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Abstract 

One of the main problems currently facing the delivery of safe and effective 
emergency care is excess demand, which causes congestion at different time 
points in a patient’s journey.  The modern case-mix of prehospital patients is 
broad and complex, diverging from the traditional ‘time critical accident and 
emergency’ patients. It now includes many low-acuity patients and those with 
social care and mental health needs. In the ambulance service, transport 
decisions are the hardest to make and paramedics decide to take more patients to 
the ED than would have a clinical benefit. As such, this thesis asks the following 
research questions:  
 
In adult patients attending the ED by ambulance, can prehospital information 
predict an avoidable attendance? 
 
Can the model derived from the primary outcome be spatially transported?  
 
A linked dataset of 101,522 ambulance service and ED data from the whole of 
Yorkshire between July 2019 and February 2020 was used as the sample for this 
study.  A machine learning method known as XGBoost was applied to the data in 
a novel way called Internal-External Cross Validation (IECV) to build the model.  
The results showed great discrimination with a C-statistic of 0.81 (95%CI 0.79-0.83) 
and excellent calibration with an O:E ratio was 0.995 (95% CI 0.97 – 1.03), with the 
most important variables being a patient’s mobility, their physiological 
observations and clinical impression with psychiatric problems, allergic 
reactions, cardiac chest pain, head injury, non-traumatic back pain, and minor 
cuts and bruising being the most important.  
 
 
This thesis has successfully developed a decision-support model that can be 
transformed into a tool that could help paramedics make better transport 
decisions on scene, known as the SINEPOST model. It is accurate, and spatially 
validated across multiple geographies including rural, urban, and coastal.  It is a 
fair algorithm that does not discriminate new patients based on their age, gender, 
ethnicity, or decile of deprivation. It can be embedded into an electronic Patient 
Care Record system and automatically calculate the probability that a patient 
will have an avoidable attendance at the ED, if they were transported.   
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Glossary of important acronyms and concepts 

Term Abbreviation Definition 

999 - 
The phone number in the UK that is dialled 
for emergencies. 
  

Ambulance ramping - 

When patients are conveyed to the ED and 
held in a queue until the department’s 
clinical staff can receive the patient. 
  

Area Under the Receiver 
Operating Characteristic 
Curve 

AUC 

A graphical representation of 
discrimination which plots sensitivity and 
1-specificity.  A perfect AUC would be 1, and 
an AUC of 0.5 means the risk prediction 
model is no better than chance. See chapter 
7, section 7.9.2 
 

Association of Ambulance 
Chief Executives AACE 

AACE provide ambulance services with a 
central organisation that supports, 
coordinates, and implements nationally 
agreed policy. It also provides the public 
and other stakeholders with a central 
resource of information about NHS 
ambulance services. 
  

Australian Triage Scale ATS 

A five-level scale to assess a patient’s 
clinical acuity, from ATS 1 (immediate need 
for treatment) to ATS 5 (Treatment within 
120 minutes). See appendix B. 
  

Avoidable ED attendance - 

A first attendance to the ED with some 
recorded treatments or investigations all of 
which may have reasonably been provided 
in a non-emergency care setting, followed 
by discharge home or to GP care. 
  

Avoidable conveyance  As above but transported by the 
Ambulance Service. 

C-statistic - See AUC. 
  

Calibration - 

A performance measure of a risk prediction 
model to ensure that the model provides a 
good description of system behaviour.  It is 
commonly measured using the O:E ratio 
and Spiegelhalter's Z-test. See chapter 7, 
section 7.9.1. 
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Candidate variables - Also known as input variables and are used 
as predictors in a model.  

Commissioning Data Set CDS 
The former routine dataset that was 
replaced by the ECDS (see ECDS). 
  

Computerised Clinical 
Decision Support CCDS 

A form of decision support that can be 
integrated into digital technology or is 
derived by computer technology. 
  

Confidence interval CI 

A range of values so defined that there is a 
specified probability (usually 95%) that the 
true value of a parameter lies within it. 
  

COVID-19 - 

A disease caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-
CoV-2) virus. Caused a global pandemic in 
2019-2022. 
  

Discrimination - 

A performance measure of a risk prediction 
model that evaluates whether it can 
differentiate between a random instance 
with the event, and one without.  
Commonly measured using the C-statistic. 
See chapter 7, section 7.9.2. 
  

Double Crewed 
Ambulance DCA 

The most common type of ambulance that 
often consists of 2 staff members – a 
paramedic and an emergency care 
assistant. 
  

Early Warning Score EWS 

A generic term for a clinical scoring tool to 
decide how poorly a patient is, and to 
detect any deterioration in a patient’s 
condition. 
  

Electronic Health Records EHR 

A digital health record used by clinicians to 
record all aspects of care about their 
patients. 
  

electronic Patient Care 
Record ePCR Synonymous with EHR. See above. 

Emergency Care Data Set ECDS 

A specific subset of SNOMED-CT codes that 
describe all activity found within the ED.  
Is coded in the EHR. 
  

Emergency Care System 
Framework ECSF 

Captures essential emergency 
care functions at the scene of injury or 
illness, during transport, and through to 
the emergency unit. 
  

Emergency Department ED 

The care setting found within a hospital 
that treats medical and traumatic 
emergencies. 
  



 

11 

 

Emergency Medical 
Service EMS Synonymous with ambulance service. 

Emergency Severity Index ESI 

A five-level scale to assess a patient’s 
clinical acuity, from ESI 1 (immediate need 
for treatment) to ESI 5 (Non-urgent need 
for treatment). See appendix B. 
  

Fair machine learning - 
Consciously attempting to reduce or 
eliminate bias in machine learning models. 
  

False Negative FN see chapter 7, section 7.8 
  

False Positive FP see chapter 7, section 7.8 
  

Hazardous Area Response 
Team HART 

A specialist ambulance response that can 
rescue patients from difficult to access 
and/or dangerous areas. 
  

Hyperparameter - 

A prespecified rule placed on an algorithm 
prior to model development.  It dictates 
how the algorithm learns. 
  

Incident Rate Ratios IRR 

Similar to an odds ratio, an incidence rate 
ratio compares the incident rate between 
two different groups. 
  

Internal-External Cross 
Validation IECV 

See chapter 7, section 7.8.  For an 
illustration on IECV see chapter 6. 
  

Low acuity - 
Patients with urgent and complex care 
needs as opposed to life threatening. 
  

Manchester Triage System MTS 
An acuity triage system developed in the 
UK. 
  

National Early Warning 
Score NEWS 

The current EWS used in the UK and the 
latest version can be found in appendix F. 
  

Negative Predictive Value NPV See chapter 7, section 7.8. 
  

NHS111 111 

A free-to-call single non-emergency number 
medical helpline operating in England, 
Scotland, and parts of Wales. 
  

non-conveyance  
When an ambulance clinician assesses a 
patient and decides they do not need to be 
transported anywhere. 
  

Observed vs Expected 
ratio O:E see chapter 7, section 7.9.1.  

Odds ratio OR 
The ratio of the odds of A in the presence of 
B and the odds of A in the absence of B. 
  

Offload delay  

A consequence of ambulance ramping 
which results in long delays in patient 
handover between the ambulance and the 
ED. 
  

one-hot encoding  Transforming a categorical variable with n 
categories into n binary variables.  
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overfitting  
A model is fit well to the data, but not 
representative of the target system. 
  

Positive Predictive Value PPV see chapter 7, section 7.8. 
  

Prehospital - 

The section of clinical care that takes place 
within an ambulance service. Urgent and 
emergency care before the ED. 
  

Patient and Public 
Involvement PPI See chapter 7, section 7.13.  

Rapid response Vehicle RRV 
Contrary to a DCA, this is a fast car with a 
solo responder. 
  

Realist synthesis - 

Aims to not just appraise the evidence, but 
also account for the context as well as the 
outcome. 
  

Recursive Feature 
Elimination RFE 

Removing variables from a dataset that 
have a weak/ no association with the 
outcome. 
  

Restricted grid search - See chapter 7, section 7.10.4. 
  

Royal College of 
Emergency Medicine RCEM 

Represents clinicians who practice 
emergency medicine in the UK. 
  

Sensitivity - see chapter 7, section 7.8. 
  

Simulated transportability - 

Uses the same dataset as the training data 
to test whether the model could be 
developed under different geographical 
circumstances. 
  

Specificity - see chapter 7, section 7.8. 
  

Spiegelhalter's Z-test - see chapter 7, section 7.9.1. 
  

Systemised Nomenclature 
Of Medicine Clinical 
Terms 

SNOMED CT 

Systematically organized computer-
processable collection of medical terms. 
Used to code routine datasets such as 
ECDS. 
  

True Negative TN see chapter 7, section 7.8  
True Positive TP see chapter 7, section 7.8  

Type 1 Emergency 
Department 

 
A consultant led 24-hour ED with full 
resuscitation facilities and designated 
accommodation for the reception of 
accident and emergency patients.  

Urgent Treatment Centre UTC 
A care setting like an ED but can provide 
specialist urgent care to mid- and low-
acuity patients.  

XGBoost - An extreme gradient boosted decision tree 
algorithm.  

Yorkshire Ambulance 
Service YAS 

The ambulance service that provides care 
for patients throughout the English county 
of Yorkshire.  
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1.1 Introduction to the thesis 

Emergency care plays a crucial role in reducing the global burden of disease.  Not 

only does it directly affect the mortality and morbidity of the populations it 

serves, but it is also a human right.3 There are some basic principles which 

underpin delivering an emergency care system and these form a skeletal model of 

emergency care from call, to intervention.4 However, it is important to 

acknowledge that not all countries provide this basic model.  Higher-income 

countries have more complex models than those of lower or lower-middle income 

countries.  There are different components in the emergency care system, such as 

the ambulance service, Emergency Department (ED) and primary care.  These are 

all affected by demand, but this thesis focuses on the ambulance service 

perspective.  

 

One of the main problems with excess demand is ambulances having to wait to 

handover a patient once they have transported them to the Emergency 

Department (ED).  This is the concept of ‘offload delay’ and results in many 

patients being held queuing in the ambulance until the crews can offload the 

patient into the ED (also known as “ambulance ramping”).  More details of offload 

delay can be found in chapter 2, section 2.5.  Offload delay can cause problems 

downstream for the ED, as they may divert resources away from waiting room 

patients to prioritise queuing ambulances if they perceive patients arriving by 

ambulance are higher acuity. It also causes upstream problems, as the ambulance 

cannot respond to another potentially ill patient waiting in the community.   

 

Studies have shown that not all patients transported to hospital by ambulance 

require such a high level of care, and these studies will be discussed in chapter 2, 

section 2.6.  The modern case-mix of prehospital patients is broad and complex, 

which diverges from a traditional model of ‘time critical accident and emergency’ 

patients and now includes many low-acuity patients and those with social care 

and mental health needs.  
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The uniqueness of the prehospital environment is that it is a remote and portable 

healthcare setting.  This places pressure on paramedics to have judicious 

decision-making skills when dealing with the clinical diversity of patients that 

call for an ambulance.  However, this decision making is not always accurate.  

Chapter 2, section 2.9 details how transport decisions are the hardest to make 

and paramedics decide to take more patients to the ED than are required.5,6  

Decision support systems (such as the paramedic pathfinder) have proven no 

better than the humans using them.7–9 Computer-based decision support systems 

have shown promise though.  

 

A systematic review in chapter 3 has found that it is possible to build risk 

prediction models of patient acuity based on statistical and in-silico modelling of 

patient data.  Their common limitations are that they have either focussed on 

predicting high acuity patients or are not based in the prehospital setting, which 

makes their applicability to reducing avoidable conveyances limited.  The 

opportunity in this thesis is to examine the possibility of developing a model 

which can predict an avoidable conveyance whilst paramedics are still on scene 

with their patients.  This is achieved by using prehospital information to predict 

an ED outcome, which is a near unique situation whereby the prediction is 

offering novel information to clinicians on scene.  This study is restricted to just 

adult patients as there were ambulance policies around conveying children that 

could have confounded the modelling.  Therefore, the research questions that are 

posed in this thesis and expanded on later in chapter 4, section 4.1 and 4.2 are: 

 

In adult patients attending the ED by ambulance, can prehospital information 

predict an avoidable attendance? 

 

Can the model derived from the primary outcome be spatially transported? 

 

Transportability is being able to apply the model to different types of population 

(for example a different geography) and it still showing acceptable levels of 
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performance.  Simulated transportability is using the existing population the 

model was derived on and simulating whether it could be transported. It is an 

important research question to ask when developing a new model using a large 

dataset.  Poor transportability is a barrier to implementation that can be easily 

overcome if it is considered in the initial model development.   

 

A linked dataset of 101,522 ambulance service and ED patient episodes from the 

whole of Yorkshire between July 2019 and February 2020 was used as the sample 

for this study.  Each instance had all prehospital ambulance care record data, 

which was created by the clinician on scene.  It also had the outcome of whether 

they had an avoidable attendance at ED, created using a modified data driven 

definition adopted by NHS Digital and elaborated on in chapter 7, section 7.5. A 

machine learning method known as XGBoost was applied to the data to build the 

model.  This was evaluated for its performance by calculating statistics for 

calibration (O:E ratio and Spiegelhalter's Z-test) and discrimination (C-statistic).  

More information on the algorithm and evaluation can be found in chapter 7, 

sections 7.8-7.10. To answer the second research question, the data was split 

several ways.  Each iteration had a test set which was all the data from a single 

ED.  The rest of the data was used to train the model using the exact same 

procedures as the full model.  There were 17 EDs in the study, therefore there 

were 17 models built. Each of these models were then meta-analysed and the 

performance measures were used to update the full model.  The reason for this 

was the original model would have been optimistic as it was evaluated on the 

same data it was trained on.  The meta-analysed results are a more realistic truth 

on model performance.   

 

The raison d'etre of this study was to match patient clinical presentations with 

the most appropriate care setting for their need. This was to ensure that patients 

were accessing the right care setting for them as expeditiously as possible. The 

novel contribution of this thesis to the scientific field includes using a machine 

learning algorithm to develop a new clinical prediction model that has been 
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appropriately validated and assessed as evidenced in chapter 8. It also brings an 

example of how machine learning can be fair and reduce the risk of bias when 

used for clinical decision making.  Fairness is a concept that will be explained 

further in chapter 7, section 7.6.1, but in essence is ensuring an algorithm does 

not discriminate against protected characteristics.   

 

This thesis has successfully developed a decision-support model that can 

potentially help paramedics make better transport decisions on scene, known as 

the SINEPOST model. It has good calibration and discrimination and could be 

described as an accurate model.  These concepts are defined and elaborated 

further in chapter 7, section 7.9.1 and 7.9.2 respectively.  The model is also 

spatially validated across multiple geographies including rural, urban, and 

coastal.  It is a fair algorithm that does not discriminate new patients based on 

their age, gender, ethnicity, or decile of deprivation. This can be seen in chapter 9, 

section 9.3. The pragmatic research design of using ambulance ePCR data as 

candidate variables means it could easily be embedded into an electronic Patient 

Care Record system and automatically calculate the probability that a patient 

will have an avoidable attendance at the ED, if they were transported.   

 

The results in this study could lead to important and original advancements 

across the urgent and emergency care system.  In prehospital care, the SINEPOST 

model could support paramedic decision making as to whether their patient 

requires transportation.  More discernible decisions by paramedics could then 

potentially reduce ambulances queueing at the Emergency Department, waiting 

to hand their patients over.  This has a subsequent effect on the demands placed 

on those in emergency medicine.  In General Practice, the model will improve 

patient’s access to primary care, by identifying primary care needs within 

ambulance service contacts. 
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1.2 Thesis structure 

This is the first chapter in this thesis, the remaining chapters are arranged in the 

following way: 

 

The Background (chapters 2, 3 and 4) 

 

The second chapter introduces the emergency care system under investigation in 

this study. It discusses the causes and consequences of ambulance offload delay 

and appraises strategies that have been tested to reducing it.  It extends the 

discussion to paramedic decision making and how this has been helped with the 

use of decision support tools. In chapter 3, the systematic review aims to examine 

all available evidence to ascertain whether prehospital prediction models of 

acuity have already been developed.  This would have led to an external 

validation of an existing model, as opposed to the creation of a new one.  The 

methodologies used to develop models included in the review are examined for 

their feasibility and success for this study.  The systematic review was published 

in BMC Diagnostic and Prognostic Research. Chapter 4 outlines the research 

questions, aims and objectives of the study.   

 

The Methods (chapters 5, 6, 7) 

 

In chapter 5 there is a descriptive outline of theoretical considerations that act as 

the foundations for predictive modelling.  This is then elaborated into a section 

on algorithm selection, where the new information gained from the systematic 

review is synthesised into selecting the best algorithm to solve the problem 

identified in chapter 4.  Chapter 6 presents the protocol, which was published in 

BMC Diagnostic and Prognostic Research in 2020.  The manuscript details in a 

succinct fashion the methods that are being used to answer the aims and 

objectives.  Due to the concise nature of the manuscript, chapter 7 offers an 

expansion of the methods, where decisions are justified, and more detail is given.  
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The chapter includes deviations from the protocol since its publication, as well as 

ethical considerations and public and patient involvement.  

 

The Results (chapters 8 and 9) 

 

The results begin with chapter 8, which is a presentation of the main findings in 

publication format. This has been written for a clinical audience.   Like chapter 6, 

due to the conciseness of the manuscript, chapter 9 offers an expansion of the 

results with a more statistics/ computer science lens.  This includes the 

individual performance of each cluster analysis and the fair machine learning 

analysis (which is conceptually defined in chapter 7, section 7.6.1). 

 

 

 

The Discussion (chapters 10, 11, and 12) 

 

The discussion chapter starts with a summary of whether the results answered 

the research questions identified in the background chapters.  It then expands to 

critically place the new knowledge within the context of existing knowledge and 

clinical practice.  Limitations are acknowledged and next steps are proposed. 

There is a personal reflection in chapter 11, before the thesis draws to a close with 

a conclusion in chapter 12. 

 

1.3 Conclusion 

This chapter has provided a brief overview of what is contained in this thesis, as 

well as highlighting the key contributions to knowledge. It has introduced the 

format and structure of the thesis, to help the reader navigate different sections. 

The next chapter provides the background information which will frame the 

research question but also illustrate the landscape for which the new evidence 

will be situated.   
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2.1 Introduction 

The aim of this chapter is to illustrate how the emergency care system operates 

both globally and in the UK.  One of the most important challenges that is faced 

in this system is the demand of patients that are accessing the high acuity level of 

care provided by the ambulance services and ED.  This comes at a direct contrast 

to the case mix of prehospital and emergency patients and section 2.4 of this 

chapter will examine the causes and consequences of trying to meet excess 

demand.  The chapter frames the problem, but also scrutinises solutions at the 

macro, meso, and micro level.  Policies that have aimed to both meet and reduce 

demand will be appraised in section 2.8, but the chapter will focus further on a 

specific cause of demand.  The transport of high volumes of patients, some of 

which are low acuity contribute to ambulances queuing at the ED. Section 2.9 

takes a closer look at paramedic decision making around transportation as well 

as exploring what decision support systems are successful in helping paramedics 

make this decision.   

 

2.2 Global picture of emergency care 

Emergency care focuses on reducing preventable mortality (death), morbidity 

(suffering) and disability from time-sensitive disease processes.10  The World 

Health Assembly used this definition in the 2007 resolution 60.22, which sets out 

a framework for all countries to develop an effective emergency care system.  

Emergency care spans across medical disciplines and has a crucial opportunity in 

reducing the global burden of disease.4 However, the current state of emergency 

care varies dramatically across the globe.  The World Health Assemblies 

resolution 60.22 provided detail on the most basic system that every country 

should aim to invest in known as the Emergency Care System Framework (ECSF).  

Sections 2.2.1-2.23 below summarise what the WHO expects should happen in a 

basic system, and one that Lower-Middle Income Countries (LMICs) should strive 

to achieve.  Within the system, there are three stages.   
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2.2.1 The ‘On Scene’ Stage 

The first stage in the ECSF is the ‘on scene’ stage.  This occurs at the site of the 

emergency, such as at someone's home or in the street (illustrated in figure 1).A  

When a person has an accident or a medical emergency, they will call a dedicated 

emergency phone number (for example in the UK, a person would call 999).  The 

person will talk to the dispatcher who can then send an ambulance with a 

healthcare provider to the scene. 

The dispatcher also gives 

instructions to the person.  The 

healthcare provider will arrive on 

scene in their ambulance with a 

driver.  They may only have basic 

equipment, but they fulfil the 

function of transporting the 

patient to the nearest healthcare 

facility.  

 

2.2.2 The ‘Transportation’ stage 

The second stage is transportation, which is when the person is in the ambulance 

and the healthcare provider is with them.  As the person is being cared for by a 

healthcare provider, they will be referred to as a patient from now on.  The 

healthcare provider will monitor and care for the patient whilst the driver of the 

ambulance transports the patient to the nearest facility.  There is often a 

communication channel with the original dispatch resource and the receiving 

facility.  The second stage ends at the ‘handover gate’.  This is where an 

 
A Figures 1-3 have been modified from the World Health Organisation with permission (license found in 

appendix A, section A1). World Health Organization. WHO Emergency Care Systems Framework. 2015 [cited 

2022 Apr 26]; Available from: https://www.who.int/publications/i/item/who-emergency-care-system-

framework 

Figure 1: The on-scene stage of the ECSF 
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ambulance has arrived at the receiving facility and moves the patient from the 

ambulance onto a hospital bed.  The ambulance healthcare provider will also give 

a clinical handover to the 

receiving provider, detailing what 

has happened. 

 

2.2.3 The ‘Healthcare Facility’ 

stage 

 The third stage is the healthcare 

facility stage as illustrated by 

figure 3. There are more expertise 

and resources at the facility stage, and this is often the definitive care for the 

patient.  When patients enter this system from the ambulance service, they will 

be further triaged for their acuity, and this will decide what level of care the 

patient needs.  They may be 

sent to a different area of the 

department to be closely 

monitored.  Those with less 

time-critical emergencies may 

enter a queue and will have to 

wait to be seen and treated.  

There comes a point during the 

facility stage when a decision 

must be made about where the 

patient needs to be directed to 

next. If the patient receives all the care they need in the ED they will be 

discharged, but if they require further care they will be admitted to a hospital bed 

for appropriate specialist care.   

 

As previously mentioned, the system explained above is what all countries should 

strive to achieve.  However, in Higher Income Countries, the systems can be more 

Figure 3: Facility stage of the ECSF 

Figure 2: The transport stage of the ECSF 
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complicated to address a different set of challenges.  These systems will be the 

focus of the thesis from now on, with a particular emphasis on the UK system. 

 

The on-scene stage contains numerous types of healthcare resources that could be 

eligible for dispatch to an emergency.  The includes a Double-Crewed Ambulance 

(DCA), which could contain two paramedics, or a mix of a paramedic and a non-

registered healthcare professional trained in emergency care.  Other resources 

include a Rapid Response Vehicle (RRV) containing a paramedic or a doctor; a 

helicopter (air ambulance) with a pilot, doctor and paramedic mix or a specialist 

resource such as the Hazardous Area Response Team (HART), which is a team of 

specialist paramedics with extra equipment.  All these resources would arrive on 

scene with advanced equipment including drugs and a defibrillator, forming a 

mobile healthcare clinic.  They are then able to triage the patient and make 

decisions around whether they need any further care and if so, where. The 

underlying principles of triage are to stratify patients according to acuity to 

ensure the sickest are treated first.  The transportation stage and the facility stage 

appear to remain largely the same globally, from the perspective of the 

ambulance service. The exception is hospital diversion where paramedics will 

transport a patient to a specialist facility for management of major trauma, heart 

attack or stroke, which may be further away than the nearest ED.11,12 

 

The purpose of a diverse and skilled workforce with advanced equipment is to 

deal with the increasing demand and complicated case-mix that presents in 

prehospital care.  The next section will discuss this further.  

 

2.3 Demand for prehospital care 

The utilisation of prehospital care is rising every year.  Studies have shown that 

there is an annual growth of both ambulance service use and ED attendances.  An 

Australian study used retrospective routine data over an 8-year period (2008-2015) 

and found in a sample of 2,443,952 records that there was an increase in demand 

of 1.4% per annum.13 A key strength to this study is that they adjusted for 
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seasonality and population. In the UK, growth appears much higher, with a 

National Audit Office (NAO) report showing an increase in ambulance demand of 

5.2% per annum over a seven year period between 2010-2017.14 A limitation with 

the report was a lack of information on the sources of data.  It also did not 

publish raw data or describe how the data was handled in the analysis.  A key 

difference in outcomes between the two studies was that the Australian study 

only included face-to-face assessments by emergency ambulances, whereas the 

NAO report measured all calls to the ambulance service.  This report included 

calls passed from the non-emergency phone line known as ‘NHS111’.B A report 

published in 2017 by Turner et al.  examined a longer time frame between 1994 

and 2016.15 It was found that there was an increase in demand of 56% from the 

start of the study (1994) to the end in 2016. An unfortunate limitation of this 

study was the methodology was not specifically designed to model growth, but to 

re-evaluate response-time targets.  This meant only the aggregated total growth 

over a period was reported for illustrative purposes.  However, NHS England 

 
B NHS 111 is an alternative public telephone number to support urgent care needs.  The service 

provides triage, and can help patients access healthcare services, clinicians and advice.248 

Figure 4: Ambulance demand in England 2018-2021 
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publish annual data on English ambulance services and from 2018 to 2020, there 

was an annual increase in the number of ambulance calls of 5.09%. This can be 

seen in figure 4, with the grey shadows representing 95% confidence intervals.16 

During this time-period, the global pandemic of the SARS-COV-2 virus began.  The 

first case of this in England was on January 28th, 2020, with the first death being 

on March 2nd, 2020.  The peak daily deaths of the first ‘wave’ was on April 8th, 

2020.17  This peak is shown in figure 4.C  There have been subsequent waves, not 

included in figure 4.  During the first peak, there was a decrease in ambulance 

incidents and ambulance conveyances to the ED.  This could be due to policy 

changes and public health guidance; however, at the time of writing there is not 

any robust evidence to confirm this.  The global pandemic appears to cause 

anomalous data points much lower than the previous trend.  Nevertheless, all 

studies that have used longitudinal retrospective data have reported high 

demand in the system, and an annual growth of around 5% in this demand.   

 

2.4 Causes and consequences of prehospital demand 

The Australian study referenced above was by Andrew et al. and their focus was 

on the drivers of increased ambulance demand in 2020.  Throughout their 

analysis, they presented Incident Rate Ratios (IRRs)D for annual growth over the 

eight-year study period.  An IRR of 1.0 translates to no growth.  For overall 

demand, there was an annual growth of 1.4%, which is an IRR of 1.014 (95% CI 1.011 

– 1.017).  Patient factors that were associated with demand included the Charlson 

Comorbidity Index (CCI).  This is a weighted index of comorbidities which are 

then calculated into a risk stratification score.18 More than half of the patients in 

their sample had no pre-existing health conditions according to the CCI, and this 

 
C Figure 4 has been created by Jamie Miles (the author) for the purposes of illustration using R v.4.1.2.  The 

data used has been appropriately referenced within the text. 

D The IRR can be calculated by dividing two proportions of two different groups.  In an exposed group (E) the proportion 

with the outcome (EO) is divided by the proportion of the outcome (NO) in the non-exposed group (N).  Thus the IRR is 

EO/NO.249 
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proportion increased over the study period.  This means that patients were 

increasingly engaging in prehospital care who had fewer underlying health 

conditions.  When patients in the sample were stratified by specific conditions, 

some grew at a faster rate (per annum) than others.  These included mental health 

issues (IRR 1.058 (95% CI 1.054-1.062)), alcohol or drug abuse (IRR 1.061 (1.056-

1.066)) and a Charlson Comorbidity Index score greater ≥ 4 (IRR 1.045 (95%CI 

1.039-1.051)).13 There were also differences in the rate of growth amongst age 

categories, particularly those aged 40-59 years (IRR 1.025 (1.020-1.030) and those 

aged 20-39 years (IRR 1.022 (1.019- 1.025). Socio-economic factors were also 

explored.  The Socio-Economic Indexes for Australia (SEIFA) from the 2011 census 

was used.  For education and employment, patients were stratified according to 

deciles.  Higher deciles equate to higher levels of education and employment in 

that geographical area.  The authors found that patients from lower- or middle- 

deciles had higher growth rates in demand, with deciles 1-6 experiencing growth 

of between 2.0-3.1% per annum. For socio-economic advantage, it appeared that 

the medium deciles 3-6 grew at the fastest IRR at 1.02 per annum.  This can be 

interpreted as those with medium deciles of education, occupation or socio-

economic status were contributing to the growth in the demand more than lower 

or higher deciles.  There were also clinical factors that were associated with 

growing demand.  Patients with the final working impression of alcohol or drug 

related condition had an IRR of 1.072 (1.056-1.086) and patients with pain had an 

IRR of 1.044 (1.039-1.050).  Paramedics were medically intervening less.  In 2008, 

60% of patients had a paramedic-led medical intervention, compared with only 

45.6% in 2015.  Ambulance conveyances to the ED had also increased with an IRR 

of 1.012 (1.009-1.016), which is significantly different compared to the quantity of 

patients not requiring medical intervention (IRR 1.067 (1.063-1.072)).  This means 

that patients were being conveyed to the ED but were not requiring medical 

intervention.  An exposition into this cohort that perhaps did not receive a 

clinical benefit to ambulance transportation will be discussed later in section 2.6 

of this chapter. 
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A systematic review in 2017 summarised all available international evidence 

about why people were driven to access the urgent and emergency care services.19  

There were six strongly evidenced themes that emerged from the review that are 

not by definition distinct from each other and have possible overlaps between 

them. Twenty-six studies provided evidence that confidence in primary care 

services drove patients to seeking urgent and emergency care.  Barriers to 

accessing primary care were not necessarily created by services themselves, but 

by patient’s perceptions of the service.  For example, patients felt they would not 

get a primary care appointment in a timely manner that suited them.   Patients 

also felt health anxiety that led them to access a higher acuity service than was 

perhaps necessary.  They needed reassurance sooner than primary care could 

provide.  This contrasts with other evidence identified in the review, which 

claims patients are unable to assess the acuity of their conditions.  One study 

found that 24% of patients presenting to the ED were classed as 'non urgent' but 

felt they needed to be admitted to hospital. This strongly links with another 

theme which narrates those patients had a perceived need for ambulance service 

or hospital treatments or investigations. A large theme of the review was urgent 

and emergency care being recommended to patients by healthcare professionals, 

family, or friends.  One study found that 52% of all ED patients had been 

recommended to attend by one of these groups.  Fifteen studies identified that 

convenience (location, no appointments, and 24-hour service) significantly 

impacted a patient’s decision to access urgent and emergency care service.19  

 

There are also system factors that contribute to demand such as provider-induced 

demand.  This is where the demand rises due to the health system, insurance 

companies, and healthcare providers (clinicians).  Qualitative evidence has 

explored factors that contribute to supplier-induced demand and have found that 

legal consequences and agency are key factors that induce demand such as 

increased investigations and treatments than is perhaps necessary.20 Another 

study set in UK Emergency Departments found that 85% of their sample of 478 

emergency physicians felt that too many diagnostic tests were ordered for 
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patients.  They also found that 97% of the sample felt that at least some of the 

investigations they personally order were likely to be unnecessary.21 

  

Demand is a significant factor for the ambulance service.   When patients are 

conveyed to the ED, they can be held in a queue until the department’s clinical 

staff can receive the patient. This queuing is also known as ‘ambulance ramping’.   

This extends the handover time per ambulance crew and results in a process 

known as ‘offload delay’.   Both ambulance ramping and offload delay are 

consequences of increased demand in the system that has not been matched with 

increased resources. However, when examining the two concepts in more detail, 

offload delay appears to cause ramping. When ambulances are queueing to hand 

their patient over at the ED, they are unable to respond to prospective 

emergencies. Nehme et al. found that hospital turnaround time was associated 

with lengthened response times, but the extent of the association remains 

unclear.22 The next section will discuss ambulance ramping and offload delay in 

more detail. 

 

2.5 Ambulance offload delay and ramping 

A systematic review published in 2018 identified 137 articles relating to 

ambulance offload delay.  28 focussed on the causes, 14 on its effects and 89 on 

proposed solutions.23 As this is the only systematic review on the subject, it will 

be used as a framework for this section.  The limitation with the review is that it 

did not undertake a quality of bias assessment on the included articles, and most 

of the included studies are older than ten years.  However, pertinent studies have 

been extracted and assessed for limitations.   

 

2.5.1 Magnitude of offload delay 

International evidence on the magnitude of offload delay varies.  A 2005 Canadian 

study by Segal et al. combined time-motion data from paramedics presenting to 

ED and a prehospital call database of time data.24 It was only a small sample of 152 
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calls, however 45% of the job cycle time for paramedics was in the Emergency 

Department.  The job cycle time refers to the period starting from when a patient 

is assigned to a paramedic, to when the patient is handed over or discharged. 

Three other studies have examined the delay in handover.  Silvestri et al. 

undertook a small prospective observational study in the USA and recorded the 

offload times of all patients attending a single level 1 ED between the hours of 

11AM and 11PM for one week.  In the 167 patients in the study, it was found that 

most (n=122) were triage category 'green', which is described as 'least severe'.  The 

triage tool used is unknown for the study, but the implication is that these 

patients were the least acute patients in the study cohort.  Despite 52% of patients 

being handed over in a timely manner (<15 minutes), there were 15% taking over 

an hour to hand over.25 An Australian study in 2012 used a larger sample, but 

retrospective, of 141,381 ambulance transports. It was found that 12.5% of patients 

experienced a handover delay of 30-60 minutes, and 5% had a delay of >60 

minutes. It was also found that larger hospitals in urban areas, especially in the 

winter were contributing factors. In the UK, NHS England publish a daily 

situational report for urgent and emergency care.  This only occurs during the 

winter months but collects national data around demand.  Data shows that 

between 2017 and 2021, 10% of all ambulance transports had a delay of between 30 

and 60 minutes.  NHS England also published that an average of 3.1% of all 

ambulance transports result in a delay of over an hour to handover.26  A 

limitation of the report is that it does not include annual figures, which means 

the averages are likely to be skewed to an extreme as the included months occur 

in the winter period, where incidence of disease significantly rises, as does system 

demand. 

  

2.5.2 Causes of offload delay 

Li et al. in their review found 28 studies related to the causes of offload delay.23  

Fundamentally, the greatest cause of offload delay is the ED having too many 

patients that they struggle to manage, known as 'crowding'.  Six studies directly 

linked crowding to offload delay, with a further three linking it with significant 
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negative effects for ambulance providers.  The review identified that there were 

certain factors of ED crowding that contributed more to offload delay.  These 

include resource shortages, high demand of high-acuity patients, diagnostic 

delays, language barriers and increased bureaucracy.  

 

Not all studies agree with ED crowding being the largest contributing factor in 

offload delay.  In 2015, Lee et al. from Korea published a study on ED crowding 

and ambulance turnaround time.27  The study was large and used a prospective 

cohort of 163,659 patients transported to 28 EDs within the study area.  Using 

multi-level regression modelling with random effects for EDs, a negative 

association between ED occupancy and ambulance turnaround time was found.  

This equated to a 1% increase in occupancy showing a 0.02-minute decrease in 

turnaround time (95% CI 0.01-0.03). However, this study had numerous 

limitations.  The definition of turnaround time was not consistent with previous 

literature as they defined it as the time from arrival at ED to the return of the 

ambulance to the base station, and then adjusted for distance from the ED. They 

also did not examine confounders and adjust for them in the analyses. The 

clinical significance of their finding could be negligible in practice.27 

 

2.5.3 Consequences of offload delay 

In the review by Li et al. they segregate the consequences of offload delay into its 

impact on patients, the EMS system, financial cost and legal implications.23  

Asplin et al. in 2003 developed a conceptual model of ED crowding to aid future 

research in understanding the cause, consequences and solutions of crowding in 

the ED.28 They separate the issue into three interdependent components.  These 

are input, throughput, and output.  The input component examines all the factors 

that contribute to ED demand. The throughput component focuses on the patient 

experience within the ED and includes factors that disrupt timely flow whilst the 

patient is in the department.  The output component contains elements that 

delay discharge from the ED. However, this thesis will break down the 

consequences of offload delay using the same framework modified for context, as 
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follows: the upstream is consequences for the ambulance service in terms of 

system delivery, midstream constitutes ambulance ramping and downstream 

explores the consequences of offload delay for the patients experience in the ED. 

 

2.5.3.1 Upstream consequences of offload delay 

There is a paucity of evidence for the upstream consequences of offload delay. 

Eckstein and Chan undertook a prospective, longitudinal study in 2004 

examining the effects of ED crowding on paramedic ambulance availability.  The 

study included all incidents that had a handover of over fifteen minutes at the ED 

over a one-year period.  One in eight of their ambulance transports resulted in a 

delay of over 15 minutes and 8.4% took over an hour.  A conclusion of the study 

was that these delays have an impact on ambulance service delivery, however 

there was no justification for this in the study.29 A 2017 report by the Royal 

College of Emergency Medicine (RCEM), NHS Improvement and the Association 

of Ambulance Chief Executives (AACE) claimed that in England in 2016, over 

41,000 12-hour ambulance shifts were lost due to offload delay.30 Other studies 

have looked at the impact of ambulance diversion.  This is an interventional 

strategy to ED crowding and offload delay, which sees ambulances diverted away 

from overcrowded EDs to less busy ones further away. Pham et al. undertook a 

systematic review into the effects of ambulance diversion.  They included 107 

studies, mainly of low quality.  They found that studies which looked at the effect 

of diversion on ambulance flow had minimal impact on ED crowding.  This 

ranged from 0.3-0.15 patients per hour being brought in by ambulance.  It has also 

been demonstrated that diversion increases ambulance transport time and has 

economic implications. However, these were limited to American studies and the 

economic impact was in lost revenue to the hospital.31  A 2018 time-series analysis 

in the UK by Knowles et al. examined the effect of closing five district EDs. They 

found that ambulance call volume increased in geographical areas of ED closure, 

and also journey times to the ED.32  
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Another upstream consequence identified in the literature is the idea of mutual 

aid.  Ambulance services operate within geographical boundaries.  However, 

when resources are scarce, because of offload delay, a neighbouring service may 

respond to the emergency if they are nearest.  The limitation to this, as identified 

by both Majedi in 2008, and Cooney in 2011, is that this practice could leave rural 

areas uncovered and it then leaves the neighbouring service a resource down for a 

significant period of time.33,34 Majedi also used mathematical modelling to 

conclude that adding more ambulances into a fleet to compensate further 

exacerbates offload delay, describing the handover-gate as a ‘bottleneck’ system.34 

 

2.5.3.2 Midstream consequences of offload delay 

An interpretive phenomenological study in 2015 was undertaken by Kingswell et 

al.35 It aimed to elicit how patients felt about ambulance ramping and undertook 

semi-structured interviews with seven patients who had an offload delay of 

greater than thirty minutes.  Patients who were waiting to be handed over for a 

prolonged length of time felt as though there were left ‘in the dark’, waiting in a 

queue without privacy and not knowing when they would be seen.  Hammond et 

al. undertook an exploratory descriptive study to develop a definition of 

ambulance ramping.  Using in-depth interviews, focus groups and chart audits 

within Queensland Ambulance Service (Australia) and ten EDs, they determined 

that ambulance ramping was: 

 

However, publications about ambulance ramping do not comply with this 

definition.  Kingswell et al. in 2017 published a scoping review into ambulance 

ramping and included thirteen studies in their review.  When examining the 

 “A practice primarily of the triage nurses in which patients 

brought to the ED by ambulance are not admitted to the ED 

because of overcrowding or insufficient staffing levels.”.36  
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included studies, ten defined ambulance ramping as synonymous with offload 

delay and three did not define it at all.37  This is disappointing as they are 

conceptually distinct phenomenon. The former, is a consequence of the latter, in 

the same way that ED boarding is not the same as a hospital with no inpatient 

beds.  The ED is boarding because there are no beds, the ambulances are queueing 

because there is an offload delay. A hospital can have no beds, but the ED might 

be empty and therefore ED boarding would not exist.  The department could be 

full, and handovers might be delayed by an hour (for example), but if there is only 

one ambulance there for two hours, there is no ramping. Conversely, it could be 

argued that a delayed handover with only one patient in the queue is still a 

ramped patient.  This appears to be supported by the literature identified by 

Kingswell et al.37 However, there is a paucity in the literature for upstream 

consequences to ambulance services.  The harm of a single delayed handover 

versus a long queue of ambulance patients is unknown.  Future studies into 

ambulance ramping should consider the unit of measurement as queue length 

and not just handover delay. 

 

2.5.3.3 Downstream consequences of offload delay 

Patients who do not have prolonged handover times have been shown to have a 

better experience than those who do.  An Australian study by Crilly et al. in 2015 

used twelve months of linked data (ambulance service and ED) to compare the 

characteristics of delayed handover patients and non-delayed.  The study had a 

large sample of 40,783 ambulance patients.  Patients who were not delayed had a 

shorter time to triage, ambulance turnaround time, time to see healthcare 

professional and ED length of stay.  However, these findings could be linked to 

the degree of crowding in ED and the study did not adjust for this.  It has been 

demonstrated that the main driver for offload delay is ED crowding.38  

As a possible intervention point to offload delay, one study has suggested that 

paramedics can stream patients with the same degree of accuracy as the triage 

nurse.  This was an Australian prospective study of 500 ambulance cases.  There 
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was a concordance of 86.4% (95%CI 83.1 – 89.1) with the triage nurse. Streaming 

dispositions included resuscitation room, a cubicle or fast track.39  

   

In section 2.3, evidence was presented that there is significant rising demand for 

prehospital and emergency care.  This demand is not a blanket rise in all patients 

across all conditions, but peaks in specific areas.  As Andrew et al. alluded to, 

there appears to be a growing cohort of patients who do not need medical 

intervention but find themselves seeking emergency care.  The majority of 

ambulance service patients require fewer critical interventions and more 

community based care.40,41  

 

This chapter has so far examined the drivers of demand for all patients entering 

the system; however, there are patients that have found themselves accessing a 

higher level of care than perhaps is needed.  Their acuity of illness could be 

treated in the community, as opposed to an ambulance or the ED.   

 

2.6 Low-acuity navigation into emergency care 

From a policy perspective, NHS England clearly define two populations according 

to their care need: emergency and urgent. These definitions appear to be distinct 

with clear boundaries; however, in practice there is much overlap between the 

two, especially when the access to urgent and emergency care is often patient led.    

 

“Emergency: Life threatening illnesses or accidents which require 

immediate intensive treatment.  Services that should be accessed in 

an emergency include ambulance (via 999) and emergency 

departments.   

Urgent: An illness or injury that requires urgent attention but is not 

a life-threatening situation.  Urgent care services include a phone 

consultation through the NHS111 Clinical Assessment Service, 
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Pope et al. undertook a qualitative study with members of the public to elicit 

their perceptions of what defines ‘urgent’ and ‘emergency’.43 Using citizens’ 

panels, and a large sample of semi-structured interviews, there was no clear 

separation between the two definitions.  Instead, a theoretical model was 

described whereby patient choices were socially constructed, contingent, and 

informed by beliefs and experience.  If a patient had rarely contacted any urgent 

and emergency care service, but they had previously attended the ED, they were 

more likely to associate this as an appropriate care setting for their urgent need.  

As a tangential point, it is reasonable to extend the work of Pope et al. to possible 

belief structures of paramedics.  They have traditionally transported patients to 

the ED and the inception of alternative care pathways, referrals to primary care 

and discharging on scene are all modern advancements.  The ED is very familiar 

to the paramedic and this experiential knowledge could feature in their decision-

making.  Pope et al. also found that one source of confusion for which care setting 

to access, was that patients saw the options as equivalent rather than 

hierarchical.  The quote below illustrates the points made by Pope et al. 

pharmacy advice, [in hours] and out-of-hours GP appointments, 

and/or referral to an urgent treatment centre (UTC).”42 
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In NHS England’s definitions, they dichotomise patients to optimise care.  The 

emergency patients call an ambulance and/or attend ED, whilst those with urgent 

care needs are referred to community options such as the GP.  This is not always 

successful in practice, and evidence has often focused on why urgent care 

patients have found their way into an emergency care setting, inducing demand.  

MacKichan et al. examined why primary care patients attend the ED.  They found 

that the convoluted way to access primary care engendered a mistrust in the 

system.  Furthermore, the increase in telephone triage in primary care to mitigate 

demand had led to patients becoming ambivalent to its benefit.  They explained 

that speaking to a clinician over the phone was unsatisfactory and was 

inequitable as some groups were not able to ring on the ‘first-come first-served’ 

appointment system.44 Attempts to help patients navigate the system using 

telephone triage have not demonstrated a clear benefit for similar reasons.  In 

Pope et al., patients were reluctant to accept the advice of the NHS111 service, 

especially if there was a language barrier on the phone.  This is supported by a 

recent quantitative study by Egan et al. who used a sample of 16,563,946 calls to 

the NHS111 service and found that for every 20 calls where callers were told not to 

“We had a conversation here, didn’t we, about the confusion, and how 

do you know what to do. And actually, you know, if you’ve used services 

a lot you know what to do. But if you’ve had an urgent care incident, and 

you’ve only had one in the last 20 years, how do you know what to do? 

(Public panel) 

P14: "Urgent care, I would think of, probably, well, an ambulance, A&E, 

you know, if it was urgent, yes. Otherwise it would be just a trip up the 

doctors to see what the problem is, you know. 

Interviewer: "… emergency care, what do you think of?" 

P14: "Emergency care is, well, the same thing, really. Yes. I mean, if I 

could see there was a major problem with anything … if it really looked 

bad, you’d have to ring 999, I think." 

(Younger interviewee)”43 
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go to the ED, 1 resulted in an avoidable ED attendance within 24 hours.44 There is 

a distinction between the telephone triage in general practice (which forms part 

of the consultation), and the NHS111 service which is primarily a signposting 

service.  If patients struggle to define their own urgency and must grapple with a 

complicated system to find the right care setting, then patients can potentially 

end up presenting in the wrong place. If a patient attends the ED (a care setting 

for emergency patients) with a care need that could be defined as urgent, they are 

an avoidable attendance.  

 

But the definition of urgent is abstruse in this context as it is defining what a 

patient is not, as opposed to what they are. The label is applied not because they 

have demonstrated a clear urgent care need, but because they have lacked a clear 

emergency care need. The term could be considered interchangeable with others 

such as ‘avoidable’, ‘preventable’, ‘non-urgent’, ‘unnecessary’, ‘inappropriate’ and 

‘primary care problems’.45 This is on the assumption these terms are used in the 

context of describing emergency care patients in the wrong care setting for their 

need. The general principle is a patient does not have a qualifying clinical benefit 

for emergency care, but through complex processes finds themselves in the ED.  

Qualitative work by Parkinson et al. have attempted to break this concept down 

further.45  Within the avoidable attendance concept, the authors propose three 

distinct groups.45  The first are the clinically divertible attendances.  This group of 

patients need access to healthcare, but they do not need the specialisation of the 

Emergency Department.  The second are the clinically preventable attendances.  

