
Automated classification of transients
in optical time-domain sky surveys

Umar Farouq Burhanudin

Department of Physics & Astronomy
The University of Sheffield

A dissertation submitted in candidature for the degree of
Doctor of Philosophy at the University of Sheffield

April 2022

“
The good news about computers

is that they do what you tell them
to do. The bad news is that they

do what you tell them to do.

”
— Ted Nelson

ii

Contents

1 Introduction 1
1.1 Explosive transients . 3

1.1.1 Novae eruptions . 3
1.1.2 Luminous red novae . 5
1.1.3 Supernovae . 5
1.1.4 Fast blue optical transients . 8
1.1.5 Gravitational Waves & Kilonovae 9

1.2 Studying variability . 9
1.3 Current and future surveys . 11

1.3.1 The Palomar Transient Factory 11
1.3.2 The Zwicky Transient Facility . 13
1.3.3 The Gravitational-wave Optical Transient Observer 13
1.3.4 LSST . 15

1.4 Challenges of time-domain surveys . 15
1.5 This thesis . 17

2 Machine learning in time-domain astronomy 19
2.1 Introduction . 20
2.2 Object classification in astronomy . 20
2.3 Machine learning . 23

2.3.1 Defining machine learning . 23
2.3.2 Supervised learning in the time domain 25

2.4 Machine learning algorithms for classification 26
2.4.1 Tree-based classifiers . 27
2.4.2 Support Vector Machines . 29
2.4.3 Artificial neural networks . 31
2.4.4 Applications of machine learning for classification in transient as-

tronomy . 31
2.5 Deep learning . 34

2.5.1 Neural networks . 34
2.5.2 Network parameter optimisation 38
2.5.3 Gradient descent . 39
2.5.4 Error backpropagation . 41

iii

2.5.5 Deep neural networks for classification 42
2.5.6 Applications of deep learning for classification in transient astronomy 52

2.6 Overfitting and underfitting . 54
2.7 Metrics of performance . 55

3 Photometric classification for the Gravitational-wave Optical Transient
Observer with machine learning 59
3.1 Introduction . 60
3.2 GOTO data . 61
3.3 Feature extraction . 64

3.3.1 Features . 64
3.3.2 Features from the data . 68

3.4 Data augmentation . 70
3.4.1 Data challenges in time-domain surveys 70
3.4.2 Data augmentation with SMOTE 72

3.5 Random Forest for classification . 73
3.6 Hyperparameter optimization . 74
3.7 Results . 75
3.8 Discussion . 77
3.9 Conclusion . 79

4 Photometric classification for the Gravitational-wave Optical Transient
Observer with recurrent neural networks 81
4.1 Introduction . 82
4.2 Data . 83

4.2.1 Data preprocessing . 87
4.3 Model . 88

4.3.1 Recurrent Neural Networks . 88
4.3.2 Mixed input network . 89
4.3.3 Class imbalance . 93

4.4 Method . 94
4.4.1 Hyperparameters . 95
4.4.2 Training process . 97

4.5 Results . 99
4.5.1 Hyperparameter optimisation . 99
4.5.2 Test set performance . 99
4.5.3 Time-dependent performance . 104
4.5.4 Importance of contextual information with t-SNE 107

4.6 Discussion . 114
4.6.1 Handling class imbalance in deep neural network architectures . . 115
4.6.2 Contextual information . 116

4.7 Conclusion . 117

iv

5 Classification of supernova light curves from multiple surveys and trans-
fer learning for future surveys 119
5.1 Introduction . 120
5.2 Open Supernova Catalog data . 122

5.2.1 Standardising magnitudes and filters 123
5.2.2 Light curve trimming . 125
5.2.3 Selection cuts . 125

5.3 Gaussian processes for interpolation in time and wavelength 128
5.3.1 Gaussian Processes . 128
5.3.2 Two-dimensional Gaussian process regression 129
5.3.3 Using two-dimensional Gaussian processes to infer spectra from

light curves . 131
5.4 Convolutional neural networks . 134

5.4.1 Model architecture . 134
5.4.2 Model training . 137

5.5 Results on classifying Open Supernova Catalog data 138
5.6 Transfer learning . 139

5.6.1 Overview . 139
5.6.2 The new classification task . 140

5.7 PLAsTiCC data . 141
5.7.1 Data selection . 142
5.7.2 Creating heatmaps . 143
5.7.3 Applying transfer learning to PLAsTiCC light curves 144

5.8 Results on classifying PLAsTiCC light curves with transfer learning . . . 147
5.8.1 Models without transfer learning 147
5.8.2 Models with transfer learning . 149

5.9 Discussion . 153
5.9.1 Classifying supernovae from multiple surveys 153
5.9.2 Transfer learning for future surveys 154

5.10 Conclusion . 155

6 Conclusions 157
6.1 Time-series classification in time-domain astronomy 158
6.2 Applications of a recurrent neural network to other problems 160

6.2.1 Classifying Zwicky Transient Facility alerts 160
6.2.2 Categorizing heartbeats . 165

6.3 Classifying data from multiple surveys 168
6.4 Limitations . 169
6.5 Future work . 170

A Filters and magnitude conversions Open Supernova Catalog light curves181

B List of Publications 185

v

List of Figures

1.1 Transient phase space diagram, adapted from Kasliwal (2011) and up-
dated with data from Foley et al. (2013) for SNe Iax, Valenti et al. (2017)
for AT 2017gfo, the kilonova associated with gravitational wave detec-
tions from a binary neutron star merger, and Perley et al. (2019) for AT
2018cow. Peak luminosity (in the V band) is plotted against characteristic
timescale (the time taken to decline in brightness by ∼ 1 mag from peak). 4

1.2 Supernovae classification diagram. 5
1.3 Transmission curves for the filter set used by GOTO. Also shown is the

transmission curve for the clear glass filter (C). 14
1.4 The transient discovery rate per year for recent surveys and the expected

yearly transient discoveries for LSST, plotted on a log scale histogram.
The estimated rates for the Dark Energy Survey were obtained from Smith
et al. (2020), for the Zwicky Transient Facility Bright Transient Survey
(BTS) from Perley et al. (2020), and for LSST from LSST Science Col-
laboration et al. (2009). The transient discovery rate for the ZTF BTS
survey was estimated using the total number of spectroscopically con-
firmed transients discovered. Rates for past surveys were obtained from
Sullivan (2013) for supernovae discovered up to 2013. 16

2.1 GAIA data release 2 colour-magnitude diagram from Gaia Collaboration
(2018). The red colour scale represents the relative density of stars in
the plot, a brighter colour indicates a higher density. The absolute Gaia
magnitude MG is plotted against the colour GBP −GRP , and approximate
temperature, spectral type, and luminosity for main sequence stars are
shown. 21

2.2 BPT diagram for SDSS galaxies from Trouille et al. (2011), where the ratio
of line intesities log([OIII]/Hβ) is plotted against log([NII]/Hα). Star-
forming galaxies are show in blue, and active galactic nuclei are shown in
red. 22

