.3 in both one and two spatial dimensions. In all panels,

travelling waves are simulated with parameters r = 0.10, D = 0.10, and K = 1.00, and

at t = 0, the field is set to u(x) = 0.10 at the domains mid-point. All simulations shown

in Figure 2.3 evolve according to a forward-time centered-different (FTCD) finite scheme

to second order and admit dirichlet boundary conditions.

Figures 2.3(a-c) show a one-dimensional wave propagating under different conditions:

(a) symmetric growth and diffusion (b) extending a linearly increasing diffusion gradient

from left (D = 0.01 at x = 0.00) to right (D = 2.00 at x = 1.00) (c) extending a linearly

increasing growth gradient that increases from left (r = 0.01 at x = 0.00) to right

(r = 2.00 at x = 1.00). Figures 2.3(d-f) show the equivalent two-dimensional behaviour.

From these conditions, we can see that D and r control the thickness of the wavefront,

which can be inferred by the quantity `w ∼
√
D
r

(as can be seen by the cancellation of

units, i.e. length2

t
1
t−1 ). For a large D and small r, the wave-front extends over a larger

region, as demonstrated in Figures 2.3(b) and (e). Conversely, for small D and large

r, we have a thin wavefront, shown in Figures 2.3(c) and (f). For all panels shown in

Figure 2.3, the travelling front speed remains approximately constant, reflected through

the predicted front velocity:

v ≥ vmin = 2
√
rD (2.30)
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Figure 2.3: Simulating the FKPP model in one and two spatial dimensions with param-
eters r = 0.10, D = 0.10, and K = 1.00. In all panels, a non-zero field value is initialised
at the domains mid-point (i.e. u(x = 0.50) = 0.10) at time t = 0. Then, simulations
evolve according to a FTCD finite difference scheme to second order observing dirichlet
boundary conditions. (a) Symmetric growth and diffusion in 1D. (b) An asymmetric
diffusion-gradient increasing from left to right in 1D. (c) An asymmetric growth-gradient
increasing from left to right in 1D. (d) Symmetric growth and diffusion in 2D. (e) An
asymmetric diffusion-gradient increasing from left to right in 2D. (f) An asymmetric
growth-gradient increasing from left to right in 2D.
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where vmin is the minimum wave-speed admitted by the front6. The numerical stability

of simulations is ensured provided that the Courant–Friedrichs–Lewy (CFL) condition is

met [Courant et al., 1967]. In the case of the FKPP model, the CFL condition is given

by: D × (dt/dx2) < 1
2

where dx and dt represent the discretized domain and time-steps

respectively.

The travelling-wave behaviour of Equation 2.29 has been used in various epidemiological

applications [Britton et al., 1986, Murray, 2002, Klein et al., 2010, Bianco et al., 2013,

Yano, 2017]. Indeed, the FKKP model has close connections to alternative travelling-

wave models examined in the context of plant epidemics [Heesterbeek and Zadoks, 1987,

Van den Bosch et al., 1988]. In the context of plant disease models, these travelling waves

generally emerge from the inclusion of short-range exponentially-bounded7 dispersal con-

tacts between individuals—as proved theoretically by [Mollison, 1977] who compared the

FKPP model against exponentially-bounded ‘contact’ models.

At first glance, the reaction diffusion (RD) FKPP travelling wave presents a simple,

intuitive place to begin modelling the spread of disease through a population of trees.

However, following earlier work on turbulent diffusion [Scherm, 1996], epidemic systems

that spread through fat-tailed LDD are now thought to exhibit an accelerating ‘dispersive’

wavefront [Pybus et al., 2012, Cowger et al., 2005], in contrast to the constancy predicted

by Equation 2.30. In this case, dispersal becomes evermore efficient as the disease front

extends over larger areas.

Inverse power law dispersal kernels are thought to be of significant importance with accel-

erating disease fronts, following from their fat-tailed leptokurtic nature and subsequent

scale-invariance. In particular, they have been successfully used to fit spore dispersal

data over five orders of magnitude [Mundt et al., 2009b], from 20m to continental spa-

tial scales. Power law scale invariance was examined by [Severns et al., 2019] for wheat

6The reader can find comprehensive derivation in [Murray, 2002], in Chapter 11 ”Biological Waves”.
In there, we see that strictly speaking Equation 2.30 is incorrect in two spatial dimensions on account
of wavefront curvature, though it still provides a reasonable estimate.

7Here, the choice of exponential distribution can be considered as slightly longer-range than a Gaussian
dispersal kernel with the same scale parameter. Although, both kernels are still fundamentally thin-tailed.
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Figure 2.4: Wheat strip rust prevalence with distance shown for three data sources, as
displayed in [Severns et al., 2019]. The authors collated data from different wheat strip
rust studies and found that disease prevalence over different spatial scales could all be
fitted to a common power law—shown in the bottom left corner.

strip rust (WSR) epidemics. In particular, the authors constructed wheat plantations

and artificially introduced WSR to measure its prevalence over time. Consequently, the

spatio-temporal WSR incidence rates strongly supported an accelerating, disperseive,

wavefront.

In addition to dispersive waves, [Severns et al., 2019] aggregated and compared other

WSR prevalence studies over different spatial scales and fitted the combined data to one

common inverse power law (y = a(x+ c)−b), shown in Figure 2.4. Generally, we see that

WSR induces less lesions with distance, and that infections can arise up to 10km away

from the source, illustrated by triangles in the lower right hand corner. An exponent of

b = 2.39 provided a good fit for all scales, suggesting that inverse square power laws may

prove a useful rule of thumb to predict disease prevalence over different scales.

2.3 Ash dieback case study

Ash dieback presents an interesting case study of an emerging epidemic currently dev-

astating ash populations throughout Europe [Enderle et al., 2019]. The history and pre-
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dicted evolution of ash dieback demonstrate how an invasive, non-indigenous pathogen

can spread rapidly through a foreign ecosystem that lacks evolutionary defences. Among

the many factors driving the spread of ash dieback, long-distance anthropomorphic trade

is the mechanism responsible for the initial introduction into Europe from the far-east

[Zhao et al., 2013, Queloz et al., 2011].

The pathosystem has been the subject of much research over the years. As a result, the

taxonomy, symptoms and life-cycle of the pathogen are now well-known [Gross et al., 2014b].

Understanding the spread of ADB and managing the epidemic impact on ecosystems

could only be achieved by the confluence of molecular biologists, forest managers, poli-

cymakers and modellers. Although the epidemic is well underway, slowing the spread of

ash dieback remains essential to allow ash populations time to adapt.

2.3.1 Historical developments

Reports of dieback on ash began surfacing in Poland in 1992, but a causal agent was not

established for a decade [Kowalski, 2001, Coetsee et al., 2000]. Subsequently, [Kowalski, 2006]

recognised a novel pathogenic fungus to be the causal agent, identified as an ascomycete

anamorph (i.e. an asexual fungus). The fungus was named Chalara fraxinea, a member of

the hyphomycete genus Chalara. The sexual teleomorphic stage of the pathogen was later

attributed to Hymenoscyphus albidus [Kowalski and Holdenrieder, 2009], a well-known

non-pathogenic fungus indigenous to Europe.

Linking the hitherto non-pathogenic H. albidus to the agent causing ash dieback perplexed

researchers. The enigma was resolved through DNA sequencing by [Queloz et al., 2011]

when a second morphologically identical ascomycete named ‘Hymenoscyphus pseudoal-

bidus’ was identified as the pathogen responsible for widespread dieback of European ash

in a process referred to as ‘Cryptic speciation’.

Interestingly, the emergent epidemic caused by H. pseudoalbidus coincided with develop-

ments in the phylogenetic classification system of the kingdom Fungi [Hibbett et al., 2007],
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and dual nomenclature8 [Wingfield et al., 2012]. Subsequently, the pathogen ‘Hymenoscy-

phus pseudoalbidus’ was renamed to Hymenoscyphus fraxineus (HF).

2.3.2 Symptoms and epidemiology

European ash is highly susceptible to HF because it has no (co-evolved) evolutionary

defence. Although HF is lethal to European ash, it poses little threat to its native

Asian hosts Fraxinus mandshurica and Fraxinus chinensis. Once the fungus colonises

a European ash leaf, it can spread through twigs, branches, the xylem, and eventu-

ally the whole tree. The symptoms include necrotic lesions, crown dieback, wilting

and eventual death. In addition to leaf-infections, the pathogen can colonise the root-

system [Schumacher, 2011]. Root-infections usually occur in already severely infected ash

[Gross et al., 2014b]. After which, it is only a matter of time before opportunistic fungi

invade and significantly accelerate mortality [Enderle et al., 2013].

The progressive symptoms of ADB, as presented by [Gross et al., 2014a], are displayed

in Figure 2.5. Ascospores initially infect susceptible ash leaves (a), becoming visible after

around two weeks [Cleary et al., 2013] in the summertime. In Figure 2.5, panels (b-d)

show the initial infection spreading through the leaf into the rachis and the development

of the first necrotic lesions—see [Mansfield et al., 2018] for further information on the

precise mechanism of ascospore leaf penetration.

Over winter, the infection continues to spread through ash. Young ash develop large

visible necrotic lesions, as illustrated in Figure 2.5(e-i). In spring, the infection causes

shoot wilting (g) and death (h-i) before causing xylem necrosis (j). Over many seasons,

large infected mature ash trees begin to die (l) as it begins forming epicormic branches,

as noted by [Marciulyniene et al., 2017] and losing its canopy.

The pathogen HF is lethal to European ash of all ages. Nevertheless, research has es-

tablished that small young ash trees are more at risk, and susceptibility declines with

8Originally, fungi were classified through the structure of their sexual organs. Problematically, as-
comycete fungi have a complicated dual reproductive mode (both sexual and asexual) that often caused
confused. However, a move toward a one-name fungi classification system has since simplified fungi
taxonomy.
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Figure 2.5: The symptoms of ash dieback, taken from the work of [Gross et al., 2014a].
The pathogen H. fraxineus infects the leaves of ash, leading to early onset wilting and
desiccation. The fungus then reproduces asexually, spreading through twigs, branches
and eventually the xylem. Symptoms include wilting, necrotic lesions, crown dieback
and eventual mortality.
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maturity. Surveys of ash stands conducted by [Marçais et al., 2017] in Belgium recorded

that after six years of infection, small young saplings died with 35% mortality, whilst

slightly larger ash (< 25cm in diameter) displayed mortality of 11%. In contrast only

3.2% of large mature ash (> 25cm in diameter) died.

Various sources of ash mortality data have been collected in different European countries.

In Germany, a forest stand of planted ash trees showed a 73% mortality rate after five

years [Langer et al., 2015] (as cited in a review [Enderle et al., 2017]), while observations

of ADB progression in Austria suggest a low mortality rate of 5% measured over a two-

year window [Keßler et al., 2012]. A study conducted at different sites throughout Great

Britain suggests a time scale ranging between 3− 15 years of infected tree growth before

death [Wylder et al., 2018].

In addition to age, ash survival also depends on the landscape. Landscape features

and ADB progression were studied by [Grosdidier et al., 2020] over a sample plot of size

3.5km× 6.5km in France, where observations over two years indicated that the surround-

ing landscape has little impact initially in 2012. However, after pathogen establishment,

later surveys in 2016-2018 showed that landscape features play an essential role. Among

the results put forward by [Grosdidier et al., 2020], a highly abundant ash region in-

creased the prevalence of collar canker and rachis symptoms in neighbouring ash. In

addition, the authors found that the influence of ADB decayed exponentially up to

200 − 300m away from the high density source, thus suggesting a density-dependency

in ADB spread.

Modelling work suggests a myriad of environmental factors can also predict the vulnera-

bility of ash and subsequent spread of disease [Dal Maso and Montecchio, 2014]. Spatial

regression analysis conducted by [Chumanová et al., 2019] in the Czech Republic indi-

cates that altitude is an important predictor of pathogen growth, which also support the

strong negative temperature dependence observed by [Hauptman et al., 2013].
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2.3.3 Life cycle and reproductive mode

The reproductive mode is intricate, and HF can infect hosts through the soil, water,

and air [Gross et al., 2012], though the primary natural driver of disease propagation

is through wind-dispersal during summertime sporulation. Sporulation typically occurs

from June-September when fungal fruiting bodies on the previous litter-fall release as-

cospores [Grosdidier et al., 2018, Hietala et al., 2013]. Multiple ascospores sources can

infect the same leaf [Gross et al., 2012]. Though the primary natural driver is wind, in-

fection (and re-infection) of ash are also thought to be possible through the soil-borne

mechanisms [Fones et al., 2016], albeit with low frequency.

Ash dieback is highly seasonal [Bengtsson et al., 2014] and follows a complex, yearly poly-

cyclic infection cycle. Infected ash hosts will shed their leaves in the autumn, proceeded by

fungal fruiting bodies growing on the dead leaf litter until summertime. In summer, fruit-

ing body spores are wind-dispersed and continue the cycle by producing new secondary

infections—together, the life cycle and symptom expressions are illustrated in Figure 2.5.

It is interesting to note the cyclic similarities between yearly ADB infection/re-infection

and the seasonal infections due to crop rotations, e.g. [Tankam-Chedjou et al., 2020].

Notwithstanding that infected crop removal usually coincides with harvest time instead

of infected ash survival that can span years.

The life cycle of the fungus HF can be understood to have two well-differentiated repro-

ductive modes, sexual and asexual—a common trait of phyla Ascomycota, or ascomycetes

fungi [Hawker, 2016]. Initially, asexual spores (conidia) were hypothesised to only increase

genetic variance and act as spermatia [Gross et al., 2014a]; however [Fones et al., 2016]

called this into question, suggesting instead that asexual reproduction of the pathogen

may play a role in driving the pathogen spread. Despite the potentially significant claim

put forward by [Fones et al., 2016], it has gained seemingly little traction, and the role

of asexual reproduction is still not fully understood.
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Figure 2.6: A life-cycle illustration of ADB: (1) HF ascospores disperse through wind
during summertime sporulation, generally between June-September. Ascospore produc-
tion constitutes HF’s sexual (or ‘teleomorphic’) reproduction mechanism. (2) Ascospores
penetrate the leaves of susceptible ash, causing the leaves to wilt. After spores infect
leaves, the fungus proceeds to spread through twigs, branches and eventually the xylem.
Infected leaves are shed in autumn, or from disease induced death. (3a) Over winter,
a mushroom-like fruiting body grows on infected leaf-fall (usually the petiole). (3b) A
proposed soil-borne infection mechanism has been proposed [Fones et al., 2016]. Here,
asexually reproducing HF mycelium are thought to infect the roots of ash trees. Through
both steps (3a) and (3b), asexual condia disperse from the infected litterfall, shown in
blue. Condia are proposed to act as spermatia, increasing the genetic diversity of HF.
(4) During the next summer period, immense numbers of ascospores are release from the
fruiting body and disperse through wind. (5) Ascospore dispersal induces ADB infections
in distant susceptible ash. Fungal spores in particular are known to travel large distances.
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2.3.4 Dispersal

In general, fungal spores have an efficient multi-scale wind-dispersal mechanism known to

travel large distances [Golan and Pringle, 2017, Wingen et al., 2013, Mundt et al., 2009a],

often described by power-law kernels, e.g. [Shaw et al., 2006]. However, from an epidemi-

ological perspective, data on spore dispersal does not necessarily reflect the dynamics of

new infections, because we cannot guarantee the availability of susceptible host material.

More explicitly stated, invasive spore colonisation is not guaranteed even if hosts are

available to infect. Still, studies on spore dispersal shed essential light on the spatial

scale of ADB dispersal.

Modern methods typically rely on ‘spore trapping’ and real-time polymerase chain re-

action (PCR) to study spores dispersal. Data collected by [Chandelier et al., 2014] over

three years using a (rotating arm) trapping system and PRC amplification. The authors

reported a 10% spore trapping efficiency, and that most dispersed ascospores remained

within 50m from the infectious source, with only a small number of spores exceeding

distances beyond 50m. The work of [Chandelier et al., 2014] demonstrated the utility of

novel PCR methods to spore trap, but undesirably collected dispersal data over relatively

small spatial scales.

Among the first landscape-scale fungal spore studies were conducted by [Rieux et al., 2014].

The authors focused on a comparable ascomycete fungus, Mycosphaerella fijiensis, affect-

ing banana plants. Interestingly, [Rieux et al., 2014] reported that asexual spore dispersal

gradients extended a small distance 15m. As opposed to occasional, rare LDD in sexual

(ascospore) dispersal up to 1000m. Contrasting sexual and asexual spore dispersal was

novel, and observing a small localised asexual dispersal gradient supports the accepted

idea that sexual dispersal in ADB is the dominant driver of disease spread.

Arguably the most comprehensive multi-scale study of ADB spore dispersal was per-

formed by [Grosdidier et al., 2018]. In their paper, [Grosdidier et al., 2018] tracked the

local and landscape-level dispersal of ascospores produced by H. fraxineus in France. The

data collected relied on spore trapping and PRC, where the reported trapping efficiency
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was 30–47%, thus marking an improvement over previous studies e.g [Chandelier et al., 2014].

Most spores dispersal remained localised up to 50m away from the inoculum source, con-

sistent with the results mentioned above put forward by [Chandelier et al., 2014]. Never-

theless [Grosdidier et al., 2018] set spore traps over much larger spatial scales (∼ 100km),

subsequently detecting ADB spores 50− 100km ahead of the disease front.

Two dispersal kernels were used by [Grosdidier et al., 2018], a thin tailed Gaussian and

an inverse power law of the forms:

D(a, r) =
1

πa2
exp

[
− r2

a2

]
(2.31)

and

D(a, r) =
(b− 1)(b− 2)

2πa2

[
1 +

r

a

]−b
(2.32)

where a and b are fitted parameters (for the Gaussian kernel, a =
√

2σ with σ being the

standard deviation.). In Equation 2.31, the fitted value was a = 196m, while the fitted

values in Equation 2.32 were a = 203m and b = 3.3 respectively.

Equation 2.32 falls into the classical two-parameter geometric family of dispersal distri-

butions. The scale parameter is described by a and the shape parameter by b. The mean

dispersal distance described by Equation 2.32 is 2a
b−3

, and parameters a and b are valid

for a > 0 and b > 2.

The functional form of Equation 2.32 is predicated on pollen dispersal studies, as re-

viewed by [Nathan et al., 2012]. The tail of Equation 2.32 is particularly well suited to

describe LDD events, as noted by [Austerlitz et al., 2004] when describing the dispersal

of pollen particulates. Moreover, a study by [Devaux et al., 2007] used Equation 2.32

to model pollen-dispersal (and thus plant gene-flow) over landscape-level spatial scales.

Presumably, the ability of Equation 2.32 to describe LDD, and the size similarity between

pollen and fungi spores, motivated [Grosdidier et al., 2018] to include it their field study.
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2.3.5 Management and control

Losing abundant ash populations could have dire consequences for several ecosystem func-

tions, including nutrient recycling, food webs, and biodiversity. As such, ADB presents

a conservation challenge throughout Europe and Great Britain [Pautasso et al., 2013].

Moreover, under the rapid proliferation of ADB, various ash-dependent species risk

extinction; [Hultberg et al., 2020] identified 115 at-risk (lichens, fungi, invertebrates,

bryophytes/moss) species in Sweden that rely on ash. Alarmingly, many of the ash-

associated species identified by [Hultberg et al., 2020] also depend on elm species, which

in turn face the fungal pathogen Dutch elm disease [Brasier, 1991].

Given the ecological importance of ash in numerous temperate European forest types (e.g.

floodplain, ravine, and lowland [Dobrowolska et al., 2011b]), management and pathogen

control remain essential. The control of ash dieback in a well-established focus of infesta-

tion, in natural and artificial environments, is virtually impossible [Havrdova et al., 2017],

and it is already well recognised that ADB will eventually wipe out the vast majority of

ash in Great Britain [Hill et al., 2019].

After the first reports of ash dieback in the UK in 2012, the UK government put for-

ward the ‘Chalara Management Plan’[Defra, 2013] in 20139 . The report details actions

taken by the government to manage the spread of ADB. In the short term, the govern-

ment primarily sought to slow the spread between affected regions, whereas, in the long

term, the strategy consists of replanting genetically tolerant ash trees. In addition, the

government set out plans to engage landowners and industries to take part in control ini-

tiatives voluntarily and minimise the effect on the timber trade and supply lines. Finally,

the report details rapid-response modelling work undertaken by Cambridge University

(unpublished) to help understand which areas in GB are likely to be the most affected.

Specifically, output from the model indicates which low-risk and high-value areas should

be monitored preferentially. Unfortunately, however, the model developed by Cambridge

9The plan can be found at: https://www.gov.uk/government/publications/chalara-management-plan.
Note, the pathogen’s old name ‘Chalara’ ash dieback has since been replaced with Hymenoscyphus
Fraxineus.
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University cannot be found in the literature.

Controlling the spread of ash dieback reflects the spatial and temporal scale over which it

spreads. In particular, ADB fungal spores are thought to be able to jump between patches

of ash, even in the absence of susceptible hosts [Wingen et al., 2013]. However, LDD

accounts for only a small minority of spore dispersal. Furthermore, despite many notions

of LDD, no unified LDD classification system exist, which led [Golan and Pringle, 2017]

to propose a definition based on the distance traversed by the top 1% of spores.

The long-term survival of ash depends on a small proportion of genetically resistant

ash trees. Despite many unpublished reports, genetic tolerance studies only began sur-

facing around a decade after the widespread outbreak [Kjær et al., 2012, Stener, 2013,

McKinney et al., 2014]. In particular, [Muñoz et al., 2016] showed the heritability of

crown dieback and collar-lesion symptom expression. In the three French provenances

sampled, [Muñoz et al., 2016] found no evidence for regional tolerance. Presently, genetic

tolerance is widely accepted [Havrdová et al., 2016, Skovsgaard et al., 2017], and more re-

cent work has focused on metabolomic tolerance classification, profiling which metabolite

markers correlate with resistance [Nemesio-Gorriz et al., 2020a, Nemesio-Gorriz et al., 2020b,

Sidda et al., 2020, Chaudhary, 2020].

A silvicultural system proposed by [Skovsgaard et al., 2017] involves visually scoring

severity based on crown dieback and collar lesions. In this scheme, forest managers would

inspect disease severity to record disease progression over time and record genetically re-

sistant trees to cultivate for future timber production. In addition, [Skovsgaard et al., 2017]

proposed that diseased forest stands should not be indiscriminately felled on account of

high-value tolerant individuals; this suggestion stands in contrast to the idea of a ‘cull

radius’, as alluded to by [Cunniffe et al., 2015b]. In general, felling infected stands is ill-

advised [Chandelier et al., 2017], except when infected hosts present a risk of uncontrolled

and damaging tree-fall—as explained by [Hill et al., 2019] when assessing the clean-up

cost within Great Britain.

Following the establishment of genetic tolerance, numerous long-term preservation strate-
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gies rest on cultivating and replanting trees that exhibit low damage levels. Breeding pro-

grams in many European countries are currently underway, as reviewed by [Plumb et al., 2020].

In the UK, the Living Tree Project (https://livingashproject.org.uk) aims to collate tol-

erant UK ash for future breeding.
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Chapter 3

Tree disease: a simple lattice model

Typically, models of tree disease are complicated and involve multiple parameters in-

formed by experimental data. Moreover, modelling a specific pathosystem requires in-

depth, specialist knowledge to incorporate biological realism, such as pathogen lifecycles

or environmental suitability. This introductory Chapter outlines a simple model of tree

disease spreading through a forest that will lay the foundations for more detailed treat-

ment in later Chapters. Consequently, the compartmentalised SIR, percolation-based,

model used by [Orozco-Fuentes et al., 2019] will be re-examined.

From first principles, the percolation model is analysed over a single tree density parame-

ter (ρ), leading to a mathematical and conceptual definition of percolation in the context

of tree-based epidemics. Then, a discussion of critical phenomena, universal behaviour,

and self-similarity in the system will follow. Crucially, this Chapter demonstrates the

importance of thresholds in the spread of tree-based diseases.

The one-parameter model will give way to a more involved two-parameter stochastic

percolation. The two-parameter model incorporates an additional infectivity parameter

(β) representing pathogen virulence. In general, measuring infectivity is challenging and

subject to much spatial and temporal variation due to changing climatic/environment
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conditions or species-level genetic variations in susceptibilities. Accordingly, including

infectivity is vital to construct representative models of tree-based epidemics. Thus, the

two-parameter model will constitute a simple lattice model (SLM) of disease dynam-

ics. Additionally, this Chapter will introduce ensemble-averaging parameter sweeps used

throughout the thesis to categorise the SLM behaviour.

3.1 Percolation formalism

Consider a square lattice of size L × L , where each site in the lattice can be in one of

two states: open with probability ρ or closed with probability (1 − ρ). Therefore, the

probability ρ describes a density parameter and encapsulates the occupancy of a homoge-

neous distribution of open and closed lattice positions. One open site (cp) is connected to

another (cq) if laid within the Von Neumann neighbourhood [Toffoli and Margolus, 1987].

A connected set of open nearest neighbours define a cluster denoted by C, where ci ∈ C.

Given the set C, it is possible to traverse between member sites ci ∈ C by moving through

the lattice in either horizontal or vertical steps ‘Von Neumann motion’. Given two distinct

non-overlapping clusters ci ∈ C1 and cj ∈ C2, then ci 6= cj i.e. there is no way to jump

from C1 to C2 following Von Neumann motion. Connectivity is defined between lattice

sites rather than the edges which connect them, known as ‘site’ percolation—as opposed

to ‘bond’ percolation.

If ρ is close to zero, only small clusters would be present as a disordered system; conversely,

if ρ is large, a connected network of open positions would dominate the domain, thus

defining an ordered system. At some point for ρ ∈ [0, 1], a critical threshold (ρc) would

be reached and a singularity of connected sites would span an infinite sized lattice. On

a finite lattice, the cluster is said to percolate and form a ‘spanning cluster’ (C∞) that

extends between at least two different edges of the lattice. The formation of the spanning

cluster occurs abruptly between a very narrow range of ρ values. Therefore, the threshold

for percolation defines a critical-point [Stauffer, 1979].

The critical point can be defined as the least value of ρ where percolation occurs with
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non-zero probability. This can be formalised by first considering the probability function:

θ(ρ) = {ρ : |C| =∞} where θ(ρ) is the probability of an arbitrary site, within a lattice of

density ρ, belonging to cluster C of size ∞ (i.e. the spanning cluster). The critical value

then satisfies:

ρc = sup{ρ : θ(ρ) = 0} (3.1)

At this point, we have described the spanning cluster conceptually, though nuances and

technicalities still complicate the definition. For example, the percolation probability

depends strongly on the lattice size. If the mean cluster size (defined by a ‘characteristic’

cluster length Cr) is more significant or comparable to L, percolation can occur despite

the density residing in the sub-critical regime. Thus, a sufficiently large lattice is required

to approximate the threshold ρc reliably and the spanning cluster C∞.

When the domain size is large, the threshold ρc will remains approximately constant and

insensitive to small changes in the domain. All proceeding simulations in this Chapter

are conducted on finite-sized domains between two and three orders of magnitude larger

than individual lattice points. The model presented in this Chapter (first published by

[Orozco-Fuentes et al., 2019]) was found to agree with the accepted percolation threshold,

when the lattice had size L ∼ 500×500; the lattice configuration used here will therefore

assume the same size configuration.

Intuitively, it is clear to see the link between percolation and epidemiology: open lattice

positions act as susceptible members of a population (S), and ρ defines a density of

the hosts. In this paradigm, the spanning cluster describes a high-impact epidemic that

spreads uncontrollably. Small to medium-sized clusters existing at (or slightly below) the

threshold describe short-lived, failed epidemics where the pathogen spreads for a time

before becoming extinct.

Percolation models have clear limitations when describing mobile hosts, but fortunately,

the spread of disease through sessile tree populations is more appropriate. Thus, perco-

lation theory provides a valuable, yet simplistic, framework for modelling tree diseases,

mainly when the effect of long-distance pathogen dispersal is limited or reduced. Exam-
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ples include soil-borne pathogens, i.e. Rhizoctonia solani and Pythium spp [Otten et al., 2004,

Poggi et al., 2013]. In addition, we can envision that percolation becomes a relevant ap-

proximation to dispersal in unfavourable abiotic conditions. For example, areas of low

wind/rainfall splash reducing the dispersal of citrus canker (caused by the bacterium

Xanthomonas axonopodis) [Bock et al., 2010], or regions of lower wind speeds reducing

the fungal spore dispersal of ash dieback [Solheim and Hietala, 2017]. Moreover, a perco-

lation setting becomes more suitable as the landscape becomes more densely populated

with trees, as argued by [Orozco-Fuentes et al., 2019]. The reader can find a more in-

depth review on epidemic percolation models in section 2.1.5.

3.2 Percolation-based SIR

Forming a percolation-based lattice model of tree disease requires us first to combine a

compartmental SIR-like model within the lattice (L) mentioned above and an appropriate

transmission dynamic to model the spread of disease between lattice points. Firstly, the

percolation density parameter (ρ) defines a simple host distribution, whereby ρ represents

the probability of a susceptible tree S (given a numerical value 1). In contrast, empty

lattice positions define an insusceptible state ∅ (with numerical value 0).

In the model, a susceptible tree will transition into the I compartment (having a nu-

merical value of 2) if it neighbours an infected tree. Transitions between states occur

with a probability of 1, and the Von-Neumann neighbourhood describes the connectivity

between trees. After an arbitrary number of time-steps T , an infected tree will transition

into the removed state R and die; see appendix A.1 for more information on the numer-

ical implementation. For simplicity, the infectious lifetime will not be considered as a

parameter but will remain fixed at T = 1.0—revisited below in section 3.3.

The initial conditions begin with a small patch of infected hosts (of size 5× 5 for exam-

ple) located at the origin (LO) at t = 0, and percolation events describe the boundary

conditions. Percolation occurs when the infection spreads from LO to any of the four

lattice boundaries, thereby defining a connected cluster of infectious-removed trees that
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span the domain. Each time-step through the simulation represents an arbitrary unit of

time, and simulation termination occurs on one of three boundary conditions: (1) per-

colation is observed (2) the pathogen becomes extinct (3) the time-horizon of N steps is

reached. Typical simulations on a domain of size 500 × 500 are shown in Figure 3.1 for

three successive time-steps.

Figure 3.1 illustrates dynamic simulations of disease spread through a series of 500× 500

domain. At density ρ = 0.70, Figures 3.1 (a-c) reveal a diamond shaped pattern of spread.

The unnatural spread pattern in Figures 3.1 (a-c) reflect artefacts of the square lattice

geometry, and therefore is unlikely to be realised in nature. However, the diamond-

like spread begins to disappear in Figure 3.1(d-f), when simulations have density ρ =

0.65. At this density, a wave-like propagation of infected trees spreads radially from

the epicentre outward toward the lattice boundary. Interestingly, we may understand

these observations through the lens of stochasticity. A low tree density reduces the

chance of spread between nearest neighbours, which produces a more noisy and disordered

epidemic spread. In turn, the lower infection probability between neighbours disrupts the

highly ordered wavefront (panels (a-c)) into a circular travelling wavefront (panels (d-f)).

Nevertheless, it is also worth remarking that an alternate lattice geometry (e.g. triangular

or honeycomb) would alter the diamond-like pattern altogether.

Figures 3.1(g-i), show the spread of disease for a lower host density of ρ = 0.60. As the

disease spreads outward, a more fractal-like pattern begins to emerge. Moreover, the

disease spreads slowly, as evidenced by the smaller area traced by the infectious-removed

trees shown from white to red. In this regime of spread, ‘persisting’ simulations result

from the slowly evolving epidemic as it defines a disordered cluster of infectious-removed

hosts.
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Figure 3.1: Evolving outbreaks in the one-parameter percolation-based SIR model are
shown for different tree densities (ρ). From left to right, three successive time-steps are
plotted on a domains of size 500 × 500. Green and black pixels represent susceptible
and insusceptible (empty) host units, respectively, while white and red lattice sites de-
pict removed and infectious hosts. (a-c) High-density simulations reveal an unnatural
diamond-shaped spread, undesirably reflecting the underlying lattice geometry. (d-f)
Simulations above the threshold spread radially outward from the epicentre, defining a
connected cluster of infectious-removed trees in the process. (g-i) Around the percolation
threshold, the disease spreads slowly and chaotically outward.
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3.2.1 Percolation threshold

Consider a simulation with tree density below the epidemic threshold. In this case, an

evolving epidemic is unlikely to percolate to the domain boundary, and the pathogen

will become extinct. If the host density increases, we can imagine that epidemics begin

percolating to the boundary for some specific value. Consequently, the probability of

percolation was examined over a sweep of density parameters, shown in Figure 3.2(a).

Unsurprisingly, a threshold-like behaviour is revealed. All the simulations that form Fig-

ure 3.2(a) evolved inside a 500×500 sized domain. The probability of percolation (Pr(ρ))

defines a critical region, highlighted in orange (where ρ ∈ [0.57, 0.62]), which separates

regimes of pathogen extinction and percolation/epidemic. The threshold depicted by

Figure 3.2(a) is consistent with the accepted percolation threshold for a two-dimensional

square ρc ≈ 0.592.

The value of Pr(ρ) depends non-trivially on stochasticity, which motivated an ensemble-

averaged approach—further reading on the underlying theory of ensemble-averaging can

be found in [Gibbs, 1902]. In Figure 3.2(a), 100 repeated simulations obtain the prob-

ability of percolation. Simulations that percolate to the domain boundary assume the

numerical value of one, while pathogen extinction events assume zero; for each value of

ρ, the average value is computed, thus defining a probability Pr(ρ).

At the critical density, denoted by ρc, we witness the emergence of some exciting phe-

nomena. Figures 3.2(c-d) show a spanning cluster (C∞) of infectious and removed trees

(in white to red respectively) at ρc = 0.592. The cluster looks remarkably similar at

all spatial resolutions, said to be ‘self-similar’ [Kapitulnik et al., 1983]. Within C∞, one

can identify clusters of untouched susceptible trees (in green) of various sizes, suggesting

a distribution of cluster sizes occupy all possible length scales. In the literature, clus-

ters can be described by a ‘cluster number’ (ns) distribution, where ns is the number of

clusters containing s open/susceptible lattice sites. Furthermore, around the percolation

threshold, there can be significant fluctuations in the size of the clusters formed1.

1The related statistical fluctuations analysed by [Orozco-Fuentes et al., 2019] present an effective early
warning system for the prediction of forest-based pathosystems—revisited in the next Chapter.
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Figure 3.2: The percolation threshold is determined for the one-parameter percolation
SIR model. (a) The probability of percolation (Pr(ρ)) is plotted against host density.
The shaped orange region highlights a threshold consistent with results from classical
percolation theory, namely ρc = 0.592, shown by the vertical dashed line. (b-c) At the
critical density ρc, a cluster spanning the domain in (b) is assessed over progressively
smaller resolutions. Similar features are observed on different scales and scale invariance
is observed in the model.
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Lattice NN Site percolation Bond percolation

1D 2 1 1

Square 2D 4 0.593 1/2

Triangular 2D 6 1/2 0.347

Honeycomb 3 0.696 0.653

Diamond 4 0.43 0.388

Voronoi - 0.714 0.667

Table 3.1: The site and bond percolation threshold for various lattice types—data pub-
lished by [Stauffer and Aharony, 2018, Becker and Ziff, 2009]. Each lattice configuration
defines a set of nearest neighbours (NN).

This Chapter rests on a simulations developed on a square lattice, though we could have

considered different configurations, e.g. a triangular, honeycomb or Voronoi lattice. From

the observation of Figures 3.1(a-c), high host densities would produce highly ordered

wavefronts reflecting the different lattice configurations. In addition, various quantities

within the model would change, especially the critical density ρc that changes in response

to the nearest neighbour (NN) number. For completeness, Table 3.1 shows a selection

of site and bond percolation thresholds. Even though ρc would change between lattice

configurations, some universal properties of the model would remain fixed, which leads

to a description of universality below.

3.2.2 Universality

At ρ ∼ ρc, percolation and scaling theory explain how the system follows a power law

of the form ∝ (ρ− ρc)α where α is a critical exponent that is universal across all lattice

types—see [Stauffer and Aharony, 2018] page 31. More broadly, a universal critical ex-

ponent describes the behaviour of a continuous phase transition and only depends on the

general properties of the system (e.g. the physical dimension or the range of interaction).

All systems that possess the same exponent are members of the same ‘universality class’

[Fisher, 1969, Ódor, 2004].
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Another important notion within the model pertains to the ‘’correlation function’. More

specifically, a correlation function is defined as a function that describes the statistical cor-

relation between random variables [Van Leeuwen et al., 1959]. In the context of percola-

tion, the correlation functions typically describe the probability that two open lattice sites,

separated by distance r, are connected within the same cluster [Stauffer and Aharony, 2018].

For example, consider the probability that one open site (at the origin) is connected to

another open site a distance r away. In this scenario, the probability is described by the

correlation function g(r). The behaviour of this function defines a length scale, denoted ξ,

that dictates how the probability of ‘connectedness’ decays with distance r. For densities

close to the percolation threshold:

ξ ∼ |ρ− ρc|−ν (3.2)

where ν is the critical exponent that is universal for all lattice configurations and only

depends on the dimension of the lattice used. In general, there are critical exponents

for other quantities, e.g. cluster sizes—discussed more below. However, all follow similar

power laws, as shown by [Stauffer and Aharony, 2018, Stauffer, 1979].

