
A Quality-aware Cloud Selection Service for

Computational Modellers

Shahzad Ahmed Nizamani

Submitted in accordance with the requirements for the degree of

Doctorate of Philosophy

The University of Leeds

School of Computing

July, 2012

- ii -

The candidate confirms that the work submitted is his own, except where work

which has formed part of jointly-authored publications has been included. The

contribution of the candidate and the other authors to this work has been explicitly

indicated below. The candidate confirms that appropriate credit has been given

within the thesis where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper

acknowledgement.

© 2012 The University of Leeds and Shahzad Ahmed Nizamani

- iii -

Acknowledgements

I would like to start by expressing my gratitude to both my supervisors Professor

Peter Dew and Dr. Karim Djemame. It has been a genuine pleasure working with

them. I would like to thank you again for your energy, commitment, interest and

support throughout the course of my studies.

 I am also grateful to Professor Peter Jimmack and Sarfaraz for proving a

user‟s perspective on the research and for providing information on the

computational modelling; and to Dr Brandon Bennet for his input on the ontology.

 Thanks to all the people in the Collaborative Systems and Performance

Research Group at the School of Computing, University of Leeds who informed and

influenced my work. I wish to offer special thanks to all my friends in Leeds

specially those in Lab 7.14 for making my days more interesting and entertaining.

 I would like to take this opportunity let my family formally know that I

admire their support very much. To my father Sher Ahmed thank you for your

constant belief in me regardless of the challenge, to my mother Zebunissa thank you

for choosing my education over my company, to my wife Rabia thank you for your

patience and support, to my daughter Eliza thank you for bringing a smile to my

face every day and not forgetting my sister Sanobar thank you for your

encouragement. I would also like to thank my grandparents; not forgetting the many

uncles and aunts thank you everyone.

 Last and by no means least I would like to thank Mehran University of

Engineering & Technology and Higher Education Commission Pakistan; without

funding it would have never happened.

- iv -

Publications

The research presented in chapters 4 to 6; describing the architecture,

implementation and evaluation of the QaComPS has been summarized and

presented in the following publications.

[to appear] Shahzad Nizamani; Peter Dew; Karim Djemame A Quality-aware

Cloud Selection Service for Computational Modellers. International Journal of

Cloud Computing. 2013: Inderscience.

Peter Dew; Shahzad Nizamani; QAComPS: A Quality-aware Federated

Computational Semantic Web Service for Computational Modellers. Semantic Web

and Web Services. 2011:World Comp.

- v -

Abstract

This research sets out to help computational modellers, to select the most cost

effective Cloud service provider. This is when they opt to use Cloud computing in

preference to using the in-house High Performance Computing (HPC) facilities.

 A novel Quality-aware computational Cloud Selection (QAComPS) service

is proposed and evaluated. This selects the best (cheapest) Cloud provider‟s service.

After selection it automatically sets-up and runs the selected service. QaComPS

includes an integrated ontology that makes use of OWL 2 features. The ontology

provides a standard specification and a common vocabulary for describing different

Cloud provider‟s services. The semantic descriptions are processed by the

QaComPS Information Management service. These provider descriptions are then

used by a filter and the MatchMaker to automatically select the highest ranked

service that meets the user‟s requirements. A SAWSDL interface is used to transfer

semantic information to/from the QAComPS Information Management service and

the non semantic selection and run services.

QAComPS selection service has been quantitatively evaluated for accuracy

and efficiency against Quality Matchmaking Process (QMP) and Analytical

Hierarchy Process (AHP). The service was also evaluated qualitatively by a group

of computational modellers. The results for the evaluation were very promising and

demonstrated QaComPS‟s potential to make Cloud computing more accessible and

cost effective for computational modellers.

- vi -

Table of Contents

Acknowledgements ... iii

Publications ... iv

Abstract .. v

Table of Contents ... vi

List of Tables .. xi

List of Figures .. xii

Abbreviations ... xiv

Chapter 1 Introduction ... 1

1.1 Research Aims & Objectives ... 4

1.2 Research Methodology... 6

1.3. Research Questions ... 7

1.4. Thesis Output and Contributions .. 8

1.5. Thesis Outline ... 9

Chapter 2 Background to Concepts and Technologies .. 11

2.1. Web Service .. 11

2.1.1. Functional properties of a Web service ... 12

2.1.2. QoS properties of a Web Service .. 13

2.1.3. Evolution of Web Services ... 14

2.2. Selection of Web Services .. 14

2.2.1. Euclidean Distance Algorithm .. 15

2.2.2. AHP (Analytical Hierarchy Process) .. 16

2.2.3. Quality Matchmaking Process (QMP) .. 18

2.3. Service Ontology ... 18

2.3.1 Ontology ... 19

2.3.1.1. Ontology Components .. 19

2.3.2. WS-QoSOnto .. 20

2.3.3. Other research ... 21

2.4. Service Brokers ... 21

2.5. Semantic Web Services (SWS) ... 23

2.5.1. Overview of Semantic Web .. 23

- vii -

2.5.1.1. Uniform Resource Identifier (URI) and Unicode 25

2.5.1.2. Extensible Markup Language (XML) and Namespace 25

2.5.1.3. RDF (Resource Description Framework) 25

2.5.1.4. Web Ontology Language (OWL)...................................... 28

2.5.1.5. Semantic Web Summary ... 28

2.5.2. Introduction to Semantic Web Services (SWS) 29

2.5.2.1. Ontology Based SWS .. 29

2.5.2.2. Annotation-Based SWS .. 31

2.5.3. Advantages of Semantic Web Services... 32

2.5.3.1. Automating Web Services .. 33

2.5.4. Semantic Web Services Conclusion.. 34

2.6 Cloud computing Services ... 34

2.6.1. Cloud Service Deployment Models .. 36

2.6.2. Cloud Computing Advantages and Challenges 37

2.6.2.1. Advantages of Cloud computing 37

2.6.2.2. Challenges faced by Cloud computing 38

2.6.3. HPC Grids and Computational Clouds ... 39

2.6.3.1. Cluster Computing .. 39

2.6.3.2. Grid Computing Services .. 39

2.6.3.3. Semantic Grid.. 40

2.7. Cost analysis of Cloud computing against HPC 42

2.7.1. Performance analysis of Cloud computing against HPC 43

2.7.1.1. Compute performance analysis ... 44

2.7.1.2. Cloud performance benchmarks 45

2.7.1.3. Cloud performance variability .. 46

2.7.2. Cloud security and usability: ... 47

2.8. Implications of Literature Review .. 48

Chapter 3 Analysis of Current Practice .. 50

3.1. Overview of the research problem .. 51

3.2. Current practice for acquiring computational resources 52

3.2.1. Current practice: Introduction ... 52

3.2.2. Interviews with the experts ... 54

3.2.2.1. Computational modeller interview 54

3.2.2.2. Lab Director Interview .. 55

- viii -

3.2.3. Current Practice Summary .. 56

3.3. Problem scenario for the evaluation .. 57

3.4. Information broker for selecting the best Cloud provider‟s service 58

3.4.1. Design of the Information Broker ... 59

3.4.2. Implementation of the Information Broker 61

3.4.3. Formative evaluation of the Information broker 62

3.4.3.1. Evaluation experiment setup ... 62

3.4.4. Evaluation results .. 64

3.4.4.1. Evaluation of the Information Broker and their

Implications ... 65

3.5. Envisioned requirements ... 65

3.5.1. Research Requirements ... 66

3.5.2. System requirements ... 67

3.6. Summary ... 68

Chapter 4 Architecture of the QaComPS ... 69

4.1. Overview of the QaComPS ... 69

4.2. Input User Requirements... 71

4.2.1. Functional Inputs ... 71

4.2.2. QoS Inputs ... 73

4.2.3. Service Interface for Inputting Information 74

4.3. QAComPS Information Management Service .. 75

4.3.1. QoS Metrics .. 76

4.3.2. Service Ontology ... 78

4.3.3. Storing Semantic Information ... 81

4.3.4. Filtering Providers ... 81

4.3.5. SAWSDL annotations for Communication between Services...... 83

4.3.5.1. Model References for Sharing Descriptions 83

4.3.5.2. Lifting/Lowering Schema Mapping for Transfer of

Information .. 83

4.3.6. Information Update ... 84

4.4. QaComPS Selection Service ... 85

4.4.1. Architecture of the QaComPS Selection Service 85

4.4.2. MatchMaker .. 87

4.4.2.1. Ranking Providers ... 87

4.3.2.2. Selection .. 92

- ix -

4.4.3. QaComPS Selection Conclusion ... 99

4.5. Run Service ... 100

4.6. Conclusion .. 101

Chapter 5 Implementation of the QaComPS Prototype 103

5.1. QaComPS Information Management service Implementation 103

5.1.1. Implementing Service Ontology ... 103

5.1.1.1. Classes ... 104

5.1.1.2. Properties .. 105

5.1.1.3. Instances .. 107

5.1.2. Implementing RDF Manager .. 107

5.1.3. Implementation of the Database ... 110

5.1.4. Information Management service User Interface 110

5.1.5. Implementing Filter Component ... 111

5.2. Implementation of QaComPS Selection Service 112

5.2.1. Implementing Ranking Component .. 112

5.2.2. Implementing Selection Component ... 115

5.2.3. QaComPS User Interface .. 117

5.3. Implementing RUN Service .. 118

5.3.1. Running EC2 VMs .. 118

5.3.2. Run Service Interface .. 119

5.4. Conclusion .. 120

Chapter 6 Evaluation .. 121

6.1. Quantitative Evaluation of QaComPS .. 122

6.1.1. Objective ... 122

6.1.2. Setup .. 122

6.1.3. Results ... 126

6.1.4. Analysis of Results .. 129

6.2. Experiment 2: Comparing QaComPS against QMP and AHP 130

6.2.1. Objective ... 130

6.2.2. Setup .. 130

6.2.3. Results ... 130

6.2.4. Analysis of Results .. 132

6.3. Evaluation experiment using Cloud providers .. 132

- x -

6.3.1. Objective ... 132

6.3.2. Setup .. 132

6.3.3. Results ... 138

6.3.4. Analysis of Results .. 140

6.4. Early User Evaluation ... 140

6.4.1. Evaluation Process .. 141

6.4.2. Evaluation Results ... 142

6.5. Conclusion .. 143

Chapter 7 Conclusion and Future Work .. 145

7.1. Research Findings ... 145

7.2. Future Work .. 147

7.2.1. Future Work for QaComPS ... 147

7.2.1.1. Extending QaComPS .. 147

7.2.1.2. Improving Service Automation 147

7.2.1.3. Further Evaluation ... 148

7.2.2. Getting Closer to a “Guaranteed” Solution 148

7.2.3. Further Applications of QaComPS ... 149

List of References .. 151

Appendix A Examples of Provider’s RDF Profile ... 158

A.1. RDF description of AmazonEC2Small .. 158

A.2. RDF Description for GoGridSmall .. 160

A.3. RDF Description for FlexiscaleSmall .. 161

A.4. RDF Description for RackspaceSmall ... 163

Appendix B: Initial Scenarios .. 166

B1. User Scenario 1: Cloud Broker for Computational Modellers 166

B.2. User Scenario 2 (Cost based selection): ... 168

B.3. User Scenario 3 (QoS) .. 169

Appendix C: Cloud Provider Profiles ... 170

C.1. Amazon EC2 .. 170

C.2. FlexiScale ... 172

C.3. Rackspace ... 173

C.4. GoGrid .. 173

Appendix D: Interview Script for Qualitative Evaluation of QaComPS 174

- xi -

List of Tables

Table 2.1: Key challenges and their solutions .. 38

Table 2.2: Specifications of HPC clusters ... 44

Table 3.1: Ben’s functional requirements ... 58

Table 3.2: Ben’s QoS requirements ... 58

Table 3.3: Provider’s functional values ... 63

Table 3.4: Provider’s QoS values ... 63

Table 4.1: QAComPS Cost Model ... 72

Table 5.1: Object Properties in the QaComPS Service Ontology 105

Table 5.2: Data properties associated with QaComPS Service Ontology 106

Table 6.1: List of simulated Cloud Providers ... 124

Table 6.2: User requests ... 125

Table 6.3: VM descriptions .. 133

Table 6.4: QoS Cost Table .. 136

Table 6.5: Initial QoS values .. 138

Table B.1: Ben’s Requirements ... 168

Table B.2: QoS and Cost ratings ... 168

Table C.1. Amazon EC2 VMs .. 170

- xii -

List of Figures

Figure 2.1: Web Service Architecture ... 12

Figure 2.2: AHP hierarchy ... 17

Figure 2.3: Core QoS properties .. 20

Figure 2.4: Semantic Web stack .. 24

Figure 2.5: RDF graph describing Eric Miller ... 26

Figure 2.6: OWL-S Ontology ... 30

Figure 2.7: SAWSDL .. 32

Figure 2.8: Cost effectiveness of Cloud versus HPC .. 45

Figure 2.9: Performance comparison between an Amazon EC2 VM and a

physical machine .. 46

Figure 2.10: Performance variance for Amazon EC2 ... 47

Figure 3.1: The requirement analysis framework ... 51

Figure 3.2: Information Broker Architecture .. 60

Figure 3.3: Information Broker User Interface ... 61

Figure 4.1: Overview of the QaComPS Architecture .. 70

Figure 4.2: QaComPS service interface .. 74

Figure 4.3: QaComPS Information Management Service 75

Figure 4.4a: Provider’s ontology ... 79

Figure 4.4b: QoS Ontology ... 79

Figure 4.4c: Filter Ontology ... 79

Figure 4.5: Query for extracting small sized VMs ... 82

Figure 4.6: SPARQL query for extracting providers with user’s required

QoS .. 82

Figure 4.7: Lifting Schema Mappings ... 84

Figure 4.8: QaComPS Architecture .. 86

Figure 4.9: Hierarchy for selecting Cloud Provider VM 93

Figure 4.10: Relative importance of each criteria .. 96

Figure 4.11: Relative importance of each criteria .. 98

Figure 4.12: Run Service .. 101

Figure 5.1: Service Ontology Classes .. 104

- xiii -

Figure 5.2: Instances associated with QaComPS Service Ontology 107

Figure 5.3: Code for modelReasoner ... 108

Figure 5.4: RDF description for Provider 1’s small VM 109

Figure 5.5: Information Management service Interface 111

Figure 5.6: Code for filtering providers .. 112

Figure 5.7: Code for transforming inputs to matrix .. 113

Figure 5.8: Code for calculating criteria weights ... 113

Figure 5.9: Code for calculating denominator ... 114

Figure 5.10: Code for calculating relative Euclidean distance 115

Figure 5.11: Code for squaring a 3d matrix ... 116

Figure 5.12: Code for calculating Eigenvector for a 3d matrix 117

Figure 5.13: QaComPS User Interface ... 118

Figure 5.14a: Make final selection ... 119

Figure 5.14b: Run selected Service .. 120

Figure 6.1: Mean QoS for the Simulated Providers... 122

Figure 6.2 presents the simulation results for small VM. 126

Figure 6.3: Simulation results for Medium VM ... 127

Figure 6.4: Simulation results for Large VM ... 128

Figure 6.5: Simulation results for Very Large VM .. 129

Figure 6.6 MatchMaker Comparisons (High QoS) .. 131

Figure 6.7 MatchMaker Comparisons (Medium QoS) 131

Figure 6.8 MatchMaker Comparisons (Low QoS)... 131

Figure 6.9 Search Trends Indicating Reputation of Cloud Providers 134

Figure 6.10: Results for Large VM .. 139

Graph 6.11: Results for very Large VM ... 139

Figure 7.1: Application of the QAComPS service .. 150

Figure B.1. User Scenario ... 167

Figure C.1. AmazonEC2 costing (Amazon 2012) ... 172

- xiv -

Abbreviations

AMI: Amazon Machine Image

API: Application Programming Interface

EC2: Elastic Compute Cloud

HPC: High Performance Computing

IaaS: Infrastructure as a Service

MCDA: Multi Criteria Decision Analysis

NIST: National Institute of Science and Technology

OS: Operating System

OWL: Web Ontology Language

PaaS: Platform as a Service

PoF: Probability of Failure

QaComPS: Quality aware Computational Cloud Selection

QMP: Quality Matchmaking Process

QoS: Quality of Service

RBAC: Roll Back Access Control

RDF: Resource Description Framework

RDFS: RDF Schema

SaaS: Software as a Service

SAWSDL: Semantic Annotations for WSDL

SLA: Service Level Agreement

- xv -

SOAP: Simple Object Access Protocol

SPARQL: SPARQL Protocol and RDF Query Language

SQL: Structured Query Language

SWRL: Semantic Web Rule Language

SWS: Semantic Web Service

URI: Universal Resource Identifier

URL: Universal Resource Locator

VM: Virtual Machine

WAH: Web Application Hosting

W3C: World Wide web Consortium

WSDL: Web Service Description Language

XML: eXtensible Markup Language

- 1 -

Chapter 1

Introduction

Computational modellers (also referred to as users) address complex, real-world

problems through building computerised models of physical phenomena. They

operate in the fields of physical, financial management and life sciences and need

access to High Performance Computing (HPC). Typically their requirements were

fulfilled by the in-house HPC machines. The benefits of the in-house HPC include

resource ownership which enables trust and security as it is a closed system.

However the computational modellers have experienced frustrations; as according to

a leading computational Professor:

“Computational modellers have been experiencing frustrations in two areas.

Firstly, they feel disadvantaged by the way local HPC facilities schedule jobs. The

turnaround time of these jobs can be unpredictable depending on the size of the

HPC job queue. Large jobs suffer the most as these are limited to weekends.

Secondly, the high cost of reliably running the service. The maintenance costs are

inflexible and do not cater very well for their computational service needs, as they

vary throughout the model development process.”

Due to this computational modellers have looked for alternatives such as

Cloud computing (Peter Mell 2011). Cloud computing has evolved over the last five

years from a hype to a market standard. According to National Institute of Standards

and Technology (NIST) “Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service

- 2 -

provider interaction”. Accessing Cloud resources is simple as all a user needs is

Internet access and a credit card. As Cloud is on-demand a user can log-on at any

time and acquire any amount of resources.

Cloud providers offer the user a choice of different Virtual Machines (VMs);

where a VM emulates a physical machine. This emulation is performed by hardware

virtualization where a physical machine is used for creating VMs. Each VM has

processor, memory, storage and other resources. Price of a VM depends on the

allocated resources (e.g. the amount of run-time memory and the number of CPU

cycles). The pricing for the VMs is pay per use as users are charged per hour for the

VMs and there are no membership fees. This is an advantage for organizations (e.g.

Universities) as they do not have to make lumping, large capital investments thus

improving their cash flow. Computational modellers benefit because there are more

on-demand service options than the “one-size-fits-all” service provided by the in-

house HPC facilities. However this does pose a challenge as more than one

provider‟s can fulfil the user‟s resource requirements. In such cases Quality of

Service (QoS) becomes the service differentiating criteria (Tran, Tsuji et al. 2009).

QoS is the rating of the provider‟s progress in terms of reliability, security, and

many other quality parameters.

It is very difficult to enforce QoS guarantees without human involvement so the

current public Cloud providers offer only “best-efforts”. This is referred to as

Quality-awareness. The Cloud providers can:

 Drop the service at any time in cases such as overload. This is critical in

terms of cost as the provider would reimburse only for the duration of the

failure. For example if a job, which is running for 10 hours has to be

restarted due to a five minute failure. The user would be reimbursed for only

five minutes. In this case the user not only loses money but also time as the

job needs to be re-run.

- 3 -

 Providers offer no guarantees concerning the response time, job throughput

etc.). For example see the Amazon EC2 service level agreement (SLA)

(Amazon 2012). Rochwerger et.al (Rochwerger 2010) argue that cloud

providers have only recently begun to address the requirements of enterprise

solutions, such as support for infrastructure service-level agreements.

Running large HPC jobs; on either local HPC or the Cloud is very expensive,

so QoS is likely to be an important concern for the users as it contains information

such as the probability of service failure. This is particularly important for users

who wish to run large computational jobs particularly if they have to meet strict time

constraints.

The research problem is to provide a service that can mediate across a

number of computational Cloud providers, to select and run (transparently) the best

(e.g. cheapest) Cloud provider‟s VM subject to user‟s requirements. A novel

Quality-aware Computational Cloud Selection (QAComPS) service is proposed to

address the aforementioned issues. Its main features are:

(1) A Cloud providers service ontology to integrate the information on the QoS

and Cloud provider‟s resources with associated costs;

(2) An automatic selection process to discover the best VM that meets the

computational modellers QoS and resources requirements;

(3) A semantic annotation for Web service description language (SAWSDL)

interface between the semantic Information Management service and the non

- 4 -

semantic selection, run services. The interface would be used for querying

and updating the QoS information.

The QaComPS service has three main elements: (1) Service ontology which

provides a consistent semantic data model for describing QoS metrics that are non-

functional properties; (2) Matchmaker to rank the Web services using a Multi

Criteria Decision Analysis (MCDA) algorithm with a predefined criterion; and (3) a

component for setting up and running the selected provider‟s VM.

1.1 Research Aims & Objectives

The aim of this research is to improve the ability of mathematical modellers in

general and computational modellers in particular, enabling them to discover and

utilize Cloud resources effectively. The key objectives for the research are as

follows:

 Explore user’s resource requirements

Computational modeller‟s resources requirements needed to be identified in

order to purse this research. These would be collected by conducting

interviews with the experts. The interviews were recorded and analysed for

user requirements. An in-depth literature review would be useful in

identifying the technical requirements.

 Design and develop a service to facilitate the user in accessing Cloud

resources

This objective concerns the main deliverable of the research i.e. QaComPS.

The service design included an Information Management service (internal)

which was responsible for storing and updating user‟s and Cloud provider‟s

- 5 -

information. This was used by the selection service for processing user‟s

queries.

 Evaluate the service for efficiency and accuracy

To a user, an accurate response in a timely fashion is of prime importance. A

matchmaker processes user‟s requests and identifies a suitable solution. In an

effort to improve the efficiency of the matchmaking process this research

introduces a novel approach to matchmaking. The MatchMaker would be

evaluated for efficiency and accuracy, against two other matchmakers

namely QMP (ELEYAN, Amna et al. 2004) and AHP (Haas and Meixner

2005) .

 Single log-on access to a broad set of Cloud providers

The number of public and private Cloud providers is on the rise. Locating a

provider and identifying the services it offer takes time as for every provider

a separate user account is required. Creating a user account requires the user

to share his credit/debit card. QaComPS enables the user to create a single

account for accessing a number of participating Cloud providers.

 Single vocabulary for Cloud providers

Cloud providers do not share a common vocabulary and use different terms

to describe the same thing this is resolved by the QaComPS as it has a single

set of terms to describe the services offered by providers.

- 6 -

1.2 Research Methodology

The research methodology is composed of processes, methods and tools. System

development, quantitative and qualitative methodologies were used to achieve the

objectives of this research.

 System development methodology (Vidgen 2002) was used for developing

the envisioned system. System development was undertaken using iterative

and incremental process. This involves feedback loops for improving the

solution. The system development includes identifying the user

requirements, developing the system architecture, designing the system,

implementing the design and evaluating the prototype.

 Quantitative methodology involves measurement and analysis of variables

between methods (Denzin and Lincoln 2011). This is used for evaluating

similar systems for efficiency and accuracy. The evaluation process is

objective and is based on an algorithm. In the context of this work QaComPS

selection process was quantitatively evaluated against QMP and AHP

selection processes.

 Qualitative methodology is the set of activates used for observing the

behaviour of a system. This is undertaken by a group of experts in the field.

This method of evaluation is subjective as it is based on the group‟s

observations. Use of questionnaires and audio visual aids assist the developer

in undertaking this methodology. In the context of this research a group of

computational modellers were available for applying this methodology.

Scenarios create real world models of the problem and are used for

undertaking qualitative methodology. A scenario describes the problem as a

- 7 -

story which describes all the actors (people) involved along with their

specific roles and relations (Rosson 2002). A scenario was created for

capturing/analysing user‟s practices, requirements and research problems.

1.3. Research Questions

The study for the novel QaComPS service is driven by the following research

questions:

(1) Which QoS parameters to track and how to effectively update the QoS

information?

A number of QoS parameters are associated with a Cloud provider

and choosing the most important parameters and manage those remains to be

addressed.

(2) Can a service ontology effectively describe QoS information and offer a

single vocabulary for describing different Cloud providers?

At the moment there is no standardised way of describing a Cloud

provider. Describing the providers in a standard way would simplify the

process of comparing the providers.

(3) How to effectively communicate, semantic information to non semantic

services and non semantic information to semantic services?

The proposed solution has semantic storage of the information while the

selection and run are non-semantic. SAWSDL annotations are proposed for

- 8 -

offering a seamless channel of communication between the semantic and

non-semantic services.

(4) Does a combination of ranking and selection algorithms perform better than

a single selection algorithm?

Traditionally a single selection is used for the selection purpose. This

research proposes a multi stage selection process with ranking and a

selection steps. However whether the selection method improves the

efficiency and accuracy remains to be answered.

1.4. Thesis Output and Contributions

The output of the thesis is a novel QaComPS service. The QaComPS architecture

includes a service ontology for describing Cloud providers and QoS metrics for

describing the performance of a provider.

This research has made a number of original contributions. The main

contributions of the research include a novel QaComPS service; a cost model

capable of translating physical cost (what one pays) into the QoS cost (value for

money); and the use of SAWSDL to seamlessly transfer QoS information between

semantic and non semantic services. Some of the contributions are as follows:

(1) In the current scenario users are at the risk of getting locked onto a single

provider as each provider has its own vocabulary, access protocol and

pricing. The semantic descriptions of Cloud providers mean that QaComPS

has a single vocabulary for describing providers. It also enables the users to

access multiple providers through a single logon.

- 9 -

(2) Quality awareness means that the QaComPS tracks the QoS for each

provider thus enabling the user‟s to make informed selection decisions.

(3) QaComPS has an easy to use interface with a minimalistic number of inputs.

This is used for querying the semantically stored Cloud provider‟s

information.

(4) QaComPS effectively and efficiently processes user‟s queries for Cloud

resources by filtering, ranking and selecting the best provider‟s VM; out of

the many available VMs.

(5) QaComPS has the potential to be applied to other domains where quality

aware selection is required. Examples include other research domains such

where quality aware decision making is required. The design of the

QaComPS is loosely dependent on the computational modelling domain.

1.5. Thesis Outline

The thesis is organized into seven chapters; the structure for the remainder of the

thesis is given below:

Chapter 2 analyse the Cloud computing against the existing HPC computing

solutions. This chapter also presents a review of the different technologies used for

developing the proposed solution. These include web services, selection algorithms

used for selecting web services and the semantic Web.

Chapter 3 presents an analysis of the current practices. These are analysed in

light of the literature. This also includes interviews with the experts in the

computational modelling domain. The purpose of the analysis is to identify the

research requirements for the envisioned solution.

- 10 -

Chapter 4 proposes the Quality aware Computational Cloud Selection

(QaComPS) service, to meet the requirements outlined in chapter 3. The architecture

for the QaComPS service was developed as the main deliverable for this research.

This chapter describes the five stages involved in the processing of a user‟s query.

Furthermore the chapter also presents the SAWSDL annotations; these form the

communication channel between the semantic and non semantic services.

Chapter 5 presents the implementation of the QaComPS. This includes the

individual implementation of three sub services namely Information Management,

Selection and Run which form the QaComPS.

Chapter 6 presents the quantitative and the qualitative evaluation of the

QaComPS. The quantitative evaluation measured the performance and accuracy of

the QaComPS selection process against the QMP and AHP selection processes. The

qualitative evaluation was carried out by two experts who were part of the

requirements analysis process.

Chapter 7 concludes the thesis by summarizing the major outcomes of this

research. The chapter also points to the different directions in which this research

can be continued.

- 11 -

Chapter 2

Background to Concepts and Technologies

This chapter provides the background and related work associated for this research.