2.3 Splitting objects of different classes (green, yellow, red) in two-dimensional
space by making cuts (left) and a decision tree representation of splitting
the objects represented as a series of cuts (right). 27

vi

2.4 The hyperplane for a two-dimensional feature space between two classes
(pink and purple circles). The optimal decision boundary (hyperplane) is
show as the solid grey line, and the support vectors are circled in black.
This figure is taken from Baron (2019) 30

2.5 The hyperplane for a two-dimensional feature space between two classes
(pink and purple circles) for the case when the data has a non-linear
relationship. A kernel trick is used to map the data in three-dimensions,
where a two-dimensional hyperplane can be used to draw a linear decision
boundary. The optimal decision boundary (hyperplane) is show as the
solid grey line, and the support vectors are circled in black. This figure is
taken from Baron (2019). 30

2.6 An artificial neuron. The inputs x1, x2, x3 with corresponding weights
w1, w2, w3 are represented by connections (lines in the diagram) that ‘con-
nect’ to the neuron, where the sigmoid symbol represents the application
of an activation function. The addition of a bias w0 is shown for the
connection going out from the neuron. 35

2.7 The sigmoid (left), tanh (middle), and ReLU (right) activation functions. 36
2.8 A basic neural network. The lines between neurons are referred to as

’connections’, and represent the weights and biases applied to the inputs
fed into neurons. 37

2.9 A visualisation of gradient descent in a two-dimensional surface represent-
ing a loss function E(w0, w1) as function of neural network parameters w0

and w1. The parameters w0 and w1 are iteratively updated over increasing
time steps (t0, ..., t3) until a minimum for E(w0, w1) is found. 41

2.10 A recurrent neural network. 45
2.11 Diagrams showing the flow of information through the LSTM and GRU

cells described in equations 2.19 to 2.26. In both diagrams, the ‘cross’
symbol represents a multiplication operation and the ‘plus’ symbol rep-
resents an addition operation. The ‘σ’ represents the sigmoid function,
‘tanh’ represents the tanh and the ‘1 −’ represents the (1 − zzzt) term in
equation 2.26. The gates in the cell diagrams are highlighted within the
dashed line boxes. 48

2.12 An example convolution with of a 2× 2 kernel on a 3× 3 image, and the
application of a 2 × 2 average pooling window on the convolved output.
The application of a 2× 2 kernel on a 3× 3 image results in a 2× 2 output. 50

2.13 A confusion matrix representing the possible outcomes in binary classifi-
cation for a positive and negative class. Class labels along the horizontal
axis are the labels predicted by the classifier, and class labels along the
vertical axis are the true labels. The total number of all true positives is
denoted by P and the total number of all true negatives is denoted by N . 55

vii

2.14 Two example ROC curves, with corresponding AUC scores. The blue
ROC curve has a higher AUC score than the dotted black line, indicating
that it is the better classifier. This is because it achieves a higher true
positive rate (TPR) for a given false positive rate (FPR), as shown in the
diagram. 57

3.1 Histograms showing the number of observations over all objects in the
GOTO dataset in a light curve (top), the length of the light curve in days
(middle), and the time between consecutive observations in a light curve
(bottom) . 62

3.2 A scatter plot of the mean against standard deviation of magnitudes in a
light curve, for all objects in the dataset, divided by class. The histogram
for the mean magnitude (top) and standard deviation (right) are plotted
alongside. The y-axes for the histograms are plotted as normalised counts. 69

3.3 The histograms of galactic latitudes of all objects in the dataset, divided
by class. 69

3.4 Results matrix for hyperparameters, model trained on original training
set. The values for max_depth are on the x-axis, and the values for
n_estimators are on the y-axis. 75

3.5 Results matrix for hyperparameters, model trained on augmented train-
ing set. The values for max_depth are on the x-axis, and the values for
n_estimators are on the y-axis. 75

3.6 Confusion matrices for the random forest classifiers trained with the orig-
inal and augmented training set, evaluated on the test set. The rows of
the matrix show the fraction of correct and incorrect predictions for each
class, and where incorrect predictions between classes occur. Below the
fractions are the number of objects that have been predicted, in parentheses. 76

3.7 Feature importance in a random forest classifier trained with the original
training set. 79

4.1 A pie chart showing the class distribution in the GOTO dataset, illustrat-
ing the high degree of class imbalance present in the data 84

4.2 A scatter plot of the mean magnitude of light curves against the standard
deviation in magnitudes of light curves for variable stars (VS) in grey, su-
pernovae (SN) in red, and active galactic nuclei (AGN) in blue. In the top
and right panels are histograms showing the distribution of mean magni-
tudes (top) and standard deviation in magnitudes (left). The histograms
are plotted as normalised counts, for each class. 85

4.3 Normalised histograms showing different properties of the light curves in
the dataset, separated by class. From top to bottom: the time between
the first and last observations of the light curves (length of observation),
the number of observations in the light curves, and the time between
successive observations over all light curves. 86

viii

4.4 Normalised histograms showing how the distance to the nearest galaxy
in the GLADE catalog and galactic latitude for all objects in the dataset
varies by class. 88

4.5 Diagram of the mixed input network. The time-series input XT is passed
to the RNN branch, and the contextual information input XC is appended
to the output of the final RNN layer, before being passed on to merged
branch of the network. 90

4.6 Evolution of training and validation loss for the best performing models
during training. Models with the cross entropy loss converge quickly,
but the loss is dominated by contribution from easy to classify examples.
Models with the weighted cross entropy loss and focal loss eventually
converge within 200 epochs of training, and are also able to account for
examples from the minority classes. 98

4.7 Confusion matrices for the best performing models on test data. The
labels on the x-axis are the labels predicted by the classifier, and the labels
on the y-axis are the true labels. Correct predictions are represented by
values along the diagonal, incorrect predictions are represented by values
in the off-diagonal. The rows of the matrix show the fraction of correct
and incorrect predictions for each class, and where incorrect predictions
between classes occur. Below the fractions are the number of objects that
have been predicted, in parentheses. 101

4.8 Receiver operating characteristic (ROC) curves for the VS, SN, and AGN
classes (grey, red, and blue respectively). ROC curves plot the true posi-
tive rate (TPR) against the false positive rate (FPR) for a range of thresh-
old values that dictate whether an object is classified as positive or nega-
tive. The curve is obtained by considering a separate binary classification
case for each class, treating one class as positive, and the rest as negative. 103

4.9 AUC scores evaluated for all models on the test data, plotted as a func-
tion of increasing number of light curve observations included in the light
curve. The black dotted line with triangular markers shows the AUC
scores for the GRU model trained with weighted focal loss without con-
textual information (labelled GRU Focal Loss (NC)). 105

4.10 Confusion matrices for the GRU model with weighted focal loss, evaluated
with an increasing number light curve observations. 106

4.11 Confusion matrices for the GRU model with weighted focal loss trained
only on time-series data, evaluated with an increasing number light curve
observations. 107