Equation 3.2 can be understood by exploring how the connectivity of open sites depend

on the density and the divergence that occurs at the threshold ρ = ρc. For low densities,

ξ is small because all clusters exist in singlets/triplets. However, as ρ increases, the mean

cluster length increases as more sites become open and connect to form larger clusters.

As we approach the critical density (from the direction ρ → ρ−c ) the spanning cluster is

formed and ξ diverges towards infinity, ξ → ∞. If one neglects the divergent spanning

cluster, a similar picture is painted for densities just above criticality ρ > ρc. That is,

the correlation length ξ decays rapidly as |ρ− ρc| increases. This time however, mid-to-

large sized clusters get absorbed by C∞ as the density increases; thus leaving only small

untouched clusters, as ρ→ 1 and ξ → 0. See [Stauffer, 1979] for a detailed breakdown of

power laws and correlation length.

Lastly, it is worth discussing well-known results on how the cluster sizes (or masses)
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scale with the lattice dimension. If ρ > ρc, the largest cluster present (denoted by M)

would scale according to M ∝ L2. In contrast, if ρ = ρc, M would follow M ∝ L1.9,

where dF = 1.9 describes the cluster fractal dimension. If we normalise the cluster by

the size of the lattice (L2), the mean density of M will decay as the lattice size increases,

i.e. L1.9/L2 = L−0.10. Broadly, the critical phenomena found in percolation theory,

thermodynamics and magnetism have close ties and are described by similar power laws

underpinned by scaling theory [Essam, 1980].

3.3 Pathogen infectivity

We have established a percolation-based model of tree disease described by a one-dimensional

parameter-space over tree density ρ. We now extend the parameter-space to include an

‘infectivity’ parameter, denoted by β. Previously, we made an implicit assumption about

pathogen transmission. Namely, that infected trees will transmit the infection to sus-

ceptible nearest neighbours with perfect fidelity, that is, a probability of 1. In reality,

a pathogen may display a range of virulence depending on the environmental suitabil-

ity or host susceptibility. For example, the fungus H. fraxineus causes more severe ash

dieback in natural forest ecosystems [Marciulyniene et al., 2017] and releases more spores

conditional on temperature [Chandelier et al., 2014].

Here, the parameter β is introduced to model infectivity. Now the probability of a sus-

ceptible tree becoming infected during a single time-step is given by: Pr(S → I) = β.

Appendix A.1 contains more descriptive information on the computational implemen-

tation. The infectivity parameter describes a transmission ‘rate’ (i.e. per time-step)

and is closely linked to the infectious lifetime T of the tree. If a susceptible host falls

within a von Neuman neighbourhood of an infected host, it will remain susceptible with

probability:

Pr(S → S) = ρ(1− β)T (3.3)

where T is the number of an infectious lifetime. As T increases, the likelihood of a tree

remaining susceptible decreases. Equation (3.3) sets the scene for a predictive mean-field
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theory. Subsequently, appendix A.2 outlines steps toward a novel continuum model of

tree disease.

Previously in the one-parameter SIR variant, the infectious lifetime played a minor role

in determining wavefront because pathogen transmission occurs with a probability of one.

However, a susceptible host will now survive for t = T time steps before transitioning into

R. Although the model is ultimately non-dimensionalised with arbitrary units of time T ,

we envision a single time step on the order of years. Thus, at this stage, we have recovered

the two-parameter model used by [Orozco-Fuentes et al., 2019], henceforth referred to as

the ‘simple lattice model’ (SLM).

Figure 3.3 shows three SLM simulations, spreading for different infectivity parameters at

different time steps. All simulations in Figure 3.3 are governed by a fixed value of T = 10,

and density ρ = 0.70. The colour bar in Figure 3.3 represents different steps through the

infectious period, from yellow to red. Higher values of β yield a faster spreading velocity,

as expected. Figures 3.3(g-i) indicates that introducing β has altered the percolation

threshold. This can be seen by β = 0.25 outlining a more noisy and fractal-like spreading

pattern despite being well beyond the standard percolation threshold of ρc = 0.592.

Figure 3.4 shows how variations in the infection lifetime can change the wave-front prop-

erties. The value of β predominantly controls the speed of the wave-front, whereas T

controls the lag-time on the removal front. Therefore, increasing T yields an increase

in the wave-front thickness; this is valid for ρ > ρc. Around the percolation threshold

ρ ∼ ρc, the relationship between T and spreading velocity is less obvious. Close to the

percolation threshold, variations in T have more importance, as it could lower or raise

pathogen transmission below or above percolation thresholds, respectively. If T is held

fixed, the critical threshold definition can now be generalised from Equation (3.4), to

include the parameter β:

ρc = sup{ρ, β : θ(ρ, β) = 0} (3.4)
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Figure 3.3: Introducing an infectivity parameter β. The SLM is shown running on a
domain of size 500 × 500 for fixed T = 10 and density ρ = 0.70. Simulation reveal that
β has an impact on the wave-front speed and changes the percolation threshold.
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Figure 3.4: Simulations with varying infectious lifetimes T , shown through the time-step
t = 100. For fixed ρ and β above the threshold, varying T has no impact on the speed
of the wavefront. However, increasing T leads to a thicker wavefront, as the posterior
interface (between R and I) lags behind the evolving wave-front (between S and I).
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3.4 Epidemic thresholds

Previously in section 3.2.1, the percolation probability was examined over one parameter

of host density. A threshold occurred over a narrow range of densities and separated the

regime of epidemic and pathogen extinction. Notwithstanding, we did not examine the

rate of pathogen propagation nor any additional dynamic information. In order to capture

spreading rates, a metric comprising the ‘spreading velocity’ is introduced, captured by:

vradial(t) =
√
NI(t+ 1)−NI(t) (3.5)

where, NI is the number of infected trees in the domain at time-step t.

Equation 3.5 is chosen because the difference between NI(t + 1) and NI(t) gives an

‘effective’ radial velocity, where the number of spatial units progressed by the pathogen

averaged over all angles per unit time. Moreover, as an infectious wavefront travels

outward over an area, the number of infected trees generally grows quadratically. Hence,

we effectively normalise Equation 3.5 by taking the square root. Otherwise, we might

expect misleading increases in the velocity metric. However, strictly speaking, Equation

3.5 is valid only for ρ > ρc. Understood because the wavefront assumes a fractal dimension

(i.e. < 2) at the percolation threshold, and averaging over two dimensions becomes

unreasonable.

The time-series, vradial(t) is shown in Figure 3.5(a) for three combinations of (ρ, β). Un-

surprisingly, higher-valued combinations produce a higher velocity. Additionally, initial

instability is most significant through the first ∼ 200 time-steps, a consequence of the

initial conditions which suggests the system has yet to reach a steady state. Here, the

system is said to be in a transient state. In Figure 3.5(a), a simulation average vradial(t),

can be determined and plotted as a horizontal line, repeating the measurement multiple

times over an ‘ensemble’, gives a probability distribution.

Figures 3.5(b-d) display the probability density functions2 of the mean velocities. In all

2To reduce artefacts of initial transience, any simulation that became extinct before the initial tran-
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Figure 3.5: (a) The velocity metric time-series vradial(t) is shown for three typical sim-
ulations, higher values of ρ and β give higher mean values of propagation speed. (b-d)
The probability density function of mean spreading velocity

〈
vradial(t)

〉
for variations in

ρ and β.

panels, the vertical black line inside each distribution depicts the ensemble mean velocity.

For higher host densities, the mean velocity increases and distributions appear somewhat

narrower. Additionally, Figures 3.5(b-d) suggest that β plays a role in determining the

velocity variance, as the distributions become wider with lower infectivity, cf. the green

and blue distributions.

For now, the important statistic is merely the ensemble mean, denoted by
〈
v
〉
. although,

from Figures 3.5(b-d), we can begin to access the third-order statistical moment of skew.

Namely, the green distributions become progressively right-skewed as density is lowered.

Statistical measures over the ensemble have exciting applications and can detect an early

warning signal, a topic covered in the next Chapter.

Figure 3.6 contrasts the epidemic threshold according to both percolation and velocity-

based metrics. In Figure 3.6(a), a one-dimensional line through the parameter-space

of ρ reveals the percolation probability for the three different infectivity parameters

sient period of ttr ≈ 200, was excluded from calculations of the ensemble mean.
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shown. The vertical dashed line shows the accepted percolation threshold, ρc, for a

two-dimensional square lattice. For β ∈ [0.50, 0.75], the probability of percolation is

identical to that shown in Figure 3.2. However, a lower value of β = 0.25 decreases the

percolation threshold, as evidenced by the green line shifting to the right. Figure 3.2(a)

intuitively demonstrates that a pathogen with a low value of infectivity requires a more

significant tree density to spread.

The ensemble-averaged radial velocity
〈
v
〉

(as per Equation 3.5) mirrors the percolation

threshold, notwithstanding with some differences. In Figure 3.6(b), we witness a signif-

icant increase in the propagation speed when the density crosses the threshold density

ρc, notably for β = 0.75 and β = 0.50 shown in blue and orange. In addition, a higher

β-value predictably yields a higher radial velocity, both before and after the epidemic

transition.

The green curve (β = 0.25) in Figure 3.6(b) alludes to an important regime in the model.

Namely, a regime of ‘persistence’ [Gilligan and van den Bosch, 2008]. The vertical dashed

green line highlight when epidemics begin to propagate to the domain edge reliably (95%

percolation). Thus, the chance of percolation in Figures 3.6(b) is high, yet the velocity

remains close to zero. Together, these observations reveal a region in parameter space

where epidemics can survive for long periods, barely above the threshold. Nonetheless,

host population growth is omitted from the model so persistence is only approximate.

The equivalent two-dimensional plots over the full parameter-space of ρ and β are shown

in Figures 3.6(c-d) for percolation and radial-velocity, respectively. Percolation in Figure

3.6(c) reveals an abrupt transition between two stable regimes of extinction and epi-

demic, separated by a narrow range of critical parameters ρc and βc. In Figure 3.6(d),

the ensemble-averaged velocity reveals a smoother transition between states. As the

distinction between epidemic states is more apparent in Figure 3.6(c), one might argue

that percolation captures the threshold with greater clarity. When infectivity is lower

(0.15 < β < 0.30), the percolation threshold can be crossed by raising the density, re-

flected in both velocity and percolation metrics. However, percolation has no dependence
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Figure 3.6: A parameter sweep of ρ and β over the 500× 500 domain. (a-b) The percola-
tion probability is shown alongside the radial velocity over a one-dimensional parameter-
space of ρ. For the lower-valued infectivity of β = 0.25, the density threshold is slightly
higher than classical percolation ρc = 0.592, indicated by the vertical dashed line. A
gradual increase occurs when using the radial velocity, whereas percolation shows an
abrupt transition. (c-d) A two-dimensional parameter sweep paints a similar picture.

on infectivity beyond β ≈ 0.40, in contrast to the radial velocity that tends to increase for

higher infectivities, revealing a subtle difference between metrics. Here, the parameter-

sweeps can be used to portray an ‘epidemic phase diagram’, which details regions in

parameter space where epidemics are possible or not.
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3.5 Discussion

This Chapter introduced percolation theory, leading to a one-parameter percolation SIR

model of tree disease spreading through a forest. The one-parameter model exhibited

stochasticity on account of the randomly populated host distribution inside a square

lattice. Assessing the model on one lattice configuration signifies a limitation in our

analysis, and a comprehensive treatment might consider examining the spread of disease

on alternate lattices, e.g. the triangular, honeycomb or Voronoi lattice. Nevertheless,

although we examined behaviour on one lattice type, the universal properties of the

model would remain fixed. For example, the critical exponent describing the correlation

length ξ—as discussed in section 3.2.1.

In section 3.3, an infectivity parameter (β) was included in the model. The infectivity

parameter introduced temporal stochasticity into the system because infections spread

probabilistically between NN, as opposed to the one-parameter model that spreads be-

tween hosts with a probability of one. Moreover, the infectivity parameter slightly altered

the critical density. Still, higher values of β recovered the standard percolation threshold

for a two-dimensional square lattice (ρc ≈ 0.592) whereas lower β values increased the

critical density needed to support an epidemic.

In nature, a pathogen might interact with diverse hosts over numerous environmental

conditions. A relevant and interesting example includes the algae-like oomycete Phy-

tophthora ramorum (P. ramorum). The pathogen P. ramorum affects a wide host range

[Grünwald et al., 2012], including Larches (deciduous conifers of the genus Larix ) and

southern beech (Nothofagus), and some non-native oaks such as red oak (Quercus rubra)

[Grünwald et al., 2008]. Moreover, different genetic variants of P. ramorum affect differ-

ent hosts with varying severities. For example, North American oak species appear more

susceptible to the NA1 lineage [Rizzo et al., 2002], while UK larch trees appear slightly

more highly susceptible to the European lineage EU1 [King et al., 2015]. Accordingly,

although the integration of β in the SLM is undoubtedly simplistic and general, it permits

a description of varying degrees of pathogen virulence nonetheless.
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Two metrics categorised behaviour in the model, a pathogens average radial velocity and

a probability of percolation. The percolation probability defined a sharper, more reli-

able transition between epidemic and pathogen extinction. Conclusively, the percolation

probability proves more accurate to classify epidemic regimes. Nevertheless, the radial ve-

locity captured a similar threshold-like behaviour besides additional dynamic information

in the form of a time series. Subsequently, the time series velocity was ensemble-averaged

and examined over a sweep of ρ and β values.

Interestingly, comparing percolation to the radial velocity revealed a parameter region (of

persistence) above the threshold where the pathogen survives but slowly propagates to the

domain boundary. However, as host population growth is neglected in the SLM, long-term

host-pathogen coexistence between is prevented and persistence is merely approximate

[Gilligan and van den Bosch, 2008].

As we look to construct a more representative model, it is worth remarking on the most

significant assumptions that underpin the SLM so far:

1. Local NN interactions: in reality, many dispersal mechanisms exist to propagate

the spread of disease—see section 2.2.1 for more information. Undesirably, local in-

teractions in the SLM revealed unnatural artefacts of lattice geometry, witnessed in

Figures 3.1(a-c). Moreover, as the pathogen could not jump over empty lattice sites,

epidemics were only possible above the percolation threshold, i.e. when connected

clusters of hosts span the domain.

2. Uniform dynamics: in general, pathogen-host interactions transpire with varying

degrees of severity. For example, age-dependent severity in ash dieback and the

species-level virulence of P. ramorum. In contrast, the SLM considers that: (A)

the transition probability into R occurs with a uniform number of steps (B) the

probability of transition into I is identical between hosts (C) β is simplistic, with no

spatio-temporal (environmental) dependence. More broadly, we have constructed a

general, abstract model with no specific pathogen in mind and uniform, simplistic

interactions.
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3. Host distribution: natural tree populations present rich spatial structures with

varying degrees of clustering and aggregation [Plotkin et al., 2002]. Indeed pop-

ulation clustering has been confirmed over various spatial, from the tree-level to

the field-level [Wiegand et al., 2007]. Therefore, the flat randomly distributed host

population considered in this Chapter falls short of a realistic description. In addi-

tion, the SLM describes the spread of disease in a densely populated forest. Hence,

as we look to model the spread of disease over Great Britain, realistic tree canopy

cover data should be incorporated into the framework.

Despite the assumptions and simplicity of the SLM, it provides a general setting upon

which to elaborate. The next Chapter outlines all the applications that were investigated

using the SLM.
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Chapter 4

Simple lattice model: applications

Previously, a percolation-based SIR model of tree disease spreading through a forest was

outlined, named the ‘simple lattice model’ (SLM). The SLM provides a flexible foundation

to generalise as we look to model the spread of disease over realistic landscapes focused in

Great Britain. This Chapter aims to examine some applications of the SLM. In particular,

two applications divide the Chapter, beginning with early warning signals (EWS) for

forest management and ending with a toy model of landscape-level spread.

Firstly, the system for EWS detection put forward by [Orozco-Fuentes et al., 2019] is

extended. The original publication considered a fixed infectivity parameter (β = 0.50),

here we generalise the analysis to the entire β parameter space. In addition, we employ

an alternative metric that permits a more precise EWS detection.

Secondly, the SLM will be adapted to construct a toy model of landscape-level epi-

demics in Great Britain. Several tree distribution datasets in Great Britain are pre-

sented and compared, before coupling the SLM with predicted abundance data given by

[Hill et al., 2017]. More specifically, units of individual trees in the SLM are re-scaled

to 1km× 1km patches and projected onto a predicted oak abundance. The toy model

denotes the first step towards a more representative framework over realistic landscapes.
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4.1 Early warning signals

[Orozco-Fuentes et al., 2019] investigated applications of EWS for forest management

and ecosystem services. The manuscript considered a lattice with fixed infectivity β

and a one-dimensional parameter space of tree density ρ. Notably, the study observed

significant changes in the statistical measures of variance, skew and auto-correlation in

the spreading pattern just before a transition into the regime of epidemic spread. More

specifically, the authors found compelling indications of ’early warning’ signals within

the model, achieved by calculating the moment-generating functions (i.e. variance, skew

and auto-correlation) of a time series velocity. Consequently, knowing when to pre-empt

epidemics in tree populations could help prevent the spread of emergent infectious diseases

and conserve resources.

Here, we offer a small extension to the work presented by [Orozco-Fuentes et al., 2019].

In particular, EWS are detected more precisely using an alternate domain and veloc-

ity metric that mitigate artefacts of domain geometry—discussed more in-depth below.

Moreover, the analysis is generalised to two dimensions in the parameter-space of ρ and

β. After introducing these alternative concepts, we discuss problems and complexities

encountered when ensemble-averaging simulations. Ultimately, these results may provide

helpful information to aid forest and woodland managers in preserving tree health.

4.1.1 Cylindrical geometry

The metric [Orozco-Fuentes et al., 2019] employed to quantify EWS had a similar form

as Equation 3.5, though it included both the infected and removed (NI+R). In contrast,

Equation 3.5 rests solely on NI . Unfortunately, a radial velocity based on NI+R can lead

to unintuitive metric observations when geometrical effects seemingly cause the rate to

in as the wave spreads outward, which becomes particularly visable for later times when

the wavefront extent is considerable1. Thus, we will use an alternate lattice geometry to

1See Figure 4d in [Orozco-Fuentes et al., 2019], the apparent rate of increase in the velocity metric is
purely due to geometry artefacts and the metric definition.
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Figure 4.1: (a-c) A channel domain of size 50 × 350 is shown over three time-steps for
model parameters ρ = 0.65 and β = 0.50. The centre of infectious mass is recorded for
each time-step. (d) Plots of the centre of mass time-series for the simulation illustrated in
panels (a-c). (e) The mean centre of mass time-series (of 104 repeats) for three variations
in density and β = 0.50. Time-series begins to decay around the mean simulation run-
time. The zoomed inset shows the ensemble averaged time-series for t ∈ [100, 200] and
reveals increases in error bars lower density parameters.

mitigate geometric effects.

Consider a rectangular domain of size [Lx, Ly] where Lx > Ly and (x, y) represent dimen-

sions of width and height respectively. Figures 4.1(a-c) shows spatio-temporal spread

in the domain, henceforth referred to as the ‘channel’ domain, over three time-steps.

Epidemic parameters in the channel were arbitrarily chosen, yet lie above the threshold

(ρ = 0.65 and β = 0.50). The initial conditions required an adjustment from the square

domain in Chapter 3, namely, the first column is infected and taken as the origin (denoted

by x0). Additionally, the boundary conditions permit the disease to propagate freely in

the +x and ±y directions, thus realising a cylindrical geometry with periodic boundary

conditions in y direction and fixed boundary conditions in x.
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We register a percolation event in the channel domain if an infected tree reaches the last

column, denoted by xm. The percolation threshold shifts toward higher densities if the

domain is sufficiently narrow (having a high aspect ratio), as the dimensionality of the

travelling wave to somewhere between one and two dimensions2. The higher percolation

threshold can be understood by considering gradual increases in the domain aspect ratio,

where, in the limit Ly = 1 and Lx � 1, a one-dimensional domain is realised and the

critical host density increases to ρc = 1. In other words, increasing the aspect ratio

eventually leads to the (higher-valued) one-dimensional percolation threshold.

Unsurprisingly, studies have confirmed that site and bond percolation (in R2 and R3)

depend non-trivially on a cylinders aspect ratio [Sangare and Adler, 2009]. Therefore, we

choose an aspect ratio that approaches the percolation threshold for a two-dimensional

square to keep consistent with the numerical results of Chapter 3. In practice, a channel

of size (Lx, Ly) = (350, 50), was sufficient, as shown through Figures 4.1(a-c).

4.1.2 Centre of infectious mass

The channel domain provides an advantageous setting to capture EWS by avoiding two-

dimensional geometrical effects. Moreover, the channel permits an improved (more intu-

itive) metric, based on the mean infective displacement from the origin:

vcm(t) =

∑i xi(t)

NI(t)
−
∑i xi(t− 1)

NI(t− 1)
(4.1)

where xi(t) is the spatial location of the ith infected tree along the x axis at time t and

NI(t) is the total number of infected trees.

The form of Equation 4.1 displays intrinsic similarities to the Newtonian centre of mass,

given by:

xcm =

∑i xi ×mi∑
imi

(4.2)

where the analogous quantities in Equation 4.1 and 4.2 are mi = 1 and
∑imi = NI .

2Additionally less space in computer memory is occupied and simulation time is lowered
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Thus, Equation 4.1 averages the displacement of infected trees precisely as Equation 4.2

averages the displacement of Newtonian mass. Accordingly, Equation 4.1 will be denoted

as the ‘centre of infective mass’ (COM) velocity v(t)cm. Figure 4.1(d) displays the time

series v(t)cm of Figure 4.1(a). Notably, the time series in Figure 4.1(d) allows for negative

values and looks different to that shown previously in Figure 3.5(a).

Ensemble-averaged COM time-series 〈vcm〉 are shown in Figure 4.1(c) for the three values

of tree density. The blue time-series has epidemic parameters well beyond the threshold

and begins to decrease around t ∈ [800, 900], coinciding with percolation to the domain

edge. Contrarily, the green time series lies slightly above the percolation threshold and

decays more gradually from t = 0, due to a higher extinction probability. A small

number of long-lasting simulations (exceeding t > 1000 steps) occurred in the green time-

series, indicating criticality in the system—previously likened to a regime of persistence in

section 3.4. The inset of Figure 4.1(c) shows the ensemble-averages between t ∈ [100, 200],

including the standard error for each time-step. Notably, error bars are most significant

for the lowest-valued density shown in green, reflecting a more chaotic spread.

4.1.3 Ensemble averaging method

The findings of [Orozco-Fuentes et al., 2019] were gathered by first producing a distribu-

tion of mean time-series velocities vt. In this scheme, EWS were detected from statistical

moment-generation functions over the mean velocity, e.g.
〈
var(vt)

〉
. However, altering

EWS detection by computing the mean simulation variance
〈
var(vt)

〉
was found to reveal

a clearer signal. Consequently, we proceed by detailing an ensemble method that permits

the capture of ‘within-simulation’ variance.

Before the ensemble averaging method is elaborated, it makes sense to first define a rel-

evant mathematical notation. Suppose a simulation with parameters ρ, β propagates for

f time-steps, Equation 4.1 describes the time series as: vt=1
cm , vt=2

cm , ..., vt=fcm ∈ V ρβ. Then, a

set of N independent time series are generated by repeating N ensemble realisations. For

an arbitrary point in the parameter-space (ρ, β), the set of N replicate simulations can be
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described by the set: {V ρβ
1 , V ρβ

2 , ..., V ρβ
N } ∈ Vρβ, where each V ρβ

i describes an individual

simulation time series and Vρβ describes the entire ensemble for parameters (ρ, β). Thus,

an EWS is detected by calculating the mean time-series variance, defined by:

〈
var(vρβcm)

〉
=

1

N

N∑
i=1

var(V ρβ
i ) (4.3)

A proper time-series analysis requires the same number of observations within each en-

semble. If not, we risk mistaking statistical fluctuations/errors for an EWS. There are

two observations to consider: (A) the number of time steps within simulations (B) the

number of repeated simulations, N .

In general, stochasticity will prevent two simulations from having the same number of

time steps, |V ρβ
i | 6= |V ρβ

j |. Thus, calculating time-series variance for simulations with a

small number of time steps might be more error-prone than long-lived simulations. As

such, we introduce a fixed window of time-steps (tO ≤ t ≤ tF ) in a bid to fix the number of

observations. Provided the window length tF − tO captures a sufficient number of time-

steps, we avoid significant fluctuations in V ρβ
i . Variance inside this window is defined

by: 〈
var(vρβcm)

〉
=

1

N

N∑
i=1

var(V ρβ
i

∣∣∣tF
tO

) (4.4)

Initial transience constrains the particular choice of tO in the channel, which distort

calculations of the time-series variance. The lower bound was set to t0 = 100 because

initial instability occurred most over the first 100 time-steps, and the window upper-

bound to tF = 200 (a two-fold increase of tO) so that simulation variance is measured over

a sufficient number of steps. Lastly, the simulation boundary conditions required a slight

alteration to fix the number of variance measures to N . Previously, one of three events

terminated a simulation, either: percolation, pathogen extinction, or when the number

of time-steps exceeds the time horizon. Here, we relax the condition that terminates

simulations when the pathogen dies off; otherwise, short-lived simulations (t < tO) would

be omitted from the ensemble and reduce the number of variance measures below N .

Additionally, the time horizon is fixed to tF , thereby mitigating the cost of simulating
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unnecessary steps.

4.1.4 EWS parameter-sweeps

Here, an EWS is defined as‘statistically significant changes in the variance of v(t)cm

prior to a critical shift into the epidemic regime’, calculated according to Equation 4.4.

Specifically, EWS are calculated by assessing the ensemble-averaged variance of velocity

v(t)cm over each simulation between time steps tO = 100 and tF = 200, justified by the

reasons laid out above in section 4.1.3. However, it is worthwhile to remark that, in

general, EWS are defined in terms of any statistical signals which indicate a system is

approaching a critical tipping point [Scheffer et al., 2009]. Notwithstanding, Figure 4.2

displays the ensemble-averaged time-series variance, as per Equation 4.4. The colour bar

shows variance over the entire parameter space of density and infectivity from white to

back. In Figure 4.2, the lower and upper red lines indicate a percolation probability

of Pr(ρ, β) = 0.05 and Pr(ρ, β) = 0.95, respectively. Inside these regions, the system

transitions into an epidemic, and we witness a considerable rise in the variance.

The observations of Figure 4.2 agree with the results of [Orozco-Fuentes et al., 2019]. Al-

though measuring EWS over a two-dimensional parameter space reveals some additional

information not captured in the original analysis, i.e. when infectivity is low (β < 0.40),

EWS preempt the epidemic by a more significant margin—indicated by the red arrows.

In addition, variance over the epidemic transition appears sharper when β is high, as

indicated by the darker shade in the upper right quadrant of Figure 4.2.

The following thought experiment can explain the EWS asymmetries in Figure 4.2: sup-

pose infectivity is high, and density lies just below criticality (ρ . ρc), so susceptible

clusters do not percolate. In this case, disease transmission is high on account of β, and

all susceptible hosts become quickly infected, although an outbreak will come to a halt due

to insufficient hosts. Therefore, in this model, an aggressive pathogen spreading through

low tree densities may propagate rapidly but have a short, chaotic signature. Hence the

transition is steep, and the simulation variance is significant, as indicated by the smallest
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EARLY WARNING SIGNALS

ρ

β

⟨var(vcm)⟩

Figure 4.2: The ensemble-averaged variance of vcm(t) over a two dimensional parameter
sweep of ρ and β. Red contours show the lower and upper bound of percolation (i.e.
between 5% and 95% probability). The epidemic regime is pre-empted by increases in
variance more clearly for certain parameter values, indicated by the arrows.

arrow in Figure 4.2. In this region, detecting an EWS is hard because transitions occur

most rapidly.

Now we consider the converse, a less infectious pathogen with an abundance of susceptible

hosts, located in the top-left region of Figure 4.2. Here, transitions into the I compart-

ment are slower because the pathogen is less infectious, although this time, hosts are

abundant. Thus, a pathogen is likely to spread predictably for longer times, giving rise

to a slightly less abrupt variance signature, as indicated by a lighter colour before the

transition in the top left quadrant of Figure 4.1. Although the variance spike is not as

significant, it preempts the epidemic transition by a more considerable degree—indicated

by the larger arrows in Figure 4.2. Altogether, Figure 4.2 indicates that the strength of

an EWS depends on the particular combination of epidemic parameters, though funda-

mentally, an EWS is detectable for all parameter combinations.
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4.2 Tree distribution datasets in Great Britain

Large-scale epidemic models of tree disease rest on robust, high-quality host data. Data-

driven approaches are crucial for predicting disease spread over country-wide scales,

though collecting high-quality host data involves myriad challenges. Most notably, large-

scale species distributions require vast datasets that demand significant economic re-

sources and person-hours to assemble and maintain over time. However, satellite-based

remote sensing technologies pose an attractive solution—see [Camarretta et al., 2020]

for a recent review of remote sensing technologies. Despite the significant advances of

remote sensing technologies, most freely available data sets still rely on traditional sur-

veying methods to collect data throughout Great Britain (GB). Consequently, the most

widely known and widely used datasets are reviewed below. Following this, statistically-

generated species distribution models, typically based on surveyed data, are reviewed.

4.2.1 National Surveys

Surveyed data predominantly describes either: abundance, presence-only, presence-absence

data. Generally, abundance data describes percentage canopy cover per km2. In con-

trast, binary-valued presence-only and presence-absence data simply record if a species

is present or present and absent, respectively. Abundance captures significantly more

information than presence-only data, yet unfortunately, they are in short supply.

Countryside Survey

The countryside survey (CS) is a long-running, national survey of diversity and species

abundance in GB [Wood et al., 2017]. The UK Centre of Ecology and Hydrology (UKCEH)

undertakes the surveys, primarily funded by the Natural Environmental Research Council

alongside other government agencies. Individual surveys have been undertaken in: 1978,

1990, 1998, 2007, and 2019. Random stratified sampling captures a representative species

abundance3 over of all land cover compositions, e.g. lowland acid grassland, freshwater,

3A useful (unpublished) project merged abundance data from CS with myForest. The abundance
data can be found at the Oxford University research archive: https://ora.ox.ac.uk.
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and broad-leaf forest.

Abundance data is collected for numerous dominant species, including trees, shrubs,

ground flora and soil type, making the scope of CS data vast. Moreover, long-running

records spanning decades reveal ecosystem trends imperative for ecological monitoring.

More recently, 100 1km2 plots of vegetation and soil data were collected4 [Smart, 2020].

The dataset constitutes the first of five planned surveys, part of a rolling monitoring

strategy collected every five years.

National Forest Inventory

The National Forest Inventory (NFI) collects and maintains forest and woodlands data

in GB. Originally, the NFI was established to help restore and expand Britain’s wood-

lands following the First World War [James et al., 1990]. Regular programs (10-15 year

intervals) implement surveys of woodland and forest size, distribution, composition and

condition across GB. Records cover areas over 0.5 ha and 20% coverage. As of 2019,

622, 381 individual records exist, spanning 2.9× 106 ha over 13% of the total land cover

within GB. NFI data comprise ESRI shape files5, that outline numerous forest types, e.g.

broadleaved, conifer, mixed-predominantly broadleaved or mixed predominantly conifer.

Despite an extensive coverage, publicly available NFI surveys describes presence-only

data—with no proportion or species coverage. Although, additional datasets are avail-

able to purchase, including: (1) Tree species percentage per region by woodland type

(2) Tree species proportions within the upper canopy of each NFI sample plot, without

supplying the exact location of the individual sample plot.

Botanical Society of Britain and Ireland

The Botanical Society of Britain and Ireland (BSBI) has recorded species presence-only

data since 1950. BSBI datasets are publicly available6 upto a resolution of 2km× 2km,

though records upto 100m× 100m are available to registered members. As of 2020, BSBI

4The data is free to download on the UKCEH website: https://catalogue.ceh.ac.uk
5Free to download at: https://data-forestry.opendata.arcgis.com
6BSBI data can be downloaded from: https://database.bsbi.org.
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Figure 4.3: NFI data super imposed onto a Google earth image, taken from a report
(unpublished) by S. Orozco-Fuentes et al. NFI data covering Thetford Forest Park
(16.684km2) is shown as a polygon in the NFI ‘woodland’ category. Data is interpreted as
the conifer forest type. Here, surveys comprises presence-only data, and no tree species
percentage cover is reported. NFI data extends throughout ∼ 13% of land coverage in
GB and large non-woodland areas remain un-surveyed.

Fraxinus excelsior 

Quercus spp.
Castanea sativa

Figure 4.4: BSBI presence-only datasets—as reconstructed by S. Orozco-Fuentes et al.
(unpublished). Three important large deciduous tree species, European ash (Fraxinus
excelsior), Oak (Quercus spp.), and sweet chestnut (Castanea sativa), are overlaid onto
the same map at 2km× 2km resolution. The BSBI datasets are extensive and report
presence-only data over a country-wide scale.
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records are collected at 1km× 1km square resolution or better—making the datasets

among the highest-resolution surveys collected by traditional methods. The BSBI dis-

tribution database contains records of plants and charophytes as reported by users and

conservationists with MapMate7. Despite the availability of high-resolution data, ob-

servations are collected ad hoc by users and not curated scientifically. Moreover, the

distributions contain both well-surveyed and poorly-surveyed plots of land likely to carry

uncertainties. As such, BSIBI data is helpful to reconstruct several baseline tree distri-

butions across GB, as demonstrated by [Hill et al., 2017].

4.2.2 Species distribution models

In the absence of extensive host data, species distribution models (SDMs) aim to generate

synthetic data, typically from less-extensive surveys. First developed in the 1990s, SDMs

have become fundamental to ecological and biogeographical inference studies. SDMs rest

on statistical algorithms (discussed more below) that process and correlate environmental

data to predict species habitat suitability in space and time, as depicted in Figure 4.5.

Thus, the overall SDM approach differs significantly from traditional mechanistic (e.g.

compartmental, agent-based, and PDE) spread models, as discussed in section 2.2.

Synthetic distributions have numerous applications for examining biodiversity, conserva-

tion, resource management, ecology, and climate change [Franklin, 2013, Skov et al., 2016,

Wittmann et al., 2016, Hunter et al., 2012, Zhang et al., 2019]. Although SDMs have

many applications, few studies focus specifically on constructing SDMs for tree-based

pathogens. However, recently [He et al., 2019] coupled remote-sensed data with an SDM

to produce disease-induced mortality maps of sudden oak death in California. Namely,

by coupling remote-sensed mortality data to an SDM of the tree pathogen P. ramorum,

[He et al., 2019] was able to narrow down areas in the landscape where mortality was

disease induced—in contrast to areas affected by other causes of stress and mortality.

The vast majority of SDMs fall into two categories: correlative [Srivastava et al., 2019],

7MapMate is software designed to aid users to share ecological data: https://www.mapmate.co.uk
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Figure 4.5: A graphical species distribution model (SDM) illustration, adapted from
[Pecchi et al., 2019]. A variety of predictor variables and input data sources are used in
conjugation with modelling algorithms to produce a habitat suitability map.

and mechanistic [Shabani et al., 2016]. Correlative SDMs relate (widely available) presence-

only, or presence-absence, data to several environmental predictor variable datasets. For

tree species, predictor variables include temperature, precipitation, altitude, and soil type

[Ray et al., 2021, Hill et al., 2017]. Following this, a species distribution map can be pre-

dicted, albeit with uncertainties and errors. Commonly used statistical methods include

Regression (i.e. General Linear Models, General Additive Models, Multivariate Adaptive

Regression Splines) and Machine Learning (i.e. Artificial Neural Networks, Classification

And Regression Tree, Random Forest). The general correlative approach is reflected in

Figure 4.5; for a more in-depth review of correlative SDMs, see [Pecchi et al., 2019].

Correlative SDM approaches require little to no prior knowledge of the physiological

processes that link organism and environment. Hence, mechanistic methods aim to in-

corporate an organisms behavioural, physiological, and morphological constraints to the

environment, as reviewed by [Kearney and Porter, 2009]. However, linking a species phys-

iological response to the environment comes with significant computational challenges,

as it typically relies on vast, multi-variable time-series datasets [Shabani et al., 2016].

A review paper by [Guillera-Arroita et al., 2015], revealed a diverse use of SDMs. Out

of 100 publications reviewed by [Guillera-Arroita et al., 2015], SDMs were applied to:

(1) managing threatened species (16% of articles) (2) predicting climate change impacts

(13%) (3) understanding phylogeographic patterns (9%) (4) controlling threatening pro-
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cesses (8%) (5) landscape management (8%) (6) biological invasions (7%). However, no

epidemic applications were reported.

Nevertheless, a thorough literature search revealed a variety of epidemiological SDM ap-

plications. The crossover between ecological SDM methods and epidemiology has been

referred to as ‘Infectious Disease Cartography’ [Kraemer et al., 2016]. With Infectious

Disease Cartography, one seeks to map the likelihood, or risk, of infectious disease out-

breaks and produce risk-maps. A number of publications have applied SDMs livestock

diseases [Hollings et al., 2017], and human-based diseases including the global distribu-

tion of Dengue Fervour [Bhatt et al., 2013] and Zika virus [Messina et al., 2016], and

Anthrax in Kenya [Otieno et al., 2021]. However, SDM applications for tree disease epi-

demics appear absent from the literature.