These do require the specialisation of the Emergency Department, but this could 

have been prevented if their condition was managed better or if there was an 

earlier intervention.  Thirdly, there are the clinically unnecessary attendances.  

These do not require any clinical care.  The clinically preventable patients have 

an ‘emergency care’ problem.  The divertible patients are synonymous with the 

urgent care patients that have been previously defined.  The preventable were 

likely to have been urgent sooner in their disease manifestation but now find 
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themselves as emergencies.  The unnecessary, are neither urgent, nor are they 

emergencies.   

 

In 2020, O’Cathain et al. used mixed methods to explore the drivers of ‘clinically 

unnecessary’ use of emergency and urgent care.  The term ‘clinically unnecessary’ 

is important to define.  The authors define it as: 

 

Through examination of a large mixed methods study by O’Cathain et al., the 

term is synonymous with ‘low acuity conditions’, ‘medically unnecessary’, 

‘unnecessary use’, ‘non-urgent’, ‘low acuity’ and ‘potentially preventable use’ .22 A 

limitation in creating this group of synonyms however, is that some terms are 

tied to different contexts.  For example, the terms 'low acuity' and 'non-urgent' 

reference a label attached to how unwell a patient is, and how fast they need 

medical help.  Conversely, terms like 'unnecessary use' and 'potentially 

preventable use' are related to the care setting the patient has found themselves 

in.  The former labels would not change if the system was redesigned, whereas the 

latter would. The study by O’Cathain et al. spanned the three main clinical areas 

of urgent and emergency care, namely, primary care (GP), prehospital (ambulance 

service) and the emergency department (ED).  This is appropriate when exploring 

why patients may not be successful in navigating the right place for their care, 

resulting in a ‘clinically unnecessary’ attendance in one setting, is likely to be 

entirely appropriate in one of the other two settings.  There were five elements to 

“The term ‘clinically unnecessary’ defines use that doctors, nurses 

and paramedics assess as not requiring the level or urgency of 

clinical care provided by their service.”22 
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the study design.  A realist synthesisE, qualitative interviews, focus groups, a 

population survey and integration.  

 

 In the realist synthesis, the drivers of clinically unnecessary attendances from 

the patients’ perspective were explored, and the findings identified six underlying 

mechanisms were explored.  Patients found they were minimising risk by 

attending a higher healthcare setting than required.22  The uncertainty they felt 

around their symptoms created anxiety.  Patients would use heuristic experience 

to inform future choices.  If patients had experienced a delay in accessing care in 

the past and there were consequences, they were more likely to seek immediate 

healthcare in the future.  This was further heightened in the context of caring for 

others and a fear of consequences if something went wrong. Another mechanism 

for urgency was the ‘need for speed’.22  If people were unable to continue their 

daily responsibilities such as paid work or childcare, they would often seek help 

at the ED to resolve the problem quicker.  This was particularly the case with 

paediatric patients with working parents.  Patients also felt they needed 

immediate care when it was for pain relief.  If patients were uncomfortable but 

could not access a GP, they would attend ED or call an ambulance. There would be 

a delay in seeking healthcare up until a ‘tipping point’ where patients could no 

longer cope and would seek a higher level of care.  The remaining four 

mechanisms focus on the benefit of an instant ED visit compared with attempting 

to access primary care.  There is low effort required for help seeking in emergency 

care.22 People who have stressors on their internal and external resources such as 

time, or money can lack the extra capacity needed to cope with a new illness.  

This occurs subgroups such as those with low socioeconomic status, parents, 

people who are isolated, people with demanding jobs, and people with mental 

health problems. It leads to a feeling of helplessness, which drives them to seek 

immediate help. Patients were also compliant with advice from their trusted 

social network such as family or healthcare professionals.   This means patients 

 
E A realist synthesis aims to not just appraise evidence, but also account for the context as well as outcomes.22 
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would accept the recommendation of attending ED or calling an ambulance if it 

came from a trusted source, regardless of their own belief of where the most 

appropriate place to access care was.  There is also the availability and quality of 

care provided by the ED.22  Patients felt that the ED would provide a better 

service than what is available in primary care and trusted this healthcare setting 

to meet their need.  This leads to the final mechanism, which is a frustration with 

access to the GP. When people are not able to book a GP appointment in an 

acceptable period, it can give the perception of an inaccessible and uncaring 

service.  This leads to patients feeling they have no choice but to access 

emergency care.22 

 

There are also wider considerations to why patients access healthcare, such as 

those described by Hannay in 1980.46 They reference a difference between the 

patient reported ‘iceberg’ of illness, and the GP’s perceived triviality of patient 

presentations.  Patients felt that they only sought medical attention for around a 

third of illness, leaving most of the ill health hidden from clinical practice.  This 

is known as the iceberg.  However, when GPs were asked about the presentations 

that patients attended practice with, they perceived there were a significant 

amount that fell below the threshold of needing an ongoing referral. In chapter 7, 

section 7.6.1 there is an expansion on how social and demographic factors can be 

associated with a low-acuity patient. 

 

It is understood from the literature discussed in section 2.7 why there is this 

cohort of patients, and the next section seeks to quantify how large this cohort is 

in the context of the emergency care case-mix.  

 

2.7 The quantity of avoidable emergency care contacts 

The previous section defined avoidable ED attendances and examined what 

drives this cohort to access healthcare at a higher level than what is required. The 

same context is existent in ambulance service patients as well.  The two are not 

mutually exclusive cohorts and it is possible to be both.  Indeed, it is the patients 
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that fit both criteria who would benefit most from improved navigation of 

services.  When quantifying the amount of avoidable emergency care contacts, 

both the ambulance service and the ED are considered emergency care settings 

and so quantifying the magnitude for both are explored in this section.  In 1998, 

Snooks et al. undertook a systematic review of studies aiming to quantify the 

amount of ‘inappropriate users’ of ambulance services.  Combining the results of 

the ten included studies, there was a mean of 38.4% (standard deviation 11.6) 

considered inappropriate users in comparison with all ambulance users.47 The 

main limitation of the study was each had their own definition of inappropriate 

user and this meant drawing conclusions was difficult.  Furthermore, at the time 

of publication, non-conveyance was not always an option and only 17% of patients 

were not taken to hospital.48  Patton and Thakore took a small sample of 910 ED 

attendances over a 7-day period at a single hospital in Scotland. The objective of 

their study was to quantify how many ambulance conveyances to the ED were 

inappropriate conveyances.  The results show that 295 presented by ambulance, 

and 84 (32%) of these were considered inappropriate following a review of the 

ambulance patient report forms and ED notes. The definition of inappropriate 

was a judgement made by the ED consultant at the time of presentation. The 

majority of the inappropriate attendances had primary care needs and could have 

been managed in the community. 49 The sample size used in this study is low and 

the findings were not presented with confidence intervals.  In addition, using 

subjective judgement from multiple experts has significant limitations if the 

concordance between them is not assessed. This is because different experts will 

have different thresholds of ‘appropriateness’.  However, a key conclusion drawn 

from the study was that a reduction in inappropriate ambulance conveyances to 

the ED would result in an 11% decrease in ED workload. Andrew et al. also found 

that over the eight-year study period, patients not requiring a medical 

intervention from paramedics had grown by 6.7% annually (IRR 1.067 (95%CI 

1.063-1.072)).13 A prospective, multicentre study found that 19.4% (95%CI 18.0 – 

20.8%) of ED attendances were avoidable. This was using a sample of 3044 case 

reviews.50  However, it is recognised that the choice of definition has an impact 



 

45 

 

on the quantity of avoidable conveyances. McHale et al. used a large national 

dataset in the UK to examine all ED attendances between 2011 and 2012.  Their 

definition of ‘inappropriate attendances’ were patients who were self-referred as a 

first presentation, received no investigation, had no treatments (or just 

guidance/advice) and were discharged with either no follow-up or just a GP 

follow-up.  The study included 15,056,095 patients and found that 11.3% of patients 

were avoidable.51  In 2007, a Swedish study used a qualitative outcome measure of 

asking ambulance staff whether each patient required ambulance transport.52  

This was a prospective study of 1977 patients.  According to the ambulance staff, a 

third did not need ambulance transport.  From the labels given by the ambulance 

staff, the study authors undertook a descriptive analysis of this cohort compared 

to those who were judged to require transport.  A broad range of clinical 

presentations that did not need hospital transport or ambulance intervention 

were identified.  Studies that are more recent have reframed the definition from 

avoidable to ‘non-urgent’; however, the definition remains contextually the same.  

O’Keeffe et al. found that, in a linked data analysis of 3,667,601 patients, there 

were 554,564 (15.1%) who were avoidable attendances at the ED.  Like the Swedish 

study, this one also characterised the avoidable attendances and found that these 

patients were more likely to present out of hours (OR 1.19 (95%CI 1.18 – 1.20)), and 

more likely to be younger (aged 16-44).  Interestingly, it was found that there were 

8.5% avoidable attendances that arrived by ambulance.5 A 2018 study by Miles et 

al. found that up to 16.9% of ambulance conveyances to the ED were potentially 

avoidable.53  This study used the same definition as O’Keeffe et al.  Even though 

this estimate of 16.9% is noticeably  higher than other studies, it is important to 

recognise that there were limitations in the data that were not addressed, such as 

handling of missing data from specific sites.54 Andrew et al. in their study of 

2,443,952 ambulance journeys found that there was a 6.7% per year growth in 

patients who did not need paramedic intervention.13 This was a longitudinal 

study over seven years between 2008 and 2015. 
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Avoidable attendances and conveyances appear to contribute significantly to the 

input of ED demand. Evidence has demonstrated paramedics transport patients 

to the ED who potentially could be treated in the community.  The acuity of 

prehospital care patients has changed from being mainly high acuity, life 

threatening emergencies, to mainly patients with urgent and complex care needs. 

that it is important that their care be optimised to take place at the appropriate 

care setting. There are many different terms used to describe this population; 

however, for this thesis the term ‘low acuity’ will be adopted.  This is because it 

feels patient centred and detaches the context of them being ‘in the wrong place’. 

It also the terminology which is adopted by policy in the UK. In this thesis, low 

acuity has been operationalised and this can be found in chapter 7, section 7.5. 

 

2.8 Strategies to optimise care 

In 2002, Snooks et al. summarised different strategies that could optimise the 

care of low acuity patients contacting the ambulance service.55 The most relevant 

findings were that calibrating priority dispatch systems could triage patient 

acuity at the time of call and resources could be allocated accordingly with more 

accuracy.  A priority dispatch system is an algorithm that makes decisions on 

how sick a patient is based on the answers they give to questions asked by an 

ambulance dispatcher. Sicker patients may have more resources allocated to 

them, and sooner.  Also, Snooks et al. found that telephone triage systems led by 

nurses were effective in an out of hours setting.  These interventions focus on the 

control room when patients call for an ambulance. A 2015 rapid review by Turner 

et al. collated all available evidence on the different strategies of delivering 

effective care.  Ten systematic reviews and 44 original studies were identified as 

evaluating telephone triage.  The results show that it provides safe decision 

making and patient satisfaction is high.  However, most studies lacked a whole 

system perspective, which limits the evaluation of this aspect of urgent and 

emergency care.56  More effective strategies have been identified on scene with the 

patient.  
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In the study by Snooks et al., the most prevalent strategies were non-conveyance 

and field triage and diagnosis made by paramedics. This was reiterated in 2015 by 

Turner et al. who undertook a review on management of urgent care needs in the 

community by ambulance staff as part of their rapid review.  Seven systematic 

reviews and 12 primary studies supported the view that extending the knowledge 

and skills of ambulance staff to meet the case mix is an effective strategy.56   

 

The strategies of non-conveyance and increasing paramedic’s skills to diagnose 

and discharge in the field have been a mainstay in UK policy for several 

years.12,57,58 It has been encouraging paramedics to make autonomous and 

dynamic decisions about their patient care before transporting them to the 

ED.12,41,59,60 This theme was particularly emphasised in the Urgent and Emergency 

Care Review Team (UECRT) report in 2013.59 One of the main outcomes they 

aimed to achieve in the report was for those with an urgent need to access 

healthcare be provided with a highly responsive, effective, and personalised 

service outside of hospital. This has led to the growth of non-conveyance. In a 

2013 follow up to the Snooks et al study, the focus was whether the strategies 

identified originally had been translated into practice.  It was found that over the 

twelve year gap there had been a reduction in conveyance rates from 90% to 58% 

(equivalent to 2.7 billion fewer journeys).61 However, there had been a plateau in 

the amount of non-conveyance with recent policy stating that 90% of calls were 

not life-threatening but low-acuity, and nearly 60% resulted in a patient being 

conveyed to ED.58 

 

2.8.1 Non-conveyance 

Non-conveyance can be defined as “an ambulance deployment as appropriate, 

where the patient after examination and/or treatment on-scene does not require 

conveyance with medical personnel and equipment to the healthcare facility”.62  

Mikolaizak et al. in 2013 published a systematic review analysing the rates and 

outcomes of non-transported older patients who had fallen.  Twelve studies were 

included, and their risk of bias were scored by the authors as ranked moderate-
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low quality.  In this sub-group of older patients who had fallen, the rate of non-

conveyance was between 11 and 56%.63 The review also explored the reasons 

behind non-conveyance.  There were multiple factors; however, the most common 

was refusal to travel by the patient, which was mentioned in seven studies.  Other 

reasons included the treatment on scene was sufficient or the patient was 

referred to the GP.63  A later review in 2017 by Ebben et al. produced a more 

comprehensive systematic review aiming to describe ambulance non-conveyance 

rates, the characteristics of these patients, the follow-up care after non 

conveyance and influencing factors in the decision making process.64 This 

systematic review appears to be more comprehensive in comparison to other 

reviews undertaken in the same subject area.63,65–67 Sixty- seven studies were 

included in the review with the majority being quantitative observational studies 

of moderate-low quality (in the context of risk of bias, as appraised by the 

authors). The rate of non- conveyance varied between 3.7–93.7% in the unselected 

population (not disease-specific). The wide range was due to the differences in 

prehospital models between countries, however the median rate was 15.7% and 

the mean was 24.4%. Heterogeneity between studies meant a meta-analysis was 

not possible.  On reviewing the supplementary material of the study, it is 

apparent that there are differences in sample size, population of interest (even in 

unselected cohorts) and in system-set up.  One of the contributors to the extremes 

in the range appears to be the sample size.  If studies with < 2000 patients were 

excluded the range would be 3.7-31.7%, with a mean and median of 14.5%.64  

 

According to NHS England, the then (November 2021) non-conveyance rate 

experienced nationally in England was 31.3%.68  The limitation of this source of 

data is that it is used as a performance measure for the ambulance service, which 

is linked to their funding. This could introduce a bias into the data collection 

stage and affect the accuracy of the report, as ambulance services might well be 

motivated to perform for funding reviews.69 Figure 5 shows longitudinal data 

from NHS England on non-conveyance proportions of all face-to-face ambulance 

assessment with the grey shadows plotting the 95% confidence interval.  The 
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figure was created by the thesis author (Jamie Miles) using publicly available NHS 

data.16 The graph shows two spikes in non-conveyance, and these relate to peaks 

in cases during the COVID-19 pandemic.  Beyond these spikes it is demonstrated 

that the non-conveyance in England has barely changed over time.  Note the Y-

axis on the figure has been truncated to between 25% and 75% to facilitate 

interpretation.  

Figure 5: Proportion of patients not conveyed to hospital after a face-to-face ambulance 

assessment between 2017 and 2021 

 

 

Ebben et al. continued to describe the characteristics of non-conveyed patients.  

In their included studies, they found that age, gender, ethnicity, and geographic 

area had been mentioned as demographic characteristics.  Age range was quite 

wide and ranged from 14-90 years old.  Gender was predominantly male, and most 

non-conveyed patients were in an urban area.  For ethnicity, one study claimed 

that 90.6% of non-conveyed patients were white, whereas another study reported 

48.3% were African American.  The limitation in this reporting was an absence of 
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describing the underlying population ethnicity. Vital signs were mentioned by 

three studies in the review.  One study found that 14.9% of non-conveyed patients 

had abnormal vital signs.  These could have been blood pressure, O2 saturation, 

Glasgow Coma Scale and body temperature.70 The two other included studies 

agree with this concept of non-conveyed patients not always having observations 

considered within normal parameters.71,72 A limitation with Ebben et al. is the age 

of the included studies.  Eleven of the studies were published between 1990 and 

1999.  As studies become older, their validity in such a rapidly evolving field such 

as prehospital care becomes compromised.  

 

2.8.1.2 The success of non-conveyance 

Ebben et al. also included in their review a synthesis of evidence on the outcomes 

of patients who were not conveyed.  They focussed on two specific outcomes of 

repeated access to care and patient outcomes. Repeated access is where a patient 

re-contacts an urgent or emergency care service following their initial patient 

episode.  Services included in the study were the ED, EMS-system (ambulance 

service), GP or walk-in clinic.  The periods included repeated access within <24 

hours, <48 hours, <72 hours and <7 days.  Seventeen studies used repeated access 

as their outcome measure and included a general population (as opposed to a 

specific disease population). Patient outcomes included mortality, hospitalisation 

and recurrence of symptoms.64  Table 1 summarises their findings. 

 

Table 1: Summary of repeated access to healthcare following EMS discharge in the general 

population from Ebben et al.64 

 <24 hrs < 48 hrs < 72 hrs < 7 days 

Repeat access to the ED 4.6 - 7% 19% 6.4 - 25.8% 8.1 - 80.1% 

Repeat access to the EMS 6.1% 2.3 - 2.5% - 7.4 – 13.5% 

Repeat access to the GP 13% - 36.8 – 50% 46.2% 

Mortality 0.2 – 3.5% 0.3% 0.3-6.1% 0.3 – 0.7% 

Hospitalisation 3.3% 1% 4.5% - 12.1 % 5 – 8.1% 
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The results indicate that following discharge on-scene a significant amount of 

patient’s re-enter into the healthcare system at a later point.  However, the 

incidences are higher with urgent care services such as the GP. There is also a 

small amount of mortality and hospitalisation.  This could be interpreted as these 

patients are all low-acuity and the decision to convey was correct, despite re-

entering healthcare.  Coster et al. undertook a data linkage study of 42,108 

ambulance journeys and found that, within three days from discharge, there was 

a 9% re-contact rate with the ambulance service, 12.6% re-contact rate with the 

ED, and 6.3% admission to hospital.  When the time frame was extended to seven 

days, all of these re-contacts increased.73 However, there needs to be more 

information about the appropriateness of the re-contact as it is a crude marker 

without any context.  Fraess-Phillips published a narrative review in 2016 on 

whether paramedics could safely leave patients at home.  The review included 

eleven studies but did not appraise the quality.  It was found there was 

insufficient evidence on safe non-conveyance as triage decisions were different 

between prehospital and ED staff.65  The limitation of this review was that it did 

not follow a systematic methodology to identify studies.  This could explain why 

they only found eleven studies and Ebben et al. found 67 studies a year later. 

Patients who are not conveyed due to the paramedic deciding they may not gain a 

benefit in the ED is significant, and it has been demonstrated above that not all 

patients who are conveyed, necessarily need the ED.   

 

In 2018, O’Cathain et al. used data from ten ambulance trusts in the UK to explore 

why there could be variation in non-transport rates.  The variation was associated 

by the skill level of paramedic (those with extended skills were more likely to not 

convey), and the risk attitude of senior managers.  These were considered 

potentially modifiable factors.74  
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2.8.2 Increasing the paramedic skill level  

One of the strategies that has been shown to optimise care is to upskill 

paramedics for them to manage urgent care in the community effectively.  In 

2007, Mason et al. undertook a cluster randomised controlled trial (56 clusters) in 

a large urban area of England.  They assessed the benefits of paramedic 

practitioners (paramedics with extra training) on treating older people in the 

community with minor illness or injury.  The sample included 3018 patients aged 

over 60 and had three main outcome measures.  These were ED attendance or 

hospital admission within 28 days, the job cycle time (call to discharge) and 

patient satisfaction.  Patients were less likely to attend the ED (RR 0.72, 95%CI 

0.68-0.75), less likely to be admitted (RR 0.87, 95%CI 0.81 – 0.94), had shorter job 

cycle times (235 minutes vs 278 minutes (95%CI for difference 60 minutes to -25 

minutes) and were highly satisfied with care (RR 1.16, 95%CI 1.09-1.23). These 

findings were in comparison to the control group of standard paramedic practice. 

This study demonstrates that it is possible for the ambulance service to reduce 

transportations to the ED, and this benefits patients (increased satisfaction), the 

ambulance service (through decreased job cycle time) and the ED (reduced input). 

Tohira et al. in 2013 published a systematic review and meta-analysis into the 

impact of paramedic practitioners on ambulance transports to the ED. Many of 

the studies were set in the UK and were of medium quality (according to a risk of 

bias assessment by the study authors).  Paramedics with advanced skills were 

more likely to discharge patients on scene (OR 10.5 (95%CI 5.8-19)) than standard 

paramedic practice.  The authors could not pool study results for re-contact 

(either with the ambulance service, ED, admission) following discharge, however 

there was a signal in the evidence that there was reduced re-contact in shorter 

time-frames (24 hours) but possibly more within longer time frames (28 days).66 A 

later study by Tohira et al. used linked data (ED and ambulance service) to 

quantify the risk of re-contact.  The study had a large sample of 47,330 ambulance 

patients, of whom 19,732 were discharged on scene and 27,598 were discharged 

from the ED.  They found that the patients discharged on-scene were more likely 

to request a subsequent ambulance, attend ED and be admitted to hospital 
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compared to the ED cohort.  One consideration for these results is that they 

cannot be directly compared to the previously mentioned studies.  This is because 

they are examining the non-conveyance decisions of regular paramedics whereas 

the above evidence is comparing advanced paramedics.70  Upskilling ambulance 

staff is a patient and system benefit, and has been noted in the first ever quality 

standard specific to ambulance services by the National Institute for Health and 

Care Excellence (NICE).  The quality standard (QS174) states that ambulance 

services should have specialist and advanced paramedic practitioners.75 

However, the limitation to this strategy is that it relies on either accurate triaging 

of low-acuity patients prior to ambulance dispatch, or availability of advanced 

paramedics.  It would be too costly to upskill all paramedics to mitigate this.  

Paramedic decision making around non-conveyance and low-acuity patients 

remains difficult, and the next section examines the evidence as to why this is the 

case.  

 

2.8.3 Paramedic navigation of the complex case-mix (decision making) 

In 2014 O’Hara et al. identified that the most complex type of decision for 

paramedics is that of non-conveyance and discharging the patient on-scene.76
   

They undertook a large multimethod qualitative study exploring paramedic 

decision-making and its system influence.  A typology of paramedic decision 

making that included nine types of conveyance decision was synthesised.  Seven 

of these related to system and contextual decisions to convey a patient to the ED, 

one referenced patient refusal and the remaining type was that of non-

conveyance.  It was considered that non-conveyance was the hardest and most 

complex decision to make.  Paramedics referred to how isolated they felt and did 

not have senior clinical support (compared to ED colleagues).  One interviewee 

noted that if just one of the crewmembers thought they should convey, then they 

would. Multiple observations revealed that, culturally, it was not considered good 

practice to argue for non-conveyance.   Paramedics would also follow patient 

preferences and if the patient were expecting transport to ED, they would fulfil 

this request as opposed to challenging it when needed.   O’Hara and colleagues 



 

54 

 

produced seven overarching system influences on paramedic decision making.  

The first system influence was meeting the increasing demand.  This influence 

meant less exposure to emergencies and shifting the decision making to more 

primary care and psychosocial decisions.  The second was performance regime 

and priorities.  This recognises that assigning too many patients to an 8-minute 

response (ambulance time target for emergencies) has an impact on resources 

such as staff and vehicles.  This idea of time targets for response time and time on 

scene conflict with paramedics taking longer to look at the wider patient context 

and make complex decisions.  The third was access to appropriate care options 

and this refers to the disparate referral opportunities between geographies.  This 

increases the complexity of decisions and can cause the paramedic to default to 

convey.  The fourth was a disproportionate risk aversion.  This is influenced by 

the staff perception of their own competence, confidence and negative 

experiences.  There is a perceived blame culture and paramedics are unwilling to 

take any professional risk.  The fifth was staff education, training and 

development.  Due to operational demands, this is often forfeited and creates 

differences in the decision making of paramedics who have specialist skills, those 

who have undertaken training in their own time and those who only completed 

service training when available.  The sixth was feedback to crews.  This does not 

routinely happen and so crews cannot recalibrate their decision making as they 

rarely get an opportunity to find out the clinical outcome of patients.  It only 

occurs when a mistake has been made, which precipitates the fourth system 

influence of disproportionate risk aversion.  There is also a lack of clinical 

support for transport decisions or advice in general about the patient care.  The 

final system influence was ambulance service resources.  Like the first two system 

influences, the skills, resources and equipment differ between geographies and 

especially between services.  When demand is high, it puts further strain on all 

these resources. The study by O’Hara et al. agrees with many other sources in that  

paramedic decision making is complex.77–80  A cause of this complexity is the 

perception of job role as illustrated by Hoikka et al.81  They elude to paramedic 

education being focussed on high acuity situations, which foster a culture that 
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could struggle in recognising and discharging low acuity patients.81  Simpson et 

al. also demonstrated that role perception was crucial in the decision-making 

process of paramedic’s on-scene. They undertook a qualitative study with thirty-

three paramedics examining decision-making in elderly people who had fallen. It 

was acknowledged that role perception was an important factor on how a 

paramedic approaches a decision.79 This idea is reaffirmed by Brydges et al. who 

state: 

 

When examining decision making in the context of non-conveyance, the decision 

to transport a patient to the ED is not always accurate.  Snooks et al. identified 

nine studies exploring this in a literature review in 2004 and concluded that 

paramedics were not accurate at this and needed extra training.83  For example, a 

small study with 313 patients found that paramedic decision making had a 

sensitivity of 81% and specificity of 34% in predicting requirement for ED care. 

The reference standard in this study was a data driven definition of whether the 

patient was 1) admitted, 2) needed a clinical review by a specialist, or 3) had 

advanced radiology such as an x-ray or computerised tomography (CT) scan.84 The 

study used patient experience criterion as the reference standard.  This was 

defined as an admittance from ED, if they required further assessment by a 

specialist doctor, or if they required advanced radiologic procedures.  This is 

quite a liberal definition of a necessary ED attendance.  Hauswald et al. in 2002 

found there was poor agreement between paramedic decisions in their study 

when deciding whether the patient required ED care (kappa = 0.32, 95% CI = 0.17-

“Many of the participants perceived their role as a paramedic to be 

defined by responding to emergency calls for help (i.e., consistent 

with their initial education and certification expectations), and 

referral programs represented a formal departure from that 

enduring view.” (p. 633)82  



 

56 

 

0.46). Their study used a reference standard of whether the patient required an 

intervention not provided by an urgent care centre.85 More recent studies have 

not shown a significant improvement on paramedic decision making. A 2019 

study used vignettes of real patients and presented them to paramedics. They 

were examining whether paramedics were able to identify a low-acuity patient.  In 

their sample of 143 paramedics, there was clear agreement between paramedics 

(k=0.63) with an overall accuracy in decision-making relating to transporting a 

patient to ED of 0.69 (95%CI 0.66-0.73). However, when this was broken down into 

sensitivity (0.89) and specificity (0.51) it was not a vast improvement from 

Silvestri et al.  The sensitivity and specificity in this study used the reference 

standard of an avoidable attendance at ED, as defined by O'Keeffe et al.5 It also 

means that there were 49% false positive decisions in their sample.86 This was a 

mixed method study that also explored the rationale behind the decisions.  When 

paramedics made false positive decisions (i.e., they transported a patient that 

lacked a clinical benefit in the ED), they were treating the patient within the 

confines of the episode, as opposed to looking at the whole picture of patient care.  

There was also significant agreement with the findings of O’Hara et al. in relation 

to paramedic decisions being risk averse due to a fear of litigation and role 

confusion.76,86 For this thesis, the term ‘avoidable conveyance’ will be used,  which 

is when a clinician has assessed the patient on scene and decided they need to be 

conveyed, but they would be classed as low-acuity and thus do not require the ED.  

An avoidable conveyance is a decision, and in the context of Miles et al., it would 

be classed as a ‘false positive’.  The idea of supporting paramedic decision making 

of patient acuity and transportation is not new and there have been studies that 

have tried to support this decision.  

 

2.9 Decision support for paramedics navigating the prehospital case-

mix 

From section 2.8 of this chapter, it was deduced that paramedic decision making 

is complex, and this can lead to transporting patients to a care setting that is not 
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optimised for their care need.  In this section, decision support tools are 

evaluated to discern whether their use provides an improvement compared to 

paramedic decision making alone.  

2.9.1 Triage scales in ED 

It has been commonplace globally to triage the acuity of patients entering the ED 

since the 1990s.  This is often using a five-level triage system and derived using 

expert opinion.  In Australia, it is the Australasian Triage Scale (ATS). This groups 

presenting clinical indicators of risk into five categories, and incorporates 

physiological parameters (such as blood pressure, pulse etc.) with presenting 

symptoms.  87 In the USA, it is the Emergency Severity Index (ESI) was 

developed.88–91 This is a simpler triage tool that relies on more subjective 

measures of the user.  It still incorporates physiological values; however, it is 

more concise than the ATS.  One of the limitations of the ESI is that it struggles to 

identify low-acuity patients and over triages patients into ‘level 2’ (higher acuity).  

This contrasts with the ATS which can distribute patients more appropriately.92 A 

copy of both the ATS and the ESI can be found in appendix B.  In the UK, it is the 

Manchester Triage System (MTS) tool that is commonly used to triage patients.93  

The MTS is more complex and requires attendance at paid training courses. The 

tool itself is subject to cyclical updates and mandate revalidation of training.   

The MTS was originally published in 1996 as a series of flow charts that could be 

used by EDs at the point of triage.93  It was derived using a multidisciplinary 

consensus group; however, its subsequent evaluation of benefit has been poor.  A 

systematic review of the validity and reliability of the MTS by Parenti et al. in 

2014 identified twelve studies for inclusion.  They found that only two studies 

reported enough to be judged a high grade of quality and reporting.  The MTS was 

shown to have wide inter-rater reliability and over triaged lower acuity levels.  

This could be symptomatic of all triage systems as they focus on ensuring the 

people who are critically ill are not missed during triage, which leads to over 

triage of less acute patients.  
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2.9.2 Prehospital triage scales 

The MTS provided the basis of a prehospital triage tool and led to the 

development of the paramedic pathfinder tool in North West Ambulance Service 

(NWAS) in the UK. However, the derived methodology did not extend beyond 

working group consensus. The tool uses physiological parameters and ‘red flag’ 

discriminators to classify trauma or medical patients into emergency, urgent, 

community or self-care.8,94  It was user tested in 2014 when a sample of 481 

patients had the tool applied to them with results showing sensitivity of 94.83% 

and specificity of 57.9% compared to a gold standard of expert clinical 

judgement.95  The tool was highly risk averse with almost half of the patients 

being transported to the Emergency Department (ED), when the care could have 

been provided safely been elsewhere. The study also lacked scientific rigour in the 

derivation of the model and reporting the outcomes. An evaluation by NWAS 

compared the MTS to paramedic pathfinder.9  The MTS was first transformed into 

a portable document file with a flow diagram for each presenting complaint.  

There are three MTS products: MTS Emergency Triage 3e (for use in the ED), MTS 

TTE 1e (for use in telephone triage), and MTS NaRT1e (for use in nursing and 

residential settings). The evaluation by NWAS used the MTS TTE product for use 

in the field.  This was then given to a sample of 177 paramedics to use.  The 

evaluation found that ten of the MTS cards accounted for 73% of the 5858 

applications of the MTS.  There was a difference between the tool suggesting 

primary care and the clinicians following this advice.  It recommended that 37% 

of patients were suitable for primary care and 48.6% required ED.  However, the 

actual decisions were that 24.8% went to primary care and 54.5% went to ED.  This 

could indicate either the tool is inaccurate at triaging lower acuity, or that the 

paramedic decision making is still risk averse even with the advent of a tool. It 

could also mean paramedics are taking other things into consideration, not 

accounted for by the evaluation.  The comparison with the MTS versus the 

pathfinder revealed that the pathfinder tool significantly over triaged in rural 

areas, but not in urban areas.  Most MTS patients were classed as ‘level 3 or 4’ 

(urgent or standard), whereas the pathfinder grouped most patients into ‘level 1 
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or 2’ (immediate or very urgent).  The authors did highlight that the absence of 

exclusions within MTS appeared to improve paramedic decision making.  An 

exclusion is a condition on the paramedic pathfinder that overrules the triage 

level.   

 

Some studies have examined whether physiological parameters on their own can 

predict acuity.  A systematic review by Patel et al. in 2018 explored whether an 

Early Warning Score (EWS), which is a composite score based on physiological 

variables, can identify deteriorating patients in the prehospital setting.  At the 

time of the study, there were seventeen included studies (twelve of which were 

considered high risk of bias). If a patient had a high EWS score (generally > 7) they 

were more likely to deteriorate than patients with lower scores and could be 

labelled as high acuity. However, the EWS was not as successful at predicting mid- 

and low-acuity patients.96 Challen and Walter in 2009 explored whether the use of 

prehospital EWS can predict an avoidable attendance at the ED.  In a small 

sample of 215 patient care records, no patient with a EWS < 2 was admitted. If this 

threshold was used as the cut-off for deciding an appropriate ED attendance, it 

would have 100% sensitivity, 15% specificity, PPV of 68% and an NPV of 100% for 

ED care.  However, this study has a very small sample and was retrospective in 

design, which is not pragmatic in the context of evaluating decision making. The 

scores for the study were also calculated retrospectively, and only accepted 

conditions coded as ‘shortness of breath’ or ‘difficulty in breathing’. This is a 

promising signal though, that prehospital measurement of physiological 

variables can contribute to a useful prehospital acuity score. The limitation with 

the above tools is that they were derived using consensus opinion and often 

required labour on the part of the user.  They are also aimed at triaging the high 

acuity patient successfully, which would skew the distribution of patients in a 

multi-level model towards higher acuity outcomes. One study, published in 2014, 

did explore the benefit of a triage model aimed at the lower acuity patient.97  The 

‘Support and Assessment for Fall Emergency Referrals: SAFER1’ was a clustered 

randomised controlled trial that used computerised clinical decision support 
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(CCDS) for use by paramedics.97  The derivation of the CCDS intervention is not 

robustly defined. In the earlier published protocol, the definition extends to the 

following criteria:  

 

In the randomised controlled trial, the intervention was used in 436 participants 

versus the control group of 343.  When using the intervention, the odds ratio of a 

falls referral was 2.04 (95% CI 1.12-3.72) compared to standard practice.  There was 

no difference in safety between the two groups.  The limitation with the study was 

the small sample size, which led to non-significant differences in secondary 

objectives such as non-conveyance.  However, the strength is that it shows 

computerised decision support for low acuity patients is effective and safe.  The 

study relied on electronic data capture, which meant it limits implementation 

across ambulance services, a message that has been identified in recent policy.58 

 

2.9.3 Emerging opportunities in Computerised Clinical Decision Support 

(CCDS) 

There is currently a digital revolution for UK ambulance services that sees both 

policy and research symbiotically accelerating the quality of care in the 

prehospital arena.  One innovative example is using a machine-learning 

algorithm to identify a cardiac arrest at the point of telephone call to the 

ambulance service.  This is not just a blue-sky idea, but a feasible solution to gain 

crucial seconds and hopefully save more lives. It was tested in a sample of 5242 

arrests and, compared to the humans, the algorithm was more accurate and was 

“The CCDS prompts the assessment and examination of injuries 

associated with the fall, co-morbidity that may have contributed 

to the fall (e.g. Breathlessness or chest pain), psychosocial needs 

(e.g. cognitive state and ability to undertake activities of daily 

living) and assessment of environmental risk.”98  
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ten seconds quicker at identifying an arrest.99  The potential benefit of such an 

algorithm has not gone unnoticed: a policy document known as 'the Carter 

review' used this example as a paragon for what could be achieved in the UK, if 

science and strategy work together towards a common objective.58 

 

This is promising: however, the same research team later undertook a 

randomised controlled trial, published in 2021, to detect whether the machine-

learning algorithm in practice had an effect on decision support.100  An 

intervention group used the algorithm alongside their decision-making, 

compared with a control group who did not.  The results found there was no 

significant difference between the two groups. However, a further examination of 

the algorithm used on its own without a dispatcher, was able to identify more 

cardiac arrests than either dispatcher group.  This could highlight that a decision 

support model may have barriers to implementation and use and concurs with 

the findings of others.  

Snooks et al.  undertook multiple work packages to evaluate a risk prediction 

model in the community known as an ‘Early Admissions Risk Prediction’ tool.101  

It was designed to flag patients to their GP who would be at risk of an admission 

within 12 months.  As part of this project, they identified barriers and facilitators 

to the implementation of a risk prediction model.  This has been reproduced in 

table 2 below.  It appears that successful adoption of a risk prediction model can 

be challenging as it can conflict with clinical judgement.  However, this can 

possibly be overcome with training and development of staff. Their study overall 

found that risk prediction increased hospital admissions and ED attendances, 

which was the opposite of the tool’s intention. This failing of the model function 

could be because the perception of the decision support by staff was that it was to 

identify high-risk patients and act sooner.  The study could have been improved 

by examining clinical outcomes beyond patient destination.  
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Table 2: Barriers and facilitators to implementing EARP models in primary care, 

reproduced from Snooks et al.101 

 

The barriers and facilitators identified by Snooks et al. are similar to those found 

by a qualitative evaluation as part of the SAFER1 study, comprising a focus into 

the experience of paramedics using a Computerised Clinical Decision Support 

(CCDS) for low acuity patients.102  They used strong structuration theory, which 

allows the analysis to account for the wider context under investigation, and 

tested this with a sample of twenty paramedics who had previously participated 

in SAFER1. The findings indicated a decay in use due to the labour involved in 

using the CCDS.  However, they also found that paramedics felt the CCDS was a 

reassuring safety net to their own decision, which could overcome the risk 

aversion identified by O’Hara et al.76 Both the quantitative trial and the 

qualitative evaluation demonstrate that there are clinical benefits to prehospital 

computerised decision support, but that there are barriers to implementation 

that may need to be overcome.  The ‘user barriers’ have been discussed above, but 

there are also infrastructure barriers that need to be considered.  In 2020, Porter 

et al. published a large multiple method study into electronic health records 

Barriers Facilitators 

Not an organisational priority 
Supportive organisational processes for risk 

prediction models 

Difficult to fit use of model into 

reactive way of working 

Individual and organisational support for a 

population management approach to primary 

care delivery 

Low interest in using risk prediction 

models and new ways of working 
Training for staff 

Priority placed on personal and clinical 

knowledge over risk model information 

Interest in new approaches to primary care 

delivery 

Questions over accuracy and timeliness 

of risk model data 
Confidence and skills in IT 

Inadequate access to IT equipment  
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(EHRs).  It was an inquiry into how ambulance services and staff engage with 

EHRs and found that there was inconsistency in its use. Often the data was 

indirectly input into the system by using a different medium (such as writing on 

the glove) first, and then transferred over to the EHR.  Their most important 

finding was that the potential of the EHR (the transfer of clinical information, 

supporting decision-making and changing patient care) had not been realised and 

the use was limited to just storing patient information. This is disappointing as 

there is an emerging evidence base to suggest that computerised clinical decision 

support can be useful in triaging low acuity patients.  A limitation with SAFER1 

was that it was undertaken in a sub-group of the prehospital case-mix (patients 

who had fallen).  However, there is evidence that computer-based decision 

support can been used to triage undifferentiated patients in the ED. 

 

Levin et al. used machine learning to develop an electronic triage system and 

compared it to the ESI in a cohort of 172,726 ED visits.103  The electronic triage 

predicted three outcomes: critical care, emergent procedure and hospitalisation. 

The ESI level three (mid acuity) was the majority classification, but the e-triage 

only agreed in 77% of cases and classified the remaining patients equally to higher 

and lower triage levels.  This means that the computer-based model can 

potentially overcome the limitations of the ESI by filtering the mid-acuity.   Raita 

et al. also used multiple machine learning methods to predict clinical outcomes 

in the ED at the point of triage.104  Using a reference model of logistic regression, 

they then compared it against four machine-learning models (Lasso regression, 

random forest, gradient boosted decision tree, and deep neural network). For 

more information on these methodologies, please see section 5.3.4 and appendix 

D.  The machine learning models outperformed the reference model, which 

indicates that complex algorithms used to derive decision support could be more 

accurate than logistic regression alone. A limitation in the use of machine 

learning models is the ‘black box’ axiom that ties to clinical accountability.  If a 

clinician cannot decipher how a support tool has reached a conclusion, nor were 

they involved in the evolution and training of the algorithm, it raises the 
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question as to where the liability falls. An article published in the Annals of 

Emergency Medicine in 2020 provided some reassurance for the clinical appetite 

of artificial intelligence in emergency medicine.105  The limitations can be 

overcome by including checks and balances into algorithm development, and into 

clinical practice. Further discussion on this can be found in chapter 10, section 

10.2.4.  Modern algorithms can now provide an indication of the relative weights 

attached to features used to develop the model. 

 

2.10 Conclusion 

Demand in prehospital care is rising by at least 5% every year. The cause of this 

demand rests mainly on a changing case mix away from high acuity patients and 

towards the urgent care of low acuity patients.  Policy interventions have focused 

around two main areas: non-conveyance and upskilling paramedics.57,58,60  The 

former is a strategic aim, whilst the latter is a mechanism to achieve it.   

 

A limitation with this theory is that upskilling is costly, and, for a major impact, 

the whole paramedic workforce needs to be involved.  Studies have shown that 

their decision making for low acuity presentations is risk averse, and the safety 

net of transporting to ED will always be attractive.6,76  In their training, they focus 

on ruling in ‘red flag’ emergencies as opposed to treating the patient in the wider 

context of their healthcare need.  This would skew their interpretation of patient 

acuity towards triaging patients to a higher level than is necessary.   

 

Decision support tools are available in urgent and emergency care globally and 

often triage patients into five triage levels of acuity. Nevertheless, their 

derivation is often by expert opinion and designed to identify high acuity 

patients.  There are tools specific to prehospital such as paramedic pathfinder 

and a new modification to MTS TTA for use by paramedics on scene.  These have 

been evaluated in service to see if they can support these complex decisions and 

improve patient care.  They have seen limited success with the pathfinder 
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triaging patients into higher acuity levels and the MTS (although performed 

better) not demonstrating that the paramedic would trust the triage category.   

 

Computerised decision support tools have also been trialled to identify low acuity 

patients who have had a fall (CCDS).  The tool showed a clear benefit without 

compromising safety and it was economically viable.  The derivation of the model 

was not clearly described as it was evaluating its use in practice, which is often 

the final step in model development.  The qualitative evaluation of its use though 

hinted at barriers to using computer support.  For example, extra labour is 

involved on behalf of the clinician in order to categorise the acuity, which can 

lead to a decay in use.  There have been promising signals from ED triage models 

that have used machine-learning methods to mitigate some of these issues.  This 

includes automatic calculation based on electronic health fields and deriving the 

model using computer science and statistics, which are largely blinded to clinical 

judgement. Computerised clinical decision support is an underexplored 

mechanism for managing the increased demand and ensuring low acuity patients 

exit the urgent and emergency system at the most appropriate point.   

 

There is an opportunity to develop a tool as more ambulance services are 

adopting electronic health records for which decision support could be 

embedded.  The next chapter will systematically review the evidence to examine 

what machine learning derived CCDS tools have already been developed to triage 

patients entering urgent and emergency care, and which methods were the most 

successful.
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3. Systematic review of machine learning risk prediction 

models to triage emergency care patients 

 

 

Chapter 3 

The Systematic Review of Machine Learning 

Risk Prediction Models to Triage Emergency 

Care Patients 
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3.1 Introduction 

As the previous chapter alluded to in section 2.9.3, there is an opportunity with 

the emerging digital healthcare infrastructure to explore whether complex 

statistical and in silico modelling can triage emergency care patients. However, 

there are broad ranges of techniques that can be used to build predictive models.  

This chapter includes a systematic review that was conducted and published in 

BMC Diagnostic and Prognostic Research in 2020 as part of this thesis.106 This 

creates an informed approach to algorithm selection when designing a model.  

The manuscript is included as published, with supporting information appearing 

afterwards. The full text can be found here: 

https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-020-00084-1  

 

3.2 Purpose of the review 

This review was conducted to ascertain whether a successful model has already 

been developed in prehospital or emergency care.  If this were found to be the 

case, this thesis would stand to externally validate such a model.  The review was 

also designed to identify which methods had the function of triaging patient 

acuity when entering the emergency care system.   
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3.3 Published manuscript 
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3.4 Supporting information 

 

The supplementary information for the manuscript including the search strategy 

can be found in appendix C.  

 

The previous chapter concluded that the current prehospital triage models had 

limitations in their development and implementation.  Using an expert 

consensus group for model derivations is useful for identifying sensible candidate 

predictors, but these then need testing for their actual association with the 

desired outcome.  The systematic review only included derivation studies that 

used mathematics to develop the risk prediction model for this reason.  The most 

common method was logistic regression, which was used for thirty-six models.   

 

Prehospital modelling in this area is scarce, with only six models identified in the 

systematic review, all aiming to predict the risk of a high acuity outcome.  The 

quality of these models could be considered questionable when assessing their 

risk of bias.  

 

A small study predicting hospital admission only used 401 patients over a two-

month period.  This is a surprisingly low sample size and the results reflected 

this.  The final model predictors had wide confidence intervals that sometimes 

appeared statistically non-significant.  For example, a history of cancer gave an 

odds ratio of 3.9 (95%CI 0.5 – 30.4).107  Larger samples predicting the same 

outcome have also been methodologically flawed.  Li et al. had a sample size of 

2784 patients over a single month time frame.108  This is a temporal limitation as 

it is almost apodictic that there are seasonal differences in healthcare demand 

and acuity.  This study was also limited in its evaluation of the model 

performance.  Only accuracy, sensitivity and specificity were reported, which 

means that the model’s ability to discriminate was absent, as was calibration.  A 

possible cause for this was the study appeared to be methodology-driven as 
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opposed to context-driven.  Numerous machine-learning algorithms were 

developed on the same data, predicting the same outcome, and then evaluated for 

the most accurate model.  

 

Whilst it does not portray the full picture in an analysis, it is an important 

theoretical concept that sensitivity and specificity are trade-offs. Unstable models 

will struggle to find the optimal threshold for decision making. An illustrative 

example is Seymour et al. who aimed to predict critical illness in the prehospital 

setting.  Once the authors had built the model, it was transposed into a point 

scoring tool.109  If a score of four or more was used to predict critical illness, the 

model had a sensitivity of 0.22 and specificity of 0.98.  This meant that there were 

hardly any false positives and therefore it could rule in critical illness by way of a 

positive result.  However, there was a high number of false negatives, which 

means they would miss a significant quantity of critical illness with a negative 

result.  When the model threshold was changed to one, the model had a 

sensitivity of 0.98 and a specificity of 0.17.  This has the opposite effect to the ‘four 

or more’ threshold and meant that a negative result could effectively rule critical 

illness out (as there were few false negatives), but a positive result could easily be 

false.  The latter threshold is perceived to be a safer option as it does not miss 

critical illness.  However, this does mean that demand will be created in the care 

of critical patients until the false positives are re-triaged, limiting the value of the 

tool.  The choices of optimising sensitivity, specificity, or balancing the two (for 

example taking the Youden index as the threshold) is less of a mathematical 

debate, and more allied to the clinical context. 