4.12 ROC curves for the VS, SN, and AGN classes (grey, red, and blue re-
spectively) for the GRU model with weighted focal loss, trained only on
time-series data. 108

4.13 t-SNE representation for the network outputs at different stages. Each
datapoint corresponds to a single object in the training set; grey points
are VS, red points are SN, and blue points are AGN. 113

ix

5.1 A plot of the effective wavelength λeff against the full width half-maximum
(FWHM) of the filters available in the Open Supernova Catalog dataset.
Both λeff and FWHM are given in Angstroms. 123

5.2 Histograms of magnitudes in the AB system in the filters included in
the dataset. The red dashed line indicates the mean, and the shaded
grey regions indicated the 1σ, 2σ, and 3σ values - these are included for
illustration purposes only. The filters used include the Swift (UVW1,
UVW2, UVM2) filters, the Johnson-Cousins filters, SDSS ugrizy filters,
and the Gaia G filter. The histogram in orange shows the distribution
over the whole dataset. 124

5.3 Light curves from the Open Supernova Catalog, before (left) and after
trimming (right). 126

5.4 Histograms showing the summary statistics of all the light curves in the
final dataset. Top left : the total number of observations in the light
curve in all filters. Top right : the number of filters in which observations
were made. Bottom left : the average observations per filter, obtained by
counting the number of observations in each filter and then dividing by
the total number of filters used. Bottom left : the duration of the light
curve in days. 128

5.5 Examples of light curves (left) of SN2006kb (type Ia), SN2006lc (type Ibc),
and SN2007lj (type II) and the corresponding flux heatmaps (right) gen-
erated from using a two-dimensional Gaussian process. The light curves
are plotted as flux fν converted from AB magnitudes in each filter against
time. The heatmaps show flux (brighter pixels indicating higher flux val-
ues) as a function of time (in days) and wavelength (in). 132

5.6 The light curve of the type Ib supernova iPTF13bvn (left) and its flux
heatmap generated from the light curve (right). 133

5.7 The spectra of iPTF13bvn are shown in black, and the spectra obtained
from the flux heatmap are shown in red. The time of the spectra is
given as days from the time of the first observation of the light curve.
The spectra have been normalised (using the maximum value for each
individual spectra) and shifted for clarity. 134

5.8 A diagram of the convolutional neural network. The grey dashed box indi-
cates the layers that make up a convolutional block. The dimensions of the
output tensors in the layers in the convolutional blocks (Conv 1D, Conv
2D, Max Pooling 2D), number of neurons in the dense layers (Dense), and
the dropout fractions (Dropout) are shown in parentheses. 135

5.9 The training and validation loss for the CNN model trained on the Open
Supernova Catalog data. 137

x

5.10 Confusion matrix for the test set of heatmaps generated from the Open
Supernova Catalog light curves. The y-axis shows the true class label,
and the x-axis shows the class label predicted by the model. Entries along
the diagonal represent where the predicted label matches the true label,
and the off-diagonal entries show where misclassifications occur. Reading
along the rows, the fractional values show how samples from a class have
been classified, with the absolute numbers below in parentheses. 139

5.11 An example of a type Ia supernova light curve (left) and the flux heatmap
generated from the light curve (right). The interpolated flux from the
two-dimensional Gaussian process at the wavelength corresponding to the
filter effective wavelength is also plotted. 144

5.12 Training and validation loss during training for models without transfer
learning. 146

5.13 Training and validation loss during training for models with transfer learn-
ing. 147

5.14 Confusion matrices for models without transfer learning, evaluated on the
test set. 148

5.15 Confusion matrices for models with transfer learning, evaluated on the
test set. 150

5.16 The difference between the confusion matrix for models trained on the
augmented training set with redshift for with and without transfer learn-
ing. Positive values along the diagonal indicate an improvement when
transfer learning is used. Negative values in the off diagonals indicate
fewer misclassifications. 151

5.17 Confusion matrices for the model with pre-training, trained on the aug-
mented training set with redshift at different thresholds. 152

6.1 Example ZTF light curves. The light curves are scaled in time so that the
time of the first observation is zero. 161

6.2 Confusion matrices for the trained classifier evaluated on the test set. . . 164
6.3 Example ECGs for the five categories outlined in Kachuee et al. (2018) . 165
6.4 ECG classification confusion matrix, evaluated on the test set. 167

xi

List of Tables

1.1 A list of time-domain sky surveys. For each survey, we provide its etendue
AΩ in units of m2deg2, cadence, wavelength range ∆λ in nm and the
typical depth in magnitudes. Surveys listed under ‘Future Surveys’ are
still under construction (LSST) or yet to be constructed (SiTian). 12

3.1 The number of samples in the dataset for each class: long-period variables
(LPV), RR Lyrae stars (RR), eclipsing binaries (EB), cepheid variable
(CEP), cataclysmic variables (CV), and supernovae (SN). In the second
column, the number of samples for each class is also shown as a fraction
of the total dataset. 64

3.2 A table showing the fraction of each class in the dataset that are associated
with a galaxy when cross-matched with the NED catalogue. 70

3.3 The F1 and AUC scores for the random forest classifiers trained with the
original and augmented training set, evaluated on the test set. 77

4.1 Adjustable hyperparameters in the model. Hyperparameters with values
in square brackets indicate the range of values used during training. . . . 95

4.2 Results for the best performing models and their best hyperparameters
with AUC and F1 scores, evaluated on the validation and test sets. The
dense neurons column denotes the number of neurons in all dense layers
preceeding the final output layer, and the RNN output column denotes
the dimension of the output of the LSTM and GRU layers. On the bottom
row, GRU NC denotes the GRU model with weighted focal loss trained
only on time-series data without contextual information. 100

4.3 The true positive rate (TPR) and false positive rate (FPR) for each class,
evaluated on the test set at a threshold for the GRU model trained with
focal loss. The positive and negative predictions are obtained by treating
each class as positive, and the other two as negative, creating a binary
classification problem for each of the three classes. The number of true
positive predictions and false positive predictions are shown in parentheses
with the TPR and FPR values. 104

xii

5.1 A breakdown of how the Open Supernova Catalog dataset is divided for
training, validation, and testing, along with the class distribution of the
three supernova classes. 127

5.2 The effective wavelengths λeff of the filters used to create flux heatmaps
from light curves. 130

5.3 The layer parameters and output dimension for each layer in the convo-
lutional blocks. For the convolutional layers, the kernel size is the shape
of the convolutional window and filters sets the number of convolutional
filters that are learnt during training. For the max pooling layers, the pool
size sets the shape of the window over which to take the maximum. The
number of strides is one for the convolutional layers and two for the max
pooling layers. The flattening layer takes the multidimensional output of
the convolutions and shapes into a single dimensional output. 137

5.4 Breakdown of the PLAsTiCC dataset by type. The column labelled
’Training 1’ shows the original training set, and the column labelled ’Train-
ing 2’ shows the augmented training set. 143

5.5 The effective wavelength λeff of the LSST filters used to simulate observa-
tions in the PLAsTiCC dataset. The values were obtained from the SVO
Filter Profile service Rodrigo & Solano (2020). 144