Predicting species abundance

SDM-generated tree occurrence data have limited applications to ecologists and forest

managers. This motivates statistically-generated abundance data that includes signifi-

cantly more information about the population occupation/density and ecosystem. Mod-

ellers have examined numerous approaches to predict tree species abundance; including,

linking the abundance-occupancy relationship [Gaston et al., 2000] and the scaling pat-

tern of species occupancy over progressively smaller spatial scales [Hui et al., 2009].

An interesting, and highly relevant, approach to predict the abundance of common tree

species in Great Britain was put forward by [Hill et al., 2017]. At a high level, BSBI

presence-only data were combined with a series of environmental covariates using a species

distribution model to produce a map of predicted occurrence data. Then, random forest

regression was employed with a training sample (70%) of less extensive abundance data

(consisting of CS, myForest and Bluesky’s National Canopy Map). Results were then

cross-validated with the remaining (30%) abundance data; Figure 4.6 displays a flow-

diagram of the method presented by [Hill et al., 2017].

A more detailed explanation of the treatment proposed by [Hill et al., 2017] follows:
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Stage (1)

• Presence-only BSBI data was downloaded for 25 common species of trees in GB,

and all records less than 2km× 2km resolution were discarded. Next, the presence-

only data was converted into presence-absence data by considering ‘well-surveyed’

records that Hill et.al defined as having a minimum of two survey between 1950

and consisting of 50 species. Species missing from these well-surveyed areas were

assumed truly absent.

• Using biomod2 [Thuiller et al., 2016], a SDM was then fitted against a cohort of

15 environmental variables, e.g. soil type (European Soil Database), temperature

(Worldclim), precipitation (Worldclim), altitude (Worldclim), type of land cover

(Countryside Survey), among others. The net result was a map of predicted occu-

pancy at 1km× 1km resolution.

• For each species, predictions from a suit of models—GLM, GAM, CTA, GBM,

RF—were repeated and combined into an ensemble distribution model. Each model

was cross-validated against 30% of the well-survyed BSBI presence-absence data us-

ing the receiver operator curve (ROC) [Jiménez-Valverde, 2012] and the true skill

statistic (TSS). [Hill et al., 2017] then selected the best performing predicted occur-

rence for each species.

Stage (2)

• Abundance data from CS and myForest were both expressed as hectares covered

per kilometer squared (ha/km2). This entailed using woodland cover from the NFI

dataset to multiply the percentage cover of each species within a woodland patch,

with a proportion of woodland cover per kilometer.

• Random forest (RF) regression then modelled the relationships between (CS and

myForest) abundance data with the SDM-generated map of predicted occupancy. In

addition, RF regression used four covariates, three of which consisted of Bluesky’s

National Canopy data (i.e. total tree cover, woodland tree cover, non-woodland tree
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cover) and NFI edge broadleaved woodland (i.e. within 50m of non woodland) data.

The abundance datasets produced by [Hill et al., 2017] combine several mainstream tree

datasets in GB; moreover, constructing the ensemble model involved a variety of statistical

models. The predicted occurrence data was examined against the ROC. Most species

demonstrated functional ROC scores between 0.71 and 0.96 and performed exceptionally

well for ash (0.96) and oak (0.90).

Although there were numerous assumptions that underpinned the methodology. Primar-

ily, the BSBI dataset used by [Hill et al., 2017] exists through ad-hoc user and volunteer

self-reports. Thus, some regions are more surveyed than others over time, which led Hill

et al. to make the ‘well surveyed’ recorded assumption (i.e. only considering records

surveyed twice since 1950 containing a minimum of 50 species). The assumption permit-

ted the conversion of raw presence-only to presence-absence, at the cost of overestimated

absence in these regions. That is, even supposing 50 species are reported within a sub-

set of the (2km× 2km tetrad) record, other large regions could remain unsampled—the

authors did not appear to scrutinise this assumption sufficiently.

The RF regression used by [Hill et al., 2017] marked a novel approach to modelling species

abundance. The authors chose to argue in favour of RF regression because of its insen-

sitivity toward the data distribution, which worked well with the less comprehensive

abundance data sources (as the map of abundance had a high percentage of zeros from

missing records). The abundance model quality was examined against 10-fold validation

(explained in [Refaeilzadeh et al., 2009]). The root-mean-square error (RMSE), between

predicted and observed abundance, generally ranged between 5 and 10, where the RMSE

scale reflects the response variable units (ha/km2), i.e. 5% and 10% respectively. The

result was country-wide predicted abundance, with noticeable, yet sufficiently low inac-

curacies.

The low amount of available abundance data in GB significantly impoverished the abun-

dance maps produced by [Hill et al., 2017]. Consequently, of the 25 species datasets

considered, all will contain numerous (small-scale) errors and uncertainties. Nonetheless,
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Figure 4.6: A flow diagram of the two-stage abundance method put forward by
[Hill et al., 2017] to model tree species abundance (taken from the publications’ materials
and methods section).
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the modelled abundance maps captured more large-scale spatial structures than both the

BSBI and CS distributions.

More recently, [Ray et al., 2021] produced a similar SDM as Hill et al. for oak in GB

using biomod2 [Thuiller et al., 2016]. The authors focused on mapping high-density oak

woodlands (with 60% canopy cover or above) to predict which NFI map polygons (by

forest type) were most likely to contain oak stands. However, [Ray et al., 2021] did

not make their oak maps publicly available, nor did they produce a general-purpose

abundance map relevant for epidemiological studies. To date, the data sets produced by

[Hill et al., 2017] constitute the best publicly available country-wide maps of abundance

in GB, despite their limitations.
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4.3 A toy landscape-level SLM

So far, this work has focused on a homogeneous distribution of hosts randomly populating

an ideal domain. In this section, a toy landscape-level SLM is constructed and simulated

on the map of Great Britain (GB). Modelling the spread of disease over GB entails a

large change of scale within the SLM. Specifically, host units now comprise 1km× 1km

‘patches ’ of land. Collecting high-quality abundance data over large areas is challenging

and expensive—reviewed in section 4.2. Therefore, the SLM is combined with a map of

predicted oak abundance produced by [Hill et al., 2017].

4.3.1 Realistic boundaries

Realistic host distributions describe complicated, irregular and heterogeneous domain

boundaries known to influence the spread of disease [Madden and Hughes, 1995]. In con-

trast, the SLM spreads through a square lattice with regular domain boundaries and

homogeneously distributed hosts. Moreover, the initial conditions (ICs) in the SLM have

been limited to a small focus of infected hosts located at the domain centre. How-

ever, an epidemic propagating from the centre of a square lattice might look very dif-

ferent from an epidemic emerging from an arbitrarily located epicentre inside a domain

with complicated irregular boundaries. As a consequence, we examine the interplay of

initial and boundary conditions in the SLM, compelled further by articles highlight-

ing the importance of domain shape [Mikaberidze et al., 2016] and critical domain size

[Abad et al., 2020, Reimer et al., 2017].

As a first step toward modelling with realistic host distribution, SLM domain edge effects

were examined inside the shape of GB. Figure 4.7(a) shows the map populated with a

random homogeneous distribution ‘patches’ at resolution 1km2. Here, we change the

scale, so host units represent patches of land, as opposed to individual trees in Chapter

3. The green and black pixels represent susceptible and insusceptible patches of land,

respectively.
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Figure 4.7: (a) The SLM spreading on a map of GB. The domain geometry and epicenter
location are non-trivial aspects likely to influence the spread of disease. The colour bar
indicates susceptible S, infected Ii (where i is the ith state), and removed R states. More-
over, the zoomed inset shows an example of the Humber estuary preceding an infectious
wave-front. (b) A map of ensemble-averaged mortality-ratios χ, shown by colour for each
spatial location with SLM model parameters ρ = 0.65 and β = 0.25.
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In Figure 4.7(a), we see that coastline edge effects might reduce the probability of an

epidemic. For example, epidemics emanating from epicentres located just below the

Humber estuary (shown on the inset) could encounter more impedance when compared

to more centrally-located positions. Accordingly, SLM edge effects and domain BCs were

examined by assessing the tree mortality from every possible epicentre, as shown in Figure

4.7(b).

Figure 4.7(b) reveals the ensemble-averaged mortality ratio, denoted by χ. The toy

landscape-level SLM assumed parameter values just above threshold in a 2D square lat-

tice, where each simulation began from a single epicentre located at patch (i, j). Here,

the mortality ratio captures the total epidemic impact, defined by:

χ =
Rf

S0

(4.5)

where Rf is the final number of patches in the removed state at Tf and S0 is the number

of susceptible patches at time T = 0. Given the stochasticity, it is necessary to repeat

simulations for each epicentre and calculate the mortality ratio χ. Iterating over the whole

of the GB in this way permits visualisation of the spatial-susceptibility of the pathogen

β, depicted by colour in Figure 4.7(b).

Figure 4.7(b) shows the result of the ensemble averaging χ for each patch of land8. As

expected, the domain BCs and map geometry change the resulting epidemic scale, mainly

in Scotland and the south Eastern leg of GB towards Exeter and Plymouth. Regardless,

centralised regions show a roughly constant susceptibility. Higher epidemic parameters

increased the mean mortality ratio and reduced spatial variations in the mortality ratio,

whereas lowering epidemic parameters had the opposite effect. Although Figure 4.7(b)

paints an ideal epidemic scenario involving one infected patch at t = 0, we can assume

an emerging epidemic within the SLM model depends non-trivially on the interplay of

epicentre location and domain boundary.

8Ensemble averages for each patch (≈ 2×105 in total) was computationally costly. Hence, the domain
resolution was coarse-grained to 5km× 5km sized-patches to reduce the number of simulations. Even
so, simulations were ensemble-averaged on the Leeds high-performance computing facility (ARC) using
a task array. The ensemble took approximately two hours on 25 cores.
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4.3.2 Realistic abundance data

Figure 4.8(a) shows the distribution of oak in GB given by [Hill et al., 2017]. The corre-

sponding probability density function (PDF) of canopy cover is shown in Figure 4.8(b).

Each pixel in Figure 4.8(a) depicts the predicted hectares of oak canopy cover per kilome-

tre squared of land, ha/km2, represented by colour. Therefore, each measure of abundance

correlates to host density (justified by the fact that 100ha = 1km2), denoted by9 ρ. There-

fore, the spatial map in Figure 4.8(a) displays irregularities and population heterogeneity

across GB visually.

The PDF displayed in Figure 4.8(b) reveals that most land patches occupy lower canopy

cover values. Moreover, a small number (∼ 5%) of high abundance values in the interval

ρ ∈ [10, 35] ha/km2 skewed the distribution. These high-valued density patches were

reduced to 10ha/km2, thereby capping the highest value to 10% of oak canopy cover. The

PDF describes a continuous distribution, which contrasts the binary-valued distribution

of hosts within the SLM. Accordingly, we introduce a threshold function to navigate the

problem:

φ(ρ) =


1 ρi,j ≥ ρ

0 ρi,j < ρ

(4.6)

where the canopy cover ρ ∈ [0, 10] ha/km2 acts as a threshold value, above which, all

patches become susceptible and assumes the numerical value of unity (i.e. ρ < ρi,j = 1).

Insusceptible states are described when ρ ≥ ρi,j = 0. The inset of Figure 4.8(b) visually

depicts the abundance threshold function. Here, the vertical black line is an arbitrary

threshold ρ, and all canopy cover values less and greater than ρ describe insusceptible

and susceptible, respectively. In this interpretation, susceptible patches have enough

hosts to support disease survival, growth, and spread. Conversely, patches of land below

the abundance threshold are presumed insusceptible because of insufficient hosts.

9Although the spatial scale is larger, ρ still represents the same underlying tree density for any given
1km× 1km patch. Thus, the same notation for density ρ is kept the same as Chapter 3
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Figure 4.8: (a) The abundance distribution of common oak (Quercus robur) given by
[Hill et al., 2017]. Each pixel describes a predicted value of abundance with units hectares
of canopy cover per kilometer squared of land (ha/km2). (b) The probability density
function of oak abundance in GB, f(ρ) ha/km2. The zoomed inset illustrates the process
of generating threshold function φ.

Earlier in Chapter 3, hosts distributions were easily characterised by ρ ∈ [0, 1], describing

a uniform density throughout a square lattice. Now, however, host heterogeneity prevents

a simple description of density. Nevertheless, by considering the percentage of susceptible

patches, one can define an effective landscape density ρ∗:

ρ∗ =

∑i,j(ρi,j ≥ ρ)

|LGB|
(4.7)

where LGB represents host distribution over Great Britain. The terms
∑i,j(ρi,j ≥ ρ) and

|LGB| represent the total number of susceptible patches and total landmass respectively.

Given an increase in the threshold ρ, the effective density ρ∗ decreases; likewise, a decrease

in ρ increases ρ∗ as more patches become susceptible. Thus, ρ∗ presents a convenient,

although crude, agent to adjust the host distribution to higher or lower densities.

Following the same arguments in Chapter 3, the landscape-level percolation model be-

comes an appropriate description of disease spread in tree populations if long-distance
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dispersal events (over ≥ 1km) are omitted. Thus, the model becomes helpful when ei-

ther the frequency of long-distance dispersal is low or the pathogen disperses through

small scales. For example, smaller dispersal distances result for fungal spores in low wind

speeds [Viljanen-Rollinson et al., 2007, Solheim and Hietala, 2017] or when the pathogen

spreads through mycelial growth in soil, i.e. R. Solani and Pythium spp [Otten et al., 2004,

Poggi et al., 2013].

4.3.3 Epidemics in heterogeneous landscapes

Applying the effective density (ρ∗) of Equation 4.7, we can initialise a set of binary-

valued SLM heterogeneous domains. Figure 4.9 shows three variations of effective density

ρ∗ ∈ [0.40, 0.50, 0.60], alongside the corresponding thresholds of abundance canopy cover

shown below. In Figure 4.9, the SLM is simulated with infectiviy β = 0.25, until pathogen

extinction, shown through through four time-steps. Between panels (a) (e) and (i), the

differences in the domain density are visible, as larger values of abundance thresholds

produce lower density maps. For the three simulations shown in Figure 4.9, epicentres

were placed in the south, where the canopy cover is most dense.

Previously, density was uniform in all directions, but now heterogeneity unevenly dis-

tributes susceptible hosts. Notwithstanding, we may still expect an epidemic to emerge

if density and infectivity parameters satisfy a critical threshold, as explored in Chapter

3. For all ρ∗ values shown in Figure 4.10, initial outbreaks (0 < t < 250) spread above

the threshold. Although at ρ∗ = 0.40, we notice a significant drop in disease progression

beyond t = 250 in (c-d), approximately extending from Oxford to Buckinghamshire due

to a low density; in contrast, ρ∗ = 0.50 and ρ∗ = 0.60 spread above the threshold for all

panels.

In Figure 4.9 we can observe a spatial dependence in the SLM threshold, where above-

threshold regions (e.g. the in south) depend on the host density ρ∗ parameter. In par-

ticular, Figure 4.9 demonstrates that increasing ρ∗ can lead to channels opening between

different above-threshold regions, thus permitting disease to invade new regions—i.e.
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compare Figure 4.9(d), (h), and (l), where only higher density simulations spread pro-

gressively further North.

Unfortunately, the definition of percolation (as per Equation 3.4) becomes obscure in light

of the irregular domain configuration shown in Figure 4.10, primarily because the extent

between borders is now non-uniform and dependant on epicentre location. Furthermore,

simulation time series are subject to additional noise on account of heterogeneity, making

velocity-based metrics (as shown in Equation 3.5) hard to use. Subsequently, the ex-

amination of disease progression will focus on the mortality ratio χ, as its measurement

depends only on the final value of removed trees.

4.3.4 Spatially dependent ensembles

The observations of spatially varying thresholds, as revealed by Figure 4.9, motivates an

examination of epidemic impact as a function of epicentre location. As such, we apply

the same ensemble averaging method discussed previously (in Figure 4.7) to the oak

abundance data set. That is, treating each location (i, j) in GB as a potential epicentre

and ensemble averaging host mortality over replicate simulations. Here, the mortality

ratio
〈
χ
〉
∈ [0, 1] describes the ratio of removed host patches to the total number of

susceptible patches at t = 0 and expresses the final sized epidemic in the SLM.

The result of spatial ensemble averages are shown in Figure 4.10 for three different ef-

fective densities and one value of infectivity β = 0.25. The values of effective density in

Figure 4.10 are arbitrary, but crucially exhibit the heterogeneous SLM behaviour. Un-

surprisingly, increasing the effective density yields a higher mortality ratio (as defined

by Equation 4.5). In turn, a higher mortality increases the magnitude of colour bars in

Figures 4.10(a-c). Alongside a more severe mortality ratio, a higher ρ∗ value also permits

disease propagation over more extensive regions, witnessed by comparing Figures 4.10(a)

and (c).

In Figures 4.10(a-c), yellow regions highlight where the pathogen is most likely to spread

through susceptible hosts. In the toy model, mortality is approximately independent
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Figure 4.9: The simple lattice model running on a binary-valued Oak domain with infec-
tivity β = 0.25 for three variations of effective density ρ∗.
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of epicentre location, provided sufficient (Von Neumann) connectivity between patches,

supported by uniform yellow contours within susceptible regions. In panel (a), the spatial

locations encircled in dashed red highlight a region of instability that appears to separate

two susceptible regions. In these regions, the epidemic impact could vary significantly,

consequently prompting the corresponding plots of mortality variance in Figures 4.10(d-

f).

Mapping the ensemble averaged mortality variance reveals uncertainty, where regions

support the possibility of both epidemic and extinction. Figure 4.10(d) captures a region

of uncertainty, highlighted in red. In this region, the toy model may or may not give

rise to a large scale epidemic, as opposed to the most southerly, high-mortality region

beneath the dashed red lines. Panels (e) and (f) show a variance only in the edges of

the centrally located susceptible region. It is alluring to consider the implications of

high variance regions in Figures 4.10(d-f) in the context of epidemic control. Namely, we

may suppose that epidemic control through high variance regions could be an effective

strategy in stopping the spread of disease. Although the mortality ratio (χ) categorises

the overall epidemic scale in the SLM, it fails to reflect any information about how far

an epidemic is likely to propagate. Recording the maximum distance travelled by the

pathogen proved a helpful method to illustrate spatial progression, maps of ‘maximum

distance’ are displayed in appendix A.2.1.

4.3.5 Heterogeneous parameter sweeps

Thus far, spatial ensemble analysis rests on a fixed infectivity (β = 0.25) and has focused

on mapping mortality with a varying effective density parameter ρ∗. In this section,

we investigate the entire parameter space of ρ∗ and β. Figure 4.11 depicts a full pa-

rameter sweep of the toy landscape SLM. Due to more host units in computer memory,

simulating the spread of disease in the toy landscape SLM is more computationally chal-

lenging when compared to the ideal square SLM in Chapter 3.3. Even though epidemics in

the toy SLM are conditioned on epicentre location (confirmed in section 4.3.4), analysing

a single epicentre is sufficient to capture the essential toy model behaviour. Ergo, we

4.3. A TOY LANDSCAPE-LEVEL SLM 93



CHAPTER 4. SIMPLE LATTICE MODEL: APPLICATIONS

⟨χ⟩

⟨χ⟩var

ρ * = 0.36 ρ* = 0.43 ρ* = 0.50

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Spatial phase showing ensemble statistics over the oak data-set for three
variations of density threshold φ(ρ) : ρ ∈ [0.37, 0.43, 0.50] and fixed infectivity β = 0.25.
(a-c) The ensemble mean of mortality ratio χ measured for each pixel epicenter. The
dotted red circle in (a) shows two neighbouring susceptible regions. (d-f) Ensemble
variance over χ. The dotted shape in (d) highlights an unstable region of high variance
and uncertainty separating two susceptible areas of the population in (a).
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present an analysis through a single epicentre.

Figure 4.11 shows the ensemble-averaged epidemic phase space of the toy landscape

SLM through a epicentre—indicated by the red point in Figure 4.11(a). The Parameter

sweeps of ρ∗ and β demonstrate multiple discontinuities and sharp increases in χ for

particular combinations of ρ∗ and β; this contrast with the parameter sweeps inside

a homogeneous square domain. Moreover, Figure 4.11(b) reveals a large asymmetry

between ρ∗ and β as more discontinuous jumps appear most when ρ∗ is increased, i.e.

moving horizontally through Figure 4.11(b). Hence, host heterogeneity gives rise to

distinct behaviours for both ρ∗ and β axes, as opposed to the (approximately) symmetric

ensembles in a homogeneous square domain.

Figures 4.11(c-d) contrast behavioural differences between ρ∗ and β axes. Specifically,

we compare one-dimensional slices through both parameters ρ∗ and β. Figure 4.11(d)

details how variations of ρ∗ effect the model behaviour through β-space. Interestingly,

Figure 4.11(d) depicts the same infectivity threshold of β ∼ 0.10, identical to the SLM

evolving on a uniform square domain. When β increases, fewer discontinuities arise when

compared to ρ∗, as evidenced by smoother curves.

For each value of density in Figure 4.11(d), the mortality remains fixed beyond β ∼ 0.30.

We can understand the independence between χ and infectivity through a numerical

example: the probability of a susceptible patch remaining susceptible when it encounters

an infected neighbour is given by Equation 3.3 as Pr(S → S) = (1 − 0.30)10 = 0.03.

Therefore, on average the pathogen transmits successfully to susceptible neighbours with

probability Pr(S → I) = 0.97, e.g. if a particular epicentre belongs to a susceptible

region containing 100 patches, only three patches remain susceptible. In this instance,

most patches in the cluster become infected, and further increases in β do not affect the

mortality10. When β ∼ 0.30, only increases to the domain density have the potential

to raise the final epidemic size, indicated by the increases in the height of the curves in

Figure 4.11(d).

10Increasing the infectivity to β = 0.40 yields a Pr(S → S) = 0.006, leading to negligible changes in
the final epidemic size—however, the rate of progression is still faster.
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Figure 4.11: Ensemble-average parameter sweeps of the toy model display comparable,
albeit noisier, epidemic thresholds compared to the SLM. (a) parameter sweeps were
performed over replicate simulations beginning from the red dot. (b) The mortality ratio
plotted over the two-dimensional parameter space of ρ∗ and β (c) A one-dimensional plot
of mortality as a function of host density is shown alongside several slices of infectivity,
indicated by colour. (d) The mortality ratio is found over infectivity β for different values
of effective density ρ∗.
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4.4 Discussion

In this Chapter, we explored two applications of the SLM viz; early warning signals and a

toy landscape-level model. The original analysis conducted by [Orozco-Fuentes et al., 2019]

relied on a velocity metric based on the number of infected and removed trees, NI and

NR respectively. In this scheme, the number of infected and removed hosts scales as

∝ (NI +NR)2 above the threshold, giving rise to an effective increase in velocity for later

times; as we discussed, these undesirable artefacts of domain geometry lead to confusing

increases in the time series velocity, despite a constant rate of progression. Therefore,

EWS were detected using an alternate (COM) time-series metric and abstract cylindrical

domain configuration that negated geometrical effects. A two-dimensional investigation

was undertaken, sweeping the entire parameter space of tree density ρ and infectivity β.

After setting up the EWS framework, the two-dimensional parameter sweep revealed that

preemptive EWS detection is more obtainable when infectivity is lower. Observing these

asymmetries in EWS detection, conditioned on infectivity β, highlights the possible chal-

lenge of preempting progressively infectious pathogens; in particular, given that host sus-

ceptibility is likely to increase as a consequence of climatic stressors [Garrett et al., 2006].

Subsequently, we may hypothesise the heightened challenge of early warning indicator de-

tection for forest-based pathosystems in the face of climate change.

EWS have found applications in a variety of ecological processes, e.g. aquatic ecosystem

function [Kramer and Botterweg, 1991], forest desertifications [Yang et al., 2005] and species-

level extinctions [Drake and Griffen, 2010]. Nevertheless, few sources focus explicitly

on EWS from tree epidemics akin to the dynamic (velocity-based) approach used by

[Orozco-Fuentes et al., 2019]. Instead, most research has focused on the more general

class of forest health and tree mortality11 based on tree growth rings [Rogers et al., 2018,

Mamet et al., 2015]. As such, the EWS method presented in section 4.1 differs from the

wider literature, and more work is required to scrutinise the utility of dynamic, velocity-

based, EWS detection methods.

11See [Torres et al., 2021] for a related review on remote sensing technologies and forest-health
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Secondly, we constructed a toy landscape-level SLM spreading through an example dis-

tribution oak, as generated by [Hill et al., 2017]. The model of landscape-level epidemics

neglects several essential features of invasive disease; most importantly, it inherited the

nearest neighbour contact assumption, as discussed in Chapter 3. Hence, we labelled the

landscape-level interpretation a ‘toy’ model. Although many limitations underpin the

toy model (e.g. the omission of long-distance dispersal [Rieux et al., 2014] and cryptic

infections [Gilligan et al., 2007b]), it highlighted the inability of the SLM to describe the

spread of disease through lower tree densities (ρ ∈ [0.01, 0.10]), typical throughout GB.

As the SLM could not describe the spread of disease through more realistic host densi-

ties, we introduced an effective density parameter ρ∗, predicated on an arbitrarily chosen

threshold. Introducing an additional density threshold parameter is undesirable, unnat-

ural and speculative. Therefore, we are motivated to change direction and construct a

non-local dispersal model in the proceeding Chapter, in line with more contemporary

dispersal-based approaches, e.g. [Parnell et al., 2009a, Meentemeyer et al., 2011]. In this

setting, transmission between trees can occur over larger length scales and permit the

spread over lower tree densities.

Notwithstanding the inherent toy SLM shortcomings, its construction demonstrates the

use of a novel predicted abundance dataset provided by [Hill et al., 2017]. The predicted

abundance distribution is partly generated from numerous data sets12, as we reviewed in

section 4.2. However, predicted (statistically regressed) abundance data contains uncer-

tainties and inaccuracies alongside the loss of small-scale host spatial structure < 1km2.

As argued by [Cunniffe et al., 2015a], capturing host spatial structure, even when data

are limited, is essential, and methods are required to assess the impact of incomplete or

inaccurate host data.

Following this argument, host data accuracy presents a notable assumption in the toy

model. That being said, density parameter sweeps over GB (as shown in Figure 4.11)

could form a simple procedure to assess the effect of host error, i.e. contrasting epidemic

12Including ancient woodland shapefiles, BSBI distribution database, Countryside Survey data, my-
Forest and the National Forest Inventory Great Britain 2014
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outcomes between two upper and lower density error bounds. Evaluating landscape-

level parameter-sweeps are uncommon, and most large-scale models repeat simulations

over numerous control scenarios and rest on fitted parameters e.g. [Cunniffe et al., 2016,

Harwood et al., 2011]. Assessing disease outbreaks over a range of landscape-level density-

based parameters could describe a risk-based approach, as articulated by some authors

investigating epidemics through smaller spatial scales [Hyatt-Twynam et al., 2017].
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Chapter 5

Including dispersal

In the previous Chapter, we employed a simple lattice model (SLM) based on percola-

tion. The percolation setting provided a tractable starting place. Nevertheless, several

limitations underpinned the model. Chiefly, percolation models rest on local, nearest-

neighbour (NN) contacts and cannot describe epidemics at lower, more realistic tree

densities (ρ ∼ 0.10). Subsequently, this Chapter will generalise the SLM and incorporate

non-local NN interactions by introducing a generic Gaussian dispersal kernel, allowing

epidemics at far lower tree densities.

The thin-tailed Gaussian kernel introduced here represents an intermediate step between

the NN interactions in the SLM and the fat-tailed inverse power-law dispersal present

in Chapter 6. The ease of integrating a Gaussian kernel also proved helpful when de-

riving an analytic expression of R0, as discussed more below. Other choices of simple

one parameter dispersal kernels are possible, including the slightly longer range negative

exponential—discussed at length in [Nathan et al., 2012]. Regardless, any developing epi-

demic that follows a similar ranged kernel will ultimately approximate similar spreading

patterns [Bullock et al., 2017].

Firstly, we will combine dispersal-based interactions within a simplistic SIR framework
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to construct a non-local model (NLM) of tree disease. The model behaviour is then

examined under various dispersal length scales and fitted against the standard SIR to

contrast disparities between spatial and non-spatial models. After establishing the non-

local dispersal model, a spatially explicit (analytic) expression for the basic reproduction

number will be derived for the model, denoted by R0.

Next, we compare analytical predictions of R0 against the total tree mortality, equivalent

to the final-sized epidemic. Lastly, the expression of R0 is scrutinised against the ‘ac-

tual’ number of secondary infections, computed by contact-traced individual tree-to-tree

infections. Notably, the analytic and contact-traced methods of calculating R0 define a

threshold at R0 = 1. As before, the analysis is kept generic, with arbitrary units of time

and distance, before incorporating more biological realism in the next Chapter.

5.1 A small-scale non-local SIR model

As before, we begin with a model fixed inside a square lattice of size L and host units refer

to individual trees. Host distributions are initialised by a Bernoulli trial with probability

ρ according to a binomial distribution. Thus, the probability of host occupation (ρ)

can be seen as a tree-density parameter and interactions between hosts are modelled

over a flat and randomly distributed population. The state of a tree can be in one of

three conditions: susceptible, infected, or removed (SIR). We assume all trees are equally

susceptible, and trees that become infected transition through the states S → I → R

without the possibility of recovery.

From first principles, the probability of infection at a distance r can be described by

an unnormalised Gaussian function g(r; `), where ` is a distance that sets the scale of

dispersal. If two trees—one susceptible (Sx) and one infected (Ix′)—are separated by a

distance r = |x − x′|, then a transition probability between the states Sx → Ix can be

defined by g(r; `) multiplied by infectivity β:

Pr(Sx → Ix; Ix′) = β exp
[−r2

2`2

]
(5.1)
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where β is interpreted as a probability, i.e. β ∈ [0, 1]. Equation 5.1 generalises the SLM

to include non-local interactions, hence referred to as the non-local model (NLM). Each

probability of transition is assessed against a sample drawn from a continuous uniform

distribution U(0, 1) following a Poisson construction [Cook et al., 2008]. Probabilities

are then calculated for each times step while host Sx remains susceptible, and repeated

for each susceptible tree in the domain (i.e. ∀Sx ∈ [L,L]). See Appendix B.3 for more

information on the computational implementation. A table of parameters for the NLM

is shown below in Table 5.1.

The same uniform lifetime dynamic (used previously in the SLM) controls the period

hosts remain infectious. That is, a host transitioning into the I compartment will remain

infectious for T time steps before uniformly transitioning into the R compartment. In

section 3.3, the infection period was shown to alter the wave-front thickness and the

threshold value of infectivity β required for an epidemic. However, an arbitrary number of

T = 100 infectious time steps remains fixed throughout this Chapter. Uniform transitions

into the R compartment help to keep the model simple but present an assumption that

goes against the grain of more common exponential lifetime dynamics—discussed more

below in section 5.2.2.

The work presented in this Chapter is purposefully kept generic, with no specific pathogen

in mind. Therefore, each Monte Carlo step through the simulation has arbitrary units

of time and distance. Nevertheless, the units of time and distance can be envisioned to

be on the order of days and meters to reflect the approximate spatio-temporal scale of a

general tree pathogen. As demonstrated later in Chapter 6, spatial scale within the model

can be calibrated by choosing a suitable lattice constant, denoted by α, that reflects the

size of host units.
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Model parameter Description Typical value(s)

ρ Tree density 0.00− 0.10

β Infectivity probability 0− 10−3

β∗ Auxiliary infectivity 0− 10

` Gaussian dispersal parameter 0− 100

t Simulation time step 1 Au

T Infectious life time 100

α Lattice constant 1 Au

L Square lattice dimension 200 - 2000

R0 Basic reproduction number 0− 20

R
(i)
0 Generational reproduction number 0− 20

Table 5.1: Parameters used in the generic NLM, time and distance are given in arbitrary
units and host densities are informed from by [Hill et al., 2017].

5.2 Model behaviour

Spatio-temporal epidemic progression within the NLM is depicted in Figure 5.1. Figures

5.1(a-b) depict an epidemic spreading through the domain at two time steps; simulation

parameters are given by ρ = 0.01, ` = 25, β = 1.0× 10−3 on a domain of size 500× 500.

All panels in Figure 5.1 begin from a small number of infected hosts at the domain centre

at t = 0. A tree density of ρ = 0.01 approximately mirrors the median canopy coverage

of a large deciduous tree distributed throughout the GB, according to the predicted oak

abundance data given by [Hill et al., 2017]—presented previously in Figure 4.8. Unsur-

prisingly, extending the neighbourhood of interaction to non-nearest neighbours permits

an epidemic for much lower tree densities in comparison to the SLM percolation threshold

studied in Chapter 3.

Figures 5.1(a-b) suggest an approximate wave-front-like behaviour, as infections spread

out radially from the epicentre. The corresponding ensemble-averages of Figures 5.1(a-b)

are shown below in Figures 5.1(c-d), and confirms a travelling wave-like spread. For 200
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repeated simulations, the spatial locations of infected trees were recorded and plotted

as a two-dimensional frequency distribution. The upper and lower marginal plots of

Figures 5.1(c-d) show the one dimensional horizontal and vertical frequency distributions,

respectively. Disease progression in Figure 5.1(d) reflects the radial propagation of a

travelling wave and a disease gradient of approximately ≈ 3`. Thus, choosing a small

value of ` = 25 in comparison to the domain effectively recovers the essential wave-like

behaviour exhibited by the SLM.

The thin-tailed Gaussian kernel does not permit the pathogen to jump large discontinuous

distances, particularly for a small value of ` = 25, as shown in Figure 5.1. Therefore,

we can present an analogy to percolation provided that the ratio `
L is small, allowing

us to calculate a wavefront similarly to the method described previously in Chapter 3.

Accordingly, Figure 5.1(e) reveals the largest distance an infected host will likely reach

over 500 steps. Boundary conditions in Figure 5.1(e) terminate simulations upon three

conditions: (A) The simulation time step exceeds 500 steps (B) No infected trees remain

in the domain (C) An infected tree Ix falls within a distance L − 3σga ≤ Ix ≤ L away

from the epicentre.

After t time steps, the maximum distance reached by the pathogen is Dmax(t). Figure

5.1(e) shows the ensemble-averaged maximum infectious distance for four infectivity pa-

rameters, along with a 95% confidence interval about the mean for each time step. The

time-series data shown in Figure 5.1(e) indicates whether or not the pathogen dies off

or survives to the domain boundary. Furthermore, scatter plots in the upper marginal

of Figure 5.1(e) mark when the pathogen arrives at the domain boundary. A cluster of

infectious-removed trees spans the domain whenever the pathogen survives long enough

to propagate to the edge.

Unsurprisingly, Figure 5.1(e) reveals that, on average, pathogens with higher infectivities

propagate to the domain boundary quickest, illustrated by comparing the first (red) and

second (green) highest infectivity line plots. In contrast, the lowest two infectivity values

(blue and orange time series, respectively) fail to reach the domain boundary in most
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ρ = 0.01, β* = 2, β = 0.0010, ℓ = 25, L = 500
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ρ = 0.01,β = ∈ [0.5, 1,2,3], 100 repeats, 500steps, L = 500,ℓ = 25,

β ∈ [0.00025,0.0005,0.001,0.0015]

2.5 × 10−4
5.0 × 10−4
1.0 × 10−3
1.5 × 10−3

Infectivity β

(b)(a) T = 400T = 100

I frequency
(e)

Figure 5.1: Percolation-like disease progression of the dispersal-based SIR model with a
small dispersal length scale of ` = 25. All figures were accessed in a domain of size L×L =
500 × 500 and fixed host density ρ = 0.01. (a-b) An evolving epidemic with infectivity
β = 1.0 × 10−3 is shown through two time-steps. Green pixels represent susceptible
trees in S, while red pixels represent infected trees at different steps in the I category.
Infected trees uniformly transition into the removed compartment at t = 100, shown
in black. (c-d) An ensemble-averaged spatio-temporal frequency distribution (of 200
repeats) representing the number of trees in the infected compartment. The probability
of an infected tree located at row x and column y is represented by a kernel density
estimate (ascertained via Seaborn, a statistical/plotting package in Python) in the upper
and horizontal marginals. (d) The maximum infectious distance ensemble-averaged over
100 repeats for four infectivity parameters shown by colour.
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simulations, notwithstanding the small number of orange scatter points shown in the

upper marginal.

Modelling the spread of disease for small `
L is helpful to understand the NLM and presents

a clear connection to the percolation-based SLM. However, realistic dispersal-based tree

disease is unlikely to exhibit slow marching travelling waves at these small spatial-scales.

In particular, as `
L becomes larger, tracking the maximum distance inside a finite domain

of size L becomes ill-defined; undoubtedly this becomes even more relevant with fat-tailed

dispersal kernels. Therefore, although the time-series Dmax(t) is justified for pathogen

progression when `
L is small, an alternative metric is required to understand epidemic

progression as we look to increase the scale of dispersal. Consequently, the reproductive

ratio R0 is introduced later in section 5.3.