The chapter includes literature regarding Web services in section 2.1, as the main

deliverable of this research is a Web service. The selection of Web services is

described in the section 2.2. Section 2.3 describes the service ontology and presents

research associated with ontology based selection. Service broker and its role in the

service oriented computing are described in the section 2.4. Section 2.5 describes the

semantic Web along with semantic Web services (SWS). The sixth section describes

the Cloud service providers. The next section presents an in depth analysis of the

Cloud computing technology against the existing Cluster (in house) and Grid

computing technologies. The final section describes the implications of the literature

review.

2.1. Web Service

Today a user has a choice of multiple platforms such as Windows, Mac and Linux.

These operate differently and software developed for one cannot be used with the

other. This lack of interpretability points to a need for software that can be used

globally without being tied down to a specific platform. This platform independence

is achieved by Web Services which interact over the Internet; using a Web browser

(Srivastava and Koehler 2003).

A Web service is a software application that can publish its functions and

messages to the rest of the world through the Internet and is accessible through

many computing devices. The key advantage of a Web service over a traditional

software application is its global accessibility and platform independence

(W3Schools 2012).

- 12 -

Figure 2.1: Web Service Architecture (Perrey and Lycett 2003)

As shown in figure 2.1 a Web service has three associated parties namely the

service provider, the service requester (also referred to as user or consumer) and the

service broker. The communication channel between a service user and a provider is

Simple Object Access Protocol (SOAP). SOAP uses eXtensible Markup Language

(XML) for messaging. The XML message is formatted using Hypertext Transfer

Protocol (HTTP) and uses Simple Message Transfer Protocol (SMTP) for

transmission (Box, Ehnebuske et al. 2000; Curbera, Duftler et al. 2002).

Web service are described using Web Service Description Language

(WSDL) (Curbera, Duftler et al. 2002). WSDL descriptions contain information

relating to types, operations and binding. Types describe the type of data being

processed such as string or number. The operations is the list of functions that the

service can perform, The binding contains details of the physical network necessary

for communication for example IPs addresses and ports.

2.1.1. Functional properties of a Web service

Functional properties describe the information associated with the functionality of a

service. This consists of service inputs and outputs along with pre/post conditions,

associated with the functioning of the service. The information is available through

the service provider as it enables the user to select the service. (Ran 2003)

- 13 -

2.1.2. QoS properties of a Web Service

According to Software Engineering Institute (SEI) QoS is “The probability that a

system will deliver particular levels of measureable computational and

communication properties such as availability, bandwidth, latency, and jitter.

Policies and mechanisms typically are designed to control and improve the quality

of service of a system” (Linda Northrop 2006). A simpler definition for QoS is

given by (Zhou and Niemela 2006) which describes it as a measure of non

functional requirements such as reliability and security.

QoS properties are used for evaluating the degree to which a service meets

the specified quality requirements. There are two types of QoS properties these are

technical QoS properties and managerial QoS properties which are further divided

into sub-properties. Technical properties describe the properties related to service

operation such as reliability, security, and availability. Managerial properties are

associated with the service management such as cost, payment, contract and

ownership. (Zhou, Niemela et al. 2007)

A set of sub-properties may be associated with a QoS property for example

performance is a measure of response time and latency. Attributes of QoS properties

such as complexity, dynamics and unit are required for measuring QoS. The value of

a QoS property is either positive or negative such as higher reliability is good while

higher cost is bad therefore reliability has a positive value while cost has a negative

value. (Tran, Tsuji et al. 2009)

A large amount of research has been done into QoS associated with Web

services. This is mainly concerned with the areas of performance, security and trust.

Ran et al. has grouped QoS properties into four groups. These are cost, security,

runtime and transaction support. Other works have focused on service availability,

throughput and response time (Menasce 2002). Tran et al. has described QoS

elements as part of an ontology this is described in section 2.4.2.

- 14 -

2.1.3. Evolution of Web Services

In the year 2000 Microsoft proposed Web services which employed XML, SOAP,

and WSDL. The key motivation behind Web services was e-commerce. (Levitt

2001).

One of the major advances for Web services was the development of

composite services. A composite service combines the functionality of multiple

services to reach a specific goal. An individual service can do a single task while a

composite service could achieve a large complex task. (Claro, Albers et al. 2006).

An example of this could be booking a holiday where a customer has to book a

flight, taxi, and a hotel. These tasks can either be booked through three individual

services or by one composite service. Composite services are dependent on an

effective selection algorithm as these have to identify and select the most suitable

service for each task. Web service selection is not only crucial to the effective

working of composite services but also vital to the selection of individual services

by a user. Therefore multiple approaches to the selection of the Web services have

been proposed over the past decade.

2.2. Selection of Web Services

The simplest form of service selection involves matching user‟s request with the

functional properties of the available services. The selection process involves using

conditional programming such as if-else constructs. These are used to compare two

values and reach a decision. (Pratt and Zelkowitz 1984)

The key issue faced by the functional selection is its inability to differentiate

among services offering the same functionality. In an effort to improve the selection

new algorithms were proposed which employed QoS parameters. (Serhani, Dssouli

et al. 2005). Tran et al. (Tran, Tsuji et al. 2009) argues that:

“With a number of Web services having similar functionality, it is necessary to rank

those services to select the best Web services for a request. QoS information which

- 15 -

can reflect user’s expectation and experience of using a service is often used as the

distinguishing factor in a service ranking algorithm.”

 The use of QoS parameters is also argued by others, including Godse el al.

who states that multiple service providers can match a user‟s functional

requirements thus QoS requirements act as the differentiating criterion (Godse,

Bellur et al. 2011).

As argued above an effective way of using functional selection is in

conjunction with QoS based selection. A number of existing selection algorithms

such as Euclidean Distance (Danielsson 1980) and Analytical Hierarchy Process

(AHP) (Saaty 2003) have been used for processing the user‟s QoS requirements.

2.2.1. Euclidean Distance Algorithm

Euclidean distance algorithm is a type of Multi Criteria Decision Analysis (MCDA)

algorithm. MCDA is the study of complex decisions with conflicting inputs such as

comparing reliability to cost. MCDA decision making involves assigning each

criterion a weight and evaluating them explicitly. (Koksalan, Karwan et al. 1984;

Triantaphyllou 2000).

Euclidean distance algorithm (Danielsson 1980) is used for QoS based

service matchmaking. The matchmaking process is based on the requester‟s

preferences which are compared to the QoS of available services. The service with

the smallest distance to the preferences will be ranked highest or in other words; the

smaller the Euclidean distance the better the service. The algorithm has been used

extensively; in the field of computing (Montanari 1968).

There are three sets of inputs to the algorithm. These are historic QoS data,

individual value of each parameter and the relative weight of each parameter. The

parameter value represents the individual value associated with each QoS parameter

for example 3 out of nine for cost. The parameter weight represents the priority of

each parameter compared to the others. For example cost is twice as important as

- 16 -

reliability. Historic QoS data builds overtime and reflects the QoS associated with

each service on offer. For example provider A has a rating of 7/10 for reliability.

The historic data is managed by an independent third party such as a service broker.

The user inputs the required QoS values and the weights. A normalized

weight of each QoS parameter is calculated using pair wise comparisons with the

user‟s inputs. The criteria weights indicate the relative importance of each QoS

parameter. These are used with the historic data to produce the ranked list of

services.(Koivunen 2001).

2.2.2. AHP (Analytical Hierarchy Process)

AHP is also a type of MCDA algorithm, proposed by Saaty et al (Saaty 1980).

Unlike Euclidean distance AHP returns a single result.

The AHP based solution has three phases: problem decomposition,

comparative judgments, and priority synthesis. The problem decomposition consists

of distributing the problem into more comprehendible sub problems as shown in

figure 2.2. The comparative judgements are made by pair-wise comparison of each

criterion. This used for specifying the relative importance of each criterion.

Sensitivity analysis is the final phase in which each alternative solution is combined

with the relative local rank to generate the overall ranking. (Saaty 2008)

- 17 -

Figure 2.2: AHP hierarchy

Figure 2.2 shows the hierarchy of AHP which is distributed into four tiers.

The first tier describes the overall goal which contains a description of the problem

along with the objectives. The next tier describes the criterion which affects the

decision process. There is no specific number defined as to how many criterions

should be used as one can use any number but care should be taken as more criterion

means more processing time. The third tier describes the sub criterion; this is

optional. The fourth and final section describes the alternatives. Alternatives contain

all the possible solution such as when buying a selecting a provider all the available

providers would be presented as alternatives. (Saaty 2008)

The AHP algorithm is useful for addressing specific problems and not so

useful towards general problem. This is due to the unique criteria and priority

- 18 -

associated for each problem. For example an AHP setup for flight booking service

cannot be used for hotel booking as both involve a different set of criteria and

alternatives.

2.2.3. Quality Matchmaking Process (QMP)

QMP was proposed by Eleyan et al. during his PhD at the University of Manchester.

Eleyan et al. describes quality matchmaking as “a process that requires the quality

matchmaker to match the quality inquiry to all the quality advertisements”. The

matchmaking is performed by the Euclidean Distance algorithm. This measures the

nearest Web service to the specifications of the requester.

Inputs to the system are the requester‟s quality preferences that are fed to the

AHP method. This outputs the quality criteria weights, which are inputted to the

Euclidean Distance method. The Euclidean Distance method measures the distance

between the user‟s quality requirements and the quality specifications specified by

the service providers.(ELEYAN, Amna et al. 2004)

QMP is interesting in the sense that it uses Euclidean distance algorithm

instead of AHP as the main selection algorithm; as AHP returns a single result while

Euclidean distance returns a ranked list. Another aspect of QMP is it‟s reduced set

of requirements as the weights are calculated. The QMP was upgraded to include a

filter, and an interface matchmaking component (ELEYAN 2011).

2.3. Service Ontology

A number of QoS based ontologies for service selection have been proposed these

include (Maximilien and Singh 2004), (Zeng, Benatallah et al. 2004), (Tran, Tsuji et

al. 2009) and (Godse, Bellur et al. 2011). It is argued by Maximilien et al. that the

current Web service standards lack means for expressing a service‟s QoS attributes

(Maximilien and Singh 2004). The work proposes using ontology for describing

QoS attributes; it also proposes a new QoS ontology.

- 19 -

2.3.1 Ontology

Ontology is a formal representation of knowledge as a set of concepts within a

domain and their association with one another. These are used for the effective

sharing of knowledge and its reuse (Gruber 2008). A domain is a set of entities

which share a common interest, for example football, cricket and hockey fall under

the domain of sport. Domains can be connected with other domains and can also

have sub domains. This enables domain experts to design their ontology and connect

it to larger parent ontologies. There is a wide array of online ontologies; produced

by W3C (W3C 2012) and many others (Smith and Grenon 2002; Jaiswal, Avraham

et al. 2005; Ruebenacker, Moraru et al. 2007; Cassidy 2008).

2.3.1.1. Ontology Components

In order to ensure interoperability between ontologies a common structure is

followed irrespective of the language used for expressing the ontology. Common

components associated with ontologies are described below (Gruber, 2008)

(1) Individuals: represents the instances and objects associated with ontology.

For example University is a concept while University of Leeds is an

individual as it physically exists.

(2) Classes: concepts in Ontology can be presented as Classes and Subclasses.

(3) Properties: the object properties describe the connections between classes

while the data properties describe the data associated with the classes.

(4) Relations: represent how classes are related to one another such as child

class, parent class.

(5) Restrictions: associated with properties are used for verifying inputs.

- 20 -

(6) Events: mark the changing of attributes or relations.

2.3.2. WS-QoSOnto

Tran et al proposes a QoS ontology namely WS-QoSOnto and associated QoS

based ranking algorithm for selecting Web services (Tran, Tsuji et al. 2009). The

proposed solution consists of a service ontology for describing QoS properties, and

relations. It is proposed that WS-QoSOnto will improve the process of Web service

selection which is a key prerequisite to an effective implementation of composite

Web services. The proposed selection process uses AHP selection algorithm.

Tran et al. has evaluated WS-QoSOnto against a variety of existing QoS

models including DAML-QoS (Zhou, Chia et al. 2004), WSMO-QoS (Li and Zhou

2009) and OWL-Q (Kritikos and Plexousakis 2007). The ontology presented as part

of this work is very descriptive and QoS parameters specified in that ontology are

part of this research. WS-QoS ontology facilitates specification of QoS at different

quality levels while the AHP algorithm implementation has fared well for selection.

Figure 2.3: Core QoS properties(Tran, Tsuji et al. 2009)

- 21 -

This work also includes a list of core QoS properties as shown in figure 2.3.

There are ten high level properties including reliability, security and economic.

There is also a range of sub-properties such as cost which is a sub-property of the

economic. The list of properties shown is not exhaustive but does contain the most

commonly addressed properties. Out of these cost, security and reliability are

extensively studied as described in section 2.1.3. These three parameters are also

part of this research and are further described in chapter 4.

2.3.3. Other research

An alternative service ontology is given in (Godse, Bellur et al. 2011). This research

also features reliability, reputation and security QoS properties among others. The

research has identified major service selection elements and their categories. These

are performance, correctness, security, reputation while reliability was a sub-

criterion of performance.

A service ontology is proposed by (Wang, Sun et al. 2010) which considers

correctness of the elements such as robustness and accuracy over the lifetime of

each element. The need to add trust and reputation for the selection of Web services

is presented in (Wang and Vassileva 1007). This work reports on their

comprehensive investigation of trust and reputation systems in other areas. It

provides valuable observations and approaches that can be used in Web service

systems. This work also includes a typology to classify Web services from three

aspects, centralised vs. decentralised, persons/agents vs. resources, global vs.

personalised. The first aspect is of interest since the broker is an example of

decentralised system.

2.4. Service Brokers

The role of a traditional service broker is to produce and monitor SLAs (Service

Level Agreements). Service SLA contains the formal definition of the service and is

written by the service provider. Often these are legal binding between providers and

- 22 -

users and are managed separately for each service transaction. However this role

varies depending on the provider. For example, service providers which permit

negotiation can be negotiated with by the broker.

The service broker can act at three levels; (a) an Information broker which

can only offer information; (b) an information broker with decision making which

can not only share information but using selection algorithms identify the best

information; (c) a broker with information, selection and the ability to acquire the

service and set it up for the user.

A service broker uses functional properties for identifying the matching

services while most also use QoS properties in the process (Zhou and Niemela

2006). The broker is independent of provider‟s influence and can make an

independent assessment of the QoS ratings. to collect and store QoS (Altintas,

Berkley et al. 2004). The general approach for the broker is to update the QoS

database after every transaction; thus building up a historic record. For example

Lin et al (Fairley 2007) propose the broker should collect user ratings after each

transaction in order to build up the reputation database for all the services. By

delegating trust management to brokers, individual users only need to ask their

brokers about the reputation of a service before any transaction with a server. In

addition, brokers can form a trust network where they exchange and collect

reputation data about services. The only overhead for a user is the responsibility to

share the reputation the feedback with its broker. Finally Serhani et al (Serhani, R.

Dssouli et al. 2005) present a two-phase verification technique for Web services.

The first phase consists of syntactic and semantic verification of the service interface

description including the QoS parameter's description. The second phase consists of

applying a measurement technique to compute the QoS metrics stated in the service

interface and compares their values with the claimed one. A similar approach is

used in (T.Rajendran, Dr.P.Balasubramanie et al. 2010) their WS-QoS broker

architecture.

- 23 -

The service brokers are extensively researched by the Grid community. The

most relevant service brokers to this research are AssessGrid (Djemame, Padgett et

al. 2011). The AssessGrid had a QoS based SLA broker with risk assessment

support. The risk assessment component evaluated the probability of a SLA failure.

Along with the risk assessment the broker has provision for negotiation for resources

within the Grid infrastructure. Service QoS has been investigated by Djemame et al.

in the context of Cloud computing (Armstrong and Djemame 2009).

2.5. Semantic Web Services (SWS)

This sub-section first provides an overall description of the semantic Web followed

by details of the two main types of semantic web service (SWS).

2.5.1. Overview of Semantic Web

The current Web is for humans only, and consists of billions of Web pages which

are linked to one another. The semantic Web aims at converting the current Web of

documents to a Web of data. The semantic Web is for both humans and machines as

it provides meaning to the content of the Web pages and describes relationships

between entities. The semantic Web provides a common framework that allows

data to be shared and reused across application, enterprise and community

boundaries (Miller 2001).

- 24 -

Figure 2.4: Semantic Web stack(Bratt 2007)

 The concept of a semantic Web was put forward by Sir Tim Berners Lee

(Berners-Lee and Hendler 2001). He is founder of the World Wide Web (WWW)

and the director of World Wide Web Consortium (W3C). W3C leads the

collaboration of researchers and industrial partners which is working towards

realizing the semantic Web (Herman 2008). It is mainly concerned with two things:

common formats for grouping data which is extracted from a range of varied

sources; and language for describing how the data is connected to the real world

objects.

The semantic Web stack as shown in figure 2.4 represents the semantic Web

architecture. The stack is a hierarchical representation of language and technologies

that are necessary for realizing the semantic Web. Each layer of the stack exploits

and uses capabilities of the layers below.

- 25 -

2.5.1.1. Uniform Resource Identifier (URI) and Unicode

URI is a global naming scheme used to identify content on the Web. They offer high

level of flexibility through sub-types such as URL (Uniform Resource Locator) and

URN (Uniform Resource Name). The URL is used for identifying Web resources

such as Web pages for example http://google.co.uk or http://leeds.ac.uk. (Masinter,

Berners-Lee et al. 2005). URN is used for identifying objects for example ISBN

numbers (Balani 2005). URI are global and can be created and owned by anyone.

These offer an effective means for naming resources and objects on the Web.

Unicode is the computing industry standard for encoding, representing and

processing text from most of the world‟s major languages. The current version of

Unicode consists of 110,000 characters. (Consortium 2000)

2.5.1.2. Extensible Markup Language (XML) and Namespace

XML is a markup language that is used for encoding documents in a format that is

interpretable by both humans and machines. XML is defined by XML specification

which is managed by the W3C (Bray, Paoli et al. 1997). There are a number of

languages which are described using XML specification these include WSDL and

Resource Description Framework (RDF) (Berners-Lee, Handler et al. 2006).

XML namespaces are identified by a URI and are used for introducing

uniquely named elements and attributes in an XML document (Bray, Hollander et al.

1999).

2.5.1.3. RDF (Resource Description Framework)

RDF provides a consistent, standardized way to describe and query Internet

resources from text pages, graphics, audio files and video clips. It also supports

syntactic interoperability among different semantic services (Balani 2005).

RDF is a W3C specification for representing semantic information on the

Web. It is ideal for representing metadata about Web resources. RDF information is

processed by software applications rather than humans. It provides a common

http://google.co.uk/
http://leeds.ac.uk/

- 26 -

platform for exchanging of information between applications. (Manola, Miller et al.

2004)

Figure 2.5: RDF graph describing Eric Miller (Manola, Miller et al. 2004)

RDF is based on identifying resources through URI using properties and

property values. The property values along with the resources represent RDF graphs.

An RDF graph is a collection of nodes and arcs where a node represent a

subject or object while an arc represents a predicate. A subject and an object is an

individual like John or a thing like chair. In terms of English grammar a subject or

object is a noun or pronoun. A predicate shows the relationship between a subject

and an object; grammatically a predicate is a verb describing an action or state. An

RDF graph describing Eric miller is shown in figure 2.5. The graph shows four sets

of linked information the first being “me is a type-of person”, second being “me

personal title is Dr”, third being “me mailbox is em@wm.org” and the fourth being

“me full name is Eric Miller”. This graph describes “Dr Eric Miller is a person who

can be reached at em@wm.org”. As RDF is semantic, a software application would

mailto:em@wm.org
mailto:em@wm.org

- 27 -

actually understand this statement and could share it or use it. An RDF graph is

written down in the form of RDF triples where each statement in the graph is a

triple. The graph in figure 2.5 consist of four RDF triples.

There are many semantic languages associated with RDF. These include

Resource Description Framework Schema (RDF-S), and SPARQL Protocol and

RDF Query Language (SPARQL).

 RDF-S

RDF-S is a semantic extension of RDF and provides mechanisms for

describing groups of related information along with their relationships

(Balani 2005). It defines common vocabularies for RDF data models (Pan

and Horrocks 2007). These vocabularies describe properties and classes

which provide the basic descriptions of ontologies.

 SPARQL

SPARQL is a query language for querying RDF graphs. It was designed

specifically to meet the use cases and requirements identified by RDF

(Prud'Hommeaux and Seaborne 2008). SPARQL syntax is similar to that of

the widely used Structured Query Language (SQL).

A typical SPARQL query consists of prefix, select, update and where

clauses. The prefix clause is used for abbreviating URIs such as

“PREFIX dc: http://purl.org/dc/elements/1.1/” indicates that dc will be used

instead of the given URL. The select clause is used for retrieving data while

update clause is used for updating. In the following example entries from the

title column are being selected. „WHERE‟ clause is used for specifying the

http://purl.org/dc/elements/1.1/

- 28 -

conditions of selection. In the following example all the entries are being

selected from the given URL.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE {?x dc:title ?title}

2.5.1.4. Web Ontology Language (OWL)

OWL (McGuinness and Van Harmelen 2004) is an ontology language based on

RDF/XML. Compared to RDFS it facilitates greater machine interpretability of Web

content. It also provides a wider vocabulary for describing classes and properties.

OWL also offers descriptions of relationship between classes, cardinality, equality

and a richer type set of properties.

Like RDF-S, OWL can define classes, sub classes, create instances, specify

relations using object properties and associate values to instances through data

properties. It can also identify that two classes are disjoint, and identify distinct

individuals or that a data property is functional or non functional. (Horrocks, Patel-

Schneider et al. 2003)

2.5.1.5. Semantic Web Summary

The semantic web was proposed by Sir Tim Berners Lee who by creating

HTML played a vital role in the emergence of the current Web. According to

(Berners-Lee and Hendler 2001); semantic Web is the next step in the

evolution of the current Web.

The semantic Web stack illustration as shown in figure 2.4, was created by

Sir Tim Berners Lee. As of now semantic technologies up to OWL (Web Ontology

- 29 -

Language) are standardized these are being used to build semantic Web applications

such as semantic Web services.

2.5.2. Introduction to Semantic Web Services (SWS)

Semantic Web services are a synergetic confluence of semantic Web and Web

services. They have the potential to offer value-added services by automatically

discovering and assembling web services to accomplish a domain task. The overall

philosophy for SWS is also referred to as service oriented computing (SOC).

(Nandigam, Gudivada et al. 2005)

There are a number of active researchers and W3C working groups are

striving to introduce semantics into Web services. Their proposed solutions can be

sub divided into ontology based semantic Web services and annotation based

semantic Web services.

2.5.2.1. Ontology Based SWS

A Web service ontology is used to provides with a set of semantic markup languages

to provide the conceptual model (Bruijn, Bussler et al. 2005). This facilitates fuller

automation of Web service tasks, such as Web service discovery, execution,

composition and interoperation (Martin, Burstein et al. 2004). However due to its

differences with the existing WSDL based service oriented architecture, there are

limitations to the implementation of these services. In case of existing Web services

converting them to SWS through this approach involve a complete rewrite of the

service.

A number of such Web service ontologies have been proposed these include

OWL-S and WSMO (Web Service Modelling Ontology) (Vitvar, Kopecký et al.

2008).

OWL-S is an ontology language used for describing semantic Web services.

It builds on OWL and proposes to enable users and software agents to discover,

invoke, compose, and monitor Web resources with a high degree of automation.

- 30 -

OWL-S ontology has three main parts: the service profile for advertising and

discovering services; the process model, which gives a detailed description of a

service's operation; and the grounding, which provides details on how to

interoperate with a service, via messages. (Martin, Burstein et al. 2004)

Figure 2.6: OWL-S Ontology (Martin, Burstein et al. 2004)

Figure 2.6 show the three parts of OWL-S ontology where service profile

describes the function of the service, input requirements and limitations of the

service. The service model describes how to connect to a service by detailing the

semantic content of the requests and the responses. Service grounding specifies the

details on how to connect to a service. It specifies message formats, communication

protocol, and other details for contacting the service (Martin, Paolucci et al. 2007).

The biggest challenge facing OWL-S is in regards to service grounding as currently

there is no standard execution platform for OWL-S (Lara, Roman et al. 2004).

An alternative to OWL-S is Web Service Modelling Ontology (WSMO).

This provides a conceptual framework and a formal language for semantically

describing Web services with machine-process-able semantics. It helps to facilitate

- 31 -

the automation of discovering, combining and invoking electronic services over the

Web (Vitvar, Kopecký et al. 2008).

Recent work by Fensel et al. presents a formal analysis of OWL-S against

WSMO and other semantic technologies. This concludes that mediation is a key

issue facing the wider realization of semantic Web services. Regardless of the

differences WSMO also face issues in regards to service grounding which acts as a

hurdle to its adoption.(Fensel, Facca et al. 2011).

2.5.2.2. Annotation-Based SWS

Annotation-based SWS adds semantic annotations to WSDL documents. Web

Service Description Language Semantic (WSDL-S) and Semantic Annotations for

Web Service Description Language (SAWSDL) are the two annotation based SWS

solutions being worked on by W3C groups. (Akkiraju, Farrell et al. 2005; Kopecký,

Vitvar et al. 2007)

 WSDL-S is a W3C member submission for introducing semantics to

Web services. It is as an evolutionary and compatible update to the WSDL. The

proposed changes include annotating the capabilities and requirements of the Web

service with references to a semantic model. This is achieved by annotating service

inputs, outputs and operations. Mechanisms to specify and annotate preconditions

for the Web service are also part of the WSDL-S.

The WSDL-S specification was last updated in 2005. In 2006 SAWSDL

was proposed which followed the same key design principles of WSDL-S. It

replaced WSDL-S by introduced many new concepts.

SAWSDL adds semantic annotations to WSDL documents which point to

semantic concepts for specifying semantics or schema mappings for data

transformations. It shares some key principles with WSDL-S these include:

 Building on the existing WSDL framework and adding semantic annotations

 Using semantic annotations to discover and invoke Web services

- 32 -

Figure 2.7: SAWSDL (Kopecký, Vitvar et al. 2007)

The notion that SAWSDL is an extension of WSDL is presented by figure 2.7

which shows a SAWSDL document. The block with the title WSDL description

represents the WSDL document while the rest are SAWSDL extensions.

A model reference is a set of URIs relating to a concept in semantic model. It is

used for providing semantic annotations to WSDL elements. The schema mappings

are used for the transfer of information between semantic and non semantic sources.

There are two types of schema mappings namely lifting schema mapping and

lowering schema mapping. Lifting schema mappings are used for acquiring

information from non semantic sources while lower schema mapping is used for

sending information to non semantic sources.

2.5.3. Advantages of Semantic Web Services

The key advantage of SWS is the enhanced the level of automation for Web service

discovery, composition and invocation. Other advantages include standardization of

- 33 -

naming schemes and standard format for the description, storage and exchange of

data. (Sheila 2001; Sirin, Hendler et al. 2003; Sycara, Paolucci et al. 2011)

2.5.3.1. Automating Web Services

The introduction of semantic markup to Web services enables them to understand

the meaning of a document. Typical Web services can understand the series of

characters that make up the words in a document. These however do not understand

what these words mean (Balani 2005). Being able to understand the meaning leads

to automating the processes associated with a Web service.

(1) Automatic Discovery

Sheila et al. was among the first few people to identify that automatic service

discovery was possible by using semantic markup. An example of automatic

discovery would be: a user wishing to buy an airline ticket from Leeds to

London. In case of current Web services a user would start with a search

engine to find the list of Web pages which offer the required service. The

user would then read each Web page in order to identify whether it offers the

required service. After identifying all the pages that offer the required

service, user would make a selection. In this scenario a semantic Web service

would be able to locate the appropriate Web services as the description of

each service is understood by the search engine (Sheila 2001). The semantic

Web service would return only the related results.