5.6 AUC and F1 scores, trained on the original and augmented training sets
with and without redshift, for both with and without transfer learning. . 152

5.7 AUC and F1 scores for the transfer learning model trained on the aug-
mented training set with redshift, evaluated at different probability thresh-
olds. The column on the right shows the fraction of the test set retained
when discarding predictions that are below the threshold. 152

6.1 The number of samples in each class for the ZTF alerts dataset. 162
6.2 Adjustable hyperparameters in the GRU RNN. 163
6.3 Precision and recall for each class. 164
6.4 A summary of the five categories of heartbeats with the number of mea-

surements for each category, from Kachuee et al. (2018) 166

A.1 The effective wavelength λeff and full width half-maximum (FWHM) of
filters used in the Open Supernova Catalog dataset, given in angstroms. . 182

A.2 Conversion table for Swift magnitudes given in the Vega system into AB
magnitudes, obtained from Breeveld et al. (2011) 183

A.3 Conversion table for Vega magnitudes into AB magnitudes, obtained from
Blanton & Roweis (2007) . 183

A.4 Conversion table for magnitudes given in the Carnegie Supernova Project
(CSP) system into AB magnitudes, obtained from Krisciunas et al. (2017) 184

xiii

Declaration

I declare that, unless otherwise stated, the work presented in this thesis is my own.
No part of this thesis has been accepted or is currently being submitted for any other
qualification at the University of Sheffield or elsewhere.

The work presented in Chapter 4 of this thesis has already been published and can
be found in Burhanudin et al. (2021).

xiv

Acknowledgments

Firstly, I would like to thank my supervisor Justyn for taking me on to do this PhD. I
have learnt a great deal from you, both in scientific know-how and also how to be a good
researcher. You have been supportive and encouraging in what has been one the most
challenging but also rewarding experiences in my life.

These three and a half years have not been with its ups and downs. Thank you to
my postgraduate tutor Jenny Clark and Stu for chatting with me when I was struggling,
and assuring me that sometimes being stuck and feeling like you’re not getting anywhere
is perfectly fine. I guess impostor syndrome is just part of the PhD package and that
you just learn to live with it, and eventually realise that you are smart enough to do a
PhD!

Most, if not all the work during my PhD could not have been completed without
the help of Paul Kerry, the computer wizard. Thank you for installing countless Python
packages for me and making sure that they were working properly. I hope I did not
cause you too many headaches.

I came into this PhD not knowing anything about machine learning, and now I am
proud to say I know some things. Thank you to Maurico and Fariba from the Computer
Science department, and all the clever people I met at the Artificial Intelligence in
Astronomy conference at ESO for the informative conversations. The best way to learn
something you don’t know a lot about is to learn from experts.

This PhD has not been an entirely solitary experience (apart from the year or so due
to a global historical happening). Thank you to the current and past inhabitants of the
E18 PhD office for our shared commiseration - things will be fine. I must also thank my
friends from the ‘Union’ for making working from home a much more fun experience.

A big thank you to my family for your continued support. Ummi, Ayah, Man and
Nui, I cannot thank you enough for the love and support you have shown me throughout
my PhD. I love, respect, and admire each one of you. I hope I have made you proud to
call myself your son and brother.

Last but not least, thank you to my wife Emily. Without you I would not be where
I am today. You believed in me when I didn’t believe in myself, and helped me to find
the strength to keep going when I thought doing a PhD was not the path for me. For
that, you forever have my gratitude. None of this would have been possible if it were
not for you. I will love you always.

xv

Summary

Repeated sky surveys in the past decade have led to the proliferation in the discovery
of transients. This has not come without its own challenges: the rate of discovery from
current sky surveys greatly exceeds the human capacity to manually identify and classify
newly discovered objects. The use of machine learning approaches to automate the
discovery process with little to no human intervention is rapidly becoming a standard
practice in surveys. In this thesis we present the use of machine learning to classify
objects discovered by sky surveys observing at optical wavelengths.

The Gravitational-wave Optical Transient Observer (GOTO) is a survey with the aim
of searching for the optical counterparts to gravitational waves, while also scanning the
night sky for transients and variable objects. We use both a machine learning and a deep
learning approach to classify objects observed by GOTO using their light curves, and
compare the effectiveness and limitations of both methods for photometric classification.
We find that using a deep learning approach with recurrent neural networks works best
to reliably classify objects using their light curves in real-time.

We investigate the use of Gaussian processes to create uniform representations of
supernova light curves from different surveys. These are then used with a convolutional
neural network for classification into supernova sub-types. Future surveys will have a
lack of labelled data to train classifiers. We use transfer learning to show how data from
another survey can be used to train a classifier for a new survey.

Machine learning is a widely used methodology, and has uses in other fields of re-
search. We show how the classifiers developed for GOTO light curve classification can
be adapted for other classification tasks, and how they perform on these tasks.

xvi

Chapter 1

Introduction

1

Introduction 2

Time-domain astronomy concerns the observation and study of sources that have

some variability in time, typically on timescales much shorter than typical astrophysical

or cosmological timescales such as galaxy or stellar evolution. The discovery of time-

varying sources are often associated with an observed change in brightness or flux. The

most widely observed time-varying sources in the optical wavelengths (∼ 380nm−700nm)

are variable stars and transient events. Transient events (commonly referred to as tran-

sients) are some of the most extreme and violent astrophysical phenomena to occur in

the universe, and observing them has augmented efforts to understand the universe. The

discovery of the period-luminosity relation of Cepheid variables in the Small Magellanic

Cloud enabled the use of Cepheid variables as a standard candle to measure extra-galactic

distances (Leavitt & Pickering, 1912). Thermonuclear supernovae have been used to re-

veal an accelerated expanding Universe (Perlmutter et al., 1999; Riess et al., 1998) and

continue to be a powerful probe of dark energy (e.g. Betoule et al., 2014). Detections

of gravitational waves produced by the merger of two black holes have confirmed one of

the predictions of general relativity and marks a new age of multi-messenger astronomy

(Abbott et al., 2016). The study of core-collapse supernovae has shed light on the end-

points of stellar evolution for massive stars, and the progenitor systems that give rise to

these catastrophic explosions (e.g. Smartt 2009).

Discovering transients requires repeated observations of the night sky over the period

of days to weeks. Observing transients can be a challenge due to the fact that they are

‘one-off’ events, and discovering them in the past was a serendipitous process. However,

the emergence of synoptic all-sky surveys such as the Palomar Transient Factory (PTF)

(Rau et al., 2009), Pan-STARRS (Kaiser et al., 2010), and the Catalina Real-Time

Transient Survey (CRTS) (Drake et al., 2009) have made these once rare events more

common. Current transient surveys now face a new challenge: the large volume of data

collected exceeds the available human resources to analyse them. This problem highlights

the need for an automated framework, based around a machine-learning approach where

Introduction 3

the discovery and identification of new transients is executed without (or with very little)

human supervision.