5.2.1 Normalising infectivity β

Before we move onward, a tool to fix epidemic impact over various dispersal length scales

is outlined below. Using β to control infectivity in the model, as governed by equation

5.1, is pragmatic for single parameter of `—as shown in Figure 5.1. However, suppose

the dispersal parameter ` in equation 5.1 is increased. Undoubtedly, a larger area under

the unnormalised kernel, exp
[
− r2/(2`2)

]
, would produce more secondary infections. In

turn, more secondary infections produced by each infected tree affords a more severe

epidemic. In this setup, infectivity, as defined in Equation 5.1, depends strongly on the

scale of dispersal ` and epidemic-impact would vary significantly under different dispersal

parameters. Ideally, the infectivity (i.e the strength of interaction between trees) should

not depend strongly on the dispersal kernel because this makes model comparisons over

different length scales ` difficult. This motivates an updated scheme.

At the very least, β could be manually varied to match the approximate epidemic-impact

between different ` valued simulations1. However, scaling β differently for each ` pa-

1One may suggest that directly normalising the kernel poses a solution to fix the epidemic scale for all
values of `. Although, this is ultimately incorrect from an implementation perspective. If the Gaussian
kernel in 5.1 is normalised, it will cease to be a yield a probability describing individual tree-to-tree
interactions and the transition between states.
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rameter is cumbersome and ultimately untenable for many simulations. A mathematical

sleight-of-hand can resolve the dilemma by simply factoring out the dispersal normalisa-

tion from β:

β =
β∗

2π`2
(5.2)

where β∗ is an ‘auxiliary’ infectivity parameter that isolates infection pressure to a single

parameter that remains fixed between simulations with different ` values. In this manner,

infectivity and the dispersal remain probabilities (i.e. β = β∗/2π`2 ∈ [0, 1], and exp
[
−

r2/(2`2)
]
∈ [0, 1] respectively), and epidemic severity will be matched between different

`-valued simulations. Some limitations of this method are discussed below in section 5.3.

So, henceforth, unless otherwise stated, the remainder of this Chapter will employ the

normalised infectivity. That is, the right-hand side of equation 5.2 will be substituted

into equation 5.1 (and the analytic expression of R0 outlined below) to permit model

comparisons over the parameter space of `.

5.2.2 SIR fitting: dispersal-mediated contact-mixing

This section aims to shed light on whether or not the spatial NLM can recover a non-

spatial process and if so, answer which parameter regime is required approximate the non-

spatial process. Understanding when to include spatial dynamics becomes particularly

important given the increased computational cost of spatial simulations. In a nutshell,

why bother to include spatial dynamics if we could use a simpler non-spatial model?

Consequently, we will fit the SIR model given by [Kermack and McKendrick, 1927] to

simulated data from the NLM. Notwithstanding the spatially-structured host distribu-

tion, it makes sense to compare the NLM with predictions from the SIR framework given

the same compartmental transitions S → I → R.

Two parameters control the epidemic evolution in the SIR model, an infectivity rate β

and a removal rate γ. Both rates β and γ could be manually varied to match data from

NLM simulations, though the task can be simplified significantly by considering I as a
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function of S, accomplished as follows:

dI

dS
=
dI/dt

dS/dt
=
βIS/N − γI
−βIS/N = −1 +

γ

β

N

S

Letting α = γ
β

we have:

dI =
(
− 1 +

αN

S

)
dS

Now using integration by separation of variables:

I = −S + αN ln(S) + C (5.3)

where C is a constant of integration. Thus, we have reduced the task of trying to match

two parameters to considering a single one, namely α. Before we can fit the NLM to

equation 5.3 we need to determine C. Initially S0 + I0 + R0 = N and R0 = 0 i.e. R0 is

the number of removed at t = 0, not the reproductive ratio. Thus, evaluating equation

5.3 at t = 0 gives:

I0 + S0 = Nα ln(S0) + C

=⇒ C = N −Nα ln(S0)

Upon substitution back into equation 5.3 we have:

I = −S +N
(
1 + α ln(S/S0)

)
(5.4)

more information on the behaviour of equation 5.3 is given in the appendix B.2. By fixing

the initial conditions in the differential SIR equations to match the NLM simulations—i.e.

with I0 = 1 and S0 = ρL2 —we can compare the NLM to the SIR model.

The canonical SIR model is non-spatial and rests on a ‘well-mixed’ population assump-

tion, as described in section 2.2. In a well-mixed population, each individual is equally

likely to make contact (or pass on the infection) with any other individual. Conversely, a

spatially-structured dispersal-based model will generally not describe well-mixed contacts
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between individuals in the population because the infection probability decreases with

distance—see [Cook et al., 2008].

Nevertheless, we can expect an approximation to contact mixing when the scale of disper-

sal, set by `, becomes comparable to the domain. In this scenario, secondary infections

are prone to disperse more uniformly over larger areas, in stark contrast to the localised

(wave-like) transmission previously witnessed when ` is small. Hence, the comparisons

below pay attention to the interplay of parameters ` and L. Accordingly, Figure 5.2 shows

the NLM fitted to Equation 5.3 for two domain sizes and two dispersal parameters.

Figure 5.2 contrasts SIR and NLM models. Ensemble-averaged data from the NLM

is plotted in black and is shown alongside the 25 individual simulations in light blue.

NLM simulations contrast the SIR model plotted in red. Tree density and infectivity

in the NLM are fixed to ρ = 0.01 and β∗ = 4, respectively. Notably, the parame-

ters were large enough to ensure epidemics were witnessed in all simulations. Using

least-squares—specially, the Levenberg-Marquardt algorithm [Moré, 1978] implemented

in Python—the ensemble mean was fitted to equation 5.3, shown in red. In all panels,

the arrow of time is from right to left, i.e. initially, the number of trees in S starts high

and decreases as the number of trees in I rises then falls.

Interestingly, for all but one panel in Figure 5.2, epidemics progress faster in the NLM

than predicted by the SIR model—indicated by the NLM having a steeper gradient

beginning from S0 = ρL2. One possible cause of disparity between models is due to

infectious lifetime dynamics. Exponentially distributed lifetimes are implicit within the

SIR model. Whereas, the NLM relies on uniform transitions into the R compartment

that understood by examining Figure 5.2(a), i.e. 400 hosts are present in the domain at

time t = 0 and it takes precisely t = 100 steps to elapse before the first transition into R.

On the other hand, trees evolving with SIR dynamics will gradually transition into the

R compartment at all time steps according to an exponential distribution. For the same

initial conditions, it follows that more infectious trees might be expected in the NLM

between times t ∈ [0, T ], leading to more secondary infections that, on average, increase
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ρ = 0.01
β* = 4

ℓ=25
ℓ=50

L = 600L = 200

Fitted α
Ensemble mean
Individual simulations

(a) (b)

(c)

S

I

I

(d)

S

α = 18.27 ± 0.24 α = 8.28 ± 0.04

α = 8.08 ± 0.02α = 14.95 ± 0.18

Figure 5.2: Fitting the non-local dispersal model (NLM) to the traditional SIR model
given by [Kermack and McKendrick, 1927]. All simulations evolved with parameters β∗ =
4 and ρ = 0.01 above the threshold for spread. (a) A small localised dispersal kernel of
` = 25 fitted against the canonical SIR. On a small domain of size 200 × 200, the NLM
spreads faster than the fitted SIR model. (b) On a larger patch of size 600 × 600, the
SIR model predicts a faster rate of spread in comparison to the NLM, illustrated by the
disparity between red and black lines. (c) On 200 × 200 sized domain, increasing the
dispersal parameter to ` = 50 results in a similar trend to panel (b), albeit with slightly
less agreement between NLM and SIR models. (d) Increasing the dispersal parameter to
` = 50 reduces the large disparity between SIR and NLM, shown in Figure (b).
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the scale of epidemic. In appendix B, Figure 5.2 is replicated, although equation 5.3 was

fitted to an exponentially distributed variant of the NLM. Consequently, Figure B.2 in

appendix B shows, a closer fit to equation 5.3.

Figure 5.2(b) demonstrates another important aspect of NLM behaviour related to con-

tact mixing in the spatial host distribution. Looking at Figure 5.2(b), a faster rate of

spread is predicted for the SIR model, demonstrated by the divergence between red and

black lines. In this regime, `
L in the NLM is small, and contact-mixing in the host dis-

tribution can be assumed low —supported by Figure 5.1 that demonstrated a wave-like

spread. Moreover, the disparity between models is reduced by increasing the dispersal

parameter to ` = 50, illustrated in Figure 5.2(d). Figure 5.2 therefore indicates that if the

system is approximately well-mixed, the NLM spreads comparatively to the SIR, albeit

slightly skewed because of uniform lifetime dynamics. Whereas, if the system is not well-

mixed, a slower epidemic marches across the domain in a wave-like manner that deviates

significantly from the SIR model. Altogether, these results point toward the inability of

non-spatial models, such as the SIR model, to describe a spatially structured model of

tree disease. That being said, in a parameter regime where the ratio `/L is sufficient for

population mixing, the SIR model can describe the system with some accuracy2.

5.3 A spatially-explicit reproduction number

As remarked earlier, percolation-based distance metrics become ill-defined when the

pathogen can jump on long distances and a more robust metric is required to examine the

model going forward. As such, a basic reproduction number will be outlined for the NLM.

The concept of R0 is widely used (and widely misinterpreted [Delamater et al., 2019]),

and multiple methods of calculation exist in the literature [Heffernan et al., 2005]. Al-

though, to recap, R0 is fundamental to understand epidemic thresholds in human and

animal populations.

2Well-known results from percolation theory present a simple model analogy to the observations from
Figure 5.2. Consider a large domain (of size L) below the percolation threshold, and sub-dividing the
domain into boxes of size ξ, where ξ/L is small. Percolating clusters could be observed in each box i.e.
at length scales comparable to ξ, but not L see [Stauffer and Aharony, 2018] pages 64-65.
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Crop-based reproduction ratios have been examined extensively [Gubbins et al., 2000,

Park et al., 2001, van den Bosch and Gilligan, 2008, van den Berg et al., 2011], yet the

concept remains less explored in tree-based diseases. In general, R0 is complicated, and

may vary in response to numerous abiotic factors such as temperature, humidity and

wind speed. Notably, the threshold R0 = 1 should separate regimes of epidemic and

confinement for any definition of R0. Furthermore, when defining an R0 value for tree-

disease, the importance of spatial structure cannot be ignored [Park et al., 2001].

5.3.1 Approximating R0 analytically

In this section, an idealised, spatially explicit expression of R0 is derived for the NLM.

Defining an informative R0-value for tree-based pathosystems is not simple, and care

is needed when defining an R0 value. The following thought experiment outlines an

approach to approximate reproduction number:

Consider a single primary infected tree at time t = 0, surrounded by a distribution of

susceptible neighbouring trees. Throughout its infectious lifetime, the primary infection

will lead to R0 secondary infections. If secondary infections do not produce other tertiary

infections, the neighbourhood around the primary infection remains untouched by other

diseased trees, and the reproductive potential can be approximated by R0.

The thought experiment simplifies the epidemic branching process by neglecting tertiary

(quaternary, and so on) infections, illustrated by comparing Figures 5.3(a-b). In turn,

simplifying the system will help keep the mathematics tractable and permit an analytic

derivation of R0 without advanced mathematics. However, the derivation will be idealised

and likely to overestimate the actual reproduction ratio in specific epidemic regimes.

Figures 5.3(c-d) illustrate two hypothetical epidemic systems, with higher and lower R0

values. When the scale of dispersal is smaller (but still larger than the average distance be-

tween trees) and infectivity is high, as in Figure 5.3(c), we expect a coupled system with a

large number of secondary infectious induced inside a smaller area. In this case, the R0 ap-

proximation would deviate from model simulations because secondary/tertiary infections
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Figure 5.3: Approximating a spatially explicit value of R0 as a function of ρ, β, ` and T .
(a) An idealised scenario where secondary infections do not produce tertiary infections,
but instead transition into an inert state—shown in amber. (b) The usual epidemic
branching process where secondary infections produce tertiary (and so on) infections
about the primary infection, shown by the solid and dashed arrows respectively. (c)
Depictions of a highly infectious regime in the NLM, where R0 is large and the dispersal
parameter (`1) is smaller. (d) Illustrations of an alternate, less invasive system when
the scale of dispersal (`2) happens to be larger. The R0 derivation aims to compute the
scenario shown in (a), and becomes accurate in the epidemic regime illustrated in (d).

would reduce the host density about the primary infection. In other words, the finite-sized

population gives rise to negative spatial correlations when other infected trees reduce the

local density of susceptible hosts. The reader is referred to [Tildesley and Keeling, 2009]

for a helpful discussion of R0, heterogeneity, spatial correlations and finite-size effects.

Conversely, Figure 5.3(d) depicts a scenario when the pathogen induces a lower number

of secondary infectious over a larger area. Hence, in the limit where secondary/tertiary

infected trees do not influence the local density around the primary infection, the thought

experiment (mentioned above) is expected to become increasingly accurate. However,

even with a larger dispersal kernel, the approximation illustrated by Figure 5.3(a) would

become more inaccurate for highly invasive systems with a large R0.

For example, incredibly high valuesR0 ∈ [30, 70] have been estimated for wheat stripe rust

(WSR) epidemics [Severns et al., 2019, Mikaberidze et al., 2016]. Nevertheless, a field of

crops is significantly dense in comparison to an average tree population distributed over

the landscape—discussed extensively in section 4.4 concerning oak. Consequently, we
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argue that, in general, the reproduction ratio of a tree pathogen is unlikely to reach

super epidemic regimes that parallel WSR epidemics; supported further by estimates of

1 / R0 / 6 for the Dutch elm disease epidemic in GB [Swinton and Gilligan, 1996a] and

1 / R0 / 4 for oak processionary moth epidemics in London [Wadkin et al., 2022].

5.3.2 Derivation

Suppose the domain is uniform with density ρ0 at time t = 0, and one singular infected

tree exists inside a large domain. In such a configuration, the mean number of secondary

infections expected over the first time-step can be calculated by integrating equation 5.1

as follows:

R0(t = 0) = βρ0

∫ ∞
−∞

exp
(
− r2

2`2

)
dr = 2πβρ0`

2 (5.5)

If host (re-)growth is neglected, less trees are available to infect at time-step t+ 1. Tree

density can therefore be seen as a monotonically decreasing function of time ρ(t), leading

to the expression:

R0(t) = 2πβ`2ρ(t) (5.6)

this expression presents a convenient relationship between tree density and the number

of expected secondary infections. In a large but finite domain, of size L, tree density

approximately follows:

dρ

dt
= −R0(t)

L2
= −2πβ`2ρ(t)

L2
(5.7)

Solving the above, with initial condition ρ0 at t = 0, leads to:

ρ(t) = ρ0 exp
(
− 2πβ`2

L2
t
)

(5.8)

If density reductions from other secondary and tertiary infections are neglected, the final

number of expected secondary infections after T infectious time-steps is given by:

R0(T ) = L2
(
ρ0 − ρ(T )

)
= L2ρ0

[
1− exp

(
− 2πβ`2

L2
T
)]

(5.9)
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Equation 5.9 can be used as a first approximation toward an R0 value—the reader can

find an equivalent, discrete-time derivation in Appendix B.1. Nonetheless, uniform den-

sity reductions (in equation 5.7) assume that secondary infections are equally likely at

all spatial locations about the primarily infected tree. On average, neglecting spatial

variations overestimates the number of secondary infections induced by the tail-ends of

the dispersal kernel, thus giving rise to a greater R0 value. A more accurate, albeit more

complex, equation can be derived, allowing for Gaussian spatial variations

For transparency, the above derivation is solely based on β, and not the normalised

infectivity parameter. However, from the exponential exponent in equation 5.9, it is

clear to see how normalising the infectivity (β∗/2π`2) prevents the number of expected

secondary infections dependency on `. That is, substituting β∗/2π`2 into the equation

5.9 leads to an exponent, (i.e. Tβ∗/L2) independent of `.

Incorporating Gaussian dispersal

Equation 5.9 neglects a spatially varying transmission probability, though it can be refac-

tored by first re-writing the density as:

ρ(r, T ) = ρ0 exp
(
− βTg(r; `)

)
(5.10)

where g(r; `) is a Gaussian kernel. Equation 5.10 can be interpreted as the generalised

form of equation 5.8, this time incorporating Gaussian spatial variations into R0. Upon

substitution back into equation (5.9), the total number of secondary infections after T

time-steps is given by:

R0(T ) =

∫ ∞
0

2πr
(
ρ0 − ρ(r, T )

)
dr =

∫ ∞
0

2πrρ0

[
1− exp

(
− βTg(r; `)

)]
dr (5.11)

Note, the finite lattice square of size L2 has been replaced with integration in polar

coordinates over dr. Equation 5.11 is hard to solve directly, but it can be integrated

by performing a series expansion on the exponential term. One may then proceed to
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integrate on a term-by-term basis:

R0(T ) =

∫ ∞
0

2πrρ0

[
1− exp

(
− βTg(r; `)

)]
dr

= 2πρ0

∫ ∞
0

r
[
1−

∞∑
n=0

(
− βT )n

n!
exp

(
− r2

2`2

)n]
dr

= 2πρ0

∫ ∞
0

r
[ ∞∑
n=1

(−1)n+1
(
βT )n

n!

(
exp(−nr

2

2`2
)
)]
dr

= 2πρ0

∞∑
n=1

(−1)n+1(βT )n

n!

∫ ∞
0

r exp(−nr
2

2`2
)dr

= 2πρ0`
2

∞∑
n=1

(−1)n+1(βT )n

(n)(n!)

(5.12)

if β and T are small, the 1st order term in equation 5.12 is sufficient to approximate R0 as

a linear function of T—confirmed by numerical simulations in the next section. Finally,

equation 5.12 can be summed to give:

R0(T ) = 2πρ0`
2

∞∑
n=1

(−1)n+1(βT )n

(n)(n!)

= 2πρ0`
2
(
E1(βT ) + ln(βT ) + γ

) (5.13)

where the function E1(x) is the mathematically well studied exponential function E1(x) =∫∞
x
t−1 exp−t dt and γ is the Euler–Mascheroni constant ≈ 0.57721. Intriguingly, the

jump between equations 5.12 and 5.13 is well known in the field of complex analysis—see

[Abramowitz and Stegun, 1948], page 228. Alternatively, the summation in equation 5.12

could equivalently be given as:

Ein(βT ) =
∞∑
n=1

(−1)n+1(βT )n

(n)(n!)
(5.14)

where Ein is known as the ‘entire’ function, leading to the well established relation:

E1(z) = −γ − ln(z) + Ein(z)
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The next section will investigate the suitability of 5.13 to describe the NLM.

5.4 R0 behaviour: analytics vs numerics

In Figure 5.4, the analytic predictions of R0 from equation 5.13 are compared against

numerical simulations. Figures 5.4(a-b) plot the total number of secondary infections

due to the primary infection over its lifetime, denoted by
∑T

t=0R0(t). In both panels

(a-b), NLM simulations were ensemble-averaged N = 50 times for four infectivity values,

indicated by the solid coloured lines. The final value of R0 is observed when the infectious

lifetime of T = 100 steps is concluded. Figures 5.4(a-b) show two epidemic scenarios,

with lower (` = 35) and higher (` = 100) dispersal parameters. As expected, equation

5.13 tends to overestimate R0 for both dispersal parameters when infectivity is high,

illustrated by the dotted scatter plot.

The time-series in Figure 5.5(a) reveals that lower β∗ parameters produce a constant

infection rate, indicated by linear relationship in blue-green. Equation 5.13 agrees well

with these lower infectivity parameters. However, large deviations from model output can

be seen for β∗ = 10 at later times. Here, the number of new secondary infections plateau

for β∗ = 10 because other secondary/tertiary infections reduce host density around the

primary infection. Subsequently, at later times, fewer and fewer trees in the primary

infections neighbourhood are available to infect, causing R0 to level off. Thus, equation

5.13 describes constant transition rates accurately but deviates from model simulations

when infection rates decrease because other (secondary/tertiary) infections reduce host

local densities.

In Figure 5.5(b), the dispersal parameter is increased to ` = 100. A larger dispersal

kernel encompasses a larger neighbourhood. Subsequently, R0(t) saturates less for higher

R0 values, in contrast to Figure 5.5(a). Despite a surprising degree of simplicity, the

linear relation for lower β∗ parameters is predicted by equation 5.13. The linearity can

be understood by noting that when Ein(βT ) is small in comparison to `2 (and βT is

small), the first-order term inside equation 5.13 reduces to a linear equation in T . More
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Figure 5.4: Comparisons between the analytical expression for R0, according to equation
5.13, and numerical simulations. In panels (a-b), The cumulative sum of secondary
infections are ensemble-averaged (50 repeats) over the infectious lifetime of T = 100 steps.
(a) When the scale of dispersal is smaller (` = 35), a high infectivity (in red) causes R0 to
saturate to a maximum over the infectious period. For smaller infectivities (blue-green),
R0 increases at a constant rate and fails to saturate. (b) For a larger dispersal kernel
(` = 100) and high infectivity, R0 increases at a more constant rate, yet deviations still
exist at the conclusion of its infectious lifetime. (c) R0 is shown as a function of the
dispersal parameter for fixed infectivity β∗ = 5. For small length scales, the normalised
infectivity produces a less infectious outbreak. However, R0 is approximately fixed for
larger ` values. Analytic predictions, shown in orange, tend to overestimate the spread
for small `. (d) The 2D R0 phase plane predicted by equation 5.13. A threshold, given by
R0 = 1, is plotted in red that predicts the separation between confinement and epidemic.
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interestingly, however, we can observe that R0 is similar when β∗ is low, revealed by

comparing the blue-green lines in Figures 5.5(a-b). Whereas, for higher infectivities, R0

tends toward a smaller value in Figure 5.5(a) comparison to panel (b). Observing R0

deviate with different ` parameters compels a study of R0 over the space of `, which leads

to Figure 5.5(c).

In Figure 5.5(c), the basic reproduction number R0 is assessed over a range of dispersal

kernels. Tree density in Figure 5.5(c) is fixed fixed to ρ = 0.01 together with infectivity

β∗ = 5. Predictions from equation 5.13 are shown in orange, and R0 can be seen to

increase with the dispersal kernel up to around ` ∈ [25, 30] before saturating to R0 ∼

5. When ` is small, R0 is low; the reason for this are two-fold: (A) neighbourhoods

defined by a small ` parameter are likely to become fully occupied by secondary-infected

trees (B) the scale of dispersal is less than the average distance between trees, thereby

preventing the spread. Then, as the kernel is increased, R0 asymptotically increases to

a maximum value beyond which increasing ` bares no impact on R0—provided that the

number of secondarily infected trees is small in comparison to the number of hosts in the

neighbourhood3. Therefore, if ` is large enough, the normalised infectivity can be seen

to effectively constrains the epidemic severity to a limiting value.

From the reproduction number, a transmission threshold can be defined by R0 = 1,

predicting the separation of states between confinement and epidemic. In Figure 5.5(d),

the threshold predicted by equation 5.13 is marked in red, overlaying a two-dimensional

phase plot of R0 over tree density and infectivity. According to Figure 5.5(d), when

model parameters satisfy R0 > 1, the pathogen may propagate for a time before dying

off or culminate in an epidemic. Below the threshold, the pathogen has little chance

of spreading to neighbouring trees and little chance of causing a large-scale epidemic.

Equation 5.13 provides a computationally efficient means to categorise model behaviour.

The following section assesses how the total tree mortality, or final-sized epidemic, relates

3Insight into the underlying behaviour could be gleaned by looking at equation 5.13. That is, by
accessing the growth of 2πρ0`

2 and the convergence of the function Ein (defined by equation 5.14)
and noting that as ` → ∞, β = β∗/2π`2 → 0. Although an in-depth mathematical analysis was not
undertaken, it is clear that for large values of `, R0 asymptotically approaches a limiting value.
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to threshold R0 > 1 predicted by 5.13.

5.4.1 Tree mortality versus R0

A swift response during the early phases of an outbreak increases the chance of success-

ful control [Cunniffe et al., 2015b]. Nevertheless, knowing whether or not an early-stage

outbreak will snowball into a large-scale epidemic is not always clear—as was the case

for chestnut blight in Europe [Hillman and Suzuki, 2004]. Thus, we desire accurate pre-

dictions of the final epidemic outcome from observations of the first few infections. For a

well-mixed (non-spatial) population as in the standard SIR, we can conveniently employ

the reproduction number to estimate the number of expected cases as a fraction of the

population4.

However, the relationship between R0 and the final epidemic outcome is undoubtedly

more complex when there is spatial structure, as in the NLM. Hence, this section in-

vestigates the relationship between R0 and the total number of host removals, denoted

by χ. Investigating R0 and χ is crucial to establish the existence of the threshold at

R0 = 1. In addition, this analysis is compelled further by noting that some authors fail

to demonstrate the threshold at R0 = 1 and give improper definitions of R0, as explained

by [Li et al., 2011].

Primarily, the main epidemic parameters in the NLM consist of ρ and β∗, therefore vary-

ing ρ and β∗ in Equation x result in different R0 predictions that we can plot against

the observed tree mortality. Consequently, Figure 5.5(a) shows ensemble-averaged tree

mortality plotted as a function of predicted R0 values for three density parameters, indi-

cated by solid lines blue-green. A total of 250 replicate simulations formed the ensemble

average, and simulations evolved until all infected trees became extinct or for 2500 time-

steps elapsed, whichever occurred first. The ensemble-averaged mortality is overlaid by

a scatter plot depicting a small sample of data points; the colour of each sample point

4In the standard SIR model, the number of expected cases as a fraction of the populations can be

shown to follow: R∞ = S0

[
1 − exp

(
R0R∞

)]
. Here, R∞ is the number of cases as a fraction of the

population size, the so-called ‘final-sized epidemic’, see [Chowell et al., 2009] for a more in-depth break
down.

5.4. R0 BEHAVIOUR: ANALYTICS VS NUMERICS 120



CHAPTER 5. INCLUDING DISPERSAL

reflects the infectivity parameter β∗.

Figure 5.5(a) shows the relationship between tree mortality, the predicted R0 from equa-

tion 5.13, and the two epidemic parameters ρ and β. A scatter plot of coloured data

points (depicting a small sample of data) overlays a continuous line representing an en-

semble average. The corresponding colour bars on the scatter plot and ensemble-average

characterise infectivity and density, respectively. The Figure illustrates that tree mortal-

ity remains low when R0 < 1 and β is small, as indicated by coloured scatter plots in

blue. Conversely, the tree mortality increases with infectivity when R0 > 1, shown by the

yellow scatter points. Therefore, equation 5.13 demonstrates a threshold-like behaviour

defined by R0 = 1. Above the threshold R0 = 1, increasing the tree density increases the

epidemic scale because more susceptible hosts are available to infect, as indicated by the

significant rise in tree mortality in the continuous green line.

Despite being above the threshold, the numerical simulations can still fail to produce

an epidemic, illustrated by the small number of data points beyond R0 = 1 that map

to a zero-sized epidemic. For example, at R0 ≈ 2 a small number of points can far

below each ensemble mean. Similarly, the ensemble mean is lowered by pathogen ex-

tinction—demonstrated by slight differences between the collection of points and the

ensemble mean in the interval R0 ∈ [1, 3]. These observations result from the fact that

under the influence of early stochastic forces, the probability of epidemic extinction is

higher [Heffernan et al., 2005, Tildesley and Keeling, 2009], which unfortunately marks

a flaw in the concept of R0 in general [Li et al., 2011].

Figure 5.5(b) presents the same essential information as Figure 5.5(a). Although, the

ensemble mean is plotted against the mortality ratio (i.e. the total number of removed

trees as a fraction of the total population), denoted by χ. Given that each ensemble

mean converges to the same epidemic scale, the quantity χ demonstrates utility when ac-

cessing the epidemic impact between different tree-densities. Consequently, the threshold

R0 = 1 is easily observable in Figure 5.5(b), indicated in shaded grey. The threshold-like

behaviour witnessed in Figures 5.5(a-b) demonstrate that equation 5.13 provides a sim-

5.4. R0 BEHAVIOUR: ANALYTICS VS NUMERICS 121



CHAPTER 5. INCLUDING DISPERSAL

R(1)
0 = 3 R(2)

0 = 1

A1,0

B2,1

C2,2

D2,6

F3,3

E3,2

F3,7

. . .

(d)

A1,0

B2,1

C2,2

D2,6

E2,6
F2,7

R(1)
0 = 5

(c)

β*

To
tal

tre
em

ort
ali

ty

(a)

ρ Mean
0.0050.010
0.015

Sample

Mo
rta

lity
rat

io
χ

Predicted R0

(b)

ρ Mean
0.0050.010
0.015

Figure 5.5: The relationship between the total tree mortality and the predicted R0 value.
(a) For three values of tree density and multiple infectivity values, the ensemble-averaged
tree mortality (as a continuous solid line) is overlaid with a small sample of data points
shown by the scatter plot. The shape and colour of each data point indicate the tree
density and infectivity, respectively. (b) The fraction of removed trees as a fraction of the
population is plotted against mortality the analytical value of R0. Together panels (a)
and (b) demonstrate a threshold-like behaviour at R0 = 1. (c) A graphical representation
of the idealised R0 approximation, as per equation 5.13. (d) A more realistic network
representing the epidemic branching process. In both panels, the arrow of time is left to
right, and subscripts reflect the generation and time-step that trees become infected.
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ple predictive framework for the NLM. That said, more complicated dynamics—such as

exponential lifetimes, elaborate dispersal kernels or host aggregation—could significantly

hinder the analytic solution proposed in section 5.3.2.

Another limitation to the equation 5.13 can be explained by Figure 5.5(c), which shows

a typical NLM simulation used to access the analytic expression of R0. Namely, a single

‘fist-generation’ infected tree at time t = 0 (A1,0) that happens to infect a number of

neighbouring trees (B1,1 to G1,7). According to the R0 approximation, the local den-

sity reductions due to B2,1 −G2,7 are neglected, and A1,0 remains the only active source

of infection. Neglecting the influence of other secondary infected hosts helped to keep

analytical derivation simple. But for highly infectious outbreaks, equation 5.13 is likely

to overestimate R0. Figure 5.5(d) can be used to understand why overestimates of R0

are likely. In Figure 5.5(d), non-trivial density reductions could be expected from the

second and third generation of infected hosts, B2,1, C2,2, D2,6 and E3,2, D3,5, D3,6 respec-

tively—here, the first subscript refers to time and the second subscript refers to the

generation—leading to an environment where the primary infected host A1,0 has less

neighbours to infect. Given these limitations, a and more flexible method of calculating

R0 is investigated in the next section.

5.5 Contact-tracing secondary infections

In this section an alternate method of calculating R0 is presented that incorporates the ef-

fect of secondary infections (up the nth generations), analogous to contact-tracing emerg-

ing epidemics in human populations [Eames and Keeling, 2003]. By collecting individual

tree-to-tree induced secondary infections, the entire history is captured, illustrated graph-

ically in Figure 5.5(d). At t = 0, the first generation primary infected tree, denoted by

A, produces three 2nd generation infections B-D in orange that in turn produce third

generation infections are shown in green. The contact-traced R0 can be defined by:

Definition 5.5.1. at t = 0, simulations begin with one or more infected hosts, and the

entire epidemic history captures which host infects which others. The mean number of
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infections that result for each generation i is computed and denoted by R
(i)
0 .

In Figure 5.6(a), observations from the (ensemble-averaged) contact-traced R0 is shown

for 10 generations and four infectivity parameters; in all plots, density, dispersal and do-

main sizes remain fixed (ρ = 0.01, ` = 50,L = 500). For highly infectious outbreaks, the

host population quickly decreases, and R
(i)
0 begins high and gradually decreases with each

generation. In contrast, for infectivities just above the threshold R
(i)
0 remains approxi-

mately stable with each generation because the population of susceptible hosts remains

high. For all boxes in Figure 5.6(a), the interquartile range decreases with the generation,

suggesting that early stochastic forces increase the spread of R
(i)
0 values. The number

of secondary-infected trees will therefore vary over time and mirror the host population.

Had the re-growth of susceptible trees been considered, R
(i)
0 can be speculated to behave

very differently for later generations.

Figure 5.6(b) compares the ensemble-averaged R
(i)
0 values, shown in Figure 5.6(a), to pre-

dictions from the analytic expression for R0. Analytic R0 values are plotted as horizontal

dashed lines, and each R
(i)
0 ensemble average (shown by the solid lines) is surrounded by

shaded bounds reflecting a 95% confidence interval. For the lowest infectiviy parameter

around the threshold R
(i)
0 = 1, shown in blue, the contact-traced value of R0 compares

well with equation 5.13. However, increasing the infectivity to β∗ = 2 (in orange) equa-

tion 5.13 agrees well for early generations, but deviates for later generations, revealed by

comparing the dashed horizontal and solid orange lines. Deviations only grow larger as

β∗ increases. That is to say, looking at the green and red lines in Figure 5.6(b), one can

confirm that equation 5.13 does indeed overestimate pathogen transmissibility. Although

significant disparities exist, Figure 5.6(b) implies that both analytic and contact-traced

reproductive ratios agree on the threshold R0 = 1.

Simplistic interactions between trees permit an alternative network representation of

disease spread. In Figures 5.6(c-e), a directed network of disease spread is shown for three

typical simulations with infectivity parameters β∗ ∈ {1, 2, 3}. Nodes depict individual

trees, while colour and size represent the generation infected and the number of induced
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Figure 5.6: Contact-tracing the mean number of secondary infections for the ith genera-
tion of infected trees, R

(i)
0 . For all simulations, tree densities are fixed along with dispersal

kernels, (ρ = 0.01) and ` = 50 respectively, inside a domain of size L × L = 500×500. (a)
A box and whisker plot showing the mean number of secondary infections plotted over 10
generations over an ensemble of size N = 500. Four different infectivity values are shown,
from blue to red. (b) The ensemble-mean in (a) is compared against predictions from the
analytic expression of R0, plotted as horizontal dashed lines. For early generations, equa-
tion 5.13 agrees well with the contact-traced value of R0 but overestimates the spread for
higher infectivities. (c-e) A network representation of typical simulations for parameters
β∗ ∈ {1, 2, 3}. The nodes’ colour and size reflect the generation and number of secondary
infections, respectively. As β∗ is increased, the network quickly explodes—thus reflecting
the complexity of controlling highly infectious outbreaks.
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secondary infections. Between two nodes, one edge connects infected generations n and

generation n + 1 (arrows showing the direction are omitted for visual clarity). When

epidemic parameters are around the threshold, as in Figure 5.6(c), the network appears

sparse and chaotic; whereas Figures 5.6(d-e) show that if infectivity is increased, the

network proliferates rapidly. Indeed for β∗ = 2 and β∗ = 2 the network became large if

plotted for all generations—consequently R
(5)
0 was truncated to permit visualisation.

From Figures 5.6(d-e), one can discern assumptions implicit within the NLM and visualise

how targeted epidemic control might be optimised. In the NLM, tree-to-tree interactions

are particle-like, meaning that infections spread unidirectionally between two trees at any

time. In real life, interactions are more complex. For example, consider two infected trees

(A,B) in the vicinity of one healthy susceptible neighbour C. Here, infection pressure

on C is likely a continuous function of A and B. We can collectively represent these

more complex interactions by multiple edges between A,B and C in a network diagram.

However, the probability of C becoming infected by A, B (or A∩B) occurs with statistical

independence. Therefore, we employ the standard method of combining statistically

independent events from the inclusion-exclusion formula—given in appendix B.3.

Despite the necessity of modelling the simultaneous infection pressure from multiple in-

fected trees, it complicates the definition of R0. Primarily, infections can originate from

multiple sources, and we cannot tell from which tree(s) the infection initially spread. See

appendix B.3 for a more in-depth discussion on combining probabilities. Nonetheless,

another assumption relates to self-loops in the network. In the framework proposed here,

trees transition into the R compartment and self-loops are negated. However, in reality,

re-infection is possible (e.g. the yearly cycle of ash dieback [Gross et al., 2014a]) that

could be supposed to cause a host’s infectivity to increase with each re-infection.

The networks shown in Figures 5.6(d-e) present a simple, yet insightful, representation

to gauge what connections epidemic control would need to disrupt. Well-known results

suggest that the scale of control should reflect the spatio-temporal scale of disease spread

[Gilligan et al., 2007a]. In Figure 5.6(d), even a minimal control effort might disrupt the
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network well below the threshold of spread, whereas Figures (d) and (e) would incur

an increased effort to stop the spread. In the network representation, optimised control

would involve targeting high priority links between nodes; this reflects various methods

that aim to optimise control by identifying high-risk hosts.

5.5.1 Contact-traced R0 and tree mortality

In Figure 5.7, the contact-traced value of R0 is compared against the tree mortality,

similar to the previous analysis in section 5.4.1. Figure 5.7 shows an ensemble-averaged

reproductive ratio (up to R
(i=5)
0 ) plotted against the mean tree mortality, indicated by the

dashed curves. The ensemble mean is then overlaid with a coloured scatter plot depicting

a small sample of the data. Each simulation in Figure 5.7 was repeated 103 times for

fixed density ρ = 0.01, dispersal ` = 50 and L = 500 over 2500 time-steps. As before, a

threshold can be witnessed at R
(i)
0 = 1, above which tree mortality rises steeply. For R

(1)
0 ,

the threshold phenomena witnessed in Figure 5.7 (shown in dashed blue) appears similar

to the previous analytic R0 examination. However, each successive generation appears to

define a sharper threshold, especially when β∗ is high, suggested by the steeper coloured

dashed curves.