 

In the clinical context of triaging rare outcomes (i.e., the tails of acuity 

distribution), model instability is common. Out of the six prehospital models that 

have been identified, three were not impervious to the challenge of optimising 

the cut-off points for classification.  One trauma triage study found that the 

optimum cut-point gave a specificity of 50% and a sensitivity of 89%.110  It is worth 

noting that trauma triage is an interesting conundrum as patients often require 
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body imaging to reveal the full extent of the trauma, which adds complexity in 

prehospital prediction.  The result is a large number of false positives in order to 

avoid missing any life-threatening (major) trauma.  Another trauma triage study 

concluded that the only way to counter the challenges of accurate triage in 

practice is to accept lower sensitivity thresholds.  This means allowing a greater 

number of false negatives to occur, i.e., accepting greater  risk.111  

 

Kim et al. used a limited amount of candidate predictors that could be collected 

using a wearable device.112 The aim of the model was to predict the acuity of 

medical patients based on their blood pressure, respiratory rate, pulse rate and 

the simplified consciousness score (see the candidate predictors section in 

chapter 5 of this thesis for more information on these).  Whilst it appeared to be 

successful, it was a hypothetical situation as there was no implementation 

strategy or mention of which wearable device could be used.112  Furthermore, 

using outcomes that specifically focus on either medical or trauma patients can 

have limitations in transportability as both are present in the prehospital 

environment.   

 

Of all the prehospital risk prediction models that have been mathematically 

developed so far, none of them would be suitable for external validation and 

therefore a new model needs to be developed and appropriately evaluated.  The 

existing models identified above are designed around high acuity patients and 

thus have a high sensitivity and low specificity.  High acuity patients are more 

likely to have physiological changes such as abnormal blood pressure and pulse, 

which is why these features make good candidate variables.  However, they are 

often within normal limits in the mid- and low-acuity patients.   

 

Studies set in the ED have used machine learning to predict outcomes based on 

the five-level ESI.  Raita et al. used a panel of algorithms including logistic 

regression, LASSO regression, random forest, gradient boosted decision tree, and 

deep neural network.104 The outcomes used were similar to the prehospital 
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studies (critical care and hospitalisation).  The latter three algorithms were all 

able to outperform logistic regression in triaging patients at all five acuity levels.  

Furthermore, these machine-learning methods were able to increase both 

sensitivity and specificity.  The best performing algorithm for critical care was 

the deep neural network, which had a C-statistic of 0.86, sensitivity of 0.80 and 

specificity of 0.76.  For hospitalisation it was the gradient boosted decision tree 

with a C-statistic of 0.82, sensitivity and specificity both 0.75.  A similar study that 

included only paediatric patients had the same findings, with decision tree 

models and neural networks significantly outperforming logistic regression at 

triaging patients.113
   

 

 

3.5 Conclusion 

Machine learning algorithms have shown success in their ability to triage 

undifferentiated patients entering the emergency care system. However, with the 

limitations outlined in this section, there are opportunities to develop a new 

algorithm for predicting low acuity. The next chapter outlines the primary aim of 

the thesis and the objectives needed to achieve the aim.  A secondary aim is also 

reported, and the rationale for the second aim is discussed in more detail.  
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4. Aims and objectives of this thesis 

 
 
 

 
 

 

 

Chapter 4 

The Aims and Objectives of this thesis 
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4.1 Introduction 

The evidence in chapter one has highlighted that there is a clear need for decision 

support in prehospital care. In particular, decisions that involve transporting the 

patient to the ED (see section 2.9).  There is a growing cohort of patients that do 

not need the level of care that the ED provides but are still transported there by 

ambulance (see section 2.6).  Currently, there is a lack of decision support in this 

area for paramedics still on scene with their patients (see section 2.9).  The 

problem reduces to a matter of patient acuity.  The new evidence generated in the 

systematic review in chapter three highlights that it is possible to use statistical 

and in silico modelling to accurately triage patients according to their acuity.  In 

addition, it is possible that supervised machine learning methods such as logistic 

regression, tree-based models and neural networks can produce accurate models.  

But most of the models in the systematic review were created in the ED, and there 

is a gap in evidence for prehospital care.   

 

This study is triaging acuity, but five-level models (such as the Manchester Triage 

System (MTS), Emergency Severity Index (ESI)) are often subjective, convoluted 

and triage patients towards higher acuity outcomes.  This study aims to optimise 

the care of mid- and lower-acuity patients who may not need the level of care the 

ED provides.   

 

Developing a model that outputs at five-levels does not translate easily to 

paramedic decision-support around ambulance transportation.  For example, let 

us assume a hypothetical five-level model is created, with one being absolute 

transport and five being absolute ‘leave on scene’. A patient triaged at level ‘three’ 

provides little meaningful information on whether to transport the patient. The 

purpose and rationale of this study is to support paramedics with a binary 

decision ‘to transport the patient, or discharge on scene’.  Therefore, it would be of 

most benefit to present the paramedic with a probability of an outcome if they 

did transport the patient.   
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The training framework of paramedics is to identify potential red flag conditions 

in patients and transport them to the ED.  Qualitative studies supported this idea 

and have shown that paramedics currently decide to convey some patients who 

do not need the expertise of the ED and could be treated in primary care.  Tools 

that have been developed so far have aimed to identify high-acuity patients, but it 

appears that paramedics can do this themselves effectively.  The difficulty in 

decision-making occurs when there is a mid-acuity or low-acuity patient, such as 

levels three to five on the MTS or ESI.  If these could be identified whilst the 

paramedic was on-scene with them, it could yield the most benefit to the patient.   

 

Accounting for the arguments above, this thesis has the overarching aim of 

developing a model that is simple, pragmatic, and intuitive, whilst able to identify 

mid- and low-acuity patients that may not need the expertise of the emergency 

department.  These factors lead to the following research questions: 

 

4.2 Primary aims and objectives 

The aim of this study is to ascertain whether prehospital variables found in the 

ambulance electronic patient care record (ePCR) can identify a patient who would 

have an avoidable attendance at the ED, if they were conveyed, i.e., they were 

conveyed but it was not necessary.  This can be broken down into the following 

objectives: 

 

Primary research question 

In adult patients attending the ED by ambulance, can prehospital 

information predict an avoidable attendance? 
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1. Extract prehospital variables from ambulance service electronic patient care 

records. 

In the first objective, a data collection period will be defined, and inclusion and 

exclusion criteria formalised.  These set the parameters for data extraction.  The 

data will then be retrieved and collated into a single dataset. Prehospital 

variables are all those that are collected in the ambulance service electronic 

Patient Care Record (ePCR).  These will contain demographic, clinical and 

interventional information on each patient.   

 

2. Link the data with ED electronic patient care records.  

Each patient episode will then be linked to their corresponding electronic 

healthcare record from the ED, if they were transported.  This will expand the 

dataset to show complete patient journeys from phone call to ED disposition. Not 

all patient episodes will have a complete journey that spans this length of care.  

Part of the data extraction in the first objective will contain patients who were 

not conveyed to hospital, these will be removed from the dataset but retained in a 

separate dataset as they are useful for objective 5. 

 

3. Identify low acuity patients in the dataset using the ED information. 

For those instances in the dataset where the prehospital instance is linked to ED, 

a predetermined data-driven definition of an avoidable attendance will be 

engineered.  This will be a new variable, and once created the rest of the ED data 

can be removed from the dataset, leaving a final dataset where each patient 

episode contains all prehospital variables and a single outcome measure.  

 

4. Build a predictive model using prehospital variables. 

Risk prediction methodology will be used to derive a model which takes 

prehospital variables as the inputs, to predict an avoidable attendance at the ED.   

 



 

88 

 

5. Measure the success of the model in predicting an avoidable attendance using 

prehospital variables.  

Keeping with the risk prediction methodology, the model derived from objective 

4 will be assessed for its performance.  It can then be applied to the non-conveyed 

sample removed in objective 1 for sense-checking.   

 

One of the limitations in model development is that accuracy can decrease when 

the model is applied to a new patient and a process known as external validation 

is required to ensure that the developed model is truly accurate.  Traditionally, 

this should be done using a different dataset, in a different area, by different 

researchers.114 However, this is challenging to achieve for this thesis and 

therefore the simulated transportability will be determined instead. this leads to 

the 2nd research question below 

 

4.3 Secondary aims and objectives 

The aim is to determine whether the model will work in practice, but mindful of 

the fact no further data is available and an interventional study would not be 

feasible.  Barriers to implementation would be that the model works well in one 

geography but behaves different in another.  This equates to poor spatial 

validation.  Another barrier would be that the model disadvantages patients 

according to their characteristics.  The secondary objectives are therefore as 

follows: 

 

Secondary research questions 

Can the model derived from the primary outcome be spatially 

transported?  
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6. Test spatial validation 

The modelling technique used in objective 4 will be repeated using different sub-

groups of data, which separate instances according to geography.  For example, 

rural, urban and coastal.  In objective 2, each ED is a natural clustering unit as 

each instance only goes to one ED, and there are inherent differences between 

EDs.  Therefore, the data will be trained on all the data excluding one ED and 

tested on the excluded ED data.  This will then be repeated for each ED.  

 

7. Test model discrimination of protected characteristics.  

A post-production analysis of patients will be undertaken according to their 

characteristics to identify whether there are any groups of people that would be 

disadvantaged from the model if it was to be implemented.  The model will then 

be corrected for any discrepancies identified. If objectives 1 to 7 are successful, 

then both research questions will be answered, and this will complete the study.  

 
 
4.4 Conclusion 

This chapter has outlined that the primary research question in this study 

centres on patients attending the ED by ambulance and trying to predict those 

who may not need emergency level care.  The secondary research question is an 

extension of the first, aiming to simulate whether a prediction model would be 

successful if it was derived on different types of geographies.  In the next chapter, 

the theoretical considerations of designing the study are outlined, prior to any 

specific methodology being decided.  This then moves on to a critical argument 

for the type of algorithm that will be used to answer these research questions. 
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5. Theoretical considerations and algorithm selection 

 
 

 

 

 

Chapter 5 

The Theoretical Considerations and 

Algorithm Selection 
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5.1 Introduction 

In the systematic review in chapter 3, many algorithms were identified and used 

in predicting the acuity of undifferentiated patients.  However, there was no 

single dominant algorithm that outperformed the others.  This chapter provides a 

brief overview of the function of predictive modelling, followed by some 

important concepts that have underpinned the algorithm decisions, and the 

methods that were used in this thesis.  There is also a critical argument on the 

theoretical considerations for a desirable algorithm, followed by the algorithm 

selection itself. The first part of the chapter though, explores the epistemology, 

ontology and axiology that anchors where and how this new knowledge will be 

created. 

 

5.2 Theory of knowledge 

5.2.1 Epistemology 

In this thesis, empiricism is the central philosophical notion for which new 

information is being created.  Empiricism subscribes to the idea that knowledge 

is acquired through sensed experience.  This occurs in the absence of a priori 

knowledge structures.  Empiricism can extend beyond the realms of perceptual 

knowledge, and can use experiential acquisition of knowledge to induce 

conceptual beliefs to be true.115 This is in contrast to the idea of rationalism, 

which argues some prior knowledge at the origin of knowledge generation.115 A 

limitation in adopting the empiricist approach is the wider contexts are not 

accounted for in the generation of new knowledge, which they would if 

rationalism was adopted. Modern ideas in empiricism extend beyond the concept 

of ‘seeing is believing’ and accommodate the augmentation, extrapolation, and 

conversion arguments that technology (especially computers) have created.116 

Extrapolation allows us to extend our existing modality, for example vision when 

employing a microscope or telescope to see beyond the human eye. Conversion 

translates one modality into another, which can be observed empirically, such as 

sonar devices representing a visual picture.  Augmentation allows us to 
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experience phenomenon that would otherwise be unknown to us, such as 

detecting alpha particles.116  Rationalism can accommodate these in its ideology, 

however the interpretation of the results is framed differently.  An empiricist 

would see the result as a measurement of the measured, accepting that the result 

being a ‘good result’, or a ‘bad result’ is open to interpretation between observers.  

Conversely, the rationalist would place the result within a wider context, and this 

requires a greater degree of subjectivity, which will vary between observers.  In 

this thesis, the research questions in chapter 4 have been asked due to existing 

knowledge summarised in chapter 2 and refined in chapter 3. However, this does 

not qualify as rationalism.  There are a few assumptions being made. The study is 

designed to encompass all that is needed to answer the very specific questions, 

but it remains an inductive approach. The question is not generating evidence to 

prove an existing theory, such as the deductive approach. Such a question might 

appear as: ‘Can the data fields in the ePCR match or exceed the known prediction 

abilities of paramedics?’.  Contrastingly, this thesis is asking whether prehospital 

data is predictive of an avoidable attendance at all. One of the assumptions being 

made is that this research question accounts for all the intrinsic and extrinsic 

factors that influence ambulance conveyance and paramedic decision making.  

The reality is this is not the case, and there are subjective factors that cannot 

readily be collected in the data. For example, the mood of the paramedic during a 

conveyance decision, and whether this affects their decision.  This becomes a 

limitation of the study, and a more rationalist approach would incorporate 

research questions that may go some way to accounting for the subjective. 

However, if this study demonstrates that it is possible to use data to predict an 

avoidable conveyance, then subsequent studies into the implementation science 

of such a model could be undertaken.  More information on this is provided in 

chapter 10, section 10.3.4. 

 

5.2.2 Ontology 

Ontology concerns itself with the theory of being and concentrates on the 

taxonomies of how the world is constructed. In the context of this thesis, the 
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main ontological consideration is ordering the concept of urgent and emergency 

care, followed by the placement of any given patient within this concept. The 

construction of urgent and emergency care is weighted towards a flat ontology 

within this thesis, much akin to the theory proposed by Quine.117,118  This suggests 

that the existence of things is categorically equal and not dependent on more 

fundamental (more important) categories which is defined as a hierarchical 

ontology.117 In this context, it would suggest that the urgent and emergency care 

settings (primary care, ambulance service and emergency department) contain 

equally weighted definitions, and it is possible to explicitly define each so that 

any given patient entering such a system could be ‘sorted’ by logic into the right 

care setting.  However, there are limitations in applying this theory in the context 

of urgent and emergency care and the ideas of Carnap and, more recently, Harare 

expose these.117,119 Carnap suggests that the way in which the world is constructed 

is limited by the language that exists to describe such a reality. However, through 

a process of explication (conceptual engineering), new linguistical frameworks 

can be developed that better explain reality.  In the context here, the concepts of 

urgent and emergency care (and the care settings contained within) are 

constructed from policy and health strategy, and their existence is bound by 

linguistic frameworks known to these.  If the concepts were created by the service 

users (patients), or the practitioners (clinicians), then the system may be defined 

and organised differently.  This relates to the suggestion by Harare which broadly 

aligns with the metaphysical distinction between abstract and concrete entities.  

Harare posits that there are the physical and perceptual entities such as people, 

buildings, and objects (the concrete).  More importantly, there are the imagined 

realities or abstract entities.  It is a form of realist social ontology in that society 

is arranged around concepts that do not really exist except in the human mind 

and can only exist in the mass subscription of many human minds.  For example, 

religion, money, nations, corporations are all human inventions.  Urgent and 

emergency care is an imagined reality and the care settings such as primary care, 

community care, ambulance service and emergency department care are all 

constructed from the abstract as opposed to the concrete.  As such, their 
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definition and purpose can change over time, or in different realities. 

Furthermore, patients entering such a system can have abstract concepts of 

disease and disease process attached to their perceptual self.  This influences the 

interaction with the imagined reality of the urgent and emergency care system.  

 

This thesis assumes the existence of low-acuity patients not needing the ED, and 

because they exist there is merit in being able to identify them before they arrive 

at the ED. However, it is accepted as a limitation (and elaborated upon in chapter 

7, section 7.5.1) that they only exist because of how the urgent and emergency care 

system is currently constructed.  

 

 

The data used in this thesis is coded using the Systemised Nomenclature of 

Medicine – Clinical Terms (SNOMED-CT), and more information about this can be 

found in chapter 7, section 7.5. SNOMED-CT is a polyhierarchical ontology, which 

allows for a child term to have multiple parent terms, but without creating 

ambiguity.  To illustrate, ‘viral meningitis’ is a label attached to the SNOMED-CT 

code ‘58170007’.  This can be a member of the parent concept ‘infective meningitis 

- 312216007’ but also be a member of ‘viral infections of the central nervous system 

- 302810003’.120 Having an exhaustive polyhierarchical ontology in data coding has 

significant benefits, especially when it comes to healthcare funding and being 

able to identify cohorts of patients with certain medical conditions, or who may 

have had a clinical procedure.  The limitation occurs during the pursuit of 

exhaustion.  Eventually, there becomes a widening detachment between the 

patient in front of the clinician, and the ‘coded’ version of the patient in front of 

the computer.  For example, imagine a patient has a condition called ‘Chronic 

Obstructive Pulmonary Disorder’.  In brief, this is a long-term respiratory 

condition, which changes how their lungs work and can render the patient with 

difficulty breathing and getting oxygen around their blood.  This disease has a 

single SNOMED-CT code, with child concepts describing the severity (such as mild 

or severe).  The data would not describe the condition well enough to inform 
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clinical judgement or decision making.  It fails to account for how the patient 

lives with the disease and how the disease affects the patient at different times.  

The data assumes that everyone with the same diagnosis has the same experience 

with the disease.  However, this is not the case, and is compounded by evidence 

that human coders (such as clinicians) have poor inter-coder reliability when 

coding the same patient.121    

 

 5.2.3 Axiology 

 
Axiology is the theory of value and is often dichotomised into intrinsic and 

extrinsic value.122,123  An entity has intrinsic value if it is good, or if it is good for 

its own sake.  This contrasts with extrinsic value which is where an entity is only 

valuable if it ascribes value to something else.122,123 In this thesis, the ideas of 

pluralism and emotivism are adopted. Pluralism is where value can be expressed 

in multiple forms including pleasure or knowledge.124  Emotivism does not 

consider value statements to be objectively ascribing value to an object, instead it 

is translating the emotion (or sentiment) of the speaker about the object.123  In 

urgent and emergency care, all care settings can be described as having intrinsic 

value as the same patient would gain value in attending any given setting.  

However, the quantity and form of the value may be different in each setting.  For 

example, imagine if a patient fell from a tree and suffered a broken arm.  If they 

attended the GP practice, they would gain the value of knowledge that they need 

to go to hospital.  They may also be able to get interim pain relief (analgesia) and a 

clinical assessment.  Compare this to if the patient attended the ED first.  They 

would get analgesia, an x-ray, a treatment of the wound, and an ongoing fracture 

appointment.  The value is greater by attending the ED.  To incorporate 

emotivism into the context of this thesis, the patient may attribute certain values 

to each care setting, but this may differ according to the value objectively defined 

in this thesis.  A low acuity patient identified in the data (as defined in chapter 7, 

section 7.5.3) may disagree with being classified as low acuity as they believe there 

was both intrinsic and extrinsic value to their attendance.  Therefore, the 
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axiological limitation is that the low acuity definition is steered by the emotivism 

of the author and therefore the definition may not be considered ubiquitously 

valuable to everyone.  

 
 
5.3 Theoretical considerations 

5.3.1 The objective function 

Fundamentally in traditional clinical prediction modelling, irrespective of 

context or data, it reduces to finding a function (𝑓), given a set of inputs (𝑥) to 

identify the value of an output (𝑦).  In other words: 𝑦	 = 	𝑓(𝑥). In the case of this 

thesis, 𝑥 are the ambulance service variables, and 𝑦 is the ED experience. The 

ability of finding the function is most often done using a labelled training data 

set.  The training data set (𝒟), is composed of a set of candidate variables (𝑥)  for 

each instance (𝑥!)  of 𝑁 patients, with the outcome variable (𝑦) associated for each 

instance (𝑦!).125  The training set can be represented by the following equation: 

	𝒟 = {(𝑥! , 𝑦!)}!"#$  

This training set is used to estimate an objective function (𝑓*	) that will make 

accurate predictions of the outcome (𝑦+)	in new data. The circumflex indicates it is 

an estimate. So, it is an estimated function that will lead to estimated predictions 

in new data, or new patients.  The theoretical idea that finding the objective 

function and making accurate predictions being probabilistic is central to 

predictive modelling.  Even in the context of binary classification (as in this 

study), it is more interpretable to indicate the probability of class membership.  

This philosophy therefore requires an expansion to the simplistic 𝑦+ = 	𝑓*(𝑥)	to the 

following:  

𝑦+ = 	𝑓-(𝑥) = 	
𝐶

𝑎𝑟𝑔𝑚𝑎𝑥
𝑐 = 1

	𝑝(𝑦 = 𝑐|𝑥, 𝒟) 

Here, the predicted probability that the outcome belongs to a given class (𝑦+) is 

calculated by creating a vector of	𝐶, which is the length of classification groups.  

In binary classification, 𝐶  is equal to 2 as it can only accept 2 possible states (𝑐	 =
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	1, 𝑐	 = 	0), but a single number can be returned as the probabilities of both 

classes would sum to 1. Using the positive class (𝑐	 = 	1), the right-hand side of the 

function can be therefore described as calculating the probability that 𝑦 = 1, given 

the set of input variables (𝑥) that are the same as those found in the training 

dataset (𝒟). This translates to the outcome being a best guess at the true label. 125  

 

In this study, the candidate variables (𝑥) were all found within the ambulance 

service ePCR data and are detailed further in chapter 7, section 6.  They all have 

an associated (𝑦) label which was derived from the ED data and is the defined 

outcome measure of an avoidable ambulance conveyance to the ED (also found in 

chapter 7). The quantity of patients (𝑁) is large, which means that the only 

efficient analytical way of deriving the objective function was to use automated 

methods.  This forms a definition of machine learning.  From the literature, it has 

been defined as the following: 

 

In supervised machine learning for risk prediction modelling, the model is 

initially derived on a training dataset with labelled outcomes. A good prediction 

model will make accurate predictions in new data.  As a starting point, the model 

can be developed on the whole dataset and then the performance evaluated by 

testing on the same dataset.  This gives what is known as the apparent validity.  It 

is a stable measure of model performance as it is being tested on the whole 

dataset. It has drawbacks though, and the results of the evaluation will be 

optimistic.  Optimism is the idea that the model will perform too well when 

evaluated in the same data it was derived on.  It does not reflect the true model 

performance. It occurs because the derived model has overfit the training data, 

“A set of methods that can automatically detect patterns in data, 

and then use the uncovered patterns to predict future data, or to 

perform other kinds of decision making under uncertainty”125 
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which means it cannot generalise to new instances.  Overfitting is an important 

concept in risk prediction modelling and can be expanded to the bias variance 

trade-off. 

 

5.3.2 The bias variance trade-off 

In prediction modelling, a good model will have low distances between predicted 

values and observed values.  However, when developing a model in the training 

data it is important that the model complexity is just right.  If the complexity is 

too low, or too high then the model will fail to capture the true relationship 

between the candidate predictors and the outcome, and the model will fail.  

Figure 6, reproduced with permission from Badillo et al. shows three examples of 

fitting a model.126  The permission has been included in appendix A, section A2. 

The left panel is showing an underfit model, where the regression line is unable to 

represent the data and therefore leaves large residuals, especially when the X 

variable is at 0.5.  The right panel is the other extreme and represents overfitting.  

The regression line moves through all the data points in the training data, but 

when tested, results in huge errors.  The ideal model has a regression line that can 

represent the shape of the training data but can generalise to the test set (middle 

panel).  The great mathematician John von Neumann famously said “With four 

parameters I can fit an elephant and with five I can make him wiggle his trunk.”127 
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Figure 6: Demonstration of overfitting (reproduced from Badillo et al. with permission)126  

 

An overfit model has high error in the test set. The error of a model can be 

decomposed into three parts: the bias, the variance, and the irreducible error.  

Bias occurs when the model has failed to capture the true relationship between 

the predictors and the outcome, rendering all predictions systematically distant 

from their true values. Bias is high when a model is not complex enough to 

capture the relationship.  The irreducible error cannot be changed and is an 

extraneous bias that is captured in the model. Bias and variance are inversely 

proportionate to each other, which is why there is a trade-off between the two. In 

a model with high variance (over fit) the model is too complex, which is why it 

has failed to capture the true relationship of the data and fails to make good 

predictions in new instances.   However, the bias will be low as the complexity 

matches the relationship in the training data.  The solution to reduce variance in 

a model is to rebuild the model in the training dataset, increasing the bias by 

reducing model complexity. If the variance between the training and test set is 

low, but the error is high, this is due to a bias in the prediction.  The model is not 

complex enough.  The ideal model has low variance and bias, to reduce the 

optimism found in the apparent validity, bias needs to be applied.  This is 

achieved through model validation.128 

 

 

 



 

100 

 

5.3.3 The law of parsimony 

The overwhelming taxonomy of machine learning algorithms can make selection 

difficult.  Many studies have used a panel of algorithms on the same dataset to 

compare and select a ‘winner’.  This competitive technique can be a normal 

construction for how computer scientists will approach solving a problem. This 

study has benefitted from having a preliminary dataset that could be used to 

support algorithm choice.  The dataset, known as the DS2 dataset, contained 

100,000 YAS ePCR’s. These were non-conveyed patients that were attended by a 

YAS clinician between the 1st of July 2019 and the 29th February 2020.   

 

In healthcare data, there can be many independent variables that are being 

examined with their association with the dependent. This causes the problem of 

high dimensional datasets.  The issue arises as the quantity of candidate variables 

counter intuitively has a negative impact on prediction with the addition of 

further variables.  This is known as the ‘curse of dimensionality’. Due to 

additional variables causing increased dimensionality, the resultant necessary 

sample size increases by a disproportionate amount. This leads to an increase in 

computational expense for the analysis. Therefore, an essential objective is to 

reduce the dimensionality down, without compromising predictive 

performance.129,130   

 

This approach has been called the principle of novacula occami (Occam’s razor), 

or the law of parsimony.  Fundamentally, it states that entities should not be 

multiplied beyond necessity. The eponymous maxim is attributed to William of 

Ockam in the 13th century, although ancient philosophers had already described 

this approach.  Ptolemy wrote that “We may assume the superiority ceteris 

paribus of the demonstration which derives from fewer postulates or 

hypotheses”.131 Even when complexity is required, the idea is that the minimum 

should be exercised, without the explanation losing meaning.  Reducing 

dimensionality is subscribing to this philosophy whilst gaining from the 

statistical benefits of a parsimonious model; but there are also practical benefits.  
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In the model implementation stage where real-time prediction is required, it 

would be of great importance to have a model that did not require a user to input 

60 variables (for example) before a prediction could be made.    This argument of 

reducing dimensionality is central for identifying a desirable algorithm.   

 

Other important algorithm features that are desirable are the ability to handle 

missing data and collinearity.  Missing data is often found in large datasets and 

can come in many forms from completely random, to specific patterns.  

Collinearity is when two or more variables are strongly associated with each 

other. This is a problem when the association is between candidate (input) 

variables.  

 

5.3.4 Algorithm of choice 

Prespecifying the algorithm of choice has the disadvantage of inhibiting a 

competitive space where different algorithms can be tested on the data and the 

best algorithm selected.  However, it does have the advantage of customising a 

modelling framework around the most appropriate algorithm.  The lens used in 

choosing the algorithm was to decide which would most suit the data being used.  

The algorithms were assessed on their ability to handle missing data, non-

linearity and how they incorporate feature selection methods. They were also 

assessed on their computational expense and how they performed solving a 

similar problem identified in the systematic review. The technical details on how 

these algorithms function have been omitted from the main thesis, but can be 

found in appendix D. 

 

The review in chapter 3 identified that the most common method (and therefore 

the industry standard algorithm) for risk prediction modelling of patient acuity is 

logistic regression.  This has the advantage of transparency as it is explanatory as 

well as predictive, offering more information as an end ‘product’.  However, 

logistic regression has a limitation in modelling non-linearity as it has a linear 

decision surface.132 In brief, non-linearity is when two associated variables (x and 
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y) do not uniformly have a relationship that is not uniform, when plotted on a 

graph. A change in one variable at one point on the x-axis will demonstrate a 

change in the other variable on the y-axis, but at another point on the x-axis the 

same change will be associated with a a different change in the other variable (on 

the y-axis).For example, taking original data from one of the studies in the 

systematic review, figure 7 has been created for this thesis and shows the non-

linear relationship between a patient’s National Early Warning Score (NEWS) and 

their odds ratio of admission.  

 

Figure 7: NEWS score and its relationship with risk of hospital admission from Cameron 

et al.133 

 

Non-linearity is common in healthcare and so an algorithm that can naturally 

handle complex relationships between variables would be a better fit to answer 

the research questions. Although logistic regression is not computationally 

expensive, there is more pre-processing labour than other algorithms.  The 

method does not handle missing values and so statistical methods such as 

multiple imputation must be employed to complete the dataset. 
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One of the best performing algorithms in the systematic review was the neural 

network.  In simplified terms, a neural network is a collection of interlinking 

nodes that are representations of biological neurons. Each neuron takes the 

values of incoming candidate variables and assigns a weight according to the 

value.  The weights are summed across all the candidate variables and a bias term 

is also applied, leaving a single numerical figure.  A predetermined ‘activation 

threshold’ is decided and if the figure is greater than the threshold, then the 

neuron ‘activates’.  Activation could mean the next neuron in the sequence is 

used, or a classification is made.  A more detailed description of neural networks 

can be found in appendix D. 

 

Figure 7 has been created for illustrative use in this thesis using publicly 

available data designed to predict the risk of perioperative mortality following 

elective abdominal aortic aneurysm surgery.134,135 Input variables were sex, age 

(categorised into ten-year groups), a previous myocardial infarction (MI), a 

medical history of congestive heart failure (CHF), ischaemia, respiratory 

conditions, or renal conditions. In figure 9, the weighted values of each input 

variable are labelled in black, with the bias terms shown in blue.  Neural networks 

can be comprised of many hidden layers where the output of the neuron acts as 

the input for the next layer.  

Figure 8: Neural network example 
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The neural network can handle non-linearity effectively through the activation 

function; however, the algorithm design struggles to overcome collinearity 

without having first undergone procedures such as Principal Component 

Analysis (PCA) in the data preparation stage.  The process of PCA transforms the 

data into fewer variables that are a representation of the relationships contained 

within the original variables but are not the original variables. This means that 

the management of collineated variables comes at the expense of model 

interpretability.136  More information on principal component analysis can be 

found in section The algorithm, by the nature of it being an extension of the 

generalised linear model, means it can inherit the same issues with missing data.  

Solutions that overcome this for the neural network include modelling the 

uncertainty of attributes with probability density functions.137 However, a neural 

network can be computationally greedy, and it can take many hidden layers in 

order to create an accurate model. There are also limitations in how neural 

networks handle structured data.  In classification problems that use 

unstructured data, such as images or sounds, canonical architectures translate 

these forms into meaningful inputs for neural networks.  However, this is a 

difficult task with structured, tabular data.138 The systematic review also 

identified decision trees as a popular method.  These are diverse in their methods 
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but can overcome some of the limitations of logistic regression and neural 

networks.  

 

In the systematic review, decision trees featured in 23 models.  The basic 

components of a decision tree are nodes.  These are simple filters that take an 

input and split it into two or more outputs based on the split criteria.  Trees 

include a root node, which is the first or starting node. Figure 9 has been created 

for this thesis as an example of a simple decision tree and is based on the same 

AAA data by Steyerberg et al.134,139       

 

 

The root node is the top node on the illustration and the population going into 

the node is being split down two branches depending on whether they have a 

medical history of congestive heart failure (CHF).  The left branch (those with 

CHF) leads to a terminal node or leaf.  The right leads to another node that is 

making a split on whether the AGE10 is less than 7.3.  This is equivalent to 

patients being under the age of 73.  This node is the child node of the root node, 

but also the parent node of the right branch coming off.  In the illustration, each 

node displays certain information.  It has the prediction made at the top (0 or 1 as 

the outcome is binary).  It also shows the probability of the predicted outcome 

Figure 9: Example of a tree-based model using Steyerberg AAA data (n=238)196 

Root node 

Terminal 
node 
(leaf) 
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(and the inverse) and proportion of the population going into the node as a 

percentage.  For example, it can be interpreted that 66% of the sample had CHF 

and their probability of the outcome (0) was 0.97. Decision trees are simple to 

interpret and can be explanatory for simple models.  They operate differently to 

the methods above in that they use recursive partitioning of the data in order to 

classify. Recursive partitioning is where the sample is split based on a value 

within a feature.  For example, if age was the variable used as a root node, 

recursive partitioning finds the optimum cut point and moves all those 

participants to one side of the tree or the other, depending on the optimum age 

threshold.  If the split results in a child node, the partition made at the node is 

not using all the dataset, only a subsample of participants that qualified through 

the parent node.  This can be seen in figure 9 as the percentage decreases down 

the branches.  The way a decision tree decides on which variables to use as the 

parent node, or any internal node (internal nodes are any node situated between 

the root and the leaf) is not random but mathematically calculated as a measure 

of information gain. More detail on these calculations can be found in appendix 

D. 

 

In decision tree modelling, because of the recursive partitioning, a categorical 

variable can only be used once, however a continuous variable can be used 

multiple times providing its subsequent use operates at a different threshold to 

one that has already been used.   Decision trees have the advantage of being able 

to overcome the weaknesses of logistic regression and neural networks such as 

non-linearity and collinearity.  However, they have their own limitations.  The 

way a decision tree handles continuous variables is to categorise them. This leads 

to a loss of information and is discouraged in prediction modelling.128 Simple 

decision trees also can generalise beyond the data.  For example, if a binary 

variable is being split into two leaf nodes but all the sample are in the positive 

class, the tree will automatically assign an outcome for the negative class.  This is 

decided by automatically choosing whichever outcome was the majority at the 

parent node. Decision trees can also be prone to overfitting to the training data.  
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If there are no safeguards in place, the model will keep splitting until there is 

either no more variables left to select, or there is no more information gained 

from splitting.  This makes a greedy algorithm, and as the tree becomes deeper 

with more splits, it will fit the training data with less error but will increase the 

error when applied to a different sample (the test set). There are methods to 

reduce overfitting that are effective and easy to implement.  One method is tree 

pruning. 

Pruning is the removal of sub-branches and replacement with leaf nodes.140  Even 

with the addition of pruning, a single tree classifier is considered a weak learner 

on its own and can easily be overfit to the dataset used to train it.  Modern 

approaches use ensemble methods which constitute a whole forest of decision 

trees. In the systematic review, only two models were simple decision trees, the 

remaining 21 models were ensemble learners. 

 

Ensemble decision tree models were described in detail by Leo Breiman in the 

1990’s and are an extension of the simple recursive partitioning tree detailed 

above.141  Ensembles create many trees that are individually diverse in their 

decision making.  These diverse models are aggregated in a voting system to make 

a final prediction.  The two well-known techniques of creating a forest of trees are 

known as bagging and boosting.  

 

Bagging is an abbreviation of bootstrap aggregation.  The purpose of bootstrap 

aggregation is to prevent a forest of trees from group decision making.  This 

would occur if all the trees were created using the same data.  In bagging, each 

tree is technically built on a different dataset.  A limitation with even a simple 

ensemble model using tree bagging is collinearity between strong predictors.  

Bagging will de-correlate to an extent by deriving the model on different training 

sets.  However, strongly correlated predictors will consistently yield the highest 

entropy regardless of the sample space within the ensemble.  This is because 

bootstrapping creates new datasets, but the distributions are largely the same 

over the variables themselves. If there is a noisy variable, it will be noisy in all the 
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trees and will encourage the group decision making in the forest. To counter this, 

a common method is to build the bagging ensemble model but use a random 

subset of predictor variables in each classifier.  This is known as random forest 

modelling. If a dataset had 100 variables, the architect of a random forest model 

could specify how many variables out of the 100 should be randomly selected each 

time for inclusion in the tree.  This does not necessarily mean all randomly 

selected variables will be included in the tree, but it does mean that strongly 

correlated variables with the outcome will not be in every tree model.125,140,141  

 

Novel approaches to ensembles have managed to combine features of bagging and 

boosting into computationally efficient algorithms.  Extreme Gradient Boosting 

(XGBoost) is an algorithm developed by Chen and Guestrin in 2016.142 The 

extreme nature of the algorithm is primarily placed in its computational 

efficiency.  It operates ten times faster than other gradient boosted algorithms. 

This occurs because the algorithm splits the data into subsamples that are then 

sent to different computer cores.  These are scanned in parallel for the best splits 

and thresholds in the continuous variables.  Instead of using the exact greedy 

approach mentioned above, it uses an approximate greedy algorithm, running 

parallel in every subgroup.  The data is scanned, and quantiles are created.  These 

are then combined in a histogram to identify the optimum threshold.  The 

quantiles are the thresholds, and these are weighted so that the sum of the 

weights between each quantile are the same.  This is a method known as the 

weighted quantile sketch.  The major advantage of the XGBoost algorithm is its 

ability to handle missing data.  One of the limitations of many tree algorithms is 

that they work best with dense matrices.  This is where the dataset has most of 

the variables complete, or very few missing values.  A sparse matrix has mostly 

zeros in the columns with the alternative being 1.  In XGBoost, a dense dataset is 

transformed into a sparse, by one-hot encoding all variables.  As an example, if 

the variable ‘Location found’ had three values (home, public place, and prison), 

one hot encoding would widen the variable into three binary variables.  It can 

then calculate how to handle the zeros in the data, in a process known as sparsity 



 

109 

 

aware split finding.  In this process, when the algorithm encounters a sparse 

value (0), it models placing all the non-missing values down the left branch of a 

split and then calculates the gain.  It then repeats the process, moving the 

instance down the right branch.  The direction with the most gain is then set as 

the default direction and all sparse values move in the default direction. The 

XGBoost algorithm also contains the elements of bagging in the hyperparameter 

‘colsample_bytree’ which takes a random sample of columns for inclusion in 

subsequent tree development.  It also can incorporate regularisation penalties on 

the loss function, such as those that can be applied in logistic regression.142  

Recursive Feature Elimination (RFE) can be used with these decision trees to 

select the optimum combination of features that would generate the most 

accurate model.  In RFE, a cross-validated model is built using all the features.  

Each feature has its relative importance calculated.  The least important feature 

is eliminated, and the procedure repeats itself, minus the eliminated feature.  The 

evaluation score is calculated for each iteration, with the highest performing 

model (and its associated features) selected.  One of the drawbacks with this 

method is that it does not safeguard against eliminating weak features that may 

combine with others to create significantly improved results.143–145  The steps are 

similar to backwards elimination in regression.  Tree-based models can be 

computationally expensive, especially in split finding and identifying optimal 

thresholds for dichotomising continuous variables.  However, the XGBoost 

algorithm has managed to find a solution to this problem.  XGBoost can handle 

missing data through sparsity aware split-finding, it naturally handles 

nonlinearity, and it is computationally efficient.142 It has mechanisms to adjust 

bias and variance through hyperparameters, including regularisation.  For these 

reasons, XGBoost was selected as the algorithm in this thesis. No study identified 

in the systematic review has used XGBoost for triaging the acuity of emergency 

care patients and so this thesis is the first to use it.   

 



 

110 

 

5.4 Conclusion 

In this chapter, it has been detailed that the new knowledge is anchored from an 

empiricist epistemological perspective,  on a flat ontology with pluralism and 

emotivism providing the perspective of value.   The objective function has been 

outlined from a mathematical point of view and considerations such as the bias-

variance trade-off and the law of parsimony have been explored.  There were 

numerous algorithms identified in the systematic review in chapter 3, which were 

methodological candidates.  After a critical argument, it was decided that the best 

algorithm would be the XGBoost.  The next chapter is a published protocol, which 

outlines the procedures for undertaking this research.



 

111 

 

6. Protocol  

 
 
 

 
 

 

Chapter 6 

The Protocol 
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6.1 Introduction 

In the previous chapter, there was a critical argument for algorithm selection 

that concluded with the use of a more neoteric algorithm known as XGBoost. 

Building on the work of the systematic review (Chapter 3) and algorithm 

identification (Chapter 5), a protocol was published in 2021.  This sets out the 

methods that were used in the thesis to develop and validate the model.  The 

protocol follows the reporting guidelines of the Transparent Reporting of a 

multivariable prediction model for Individual prognosis or Diagnosis 

(TRIPOD).146 The purpose of publishing the protocol in advance of the study 

enhances the transparency of the research and also allows for early peer review to 

ensure the methods are suitable to answer the research questions. The study was 

given the following long and short titles: 

 

Short title: The SINEPOST Study 

Long title: The Safety INdEx of Prehospital On Scene Triage (SINEPOST): The 

development and validation of a risk prediction model to support ambulance 

clinical transport decisions on-scene  

 

The full text can be found here: 

https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-021-00108-4  

 

Following on from the protocol chapter, there is an expansion where more 

information is provided, and justifications are made for certain methodological 

choices.



 

113 

 

 



 

114 

 

 



 

115 

 

 



 

116 

 

 



 

117 

 

 



 

118 

 

 



 

119 

 

 



 

120 

 

 



 

121 

 

 



 

122 

 

7. Protocol expansion 
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7.1 Introduction 

In the previous chapter, the protocol was published in manuscript form with 

succinct paragraphs detailing what is being done in this thesis.  However, some 

elements of the manuscript need expanding to justify why these methods were 

chosen.  This chapter provides justification where necessary and includes 

changes to the protocol that have happened since its publication.   

 

7.2 Study design and setting 

7.2.1 Design 

An avoidable conveyance to the ED was a binary outcome as it was either 

avoidable or not. The positive class of the binary outcome is labelled (1) and 

indicates to support a decision not to convey the patient to the ED.  The negative 

class is labelled (0) and supports a decision to convey the patient.  No study in the 

previous literature has built a model using only a single candidate variable and 

therefore a multivariable prediction model was created. In the Transparent 

Reporting of multivariable prediction model for Individual Prognosis Or 

Diagnosis (TRIPOD) guidelines they describe the difference between a diagnostic 

prediction model and a prognostic one.146 The description of a diagnostic model 

fulfils the primary aim of this thesis: 

 

This is further reiterated in a more recent statistical note, which highlights the 

difference between the two is a ‘temporal relationship between the moment of 

prediction and the outcome of interest’.147   

In the diagnostic setting, the probability that a particular disease 

is present can be used, for example, to inform the referral of 

patients for further testing, to initiate treatment directly, or to 

reassure patients that a serious cause for their symptoms is 

unlikely.146 
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There are different study designs in prediction modelling, including 

retrospective, prospective, case-control and registry. In retrospective studies, the 

data is already collected at the point the study starts.  A benefit to this design is 

that large samples can often be generated at low cost.  However, the limitation is 

that only what has been collected can be used.  This means if the ideal candidate 

predictors are not available in the data, or the outcome is not collected 

appropriately, it becomes a threat to the project.  It is also difficult to achieve 

samples from different areas or information-governed by different systems due to 

issues with consent and data protection. Conversely, the prospective study design 

allows for customisable data collection with purposeful sampling.  This extends 

to the case-control design, where two cohorts can be defined, collected and 

compared.  These overcome the limitation of the retrospective design but inherit 

the problem of sample size.  The prospective nature of recruitment renders the 

study design limited to smaller geographies or fewer patients in the sample.  A 

registry design allows for larger sample sizes to be considered as they can cover 

large geographies and share the benefits of the prospective design in their data 

collection.  They are more useful in longitudinal studies for following patients at 

different time points.128  A consideration in this thesis is the quantity of patients 

required to create an accurate model.  Due to the outcome prevalence being so 

low, the sample size needed to be greater in order to capture enough events to 

build a model.  Furthermore, the sample needed to capture rural, urban and 

coastal events in order to be generalisable.  In this respect, the two study designs 

that benefitted the situation were the retrospective or registry design.  

Fortunately, NHS Digital were able to offer a halfway house in that they collect 

data from all acute trusts in England and store the data centrally.  This meant a 

retrospective study design, using the scale of data found in registry studies.  

7.2.2 Setting 

This study was set within the boundaries of Yorkshire Ambulance Service (YAS).  

YAS serves a population of over five million people and covers 6000 miles of 

varied terrain from the isolated Yorkshire Dales and North York Moors to urban 
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areas including Bradford, Hull, Leeds, Sheffield, Wakefield, and York.  There are 

sixteen type 1 EDs in Yorkshire. This includes three Major Trauma Centres 

(MTCs) located in Sheffield, Leeds, and Hull.  A type 1 ED has been described by 

NHS England as:  

 

There are two other types of ED possible, a type 2 and a type 3.   These only offer a 

limited service and would not routinely manage the critical care of a patient and 

could lack on-site specialist services.  Due to this, they are excluded from this 

study.  A full list of the Emergency Departments used in this study can be found 

in appendix E.  There was a single ED located outside of Yorkshire, which was the 

James Cook University Hospital in Middlesbrough.  This is because it is the 

nearest hospital for a small geography in north Yorkshire and YAS transported 

several patients there.  

 

7.2.3 Inclusion criteria 

Ambulance services often have specific conveyance policies around the 

transportation of child patients. As such, only adult patients were included in 

this study.  One such example of a policy was any patient under the age of 5 had to 

be transported to the ED. The data collection period was bound by two events.  

The start was from the point at which Yorkshire Ambulance Service was using an 

electronic Patient Care Record (ePCR) within the entirety of its footprint. This 

was a transition away from paper-based records into an electronic format which 

records the whole patient journey whilst they are with the ambulance service.  

The end was at the point there was a significant increase in COVID-19 infections 

in Yorkshire that could confound the dataset.  As increasing non-conveyance was 

likely to be a benefit of the model, the non-conveyed patients from this period 

“A consultant led 24-hour service with full resuscitation facilities 

and designated accommodation for the reception of accident and 

emergency patients.”148 
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were extracted for validation and form a separate cohort.  This led to the 

following inclusion and exclusion criteria: 

 

Inclusion 1 

(for Dataset 1 (DS1) 

ED information) 

 

• Age 18 years old or older. 

• Transported to ED by Yorkshire Ambulance Service between 

July 1st 2019 and 29th February 2020. 

• Have an ED Care record of the event. 

 

Inclusion 2  

(for DS1 

Ambulance 

information) 

 

• Age 18 years or older. 

• Assessed by a qualified ambulance clinician ((either 

paramedic (of any level) or technician grade II)). 

• Had an electronic patient care record completed. 

• Transported to an ED between July 1st 2019 and 29th February 

2020. 

• Were handed over and booked in as a patient to the ED 

 

Inclusion 3  

(for Dataset 2 

(DS2)) 

• Age 18 years or older. 

• Assessed by a qualified ambulance clinician (either paramedic 

or technician grade II). 

• Had an electronic patient care record completed. 

• Discharged on scene and not transported between July 1st 2019 

and 29th February 2020.   

 

Exclusion 1 

(for DS1 ED) 

 

• Patient cases where they were less than 18 years old at time of 

episode. 

• Patient cases where there were five or more attendances 

within the data collection period. 