(2) Automatic Composition

Camara et al. proposes ITACA which is an integrated toolbox for the

automatic composition and adaptation of Web services (Camara, Martin et

al. 2009). This states that automatic service composition and service

reusability can be achieved through rich service interface description.

- 34 -

ITACA toolkit is used for specification and verification of adaptation

contracts, automates the generation of adapter protocols. It is developed

using Python (Beazley 2009) and Java (Horton 2011).

2.5.4. Semantic Web Services Conclusion

Semantic web services have been defined as an amalgam of semantic Web and Web

services. The semantic Web services introduce meaning to the message exchanges

between services thus introducing automation to the process of service discovery

and composition. Service composition refers to a group of one or more services

working seamlessly together to achieve a complex task. (Nandigam, Gudivada et al.

2005)

The key motivation behind semantic Web services is the same as that of Web

services i.e. e-commerce. These services have the added advantage of higher levels

of service description, automatic service discovery and composition (Sheila 2001).

2.6 Cloud computing Services

According to National Institute of Science and Technology (NIST) “Cloud

computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction.”(Peter Mell 2011)

The NIST definition of Cloud proposes three types of Cloud services namely

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a

Service (IaaS) (Peter Mell 2011). These are further described in the following

section.

 SaaS: The provider offers software applications to the user as a service.

These are running on the providers Cloud infrastructure and are accessible

- 35 -

remotely from various client devices through a thin client interface such as a

Web browser. The underlying infrastructure including network, servers,

operating systems and storage are not controlled by the user whose rights are

limited to the user-specific application. Examples include GoogleApps.

 PaaS: This service enables a user to build and run a service on the Cloud

infrastructure remotely. The Cloud providers offer support for a specific set

of development tools such a programming languages which are used by the

user for development and deployment. The provider has an underlying Cloud

infrastructure which includes processing servers, storage servers, operating

systems and network. The ownership of the application is with the user

however the control for the underlying architecture is with the provider.

Examples of PaaS providers include Microsoft Azure (Microsoft 2012) and

Salesforce (Salesforce 2012).

 IaaS: IaaS service enables users to acquire processing, storage, network and

other computing resources remotely. These resources are managed by the

provider with the user being able to deploy and run software systems.

Examples of IaaS include (Amazon 2012; FlexiScale 2012; GoGrid 2012;

Rackspace 2012).

A Virtual Machine (VM) is the key resource on offer from an IaaS Cloud

service. It is an emulation of a physical machine (Computer). The VM is

created by deploying a VM Image; i.e. is a configured set of software which

includes the operating system. A VM image can be deployed very quickly as

it takes a few minutes in most cases to setup a VM. The physical machines

are controlled by the Cloud provider while the VM are in control of the user.

- 36 -

The VMs are accessed in many ways including online interfaces and SSH

clients. (Buyya, Yeo et al. 2009)

2.6.1. Cloud Service Deployment Models

There are four deployment models for Cloud services; these are private, community,

public, and hybrid. A deployment model indicates the attributes associated with

Cloud services specially the access attributes. (Peter Mell 2011)

 Private Cloud Services: The Cloud infrastructure is used and operated by the

same organization. This is a highly trusted and secure model as in most cases

the infrastructure is based locally within the organization. The disadvantages

of this model include lack of elasticity; i.e. increasing or decreasing the size

of the Cloud on-demand.

 Community Cloud Services: The Cloud infrastructure is shared and operated

by a group of organizations, with all supporting policy, security and

operations.

 Public Cloud Services: The Cloud infrastructure is available to the general

public or business for use. This is owned by a large organization and is the

most common form of Cloud deployment. Large organizations such as

Amazon, Microsoft and Google offer this form of Cloud.

 Hybrid Cloud Services: The Cloud infrastructure is a combination of two or

more types of Clouds. This model requires the sub models to be bound by

standard set of communication rules. An example of this would be a

- 37 -

community Cloud working with a public Cloud to handle untimely surge in

resource demand.

2.6.2. Cloud Computing Advantages and Challenges

This section describes advantages of Cloud, and the challenges that are hindering the

growth of Cloud computing. A detailed study of the advantages and challenges is

given in (Armbrust, Fox et al. 2010).

2.6.2.1. Advantages of Cloud computing

The following advantages are unique to Cloud computing as neither Gird nor Cluster

computing offer these benefits.

 On-demand Access (access to an any amount of resources at any time of the

day)

 Eliminate upfront costs

 Ability to pay per use

 Economies of scale due to very large data centres

 Higher utilization by multiplexing of workloads

 Simplify operation and increase utilization via resource virtualization

 Replication (Running multiple copies of the same job for ensuring reliability)

Advantages such as on-demand access and replication save user time and effort.

In case of Grid or Cluster every user‟s job is submitted to a queue while in case of

Cloud the user can access any amount of resources at any time. Replication

increases the reliability of the service as due to this feature a user‟s job will not be

interrupted at times of disaster. Eliminating upfront costs, pay per use, high

utilization are of interest to supervisors or people in-charge as these help with

managing the costs. (Armbrust, Fox et al. 2010)

- 38 -

2.6.2.2. Challenges faced by Cloud computing

A list of challenges faced by Cloud computing is identified by (Armbrust, Fox et al.

2010) and is given in Table 2.1. The list is compiled from the user‟s perspective as it

points to issues such as getting locked down to a single provider or losing resource

availability.

Index Challenge Solution

1 Ensure availability of

resources

Use multiple Clouds

2 Data Lock-In Introduce mechanisms to access

multiple Cloud through single

account

3 Data confidentiality Monitor security, Deploy

encryption

4 Building trust Mechanisms for accessing

providers past performance

5 Performance

unpredictability

Manage the provenance data of

the Cloud, Improve VM support

6 Scalable Storage Mechanisms to scale the load

among the different storage

options

7 Bugs in large distributed

systems

Introduce debugger

8 Scaling quickly Invent Auto-Scaling tool

9 Data bottle necks Improve bandwidth

10 Software licensing Pay-per-use licences

Table 2.1: Key challenges and their solutions (Armbrust, Fox et al. 2010)

- 39 -

Challenges like data management, security, privacy, service provisioning and

Cloud economics are identified by (Dikaiakos, Katsaros et al. 2009). The study

states that Cloud data is stored at a number of un-trusted hosts which introduces

security and privacy loop holes. Another security and privacy challenge is identified

in (Arshad, Townend et al. 2009). It states that in IaaS Cloud multiple VMs run on a

single physical machine which can transpire into security and privacy threats as all

the VM share the physical machines memory.

2.6.3. HPC Grids and Computational Clouds

IaaS Cloud computing services are a type of computational service. Computational

services offer physical resources such storage, communication and processing in the

form of services. These services have remained in extensive use by the scientific

research community and to some extent by the industry. (Foster, Kesselman et al.

2001). Cluster computing and Grid computing are the antecedents to Cloud

computing.

2.6.3.1. Cluster Computing

A computer cluster is a collection of two or more computers used for undertaking

compute intensive problems. A cluster consists of a set of tightly coupled computer

systems with a centralized job management and scheduling system. All the

computers in the cluster use a single system image thus the whole cluster behaves as

a single entity.

Computer clusters were in use even before the emergence of Web services.

However they have evolved over the years and now are used remotely through a

network. The advantage of such a system is the sheer amount of compute power on

offer. (Bader and JáJá 1999)

2.6.3.2. Grid Computing Services

Grid computing is focused on large scale sharing of computational resources such as

storage and processing (Foster, Kesselman et al. 2001). The concept of Grid

- 40 -

computing was proposed by (Foster, Kesselman et al. 2001). It proposed the creation

of a computational Grid for solving large compute intensive tasks.

Grid computing is build on research in the field of Cluster computing as a

computational Grid is a set of loosely coupled computing machines or clusters. The

Grid is a hardware and software infrastructure that provides dependable, consistent

pervasive and in-expensive access to high-end computational capabilities. The grids

were created by pooling computational resources from a number of organizations to

serve a common purpose. The pooling required hardware infrastructure to achieve

the necessary interconnections and software to monitor and control the resulting

ensemble. (Foster and Kesselman 2001)

Grids were very popular among research institutes specially universities and

a number of computational grids were created these include the White Rose Grid

(Dew, Schmidt et al. 2003), Nordu Grid (Eerola, Kónya et al. 2003), and the Sun

Grid (Gentzsch 2001). Issues faced by computational grids include large upfront

costs, associated with buying hardware and software resources. A more pressing

issue is regarding the resource allocation as due to the large number of users, every

user‟s job are submitted to a job queue.

In recent years the usage of Grids has been reduced due to the availability of

Cloud. One such example is National Grid Service (NGS) offering Cloud services.

NGS is the largest public sector provider of HPC resources in the UK. It serves a

number of educational and research organizations (NGS 2012).

2.6.3.3. Semantic Grid

 The semantic grid is an extension of the computational grid where information and

services are given well defined meaning, enabling people and machines to work in

cooperation (De Roure, Jennings et al. 2005). The semantic grid initiative was part

of the UK e-science program. The key requirements for the semantic grid are as

follows:

- 41 -

 Resource Description, Discovery, and Usability

 Process Description and Enactment

 Autonomic Behavior

 Security and Trust

 Annotation

Semantic resource descriptions are effective for describing QoS properties.

These properties are have been extensively used by Grid based resource brokers and

are also used in this research to describe Cloud providers resources (Serhani,

Dssouli et al. 2005).

The semantic descriptions lead to autonomic behavior, this includes automatic

service discovery, dynamic service function and automatic service maintenance. As

described in section 2.5.3 one of the key advantages of introducing semantics is

automation. The proposed solution involves dynamic behavior and automatic QoS

maintenance.

Semantic annotations are effective for describing the QoS properties of Grid and

Cloud resource providers. The annotation based approach was employed by

Semantic Annotations for Web Service Description Language (SAWSDL). This

research uses SAWSDL for communicating between semantic and non semantic

services.

Research towards semantic grid has dwindled during the past five years. This

may be attributed to the advent of Cloud computing.

- 42 -

2.7. Cost analysis of Cloud computing against HPC

A number of studies have been conducted to compare the economics of Cloud

computing against the HPC setups. These include an economic analysis by

(Armbrust, Fox et al. 2010), a cost-benefit analysis by (Kondo, Javadi et al. 2009), a

performance analysis by (Ostermann, Iosup et al. 2010) and a performance analysis

for scientific computing by (Iosup, Ostermann et al. 2011).

Early comparative studies of HPC Cloud providers are given in (Geelan

January 22, 2009) and (Evangelinos and Hill 2008). Another paper (Deelman, Singh

et al. 2008) investigated the value of using EC2 HPC option compared with “in-

house” HPC provision, for three large e-science problems. These are Montage (multi

scaled images); Broad (earthquake USGS); and epigenetic (heritable changes in

gene expression). Each application involved a pipeline workflow passing a file

between each stage of the workflow. This work reported that it‟s very easy to move

to a HPC Cloud like EC2 but there is a trade-off between memory and computation

resources. And that the time to start and stop the job needs to be carefully planned.

The time management is due to the difference levels of performance by the Cloud at

different times of the day this is due to the variation in workload. Further they

found TeraGrid (an in-house HPC solution) was more expensive (using their cost

model) and pointed out the latency in launching compute jobs led to much larger

turn-round times for comparable resources.

There are a number of emerging academic Cloud provides such as UK‟s

National Grid Service (NGS), (Chang, Wills et al. 2011) and Open Cloud

Consortium (OCC) (Consortium 2009). Pricewise Clouds are reasonably cheap for

scientific computing as the cost of hiring a VM is very low. Although the VM is

cheap additional costs such as bandwidth can augment the total cost. (Iosup,

Ostermann et al. 2011).

Seti@home is a scientific experiment that uses Internet-connected computers

in the search for Extraterrestrial Intelligence (SETI) (Anderson, Cobb et al. 2002).

- 43 -

Running SETI on Amazon EC2 for a year would cost 7000 USD which is 60 percent

of the current cost of running SETI for a year. The bandwidth costs in this case

make more than half of the overall cost. (Kondo, Javadi et al. 2009).

Some studies argue that the cost of acquiring Cloud resources for very large

periods of time (over a year) is much more expensive compared to the HPC.

(Kondo, Javadi et al. 2009; Ostermann, Iosup et al. 2010; Iosup, Ostermann et al.

2011).

The main shortcoming of these studies has been acquiring resources for

months and years on an hourly basis. Cloud providers do offer monthly and yearly

options which are much cheaper than the hourly option. For instance Amazon

charges $0.90 per hour for a small EC2 machine; however if the same machine was

to be bought for a period of three years it could cost as low as $0.2 per hour.

(Amazon 2012).

It is also argued that the costing in most studies favour the HPC setup as extra

costs such as space, power, and insurance are not considered. There are two reasons

for this, firstly these amenities are free as the parent institute bears the expanses and

secondly it is very difficult to calculate costs such as air-conditioning or UPS

(Hazelhurst 2008).

2.7.1. Performance analysis of Cloud computing against HPC

Three areas of performance are presented in this section. These are compute

performance, performance benchmarks, and performance variability or variance.

The compute performance is measured by running an experiment on the Cloud and

the HPC and comparing the completion times. Benchmarks are standard points of

reference used for comparison. A Cloud based VM is benchmarked against a

physical machine for comparing different aspects of performance such as maximum

load or data transfer. The performance variability or variance measures the

inconsistency among different sets of results for an experiment. This is achieved by

running the experiment several times on the same machine.

- 44 -

2.7.1.1. Compute performance analysis

Amazon EC2 Cloud has been compared against two cluster based HPC setups by

(Hazelhurst 2008). The comparison was made by running a scientific application.

 Total

number of

nodes

Total number of

processing cores

Total amount of

memory (GB)

Amazon EC2 32 64 240

C4 37 74 148

iQudu 160 320 2560

Table 2.2: Specifications of HPC clusters

The specification of the two HPC options and Amazon EC2 are given in Table

2.2. It is worth noting that all three options had different amounts of computing

resources with Amazon having the smallest number of processing cores and one

tenth the memory of iQudu.

The results shown in figure 2.8 indicate that Amazon EC2 cluster acquits

itself well. As with just 32 nodes it achieves an efficiency value of 72% while iQudu

with 160 nodes maintains 90% efficiency.

- 45 -

Figure 2.8: Cost effectiveness of Cloud versus HPC (Hazelhurst 2008)

2.7.1.2. Cloud performance benchmarks

NASA Advanced Supercomputing (NAS) benchmarks are used for benchmarking

the performance of HPC options. These include Embarrassingly Parallel (EP),

Message Gateway (MG), Block Tri-diagonal (BT), Conjugate Gradient (CG) and

Fourier Transform (FT) benchmark (Bailey, Barszcz et al. 1991).

 EP: Provides an estimate of highest achievable limits of a machine.

 MG: It is used for testing both short and long distance data communication.

 CG: Used for measuring irregular long distance communication and matrix

vector manipulation.

 FT: A 3-D partial differential equation solution using Fourier Transform on

many special codes for long distance communication performance.

 BT: It solves synthetic system of partial differential equations. It also serves

as an input/output benchmark.

- 46 -

Figure 2.9: Performance comparison between an Amazon EC2 VM and a physical

machine (Higher is better) (Akioka and Muraoka 2010)

Amazon EC2 VM and a similar physical machine were benchmarked by

(Akioka and Muraoka 2010) as shown in figure 2.9. Compared to the physical

machine the VM performed better for EP and CG. The VM was outperformed for

BT, FT and MG. The VMs performance for BT is attributed to the inappropriately

small size of the BT benchmark. In case of MG and FT the cause of low

performance was bandwidth and network latency. (Hazelhurst 2008; Akioka and

Muraoka 2010)

2.7.1.3. Cloud performance variability

Cloud services are usually affected by performance variance as shown in figure

2.10. Figure 2.10a shows the performance variance for running jobs on Amazon

EC2. The different runs show a compute variance between 5% and 10%. In case of

data transfer the variance is far higher than computing as shown in figure 2.10b.

The main cause of variance in Cloud is the varying amounts of workload on

the Cloud. This is magnified by the on-demand nature of the Cloud which means

- 47 -

that the provider can potentially handle an infinite amount of user requests. (Kondo,

Javadi et al. 2009; Jackson, Ramakrishnan et al. 2010; Iosup, Ostermann et al. 2011)

Figure 2.10: Performance variance for Amazon EC2 (Jackson, Ramakrishnan et al.

2010)

In case of HPC setups the variance is less significant as every job is

submitted to a queue and a fixed number of jobs can run at any time. Even in times

of surge in demand; the wait associated with running the job would be longer but

efficiency would remain the same.

2.7.2. Cloud security and usability:

Clouds are operated through data centres with each having as many as five thousand

physical computers (Greenberg, Hamilton et al. 2008). The software and hardware

configurations and support platforms within a data centre are homogenous. This

homogeneity means that each machine will have the same security setup that would

be managed centrally at the data centre. Access to the Cloud is one of the security

challenges as it involves user names and passwords which could be compromised.

Another aspect of security is that the Cloud is always remote and access is through a

third party Internet Service Provider (ISP). (Foster, Yong et al. 2008)

HPC setups are built over a period of time; as due to the funding constraints

most institutions procure the resources step by step. This means the HPC setup tends

- 48 -

to be a locally managed heterogeneous system. However this does not affect the

level of security as access to these resources is strictly limited. Only a group of

authorized users working at the same organization can access the HPC setup. Some

of the technical aspects to the security of HPC and Cloud are given below. (Nelson,

Dinolt et al. 2011)

 Authentication: This identifies the user and his access rights on the Cloud or

HPC setup. Each Cloud provider has its own unique login mechanism such

as Amazon; which has a two level login mechanism dependent on security

certificates, usernames and passwords. In case of HPC setup users are

assigned security credentials at the start of their tenure.

 Storage: In case of Cloud multiple copies of the data are stored at

geographically distinct locations. These copies of the data on separate

geographic locations do improve the reliability however they do pose a

challenge for ensuring security of data. Considering the amounts of data

being transferred encryption and decryption of data alone is a major

challenge. In case of HPC setups data is stored locally and has fewer security

threats.

2.8. Implications of Literature Review

Web services are a very effective way of communication as these are both globally

accessible and platform independent. Semantic Web Services offer all the

functionality of a traditional Web service with the added benefits of higher levels of

service automation and better description of data. This research employs Web

services for communication with the users. SAWSDL annotations are used for

sharing the semantically stored RDF information.

 The thesis addresses the needs of computational modellers (users) for

running large HPC jobs. Computational modellers at the moment use either Cluster

or Grid computing for accessing HPC resources; required for solving large scientific

- 49 -

problems. This thesis proposes the use of IaaS Cloud computing. Advantages of

Cloud computing include on-demand access, replication, no upfront costs and high

utilization. Cloud computing is beneficial to the users as it offers a reliable and

efficient way of running their jobs. It also attracts the public and research

organizations by a reduction in costs and high reliability. A number of Cloud service

providers offer different services these are described using service ontology while

the data is stored as RDF.

The efficient and effective selection of Cloud services is an important part of

this research. The proposed solution uses Euclidean distance for ranking and AHP

for selection; in a novel method for selection. It uses the two algorithms together to

reach the best (cheapest) Cloud provider‟s service.

- 50 -

Chapter 3

Analysis of Current Practice

Computational modellers require large amounts of computing resources for

undertaking HPC experiments. The current practice for acquiring these resources is

to use the local HPC setup which is usually a collection of computing clusters. An

alternative to the current practice of using HPC is Cloud computing. Cloud has come

to the attention of computational modellers as Cloud services are suitable for

undertaking HPC jobs. The move towards Cloud has been swift as up until three

years ago the definition of Cloud was being contended (Geelan 2009) while today,

users have a variety of Cloud services. These include public Cloud services

(available to everyone) such as Amazon EC2, educational Cloud services (available

to research community) such as NGS Cloud service, and private Cloud services

(available to members of a specific organization) such as IBM‟s Blue Cloud (Wang,

Tao et al. 2008; Li, Yang et al. 2010; Sultan 2010).

 This chapter describes the process of requirement analysis for identifying the

research requirements. These are used in the later chapters for architecting the

envisaged system and building its prototype. The evaluation process is also

dependent on these requirements. The steps involved in the process of requirement

analysis are shown in figure 3.1.

The chapter is sub divided into four sections where the first section gives an

overview of the research problem. The next section describes the current practice for

acquiring computational resources. The third section describes an Information

broker. The broker was developed as part of the initial experiments to develop an

understanding of the working brokers. It also helps with gathering the technical

requirements for building the prototype of the envisaged system. The final section

describes the requirements for the envisioned system.

- 51 -

Figure 3.1: The requirement analysis framework

3.1. Overview of the research problem

Cloud providers offer on-demand access to a vast amount of computing resources.

This makes Cloud ideal for addressing computational modeller‟s needs for running

HPC jobs. However there are issues such as Cloud provider‟s “best-efforts” policy.

In a “best-efforts” where the provider can just drop the service and provides no

guarantees concerning the response time, throughput etc. For example see the

Amazon EC2 Service Level Agreement (SLA) (Amazon 2012). In case of Cloud

computing, users have to make decisions based on trust and reputation rather than

guarantees. In such a scenario information regarding providers past progress would

be very useful in making the selection decisions. Quality of Service (QoS) data

presents a historic record of the provider‟s progress with parameters for identifying

rates of success and failure. (Foster, Roy et al. 2000)

 Cloud computing providers offer computing resources as Virtual Machines

(VM). The VMs are classified by size of resources the offer such as Small, Medium,

Large and Very Large. Cloud providers typically offer four VM sizes with some

offering more options. As the VMs on offer share the functional properties it is the

Initial Experiment

(Information Broker)

Current practice for

acquiring computational

resources

Research Problem

Envisioned

Requirements

- 52 -

QoS properties that act as the service differentiating criteria (Godse, Bellur et al.

2011).

The case study for this research state that; a computational modeller‟s

requirements will vary during the modelling life cycle. For example during the early

stage of model development a cheap, less reliable Cloud service is often sufficient as

failed jobs can be easily repeated. As the model development matures much larger

computational recourses are required; now the reliability (number of jobs that

succeed) and the reputation of the provider become more important.

 The research problem is to provide a service, that can mediate across a

number of computational Cloud providers, to select and run (transparently) the best

(e.g. cheapest) computational provider’s VM, that meets the user’s computational

and QoS requirements.

3.2. Current practice for acquiring computational resources

The study of the current practice has been conducted in collaboration with experts

from the field of computational modelling. The modellers have access to a local

HPC setup for running compute intensive jobs. They include a Professor (hereon

referred to as Professor A) and a doctorate student (hereon referred to as Student B)

working in the modelling group in University of Leeds.

3.2.1. Current practice: Introduction

The local HPC setup at the University of Leeds consisted of computing clusters and

very large computing servers. The last chapter reported on the field of cluster

computing (see section 2.6.2.1). People involved in the current practice include:

computational modellers, laboratory managers and lab directors. Inputs from these

experts are vital in pursuing this research; as they would outline the requirements

and expectations for the envisioned system. A brief description about the people and

their roles is given below.

- 53 -

 Computational Modeller

Position: Student A is a PhD student in a scientific computation group.

Research Interests: Developing efficient, accurate and reliable

computational techniques for the solution of partial differential equations.

The majority of his research work has involved the Elasto Hydrodynamic

Lubrication (EHL) problems.

Priorities: Deriving results of interest to the wider scientific computing

community, for publication in papers and thesis. Develop modelling

framework for EHL problems.

 Laboratory Manager

Position: Laboratory Manager C is a research assistant who is responsible

for managing access to the local HPC setup.

Research Interests: C is interested in supporting researchers performing

HPC simulations of fluid flow for EHL.

Priorities: Managing the service which entails managing the job queue and

recovering the service in case of a failure.

 Laboratory Director

Position: Professor B is the laboratory director for the scientific computing

group.

Research Interests: Professor B‟s general research area is Scientific

Computing specifically he is interested in efficient, accurate and reliable

computational techniques for the solution of partial differential equations.

The majority of his research work has involved with the development and

analysis of computational algorithms using HPC systems.

- 54 -

Priorities: Acquiring funding for maintaining the local HPC setup.

Responsibilities also include keeping supervising the service managers.

3.2.2. Interviews with the experts

Semi-formal interviews and discussions were conducted with the computational

modeller and the lab director. A selection of questions and answers from these

interviews are as follows.

3.2.2.1. Computational modeller interview

The interview with the computational modeller was held on the 26
th

 of August

2009 at the computing lab.

Question 1: Describe your need for HPC resources.

Answer: “The research experiments are performed iteratively where each

step involves generating a computational mesh and using it to run the experiment.

The code for generating the mesh needs only minor changes for each run. The code

for the actual experiment is written individually per iteration. Over the lifecycle; the

size of the mesh varies between some hundred Mega Bytes (MB) to tens of Giga

Bytes (GB). The local HPC resources are used for running the experiment while

meshes can be generated on the local machine.”

Question 2: Describe the process of acquiring HPC resources.

Answer: “The process starts by lodging a request for required resources.

This is submitted to a job queue. The request includes information on the functional

requirements and the time for which the resources are required. The functional

requirements include memory, processing and storage these outline these identify

the required resources. Requests that require more than twelve hours of time are

catered only during the weekends.”

- 55 -

Question 3: Describe the advantages of using the current HPC setup.

Answer: “The research experiments would take days on a personal computer

while on a HPC machine these take hours. Therefore availability of large amounts of

HPC resources is the main advantage.”

Question 4: Describe the disadvantages of the current HPC setup.

Answer: “The key issues faced by me in undertaking this work include

waiting for job execution as each job is submitted to the job queue. The wait is

worse for jobs longer than 12 hours as these are catered only during the weekends.

The other issue is, in regards to specifying the amount of time it takes the job to

finish. It is very difficult to predict the precise time a job takes to finish and one can

only predict probable times. If the prediction is incorrect and the job takes longer, it

gets dropped and one has to start from scratch. Another issue is due to the fixed

resource size; which means that there are no provisions for coping with surges in

resource demand. At times of high demand the queues get longer which translates

into more waiting time for each job.

3.2.2.2. Lab Director Interview

The interview with the computational modeller was held on the 3
rd

 of

September 2009 at his office.

Question 1: What are the benefits of the current HPC setup?

Answer: “The key benefit is in regards to the higher levels of trust and

security. As the physical resources are located and managed locally and access is

only granted to authorized members, from within the research group.”

- 56 -

Question 2: What are the key issues affecting the current HPC setup?

Answer: “The main issue is in regards to cost; this high upfront costs of

buying the local HPC resources and maintenance costs for managing the resources.

Another concern is redundancy as HPC resources become obsolete within a span of

five years”

Question 3: What are your expectations from an envisaged system?

Answer: “There are a number of expectations from the envisioned system.

These include:

 Reduction in costs

 Multiple options for resource sizes

 Instant access to computational resources

 Ability to cope with surge in resource demand

 High levels of security and reliability ”

3.2.3. Current Practice Summary

In the current practice the computational modeller used HPC resources from the

local HPC setup. In the current setup the modeller‟s progress was being hampered

due to the delays in running long jobs as these were entertained only during the

weekends. The modeller was also frustrated with the job request process which

involved specifying the amount time for which the resources were required. As the

time slots were booked in advance, jobs overrunning their time would be dropped

which means rerunning the job. The lab director was most concerned about the

reduction in costs; and the higher requirements for reliability and security.

- 57 -

3.3. Problem scenario for the evaluation

Ben is a 2nd year PhD student working in the Computational Modelling Laboratory

at the University X. He is researching new mathematical models for simulating the

fluid flow in a chemical reactor. The model code is developed iteratively. The

iterations typically involve code development, running the code, and analysing the

model output against the results from a physical experiment. If the model results are

not acceptable the code is changed and re-run. After completion of the initial model

development stage Ben needs to run much larger models that require much larger

amounts of resources.