1.1 Explosive transients

Transients are markedly different from other typically observed objects such as stars and

galaxies, in terms of their observed properties and the physical mechanisms that power

them. They are different to variable objects, as transients are ‘one-off’ events that can

increase in brightness by several magnitudes and then fade away. They are host to some

of the most extreme environments where physics occurs, and some transients represent

the endpoints of stellar evolution. Transients are visible on timescales ranging from

minutes to months, and their transient nature arise from some physical process of the

progenitor system. Photometric studies of transients utilise their light curves, obtained

by measuring their flux (and usually converting them to magnitudes) over time at regular

intervals. The different types of transients discussed in this section can be visualized in

a transient phase space, shown in Fig. 1.1. The transient phase space visualises the

diversity of observed transients, showing the range of luminosities and timescales over

which they are visible.

1.1.1 Novae eruptions

Classical novae are the result of thermonuclear burning of hydrogen-rich material ac-

creted onto the surface of a white dwarf (WD) star in a close binary (see Starrfield et al.,

2016 for a detailed review). Hydrogen-rich material is accreted onto the surface of the

WD in a close binary system from a companion star. Compression of the layer by the

surface gravity of the WD causes it to become electron degenerate. Once temperatures

on the burning surface are high enough, a thermonuclear runaway process ignites the

hydrogen-rich layer causing an outburst.

Introduction 4

Figure 1.1: Transient phase space diagram, adapted from Kasliwal (2011) and updated
with data from Foley et al. (2013) for SNe Iax, Valenti et al. (2017) for AT 2017gfo,
the kilonova associated with gravitational wave detections from a binary neutron star
merger, and Perley et al. (2019) for AT 2018cow. Peak luminosity (in the V band)
is plotted against characteristic timescale (the time taken to decline in brightness by
∼ 1 mag from peak).

Material produced by the hydrogen-burning nucleosynthesis of classical novae explo-

sions are injected into the interstellar medium (Gehrz et al., 1998). Classical novae reach

peak absolute magnitudes of MV ∼ −7.5 with decay times (the time taken for magni-

tude to become fainter by 2-3) ranging from days to hundreds of days; peak absolute

magnitude and decay time are related, with brighter novae having shorter decay times

(Hernanz, 2005, and references therein). This relationship can be seen for classical novae

in Figure 1.1

Introduction 5

1.1.2 Luminous red novae

Luminous red novae are transients with peak absolute magnitudes MR ∼ −12 (brighter

than novae but fainter than ordinary supernovae) with red colors (g − r ∼ 1) (Kulkarni

et al., 2007; Kasliwal et al., 2011), and occupy the ‘luminosity gap’ between classical

novae and supernovae (see Fig 1.1). Luminous red novae have double-peaked light curves

(an initial rapid blue peak followed by a longer duration red peak), and are proposed

to arise from massive binaries or the common envelope ejection of a binary system

(Pastorello et al., 2019).

1.1.3 Supernovae

Supernovae (SNe) mark the end points of stellar evolution for massive stars and WD

in binary systems. Traditionally, SNe have been divided into different classes based on

observable features in their optical spectra (see Filippenko, 1997, for a review on SNe

taxonomy). The standard SNe classification scheme is summarised in Fig. 1.2.

Is Hydrogen present in spectra?

Type I Type II

Lightcurve
properties

II-P II-L IIb

Narrow line
features

IIn

Si No Si/He

Ia Ib Ic Ic-BL

Broad line
features

Thermonuclear,
Low-mass star progenitor

Core-collapse,
High-mass star progenitor

No

Plateau Linear
Transitions

to Ib

Yes

Narrow line
features

Iax

He

Figure 1.2: Supernovae classification diagram.

Introduction 6

Thermonuclear supernovae

Type Ia SNe (SNe Ia) are identified by the lack of hydrogen in their optical spectra, but

with observed Si II lines (Filippenko, 1997).

They are thought to originate from the runaway thermonuclear burning of a degener-

ate carbon-oxygen core of a WD into 56Ni once the WD approaches a mass comparable

to the Chandrasekhar mass (MCh ∼ 1.4 M⊙), which is sufficient to unbind the WD.

Whether the progenitor consists of a single-degenerate (SD) or double-degenerate (DD)

binary system is still debatable (Maoz et al., 2014).

SNe Ia reach peak absolute magnitudes of MV ∼ −19 (Hamuy et al., 1996), and

there is a correlation between the peak brightness and light curve decline rate (Phillips,

1993), known as the width-luminosity relation. The width-luminosity relation for SNe

Ia can be seen in Figure 1.1. Using this correlation, SNe Ia can be used as calibrated

standard candles for cosmology (e.g. Perlmutter et al., 1999; Riess et al., 1998).

Type Iax supernovae (SNe Iax) form a distinct class of SNe different to SNe Ia, and

have spectral features that are similar to SN 2002cx (Li et al., 2003) at similar epochs.

They have lower peak luminosities than SNe Ia, correlated to the shape of the light curve

similar to the width-luminosity relation of SNe Ia but with a larger scatter. The spectra

of SNe Iax at peak brightness show lower ejecta velocities than that of SNe Ia at peak

brightness. For a review of observational properties of SNe Ia, see Foley et al. (2013).

The width-luminosity relation for SNe Iax can be seen in Figure 1.1, showing a similar

relation but at lower peak luminosities. The proposed mechanism to produce SNe Iax is

the failed deflagration of a carbon-oxygen (CO) WD, where burning within the WD rises

to the surface but the entire WD is not consumed by the burning (Foley et al., 2009).

.Ia explosions ("point Ia") produce roughly ∼ 10 % of the luminosity of SNe Ia for

roughly ∼ 10 % of the typical SN Ia timescale (Kasliwal et al., 2010; Poznanski et al.,

2010). They are thought to arise from the thermonuclear explosion of helium accreted

Introduction 7

onto a WD in a binary system (Poznanski et al., 2010).

Core-collapse supernovae

All other types of SNe apart from SNe Ia are expected to arise from the core-collapse

of massive stars (> 8 M⊙). The resulting explosion releases heavy elements created

via nucleosynthesis during the lifetime of the star; the high energies released from these

explosions provide feedback for star formation within galaxies, and the end result of

core-collapse SNe (CCSNe) leaves behind compact objects such as neutron stars and

black holes (Maund et al., 2017, and references therein). Core-collapse supernovae show

a wide range of observational properties: there is a large variation in peak luminosities

and magnitude decay timescales, which is visualised in Figure 1.1. Classification of

core-collapse is typically done based on spectral features.

Type Ib SNe (SNe Ib) show He I lines in their spectra, while Type Ic SNe (SNe

Ic) show neither He nor Si absorption lines in their spectra (Filippenko, 1997). The

progenitors of these SNe I are thought to be hot Wolf-Rayet (WR) stars or low mass

He and CO stars in a binary system (Maund & Smartt, 2005). SNe Ic with broad line

spectral features (SNe Ic-BL) have been observed and some have been associated with

gamma-ray bursts (GRBs) (Valenti et al., 2008; Galama et al., 1998).