The steeper thresholds witnessed in Figure 5.7 can be understood by considering initial

stochasticity. If an outbreak (with high β∗) does not become extinct at early times, the

epidemic is likely to continue to spread until no susceptible trees are left to infect. Hence,

epidemic impact is high and the threshold is sharp for R
(i)
0 , where i > 1. The reader is

referred back to the network diagrams shown in Figure 5.6(d-e) to gain intuition behind

this idea; if the pathogen survives beyond the initial outbreak to establish new centres of

infection, the network quickly explodes, and pathogen extinction is unlikely.

The ensemble shown in Figure 5.7 was re-run with 10 centrally-located initial infections

at t = 0 to test the initial stochasticity. Intuitively, increasing the number of infected

trees reduced early extinction events and subsequently raised the mean tree mortality.

In addition, raising the number of initially infected trees reduced stochasticity in the
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Figure 5.7: Comparing the contact-traced reproduction ratio and the total tree mortality.
In each simulation, the tree density and dispersal kernel was fixed to ρ = 0.01 and ` = 50,
respectively. For each value of infectivity β∗, the ensemble-averaged value of R

(i)
0 is plotted

against the mean tree mortality, shown by the dashed curves, for five generations, i.e.
R

(5)
0 . A coloured scatter plot overlays the ensemble-averaged line plots showing a sample

of the data—and also reflecting the value of β∗. As before, a threshold arises around
R

(i)
0 = 1, although this time the threshold appears steeper.

ensemble and presented a more abrupt threshold in comparison to Figure 5.7—more

information can be found in Appendix B.4.
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5.6 Discussion and future work

The main aim of this Chapter was to construct a more realistic, dispersal-based model of

tree disease. Hence, a non-local dispersal model (NLM) of tree disease was constructed

with SIR compartments and a Gaussian kernel. Notwithstanding its generic construction,

the NLM provides a foundation for the remaining chapters in this thesis. After describing

the NLM, it was compared to the standard SIR framework for a number of dispersal

length scales and domain sizes. Despite some differences, the NLM compared more

favourable with the SIR model when the dispersal scale parameter was comparable to

the domain size. Comparisons, therefore, provide compelling indications that spatially-

explicit contact-mixing in the tree population may arise with sufficient dispersal. From

this observation, we may question the utility of spatial models for systems where the

dispersal length scale is comparable to the size of domain, e.g. when modelling the

spread of disease in small fields or plantations. However, comparisons to the SIR model

were simplified and limited to one parameter (i.e. the ratio β/γ). As such, the analysis

constitutes a preliminary result, and a more sophisticated comparison method is required

to glean further insight. For example, a better method might involve using inference

(MCMC methods) to fit the NLM against the standard SIR model.

Two methods of calculating a reproduction ratio, one analytic (R0) and one numerically

contact-traced (R
(i)
0 ), were outlined to categorize the NLM. The analytic threshold pre-

dicted by equation 5.13 agreed well with the ‘actual’ contact-traced reproduction ratio

computed through NLM simulations, caveat-ed by the observation that it tends to over-

estimate R0 when epidemic severity is high. The overestimation of R0 can be compared

to well-known results by [Tildesley and Keeling, 2009, Keeling and Eames, 2005], who

showed that the first-generation basic reproduction ratio for farms infected with foot-and-

mouth overestimates the growth rate of infection. In addition, [Tildesley and Keeling, 2009]

found that the second generation of infected farms gave a better predictor of the final-

sized epidemic (conditional on the epidemic occurring), thus presenting a clear link to

our observation that the tree mortality threshold defined by R
(i)
0 = 1 was sharper for
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later generations. Crucially, each method of calculating the reproduction ratio defined a

threshold around unity, beyond which epidemic impact becomes non-trivial.

An attractive feature of the contact-tracing method, as per definition 5.5.1, pertains to its

flexibility in the face of more complex spatially explicit models. Analytical solutions of R0

may become hard to determine for more elaborate life-cycles, dynamics and aggregated

host distributions. Although contact-tracing provides an easy-to-implement method of

calculating R
(i)
0 , it should remain, first and foremost, an abstract modelling tool. For

example, consider the immense difficulty of experimentally contact-tracing secondary

infections when an epidemic spreads through a forest/landscape. Contact-tracing the

reproduction ratio can therefore be presumed as unobservable in nature5 However, given

sufficient data, one might fit a value of β and reverse-engineer a value of R
(i)
0 from the

model; which leads us to a discussion around the infectivity parameter β.

A probability of state-change represents infectivity in the NLM, which followed natu-

rally from the percolation model outlined in section 3.3 [Orozco-Fuentes et al., 2019].

However, growth rates are usually employed to describe infectivity—going back to the

original SIR framework [Kermack and McKendrick, 1927] and the logistic growth model

of [Van der Plank, 1963]. The approach adopted in this Chapter is, therefore, a-typical of

contemporary dispersal models based on rates, e.g. [Fabre et al., 2021, Bussell et al., 2019,

White et al., 2017, Cunniffe et al., 2016]. Given that growth rates parameterize most dis-

eases in the literature, the NLM might arguably require a modification towards a rate-

based implementation; however, it must be remarked that sometimes this may not be

needed, given that measuring growth rates—particularly for time-varying infectivities—is

extremely difficult [Cunniffe et al., 2015a]. Although unconfirmed, we may suppose an

equivalence between the infectivity β and an emergent growth rate. This assertion is sup-

ported by the similarities exhibited between the NLM and the rate-based standard SIR

model in Figure 5.2 (in addition to appendix B.2.1). Nevertheless, presenting β as a prob-

ability describes an intuitive low-level (microscopic) perspective of disease spread which

5We may speculate about measuring a time-varying reproduction number based on the observed
numbers of infected hosts, a well-known concept for characterizing epidemic transmission in human
populations [Thompson et al., 2019].
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would, in theory, be observable/measurable in reality, in contrast to the R
(i)
0 . Hence, we

may consider infectivity β as a fitting parameter.
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Chapter 6

Constructing R0-maps over Great

Britain

In the last Chapter, we considered a generic SIR-based non-local dispersal model (NLM)

that spread via a Gaussian dispersal. The NLM resolved the major problem witnessed

in section 4.9, namely, the failure of the percolation-based model to spread on a realistic

host density. However, Chapter 5 and the NLM lacked biological specificity. There-

fore, the present Chapter presents a simplified SEIR model of ash dieback capturing

only the essential dynamics of wind-borne dispersal. Ash dieback (ADB), caused by the

fungus Hymenoscyphus fraxineus, poses a threat to the survival of European ash (F.

excelsior)—the reader is referred to section 2.3 for a more in-depth discussion of ADB

symptoms, life-cycle and management.

In section 6.1, a seasonal-based SEIR-like model is developed to simulate the natural

wind-dispersal mechanism of ADB at local-spatial scales. Next, section 6.2 examines the

general pattern of epidemic spread in the SEIR model before section 6.3 outlines a formal

definition of an effective reproduction number to measure pathogen invasiveness. The

effective reproduction number is spatially explicit and based on the same contact-traced
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method presented in Chapter 5. Critically, the wind-dispersal model of ADB rests on R0

measured over an appropriate spatio-temporal scale.

Lastly, in section 6.4 a framework is developed to spatially-scale R0 values over Great

Britain (GB) using a map of predicted ash abundance [Hill et al., 2017]. In effect, this

means embedding R0 values from a small-scale epidemic model inside each pixel of an

extensive host data set spanning GB, thus linking two models at different spatial scales.1

Fundamentally, projecting R0 values onto a map of ash densities permits the visualisation

of epidemic impact over GB. The framework is generic and adaptable to any dispersal-

based pathosystem, provided a sufficient host density data-set.

The local-scale epidemic model demonstrates that long-distance dispersal (LDD) and

long-term pathogen survival can occur even below the threshold R0 = 1.0. In addition,

analysis at the landscape-level covering GB reveals that susceptible clusters of ash grow

most rapidly over a narrow range of infectivity parameters, presenting behaviour akin

to a global epidemic phase transition. Finally, the method developed in this Chapter

demonstrates how the epidemic scale can vary significantly, albeit with minor epidemic

parameter variations. Together, these observations support the call for a risk-based ap-

proach to modelling the spread of epidemics in tree populations.

6.1 A spatially-explicit seasonal SEIR model

H. fraxineus has two modes of reproduction, sexual and asexual (teleomorphic and

anamorphic, respectively). Some research suggests that the asexual element has con-

tributed to the European epidemic [Fones et al., 2016], although the sexual reproduc-

tive mode of ADB is widely acknowledged to be the dominant driver of disease-spread

[Mansfield et al., 2018, Haňáčková et al., 2017, Gross et al., 2012, Timmermann et al., 2011].

Subsequently, only the sexual reproduction of H. fraxineus is reflected in the SEIR model.

The entire sexual reproductive cycle occurs on ash leaves, yet the fungus will spread

1In general, combining two models at different spatial scales has clear analogies to a sub-grid model
[Herring, 1979], or more recently, a metapopulation-like model [Grenfell and Harwood, 1997].
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through ash hosts once infected. As such, the precise sexual reproductive mode presents

a peculiar modelling scenario where both leaves and trees can be argued to host the

pathogen H. fraxineus. Typically, leaf dispersal emanating from a large deciduous tree

species (such as H. fraxineus) remains close to the tree trunk and rarely exceeds 30m

[Nickmans et al., 2019]. Hence, leaf litter is assumed to fall close to infected trees to

treat both ash hosts and infected litterfall at the same lattice position in the model. A

more intricate model of ADB could aim to relax this assumption and describe autumn

leaf-shed with a suitable leaf-fall dispersal kernel2.

6.1.1 Infection dynamics

The infection dynamic comprises four states: susceptible S, latently infected E, infectious

I and removed R that transition through S → E → I → R without the possibility of

recovery. Figure 6.1 shows the infection process during the nth year: a previously infected

tree (Im, where m ≤ n) infects a susceptible tree (S) that becomes latently infected (En).

A newly exposed/latently infected ash tree then transitions into an infectious tree the

following year (In+1). Notably, the same flat, randomly-distributed population (used

previously in Chapters 3-5) describes the configuration of ash trees.

Here, each lattice point in the L × L domain is chosen to represent a 5m × 5m patch

of land that approximates the canopy cover of an average ash tree—although young

saplings usually assume less area. A domain resolution of 5m × 5m yields an upper

bound of 400 ash trees per hectare of canopy cover, indicative of densely populated ash

stands [Dobrowolska et al., 2011a, Thomas, 2016].

2Patterns of leaf fall are vital for ecosystem nutrient recycling [Staelens et al., 2003]. Leaf-fall dispersal
kernels have been collected (and modelled) for oak, beech, hornbeam and birch [Nickmans et al., 2019],
although despite a detailed search, no such dispersal kernel for ash could be found.
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Summer Autumn- Winter
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Sporulation
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Leaf shedLeaf flush
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(a)

(b)

New infections In+1

New infections from Im

 Infection process nth yr

ADB Perennial cycle

New infections via

 spore dispersal

ADB disperses 
through litter-fall

Overwinter

Figure 6.1: The seasonal SEIR model of ADB. (a) In year n of an outbreak, a previously
infected tree Im (m ≤ n) may infect susceptible ash (in S), causing a transition (S → En)
during summer, as depicted by the bottom dashed grey arrow. A tree that becomes la-
tently infected in the nth year (En) becomes infectious in the following year (In+1). At
that point, In+1 can infect more susceptibles in the following summer, represented by the
upper dashed grey arrow. All infected ash trees die without the possibility of recovery.
(b) The yearly cycle of the pathosystem ADB. Leaf flush coincides with the sporulation
season. Sporulating fruiting bodies release ascospores between June-September. Fungal
fruiting bodies begin to grow on ash litter fall from late summer-early to winter. Over-
winter, the fungus continues to develop on decaying leaves until leaf-flush and sporulation
occurs in the following summer.
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Transitions: S → En

Individual tree-to-tree interactions are modelled as a system of particles (introduced pre-

viously in Chapter 5). Two component functions then control the infection probability,

a time-varying infectivity βφ(t) ∈ [0, 1] and dispersal function D(r; `) ∈ [0, 1]. In partic-

ular, we will consider a thin-tailed Gaussian and a normalisable fat-tailed inverse power

law to model dispersal. In year n, an infected tree located at x′ can infect a susceptible

tree located at x, represented mathematically as Sx → Ex,n; Ix′,m. The indices n and m

are introduced for convenience to describe the year ash trees first become exposed, where

m ≤ n denotes a previously infected tree. Thus, infected trees In and Im occupy identical

infectious states that do not affect the infection dynamics. If an infected tree remains

infectious during the step t→ t+ δt, the probability of transition follows:

Pr(Sx → Ex,n; Ix′,n) = βφ(t)D(r; `) (6.1)

where r is the distance between x and x′, and φ(t) is a time-dependant function reflecting

the seasonal life-cycle of ADB, henceforth referred to as a sporulation function. Following

the method outlined in Chapter 5, transition probabilities are calculated at each time-

step, taken to be days, while trees are infectious.

The sporulation function φ dictates when infectious trees in In produce new secondary

infections. For ADB, sexual reproduction repeats yearly from June to September dur-

ing its ‘sporulation season’. As such, φ is non-zero during the sporulation period. Two

sporulation functions are considered, φ1 and φ2, based on the step function and nor-

mal distribution, respectively. Sporulation is developed later in section 6.2.1, alongside

the precise functional form of φ1 and φ2. Altogether there are four infection models,

summarised in table 6.1.

Once in the E compartment, trees are infected but not infectious, i.e. latently in-

fected. For example, ash infected with H. fraxineus take approximately two weeks to

display symptoms [Cleary et al., 2013, Mansfield et al., 2018], and start to shed infectious
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ϕ2(t)
ϕ1(t)

Model name Pr(Sx → Ex,n; Ix′,m) ∈ [0, 1] β∗ factor

1: φ1-ga =

 β exp
[
− r2

`2ga

]
t ∈ [June, September]

0 otherwise

1

T

1

π`2
ga

2: φ1-pl =

 β
[
1 + r

`pl

]−a
t ∈ [June, September]

0 otherwise

1

T

(b− 1)(b− 2)

2π`2
pl

3: φ2-ga = β exp
[
− (t− TSP )2

2σ2
SP

]
exp

[
− r2

`2
ga

] 1√
2πσSP

1

π`2
ga

4: φ2-pl = β exp
[
− (t− TSP )2

2σ2
SP

][
1 +

r

`pl

]−a 1√
2πσSP

(b− 1)(b− 2)

2π`2
pl

Table 6.1: Four infection models are considered, composed of either: Gaussian (ga)
or inverse power law (pl) dispersal, and step function (φ1) or peaked (φ2) sporulation.
All component functions yield values in the interval [0, 1] and are normalisable. The
corresponding model parameters are shown below in Table 6.2. The right-hand column
shows the normalisation factor used to construct β∗, i.e. used to fix the infectivity and
epidemic-impact between models.
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Model parameter Description Value(s) taken

ρ Tree density 0.00− 0.10

β Infectivity 0− 10−3

`ga Gaussian scale parameter =
√

2σga 196m

`pl inverse power law scale parameter 203m

a Inverse power law exponent 3.3

t Time-step 1 day

T Days in Sporulation peak June - September 122

TSP Peak sporulation φ2 end of July

TLS Peak ash leaf-shedding mid-November

α Lattice constant 5m

L Lattice dimension (i.e. an L× L patch) 200 - 2000

A Domain area (defined by αL× αL) 1km2 - 20km2

λ Mean infectious life-time 5 years

R0 Mean reproduction number 0− 20

Table 6.2: Parameters used in the SEIR model of ash dieback. The dispersal parameters
are taken from [Grosdidier et al., 2018] and the typical tree densities of ash are informed
from by [Hill et al., 2017].

leaves in following autumn after infection [Gross et al., 2014a]. The sub-compartments

(E1, E2, .., En) represent the same biological state of latently infected, the index n is

merely included for convenience to highlight the fact that in this model, the mean la-

tent period is one year and new secondary infections are produced during the (n + 1)th

sporulation peak—as elaborated in section 6.1.1 below.

Transitions: En → In+1

As defined here, latently infected trees (in En) transition into the infectious compartment

(In+1) during their first seasonal leaf shedding following infection, between autumn and

winter. Then, infected ash trees disperse infectious leaf litter each year following infection
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until its eventual demise. This dynamic assumes that all ash are susceptible and H.

fraxineus spreads to the xylem after infecting ash leaves. In reality, a variety of genetic

and environmental factors determine the ability of ADB to invade an ash3.

A Gaussian distribution represents the onset of ash leaf-shed, and therefore the transition

En → In+1. Leaf-shed repeats yearly, centred in mid-November (denoted by σLS) with a

two-week standard deviation (σLS) and repeats yearly. Centring the normal distribution

in mid-November, with a two-week standard deviation, ensures that the earliest possible

onset of leaf-shed (described by the left-hand tail) begins in September. In the field,

the timing of ash shedding their leaves is more complicated and depends on tree age.

Observations by [Hietala et al., 2013] suggest that younger ash begin to defoliate in late

August, while large dominant ash starts to shed in early October.

Despite a thorough search, research on ash litterfall distributions appears absent from the

literature, so choosing a normal distribution centred in mid-November with a two-week

standard deviation is ultimately ill-informed. Nevertheless, selecting a normal distribu-

tion is supported by observations of leaf litter-fall in deciduous forest [Zhang et al., 2014,

Dixon, 1976], which typically follow peaked distributions that repeat yearly4. That said,

within the SEIR model, a time delay exists between the transition En → In+1 in au-

tumn/winter and the sporulation function φ(t) becoming sufficiently large in summer; so

we can afford some degree of flexibility in the exact time scale. From a mathematical

standpoint, provided that latently infected ash transitions into the infected compartment

before the sporulation season, the epidemic spread in this model will remain the same.

Transitions: In → R

The last transition to consider is from infected to removed In → R. Given a 95% mortality

rate, ADB can be regarded as lethal [Hill et al., 2019]. Therefore, we assume an eventual

transition to the R compartment once an ash tree becomes infected. As mentioned above,

3The pathogen H. fraxineus can infect ash leaves regardless of tolerance. However, only the minority
of tolerant individuals can prevent inoculum from spreading to the xylem.

4For example, research conducted on wetland forests in South Carolina demonstrates that the tem-
poral pattern of litter-fall peaks yearly between August and November, albeit with some variation
[Shure and Gottschalk, 1985].
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the picture is more complex in reality. For example, stress-free trees in urban settings

can survive for long periods if pruned [Marciulyniene et al., 2017], and a low minority

of healthy tolerant trees can fight off the infection. Additionally, other outlying edge-

cases can contradict this assumption, including laboratory experiments that have shown

leaf-shed can result before the infection has the chance to spread through to the petiole

following a ‘massive ascospore inoculation’ [Gross et al., 2014b].

Ash dieback affects trees of all ages, with younger ash being more susceptible while larger,

mature ash appear more tolerant. As a first approximation, infected ash trees were cho-

sen to have exponentially distributed lifetimes with a mean of five years, see table 6.2.

Experimental observations of ash mortality after years of infection support this decision.

In particular, reports of 5% mortality after two years of infection [Keßler et al., 2012],

75% mortality within five years [Langer et al., 2015] and no observations of infected ash

surviving beyond 15 years [Wylder et al., 2018] provide some guidance towards an ap-

proximate time-scale. The precise probability distribution describing In → R is, to my

knowledge, non-existent in the current literature.

6.1.2 Dispersal parameterisation

Dispersal was informed by data collected in France by [Grosdidier et al., 2018]. The study

conducted by [Grosdidier et al., 2018] tracked ADB ascospores about known sources of

infection—reviewed in Chapter 2. The authors considered a Gaussian and inverse power

law kernel of the form:

Pr(a, r) =
1

π`2
ga

exp
[
− r2

`2
ga

]
(6.2)

and

Pr(a, r) =
(b− 1)(b− 2)

2π`2
pl

[
1 +

r

`pl

]−b
(6.3)

where parameters `ga and (`pl, b) are given in table 6.2. Notably, the researchers measured

dispersal parameters at local and regional spatial scales, over two orders of magnitude

between [0 ∼ 1km] and [10 ∼ 100km] respectively. Since the SEIR model is small-
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scale, dispersal in the SEIR model only incorporates the local-scale values provided by

[Grosdidier et al., 2018].

Dispersal data collected by [Grosdidier et al., 2018] relate to a French landscape and

environmental conditions. Thus, we implicitly assume that ADB disperses compara-

bly in France and GB when using these parameter values. However, we might expect

differences in ADB dispersal over large spatial scales when long-distance dispersal and

differences in French wind patterns become observable5. Notwithstanding, it is entirely

reasonable to assume ADB dispersal across smaller scales ≤ 1km is indistinguishable

in both landscapes, and we can comfortably use the local-scale parameters provided by

[Grosdidier et al., 2018].

6.1.3 Normalising β between models

Undesirably, the scale of β varies between model variants, due to the difference in area

under the curves of φ1, φ2, D1 and D2. Similarly, this behaviour was witnessed in Chapter

5 when the NLM was simulated with different dispersal length scales. To constrain each

model on the same β-axis, the appropriate normalisation constant (shown in Table 6.1)

is once again factored out of the infectivity probability β e.g. for φ1-ga, this takes the

form:

β =
β∗

Tπ`2
ga

∈ [0, 1] (6.4)

where β∗ is an auxiliary parameter that does not depend on the form of sporulation or

dispersal function (provided that both functions are normalisable). Thus, as before, β∗

isolates infection pressure to a single parameter. On account of the sporulation function

and longer range kernel, β∗ in equation 6.4 assumes a larger value when compared to β∗

in Chapter 5.

5In addition, the long-distance dispersal of ADB likely contains artefacts of human-mediated transport
over these large regional scales, which goes beyond this Chapter’s scope. However, the reader can see
[Harwood et al., 2009] for an example of how to include LDD (i.e. by human-mediated trade) in a
large-scale botanical disease model.
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6.2 Seasonal SEIR model behaviour

The essential SEIR model behaviour is shown in Figure 6.2, simulated with the median

ash density in Great Britain—according to [Hill et al., 2017]. For each year after the

outbreak, a rise in the number of latently infected ash in E can be seen during summertime

sporulation, June-September, followed by a rise in the number of infectious ash in the

autumn-winter. All model variants display the same pattern of seasonal behaviour.

The number of ash in the SEIR compartments is shown in Figure 6.2(a-b) for two infectiv-

ity parameters in a 1km× 1km domain. Figures 6.2(a-b) depict two scenarios above and

below the epidemic threshold for model φ1-ga; the compartments are plotted over 5 years

with infectivity (β∗) parameters shown. In Figure 6.2(a), the number of ash in S decline,

shown by the green line, and during seasonal sporulation, large spikes in the number of

latently infected ash can be seen in orange. Then, latently infected ash transition into I

during autumn and winter, as shown by the seasonal rise of I in green. For infectivity pa-

rameters below the epidemic threshold, Figure 6.2(b), S remains approximately constant

as I slowly declines. Interestingly, Figure 6.2(b) demonstrates persistence-like behaviour

in model of ADB; whereby, even if the epidemic parameters are below the threshold, the

fungus may survive for long periods. In general, persistence in plant-based pathogens is

one aspect that complicates epidemic control—also discussed in Chapters 3-5.

The spatial progression of ADB in the SEIR model is shown in Figures 6.2(c-f) over a

full year. The simulation in Figure 6.2(c) begins with an initial condition of 20 infected

ash centrally distributed in the host landscape during March (not shown). At this point

in the year, fungal fruiting bodies on infected leaf litter will be preparing to release

ascospores. During sporulation, secondary infections are produced, and latently infected

ash spread throughout the domain, depicted by the orange dots in Figure 6.2(c-d). At

any time step, the chance of removal to the R compartment is non-zero, demonstrated by

the small number of black dots in Figures 6.2(c-d). After the sporulation season ends in

September (not shown), latently infected ash begin to transition into the I compartment;

eventually, all latently infect ash become infectious during the following season, reflected
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by the increased number of red dots in Figure 6.2(e). The cycle will continue when

the next cohort of secondary infections are produced in the following summer when the

sporulation function next becomes non-zero.

6.2.1 Sporulation: time-varying infectivity

Time varying infectivity rates are an important concept in epidemiology, this is true of

epidemics in both human/animal [Svensson, 2007, Liu and Stechlinski, 2012] and botani-

cal populations [Suffert and Thompson, 2018, Leclerc et al., 2014, Cunniffe et al., 2012].

In particular, ADB is known to have a seasonal life-cycle, and time-varying infectivity

[Grosdidier et al., 2018, Hietala et al., 2013]. The peak of ADB infectivity occurs during

summertime sporulation when fruiting bodies on shed litterfall release ascospores.

Two contrasting sporulation functions, φ1(t) and φ2(t), were used to model the time-

dependent ADB ascospore production and demonstrate robustness in the approach. The

choice of sporulation functions were inspired by the modelling work of [Cunniffe et al., 2012]

and [Segarra et al., 2001] (reviewed in section 2.2). Sporulation functions are described

by a step function and normal distribution located at the midpoint between June and

September:

φ1(t) =


1 t ∈ [June, September]

0 Otherwise

(6.5)

and

φ2(t) = exp
[
− (t− TSP )2

2σ2
SP

]
(6.6)

where TSP is taken to be the mid-point of June-September (i.e. late July/early August)

and σ2
SP is a standard deviation of two weeks. As discussed above, the choice of sporula-

tion peak TSP and standard deviation σSP together inform the earliest transitions S → E

for φ2. Due to the seasonality and perennial nature of ADB, both φ1(t) and φ2(t) repeat

yearly, becoming non-zero during the months of June and September6. For φ2, the chance

6Variations in ADB sporulation have been noted between European countries [Gross et al., 2014b],

6.2. SEASONAL SEIR MODEL BEHAVIOUR 144



CHAPTER 6. CONSTRUCTING R0-MAPS OVER GREAT BRITAIN

.

Z

La
ten

tly
inf

ect
ed

E

-gaϕ2
-gaϕ1

T

AprFeb Jun Aug Oct Dec
Month

Figure 6.3: One year simulations contrasting the sporulation models φ1(t)-ga and φ2(t)-
ga. For both sporulation models, the number of expected latently infected trees is plotted
against time. Each plot depicts an ensemble of 10 replicate simulations and error bars out-
line the standard error. An auxiliary infectivity, of value β∗ = 2000, effectively matches
the epidemic impact between models—indicative of the area under each curve. However,
each sporulation function admits a different shaped curve.

of new secondary infections outside of June-September is trivially small.

Figure 6.3 contrasts sporulation models by computing the number of ash transitioning

into the E compartment for one season over an ensemble of size 10. More specifically, by

simulating the spread of disease and counting the number of infections that result over

one year and plotting against time. Simulations started with 100 infected ash distributed

randomly throughout a 5km× 5km domain at the mean GB ash density in January

(i.e. time t = 0 ). Both models show a rise in the number of infected ash during

the sporulation season. The infectivity rate for function φ2 can be seen to vary, in

contrast φ1 is uniform—both dispersal models φ1-pl and φ2-pl demonstrated the exact

behaviour. Although infectivity rates differed, the normalised infectivity β∗ ensured the

same approximate area under each curve and, therefore, epidemic impact.

Both φ1(t) and φ2(t) aim to mirror the seasonal time-dependence of H. fraxineus sex-

ual reproduction. In the seasonal SEIR model, a time-varying infectivity is achieved by

along with the potential for early-onset sporulation in the face of favourable environmental conditions.
Although, the most generally agreed upon sporulation period is thought to be from June to September.
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multiplying the infectivity parameter with a sporulation function βφ(t). In line with

the parsimonious approach undertaken thus far, φ1(t) and φ2(t) are generic and aim to

capture the essential dynamics of ADB spread. However, a more complex model could

aim to fit φ(t) to spore-trapping data, which could resemble a Gaussian-k function (e.g.

see Figure 2. in [Grosdidier et al., 2018]). Although different sporulation models lead to

the same effective behaviour (as discussed more below in section 6.2.2), non-uniform in-

fectivity rates for ADB have a more robust basis in the literature [Grosdidier et al., 2018,

Cunniffe et al., 2012, Hietala et al., 2013, Segarra et al., 2001]. So, the function φ2 can

be considered more representative due to the non-uniformity and infectivity peak.

6.2.2 Tree mortality

Ash mortality due to ADB has been well-researched in different European countries,

frequently over long-running 10-20 year experiments. In this section, tree mortality is

studied over long time scales to give insight into the scale of the epidemic, pathogen

invasiveness and domain sensitivity. However, host demography was neglected from the

model, which is desirable for modelling the spread of pathogens targeting long-lived hosts

[Swinton and Gilligan, 1996b]. Therefore, the long-running simulations presented in this

section approximate the spread of ADB over considerable time scales to first-order.

Figures 6.4(a-b) display the proportion of ash in S, I and R over 30 years for the model

φ1-ga with infectivity parameters β∗ = 1000 and β∗ = 1500, respectively. The simula-

tions take place on a 1km × 1km domain. Simulations reliably produced epidemics and

spread through the entire domain for these parameter values. Thus both β values can

be considered above the threshold for an epidemic. Initially, all simulations begin with a

small number of infected ash at the domain centre. As expected, the higher infectivity

in Figure 6.4(b) produces an outbreak that spreads through the domain much quicker.

Although, all simulations above the epidemic threshold will eventually reach 100% tree

mortality on average.

The seasonal SEIR model produced a characteristic sigmoidal s-shaped mortality curve for
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Figure 6.4: Epidemic-scale in the SEIR model, as measured by the proportion of ash in
S, I and R (a-b) The proportion of ash in S, I and R is shown over 30 years of ADB
exposure for φ1-ga. Two different values of infectivity, β∗ = 1000 and β∗ = 1500, increase
the proportion of trees in I and R. (c-d) The proportion of ash removed in all models
after years of exposure with infectivity β∗ = 1000. Differences between dispersal models
are demonstrated by disparate epidemic-scales—indicated by the height between blue
and orange curves.
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high mortality proportions (asymptotically approaching 100%), shown in Figures 6.4(b),

this contrasts with the logistic ADB mortality curves presented by [Coker et al., 2019]

that, on average, saturate to ∼ 60%. Other authors have witnessed similar s-shaped

mortality curves, e.g. [Lõhmus and Runnel, 2014]. Here, not including host demogra-

phy precludes host-pathogen coexistence and prevents the SEIR model from saturating

below 100% mortality—as explained in more depth by [Cunniffe et al., 2012] in their

manuscript. Therefore, failing to reach a steady-state for long running simulations rep-

resents a limitation in the seasonal SEIR model of ADB.

Figures 6.4(c-d) show the mortality percentage on two different domain sizes for each

model with a single infectivity parameter β∗ = 2000, well beyond the epidemic threshold.

For all models, the larger domain size effectively reduced the proportion of removed ash

over the 30 year period because more trees populate the domain, shown in Figure 6.4(c).

Figure 6.4(c) confirms that on a smaller 1km×1km domain, the more localised Gaussian

dispersal models give rise to a more significant epidemic impact. This behaviour can

be understood by noting that for inverse power law spread, secondary infections are on

average likely to be under-counted by virtue the of fat-tailed dispersal kernel extending

beyond the domain boundary. Increasing the domain size to 5km × 5km brings both

dispersal models into a closer agreement on the epidemic scale. Nevertheless, directly

comparing the epidemic scale between models is difficult considering the relationship

between domain size and dispersal.

Domain size is known to play an integral role in shaping the evolution in spatially ex-

plicit population growth models [Tang and Lin, 2011]. A related topic, ‘plant-pathogen

invasiveness and field-size’, was investigated by [Mikaberidze et al., 2016] in the context

of crop disease. In particular, [Mikaberidze et al., 2016] demonstrated that R0 saturates

to a maximum for a suitably large domain size, beyond which increasing the domain size

had no effect on R0. Therefore, choosing a suitable domain size for each dispersal mode

remains critical to capture the epidemic scale accurately. In the next section, a definition

of R0 is outlined for the seasonal SEIR model, and we revisit the topic domain size.
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6.3 Defining an R0

Before properly investigating the SEIR model, the pathogens’ ability to invade must be

defined. Tree mortality, shown in Figure 6.4, gives insight into the final-size epidemic

and the time-scale of spread. However, computing tree mortality requires long simula-

tion run-times spanning years which is problematic given that host-demography is not

included in the model. Moreover, as we look to scale up the SEIR model over large areas

within GB, running tree mortality simulations over long periods becomes increasingly

computationally expensive.

Consequently, the basic reproduction number will be employed to navigate these com-

putational challenges. As we saw previously, through sections 5.3-5.5, the system can

be characterised by a basic reproduction (R0) number that corresponds to a threshold,

above which epidemic severity drastically increases.

From this point on, unless otherwise stated, the method for calculating R0 is based on

the average number of secondary infections resulting from the first-generation of infected

hosts, as per definition 5.5.1. However, we assume here that secondary infections charac-

terise the transition S → E, and the number of first-generation secondary infections (R
(1)
0 )

is measured over the mean lifetime of infected ash, i.e. five years. The first-generation

contact-traced secondary infections R
(1)
0 will be denoted by R0 for brevity.

6.3.1 Computing R0: initial conditions

This section will investigate initial conditions for just φ1-ga and φ1-pl, as differences

between sporulation models were negligible. Initial conditions play a role in shaping the

final value of R0 and produce distinct model behaviours. At t = 0, the following initial

conditions can seed the domain: IC1) infected hosts occupy the domain centre IC2)

infected hosts are scattered randomly throughout the domain. Figure 6.5 contrasts the

contact-traced R0 for first-generation infected ash over five years between the models φ1-

ga and φ1-pl. Although the ensemble average R0 (i.e. the horizontal black line) compared
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Figure 6.5: The effect of four different initial conditions on R0 are compared for the
Gaussian and inverse power law models, φ-ga (blue) and φ-pl (orange). Each box describes
R0 simulated over an ensemble of size N = 500. The mean R0 for all simulations is
depicted by the horizontal red line. (a) At t = 0, between 10 and 20 infected hosts are
placed at the domain centre (denoted IC1) for φ-ga (in blue) and φ-pl (in orange). (b) At
t = 0, between 10 and 20 infected hosts are randomly scattered throughout the domain
(denoted IC2) for both models. The mean value of R0 compares most similarly using
IC1. Epidemic parameters for each ensemble: β∗ = 1500, ρavg = 0.017, on a domain of
size 2km× 2km.

similarly for each initial condition, differences can be seen in the statistics.

Figure 6.5 shows an ensemble of R0 values for IC1 (a) and IC2 (b) with 10 and 20 initially

infected ash with epidemic parameters well above the threshold7. A more localised dis-

persal kernel in φ1-ga produces a value of R0 that is generally higher for IC2 and lower for

IC1. Adjacently infected hosts at t = 0 reduce the density of susceptible ash within a rel-

atively small neighbourhood—up to a maximum radius of approximately ≈ 3`ga. When

several infected trees are located nearby, as for IC1, R0 is generally smaller because the

surrounding neighbourhood quickly becomes saturated with infected trees, limiting the

number of new secondary infections. The effect of R0-saturation for model φ1-ga is most

apparent in Figure 6.5(a) when a lower value of R0 results by increasing the number of

infected ash to 20.

In contrast, initial conditions had the opposite effect on inverse power law based epi-

7Following the findings of Chapter 5, a small number of initially infected trees seed the domain at
t = 0; having more than one infected tree helps to reduce initial stochasticity, which thereby lowers the
number of early pathogen extinction events.

6.3. DEFINING AN R0 150



CHAPTER 6. CONSTRUCTING R0-MAPS OVER GREAT BRITAIN

demics. For inverse power law spread, Figure 6.5(a-b) demonstrate that R0 is generally

lower for IC2 and higher for IC1. Fat-tailed dispersal models show a higher sensitivity to

the domain boundary. In particular, domain-sensitivity is demonstrated in 6.5(b), where

more infected hosts are located closer to the domain edge. These observations can be

explained by realising that fat-tailed dispersal kernels are more likely to extend beyond

the boundary. Therefore, for the same normalised value of β∗, inverse power law models

are more likely to under count R0 locally if measured inside a smaller domain. Notwith-

standing, secondary infections induced by φ1-pl spread over a wider area, and the effect

of R0-saturation is far less than φ1-ga.

The dashed red line depicts the aggregate mean R0 over all initial conditions. Boundary

effects and domain sensitivity were the least when using IC1, i.e. we can see that IC1

produced the least difference in R0 in panel (a). Conversely, panel (b) outlines a more

considerable discrepancy in R0 between dispersal models for IC2. Therefore, going for-

ward, simulations are chosen to evolve from IC1 because dispersal models agreed most

closely.

6.3.2 Domain size L and R0

Before the small-scale SEIR model of ADB can be spatially scaled up over GB, a suitable

spatial and temporal scale must be chosen to measure R0. The purpose of this section is

to compute R0 over different sized domains from IC1, i.e. a small number of infected trees

located at the domain centre at t = 0. Choosing a sufficient domain length (L) is desirable

to accurately capture pathogen invasiveness within each model. Following the arguments

laid out in section 6.1.1, R0 values are determined over the mean lifetime of infectious

ash, i.e. λ = 5yr. According to their exponentially distributed lifetimes, infected ash can

survive for more extended periods, although this accounts for a decreasingly small the

host population.