Typically Ben requires modest computational resources which are addressed

by a Cloud provider. On average Ben requires 4-6 one hour time slots each day. He

needs modest computing resources and is less concerned about the reliability and the

provider‟s reputation of the service. This means that cost is the key priority and

lower cost computational services can be procured.

As Ben‟s model development proceeds to create new science Ben needs

larger computational resources with higher levels of reliability and good user‟s

reputation ratings. The cost of the resources is still quite important to Ben.

Just prior to a demonstration of their latest computational modelling results

to their industrial financers; Ben needs very large computational resources with a

higher level of reliability and a Cloud provider with good reviews from the previous

user‟s (reputation ratings). The laboratory is happy to pay a higher rate for 2-3 one-

off runs having got a quote for the resources required.

Details of Ben‟s computational requirements are set out in Tables 3.1. The

QoS requirements are given in Table 3.2. The ratings are subjective and are scored

on the nine point scale with 1 being the lowest.

- 58 -

Turnaround

time (hour)

Computing

Memory (GB)

Storage

(GB)

Processor

(Cores)

Download

(GB)

Upload

(GB)

1 2 50 1 10 10

12 4 250 4 15 15

8 8 250 8 25 25

Table 3.1: Ben‟s functional requirements

Cloud

Provider’s Cost

Cloud Provider’s

Reliability

Cloud Provider’s

Reputation

Security

9 2 2 2

6 8 5 6

3 9 9 9

Table 3.2: Ben‟s QoS requirements

3.4. Information broker for selecting the best Cloud provider’s

service

Information brokers are impartial sources of information; addressing user‟s

requirements for information regarding a specific field. In the context of this

research Information broker was identified as a first step towards addressing the

research problem. The Information broker was developed in collaboration with

Klacnik et al. and the research findings were published in (Tomaž Klančnik 2009).

An initial version of the broker was developed by the author of this thesis. The

design of the final version of the broker was developed in collaboration with

Klacnik et al who was also responsible for the development and the evaluation of the

final version. The envisioned Information broker would offer users impartial and

valuable information regarding functional and QoS properties of Cloud providers.

The broker: helps users, formulate queries; identify information sources that

are relevant to a query, and process the queries to identify the best solution to users

queries. A first step to building an Information broker was to define a “similarity”

- 59 -

measure between the provider‟s data and the user‟s requirements. Similarity is a

quantity that reflects the strength of relationship between two objects or two

features. However in many cases measuring the dissimilarity (i.e. distance) is easier.

This measure can then be normalized and convert it to the similarity measure

(Teknomo 2006).

The use of Euclidean distance search algorithm for manipulating QoS

parameters is given in (Taher, Basha et al. 2005). This research also presents a QoS

data model for storing information and a QoS Manager for processing information.

The Information broker used the Euclidean distance algorithm for identifying the

similarity/dissimilarity between the requests and the resources. The Information

broker also had a QoS Manager component for processing user‟s queries. This QoS

component operates in a novel way as compared to the aforementioned QoS

Manager.

In addition to similarity measurement, QoS ratings for reliability and

reputation were identified for measuring the trust worthiness of the providers. This

was achieved by adding a reputation rating system where every user rates the

provider after observing the outcome of their transaction. Binary rating (i.e., success

vs. failure) is known to be adequate for calculating a reputation value. The

reputation value is representative of the expected outcome of a transaction with a

specific provider (Papaioannou and Stamoulis 2006). The reputation system used for

the experiment is described in (Jsang and Ismail 2002). The system is based on the

beta probability density function which is used to represent probability distributions

of binary events.

3.4.1. Design of the Information Broker

The Information broker addresses user‟s requirements for Cloud resources. It had

Computational Manager, Resource Manager and Reputation Updater for managing

provider‟s functional and QoS information. The QoS Manager component was for

processing user‟s queries as shown in figure 3.2.

- 60 -

Figure 3.2: Information Broker Architecture

The Computational Resources Manager was responsible for calculating cost

of user‟s requested resources. It retrieved data from broker‟s computational

resources database and from the user requirements. After getting the data the broker

calculates the cost of user‟s requested computational resources for each Cloud

provider.

The QoS Manager is the central component of the Information broker. It

contains three elements: QoS data retriever, Similarity measure calculator and

Ranking calculator. The reputation factor is split into reliability and reputation

which are based on previous user‟s evaluations. The Similarity measure is used for

- 61 -

calculating the similarity between user‟s requirements and the provider‟s resources.

Similarity is measured by Euclidean distance algorithm; which returns a list of

ranked providers.

Reputation Updater‟s task is to collect user‟s evaluation data. After each

transaction the user is requested to provide his evaluation of the selected provider‟s

resources. This is used to update the reputation rating of the provider in the QoS

database. The beta reputation system was used for calculating reputation.

3.4.2. Implementation of the Information Broker

The user interface for the Information broker is shown in figure 3.3. The interface

enables the user to provide inputs for functional requirements (on the right side) and

QoS requirements (on the left side). The functional requirements include amount of

physical resources such as memory, processing and the turnaround time which

indicates the time requirement. The QoS requirements are inputted on a scale of one

to ten with ten being the highest.

Figure 3.3: Information Broker User Interface

- 62 -

3.4.3. Formative evaluation of the Information broker

The Information broker was evaluated by the problem scenario. This describes the

practice for acquiring computational resources. The aim of the evaluation was to

identify: (a) the information management and processing ability of the Information

broker; (b) the search capability of the Information broker; and (c) requirements for

envisioned system.

3.4.3.1. Evaluation experiment setup

The evaluation experiment was carried out by introducing three simulated Cloud

providers. The functional aspects of these providers were based on actual Cloud

providers such as Amazon EC2. The functional data regarding provider services is

shown in Table 3.3 while the QoS data is shown in Table 3.4.

Provider Cost Mem

ory

Process

or

Stor

age VM

cost

Bandwidth

Upload

Cost

Bandwidth

Download

cost

Prov1vSmall 0.0675 0.06 0.11 2 1 160

Prov1Small 0.135 0.06 0.11 4 4 320

Prov1Medium 0.270 0.06 0.11 8 8 650

Prov1Large 0.540 0.06 0.11 15 8 1650

Prov1xLarge 0.540 0.06 0.11 8 20 1650

Prov2vSmall 0.053 0.10 0.10 2 1 100

Prov2Small 0.105 0.10 0.10 4 2 200

Prov2Medium 0.210 0.10 0.10 8 4 400

Prov2Large 0.372 0.10 0.10 16 4 800

Prov2xLarge 1.348 0.10 0.10 16 8 1600

Prov3vSmall 0.135 0.07 0.10 2 1 100

- 63 -

Prov3Small 0.27 0.07 0.10 4 1 200

Prov3Medium 0.440 0.07 0.10 6 2 400

Prov3Large 0.680 0.07 0.10 8 4 800

Prov3xLarge 1.360 0.07 0.10 8 8 1600

Table 3.3: Provider‟s functional values

It can be seen in Table 3.3 that same VM sizes have offer different amount of

resources. For example large VM for Prov1 has 15GB memory with 8 processing

cores while the same for Prov2 has 16GB of memory with 4 cores. These

differences are in line with the actual providers, as these do not have a standard

definition for the resource sizes. For instance Amazon EC2 small machine has 1.7

GB of memory while FlexiScale small has 1 GB memory (Amazon 2012; FlexiScale

2012).

Provider Reliability Reputation Number of user

evaluations

Prov1 0.83 0.75 112

Prov2 0.44 0.87 102

Prov3 0.95 0.95 102

Table 3.4: Provider‟s QoS values

 The QoS values were collected at the provider‟s level instead at the VM

level. The decision was made to reduce the processing times. The Information

broker did not cater the QoS requirement for security as there were no means to

measuring security.

- 64 -

3.4.4. Evaluation results

The experiment was carried out on a machine with a 2.5 GHz Intel core 2 duo

processor, 4GB memory and 250GB of storage.

Figure 3.4: Results for the first case of scenario (screen shot)

Figure 3.5: Results for the second case of scenario (screen shot)

Figure 3.6: Results for the third case of scenario (screen shot)

- 65 -

The results for the three cases presented in the scenario are shown in Figures

3.4, 3.5 and 3.6 respectively. These results are for the cost and QoS inputs shown in

Table 3.2.

3.4.4.1. Evaluation of the Information Broker and their Implications

The evaluation of the broker revealed that it was capable of selecting the cheapest

provider fulfilling the user‟s requirements. The Information broker experiment was

successful as the broker was not only capable of effectively managing provider‟s

information it was also capable of processing user‟s queries for Cloud resources.

Therefore the information storage and selection processes in the envisioned system

would be based on those used by the Information broker.

The key limitation of the Information broker was in regards to its

functionality; which was limited to sharing of the information. The envisioned

system should not only provide the information regarding Cloud resources but also

be able to acquire and setup those resources. Other limitations include a lack of QoS

information sources as there were only two QoS parameters. The only source of QoS

information for these parameters was user‟s reviews. This limitation could be

addressed by introducing other sources of information such as usage logs. The

Information broker was implemented as a desktop based software application

limited to Windows and Linux platforms therefore access was limited. The proposed

solution should be platform independent and globally accessible.

3.5. Envisioned requirements

The requirements for the envisioned system were identified through literature,

interviews with experts and the Information broker experiment. These are

distributed into research and system requirements both of which should be fulfilled

by the envisioned system.

- 66 -

3.5.1. Research Requirements

The research requirements are identified by the experts and are part of their vision of

the envisioned service.

(1) Reduction in cost is the foremost requirement. This includes reduction in

upfront and operational costs.

(2) Means to measure QoS associated with the Cloud providers. As Cloud

providers offer best efforts; historic information regarding their performance

would be crucial to any selection decisions.

(3) Instant access to any amount of resources at any time of the day. It was

highlighted that in the current practice, invariable waiting times are

associated with access to HPC resources.

(4) Access to different resource sizes such as small, medium, large and very

large. As the user‟s requirement vary over the course of their research there

should be adequate resource sizes to meet those requirements.

(5) Ability to increase or decrease the size of available resources. The instant

increase in amount of available resources would help cope with surges in

demand. The ability to decrease available resources would remove resource

underutilization thus helping with the cost.

- 67 -

3.5.2. System requirements

The system requirements are associated with the development of the prototype for

the envisioned solution. These were identified mainly through the interviews and in

part by the Information broker experiment.

(1) The envisioned system should provide mechanisms for effectively managing

the Cloud provider‟s information. This includes storing functional and QoS

information and updating provider‟s QoS at regular intervals. The provider‟s

QoS information should be updated automatically without any human

interference.

(2) It should be able to accurately and efficiently process user‟s queries for

Cloud provider‟s resources. The search interface should be simple and the

search process should be fully automatic. The selection process should return

the cheapest provider‟s VM that meats the user‟s requirements.

(3) The system should be capable of automatically setting up and running the

required Cloud resources. The system should transfer the control of the

selected resources to the user in a seamless fashion.

(4) The envisioned system should ensure a standard way of describing the Cloud

providers. At the moment each provider has its own vocabulary which can be

confusing to the user.

(5) The selection process should be able to handle large numbers of user

requests simultaneously. This would require mechanisms for reducing the

processing times without affecting the accuracy of the search process.

- 68 -

(6) Communication between the Information Management, Selection and Run

should be seamless. This would require the system to ensure mechanisms for

communication between semantic and non semantic services.

(7) The system should automatically track the availability of the different

services on offer from the Cloud provider‟s. If a service is unavailable it

should not be included in the search process.

3.6. Summary

This chapter has described the requirements for the envisioned system. These were

identified by literature review of the current practice, interviews with the experts and

an Information broker experiment. The literature review and the interviews

investigated the current practice and identified the general requirements from the

perspective of experts. The Information broker experiment was designed to highlight

the system requirements which are concerned with the technical aspects of the

envisioned system. For example the Information broker experiment identified that

the envisioned system should not be a desktop based application as these are

platform dependent and have limited accessibility.

The expert requirements were from the lab director and computational

modeller‟s perspective. The lab director‟s requirements were focused on cost,

security and reliability while the computational modeller requirements included

instant access and variable sized machines. The system requirements identified that

the envisioned service should accurately and efficiently select the best (cheapest)

Cloud provider‟s VM; fulfilling the users functional and QoS requirements.

- 69 -

Chapter 4

Architecture of the QaComPS

The aim of this research as described in chapter 1 was to identify the best (cheapest)

Cloud provider‟s Virtual Machine (VM) fulfilling the users functional and QoS

requirements. This chapter describes the architecture of the Quality aware

Computational Cloud Selection (QaComPS) service. The QaComPS is the proposed

solution for addressing the user‟s queries for Cloud provider‟s VMs.

The chapter is divided into five sections where the first section presents an

overview of the QaComPS. Section 4.2 describes the inputs requirements. This

contains the description of the service interface which is used for inputting the user

requirements. Section 4.3 describes the Information Management service. In the

next section the selection service is described; this contains a step by step

description of the selection process. This is followed in section 4.5, by the

description of the Run service which is called upon by the selection service for

setting up and running the selected Cloud provider‟s VM.

4.1. Overview of the QaComPS

An overview of the service architecture is shown in figure 4.1. The selection process

takes place in five stages. These are input user requirements; query the Cloud

provider‟s database; selecting the best VM; setting-up/running the selected VM; and

updating the database.

 Input User Requirements: The user‟s functional and QoS requirements are

inputted through the service interface. The functional requirements describe

the resources being offered while the QoS describe quality requirements.

- 70 -

 Information Management Service: This is an internal, semantic service that

adds; updates; and deletes Cloud provider‟s information. This information is

required for processing user‟s queries. The service dynamically queries the

database for every user request and passes the results onto the selection

service. This service is managed by the service manager who is responsible

for adding, updating and deleting provider‟s information.

Run Service

(Non Semantic)

QaComPS

Database

New QoS Information

Information Management

Service (Semantic with

SAWSDL Annotations)

 The solid lines represent the flow of information

 The dotted lines represent the steps that occur at the end of the transaction

Service Ontology S

A

W

S

D

L

Selection Service

(Non Semantic)

Query

database for

the

requirements

Update

QoS

Input requirements

(functional & QoS)

Non Semantic

Figure 4.1: Overview of the QaComPS Architecture

 Selection Service: This is an internal service; responsible for processing the

user‟s queries for Cloud provider‟s VMs. The service has access to the

Information Management service.

 Run Service: This is an internal service which can only be invoked by the

selection service. It sets up and starts the selected Cloud provider‟s VM.

- 71 -

 Information Database: The services are underpinned by Information

database. The database is accessible through the Information service. The

database is updated at regular intervals as new QoS information is available

after each transaction.

4.2. Input User Requirements

The user inputs to the QaComPS are distributed into functional and Quality of

Service (QoS) inputs. The functional information is a description of the physical

resources on offer from a Cloud provider. The QoS information is a description of

the provider‟s performance.

4.2.1. Functional Inputs

The functional inputs are amalgamated as a single input called the VM size. The

VM size varies with respect to the amount of hardware and software resources

associated with the VM. Typically four VM size are available through a Cloud

provider with some such as Amazon EC2 offering as many as 17 different VM sizes

(Amazon 2012).

Table 4.1 contains the typical functional values and the expected cost. These

are based on four actual Cloud providers namely Amazon, FlexiScale (FlexiScale

2012), GoGrid (GoGrid 2012) and Rackspace (Rackspace 2012). The functional

values for four providers were mapped onto the proposed model using flexible

ranges. For example a small VM for AmazonEC2 has 1.2 GHz of processing while

the same for FlexiScale has 1 GHz of processing. The small VM for the proposed

model has processing between 1 and 1.2 GHz. This flexible range means that the

mapping is not fixed to the specification of a single Cloud provider but represents all

of the providers.

- 72 -

 Monthly cost

($)

Memory

(GB)

Processing

(cores)

Storage (GB)

Small Up to 100 2.00 1 160

Medium Up to 350 4.00 4 500

Large Up to 500 8.00 8 800

Very

Large

Up to 1000 16.00 16 1700

Table 4.1: QAComPS Cost Model

The processing unit used by the QaComPS is “cores” with each core having

between 1.0 and 1.2 GHz of processing.

There are two forms of storage on the Cloud; persistent and non-persistent both

of which are measured in GB. The persistent storage is permanent and independent

of the VM while the non persistent storage is lost once the VM stops functioning.

This research is concerned with the non-persistent storage; typical values for which

are shown in table 4.1.

The VM cost does not cover bandwidth which represents the data transfer

(upload/download) between the VM and the user‟s machine. This is measured in

GBs and charged exclusively per use. The bandwidth is not related to the VM size

therefore it is not included in table 4.1. The typical cost of bandwidth is 10-15

cents/GB.

 The software resources associated with the VM are Operating System (OS),

firewall and the hypervisor. Options for OS include Windows, Linux, and Solaris

out of which only Windows is charged while the others are free. The firewall is by

defaulted included with the VM in most cases however some providers such as

- 73 -

FlexiScale do charge it explicitly (FlexiScale 2012). The hypervisor is the

technology used for creating VMs by virtualization. Two of the most popular

hypervisor software are Xen and VMware (Rimal, Choi et al. 2009).

4.2.2. QoS Inputs

The Information broker described in section 3.3 of the previous chapter had two

QoS parameters namely reliability and reputation. The values for these parameters

were based entirely on the user‟s evaluations of the provider. During the user

interviews it was identified that the lab in-charge was particularly interested in cost

and security. Therefore QoS parameters managed by the QaComPS also include

cost, security along with reputation and reliability.

In practice a larger set of QoS would be required but this is outside the scope of this

thesis. Availability and performance are used extensively for Grid based solutions

(Buyya, Abramson et al. 2000; Foster, Freeman et al. 2006; Montella 2007). In the

context of this research performance is considered as a part of the reliability as there

is a maximum limit of time associated with running the job. If the job is not

completed within that time the reliability is lowered. The reputation ratings given by

the user are also indicative of the Cloud provider‟s performance. During the user‟s

rating process a question is asked regarding the performance of the provider.

Availability is not explicitly monitored by the proposed solution. The exclusion is

due to the definition of Cloud computing which states that access to resources

should be on-demand (Peter Mell 2011). Availability is however implicitly included

as the service ontology states that each provider should have at-least one VM

available to be considered an active provider.

 The QoS inputs consist of a quality input which describes the required

quality on a scale of low, medium and high. The other QoS inputs are the QoS

weights for the four parameters. These determine the relative importance of each

parameter. The weights are inputted on a scale of one to nine with one being the

lowest.

- 74 -

4.2.3. Service Interface for Inputting Information

The QaComPS service interface enables communication between the user and the

QaComPS service. The design for the QaComPS service interface is shown in figure

4.2. The interface enables the users to inputs resource requirements while it enables

the lab manager to manage the service.

The user database contains user‟s credentials which are required for

managing access and tenancies (required for billing). Managing access and tenancies

are not under the scope of this research therefore are not pursued further.

Service Interface

End-user

modeller

User

Feedback

Service information

management

Process

user

requests

F
u

n
c
tio

n
a

l /

Q
o

S

U
s
e

r In
p

u
ts

User Database

Lab

Manager

 Figure 4.2: QaComPS service interface

The activities associated with the user are shown with a dotted line; these are

processing user request and feedback. The interface processes user‟s requests by

converting the inputs into process-able information. This information would be

passed onto the Information Management service as it would be used for querying

the database. Like the query information the feedback information is also passed

onto the Information Management service.

- 75 -

The interface also authorizes access to the lab manager. The lab manager

requires access to the Information Management service for adding, updating or

deleting Cloud provider‟s information.

4.3. QAComPS Information Management Service

The effective management of Cloud provider‟s information is of prime importance

to this research. As each step of the QaComPS selection process is either directly or

indirectly dependent on the Cloud provider‟s information. The Information broker

described in (see chapter 3.3) forms the basis for the QaComPS Information

Management service.

Run Service

(Non Semantic)

QaComPS

Database

New QoS Information

 The solid lines represent the flow of information

 The dotted lines represent the steps that occur at the end of the transaction

Selection Service

(Non Semantic)

Query

database for

the

requirements

Update

QoS

Input requirements

(functional & QoS)

Non Semantic Information Management

Service (Semantic with

SAWSDL Annotations)

Service Ontology S

A

W

S

D

L

Figure 4.3: QaComPS Information Management Service

This section is sub divided into six sub sections where the first section

describes the QoS metrics (model for processing QoS information). The next section

- 76 -

describes the service ontology which includes ontology descriptions for the Cloud

provider, QoS and filter. The third sub section describes the storage of information

as RDF. Section four describes the filter which queries the Cloud provider‟s

information. The fifth section describes the semantic aspects of the service and

annotations used for communication with other non-semantic services. The final sub

section describes the information update process.

4.3.1. QoS Metrics

The four QoS parameters are measured using four QoS metrics namely: Reliability

Rl (p), Reputation Rp (p), Security S (p), and Cost C (p) (where p stands for

provider). The QoS information is measured on a scale of 1-9 where one represents

the lowest level of QoS while nine represents the highest level of QoS.

Reliability: Rl is the probability that a provider‟s service would succeed in

completing the execution of a job. Success rate is computed using data from the past

invocations of the service. Following expression is used for computing reliability:

Rl = N(p)/K

N is the number of times a provider‟s VM has successfully completed a job

within the maximum expected time frame. K is the total number of invocations.

Closely related to reliability is the availability however this does not apply to the

Cloud providers as these offer on-demand access. Therefore availability is not

required for this research.

 Reputation: Rp is the reputation of the Cloud provider. This is a measure of

the trustworthiness of the provider. It‟s a posterior estimation based on historic end-

user experiences. The reputation, is measured with the user feedback; collected

from the user‟s experience with the service. The user rates the service for

- 77 -

performance, customer support, value for money and the overall experience. The

reputation ratings are updated using:

NewRp = OldRp + (

)

Pr: Performance rating, CSr: customer support rating, VMr: value for money rating,

Oer: Overall experience rating

 The mean for the four rating parameters is subtracted by five as five

indicates the middle value. A value above five is a positive rating while a value

below it is a negative rating.

 Security: The QoS security is a rating for the security offered by a Cloud

provider. A number of parameters affect the security of a Cloud system. In this

work, for illustrated purposes, two key parameters of security are described namely

access security and the data security (Mather, Kumaraswamy et al. 2009).

The access security monitors the level of security at the access level. Each

provider has a different approach to authentication some use only passwords while

others use security certificates and some use Role Based Access Control (RBAC)

(Ferraiolo, Kuhn et al. 2007). For example Amazon offers each VM a separate

security key which means in cases of access security lapses only a single machine is

compromised.

The security rating is monitored by analyzing the authentication method in

use by the provider and tracking for security breaches at this level. The other factor

for the security rating is the data security which concerns data being compromised.

It is very difficult to identify this sort of security failure and the only source in this

case is to use the literature. Security rating is calculated using:

- 78 -

Sec =

“as” is the access security while “ds” is the data security; sixty and forty are

the respective percentages they make-up out of the total security. The access

security is given a higher rating as it is a cause of data security lapses.

Cost: The physical cost (what a user pays) of a VM is translated into the cost QoS

using:

Cost = (α x Cl + β x Dt)/ (α + β)

 where Cl represents VMs memory (GB), processor (virtual cores), and non-

persistent storage. Dt is the data transfer rate and α, β are constants which represent

the ratio of resource and data transfer to the overall cost.

MeanQoS = (2Qc + (QR+QP+Qs))/4

QC=Cost QoS, QR=Reliability, QoS, QP=Reputation QoS and Qs=Security

QoS. MeanQoS rating describes the average QoS on a scale of one.

The MeanQoS which is defined above; it is used during selection when two

providers have the same values, for the required QoS.

4.3.2. Service Ontology

The service ontology is a formal description of the Cloud providers; it includes the

functional and QoS information. Each concept in the ontology is described as a

Class. The QaComPS service ontology has three sub-ontologies namely Provider,

QoS&Rank and Filter; these are shown in figure 4.4.

- 79 -

vMname

VMuURL,

hPCSupport,

ccomments.

name, id,

wsdl, web

uRL,

hypervisor.

Provider

Information

Property

Restriction – Provider

#Cores:Int,

Memory:double,

non-Persistent

 Storage:double

VirtualMachine

(at least 1)

Cost: small’

medium, large &

veryLarge

Class

VMProvider

ActiveVMProviderVMProviderHPC

Active

VMProviderHPC

Property

Restriction –

UpDate

Provider hasUpPr

Figure 4.4a: Provider‟s ontology

QoSRequest QoS

Reli-

ablity

Reputa-

tionCost
Secur

ity

Class

hasQoS

Req.

hasQoS

Rank

Low 1 to

Extremely 9

preferred

Low 9 to

Extremely

preferred

(inverse)

hasC
ostR

ating

hasR
eputation

R
ating

hasR
eliabilty

R
ating

hasQ
oS

R
ating

hasS
ecurity

R
ating

High

(9-8)

Med.

(7-5)

Low

(4-1)

Rank

Rank

Enumeration

1-9

hasServiceRank

Figure 4.4b: QoS Ontology

Service

Class

High

(9-8)
Med.

(7-5)
Low

(4-1)
Service

Quality

High

ServiceQ

uality
Med.

Service

Quality
Low

Service

Quality

hasQuality

Rank

Rank

Enumeration

1-9

hasServiceRank

Large

Medium
Small

Very

Large

 Figure 4.4c: Filter Ontology (fragment of Rank class is repeated)

- 80 -

The Provider‟s ontology describes the Cloud provider and the associated

information as shown in Figure 4.4a. The top class is the Provider and a sub-class

models the number of VMs offered by the provider. The cost class captures the four

VM sizes as each has a varying cost. An OWL2 property restriction is used to

ensure that there is at least one VM instance for each provider. Instances are

members of the class, for example AmazonEC2_Small is a VM on offer from

Amazon. In simpler terms a VM is a concept while the instance of a VM is a

physical entity which can be allocated to a user. The VMProvider class models the

type of VM and whether it‟s active or inactive. An UpDateProvider class describes

the update process.

The QoS and Rank ontologies are based on the QoS model which consists of

Cost, Reputation, Reliably and Security classes. It uses an OWL2 rank enumeration

giving the meaning to the ranking. The data properties are used for storing

associated provider data. The second part of the Rank class is shown in figure 4.4c.

The last part of the ontology is described in classes associated with filter

these are Rank, ServiceQuality and Service. Part of the Rank class is to devise the

QoS ratings into three classes namely High (8-9), Medium (5-7) and Low (1-4).

The interesting part of the ontology is the use of two classes ServiceQuality

and Service. These classes are linked by the hasQuality object property. The purpose

of this is to match the service quality (divided into high, medium and low) with four

service levels (small, medium, large and very large).

 The ServiceQuality is constructed using OWL2 union property restriction to

describe:

UQoS = C & Rp & Rl & S

where C, Rp, Rl & S are described 4.2.1.2.

- 81 -

The meaning assigned to each service quality class is as follows:

HighServiceQuality is UQoS ≥ 8; MediumServiceQuality is UQoS ≥ 3 and < 5; and

LowServiceQuality = UQoS < 5. The semantic Web statements are shown in figure

4.4c.

4.3.3. Storing Semantic Information

The information is stored in the database using a RDF format. Provider entries made

by the RDF component are based on the mapping between the provider and the

provider ontology. This mapping ensures that all the providers conform to a single

vocabulary which simplifies the provider‟s descriptions as currently each Cloud

provider has its own vocabulary.

 The RDF information would use meaningful naming conventions for

improving the querying process. The prefix in the name of an RDF file would be the

name of the provider, while the suffix would be the VM size. For example

AmazonEC2_Small where AmazonEC2 is the provider while small is the VM size.

4.3.4. Filtering Providers

The users functional and QoS inputs are passed onto the filter. The filter improves

the efficiency of the selection process by reducing the number of potential providers.

The filter ontology ensures that the provider‟s QoS information is stored in a

specific way to assist the filtering process.