Type II SNe (SNe II) are those with hydrogen observed in their spectra, with fur-

ther subclassifications made on the basis of light curve or spectral properties: SNe II-P

feature a plateau in their light curves while SNe II-L light curves show a linear decline

(Filippenko, 1997). The progenitors of SNe II are red supergiants, and different pro-

cesses throughout stellar evolution (e.g. loss of a hydrogen envelope through mass-loss

processes) dictate the type of explosion that occurs (Smartt, 2009).

Observations of transients with peak absolute magnitudes between −15.5 ≥ MR ≥

−16.5 with late-time spectra dominated by calcium fall into a distinct class of calcium-

rich transients (Kasliwal et al., 2012). These transients rise to brightness and transition

Introduction 8

into the nebular phase faster than ordinary SNe, with rise times of ∼12-15 days and

showing spectroscopic evolution into the nebular phase within ∼1-3 months. Calcium-

rich transients are located in the outskirts of their host galaxies (≥ 30 kpc from the

centre).

Superluminous supernovae

The discovery of a supernova explosion with a peak absolute magnitude of M ∼ −22

suggested the existence of a new class of rare and superluminous supernovae (SLSNe)

(Quimby et al., 2007). The high luminosities and observed physical properties of SLSNe

suggest they have different progenitors to ordinary SNe, though the exact nature of the

powering mechanism remains an open question (Gal-Yam, 2012).

SLSNe can be further classified into two subclasses based on their spectra: Type I

SLSNe (SLSN-I) are hydrogen poor and Type II SLSNe (SLSN-II) are hydrogen rich. The

light curves of SLSNe typically have longer timescales compared to normal supernovae,

both in rise and decline. There are a number of proposed powering mechanisms for such

high luminosity events, such as magnetars, black-hole accretion, radioactive nickel decay,

and circumstellar material interaction (see Gal-Yam 2019 for a review of superluminous

supernovae).

1.1.4 Fast blue optical transients

The rise of time-domain surveys that are capable of observing large patches of sky

at higher cadences have led to the discovery of a new class of luminous extragalactic

transients that evolve on the timescales of days. These transients have luminosities

comparable to supernovae but have bluer colours, and have been dubbed ‘fast blue

optical transients’ (FBOTs). One example of this new class of transients is AT 2018cow,

with a rapid time to peak luminosity (MV ∼ −19) in roughly 5 days (eg. Perley et al.

2019). The power source of AT 2018cow is proposed to be a compact object such as a

Introduction 9

magnetar or a black hole remnant resulting from the failed explosion of a blue supergiant

(Margutti et al., 2019), though the exact nature or origin of AT 2018cow is still unclear.

1.1.5 Gravitational Waves & Kilonovae

The detection of gravitational waves from a binary black hole merger confirmed one of

the predictions of general relativity; the inspiral and merger of two black holes radiate

energy in the form of gravitational waves travelling at the speed of light (Abbott et al.,

2016). The subsequent detection of gravitational waves from a binary neutron star (NS)

merger prompted a search for an electromagnetic counterpart in the same region on the

sky, and a fast-fading transient thought to be a kilonova was discovered (Smartt et al.,

2017). The kilonova associated with the binary NS gravitational wave had an absolute

magnitude Mr = −15.8 ± 0.1 mags, and dimmed by about ∼ 1 mag after ∼ 1 day

(Valenti et al., 2017).

Kilonovae are the proposed optical transients that accompany a binary NS merger,

reaching peak luminosities of ∼ 1041 ergs s−1, a factor of 1000 larger than novae (Met-

zger et al., 2010). An ultra-stripped supernova, where a massive star stripped of its

outer hydrogen and helium envelopes and undergoes core-collapse, are thought to be the

progenitors of kilonova systems (De et al., 2018).

1.2 Studying variability

Studying the dynamic nature of transients is primarily done by observing their evolution

through time. This can be done by treating the transient as a point source and measuring

their brightness as a function of time (photometry), or by observing the spectra of the

transient to identify the presence of chemical elements and measure the velocity of moving

ejecta (spectroscopy).

Exploration of the transient sky has seen great progress through the efforts of untar-

Introduction 10

geted synoptic surveys, with current surveys such as the Zwicky Transient Facility (ZTF)

capable of covering the entire Northern sky roughly every three days (Bellm et al., 2019).

Determining variability from survey images is done through either catalogue searching or

difference imaging (Bloom & Richards, 2012). In a catalgoue search, sources in an image

with fluxes above a threshold are extracted to a catalogue, and cross-matched with de-

tections from previously catalogued sources to identify time-variability. With difference

imaging, a reference image is subtracted from a target image to produce a residual, which

indicates that a source is varying in brightness over time. A reference image represents

an image of a region of the static sky, and a science image is one that contains a new

object that shows a change in brightness in the same region. By subtracting the two

images, any non-varying sources are removed from the image and only the new varying

object remains, from which the magnitude can be measured. This method can allow the

discovery of many transient and variable sources in a single image, provided the astro-

metric alignment between the two images is accurate. Catalogue searches are generally

faster, but difference imaging excels at finding variability in crowded fields.

Once a source has been identified, photometry is carried out to measure the brightness

of the source. The photon counts fX measured from an image of the source taken through

a filter X, that covers a particular wavelength range, is converted into an apparent

magnitude using the relation

mX = −2.5 log10 fX +mX , 0. (1.1)

where mX is referred to as the ‘X’-band magnitude. Since the magnitude system is

calibrated relative to known stars, a zero-point magnitude mX,0 is needed to convert the

flux into a magnitude. For the Vega magnitude system, the zero point is defined as the

apparent magnitude of the star Vega, which is taken to be 0 in all bands. In the AB

Introduction 11

magnitude system, the apparent magnitude in a single filter is

mAB = −2.5 log10 fν + 48.60 (1.2)

where the constant is chosen so that mAB = mV for an object with a flat spectrum. In

practice, mAB = mV for a flux fν measured at 5480Å in units ergs cm−2s−1Hz−1 for an

object with a smooth spectrum (Oke & Gunn, 1983).

Photometry of the same source can be done repeatedly over time to give a time-series

of flux measurements, producing a light curve. The light curves of different transients

will vary in shape and length (according to the typical timescale of the transient), and

from the light curves it is possible to infer the physical properties of the source.

1.3 Current and future surveys

In Table 1.1, we provide a summary of past, current, and future time-domain surveys op-

erating in the optical wavelengths. We list the etendue AΩ of each survey, which is given

by the total telescope light collecting area times the field of view of the telescope. For

some surveys, there may be multiple telescopes used to produce a combined field of view,

such as the All Sky Automated Survey for SuperNovae (ASSASN) and the Gravitational-

wave Optical Transient Observer (GOTO). We also discuss the following surveys that

are relevant to the work presented in this thesis: the Palomar Transient Factory (PTF),

the Zwicky Transient Facility (ZTF), GOTO, and the Vera Rubin Observatory Legacy

Survey of Space and Time (LSST).