As remarked earlier, studies have shown that R0 for crop disease can depend on the

field size [Mikaberidze et al., 2016] and saturates for a sufficiently large field. Here, we
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have a similar scenario: R0 should be computed inside a sufficiently large domain, such

that further domain size increases yield the same value of R0 for repeated simulations.

In contrast, running simulations inside a smaller domain will underestimate the repro-

ductive ratio, and consequently, overall epidemic impact [Tildesley and Keeling, 2009,

Cunniffe et al., 2012].

Figure 6.6 reveals how both dispersal models relate to the domain-size. By counting

the number of secondary infections that result from the first-generation of infected ash

(at t = 0), we can plot a distribution revealing how far away infections are likely to be

produced. Figures 6.6(a-b) show the number of secondary infections induced a distance

D away from each infected source over 500 repeated simulations. Distributions for three

different domain sizes are shown in Figure 6.6(a-b).

Unsurprisingly, Figure 6.6(a) and (b) reflect the Gaussian and inverse-power law disper-

sal kernels. However, Figure 6.6(a-b) also show that secondary infections are unlikely to

occur near first-generation infected ash. A low secondary infection count close to infec-

tious sources reflect the average space between hosts, set by ρ. A higher density host

distribution increases the relative proportion of induced secondary infections close to the

source < 0.1km.

From Figure 6.6(a-b) becomes visually apparent why domain sensitivity varies between

dispersal models. In Figure 6.6(a), the number of infections is reduced for Gaussian dis-

persal at L = 100, indicated by the smaller distribution tail in blue. Although, increasing

the domain length to L = 300 produced no observable difference to L = 200. In all Gaus-

sian simulations, no secondary infections were witnessed beyond 0.6km, in line with the

results from [Grosdidier et al., 2018]. On the other hand, a small number of secondary

infections in the model φ1-pl can be seen up to the domain edge 1.5km away. Thus, if

the domain size is below a minimum value of L, epidemics that observe inverse power

law dispersal will be lowered due to an under-estimated total number of secondary infec-

tions. For the exact value of β∗, φ1-pl can be seen to travel much further than φ1-ga and

echos the difficulty of controlling fat-tailed pathogen dispersal [Cunniffe et al., 2015b],
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Figure 6.6: The relationship between R0 and the domain length, L. For all panels, simu-
lations run over five years or until the pathogen becomes extinct, whichever comes first.
(a-b) Distributions show the number of secondary infections induced by distance over an
ensemble of 500 repeats for Gaussian and inverse power law dispersal kernels. Secondary
infections are computed inside three different domain lengths of L ∈ [100, 200, 300] (i.e.
500m× 500m, 1km× 1km, 1.5km× 1.5km) for epidemic parameters above threshold,
β∗ = 1000 and ρavg = 0.017. Inverse power law spread demonstrates a higher domain
sensitivity due to the fat-tailed kernel extending beyond the domain edge. (c-d) An
ensemble-averaged reproductive ratio R0 is computed from 500 repeated simulations over
different domain lengths, up to a maximum of L = 2000 or 10km× 10km. The value
of R0 is gauged at the median and upper quartiles of ash tree densities, (c) and (d),
respectively, and at two infectivities shown in blue and orange. The value of R0 saturates
at around 1km× 1km for Gaussian-based dispersal kernels and 5km× 5km for inverse
power law dispersal kernels.

6.3. DEFINING AN R0 153



CHAPTER 6. CONSTRUCTING R0-MAPS OVER GREAT BRITAIN

and more broadly, LDD.

Figures 6.6(c-d) show how the mean value of R0 for each dispersal model saturates for

a critical value of L, for two domains at the median and upper quartile of ash density

ρmed = 0.011 and ρuq = 0.019 (a) and (b) respectively. Simulations for two infectivity

parameters β∗ ∈ [500, 1000] are shown in blue and orange. The computed value of R0

shows the aforementioned characteristic increase, up to a maximum saturation value.

Each infectivity and tree density combination produced a similar saturation point of

L ≈ 1km for φ1-ga and L ≈ 5km for φ1-pl, the vertical green and red lines, respectively.

From Figures 6.6(c-d), a suitable domain length L can be ascertained for each dispersal

model, found to be 1km× 1km for models φ1-ga and φ2-ga, and 5km× 5km for models

φ1-pl and φ2-pl. Moving onward, a proper characterisation of the GB ash tree canopy

cover data set produced by [Hill et al., 2017] will be conducted, before we determine R0

as a function of host density in section 6.4.2.

6.4 Constructing R0-maps over Great Britain

In this section, R0 values of the small-scale SEIR model of ADB will be projected onto

the host distribution of ash, given by [Hill et al., 2017], to create landscape-level R0-maps

over Great Britain. Doing so will permit the investigation of a novel control strategy in

Chapter 7 and allow the local-scale epidemic severity, based on tree-to-tree interactions,

to be efficiently scaled over large areas.

6.4.1 Ash host distribution

Ash densities were parameterised by ash the abundance data provided by [Hill et al., 2017].

Previously, the oak canopy cover dataset given by [Hill et al., 2017] was used in Figure

4.9 alongside a toy model of landscape-level tree disease. The canopy cover datasets pro-

duced by [Hill et al., 2017] combine several data sources that partly cover Great Britain,

regression methods then extrapolate canopy cover over the whole of Great Britain. Conve-

niently, ash happened to be among the most accurate data sets given by [Hill et al., 2017].
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Figure 6.7: The ash canopy cover data, as modelled by [Hill et al., 2017], is converted into
a map of tree density. (a) A map of ash densities at the original resolution of 1km×1km,
the inset consisting of 10 × 10 pixels (b) A coarse-grained map of ash densities at a
resolution of 5km × 5km, the inset consists of 2 × 2 pixels. Both insets show the same
100km2 area, and illustrates how coarse-graining the host distribution results in a loss of
spatial structure. A small number of densities over 10% were excluded from the density-
map.
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For a more in-depth description of the methods used by [Hill et al., 2017] and a review

of host data in general, see Chapter 4.2.

The modelled ash canopy cover data had to undergo minor modifications to complement

the SEIR model. Firstly, the raw abundance values were re-scaled into a dimensionless

tree density ρ. The exact process was outlined in Chapter 5, i.e. by converting the units

ha/km2 to kilometre-squared of ash cover per kilometre-squared of land. Secondly, the

domain resolution has to be re-scaled to reflect the spatial scale of local wind-borne dis-

persal, as parameterised by [Grosdidier et al., 2018]. Lastly, the small number of patches

with exceedingly high densities were capped to ρmax = 0.10, thus forming a hard upper

limit in the density map.

Figure 6.7(a) shows a density map of ash, at the original resolution of 1km × 1km,

produced from abundance data given by [Hill et al., 2017]. The inset shows a block of

10 × 10 pixels, each of size 1km × 1km. In the small-scale Gaussian dispersal-based

SEIR model, a domain size of 1km × 1km was shown sufficient to measure the average

R0 over a five-year period—demonstrated by Figures 6.6(c-d). However, the inverse

power law models required a larger domain size of 5km×5km to prevent underestimating

epidemic severity. Figure 6.7(b) shows the host distribution coarse-grained to a resolution

of 5km× 5km pixels. The insets of Figures 6.7(a-b) compare the same region. Although,

in Figure 6.7(b), pixels are effectively averaged and coarse-grained to larger 5km× 5km

patches. The resulting domain is smoother and therefore losses spatial structure.

From Figures 6.7(a-b), the south of England contains the highest concentration of high-

density ash patches, and ash become progressively less abundant in Scotland and coastal

locations, in western Wales, for example. A higher density of ash can be expected to

yield a higher number of secondary infections, in line with the results of section 3.3 and

Chapter 5.
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6.4.2 Tree density and R0

Figures 6.8(a-c) illustrates the relationship between R0 and ash density. Figure 6.8(a)

shows a PDF (probability density function) of ash densities ρ over the map of Great

Britain—overlaid with a KDE shown in red. As noted above, few locations support

densities of ρ = 0.10 and over8. Between the limits of ρ ∈ [10−2, 10−1], the PDF follows

a power law of the form ∼ ρ−k, as evident from linearity in the logarithmic inset axes.

The distribution had a fitted exponent of k = 1.90, shown by the black line.

Figures 6.8(b-c) contrast the behaviour between R0 and tree density ρ for linear and

peaked sporulation functions, φ1 and φ2 respectively. Values of R0 were ensemble-

averaged over 100 repeated simulations. For the two values of infectivity, β∗ ∈ [500, 1000]

shown, all model variants display the same linearity between R0 and ρ —also explored

in Chapter 5. The dashed orange and blue lines show how high values of β and ρ result

in a considerable value of R0. For high R0 values, the Gaussian dispersal models φ1-ga

and φ2-ga begin to deviate from linearity as density is increased, due to the phenomena

of R0-saturation witnessed in section 6.3.1. Figure 6.8(b) reveals a larger area of shaded

grey, suggesting that the sole difference between sporulation models is that φ2-ga deviates

from linearity more than φ1-ga.

In Figures 6.8(b-c), the regime of pathogen extinction is indicated by the horizontal red

lines, which correspond to a critical ‘density threshold’ denoted by ρc (equivalent to the

threshold R0 = 1). When used in conjunction with the data-set from [Hill et al., 2017],

Figures 6.8(b-c) represent an appropriate projection of R0 over the map of Great Britain.

Below the threshold R0 = 1, infected ash can still survive and reproduce (i.e. persist

below the threshold, as we saw in Figure 6.2(c)), albeit at slower rates. Negating below-

threshold patches is a vital assumption—discussed more below.

8The original 1km× 1km map resolution contained 2.2 × 104 1km2 data points, with some outlier
pixels having densities in the interval ρ ∈ [0.10, 0.30] which were excluded from the analysis due to A)
the increased computational run-time required to simulate the SEIR model of ADB and B) densities
beyond 0.10 account for a negligible portion of the overall population.
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Figures 6.8(d-e) and (h-i) present R0-values of the small-scale φ1-ga and φ1-pl SEIR

models projected onto the host distribution of ash. Both sets of R0-maps are projected

onto the same coarse-grained 5km×5km re-scaled host distribution. For all variants of the

SEIR model, R0-maps compared similarly—shown for the two values of infectivity, β∗ ∈

[600, 900]. All locations below the transmission threshold R0 = 1 were given numerical

values of zero and are depicted by inland white space. Under the influence of a more

infectious pathogen, larger areas of the ash population become susceptible by supporting

the growth and reproduction of the pathogen, illustrated by the difference in patch density

in Figures 6.8(b-c). Importantly, each R0-valued pixel portrays the local-scale epidemic

impact experienced at that location, predicted from a five-year ensemble-averaged value

of R0.

Suppose that a fitted value of infectivity β∗ is found to fall within a standard error of

SE = 250, i.e. β∗ = 750± 250. In this scenario, epidemic uncertainty is captured by the

divergence between dashed and solid lines in Figures 6.8(b-c) and conveniently visualised

by differences in the resulting R0-maps. Although landscape-level heterogeneity and re-

gional susceptibility can be loosely identified from R0-maps in Figures 6.8(d-i), visualising

differences between model variants is untenable due to their similarity. Furthermore, de-

termining which pixels connect to form susceptible clusters is non-trivial. To this aim,

the next section will present a means to identify clustering in R0-maps.

6.4.3 Clustering in the R0 map

An image processing technique called ‘connected component analysis’ (CCA) was used to

identify and label susceptible clusters and simplify theR0-map [Samet and Tamminen, 1988,

He et al., 2017] . The Python-SciPy package ‘ndimage’ [Virtanen et al., 2020] was used

to implement CCA via the function ‘label’. Doing so labelled all susceptible neigh-

bours as connected members of the same cluster, according to a structuring element

[Liang et al., 1989]. That is, if two susceptible patches of ash lie within the same neigh-

bourhood, defined by the structuring element, they are connected members of the same
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cluster9. Additional information on structuring elements and CCA can be found in Ap-

pendix C.1.

Moore and Von-Neumann neighbourhoods were chosen as structuring elements to clas-

sify connected components—a comparative look exploring the differences between Von-

Neumann and Moore structuring elements is resumed below in sections 6.4.5-6.4.6. Fig-

ures 6.8(f-k) correspond to the top ten largest connected R0-clusters (by area km2) present

in the R0-maps of Figures 6.8(d-i) according to the Moore neighbourhood. For both dis-

persal models, increasing the infectivity parameter β leads to a more susceptible and

connected R0-map, as demonstrated by the larger dominating cluster in Figures 6.8(g)

and (k).

There are little to no differences between how Gaussian and inverse power law models

spatially scale, according to the raw R0-maps of Figures 6.8(d-i). However, CCA reveals

some subtle differences in the projection of φ1-ga and φ1-pl under the same normalised

infectivity parameter β∗. Although, given similar gradients in the graph of R0 versus ρ for

lower infectivity values (demonstrated by the convergence of solid orange and blue lines

in Figures 6.8(b-c)), Gaussian and inverse power law models should produce the exact

R0-map. In contrast, for higher infectivity parameters, we might expect the inverse power

law model to yield a more susceptible map, as per Figures 6.8(b-c) when the Gaussian

model deviate below linearity.

For the infectivity parameter β∗ = 600, the model φ1-ga shows that the largest ‘dominat-

ing’ cluster (in blue) extends over a slightly larger area than for φ1-pl. In Figure 6.8(j), the

third-largest cluster (in green, located in Wales) remains disconnected from the largest

dominating cluster (shown in blue), whereas in Figure 6.8(f) the corresponding clusters

are connected. In a similar vein, Figure 6.8(k) shows a larger dominating cluster than

Figure 6.8(g). However, differences are seen most visibly over Scotland and Northern

England (Humber-Northumbria), where the second and third largest-ranked clusters ex-

9Structuring elements have their roots in shape, and image analysis [Shih and Mitchell, 1989],
where they define how distinct binary shapes connect to form images [Liang et al., 1989,
Nachtegael and Kerre, 2001]
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tend over more significant areas. Nevertheless, differences in how dispersal models scale

over GB are primarily trivial, and stochasticity in ensemble-averaged R0-values could

likely explain any differences.

6.4.4 Interpreting susceptible R0-clusters

In a simplified interpretation, the R0-clusters present two distinct types of dynamics:

within-cluster and between-cluster spread. A continuum of tightly coupled susceptible

patches within an R0-cluster outlines a medium through which disease can spread. There-

fore, due to the connectivity within an extensive R0-cluster, the disease may disperse over

large areas without directly (or indirectly) jumping between nearest neighbours.

Since disease gradients can extend over 10−1000km, long-distance spread between clusters

will invariably occur, albeit at low frequency. Moreover, alongside long-distance spread

directly between clusters, the pathogen may infect trees inside below-threshold patches,

thus spreading indirectly between clusters. This mechanism has been conceptually de-

scribed for pathogens jumping between crop fields [Gilligan, 2002] [Wingen et al., 2013].

Next, we take a closer look at R0-clustering.

6.4.5 Inverse power law R0-map clustering

In the inverse power law SEIR model, we required a 5km× 5km domain to accurately

gauge R0 over the mean infectious lifetime of ADB—demonstrated previously in Figure

6.6. Consequently, when mapping the inverse power law over Great Britain, each pixel

assumes a 5km× 5km patch. Hence, a larger patch size L outlines a more course-grained

host distribution than the Gaussian spread model. Lower map resolutions could be

resolved (e.g. 10km× 10km), however, spatial structure is lost, as Figure 6.7(b) eludes

to. Therefore, the inverse power law models φ1-pl and φ2-pl were explored over a single

landscape-level resolution of 5km× 5km.

For each value of infectivity, an R0-map will contain a variety of differently sized R0-

clusters. Figure 6.9 presents R0-clustering behaviour for the inverse power law model. A
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proper understanding of clustering can be achieved by exploring how the distribution of

cluster sizes change in response to infectivity. Figures 6.9(a) and (c) show the frequency

distribution of cluster sizes, for models φ1-pl and φ2-pl respectively. The distributions

depict cluster sizes for three infectivity parameters β∗ ∈ [250, 500, 1000] according to

the Moore neighbourhood. In both frequency distributions, a small proportion of large

dominating clusters can be seen alongside more numerous smaller R0-clusters.

Unsurprisingly, a lower infectivity parameter reduces the size of the highest-ranked clus-

ter and lowers the overall coverage of susceptible R0-clusters—shown in blue. Increasing

the infectivity produced a larger dominating cluster and reduced the mean size of lower-

ranked R0-clusters, as demonstrated by contrasting the orange and green frequency dis-

tributions. The inset plots of Figure 6.9(a) and (c) depict the same behaviour in a rank-

ordered list of the top 25 largest R0-clusters by size. Both sporulation models display the

same fundamental relationship.

In the SEIR model, a value of β has not been determined experimentally or statistical

fitted. Therefore, we are compelled to study behaviour over the entire space of β. Figures

6.9(b) and (d) describe how R0-clusters scale over different values of infectivity and

structuring elements for models φ1-pl and φ2-pl respectively. As infectivity is increased

to a maximum of β∗ = 1000, the largest R0-cluster (shown in blue) rises most rapidly

over a narrow range of infectivity values in the interval β∗ ∈ [100, 400]. Patches are more

likely to become susceptible as β∗ increases; this causes rank-1 R0-clusters to amalgamate

surrounding neighbouring clusters as channels open up. Thus, fluctuations arise in the

second and third largest clusters as they form an ever-larger dominating cluster. Below

β∗ = 100, no cluster-growth is displayed as epidemic parameters are too low.

Up to this point, we have considered one structuring element, namely the Moore neigh-

bourhood. The type of structuring element we choose to gauge regional-susceptibility in

the R0-map bears no influence on how an epidemic might progress in reality. Therefore,

it is desirable for clustering in the model to remain invariant over the structuring element

we choose. In general, visible, albeit small, differences can be seen due to artefacts of the
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Figure 6.9: Susceptible R0-clustering for the inverse power law model (a) For model φ1-pl,
the cluster-size frequency distribution is shown for three infectivity values utilising the
Moore neighbourhood. The inset shows a rank-ordered graph of the top 25 most signifi-
cant clusters by area km2. (b) The top three ranked clusters, by size, for model φ1-pl is
shown over the infectivity parameter-space for both Moore and Von-Neumann neighbour-
hoods. (c) The frequency distribution of cluster size is shown for the peaked sporulation
model φ2-pl for three infectivity parameters (d) Cluster-size behaviour for model φ2-pl
shown over infectivity parameter-space for Moore and Von-Neumann neighbourhoods.
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structuring elements.

Moore neighbourhoods can be seen to produce slightly larger rank-1 R0-clusters, which in

turn reduced the size of second and third-ranked clusters. The disparity caused between

structuring elements can be understood by noting the two additional corner/diagonal

pieces in the Moore neighbourhood. Although structuring elements account for a com-

paratively small deviation between cluster sizes, the rank-1 clusters compared similarly

for some values for β∗. Observing minor artefacts due to structuring elements hint to-

ward limitations in the definition of connectivity, as defined within the landscape-level

component of the model.

6.4.6 Gaussian R0-map clustering: varying map resolution

The essential dynamic of R0 clustering holds when spatially scaling the Gaussian-based

models φ1-ga and φ2-ga. Notwithstanding some negligible cluster size differences, as

demonstrated above in Figure 6.8. However, as explored in section 6.3.2, R0-values in the

more localised Gaussian dispersal models can be discerned inside a smaller domain size

of 1km× 1km. Given that R0 can be captured inside a smaller domain, we may consider

resolving R0-maps to a finer landscape-level resolution in comparison to the inverse power

law-based dispersal models. Resolving R0-maps to the highest resolution possible is desir-

able to apprehend the nature of epidemic severity and spatial heterogeneity. Otherwise,

relevant epidemic information is lost when coarse-graining the host distribution.

Figure 6.10 shows how CCA changes clustering in the R0-map for different landscape-level

resolutions. Figures 6.10(a-c) show the frequency distributions of cluster size for β∗ = 500

and three different patch sizes, of lengths 5km, 3km, 1km respectively. As discussed in

section 6.4.5, the same general trend remains, i.e. a small number of large clusters

alongside more numerous small clusters. Although, decreasing the patch size produces a

more fragmented domain, indicated by the greater variety of cluster sizes. The largest

ranked cluster toward the far-right of each distribution also shrinks for successively smaller

patch sizes. However, decreasing the patch size brings frequency distributions between
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structuring elements into closer alignment, seen by a closer agreement of blue and orange

distributions in Figure 6.10(c).

As before, cluster size for the largest ranked cluster exhibits the most significant growth

over the first few values of infectivity, β∗ ∈ [100, 400]. However, performing CCA at

different landscape-level resolutions produces a change in the size of R0-clusters. At the

most extreme point of β∗ = 500, more significant deviations can be seen between the size

of rank-1 susceptible R0-clusters, illustrated by the vertical arrow in Figure 6.10(d).

Figures 6.11(a-c) depict visual differences of CCA at the domain resolutions: 5km× 5km,

3km× 3km, and 1km× 1km. We witness similar landscape-level features for each domain

resolution in the largest ranked R0-cluster (in blue), though disparities exist in the extent

and size of clusters. As the R0-map is resolved to small spatial-scales, connectivity within

an R0-cluster can depend more critically on a small number of above-threshold patches,

identified by the red circles in the inset in Figure 6.11(c).

In the coarse-grained 5km× 5km resolution domain of Figure 6.11(a), the critically-

connecting patches circled in Figure 6.11(c) are smoothed in the process of averaging

the small number of surroundings patches. Similarly, some above-threshold patches can

be smoothed to below-threshold patches, thus increasing the cluster size, shown in Figure

6.11(b) circled in red. Ultimately, differences in cluster size are caused by the simplistic

notion of connectivity within CCA that fails to scale with the domain resolution. Unde-

sirably, witnessing a difference in CCA-identified clusters outlines an inherent limitation

of the framework. Even though clusters appear different, these observations emphasise

that connectivity over a region can depend on a small number of patches, which sets the

scene for Chapter 7.

6.5 Comparison to observational data

In response to the ADB epidemic, the UK Government commissioned presence-only sur-

veys of ADB, conducted by the Forestry Commission (FC). To date, FC surveys of ADB

are the most extensive throughout the UK, composed yearly over a large number of
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Figure 6.10: Multi-scale CCA performed over different landscape-level resolutions,
namely from 1km× 1km to 5km× 5km patch-sizes. (a-c) Cluster-size distributions are
shown for three landscape-level domain resolutions and both Moore and Von-Neumann
structuring elements. As domain resolution is increased to 1km× 1km, clusters can be
resolved to a finer scale and yield a set of clusters over more length-scales (d) Cluster
sizes over infectivity β∗ and structuring elements, comparing behaviour at two pixel-sizes.
At the most extreme point, large disparities in cluster sizes become apparent, indicated
by the vertical arrow at β∗ = 500.
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Figure 6.11: Spatial interpretations of Figures 6.10(a-c), according to the Moore neigh-
bourhood, are shown for β∗ = 500 and different patch resolutions. For each domain
resolution considered, the largest ranked cluster appears different, pointing to an inher-
ent limitation in the framework (a) The largest ranked R0-cluster is shown in blue for
the most coarse domain at resolution 5km× 5km (b) Resolving R0-valued patches to a
3km× 3km resolution can lead to extra patches opening up (i.e. becoming susceptible
R0 > 1) to form connections between other, distinct R0-clusters. Here, patches circled in
red form a bridge to a previously disconnected cluster (c) Resolving R0-valued patches to
the highest resolution of 1km× 1km causes a more fragmented domain. A small number
of below-threshold patches can fragment the R0-cluster, highlighted as red in the inset.
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10km× 10km grids. Figures 6.12(a-d) contrasts the FC data, collected from 2012 (green)

to 2020 (purple), against three example R0-maps from low to high infectivity parameters.

The R0-maps are based on the the model φ1-ga, subsequently all 1km× 1km susceptible

patches were grouped into clusters.

The low-valued infectivity map (β∗ = 250) shown in Figure 6.12(b) looks significantly

different from the ADB observations in panel (a). Figure 6.12(b) is more fragmented and

sparsely-populated with susceptible patches. As such, reported cases of ADB contradict

large below-threshold regions of Figure 6.12(b). Visual deviations become particularly

apparent in Scotland, where according to Figure 6.12(b), a trivially small distribution of

patches could support an epidemic.

Increasing the infectivity to β∗ = 650 in Figure 6.12(c) produces map with more sim-

ilarities to the FC survey data. The similarity is demonstrated by visual assessments,

which reveal a comparable degree of patchiness/fragmentation between maps. Notably,

the susceptible regions in Scotland (circled 1) begin to reflect where FC surveys report

ADB infections, in stark contrast to Figure 6.12(b). However, a large region in the East

of England (circled 2) also appears insusceptible, despite positive ADB reports shown in

panel Figure 6.12(a). In addition, Northern Wales (circled 3) appears significantly more

patchy and insusceptible compared to the FC data.

The highest infectivity β∗ = 1000 gives rise to a densely populated map with few regions

below the threshold. Now clusters of ash in Scotland (circled 1), particularly in the

North, appear susceptible whilst the FC survey data in Figure 6.12(a) show no reports.

Interestingly, the same insusceptible region (circled 2) in the East deviate from the FC

survey dataa, however this the area looks smaller.
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Figure 6.12: Visual comparisons between the Forestry Commissions ADB survey data and three example R0-maps, from low to high
infectivities. For the model φ1-ga, all susceptible 1km× 1km patches were grouped into clusters indicated by colour. (a) Forestry
Commission survey data on the spread of ADB collected yearly between 2012-2020, green-purple respectively. (b) A low value of β∗ = 250
produces a highly fragmented R0 map that looks significantly different from the FC survey data. (c) For β∗ = 650, some landscape
features begin to resemble the FC survey data, particularly in Scotland. (d) A high value of β∗ = 1000 appears less fragmented and more
densely populated with susceptible regions than indicated by (a).
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Together, Figure 6.12 indicates that when infectivity is low, the resulting R0-map is un-

likely to reflect the spread ADB. Additionally, at a certain value, increasing the infectiviy

produces an R0-map with similar features to observation data. On the other hand, if

infectiviy is high, the R0-map is likely too overestimate susceptibility. Ultimately, vali-

dating the R0-map against the FC survey is challenging due to the limited presence-only

surveys collected over large 10× 10 girds.

6.6 Discussion and future work

The work presented in this Chapter describes how to project a spatially explicit, small-

scale compartmentalised model onto a host distribution. The method to ‘spatially scale’

a small-scale epidemic model is computationally inexpensive, flexible and generalisable.

Here, results are focused on helping policymakers implement informed decisions about

where to control the spread of disease, based on spatial arguments. In the face of low

budgets, limited resources and short decision windows, an efficient method to prioritise

targeted control could aid both policymakers and (tree health) stakeholders.

Given the sessile nature of trees, the spatial distribution of hosts remains of paramount im-

portance for epidemic modelling. As such, a modelled distribution of ash covering Great

Britain was used to parameterise host densities. This choice was motivated by the non-

existence of freely available, high-quality ash abundance data that spans Great Britain.

Consequently, combining our small-scale SEIR model with data given by [Hill et al., 2017]

demonstrates a novel use of predicted abundance data—as remarked when summarising

the toy SLM model of Chapter 4.

Due to the complexity of ADB, some important assumptions had to be employed in

the SEIR model. In particular, leaf-shed was assumed to fall close to ash hosts; this

permitted fungal ascospore dispersal to originate from the same location as infected

ash. Still, this assumption is supported by the dispersal parameterisation given by

[Grosdidier et al., 2018] that measured dispersal directly between a source of infected

trees and spore-traps, thereby omitting the dynamics of intermediary leaf-shed disper-
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sal. One possible improvement to the SEIR model might include host demography, as

host-pathogen coexistence is not supported.

Performing CCA proved a beneficial yet problematic exercise. Multi-scale CCA demon-

strated how failing to include relevant epidemiological information, in the form of coarse-

grained host data, can lead to significant disparities in cluster size—sentiments echoed

in the third challenge posed by [Cunniffe et al., 2015a]. Furthermore, resolving Gaussian

R0-maps at different landscape resolutions emphasises an implicit assumption when defin-

ing connectivity based solely on nearest-neighbour interactions between patches. That

is, Moore and Von Neumann structuring elements do not scale with the dispersal kernel

under a change of map resolution:

Suppose secondary infections can be induced up to a maximum distance of Dmax = 2km.

Resolving the map to 2km× 2km (or lower) is permissible because patches interact locally

i.e. infections between non-nearest neighbour patches are unlikely (neglecting atmospheric

of human-mediated LDD). In contrast, suppose the map is now resolved to 1km× 1km.

In this scenario, patches have the possibility of interacting non-locally because Dmax ex-

ceeds intermediary patches; nearest-neighbour structuring elements therefore fail to de-

scribe connectivity accurately. Given all the above, an improved understanding of the

connectivity between patches is required to progress the framework.

Moreover, nearest neighbour CCA proved difficult when constructingR0-maps for systems

described by fat-tailed dispersal kernels. That is, R0 cannot reliably define pathogen

invasiveness inside a small domain when dispersal is longer-ranged. Thus, inverse power

law dispersal required a larger patch size to measure R0 from a single focus. In turn, a

larger patch-level domain size produced a coarse-grained host distribution that omitted

important finer-scale epidemic information. However, future research could examine non-

local interactions between R0-valued patches, which could permit the construction of a

higher resolution R0-map composed of ‘within’ and ‘between’ patch interactions—echoing

the short and long ranged interactions inside a metapopulation [Benincà et al., 2020].

Despite the limitations of CCA, clusters grew up to four orders of magnitude over the
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initial interval of infectivity, β∗ ∈ [100, 400]. Rapid cluster growth occurred between

β∗ ∈ [100, 400] for all SEIR model-variants and domain resolutions. Therefore, landscape-

level spread within our framework demonstrates a threshold-like behaviour, below which

(β∗ / 100), no models would be able to invade Great Britain.

Given a set of data containing the number of confirmed ADB cases in each grid location,

we could correlate R0-values in the map to the observed number of cases. Nonetheless,

correlatingR0 values with case numbers was unattainable because of the non-existent data

sources. The only available option was visually comparing the R0-maps to nationwide FC

ADB survey data. However, visual comparisons still proved challenging due to the limited

FC survey data that only reported the presence of confirmed ADB cases. Therefore, an

improved method to corroborate the model against observational data is required to

progress the framework.

Fitting β to ADB data remains a crucial next step for progressing the framework. Numer-

ous studies have collated spatial-temporal ADB data in Europe [Grosdidier et al., 2020,

Coker et al., 2019, Stocks et al., 2017, Lõhmus and Runnel, 2014], most of which tracks

either tree mortality or the degree of symptom expression over time. Given sufficient

spatial-temporal data on the spread of ADB, we could estimate epidemic speed and life-

cycle parameters using Bayesian Markov-chain-Monte-Carlo methods. Similar statistical

methods have proved noteworthy and effective for modelling the sudden oak death in Cal-

ifornia [Filipe et al., 2012] and the spread of citrus canker in Florida [Neri et al., 2014].

However, collecting the necessary data often span years and requires considerable re-

sources to monitor disease progression, as demonstrated by the underlying citrus canker

data sets [Gottwald et al., 2002]. Unfortunately, comprehensive spatial-temporal data

appears absent in the current literature, so fitting the model to spatial-temporal data

sources remains questionable. However, more work is required to rule out the approach.

A more straightforward (albeit less comprehensive) method to fit β to ADB data could

be achieved using mortality curves. Different authors have fit logistic growth mod-

els to data on the spread of ADB—see [Alonso Chavez et al., 2015, Coker et al., 2019,
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Lõhmus and Runnel, 2014]. Ultimately, mortality curves and logistic growth are non-

spatial, in contrast to the work presented in this Chapter. Nevertheless, Figure 6.4

demonstrated an s-shaped logistic growth-like curve that forms the basis for an expanded

study focused on model fitting. Fitting the spatial dispersal model to a logistic growth

equation could be easily achieved. Section 5.2.2 provides a helpful example of fitting a

spatial dispersal model to a non-spatial equation.

The next Chapter builds on the R0-map and outlines steps toward a novel landscape-level

control strategy.
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Chapter 7

Towards landscape-level control

This final science chapter shows how spatial heterogeneity leads to natural ‘pinch points’

in the host distribution. Focusing epidemic control through population pinch points may

outline an effective strategy to slow disease spread between regions. Subsequently, we

develop an algorithm to identify these locations and formulate ’regional containment’ as

an approach to impede dispersal.

Some authors have expressed parallel notions to impede the spread of crop and livestock

diseases [Papäıx et al., 2014, Gilioli et al., 2013, Gilligan, 2002]. However, no rigorous

analysis has taken place, nor has any strategy been outlined for tree populations. Con-

versely, the method could help identify epidemic risk in potential new afforestation sites.

In particular, identifying any epidemically-significant areas will become necessary as the

UK government continues to increase afforestation and carbon sequestration, as set out

by the carbon plan 2050 [Tol, 2021, Konadu et al., 2015].

A great deal of research has been carried out to understand the optimisation of con-

trol in crop and tree-based epidemics—as reviewed in section 2.2. Spatial structure is

an essential factor when considering how to manage an outbreak [Picard et al., 2019,

Parnell et al., 2009b]. The mainstream paradigm of control typically considers infected
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tree removals over a relatively small spatial scale, near infected hosts [Cunniffe et al., 2015b],

or, more broadly, ahead of the wavefront [Cunniffe et al., 2016]. However, landscape-level

epidemic control, based solely on the structure of large-scale spatial distribution of hosts

incorporating topography, has yet to be explored in-depth.

Section 7.1 presents a novel method to disrupt epidemic connectivity in the host distri-

bution. Following on, the fragmentation method is analysed in section 7.2. However, the

analysis constitutes unfinished work and sets the scene for future research questions. The

work conducted in this Chapter rests on the SEIR model of ADB, although the outlook

is less specific to ADB and more general-purpose, suitable to any class of wind-dispersed

tree pathogens with comparable dispersal parameters.

7.1 Method: cluster fragmentation

In Chapter 6, R0-clusters were introduced. Clusters of susceptible patches of land in

the R0-map revealed which regions in Great Britain are likely to be the most severely

devastated by the pathogen. Whereas patches below the threshold present a natural

barrier to the spread of disease; in this simplified interpretation, below-threshold patches

can be presumed to not support high levels of infected biomass and infectious spore

production. Moving forward, we assume that the pathogen will remain confined within

isolated R0-clusters and not spread through patches below R0 = 1. Undoubtedly, several

assumptions underpin this argument, including the omission of LDD, both wind-borne

and human-mediated, alongside stochastic outbreaks below the threshold.

An epidemic propagating through the R0-map describes a ‘percolation-like’ problem (with

the caveat of clustering that does not feature in classic percolation). All susceptible

patches in the cluster risk infection if one patch becomes infected, which motivates a

control strategy based on cluster fragmentation to accomplish regional containment. An

uncalibrated strategy might involve frantic efforts to reduce the epidemic spread by ran-

dom targeting of infected areas. However, by concentrating epidemic control on the

smaller number of identified patches, connectivity within the cluster can be efficiently
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disrupted with minimal effort.

Following this epidemic control, cluster fragments define disconnected ‘sub-clusters’ (e.g.

C1 and C2) that eliminates risk for trees inside one sub-cluster. At the very least, host

patches inside the confining cluster risk infection by the pathogen but are more likely to

face removal/death. In comparison, hosts inside the other remaining sub-cluster are saved

and remain susceptible. Moreover, we achieve efficient epidemic control when the effort

is small compared to the reduction of epidemic impact. Moreover, we achieve efficient

epidemic control when small efforts and low resource expenditure reduce epidemic impact

significantly.

7.1.1 Targeting epidemic control

This section aims to develop a method to answer the question, “where in the host distribu-

tion should we undertake control initiatives to reduce the spread of disease maximally?”.

Consequently, we develop and employ an algorithm to identify a set of optimal epi-

demic control locations. Specifically, the algorithm finds which sites would lead to cluster

fragmentation if R0 is reduced below the threshold. Notably, when epidemic control is

concentrated in these locations, we lower epidemic connectivity between regions, which

could slow the spread. Henceforth, the set of patches that fragment a cluster, if controlled

below R0 = 1, are defined as “high-priority” patches.

Given a CCA-identified cluster in the R0-map, C, we can define a binary-valued threshold

function Φ(ξ) by:

Φ(ξ) =


1 R0(i, j) ≥ ξ

0 R0(i, j) < ξ

(7.1)

where R(i, j) is the patch-level reproduction ratio at spatial coordinates (i, j) in C. The

parameter ξ takes values in interval
[
1,max

(
R0(i, j)

)]
, where max

(
R0(i, j)

)
is the highest
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value of R0 in C—henceforth denoted by Rmax.

Figure 7.1 shows how the function Φ(ξ) allows the identification of high priority spatial

locations. In Figure 7.1(a) we begin with a target-cluster, C, shown in blue; C is the

largest cluster detected in an arbitrary R0-map for the model φ1-ga and infectivity β∗ =

450 (as described previously in Chapter 6). Applying the threshold function Φ(ξ = 1)

recovers C entirely, as all patches in C are over the threshold. In contrast, larger values

of ξ result in a lower-density map with sparsely distributed clusters, demonstrated by the

small number of labelled clusters in Figure 7.1(b) at Φ(ξ = 4). Similarly, only one (or at

most a handful) of patches populate the domain at the limiting value Φ(ξ = Rmax).