It is concerned with two aspects of the selection process. Firstly it is

concerned with matching the user‟s functional requirements to the functional

properties of the Cloud service providers. Secondly matching the user‟s QoS

requirements with the provider‟s QoS. The matches should be exact for the first

case; for example if a user requires small VM only small VMs should be part of the

selection with the other VM sizes being excluded. In case of QoS matches; the

user‟s requirements should be treated as minimum requirement. For instance

requests for low QoS can return results for both medium and high QoS; while those

for high QoS should return results for only high QoS.

- 82 -

 The filter queries the functional information with the help of the naming

convention. Example for such a query is given in figure 4.5.

Figure 4.5: Query for extracting small sized VMs

The query for extracting all the small VMs is shown in figure 4.5. The %

sign means any number of characters so the query would extract all the information

regarding providers who has the word “Small” at the end of their names.

Figure 4.6: SPARQL query for extracting providers with user‟s required QoS

The QoS information is queried by SPARQL query. It identifies the list of

providers that match the user‟s QoS requirements. The SPARQL query shown in

figure 4.6 uses three ontologies. The query filters providers that have four QoS

values; greater than or equal to that of the users requirements. The provider id and

name are used for identifying the provider. The field queryParam contains user‟s

QoS requirements which are matched against the provider‟s QoS.

PREFIX QoS=http://localhost:8080/Ontology/QoS#

PREFIX Filter=http://localhost:8080/Ontology/Filter#

PREFIX Provider=http://localhost:8080/Ontology/ Provider #

SELECT ?ID ?Name

WHERE{ ?p Provider: hasID ?ID .

?p Provider: hasName ?name.

?q QoS: hasReliability ?Rel. FILTER(?Reliability >= queryParam[1]).

?q QoS: hasReputation ?Rep. FILTER(?Reputation >= queryParam[2]).

?q QoS: hasSecurity ?Sec. FILTER(?Security >= queryParam[3]).

?q QoS: hasCost ?Cost. FILTER(?Cost >= queryParam[4]).}

SELECT * FROM providers WHERE provider_name like „%Small‟;

http://localhost:8080/Ontology/QoS
http://localhost:8080/Ontology/Filter
http://localhost:8080/Ontology/%20Provider

- 83 -

4.3.5. SAWSDL annotations for Communication between Services

The communication channel between the semantic Information Management service

and other non-semantic service is based on SAWSDL semantic annotations. These

enable the sharing of descriptions and transfer of information between semantic and

non-semantic sources.

4.3.5.1. Model References for Sharing Descriptions

SAWSDL “Model References” are used for sharing the entity level descriptions of

information between services. Example of a model reference is given below:

<xs:element name=”Reliability”

sawsdl:modelReference="http://localhost:8080/Ontology/QoS#Reliability">

The above example contains the SAWSDL annotation for the description of

the Reliability class. The Reliability class is part of the QoS ontology and is

available and the given URI. The underlying technology for writing SAWSDL

annotations is XML. This information can be parsed by any (semantic/non semantic)

web services as these are written in WSDL; which is an XML based description of

the service.

4.3.5.2. Lifting/Lowering Schema Mapping for Transfer of Information

SAWSDL annotations use lifting and lowering schema mapping for transferring

information between semantic and non-semantic services. Both use querying

languages for extracting information. The lifting schema mapping uses XQuery

(Boag, Chamberlin et al. 2003) which is a query language for querying XML

sources. The lowering schema mapping uses SPARQL which is used for querying

semantic sources.

Lifting schema mapping enables the Information Management service to

receive the QoS update information from non-semantic sources. Lifting schema

- 84 -

mapping was achieved by creating XQuery which is an xml based scripts. An

example for the lifting of non semantic information is given in figure 4.7. The

example queries the non-semantic information source for the reliability rating. The

type for the information would be double; number with decimals.

Figure 4.7: Lifting Schema Mappings

The lowering schema mappings were used for transferring semantic

information from the Information Management service to the selection service. The

transferred information is queried from the database and is required for the selection

process. Lowering schema mapping uses a SPARQL query to extract information

from the database and passes it onto the non-semantic selection service. This

mapping uses SPARQL query to map the semantic information onto a non-semantic

web service.

4.3.6. Information Update

The Information Management service has provisions for both manual and automatic

updating of the information; depending on the available sources of information.

Manual updates would be performed by the lab managers and is used only when

there are no means of updating the information automatically.

<po:QoS>

 <po:Reliability>

 <po:hasRelRating

rdf:datatype="http://www.w3.org/2001/XMLSchema#double">{ fn:integer(/)

}</po:hasRelRating>

…

</po:QoS>

- 85 -

The functional information is available through the Cloud providers and will

be updated only when the providers make any changes. Automation of functional

requirements is possible in one of the two ways either through the use of crawlers or

through the use of intelligent agent to update the information. Both of these methods

are out of the scope of this thesis. (Nelson, Smith et al. 2006).

 The QoS information for reputation would be received through user‟s

reviews of the service. The reliability and security information would be updated

through the reviews and usage logs which indicate events such as start, stop and any

failures. The cost QoS is difficult to manage automatically as it is dependent on

physical cost (money paid for the VM) which is managed by the Cloud provider.

The first step for updating information is to identify whether the given

information conforms to the ontology descriptions for Cloud provider and QoS.

After that the specified provider‟s RDF information is updated. The service

maintains a separate RDF for each of the provider‟s VMs on offer.

4.4. QaComPS Selection Service

This research proposes a novel QaComPS selection service. This service receives

Cloud provider‟s information from the filter (see 4.3.4). The selection process

involves ranking the list of available providers and selecting the best provider.

4.4.1. Architecture of the QaComPS Selection Service

The service has a user interface for communicating with the users and a

service interface for communicating with the Cloud providers (see section 4.1.3).

The service interface uses WSDL (Moreau, Chinnici et al. 2006) or Application

Programming Interface (API) depending on the access mechanisms supported by the

Cloud provider.

- 86 -

Select and Run the best provider’s VM

QAComPS

Lab Manager Comp. Modeller

Management
of

information:
Add, update
and delete

(functional &
QoS); Filter
information

Service Interface to Service Development

QAComPS:

MatchMaker

(Rank & Select)

Service Interface

RUN

QoS update

(feedback, log)

Service Interface to Client

Provider Database

 Figure 4.8: QaComPS Architecture

The QaComPS selection service is shown in figure 4.8. The selection process

is initiated by receiving user inputs through the input interface. The user inputs were

described in section 4.1. The QoS inputs are measured on a scale of high, medium,

or low. The QoS weights are also inputted which identify the relative importance of

each QoS parameter through the user interface.

The novel feature of the proposed selection model is its treatment of the cost

QoS metric. This is derived from the cost model which translates physical costs

(what a user pays) into cost QoS (value for money). As the goal is to select the

cheapest provider‟s VM the requirement for cost QoS is by default set to the highest

level.

- 87 -

The architecture shows that the Information Management service can

automatically acquire Cloud provider‟s information through the interface. However

at the moment the availability of information is limited as the providers offer

functional information through their web sites which require manual processing by

the lab manager. Cloud providers whose entries are made by the Information

Management service are shown by the red circle among the range of all the

providers. The Run service has access to only those providers that are registered

with the Information Management service.

4.4.2. MatchMaker

The matchmaker matches user‟s requests to the provider‟s resources in two stages.

Inputs to the MatchMaker include the list of filtered providers. This information is

the output of the filter component which uses the SPARQL query to lower the

semantic mappings. The QoS requirements and weights are also required which are

inputted by the user. The top three ranked results are passed onto the selection

component for the final selection.

The first step for the matchmaking process is to rank the Cloud providers.

This involves ranking the list of available providers with respect to their nearness to

the user‟s requirements. The ranking is performed by using the Euclidean distance

algorithm. The ranking process is based on QoS ratings of the provider‟s and the

QoS requirements of the users. The final stage is the selection of the best (cheapest)

provider‟s VM. Inputs to the AHP are the top three ranked providers. The selection

process is based on the Analytic Hierarchy Process (AHP) (Saaty 2005).

The selection process matches the VMs against the user‟s requirements using

the QoS levels and QoS weights (see section 4.2.2). The selection process returns

the best (cheapest) provider meeting user‟s functional and QoS requirements.

4.4.2.1. Ranking Providers

The ranking step uses Euclidean distance algorithm to rank the list of available

providers. Euclidean distance algorithm is used for calculating the distance between

- 88 -

the user‟s ideal provider and the available providers. The smallest distance means

the best match and vice versa. The target being to find the provider‟s VM with the

minimum Euclidean distance.

The proposed method is based on the assumption that resources can be

evaluated on the basis of their closeness to the user's requirements, taking into

consideration the relative weight of each requirement. In mathematical terms, the

closeness between two objects can be expressed by their Euclidean distance

(ELEYAN, Amna et al. 2004). Geometrically this is a straight-line distance between

two points, representing objects in m-dimensional space. Therefore, the best

provider is the one that has the shortest distance from the given user's requirement,

while the one with the farthest distance is the worst. All other providers can be

ranked between these two extremes, with regards to the value of their Euclidean

distance (Tomaž Klančnik 2009). The step by step process for the ranking of Cloud

providers is given below.

Step 1: Convert QoS weight inputs to a pair-wise comparison matrix

 A pair-wise QoS matrix for the QoS weights is created by reciprocating the

inputted values. The pair-wise comparisons shown in matrix B are the reciprocal of

matrix A (see following example). The diagonal of the matrix is always one.

The proposed selection service can accommodate the processing of any

number of providers. However in an effort to keeping the given example simple the

Cloud providers sample size is set to four.

Example:

User inputs for the four QoS parameters are as follows:

 Reliability is twice as important as reputation.

 Reputation is three times as important as security.

- 89 -

Rp Rl Sec

Rp

Rl

Sec

Rp

Rl

Sec

 Reliability is four times as important as security.

 Cost has the highest priority.

 Matrix A =

 Matrix B =

Rp represents the reputation QoS, Rl is for reliability while Sec stands for security

QoS.

Step 2: Calculate relative criteria weights

This requires adding all the values in a column and dividing each criterion by

value sum. The criteria weights are calculated using the following equation.

Wi=

The set of n relative weights is normalized to sum of one,

 = 1, Wi > 0, i=1, 2, 3, … ., n.

Therefore the number of independent weights is (n-1)

Example:

- 90 -

Sum of columns =

Reputation Weight = 1/3 X

 = 1/3 * 0.9607 = 0.3202

Reliability Weight = 1/3 X

 = 1/3 * 1.6714 = 0.5571

Security Weight = 1/3 X

 = 1/3 * 0.3678 = 0.1226

Wi =

Sum of QoS weights = 1

Step 3: Calculate denominator of normalizing equation

 This step is concerned with the provider‟s QoS values. These values are

normalized by using the following equation.

Denominator for normalizing equation Np =

Example:

Provider‟s QoS data

Provider‟s Reliability QoS: = 10.9087

Provider‟s Reputation QoS: = 9.8994

Provider‟s Security QoS: = 10.2956

Np =

Reliability

Reputation

Security

Prov1 Prov2 Prov3 Prov4

- 91 -

Step 4: Normalize the performance matrix

This step involves normalizing the provider‟s QoS information. The normalized

performance matrix (Pr) is calculated by dividing each value by the relative

normalized QoS data; calculated in step 3.

Pr=

…

Example:

Pr=

 /

 =

Step 5: Create weighted normalized performance matrix

 This step involves multiplying user‟s normalized QoS requirements to the

provider‟s normalized QoS. The weighted normalized performance matrix (Wpr) is

calculated using the following equation.

Example:

Wpr = Wi(1)xPr(1) Wi(1)xPr(2) …… Wi(1)xPr(n)

Wi was calculated in step 2 while Pr was calculated in step 4.

Wpr= X

Wpr =

- 92 -

Step 6: Calculate relative Euclidean distance

The relative Euclidean distances are calculated using the following equation:

E j =

Where

j=1,2,....,n is the number of Cloud providers virtual machines;

i=1,2,…,m is the number of specification criteria (QoS values);

Qri represents an element of a vector r=(r1,r2,...rm) which represents the user's QoS

requirements in terms of the i-th criterion.

Example

Provider, Rl, Rp, Sec, Euclidean Distance

[Prov4, 3.0, 6.0, 5.0, 0.2580]

[Prov2, 5.0, 2.0, 4.0, 0.2731]

[Prov1, 9.0, 7.0, 8.0, 0.2917]

[Prov3, 2.0, 3.0, 1.0, 0.6951]

The results show that Prov4 has the smallest distance to the user‟s ideal

provider while Prov3 has the largest distance.

4.3.2.2. Selection

The final selection is performed using the AHP algorithm (Saaty 2008). Inputs

to the process are provider‟s data and the user‟s QoS requirements. The AHP

hierarchy for selection of the best (cheapest) Cloud provider‟s VM is shown in

figure 4.9.

- 93 -

Select the cheapest

provider subject to

Rel, Rep & Security

Reliability Reputation Security

Prov1

Prov2

Prov4

Prov1

Prov2

Prov4

Prov1

Prov2

Prov4

Figure 4.9: Hierarchy for selecting Cloud Provider VM

The hierarchy has three levels starting with the goal which is to select the

cheapest provider fulfilling user‟s QoS requirements. This is followed by criterion

for selection which is reliability, reputation and security while the cost is treated

separately. The separate treatment of cost is due to its static QoS value set to the

highest; as the target is to always identify the cheapest provider. The final level is

for the alternatives which contain the list of potential Cloud providers.

- 94 -

Rp Rl Sec

Rp

Rl

Sec

Step 1: Convert user’s inputs to pair-wise matrix

 This was also the first step for the ranking process therefore is not repeated.

The pair-wise comparison matrix for selection is given below:

QoS Weight Matrix

Step 2: Calculate the first Eigenvector

This consists of three sub steps; square the QoS weight matrix, calculate the sum

total and normalize the matrix by dividing each row sum with the sum total.

Example

Square Weight Matrix Squared

 X

 =

Calculate the sum of the rows

 =

Sum the row totals: 39.9165

Normalize the row sum by the row totals to calculate the first Eigenvector

 =

- 95 -

Step 3: Calculate the second Eigenvector

The second eigenvector is calculated in the same manner as the first eigenvector.

This step involves squaring the updated (squared during the calculation of previous

eigenvector) weight matrix. Calculating sum totals and normalizing.

Example

Square Weight Matrix Squared

 X

 =

Calculate the sum of rows

 =

 362.9196

Normalize the row sum by the row totals to calculate the second Eigenvector

 =

Step 4: Compute the difference between the two Eigenvectors

Example

0 3194 0 3196

0 5595 0 5584

0 1211 0 1220

 =
 0 0002

 0 0011

 0 0009

- 96 -

The difference between the two eigenvectors is very minute (difference < =

0.001). If this was not the case the process would be repeated until the difference

between the latest two eigenvectors is very minute.

Step 5: Relative importance of criteria

Reliability is the most important criteria while security is the least important

as shown in figure 4.10.

Example

Select the cheapest

provider subject to

Rel, Rep & Security

1.0

Reliability

0.5584

Reputation

0.3196

Security

0.1220

Prov4

Prov1

Prov2

Prov4

Prov1

Prov2

Prov4

Prov2

Prov1

Figure 4.10: Relative importance of each criteria

- 97 -

Prov1 Prov2 Prov4

Step 6: Calculate the normalized QoS for the three providers

This involves calculating the first eigenvector, second eigenvector and subtracting

them. These steps would be repeated until the difference between the two is very

small. Steps 2, 3, and 4 in this section describe this process.

Example:

Provider‟s QoS data

Reliability:
1 1 8 3

0 5555 1 1 6667

0 3333 0 6 1

Reputation:
1 3 5 1 1667

0 2857 1 0 3333

0 8571 3 1

Security:
1 2 1 6

0 5 1 0 8
0 625 1 25 1

Eigenvectors for the provider‟s QoS are given below:

Reliability
0 5294

0 2940

0 1764

 Reputation
0 4986

0 1253

0 3760

 Security
0 4705

0 2352

0 2941

Prov1 Prov2 Prov4

Prov1 Prov2 Prov4

- 98 -

Select the cheapest

provider subject to

Rel, Rep & Security

1.0

Reliability

0.5584

Reputation

0.3196

Security

0.1220

Prov4

0.1764

Prov1

0.4986

Prov2

0.1253

Prov4

0.3760

Prov1

0.4705

Prov2

0.2352

Prov4

0.2941

Prov2

0.2941

Prov1

0.5294

Figure 4.11: Relative importance of each criteria

Step 7: Calculate relative QoS of each provider w.r.t. user’s QoS requirements

This step involves multiplying the user‟s QoS priorities to the provider‟s

QoS. The results indicate the nearness of each of the provider‟s to the user‟s

requirements.

Example

 X

 =

- 99 -

Step 8: Final selection

 The previous steps were based on user‟s QoS priorities; this step makes the

final selection based on the user QoS requirement which is inputted on a scale of

low, medium and high. The provider‟s cost QoS ratings are given below. In the

following example input for the QoS rating was low.

Example

Prov1 Cost

 Prov2 Cost
Prov4 Cost

3

5

8

User‟s QoS ratings input is low. This is used to calculate the relative cost by the

following equation.

Relative Cost rating = Provider‟s QoS cost * (cost rating value/3)

The cost rating values are: low = 1, medium = 2, high = 3

Relative cost for Prov1 = 3*1/3 = 1

1

1 6667

2 6667

Multiply the relative cost to the relative QoS.

0 5123 1

0 2329 1 6667

0 2545 2 6667

 =
0 5123

0 3881

0 6786

The results show that provider 4 is best match for the user‟s requests for low

QoS. Provider 1 has the best QoS however due to its higher cost and user

requirement for low QoS; provider 4 is selected.

4.4.3. QaComPS Selection Conclusion

This section has described the novel QaComPS selection service. The selection

process uses ranking and selection steps to reach the best provider‟s VM. The

efficiency of the selection process is improved by the filtering and ranking as both

- 100 -

reduce the number of potential providers. The accuracy of the selection process is

mainly concerned with the selection component. The ranking component also plays

a role in improving the accuracy as the results from the component are ranked with

respect to their nearness to the user‟s requirements.

4.5. Run Service

The QAComPS Run service is an internal service that is invoked by the user through

the QaComPS selection service. Figure 4.12 shows the QAComPS Run service

architecture. The service accesses the providers using an API/WSDL interface. The

description of the selected provider‟s VM is passed onto the run service through the

selection service. This includes: Provider name (name of the provider); VM size i.e.

small, medium, large or very large; Image ID; and start-up and finish time. If there is

no image ID the service queries the provider for available VM images.

 The main service is managed by the “Service Manager”. The first stage is to

setup the VM image. This consists of all the application software, OS (Nurmi,

Wolski et al. 2009) etc. that is be installed on the VM. VM Images reduce the setup

times to a few minutes or even seconds. After acquiring the Image ID the Service

Manager creates the new VM and sets it up by installing the VM image. Once the

VM setup is complete it is started.

A VM is accessed, via either a static IP or a public DNS key. Static IPs are

used in Web browsers while the DNS key is used with a secure shell (SSH) client.

Using these keys the users can not only upload and run their code but also restart

and shutdown the VM. A job log is maintained for each VM where information

such as start time, end time and any errors or exceptions is stored.

A checkpoint service can be used with the Run service to create checkpoints at

certain predefined intervals. This is useful for splitting the job into manageable

sections which is vital for recovering from service failures. The checkpointing is

part of the future work and is not pursued further in this research.

- 101 -

Service Manager
Checkpoint

Service

QaComPS

Service Interface

QoS DB

Setup
QoS

Management

Service

API/WSDL Service Interface

Provider

Monitor

Figure 4.12: Run Service

4.6. Conclusion

This chapter has presented a novel Quality-aware computational Cloud selection

(QAComPS) service. This service enabled automatic selection and invocation of

Cloud provider‟s VMs.

 The Information Management service is central to the working of the

selection service. As it is the only service that has access to the provider‟s

information database. The database is queried for processing each user‟s request.

The Information Management service uses SAWSDL lowering schema mapping to

transfer information to the (non semantic) selection service. The SAWSDL lifting

schema mapping is used for updating the provider QoS.

The QaComPS selection service potentially saves users money by selecting

the cheapest provider‟s VM. The technologic advance was a novel selection process

based on an ontology-based filter, a Euclidean distance based ranker and an AHP

based selector. The filter reduced the number of potential providers and improved

- 102 -

the efficiency of the selection process. The Euclidean Distance ranked the list of

services from which the top three providers were sent to the AHP-based selector.

The selection process and returns the best provider‟s VM that was then used

setup/run by the Run service.

The Run service grants user full access to the selected VM by sharing the

public DNS access key or the available static IP (depending on the provider). The

access key is used for remotely accessing the VM.

- 103 -

Chapter 5

Implementation of the QaComPS Prototype

This chapter describes the implementation of the QaComPS prototype. The service

was implemented in three phases. The first phase was concerned with implementing

the Information Management service. Implementation of the QaComPS selection

service was undertaken in the second phase; this included implementation of

SAWSDL annotations for communication between services. The final phase was to

implement the Run service.

The chapter is sub divided into three sections where the first section

describes implementation of Information Management service. This is followed in

section 5.2 with the implementation of the Selection service. Section 5.3 describes

the implementation of the Run service. The implementation of the database is

included with the Information Management service while the implementation of the

user interface is described with the selection service.

5.1. QaComPS Information Management service Implementation

The QaComPS Information Management service was implemented in three steps.

The first step was to implement the service ontology. This was followed by the

implementation of RDF manager. The final step was to implement the storage of

RDF information in a MySQL database.

5.1.1. Implementing Service Ontology

The QaComPS service ontology was developed using protégé (Somasundaram,

Balachandar et al. 2006). Protégé is a free to use ontology editor for modelling

knowledge-based applications. The concepts were encoded in OWL as classes, sub-

classes and their relationship as properties.

- 104 -

5.1.1.1. Classes

Figure 5.1: Service Ontology Classes

The service ontology has six high level classes; these are independent

classes. Independent classes can have relations with one another but cannot be

parent or subclasses. For example provider and VM classes are related however

neither a VM is a type of a provider nor is a provider a type of a VM. Sub classes

are type of a parent class for example HighRank is a type of Rank.

- 105 -

The relations between classes are described through object properties. Figure

5.1 shows the high level classes along with their sub classes.

 The Virtual Machine class describes a Cloud VM; Provider class describes a

Cloud provider while the Rank class describes the QoS rank of the VM. The value

for the QoS ranking could either be high, medium or low. The service class

describes the size of the VM that is small, medium, large and very large.

5.1.1.2. Properties

The relationships between two concepts (classes) are represented as properties in an

ontology. There are two types of properties namely object properties and data

properties.

Object properties describe the relationships between classes. For example

“Provider hasVirtualMachine VirtualMachine”. In this example the provider class is

the domain, VirtualMachine is the range and the object property hasVirtualMachine

describes the relationship between the domain and the range classes. Some of the

object properties from the QaComPS service ontology are given in table 5.1.

Domain Object Property Range

Provider hasReliability Reliability

Provider hasReputation Reputation

Provider hasVirtualMachine VirtualMachine

VM hasRank Rank

VM hasService Service

Table 5.1: Object Properties in the QaComPS Service Ontology

- 106 -

Data properties describe the type of data associated with a class. For example

“Provider hasName Name” where provider is the domain, hasName is the data

property and Name is the range. Unlike object properties, in this case “Name” is not

a class but a data property of type string, meaning the value for “Name” would be a

string. The concept of data properties is the same in programming paradigm where

these are referred to as data types and are used for describing the type of data being

stored (Motik and Horrocks 2008).

Service ontology data properties are distributed into three groups these are;

relating to the Provider, relating to the VM; and relating to the QoS.

Domain Data Property Range

VM hasCores Integer

VM hasMemory Double

VM hasNonPersistantStorage Double

Provider hasName String

Provider hasID Literal

Provider hasURL URI

Table 5.2: Data properties associated with QaComPS Service Ontology

Double is a data type supported by Protégé; it is used to indicate that the

value held by this data property will be a number with decimal. Integer and string

are used for storing integer numbers and characters strings respectively while literal

is used for storing alphanumeric values.

- 107 -

5.1.1.3. Instances

Figure 5.2: Instances associated with QaComPS Service Ontology

Some of the instances from the QaComPS service ontology are shown in

figure 5.2. The figure shows instances for the VirtualMachine class. The naming

convention for the instances shows that these belong to four Cloud providers and

have four different sizes.

5.1.2. Implementing RDF Manager

The RDF manager component is the central unit in the Information Management

service. It is responsible for processing the Cloud provider‟s information. The

process involves checking conformance with the service ontology, producing RDF

for new providers, updating RDF for existing providers and querying the database.

- 108 -

This component was implemented using NetBeans Integrated Development

Environment (IDE) (Böck and Tulach 2009) and the Jena API (Jena 2007).

The RDF manager starts by creating a new ontology model. The model

contains information regarding the new provider‟s entry. Each entry in the new

model is described as a Universal Resource Identifier (URI). The newly created

model is reasoned against the ontology specification for identifying the inferred

model. An inferred model contains the full list of relations such as Provider‟s

relation to a VM or VM‟s relation to the QoS. Even if the relation between provider

and QoS was not explicitly mentioned; it would be part of the inferred model.

The code for reasoning owl ontologies and identifying inferred models is

available as part of the OWL (Jena) API. The Java/Jena code for invoking the owl

reasoner and creating the inferred model is shown in figure 5.3. This code returns

the inferred model for the inputted values.

The RDF file for the new provider contains information from the inferred

model. Describing each relation explicitly is useful while querying the RDF.

The RDF descriptions generated for the Provider 1‟s small VM are shown in

figure 5.4. These consist of the QoS information for the provider but do not include

the rules and object properties. As the original file was too long see appendix 2.

Figure 5.3: Code for modelReasoner

public Model modelReasoner()

{

 Reasoner reasoner1 = ReasonerRegistry.getOWLReasoner();

 reasoner1 = reasoner1.bindSchema(newModel);

 Model inferredModel = ModelFactory.createInfModel(reasoner1, newModel);

 return inferredModel;}

- 109 -

Figure 5.4: RDF description for Provider 1‟s small VM

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:j.0="http://localhost/Test/ServiceOntology.owl#" >

 <rdf:Description

rdf:about="http://localhost/Test/ServiceOntology.owl#VirtualMachine">

 <j.0:hasUpload>30</j.0:hasUpload>

 <j.0:hasDownload>50</j.0:hasDownload>

 <j.0:hasCores>1</j.0:hasCores>

 <j.0:hasNonPersistentStorage>160</j.0:hasNonPersistentStorage>

 <j.0:hasMemory>1.7</j.0:hasMemory>

 <j.0:hasCost>0.8</j.0:hasCost>

 <j.0:hasType>small</j.0:hasType>

 </rdf:Description>

 <rdf:Description

rdf:about="http://localhost/Test/ServiceOntology.owl#ProviderInformation">

 <j.0:hasWSDL rdf:resource="http://localhost/Test/Provider1.wsdl#WSDL"/>

 <j.0:hasWebURL>http://http://Provider1.com</j.0:hasWebURL>

 <j.0:hasName>Provider1</j.0:hasName>

 <j.0:hasID>EC2_SS</j.0:hasID>

 <j.0:hasHypervisor>Xen</j.0:hasHypervisor>

 </rdf:Description>

<rdf:Description rdf:about="http://localhost/Test/ServiceOntology.owl#RankEnumeration">

 <j.0:hasReliabilityRating>5</j.0:hasReliabilityRating>

 <j.0:hasReputationRating>1</j.0:hasReputationRating>

- 110 -

5.1.3. Implementation of the Database

There were two options for storing RDF files in a database; a semantic database

such as RDFDB (R.V.Guha 2000) or a relational database management systems

(RDBMS) such as MySQL (MySQL 2005). The advantage of using semantic

database was less processing as the RDF can be queried directly using SPARQL

(Prud'Hommeaux and Seaborne 2008). These databases are in early development

and not as efficient or secure as the RDBMS. In favour of RDBMS: MySQL, Oracle

have been in continuous development for years and are highly trusted RDBMS

(MySQL 2005). The disadvantage of using RDBMS is that additional processing

was required. The RDF files are stored as data objects in the RDBMS. These would

be extracted using Structured Query Language (SQL) query after which they would

be queried using SPARQL.