1.3.1 The Palomar Transient Factory

The Palomar Transient Factory (PTF) was a survey that set out to populate the transient

phase space by exploring the transient optical sky. The survey camera was mounted on

Introduction 12

Survey AΩΩΩ Cadence ∆λ∆λ∆λ Depth References

CRTS1 ∼ 3 6-12 days 300- 000 ∼ 20
Drake et al. (2009),
Djorgovski et al. (2011)

PTF2 8.9 3-5 days 300-700 ∼ 21 Rau et al. (2009)
Pan-STARRS 1 50 ∼ 7 days 400-1000 ∼ 24 Kaiser et al. (2010)

ATLAS3 4.1 2 days 420-975 ∼ 19
Tonry (2011),
Tonry et al. (2018)

La Silla-QUEST 7.8 2 days 300-900 ∼ 20 Baltay et al. (2013)

ASSASN4 ∼ 130 2-3 days 470-700 ∼ 17
Shappee et al. (2014),
Kochanek et al. (2017)

DES5 12 7 days 400-1050 ∼ 24
Dark Energy Survey
Collaboration (2016)

SkyMapper 7.4 <5 days 300-1100 ∼ 21 Scalzo et al. (2017)
HSC6 2 4-6 days 400-1100 ∼ 26 Aihara et al. (2018)
ZTF7 53.1 3 days∗ 400-900 ∼ 21 Bellm et al. (2019)

GOTO8 ∼ 40∗∗ ∼ 3 days 380-700 ∼ 20 Steeghs et al. (2021)

Future surveys

LSST9 319 3-4 days∗ 320-1050 ∼ 24 Ivezić et al. (2019)
SiTian - 30 minutes 300-850 ∼ 21 Liu et al. (2021)

1Catalina Real Time Survey, 2Palomar Transient Factory, 3Asteroid Terrestrial-impact Last Alert
System, 4All Sky Automated Survey for SuperNovae, 5Dark Energy Survey, 6HyperSuprimeCam,
7Zwicky Transient Facility, 8Graviational-wave Optical Transient Observer, 9Vera Rubin Observatory
Legacy Survey of Space and Time
∗These surveys also have higher cadences for a subset observing strategies, for more details see the
corresponding references listed in the table.
∗∗ Calculated for the current configuration of 8 unit telescopes.

Table 1.1: A list of time-domain sky surveys. For each survey, we provide its etendue
AΩ in units of m2deg2, cadence, wavelength range ∆λ in nm and the typical depth in
magnitudes. Surveys listed under ‘Future Surveys’ are still under construction (LSST)
or yet to be constructed (SiTian).

the 48-in Samuel Oschin telescope (P48), in California, and provided a 7.9 deg2 field of

view in two broad-band filters (R, g) covering a wavelength range of ∼ 300nm− 700nm.

PTF was capable of observing transients on a range of timescales, with a cadence ranging

from minutes to days, reaching a depth of ∼ 21 mag in both R and g filters. The P48

telescope was accompanied by the 1.5 metre P60 telescope for dedicated follow-up of

transients, capable of providing multi-colour light curves in g, r, i, z filters (Rau et al.,

Introduction 13

2009; Law et al., 2009). The PTF survey ran from 2009 to 2012, and was succeeded

by the intermediate Palomar Transient Factory (iPTF) (Kulkarni, 2013), with a focus

on exploring cadence strategies and rapid processing and follow-up of transient events

(Bellm, 2018).

1.3.2 The Zwicky Transient Facility

The successor to the iPTF is the Zwicky Transient Facility (ZTF), which uses the same

P48 telescope as PTF but has an upgraded field of view of 47 deg2 (Bellm et al., 2019).

Like its predecessor, ZTF searches for optical transients but also facilitates science for

variable objects, small bodies in the Solar System such as asteroids and comets, and also

Target-of-Opportunity follow-up observations with instruments capable of observing at

wavelengths beyond the optical (e.g. infrared and x-ray).

ZTF is equipped with three filters, gri, with a wavelength coverage of 400nm - 900nm,

and is capable of reaching a depth of ∼ 21 in the g band with a 30 second exposure. The

public ZTF survey is allocated to 40% of the observing time, and is conducted following

two strategies: a galactic plane survey and a Northern sky survey with a 3 day cadence.

For both survey strategies, each field is visited in g and r bands with at least 30 minutes

between the two visits. ZTF generates ∼ 1TB of uncompressed data per night and

provides transient alerts in real-time (Mahabal et al., 2019), allowing for the testing of

discovery, classification, and transient alert systems for larger scale future surveys such

as the Vera Rubin Observatory Legacy Survey of Space and Time (LSST).

1.3.3 The Gravitational-wave Optical Transient Observer

The Gravitational-wave Optical Transient Observer (GOTO) is a ground-based observa-

tory, with a modular design situated at the Roque de los Muchachos Observatory on La

Palma, Canary Islands (Steeghs et al., 2021). GOTO will consist of multiple nodes, with

Introduction 14

each node hosting an array of up to eight 40 cm diameter unit telescopes (UTs) providing

a combined 40 deg2 field of view in a single pointing. The current configuration consists

of a single node in La Palma, with a plan to add another node in La Palma and another

two nodes at the Siding Spring Observatory in Australia. When fully complete, GOTO

will have two nodes in La Palma (GOTO North) and two nodes in Australia (GOTO

South), for a total of 4 nodes and 32 UTs and the ability to have constant coverage of the

night sky. The primary science aim of GOTO is to search for optical signatures follow-

ing a gravitational wave detection from detectors such as the Advanced LIGO (Abbott

et al., 2009) and Advanced Virgo (Acernese et al., 2015) facilities. When GOTO is not

searching for gravitational wave counterparts, it conducts an all-sky survey enabling the

discovery of new variables and, in particular, new transients.

Each GOTO UT is equipped with four Baader filters: an L filter (covering 400 −

700 nm), and three R,G,B filters (covering ∼380 - 700 nm). The transmission curves

for the GOTO filters are shown in Figure 1.3, which has been taken from Dyer (2020).

Figure 1.3: Transmission curves for the filter set used by GOTO. Also shown is the
transmission curve for the clear glass filter (C).

GOTO currently conducts all-sky surveys with the L filter, and is able to achieve a

depth of up to 20.5 mag in a 60 second exposure under dark conditions. New transient

and variable detections are obtained through a difference imaging pipeline (Steeghs et al.,

Introduction 15

2021). On average, ∼ 1.5 × 103 new sources were identified through difference imaging

per night between the end of 2019 to the end of 2020 when GOTO was operating with

a single node.

1.3.4 LSST

The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) (Ivezić et al.,

2008, 2019) is a wide field optical telescope with a 9.6 deg2 field of view currently under

construction at Cerro Pachoń Chile. LSST aims to conduct a photometric survey over

30, 000 deg2 of sky within 10 years with a deep, wide, and fast cadence strategy, and is

expected to discover a few million explosive optical transients over its lifetime.