Connected component analysis (CCA) is performed at each step ξ ∈ [1, Rmax] in order

to identify and label sub-clusters. At particular steps ξ → ξ − δξ (i.e. back-stepping),

C will begin to form when distinct sub-clusters1 (e.g. C1 and C2) suddenly connect

when certain critical links become non-zero—analogous to the formation of a spanning

cluster opening up in a percolation. Figure 7.1(d) depicts a scenario with a number of

disconnected sub-clusters at ξ = 1.19 that merge together at ξ = 1.15. The ‘binary dila-

tion’ operator [Liang et al., 1989, Shih and Mitchell, 1989, Nachtegael and Kerre, 2001]

was used to detect all the patches which become non-zero and bridge sub-clusters, as elab-

orated in Appendix C.2. Henceforth, ‘connecting patches’ refer to patches that connect

sub-clusters in a discontinuity step.

When C1 and C2 abruptly merge to form the basis of C, a significant discontinuous jump

in cluster size is detected. All spatial locations (i, j) which bridge the gap between C1

and C2 are then identified and removed by taking R0 below the threshold. Figure 7.1(e)

shows two singular patches in blue (and highlighted in red) that if taken below R0 = 1,

would fragment C into two sub-clusters C1 and C2. Successive steps through ξ continue

until ξ = 1. For each discontinuity event, connecting patches are detected and removed

from the system, thus preventing C1 and C2 from merging over ξ ∈ [1, Rmax]. In this

manner, the target-cluster C is fragmented into two separate sub-clusters. As we can see,

1It is possible that three or more sub-clusters suddenly connect to form C in the same step; these
complexities are taken into account by the algorithm.
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Figure 7.1: A graphical illustration of the algorithm developed to fragment R0-clusters.
(a) The largest cluster, denoted by C, is shown inside an arbitrary domain at resolution
3km×3km and infectiviy β∗ = 450 for the model φ1-ga. Applying the threshold function
Φ at ξ = 1 recovers the C exactly because all patches are above the threshold R0 = 1.
(b) Applying the threshold function Φ at ξ = 4 yields a low-density map with sparsely
distributed clusters, as few patches surpass R0 ≥ 4. (c) The top three largest clusters, by
area km2, are shown as a function of ξ. (d) At specific values of ξ, some sub-clusters join
to form larger clusters—here, the blue and orange clusters proceed to join at ξ = 1.15.
(e) Connecting patches are identified when large discontinuities arise when back-stepping
ξ → ξ − δξ, shown here by the blue pixels; removing these patches fragment the cluster
C in C1 and C2.
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connectedness within the domain can depend on a small number of patches.

7.1.2 Iterative cluster fragmentation

Each R0-cluster can be iteratively fragmented N times to produce a set of disconnected

sub-clusters, where, on average, each fragmentation iteration produces N +1 sub-divided

clusters. Figure 7.2 demonstrates the iterative process for the example cluster C from

Figure 7.1(a). During first iteration the target cluster C is fragmented into C1 and C2,

shown respectively in Figure 7.2(a) as orange and blue. After each iteration, sub-clusters

are ranked according to the area they cover, the next iteration proceeds by targeting the

largest sub-cluster; this is illustrated in Figure 7.2(b) when C1 is targeted during the next

iteration at N = 2, producing a third disconnected sub-cluster (C3) shown in green. The

process is then repeated N = 10 times to produce 11 disconnected fragments in Figure

7.2(c).

Figure 7.2(d) shows the sub-cluster size reductions for N = 25 iterations and a number

of different infectivity parameters. For all infectivity parameters considered, the largest

sub-cluster continually decreased for each iteration of fragmentation. Moreover, cluster

size reductions occurred more rapidly at first and slowed down as N → 25. Sub-cluster

size reductions were observed to approximately follow an inverse power law of the form

f(x) = ax−k. Hence, an inverse power function was in Figure 7.2(d), indicated by the

coloured dashed lines. Fitted parameter values of a and k reflect the initial cluster size

and rate of decrease, respectively. Higher infectivity parameters fit a larger constant a

and a smaller exponent k, indicated in the legend. Therefore, the fragmentation process

becomes progressively inefficient as β∗ increases, demonstrated most clearly by comparing

the gradient of the purple and blue lines in the logarithmic inset axes2.

Lastly, Figure 7.2(e) shows the corresponding number of connecting patches, or ‘control

area’, identified over each β∗ value and iteration. The number of removed patches tends to

decrease with iteration—most likely due to the smaller areas involved—and increase with

2Additionally, fragmentation was tested alongside the 2nd and 3rd largest R0-clusters (not shown);
for each value of β∗, a and k compared similarly to the 2nd and 3rd largest ranked clusters.
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Figure 7.2: The fragmentation algorithm is shown as an iterative process. (a) The exam-
ple cluster (C) is fragmented into two sub-clusters (C1 and C2) during the first iteration
of the algorithm. (b) During the next iteration, the largest sub-cluster C1 is targeted to
produce an additional cluster fragment, denoted here by C3 in green. (c) The process is
iteratively repeated N = 10 times to produce 11 sub-dived clusters. (d) The sub-cluster
size reductions are plotted for 25 iterations of the algorithm over a range of infectivity
parameters. It was observed that size-reduction approximately follow an inverse power
law, as indicated by the corresponding fitted dashed lines. Lower infectivity parameters
correlate to an efficient fragmentation in contrast to higher β∗ values—suggested by the
logarithmic inset plot. (e) The area of connecting patches, or ‘control area’, is plotted
against the iteration—truncated to 15. Generally, the number of connecting patches
increases with infectivity and decrease with iteration.
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infectivity. For example, when β∗ = 850, Figure 7.2(e) shows a control area on the order

of 100km2, arguably, treating a spatial extent of this magnitude would be exceedingly

challenging in practice. Thus, when β∗ becomes high, it is clear to see a limitation in

the framework. In the next section, we outline a potential framework for using cluster

fragmentation as a means to achieve ‘regional containment’.

7.2 Efficient epidemic control: scenario testing

Regional containment can be tested as an epidemic control strategy by considering hy-

pothetical outbreaks from various epicentres. Figure 7.3 demonstrates containment for a

single epicenter marked by the black cross—located inside the same target cluster shown

in Figures 7.1 and 7.2. We can achieve epidemic containment in several ways, as alluded to

by Figure 7.3. The connecting patches (identified over N = 25 fragmentation iterations)

can be combined in many ways to define different boundaries around the epicentre. For

example, Figure 7.3(a) defines a boundary by considering connecting patches determined

in the 1st, 3rd, 7th and 8th iterations, shown in red. The boundary then defines a confining

sub-cluster around the epicentre; in theory, light-grey patches remain disconnected and

susceptible whilst the dark grey patches are removed/at-risk.

The ratio NS/(NR × NC) provides a simple notion of how epidemic control efficiency;

whereNS, NR andNC are the number of patches that remain susceptible, become removed

and are targeted for control, respectively. We have efficient containment when the number

of ‘saved’ patches is high and the number of patches removed and controlled is low.

Henceforth, the term ‘control payoff’ denotes the ratio NS/(NR×NC). That is to say, we

have a large control payoff when NS/(NR×NC) is large. Additionally, we keep the control

method generic, though it usually involves either culling or the biological treatment of

infected hosts.

Resources to control the pathogen are finite and depend on governmental budgets. How-

ever, with more work, we may also be able to compute a limit on NC and perform a

more sophisticated analysis. Similarly, NR paints the simple picture of patches becom-
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ing removed/at-risk; in reality, the number of patches at risk of removal would be more

complicated and subject to LDD and stochastic below-threshold outbreaks. However, we

continue with a theoretic investigation with no expressed limit on NC and a simple notion

of NS.

Lastly, it is worthwhile to describe some edge cases and complexities that arise when

determining containment scenarios. Suppose that containment is detected about an epi-

centre by combining the connecting patches identified in two arbitrary iterations Ni and

Nj. In this scenario, some patches from Ni and Nj may be located away from the con-

taining sub-clusters boundary, i.e. in distant (non-bounding) locations. Thus, irrelevant

(non-connecting) patches were identified by employing the binary dilation operator; in

this way, only patches neighbouring the confining sub-clusters perimeter contribute toNC .

Moreover, combinations of connecting-patch iterations that failed to define a confining

sub-cluster about the epicentre must be ruled out from the analysis.
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N ∈ (6,7,8)

N ∈ (1,2,4)N ∈ (1,3,7,8)

N ∈ (2,3,5)

(a) (b)

(c) (d)

S R C∅
Figure 7.3: A variety of different control choices are possible for each epicentre, based on
the landscape-level host aggregation. Here, the algorithm recursively fragments the target
cluster C through N = 25 iterations, then different combinations of connecting patches
can be used to contain the outbreak in a variety of ways. Panels (a-d) represent a small
sample of control scenarios for an arbitrary epicentre marked by the central black cross.
Red patches indicate where landscape-level control C should be targeted to contain the
epidemic. Light grey patches remain susceptible (S) whilst dark grey parches are assumed
removed/at-risk, denoted by R. In practice, every possible control scenario is assessed
against every possible epicentre.
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7.2.1 Results: control payoff

Containment scenario payoffs were assessed against all possible epicentres in Great Britain.

For each scenario, the sub-cluster centre of mass (COM) defines an epicentre, i.e. we

compute the COM for each sub-cluster produced from N = 20 iterations of target-cluster

fragmentation. As before, ‘target cluster’ refers to the largest dominating cluster detected

in the R0 map for each β-valued domain. Containment scenarios can then be determined

for each epicenter—as described above. The payoff ratios were then ranked according to

the payoff ratio NS/(NR × NC), as shown in Figure 7.4—all panels consider the model

φ1-ga resolved to 5km× 5km sized patches.

Figure 7.4(a) presents the top 25 epidemic containment scenarios over a range of infectiviy

parameters in the interval β∗ ∈ [0, 1000]. The reader is referred back to Chapter 6 and

Figures 6.9-6.10 for background information on cluster size with infectiviy β∗. Beyond

β∗ = 200, each value of infectivity involved a large number of containment scenarios,

i.e. typically between 103 − 104 containment scenarios per β∗ parameter. The payoff

ratio starts small with low infectivity values and begins to peak before dropping off. The

control payoff is low for low values of β∗ since the number of trees saved is generally

lower on account of small susceptible clusters. Figure 7.4(a) therefore indicates that this

strategy of control is not desirable for pathogens with low infectivities.

For exceptionally high values of β∗, a small number of control scenarios record high-

valued payoff ratios, plotted in the shaded region Figure 7.4(a); this arises on account of

efficient edge-location control that saves vast swathes of the host population with a low

number of host removals. Arguably, this represents a limitation of the payoff ratio, as

we’ve defined in this Chapter, because in reality edge-location control is highly idealistic

and unlikely to be realised.

Interestingly, Figure 7.4(a) indicates that regional epidemic containment is most efficient

over a specific parameter regime, since the highest payoff scenarios occur in the interval

β∗ ∈ [400, 600]. Nonetheless, these are preliminary indications. As section 6.4.6 demon-

strated, nearest-neighbour structuring elements do not scale with changes landscape-level
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resolution. Given that Figure 7.4(a) is based on φ1-ga at the resolution 5km×5km, the re-

sults presented by Figure 7.4(a) are likely to change if containment scenarios are computed

with smaller patch sizes. Although Figure 7.4(a) demonstrates an important observation,

more work is needed to be confident that regional containment is most effective over the

interval β∗ ∈ [400, 600].

Figure 7.4(b) illustrates the complete set of scenario tests for β∗ = 500 (i.e. the β∗

parameter that registered the highest control payoff). The number of saved patches that

remain in S (i.e, NS) is plotted against NR × NC . The upper and right-hand marginal

plots show the corresponding probability density functions for NS and NR × NC . Each

PDF shows a skewed distribution, with most scenarios involving a smaller value of NS

and NR × NC . Of the 3850 containment scenarios, a small number of high performing

tests populate the bottom right-hand quadrant, when NS is large and NR × NC is low.

This region in the plot represents scenarios where containment is most efficient i.e. the

right and left-hand distribution tails when NS is large and NR ×NC is small.

Figures 7.4(c-e) show three scenarios of interest, orange and blue clusters depict removed/at-

risk and susceptible/saved patches, respectively. Red crosses indicate where the control

should be focused to achieve containment. Figure 7.4(c), depicts the likely scenario

with a central focus of infection. Most of GB remains at risk, yet some Northern and

Southern regions surrounding the target cluster remain protected from the pathogen. If

the disease has not yet reached the connecting patches (identified by the red crosses),

Figure 7.4(c) indicates that regional containment might be attempted alongside target-

ing a disease wave-front [Cunniffe et al., 2016], or more local-scale pathogen eradication

[Cunniffe et al., 2015b]. Although, ultimately, more work is needed to assess the efficacy

and possibility of halting/slowing the spread.

The targeted control patches in Figure 7.4(d) resemble those identified previously in

Figure 7.1(e), yet this time for a higher β∗-valued domain at a lower landscape-level

resolution. Desirably, observing connecting patches in approximately the same location

for different infectivity values suggests that some patches may be important for control
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Figure 7.4: The control ‘payoff’ is accessed by comparing the number of patches that
remain susceptible (NS) against the number of patches removed (NR) and controlled
(NC). (a) The payoff ratio NS/(NR ×NC) is plotted against the infectiviy parameter β∗

for the top 25 highest payoff scenarios. (b) The complete list of (3850) different scenario
tests are plotted for the highest payoff infectivity parameter β∗ = 500; the lower right-
hand quadrant defines the most efficient control scenarios. (c-e) Spatial plots that show
three hypothetical scenarios from panel (b), with payoffs ranked 1, 50, 100. Blue and
orange clusters outline patches that remain susceptible and become removed, respectively.
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at various epidemic scales. Moreover, Figure 7.4(d) hints toward there being similarities

at and different resolutions—the concern mentioned above.

Figure 7.4(e) reveals the highest payoff result for β∗ = 500. In this scenario, the epicen-

tre lies close to the Eastern coastline (Skegness), and the control area is located slightly

inland (approximately between Lincoln and Sheffield). The zoomed inset highlights a

single 5km× 5km patch, and control saves the vast majority of GB from infection. This

scenario is no doubt idealistic and unlikely to be realised in a real-life outbreak. In a

real-life outbreak, epicentres are unlikely to be so conveniently located about the coast-

line. Furthermore, detecting and controlling the pathogen remains difficult before it

spreads to distant (and more centralised) locations. Nevertheless, Figure 7.4(e) rein-

forces the intuitive notion that epicentres around edge positions are contained efficiently.

The inset highlights where pathogen dispersal might jump between clusters, indicated

by the curved arrows. Although wind-dispersed secondary infections are likely rare over

these spatial scales (5-20km), they are nevertheless thought possible for fungal spores

[Grosdidier et al., 2018]; the analysis presented here neglect these complexities, which

requires further investigation.
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7.3 Discussion and future research

This Chapter outlined a conceptual strategy of landscape-level control, targeting a pathogens

local wind-dispersal mechanism. The strategy aims to preferentially control the pathogen

through identified patches in the host population. In an idealistic scenario, cluster frag-

mentation can be achieved along with ‘regional containment’ if the identified patches

are taken below the epidemic threshold. Nonetheless, fungal spores are thought to

be able to disperse over large distances, e.g. from mainland Europe to Great Britain

[Wylder et al., 2018, Freer-Smith and Webber, 2017]. Given that the effects of LDD (be-

yond 5km) were neglected, the utility, efficiency and practicality of real-life implementa-

tion remain unproven. However, the work undertaken in this Chapter sets the scene for

future investigations.

Various large-scale models have examined spread over contiguous cells, or patches, e.g.

[Gaydos et al., 2019, Cunniffe et al., 2016, Meentemeyer et al., 2011]. However, to our

knowledge no large-scale studies involve the spatial arguments based on population het-

erogeneity presented in this Chapter. Although the idea of density reductions unpinned

control in this work (consistent with more traditional methods of eradication), the pos-

sibility of other biological control methods remains an attractive option, e.g. fungicide

treatments [Hauptman et al., 2015].

Targeted epidemic control goes hand-in-hand with an on-the-ground understanding of

which regions become infected. Subsequently, the method presented to identify high-risk

areas might find applications in enhanced monitoring and surveillance [Parnell et al., 2017],

discussed previously in section 1.2. Consequently, future work could access the method

of critical/connecting patch detection for enhanced landscape-level monitoring.

The algorithm constructed in section 7.1 presented a means to identify ‘connecting

patches’, which if taken below R0 = 1 would fragment the cluster. Related concepts of

network fragmentation exist in telecommunications [Albert et al., 2000], ecological space

modeling [Luo et al., 2021] and human epidemiology [Chami et al., 2017]. However, no
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Figure 7.5: A diagram illustrating potential research avenues to improve the framework
and better evaluate the control strategy. (a) Examining the transmission probability
between a source and target patch as a function of distance r and infectivity β. (b)
Understanding the degree to which control of an intermediary patch (ρcontrol) can disrupt
dispersal between a source and target patch.

sources could be found relating to spatially-explicit epidemic spread over a landscape of

trees. The algorithm described in 7.1 treated patches below the threshold as negligible,

without this assumption CCA would cease to work. Given the possibility of stochas-

tic below-threshold spread, future work should move towards a generalised (risk-based)

scheme that factors in the presence of patches below R0 = 1; in such a scheme, we may

ultimately question the choice of CCA due to its binary nature and inability to describe

non-local coupling. Subsequently, routes to progress and improve the framework and

control strategy are outlined below.

7.3.1 Future research questions

Throughout Chapters 6 and 7, nearest-neighbour connectivity underpinned R0-map clus-

tering. Ultimately, this followed from defining R0-maps based solely on ‘within-patch’

interactions. Moving forward, we require an enhanced understanding of ‘between-patch’

interactions. Figure 7.5 illustrates two future research questions that could help develop

the framework and assess the utility of landscape-level control.

Patch-to-patch transmission

A modelling setup could define two patches, a source patch (ρsource) that hosts the infec-

tion at t = 0, and an infection-free target patch (ρtarget). Ideally, patches should mirror

the highest possible resolution—given by 1km2 for the maps of predicted ash abundance
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given by [Hill et al., 2017]. One could then assess the transmission probability between

ρsource and ρtarget as a function of distance r and infectivity β, reflected in Figure 7.5(a).

A similar on-the-ground experiment was conducted by [Grosdidier et al., 2020], who ac-

cessed the prevalence of collar canker and rachis symptoms in neighbouring ash. The

authors found that the influence of ADB decayed exponentially up to 200− 300m away

from a high-density source.

Although inverse power laws are more likely to describe the spread of ADB, contrasting

the transmission probability between Gaussian and power-law dispersal models for dif-

ferent levels of β could prove insightful. In particular, this examination could provide

two length-scales, above which, patch-to-patch transmission is unlikely. Such insights

could help understand the disease spread between infected ash stands and help bolster

the knowledge of forest managers, especially when constructing new stands.

If the source patch reflects on-the-ground observations of infected areas, we can speculate

about constructing a ‘transmission probability’ map in GB. In theory, an ensemble average

calculating the transmission probability as a function of distance r, infectivity β and

target/source densities could be projected onto the map of predicted ash abundance.

Then, we could aim to construct a probability map depicting which neighbouring regions

are likely to become infected. An accurate and reliable probability map could provide

immense value to rapid-response control initiatives by helping direct the allocation of

resources in the early phases of an invasion. Although, this notion undoubtedly requires

effective monitoring and surveillance to detect disease inside infected patches before the

disease has had time to propagate over large areas.

Between-patch control

Lastly, targeted control rests on artificially reducing R0 below unity—outlined in section

7.2. Subsequently, non-existent epidemic spread was assumed for patches R0 = 1. More

research is required to understand this assumption and further assess the efficiency of

control. In addition, resource constraints were neglected. In reality, control initiatives

are limited by governmental budgets and the funding made available to stakeholders.
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Therefore, any robust control strategy should make efforts to incorporate the influence

of government budgets in large-scale control [Cunniffe et al., 2016].

Figure 7.5(b) illustrates a potential setup to progress the understanding of landscape-

level control by considering a system of three coupled patches. The coupled system

shown in Figure 7.5(b) is similar to Figure 7.5(a), although this time an intermediary

‘control’ patch separates the target and source patches. In this system, dispersal can

either jump between or directly over the control patch, shown by the solid black and

dashed grey arrows, respectively. In ρcontrol, control can be achieved by reducing tree

density through sanitation felling or by reducing β (mirroring biological control, e.g.

fungicide treatments).

Studying the effect of different control measures in ρcontrol could provide crucial insight

into the control strategy proposed in this Chapter. In particular, by studying the number

of infected trees that arise in ρtarget conditional on different control measures. Intuitively,

we could expect efficient control when propagation occurs through a thin-tailed Gaussian

kernel. However, for fat-tailed dispersal kernels, the efficacy of between-patch control

remains far less obvious and subject to more scrutiny. In summary, three hypothetical

outcomes can be expected from studying the coupled system:

1. Between-patch control is insufficient because large numbers of secondary infections

arise in ρtarget due to infected trees in ρsource, regardless of epidemic control.

2. The development of an outbreak in ρtarget is slowed down by control measures in

ρcontrol, conditioned on the degree of epidemic and control.

3. Complete epidemic containment between patches can be achieved, thereby prevent-

ing the pathogen from propagating to ρtarget.

For inverse power law dispersal, complete epidemic containment, as described in (3), is

unlikely due to its fat-tail. However, future research could assess the degree to which

control slows down the spread between patches, conditioned on epidemic and control

parameters. Although, the answer to these questions remains open to investigation.
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Chapter 8

Discussion

In this thesis, a simple model of forest epidemics was incrementally extended into a more

elaborate framework. Each incremental improvement led to a novel, general-purpose

framework to visualise epidemic severity across GB. The framework is computationally

efficient and adaptable to any wind-dispersed tree pathogen, provided a sufficient host

density distribution is available. Conclusively, more research is required to progress and

test the model against observational disease incidence data. However, several exciting

research avenues emerge from the work conducted in this thesis—discussed more below.

After setting the scene with a simple lattice model (SLM) of tree disease in Chap-

ter 3, Chapter 4 linked the SLM with a map of predicted oak abundance given by

[Hill et al., 2017] to produce a large-scale ‘toy’ model. A key result emerged from Chapter

4. Namely, that NN interactions were fundamentally insufficient to describe the spread

of disease across lower, more realistic landscape tree densities. Fortunately, Chapter 5

resolved the issue by constructing a non-local dispersal model. Nonetheless, Chapter 5

also demonstrated that a small dispersal length scale can still gives rise to an unnatural,

wave/percolation-like epidemic. At the very least, these results bolster the growing body

of research highlighting the importance of dispersal and help guide modellers to construct

more representative models in botanical epidemiology.
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Additionally, Chapter 5 examined two methods of calculating R0 for a non-local dispersal

model (NLM) over a range of epidemic parameters. Results from Chapter 5 indicate that

when the scale of dispersal is comparable to the domain, the model approximates a mass-

action well-mixed system described by the standard SIR model. However, comparisons

to the SIR model were simplified and limited to one parameter (i.e. the ratio β/γ).

Subsequently, the analysis constitutes a preliminary result, and a more sophisticated

comparison method is required to glean further insight.

Most intriguingly, the spatially-explicit derivation of R0 led to an ‘entire function’ in

Equation 5.14, a well-known function in complex analysis [Abramowitz and Stegun, 1948].

Entire functions have been examined in several theoretical settings (e.g. [Littmann, 2005,

Hryniv and Mykytyuk, 2009, Sixsmith, 2011]), including a spatially-structured popula-

tion model with dispersal [Zhang, 2017]. However, despite a detailed search, no theoret-

ical studies expand or develop upon Equation 5.14 in the context of epidemics. As such,

Equation 5.14 marks a different approach for determining R0 that considers the spatial

structure, host density, dispersal mechanism and infectivity. Further theoretical studies

could explore a more rigorous analysis of Equation 5.14 and perhaps examine an alter-

nate derivation incorporating inverse power law dispersal with exponentially-distributed

removal lifetime dynamics. However, the mathematical derivation might become too

challenging in the face of more complicated epidemic models

Then in Chapter 5, the analytic expression of R0 was compared against the ‘actual’

contact-traced reproduction ratio. Both methods used to determine the reproduction

ratio demonstrated a clear epidemic threshold at R0 = 1, marking an important finding.

Nevertheless, comparing both methods revealed that the analytic expression overesti-

mates R0 for progressively higher values (R0 ∼ 10), highlighting a significant limitation

in the approach. Had the analytic expression been applied to a dense forest or highly ag-

gregated distribution (where ρ > 10% and R0 is likely higher), the overestimation would

only increase. The utility of Equation 5.14 therefore diminishes when used to describe

highly infectious regimes but serves as an accurate approximation around the threshold

R0 ≈ 1. Notwithstanding, tree-based diseases are unlikely to reach such exceptionally
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high epidemic values (where R0 > 10), as supported by estimates of 1 / R0 / 6 for the

Dutch elm disease epidemic in GB [Swinton and Gilligan, 1996a] and 1 / R0 / 4 for oak

processionary moth epidemics in London [Wadkin et al., 2022].

In contrast, the contact-tracing method computes the mean number of infections per

infected tree over different infected generations. Computing the mean-generational re-

productive ratio proved convenient and led to a sharper epidemic threshold for later

generations. These observations relate nicely to [Tildesley and Keeling, 2009], who stud-

ied a similar method to calculate R0 for foot and mouth disease. Despite the convenience

of contact-tracing secondary infections in the model, it would be challenging to measure

in natural systems experimentally. As such, the method remains applicable to abstract

modelling work alone and not in-the-field experiments.

The central value of Chapter 6 results from outlining a novel framework to link a wind-

dispersed epidemic model with species abundance data. The framework focused on the

fungus ADB, which is well-established and already spread throughout Europe and the

UK. Thus, unfortunately, attempting eradication at this stage of pathogen development

is untenable [Hill et al., 2019]. Still, Chapter 6 marks a step towards a general framework

that can help policymakers reach informed decisions about where to focus epidemic con-

trol. In particular, the framework could provide value as an approach to threat assessment

and rapid response modelling during the early phase of an epidemic.

In addition, Chapter 6 developed a simplified spatially-explicit SEIR model that described

the seasonal spread of ash dieback (ADB) over local spatial scales. Subsequently, we cou-

pled the ADB model to a map of predicted ash abundance given by [Hill et al., 2017]

to produce an R0-map that covered GB. Under the threat of ADB, the UK govern-

ment commissioned some early ’rapid response‘ modelling work as part of the Chalara

management plan1 [Defra, 2013]. Although, the modelling work undertaken by Chalara

Cambridge plant sciences remains unpublished. Regardless, no compartmentalised model

of ADB could be found in the literature. Therefore, to my knowledge, the ADB model

1As set by the government, readers can find more information by reading the Chalara Management
Plan: https://www.gov.uk/government/publications/chalara-management-plan
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presented in this thesis is the first mechanistic (compartmentalised) attempt to model

ADB’s epidemic spread.

Treating infectivity as a free parameter in Chapter 6 led to several notable observations.

When infectivity is low, the R0-maps become sparsely populated with susceptible patches

above the epidemic threshold. Consequently, the R0-maps indicate that ADB would be

unlikely to invade GB below a hypothetical minimum infectivity value. Similarly, clusters

in the R0-map proliferated over four orders of magnitude between a narrow range of infec-

tivity parameters. Altogether, the model alludes to behaviour akin to a global epidemic

phase transition across GB, though numerous assumptions limit the framework. Keeping

infectivity as a free parameter enabled R0-map analysis over a spectrum of parameters.

Nevertheless, arbitrarily defining infectivity underpinned a significant limitation in work,

and future research should aim to address this by fitting a value of β to data.

Several published datasets record the spread of ADB throughout different European

countries, e.g. [Grosdidier et al., 2020, Stocks et al., 2017]. Such datasets could form

the basis of fitting β using Bayesian Markov-chain-Monte-Marlo methods to estimate

tree pathogens’ epidemic speed and lifecycle parameters. Similar approaches have been

adopted to infer the spread of SOD in California [Filipe et al., 2012], and citrus canker in

Florida [Neri et al., 2014]. However, no such work has been undertaken for ADB. Further

research is ultimately required to confirm the suitability of statistically fitting data to the

spread of ADB. At the very least, comparing mortality in the simulated ADB model to

mortality curves reported in the literature [Coker et al., 2019, Alonso Chavez et al., 2015,

Lõhmus and Runnel, 2014] could form a more straightforward approach to fitting infec-

tivity.

ADB mortality rates depend heavily on the landscape, composed of either rural, woodland

or urban settings. The type of environment is one particular consideration relevant

for future epidemic parameter inference studies. For simplicity, Chapter 6 neglected

environment types and employed a one-to-one mapping between infectivity and each

R0-map. In a more sophisticated model, each gird in the R0-map would depend on a
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β parameter dependent on the type of environment. Thus, statistical inference based

on the environment type goes hand-in-hand with improving accuracy in the R0-map.

The national forest inventory could conveniently aid these future improvements, as it

holds relevant information on which regions are woodland, forest or urban—discussed

previously in section 4.2.1.

Chapter 7 outlined the first steps toward epidemic control predicated on the host spatial

structure. That is, identifying and targeting positions in the host distribution that may

disrupt epidemic dispersal between regions. Initial results reveal that epidemic connec-

tivity can depend on a small number of ‘connecting’ positions in the host distribution.

Nevertheless, more research is required to assess the utility and efficiency of the control

strategy. Chapter 7 outlined a potential research direction to examine and test the con-

trol strategy by considering a set of coupled patches in section 7.3.1. From the coupled

system, the transmission probability and effect of control between host patches can be

assessed. Until this work is undertaken, the strategy remains speculative. Following

the research direction posed in section 7.3.1, future work should develop the definition

of connectivity inside the R0-map. Each pixel within an R0-map reflects only isolated

within-patch interactions and not between-patch LDD. As such, there is no non-local con-

nectivity between pixels in the map, a limitation clearly revealed when analysing clusters

at different landscape resolutions in section 6.4.6.

Unsurprisingly, insufficient host data underpins a significant limitation in this thesis.

Although the predicted ash abundance map captured the overarching large-scale distri-

bution of ash in GB, Hill et al. reported a RMSE of 5ha. Therefore, in reality, regions

below the threshold might be susceptible—and vice-versa for above threshold regions.

Unfortunately, such errors mean that the host distribution is not accurate enough to

inform the hypothetical (fine-scale) management scenarios presented in Chapter 7. Until

species abundance data captures the host distribution more reliably, country-wide appli-

cations remain extraordinarily ambitious. In response to this limitation, future research

could concentrate on smaller-scale areas where abundance data is known. For example,

by examining well-surveyed areas inside the UKCEH Countryside Survey data.
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The regional containment strategy of Chapter 7 could help enhance the government’s

contingency and preparedness planning for new invasions. Presently, DEFRA lists con-

tingency measures for numerous botanical diseases on the plant health portal2. Generally,

contingency measures describe ‘demarcated zones’, consisting of an ‘infected area’ and

a ‘buffer zone’3. Infected areas outline (r / 100m) regions directly surrounding verified

infections where the destruction of susceptible plant material is recommended. Then, a

buffer zone (1km / r / 2.5km) is established around the infected zone. Buffer zones are

subject to continuous surveillance and monitoring to detect new infections. However, no

initiative exists to coordinate epidemic control between different infected zones. Instead,

contingency plans aim to manage infected/buffer zones independently, which contrasts

with the regional control strategy proposed in Chapter 7.

In a large-scale outbreak with several confirmed infected areas, the method illustrated in

Chapter 7 could help prioritise which infected sites undergo epidemic control, with the

added benefit of effectively slowing the spread between regions. For example, regional

containment would be advantageous when an emergent infectious epidemic threatens to

invade an uninfected yet high-risk neighbouring area. Another use-case pertains to a

scenario where outbreaks established close to the coastline threaten high-risk regions

situated more inland, as illustrated by Figure 7.4(e). In any case, slowing the spread

between regions gives tree populations added time to recover and offers policymakers and

stakeholders vital time to respond.

In conclusion, the research narrative developed in this thesis aims to help inform poli-

cymakers about where to focus epidemic control. The approach constitutes an epidemic

mapping framework for tree disease with parallels to the emerging field of Infectious Dis-

ease Cartography in human epidemiology. The framework is computationally efficient,

flexible, and adaptable to other pathosystems. Several theoretical insights were ascer-

tained from deriving a spatially-explicit expression for R0 and comparing it against a

2DEFRA’s current set of contingency plans can be found at the following address:
https://planthealthportal.defra.gov.uk/pests-and-diseases/contingency-planning/.

3Relevant contingency measures include DEFRA’s plans to manage Xylella fastidiosa, oak wilt, oak
processionary moth and emerald ash borer
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stochastic non-local dispersal model. Lastly, a novel epidemic control strategy was out-

lined, though more work is needed to progress the framework and rigorously validate

results.
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Appendix A

Simple lattice Model

A.1 Propagation algorithm

In Chapter 3, a percolation-based epidemic model was outlined following previous work

[Orozco-Fuentes et al., 2019]. Starting from simplicity, the model assumes local trans-

mission between nearest neighbours. Local structure within the network is described by

the von Neumann neighbourhood [Toffoli and Margolus, 1987]. Consider a small 3 × 3

matrix, denoted by S, representing a small patch of forest. In the matrix, values of 1 and

0 represent susceptible (S) and insusceptible (∅) states, respectively. Similarly, infection

and removal matrices, I and R, track infected and removed tree states. A hypothetical

system at time t = 0 is outlined below:

S =



0 1 0

1 0 0

0 1 0


I =



0 0 0

0 2 0

0 0 0


R =



0 0 0

0 0 0

0 0 0


(A.1)
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A.1.1 Transition probabilities

An infected tree I1,1 = 2 occupies I. Whenever Ii,j ≥ 2, Si,j = 0, i.e. susceptible and

infected states cannot occupy the same lattice location. The algorithm locates nearest

neighbour (NN) susceptible trees about each infected tree, and then generates random

numbers for each NN. In the matrix equations outlined in system A.1, we generated

{R0,1, R1,0, R3,2}. Hence, a ‘potential’ infection matrix I′ is formed:

I′ =



0 R0,1 0

R1,0 2 0

0 R2,1 0


(A.2)

Each random number is generated between [0, 1] according to a continuous uniform dis-

tribution. For a system with infectivity β, a transition into the infected compartment

occurs if Ri,j 6 β, following a Bernoulli trial. For example, if R0,1 6 β and R1,0, R2,1 ≥ β,

then at time t = 1 the matrices are updated:

S =



0 0 0

1 0 0

0 1 0


I =



0 2 0

0 3 0

0 0 0


R =



0 0 0

0 0 0

0 0 0


(A.3)

Note, for each time-step, the numerical values of infected trees increase by one, i.e Ii,j+ =

1. Finally, when the number of time-steps reaches the infectious lifetime (T ), transitions

into the removal matrix occur. That is, when Ii,j = T + 1→ 0 and Ri,j = 1.

Throughout the course of a simulation, the steps listed above are iteratively repeated over

a set time-horizon, typically t = 3000. Eventually, one of the three boundary conditions
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(BCs) is met and the simulation ends:

• No infected trees are registered in the domain

• Percolation to either lattice edges are detected

• The number of time-steps reach the time-horizon

Moreover, at t = 0, initial conditions (ICs) in the model can vary as:

• A centrally located ‘focal’ source of infected trees

• A randomly distributed set of infected trees

• N number of infected trees

Listing A.1: An algorithm written in Python to compute matrix equations and simulate

disease spread. A GitHub repository contains all the computer code used to generate

Chapters 3 and 4: https://github.com/John-Holden/percolation_tree_model.git

def run(S, I, R, beta , T=10, L=500):

"""

Run algorithm

:param S: array -like , susceptible matrix

:param I: array -like , infected matrix

:param R: array -like , removed matrix

:param beta: float , transmission probability

:param T: int , infectious life -time of a tree

:param L: int , lattice dimension

:return:

"""

# - Begin - #

for t in range (3000):

# nn : nearest neighbours ,

# - single out vertical and horizontal nn respectively

nn = np.roll(I, 1, axis =0) + np.roll(I, -1, axis =0)

nn = nn + np.roll(I, 1, axis =1) + np.roll(I, -1, axis =1)

nn = (nn * S) > 0 # sigle out susceptible trees only

# inf_dyn : infection dynamics (a probability)

inf_dyn = np.array(np.random.uniform(size=[L, L]) < beta)

# add 1 to exitsting ifectes

# combine neaibourhood to infection status

I = I + (I > 0) + 2 * nn * inf_dyn.

S = S * np.where(I > 0, 0, 1) # take away infecteds from S

R = R + np.where(I == T, 1, 0) # transition I to R

R = np.array(R_tree > 0).astype(int). # Hold R as binary

I = I * np.where(R > 0, 0, 1) # Remove infected status

# continue ...
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A.2 Towards a continuum model

Here, we move away from the discrete stochastic percolation model outlined previously

and examine alternate modelling paradigms. A set of field equations describing the

evolution of the probability fields S, I and R for the simple lattice model are described.