The Information Management service stores information in a MySQL

RDBMS. The RDF information of each provider is stored as a Character Large

Object (CLOB) entry in the database. CLOB is used for storing RDF data as

character object. If a semantic database were to be used the RDF information would

be queried directly using SPARQL.

5.1.4. Information Management service User Interface

The interface for the QaComPS Information Management service is shown in figure

5.5. It was developed using the NetBeans Java IDE (Böck and Tulach 2009).

- 111 -

Figure 5.5: Information Management service Interface

5.1.5. Implementing Filter Component

The SQL and SPARQL queries for the filtering are described in chapter 4; see

section 4.2.2.1.

Figure 5.6 contains the code snippet for filtering the providers. The

queryString represents the SPARQL query. A query is created dynamically for each

request. The query is executed using the inferred ontology model. The results of the

query are formatted and then passed onto the ranking component.

- 112 -

Figure 5.6: Code for filtering providers

5.2. Implementation of QaComPS Selection Service

The selection service implementation consists of implementing the ranking and

selection components. The QaComPS selection service was also implemented using

Java with the NetBeans IDE. The service requires a minimalistic set of inputs from

the user. These are for the VM size, QoS and QoS weights.

5.2.1. Implementing Ranking Component

The implementation for the ranking component is given in the following steps which

include code snippets. The code snippets used in these steps are for the key steps of

the ranking process. Including the entire code was not feasible due to its large size

upto 10,000 lines of code.

Step 1: Create Comparison Matrix

 The first step is to transform the user inputs into a comparison matrix. The

code snippet shown in figure 5.7 convert user inputs (identified as comparisons [])

to a two the comparision Matrix. This involves populating the diagonal with ones.

Query query = QueryFactory.create(queryString);

QueryExecution qe = QueryExecutionFactory.create(query, model);

ResultSet results = qe.execSelect();

OutputStream o = new FileOutputStream(new

File("C:/QComBroker/results/QueryResults.txt"));

ResultSetFormatter.out(o, results, query);

- 113 -

This is followed by storing the inputted values on the right hand side and the

reciprocated values in the left hand side of the matrix.

Figure 5.7: Code for transforming inputs to matrix

Step 2: Calculate criteria weights

 This requires the criteria sum (sum of values in each column). The sum step

has been skipped as it simple addition. The weights are calculated by dividing each

with the sum of its column.

Figure 5.8: Code for calculating criteria weights

for (int i = 0; i < criteriaNumber; i++)

{ val = 0.0;

for (int j = 0; j < criteriaNumber; j++)

 {val += comparisonMatrix[i][j] / riteriaWeightComponentArray[j];}

 criteriaWeightArray[i] = (1.0 / criteriaNumber) * val;

}

for(int i = 0; i < criteriaNumber; i++)

 {comparisionMatrixData[i][i] = 1;}

 for(int i = 0; i < criteriaNumber; i++)

 { y++;

 for(int j = y; j < criteriaNumber; j++)

 {comparisionMatrixData[i][j] = comparisons[x];

 comparisionMatrixData[j][i] = 1/comparisons[x];

 x++;

 }}

- 114 -

Step 3: Calculate denominator for normalizing equation

Figure 5.9: Code for calculating denominator

Step 4: Calculate the performance and weighted normalized matrix

 The normalized performance matrix is calculated by dividing providers QoS

data with the normalized performance matrix from the previous step.

The normalized performance matrix is multiplied with the QoS weights to

calculate the weighted normalized performance matrix.

Step 5: Relative Euclidean Distance

 The code snippet for calculating the relative Euclidean distance is shown in

figure 5.10. Where Math.pow is used for squaring the values and Math.sqrt is for

calculating the square root.

The euclideanDistanceArray contains the relative Euclidean distances. It is

sorted in ascending order to get the ranked results.

for (int i = 0; i < criteriaNumber; i++)

{ val = 0.0;

for (int j = 0; j < providerNumber; j++)

 { val += Math.pow(historicDataMatrix[i][j], 2.0); }

 normalisedPerformanceComponentArray[i] = Math.sqrt(val);

}

- 115 -

Figure 5.10: Code for calculating relative Euclidean distance

5.2.2. Implementing Selection Component

This section consists of snippets of Java code used for implementing the selection

component. The code snippet shown in figure 5.10 is for squaring a 3 dimensional

matrix.

for (int j = 0; j < providerNumber; j++)

{double val = 0.0;

 for (int i = 0; i < criteriaNumber; i++)

 { val += Math.pow(historicDataMatrix[i][j], 2.0); }

 euclideanDistanceComponentArray[j] = Math.sqrt(val);}

double[] euclideanDistanceArray = new double[providerNumber];

 for (int j = 0; j < providerNumber; j++)

 {double val = 0.0;

 for (int i = 0; i < criteriaNumber; i++)

 {val += Math.pow(weightedNormalisedPerformanceMatrix[i][j]

- criteriaWeightArray[i] * requirementsArray[i]/

euclideanDistanceComponentArray[j],2.0); }

 euclideanDistanceArray[j] = Math.sqrt(val);

}

- 116 -

Figure 5.11: Code for squaring a 3d matrix

 Figure 5.12 shows the code snippet for calculating the eigenvector for a three

dimensional matrix. The comments inside the code are represented by the // sign.

The difference between the two Eigenvectors is less than 0.001. Square3d represents

the function square 3d whose code is shown in figure 5.11. eigAdd3d function

returns a normalized array buy dividing each element with the corresponding row

sum.

x[0] = (a1*a1) + (a2*b1) + (a3*c1);

x[1] = (a1*a2) + (a2*b2) + (a3*c2);

x[2] = (a1*a3) + (a2*b3) + (a3*c3);

x[3] = (b1*a1) + (b2*b1) + (b3*c1);

x[4] = (b1*a2) + (b2*b2) + (b3*c2);

x[5] = (b1*a3) + (b2*b3) + (b3*c3);

x[6] = (c1*a1) + (c2*b1) + (c3*c1);

x[7] = (c1*a2) + (c2*b2) + (c3*c2);

x[8] = (c1*a3) + (c2*b3) + (c3*c3);

- 117 -

Figure 5.12: Code for calculating Eigenvector for a 3d matrix

5.2.3. QaComPS User Interface

The user interface has QoS inputs for weights which are inputted with reference to

QoS parameters. For example if the reliability is twice as important are reputation

the first input would be 1,2.

The functional inputs values for size and operating system are compulsory

while the others are optional. Functional input for physical cost represent amount of

money the user intends to spend.

while(true)

{

 //step3 calc first eig

 relE1 = eigAdd3D(rel);

 //step4 sqr agian

 rel = square3D(rel[0],rel[1],rel[2],rel[3],rel[4],rel[5],rel[6],rel[7],rel[8]);

 //step5 calc second eig

 relE2 = eigAdd3D(rel);

 if(relE1[3]-relE2[3]>-0.001 && relE1[3]-relE2[3]<0.001

 &&

 relE1[4]-relE2[4]>-0.001 && relE1[4]-relE2[4]<0.001

 &&

 relE1[5]-relE2[5]>-0.001 && relE1[5]-relE2[5]<0.001)

 { break; }

 }

- 118 -

Figure 5.13: QaComPS User Interface

5.3. Implementing RUN Service

The Run service is implemented explicitly for each provider; as each

provider has its own access mechanism. The following section describes the

example of accessing Amazon EC2.

5.3.1. Running EC2 VMs

Amazon EC2 offers a wide array of APIs for remotely accessing Amazon

EC2 VMs. In case of this work Amazons Java APIs was used; this included an

EC2_Wrapper class which had the following predefined methods:

Creating EC2 VMs: createAMInstances (AMIid, min, max, keyPairName,

instanceType, availabilityZone)

AM stands for Amazon Machine; min and max represent the minimum and

maximum number of VMs that need to be created; keyPairName represents unique

- 119 -

security key; instanceType represents VM size; availabilityZone is the geographical

zone where the VM would be located.

Destroy VMs: terminateAMIs(); this methods will terminate the current VM

5.3.2. Run Service Interface

Figure 5.14 represents the two steps that form the run service. The first step requires

the user to make the final selection by clicking on the run service. At this point the

user can quit by pressing main menu or exit if he presses the Setup/Run button the

selected VM would be initiated and the user would be given the public DNS or the

static IP.

Figure 5.14a: Make final selection

- 120 -

Figure 5.14b: Run selected Service

5.4. Conclusion

This chapter has presented the implementation of the QaComPS service. The service

could have been implemented in a number of programming languages with Java

being the preferred option due to its supporting APIs for ontologies and RDF.

The Information Management service was implemented using protégé which

was effective for not only describing ontologies but for verifying onotlogies using

built-in tools. The implementation for the QaComPS service was over ten thousand

lines of code; key parts of this code were described in the chapter. The

implementation of the run service was the most difficult part as each provider had it

own set of requirements and access methods which meant implementing each

provider explicitly.

- 121 -

Chapter 6

Evaluation

The previous chapter described the implementation of the QaComPS. This chapter

presents the quantitative and qualitative evaluation for the QaComPS. The

evaluation process was to assess; how far QAComPS system achieved the aim of the

research; i.e. “select the best (cheapest) provider‟s VM while fulfilling all the QoS

constraints”. Recording the positives and negatives associated with the use of

QaComPS were also part of the evaluation. The QaComPS was evaluated for

accuracy and efficiency where accuracy was the measure of nearness to the ideal

provider‟s service while efficiency was the measure of the response time for user‟s

queries.

It can be recalled that the QaComPS consisted of three sub services;

Information Management service, Selection service and the Run service (see section

4.1). The Information Management service was evaluated implicitly as part of the

selection service. The QaComPS selection service was evaluated quantitatively for

accuracy and efficiency of the selection process. The selection service was evaluated

against AHP and QMP selection approaches (see section 2.2.2). QaComPS was

evaluated qualitatively by computational modellers who were interviewed earlier

during requirements analysis. The evaluation experiments were carried out on a

machine with 4GB of memory, a 2.5 GHz dual core processor and 250GB storage.

The chapter is divided into four sections where section 6.1 describes the

quantitative evaluation of QaComPS using simulated providers. The second section

describes the evaluation of QaComPS against the AHP and QMP. Section 6.3

describes the quantitative evaluation experiments using actual providers. The final

section contains the qualitative evaluation for the QaComPS.

- 122 -

6.1. Quantitative Evaluation of QaComPS

6.1.1. Objective

 The objective of this experiment was to evaluate the effectiveness of the

QaComPS selection process.

6.1.2. Setup

Ten simulated IaaS Cloud providers were created. The decision to use just

ten providers was based on the effort it took to produce and process each simulated

provider. Each provider offered four VM sizes these are Small, Medium, Large and

Very Large.

Figure 6.1: Mean QoS for the Simulated Providers

Figure 6.1 shows the ten simulated providers named alphabetically from

ProvA to ProvJ. The horizontal line of the graph represents the size of the VM

which is distributed into four parts Small, Medium, Large and Very Large. The

vertical line on the graph represents the MeanQoS which is calculated using the

MeanQoS equation (see 4.3.1). The representation of provider QoS as bars instead

of points is due to the way the selection algorithm operates. For example request for

0

1

2

3

4

5

6

7

8

9

Small Medium Large Very Large

M
e

an
Q

o
S

VM size

ProvA

ProvB

ProvC

ProvD

ProvE

ProvF

ProvG

ProvH

ProvI

ProvJ

- 123 -

low QoS would include results for medium and high while for high QoS would

return results for only high QoS. Table 6.1 contains the randomly generated

individual values for each provider‟s QoS parameters.

Name Cost Reliability Reputation Security

ProvASmall 8.0 7.0 9.0 5.0

ProvBSmall 8.0 3.0 7.0 3.0

ProvCSmall 7.0 9.0 2.0 9.0

ProvDSmall 7.0 5.0 1.0 5.0

ProvESmall 7.0 9.0 1.0 9.0

ProvFSmall 4.0 4.0 1.0 3.0

ProvGSmall 8.0 9.0 4.0 7.0

ProvHSmall 4.0 4.0 3.0 4.0

ProvISmall 7.0 7.0 4.0 4.0

ProvJSmall 7.0 8.0 8.0 6.0

ProvAMed 8.0 9.0 1.0 3.0

ProvBMed 9.0 2.0 8.0 4.0

ProvCMed 7.0 9.0 8.0 4.0

ProvDMed 6.0 7.0 7.0 1.0

ProvEMed 4.0 9.0 5.0 8.0

ProvFMed 5.0 8.0 1.0 7.0

ProvGMed 4.0 4.0 4.0 3.0

ProvHMed 4.0 3.0 3.0 3.0

ProvIMed 9.0 4.0 6.0 8.0

ProvJMed 6.0 9.0 5.0 4.0

ProvALarge 6.0 4.0 1.0 9.0

ProvBLarge 9.0 4.0 8.0 5.0

ProvCLarge 8.0 4.0 8.0 8.0

- 124 -

ProvDLarge 5.0 3.0 2.0 3.0

ProvELarge 4.0 6.0 6.0 5.0

ProvFLarge 8.0 9.0 7.0 7.0

ProvGLarge 4.0 6.0 9.0 8.0

ProvHLarge 4.0 2.0 4.0 1.0

ProvILarge 4.0 5.0 5.0 3.0

ProvJLarge 7.0 4.0 7.0 6.0

ProvAvLarge 8.0 1.0 8.0 1.0

ProvBvLarge 4.0 1.0 1.0 9.0

ProvCvLarge 6.0 7.0 7.0 6.0

ProvDvLarge 5.0 7.0 3.0 8.0

ProvEvLarge 6.0 7.0 4.0 8.0

ProvFvLarge 5.0 2.0 2.0 6.0

ProvGvLarge 8.0 9.0 7.0 7.0

ProvHvLarge 4.0 8.0 3.0 6.0

ProvIvLarge 9.0 5.0 1.0 7.0

ProvJvLarge 7.0 8.0 5.0 9.0

Table 6.1: List of simulated Cloud Providers

The next requirement for the experiment was a set of controlled user requests

these are shown in table 6.2. The user requests only vary one field at a time while

keeping the others constant; in order to analyze the impact of change.

 It can be observed from table 6.1 that the value of cost is comparatively

higher than the other parameters. The entries in table 6.1 were generated through a

random number generator. This returned number between 0 and 1 which were

multiplied by nine to produce numbers between one and nine. These numbers had a

decimal point which was rounded up or rounded off to convert the numbers to

integers. In case of cost the values were rounded up as high cost QoS meant cheaper

- 125 -

provider. For example a random value of 3.1 for cost would become 4.0. In case of

other QoS properties the number were rounded for example 3.1 would became 3

while 3.8 became 4.

Request ID Reliability Reputation Security Cost

1 1 1 1 9

2 2 1 1 9

3 3 1 1 9

4 4 1 1 9

5 5 1 1 9

6 6 1 1 9

7 7 1 1 9

8 8 1 1 9

9 9 1 1 9

10 1 2 1 9

11 1 3 1 9

12 1 4 1 9

13 1 5 1 9

14 1 6 1 9

15 1 7 1 9

16 1 8 1 9

17 1 9 1 9

18 1 1 2 9

19 1 1 3 9

20 1 1 4 9

21 1 1 5 9

22 1 1 6 9

23 1 1 7 9

24 1 1 8 9

25 1 1 9 9

Table 6.2: User requests

The QoS parameters were varied within the range of one and nine therefore

each parameter can be varied eight times. For the first request only cost QoS is

considered therefore the other three are fixed at the lowest rating. This would return

the overall cheapest provider. User requests two to nine were for the reliability with

- 126 -

the reputation and security constant at the lowest. The next eight requests kept the

value of reliability and security at one and varied the reputation between two and

nine. The last eight requests kept the values of reliability and reputation constant at

lowest while changing the values of security from two to nine.

6.1.3. Results

The results shown in figure 6.2 can be explained by looking at table 6.1

which contains the provider information. Request one is interesting as no provider

had a rating of nine for cost while three providers had a rating of eight out of these

ProvASmall has the best Mean QoS therefore it was selected. It is evident that only

two providers had the highest reliability rating ProvCSmall and ProvGSmall.

ProvGSmall offers a cheaper cost therefore it was selected over ProvCSmall. For

reputation requests only ProvASmall had a reputation rating of nine therefore it was

selected for all reputation ratings. For security ratings ProvCSmall and ProvESmall

both had a rating of nine. In this case this MeanQoS was compared where

ProvCSmall is ahead of ProvESmall.

Figure 6.2 presents the simulation results for small VM.

The reason that only three providers got selected is the small number of QoS

parameters. As only three QoS parameters were varied while cost remained

constant.

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9

0 3 6 9 12 15 18 21 24 27

M
e

an
 Q

o
S

Rel: Low------------High Rep: Low----------High Sec:Low---------High

ProvASmall

ProvCSmall

ProvGSmall

- 127 -

The queries for medium VM returned ProvAMed, ProvBMed, and ProvIMed

as shown in figure 6.3. ProvBMed and ProvIMed both had a cost rating of nine

which meant that they were the cheapest. The selection was made using MeanQoS

where ProvIMed had the higher rating. The queries for low reliability returned

ProvIMed as it had the highest cost rating with low reliability. ProvAMed is selected

for medium reliability request. It had the highest reliability rating with a high cost

rating. ProvAMed was also selected for high reliability requests as it had the highest

reliability with high cost. ProvBMed is selected for all reputation requests. The

selection is based on ProvBMed‟s cost rating of nine and reputation rating of eight;

both of which are high and unmatched. For all security requests ProvIMed was

selected which had a cost rating of nine with a security rating of eight.

Figure 6.3: Simulation results for Medium VM

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9

0 3 6 9 12 15 18 21 24 27

M
e

an
 Q

o
S

Rel: Low-------------------High Rep: Low----------------High Sec:Low----------------High

ProvAMed

ProvBMed

ProvIMed

- 128 -

Figure 6.4: Simulation results for Large VM

The simulation results for Large VM are shown in figure 6.4. ProvFLarge

had a high cost rating with the highest Mean QoS. Therefore it was selected for the

first request. The reliability rating for ProvFLarge was nine therefore it was also

selected for the reliability requests. ProvBLarge was selected for the reputation

requests as it had an unmatched reputation rating of eight with a cost rating of nine.

 The results for security requests were interesting as for each low, medium

and high security requests a different provider was selected. This was due to the

lack of a dominant provider as was the case for medium VM reputation and security

requests. The first two requests for low security returned ProvFLarge as it had the

highest cost rating and a low security rating. The medium security requests returned

ProvBLarge which had a medium security rating with a high cost rating.

ProvCLarge had the best security rating with a medium cost rating therefore it was

selected only for high security requests.

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 3 6 9 12 15 18 21 24 27

M
e

an
 Q

o
S

Rel: Low-------------------High Rep: Low----------------High Sec:Low----------------High

ProvBLarge

ProvCLarge

ProvFLarge

- 129 -

Figure 6.5: Simulation results for Very Large VM

The results for Very Large VM are given in Graph 5. ProvGvLarge had the

best MeanQoS rating along with a cost rating of eight therefore it was selected for

the first request. ProvGvLarge was also selected for the reliability requests as it had

a rating of nine for reliability. For low reputation requests ProvGvLarge was

selected due to its low reputation rating with a high cost rating. For medium and

high reputation requests ProvAvLarge was selected which had a high rating of eight

for reputation and the same for cost. For low security requests ProvGvLarge was

selected which had a security rating of three with high cost rating. For the rest of the

requests ProvIvLarge was selected due to its cost rating of nine with a security rating

of eight.

6.1.4. Analysis of Results

As the input requests were controlled the results were calculated beforehand. These

were compared to the above results and there were no discrepancies; both sets had

the same results. The objective of the experiment was fulfilled as QaComPS did

select the cheapest provider while matching user specified QoS. Due to the random

generation of provider QoS some providers dominated as in the case of small and

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 3 6 9 12 15 18 21 24 27

M
e

an
 Q

o
S

Rel: Low-------------------High Rep: Low----------------High Sec:Low----------------High

ProvAvLarge

ProvGvLarge

ProvIvLarge

- 130 -

very large VMs. In other cases the selection returned separate providers for each set

of requests such as the case of security request for large VM.

6.2. Experiment 2: Comparing QaComPS against QMP and AHP

QaComPS prototype was implemented as a service therefore in order to

undertake the evaluation experiment; AHP and QMP services were developed and

tested. The AHP service was implemented using (Haas and Meixner 2005) while the

QMP service was implemented using (ELEYAN, Amna et al. 2004).

6.2.1. Objective

The objective of this experiment was to identify whether QaComPS can

outperform QMP and AHP selection processes in terms of accuracy.

6.2.2. Setup

Twenty five simulated providers were created; each offered a different set of

QoS metrics while all of them offered the same computational resources. The

simulated providers offered small, medium, large and very large VMs. Resource

information associated with small, medium, large and very large came from public

Cloud providers as shown in Table 6.1. Twenty five user requests were created with

eight user requests for each low, medium and high QoS as shown in table 6.2. These

were controlled requests whose output was calculated beforehand. Each user

request was passed to AHP, QMP and QAComPS.

6.2.3. Results

Figure 6.6, 6.7, and 6.8 show the results with the horizontal axis showing the

user request while the vertical axis showing the cost effect marked on a scale of one

to nine. The cost effectiveness is the measure of the nearness to the cheapest

provider meeting the QoS constraints. A value of nine for cost effect indicates that

the selected provider met all the QoS criteria and was the cheapest while a value of 1

would mean that none of the QoS criteria were met. Values of five and higher

indicate that QoS criteria excluding cost were met.

- 131 -

Figure 6.6 MatchMaker Comparisons (High QoS)

Figure 6.7 MatchMaker Comparisons (Medium QoS)

Figure 6.8 MatchMaker Comparisons (Low QoS)

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

C
o

st
 E

ff
e

ct

User Requests

AHP

QMP

QaComPS

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

C
o

st
 E

ff
e

ct

User Requests

AHP

QMP

QaComPS

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

C
o

st
 E

ff
e

ct

User Requests

AHP

QMP

QaComPS

- 132 -

Figure 6.6 shows the results for high QoS. It can be observed in figure 6.6

that AHP and QaComPS were effective for high QoS requests while QMP was not

so effective. Figure 6.7 shows the results for medium QoS where QaComPS was the

most effective. Figure 6.8 shows the results for low QoS where QMP and

QAComPS were effective.

6.2.4. Analysis of Results

The results for AHP showed it performed well for higher level of QoS while it did

not perform as well for others. However AHP was more sensitive to changes to the

user requests. In contrast QMP performed well for low QoS ratings but was not very

good for the higher QoS level. This was due to the way QMP prioritizes the

providers offering lower cost over those offering higher QoS with higher cost. One

factor might be the filter as there was no filtration for the QMP and AHP. This

affected the performance of AHP which returned different sized providers for low

and medium QoS.

6.3. Evaluation experiment using Cloud providers

6.3.1. Objective

The objective of this experiment was to evaluate the effectiveness of the

QaComPS selection process while using actual Cloud provider‟s information. The

initialization and maintenance of QoS was also evaluated by the experiment.

6.3.2. Setup

The experiment was undertaken using four Cloud providers and twenty five

controlled user request (see table 6.2). The profiles of the four providers are given in

Appendix C.

- 133 -

 Amazon

Ec2

FlexiScale GoGrid Rackspace

Memory

(GB)

Small 1.7 2 2 2

Medium 7.5 8 8 8

Large 15 8 12 16

Very Large 23 ----------- 24 32

CPU (a unit

equates to a

core with 1-

1.2 GHz)

Small 1 1 1 1

Medium 4 4 4 8

Large 8 8 8 16

Very Large 33.5 ----------- 24 32

Non

Persistent

Storage

(GB)

Small 160 80 80 80

Medium 850 320 640 320

Large 1690 1000 1000 620

Very Large 1690 ------------ 800 1000

Cost Small 0.080 0.0805 0.057 0.1216

Medium 0.320 0.3416 0.4000 0.4861

Large 0.640 0.4472 0.784 0.9722

Very Large 1.30 ------------ 1.10 1.66

Table 6.3: VM descriptions

Table 6.3 contains the VM descriptions for the four Cloud providers. It is

evident from the table that providers offer different sized VMs. The physical cost

(what user pays) is in US $ per hour.

- 134 -

 Reputation

The value for reputation was initialized through Google Trends (Choi and

Varian 2009) and would be updated through user reviews. Google trends is a

record of the number of visits to a website. Figure 6.9 shows the number of

visit to the four providers during the past year. What is interesting to see is

that Rackspace has a higher rating than Amazon. This can be explained in

the context the Amazon was already an established name and users did not

rely on Google to access Amazons web site which was not the case for

Rackspace.

Figure 6.9 Search Trends Indicating Reputation of Cloud Providers

 Cost

Cost was calculated using the following equation

Cost = (α x Cl + β x Dt)/ (α + β)

Where α and β are constant, Cl is the cost of the virtual machine and is the data

transfer cost. The cost given in table 6.3 is converted into relative cost using the

above equation.

- 135 -

Provider Name Cost/

hour

Data transfer cost /GB Relative Cost

AmazonEC2Small 0.080 0.12 download, free

upload: relative data

transfer cost = 0.08

α= 0.65

β=0.35

Cost=0.108

AmazonEC2Medium 0.320 0.12 download, free

upload: relative data

transfer cost = 0.08

α= 0.7

β=0.3

Cost=0.344

AmazonEC2Large 0.640 0.12 download, free

upload: relative data

transfer cost = 0.08

α= 0.75

β=0.25

Cost=0.666

AmazonEC2vLarge 1.30 0.12 download, free

upload: relative data

transfer cost = 0.08

α= 0.8

β=0.2

Cost=1.316

GoGridSmall 0.057 0.20 download, free

upload: relative data

transfer cost = 0.14

α= 0.65

β=0.35

Cost=0.106

GoGridMedium 0.4000 0.20 download, free

upload: relative data

transfer cost = 0.14

α= 0.7

β=0.3

Cost=0.442

GoGridLarge 0.784 0.20 download, free

upload: relative data

transfer cost = 0.14

α= 0.75

β=0.25

Cost=0.819

GoGridvLarge 1.10 0.20 download, free

upload: relative data

transfer cost = 0.14

α= 0.8

β=0.2

Cost=1.128

FlexiScaleSmall 0.0805 0.1 (upload &

download)

α= 0.65

β=0.35

Cost=0.1115

FlexiScaleMedium 0.3416 0.1 (upload &

download)

α= 0.7

β=0.3

- 136 -

Cost=0.3716

FlexiScaleLarge 0.4472 0.1 (upload &

download)

α= 0.75

β=0.25

Cost=0.4722

RackspaceSmall 0.1216 0.14 download, free

upload: relative data

transfer cost = 0.09

α= 0.65

β=0.35

Cost=0.1531

RackspaceMedium 0.4861 0.14 download, free

upload: relative data

transfer cost = 0.09

α= 0.7

β=0.3

Cost=0.5131

RackspaceLarge 0.9722 0.14 download, free

upload: relative data

transfer cost = 0.09

α= 0.75

β=0.25

Cost=0.9947

RackspacevLarge 1.66 0.14 download, free

upload: relative data

transfer cost = 0.09

α= 0.80

β=0.20

Cost=1.68

Table 6.4: QoS Cost Table

The cost QoS is calculated by identifying the smallest value in a group; for

example 0.106 for GoGrid small VM. This would be assigned highest rating of 9.

