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Abstract

In recent years, laboratory scale equipment for flow chemistry has become both
commercially available and widely used in industry and academia. There has been
particular focus on reactor design, in-line analytics and performing multistage
synthesis. One of the challenges that has arisen as a consequence of introducing
active mixing of multiple phases and multiple reaction steps is the need to remove
impurities from reaction streams and efficiently separate multiple phases from one
another. The devices currently available for performing liquid-liquid separation steps
at laboratory scale have limitations in performance, control and scalability. This thesis
presents a new laboratory scale separation device that utilises nonwoven coalescing
filters to separate challenging emulsion systems, adapt to changing system inputs
and integrate with current flow technology.

A literature review of flow chemistry and its benefits, liquid-liquid system
characteristics, laboratory scale separation equipment and nonwoven coalescing
filters has been conducted.

In order to characterise different liquid-liquid systems an image analysis technique
was developed. The image analysis technique was used to determine phase
separation rates in liquid-liquid systems. The technique was used in the lab on
multiple samples at once with minimal change to the algorithm input parameters. The
analysis technique was tested on both fast and slow settling systems with different
phase ratios. In order to demonstrate the value of the imaging technique a selection
of systems were scaled up to 20 Litres so that the separation rate of the scaled up
mixtures could be compared to the 10 ml samples. The scaled up systems showed
good correlation with the small scale counterparts which showed that the small scale
experiments could be used to predict separation behaviour at a larger scale.

A laboratory scale continuous separation device was then developed which utilised
nonwoven coalescing filter media to rapidly separate liquid phases. The device has
an integrated control scheme that relies on conductivity measurements and
downstream valve or pump control. The user is able to specify different flow rates
and phase ratios and the system adapts automatically to different solution
conductivities. The device’'s performance was compared with a commercially
available separation device based on different flow rates, phase ratios and liquid
pairs. The performance depending on what filter media was used and the batch
separation rate (determined by the aforementioned image analysis technique) was

also considered.



The separation device was then developed further so that it could be used as a
multistage extraction platform, allowing the testing of complex extraction processes
at a laboratory scale. Two extraction systems were tested, an Acetone extraction
from water and an extraction of Benzoic acid derivatives. Both systems provided
challenges for the system such as emulsion formation and large changes in phase
ratio. The device enabled the study of these two systems at laboratory scale,
providing valuable insight into the system behaviour at low cost and with a small

footprint.
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