 

Exclusion 2 

(for DS1 

Ambulance 

Service) 

 

• Patient cases where they were less than 18 years old at time of 

episode. 

• Patient cases where they had five or more patient contacts 

within the data collection period. 

 



 

127 

 

7.4 Dataset creation  

At present, ambulance data and emergency department data are routinely 

collected but stored separately. Every patient that is seen by a paramedic face-to-

face has an electronic Patient Care Record (ePCR) generated for that episode of 

care, which is stored locally in the ambulance services data warehouse. Similarly, 

every patient that attends the ED would also have a record of their ED 

attendance.  This is stored locally within the trust, but also sent centrally to NHS 

digital where it is processed into a data product along with data submitted from 

other trusts.  With linkage of these two datasets, it is possible to map a patient’s 

journey from when they called an ambulance, to when they left the ED.  Figure 10 

below illustrates the process of creating the linked dataset used for this study.  All 

ePCRs that met the ambulance service inclusion criteria were extracted from the 

YAS data warehouse.  A unique random number was assigned to each record as a 

‘study ID’.  The extract was then split into clinical information (YS1) and patient 

identifiable information (YS2).  This was for the purpose of data security, so that 

no one outside of YAS would see the completely identifiable patient episode.  The 

clinical extract with the study ID attached was sent to the University of Sheffield, 

whilst the identifiers and study ID were sent to NHS Digital, who hold the ED 

data.  NHS Digital then linked ED records to the identifiers using an eight level 

deterministic matching algorithm.149 This used a combination of NHS number 

(unique to every patient), date of birth, sex, and patient postcode. Once the 

records were linked, all identifiers except the study ID were destroyed and the ED 

data was then securely transferred to the University of Sheffield.  The ambulance 

service ePCR data extract was then linked to the ED data extract using the study 

Exclusion 3 

(for DS2 

Ambulance 

Service) 

• Patient cases where they were less than 18 years old at time of 

episode. 

• Patient cases where they had five or more patient contacts 

within the data collection period. 

• Patient cases that were transported by the ambulance crew on 

scene. 
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ID, which was present in both records. This creates DS1 whilst the non-conveyed 

clinical extract is DS2. 
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Figure 10: Data flow diagram for dataset creation 
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7.5 Outcome variable 

The outcome variable for this study was an avoidable conveyance (by ambulance) 

to the ED.  It was considered that if a patient attended the ED and had a non-

urgent experience, then it would fulfil the definition of the outcome.  However, it 

is important to note that this could be considered a conservative outcome 

measure as it will not capture accurately all patients who would have found a 

more appropriate care setting elsewhere.  In a sense, it is bias towards the 

extreme end of low acuity.  The reason that the experience threshold of non-

urgent was selected, was because there was a clear definition that could be 

applied to the dataset. 

 

It is, however, recognised that using a data driven definition as the gold standard 

has its limitations. For example, a 2019 study examining diagnostic error in the 

ED found that nationally in England between 2013 and 2015, there were 5,412 

diagnostic errors in the ED. Of these, 2,288 resulted in a patient safety incident.150 

The gold standard is not perfect, and as mentioned in chapter 2, section 2.3 

provider induced demand will limit the accuracy of the outcome measure.  This is 

because the outcome measure assumes all investigations and treatments were 

needed, whereas the evidence referenced above shows that is not always the case. 

 

7.5.1 The non-urgent definition 

Lowy et al. used a random sample of 6439 patients to develop a process-based 

definition.  Their definition contained five features outlined below: 

 

• Registered with a GP 

• Not investigated in the ED 

• Not treated in the ED except for a prescription, bandage, sling, dressing 

or steristrips 

• Did not come from a road traffic accident or an accident at work, school, 

or public place or a sporting event, and were: 
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• Discharged completely from care in the ED or referred to their GP. 

 

Adapted from Lowy et al.151 

 

O’Keeffe et al. updated this definition using a larger sample of 3,667,601 first time 

attendances to the Emergency Department.5  The definition was simplified to 

contain the following: 

 

 

 

 

 

 

 

 

7.5.2 Instrument of measurement  

For the purpose of sentinel surveillance, NHS Digital uses a definition of a non-

urgent attendance empirically defined using clinical coding.  By doing so, the data 

can be captured locally and analysed nationally. Their choice of definition was by 

O’Keeffe et al. and was initially operationalised into the dictionary of codes 

known as the Commissioning Data Set (CDS) type 10 codes but later translated 

into CDS type 11 - the Emergency Care Data Set (ECDS).  The corresponding codes 

to the definition can be found in table 3:  

 

 

 

 

 

 

“First attendance with some recorded 

treatments or investigations, all of which may 

have reasonably been provided in a non-

emergency care setting, followed by discharge 

home or to GP care”5 
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Table 3: NHS Definition of low acuity attendance 

Criteria  ECDS codes 

Department type  

Type- 1 Emergency Department 01 

Attendance disposal (discharge status)  

Discharged – follow-up treatment to be provided by general 

practitioner 

1077021000000100 

Discharged – did not require any follow-up treatment 182992009 

Left department before being treated 1066321000000107 

Investigations  

Urinalysis 27171005 

Pregnancy test 167252002 / 67900009 

Dental Investigation 53115007 

None 1088291000000101or blank 

Treatment  

Guidance/advice only - written 413334001 

Guidance/advice only - verbal Not applicable 

Recording vital signs Not applicable 

Dental treatment 81733005 

Prescription/medicines prepared to take away 266712008 

None (consider guidance/advice option) 183964008 or blank 

Prescriptions (retired code but still present in some records) Not applicable 

Attendance category  

First Accident and Emergency attendance 01 

Arrival mode  

Non-ambulance arrivals 1048071000000103, 

1048061000000105, 

1047991000000102, 

1048001000000106 

Adapted from O’Keeffe and NHS Digital5,152 
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However, this definition falls short of describing avoidable ambulance 

conveyances.  The ambulance service can provide a healthcare professional on 

scene who arrives in a mobile clinic.  This means by the time the patient arrives 

at the ED they have already been triaged, investigated, treated and a care plan 

made by a fellow healthcare service.  Transporting the patient to ED is a clinically 

decided upgrade in care to a more acute healthcare system.  Furthermore, the 

definition by O’Keeffe et al. is bound to the premise that the level of care the 

patient requires falls below the threshold of emergency care.  It is not necessarily 

what the ED can perform for the patient, but what level of care the patient needs.  

A definition of avoidable conveyance equally should not be bound to what the 

ambulance service can provide on scene but should stay true to the premise that 

the level of care required for their patient could be met in the community or 

primary care.  This requires a modification to the NHS Digital definition.  

 

7.5.3 Modifying the NHS Digital definition 

In order to clearly define the parameters for this outcome measure, the definition 

used by NHS Digital needed modifying to be more stipulative.  The first 

modification needed to be the arrival mode.  NHS Digital only include non-

ambulance arrivals in their definition, however, in the O’Keeffe study, there were 

8.5% of ambulance attendances that qualified as a non-urgent attendance in ED.5  

NHS Digital make an assumption that by virtue of arriving by ambulance, it 

characterises the patient as an emergency care patient.  The inverse definition of 

arrival mode was applied, with only those arriving by road ambulance included.  

It was assumed that an ambulance conveyance via a helicopter or with a medical 

escort would still qualify as an emergency.   

 

The second modification required was a robust translation from the CDS type 10 

to the CDS type 11 (ECDS).  NHS Digital performed a direct translation between 

the two coding types; however, there appear to be new codes that naturally fit 

with their original definition. The third modification is updating the definition to 
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include the routine clinical investigations and treatments that are widely offered 

by ambulance services in the UK.   

7.5.3.1 Investigations 

Investigations are largely translated correctly by NHS Digital into the ECDS 

however there is an extra code relating to urine testing ‘Urine sent for culture – 

168338000’, which appeared rational to include.  This was also included in the CDS 

coding under a code share with urinalysis. Table 4 shows all investigation codes. 

 

Table 4: Investigation codes 

ECDS Description (Investigations) ECDS code 

Clinical investigation not indicated* 1088291000000101* 

Dementia test 165320004 

Diagnostic dental procedure* 53115007* 

Glucose measurement, blood, test strip 104686004 

Human chorionic gonadotropin measurement* 67900009* 

Peak expiratory flow measurement 29893006 

Urinalysis* 27171005* 

Urine pregnancy test* 167252002* 

Urine sent for culture 168338000 

* Validated definition by O’Keeffe et al. and officially adopted by NHS 

Digital.5 

 

 

7.5.3.2 Treatments 

In the latest version of ECDS there are extra codes, which could reasonably be 

provided in the community and do not necessarily require the expertise of the 

ED.  These included social care treatments such as assessing a patient’s activities 

of daily living or mobility.  Table 5 shows all treatment codes that could be 

provided in the community. 
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Table 5: Treatment codes 

ECDS description (Treatments) ECDS Code 

Activities of daily living assessment 304492001 

Application of dressing, minor 15631002 

Assessment of mobility 430481008 

Closure of skin wound by tape 71810007 

Dental surgical procedure* 81733005* 

Gluing  284182000 

Mobility/transfers education, guidance, and counselling 410267000 

New medication commenced* 266712008* 

Patient given written advice* 413334001* 

Psychosocial assessment 371585000 

Review of medication 182836005 

Social assessment 406551008 

Treatment not indicated* 183964008* 

* Validated definition by O’Keeffe et al. and officially adopted by NHS 

Digital.5 

 

  

7.5.3.3 Discharge status 

ECDS introduced streaming codes into the discharge status section.  This was to 

solve the problem of inviting financial tariffs for patients whose care did not 

occur in the department itself.153 Prior to these codes, a patient was recorded as 

normal (no investigations or treatments) if they were in fact streamed elsewhere 

and would attract the tariff of a ‘normal’ patient being seen in the Emergency 

Department.  These codes are designed to be recorded when a patient is streamed 

immediately after initial assessment.  They act as both a clinical and financial 

clarification of an individual patient’s experience.  Table 6 below reproduced from 

Walker et al. states the exact ECDS codes that qualify as streaming codes: 
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Table 6: Discharge status codes 

ECDS Description (Discharge status) ECDS Code 

Streamed to primary care service / GP 1077021000000100 

Streamed to Urgent Care Centre 1077031000000103 

Streamed to falls service 1077091000000102 

Streamed to frailty service 1077101000000105 

Streamed to mental health service 1077041000000107 

Streamed to pharmacy service 1077071000000101 

Streamed to dental service 1077051000000105 

Streamed to ophthalmology service 1077061000000108 

Adapted from Walker et al.153  

 

For patients who are triaged in the ED and then streamed to a lower level of care, 

it is a signal that they do not require the ED and can be classed as an avoidable 

conveyance.  Whilst it is recognised these services may be co-located and thus the 

patient needs to be there, the destination of the ED is potentially avoidable as is 

transportation by ambulance. This is supported by clinical evidence and national 

policy which encourage the use of decision support in the ambulance service to 

stream patients to the most appropriate clinical area.95,154,155  

Using the modifications above, the experience-based definition for an avoidable 

conveyance to the ED in this thesis needed to meet all the criteria found in table 

7.  The ECDS data was still not ubiquitously collected and as such a CDS 

translation has also been included.  A limitation in the translation is that CDS 

code shares with other investigations. For example, CDS code 05 could be glucose 

measurement, but it could also be any other type of biochemistry.  It has these 

broader categories, which made a direct translation with ECDS difficult. The 

ECDS dataset is more granular and there are no codeshares as each code is unique 

in its definition.  For example, the code for glucose measurement is 104686004, 

and each other biochemistry investigation also has its own unique code.  The 

ideal situation was for all the data to be collected in ECDS and only a single 

outcome definition used.  However, due to some trusts in the data collection only 

submitting CDS10 to NHS Digital, both the CDS and ECDS definitions must be 
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used.  Missing values have been included in the definition below.  On the balance 

of probability this is because there were no investigations/treatments etc. To 

elaborate, in the datasets there are up to twelve investigation ‘slots’ to record the 

first twelve investigations a patient had.  If they only had two investigations, the 

remaining ten would record blank values.  If an instance had all investigation or 

treatment fields missing, it was considered unable to create the outcome 

measure.  It was deemed that this event was rare, due to the compulsory coding of 

these variables by clinical staff, and the presence of values that represent that 

there were no investigations or no treatments indicated.   

 

 

Table 7: Full definition for this study 

Criteria CDS ECDS 

Had the following attendance category: 

Unplanned First Emergency Care Attendance for a new clinical 

condition (or deterioration of a chronic condition). 1 - 

Had attended the following department type: 

Type 1: General Emergency Department (24 hour). 1 - 

Arrived only by: 

Arrival by emergency road ambulance - 1048031000000100 

Arrival by non-emergency road ambulance - 1048021000000102 

Only had one or more of these Investigations: 

Clinical investigation not indicated 24 1088291000000101 

Dementia test 99 165320004 

Diagnostic dental procedure 22 53115007 

Glucose measurement, blood, test strip CS 104686004 

Human chorionic gonadotropin measurement 21 67900009 

Peak expiratory flow measurement 99 29893006 

Urinalysis 6 27171005 

Urine pregnancy test 21 167252002 

Urine sent for culture CS 168338000 

visual acuity testing CS 16830007 

NA - - 
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Only had one or more of these treatments: 

Activities of daily living assessment 521 304492001 

Application of a dressing, minor 11 15631002 

Assessment of mobility 91 430481008 

Closure of skin wound by tape CS 71810007 

Dental surgical procedure 56 81733005 

Gluing of wound CS 284182000 

Mobility/transfers education, guidance and counselling 522 410267000 

New medication commenced 57 266712008 

Patient given written advice 221 413334001 

Psychosocial assessment CS 371585000 

Review of medication CS 182836005 

Social assessment 54 406551008 

Treatment not indicated 99 183964008 

Physiotherapy: Falls prevention 92 391027005 

Observation/ cardiac monitor, pulse oximetry/ head injury / trends 21 88140007 

NA - - 

Left the department in the following way: 

Discharged – follow-up treatment to be provided by GP 2 - 

Discharged – did not require any follow-up treatment  3 - 

Transferred to other healthcare provider  7 - 

Left department before being treated  12 - 

Left department having refused treatment  13 - 

Left care setting after initial assessment - 1066311000000101 

Left care setting before initial assessment - 1066301000000103 

Left care setting before treatment completed - 1066321000000107 

Streamed from ED to dental service following initial assessment - 1077051000000105 

Streamed from ED to falls service following initial assessment - 1077091000000102 

Streamed from ED to frailty service following initial assessment - 1077101000000105 

Streamed from ED to GP following initial assessment - 1077021000000100 

Streamed from ED to mental health following initial assessment - 1077041000000107 

Streamed from ED to ophthalmology following initial assessment - 1077061000000108 

Streamed from ED to pharmacy service following initial assessment - 1077071000000101 

Streamed from ED to urgent care service following initial assessment - 1077031000000103 

Treatment completed - 182992009 
 

Discharge destination (for ECDS) 
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Home - 306689006 

Residential care facility without 24-hour nursing care (e.g., residential 

home) - 306691003 

Residential care facility with 24-hour nursing care (e.g., nursing 

home) - 306694006 

Police - 306705005 

Custodial services e.g., prison / detention centre - 50861005 

 

7.5.4 Limitations with the outcome variable 

The gold standard (reference standard) in this study is a data driven definition 

based on ED experience.  However, it has not been considered or accounted for 

that the ED itself is susceptible to error.  One in ten diagnoses in the ED is likely 

to be incorrect, and the rates of medical harm as a result of the incorrect 

diagnosis is higher amongst the ED population than the inpatient.156 One Iranian 

study found that on direct observation of 202 patients, there was an average of 3.5 

errors per patient.157 It has been proposed that errors in the ED are attributed to 

interruptions during clinical procedures, multitasking, fatigue, and working 

memory capacity.158 This evidences that the reference standard being used 

assumes an errorless environment, however this is unlikely to be the case.  It is 

hoped that the sample size being large would mitigate this limitation.  

 

By having a data driven definition, it also reduces information down into binary 

variables that are less representative of the real world.  Elaborating on the 

discussion in chapter 5, section 5.2, there is a fluidity to both the urgent and 

emergency care system, the patients, and the interaction between the two.  

However, in a data driven definition, the fluidity has to be fixed to be able to 

describe whether a patient is low acuity. A more realistic approach would be to 

represent the fluidity of an unformed illness, yet to be given a clinical 'label' 

within the data.  However, this is very difficult to capture, even if all possible 

resources were available.  An expansion of the limitations of the outcome variable 

can be found in chapter 10, section 10.3.3. 
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7.6 Candidate predictors 

A preliminary analysis of 100,000 YAS ePCR’s was used to identify candidate 

predictors.  These were non-conveyed patients that were attended by a YAS 

clinician between the 1st of July 2019 and the 29th February 2020.  The cohort 

(known as DS2 on the figure 10 data flow diagram) had a total of 503 variables for 

consideration.  Prior to selecting candidate variables, certain procedures were 

undertaken to assess missing data in DS2.  The way the ePCR is completed by the 

clinician leaves many interventional fields blank.  These are only completed if the 

intervention happened.  For example, if the patient had a tube inserted down 

their airway into their lungs to help them breathe (a procedure known as 

intubation), then the variable intubation would have a positive value.  

Conversely, if the intervention did not happen, the variable would be left blank.  

As such, the missing values in this field are not missing, they are indeed the 

negative class.  All variables that resemble this structure with only a positive 

value, had the negative class imputed.  There was a decision to eliminate any 

variable with more than 35% missing data (except those pertinent to 

transportation).  This was to reduce dimensionality within the data but also for 

practical reasons.  If the variable was only completed in 65% of patients, then to 

include them would limit the decision support tools benefit in practice.  The 

threshold of 35% is based on reasoning as opposed to evidence as there have not 

been studies to date that have explored candidate elimination based on different 

thresholds (and its impact on final model development).  In DS2 there were 

initially 503 variables, but after applying missing data rules, there were only 60 

candidate predictors for consideration. Candidate variables were sub-categorised 

into demographic, physiological, interventional, and social categories.  Previous 

modelling studies identified in the systematic review were used as a theoretical 

justification for inclusion in the model.  Although most of the studies in the 

review were predicting high-acuity outcomes, the selected variables may have the 

inverse relationship for predicting low-acuity patients and were worthy of 

inclusion. Outcome measures in the systematic review such as admission 

prediction were also appraised for inclusion as the outcome measure is clinically 
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a close neighbour to acuity. In the absence of evidence for selecting a candidate 

predictor based on urgency; admission was used. Where there was not a 

theoretical justification, a logical decision would be made for inclusion or 

exclusion.  However, the decision support tool would have a greater impact on 

patient care if it could be applied earlier on in the patient journey and this was a 

key factor in deciding variable selection. Justifying candidate variables prior to 

feature selection safeguards against poor quality information being used to 

develop a model.  

 

7.6.1 Demographic factors 

The decision to include demographic variables as candidate predictors raises an 

interesting philosophical and ethical dilemma. Would the model being ‘aware’ of 

these characteristics become prejudiced, which could in-turn harm patients?  Or 

would inclusion account for their association with the outcome and therefore 

optimise their care?  There is no clear consensus on how to handle demographic 

variables, but there has been a discourse on the creation of ‘fair algorithms’ 

relating to demographic variables that are protected characteristics.  From a legal 

basis in the UK, a protected characteristic includes: age, disability, gender 

reassignment, marriage status, pregnancy and maternity, race, religion or belief, 

sex and sexual orientation.159 It is against UK law to discriminate someone 

because of these characteristics according to the Equalities act 2010.159 This 

extends to the Data Protection Act (2018). which devised provisions to protect 

data subjects’ ‘fundamental rights and freedoms’ and aimed to ensure that the 

processing of personal data does not lead to discrimination.160 A useful starting 

point in the debate whether to include or exclude protected characteristics in a 

risk prediction model was an article authored by Reuben Binns and Valeria 

Gallo.161 It was highlighted that there are two main reasons that machine learning 

algorithms could inadvertently penalise protected characteristics.  The first 

reason is imbalanced training data.  This is where there is an imbalance in the 

protected characteristic (i.e., more males than females) during model 

development.  To paraphrase their example, if the training data for a bank loan 
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repayment prediction model contained more males than females, then the model 

would perceive females to be less important.  This could lead to a systemic 

reduction in predicted loan repayment rates for women, even if the training data 

would suggest otherwise.  The second reason is that the training data is reflecting 

inherent discrimination at the data collection phase.  Using the same example 

above, if there were more women’s loan applications rejected compared to males 

due to historic gender discrimination, then to include this data will derive a 

prejudiced model.   

 

It is important to emphasise the context of the risk prediction model being 

developed in this thesis.  Unlike the bank loan example, this is not a ‘decision 

making’ model, but a ‘decision support’ model.  Its intentional use as an eventual 

decision-support tool is by a healthcare professional.  Therefore, there is an 

override mechanism by the end user, safeguarding against actual discrimination.  

Furthermore, the aim of the tool is to optimise the care of patients who may not 

require the ED.  By omitting protected characteristics that have an association 

with the health outcome, it creates a model that could potentially be unfair.  For 

example, studies have shown that age is associated with acuity.  Younger patients 

are more likely to be low acuity compared to older patients.  To include age could 

help younger patients navigate care when needed without penalising older 

patients.  If age was omitted from the model through anti-classification, this 

information would be missing, and it could potentially lead to patients of all ages 

in a sub-optimal care settings for their need.  Building on the work of Binns et al,  

a three-part strategy that ensures characteristics remain protected in this thesis 

has been developed.161–164  Firstly, ensuring in the pre-processing that all 

demographics and protected characteristics are justified as candidate predictors.  

Secondly, during model development not to force these into the model if there is 

no association (identified through feature selection).  Thirdly, through an 

assessment of outcome and error parity of all available protected characteristic 

variables post validation (even if they were eliminated in model development).   

 



 

143 

 

The systematic review was able to provide an insight into variables that are 

important in predicting patient acuity in the emergency care system.  These 

variables have been categorised into demographic, social, clinical, and 

interventional.  Tables 8-11 list each variable along with the justification for 

inclusion. Some variables that have been identified in the systematic review were 

unable to be used in this study, and more detail of these are found below. 

 

7.6.1.1 Time and day of arrival 

Time of arrival has been shown to have a relationship with the acuity of patients.  

Time of attendance can be split into ‘in hours’ and ‘out of hours’.  O’Keeffe defined 

in hours as between 8am and 6pm, Monday to Friday.5  Weekends and time-

periods that fell outside of the in hours definition were classed as out of hours.  

Non-urgent attendances increased out of hours, with 62.4% of all non-urgent 

attendances occurring in this period.  Compared with in hours the OR of a non-

urgent attendance out of hours was 1.19 (95% CI 1.18-1.20).  The weekend was 

identified as having considerable increases in the number of non-urgent 

attendances with the peak occurring at 3am on a Sunday.  Other studies explored 

time and day of arrival when predicting admission and critical care, but their 

association varied and there was an inconsistent reference category for 

generating odds ratios.133,165–168  A limitation of using temporal variables in a 

prediction model of acuity is the variability in community services that have 

time-restricted access.  For example, if there is a minor injury unit that is only 

open during the day, then even if the model classified them as low-acuity during 

the night, it is redundant information. It would therefore be inappropriate to 

include in the model development as a candidate predictor. 

 

7.6.1.2 Past Medical History (PMH) 

Prehospital modelling studies have previously used comorbidities as candidate 

variables for predicting admission to hospital. One study used only the most 

common comorbidities (diabetes, hypertension, asthma, seizures, cancer, end-

stage renal disease and Chronic Obstructive Pulmonary Disease (COPD)) as 
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candidate variables in their model.  The only two that made it into the final 

model were cancer and diabetes.107  Raita et al. also studied comorbidities with 

congestive heart failure being the most significant in both predicting critical care 

need and hospitalisation.  Compared to all the other variables in their model, 

comorbidities still did not rank that highly.169 In prehospital clinical practice, 

patient comorbidities are found primarily through inquisition, when eliciting a 

past medical history (PMH).  Alternative methods available are examining a 

patient’s summary care record, which is a primary care document showing the 

PMH as well as the outcome of recent medical consultations.   In DS2, the 

comorbidities are collected in a free-text format and cannot be extracted in an 

efficient manner.   In the ECDS dataset, comorbidities are listed as a variable, but 

are rarely captured at present.  This means that, as useful as comorbidities might 

be, this study is unable to use them.  

 

7.6.1.3 Chief Complaint (CC) 

In urgent and emergency care, patients can present with all types of physical, 

mental, and social health complaints.  These complaints are the crux of the 

attendance and are highly predictive of outcome.  For example, Meisel et al. 

included three chief complaints in their final model predicting admission.  

Shortness of breath had an OR of 6.8 (95%CI 2.9-6) compared to not having the 

complaint, chest pain 5.2 (95%CI 2.2-12.3), dizziness, weakness or syncope 3.5 

(95%CI 1.8-6.5).107 This is an important study to mention as it was using 

prehospital chief complaints, which are often arrived at using less information 

than primary care of the ED.  Even when codes are grouped together, they are 

significant predictors.  Zlotnik et al. grouped the Manchester Triage Codes (MTS) 

complaint codes together into five risk groups according to their risk of 

admission.  In the final modelling all five groups of chief complaints had odds 

ratios where the confidence intervals did not overlap but rose drastically with 

each ascending group.170 In the DS2, there was no chief complaint code, however 

there is a surrogate known as 'clinical impression'.  The difference being that the 

chief complaint is often a coded version of what the patient describes as being the 
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clinical problem.  Whereas the clinical impression is what the paramedic on 

scene believes to be the clinical problem once they have assessed them.  There are 

99 codes that represent clinical impression.
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Table 8:  Demographic candidate variables 

Variable name (units) Values Justification Parameters Cumulative  

Age (Years) 18,19,20 years etc. Age was the most significant predictive variable 
identified in the literature.  Studies predicting 
higher-acuity outcomes such as critical care or 
hospitalisation have found that as patients 
become older the risk is greater.107,109–
113,133,165,166,168,169,171–175 

1 1 

Gender Male, Female, Transgender, Unknown Studies are inconclusive as to whether gender is a 
predictor of acuity.  Therefore there is a benefit to 
including it in this model. 172 167 170,171 

4 5 

Ethnicity Black, Asian, Mixed, White, Other It has been shown to be associated with decisions 
to admit patients into the hospital. 168 167 

5 10 

Previous attendance 
within 24 hours 

1,0 Fewer attendances within the last 12 months were 
a predictor of admission. 170 

1 11 

Incident location Care home, Domestic address, Not selected, 
Public place, School, Work, Other 

Two studies have identified nursing home 
residency as a potential predictor for admission. 
109 168 

7 18 

Social Deprivation (IMD) 1.1, 9.2, 13.4 … The relationship between health and wealth is 
axiomatic with those more deprived having worse 
healthcare outcomes.   

1 19 
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Table 9: Social candidate variables 

Variable name (units) Values Justification Parameters Cumulative  

GP address recorded 1,0 Social variables have rarely been used in 

prediction modelling.  One example set in the 

USA used insurance type as a candidate 

predictor.167  As alluded to in the background, 

patients present with complex physical, mental 

and social needs.  To include social variables can 

support safe non-conveyance by ensuring there 

is an appropriate support network available.  In 

the data, there are flags for if a GP, Next of Kin, 

parent, guardian or social worker is named in 

the ePCR.   

 

1 20 

NOK named 1,0 1 21 

Parent named 1,0 1 22 

Guardian named 1,0 1 23 

Referral to service Coroner, Police, Safeguarding adult, 

Safeguarding child … 

5 28 

Social worker named 1,0 1 29 
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Table 10: Clinical candidate variables 

Variable name (units) Values Justification Parameters Cumulative 

Primary survey: Catastrophic 
haemorrhage 

1,0 

This is the rapid assessment an ambulance clinician 
will do as they enter the scene to check if any life-
threatening problems are present. It is reasonable to 
include these variables, as they are the earliest 
triaging that occurs on scene.   

1 30 

Primary survey: Cervical spine 
tenderness 

1,0 1 31 

Primary survey: Airway Clear, Noisy, Occluded 3 34 

Primary survey: Breathing Normal, Abnormal, Not breathing 3 37 

Primary survey: Pulse Radial, Carotid, No palpable pulse 3 40 

Primary survey: Level of 
response 

Alert, Confusion, Verbal, Pain,  
Unresponsive 

5 45 

Mental capacity 1,0 This appears rational to include as mental capacity 
can have many different causes, and from a clinical 
perspective feature heavily in deciding if a patient 
can be left at home. 

1 46 

Clinical impression Shortness of breath, Abdominal pain, 
Hypoglycaemia … 

As described above when discussing chief complaint, 
studies have identified an association between 
clinical impression and acuity. 

99 145 

Initial pulse rate (bpm) 60,61,62 … Many studies have used physiological observations 
as candidate variables for predicting acuity and they 
have shown great significance in final 
models.110,112,113,167,169,171,176–178 These variables are often 
limited to pulse rate, respiratory rate, blood 

1 146 

Initial respiratory rate (rpm) 16,17,18 … 1 147 

Initial SpO2 (%) 96%,97%,98% … 1 148 
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Variable name (units) Values Justification Parameters Cumulative 

Initial temperature (oC) 36.2, 37.1, 37.5 … pressure, temperature, oxygen saturations, blood 
glucose and level of consciousness.  The common 
principle in using them to predict critical care is that 
observational values that are extreme or deviated 
from the norm become highly predictive.  Therefore, 
for predicting low acuity, it would be logical to 
include them as candidate predictors and expect the 
inverse relationship. That a normal physiological 
observation is predictive of a low acuity patient. 
 

1 149 

Initial Systolic BP (mmHg) 120,121,122 … 1 150 

Initial diastolic BP (mmHg) 80,81,82 … 1 151 

Blood glucose (mmol/L) 4.1, 5, 5.2, 10.1 1 152 

Initial Glasgow Coma Scale 
(GCS) score 

15,14,13,12,11,10,9,8,7,6,5,4,3 Level of consciousness is usually measured in adults 
using the Glasgow Coma Scale (GCS). In one study, 
the GCS was abbreviated to a simplified 
consciousness score (SCS). In regards to variable 
importance, it was ranked 1st across all learners.112   

13 165 

Initial GCS: Eye component 4,3,2,1 4 169 

Initial GCS: Verbal component 5,4,3,2,1 5 174 

Initial GCS: Motor component 6,5,4,3,2,1 6 180 

Initial NEWS score 1,2,3 … The National Early Warning Score (NEWS) is a 
composite scoring system based on respiratory rate, 
the saturation of oxygen in the blood (SpO2), pulse 
rate, systolic blood pressure, body temperature and 
level of alertness.  A copy of the latest version 
(NEWS2) can be found in appendix F. 179,180 Studies 
have shown there is a clear relationship between the 
NEWS score and patient acuity. 133 

1 181 

Initial pain score 1,2, 3... Pain has been a significant predictor for admission 
of patients from the ED.  A study using natural 
language processing of free text fields in hospital 
documentation found that the most frequently used 
terms for admission were: pain, soreness and ache.167 

1 182 
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Variable name (units) Values Justification Parameters Cumulative 

Hypercapnic respiratory failure 1,0 There are observations that are present in DS2, but 
not necessarily captured in previous studies.  This 
presents itself as an opportunity to explore potential 
new candidates and further contribute new 
knowledge in this area.  Pupil size is a neurological 
observation that includes the size of the person’s 
pupil in the eye, and the reactivity of it. Peak flow is 
a measurement of force during exhalation and is 
used before and after treating a patient with 
respiratory conditions in order to assess 
effectiveness of treatment.  A related variable is 
whether a person has hypercapnic respiratory 
failure.  This is a relatively new field and is assessing 
whether a person has an abnormal respiratory 
physiology as part of their medical history, which 
would alter what their normal SpO2 should be. An 
example would be a patient with COPD who may live 
with reduced SpO2, and therefore the target % 
oxygen should also be lower. 
 

1 183 

initial pupil size left 1,2,3 … 1 184 

initial pupil size right 1,2,3 … 1 185 

Initial pupil reaction left 1,0 1 186 

initial pupil reaction right 1,0 1 187 

Subsequent pulse rate 60,61,62 … 

 
The subsequent observations were included for two 
reasons. The first is that abnormal observations in 
subsequent recordings is important information.  
But also, the subsequent observations can be used to 
create observation intervals (the difference) which 
can be used as a predictor of deterioration. 

1 188 

Subsequent respiratory rate 16,17,18 … 1 189 

Subsequent SpO2 96%,97%,98% … 1 190 

Subsequent temperature 36.2, 37.1, 37.5 … 1 191 

Subsequent Systolic BP 120,121,122 … 1 192 

Subsequent diastolic BP 80,81,82 … 1 193 
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Variable name (units) Values Justification Parameters Cumulative 

Subsequent Responsiveness Alert, Confusion, Verbal, Pain, 
Unresponsive 

5 198 

Subsequent Glasgow Coma Scale 
(GCS) score 

15,14,13,12,11,10,9,8,7,6,5,4,3 13 211 

Subsequent GCS: Eye 
component 

4,3,2,1 4 215 

Subsequent GCS: Verbal 
component 

5,4,3,2,1 5 220 

Subsequent GCS: Motor 
component 

6,5,4,3,2,1 6 226 

Subsequent NEWS score -1,0,1 … 1 227 

Subsequent peak flow 300,301,302 …  1 228 

subsequent pupil reaction left 1,0 1 229 

subsequent pupil reaction right 1,0 1 230 

subsequent pupil size left 1,2,3 … 1 231 

subsequent pupil size right 1,2,3 … 1 232 

Subsequent pain score 1,2, 3... 1 233 

Difference pulse rate -1,0,1 … As discussed above, these are useful in identifying a 
deteriorating patient. 

 

1 234 

Difference respiratory rate -1,0,1 … 1 235 

Difference SpO2 -1,0,1 … 1 236 
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Variable name (units) Values Justification Parameters Cumulative 

Difference temperature -1,0,1 … 1 237 

Difference Systolic BP -1,0,1 … 1 238 

Difference diastolic BP -1,0,1 … 1 239 

Difference Responsiveness -1,0,1 … 1 240 

Difference Glasgow Coma Scale 
(GCS) score 

-1,0,1 … 1 241 

Difference NEWS score -1,0,1 … 1 242 

Difference pain score 1,2, 3... 1 243 

Difference peak flow 300,301,302 … 1 244 

difference pupil reaction left 1,0 1 245 

difference pupil reaction right 1,0 1 246 

difference pupil size left 1,2,3 … 1 247 

difference pupil size right 1,2,3 … 1 248 

Abnormal ECG on primary Left Bundle Branch Block, Right BBB, 
STEMI 

No studies have used the initial abnormal ECG 
finding as a predictor variable in the past.  The 
variable is found in the YAS ePCR and is an early 
indicator of something wrong with the patient's 
heart.  It is a categorical variable that only accepts 
ST elevation MI (STEMI) and bundle branch blocks, 
which are also an electrical problem with the heart.  

3 251 
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Table 11: Interventional candidate variables 

Variable name (units) Values Justification Parameters Cumulative 

ECG monitored 1,0 

Interventional candidate predictors 
utilise the massive benefit of using 
electronic healthcare records at the 
granular level.  In DS2, there is a 
plethora of interventions captured in the 
data including investigations like an 
electrocardiogram (ECG). There are also 
fields detailing equipment used such as 
an airway device or immobilisation 
equipment.  Treatments are also 
captured including which drug has been 
given.  Being able to include these into 
the model as candidates has a tangible 
benefit as it could reveal which 
interventions make a difference to 
patient acuity. 
 

1 252 

Supplemental oxygen 1,0 1 253 

ICN type Intravenous, Intraosseous, None 3 256 

Drug 1 Adrenaline 1:1000, Co-codamol 30/500, Diazepam … 100 356 

Drug 2 Adrenaline 1:1000, Co-codamol 30/500, Diazepam … 100 456 

Drug 3 Adrenaline 1:1000, Co-codamol 30/500, Diazepam … 54 510 

Drug 4 Adrenaline 1:1000, Co-codamol 30/500, Diazepam … 25 535 

Drug 5 Adrenaline 1:1000, Co-codamol 30/500, Diazepam … 17 552 

Drug 6 Adrenaline 1:1000, Co-codamol 30/500, Diazepam … 16 568 

Drug 7 Adrenaline 1:1000, Co-codamol 30/500, Diazepam … 14 582 

Drug 8 Adrenaline 1:1000, Co-codamol 30/500, Diazepam … 12 594 

Airway type ETT, LMA, OPA, NPA… 10 604 

Immobilisation Scoop, Cervical collar, Extrication board … 9 613 

Advice given Wound care, bereavement, head injury 8 621 

Mobility Stretcher, walked, hoist 15 636 

CPR 1,0 1 637 
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7.7 Sample size  

The sample size calculations for risk prediction models with a binary outcome 

have only recently been described through a series of simulation studies.114,181–186  

However, this study has the limitation of being bound by two time-points.  The 

first time-point is when the moment in which the ePCR in YAS was rolled out 

across the region and the end point is when COVID-19 became prevalent and 

would thus confound the cohort.  By this premise, the sample size is a convenient 

sample, and any calculations performed in line with the literature would serve a 

different purpose.  Traditionally, the calculation of a sample size for a 

multivariable risk prediction model is completed using a ‘rule-of-thumb’ of 

between 10 and 50 events per variable.181 The requirement of a sample size is 

mainly to prevent the concept of overfitting.  In order to calculate a sample size 

that prevents overfitting, the estimated R2
 needs to be defined.  The R2 is the 

expected variance explained by the model.  There are many different R2 statistics, 

the one used in the sample size calculations is the Cox-Snell R2. This is used to 

estimate the overall model fit in the developed model with a binary outcome. It is 

also known as the likelihood ratio R2.184 Unfortunately, explained variance is not 

always reported in the results of prediction model studies, however the C-statistic 

is mostly reported.  It is possible to obtain a Cox-Snell R2 statistic from a known 

C-statistic.186  For the estimated parameters, DS2 was analysed, and it was found 

that there were 60 variables once the missing data rules were applied.  In the 

estimation, degrees of freedom were calculated for each variable. Continuous and 

binary variables had a single degree of freedom, and categorical variables had n 

degrees (where n = number of categories).  The degrees of freedom calculations 

were based on one-hot encoding in subsequent data preparation instead of 

dummy variables being created.  The difference is that in the creation of dummy 

variables for a categorical variable, there are n-1 degrees of freedom.  Conversely, 

in one-hot encoding, the result is equal to n degrees of freedom. The degrees of 

freedom can be seen in the above tables 8-11. 
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7.8 Internal-external cross-validation (IECV) 

 

Traditionally, validation has two components: internal and external validity.  In 

internal validation, the data is either split into a training set and a test set, or 

resampling methods such as cross validation and bootstrapping are performed.  

By doing so, optimism can be corrected using the same dataset. External 

validation is applying the model to a different dataset, preferably in a different 

location, at a different time, by different researchers.114,128 This fully independent 

approach is not always feasible to achieve. A modern approach, identified by 

Steyerberg et al. in 2016 is the idea of internal-external validation, which was used 

in this thesis. 

 

This is a modern method designed to overcome the limitations of data availability 

required for external validation. The idea behind the external validation element 

in internal-external validation is not so much ‘does the model work in different 

settings?’, rather ‘If the model was developed using different data, would the 

results be the same?’ Internal-external validation uses cross-validation as the 

framework to its approach. 

 

Cross validation is an extension of the sample splitting procedure, except it is 

repeated many times.  The whole sample is randomly split into k folds.  A single 

fold is left out and becomes the test set.  The remaining folds are the training sets. 

A model is built on the training set and evaluated on the test set.  The process is 

then repeated with the next fold left out instead as the test set.  The number of 

folds is user defined, but commonly five or ten folds.  If the number of folds 

equals the number of instances in the sample, it is known as the ‘jack-knife 

procedure’. The method of cross-validation overcomes the limitations of apparent 

validity by using unseen test sets.  It also overcomes the weaknesses of split-

sample validation as it allows all instances to appear in a test set at least once.  It 

can also average out evaluation results across all test sets, which gives a more 

realistic measure of model performance. 128   
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 In the description of cross validation above, it was noted that the data is 

randomly partitioned into folds.  In Internal-External Cross-Validation (IECV), 

the data is non-randomly split into folds.  Each cluster in the dataset represents a 

single fold.  The procedure used in this thesis was as follows: 

 

The first cluster (in this case ED) was removed from the dataset to form the test 

set.  The remaining data formed the training dataset.  The training dataset was 

then split into k random folds and an internally validated model was developed 

on the training data.  It was then tested on the test set.  This was repeated for 

every cluster. The procedure is known as nested cross-validation as there is an 

inner-loop nested into an outer-loop.187  In the context of this study, the outer-

loop consisted of cross-validation for each ED.  There were seventeen EDs 

included in this study, and therefore the outer-loop was 17-fold cross validation.  

The final step in IECV was to use a meta-analysis to pool all the clustered results 

to update the final model performance.114,187,188  The theory in the meta-analysis 

had been modified and applied for the purposes of IECV.  Traditionally in a meta-

analysis, the results from each study are listed and then a random effects meta-

analysis pools them altogether to produce a summary statistic of the results with 

a confidence interval.  In the IECV meta-analysis, the cluster results were all 

pooled together instead.189An illustrative example of this procedure can be found 

in chapter 6 of this thesis (the protocol manuscript). Figure 1 in the manuscript 

shows the whole model procedure for this study and steps 4-6 illustrate the 

internal-external cross-validation procedure. IECV has proven successful at 

testing the reproducibility and generalisability of models that have been 

developed on large, clustered datasets.  It is the superior method of building a 

model that can internally- and externally-validate a model using the existing 

dataset.114,128   
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7.9 Evaluation of model performance 

In the systematic review from chapter 3 (section 3.4), it was found that those 

studies authored by computer scientists would sometimes have different 

methods of evaluating a model compared to those authored by statisticians.  The 

lexicon between the two areas can be different, despite describing the same terms.  

A good example of this is the positive predictive value (PPV) and the sensitivity. 

These are terms common in statistics to describe a model’s performance.  The 

PPV is the proportion at which a positive prediction is correct, whereas 

sensitivity is reporting the proportion of all positive instances have been 

identified by the model. As an aside, computer science adopts different 

terminology for identical calculations, with PPV known as precision, and 

sensitivity known as recall. For clarity, the statistics terminology has been 

adopted here.   

 

The simplest way to evaluate the performance of a classification model is to 

transform the results into a confusion matrix such as figure 11.  This assigns every 

prediction to one of four categories and arranges them in a 2x2 matrix.  Figure 11 

has been created for this thesis to illustrate the basic components of a confusion 

matrix, which contains the elements needed to calculate PPV and sensitivity. 

 

Figure 11: Confusion Matrix 

 Predicted Class 

 Total 
population = 
P + N 

Positive (PP) Negative (PN) 

Actual 

Class 

Positive (P) True Positive (TP) False Negative (FN) 

Negative (N) False Positive (FP) True Negative (TN) 
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Using the matrix in figure 11, PPV (precision) and sensitivity  (recall) can be 

calculated in the following way: 

𝑃𝑃𝑉 = 	
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 

 

In the equations above, the true positives (TP) are those where the predicted and 

actual class was positive.  The false positive (FP) is where the actual class was 

negative, but the model predicted positive.  The false negative (FN) is where the 

model predicted negative, but the actual class was positive.  Three have been 

defined above (TP, FP, FN), with the fourth being a true negative (TN). This is 

where both the predicted class and the actual class are negative.  The confusion 

matrix can be used to calculate many statistics to evaluate model performance.190 

The most popular are sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV) and overall accuracy.  These can all be found in 

the equations below: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃) 

𝑃𝑃𝑉 = 	
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) 

𝑁𝑃𝑉 = 	
𝑇𝑁

(𝑇𝑁 + 𝐹𝑁) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

 

In clinical practice, sensitivity and specificity have greater utility than cruder 

metrics such as accuracy.  A pre-specified threshold can be established to 

determine the success of a model.  For example, in the context of this study the 

aim was aligned more to predicting health than disease.  Therefore, a false 

positive would be a patient requiring the skills of the ED but being identified as 
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non-urgent.  This is an unsafe situation and thus the model needs to have a low 

false positive rate (in effect high positive predictive value).  Traditional predictive 

modelling often aims to predict disease and so the inverse ideal threshold is true.  

There are limitations with statistics that are derived from the confusion matrix 

such as they lack information about the model itself, only the classification 

results.  Also, due to the nature of the results being aggregated into four classes 

first, if there is a class imbalance the results become less valuable.  For example, if 

the outcome is only prevalent 7% of the time, an extreme model of assigning 

every instance to the negative class will still result in 93% accuracy.  The ideal 

structure for an analysis of a clinical prediction model is outlined in the 

Transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis (TRIPOD) and the Prediction model Risk Of Bias 

ASSessment Tool (PROBAST) guidelines.146,191 Their recommendations stand on 

the shoulders of the latest recommendations in prediction modelling research.  

Proper evaluation of a model lies in two specific areas.  The first is examining 

whether the model predicts accurately across all predictions, this is known as 

calibration.  The second is assessing whether the newly developed classifier can 

differentiate between a random pair of instances (one with and one without the 

outcome), this is known as discrimination. There are also measures of evaluation 

that report how well a model fits the data and are composites of both calibration 

and discrimination.  These have their limitations and are discussed briefly below 

before calibration and discrimination are separated out.    

 

7.9.1 Calibration 

Calibration is producing a statistic that is an assessment of whether the predicted 

probabilities for each instance in a test set match with the observed probabilities.  

The simplest for binary outcomes is to take the ratio of observed and expected 

(O:E). The observed (O is the prevalence in the dataset, therefore it is number of 

events divided by the whole sample. The expected (E) is the sum of predicted 

probabilities created by the model for each instance.  In a perfect model, the O:E 

would be 1.  If the model underpredicts, there will be a O:E ratio of greater than 1 
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as there will be more predicted outcomes than observed. Similarly, if the model 

overpredicts the O:E ratio will be less than 1.  The benefit of using the O:E ratio is 

its intuitive nature.  It is also the statistic that is recommended for meta-

analysing the different clusters.192 In this thesis, all cluster results were pooled 

into a random effects meta-analysis and a summary O:E was calculated with a 95% 

confidence interval (95% CI). 

 

A limitation with the O:E is that is informs of whether there is over-prediction or 

under-prediction, but it does not determine whether the model is miscalibrated 

or not.  Conversely, the Spiegelhalter's z-test statistic does, and can be fine-tuned 

to ensure any miscalibration is adjusted. For this reason, the Spiegelhalter’s z-test 

statistic was used for this purpose.193 It can be calculated as follows: 

𝑧 =
∑ (𝑦! − 𝑦+!)(1 − 2𝑦+!)"
!#$

E∑ (1 − 2𝑦+!)%𝑦+!(1 − 𝑦+!)"
!#$

 

In the equation,  𝑦! is the actual value of the outcome, and 𝑦+! is the predicted 

outcome. The test follows a standard normal distribution asymptotically.  The 

null hypothesis associated with Spiegelhalter’s z-test is that the model is well 

calibrated.  Therefore, if the z-test is less than -1.96, or greater than 1.96, the test is 

statistically significant, and the related p-value will reflect this by being less than 

the conventional alpha of 0.05.  A model with a Spiegelhalter’s z-test that is well 

calibrated will have values that fall within the -1.96 to 1.96 window and will have a 

p-value > 0.05, i.e., it is not statistically significant, and the null hypothesis is 

rejected. 