From the percolation model in section 3.3, three states were defined for each lattice site

i: susceptible, infected, removed Si, Ii, Ri. The evolution of these lattice sites were dic-

tated by Mote-Carlo steps where each infected lattice site has a chance to infect a nearest

neighbour moving a susceptible tree in state S to infectious state I before finally transi-

tioning into the R compartment in T = 10 time steps. Each simulation can be seen as an

individual realisation of the physical process, however, a great many other potential re-

alisations could have occurred. This is easily demonstrated around percolation threshold

where successive iterations lead to differing results, some simulations will percolate and

be considered an epidemic while some will not. Even if well above or below the threshold

of transmission, infected trees will propagate differently and trace out unique pathways

through the domain owing to a very small probability of tracing out exactly the same

pathway. Therefore, this individuum paradigm is noisy and only useful for understand-

ing average behavioural quantities when ensemble averaged which is limited in scope by

computer memory.

An alternate method, requiring no ensemble-averaging, would be to formulate a set of

differential equations which describe the probability-evolution of lattice sites i in the do-

main being in either states S, I, R. This method would yield the benefit of not needing

to ensemble-average results in order to determine average behaviours as a single iteration

of the simulation by construction gives us the mean field evolution. Furthermore, simu-

lations when animated spatially would give average travelling wave behaviour equivalent

to running many stochastic simulations and combining frames (which could require large

amounts of data). As before, the initial population of trees in the domain is seeded with

probability p, with exception of a small number of initially infected trees at the center of

the domain. The empty lattice sites at t = 0 and the removed lattice sites at t ≥ T be-
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have exactly the same remaining non-infectious to susceptible trees therefore both empty

and removed lattice sites can be described by state R

Si = p; Ii = 0; Ri = (1− p) (A.4)

Where p is the probability of being occupied by a susceptible tree (equivalent to tree

density). Now a set of dynamical equations which govern the evolution of fields S, I, R

can be outlined by considering the dynamics of the simple lattice model; over a single

time-step an infected tree at position i has probability β of infecting a healthy nearest

neighbour, this is given by βI(t)i i.e. the probability of transmission multiplied by the

probability being infected. Considering a healthy tree at position i surrounded by 4

nearest neighbours j, where j denotes j = ±∆x or j = ±∆y, we can describe the

probability of Si remaining healthy by:

∏
j

(1− βI(t)i+j) (A.5)

where the repeated product gives us the chance of not being infected iterated over all

nearest neighbours 1. The reduction of probability in a tree at site i remaining susceptible

is then given by:

Si(t+ ∆t)− Si(t) = −Si(t)
∏
j

[
1− βI(t)i+j

]
(A.6)

From this, the field S can be seen to monotonically decrease. From this point it is easiest

to consider the evolution of fieldR. In the simple percolation model transition times where

set to n time-steps before an infected tree transitions into the removed compartment,

therefore a tree infected at time-step t−n∆t will during time-step t→ t+∆t. In original

simulations in chapter 3.3 the value was held constant at n = 10. The change in field R

1In reality the event of a healthy tree being infected by its neighbours are statistically independent
events and therefore calculating the total probability of being infected constitutes a combinatorics prob-
lem of combining the union of n events. It is much simpler to consider the single event of remaining
healthy.
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can then be given in terms of field S by:

Ri(t+ ∆t)−Ri(t) = −
[
Si(t− n∆t)− Si(t− (n+ 1)∆t

]
=

S(t− (n+ 1)∆t)
[
1−

∏
j

(
1− βIi+j(t− (n+ 1)∆t)

)]
(A.7)

Where the right hand side of the top line is substituted with the right hand side of

equation A.6 at time t − (n + 1)∆t. Lastly, noting that all probabilities add to unity,

Si(t) + Ii(t) + Ri(t) = 1, the equations which govern the evolution of infectious field I

can be written as:

Ii(t+ ∆t)− Ii(t) = Si(t)
[
1−

∏
j

(
1− βIi+j

)]
−

S(t− (n+ 1)∆t)
[
1−

∏
j

(
1− βIi+j(t− (n+ 1)∆t)

)]
(A.8)

equations A.6 - A.8 are finite-difference equations and thus describe the evolution of

probabilities at lattice site i given a set of initial conditions. These finite difference

equations can be iterated over a set of time-steps to model average behaviour of an ideal

system away from the critical regime. At criticallity there will be large fluctuations in

behaviour, as the system is in a highly chaotic state and does not belong to any one

power-law distribution, therefore simulations would deviate quite considerably and fail

to show any fractal-like critical structure. Furthermore, equations A.6 - A.8 only describe

systems of sufficiently large domain size due to domain sensitivity effects.

A.2.1 Alternative toy landscape SLM metrics

Below in Figure A.1, a distance-based metric is projected onto the example distribution

of modelled oak data. In generally, a variety of metrics could be captured and displayed

in the heterogeneous landscape SLM; although here, observations of the pathogens max-

imum distance is recorded over many simulations and ensemble-averaged. In comparison

to the mortality ratio (as discussed in section 4.3.4), a similar pattern is witnessed, i.e.
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dmax dmax dmax

var(dmax) var(dmax) var(dmax)

ρ * = 0.36 ρ* = 0.43 ρ* = 0.50

(a) (b) (c)

(d) (e) (f)

Figure A.1: Spatial plots showing the pathogens ensemble-averaged maximum distance
dmax for infectiviy β = 0.25 and density parameters shown.

southerly regions are most effected and maximum distance increases with the effective

density.

Nevertheless, Figure A.1 paints a clearer picture of the extent of disease progression. In-

tuitively, epidemics beginning from effected edge locations in Figures A.1(a-c) can travel

further than centrally located epicentres, verified by the more yellow cluster edges. More-

over, the same high-variance regions are witnessed through Figure A.1(d-f). Together,

the pathogens maximum distance and mortality ratio complement one another, and as

we see from their similarities, a clear correlation exists between them.
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The non-local dispersal model

B.1 An alternate R0 derivation

Starting from an un-normalised Gaussian kernel g(p, q; `) = exp(p
2−q2
2`2

) and infectivity

constant β, we may define the probability of position q being infected due to an infected

tree at p as Pr(q; p) = βg(p, q; `). The domain has tree density ρ0 at time t = 0 and trees

transition through states: S → I → R, with I lasting for T time-steps. Considering the

probability of point q = (x, y) becoming infected on account of an infected tree located

at the origin during the first time-step:

Pr(x, y, t = 0) = βρ0 exp(−x
2 + y2

2`2
) (B.1)

Integrating this over an infinite domain gives R0(t = 0) expected infections, given by:

R0(t = 0) = βρ0

∫ ∞
−∞

exp(−x
2 + y2

2`2
)dxdy = 2πβρ0`

2 (B.2)

At time-step t + 1 there are less trees to infect. Therefore tree density ρ should also

be considered as a monotonically decreasing function of time ρ(t), and the number of
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expected infections should be given by:

R0(t) = 2πβ`2ρ(t) (B.3)

Considering density as a function of time1 in a discrete domain of size L, the average

decrease in tree density over one time-step is given by:

ρ(t+ 1) = ρ(t)− R0(t)

L2

= ρ(t)
(

1− 2πβ
`2

L2

) (B.4)

at ρ(t = 0) = ρ0, therefore, equation (B.4) forms a series from which we may expand to

give a continuous equation of ρ:

ρ(t) = ρ0

(
1− 2πβ

`2

L2

)t
(B.5)

upon substitution back into equation (B.3) we have an approximation for how the number

of expected infections from one infected tree is expected to change over time:

R0(t) = 2πβ`2ρ0

(
1− 2πβ

`2

L2

)t
(B.6)

This expression is compared against numerical simulations in Fig 5.1(c). Then integrating

over the infectious life-time t = T gives an approximation to an effective reproductive

number denoted by R0:

R0 = 2πβ`2ρ0

∫ T

0

(
1− 2πβ

`2

L2

)t
dt

= 2πβ`2ρ0

(1− 2πβ `2

L2 )T − 1

ln(1− 2πβ `2

L2 )

(B.7)

1Density also varies with space as trees are removed quicker for regions closer around the primary
infection. However, negating this lead to an easily solvable expression valid for lower-value regimes.
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I

-simulatedSIR

Predicted

Time

S
Figure B.1: Infectives are plotted as a function of susceptibles, according to the SIR
model for various ratios of α = γ/β. Numerical simulations of the SIR model are
plotted against predictions from equation 5.4, shown as crosses. In all simulations, initial
conditions began from one infected host and 2500 susceptible hosts—the same number
of hosts in a 500× 500 domain at tree density 0.01.

(from
∫
ctdt = ct

ln(c)
). The expression for R0 can be simplified by noting the pathogen

is unlikely to infect trees beyond a distance of 3`, therefore, we can replace the area of

the domain with the area over three standard deviations (i.e. 9π`2), thus leading to the

approximation:

R0 = 2πβρ0`
2 (1− 2/9β)T − 1

ln(1− 2/9β)

B.2 SIR fitting

The standard SIR model has no well-known analytic solution, which complicates model

fitting. As such, a simplified scheme that reduced the SIR model to one parameter was

used as a comparative tool to access NLM simulations. Previously in chapter 5, details

were omitted about the behaviour of equation 5.4, i.e.

I(S) = −S +N
(

1 + α ln(S/S0)
)
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In Figure B.1, numerical simulations of the SIR model are compared against analytic

predictions from equation 5.4. Specifically, the SIR model was simulated—using the

Euler method—for various combinations of infectivity rate β and removal rate γ beginning

from one initially infected and 2500 susceptible hosts. Numerical SIR simulations and

predictions of infected hosts I (from equation 5.4) are shown as solid lines and crosses

respectively. As the ratio α = γ/β decreases, a sharper rise in the infections field I

results, indicating a more infectious outbreak. In contrast, a larger value of α defines a

smoother curve which attains a lower peak. Although equation 5.4 has clear limitations

and descriptive power, it allows a simple one-parameter model to fit the NLM against.

B.2.1 Exponentially distributed times

In Chapter 5, the NLM was constructed with uniform transitions into the removed com-

partment. Here, ‘uniform’ refers to a transition into the R compartment exactly T

time-steps after a host becomes infected. Arguably, uniform life-time transitions are

simple and unrealistic. As such, the NLM constructed in Chapter 5 was re-run with

exponentially-distributed life-times. Figure B.2 shows the SIR fitting procedure against

the exponentially-distributed variant of the NLM. Model behaviour in Figure B.2 looks

much the same, although fitting the exponentially-distributed NLM to the SIR model

resulted in a closer fit for all panels except (b). Exponential life-time are implicit within

the standard SIR framework—discussed previously in section 2.1.3. Therefore, it is un-

surprising that Figure B.2 generally agrees more with the SIR model, as per equation

5.4. What is surprising is Figure B.2(b), showing a much larger disparity. An explana-

tion of the disparity can be put forward by noting that simulations with fixed, uniform

transitions with T lifetimes are typically more infectious that exponentially-distributed

lifetimes with mean T . Figure B.2(b) therefore depict simulations with lower epidemic

severity than the equivalent panel shown in Chapter 5, Figure 5.2(b). As such, the lower-

valued epidemic severity compounds the slowly-spreading wave-like regime (small `, large

L) shown in Figure 5.2(b). Consequently, the fitted SIR model shown in red predicts a

considerably higher rate of spread.
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ℓ=25
ℓ=50

L = 600L = 200

Fitted α
Ensemble mean
Individual simulations

(a) (b)

(c)

S

I

I

(d)

S

α = 4.08 ± 0.04 α = 8.28 ± 0.04

α = 8.08 ± 0.02α = 4.59 ± 0.05 (b) α = 7.00 ± 0.01

Figure B.2: Fitting the NLM with exponentially-distributed infectious lifetimes to equa-
tion 5.4. The equivalent Figure with ‘uniform’ infectious lifetimes was shown in Figure
5.2.
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B.3 NLM: probabilistic implementation

Infection probabilities in the NLM are statistically independent events. Suppose that Iy1

and Iy2 are two distinct infected trees (where y1 6= y2), and that one susceptible tree Sx

at location x exists in the domain. In this case, Sx will experience infection pressure from

Iy1 and Iy2. Assuming that Iy1 and Iy2 survive over the time-step t→ t+ 1, an infection

probability follows the inclusion-exclusion principle:

Pr(Sx → Ix; Iy1, Iy2) = Py1 + Py2 −
[
Py1 ∩ Pyn

]
(B.8)

where Py1 and Py2 are the individual probabilities of transition due to Iy1 and Iy2 respec-

tively. In Chapters 5 and 6, these infection probabilities followed Gaussian and inverse

power-law dispersal models. Now, suppose there are yN infected trees, the inclusion-

exclusion principle is generalised to give the well-known form:

Pr(Sx → Ix; Iy1, Iy2...IyN) =
N∑
k=1

(
− 1
)k+1

[ ∑
1≤y1≤y2≤....≤Pyk≤N

∣∣Py1 ∩ ... ∩ Pyk
∣∣] (B.9)

where each intersection Py1 ∩ ... ∩ Pyk adds a small order correction to the individual

transition probabilities Py1, Py2, ..., PyN . Equation B.9 is complicated, unsightly and com-

putationally hard to simulate. Moreover, the definition of R0 becomes more obscure with

equation B.9 because secondary can in principle be induced under the influence of mul-

tiple sources.

Nevertheless, equation B.9 can be significantly simplified by considering the probability

of remaining susceptible (used also in Appendix A.2). Consider once again the system of

two infected trees (Iy1 and Iy2) and one susceptible (Sx). The probability of Sx remaining

unaffected is given by:

Pr(Sx → Sx; Iy1, Iy2) = (1− Py1)(1− Py2) (B.10)
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and now the probability of Sx becoming infected is:

Pr(Sx → Ix; Iy1, Iy2) = 1− Pr(Sx → Ix; Iy1, Iy2) (B.11)

Generalising equation B.11 to a system of N infected trees and M susceptible trees, over

a single time-step we have:

Pr(Sx1 → Ix1) = 1−
N∏
n=1

(1− Pyn)

...

Pr(SxM → IxM) = 1−
N∏
n=1

(1− Pyn)

(B.12)

where the repeated product is introduced for brevity, which combines and multiplies each

transition probability, i.e (1− Py1)(1− Py2) . . . (1− PyN).

In pseudo-code, equations B.12 follow:

# IMPLEMENTATION (A): Full inclusion -exclusion

def run_algorithm(S_tree_arr , I_tree_arr , R_tree_arr , run_times):

for time_step in range(run_times): # iterate over time -steps

for S_i in S_tree_arr: # iterate over susceptible trees

for I_j in I_tree_arr:

# iterate & store individual probabilities

Pr(S_i --> I_i; I_j)

# combine all probabilities as in equation B.12

Pr(S_i --> I_i; I_1 ,I_2 ,..., I_N)

update I_tree_arr # updated infected tree arr

update R_tree_arr # update removed tree arr

if BCDs:

end

However, upon simulation, it was noted that each individual probability (Py1...PyN) is

small. Otherwise, the degree of epidemic spread becomes unphysical—consider the limit-

ing behaviour when a single infected tree infects every susceptible in one time-step. For

the epidemic parameters of interest, it was noted that combining all probabilities with

the inclusion-exclusion principle (as per the system of equations B.12) was unnecessary

because small-order corrections (intersection Py1 ∩ ... ∩ Pyk) become trivially small.
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A simpler, more intuitive implementation that neglects the probability intersections can

be put forward as:

# IMPLEMENTATION (B): Approx inclusion -exclusion

def run_algorithm(S_tree_arr , I_tree_arr , R_tree_arr , run_times):

for time_step in range(run_times): # iterate over time -steps

for I_i in I_tree_arr: # iterate over infected trees

for S_j in S_tree_arr:

# compute individual probabilities

Pr(S_j --> I_j; I_i)

update I_tree_arr # updated infected tree arr

update R_tree_arr # update removed tree arr

if BCDs:

end

here, we iterate over infected trees rather than susceptible trees. In this scheme, in-

dividual probabilities between infected and susceptible trees are computed sequentially.

Henceforth, both schemes are denoted as ‘implementation’ (A) and (B), i.e. full and

approximated inclusion-exclusion formulas respectively.

B.3.1 Contrasting implementations: epidemic spread

Implementations (A) and (B) are compared in Figure B.3. Plots in Figure B.3 show

the number of removed trees in R, or tree mortality, for two values of dispersal ` = 25

and ` = 50 and three values of infectivity. In each panel, 25 ensemble realisations were

computed, and both tree density and domain size are fixed to ρ = 0.01, L = 350,

respectively. Overall, both implementations give rise to the same epidemic, illustrated

by the similarity between orange and blue plots.

Two values of dispersal were contrasted, motivated by the idea that for a larger dispersal

value, the intersections of (Py1...PyN) might be larger as trees can interact further apart.

Although, no divergence can be seen between ` values in Figure B.3, except for a slightly

more infectious system when ` = 50—consistent with the results shown in Figure 5.4(c).

Indeed, even highly infectious epidemic systems with β∗ = 25 and β∗ = 100 (10 /

R0 / 100) the spread of disease remains the same. Simulations therefore indicate that

for physical epidemic regimes, both implementations are virtually identical. At some
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Figure B.3: Comparing both the approximated and full probability implementation meth-
ods reveals little to no differences in the tree mortality, or number of removed trees R, over
time for different epidemic parameter combinations. All plots show ρ = 0.01, L = 350,
and were seeded by ten initally infected trees.
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parameter values, neglecting the intersections Py1 ∩ ... ∩ Pyk would undoubtedly deviate

from the full inclusion-exclusion formula. However, we have not encountered a realistic

epidemic regime were the approximation becomes inaccurate throughout this thesis.

B.3.2 Contrasting implementations: computational cost

Despite epidemic simulations remaining the same, a large difference was noted in the

computational cost (and runtime) between both implementations. Figure B.4 contrasts

the computer runtime (in seconds) over a range of infectivity parameters and two tree

densities. Both panels (a) and (b) depict a system with ` = 50 and L = 500 over 10

ensemble realisations. Interestingly, the full inclusion-exclusion formula, as per imple-

mentation (A), is more efficient when β∗ is large and the number of infected trees is high.

Whereas, the approximated inclusion-exclusion formula, as per implementation (B), is

more efficient when β∗ is low and the number of infected trees is small.

The trends in Figure B.4 can be understood by realising that when infectivity is high,

the number of infected trees grows quickly. A large number of computations arise in im-

plementation (A) for lower values of β∗, as we iterate through a large number susceptible

trees. Consequently, the runtime is large, particularly when the infection spreads slowly

and the number of trees in S remains relatively large throughout the simulation. As β∗ is

increased, the number of trees in S decrease rapidly, and runtime decreases accordingly.

The situation is similar for implementation (B). When β∗ is high, a larger number of

infected trees entails a larger number of computations as we primarily iterate over the

infected trees.

Given the virtually identical spread between both implementation methods (A) and (B),

it is alluring to remark about the possibility of switching between implementation (A)

for lower and (B) for severe epidemic regimes, as this has the lowest overall runtime and

highest computational efficiency. Nevertheless, implementation (B) was chosen through-

out the thesis because it is more intuitive and efficient for the epidemic regime we are

interested in, typically around the average density of trees in GB and R0 < 10.
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Figure B.4: A comparative look at the difference between simulation runtime (in seconds)
between both probability implementations. When the number of infected trees is small for
low β∗, the approximated scheme (implementation B) is more efficient and runs quicker.
In contrast, when the number of infected trees is high for large β∗, full inclusion-exclusion
formula (implementation A) becomes more efficient. Overall, the simulation runtime
increases with the tree density.

B.3.3 Codebase

Throughout this thesis, I gravitated heavily toward the software engineering side of the

project. As such, a single unified codebase can by found at: https://github.com/

John-Holden/tree_epi_dispersal.git. In the repository, an epidemic simulator com-

prising both the NLM and the seasonal SEIR model of ADB can be found and down-

loaded. I took the approach of developing a flexible, integrated codebase, where the

user defines what model is run based on configuration option. In particular, the model

configuration is defined by:

• which compartments S, E, I, or R are to be run

• the domain size (Lx, Ly)

• the type of dispersal function: Gaussian/exponential/Inverse power law

• the type of sporulation function: φ0(t) = 1 ∀t (Ch 5), φ1(t), φ2(t) (Ch 6,7)

• epidemic parameters, density, infectivity and dispersal (ρ, β, `)
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• infection life-times: uniform/exponential dynamics, T steps

• which metrics are to be collected, e.g. time series, R0, tree mortality, spread velocity

• initial and boundary conditions, e.g. end simulation when all infectives die

• ensemble realisations: iterate a user-defined function N times and store

• whether or not simulations are run on a HPC (Leeds arc3) or the local machine

B.4 Contact-tracing R0

In Figure B.5(a), we invert the plot (shown in Figure 5.7) and show the range of first gen-

eration reproduction ratios R
(i1)
0 against the ensemble-averaged tree mortality. Inverting

the plot gives information about the spread of R
(1)
0 ; as we can see, low values of infectiviy

produce a skewed distribution which becomes more centered as infectivity increases. A

threshold can be seen around R
(1)
0 = 1, although a number of simulations can produce a

low-valued R
(1)
0 for any value of infectivity due to initial extinction events. In Chapter 5

both the contact and analytic values of R0 were computed/observed for a single infectious

tree at the domain center. As elaborated in chapter 5, initial stochastic forces had the

tendency to reduce the chance of epidemic by causing early extinction events—thereby

reducing the mean tree mortality. However, a number of initial conditions are possible.

As such, the plot of Figure 5.7 was re-run with 10 infectious trees in the domain center at

t = 0 to test how initial stochasticity in the system changes, shown by Figure B.5(b). As

expected, increasing the number of infected trees at t = 0 reduces stochastic and early

extinction events; this is demonstrated by noting that Figure B.5(b) has a smoother en-

semble mean, and no instances of zero mortality for highly infectious epidemics (c.f. the

bottom right hand side of Figure 5.7 where multiple observations can be seen of zero

tree mortality for high β∗). Surprisingly, for later generations the degree of inflexion for

R
(4)
0 -R

(5)
0 is reduced at high β∗ in comparison to Figure 5.7.
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Figure B.5: Comparing the contact-traced reproduction ratio against tree mortality. (a)

Inverting the plot of Figure 5.7 to show the spread of R
(1)
0 against the ensemble averaged

tree mortality. (b) Re-running the ensemble shown in Figure 5.7 with 10 initially infected
trees. The threshold appears more abrupt and stochasticity is reduced.
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Constructing R0-maps and landscape

control

C.1 Connected component analysis

A cluster labelling algorithm was employed to identify and distinguish different clusters

of susceptible (R0 > 1) patches in GB. In Python, the function ‘label’ (in the SciPy

library) can be used to identify and label different connected clusters. Label requires two

pieces of information, the object/image to be analysed and the type of connectivity. Here,

we use a 4-connectedness structuring element comprising either Von Neumann or Moore

neighbourhoods. The object/image needs to be in the form of a binary matrix to be anal-

ysed; this requirement fulfilled through the (Bernoulli trial) tree density implementation,

composed of either occupied (1) and unoccupied (0) tree states.

The label function performs the following steps to find the connected sites within the

binary matrix:

1. Search for the next unlabelled site, i.

2. Perform a flood-fill algorithm to label all the sites connected to site i.

219



APPENDIX C. CONSTRUCTING R0-MAPS AND LANDSCAPE CONTROL

3. Repeat steps 1 and 2 until all sites are labelled.

The algorithm returns a new structure reflecting the structuring element, the image

dimension, the number of distinct clusters found, and the size of each cluster. Hence,

a new matrix with labelled clusters is formed, along with a new variable detailing the

cluster sizes. The net result is a new image showing each cluster labelled by a unique

integer. Through this, all of the sites contained within this cluster have the same unique

integer label.

First, the algorithm starts the sweep from the top left-most column then iteratively re-

peats column-by-column. Two preliminary variables are created to store: A) the number

of clusters in the system and B) the size of each cluster found. Both variables are displayed

in the output, as separate one-dimensional arrays, denoted by Cs and Cl representing the

cluster sizes and the cluster numbers respectively. Using these two variables and the

occupancy of sites, the methodology of the algorithm is described in the flowchart shown

in Figure 3.1.

Both Cs and Cl are an essential part of the process, though they are used in fundamentally

different ways. That is, Cl is used to label each occupied site using the following method:

• An index is set to 1 at the beginning of the algorithm—and increases by 1 upon

finding a new cluster.

• If both sites north and west of an occupied site i are unoccupied, site i is given the

current index of Cl.

• If the site to the north OR the west of the occupied site i are occupied, the site i is

assigned the label of the occupied site.

• If both sites to the north and west of the occupied site i are occupied, then site i

and the site to north of site i are both assigned the label of the site to the west of

site i.

From Cl, the label j (j = 1, 2, 3, ...) of each site can be found through satisfying Cl(j) = j.

The label for each site i that will be stored in Cl is identified using the following argument:
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Figure C.1: Flowchart describing the cluster labelling algorithm.
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first, let the original entry of site (i − 1) be j1 and the label assigned to site (i1) be j2.

Then, for site i, the following values can be assigned: Cl(j1) = j2andCl(j2) = j2,

resulting in j2 being stored as the label for site i. Having established the notion of Cl,

the uses of Cs will now be explored.

The parameter Cs is used to store the different cluster sizes. Whenever an occupied site

is assigned a label, the corresponding entry of Cs is increased by one. When both the

sites to the north and west of site i are occupied but have different labels, it is necessary

to merge the two clusters together and ensure all sites have identical labels. The cluster

size that has the same label as the entry of the site to the north of i is added to the

size of the cluster that has the same label as the site to the west of i. The size of the

cluster corresponding to the site north of i is then zeroed out. Repeating this method

allows the algorithm to perform a complete sweep. This provides an accurate labelling

of all occupied sites and the size of all the clusters too. Due to this, only one sweep of

the algorithm is necessary [Hoshen and Kopelman, 1976].

Using the label function creates an efficient way of labelling multiple clusters relatively

quickly. The output of the algorithm produces easily distinguishable clusters whilst pro-

viding data that can be analysed further in a variety of ways. This demonstrates the

importance of a cluster multiple labelling algorithm (or connected component labelling

technique) within many applications, be this in percolation theory or other areas of re-

search. One of the main complications of using this method is the computational cost

that accompanies it. We will now go on to explore how this has affected choosing the

size of the system to analyse.
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C.2 Binary dilation

A binary dilator was used to help identify when two distinct clusters (C1 and C2) connect.

Suppose a we have a binary image in Euclidean space, R2. For our purpose, R2 consists

of susceptible and insusceptible patches, where R0 ≥ 1 and R0 < 1 receptively. The

binary dilator operation is defined by:

A⊕B =
⋃
b∈B

Ab (C.1)

where Ab has underdone a translation by the structuring element b. The meaning of

equation C.1 is best described an example:

A
B

A ⊕ B

(a) (b) (c)

here, A is the binary-valued input image and B is the structuring element, in this case,

a Moore neighbourhood. Then, B is super imposed onto every non-zero value in A,

thereby forming the binary dilation shown in Figure (c). Binary dilation was imple-

mented in Python, using the ‘binary dilation’ function within the Scipy.ndimage module

[Virtanen et al., 2020].

In section 7.1, I put forward the first steps toward an algorithm to optimise cluster

fragmentation. In this method, distinct clusters (C1 and C2) connected over some value

of ξ—the reader is referred back to section 7.1 for information on ξ. Detecting cluster

joins turned out to be non-trivial problem to solve. The naive approach would be a

brute-force search to identify which connecting patches bridge the gap between C1 and
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(d)

Clusters  and C1 C2   C1 ⊕ b   C2 ⊕ b

  C1 ⊕ b + C2 ⊕ b

  C2 ⊕ b

  Interface( ) C1, C2

(a)
(b) (c)

(d) (e)

Figure C.2: The binary dilator operator was used to help increase efficiency when iden-
tifying which susceptible patches bridge the gap between C1 and C2. Here, connectivity
is defined with the Moore neighbour, b.

C2 for each step in ξ. However, this approach quickly became computationally hard to

solve, particularly when ξ was low and the number of susceptible patches in the system

was large. Below, the following steps detail a more efficient method:

1. Prior to detecting a large rise in cluster size, label clusters C1 and C2, shown in

Figure C.2(a).

2. Perform a binary dilation on each cluster individually, shown in Figure C.2(b, c).

3. Add both clusters arrays together in a pairwise fashion, shown in Figure C.2(d).

The interface between C1 and C2 now has the numerical value of 2, easily singled

out in Python (e.g. np.where(Arr == 2)), illustrated in Figure C.2(e).

4. One or more of the interface patches must bridge the gap between C1 and C2. For

each interface patch, test if a Moore neighbourhood falls within both C1 and C2;

if so, it is a ‘connecting ’ patch.
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Figure 1: Stochastic dispersal in the sub-grid model is shown through two time-steps of 400 (a) and 600
(b) days given parameters ⇢ = 0.01, ` = 25m and � = 0.05 day�1. Green represents susceptible trees
while yellow-red depict infected trees through di↵erent stages through the infectious life-time. Infected trees
uniformly transition into the removed compartment shown in brown-black. (c) The time-series of maximum
distance reached by an infected tree is shown for four typical simulations with parameters ⇢ = 0.01, ` = 25m
and four variations infectivity. Vertical dashed red lines represent time-steps where the pathogen becomes
extinct and dies while vertical black lines show when the pathogen survives to reach the domain boundary.
(d) The mean number of secondary infections R0(t) is shown using the same model parameters as Fig 1(c),
dashed curves show the corresponding behaviour predicted from equation (1).
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blue line (overlaid with colored scatter-plot) shows the payo↵ and reveals a small number of exceedingly high
e�ciencies. The dashed grey line contrasts the estimated number of trees felled. (b) The number of trees
saved NS against the number felled NF is shown on a scatter plot and presented with a color map indicating
the payo↵ ratio. (c) The 1st, 2nd, and 3rd best performing confinement sub-clusters are spatially illustrated
on the same map. The inset highlights the most e�cient scenario; with just 2 ⇥ 1km2 patches of Ash felled
below density the epidemic is contained.
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Figure 2: (a) The abundance distribution of Ash as reported by [Hill et al., 2017] re-scaled into a tree
density map. The zoomed inset shows 10km2 region. (b) The frequency distribution of tree density with
inset showing the data on a log-log plot. Vertical green and red lines show median and mean tree densities
respectively.

chance of culminating in an epidemic3 .130

131

2.2 Ash density distributions132

The Ash abundance distribution reported by [Hill et al., 2017] had a resolution of 1km2 and units133

of hectares of canopy cover per kilometer-squared of land. To ensure the abundance distribution134

was compatible with the sub-grid model we re-scaled the raw abundance values into a dimension-135

less tree density (equivalent to the sub-grid density ⇢) with units kilometer-squared of Ash cover136

per kilometer-squared of land. This was achieved by multiplying the data with an appropriate137

scale-factor. The re-scaled Ash distribution is shown in Fig 2(a) along with the density frequency138

distribution in Fig 2(b). Intriguingly, the frequency distribution follows a power law behaviour (as139

evident from the linearity on the logarithmic axes - see inset) suggestive of self-similarity.140
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Figure 4: (a) The mean R0 values are mapped onto the Ash distribution for pathogen parameters � =
0.005 day�1 and ` = 25m. All pixels represent 1km2 patches of Ash with their predicted R0 numbers—shown
by color. Patches of Ash below the R0 threshold are shown by inland white-space. (b) Using connected-
component analysis, the top 10 largest clusters of Ash are identified and ranked. Large connected regions
identify high-risk areas of Ash in Great Britain.

fragmentation and divide the cluster. We precede by describing how this may be used to achieve195

e�cient regional containment of an epidemic.196

197

3.3 Regional containment198

Each cluster (denoted by C) detected in the R0-map represents a connected network of susceptible199

Ash where pathogen survival and spread is possible. The shape of each cluster is constrained by200

landscape topography and geography. If no control is attempted, all trees within a cluster are put201

at risk if one point in the cluster becomes infected. Given this, a control strategy is formulated by202

noting that removing specific positions of Ash (or breaking critical ‘links’) via selective tree felling203
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Figure 5: The fragmentation method is demonstrated on the highest risk clusters of Ash in the R0-map.
(a) The fragmentation method is iterated N = 5 times on the largest ranked cluster in Fig 4(b) denoted
as CT. The cluster is broken up into six disconnected sub-clusters shown by the colour-filled regions. The
zoomed inset shows which critical links were identified in CT for each cluster fragmentation. (b) Successively
fragmenting the maximum sub-cluster inside CT yields smaller sub-clusters, shown by the monotonically
decreasing blue curve. The dashed red line shows the sum-total number of felled trees required for fragmen-
tation. (c) Results of fragmentation are generalised to include the 2nd and 3rd largest ranked R0 clusters in
Fig 4(b). Results show cluster-size reductions on a logarithmic axes where fragmentation follow a power-law
of the form f(x) = ax�k. Fitted parameters of a, k are shown and plotted as dashed lines.
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Figure C.3: A graphical abstract showing the end-to-end flow of A) constructing a local-
scale spatially-explicit model of pathogen dispersal B) Scaling the small-scale epidemic
model over a landscape C) Identifying large susceptible clusters D) Identifying areas for
targeted landscape-level control.
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[Moré, 1978] Moré, J. J. (1978). The levenberg-marquardt algorithm: implementation

and theory. In Numerical analysis, pages 105–116. Springer.

[Mundt et al., 2009a] Mundt, C. C., Sackett, K. E., Wallace, L. D., Cowger, C., and

Dudley, J. P. (2009a). Aerial dispersal and multiple-scale spread of epidemic disease.

EcoHealth, 6(4):546–552.

[Mundt et al., 2009b] Mundt, C. C., Sackett, K. E., Wallace, L. D., Cowger, C., and Dud-

ley, J. P. (2009b). Long-distance dispersal and accelerating waves of disease: empirical

relationships. The American Naturalist, 173(4):456–466.

[Murray, 2002] Murray, J. D. (2002). MathematicalBiology I. An Introduction. Springer.
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B., Kirisits, T., Havrdová, L., Enderle, R., Dobrowolska, D., Cleary, M., and Clark,

J. (2017). Silvicultural strategies for fraxinus excelsior in response to dieback caused

by hymenoscyphus fraxineus. Forestry: An International Journal of Forest Research,

90(4):455–472.

257



APPENDIX D. REFERENCES

[Smart, 2020] Smart, S.M.;Andrews, C. E. R. A. P. E. D. D. R. R. P. J. M. B. C. (2020).

Vegetation plot data from the ukceh countryside survey, great britain, 2019.

[Smith et al., 2004] Smith, M. T., Tobin, P. C., Bancroft, J., Li, G., and Gao, R. (2004).

Dispersal and spatiotemporal dynamics of asian longhorned beetle (coleoptera: Cer-

ambycidae) in china. Environmental Entomology, 33(2):435–442.

[Solheim and Hietala, 2017] Solheim, H. and Hietala, A. M. (2017). Spread of ash dieback

in norway.

[Soubeyrand et al., 2009] Soubeyrand, S., Laine, A.-L., Hanski, I., and Penttinen, A.

(2009). Spatiotemporal structure of host-pathogen interactions in a metapopulation.

The American Naturalist, 174(3):308–320.

[Srivastava et al., 2019] Srivastava, V., Lafond, V., Griess, V. C., et al. (2019). Species

distribution models (sdm): applications, benefits and challenges in invasive species

management. CAB Rev, 14(10.1079).

[Staelens et al., 2003] Staelens, J., Nachtergale, L., Luyssaert, S., and Lust, N. (2003). A

model of wind-influenced leaf litterfall in a mixed hardwood forest. Canadian Journal

of Forest Research, 33(2):201–209.

[Stauffer, 1979] Stauffer, D. (1979). Scaling theory of percolation clusters. Physics Re-

ports, 54(1):1 – 74.

[Stauffer and Aharony, 2018] Stauffer, D. and Aharony, A. (2018). Introduction to per-

colation theory. CRC press.

[Stener, 2013] Stener, L.-G. (2013). Clonal differences in susceptibility to the dieback

of fraxinus excelsior in southern sweden. Scandinavian Journal of Forest Research,

28(3):205–216.

[Stocks et al., 2017] Stocks, J. J., Buggs, R. J., and Lee, S. J. (2017). A first assessment

of fraxinus excelsior (common ash) susceptibility to hymenoscyphus fraxineus (ash

dieback) throughout the british isles. Scientific reports, 7(1):1–7.

258



APPENDIX D. REFERENCES

[Suffert and Thompson, 2018] Suffert, F. and Thompson, R. (2018). Some reasons why

the latent period should not always be considered constant over the course of a plant

disease epidemic. Plant Pathology, 67(9):1831–1840.

[Suzuki et al., 2003] Suzuki, R. O., Kudoh, H., and Kachi, N. (2003). Spatial and tempo-

ral variations in mortality of the biennial plant, lysimachia rubida: effects of intraspe-

cific competition and environmental heterogeneity. Journal of Ecology, 91(1):114–125.
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M. (2021). The role of remote sensing for the assessment and monitoring of forest

health: A systematic evidence synthesis. Forests, 12(8):1134.

[Tsror, 2010] Tsror, L. (2010). Biology, epidemiology and management of rhizoctonia

solani on potato. Journal of Phytopathology, 158(10):649–658.
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