The other provider‟s VMs would be assigned values relative to this rating. For

example AmazonEC2Small that has a rating of 0.108 with a difference of 0.002 with

the GoGrid small is also assigned high QoS rating. FlexiScale has a rating of 0.115

and is assigned medium rating while Rackspace being the most expensive was

assigned low QoS rating. Table 6.5 contains the full list of cost QoS ratings.

 Reliability

The value for reliability is based on SLA on offer from providers, literature

and technical support. Commercial Cloud providers are very reliable and

- 137 -

failures are a rare occurrence. Therefore identifying the reliability data

through experimentation was not feasible as it could potentially take a year

between failures. The SLA is part of the reliability data as it represents the

amount of failures which will not be covered by the providers. This figure is

very low as all providers offer at least 99% SLA meaning that in less 1% of

the cases the user will not be reimbursed. The values are also based on the

technical support; as this is vital in case of failures.

Amazon offers 99.95% SLA which is high however a lack of free

technical support means that it gets a rating of 7. FlexiScale offers 100%

SLA and also offers free technical support. During the past two years

FlexiScale did suffer a major service failure which lasted a whole day.

Therefore reliability rating for FlexiScale is 6. GoGrid offers 100% SLA and

free customer support however they also suffered some service issues over

the past two years. GoGrid is rated 7 for reliability. Rackspace offers a

variable SLA depending on the failure. The user would be reimbursed 5% to

a 100% of the credit depending on the size of the failure. This does not help

the user as even a small failure could mean restarting the job from scratch.

Rackspace has been given a reliability rating of 6.

 Security

The security rating is a measure of the security offered by providers. It is

measured by analyzing the security offered by each provider. Each provider

is analyzed for access and data protection. The process was carried out with

the help of literature. Access is given a higher weight as it can lead to data

failures.

Amazon offers a multi layer security setup which includes certificates

and keys therefore it gets the highest rating of 9. GoGrid uses RBAC which

- 138 -

is a reliable method of access control however compared to Amazon it does

not use combinations of security keys; it has a rating of 5. FlexiScale does

not employ RBAC or security keys but does offer each customer a personal

Virtual LAN; it gets a rating of 6. Rackspace offers the same

(username/password) security as FlexiScale therefore it is also rated 6.

Name Cost Reliability Reputation Security

 AmazonSmall 9.0 7.0 9.0 9.0

 AmazonMedium 9.0 7.0 9.0 9.0

 AmazonLarge 6.0 7.0 9.0 9.0

 AmazonvLarge 8.0 7.0 9.0 9.0

 GoGridSmall 9.0 7.0 5.0 5.0

 GoGridMedium 6.0 7.0 5.0 5.0

 GoGridLarge 3.0 7.0 5.0 5.0

 GoGridvLarge 9.0 7.0 5.0 5.0

 FlexiSmall 7.0 6.0 3.0 6.0

 FlexiMedium 8.0 6.0 3.0 6.0

 FlexivLarge 9.0 6.0 3.0 6.0

 RackspaceSmall 3.0 6.0 7.0 6.0

 RackspaceMedium 3.0 6.0 7.0 6.0

 RackspaceLarge 3.0 6.0 7.0 6.0

 RackspacevLarge 6.0 6.0 7.0 6.0

Table 6.5: Initial QoS values

6.3.3. Results

Evaluation experiments were carried out using twenty five user requests as

shown in table 6.2. Queries for small and medium VM returned AmazonEC2 as not

only was it the cheapest provider; it had the highest QoS ratings.

- 139 -

Figure 6.10: Results for Large VM

Graph 6.11: Results for very Large VM

The selection results for large VM were dominated by FlexiScale as it was the

only provider in the group that had a rating of 9 for cost. FlexiScale was selected

low, medium, high reliability; low reputation; and low, medium security.

AmazonEC2 was selected in other cases due to a cost rating of 8.0 with the highest

reliability, reputation and security ratings.

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 3 6 9 12 15 18 21 24 27

M
e

an
 Q

o
S

Rel: Low-------------------High Rep: Low----------------High Sec:Low----------------High

AmazonEC2Large

FlexiScaleLarge

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9

0 3 6 9 12 15 18 21 24 27

M
e

an
 Q

o
S

Rel: Low-------------------High Rep: Low----------------High Sec:Low----------------High

AmazonEC2VLarge

GoGridvLarge

- 140 -

The selection of very large VMs was dominated by GoGrid due to its highest

rating for cost. GoGrid was selected for low, medium reliability, reputation and

security. AmazonEC2 was selected for high reputation and security.

6.3.4. Analysis of Results

As expected the results were dominated by Amazon EC2 which was the most

cost effective and had a high reputation and security rating. The reputation rating

would be the be most dynamic rating as after each transaction a user rates the

service.

Further experimentation is needed to understand the impact on the QoS

parameters and how they normalize over a longer period of time. In addition a

sensitivity analysis to test the mapping of the values should also be part of the future

work. The mapping translates physical values into QoS and changes to the mapping

would potentially affect the results.

6.4. Early User Evaluation

An early user evaluation of the QaComPS was undertaken with the help of a

computational modeller (user). The aim was to record user‟s perspective of the

QaComPS service. This recording would help identify any deficiencies in the

service. The process was be based on user scenarios, semi structured interviews,

discussion, prototype demonstration and user exploration of the prototype. This was

performed by one computational modeller (potential user). The aim of the evaluation

was to identify how the QaComPS would be used and how could it be improved.

Objectives for the evaluation are given below:

 Does a practising computational modeller feel that switching to Cloud

computing would be beneficial?

- 141 -

 Does the user feel that QaComPS makes it easier for him to use the Cloud;

by automatically selecting and running the cheapest Cloud provider on his

behalf?

 Does a practising computational modeller feel that there is sufficient value in

the QAComPMS to justify the overhead of providing QoS ratings and QoS

weights?

6.4.1. Evaluation Process

The evaluation process employed qualitative methodology which involves using

scenarios. The evaluation process was initiated by presenting the scenario, followed

by a demonstration of the QaComPS service. In the end a semi structured interview

was conducted to record user‟s views of the service. The service was evaluated

subjectively by one computational modeller who are part of the HPC group at the

University of Leeds.

Three user scenarios were developed (see Appendix B) for describing the

usability and benefits of QaComPS service. These scenarios were later amalgamated

to produce the scenario given in chapter 3. The first scenario presents the need for

switching to Cloud computing, over the existing in-house setup. The second

scenario presents the need for a service to identify the cheapest provider as the

number of providers and options available can be time consuming and baffling. The

third scenario presents the case for the use of QoS parameters and how their usage

can improve the selection process.

The scenarios were followed by a demonstration of the QaComPS service.

The user was given the chance to use the service; support was at-hand during this

process.

- 142 -

In the final step a semi structured interview was conducted to record user‟s

views of the QaComPS. The discussion also looked back at the user‟s needs and

analyzed whether these could be fulfilled by the Cloud.

6.4.2. Evaluation Results

During the evaluation the user requested a small VM with the lowest cost while

other QoS parameters were kept at low. QaComPS setup a small AmazonEC2 VM

and passed the public DNS information along with the security key onto the user,

these enabled the user to access the VM. The client machine was a laptop with an

2.5 Ghz dual core processor and 4 gb of memory. The universities high speed

wireless internet connection was used for accessing the VM. The modeller was

solving an Elasto Hydrodynamic Lubrication (EHL) problem for which he had

previously generated a mesh on his local machine.

 During the initial briefing means of accessing the VM and alternatives were

described to the user. The VMs are accessible only through the static IPs and DNS

keys shared by the QaComPS. The access was monitored by the QaComPS as it was

responsible for the billing of the service usage.

 The modeller was also briefed about the alternative solution that being

bypassing the QaComPS and accessing the providers directly. The benefit of this

approach being in direct contact with the VM provider however the lack of QoS data

meant that the user had no knowledge regarding providers past also the user would

have develop an understanding of each individual provider and share his debit/credit

card details with every one of them.

Key responses from the computational modeller regarding his experience are as

follows:

 According to the expert the move to the Cloud computing would help his

work as it saves time and effort. “Using Cloud resources would save us time

as queuing for resources was time consuming”.

- 143 -

 The expert stated that the selection service was easy to use and the running

of the selected provider was seamless.

 The modeller was impressed with the response time which included setting

up and running the VM. This time was less than two minutes. (Amount of

time between making a request and getting a running VM).

 Proposed improvements were regarding running batch jobs as in the current

system every job is treated individually.

 The other concern was with the storage of data as in the current setup there

were no provisions for persistent storage of information. “Research

experiments are performed iteratively where one set of results are inputs to

the next. There should be a provision to save the results for long periods of

times as these would be required in the future”.

6.5. Conclusion

The chapter has presented the evaluation results for the QaComPS; these show that

QaComPS was able to select the cheapest provider consistently.

Three quantitative evaluation experiments were carried out to monitor the

performance of QaComPS. All of the experiments were carried out using controlled

input data set. The data set is crucial in identifying the progress of the service as

results for the controlled data set are compared against results from the QaComPS

and other services. A match is recorded as a “hit” while if the two sets do not match

it is recorded as a “miss” and the service is debugged for errors. Two of the

experiments used simulated provider‟s while the third used actual Cloud providers.

- 144 -

 The qualitative evaluation was very limited as only two experts were

available for the process. It is proposed that in the future a through qualitative

evaluation study should be conducted.

- 145 -

Chapter 7

Conclusion and Future Work

This PhD presented a study of the design and evaluation for the proposed Quality

aware Computational Cloud Selection (QaComPS) service. The service addresses

the High Performance Computing (HPC) needs of computational modellers by

selecting and running the best Cloud provider‟s VM.

The thesis has proposed a new semantic approach to describing Cloud

providers. The descriptions follow a service ontology for specifying the Cloud

entities and their relations. At the moment each Cloud provider has its own

vocabulary however ontology descriptions mean that the descriptions are uniform.

The thesis also proposes four quality metrics for keeping track of a Cloud provider‟s

progress. Considering that the Cloud providers offer a best effort solution these QoS

metrics are especially useful for the computational modeller. The novel architecture

for the QaComPS service has a five step selection process. This includes input,

filter, rank, select, and run steps.

This chapter concludes the thesis. It is distributed into two sections where;

section 7.1 describes the research findings while section 7.2 describes the potential

future research work.

7.1. Research Findings

The summary of the research findings is given below:

(1) From the requirements analysis process three main groups of requirements

were identified. These formed the motivation for the design of the envisioned

system. The requirements include; (a) requirements related to the acquiring

of HPC resources; (b) requirements related to the descriptions of Cloud

providers and automatic management of provider information; and (c)

requirements related to the effectiveness and efficiency of the search process.

- 146 -

(2) The Semantic Web is an effective technology for describing functional and

Quality of Service information. The semantic data model adds meaning to

the Cloud providers descriptions. This enables the QaComPS to enforce a

common vocabulary while describing providers.

(3) SAWSDL annotations are effective for sharing information between

semantic and non semantic sources. In case of this work the Information

Management service was semantic while the selection and run services were

non semantic; the SAWSDL lifting and lowering schema mappings enabled

these to intercommunicate.

(4) The filter is used for filtering out providers that do not meet the user‟s

requirements. This is particularly useful for filtering out providers that do not

meet the user‟s functional requirements.

(5) QaComPS selection service promises higher levels of precision as the

combination of ranking and selection algorithms produce effective search

results. Both the algorithms can potentially be individually used to find the

best result therefore their combination would reaffirm the results. The

processing times were be reduced by minimizing the number of potential

providers through filtering and ranking.

(6) QaComPS enables the users to access a number of Cloud providers through a

single user account thus removing the chances of getting locked onto a single

provider. This is achieved by using flexible mapping and programming APIs.

- 147 -

7.2. Future Work

The possible future work for this research includes; (a) future work for extending the

QaComPS; (b) getting closer to a “guaranteed” solution; and (c) application of

QaComPS as an integrated component to a large Cloud brokering system.

7.2.1. Future Work for QaComPS

The future work for the QaComPS includes extending QaComPS, improved service

automation, and further evaluation.

7.2.1.1. Extending QaComPS

In the current setup the user has a fixed set of VMs to choose from however some

providers such as Rackspace and GoGrid enable the user to create customized VMs

with user specified processing, memory and storage. The QaComPS can be extended

to include availability of the option for the customized VMs.

The concepts related to Cloud providers QoS information have never been

completely identified. In this research the author selected four QoS parameters only

for illustrative purposes. These can be extended as potentially there are more than 30

parameters that could be monitored (Tran, Tsuji et al. 2009). Extending QoS

parameters may enhance the decision making ability of the QaComPS.

7.2.1.2. Improving Service Automation

In the current setup QaComPS automatically maintains the QoS information

however a lab manager is required to keep track of the cost and the functional

information. The lab manager is also responsible for finding new providers and

adding their information to the database.

The process of finding new providers and updating functional information can

potentially be automated by a Web crawler (Boldi, Codenotti et al. 2004). A Web

crawler can search the web on-behalf of other services; it is commonly used by

search engines to update information.

- 148 -

 The incorporation of SAWSDL annotations means that the information can

be processed by semantic software agents. Software agents are automatic software

applications that can automatically invoke themselves for performing a set task.

These can potentially, be used to update the provider information automatically.

7.2.1.3. Further Evaluation

An important next step is to fully evaluate the run service with the help of a large set

of computational modellers. This includes comparing the in-house HPC machines

and the Cloud providers. This evaluation provides new insights to design of the next

generation of brokers wishing to offer this type of service.

 The evaluation used only four actual Cloud providers. The number of

potential providers can be increased to extend the evaluation process.

Another aspect for extending the evaluation would be to increase the number

of VM sizes. In the current evaluation four VM sizes were used however providers

like AmazonEC2 offer up to 17 different VM sizes.

7.2.2. Getting Closer to a “Guaranteed” Solution

An interesting research problem is to investigate how to get closer to a “guaranteed”

solution. A guaranteed solution enables the user to calculate with absolute certainty

the amount of time it would take a job to finish on a particular VM; regardless of

any failures or performance lags. In order to achieve this QaComPS would require,

means for continuous performance monitoring and check-pointing.

Checkpoints are traditionally used for recovery at times of service failures. In

this research however, they would be used to monitor the performance of Cloud

provider‟s VM. Given that a job takes many hours it would be possible to switch to

another VM if the job run fell behind some expected schedule. This would require

running more than one provider‟s VMs in parallel (replication). At each checkpoint

the service selects the provider‟s VM that competes first for the next step. The

chances of service failure are reduced exponentially by as the job is running on

- 149 -

multiple VMs. A negative for this approach would be the potential higher cost as the

user has to pay for all the VMs running the job.

7.2.3. Further Applications of QaComPS

The QaComPS service architecture could potentially be used for other domains. This

is possible due to the independent internal service architecture as each service has a

specific set of inputs and outputs regardless of the domain. In order to use another

domain; new service ontology and RDF descriptions would be required while the

selection service would not require many changes. The Run service is however

designed specifically for working with the Cloud providers.

 This research has the potential to assist brokers in providing a better service

by making independent assessment of the QoS values. A Cloud Broker mediates

between a provider and a user. Cloud service brokerage is an emerging field and a

number of Cloud brokers have been developed (Smith 2012). However building and

maintaining any broker service requires a significant investment. Today the cost can

be significantly reduced by using a number of specialised third party Cloud services.

One such service is the QAComPS.

 Figure 7.1 shows one possible use of the QAComPS as a plug-in to a

Cloud brokering system. Accesses to the QAComPS service is via the Broker

service interface as shown in figure 7.1. The other service is the Data Cloud (for

persistent storage of data) for managing the data on behalf of the modeller. The

Application service provides the computational model that would be used by the

QaComPS.

- 150 -

Cloud Broker Data Cloud service

Application software
generation service

Service Interface

Lab Manager Modellers
Modellers

Service Maintenance

QaComPS

Figure 7.1: Application of the QAComPS service

The QAComPS service can also be integrated into the OPTIMIS framework

which is a holistic approach to Cloud service provisioning (Ferrer, Hernandez et al.

2010). Its goal is to enable organizations to automatically externalize services to

trustworthy and auditable Cloud providers in a hybrid Cloud model.

- 151 -

List of References

Akioka, S. and Y. Muraoka (2010). HPC Benchmarks on Amazon EC2. Advanced

Information Networking and Applications Workshops (WAINA), 2010 IEEE

24th International Conference on.

Akkiraju, R., J. Farrell, et al. (2005). "Web service semantics-WSDL-S." W3C

Member Submission 7.

Altintas, I., C. Berkley, et al. (2004). Kepler: an extensible system for design and

execution of scientific workflows, Los Alamitos, CA, USA, IEEE Comput.

Soc.

Amazon. (2012). "Amazon EC2 Service Level Agreement." Retrieved 21/03/2012,

2012, from http://aws.amazon.com/ec2-sla/.

Amazon. (2012). "Amazon Elastic Compute Cloud." Retrieved 19/03/2012, 2012,

from http://aws.amazon.com/ec2/.

Anderson, D. P., J. Cobb, et al. (2002). "SETI@ home: an experiment in public-

resource computing." Communications of the ACM 45(11): 56-61.

Armbrust, M., A. Fox, et al. (2010). "A view of cloud computing." Communications

of the ACM 53(4): 50-58.

Armstrong, D. and K. Djemame (2009). Towards Quality of Service in the Cloud. in

Proc. of the 25th UK Performance Engineering Workshop, Leeds, UK.

Arshad, J., P. Townend, et al. (2009). Quantification of security for compute

intensive workloads in clouds, IEEE.

Bader, D. A. and J. JáJá (1999). "SIMPLE: A methodology for programming high

performance algorithms on clusters of symmetric multiprocessors (SMPs)."

Journal of Parallel and Distributed Computing 58(1): 92-108.

Bailey, D. H., E. Barszcz, et al. (1991). The nas parallel benchmarks summary and

preliminary results, IEEE.

Balani, N. (2005). "The future of the Web is Semantic." IBM developerworks.

Beazley, D. M. (2009). Python essential reference, Addison-Wesley Professional.

Berners-Lee, T., J. Handler, et al. (2006). "The semantic Web." Database and

Network Journal 36(3): 7-14.

Berners-Lee, T. and J. Hendler (2001). "Scientific publishing on the semantic web."

Nature 410: 1023-1024.

Boag, S., D. Chamberlin, et al. (2003). "XQuery 1.0: An XML query language."

W3C working draft 12.

Böck, H. and J. Tulach (2009). The Definitive Guide to NetBeans Platform,

Springer.

Boldi, P., B. Codenotti, et al. (2004). "Ubicrawler: A scalable fully distributed web

crawler." Software: Practice and Experience 34(8): 711-726.

Box, D., D. Ehnebuske, et al. (2000). Simple object access protocol (SOAP) 1.1,

May.

Bratt, S. (2007). "Semantic web, and other technologies to watch." World Wide

Web Consortium: January.

Bray, T., D. Hollander, et al. (1999). "Namespaces in XML."

Bray, T., J. Paoli, et al. (1997). "Extensible markup language (XML)." World Wide

Web Journal 2(4): 27-66.

http://aws.amazon.com/ec2-sla/
http://aws.amazon.com/ec2/

- 152 -

Bruijn, J., C. Bussler, et al. (2005). Web Service Modeling Ontology (WSMO),

W3C Member Submission 3 June 2005.

Buyya, R., D. Abramson, et al. (2000). Nimrod/G: an architecture for a resource

management and scheduling system in a global computational grid, Los

Alamitos, CA, USA, IEEE Comput. Soc.

Buyya, R., C. S. Yeo, et al. (2009). "Cloud computing and emerging IT platforms:

Vision, hype, and reality for delivering computing as the 5th utility." Future

Generation Computer Systems 25(6): 599-616.

Camara, J., J. A. Martin, et al. (2009). Itaca: An integrated toolbox for the automatic

composition and adaptation of web services, IEEE.

Cassidy, P. (2008). "Toward an Open-Source Foundation Ontology Representing the

Longman‟s Defining Vocabulary: The COSMO Ontology OWL Version."

Ontology For The Intelligence Community: 45.

Chang, V., G. Wills, et al. (2011). Towards a structured Cloud ROI: The University

of Southampton cost-saving and user satisfaction case studies. Sustainable

Icts and Management Systems for Green Computing, Idea Group,U.S.

Choi, H. and H. Varian (2009). "Predicting the present with Google trends." Google

inc: 1-23.

Claro, D. B., P. Albers, et al. (2006). "Web services composition." Semantic Web

Services, Processes and Applications: 195-225.

Consortium, O. C. (2009). Open cloud consortium.

Consortium, U. (2000). The Unicode standard, version 3.0, Addison-Wesley

Professional.

Curbera, F., M. Duftler, et al. (2002). "Unraveling the Web services web: an

introduction to SOAP, WSDL, and UDDI." Internet Computing, IEEE 6(2):

86-93.

Danielsson, P. E. (1980). "Euclidean distance mapping." Computer Graphics and

image processing 14(3): 227-248.

De Roure, D., N. R. Jennings, et al. (2005). "The Semantic Grid: Past, Present, and

Future." Proceedings of the IEEE 93(3): 669-681.

Deelman, E., G. Singh, et al. (2008). The cost of doing science on the cloud: the

montage example, Ieee.

Denzin, N. K. and Y. S. Lincoln (2011). The SAGE handbook of qualitative

research, Sage Publications, Inc.

Dew, P., J. Schmidt, et al. (2003). The white rose grid: practice and experience,

Citeseer.

Dikaiakos, M. D., D. Katsaros, et al. (2009). "Cloud computing: Distributed Internet

computing for IT and scientific research." Internet Computing, IEEE 13(5):

10-13.

Djemame, K., J. Padgett, et al. (2011). "Brokering of risk‐aware service level

agreements in grids." Concurrency and Computation: Practice and

Experience.

Eerola, P., B. Kónya, et al. (2003). The NorduGrid production Grid infrastructure,

status and plans, IEEE Computer Society.

ELEYAN, Amna, et al. (2004). Quality-of-service support in Web services

architecture. Paris, FRANCE, Lavoisier.

ELEYAN, A. L., Z. (2011). "Service selection using quality matchmaking."

Communications and Information Technology (ICCIT), 2011 International

Conference.: 8.

- 153 -

Evangelinos, C. and C. N. Hill (2008). Cloud Computing for parallel Scientific HPC

Applications: Feasibility of running Coupled Atmosphere-Ocean Climate

Models on Amazon's EC2. CCA-08. Chicago, ACM.

Fairley, R. E. (2007). "The influence of COCOMO on software engineering

education and training." Journal of Systems and Software 80(8): 1201-1208.

Fensel, D., F. M. Facca, et al. (2011). "OWL-S and Other Approaches." Semantic

Web Services: 251-278.

Ferraiolo, D., D. R. Kuhn, et al. (2007). Role-based access control, Artech House.

Ferrer, J., F. Hernandez, et al. (2010). OPTIMIS: a Holistic Approach to

Cloud Service Provisioning. Future Generation Information Technology.

FlexiScale. (2012). "FlexiScale." Retrieved 21/03/2012, 2012, from

http://flexiscale.com/.

FlexiScale. (2012). "FlexiScale Pricing." Retrieved 19/03/2012, 2012, from

http://www.flexiscale.com/products/flexiscale/pricing/.

Foster, I., T. Freeman, et al. (2006). Virtual clusters for grid communities, Los

Alamitos, CA, USA, IEEE Comput. Soc.

Foster, I. and C. Kesselman (2001). Computational grids, Berlin, Germany,

Springer-Verlag.

Foster, I., C. Kesselman, et al. (2001). The anatomy of the grid: enabling scalable

virtual organizations, USA, Sage Science Press.

Foster, I., A. Roy, et al. (2000). A quality of service architecture that combines

resource reservation and application adaptation. Quality of Service, 2000.

IWQOS. 2000 Eighth International Workshop on.

Foster, I., Z. Yong, et al. (2008). Cloud computing and grid computing 360-degree

compared, Piscataway, NJ, USA, IEEE.

Geelan, J. (2009). "Twenty-one experts define cloud computing." Cloud Computing

Journal 2009: 1-5.

Geelan, J. (January 22, 2009). "100 Players in the Cloud Computing Ecosystem."

Retrieved 21/01/2009, from http://cloudcomputing.sys-

con.com/node/770174.

Gentzsch, W. (2001). Sun grid engine: Towards creating a compute power grid,

IEEE.

Godse, M., U. Bellur, et al. (2011). "A taxonomy and classification of web service

QoS elements." Int. J. of Communication Networks and Distributed Systems

6(2): 118-141.

Godse, M., U. Bellur, et al. (2011). "A taxonomy and classification of web service

QoS elements." International Journal of Communication Networks and

Distributed Systems 6(2): 118-141.

GoGrid. (2012). "GoGrid Cloud." Retrieved 21/03/2012, 2012, from

http://www.gogrid.com/21/03/2012.

Greenberg, A., J. Hamilton, et al. (2008). "The cost of a cloud: research problems in

data center networks." ACM SIGCOMM Computer Communication Review

39(1): 68-73.

Gruber, T. (2008). "What is an Ontology." Encyclopedia of Database Systems 1.

Haas, R. and O. Meixner. (2005, 11/03/2011). "An Illustrated Guide to the Analytic

Hierarchy Process." from http://www.boku.ac.at/mi/ahp/ahptutorial.pdf.

Hazelhurst, S. (2008). Scientific computing using virtual high-performance

computing: a case study using the Amazon elastic computing cloud.

Proceedings of the 2008 annual research conference of the South African

Institute of Computer Scientists and Information Technologists on IT

http://flexiscale.com/
http://www.flexiscale.com/products/flexiscale/pricing/
http://cloudcomputing.sys-con.com/node/770174
http://cloudcomputing.sys-con.com/node/770174
http://www.gogrid.com/21/03/2012
http://www.boku.ac.at/mi/ahp/ahptutorial.pdf

- 154 -

research in developing countries: riding the wave of technology. Wilderness,

South Africa, ACM: 94-103.

Herman, I. (2008). "W3C semantic web activity." W3C-Semantic Web. İnternetten

2: 2009.

Horrocks, I., P. F. Patel-Schneider, et al. (2003). "From SHIQ and RDF to OWL:

The making of a web ontology language." Web Semantics: Science, Services

and Agents on the World Wide Web 1(1): 7-26.

Horton, I. (2011). Ivor Horton's Beginning Java, Wrox.

Iosup, A., S. Ostermann, et al. (2011). "Performance analysis of cloud computing

services for many-tasks scientific computing." Parallel and Distributed

Systems, IEEE Transactions on 22(6): 931-945.

Jackson, K. R., L. Ramakrishnan, et al. (2010). Performance analysis of high

performance computing applications on the amazon web services cloud,

IEEE.

Jaiswal, P., S. Avraham, et al. (2005). "Plant Ontology (PO): a controlled

vocabulary of plant structures and growth stages." Comparative and

Functional Genomics 6(7‐8): 388-397.

Jena, A. (2007). "semantic web framework for Java." Retrieved 06/09/2008, 2008,

from http://jena.sourceforge.net.

Jsang, A. and R. Ismail (2002). The beta reputation system.

Koivunen, M. R. (2001). "W3C semantic web activity." Semantic Web KickOff in

Finland: 27-41.

Koksalan, M., M. Karwan, et al. (1984). "An improved method for solving multiple

criteria problems involving discrete alternatives." IEEE Transactions on

Systems, Man, and Cybernetics 14(1): 24-34.

Kondo, D., B. Javadi, et al. (2009). Cost-benefit analysis of cloud computing versus

desktop grids, IEEE.

Kopecký, J., T. Vitvar, et al. (2007). "Sawsdl: Semantic annotations for wsdl and

xml schema." IEEE Internet Computing: 60-67.

Kritikos, K. and D. Plexousakis (2007). OWL-Q for semantic QoS-based web

service description and discovery, Citeseer.

Lara, R., D. Roman, et al. (2004). "A conceptual comparison of WSMO and OWL-

S." Web Services: 254-269.

Levitt, J. (2001). "From EDI to XML and UDDI: A brief history of web services."

Information Week.