 

The final way of reporting calibration in a transparent way is to assess the 

calibration slope and intercept.  In this thesis, it was reported visually on a 

calibration plot of predicted probabilities on the x-axis, and actual probabilities 

on the y-axis. Perfect calibration in this case lies on a straight line drawn at 45o. 

The intercept of the line would be 0, and the slope would be 1.   
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7.9.2 Discrimination 

In the modelling of a binary outcome, it is useful to start with the predicted 

probabilities belonging to the positive class and then identifying a threshold with 

which to dichotomise patients into the two classes.  Depending on the threshold, 

there will be different frequencies in each of the four areas in a contingency 

square.  Discrimination is almost universally reported as the C-statistic for binary 

classification problems.  A Receiver Operator Characteristic (ROC) curve plots 1-

specificity on the x-axis and sensitivity on the y-axis at different thresholds. This 

allows the ideal threshold to be selected, but also allows for a summary statistic 

of how good the model is at differentiating between the two classes.  The area 

underneath the curve is this statistic and is also known as the C-statistic.  A 

model which has the predictive ability no better than tossing a coin would have a 

C-statistic of 0.5.  It would not look like a curve visually but would appear on a 45o 

line. A perfectly discriminate model will have a C-statistic of 1, and the curve 

would reach far into the upper-left corner of the plot, effectively forming a (near) 

right-angle.128  The C-statistic can be meta-analysed using each cluster, and further 

visualised using a forest plot of each individual C-statistic with confidence 

intervals. A note on the C-statistic is that it is not always possible to achieve a 

result of 1.  Depending on the classification problem, a good result may be limited.  

In the systematic review, it was reported that the C-statistics found in previous 

modelling studies had a mean value of 0.80.106 

7.10 Further data preparation 

One of the main features of the XGBoost algorithm is the speed at which it can 

function, and it achieves this through operating on sparse matrices.  The dataset 

needed to be transformed into a sparse matrix through one-hot coding of all 

categorical variables.  Continuous and binary variables stayed in their original 

format.  
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7.10.1 Hyperparameter tuning 

The beauty of a machine learning algorithm lies in its ability to automatically 

detect patterns within a dataset.  In XGBoost, the user does not have to manually 

build every decision tree, calculate errors and adjust weights for future trees 

accordingly. It is done by the algorithm itself. But this raises the question as to 

whether the final model is overfitting. or whether the bias variance trade-off 

needs trading off. This is the role of a hyperparameter. 

 

Hyperparameters provide the algorithm with a set of rules that can be tweaked in 

order to optimise the results.  Each rule (hyperparameter) controls how the 

algorithm operates.  For example, some hyperparameters aim to increase or 

decrease model complexity (adjusting the bias) and others can be used to 

introduce randomness to prevent overfitting. The value of each hyperparameter 

is set prior to the model building process.  The challenge is finding the best value 

of each hyperparameter.  This is exacerbated by the fact that sometimes the 

hyperparameters influence each other, so the tuning of one can affect the 

performance of another.  XGBoost has around 53 hyperparameters that can be 

customised. The limitations with algorithms that have an extensive list of 

tuneable hyperparameters is knowing those that are important and will affect the 

final model but also adjusting the computational expense to find the right value 

for each one.194–196  To address the first limitation in this thesis, the 

documentation for the XGBoost algorithm was studied and a decision was made 

to tune only hyperparameters that concerned themselves with the bias variance 

trade-off, model complexity or the class imbalance.  For the second limitation, a 

restricted grid search approach was undertaken. These are explained below. 

 

7.10.2 General parameters used for modelling 

The hyperparameter ’booster’ is to control the design of the XGBoost algorithm.  

This was set to the value ’gbtree’ as it was the design of the chosen algorithm to 

build boosted trees.  It was possible to select gblinear, or dart.  Dart is short 

for ’Dropouts meet Multiple Additive Regression Trees’ and is a tree boosting 
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algorithm that incorporates the random drop out of trees.  This can create an 

unstable model with a slower training rate.197  The num_round and 

early_stopping also needed specifying.  These both relate to each other, and it is 

best practice to set num_round quite high and then tune the early_stopping.  

Num_round is the maximum number of trees to be created.  Early_stopping 

controls when to stop building trees and uses a threshold of no improvement 

after X rounds. Num_round is set to a high value in case it takes a lot of trees to 

maximise an accuracy metric.  In this thesis, num_rounds was set to 1000, and 

early_stopping was set to 10, which meant the algorithm kept building trees up to 

1000 of them. The 1000 for num_rounds was an arbitrary selection, but the plan 

was to increase this if there was no early stopping.  The 10 for early_stopping was 

used as the commonly used value in the XGBoost documentation.198 To clarify 

how the two hyperparameters interact, if after building 360 trees there was no 

improvement in the next 10 trees, the algorithm would stop, and the model would 

only have 360 trees.  The eval_metric must be specified as this is how 

performance is evaluated in early_stopping, and within the wider algorithm 

itself.  It is chosen depending on the objective of the algorithm.  As the objective 

in this thesis was binary classification, the evaluation metric was the C-statistic 

(AUC), as explained above.  Most other non-booster hyperparameters were related 

to parallelisation of computing (which affects speed of modelling, as opposed to 

the results of the model), hence were left at default values.198,199 

 

7.10.3 Booster parameters 

There are 23 hyperparameters that control the actual boosting procedure within 

the algorithm. These are discussed below. 

 

Eta (𝜂) 

The hyperparameter eta is also known as the learning rate and accepts values 

between 0 and 1 and has a default value of 0.3.  It controls the shrinkage of the 

feature weights after each boosting step.  A larger eta value makes the boosting 

process more conservative.  It is recommended to keep this high when tuning 
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other hyperparameters and then fine tune it to a lower value within 2 decimal 

places.199     

 

Max_depth 

This is one of the most important hyperparameters for the XGBoost algorithm.  It 

controls how deep the trees are that are built: therefore, the value of max_depth 

controls the model complexity of each tree.  Higher values will allow the 

algorithm to build deeper trees, but risk overfitting.  The values of max_depth can 

range from 1 to ∞ and is defaulted to 6. The values are more realistically between 

1-10 to begin with.199 

 

Min_child_weight 

The min_child_weight is the minimum hessian weight needed in a child node to 

qualify that split.  If the sum of instances falls below the minimum specified, then 

the building process will give up further splits. For example, if the 

min_child_weight was set to 100, then the model would keep splitting until there 

were less than 100 instances left in the prospective child nodes.  The higher the 

value, the more conservative the algorithm.  The range can be 0 to ∞, with the 

default set at 0. Similar to max_depth, the realistic values may be within a 

smaller range of 1-10. The hyperparameter is also used to control model 

complexity.199 

 

Subsample 

Subsample is a ratio of the training instances.  It ranges from 0 to 1 and has a 

default value of 1.  The value sets the ratio of randomly sampled training data 

prior to growing trees.  For example, if the subsample was set to 0.5, it would 

randomly sample half of the training data each time it developed a tree.  This 

process prevents overfitting by introducing randomness.199 
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Colsample_bytree 

Colsample_bytree is part of a group of hyperparameters non as colsample_by*.  

These all have a range between 0 and 1 have a default of 1.  They all control 

whether a fraction of columns is selected for splitting (much like the random 

forest modelling).  It is possible in the XGBoost algorithm to control the fraction 

of randomly sampled columns for each tree, at each level and by each node.  They 

work cumulatively because to specify a fraction for each one would significantly 

limit the number of variables to choose from at each node.  However, the ability 

to randomly sample columns is a good way to prevent overfitting.  As such, only 

the highest level (colsample_bytree) was included for tuning.  The others 

(colsample_bylevel, and colsample_bynode) were left at their default values.199 

 

Gamma (𝛾) 

This is also known as the minimum split loss.  It specifies the minimum 

reduction in loss required to make a further split in the tree.  The range can be 

from 0 to ∞ with a default value of 0.  The larger values of gamma, the more 

conservative the algorithm, hence it controls model complexity.199 

 

Scale_pos_weight 

This controls the weighted scaling of the positive class and helps with managing a 

class imbalance in the dataset.  Adjusting the value of scale_pos_weight helps to 

calibrate the model in this situation. The values range from 1 to ∞ and the default 

value is 1.  This hyperparameter was used as the method of recalibration during 

model development.199  

 

Alpha (𝛼) 

This is the regularisation penalty that can be tuned in the XGBoost model.  

Unlike in regularisation, where this represents the elastic net hyperparameter, in 

XGBoost it represents the L1 regularisation term, which is the LASSO.  The L2 

penalty (ridge regularisation) was available, as well; however, it was decided to 
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only tune the LASSO, as it would lead to a more parsimonious model if extra 

features were eliminated, even after recursive feature elimination.199   

 

7.10.4 Restricted grid search  

As demonstrated above, there are hyperparameters that need tuning but accept 

many different values.  Even those are restricted between 0 and 1, have an infinite 

number of decimal places that can be incorporated into a search strategy.  The 

most appropriate method of finding the best value for each hyperparameter is to 

use a grid-based approach because it is thorough and more robust for finding 

optimum hyperparameters (compared with stochastic methods).196  In this 

strategy, each hyperparameter has a vector containing a set of values.  These are 

then placed into a grid with all the other hyperparameters that are intended to be 

tuned.  For every possible combination in the grid, the model is built and 

evaluated.  However, the computational expense is tremendous.  As an example, if 

six hyperparameters were given just ten values each, the number of possible 

combinations in the grid search would be 3600.  This is 3600 models that need to 

develop through the process of nested CV for the best combination to be 

evaluated.  There are seven tuneable hyperparameters in this thesis and so it was 

decided to create a restricted grid.  The eighth hyperparameter 

(scale_pos_weight) was tuned separately, and the default was updated to the 

optimum value.  It was then retuned if there any recalibration was necessary. The 

process of using a restricted grid has two parts. The first part (hyperparameter 

optimisation) is identifying the best performing hyperparameter values (the 

fewer the better).  These are then entered into a grid, to form a restricted grid 

space.  For the second part (using the restricted grid space), each time a model is 

developed, the ideal hyperparameters are selected from running a grid search on 

the restricted grid.  In this thesis, the hyperparameters were sequentially tuned 

and then the three best performing values were chosen to be in a restricted grid.  

This way, the computational expense was mitigated as there had to be a grid 

search for each model developed in the IECV.  In the sequential grid searching, 

some hyperparameters were tuned in tandem, as they interact with each other.  



 

167 

 

This included max_depth with min_child_weight, and subsample with 

colsample_bytree.  The sequential nature of tuning was undertaken so that the 

default of each was updated to the best performing value after the search.  The 

search space for each hyperparameter was defined using small values between 1 

and 10 initially.  If the best performing value was 10, the space was expanded to 

larger values.  Equally, if the best performing value was 1, the space was changed 

to between 0 and 1, with increments of 0.1.  If a hyperparameter had only two 

values in the top ten performing iterations in the optimisation process, then only 

those two values went through to the restricted grid to further restrict the grid. 

 

7.11 Protocol deviations 

The initial model findings included age, ethnicity and deciles of deprivation 

(according to the Indices of Deprivation) as predictor variables. During recursive 

feature elimination some ethnic categories and deciles of deprivation were 

omitted from the variable list.  As such, it was decided to remove the two 

variables from the candidate list to ensure no group was penalised over another.  

Age remained in and it was the most significant predictor in the model by far. 

When variables were ranked according to their information gain in the model, 

age had twice the gain compared to the next variable. Because it held so much 

weight, it introduced a bias into the model that would penalise younger ages into 

a higher probability of an avoidable conveyance.  The discussion in chapter 5 

highlighted that this could be a benefit of the model as it could optimise the care 

of younger patients.  However, the problem was that, in the misclassification 

analysis (shown in figure 12), it showed that most of the errors in prediction 

stemmed from age carrying so much weight.  The variable was removed and the 

model re-run.  The accuracy of the model barely changed, but the bias was 

removed.  The results presented below do not have age as a predictor included.   
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7.12 Ethical considerations 

The main ethical consideration for the wider context of the thesis was using a 

large volume of patient data without consent.  The study underwent extensive 

review to ensure that there was a clear legal basis for doing so, and patients had 

every possible opportunity to opt out. The NHS Research Ethics Committee (REC) 

reviewed the study and gave a favourable outcome which can be found in 

appendix G.  This is required before going for additional ethics review by the 

Confidentiality Advisory Group (CAG).  This review is specifically for using 

patient data without consent.  The initial CAG outcome asked for a more detailed 

plan on how patients who did not want their data to be used in this way could opt 

out.  As such, the following strategy was developed. 

 

The first method was to first run patient NHS numbers through the national opt 

out scheme and remove any instances where patients had preselected to opt 

out.200  Then, a public notice was placed on the YAS and University of Sheffield 

Figure 12: Frequency distribution by confusion matrix category 
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websites.  This notice gave the details of the study, the dates of data collection 

and details those individuals could contact and have their instances removed. A 

limitation was that each individual could not be identified and contacted as they 

would not have consented for their data to be processed this way.  Furthermore, 

the cost and timings to do this for every patient in the sample would have been 

infeasible.  The vast geography of the included sample meant that placing 

physical literature would not be an option either. Once this strategy was 

implemented, CAG gave their ethical approval. The letter from the Health 

Research Authority (HRA), the REC committee and the CAG committee can be 

found in appendix G . 

 

As part of the application to NHS Digital for the data, a Data Access Request 

Service (DARS) application had to be completed.  This extensively described the 

legal basis and appropriateness of the project for NHS Digital to send data.  As 

part of this, NHS Digital requested that the NHS REC and CAG approval be in 

place, but they also undertook their own ethical review.  The legal basis and 

ethical considerations passed this extra step.   

 

One of the ethical considerations that was a focus of the ethics applications was 

the difference between decision-making and decision-support.  The philosophy of 

this study is to help paramedics make decisions regarding the clinical benefit of 

transporting a patient to the ED.  Therefore, the greatest utility is adding the 

model to existing clinical knowledge.  A decision-making tool would go against 

this and requires significant more methodology prior to implementation, 

including observational and interventional studies.  The firm belief is that the 

real tangible benefit of a clinical prediction model in this context was a decision-

support tool only. A final ethical consideration was the inclusion of demographic 

features in the model; however, this has been covered in a previous section.  
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7.13 Patient and public involvement 

This project was heavily influenced by the public. The Sheffield Emergency Care 

Forum (SECF) is a Public Involvement and Engagement forum that is situated at 

the University of Sheffield. This study had a standing agenda at their quarterly 

meetings. Through an iterative process, they steered the study. Changes made 

included the terminology used, which felt very impersonal at the start but with 

their support, reflected that this was at the heart of patient care. They also helped 

with the mechanics of involving patients, and their suggestions for how to 

involve the public were developed and revised by the group. They helped provide 

reassurance that using patient data anonymously to create a tool would be a 

benefit to patients. 

 

A small grant from the NIHR Research Design Service (RDS) was awarded to 

conduct three Public Involvement events. These were designed to fulfil the 

following objectives: 

• To elicit how much the public agreed with the feedback of the SECF and if 

they had any different thoughts and feelings. 

• To discover how the public would like clinicians to communicate care 

plans in emergency situations. 

• To recruit public members to form a panel for the duration of the project 

(and hopefully into post-doctoral research). 

 

A total of twenty-two public members were involved who captured diversity in 

socio-economic status, gender, age, disability, and ethnicity. The events led to a 

multi-sided discourse; however, underlying themes caused changes in the 

application.  For example, the public felt a tool could not be created in isolation 

and would require advice and guidance for patients. This led to the qualitative 

phase of the project embedding public perceptions around managing patient 

expectation. Unfortunately, the qualitative phase of the project was removed as a 

request from the funder. From a reflective lens of undertaking the events with 
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such a diverse membership, there were personal development areas highlighted 

such as conveying information that can be understood.  

 

The members of the public who helped in the design of the research asked 

whether they would like to be invited to a WhatsApp group.  This is a digital 

messaging application that is secure with end-to-end encryption.201 Those who 

had access to the application but never used it were helped. Those who did not 

have access but wanted to participate were invited to face-to-face meetings and 

met on a one-to-one basis. The purpose of the WhatsApp group was to have a 

longitudinal conversation with the public about the project. As changes were 

being made, the public were asked in advance what their thoughts were. They 

were also invited to comment on reports to ensure the language can be 

understood. 

 

There were annual meetings with members of the group to consolidate 

conversations in the WhatsApp group, and to present and discuss the progress of 

the project.  

 

7.14 Conclusion 

This chapter expanded on the protocol chapter found in chapter 6.  This study is 

set within the geographical footprint of Yorkshire Ambulance Service NHS Trust 

and includes all type 1 ED’s within.  The methodology will use an XGBoost 

algorithm on a linked dataset of patient episodes that started in the ambulance 

and ended at the ED.  The methods detailed in section 7.8 include using internal-

external cross-validation.  This allows for spatial validation between geographical 

areas to be explored.  In the next chapter, the results of the study are presented in 

manuscript form.
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8. Results (presented as a manuscript) 
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8.1 Introduction  

This chapter presents the results of the study as a manuscript that is being 

prepared for publication.  Due to this, there is some duplication with other 

chapters which is unavoidable.  The accepted best practice is to frame the 

manuscript around accepted reporting guidelines.  In the case of this study, the 

Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD) statement was considered most appropriate.146 

 

8.1.2 Background 

In the emergency care system, pressure is rising amidst the growing quantity of 

patients accessing front door services such as the ambulance service, Emergency 

Department (ED) and General Practice (GP).  This demand is rising at around 5% 

per annum.14,19  For the ambulance service, this means that patients who are 

transported to hospital may be held in a queue of other ambulances waiting to 

hand their patients over.  In 2019/2020 in England alone, there were 137,009 

delays in ambulance handover of between 30 and 60 minutes.26 When these delays 

occur and ambulances are queueing, it has the potential to cause harm to those in 

the queue. A recent report from the Association of Ambulance Chief Executives 

(AACE) found that 80% of ambulance patients that queued for more than an hour 

experienced some level of harm.202  There are also potential consequences for 

prehospital patients still waiting to be assessed in the community.   

The case mix of these patients is not always life-threatening emergencies.  

Previous reports have demonstrated that the majority of prehospital patients 

have no immediate life-threatening care need and their actual need could be 

managed in the community.13,22 However, some of these patients are still 

transported to the ED and this can lead to an avoidable ED attendance.   

When paramedics make decisions on-scene to transport a patient to hospital, it is 

often the most complex decision they make.76 As such, the decision is not always 

accurate.  Studies have found that there are between 9 and 32% of ambulance 

transports to ED that could have been avoided.5,13,49,54 
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Existing transport decision support tools that are in practice have all been 

designed not to miss a higher acuity patient, which has led to significant over-

triage of patient acuity.  They have also failed to demonstrate significant benefit 

over clinician decision making.  A vignette-based survey by Miles et al. found that 

conveyance decisions had a sensitivity of 0.89 (95% CI 0.86 – 0.92) and a 

specificity of 0.51 (95% CI 0.46 – 0.56).6 This is comparable to existing decision 

support tools such as the paramedic pathfinder.8,94 A systematic review into 

whether machine learning computerised decision support could offer an 

improvement on triage found that certain methods such as decision trees, neural 

networks and logistic regression were all able to provide accurate discrimination 

between different acuity levels.  A limitation of the included studies was that they 

were often predicting high acuity.203 

If current clinical judgement is already sensitive to identifying high-acuity 

patients, the benefit of a decision support tool is on triaging the mid- and low-

acuity.  If accuracy is improved at this level of triage, the benefit would be a 

reduction in the avoidable transportation of patients to an ED.   

 

8.1.3 Objectives 

Primary research question 

In adult patients attending the ED by ambulance, can prehospital information 

predict an avoidable attendance? 

 

Primary objectives 

1) Extract prehospital variables from ambulance service electronic patient care 

records 

2) Link the data with ED electronic patient care records 

3) Identify low acuity patients in the dataset using the ED information 

4) Build a predictive model using prehospital variables 

5) Measure the success of the model in predicting an avoidable attendance using 

prehospital variables. 
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Secondary research questions 

What is the simulated transportability of the model derived from the primary 

outcome? 

 

Secondary objectives 

6) Test spatial validation 

7) Test model discrimination of protected characteristics 

8.2 Methods 

8.2.1 Source of data 

This retrospective cohort study analysed a sample of ambulance service 

attendances between the 1st of July 2019 and the 29th February 2020.  Each face-to-

face attendance had an electronic Patient Care Record (ePCR) created which 

contained all demographic and clinical information.  A similar record was also 

created at the Emergency Department (ED) if the patient was conveyed there.  

These records were linked so that the outcome could be generated in the ED data, 

and the candidate variables in the ambulance data.   

 

8.2.2 Participants 

In this study, all patients who were over the age of 18 and had a face-to-face 

ambulance in Yorkshire with a completed ePCR were eligible for inclusion.  The 

patients were not selected by any specific demographic or disease in order to 

develop a model which could be applied to all patients. Children were excluded 

from the model as ambulance policy can dictate transport decisions to the 

clinicians on scene.  For example, mandatory transportation of under 5s.  

 

8.2.3 Outcome 

The outcome is a avoidable conveyance attendance at the ED, which is an 

experience-based definition initially described by O’Keeffe et al. as “first 

attendance with some recorded treatments or investigations all of which may 

have reasonably been provided in a non-emergency care setting, followed by 
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discharge home or to GP care”.5 This was operationalised into a data-driven 

definition and can be found in the protocol publication.203  

 

8.2.4 Predictors 

All candidate variables were measured whilst the ambulance crew was with the 

patient prospectively. Data were retrieved after the data collection period, and no 

ambulance crew was aware of the study during data collection.   Variables can be 

broadly categorised into demographic, clinical, social and interventional.  The 

only demographic variable included was incident location as a categorical 

variable.  This variable is user inputted by the ambulance crew depending on 

whether the patient is at a domestic address, public place, care home, work or 

other Age was also initially included: however, after initial model building, it was 

found to introduce a bias and was removed. Clinical variables formed most of the 

candidate variables.  When a paramedic arrives on scene, they will first undertake 

a primary survey. This records whether the patient has a catastrophic 

haemorrhage, whether their airway is clear, whether they are breathing normally, 

whether there are any obvious circulation issues.  These are all recorded as 

categorical variables.  The patient will then have physiological variables recorded 

in order to assess how serious their medical complaint may be.  Pulse rate is 

measured in beats per minute (bpm) and is the frequency at which the heart beats 

in a minute.  Traditionally this is measured by palpation of the pulse, however 

modern technology allows this to be measured using medical equipment.  

Respiratory rate is measured as respirations per minute (rpm) and is a manual 

count of the number of breaths the patient takes in one minute.  Temperature is a 

continuous variable measured in oC using a tympanic thermometer.  The 

peripheral capillary oxygen saturation in the blood (SpO2) is measured using 

medical equipment as a percentage. Blood sugar levels are also recorded using a 

machine that takes a small blood sample.  The results are recorded as mmol per 

litre.  Blood pressure is recorded using millimetres of mercury (mmHg).  Two 

measurements are recorded, the systolic blood pressure and the diastolic blood 

pressure. The level of consciousness is calculated using a four-scale system (AVPU 
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= Alert, Voice, Pain, Unresponsive) in the primary survey and the Glasgow Coma 

Scale (GCS) in the physiological observations.  GCS is a composite score of 

labelled scales.  The minimum score is three and maximum fifteen.204 Baseline 

oxygen demands, and current oxygen demands are recorded as binary variables.  

All the physiological variables are combined to calculate a National Early 

Warning 2 score (NEWS2). 179,180 The NEWS2 score has been included as a 

candidate predictor and treated as categorical. Other clinical variables include 

pain scores out of ten, subsequent measurements of observations and feature 

engineered intervals between primary measurements and subsequent ones.  All 

clinical interventions (e.g., cannulation, intubation etc.) were included as binary 

variables.  The patient’s mobility was recorded depending on what resource they 

required, i.e., self-mobile, stretcher needed, carry chair needed etc. The final 

clinical impression was also included as a categorical variable with 99 different 

values to possibly select.  Examples include ‘head injury’, ‘shortness of breath’, 

and ‘abdominal pain’.  Social variables were included as binary variables.  These 

include network variables such as GP details recorded, social worker recorded etc. 

It also included referral variables if the patient was referred to a service such as 

falls, safeguarding or diabetes clinic etc.  A full list of candidate variables, their 

units and variable types can be found in chapter 7, tables 8-11.203 

 

8.2.5 Sample size 

The sample size was calculated using the ‘pmsampsize v1.1.0’ for R v3.6.1 for 

windows.205  Two studies by Riley et al. also informed the sample size 

calculation.183,206 Previous studies have found a conservative estimate of the 

outcome prevalence to be 0.9.5 A meta-analysis found that the average C-statistic 

was 0.8.207 A preliminary analysis of a separate dataset found that there were 

potentially 637 parameters in the ambulance service dataset.  This gave an 

estimated sample size of 52,958 with an anticipated 4,767 event and an events per 

parameter (EPP) of 7.48. A full list of the parameters can be found in chapter 7, 

tables 8-11.203 
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8.2.6 Missing data 

The strategy for handling missing data was to first elicit if missing values in each 

variable were the negative class.  For example, the clinical procedure of 

intravenous cannulation is only recorded in the ePCR if the patient was 

cannulated.  Therefore, it is logical, in the absence of a positive recording to 

assume the patient was not cannulated and the missing data can be transformed 

into the negative class.  Once this had been completed, any variable with more 

than 30% missing data was excluded from the analysis.  The rationale for this was 

that it may not be routinely, or accurately completed in the ePCR and to include 

them could lead to model failure in practice.   

 

8.2.7 Statistical analysis methods 

The full statistical analysis plan has been published in the study protocol.203  In 

this study, an XGBoost algorithm was used for model development. Recursive 

feature elimination was used to subset the candidate variables into only the most 

important that provided the most accurate prediction model.  Then the 

algorithms hyperparameters were tuned in order to prevent model overfitting.  

The model was first evaluated for its calibration using Spiegelhalter’s Z-test. Then, 

model discrimination was assessed using the C-statistic (area under the ROC 

curve). The optimal threshold was identified by finding the closest top left point 

of the ROC curve.  This was then used to assess accuracy statistics. Once the full 

model was completely developed, symmetrical procedures were undertaken using 

different Emergency Departments as held-out test sets with all remaining data as 

the training data. This in effect created a full model and seventeen other models 

which could then be meta-analysed. The summary statistics generated in a 

random effects meta-analysis were then used to update the final model for its 

performance. In the protocol paper, the full procedures are outlined in detail.203  

This study is a development study with internal-external validation using a meta-

analysis of ED clusters.  There is no external validation. 
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8.3 Results 

8.3.1 Participants 

There were 101,522 individual patient episodes included in the analysis.  Of these, 

7228 (7.12%) were defined as having an avoidable conveyance attendance at the 

ED.  Table 12 provides key demographic information between those with, and 

without, the outcome.  It also shows physiological observations as a surrogate for 

comparative patient acuity. In appendix H, the table is extended to show the 

clinical impression fields.  

 

Table 12: Characteristics of participants 

  Unavoidable Avoidable Overall 
(N=94294) (N=7228) (N=101522) 

Gender       
  Female 52620 (93%) 4120 (7%) 56740  
  Male 41572 (93%) 3100 (7%) 44672.00 
  Transgender 7 (88%) 1 (13%) 8 
  Unknown 95 (93%) 7 (7%) 102 
Age       
  Mean (SD) 66.8 (20.3) 50.9 (22.6) 65.7 (20.9) 
  Median [Min, Max] 72.0 [18.0, 107] 48.0 [18.0, 107] 71.0 [18.0, 107] 
Ethnicity       
  African (Black or Black British) 269 (89%) 33 (11%) 302 
  Caribbean (Black or Black British) 380 (91%) 36 (9%) 416 
  Any other Black background 164 (86%) 26 (14%) 190 
  Bangladeshi (Asian or Asian British) 124 (84%) 23 (16%) 147 
  Chinese (Asian or Asian British) 59 (86%) 10 (14%) 69 
  Indian (Asian or Asian British) 521 (90%) 55 (10%) 576 
  Pakistani (Asian or Asian British) 2894 (87%) 415 (13%) 3309 
  Any other Asian background 382 (85%) 67 (15%) 449 
  British (White) 78401 (94%) 5420 (6%) 83821  
  Irish (White) 361 (93%) 29 (7%) 390 
  Any other White 2464 (90%) 263 (10%) 2727 
  White and Asian (Mixed) 76 (85%) 13 (15%) 89 
  White and Black African (Mixed) 35 (81%) 8 (19%) 43 
  White and Black Caribbean (Mixed) 113 (92%) 10 (8%) 123 
  Any other Mixed background 150 (90%) 17 (10%) 167 
  Any other ethnic group 761 (84%) 142 (16%) 903 
  Unknown 2554 (90%) 281 (10%) 2835 
  Not stated 4586 (92%) 380 (8%) 4966 
Incident location       
  Care Home 7614 (95%) 372 (5%) 7986 
  Domestic Address 68004 (93%) 5281 (7%) 73285  
  Not Selected 27 (96%) 1 (4%) 28 
  Other 4449 (93%) 320 (7%) 4769 
  Public Place 2710 (89%) 335 (11%) 3045 
  School 30 (70%) 13 (30%) 43 
  Work 473 (88%) 65 (12%) 538 

  Missing 10987 (93%) 841 (7%) 11828 
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Transported ED       
  Airedale General Hospital 3058 (93%) 240 (7%) 3298 
  Barnsley District General 5810 (95%) 323 (5%) 6133 
  Bradford Royal Infirmary 6705 (87%) 1004 (13%) 7709 
  Calderdale Royal Hospital 3865 (94%) 242 (6%) 4107 
  Dewsbury District Hospital 827 (86%) 137 (14%) 964 
  Doncaster Royal Infirmary 6258 (94%) 420 (6%) 6678 
  Harrogate District Hospital 2598 (94%) 163 (6%) 2761 
  Huddersfield Royal Infirmary 4392 (94%) 283 (6%) 4675 
  Hull Royal Infirmary 10099 (94%) 612 (6%) 10711  
  James Cook University Hospital 749 (93%) 55 (7%) 804 
  Leeds General Infirmary 4839 (95%) 263 (5%) 5102 
  Northern General Hospital 9793 (91%) 929 (9%) 10722  
  Pinderfields General Hospital 9481 (93%) 764 (7%) 10245  
  Rotherham District General Hospital 5618 (94%) 352 (6%) 5970 
  Scarborough District General Hospital 4374 (97%) 120 (3%) 4494 
  St James University Hospital 8078 (91%) 824 (9%) 8902 
  York District Hospital 5719 (94%) 382 (6%) 6101 
  Missing 2031 (95%) 115 (5%) 2146 
Indices of Deprivation       
  1 22882 (91%) 2331 (9%) 25213  
  2 12177 (92%) 1054 (8%) 13231  
  3 9934 (92%) 817 (8%) 10751  
  4 7439 (93%) 518 (7%) 7957 
  5 7560 (94%) 484 (6%) 8044 
  6 8025 (94%) 504 (6%) 8529 
  7 7801 (94%) 459 (6%) 8260 
  8 7199 (94%) 432 (6%) 7631 
  9 5959 (95%) 346 (5%) 6305 
  10 5199 (95%) 272 (5%) 5471 
  Missing 119 (92%) 11 (8%) 130 
Initial Pulse rate (bpm)       
  Mean (SD) 89.2 (22.3) 88.1 (18.2) 89.1 (22.0) 

  Median [Min, Max] 86.0 [5.00, 220] 87.0 [6.00, 220] 86.0 [5.00, 
220] 

  Missing 2186 (2.3%) 309 (4.3%) 2495 (2.5%) 
Initial Respiratory rate (rpm)       
  Mean (SD) 20.7 (6.30) 18.7 (4.45) 20.5 (6.21) 
  Median [Min, Max] 18.0 [0, 99.0] 18.0 [0, 96.0] 18.0 [0, 99.0] 
  Missing 1820 (1.9%) 188 (2.6%) 2008 (2.0%) 
Initial Systolic Blood Pressure 
(mmHg)       

  Mean (SD) 143 (28.3) 143 (24.4) 143 (28.1) 
  Median [Min, Max] 142 [0, 265] 140 [1.00, 288] 142 [0, 288] 
  Missing 2991 (3.2%) 388 (5.4%) 3379 (3.3%) 
Initial Diastolic Blood Pressure 
(mmHg)       

  Mean (SD) 82.9 (17.7) 86.4 (15.6) 83.2 (17.6) 
  Median [Min, Max] 83.0 [0, 200] 86.0 [4.00, 182] 83.0 [0, 200] 
  Missing 3114 (3.3%) 397 (5.5%) 3511 (3.5%) 
Initial Oxygen saturations (%)       
  Mean (SD) 95.3 (5.41) 97.1 (2.84) 95.4 (5.29) 
  Median [Min, Max] 97.0 [11.0, 100] 98.0 [18.0, 100] 97.0 [11.0, 100] 
  Missing 2543 (2.7%) 329 (4.6%) 2872 (2.8%) 
Initial temperature (Celsius)       
  Mean (SD) 37.0 (0.965) 36.8 (0.735) 37.0 (0.952) 
  Median [Min, Max] 36.9 [31.7, 42.1] 36.8 [33.0, 40.7] 36.9 [31.7, 42.1] 
  Missing 5935 (6.3%) 796 (11.0%) 6731 (6.6%) 
Initial Pain Score       
  Mean (SD) 3.10 (3.58) 2.94 (3.50) 3.09 (3.57) 
  Median [Min, Max] 1.00 [0, 10.0] 0 [0, 10.0] 1.00 [0, 10.0] 
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  Missing 26475 (28.1%) 2073 (28.7%) 28548 (28.1%) 
Self Mobile       
  Yes 26079 (87%) 3792 (13%) 29871  
  No 68215 (95%) 3436 (5%) 71651  
Initial NEWS2 score       
  0 20807 (90%) 2194 (10%) 23001  
  1 16801 (90%) 1779 (10%) 18580  
  2 10527 (92%) 928 (8%) 11455 
  3 9910 (94%) 610 (6%) 10520 
  4 6899 (95%) 330 (5%) 7229 
  5 5172 (97%) 186 (3%) 5358 
  6 4564 (97%) 128 (3%) 4692 
  7 3313 (98%) 60 (2%) 3373 
  8 2696 (99%) 40 (1%) 2736 
  9 2033 (99%) 16 (1%) 2049 
  10 1475 (99%) 10 (1%) 1485 
  11 969 (99%) 9 (1%) 978 
  12 595 (100%) 2 (0%) 597 
  13 441 (100%) 2 (0%) 443 
  14 241 (99%) 3 (1%) 244 
  15 138 (100%) 0 (0%) 138 
  16 58 (100%) 0 (0%) 58 
  17 34 (100%) 0 (0%) 34 
  18 13 (100%) 0 (0%) 13 
  19 2 (100%) 0 (0%) 2 
  Missing 7606 (89%) 931 (11%) 8537 
    

  

8.3.2 Model Development 

8.3.3 Dataset preparation 

During the preparation of the dataset there were 215 possible candidate variables 

for inclusion which comprised of 190 categorical variables (including 169 binary 

variables), and 25 continuous variables.  After one hot encoding there were 452 

candidate predictors in the final dataset.  During recursive feature elimination, 

the ideal set of variables was found to be only 90 of the total candidate variables.  

These were condensed down into 19 variables, comprising of 14 clinical variables, 

3 interventional and 2 demographics.  A full list of included candidate variables 

can be found in chapter 7, tables 8-11.  
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8.3.4 Model performance 

In an XGBoost algorithm, the hyperparameters that control how the model is 

built prevents the model overfitting the training data. Therefore the apparent 

validity can be perceived as less optimistic from the outset.142 Table 13 is a brief 

summary of the performance measures being used to evaluate the model. 

 

Table 13: Model performance measures 

 

Test Description Statistic Interpretation 
Calibration Assessment of 

whether the predicted 
probabilities match 
with the observed 
probabilities. 

O:E ratio 
 
 
 
 
 
Spiegelhalter’s 
z-test 

A perfect O:E ratio would be 1.  
If the model is over-triaging, 
the O:E ratio will be greater 
than 1 as it would predict more 
than observed, and vice versa.  
 
A Spiegelhalter’s z-test that 
falls outside the interval of -
1.96 – 1.96 will have a p-value 
greater than 0.05 and it means 
the model is miscalibrated. 
 
 
 

Discrimination Discrimination is 
assessing whether the 
model can take two 
random instances (one 
with and without the 
outcome) and tell 
them apart. 
 

C-statistic The C-statistic of 0.5 means the 
model is no better than chance 
at telling apart the two 
random instances.  A C-
statistic of 1 means the model 
will tell the two random 
instances apart every time.  A 
good C-statistic achieved in 
prior studies for this clinical 
problem is 0.8. 
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8.3.5 Calibration 

Calibration was assessed using Spiegelhalter’s Z-test and calculated using the 

Rmisc package v1.5.208 The interpretation of this Z-test is such that a statistically 

significant test result means the model is miscalibrated as the null hypothesis is 

that it is a well calibrated model. The initial model was miscalibrated with a 

Spiegelhalter’s Z-test of -3.668 (p = 0.001).  Therefore, the weighting of the positive 

class was tuned to two decimal places to yield the smallest Z-test with no 

statistical significance.  The optimum value for scale_pos_weight was 0.95 which 

gave a Spiegelhalter’s Z-test of 0.111 (p = 0.912).  The ratio of the observed and 

expected (O:E) was 1.042 (95% CI 1.02 – 1.07). The full calibration plot with 

intercept and slope can be found in figure 13. 

 

 

Figure 13: Full model calibration plot 
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8.3.6 Discrimination 

The C-statistic for the full model was 0.815 (95% CI 0.820-0.824).  The optimum cut 

point was 0.121, which gave a specificity of 0.87 and a sensitivity of 0.54.  The ROC 

curve with different thresholds including the optimal threshold (marked with a 

star) can be found in figure 14. The threshold was chosen as the 'closest top left' 

point mathematically.  Experiments were performed by maximising specificity, 

but the model was unstable, and the sensitivity decreased by such a significant 

amount that it would miss-classify far more often than it would classify.    

Using the optimal cut point, the full model had an accuracy of 0.85 (95% CI 0.847 – 

0.852).  The model had a preference towards specificity as it was predicting health 

and not disease. The positive predictive value (PPV) was 0.25 (95% CI 0.24 - 0.25) 

and the negative predictive value was 0.96 (95% CI 0.96 - 0.963). 

 

 

Figure 14: ROC curve of the full model 
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8.3.7 Model updating 

The meta-analysis was undertaken using the framework by Debray et al. and used 

the metamisc package v0.2.5.189,209 In the meta-analysis of clusters, the C-statistic 

was found to be 0.81 (95%CI 0.79-0.83).  The prediction interval was between 0.73 

and 0.87.  Figure 15 shows the forest plot of C-statistic results for each cluster.  

The meta-analysed O:E ratio was 0.995 (95% CI 0.97 – 1.03) with a prediction 

interval between 0.93 and 1.06. In appendix I, there is further information on the 

hyperparameters chosen in each cluster. 

 

 

 

8.3.8 Fair Machine Learning analysis 

In the analysis of fair machine learning, each demographic was assessed on two 

criteria.  The first was comparing the probability distribution of each category 

within the variable and the second was examining how many were misclassified 

in each category. If age is left in as a candidate variable, the model becomes more 

Figure 15: Meta-analysis of cluster discrimination 
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accurate but introduces a bias towards younger patients. When excluded, the 

model slightly decreases in performance but removes the bias. There were no 

significant differences in the mean probabilities, distributions or 

misclassification for any of the demographic variables assessed.  This included 

ethnicity, gender, and social deprivation. 

 

 

8.3.9 Misclassification analysis 

There were (3880 (3.8%)) true positive predictions where the model correctly 

identified an avoidable ambulance conveyance and (82,340 (81.1%)) true negatives 

where it identified an unavoidable conveyance.  There were (11,954 (11.8%)) false 

positives and (3348 (3.3%)) false negatives.  This gave a misclassification rate of 

(0.151).  

 

8.3.10 Variable importance 

Variable importance can be broken down into three features - frequency (weight), 

coverage and gain.  Frequency represents how many times a particular feature 

appears in the trees of the full model as a percentage of all the frequencies.  

Coverage is the number of instances that are contained within a feature when it is 

used as a split. Gain is the relative contribution of each feature to the whole 

model. Figures 16,17 and 18 show the frequency, coverage and gain for the model. 
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Figure 17:  Top 20 variables used in the full model by frequency 

Figure 16: Top 20 variables with the highest relative contribution to the full model (gain) 
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8.4 Discussion 

This study used a large sample of conveyed ambulance patients linked to their ED 

record to derive a risk prediction model.  Using feature selection, it was found 

that only a limited number of features contributed to identifying an avoidable 

conveyance.  Most of these related to physiological observations, a patient’s 

mobility and clinical impression.   

 

8.4.1 Feature importance 

A novel finding from this study was the identification of six clinical impressions 

that were important in predicting avoidable conveyances. There were six clinical 

impressions that featured in the top twenty.  The most important was patients 

presenting with psychiatric problems.  This could be a reflection on the 

experience of mental health presentations at the ED.  They rarely require 

investigations or treatments that physical health presentations may require.  The 

main purpose of the ED for these patients is to offer a place of safety and access to 

a mental health practitioner who can better meet their care need.  Other clinical 

Figure 18: Top 20 variables with the greatest number of instances when splitting (cover) 
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impressions were allergic reactions, cardiac chest pain, head injury, non-

traumatic back pain, minor cuts and bruising. These have been previously 

identified in observational studies as being associated with a non-urgent 

ambulance conveyance.53,54 All physiological observations appeared in the top 

twenty, however the NEWS2 score did not.  Only three NEWS2 scores were 

included in the full model.  A NEWS2 score of 0 appeared as the 31st variable, a 

score of 1 as the 58th, a score of 2 as the 78th and a score of 5 as the 93rd. This may 

mean that low NEWS2 scores are not strong predictors of an avoidable 

conveyance attendance. This is an interesting finding, as the decision tree should 

have associated higher NEWS2 scores with information gain from ruling out an 

avoidable conveyance. Conversely, it omitted most NEWS2 scores during 

recursive feature elimination.  In the full model and all the clusters, the 

frequency, cover and gain did not change rank order, which shows the stability of 

their importance.  When predicting high acuity, it is often easier to find 

significant variables, as physiological observations, such as pulse rate and 

respiration rate, will change when patients are acutely unwell.  However, when 

predicting avoidable conveyance patient episodes, physiological observations will 

often be normal.  Interestingly, there were clinical variables more important than 

physiological observations that have featured in other triage models as main 

candidate predictors.110,171 In the development of decision tree models, splits are 

made based on the information gained.  This can be either gain, in deciding what 

an avoidable conveyance patient is, or gain in deciding what an avoidable 

conveyance patient is not. As such, variables associated with higher acuity appear 

high in variable importance as they rule out necessary attendances.   The 

algorithm has identified signals of higher acuity patients with high prevalence of 

completion within the ePCR.  For example, delivering advanced life support to 

someone in cardiac arrest does not often happen in the overall case-mix of 

ambulance patients.  Therefore, the skills and procedures associated with 

undertaking ALS were rarely captured and were not identified as important.  

However, far more patients had the clinical procedure of intravenous 

cannulation or were monitored by ECG, and these appeared as the fifth and 
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eighth most important variables respectively.  This theory can be extended to the 

patient’s mobility.  In the model, a patient’s mobility status is important, as being 

stretcher bound, self-mobile or needing a carry chair all featured in the top 

twenty.   

 

8.4.2 Model performance 

The model was well calibrated with a meta-analysed O:E ratio of 0.99 (95% CI 0.96 

– 1.02).  This means that the model is making accurate predictions across all 

values.  The model is also successful in distinguishing between an avoidable 

ambulance conveyance and one that needed transport to hospital with a C-

statistic of 0.81 (95% CI 0.79-0.83).  The optimal threshold for classification was 

0.125 which appears low, but so is the proportion of avoidable ambulance 

conveyances and this reflects the class imbalance. The model provided many false 

negatives with a sensitivity of 0.58, meaning that 42% of patients who were 

classified as needing ED care were avoidable conveyances.   The choice of 

threshold is a point of discussion. It could be adjusted to a higher or lower value, 

but this would influence the sensitivity and specificity.  To illustrate, the ROC 

curve in figure 14 shows the thresholds above 0.2 have limited effect on the 

specificity but a large effect on sensitivity.  If the threshold was changed to 0.2 for 

example, the sensitivity drops dramatically to 0.28.  The optimum threshold was 

chosen to be the highest specificity with the highest sensitivity, which is also 

known as a balanced approach.  It was also possible to take the Youden index, 

which would place the threshold at the nearest point to the top left corner, but 

this placed too much of a penalty on specificity to create a functioning tool.  

 

The meta-analysis of clusters revealed that there were no significant performance 

differences between test sets in urban areas, rural areas or coastal areas.  There 

were significant differences in the calibration slopes; however, this was at the 

latter part of the plots where predicted outcome was rare.  They all produced O:E 

ratios that were acceptable except for two smaller test sets (Dewsbury hospital 

and James Cook University Hospital), which had significant under-triage.   
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There was only a prevalence of 7% for avoidable conveyance attendances in the 

study sample.  This is fewer cases than the literature had previously reported (9-

13%).5,13,49,54  This may appear low; however, the quantity of high acuity patients is 

similar, indicating that to predict avoidable conveyance and high-acuity would be 

predicting the two tails of a normal distribution.  Future studies should examine 

the mid-acuity patients and begin to unpick differences between these patients to 

improve on the outcome definition of a patient who is unlikely to gain a clinical 

benefit from being transported to a higher-acuity clinical setting than community 

care.   

 

8.4.3 Limitations 

This study has its limitations.  It was a retrospective, observational study using 

routine data.  A strength of using routine data is the ability to use large volumes 

of patient episodes, which can produce accurate models.  A limitation, however, is 

that it is not feasible to tailor data collection to the project.  It is only possible to 

use what is routinely collected. This extends to not being able to control how a 

variable is collected.  For example, ethnicity may not have been explicitly stated 

by the patient every time but could have been assumed by the clinician.  Another 

limitation is the computational expense of selecting an algorithm with many 

hyperparameters.  It would take a significant amount of time to be able to scan all 

combinations of hyperparameters through a grid search every time a model was 

developed.  As such, the grid was restricted.  The anticipated impact of the 

restricted grid search is expected to be minimal as the differences in AUC 

performance (the evaluation metric of choice) had a narrow interval of between 

0.7 and 0.85.  The validation does not benefit from true external validation, and it 

would be a sensible conclusion to revisit the definition of an avoidable ambulance 

conveyance, or indeed the taxonomy of how prehospital care systems classify 

their patients, based on their need before further validation of the SINEPOST 

model.   

 



 

192 

 

There is a limitation in using a risk (or probability) based approach to answering 

this research question when later transforming the model into a tool.  The 

process is very analytical and does not successfully answer how staff would use 

this information or whether they would trust the outcome of the tool.  This was 

particularly highlighted in an article by Kappen et al. who evaluated the impact 

of prediction models.  It was highlighted that a prediction model is, in effect, a 

complex intervention.  Due to this, it is difficult to ascertain the exact benefit if 

used in practice.210 

 

8.4.5 Interpretation 

This study can conclude that it is possible, with good accuracy, to predict an 

avoidable ambulance conveyance to the ED using prehospital clinical data.  The 

XGBoost model developed here, known as the SINEPOST model, can discriminate 

between those with non-urgent needs and those without.  It can also accurately 

provide what the probability of an avoidable conveyance is.  The model does not 

bias different ages, ethnicities, genders, or Indices of Deprivation.  It is robust to 

all different prehospital settings.  However, to maximise its potential, if it was to 

be transformed into a computerised clinical decision support tool, there needs to 

be a more robust definition of what an avoidable conveyance should be.  It is 

recommended to revise the taxonomy of prehospital patients according to the 

care setting they need, as opposed to the paradigm of describing patient acuity.  

 

8.5 Conclusion 

This chapter has presented the findings of this thesis in the form of a manuscript.  

The model was successfully created as demonstrated by its calibration, 

discrimination, and accuracy.   The manuscript was written for a clinical 

audience, and as a result there were details omitted.  The next chapter will 

elaborate on these results including the hyperparameter optimisation and the 

results for each cluster. 
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9. Further results  
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9.1 Introduction 

This chapter presents more detailed results that were not included in the 

manuscript but submitted as a supplementary file.  The main results were aimed 

at a clinical audience and therefore some of the detail on model development that 

may distract from the clinical context were left out.  In this chapter, the 

hyperparameters and recursive feature elimination are discussed as well as the 

age variable in further detail.  The results from all of the clusters are also 

displayed. 

 

9.2 Data modelling 

9.2.1 Full model hyperparameter optimisation  

The procedure for sequential tuning was to set an initial list of default 

hyperparameter values but with eta initially to a high value as this was the 

learning rate.  Then max_depth and min_child_weight were optimised first in 

tandem, and the list updated. This was followed by subsample and 

colsample_bytree in tandem and list updated, then gamma, then alpha and then 

eta was the last to be tuned. Once the hyperparameters were tuned, the best 

performing values were taken forward into a restricted grid.  This restricted grid 

is then used for hyperparameter optimisation for each model. Table 14 shows the 

restricted grid based on the sequential tuning of each hyperparameter.  Where 

hyperparameters only presented two values within the top ten combinations, 

only two values were selected to reduce computational expense. 

 

Table 14: Hyperparameter grid 

Hyperparameter 1st value 2nd value 3rd value 
max_depth 3 4 - 
min_child_weight 2 4 - 
subsample 0.7 0.9 1 
colsample_bytree 0.9 0.6 - 
gamma 0 0.5 1 
alpha 0.6 0.7 0.8 
eta 0.08 0.06 - 
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The full model grid search found the following optimal hyperparameter values: 

max_depth = 3, min_child_weight = 2, subsample = 0.9, colsample_by_tree = 0.6, 

gamma = 0.5, alpha = 0.8, eta = 0.06. The hyperparameter values of each cluster 

model can be found below.  

 

9.2.2 Model recalibration 

The initial model appeared to be miscalibrated with a Spiegelhalter's Z-test of -

3.668.  Recalibration was performed by manually fine tuning the hyperparameter 

scale_pos_weight, which adjusts the weight of the positive class.  Tuning this 

hyperparameter also increase the discrimination; however, it comes at the 

expense of predicting the right probability.142 The value of scale_pos_weight 

changed from 1, to 0.95 in the final model. 

 

9.2.3 Trees 

There was a total of 557 trees developed in the SINEPOST model. Figure 19 is an 

example of one of the trees in the final model.  Despite decision trees not being as 

explanatory as logistic regression, it is technically possible to print every tree and 

go through each one to calculate a predicted probability.  The tree in figure 19 was 

the fourth tree to be developed. It was chosen as it had a good mix of continuous 

and categorical information. In the tree, the cover refers to the sum of second 

order gradients (Hessian) classified to the leaf.  The deeper the tree node, the 

lower will be the metric.  The second order is calculated by taking the number of 

observations and multiplying it by the probability multiplied by one minus the 

probability or 𝑛 × (𝑝 = 1) 	× (1 − (𝑝 = 1)). Gain refers to the amount of 

information gained at the split. The value in the leaf is summed with all the 

values of the other trees to derive the predicted probability.  For example, using 

the tree in figure 19, if a patient had a clinical impression of psychiatric problems, 

was not monitored by electrocardiogram and had a NEWS score of 1, the value is 

0.0243.  This is a positive integer, and so the tree is adding to the probability of an 

avoidable ambulance conveyance.  Conversely, if the patient did not have a 
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psychiatric problem, had oxygen saturations less than 95.5%, and a respiratory 

rate of more than 20.5 breaths per minute, their value is -0.1.  This is moving the 

probability in a negative direction.   

 

 

 

 

9.3 Cluster results 

In appendix J, there are the ROC curves and calibration curves for each cluster.  

Figure 20 shows the ROC curves grouped together by geographical region. 

 

9.3.1 The Airedale model 

Airedale NHS Foundation Trust is a 350-bed hospital that serves approximately 

200,000 people in a 700 square mile radius.  It is situated on the border of 

Figure 19: The fourth tree in the full XGBoost model 
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Yorkshire and Lancashire, north-west of Bradford.  Its ED treats 55,000 patients 

per annum.211 There were 3298 patients transported to Airedale hospital with 240 

(7.3%) avoidable conveyances.  This gave a training sample of 98,244 with 6988 

events.  The hyperparameters that were selected using the restricted grid search 

were:  𝜂 = 0.06, 𝛾 = 0.5, 𝛼 = 0.6, max_depth = 4, min_child_weight = 4, subsample = 

0.9, colsample_bytree = 0.6, scale_pos_weight = 1.  The optimum number of trees 

was 408.  The model calibration had a Spiegelhalter’s Z-test statistic of 0.733 (p-

value 0.463). The ratio of observed vs expected (O:E) was. 0.95 (95% CI 0.84 – 1.07). 

The optimum cut point was 0.116, which gave a C-statistic of 0.776 (95% CI 0.747-

0.805). Model accuracy was 0.8 (95% CI 0.79 – 0.82), with a sensitivity of 0.55 and 

specificity of 0.83.   

 

9.3.2 The Barnsley model 

Barnsley NHS Foundation Trust is a district general hospital in South Yorkshire, 

situated between two large cities: it lies north of Sheffield ad south of Leeds.  It 

sees 84,000 patients in its ED every year.212 There were 6133 patients transported 

to Barnsley hospital with 323 (5.3%) defined as avoidable conveyances. Selected 

model hyperparameters were 𝜂 = 0.06, 𝛾 = 1, 𝛼 = 0.7, max_depth = 3, 

min_child_weight = 4, subsample = 1, colsample_bytree = 0.6, scale_pos_weight = 

0.67.  The optimum number of trees was 630. Spiegelhalter’s Z-test statistic was 

0.014 (p-value = 0.989). The O:E ratio was 1.04 (95% CI 0.93 – 1.15), and there was 

slight over triage at higher predicted probabilities. The optimum cut point was 

0.094 which gave a C-statistic of 0.838 (95%CI 0.817 – 0.86).  Model accuracy was 

0.86 (95% CI 0.85 – 0.87), sensitivity was 0.62 and specificity 0.88.   

 

9.3.3 The Bradford model 

Bradford Royal Infirmary is a large trust which sees nearly 400 daily 

attendances.213 It is a large city, north of Huddersfield and west of Leeds. There 

were 7709 patients transported to Bradford Royal Infirmary ED with 1004 (13%) 

avoidable conveyances.  Selected hyperparameters were 𝜂 = 0.06, 𝛾 = 0.5, 𝛼 = 0.6, 
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max_depth = 3, min_child_weight = 2, subsample = 0.7, colsample_bytree = 0.9, 

scale_pos_weight = 2.1.  The optimum number of trees was 395. Spiegelhalter’s Z-

test statistic was -0.241 (p-value 0.81). The O:E ratio was 0.91 (95% CI 0.86 – 0.96).  

There was slight under triage at higher probabilities.  Optimum cut point was 

0.27, giving a C-statistic of 0.756 (95% CI 0.74 – 0.772).  Accuracy was 0.81 (95% CI 

0.8-0.82), sensitivity was 0.45, specificity was 0.86. 

 

9.3.4 The Calderdale model 

The Calderdale Royal Hospital is situated in Halifax, which is a large town 

between Huddersfield and Bradford.  The hospital is joined with Huddersfield 

Royal Infirmary to form the Calderdale and Huddersfield NHS Trust.  Between 

them they see around 125,000 attendances in ED every year.214 There were 4107 

patients transported to Calderdale Royal ED with 242 (5.9%) avoidable 

conveyances.  Selected hyperparameters were 𝜂 = 0.06, 𝛾 = 0.5, 𝛼 = 0.8, max_depth 

= 3, min_child_weight = 2, subsample = 0.9, colsample_bytree = 0.6, 

scale_pos_weight = 0.68.  The optimum number of trees was 477. Spiegelhalter’s Z-

test statistic was -0.181 (p value = 0.856). The O:E ratio was 1 (95% CI 0.88 – 1.12). 

The optimum cut point was 0.127, C-statistic 0.822 (95% CI 0.796 – 0.848). Accuracy 

was 0.87 (95% CI 0.86 – 0.88), sensitivity was 0.53, specificity was 0.89. 

 

9.3.5 The Dewsbury model  

Dewsbury and District hospital couples with the larger Pinderfields Hospital in 

Wakefield to form the Mid Yorkshire NHS Trust.  Between them they have 

120,000 ED attendances per year.215  There were 964 patients transported to 

Dewsbury and District ED with 137 (14.2%) avoidable conveyances.  Selected 

hyperparameters were 𝜂 = 0.06, 𝛾 = 1, 𝛼 = 0.6, max_depth = 3, min_child_weight = 4, 

subsample = 0.9, colsample_bytree = 0.6, scale_pos_weight = 1.49.  The optimum 

number of trees was 463. Spiegelhalter’s Z-test statistic was -0.035 (p value = 0.972) 

with under triage at later probabilities. The O:E ratio was 0.89 (95% CI 0.75 – 1.02). 
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The optimum cut point was 0.249, with a C-statistic 0.724. (95% CI 0.682 – 0.765).  

Accuracy was 0.77 (95% CI 0.75 – 0.8), sensitivity was 0.44, specificity 0.83.   

 

9.3.6 The Doncaster model 

Doncaster Royal Infirmary is a large acute hospital with over 500 beds.216  It is 

situated northeast of Sheffield and Rotherham in South Yorkshire. There were 

6678 patients transported to Doncaster ED with 420 (6.3%) avoidable 

conveyances.  Selected hyperparameters were 𝜂 = 0.06, 𝛾 = 1, 𝛼 = 0.7, max_depth = 

3, min_child_weight = 2, subsample = 0.9, colsample_bytree = 0.6, 

scale_pos_weight = 1.01.  The optimum number of trees was 453. Spiegelhalter’s Z-

test statistic was -0.1 (p-value = 0.921) with near perfect calibration across all 

predicted probabilities.  The O:E ratio was 0.98 (95% CI 0.88 – 1.07).  The optimum 

cut point 0.115, with a C-statistic of 0.802 (95% CI 0.782 – 0.823). Accuracy was 0.84 

(95% CI 0.83 – 0.85), sensitivity was 0.52 and specificity was 0.86. 

 

9.3.7 The Harrogate model 

Harrogate District Hospital is situated north of Leeds and west of York. It treats 

around 52,000 patients a year in the ED.217  There were 2761 patients transported 

to Harrogate ED with 163 (5.9%) avoidable conveyances.  Selected 

hyperparameters were 𝜂 = 0.08, 𝛾 = 0, 𝛼 = 0.7, max_depth = 3, min_child_weight = 

4, subsample = 0.9, colsample_bytree = 0.6, scale_pos_weight = 0.85.  The optimum 

number of trees was 467. Spiegelhalter’s Z-test statistic was 0.080 (p-value = 0.936) 

with over triage at higher predicted probabilities. The O:E ratio was 1.06 (95% CI 

0.90 – 1.21).   The optimum cut point 0.094, with a C-statistic of 0.855 (95% CI 0.828 

– 0.883). Accuracy was 0.86 (95% CI 0.85 – 0.87), sensitivity was 0.6, specificity was 

0.88.   

 

9.3.8 The Huddersfield model 

Huddersfield Royal Infirmary is situated west of the city of Wakefield.  As 

previously mentioned, it forms part of the Calderdale and Huddersfield NHS 



 

200 

 

Foundation Trust which sees around 125,000 ED attendances between them a 

year.214  There were 4675 patients transported to Huddersfield ED with 283 (6.1%) 

avoidable conveyances.  Selected hyperparameters were 𝜂 = 0.06, 𝛾 = 0, 𝛼 = 0.7, 

max_depth = 3, min_child_weight = 2, subsample = 0.9, colsample_bytree = 0.9, 

scale_pos_weight = 0.83.  The optimum number of trees was 516. Spiegelhalter’s Z-

test statistic was -0.065 (p-value = 0.948).  The O:E ratio was 1 (95% CI 0.89 – 1.12). 

The optimum cut point 0.103, with a C-statistic 0.816 (95% CI 0.793 – 0.84).  

Accuracy was 0.83 (95% CI 0.82 – 0.84), sensitivity was 0.58 and specificity was 

0.85. 

 

9.3.9 The Hull model 

The Hull Royal Hospital is based in the large city of Hull on the East Coast.  They 

have a catchment area with approximately 600,00 people and see around 107,000 

patients in the ED each year. It is the Major Trauma Centre for the east of 

Yorkshire, and forms one of four MTCs in this study.218 There were 10,711 patients 

transported to Hull ED with 612 (5.7%) avoidable conveyances.  Selected 

hyperparameters were 𝜂 = 0.06, 𝛾 = 1, 𝛼 = 0.7, max_depth = 3, min_child_weight = 4, 

subsample = 0.9, colsample_bytree = 0.6, scale_pos_weight = 0.9.  The optimum 

number of trees was 472. Spiegelhalter’s Z-test statistic was 0.066 (p-value = 0.947). 

The O:E ratio was 1 (95% CI 0.92 – 1.08). The optimum cut point 0.106 with a C-

statistic 0.805 (95% CI 0.788 – 0.822). Accuracy was 0.85 (95% CI 0.85 – 0.86), 

sensitivity was 0.53 and specificity was 0.87. 

 

9.3.10 The Middlesbrough model 

The James Cook University Hospital in Middlesbrough is situated just north of 

Yorkshire but serves the north Yorkshire community.  It is a large trust and hosts 

an MTC.  There were 804 patients transported to James Cook University ED by 

Yorkshire Ambulance Service with 55 (6.8%) avoidable conveyances.  The figures 

are considerably lower for this trust than others due to Yorkshire only being a 

partial catchment area.  Selected hyperparameters were 𝜂 = 0.08, 𝛾 = 0.5, 𝛼 = 0.8, 
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max_depth = 4, min_child_weight = 2, subsample = 0.9, colsample_bytree = 0.9, 

scale_pos_weight = 1.37.  The optimum number of trees was 261. Spiegelhalter’s Z-

test statistic was -0.077 (p-value = 0.939).  The O:E ratio was 0.90 (95% CI 0.67 – 

1.13). The optimum cut point was 0.126 with a C-statistic 0.76 (95% CI 0.694 – 

0.825). Accuracy was 0.83 (95% CI 0.80 – 0.85), sensitivity was 0.53, specificity was 

0.85. 

 

9.3.11 The Leeds models  

Leeds Teaching Hospitals NHS Trust comprises of two hospitals: Leeds General 

Infirmary (LGI) and St. James Hospital.  Both have an ED, with LGI hosting the 

MTC for the people of west Yorkshire. They serve a population of around 770,000 

people.  In the study sample, there were 5102 patients transported to Leeds 

General Infirmary ED with 263 (5.2%) avoidable conveyances.  Selected 

hyperparameters in the LGI model were 𝜂 = 0.06, 𝛾 = 0, 𝛼 = 0.7, max_depth = 3, 

min_child_weight = 4, subsample = 0.9, colsample_bytree = 0.6, scale_pos_weight 

= 0.68.  The optimum number of trees was 485. The Spiegelhalter’s Z-test in the 

LGI model was 0.060 (p-value = 0.952), and the O:E ratio was 1 (95% CI 0.88 – 1.12). 

There was slight over triage at higher probabilities. The optimum cut point was 

0.099 and the C-statistic was 0.818 (95% CI 0.795 – 0.841). The accuracy was 0.86 

(95% CI 0.85 – 0.87), sensitivity was 0.53 and specificity was 0.88.  

There were 8902 patients transported to St James Hospital University ED with 

824 (9.3%) avoidable conveyances.  Selected hyperparameters in the St. James 

model were 𝜂 = 0.06, 𝛾 = 0, 𝛼 = 0.7, max_depth = 4, min_child_weight = 4, 

subsample = 0.9, colsample_bytree = 0.9, scale_pos_weight = 1.26.  The optimum 

number of trees was 348. Spiegelhalter’s Z-test statistic was 0.009 (p-value 0.993) 

and an O:E ratio of 1 (95% CI 0.93 – 1.06).   There was almost perfect calibration 

across all predicted probabilities. The optimum cut point was 0.168 and a C-

statistic of 0.806 (95% CI 0.792 – 0.821).  Accuracy was 0.84 (95% CI 0.83 – 0.85), 

sensitivity was 0.53 and specificity was 0.87. 
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9.3.12 The Sheffield model  

The Northern General Hospital is a large MTC in Sheffield, South Yorkshire.  

There were 10,722 patients transported to Northern General Hospital ED with 929 

(8.7%) avoidable conveyances.  Selected hyperparameters were 𝜂 = 0.06, 𝛾 = 0, 𝛼 = 

0.6, max_depth = 3, min_child_weight = 4, subsample = 0.9, colsample_bytree = 

0.6, scale_pos_weight = 1.13.  The optimum number of trees was 411. Spiegelhalter’s 

Z-test statistic was 0.115 (p-value = 0.909), and an O:E ratio of 1.06 (95% CI 0.99 – 

1.12). There was significant over triage at higher predicted probabilities.  The 

optimum cut was 0.157. C-statistic 0.858 (95% CI 0.847 – 0.869). Accuracy was 0.87 

(95% CI 0.86 – 0.87), sensitivity was 0.60, specificity was 0.89.   

 

9.3.13 The Wakefield model 

Pinderfields is a large acute hospital based in Wakefield, West Yorkshire and is 

the larger part of the Mid Yorkshire Hospitals NHS Trust. There were 10,245 

patients transported to Pinderfields ED with 764 (7.5%) avoidable conveyances.  

Selected hyperparameters were 𝜂 = 0.06, 𝛾 = 1, 𝛼 = 0.7, max_depth = 4, 

min_child_weight = 2, subsample = 0.7, colsample_bytree = 0.6, scale_pos_weight = 

1.06.  The optimum number of trees was 330. Spiegelhalter’s Z-test statistic was -

0.293 (p-value = 0.770) and O:E ratio was 1 (95% CI 0.93 – 1.07). There was almost 

perfect calibration across all probabilities (slope 1.021, intercept 0.039).  The   

optimum cut point was 0.128 and the C-statistic 0.81 (95% CI 0.795 – 0.826). 

Accuracy was 0.83 (95% CI 0.82 – 0.85), sensitivity was 0.57 and specificity was .85.  

 

9.3.14 The Rotherham model 

Rotherham NHS Foundation Trust serves a catchment area of around 265,000 

people in a large town of Rotherham, which is northeast of Sheffield.  It has over 

370 beds and sees 75,000 patients attend the ED each year. There were 5970 

patients transported to Rotherham ED with 120 (2%) avoidable conveyances. 

Selected hyperparameters were 𝜂 = 0.06, 𝛾 = 0.5, 𝛼 = 0.8, max_depth = 3, 

min_child_weight = 4, subsample = 0.9, colsample_bytree = 0.6, scale_pos_weight 
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= 0.81.  The optimum number of trees was 524. Spiegelhalter’s Z-test statistic was -

0.023 (p-value = 0.982) with an O:E ratio of 1.06 (95% CI 0.96 – 1.17). There was over 

triage at higher predicted probabilities. The optimum cut point was 0.1 and a C-

statistic of 0.85 (95% CI 0.831 – 0.868).  Accuracy was 0.85 (95% CI 0.85 – 0.86), 

sensitivity was 0.6, specificity 0.87. 

 

9.3.15 The Scarborough model 

Scarborough hospital is the second largest hospital in the York and Scarborough 

Teaching Hospitals NHS Foundation Trust.  It is situated on the East Coast and 

serves the population of northeast Yorkshire. There were 4494 patients 

transported to Scarborough ED with 120 (2.7%) avoidable conveyances.  Selected 

hyperparameters were 𝜂 = 0.06, 𝛾 = 0.5, 𝛼 = 0.7, max_depth = 3, min_child_weight = 

4, subsample = 0.9, colsample_bytree = 0.9, scale_pos_weight = 0.41.  The optimum 

number of trees was 577. Spiegelhalter’s Z-test statistic was -0.058 (p-value 0.954) 

and the O:E ratio was 1 (95% CI 0.83 – 1.19). There was slight over triage at higher 

probabilities.  The optimum cut point was 0.058 and the C-statistic was 0.809 (95% 

CI 0.768 – 0.851). Accuracy was 0.9 (95% CI 0.89 – 0.91), sensitivity was 0.48 and 

specificity was 0.91. 

 

9.3.16 The York model  

York is the largest hospital of the York and Scarborough Teaching Hospitals NHS 

Foundation Trust.  It largely serves the population of North Yorkshire.  There 

were 6101 patients transported to York ED with 382 (6.3%) avoidable conveyances.  

Selected hyperparameters were 𝜂 = 0.06, 𝛾 = 1, 𝛼 = 0.8, max_depth = 4, 

min_child_weight = 4, subsample = 0.9, colsample_bytree = 0.9, scale_pos_weight 

= 0.86.  The optimum number of trees was 367. Spiegelhalter’s Z-test was -0.077 (p-

value = 0.939) and the O:E ratio was 1.04 (95% CI 0.94 – 1.14). The optimum cut 

point was 0.105, and the C-statistic was 0.827 (95% CI 0.805 – 0.848). Accuracy was 

0.85 (95% CI 0.84 – 0.86), sensitivity was 0.59 and specificity was 0.87.   
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Figure 20: ROC curves grouped by geographical area 
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9.4 Fair Machine Learning analysis 

Fair machine learning is ensuring that any decision support (or making) 

prediction algorithm treats all individuals fairly and is not prejudiced.  To 

evaluate whether the SINEPOST model is fair in a post-analysis, each individual 

group within a characteristic had their probability density plotted for 

comparison.  If the model is fair, the distributions should look the same. in the 

analysis of fair machine learning, each category had the probability distributions 

mapped out along with the mean probability for the group.  This was undertaken 

for age, gender, ethnicity and decile of deprivation. 

 

9.4.1 Gender 

Gender did demonstrate a difference in the probability distribution of 

transgender patients.  However, there were only 8 transgender patients (1 classed 

as an avoidable ambulance conveyance) in the whole dataset, and it is more likely 

that this is just a result of low sampling as opposed to a bias within the model.   

Figure 21: Fair machine learning: Gender 
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9.4.2 Age 

For the purposes of making the analysis interpretable, age was categorised into 

groups.  When age was initially left in as a candidate predictor, the distributions 

per age category differed significantly from each other and the younger age 

categories had higher predicted probabilities.  This was not the case when age was 

removed as seen by figure 22. The SINEPOST model does not discriminate based 

on age.   

 

 

 

 

 

 

 

Figure 22: Fair machine learning: Age 
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9.4.4 Deciles of the Indices of Deprivation 

The deciles of deprivation do not show any bias or discrimination between 

deciles.  The probability distributions all appear similar with the only exception 

being the 'NA' category.  Like the transgender category above, the 'NA' only had 

180 instances which is small in comparison with the rest.  

 

 

 

 

 

 

 

 

 

 

Figure 23: Fair machine learning: Indices of Deprivation 
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9.4.5 Ethnicity 

On initial modelling, the recursive feature elimination removed around two 

thirds of the ethnic categories.  Due to this, it was decided to completely remove 

ethnicity to ensure the model was fair.  On examining the distributions of the full 

model (figure 24) it appears that this was the right decision as there are no 

differences in the probabilities per ethnicity.  

 

 

 

 

 

 

 

 

 

Figure 24: Fair machine learning: Ethnicity 
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9.5 Evaluation on two different cohorts 

The model was applied to a sample of 195078 conveyed but unlinked patients and 

112067 non-conveyed patients from the same dataset.  These were excluded from 

the training data as they were unlabelled. The application of the model to these 

significant sample sizes shows a great overlap, but with the people who were non-

conveyed having a different mean than the conveyed (0.15 vs 0.10). The SINEPOST 

model predicted that there were (45,370 (23%)) avoidable ambulance conveyances 

in the sample of conveyed patients. When this is multiplied by the false positive 

rate, only 6805 (3.4%) were likely to be actually avoidable. This model was not 

predicting non-conveyance, but reassuringly has identified more low-acuity 

patients who were non-conveyed rather than conveyed.   

 

 

 

 

 

Figure 25: Probability densities of conveyed vs non conveyed 
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9.6 Conclusion 

This chapter has expanded on the results and discussed the chosen 

hyperparameters, both for the restricted grid search and for the final model.  The 

results of each cluster were presented, with graphical representation found in 

appendix J.  The fair machine learning analysis was also reported, with further 

details on what this is in chapter 7, section 7.6.1. The next chapter will discuss the 

findings and place them in the wider context of clinical and scientific research. 
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10. Discussion 
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10.1 Introduction 

This chapter elaborates on the principal findings of the study and relates them 

back to the original research question, aims and objectives.  The model developed 

in this research is known as the SINEPOST model (Safety INdex of Prehospital On 

Scene Triage) and is joined with the existing body of evidence on predicting low 

acuity situations such as an avoidable conveyance to the ED.  It is also 

hypothetically described as a decision support tool, with the potential benefits to 

clinical decision making and wider impact in the urgent and emergency care 

system.  This study did have limitations, and these are thoroughly discussed with 

the next steps identified following.  Once the chapter has concluded, a personal 

reflection has been written at the end of the thesis. 

 

10.2 Principal findings of the study 

 

10.2.1 The SINEPOST model can predict an avoidable conveyance to the ED 

using prehospital patient information 

The primary research question in this study was asking whether ambulance 

service clinical data can predict an avoidable attendance at the ED in adults. To 

answer this question, a unique and bespoke dataset was created, containing 

101,522 ambulance ePCRs collected over an 8-month period linked to ED records. 

The outcome had a prevalence of 7.12% which is lower than previously reported in 

the literature. The prediction modelling was assessed in a robust way by 

deconstructing the results into calibration and discrimination.  Calibration was 

used as assessment of whether the predicted probabilities for each instance in a 

test set matched with the observed probabilities.  The SINEPOST model had good 

calibration, with a meta-analysed O:E ratio of 0.995 (95%CI 0.97-1.03) and a 

Spiegelhalter's z-test of -0.031 (p-value 0.975).  However, the calibration curve 

showed some miscalibration at higher predicted probabilities.  This is likely to be 

due to the small number of patients that had high predicted probabilities. This 

means that even though the calibration curve appears to show miscalibration, it 
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does not actually have a great impact on prediction.   Discrimination is assessing 

whether the model can take two random instances (one with and without the 

outcome) and tell them apart.  It is measured using the C-statistic whereby a 

result of 0.5 is no better than chance, and 1 is perfect.  The result of the SINEPOST 

model was 0.81 (95%CI 0.79-0.83).  This can be interpreted as good discrimination.  

The optimum threshold for decision support was statistically calculated as 0.125. 

Those below this threshold would be appropriate for conveyance to ED, whereas 

those above could be considered for an alternative care plan.  The threshold 

appears to be low, but again this reflects the distribution of probabilities and the 

prevalence within the population.  Most instances result in a conveyance to ED, 

and this is why the lower predicted probabilities contain most of the instances.  

With good calibration and discrimination, it can be concluded that the SINEPOST 

model can predict an avoidable conveyance to the ED using prehospital clinical 

information.  

 

10.2.2 The predictions of the SINEPOST model are stable across all different 

geographies 

The second research question was asking what the simulated transportability of 

the newly developed SINEPOST model.  This was tested by using a process known 

as Internal-External Cross Validation (IECV) and more information on this can be 

found in chapter 7, section 7.8.  The reason it is described as the simulated 

transportability is that the study did not conduct external validation and so this 

is the best estimate of true transportability using the available data.  It is 

important to remember that the reason the model was not developed and then 

applied to each cluster as a test set was because this would be testing the model in 

the data it was developed on.  The question being asked in simulated 

transportability is not 'does my model work in different geographies', but 'if I did 

not have my data, but instead had different data, could I still build an accurate 

model?’. In a sense, the cluster results could be indexed to be SINEPOST1, 

SINEPOST2, SINEPOST3…SINEPOST17.   The aim is to detect any heterogeneity in 

the different models, but also to meta-analyse the results to update and shrink 
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any optimism in the original model.  The modelling procedures were conducted 

for 17 clusters with unique test sets for each ED included in the study.  A 

qualitative comparison of the calibration curves demonstrated that the model 

would act differently in different areas.  Some models, such as Calderdale, 

Doncaster, Huddersfield, Hull, St. James's Hospital (Leeds), and Wakefield had 

near perfect calibration curves along all predictions.  Other models, such as 

Barnsley, Harrogate, LGI (Leeds), Sheffield, Rotherham, Scarborough, and York 

acted in the same way as the full model, having higher predicted probabilities 

than actual probabilities in the tail of the distribution. Airedale, Bradford, 

Dewsbury, and Middlesbrough had the opposite effect to the full model and would 

have lower predicted probabilities than actual in the tail. Discrimination varied 

and was not associated with sample size, indicating that the model would act 

slightly differently between geographies.  For example, Bradford had a C-statistic 

of 0.76 (95% CI 0.74-0.77), whereas Sheffield had a C-statistic of 0.86 (95%CI 0.84-

0.87).  Both had large sample sizes, and this can be seen through the small 

confidence intervals for each.  However, despite the small variations, all models 

had good discrimination and calibration. This means that it is possible to 

transport this model to different geographies within the catchment of a type 1 ED 

in Yorkshire.  This is an important finding because there are so many different 

areas in Yorkshire.  The county covers 9% of the land mass of England.  It has 

rural areas such as the Yorkshire Dales, and North Yorkshire Moors, as well as 

large urban areas. The hospitals that receive patients from rural areas to their 

EDs include Airedale, Harrogate, York, and Middlesbrough.  These had avoidable 

conveyances ranging from 5.9% in Harrogate to 7.3% in Airedale. All rural models 

performed well, but without any trends in calibration or discrimination which 

demonstrates that rural patients are not penalised by developing a model to 

predict an avoidable conveyance.    Yorkshire also has coastal areas to the east, 

with Scarborough and Hull providing EDs to these patients.  Scarborough only 

had 2.7% avoidable conveyances, whereas Hull had 5.7%.  It is important to note 

that Hull serves a larger population and is more urban than Scarborough.  There 

could be a rurality-urbanity interaction, but this study cannot determine this. 
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There was good calibration and good discrimination for these two hospitals 

showing the model can be developed in a coastal population.    Yorkshire also has 

urban areas with large inland cities such as Bradford, Leeds, and Sheffield. Urban 

areas had more avoidable conveyances than rural and coastal with Bradford 

having 13% avoidable, Leeds 7.76%, and Sheffield 8.7%. The models all performed 

well in these urban populations.  The summary of all different geographies is that 

there is a difference in prevalence, with avoidable conveyances more common in 

urban areas.  However, each model performed well and there were no trends that 

were associated with a specific geography other than the urbanity of the 

population.  This means that the answer to the second research question is that 

the SINEPOST model is spatially validated to be transported across different 

geographies. A conclusion which provides an advantage over triage tool such as 

paramedic pathfinder that over triaged in rural areas.95 One element of spatial 

validation the model struggles to answer is why there is variation demonstrated 

between different sites.  This is something which falls outside of the realms of this 

study as the models are not implemented in this thesis.  Future studies should 

consider using more accurate geographical boundaries and collecting data about 

the population it serves to try and reduce the unknown reasons associated with 

the heterogeneity.  

 

10.2.3 The SINEPOST model is fair to age, gender, ethnicity, and 

deprivation. 

Fair machine learning is an important and emerging necessity within the practice 

of developing decision-support and decision-making models.  The limitation with 

using retrospective data is that any biases that are present in the data collection 

stage will influence the model.  In the initial model it was decided to include 

protected characteristics such as age, ethnicity, and indices of deprivation in 

order to account for them in model development. However, recursive feature 

elimination identified that some ethnicities were more predictive than others 

and kept them in as candidate predictors whilst removing others.  This was also 

the case with the deciles of deprivation.    It is reasonable to think that a model 
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where not every ethnicity or decile is included as a candidate predictor would 

lead to introducing a bias.  In many other algorithms, a categorical variable would 

be used in its entirety and not be deconstructed into binary variables for all the 

categories within. It was decided after recursive feature elimination to remove all 

ethnicities and social deprivation as candidate predictors, a process known as 

anti-classification.  Age was included in the initial model development, but at the 

evaluation stage it was the single most important variable.  It stood out and had 

the highest gain, cover, and frequency in the XGBoost model.  It improved the 

accuracy of the model by leaving it in, but it also created a bias.  If a new patient 

was young, the model would steer towards an avoidable ambulance conveyance, 

and an analysis of misclassification shown in figure 11 illustrates this.  The 

distribution of the false positives matched the true positives peaking at the 

younger age group, whereas the false negatives were older patients.  The trade-off 

between accuracy of the model, and the bias towards a demographic is a fine 

balance.  When age was removed from the model, the accuracy only dropped by 

0.01, but the distribution of age became balanced.  Therefore, it can be said that 

the final SINEPOST model is not biased towards any protected characteristic.  

The philosophy of anti-classification in the development of the SINEPOST model 

stems from whether to account, or not, for demographic variables in the model.  

Binns et al. created the argument of 'minimising harm to the least advantaged' in 

their stance on fairness.163  An example from the criminal justice system is gender 

in recidivism.  Females are much less likely to reoffend than males. But a model 

that predicts reoffending and ignores gender as a variable is likely to over predict 

females as reoffending, which then places them at a disadvantage because of the 

model.  There is a clear association between the protected characteristic and the 

outcome.163,219 If their argument is applied here, age had a clear association with 

the outcome.  But here, the risk is needing the ED but being discharged on scene 

by the ambulance service.  A model which included age is likely to proliferate this 

risk.  Furthermore, there is not enough evidence in this study, or the wider 

literature, to suggest that different ethnicities have barriers accessing an 

ambulance or ED in the UK.  Nor is there evidence, beyond small sample 
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descriptive statistics, that demonstrate different ethnicities and deciles of 

deprivation are more or less likely to have a non-urgent attendance at the 

ED.167,168 This means that there is no known discrimination that needs accounting 

for by including these variables in the model.  Anti-classification was an 

appropriate strategy to mitigate the initial bias, and the results show that 

irrespective of ethnicity, age, gender or deprivation the model will treat patients 

the same.  

 

10.2.4 Potential impact of applying the model in practice 

Two different systematic reviews concluded that the most effective clinical 

decision support should be computer-based, providing support as part of the 

natural workflow, offering practical advice and being available at the time of 

decision making. Computerised Clinical Decision Support (CCDS) in the 

prehospital system increasingly plays an important role in delivering efficient 

care that can meet the needs of its users. In an environment where information is 

difficult to obtain but decisions are crucial and time limited, CCDS tools appear 

to offer a potential solution. The implementation of such tools also aligns with 

current policy in the UK, which is focusing attention on improving information 

flow throughout the ambulance service. In a Department for Health and Social 

Care review of operational productivity of ambulance services in England, the 

first recommendation for future contracting was for ambulance services to have 

‘technology, processes and systems in place to support clinical decision making’.58 

In this section, a distinction is made between the SINEPOST model and the 

SINEPOST tool.  The model has been developed and validated in this thesis, but 

the tool is a hypothetical implementation of the model in practice.  The 

conceptual idea for implementation would be the model embedded into the ePCR.  

As the record is filled in, the probability of an avoidable outcome would be 

calculated and presented to the clinician as a figure on the screen.  It is 

anticipated the tool would show a predicted probability of the outcome as 

opposed to a classification.  This is following the argument in chapter 5, section 

5.3.1 that concluded it is the probability that a patient belongs to a certain class 
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being displayed.  Further research is needed to implement the model as a CCDS 

but conceptualising the model as a tool allows a discussion on the potential 

placement within the context of computerised decision support. 

 

In prehospital care, CCDS has woven itself into every aspect of service delivery. In 

the emergency call centre, CCDS structures have long been established in the 

Emergency Operations Centre (EOC). These are the centres that were 

traditionally the emergency call centres but provide a wider service of care now, 

including more advanced triage, hear and treat, and access to a directory of 

services where patients can be referred.  CCDS systems in EOC provide support 

for ambulance prioritisation and initial triage of patients. In the UK, two 

computerised algorithms that incorporate decision tree structures are used: the 

Advanced Medical Priority Dispatch System (AMPDS) and NHS Pathways.76 When 

a patient calls for an ambulance, it is one of these algorithms which helps grade 

their acuity and predict what resources are needed to meet their required level of 

care.  The decision making needs to be accurate as the effect of poor decisions 

means that high acuity patients are at risk of not receiving appropriate care and, 

in certain circumstances, of dying. The results in developing the SINEPOST model 

demonstrate that prehospital variables available at the time the patient calls the 

EOC could be used to increase accuracy in prediction of patient acuity.  A 

patient’s mobility status was one of the most important variables and can be 

captured prior to a face-to-face assessment. Even for clinical impression there are 

surrogates for this in both AMPDS and NHS Pathways and therefore there is a 

future opportunity to explore an up-stream version of the SINEPOST tool.   

 

Unlike the EOC, Computerised decision support is relatively novel to clinicians 

on scene with a patient.  This is owing to the requirement of electronic patient 

care records. In Yorkshire Ambulance Service, ePCRs were only fully launched in 

July 2019, and this formed a barrier to data availability.  However, evidence is 

mounting about the benefits of on-scene CCDS, and the results in this study could 

have the greatest benefit if a prospective tool is used on scene with the patient.   
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One of the more neoteric advancements of on scene CCDS is predicting end 

diagnosis to expedite specialist care or to instigate earlier treatment.  As an 

example, The Japanese Urgent Stroke Triage Score using Machine Learning 

(JUST-ML) predicted a major neurological event such as a large vessel occlusion, 

subarachnoid haemorrhage, intracranial haemorrhage or cerebral infarction 

better than any other available model.220 The benefit of predicting a major 

neurological event in the pre-hospital phase of care is that it can steer transport 

destination decisions to ensure the right patients go to a stroke unit for specialist 

care. Predicting a downstream outcome has been seen in many clinical conditions 

including Acute Coronary Syndrome (ACS) and major trauma.221–223  The results of 

this study cannot extend to predicting an end diagnosis, however, they support 

the idea of modifying a care plan according to the outcome of a CCDS tool.  The 

model has demonstrated it can predict avoidable ambulance conveyances and 

contributes evidence that computerised decision support can not only predict a 

high acuity outcome, but also low.  

 

In chapter 2, section 2.9, the decision making of paramedics was explored, and 

electronic decision support was examined within the context of prehospital 

decision making.  In the SAFER1 trial, the computerised decision support tool 

was embedded into the ePCR.224  However, the application required manual 

selection and usage of the tool.  In the qualitative evaluation, it was found that 

the paramedics who had access to the tool were twice more likely to refer patients 

to a falls service than those without.  However, the paramedics only applied the 

tool in 12% of eligible patients. One of the barriers to implementation identified 

in the qualitative element to the study included the labour involved in accessing 

and using the tool.  This resonates with the work of Kawamoto et al.225 In their 

systematic review, they were aiming to identify key features of success in the 

implementation of clinical decision support systems. The most important feature 

was automation and ensuring that the effort on the end user was minimised.  The 

reason that machine learning algorithms were considered for developing the 
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SINEPOST model was their potential accuracy and ability to be embedded in an 

electronic healthcare system.  Whilst the Occam's razor approach of making the 

model as simple as possible was the intended philosophy of the SINEPOST model, 

machine learning algorithms can be complicated, if needed, and still provide 

automated prediction.  An implementation of the SINEPOST tool would 

automatically calculate and remove all barriers of labour for the end user because 

of its design.  A limitation, however, is that, by automating the process, the tool 

becomes somewhat nebulous in how it made the decision. Most machine learning 

algorithms are not explanatory, they are only predictive.  This is true, to an 

extent, of the SINEPOST model, and its future development into a tool would be 

dependent on whether clinicians had an appetite to trust a decision support tool 

where there is no explanation. It is technically possible to print all 557 trees of 

the SINEPOST model out, map a patient through each tree and sum the predicted 

probability that way.  To do so, however, would take an inordinate length of time 

and would be impractical.   

 

10.2.5 The SINEPOST model will improve paramedic decision making on 

conveying patients to the ED 

This thesis had a purpose of developing a model that would support paramedics 

with a specific decision of whether to transport low acuity patients to the ED or 

not, to reduce avoidable ambulance conveyances.  Decision support systems that 

are already in place for triaging patients include the paramedic pathfinder and 

the Manchester Triage System (MTS).8,9,95  The outcomes of these tools are 

different, and it so it would be inappropriate to compare performance between 

them.  The intended use of these tools was to risk stratify patients to support non 

conveyance decisions. 

 

Of course, it was entirely feasible within this study to take the non-conveyed 

sample and the conveyed to create a prediction model predicting non-conveyance 

using just the ambulance data.  However, the gold standard used would be 

paramedic decision making, and therefore the model would only be as good as 
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what is already out there. This is a limitation in both the paramedic pathfinder 

and the MTS. The strength in this study was taking information that the 

ambulance crew would not know and predicting that information for them to use 

whilst they were on scene. The results of this study have demonstrated that using 

the prehospital variables, it is entirely possible to predict the experience they 

may have if they were transported to ED.  This brings with it a benefit to 

paramedic decision making.  

 

The idea that this model will improve paramedic decisions on non-conveyance is 

hypothetical and a future research question needs to be asked that leads to an 

implementation study.  However, it is conceivable that, by bringing the 

knowledge of this study and the knowledge of presenting the likelihood of the 

prospective ED experience to the clinician on scene, a decision would be made 

with more information.  

 

In the study by Miles et al. I explored paramedic decision making using a mixed 

methodology86. In the qualitative part, it was found that paramedics either 

framed a decision around the scene, or the ED.  When they framed the decision 

around the scene, their language would often be why it is not safe to be left at 

home, or that the patient requires a GP appointment (for example).  When it was 

framed around the ED, the justifications would be anchored to the patient either 

receiving a certain benefit from attending, or that the ED would probably not find 

anything abnormal.86 The findings from this study have the opportunity to 

support those who use the ED to frame their decisions.  By knowing what the 

predicted probability is, it provides new information to them that would not have 

been available for decision making.  However, perhaps the largest benefit to 

transport decision making on scene from this study is the revealing of clinically 

important variables that should be accounted for in making such a decision.  

 

This is one of the first studies ever to use prehospital clinical variables linked to 

an ED outcome and use this data for predictive analytics in the UK.  In chapter 5, 
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the justification for each candidate variable had to be taken from a surrogate 

outcome such as admission prediction as this was available in existing literature.  

The results in this thesis generate new knowledge on which prehospital variables 

matter the most when predicting an avoidable ambulance conveyance and can 

contribute to areas of patient improvement, such as safe non-conveyance.   

 

The most important variable in the model was age, and so much so that it had to 

be removed as it was creating a bias towards younger patients.  However, the 

knowledge that age is so important can be used to target policies and 

interventions specifically designed for younger aged populations.  It comes with a 

caution and the knowledge identified in this thesis should be used as a warning 

label for future prediction models in this area.   

 

In the final model, there were 19 variables that could be categorised, 1 social, 1 

demographic, 14 clinical and 3 interventional. Of the clinical variables, ten were 

physiological observations (and the composite score of NEWS).  

 

As mentioned in chapter 5, social variables have rarely been used in clinical 

prediction modelling, except in private healthcare systems where the insurance 

cover has been used.167 The rationale to include data flags for if the patient had a 

named GP, next of kin, parent, guardian or social worker was because they acted 

as markers for the social support of the patient.  The only variable that remained 

in the model was next of kin and this was not regarded by the final model as a 

significant variable according to gain, cover and frequency.  It is likely that these 

social variables do matter, but the way they were presented to the model did not 

allow for their potential to be realised.  It would be more useful to know how 

often they access these networks, and whether they are actively reaching out to 

the networks at the time of the incident.   

 

The included demographic variable was not related to a protected characteristic 

but was the incident location.  The variable itself had seven choices (care home, 
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domestic address, not selected, public place, and school, work, other) but school, 

work and not selected were eliminated during feature selection.  Domestic 

address was the most important of these variables, followed by care home, other 

and then public place.  Two studies identified an association between nursing 

home residency and admission to hospital. However, they argued against each 

other and so no conclusions were drawn.109,168 This study has shown that the 

incident location has a relationship with an avoidable conveyance, but more 

information is needed to define what this relationship is.  Furthermore, the 

variable importance did not consider incident location to be a high-ranking 

variable, this may hint at a weaker association. In chapter 5, the only other 

variable that was mentioned in the demographic category that has not yet been 

discussed is the previous attendance.  In the results of this study, a previous 

attendance within 24 hours was not associated with an avoidable conveyance to 

the ED and was removed during recursive feature elimination.  

 

Physiological observations were the most frequently used variables in the final 

model.  The top five frequently used variables were the patient’s blood sugar, 

systolic blood pressure, temperature, diastolic blood pressure and pulse rate.  

When examining the actual trees, it became apparent that these observations 

were naturally split along values perceived in clinical practice to be abnormal.  

For example, the XGBoost algorithm identified a threshold for respiratory rate to 

be 20.5 breaths per minute.  A faster rate placed a negative value on the leaf node, 

whereas a slower rate had a positive.  In clinical practice, it is perceived that a 

respiratory rate between 16 and 20 is normal.  Subsequent observations also 

appeared more frequently, and this makes logical sense.  The model is blinded to 

the construct of primary and secondary observations, which means that it will 

treat them equally as predictor variables.  A way round this was the engineering 

of interval variables.  The difference between the primary and secondary 

observations were calculated and used as predictor variables.  These intervals 

feature in the final model, but not as high as the original variables. Primary 

observations also featured heavily in the top 20 variables according to cover and 
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gain.  This was more so in cover, which means that these variables were used 

higher up in each tree. This study can conclude that physiological variables are 

predictive of an avoidable conveyance to the ED.   

 

Other than physiological observations, the other clinical variables included in the 

final model include clinical impression, the patient’s mobility, if they had an 

underlying oxygen requirement and whether the patient had a catastrophic 

haemorrhage.  The latter variable forms part of the primary survey and is one of 

the first things that paramedics assess when examining a patient.  It is a life-

threatening condition, and so it seems logical that it appears in the final model.  