Li, A., X. Yang, et al. (2010). CloudCmp: comparing public cloud providers, ACM.

Li, S. and J. Zhou (2009). The WSMO-QoS Semantic Web Service Discovery

Framework, IEEE.

Linda Northrop, P. F., Richard P Gabriel, John Goodenough, Rick Linger, Tom

Longstaff, Rick Kazman, Mark Klein, Douglas Schmidt, Kevin Sullivan,

Kurt Wallnau (2006). Ultra-Large-Scale Systems - The Software Challenge

of the Future. Technical report Software Engineering Institute Carnegie

Mellon University. W. Pollak, Carnegie Mellon.

Manola, F., E. Miller, et al. (2004). "RDF primer." W3C recommendation 10: 1-107.

Martin, D., M. Burstein, et al. (2004). "OWL-S: Semantic markup for web services."

W3C Member Submission 22: 2007-2004.

Martin, D., M. Paolucci, et al. (2007). "Bringing semantic annotations to web

services: Owl-s from the sawsdl perspective." The Semantic Web: 340-352.

Masinter, L., T. Berners-Lee, et al. (2005). "Uniform resource identifier (URI):

Generic syntax."

http://jena.sourceforge.net/

- 155 -

Mather, T., S. Kumaraswamy, et al. (2009). Cloud security and privacy: an

enterprise perspective on risks and compliance, O'Reilly Media, Inc.

Maximilien, E. M. and M. P. Singh (2004). "A framework and ontology for dynamic

web services selection." Internet Computing, IEEE 8(5): 84-93.

McGuinness, D. L. and F. Van Harmelen (2004). "OWL web ontology language

overview." W3C recommendation 10: 2004-2003.

Menasce, D. A. (2002). "QoS issues in Web services." Internet Computing, IEEE

6(6): 72-75.

Microsoft. (2012). "Microsoft Azure." Retrieved 21/03/2012, 2012, from

http://www.windowsazure.com/en-us/.

Miller, E. (2001). "W3C Semantic Web Activity." Retrieved 04/09/2008, 2008,

from http://www.w3.org/2001/sw/.

Montanari, U. (1968). "A method for obtaining skeletons using a quasi-Euclidean

distance." Journal of the ACM (JACM) 15(4): 600-624.

Montella, R. (2007). Development of a GT4-based resource broker service: an

application to on-demand weather and marine forecasting, Berlin, Germany,

Springer.

Moreau, J. J., R. Chinnici, et al. (2006). "Web services description language

(WSDL) version 2.0 part 1: Core language." Candidate recommendation,

W3C.

Motik, B. and I. Horrocks (2008). OWL datatypes: design and implementation,

Berlin, Germany, Springer-Verlag.

MySQL, A. (2005). MySQL: the world's most popular open source database,

MySQL AB.

Nandigam, J., V. N. Gudivada, et al. (2005). "Semantic web services." Journal of

Computing Sciences in Colleges 21(1): 50-63.

Nelson, A. J., G. W. Dinolt, et al. (2011). A security and usability perspective of

cloud file systems. System of Systems Engineering (SoSE), 2011 6th

International Conference on.

Nelson, M. L., J. A. Smith, et al. (2006). Efficient, automatic web resource

harvesting, ACM.

NGS. (2012). "Cloud@NGS." Retrieved 29/05/2012, 2012, from

http://www.ngs.ac.uk/accessing-the-ngs-cloud-service.

Nurmi, D., R. Wolski, et al. (2009). The eucalyptus open-source cloud-computing

system, IEEE.

Ostermann, S., A. Iosup, et al. (2010). "A performance analysis of EC2 cloud

computing services for scientific computing." Cloud Computing: 115-131.

Pan, J. Z. and I. Horrocks (2007). "RDFS(FA): connecting RDF(S) and OWL DL."

IEEE Transactions on Knowledge and Data Engineering 19(2): 192-206.

Papaioannou, T. G. and G. D. Stamoulis (2006). "Reputation-based policies that

provide the right incentives in peer-to-peer environments." Computer

Networks 50(4): 563-578.

Perrey, R. and M. Lycett (2003). Service-oriented architecture, IEEE.

Peter Mell, T. G. (2011). "The NIST Definition of Cloud Computing." NIST special

publication 800(145): 3.

Pratt, T. W. and M. V. Zelkowitz (1984). Programming languages: design and

implementation, Prentice-Hall.

Prud'Hommeaux, E. and A. Seaborne (2008). "SPARQL query language for RDF."

W3C working draft 4(January).

R.V.Guha. (2000). "rdfDB: An RDF database." Retrieved 12/02/2012, 2012, from

http://www.guha.com/rdfdb/.

http://www.windowsazure.com/en-us/
http://www.w3.org/2001/sw/
http://www.ngs.ac.uk/accessing-the-ngs-cloud-service
http://www.guha.com/rdfdb/

- 156 -

Rackspace. (2012). "Rackspace Cloud hosting." Retrieved 21/03/2012, 2012, from

http://www.rackspace.co.uk/cloud-hosting/.

Ran, S. P. (2003). A model for web services discovery with QoS. ACM SIGecom

Exchanges,, ACM Press. 41: 1-10.

Rimal, B. P., E. Choi, et al. (2009). A taxonomy and survey of cloud computing

systems, Ieee.

Rochwerger, B. B., D. Levy, E. Galis, A. Nagin, K. Llorente, I. M. Montero, R.

Wolfsthal, Y. Elmroth, E. Caceres, J. Ben-Yehuda, M. Emmerich, W.

Galan, F (2010). "The Reservoir model and architecture for open federated

cloud computing." IBM Journal of Research and Development 53(4): 1-11.

Rosson, M. B. a. J. M. C. (2002). Usability Engineering: Scenario-based

development of human-computer interaction. CA, USA, Academic Press.

Ruebenacker, O., I. I. Moraru, et al. (2007). Kinetic modeling using BioPAX

ontology, IEEE.

Saaty, T. L. (1980). Analytic hierarchy process, Wiley Online Library.

Saaty, T. L. (2003). "Decision-making with the AHP: Why is the principal

eigenvector necessary." European journal of operational research 145(1): 85-

91.

Saaty, T. L. (2005). "Analytic Hierarchy Process." Encyclopedia of Biostatistics.

Saaty, T. L. (2008). "Relative measurement and its generalization in decision

making why pairwise comparisons are central in mathematics for the

measurement of intangible factors the analytic hierarchy/network process."

Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie

A. Matematicas 102(2): 251-318.

Salesforce. (2012). "Building and running applications in the Cloud." Retrieved

21/03/2012, 2012, from http://www.salesforce.com/paas/.

Serhani, M. A., R. Dssouli, et al. (2005). A QoS broker based architecture for

efficient web services selection, IEEE.

Serhani, M. A., R. Dssouli, et al. (2005). A QoS broker based architecture for

efficient Web services selection. Web Services, 2005. ICWS 2005. 1: 113-

120.

Sheila, A. M. (2001). Semantic Web Services. S. Tran Cao and Z. Honglei. 16: 46-

53.

Sirin, E., J. Hendler, et al. (2003). Semi-automatic composition of web services

using semantic descriptions.

Smith, B. and P. Grenon. (2002). "Basic formal ontology." Retrieved 21/11/2008,

from http://ontology.buffalo.edu/bfo.

Smith, D. M. (2012). Cloud Services Brokerages: The Dawn of the Next

Intermediation Age. Cloud Services Brokerage. Gartner.com.

Somasundaram, T. S., R. A. Balachandar, et al. (2006). Semantic-based grid

resource discovery and its integration with the grid service broker,

Piscataway, NJ 08855-1331, United States, Institute of Electrical and

Electronics Engineers Computer Society.

Srivastava, B. and J. Koehler (2003). Web service composition-current solutions and

open problems.

Sultan, N. (2010). "Cloud computing for education: A new dawn?" International

Journal of Information Management 30(2): 109-116.

Sycara, K., M. Paolucci, et al. (2011). "Automated discovery, interaction and

composition of semantic web services." Web Semantics: Science, Services

and Agents on the World Wide Web 1(1).

http://www.rackspace.co.uk/cloud-hosting/
http://www.salesforce.com/paas/
http://ontology.buffalo.edu/bfo

- 157 -

T.Rajendran, Dr.P.Balasubramanie, et al. (2010). "An Efficient WS-QoS Broker

Based Architecture for Web Services Selection". International Journal of

Computer Applications 1(9): 79.

Taher, L., R. Basha, et al. (2005). Establishing association between qos properties in

service oriented architecture, IEEE.

Teknomo, K. (2006). "Similarity measurement." Available: http:\\ people. revoledu.

com\ kardi\ tutorial\ Similarity\[Accessed].

Tomaž Klančnik, B. J. B., Shahzad Nizamani, Peter Dew, Karim Djemame (2009).

"Inoformation Resource Broker for Cloud Computing." INFOKOMTEH: 10.

Tran, V. X., H. Tsuji, et al. (2009). "A new QoS ontology and its QoS-based ranking

algorithm for Web services." Simulation Modelling Practice and Theory

17(8): 1378-1398.

Triantaphyllou, E. (2000). Multi-criteria decision making methods: a comparative

study, Springer.

Vidgen, R. (2002). "Constructing a web information system development

methodology." Information Systems Journal 12(3): 247-261.

Vitvar, T., J. Kopecký, et al. (2008). Wsmo-lite annotations for web services.

Proceeding ESWC'08 Proceedings of the 5th European semantic web

conference, ACM portal.

W3C. (2012). "Ontologies." Retrieved 20/03/2012, 2012, from

http://www.w3.org/standards/semanticweb/ontology.

W3Schools. (2012). "Why Web Services." Web Services Tutorial Retrieved

13/08/2010, from http://www.w3schools.com/webservices/ws_why.asp.

Wang, L., J. Tao, et al. (2008). Scientific cloud computing: Early definition and

experience, Ieee.

Wang, S., Q. Sun, et al. (2010). "Towards Web Service selection based on QoS

estimation." Int. J. of Web and Grid Services 6(4): 424 - 443.

Wang, Y. and J. Vassileva (1007). A Review on Trust and Reputation for Web

Service Selection. Distributed Computing Systems Workshops, 2007.

ICDCSW '07.

Zeng, L., B. Benatallah, et al. (2004). "QoS-aware middleware for web services

composition." Software Engineering, IEEE Transactions on 30(5): 311-327.

Zhou, C., L. T. Chia, et al. (2004). DAML-QoS ontology for web services, IEEE.

Zhou, J. and E. Niemela (2006). Toward semantic qos aware web services: Issues,

related studies and experience. Proceedings of the 2006 IEEE/WIC/ACM on

Web Intelligence.

Zhou, J., E. Niemela, et al. (2007). An integrated QoS-aware service development

and management framework, IEEE.

http://www.w3.org/standards/semanticweb/ontology
http://www.w3schools.com/webservices/ws_why.asp

- 158 -

Appendix A

Examples of Provider’s RDF Profile

This appendix presents the RDF descriptions for the four Cloud providers used for

the evaluation process.

A.1. RDF description of AmazonEC2Small

<Supplier rdf:ID="AmazonEC2Small">

<DownloadCost rdf:datatype="&xsd;float">0.12</DownloadCost>

<MonitorAndRecovery

rdf:datatype="&xsd;boolean">false</MonitorAndRecovery>

<Firewall rdf:datatype="&xsd;boolean">false</Firewall>

<ComputingCost rdf:datatype="&xsd;float">0.08</ComputingCost>

<StorageCost rdf:datatype="&xsd;float">0.12</StorageCost>

<API rdf:datatype="&xsd;boolean">true</API>

<UploadCost rdf:datatype="&xsd;float">0.0</UploadCost>

</Supplier>

<owl:DatatypeProperty rdf:ID="API">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:comment rdf:datatype="&xsd;string"

>API enables a user to connect to write software programs which can connect

to the virtual machine and perform tasks.</rdfs:comment>

- 159 -

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ComputingCost">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;float"/>

<rdfs:comment rdf:datatype="&xsd;string"

>The cost of resources computational resources</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ControlPanel">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

<rdfs:comment rdf:datatype="&xsd;string"

>Control panels are offered by some suppliers. They help users in setting up

the system.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="cost">

<rdf:type rdf:resource="&owl;AnnotationProperty"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="DownloadCost">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;float"/>

<rdfs:comment rdf:datatype="&xsd;string"

36

>The cost of dowloads for the virtual machine. This cost is measured in

- 160 -

GB/month.</rdfs:comment>

</owl:DatatypeProperty>

A.2. RDF Description for GoGridSmall

<Supplier rdf:ID="GoGridSmall">

<DownloadCost rdf:datatype="&xsd;float">0.2</DownloadCost>

<LoadBalancingCost rdf:datatype="&xsd;float">0.0</LoadBalancingCost>

<MonitorAndRecovery

rdf:datatype="&xsd;boolean">false</MonitorAndRecovery>

<Firewall rdf:datatype="&xsd;boolean">false</Firewall>

<ControlPanel rdf:datatype="&xsd;boolean">false</ControlPanel>

<LoadBalancing rdf:datatype="&xsd;boolean">false</LoadBalancing>

<ComputingCost rdf:datatype="&xsd;float">0.805</ComputingCost>

<StorageCost rdf:datatype="&xsd;float">0.06</StorageCost>

<API rdf:datatype="&xsd;boolean">false</API>

<API rdf:datatype="&xsd;boolean">true</API>

<UploadCost rdf:datatype="&xsd;float">0.1</UploadCost>

</Supplier>

<owl:DatatypeProperty rdf:ID="Firewall">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

<rdfs:comment rdf:datatype="&xsd;string"

>Some vendors offer virtual machines with firewall installed. A firewall

secures a virtual machine while it is connected to the Internet. A virtual machine is

- 161 -

always connected to the internet.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="FirewallCost">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;float"/>

<rdfs:comment rdf:datatype="&xsd;string"

>Charges for using firewall. These charges are per month.</rdfs:comment>

</owl:DatatypeProperty>

A.3. RDF Description for FlexiscaleSmall

<Supplier rdf:ID="FlexiscaleSmall">

<DownloadCost rdf:datatype="&xsd;float">0.1</DownloadCost>

<LoadBalancingCost rdf:datatype="&xsd;float">0.02</LoadBalancingCost>

<MonitorAndRecovery

rdf:datatype="&xsd;boolean">true</MonitorAndRecovery>

<Firewall rdf:datatype="&xsd;boolean">true</Firewall>

<ControlPanel rdf:datatype="&xsd;boolean">true</ControlPanel>

<LoadBalancing rdf:datatype="&xsd;boolean">true</LoadBalancing>

37

<ComputingCost rdf:datatype="&xsd;float">0.057</ComputingCost>

<StorageCost rdf:datatype="&xsd;float">0.3</StorageCost>

<FirewallCost rdf:datatype="&xsd;float">0.01</FirewallCost>

<API rdf:datatype="&xsd;boolean">true</API>

<UploadCost rdf:datatype="&xsd;float">0.1</UploadCost>

- 162 -

</Supplier>

<owl:DatatypeProperty rdf:ID="LoadBalancing">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

<rdfs:comment rdf:datatype="&xsd;string"

>Load Balancing is an optoional service offered by some vendros. Load

Balancing balances the computing load among several virtual

machines.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="LoadBalancingCost">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;float"/>

<rdfs:comment rdf:datatype="&xsd;string"

>Charges for using load balancing. These charges are per

month.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="MonitorAndRecovery">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

<rdfs:comment rdf:datatype="&xsd;string"

>The monitoring and recovery service is offered by some

suppliers.</rdfs:comment>

</owl:DatatypeProperty>

- 163 -

<owl:DatatypeProperty rdf:ID="StorageCost">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;float"/>

<rdfs:comment rdf:datatype="&xsd;string"

>The cost of storage on the storage servers offered by suppliers. This cost is

measured in GB/month.</rdfs:comment>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Supplier"/>

<owl:DatatypeProperty rdf:ID="UploadCost">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;float"/>

<rdfs:comment rdf:datatype="&xsd;string"

>The cost of uploads for the virtual machine. This cost is measured in

GB/month.</rdfs:comment>

</owl:DatatypeProperty>

<owl:Class rdf:ID="User"/>

</rdf:RDF>

A.4. RDF Description for RackspaceSmall

<Supplier rdf:ID="RackspaceSmall">

<DownloadCost rdf:datatype="&xsd;float">0.14</DownloadCost>

<MonitorAndRecovery

rdf:datatype="&xsd;boolean">false</MonitorAndRecovery>

<Firewall rdf:datatype="&xsd;boolean">false</Firewall>

- 164 -

<ComputingCost rdf:datatype="&xsd;float">0.1216</ComputingCost>

<StorageCost rdf:datatype="&xsd;float">0.12</StorageCost>

<API rdf:datatype="&xsd;boolean">true</API>

<UploadCost rdf:datatype="&xsd;float">0.0</UploadCost>

</Supplier>

<owl:DatatypeProperty rdf:ID="API">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:comment rdf:datatype="&xsd;string"

>API enables a user to connect to write software programs which can connect

to the virtual machine and perform tasks.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ComputingCost">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;float"/>

<rdfs:comment rdf:datatype="&xsd;string"

>The cost of resources computational resources</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ControlPanel">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

<rdfs:comment rdf:datatype="&xsd;string"

>Control panels are offered by some suppliers. They help users in setting up

- 165 -

the system.</rdfs:comment>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="cost">

<rdf:type rdf:resource="&owl;AnnotationProperty"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="DownloadCost">

<rdfs:domain rdf:resource="#Supplier"/>

<rdfs:range rdf:resource="&xsd;float"/>

<rdfs:comment rdf:datatype="&xsd;string"

36

>The cost of dowloads for the virtual machine. This cost is measured in

GB/month.</rdfs:comment>

</owl:DatatypeProperty>

- 166 -

Appendix B: Initial Scenarios

B1. User Scenario 1: Cloud Broker for Computational Modellers

Takes place at HPC Modelling Laboratory, University X. The main actor is Ben, a

second year PhD student.

The laboratory where Ben is currently working uses the university‟s HPC

setup. The modellers are frustrated with the service in regards to the turnaround

time. As every job is submitted to a queue the wait is far worse for larger jobs (over

12 hour) which are entertained only during the weekends..

In addition the computational modellers at the university X believe that the

service costs do not adequately cater for the varying service needs. There are times

(for example when demonstrating to potential sponsors) when high reliability is

imperative. At other times a lower level of reliability (where there is an increased

risk the job has to be re-run) would be acceptable.

The Computational Modelling Laboratory has decided that Cloud computing

would be a better option for addressing their computing needs. Cloud computing

would provide, predictable and much more flexible on-demand computing resources

with a pay as you go cost structure.

Ben has a limited budget which makes it necessary to minimise the cost of

using Cloud. For this, he has to go to a number of Cloud providers during the

lifetime of the model development process. He finds that this is very difficult

because the Cloud providers offer a variety of options making it hard for him to

select the best provider. For this reason he decides that a more cost effective

solution is to a use a Cloud Broker that specialises in providing computational Cloud

services to computational modellers. Ben searches the Internet and is pleased to

- 167 -

find QaComPS. He is pleased to find that QaComPS is an on-line service which

automatically selects and runs the cheapest Cloud provider‟s VM.

Ben is researching new mathematical models for simulating the fluid flow in

a chemical reactor. The model code is developed iteratively. The iterations typically

involve code development, running the code, and analysing the model output against

the results from a physical experiment. If the model results are not acceptable the

model is changed and re-run.

Figure B.1. User Scenario

Details of Ben‟s computational requirements are set out in table B.1 together

with the required QoS ratings given in table B.2

Typically Ben requires modest computational recourses with an

average frequency of 4-6, one hour runs a day. He is less concerned about the

reliability and the reputation and is willing to compromise QoS for minimising

the cost.

As Ben‟s model development proceeds to create new science he needs

much larger computational resources with higher levels of reliability and good

reputation. However if the model is wrong there is likely to be a number of

small runs prior to repeating the experiment.

Just prior to a demonstration of the latest computational modelling

results to the industrial sponsors; Ben needs very large computational

resources with a higher level of reliability and reputation. In this case the

laboratory is willing to pay for the premium rate for 2-3 one off runs.

- 168 -

Turnaroun

d time

Memor

y (GB)

Storage(GB) Processor(core) Download(GB/sec) Upload(GB/sec)

30 minutes 2 60 1 1.0 0.5

12 hours 4 120 2 1.0 0.5

6 hours 8 200 4 1.5 1.0

Table B.1: Ben‟s Requirements

Reliability Reputation Security Cost

2 4 3 8

5 8 5 8

8 9 8 9

Table B.2: QoS and Cost ratings

The ratings are subjective and are scored on a 9 point scale with 1 being the

lowest and 9 being the highest.

B.2. User Scenario 2 (Cost based selection):

Ben has finally moved to the Cloud where he is facing a laborious task of selecting

the cheapest Cloud provider‟s VM. This is due to the sheer number of Cloud

providers and the number of VMs offered by each provider.

Other factors hampering the selection process include unavailability of a single

vocabulary; so a Small VM from Amazon is literally different than a small VM from

any other provider. The different vocabulary means that while Amazon class the

service a Virtual Machine (VM), FlexiScale calls the same a Virtual Server. As not

only the costs are different but the physical resources being offered are also

different. Another issue is the pricing structure followed by the providers as some

use actual cost in dollars or pounds include/exclude the taxes while the worst case

might be with FlexiScale which uses a unit based system where everything is

- 169 -

charged in terms of units. In this case a user has to buy units in advance and

calculate how many units he would consume. Ben can either manually calculate

costs or use QaComPS service to find the cheapest provider. If he decides to

manually calculate cost he will have to do the following:

 Understand the different resource sizes offered by each provider and

compare these. Translate the cost of each provider as some use a unit based

structure while others use dollars or pounds

 Incorporate the upload and download costs

As of now there are more than twenty Cloud providers which make it very

time consuming to perform the above steps for each of them. The other case would

be to use QaComPS service which automatically performs these steps on behalf of

the user.

B.3. User Scenario 3 (QoS)

Ben can select the cheapest provider but the question remains that, is the cheapest

provider the best provider. As the selection process only incorporates cost and none

of QoS parameters.

QoS parameters such as reliability, reputation and security identify the

performance of a Cloud provider and help in decision making. Reliability is a

measure of the rate of success for a Cloud provider‟s service. Reputation is the

rating given to a Provider from past users which indicates the level of user

satisfaction. Security is the measure of security offered from a provider as a security

breach can be critical. The question remains though to what extent QoS ratings

improve the selection process. This can be decided by using QaComPS and

comparing the results of simulations performed earlier with the results from using

actual Cloud providers.

- 170 -

Appendix C: Cloud Provider Profiles

C.1. Amazon EC2

Instances Memory Compute

Units

Storage

Standard
Small 1.7 1 160

Medium 3.75 2 410

Large 7.5 4 850

Extra Large 15 8 1690

Micro Micro 0.613 2 (short

bursts)

High

Memory

Extra Large 17.1 6.5 420

Double Extra

Large

34.2 13 850

Quadruple

Extra Large

68.4 26 1690

High CPU Medium 1.7 5 650

Large

Compute

Cluster

Quadruple

Extra Large

7 20 1690

Eight Extra

Large

Cluster GPU Quadruple

Extra Large

22 33.5 1690

High I/O Quadruple

Extra Large

60.5 35 2048

Table C.1. Amazon EC2 VMs (Amazon 2012)

- 171 -

Amazon Elastic Compute Cloud (EC2) is an Infrastructure as a Service (IaaS)

Cloud. It offers 13 types of Virtual Machines which as shown in table C.1.

The standard instances are general purpose and suited to most applications.

The micro instances are free of cost however these do not have a permanent CPU. A

micro instance gets up to two EC2 compute units for short bursts of time. These

contain 0.613 GB of memory and have no storage option. These are suited to low

budget applications that are not on a strict deadline.

High memory instances are for running jobs that require vast amounts of

memory while High CPU instances are for compute intensive jobs. The cluster

compute instances are high CPU instances with extra network bandwidth. Cluster

GPU instances for graphics intense applications while the I/O instances are the most

powerful and suited high performance database workloads.

EC2 services are offered from seven physical zones five of which are in

America, One in Ireland, One in Singapore and One in Tokyo and one in Sao Paulo.

It should be noted that not all kinds of VM are on offer at each zone as only zones in

America offer all the options. A VM instance is charged per-hour and the charging

policy does not depend on whether it is being used or not until it is not terminated it

would be charged.

AmazonEC2 has a collection of more then 7, 000 Amazon Machine Images

(AMI). These are used for quickly deploying a VM. Out of these few are created by

Amazon while others are created by users these are custom images and are

publically shared a user can store these images without cost.

In conclusion; Amazon has many pros these include, aggressive costing, great

number of options and a trusted brand while there only downside is the lack of

customer support as in a normal customer is not eligible for one on one support until

he signs up and pays for premium support. Other disadvantage is the added security

- 172 -

this makes be good for a customer but this does mean that it takes longer than usual

for a customer to access the newly created VM.

Figure C.1. AmazonEC2 costing (Amazon 2012)

C.2. FlexiScale

FlexiScale is a UK based Cloud provider which offers FlexiScale Cloud service.

FlexiScale offers Virtual Servers where a virtual server is the name given to a

Virtual Machine. A virtual server can have between 0.5 and 8 GB of memory, up to

8 processing units and any amount of storage. The novel bit about FlexiScale is its

pricing as it employs a unit based costing where a user can buy any number of units

between a thousand and two million. While memory, storage, processing and data

transfer is charged in terms of units for example for each GB of storage a user is

- 173 -

charge 5 units/month this makes it expensive to use the service on a per hour basis

while using the service on per month will be cheaper.

C.3. Rackspace

Rackspace is generally considered the second biggest Cloud provider after Amazon

it offers services to among others Virgin Trains, London Transport, Renault, VUE,

Vodafone, Dominos and NHS. They offer a competitive pricing with a large number

of Cloud Servers (same as VM) and images. The unique bit about Rackspace is that

in many ways it discourages per hour Cloud customers and is only focused at the

monthly customers. They offer between 256 MB and 32 GB memory with any

amount of storage while the processing power is unclear which might be directly

proportional to the memory. Compared to Amazon, Rackspace is an expensive

provider.

C.4. GoGrid

GoGrid Cloud provider offers one of the best customer-support and also offers

incentives as free credit but other than that everything is going the other way.

GoGrid offers very large VM with up to 32GB of memory.

- 174 -

Appendix D: Interview Script for Qualitative Evaluation of

QaComPS

The Interview Script

The semi structured interview was the central component of the qualitative

evaluation. The goal of the evaluation was to investigate:

1. User‟s view regarding the move towards Cloud computing.

2. Record the user‟s view regarding the benefits of QaComPS

3. Whether the interface of QaComPS is simple enough or does the user feel

that input parameters are missing or there are inputs overheads.

Introduction

Brief the user regarding the scope of the research. This includes:

 Purpose of the research

 Purpose of this evaluation

Interview

The interview takes place in three stages; these are:

 Acquiring user‟s views on the current setup

 Acquiring user‟s view regarding Cloud computing

 Demonstrate the QaComPS prototype and record user view regarding the

QaComPS

- 175 -

Part 1: User’s view regarding the current HPC setup:

Q1: Do you have experience of using local HPC setup?

If yes; can you describe your experience?

Q2: In your view what are the short comings of the current HPC setup.

Part 2: Acquiring user’s view regarding Cloud computing

Q3: What are your views on the move towards Cloud computing?

Q4: What advantages and disadvantages, do you see in using Cloud computing.

Part 3: Demonstrate the QaComPS prototype and record user view

regarding the QaComPS

Q5: What benefits do you see in using QaComPS?

Q6: Do you feel that any functionality is missing from the QaComPS?

Q7: What are your views on the QaComPS interface and the user requirements?

De-brief

Thank You.

The results from the interview will be sent to you for permission before any

academic publication.

Could you suggest someone else who would like to participate in the interview.