However, it did not feature highly on the three criteria for variable importance, 

which means it probably does not contain enough information to be predictive. 

Similarly, a patient’s baseline oxygen requirement was included in the full model, 

but not in any of the top 20 variables.  The two that did though, were clinical 

impression and mobility.   

 

Clinical impression contains a list of 99 potential illnesses or injuries that a 

patient might be suffering from and the ambulance clinician on scene can only 

select one.  Of the 99 conditions, 38 made it into the full model which represented 

42% of all the SINEPOST model variables.  Clinical impression was heavily 

associated with the outcome, and this is a significant finding of the study.  In the 

top 20 variables according to gain, psychiatric problems were the second most 

important, followed by allergic reaction/ rash in fifth, cardiac chest pain in 

seventh, and back pain (non-traumatic) in eighteenth. These four also appeared in 

the top 20 for cover, and frequency, so it can now be said that they associated 

with an avoidable conveyance to the ED.   

 

Mobility was also a variable that featured highly in all aspects of variable 

importance.  Initially, all mobility options were included in the model, but after 

the initial modelling, self-mobile and stretcher were the highest important 

variables even though they are mutually exclusive.  It was decided that only one 
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mobility category is needed to reduce model noise, and so all mobility categories 

were removed except for self-mobile.  A patient being self-mobile and not 

requiring any assistance was the single most important variable in the SINEPOST 

model.  This variable was the highest-ranking variable in the full model and had 

the second highest cover.  However, it ranked 11th for frequency, but was the first 

categorical variable in the frequency rankings.  With continuous variables (such 

as pulse rate etc.) they can be used more than once per tree, which is a likely 

contributor to all the physiological observations appearing as high frequency 

variables.  

 

Interventional variables that remained in the full model include IV cannulation, 

whether a drug was given and if a patient was monitored by electrocardiogram.  

Not all drugs were included in the final model, and only one drug appeared in all 

three measures of variable importance and that was oxygen.  Other drugs 

included in the final model were aspirin, glyceryl trinitrate (GTN), morphine, 

Entonox, chlorphenamine, adrenaline, activated charcoal, ondansetron, and 

salbutamol.   

 

All three interventional variables indicate that a patient is of higher acuity, and 

this can be typified by the example tree in figure 23, when a patient was 

monitored by electrocardiogram, it resulted in a negative leaf value. The drugs in 

the included model are often given in high acuity situations.  For example, 

morphine is given for severe pain, and can be given alongside aspirin and GTN for 

suspected cardiac chest pain.   

 

The variable importance has generated significant new knowledge and can help 

future research, and future clinical decisions become more discerning even if the 

prediction model derived in this thesis does not translate into practice.  Self-

mobility and clinical impression had the greatest impact, and perhaps future 

policy in prehospital care should explore the self-mobile cohort in more detail to 
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determine whether there is a subgroup that may not need to be transported by 

ambulance at all.  This would help with the wider topic of non-conveyance.     

 

10.2.6 The SINEPOST model will impact the wider Urgent and Emergency 

Care System 

Using the predictive model developed in this study and applying it to a large, 

conveyed cohort from the same time-period and geography, it was found that 

45,370 (23%) cases of conveyance were potentially avoidable. The model was 

validated across geographies and any implementation could be reasonably done 

on a national level.  If this figure was applied to national level data in England, 

the predictive model could support 85,560 conveyance decisions per month to 

change to non-conveyance.  This is based on the latest NHS England Ambulance 

Quality Indicators which identified 372,002 ambulance transports to the ED in 

November 2021.16 First and foremost, this impacts the patients who avoided being 

transported to a higher level of care that was not needed.  It also benefits patients 

waiting to be seen by an ambulance, as the crew can be dispatched as soon as they 

have finished the current patient episode.  In theory, this will have an effect 

downstream and reduce the compounding effect on ED crowding by minimising 

ambulance queuing to just those who need to be there.  Upstream it can also have 

an effect as theoretically, there would be increased fleet availability to respond to 

the next emergency.   

 

10.3 Limitations 

10.3.1 Data availability 

This study was one of the first studies to link prehospital clinical data to 

corresponding ED data.  Previous studies have managed to link the Computer 

Aided Dispatch (CAD) data, which is collected in the Emergency Operations 

Centre (EOC) and contains information such as the predicted triage, and 

demographic information.  It also contains response times and journey times for 

the attending resources.  The CAD data has been used successfully in the past for 
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reforming how ambulances respond to emergencies.  The Ambulance Response 

Program (ARP) identified that the response time targets in national policy did not 

reflect the case mix of the modern ambulance service.  Through a robust program 

of research, they were able to change the national policy and improve clinical 

care.15  The limitation with CAD data is that there is very little on-scene 

information.  The only source of prehospital clinical information comes from the 

electronic patient care record.  A strength of the study was being able to access 

this data, but a weakness was this data was bound by its implementation date 

only being July 2019.  Being so juvenile in its use is a limitation to this study as it 

is less understood how it is used.  For example, the ethnicity of a patient may be 

assumed by the clinician instead of through a discussion.  The clinical impression 

code is represented as 99 different options, which is arguably too few to 

accurately represent the incoming case-mix of ambulance patients.  As a result, 

clinicians may choose the ‘nearest neighbour’ to their actual clinical impression.  

Furthermore, the context of the clinical impression could be a limitation to the 

study.  Labelling a condition provides a framework for the subsequent clinical 

care of a patient and can be helpful to both the clinician and the patient.226  For 

example, there are certain conditions such as cancer, which have specific 

diagnostic markers, signs and symptoms. However, when signs and symptoms 

can only be described by the patient, an accurate clinical label becomes more 

challenging and there may be harms associated with doing so. For example, if 

someone is given a mental health clinical label, there is a risk of harm when the 

patient takes the label into the wider context of their life, such as their home or 

workplace, and the label results in stigma or discrimination.226 Premature 

condition labelling could potentially affect prehospital and emergency care more 

than a normal clinical environment as the condition is not completely formed 

due to the unscheduled nature of access.  There is an argument that less emphasis 

should be placed on forming a clinical label, and more on the probability of future 

events happening given a current clinical state.227 This issue relates to this thesis 

as the accuracy of the data may not reflect the actual care need of the patient and 

may not accurately describe whether the care need was met.  It assumes all 
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clinical impressions are exact states and not temporary labels almost used in the 

context of a placeholder.  This limitation should temper the importance of 

clinical impressions as candidate variables in the final model.  

 

A more important weakness is the data availability of ED data.  Despite this being 

collected by NHS digital nationally, the quality of the data omits any granular 

level detail.  For example, it is possible to see how many patients had a blood test, 

even a specific one like troponin levels in the blood, but not the actual test result.  

The data is collected primarily for the purpose of commissioning health care 

services and therefore the result of a test is not as concerning as the cost.  This 

study also used retrospective data to achieve the necessary sample size but using 

already collected data has the limitation in that it cannot be changed.  It is 

whatever it is, and so if the quality is not there it is difficult to improve.   

 

 

10.3.2 Outcome measure used 

In chapter 7, section 7.5.4 there was a discussion surrounding the limitations of 

using the data-driven outcome measure.  This section expands on this limitation. 

The data derived definition was generated using values found within certain 

variables.  Due to NHS Digital collecting the ED data in different coding 

languages, it meant the outcome measure had to be translated into two coded 

definitions. This is a limitation of the study as, ideally, every patient would be 

measured with an identical outcome measure.  The outcome being data driven 

also meant it was a conservative description of the patient episode. Patients 

excluded from the definition may not have needed the skills and expertise of the 

ED but may have received them anyway by virtue of being there.  For example, if a 

patient presents with minor signs of anaemia (such as fatigue) that they have had 

for more than a month, they may have a blood test in the ED which would show 

low levels of haemoglobin, or serum iron. This is a primary care condition but 

because the patient had a blood test, they were considered a necessary attendance 

at the ED by the outcome definition. Ideally, there would be variable completed 
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after the patient episode that describes what clinical level the care needed to be. 

This would be inputted by the clinician responsible for their care.   

 

This idea that patients should be classified according to their care need as 

opposed to their acuity is one which should transcend into future research.  

Currently, acuity is triaged at multiple steps in the urgent and emergency care 

system and has the single benefit of ensuring high acuity patients have an 

expedited pathway of care.  Labelling mid- and low-acuity patients yields little 

benefit, and this study demonstrates this: it is not informative enough.  The 

SINEPOST model can predict those who may have an avoidable attendance at ED, 

but it would be better if it could predict the most appropriate care setting 

required.  Instead of a metaphorical signpost, it would be a compass.  Able to 

separate prehospital patients into distinct and mutually exclusive groups that 

can be used to develop a multi-class prediction model.  

 

10.3.3 Concept drift 

It is already likely that the SINEPOST model is degrading in validity and, even 

more so, the SINEPOST tool, which has not even been conceived yet. This is 

because of concept drift, which is the notion that the input data and output data 

change over time and this causes prediction models to degrade.228,229 In the 

SINEPOST model, it was established above that the outcome measure was not 

ideal, but was the best available.  In the future, the outcome measure may change 

in definition and even in context.  Furthermore, the ambulance services are only 

at the beginning of their use of electronic patient care records, and these are 

constantly updating and changing.  Variables could be defined or collected 

differently, even omitted from the record.   

 

10.3.4 The empiricist approach 

As outlined in chapter 5, section 5.2, this thesis adopted an empiricist approach 

to answering the research question.  The argument for doing so is outlined in that 
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section, but the limitations of doing such are expanded here.  The true reality of 

ambulance decision making on whether they need to transport a patient to 

hospital or not, is one of the most complicated to make.6,76 Paramedics felt a fear 

of litigation and lack of managerial support if a decision was wrong, and therefore 

had a preference to over-convey.  There are also differences between how 

clinicians make decisions, and some will look at the patient in the context of 

their wider health, whereas others will focus on the specific complaint.6  This 

provides evidence for the complexity of decision making and highlights that 

there would be merit in adopting a rationalist approach to studies of this type.    

By using the empiricist approach, the subjective nature of decision making has 

been ignored, and so the research cannot reasonably be extended into a tool.  Had 

a rationalist approach been undertaken, the qualitative aspects could have been 

accounted for and the SINEPOST model could have got to the stage of a SINEPOST 

tool.  This was initially proposed when submitting this study to the funding body, 

however it was recommended to remove this.   

 

10.4 Future research 

The immediate next steps would be to mobilise the knowledge from this study 

into practice.  This would be through dissemination events and meetings with key 

stakeholders.  The knowledge that can be easily translated is that an avoidable 

conveyance is predictable on scene, and that clinical impression, physiological 

observations and a patient's mobility are all important for this.   

 

An implementation study and strategy would need to be developed to test the 

SINEPOST model as a tool embedded into the ePCR.  This could be done using 

multiple trusts as the model was internally-externally validated, with no signs 

that it cannot be transported across ambulance services. Strict external 

validation may need to be undertaken in a different region to be thoroughly sure 

that it is transportable across different regions.  An interesting external 

validation would be in another ambulance service healthcare setting, such as 

Australia or the USA. It is important to reiterate that the ideal SINEPOST tool 
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would be used as decision support (as opposed to decision making) as part of an 

arsenal of tools that will help ambulance clinicians make discernible transport 

decisions in the future. 

 

Future studies aiming to improve patient care by getting ambulance service 

patients to the right place, first time, should consider how to differentiate 

patients according to the care setting for their need.  By accurately defining the 

cohort, clinical prediction models with greater utility can be developed.  

 

10.5 Conclusion 

This section has placed the findings within the wider context of the urgent and 

emergency care system.   There has been a critical argument on how the model 

being transformed into a tool could lead to significant benefits for both patients 

and the healthcare services.  The model’s ability to support decision making has 

been explored, as has the political implications of upscaling the model to a 

national level.  In the next chapter, there is a personal reflection from the author 

around undertaking this study.  
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11.1 Personal reflection 

There have been many victories and challenges in undertaking this study, and 

this reflection aims to give my subjective thoughts on what they have been. It also 

provides an insight on how I felt undertaking the PhD.  There were more 

elements to the project than just the research study.  More words written, 

documents created, approvals requested, and contracts drafted than made it into 

this thesis.  Managing a research project brings its challenges, and I learnt from 

the experience of managing such a project what those challenges are.  Obtaining a 

linked dataset is difficult and became the biggest threat to the study. I 

underestimated the time and labour required from starting the project to 

receiving the data in the analysis format and it took around 30 months for this to 

happen. This was despite the help of the data experts at YAS and the data 

architects at the University of Sheffield all helping to make the process as 

expeditious as possible.   

 

I think the biggest personal trial I faced in undertaking this study was finding the 

right balance between clinical and academic practice. The lexicons, 

methodologies and skills have rare overlap, which made it quite challenging to 

balance the two.  In addition, there were times when the study could be likened to 

taking a stroll in the fog.  My underpinning knowledge and identity is that of a 

paramedic and not of a statistician or computer scientist. To play in these arenas 

felt like an imposter at times.  One example of this was deciding if logistic 

regression was machine learning or not.  It appeared to be a vocal debate between 

statisticians and computer scientists, and I felt by drawing my own conclusion to 

the debate it would validate my existence being in their spaces. I spent a long 

time trying to draw a conclusion one way or the other almost like Odysseus trying 

to navigate the two sea monsters Scylla and Charybdis. In the end, I decided the 

debate was not helpful to me at all, but a distraction.  I taught myself to code in R, 

revisited my knowledge in statistics and undertook multiple courses in both 

machine learning and predictive modelling.  I felt undertaking the PhD 

broadened my knowledge base, and I now feel I boundary span them all.  I believe 
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the future of clinical research in prehospital care will feature digital systems and 

I would like to be competent to lead such research and remain spanned across 

these clinical academic boundaries.  My current thoughts are the art of clinical 

academia is to feel comfortable being an expert in neither as the peak lies 

somewhere between the two.  

 

The journey of completing this study has perhaps changed my own beliefs on how 

we should categorise patients and the labels that are commonly used.  At the 

beginning, it felt logical to categorise patients according to their acuity.  This was 

the traditional model, and the accepted paradigm of classifying prehospital 

patients.  From the moment someone calls for an ambulance, their acuity is 

triaged.  But as the study developed and after building the SINEPOST model, I felt 

that this classification system lacked clear boundaries when it came to on scene 

decision making.  All high acuity patients largely end up in the same place. Some 

specific conditions might lend themselves to a specialist centre such as strokes or 

heart attacks, but in general, high acuity patients get transported to the ED.  

These patients may have abnormal physiological observations, or a specific sign 

or symptom like breathlessness or chest pain that makes them easier to classify 

as high acuity. But the other acuity categories I think contain more diversity and 

have more complex care needs within their case mix.  They may not have 

abnormal observations, or a clear sign or symptom.  This makes describing them 

according to their acuity unhelpful, and harder to identify the right care need.  I 

think future clinical practice and research needs to navigate a way of describing 

patients in a way that creates meaningful groups.12. Conclusion 
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12.1 Introduction 

The flow of patients through the urgent and emergency care system is dependent 

on ensuring that they get to the right level of care, first time.  Chapter 2, section 

2.6 outlined that currently this is not the case and there are a cohort of patients 

that are transported to the ED by ambulance that do not need the clinical 

expertise of emergency medicine.   

 

Transporting these patients contributes to a demand-induced phenomenon 

known as offload delay at the handover gate, and ambulance ramping (see chapter 

2, section 2.5).  These situations have an increased risk of causing harm to current 

patients in the system, but also to prospective emergency care and ambulance 

patients.    

 

If ambulance staff (i.e., on-scene decision makers such as paramedics) were able to 

identify avoidable conveyances whilst on scene, it would have an impact on these 

problems.  This is exactly what this study set out to achieve.  It aimed to build a 

prediction model using prehospital data and an ED outcome (for more 

information on the methods, please see chapters 6 and 7).  If successful, it would 

provide information on scene that otherwise would not be available knowledge to 

clinicians making transport decisions. The research questions asked in this thesis 

(as identified in chapter 4) were the following: 

 

In adult patients attending the ED by ambulance, can prehospital information 
predict an avoidable attendance? 
 
Can the model derived from the primary outcome be spatially transported?  
 

In this chapter, section 12.2 summarises the findings from the thesis and 

demonstrates how the research questions have been answered. In section 12.3, the 

contributions of new knowledge to clinical practice and to the scientific 
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community are outlined, with recommendations to policy and future research 

described in section 12.4 and 12.5. The chapter concludes in section 12.6.  

12.2 Summary of findings 

A linked dataset was created especially for this thesis.  It consisted of 101,522 

patient episodes that started in the ambulance service and ended at the ED.  In 

this sample, 7228 (7.12%) had an avoidable conveyance to the ED according to the 

definition used. The candidate (predictor) variables were all in the ambulance 

service data, whilst the outcome variable was from ED data.  This meant that the 

prediction model would be telling paramedics new information on scene that is 

not currently available.  Machine learning methods were explored for their 

feasibility of building a predictive model, with a gradient boosted decision tree 

known as an XGBoost algorithm being the chosen method.  Through a process of 

tuning hyperparameters and utilising novel prediction methodology such as 

internal-external cross validation and meta-analysing the results, it was indeed 

possible to build a model that successfully predicted an avoidable conveyance to 

the ED.  The final model had nineteen variables, fourteen of which were clinical, 

three were interventional and two were demographic.  The model demonstrated 

success in the form of its calibration, discrimination, and accuracy statistics.  For 

calibration the Spiegelhalter’s z-test was mainly used, with the O:E for the meta-

analysis.  For more information on these tests, please see chapter 7, section 7.9.1. 

The final model had a Spiegelhalter’s z-test of 0.111 (p=0.912), and a meta-analysed 

O:E ratio of 0.995 (95% CI 0.97-1.03). For discrimination, the C-statistic was used 

and more information on this can be found in chapter 7, section 7.9.2. This was 

meta-analysed as 0.81 (95% CI 0.79 – 0.83).  A fair machine learning analysis was 

performed to ensure the model would not discriminate against any protected 

characteristic.  It was found the model was fair to all age, ethnicity, gender and 

indices of multiple deprivation.  
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12.3 Contributions to knowledge 

The novel contributions in this thesis can be broadly categorised into clinical 

knowledge and scientific knowledge.  Clinically, this thesis has produced new 

knowledge that it is possible to predict an avoidable conveyance to the ED, whilst 

the ambulance is still on scene with the patient as evidenced by chapters 8 and 9. 

The variables that contribute to this prediction have been revealed, and by 

knowing this information new clinical pathways can be developed to target 

interventions at these groups.  The important variables include the patient’s 

mobility, their vital signs, and their clinical impression.  Certain clinical 

impressions such as psychiatric problems, and allergic reactions were very 

important.  Self-mobility was a key variable, and this could lead to accounting for 

a patient's mobility as a consideration for prospective transport decisions.  If the 

model was transformed into a tool, it could potentially prevent 85,560 ambulance 

transportations a month in England.  This is a significant reduction in ambulance 

conveyances.   

 

From a scientific perspective, this thesis has contributed to an emerging method 

of deriving and validating a risk prediction model.  Ideally, a model will first be 

derived and internally validated, then externally validated in a separate study.230  

There are challenges to this method, including time and funding.  The method 

used in this thesis uses the same data in a novel way, to simulate the external 

validation of a model.  It is an efficient method, that can be easily visualised.  It is 

also the first study in the context of urgent and emergency care to use an 

XGBoost algorithm to develop a risk prediction model. 

 

12.4 Recommendations for policy 

The main recommendation for policy would be to revise the taxonomy of 

prehospital patients and move away from ordering them by acuity.  This should 

not negate the need to identify life threatening emergencies, but to identify a 

more accurate way of determining immediate care need at the point of call.  The 
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SINEPOST model developed here could be seen as the start of the journey, as it is 

largely possible to elicit the important variables found in the model whilst the 

call handler is talking to the patient. A different strategy would be to take the 

important variables and target pathway interventions for these groups.  A 

pathway intervention would be to embed a different solution to managing the 

care needs of certain patients instead of transporting them to the ED.  A good 

example would be patients with mental health needs.  If there was a system of 

support that could accept emergency referrals, these patients may find 

themselves resolving their care need sooner.  

 

12.5 Recommendations for future research 

Future studies need to focus beyond defining a patient by their acuity and more 

on the place for their care need.  The ambulance service is already transitioning 

into a treatment service as opposed to just transport, and decision making by 

clinicians on scene need to reflect this.  Studies should now concentrate on 

redefining the taxonomy of prehospital patients before proceeding to develop 

new predictive tools.   

12.6 Conclusion 

This thesis has demonstrated that it is possible to predict an avoidable 

conveyance to the ED whilst still on scene with paramedics.  The methods used to 

demonstrate this include a novel application of the XGBoost algorithm, which 

allows the model to be developed under different circumstances.  The SINEPOST 

model is accurate and does work in rural, urban, and coastal areas.  However, the 

idea of classifying patients according to their acuity holds marginal value once 

the high acuity is classified.  Future studies should consider the taxonomy of 

patients entering the urgent and emergency care system, and shape solutions 

according to their care need.  By doing so, patients will receive timely care, and in 

the right place.  
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Appendix A: Licenses and permissions 

A1: WHO License 

WORLD HEALTH ORGANIZATION (WHO) 

Non-exclusive licence to use selected WHO published materials 

  

You submitted a request, through WHO’s online platform, for permission to 

reproduce certain WHO copyrighted material (the "Licensed Materials"). This is a 

legal agreement (the "Agreement") between you and WHO, granting you a licence 

to use the Licensed Materials subject to the terms and conditions herein. 

  

Read this Agreement in its entirety before using the Licensed Materials. 

  

By using the Licensed Materials, you enter into, and agree to be bound by, this 

Agreement. This licence is granted only for original materials belonging to WHO. 

  

If you enter into this Agreement on behalf of an organization, by using the 

Licensed Materials you confirm (represent and warrant) that you are authorized 

by your organization to enter into this Agreement on the organization’s behalf. In 

such a case, the terms "you" and "your" in this Agreement refer to, and this 

Agreement applies to, the organization. 

 

WHO grants this licence to you based on the representations and warranties you 

made in the licence request you submitted through WHO’s online platform. If any 

of those representations and/or warranties are or become false or inaccurate, this 

licence agreement shall automatically terminate with immediate effect, without 

prejudice to any other remedies which WHO may have. 

 

If you have questions regarding this Agreement, please contact 

permissions@who.int. 
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1. Licence. Subject to the terms and Conditions of this Agreement, WHO grants to 

you a worldwide, royalty free, non-transferable, non-sublicensable, non-exclusive 

licence to use, reproduce, publish, and display the Licensed Materials in the 

manner indicated in the Permissions Request Form you submitted to WHO (the 

"Licensed Use"). This licence is limited to the current edition of the Licensed 

Materials. Future editions or a different use of the Licensed Materials will require 

additional permission from WHO. 

2. Retained Rights. Copyright in the Licensed Materials remains vested in WHO, 

and WHO retains all rights not specifically granted under this Agreement. 

Furthermore, the rights granted under this permission shall not be transferred or 

assigned. 

3. Mandatory Acknowledgement. You must make suitable acknowledgement of 

WHO, either as a footnote or in a reference, as follows: 

“Reproduced with permission of the World Health Organization + url link of the 

material” 

Translations of the Licensed Materials should be attributed as follows: 

“Translated with permission of the World Health Organization, from url link of 

the material” 

4. Altering or Modifying the Licensed Materials. The Licensed Materials shall be 

faithfully reproduced in their entirety including the logo of WHO because it is an 

integral part of the Work. If Licensee finds it necessary to translate the Material, 

WHO logo cannot be used. If Licensee so wishes, the PDF of the translation can be 

provided to WHO, with permission 1) to make the PDF available on WHO web site 

and 2) to allow the use of the PDF by third parties for non-commercial purposes. 

5. Appropriate and Prohibited Uses. You must use the Licensed Materials in a 

factual and appropriate context. You may not use the Licensed Materials in 

association with any product marketing, promotional, or commercial activities, 

including, without limitation, in advertisements, product brochures, company-

sponsored web sites, annual reports, or other non-educational publications or 

distributions. 
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6. No WHO endorsement. You shall not state or imply that WHO endorses or is 

affiliated with your publication or the Licensed Use, or that WHO endorses any 

entity, organization, company, or product. 

7. No use of the WHO logo. In no case shall you use the WHO name or emblem, or 

any abbreviation thereof. Notwithstanding the foregoing, if the WHO name 

and/or emblem appear as an integral part of the Licensed Materials (e.g. on the 

poster or checklist) you may use the name and/or emblem in your use of the 

Licensed Materials, provided the name and/or logo is not used separately from 

the Licensed Materials. If Licensee finds it necessary to adapt the Material to its 

own facility's needs, WHO logo cannot be used. 

8. No Warranties by WHO. All reasonable precautions have been taken by WHO to 

verify the information contained in the Licensed Materials. However, WHO 

provides the Licensed Materials to you without warranty of any kind, either 

expressed or implied, and you are entirely responsible for your use of the 

Licensed Materials. In no event shall WHO be liable for damages arising from 

your use of the Licensed Materials. 

9. Your Indemnification of WHO. You agree to indemnify WHO for, and hold 

WHO harmless against, any claim for damages, losses, and/or any costs, including 

attorneys' fees, arising in any manner whatsoever from your use of the Licensed 

Materials or for your breach of any of the terms of this Agreement. 

10. Termination. The licence and the rights granted under this Agreement shall 

terminate automatically upon any breach by you of the terms of this Agreement. 

Further, WHO may terminate this licence at any time with immediate effect for 

any reason by written notice to you. 

11. Entire Agreement, Amendment. This Agreement is the entire agreement 

between you and WHO with respect to its subject matter. WHO is not bound by 

any additional terms that may appear in any communication from you. This 

Agreement may only be amended by mutual written agreement of you and WHO. 

12. Headings. Paragraph headings in this Agreement are for reference only. 

13. Dispute resolution. Any dispute relating to the interpretation or application of 

this Agreement shall, unless amicably settled, be subject to conciliation. In the 
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event of failure of the latter, the dispute shall be settled by arbitration. The 

arbitration shall be conducted in accordance with the modalities to be agreed 

upon by the parties or, in the absence of agreement, with the rules of arbitration 

of the International Chamber of Commerce. The parties shall accept the arbitral 

award as final. 

14. Privileges and immunities. Nothing in or relating to this Agreement shall be 

deemed a waiver of any of the privileges and immunities enjoyed by WHO under 

national or international law and/or as submitting WHO to any national court 

jurisdiction. 

  

 

Online form originally submitted for WHO licensing  

 

From: permissions@who.int <permissions@who.int> 

Sent: Wednesday, November 4, 2020 12:55 PM 

To: jamie.miles@nhs.net 

Cc: permissions <permissions@who.int> 

Subject: ID: 366020 Permission request for WHO copyrighted material 

  

Dear Mr Miles 

 

Thank you for your request for permission to reproduce, reprint or translate 

certain WHO copyrighted material. 

 

Your request ID: 366020 is under review 

 

Please be assured that we are working on your request and will get back to you as 

soon as we possibly can. 

 

Kind regards, 

WHO Permissions team 
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DataCol Web: Form for requesting permission to reproduce, reprint or translate 

WHO copyrighted material 

=================================================== 

ID: 366020 

 

Section: Contact details 

--------------------------------------------------- 

* Title 

* Mr 

------------------------- 

* First name 

* Jamie 

------------------------- 

* Family name 

* Miles 

------------------------- 

* Organization/affiliation 

* Yorkshire Ambulance Service / University of Sheffield 

------------------------- 

* Web site address 

* https://www.sheffield.ac.uk/scharr/people/pgr-students/jamie-miles 

------------------------- 

* Type of organization 

* University/Academic 

------------------------- 

* If other, please specify 

* 
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------------------------- 

* If STM signatory, please select 

* 

------------------------- 

* Position 

* NIHR Clinical Doctoral Research Fellow (Paramedic) 

------------------------- 

* Telephone 

* +44 7557955748 

------------------------- 

* Address 

* Yorkshire Ambulance Service NHS Trust 

Springhill 1 

Brindley way 

Wakefield 

WF2 0XQ 

------------------------- 

* Country 

* United Kingdom of Great Britain and Northern Ireland 

------------------------- 

* Email 

* jamie.miles@nhs.net 

 

Section: Information about WHO material to be reproduced 

--------------------------------------------------- 

* Full title of WHO material requested 

* WHO Emergency Care System Framework Infographic 

------------------------- 

* Website URL where WHO material is published 

* https://www.who.int/emergencycare/emergencycare_infographic/en/ 

------------------------- 
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* ISBN / WHO Reference Number 

* 

------------------------- 

* Please select the item(s) to be reproduced 

* Entire Document, Posters/Infographics 

------------------------- 

* Type of reuse 

* Dissertation or thesis 

------------------------- 

* No of item(s) to be reproduced 

* 5 items or less 

------------------------- 

* For each item selected, provide a reference and page number. If entire 

document, please state "Entire document". 

* Entire document 

 

Section: Information about the reuse 

--------------------------------------------------- 

* Please provide information on where WHO's material will be used 

* It will be used in the PhD thesis only. 

------------------------- 

* Publishing format 

* Print, PDF, Ebook 

------------------------- 

* Will you be translating? 

* No 

------------------------- 

* If yes, please indicate languages 

* 

------------------------- 

* If web please provide URL / If other, please specify 
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------------------------- 

* Number of copies (if applicable) 

------------------------- 

* How are you planning to distribute your material and to whom? 

* The thesis will be printed and bound for personal copies and final submission. 

An electronic form of the thesis will be published on the White Rose repository 

and at the University of Sheffield. 

------------------------- 

* What is your planned publication or distribution date? 

* March 2022 

------------------------- 

* Are you selling your material? 

* No 

------------------------- 

* If yes, please provide additional information 

* 

------------------------- 

* Is the material sponsored or funded by an organisation other than your own? 

* No 

------------------------- 

* If yes, please provide additional information 

* 

------------------------- 

* Will there be any advertising associated with the material? 

* No 

------------------------- 

* If yes, please provide additional information 

* 

------------------------- 

* Subject of interest that most correspond to your request 

* Emergency and trauma care 
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------------------------- 

* Additional information about your request 

* There will be personal copies of the thesis printed and bound, and also e-copies 

uploaded to the White Rose repository and the University of Sheffield. 

 

The entire image will be split into three separate images to illustrate each 

process. Specifically: 

 

WHO Edit 1 - on scene - The picture has been cropped to include only the scene 

processes. The WHO logo has been moved to the bottom. The key has been moved 

above the picture. The transport banner has been resized and included at the end 

of the illustration of the road. No text has been changed or added, no images have 

been modified beyond movement and resizing. 

 

 

 

WHO Edit 2 - transport - The picture has been cropped to include only the 

transport processes. The WHO logo has been added at the bottom. The key has 

been added to the top of the picture. The equipment illustrations have been 

moved down the page. The scene banner has been resized and added to the start 

of the illustration of the road. No text has been changed or added, no images have 

been modified beyond movement and resizing. 

 

 

 

WHO Edit 3 - Emergency Department - The picture has been cropped to include 

only the facility processes. The key has been moved to the side of the picture. The 

inpatient image has been removed. The WHO logo has been added to the bottom. 

The transport banner has been added to the start of the road illustration. The 

disposition has been resized (enlarged). No text has been changed or added, no 

images have been modified beyond movement and resizing. 
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------------------------- 

* Copy of Subject(s) of interest that most correspond to your request 

------------------------- 

* Approval 

* To review 

------------------------- 

* Latest approval modification 

------------------------- 

* WHO Department 

* ACP, ACT 

------------------------- 

* Correct WHO URL 

* https://www.who.int/emergencycare/emergencycare_infographic/en/ 

 

Section: Terms and conditions 

--------------------------------------------------- 

* By submitting this request you confirm that you will abide by the terms and 

conditions if WHO grants you permission. 

* I have read and agree with the terms and conditions 

 

--------------------------------------------------- 

Click the following link to access a format view of this record: 

http://apps.who.int/datacol/survey.asp?survey_id=258&respondent_id=366020 

 

--------------------------------------------------- 

This email was automatically sent to you by the WHO Intranet Data Collector. 

The DataCol can send emails to accounts specified by the Form focalpoint. 

 

 

A2: Badillo et al. permission 
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Jamie Miles <j.miles@sheffield.ac.uk> 

 
RE: Permission to use image 
2 messages 

 
Jamie Miles <j.miles@sheffield.ac.uk> 16 May 2022 at 16:06 
To: solveig.badillo@roche.com 

Good afternoon Solveig,  
 
I am finalising my PhD thesis, where I used an XGBoost algorithm to train a model to predict 
hospital need for prehospital patients.   
 
I would like to use an unedited copy of figure three in your article titled 'An introduction to 
machine learning' to help explain the bias-variance trade-off.  I have referenced your work in the 
text and on the figure, but I am asking for permission to use it.  The thesis is likely to be published 
on the white rose repository.  I have attached the image below. 
 
 
 
Yours Sincerely 
 
Jamie Miles 
 
Clinical Research Fellow 
ACP and Paramedic 
Specialty Lead for Health Services Research (NIHR CRN Yorkshire and Humber) 

 
Room 3030 
School of Health and Related Research (SCHARR) 
University of Sheffield  
S1 4DA 
E-mail: j.miles@sheffield.ac.uk | jamie.miles@nhs.net 
 
* Please note I work clinically on a Monday and may not respond straight away * 

 

 
Badillo, Solveig <solveig.badillo@roche.com> 18 May 2022 at 10:19 
To: Jamie Miles <j.miles@sheffield.ac.uk> 

Dear Jamie, 
 
Sure, as long as you reference the figure and the corresponding paper, you can use this image.  
 
Best Regards, 
Solveig Badillo 
[Quoted text hidden] 
-- 
Solveig Badillo, PhD (brain imaging), Senior Scientist 
Roche Pharmaceutical Research and Early Development (pRED) 
Pharmaceutical Sciences -   
Predictive Modeling and Data Analytics (PMDA) 
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Roche Innovation Center Basel 
Building 93/6.04 
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Appendix B: International triage scales 

 

Australasian triage scale231 
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Emergency Severity Index (ESI)89 
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Appendix C: Supplementary information for the systematic review 

 

Search term identification 

 

Key terms Alternative terms Subject headings 

Machine Learning “Machine Learn*” 

ML 

“Artificial Intelligence” 

AI 

Deriv* 

Valid* 

Supervised Machine 

Learning/ 

Unsupervised Machine 

Learning/ 

Machine Learning/ 

Algorithms/ 

Logistic Models/ 

 

Clinical triage “Clinic* Triag*” 

Triag* 

“Clinic* Classif*” 

Classif* 

“Clinic* sort*” 

Sort” 

Clinical Triage/ 

 

Patient acuity “Patient severity” 

Prognos* 

Predict* 

Rule* 

Patient Acuity/ 

Ingui filter* 

Haynes broad filter** 

Urgent and Emergency 

care 

“*Emergenc* care*” 

Emergenc* 

“Urgent Care” 

Urgent 

Prehospital 

Pre-hospital 

Pre hospital 

“Emergency Department” 

ED 

“Accident and Emergency” 

“Accident & Emergency” 

Emergency Medical 

Services/ 

Emergency Medicine/ 

Emergency Treatment/ 

Emergencies/ 

Ambulatory care/ 

Ambulances/ 

Emergency Medical 

Tags/ 

Emergency Medical 

Technicians/ 
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A&E 

Ambulanc* 

“Ambulanc* Serv* 

EMS 

“Emergency Medical Service” 

Emergency 

Responders/ 

Emergency Service, 

Hospital/ 

 

*Ingui filer (Validat* OR Predict*.ti. OR Rule*) OR (Predict* AND (Outcome* 

OR Risk* OR Model*)) OR ((History OR Variable* OR Criteria OR 

Scor* OR Characteristic* OR Finding* OR Factor*) AND (Predict* 

OR Model* OR Decision* OR Identif* OR Prognos*)) OR (Decision* 

AND (Model* OR Clinical* OR Logistic Models/)) OR (Prognostic 

AND (History OR Variable* OR Criteria OR Scor* OR 

Characteristic* OR Finding* OR Factor* OR Model*)) 

 

*Haynes broad filter (Predict*[tiab] OR Predictive value of tests[mh] OR Scor*[tiab] OR 

Observ*[tiab] OR Observer 

variation[mh]) 

 

Search strategy 

 

Last 10 years – Clinical contexts and computer capabilities are both rapidly 

changing industries and thus older studies have a higher risk of being void or 

outdated.  Can review this.   

English only – Don’t have access to interpretation services and therefore 

including foreign language studies could lead to misinterpretation. 

 

MEDLINE via Ovid 257 results 

(Machine Learn* OR ML OR Artificial Intelligence OR AI OR Big data OR Gaussian 

process OR Cross-validation OR Cross validation OR Crossvalidation OR 

Regularized logistic OR Linear discriminant analysis OR LDA OR Random forest 

OR Na#ve Bayes* OR Least Absolute selection shrinkage operator OR elastic net 

OR LASSO OR RVM OR relevance vector machine OR pattern recognition OR 

Computational Intelligence OR Computational Intelligences OR Machine 

Intelligence OR Knowledge Representation OR Knowledge Representations OR 
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support vector OR SVM OR pattern classification OR Supervised Machine 

Learning/ OR Unsupervised Machine Learning/ OR Machine Learning/ OR 

Algorithms/ OR Logistic Models/) 

AND 

(Clinic* Triag* OR Triag* OR Clinic* Classif* OR Classif* OR Clinic* sort* OR Sort* 

OR electro* triag* OR Digital triag* OR Clinical Triage/) 

AND  

(Patient severity OR Prognos* OR Predict* OR Rule* OR Patient Acuity/) 

AND  

(Emergenc* care* OR Urgent and Emergency Care  OR Urgent & Emergency Care 

OR UEC OR Emergenc*  OR Urgent Care OR Urgent OR Prehospital OR Pre-

hospita  OR Pre hospital  OR Emergency Department OR ED  OR Accident and 

Emergency OR Accident & Emergency  OR A&E OR Ambulanc* OR Ambulanc* 

Serv* OR EMS OR Emergency Medical Service OR Emergency Medical Services/ 

OR Emergency Medicine/  OR Emergency Treatment/ OR Emergencies/ OR 

Ambulatory care/ OR Ambulances/ OR Emergency Medical Tags/ OR Emergency 

Medical Technicians/ OR Emergency Responders/ OR Emergency Service, 

Hospital/) 

CINAHL via EBSCO 298 results 

(Machine Learn* OR ML OR Artificial Intelligence OR AI OR Big data OR Gaussian 

process OR Cross-validation OR Cross validation OR Crossvalidation OR 

Regularized logistic OR Linear discriminant analysis OR LDA OR Random forest 

OR Na#ve Bayes* OR Least Absolute selection shrinkage operator OR elastic net 

OR LASSO OR RVM OR relevance vector machine OR pattern recognition OR 

Computational Intelligence OR Computational Intelligences OR Machine 

Intelligence OR Knowledge Representation OR Knowledge Representations OR 

support vector OR SVM OR pattern classification OR Supervised Machine 

Learning/ OR Unsupervised Machine Learning/ OR Machine Learning/ OR 

Algorithms/ OR Logistic Models/) 

AND 
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(Clinic* Triag* OR Triag* OR Clinic* Classif* OR Classif* OR Clinic* sort* OR Sort* 

OR electro* triag* OR Digital triag* OR Clinical Triage/) 

AND  

(Patient severity OR Prognos* OR Predict* OR Rule* OR Patient Acuity/) 

AND  

(Emergenc* care* OR Urgent and Emergency Care  OR Urgent & Emergency Care 

OR UEC OR Emergenc*  OR Urgent Care OR Urgent OR Prehospital OR Pre-

hospita  OR Pre hospital  OR Emergency Department OR “ED”  OR Accident and 

Emergency OR Accident & Emergency  OR “A&E” OR Ambulanc* OR Ambulanc* 

Serv* OR “EMS” OR Emergency Medical Service OR Emergency Medical Services/ 

OR Emergency Medicine/  OR Emergency Treatment/ OR Emergencies/ OR 

Ambulatory care/ OR Ambulances/ OR Emergency Medical Tags/ OR Emergency 

Medical Technicians/ OR Emergency Responders/ OR Emergency Service, 

Hospital/) 

PubMed 150 results 

(Machine Learn* OR ML OR Artificial Intelligence OR AI OR Big data OR Gaussian 

process OR Cross-validation OR Cross validation OR Crossvalidation OR 

Regularized logistic OR Linear discriminant analysis OR LDA OR Random forest 

OR Na#ve Bayes* OR Least Absolute selection shrinkage operator OR elastic net 

OR LASSO OR RVM OR relevance vector machine OR pattern recognition OR 

Computational Intelligence OR Computational Intelligences OR Machine 

Intelligence OR Knowledge Representation OR Knowledge Representations OR 

support vector OR SVM OR pattern classification OR Supervised Machine 

Learning[mh] OR Unsupervised Machine Learning[mh] OR Machine 

Learning[mh] OR Algorithms[mh] OR Logistic Models[mh]) 

AND 

(Clinic* Triag* OR Triag* OR Clinic* Classif* OR Classif* OR Clinic* sort* OR Sort* 

OR electro* triag* OR Digital triag* OR Clinical Triage[mh]) 

AND  

(Patient severity OR Prognos* OR Predict* OR Rule* OR Patient Acuity[mh]) 

AND  



 

279 

 

(Emergenc* care* OR Urgent and Emergency Care  OR Urgent & Emergency Care 

OR UEC OR Emergenc*  OR Urgent Care OR Urgent OR Prehospital OR Pre-

hospita  OR Pre hospital  OR Emergency Department OR “ED”  OR Accident and 

Emergency OR Accident & Emergency  OR “A&E” OR Ambulanc* OR Ambulanc* 

Serv* OR “EMS” OR Emergency Medical Service OR Emergency Medical 

Services[mh] OR Emergency Medicine[mh]  OR Emergency Treatment[mh] OR 

Emergencies[mh] OR Ambulatory care[mh] OR Ambulances[mh] OR Emergency 

Medical Tags[mh] OR Emergency Medical Technicians[mh] OR Emergency 

Responders[mh] OR Emergency Service, Hospital[mh]) 

 782 results after duplicates removed. 
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Visual schematic of inclusion criteria for systematic review 
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Appendix D: Technical elaboration on algorithm methods 

Logistic regression 

Simply, to make a prediction on a new individual (𝑦!), the dependent variable is 

regressed on independent predictors (𝑥!).  These could be age, gender, heart rate 

etc.  Each 𝑥! is multiplied by its βi coefficient that is derived from its linear 

association with the outcome.  The interpretation of the βi is that for each single 

unit increase in	𝑥!, would lead to a βi increase in 𝑦!, hence it is the slope of a linear 

equation.  The other coefficient is, 𝛽& which represents the value of 𝑦!, when 𝑥! is 

zero (for continuous variables) or the reference category in discrete variables.  

Hence, the 𝛽& is the intercept.  In logistic regression, a logit link function is 

applied to scale the results of the equation between 0 and 1.  The full equation can 

be found below.  Because logistic regression is calculating the expected value of y, 

which can then be used to make a classification given an assumption of a cut off; 

the result of the equation is classifying 𝑦! into 0 or 1.  

ln M
𝑝

1 − 𝑝N = 𝛽& + (𝛽$𝑥$) + (𝛽%𝑥%) + ⋯(𝛽!𝑥!) 

The benefit of using logistic regression is it is an explanatory model as well as 

predictive.  This means that the whole final model can be statistically 

represented, and each individual variable can have its association with the 

outcome. Further benefits of using this method is its flexibility and can 

incorporate different types of data, non-linear transformations (such as fractional 

polynomials) and interaction terms.128 However, one of the drawbacks is that it 

assumes a constant (linearity) in the coefficients.  The dependent variable will 

always have the same relationship with the independent variable.  Fractional 

polynomials or restricted cubic splines can be used to model non-linearity; 

however, these are used with the variables and not the beta coefficients 

themselves.232,233  For example, in the equation below, a fractional polynomial to 

the power of two has been added to the value of 𝑥$. 

ln M
𝑝

1 − 𝑝N = 𝛽& + P𝛽$𝑥$
%Q + (𝛽%𝑥%) + ⋯(𝛽!𝑥!) 
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In logistic regression, the model to fit must be specified, which means ‘cherry 

picking’ variables. Methods such as stepwise selection methods can be used for 

feature selection, however using regularisation within the regression equation 

can reduce model overfitting, help with any multicollinearity and incorporate 

feature selection. 

 

Penalised regression  

Regularisation aims to reduce variance by introducing a bias (in the form of a 

penalty term) and therefore reducing the Mean Squared Error (MSE).234,235  It 

operates by adding a penalty term to estimating equations during model 

development, which is different to other shrinkage techniques such as uniform or 

heuristic shrinkage. These add a penalty into the regression equation itself, e.g.  

ln M
𝑝

1 − 𝑝N = 𝛽& + 𝑆((𝛽$𝑥$) + (𝛽%𝑥%) + ⋯(𝛽!𝑥!)) 

Where S is a universal shrinkage factor.   In regularisation, the penalty is added to 

the estimation of model fit.  Less model error is likely to increase correct 

predictions in new individuals.  In order to identify the optimum values of 𝛽& (the 

model intercept) and 𝛽! (the model slope), the residual sum of squares (RSS) is 

calculated.  This is the variance between the fitted regression line and the plotted 

points where individual values of the independent variables intersect with the 

values of the dependent.  Therefore, the RSS can be calculated using the following 

equation: 

𝑅𝑆𝑆 = 	TU𝑦! − 𝛽& −T𝛽!'

(

'#$

𝑥'V

%

	
"

!#$

 

The predicted value of 𝑦! is calculated by deducting the slope (𝛽!' ), multiplied by 

the independent variable (𝑥') from the intercept (𝛽&).  This predicted value is then 

deducted from the actual value (𝑦!) to give the errors for an individual point.  The 

results of all the errors are then added together and squared to give the RSS.  

Regularisation penalty terms are added onto the calculation of the RSS.  Ridge 

regression also known as the 𝜆$ penalty, shrinks each beta coefficient towards 0, 
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according to its relationship with the outcome by summing the absolute values of 

the beta 1 coefficients.  This differs to the Least Absolute Shrinkage and Selector 

Operator (LASSO) or 𝜆% , which will shrink variables to zero, effectively 

eliminating them from the model by summing the squares of the beta 

coefficients.235 Each penalty term can be used individually as a tuning parameter 

(hyper-parameter) and both penalties have been included in the below 

equations:236,237 

𝑅𝑆𝑆(𝛽)$) =TU𝑌! − 𝛽& −T𝛽!'
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It is possible to keep both terms in the equation, however when used in 

combination the two parameters are dependent on each other, which makes 

optimisation through cross-validation difficult as in effect, there is a hyper-hyper-

parameter.  To counter this, an alpha term (α) is introduced into the equation, 

as:236,237 
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The alpha is the ratio between the both penalty terms.234  When α is equal to 1, the 

LASSO penalty is being used, whereas when the α is 0, it is the ridge regression.  

Cross-validation can be used to identify the optimum α and λ.  There are 

limitations with regularisation though.  The lambda and alpha penalties are 

estimated with large uncertainty and final model predictors may not be stable.238  

A limitation with the GLM is the model algorithm does not directly handle 

missing data, so this needs to be resolved in the data preparation phase. The 

options are limited but depending on the type of missing data, it would either be 

to delete columns or rows, or to impute the values.   
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The Generalised Non-Linear Model (GNLM) 

A good example of the generalised non-linear model (and used with great success 

in the studies identified in the systematic review) is the artificial neural network 

(ANN) and can be described as an extension of the GLM.128  The figure below is 

based on the basic components of a neuron.239 Many neurons are often needed to 

solve complex problems. 

 

 

 

 

 

 

 

 

In a neuron, each input variable (𝑥!) is weighted by multiplying the value by the 

associated	𝑤!.  A bias term (𝑤&) is then added to each weighted input before a sum 

function is applied.  The weighted sum is then measured against a predetermined 

activation threshold (Θ).  If it meets the threshold, the value (𝑅!) is passed to an 

activation function (𝑓!). This is a non-linear transformation, often resembling a 

sigmoid curve.  The non-linear function then provides an output between 0 and 1. 

Figure 8 in the main thesis shows an illustrative example of a neural network.  

 

Hyperparameters within neural networks includes adjusting the number of 

hidden layers and the weights and biases of each node.  These are often deduced 

through trial and error.  Backpropagation can be used to re-evaluate the weights 

of the variables.  However, too many iterations can lead to overtraining and 

should be avoided.125,128,240 The neural network can handle non-linearity 

effectively through the activation function, however the algorithm design 

struggles to overcome multicollinearity without undergoing procedures such as 

PCA in the data preparation stage.  This means that the management of 
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collineated variables comes at the expense of model interpretability.136  The 

algorithm by the nature of it being an extension of the GLM can inherit the same 

issues with missing data.  Solutions that overcome this for the neural network 

include modelling the uncertainty of attributes with probability density 

functions.137 Furthermore, a neural network can be computationally greedy, and 

it can take many hidden layers in order to create an accurate model. There are 

also limitations in how neural networks handle structured data.  In classification 

problems that use unstructured data such as images or sounds, canonical 

architectures translate these forms into meaningful inputs for neural networks.  

However, this is a difficult task with structured, tabular data.  As a result, 

decision trees have dominated competitions that have required prediction 

modelling using this type of data.138  

 

 

Tree-based methods  

The basic components of a decision tree are nodes.  These simple filters take an 

input and split it into two or more outputs based on the split criteria.  Trees 

include a root node, which is the first or starting node. Figure 9 in the main thesis 

provides an illustrative example of a simple decision tree along with an 

explanation. The way a decision tree decides on which variables to use as the 

parent node, or any internal node (internal nodes are any node situated between 

the root and the leaf) is not random but calculated as a measure of entropy and 

information gain.   

 

Claude Shannon’s entropy model measures the amount of impurity of the 

elements in a dataset.  In decision tree modelling, the objective is to create pure 

groups in the leaf nodes.  As a hyperbole, a perfect binary classification decision 

tree can split a population into two classes with probabilities of each being pure 

(both being 1).  In effect, a perfectly discriminative model.  Any new participants 

that the tree is applied to will be perfectly classified (on the assumption there is 

no over fitting to the training data).  The perfect classification tree rarely exists 
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when applied to real world problems, but the objective remains to reduce 

impurity as new child nodes and branches are created.  In order to achieve this 

objective, the correct nodes and split criteria that will eliminate the most 

impurity in the resultant child nodes (or leaves) need to be identified.  Shannon’s 

model of entropy is the weighted sum of the logs of the probabilities of each 

possible outcome when making a random selection from a set of variables.140 It is 

the logarithm of the probability because smaller values of probability need to be 

represented by large numbers and larger values of probability need to be 

represented by smaller numbers.  Using the logarithm of the probabilities to the 

base of 2 achieves this goal.  The large numbers will be negative; however, this can 

be rectified in the equation for Shannon’s model of entropy by placing a minus 

sign at the start:140 

𝐻(𝑡) = 	−T(𝑃(𝑡 = 𝑖) 	× 	 𝑙𝑜𝑔%(𝑃(𝑡 = 𝑖))
2

!#$

 

Here, the entropy (𝐻) of a variable (𝑡) in the dataset is calculated by summing the 

probability that the value of the variable is 𝑖, multiplied by the 𝑙𝑜𝑔% of this 

probability.  As an imagined example,  

a dataset contains ten participants measured over a single variable (eye colour), 

two participants have blue eyes, three have green and five have brown. The 

entropy would be calculated as: 

𝐻(𝐸𝑦𝑒) = 	− T 𝑃(
2∈(526-,,8--",589:")

𝐸𝑦𝑒 = 	𝑙) 	× 	 𝑙𝑜𝑔%(𝑃(𝐸𝑦𝑒 = 	𝑙)) 

=	−$%𝑃(𝑏𝑙𝑢𝑒) ×	𝑙𝑜𝑔!0𝑃(𝑏𝑙𝑢𝑒)12 +	%𝑃(𝑔𝑟𝑒𝑒𝑛) ×	𝑙𝑜𝑔!0𝑃(𝑔𝑟𝑒𝑒𝑛)12 +	%𝑃(𝑏𝑟𝑜𝑤𝑛) ×	𝑙𝑜𝑔!0𝑃(𝑏𝑟𝑜𝑤𝑛)127 

=	−89
2
10 ×	𝑙𝑜𝑔! $

2
107= +	9

3
10 ×	𝑙𝑜𝑔! $

3
107= +	?

5
10 ×	𝑙𝑜𝑔! $

5
107AB	 

=	−P(0.2	 ×	−2.32) +	(0.3 ×	−1.37) +	(0.5 ×	−1)Q 

= 	𝟏. 𝟑𝟕𝟓 

Entropy can be used to calculate the information gain for a variable.  The variable 

in a dataset with the most information gain would lead to the most purity in the 

child nodes.  It is therefore beneficial to use this variable as the root node in a 

simple decision tree to create a parsimonious model that minimises 
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computational expense.  To calculate information gain, it is required to work out 

the entropy for the whole dataset, then remaining entropy after a split for each 

variable, and then deduct the latter from the former. The table below is a 

fictitious structured tabular dataset that closely resembles the study dataset in 

this thesis.   

 

 

 

 

Fictitious data set for information gain example 

Abnormal observations Intervention required Urgency 

No Yes Non urgent (nurg) 

Yes No Urgent (urg) 

Yes No Urgent 

No No Non urgent  

No No Non urgent 

Yes Yes Urgent 

 

Step one is to calculate the entropy for the whole dataset, note the (𝒟) represents 

the whole dataset:140 

𝐻(𝑡, 𝒟) = 	− T 𝑃(
2∈2-<-2=(>)

𝑡 = 	𝑙) 	× 	 𝑙𝑜𝑔%(𝑃(𝑡 = 	𝑙)) 

= 	𝐻(𝑢𝑟𝑔,𝒟) 	= 	− Mm𝑃(𝑡 = 𝑢𝑟𝑔) ×	 𝑙𝑜𝑔%P𝑃(𝑡 = 𝑢𝑟𝑔)Q

+ (𝑃(𝑡 = 𝑛𝑢𝑟𝑔) ×	 𝑙𝑜𝑔%(𝑃(𝑡 = 𝑛𝑢𝑟𝑔)nN 

= 𝐻(𝑢𝑟𝑔,𝒟) = 	−P(0.5	 ×	−1) + (0.5	 ×	−1)Q 

𝑫𝒂𝒕𝒂𝒔𝒆𝒕	𝒆𝒏𝒕𝒓𝒐𝒑𝒚 = 𝟏 

Then the entropy that remains (𝑟𝑒𝑚) after partitioning on each variable is 

calculated.  In the following equations, (𝑑) represents a variable found within 

dataset (𝒟)140 
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𝑟𝑒𝑚(𝑑,𝒟) = 	 T
|𝒟+#2|
𝒟

Z\]
:-!,?>!",

2∈2-<-2=(+)

		× 	 𝐻(𝑡, 𝒟+#2)Z[[\[[]
-">89(@	9B	(C8>!>!9"	𝒟!"#

 

For the variable ‘intervention required’ (shortened to ‘intereq’), this would be: 

𝑟𝑒𝑚(𝑖𝑛𝑡𝑒𝑟𝑒𝑞, 𝒟)

= U	
Y𝐷!">-8-E#@-=Y

𝒟 	× 	𝐻P𝑡, 𝒟!">-8-E#@-=QV

+ U	
Y𝐷!">-8-E#"9Y

𝒟 	× 	𝐻P𝑡, 𝒟!">-8-E#"9QV 

= C
2
6 ×	8− E 𝑃(

"∈(%&',)%&')

𝑡 = 	𝑙) 	×	 𝑙𝑜𝑔!(𝑃(𝑡 = 	𝑙))BG+ C
4
6 ×	8− E 𝑃(

"∈(%&',)%&')

𝑡 = 	𝑙) 	×	 𝑙𝑜𝑔!(𝑃(𝑡 = 	𝑙))BG 

= C
2
6 ×	8−?9

1
2 ×	𝑙𝑜𝑔! $

1
27= + 9

1
2 × 𝑙𝑜𝑔! $

1
2	7=ABG +	C

4
6 ×	8−?9

2
4 ×	𝑙𝑜𝑔! $

2
47= + 9

2
4 × 𝑙𝑜𝑔! $

2
4	7=ABG 

𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈	𝒆𝒏𝒕𝒓𝒐𝒑𝒚	𝒇𝒐𝒓	𝒊𝒏𝒕𝒆𝒓𝒆𝒒	𝒂𝒇𝒕𝒆𝒓	𝒔𝒑𝒍𝒊𝒕𝒕𝒊𝒏𝒈 = 𝟏 

For the variable abnormal observations (shortened to abobs), it would be: 

𝑟𝑒𝑚(𝑎𝑏𝑜𝑏𝑠, 𝒟)

= U	
Y𝐷C595=#@-=Y

𝒟 	× 	𝐻P𝑡, 𝒟C595=#@-=QV

+ �	
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3
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𝑡 = 	𝑙) 	×	 𝑙𝑜𝑔!(𝑃(𝑡 = 	𝑙))BG+ C
3
6 ×	8− E 𝑃(
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𝑡 = 	𝑙) 	×	 𝑙𝑜𝑔!(𝑃(𝑡 = 	𝑙))BG 

= C
3
6 ×	8−?9

3
3 ×	𝑙𝑜𝑔! $

3
37= + 9

0
3 × 𝑙𝑜𝑔! $

0
3	7=ABG +	C

3
6 ×	8−?9

0
3 ×	𝑙𝑜𝑔! $

0
37= + 9

3
3 × 𝑙𝑜𝑔! $

3
3	7=ABG 

𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈	𝒆𝒏𝒕𝒓𝒐𝒑𝒚	𝒇𝒐𝒓	𝒂𝒃𝒐𝒃𝒔	𝒂𝒇𝒕𝒆𝒓	𝒔𝒑𝒍𝒊𝒕𝒕𝒊𝒏𝒈 = 𝟎 

The final step in calculating information gain is to deduct the remaining entropy 

from the total in the data set.  Therefore, the information gain for intereq is 1-1 = 

0, and for abobs is 1-0 = 1.  The variable ‘intervention required’ gained no 

information (with a score of 0), whereas the variable ‘abnormal observations’ was 
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able to match the entropy of the full dataset (with a score of 1) and therefore 

could diminish all impurity in the tree by splitting on this single variable.140  

These are both extreme examples and an information gain of 1 is not only rare in 

practice, but also invalidates the requirement of a decision tree model.  Any 

variable with a gain of 1 could just be used as an individual predictor on its own.  

There are alternatives to using information gain as the split criterion.  A popular 

alternative is using the Gini index, which is like information gain, but instead of 

taking the logarithm of the probability, it is squared as:140 

𝐺𝑖𝑛𝑖(𝑡, 𝒟) = 1 −	 T (𝑡 = 𝑙)%
2∈2-<-2=(>)

 

Different splitting criteria can result in different variables to be selected as the 

root node.  There is no consensus on the correct splitting criteria, and it is 

recommended practice to try different approaches and assess model accuracy. 

Studies have shown that there is often no statistically significant differences in 

accuracy between techniques, however there is sometimes a difference in training 

time.140,241 Information gain is an important concept of a decision tree, and the 

calculations are intuitive for binary and categorical variables.  However, a 

limitation with decision tree models is that they cannot handle continuous 

variables in their continuous form.  Instead, a threshold needs to be defined 

within the variables that dichotomises them.  The process in which this occurs is 

to first order all the values in the continuous variable from smallest to largest 

(can also be largest to smallest).  The table below is another fictitious example 

where blood pressure has been ordered already.  Then, adjacent values of the 

continuous values that result in a different outcome are identified.  From figure 

11, there are two pairs of values where the outcome changes.  The first is 90 and 

100, the second is 130 and 150. To identify the possible thresholds, take the 

average of the pair (90+100/2=95) and (130+150/2=140).  The two thresholds for 

consideration in the dataset are therefore ≥95mmHg and ≥140mmHg.  The 

information gain for these thresholds can now be calculated to identify the best.   
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Fictitious example for transforming continuous variable 

Systolic Blood Pressure 

(mmHg) 

Urgency 

70 Urgent 

77 Urgent 

90 Urgent 

100 Non urgent 

120 Non urgent 

121 Non urgent 

130 Non urgent 

150 Urgent 

155 Urgent 

160 Urgent 

 

This method is a crude heuristic and may not find the ideal threshold.  Other 

proposed methods include an exact greedy approach, which scans every possible 

value and measures the gain.  This will lead to the true optimal threshold, but can 

be extremely computationally expensive, especially if the continuous variable has 

a large range with small increments to scan.    
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In decision tree modelling, because of the recursive partitioning a categorical 

variable can only be used once; however, a continuous variable can be used 

multiple times providing its subsequent use operates at a different threshold to 

one that’s already been used.   Decision trees have the advantage of being able to 

overcome the weaknesses of logistic regression and neural networks such as non-

linearity and multicollinearity.  However, they have their own limitations.  The 

way a decision tree handles continuous variables is to categorise them as detailed 

above. This leads to a loss of information and is discouraged in prediction 

modelling.128 Simple decision trees also can generalise beyond the data.  For 

example, if a binary variable is being split into two leaf nodes but all the sample 

are in the positive class, the tree will automatically assign an outcome for the 

negative class.  This is decided by automatically choosing whichever outcome was 

the majority at the parent node. Decision trees can also be prone to overfitting to 

the training data.  If there are no safeguards in place, the model will keep splitting 

until there is either no more variables left to select, or there is no more 

information gained from splitting.  This makes a greedy algorithm, and as the tree 

becomes deeper with more splits, it will fit the training data with less error but 

will increase the error in the test set. There are methods to reduce overfitting that 

are effective and easy to implement.  One method is tree pruning. 

 

Pruning is the removal of subbranches and replacement with leaf nodes.  This can 

be achieved either before the modelling (pre-pruning) or after the tree is 

developed (post-pruning).  When pre-pruning, early stopping criteria are 

specified.   The criteria can be based on a functional limiter or a statistical test.  

The limiters include identifying a minimum information gain to activate a split 

or using the number of instances in a partition.  The statistical test that is 

commonly used is the 𝜒% (chi-squared) test to determine whether each partition is 

important to the overall tree. Post-pruning measures often evaluate the error rate 

between a training set and test set when the sub-branch is included vs 

excluded.140  Even with the addition of pruning, a single tree classifier is 

considered a weak learner on its own and can easily be overfit to the dataset used 
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to train it.  Modern approaches use ensemble methods which constitute a whole 

forest of decision trees. 

 

Ensemble decision tree models 

Ensemble decision tree models were described in detail by Leo Breiman in the 

1990’s and are an extension of the simple recursive partitioning tree detailed 

above.141  Ensembles create many trees that are individually diverse in their 

decision making.  These diverse models are aggregated in a voting system to make 

a final prediction.  The two well-known techniques of creating a forest of trees are 

known as bagging and boosting.  

 

Bagging is an abbreviation of bootstrap aggregation.  The purpose of bootstrap 

aggregation is to prevent a forest of trees from group decision making.  This 

would occur if all the trees were created using the same data.  In bagging, each 

tree is technically built on a different dataset.  A limitation with even a simple 

ensemble model using tree bagging is collinearity between strong predictors.  

Bagging will de-correlate to an extent by deriving the model on different training 

sets.  However, strongly correlated predictors will consistently yield the highest 

entropy regardless of the sample space within the ensemble.  This is because 

bootstrapping creates new datasets, but the distributions are largely the same 

over the variables themselves. If there is a noisy variable, it will be noisy in all the 

trees and will encourage the group decision making in the forest. To counter this, 

a common method is to build the bagging ensemble model but use a random 

subset of predictor variables in each classifier.  This is known as random forest 

modelling. If a dataset had 100 variables, the architect of a random forest model 

could specify how many variables out of the 100 should be randomly selected each 

time for inclusion in the tree.  This does not necessarily mean all randomly 

selected variables will be included in the tree, but it does mean that strongly 

correlated variables with the outcome will not be in every tree model.125,140,141  
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In boosting, trees are iteratively created with subsequent trees adjusting a 

penalty on misclassification.  First described by Freund and Schapire in 1996, 

boosting algorithms operate by weighting the initial dataset (𝑤𝑖 ≥ 0) to 1 divided 

by the number of instances in the dataset.  The weighting for each instance forms 

a distribution for resampling in the next tree. In the subsequent resampling, an 

instance may be replicated multiple times, and this is proportionate to the 

weighting of the previous tree. The decision on how to adjust the weights is 

statistical.  Error (𝜀)  is calculated by summing the weights of the misclassified 

samples.  Then the weights for misclassified samples are increased:140 

𝑤[𝑖] ← 𝑤[𝑖] × M
1

2	 × 𝜀	N 

Whilst the weights for correctly classified instances are decreased:140 

𝑤[𝑖] ← 𝑤[𝑖] × M
1

2	 × (1 − 𝜀)	N 

Trees continue to be created in this iterative way until the maximum error has 

been removed from the model.  In this respect, boosting is operating in the same 

way as logistic regression and neural networks in that its objective is to minimise 

a loss function.  This can also be described as a form of gradient descent in 

function space.242 Gradient descent can be likened to walking down into a steep 

valley.  The objective in the analogy is to stand at the lowest point in the valley.  

The ‘perfect’ next step is calculated so that it moves the subject closer to the 

lowest point.  The simplified equation for gradient descent can be found here:243 

𝑏 = 𝑎 − 	𝛾Δ𝑓(𝑎) 
In the equation 𝑏 is where the subject needs to step next, and 𝑎 is where they are 

currently standing.  Gamma (𝛾) is the weighting factor and the rest (Δ𝑓(𝑎)) is the 

gradient term which aims to identify the direction of the next step. The term is 

the negative of the functional derivative (gradient) of the cost function. The 

length of the step is known as the learning rate.  If this is too high, the gradient 

descent equation will unlikely find the lowest point.  This is because the graphical 

representation of the equation is convex.  A learning rate that is too large has the 

chance of over-shooting the lowest point every time.  Conversely, a learning rate 
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too small will find the lowest point, but it may take longer.  Different boosting 

algorithms have been proposed depending on the loss function that is being 

minimised.  For example, L2boost uses the square error loss whereas Adaboost 

uses the exponential.125 A more advanced mechanism for gradient descent is to 

incorporate a weak learner into the gradient term.  This negates the need for a 

different algorithm for each loss function as it generalises to them all.125,244,245 

Boosting algorithms have been described as the best off-the-shelf classifiers in the 

world.246 This claim has been supported by high quality evidence.247  
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Appendix E: List of Emergency Departments included in this study 

 

Barnsley Hospital NHS Foundation 

Trust 

Gawber Rd 

Barnsley 

S75 2EP 

United Kingdom 

Pinderfields Hospital 

Aberford Rd 

Wakefield 

WF1 4DG 

United Kingdom 

St. James's University Hospital 

Beckett Street 

Leeds 

LS9 7TF 

United Kingdom 

Leeds General Infirmary 

Great George Street 

Leeds 

LS1 3EX 

United Kingdom 

Harrogate and District NHS 

Foundation Trust 

Lancaster Park Road 

Harrogate 

HG2 7SX 

United Kingdom 

Huddersfield Royal Infirmary 

Acre Street Lindley 

Huddersfield 

HD3 3EA 

United Kingdom 

 

 

Calderdale Royal Hospital 

Salterhebble 

Halifax 

HX3 0PW 

United Kingdom 

Hull Royal Infirmary 

Anlaby Road 

Hull 

HU3 2JZ 

United Kingdom 

Rotherham NHS Foundation Trust 

Moorgate Road 

Rotherham 

S60 2UD 

United Kingdom 

York Teaching Hospital NHS 

Foundation Trust 

Wigginton Road 

York 
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YO31 8HE 

United Kingdom 

Airedale General Hospital 

Skipton Road Steeton 

Keighley 

BD20 6TD 

United Kingdom 

Doncaster Royal Infirmary 

Armthorpe Road 

Doncaster 

DN2 5LT 

United Kingdom 

Northern General Hospital 

Herries Road 

Sheffield 

S5 7AU 

United Kingdom 

Bradford Royal Infirmary 

Smith Lane 

Bradford 

BD9 6DA 

United Kingdom 

Dewsbury and District Hospital 

Halifax Rd 

Dewsbury 

WF13 4HS 

United Kingdom 

Scarborough General Hospital 

Woodlands Drive 

Scarborough 

YO12 6QL 

United Kingdom 

 

The James Cook University Hospital 

Marton Rd 

Middlesbrough 

TS4 3BW 
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Appendix F: NEWS Score 

 

Reproduced with permission? from the Royal College of Physicians180 
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Appendix G:  HRA, REC and CAG Approval 
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Appendix H: Included variables in the model 

 
Unavoidable Avoidable Overall 

 
(N=94294) (N=7228) (N=101522) 

ED (not used as a candidate variable)    

AIREDALE GENERAL HOSPITAL 3058 (3.2%) 240 (3.3%) 3298 (3.2%) 

BARNSLEY DISTRICT GENERAL 5810 (6.2%) 323 (4.5%) 6133 (6.0%) 

BRADFORD ROYAL INFIRMARY 6705 (7.1%) 1004 (13.9%) 7709 (7.6%) 

CALDERDALE ROYAL HOSPITAL 3865 (4.1%) 242 (3.3%) 4107 (4.0%) 

DEWSBURY DISTRICT HOSPITAL 827 (0.9%) 137 (1.9%) 964 (0.9%) 

DONCASTER ROYAL INFIRMARY 6258 (6.6%) 420 (5.8%) 6678 (6.6%) 

HARROGATE DISTRICT HOSPITAL 2598 (2.8%) 163 (2.3%) 2761 (2.7%) 

HUDDERSFIELD ROYAL INFIRMARY 4392 (4.7%) 283 (3.9%) 4675 (4.6%) 

HULL ROYAL INFIRMARY 10099 (10.7%) 612 (8.5%) 10711 (10.6%) 

JAMES COOK UNIVERSITY HOSPITAL 749 (0.8%) 55 (0.8%) 804 (0.8%) 

LEEDS GENERAL INFIRMARY 4839 (5.1%) 263 (3.6%) 5102 (5.0%) 

NORTHERN GENERAL HOSPITAL 9793 (10.4%) 929 (12.9%) 10722 (10.6%) 

PINDERFIELDS GENERAL HOSPITAL 9481 (10.1%) 764 (10.6%) 10245 (10.1%) 

ROTHERHAM DISTRICT GENERAL HOS 5618 (6.0%) 352 (4.9%) 5970 (5.9%) 

SCARBOROUGH DISTRICT GENERAL HOSPITAL 4374 (4.6%) 120 (1.7%) 4494 (4.4%) 

ST JAMES UNIVERSITY HOSPITAL 8078 (8.6%) 824 (11.4%) 8902 (8.8%) 

YORK DISTRICT HOSPITAL 5719 (6.1%) 382 (5.3%) 6101 (6.0%) 

Missing 2031 (2.2%) 115 (6.1%) 2146 (2.1%) 

Impression_Psychiatric problems    

Did not Occur 93634 (99.3%) 6642 (91.9%) 100276 (98.8%) 

Occurred 660 (0.7%) 586 (8.1%) 1246 (1.2%) 

cannulation_IV    

Did not Occur 79660 (84.5%) 6940 (96.0%) 86600 (85.3%) 

Occurred 14634 (15.5%) 288 (4.0%) 14922 (14.7%) 

mobililty_SelfMobile    

Did not Occur 68215 (72.3%) 3436 (47.5%) 71651 (70.6%) 

Occurred 26079 (27.7%) 3792 (52.5%) 29871 (29.4%) 

Impression_Allergic reaction/rash    

Did not Occur 93881 (99.6%) 6971 (96.4%) 100852 (99.3%) 

Occurred 413 (0.4%) 257 (3.6%) 670 (0.7%) 

Impression_Cardiac chest pain (ACS)    

Did not Occur 88507 (93.9%) 7094 (98.1%) 95601 (94.2%) 

Occurred 5787 (6.1%) 134 (1.9%) 5921 (5.8%) 

temperature_primary    

Mean (SD) 37.0 (0.965) 36.8 (0.735) 37.0 (0.952) 

Median [Min, Max] 36.9 [31.7, 42.1] 36.8 [33.0, 40.7] 36.9 [31.7, 42.1] 
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Missing 5935 (6.3%) 796 (11.0%) 6731 (6.6%) 

ecg_monitored_primary    

Did not Occur 27983 (29.7%) 2988 (41.3%) 30971 (30.5%) 

Occurred 51293 (54.4%) 2946 (40.8%) 54239 (53.4%) 

Missing 15018 (15.9%) 1294 (17.9%) 16312 (16.1%) 

oxygen_saturations_primary    

Mean (SD) 95.3 (5.41) 97.1 (2.84) 95.4 (5.29) 

Median [Min, Max] 97.0 [11.0, 100] 98.0 [18.0, 100] 97.0 [11.0, 100] 

Missing 2543 (2.7%) 329 (4.6%) 2872 (2.8%) 

respiratory_rate_primary    

Mean (SD) 20.7 (6.30) 18.7 (4.45) 20.5 (6.21) 

Median [Min, Max] 18.0 [0, 99.0] 18.0 [0, 96.0] 18.0 [0, 99.0] 

Missing 1820 (1.9%) 188 (2.6%) 2008 (2.0%) 

pain_score_primary    

Mean (SD) 3.10 (3.58) 2.94 (3.50) 3.09 (3.57) 

Median [Min, Max] 1.00 [0, 10.0] 0 [0, 10.0] 1.00 [0, 10.0] 

Missing 26475 (28.1%) 2073 (28.7%) 28548 (28.1%) 

blood_sugar_reading_primary    

Mean (SD) 7.43 (3.43) 6.72 (2.72) 7.38 (3.39) 

Median [Min, Max] 
6.50 [0.600, 

35.0] 

6.00 [0.400, 

33.0] 
6.40 [0.400, 35.0] 

Missing 23704 (25.1%) 2593 (35.9%) 26297 (25.9%) 

manual_pulse_rate_primary    

Mean (SD) 89.2 (22.3) 88.1 (18.2) 89.1 (22.0) 

Median [Min, Max] 86.0 [5.00, 220] 87.0 [6.00, 220] 86.0 [5.00, 220] 

Missing 2186 (2.3%) 309 (4.3%) 2495 (2.5%) 

obs_supplimental_oxygen_subsequent    

Did not Occur 56181 (59.6%) 4030 (55.8%) 60211 (59.3%) 

Occurred 12364 (13.1%) 149 (2.1%) 12513 (12.3%) 

Missing 25749 (27.3%) 3049 (42.2%) 28798 (28.4%) 

Impression_Head injury    

Did not Occur 92710 (98.3%) 6937 (96.0%) 99647 (98.2%) 

Occurred 1584 (1.7%) 291 (4.0%) 1875 (1.8%) 

Impression_Pain - back non-traumatic    

Did not Occur 92414 (98.0%) 6882 (95.2%) 99296 (97.8%) 

Occurred 1880 (2.0%) 346 (4.8%) 2226 (2.2%) 

manual_pulse_rate_subsequent    

Mean (SD) 87.8 (22.0) 86.5 (17.3) 87.7 (21.8) 

Median [Min, Max] 85.0 [9.00, 220] 85.0 [37.0, 188] 85.0 [9.00, 220] 

Missing 27444 (29.1%) 3166 (43.8%) 30610 (30.2%) 

bp_diastolic_subsequent    
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Mean (SD) 81.4 (17.3) 85.2 (15.3) 81.6 (17.2) 

Median [Min, Max] 81.0 [0, 200] 85.0 [32.0, 168] 81.0 [0, 200] 

Missing 29222 (31.0%) 3263 (45.1%) 32485 (32.0%) 

Impression_Minor cuts & bruising    

Did not Occur 94126 (99.8%) 7142 (98.8%) 101268 (99.7%) 

Occurred 168 (0.2%) 86 (1.2%) 254 (0.3%) 

drug_Oxygen    

Did not Occur 82346 (87.3%) 7077 (97.9%) 89423 (88.1%) 

Occurred 11948 (12.7%) 151 (2.1%) 12099 (11.9%) 

respiratory_rate_subsequent    

Mean (SD) 20.3 (5.94) 18.3 (3.52) 20.2 (5.84) 

Median [Min, Max] 18.0 [0, 99.0] 18.0 [1.00, 81.0] 18.0 [0, 99.0] 

Missing 26569 (28.2%) 3097 (42.8%) 29666 (29.2%) 

Impression_Unable to cope    

Did not Occur 93990 (99.7%) 7137 (98.7%) 101127 (99.6%) 

Occurred 304 (0.3%) 91 (1.3%) 395 (0.4%) 

drug_Aspirin    

Did not Occur 90409 (95.9%) 7164 (99.1%) 97573 (96.1%) 

Occurred 3885 (4.1%) 64 (0.9%) 3949 (3.9%) 

Impression_Abdominal pain    

Did not Occur 86900 (92.2%) 6780 (93.8%) 93680 (92.3%) 

Occurred 7394 (7.8%) 448 (6.2%) 7842 (7.7%) 

bp_systolic_primary    

Mean (SD) 143 (28.3) 143 (24.4) 143 (28.1) 

Median [Min, Max] 142 [0, 265] 140 [1.00, 288] 142 [0, 288] 

Missing 2991 (3.2%) 388 (5.4%) 3379 (3.3%) 

bp_diastolic_primary    

Mean (SD) 82.9 (17.7) 86.4 (15.6) 83.2 (17.6) 

Median [Min, Max] 83.0 [0, 200] 86.0 [4.00, 182] 83.0 [0, 200] 

Missing 3114 (3.3%) 397 (5.5%) 3511 (3.5%) 

PulseInt    

Mean (SD) -2.14 (11.2) -2.68 (9.52) -2.18 (11.1) 

Median [Min, Max] -1.00 [-149, 144] -2.00 [-127, 94.0] -1.00 [-149, 144] 

Missing 27964 (29.7%) 3192 (44.2%) 31156 (30.7%) 

Impression_Wound Closure    

Did not Occur 94206 (99.9%) 7193 (99.5%) 101399 (99.9%) 

Occurred 88 (0.1%) 35 (0.5%) 123 (0.1%) 

epr_news_score_0    

Did not Occur 65881 (69.9%) 4103 (56.8%) 69984 (68.9%) 

Occurred 20807 (22.1%) 2194 (30.4%) 23001 (22.7%) 

Missing 7606 (8.1%) 931 (12.9%) 8537 (8.4%) 
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bp_systolic_subsequent    

Mean (SD) 141 (28.0) 140 (24.2) 141 (27.8) 

Median [Min, Max] 139 [0, 282] 138 [59.0, 242] 139 [0, 282] 

Missing 29145 (30.9%) 3262 (45.1%) 32407 (31.9%) 

Impression_Drug overdose    

Did not Occur 92781 (98.4%) 7068 (97.8%) 99849 (98.4%) 

Occurred 1513 (1.6%) 160 (2.2%) 1673 (1.6%) 

Impression_Stroke FAST positive    

Did not Occur 92749 (98.4%) 7204 (99.7%) 99953 (98.5%) 

Occurred 1545 (1.6%) 24 (0.3%) 1569 (1.5%) 

Impression_Eye injury/eye problem    

Did not Occur 94200 (99.9%) 7187 (99.4%) 101387 (99.9%) 

Occurred 94 (0.1%) 41 (0.6%) 135 (0.1%) 

Impression_Alcohol related    

Did not Occur 93893 (99.6%) 7114 (98.4%) 101007 (99.5%) 

Occurred 401 (0.4%) 114 (1.6%) 515 (0.5%) 

Impression_Fracture/possible fracture    

Did not Occur 91981 (97.5%) 7174 (99.3%) 99155 (97.7%) 

Occurred 2313 (2.5%) 54 (0.7%) 2367 (2.3%) 

Impression_Haemorrhage/lacerations    

Did not Occur 93896 (99.6%) 7135 (98.7%) 101031 (99.5%) 

Occurred 398 (0.4%) 93 (1.3%) 491 (0.5%) 

SysBPInt    

Mean (SD) -2.36 (17.7) -2.84 (14.6) -2.39 (17.5) 

Median [Min, Max] -1.00 [-182, 239] -2.00 [-85.0, 147] -1.00 [-182, 239] 

Missing 29901 (31.7%) 3300 (45.7%) 33201 (32.7%) 

Impression_Collapse-reason unknown    

Did not Occur 92200 (97.8%) 7168 (99.2%) 99368 (97.9%) 

Occurred 2094 (2.2%) 60 (0.8%) 2154 (2.1%) 

O2Int    

Mean (SD) 1.42 (5.12) 0.146 (3.19) 1.34 (5.04) 

Median [Min, Max] 0 [-84.0, 86.0] 0 [-81.0, 80.0] 0 [-84.0, 86.0] 

Missing 27728 (29.4%) 3176 (43.9%) 30904 (30.4%) 

Impression_Cardiac Arrhythmia    

Did not Occur 92568 (98.2%) 7194 (99.5%) 99762 (98.3%) 

Occurred 1726 (1.8%) 34 (0.5%) 1760 (1.7%) 

drug_GTN    

Did not Occur 90832 (96.3%) 7178 (99.3%) 98010 (96.5%) 

Occurred 3462 (3.7%) 50 (0.7%) 3512 (3.5%) 

Impression_Minor injuries - other    

Did not Occur 93776 (99.5%) 7130 (98.6%) 100906 (99.4%) 
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Occurred 518 (0.5%) 98 (1.4%) 616 (0.6%) 

DiaBPInt    

Mean (SD) -1.46 (13.5) -1.83 (11.4) -1.48 (13.4) 

Median [Min, Max] -1.00 [-127, 135] -1.00 [-73.0, 84.0] -1.00 [-127, 135] 

Missing 30059 (31.9%) 3307 (45.8%) 33366 (32.9%) 

psyc_AVPU_Confusion    

Did not Occur 90490 (96.0%) 7133 (98.7%) 97623 (96.2%) 

Occurred 3201 (3.4%) 63 (0.9%) 3264 (3.2%) 

Missing 603 (0.6%) 32 (0.4%) 635 (0.6%) 

oxygen_saturations_subsequent    

Mean (SD) 96.3 (3.30) 97.2 (2.92) 96.4 (3.28) 

Median [Min, Max] 97.0 [14.0, 100] 98.0 [17.0, 100] 97.0 [14.0, 100] 

Missing 27171 (28.8%) 3146 (43.5%) 30317 (29.9%) 

Location_Domestic Address    

Did not Occur 15303 (16.2%) 1106 (15.3%) 16409 (16.2%) 

Occurred 68004 (72.1%) 5281 (73.1%) 73285 (72.2%) 

Missing 10987 (11.7%) 841 (11.6%) 11828 (11.7%) 

drug_Morphine.Sulphate    

Did not Occur 89586 (95.0%) 7129 (98.6%) 96715 (95.3%) 

Occurred 4708 (5.0%) 99 (1.4%) 4807 (4.7%) 

Impression_Burns    

Did not Occur 94243 (99.9%) 7204 (99.7%) 101447 (99.9%) 

Occurred 51 (0.1%) 24 (0.3%) 75 (0.1%) 

Impression_No injury or illness    

Did not Occur 94126 (99.8%) 7183 (99.4%) 101309 (99.8%) 

Occurred 168 (0.2%) 45 (0.6%) 213 (0.2%) 

drug_Entonox    

Did not Occur 89453 (94.9%) 6890 (95.3%) 96343 (94.9%) 

Occurred 4841 (5.1%) 338 (4.7%) 5179 (5.1%) 

Impression_Panic attack    

Did not Occur 94078 (99.8%) 7151 (98.9%) 101229 (99.7%) 

Occurred 216 (0.2%) 77 (1.1%) 293 (0.3%) 

drug_Chlorphenamine    

Did not Occur 94123 (99.8%) 7159 (99.0%) 101282 (99.8%) 

Occurred 171 (0.2%) 69 (1.0%) 240 (0.2%) 

Impression_Headache    

Did not Occur 93387 (99.0%) 7050 (97.5%) 100437 (98.9%) 

Occurred 907 (1.0%) 178 (2.5%) 1085 (1.1%) 

Impression_Seizures (non-EP)    

Did not Occur 93531 (99.2%) 7198 (99.6%) 100729 (99.2%) 

Occurred 763 (0.8%) 30 (0.4%) 793 (0.8%) 



 

322 

 

epr_news_score_1    

Did not Occur 69887 (74.1%) 4518 (62.5%) 74405 (73.3%) 

Occurred 16801 (17.8%) 1779 (24.6%) 18580 (18.3%) 

Missing 7606 (8.1%) 931 (12.9%) 8537 (8.4%) 

Impression_Vomiting    

Did not Occur 93084 (98.7%) 7167 (99.2%) 100251 (98.7%) 

Occurred 1210 (1.3%) 61 (0.8%) 1271 (1.3%) 

Impression_Catheter problems    

Did not Occur 93956 (99.6%) 7181 (99.3%) 101137 (99.6%) 

Occurred 338 (0.4%) 47 (0.7%) 385 (0.4%) 

Impression_Pain - other    

Did not Occur 84576 (89.7%) 6293 (87.1%) 90869 (89.5%) 

Occurred 9718 (10.3%) 935 (12.9%) 10653 (10.5%) 

avpu_score_subsequent_1    

Did not Occur 68458 (72.6%) 4199 (58.1%) 72657 (71.6%) 

Occurred 450 (0.5%) 2 (0.0%) 452 (0.4%) 

Missing 25386 (26.9%) 3027 (41.9%) 28413 (28.0%) 

RRInt    

Mean (SD) -0.898 (3.94) -0.744 (3.50) -0.889 (3.91) 

Median [Min, Max] 0 [-83.0, 84.0] 0 [-76.0, 57.0] 0 [-83.0, 84.0] 

Missing 26941 (28.6%) 3114 (43.1%) 30055 (29.6%) 

drug_Adrenaline.1:1000    

Did not Occur 94158 (99.9%) 7223 (99.9%) 101381 (99.9%) 

Occurred 136 (0.1%) 5 (0.1%) 141 (0.1%) 

Impression_Haematemesis    

Did not Occur 93671 (99.3%) 7204 (99.7%) 100875 (99.4%) 

Occurred 623 (0.7%) 24 (0.3%) 647 (0.6%) 

Location_Care Home    

Did not Occur 75693 (80.3%) 6015 (83.2%) 81708 (80.5%) 

Occurred 7614 (8.1%) 372 (5.1%) 7986 (7.9%) 

Missing 10987 (11.7%) 841 (11.6%) 11828 (11.7%) 

avpu_score_primary_4    

Did not Occur 89568 (95.0%) 7033 (97.3%) 96601 (95.2%) 

Occurred 3434 (3.6%) 66 (0.9%) 3500 (3.4%) 

Missing 1292 (1.4%) 129 (1.8%) 1421 (1.4%) 

obs_supplimental_oxygen_primary    

Did not Occur 88112 (93.4%) 6998 (96.8%) 95110 (93.7%) 

Occurred 4560 (4.8%) 78 (1.1%) 4638 (4.6%) 

Missing 1622 (1.7%) 152 (2.1%) 1774 (1.7%) 

Location_Other    

Did not Occur 78858 (83.6%) 6067 (83.9%) 84925 (83.7%) 
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Occurred 4449 (4.7%) 320 (4.4%) 4769 (4.7%) 

Missing 10987 (11.7%) 841 (11.6%) 11828 (11.7%) 

Impression_Falls    

Did not Occur 87481 (92.8%) 6876 (95.1%) 94357 (92.9%) 

Occurred 6813 (7.2%) 352 (4.9%) 7165 (7.1%) 

Impression_Other medical condition    

Did not Occur 89214 (94.6%) 6742 (93.3%) 95956 (94.5%) 

Occurred 5080 (5.4%) 486 (6.7%) 5566 (5.5%) 

Impression_Choking    

Did not Occur 94216 (99.9%) 7211 (99.8%) 101427 (99.9%) 

Occurred 78 (0.1%) 17 (0.2%) 95 (0.1%) 

epr_nok_named    

Did not Occur 7556 (8.0%) 706 (9.8%) 8262 (8.1%) 

Occurred 86738 (92.0%) 6522 (90.2%) 93260 (91.9%) 

avpu_score_subsequent_3    

Did not Occur 68517 (72.7%) 4193 (58.0%) 72710 (71.6%) 

Occurred 391 (0.4%) 8 (0.1%) 399 (0.4%) 

Missing 25386 (26.9%) 3027 (41.9%) 28413 (28.0%) 

Impression_Dental    

Did not Occur 94261 (100.0%) 7213 (99.8%) 101474 (100.0%) 

Occurred 33 (0.0%) 15 (0.2%) 48 (0.0%) 

Impression_Bleeding PR    

Did not Occur 93551 (99.2%) 7192 (99.5%) 100743 (99.2%) 

Occurred 743 (0.8%) 36 (0.5%) 779 (0.8%) 

epr_news_score_2    

Did not Occur 76161 (80.8%) 5369 (74.3%) 81530 (80.3%) 

Occurred 10527 (11.2%) 928 (12.8%) 11455 (11.3%) 

Missing 7606 (8.1%) 931 (12.9%) 8537 (8.4%) 

total_component_score_subsequent_14    

Did not Occur 59914 (63.5%) 3791 (52.4%) 63705 (62.8%) 

Occurred 5499 (5.8%) 214 (3.0%) 5713 (5.6%) 

Missing 28881 (30.6%) 3223 (44.6%) 32104 (31.6%) 

Impression_Diarrhoea/Constipation    

Did not Occur 93762 (99.4%) 7211 (99.8%) 100973 (99.5%) 

Occurred 532 (0.6%) 17 (0.2%) 549 (0.5%) 

Location_Public Place    

Did not Occur 80597 (85.5%) 6052 (83.7%) 86649 (85.4%) 

Occurred 2710 (2.9%) 335 (4.6%) 3045 (3.0%) 

Missing 10987 (11.7%) 841 (11.6%) 11828 (11.7%) 

drug_Activated.Charcoal    

Did not Occur 94145 (99.8%) 7219 (99.9%) 101364 (99.8%) 
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Occurred 149 (0.2%) 9 (0.1%) 158 (0.2%) 

immob_Other    

Did not Occur 93931 (99.6%) 7225 (100.0%) 101156 (99.6%) 

Occurred 363 (0.4%) 3 (0.0%) 366 (0.4%) 

total_component_score_primary_12    

Did not Occur 90588 (96.1%) 6907 (95.6%) 97495 (96.0%) 

Occurred 805 (0.9%) 50 (0.7%) 855 (0.8%) 

Missing 2901 (3.1%) 271 (3.7%) 3172 (3.1%) 

Impression_Asthma    

Did not Occur 93760 (99.4%) 7165 (99.1%) 100925 (99.4%) 

Occurred 534 (0.6%) 63 (0.9%) 597 (0.6%) 

drug_Ondansetron    

Did not Occur 91736 (97.3%) 7181 (99.3%) 98917 (97.4%) 

Occurred 2558 (2.7%) 47 (0.7%) 2605 (2.6%) 

epr_news_score_5    

Did not Occur 81516 (86.4%) 6111 (84.5%) 87627 (86.3%) 

Occurred 5172 (5.5%) 186 (2.6%) 5358 (5.3%) 

Missing 7606 (8.1%) 931 (12.9%) 8537 (8.4%) 

drug_Salbutamol    

Did not Occur 89012 (94.4%) 7103 (98.3%) 96115 (94.7%) 

Occurred 5282 (5.6%) 125 (1.7%) 5407 (5.3%) 

Impression_Cold & flu    

Did not Occur 94186 (99.9%) 7207 (99.7%) 101393 (99.9%) 

Occurred 108 (0.1%) 21 (0.3%) 129 (0.1%) 

psyc_CatastrophicHaemorrhage_No    

Did not Occur 37 (0.0%) 4 (0.1%) 41 (0.0%) 

Occurred 71580 (75.9%) 5529 (76.5%) 77109 (76.0%) 

Missing 22677 (24.0%) 1695 (23.5%) 24372 (24.0%) 

Impression_Hypertension    

Did not Occur 93941 (99.6%) 7187 (99.4%) 101128 (99.6%) 

Occurred 353 (0.4%) 41 (0.6%) 394 (0.4%) 

Impression_Bite/sting    

Did not Occur 94263 (100.0%) 7217 (99.8%) 101480 (100.0%) 

Occurred 31 (0.0%) 11 (0.2%) 42 (0.0%) 

Impression_Poisoning    

Did not Occur 94040 (99.7%) 7197 (99.6%) 101237 (99.7%) 

Occurred 254 (0.3%) 31 (0.4%) 285 (0.3%) 
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Appendix I: Hyperparameter values per cluster 

 

Model eta max_depth 

min_child 

_weight subsample 

Colsample 

_bytree gamma alpha 

scale_pos 

_weight n_rounds 

Airedale 0.06 4 4 0.9 0.6 0.5 0.6 1 408 
Barnsley 0.06 3 4 1 0.6 1 0.7 0.67 630 
Bradford 0.06 3 2 0.7 0.9 0.5 0.6 2.1 395 
Calderdale 0.06 3 2 0.9 0.6 0.5 0.8 0.68 477 
Dewsbury 0.06 3 4 0.9 0.6 1 0.6 1.49 463 
Doncaster 0.06 3 2 0.9 0.6 1 0.7 1.01 453 
Harrogate 0.08 3 4 0.9 0.6 0 0.7 0.85 467 
Huddersfield 0.06 3 2 0.9 0.9 0 0.7 0.83 516 
Hull 0.06 3 4 0.9 0.6 1 0.7 0.9 472 
Middlesborough 0.08 4 2 0.9 0.9 0.5 0.8 1.37 261 
Leeds 1 0.06 3 4 0.9 0.6 0 0.7 0.68 485 
Sheffield 0.06 3 4 0.9 0.6 0 0.6 1.13 411 
Wakefield 0.06 4 2 0.7 0.6 1 0.7 1.06 330 
Rotherham 0.06 3 4 0.9 0.6 0.5 0.8 0.81 524 
Scarborough 0.06 3 4 0.9 0.9 0.5 0.6 0.41 577 
Leeds 2 0.06 4 4 0.9 0.9 0 0.7 1.26 348 
York 0.06 4 4 0.9 0.9 1 0.8 0.86 367 
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Appendix J: ROC and calibration curves for the IECVmodels 
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