LSST will serve a range of science goals, ranging from probing the nature of dark

energy and matter, detailed studies of the solar system and Milky Way, and exploring

the optical transient sky. Up to 18,000 deg2 of the sky will be observed in six optical

bands, ugrizy, with a wavelength coverage of 320nm to 1050nm. The LSST reference

design allows for an average revisit time of 3-4 days for 10,000 deg2 of sky with two visits

per night. With an exposure time of 30 seconds, LSST has a depth ranging from 21.7 in

y to ∼ 24.5 mags in g in a single visit. A deep-wide-fast survey will use 90% of observing

time (the ‘main’ survey), and 10% will be used to for deeper observations at different

time sampling to the main survey in pre-selected ‘deep drilling fields’. Approximately

15TB of raw imaging data is expected to be generated every night, and over the 10 year

survey lifetime the cumulative processed data is estimated to be 500PB.

1.4 Challenges of time-domain surveys

Surveys such as the ZTF collect large amounts of data throughout their campaigns,

putting a strain on their data processing pipelines. The large number of images ob-

tained through these surveys exceeds human capability for manual identification and

Introduction 16

Figure 1.4: The transient discovery rate per year for recent surveys and the expected
yearly transient discoveries for LSST, plotted on a log scale histogram. The estimated
rates for the Dark Energy Survey were obtained from Smith et al. (2020), for the Zwicky
Transient Facility Bright Transient Survey (BTS) from Perley et al. (2020), and for LSST
from LSST Science Collaboration et al. (2009). The transient discovery rate for the
ZTF BTS survey was estimated using the total number of spectroscopically confirmed
transients discovered. Rates for past surveys were obtained from Sullivan (2013) for
supernovae discovered up to 2013.

classification of sources (Ball & Brunner, 2010; Bloom & Richards, 2012). Errors in

difference imaging pipelines (e.g. due to bad astrometric alignment between images) can

introduce artifacts which may be flagged as real time-varying sources, creating the task

of separating real sources from ‘bogus’ subtraction artifacts. The real-bogus classifica-

tion problem has been well studied and applied to surveys, and is becoming a standard

part of automated discovery pipelines (Killestein et al., 2021; Mong et al., 2020; Duev

et al., 2019; Lin et al., 2018; Gieseke et al., 2017; Wright et al., 2015; Brink et al., 2013).

Once a source has been identified as real, the next step is classifying the source.

Various taxonomies exist in astronomy, with broad categorisations such as consistently

varying sources versus transient events, and classifications based on spectroscopic fea-

Introduction 17

tures for supernovae sub-types (see section 1.1 for a summary). Usually, confidently

classifying new optical transients relies on additional observations with spectroscopic

facilities. However, in the era of large scale sky surveys, spectroscopic follow-up of all

new discoveries is not guaranteed and is prohibitively time-consuming. As a result,

alternative methods of classification relying on photometric and image data are needed.

We discuss in detail the motivation for using machine learning for automated discov-

ery and classification to deal with this challenge in Chapter 2. In Figure 1.4 we plot the

annual transient discovery rates for two contemporary surveys and the expected rate for

LSST. From Figure 1.4, we see that the current rate of transient discovery from surveys

already surpasses that of previous surveys, and future surveys such as LSST will discover

an order of magnitude more transients every year compared to current surveys. With

such a substantial increase in the rate of discovery, the use of techniques such as machine

learning for discovery and classification in transient surveys becomes a necessary step to

maximize scientific return.

1.5 This thesis

The focus of this thesis is the use of machine learning (and a subset of machine learn-

ing, called deep learning) techniques for the task of classifying objects discovered by

time-domain surveys operating in the optical wavelengths, using their light curves (i.e.

photometric classification). Automating this process in time-domain surveys where the

rate of object discovery exceeds manual (human) capacity facilitates the study of pop-

ulations of known classes of objects, as well as identifying new objects of interest for

further study.

In chapter 2, we provide a review of machine learning and how it is applied in the

context of photometric classification of transients in time-domain surveys. We discuss

machine learning algorithms, deep learning, and the neural network architectures used

Introduction 18

in the work presented in this thesis, and how to evaluate the performance of machine

learning and deep learning on classification tasks.

In chapter 3, we apply the random forest machine learning algorithm to classify

transient and variable objects from GOTO, using a combination of features extracted

from light curves and other object contextual information. We discuss how to deal with

a dataset that has class imbalance, the classification performance of the random forest,

the importance of features used to make the classification, and the limitations of this

approach.

In chapter 4, we improve upon the work presented in chapter 3 and use deep learning

for the classification of supernovae, active galactic nuclei, and variable stars on a much

larger dataset of light curves from GOTO. We use a recurrent neural network to process

variable length light curves to provide ‘real-time’ classifications that can be updated as

new observations of an object are made. We investigate the classification performance

and how it improves with more observations and the impact of including additional

contextual information about objects.

In chapter 5, we address a limitation on contemporary studies of machine learning

and deep learning for the classification of supernova light curves. We create a dataset of

real supernova light curves obtained from multiple different surveys, and show how they

can be standardised using a Gaussian process regression. A convolutional neural network

is used to classify this dataset. We then use transfer learning, to take a classifier trained

on this dataset and apply it to a different dataset of simulated LSST supernova light

curves. We discuss the classification performance with convolutional neural networks

for supernova light curves and the efficacy of transfer learning for creating classifiers for

time-domain surveys.

We conclude with Chapter 6, and discuss how the work presented in this thesis fits

into the bigger picture of time-domain astronomy, and some directions for future work.

Chapter 2

Machine learning in time-domain

astronomy

19

Machine learning in time-domain astronomy 20

2.1 Introduction

The advent of larger telescopes has led to an increase in the amount of data gathered

by astronomical surveys, as well as an increase in the complexity or dimensionality of

the data (i.e. more information is available per object such as multi-band photome-

try and high cadence time-series data). Such advancements in time-domain astronomy

have necessitated the use of machine learning to automate certain tasks. In particular,

machine learning is becoming increasingly used in the discovery pipelines of surveys to

automate the task of identifying astrophysical objects, and classifying such objects into

distinct classes. In this chapter, we introduce the machine learning ‘methodology’ and

background theory that makes up the work presented in this thesis.

In section section 2.2 we discuss the motivation for classifying objects in astronomy.

We introduce machine learning and its applications in time-domain astronomy in sections

2.3 and 2.4, deep learning and examples of how it is used for time-domain astronomy

in section 2.5. We discuss overfitting and underfitting in section 2.6, and metrics of

performance for machine learning in section 2.7.

2.2 Object classification in astronomy

The goal of classifying astronomical objects is to divide the objects based on the their

physical properties (such as mass, temperature, or whether the object is a star or a

galaxy) or the origin of their variability (stars that vary in brightness periodically versus

one-off transient events). At present, the dominant approach to developing astronom-

ical taxonomies is to use observational measurements (such as the flux, either through

photometry or spectroscopy), and use domain knowledge to develop various classification

schemes for the variety of different objects (Bloom & Richards, 2012). Domain knowledge

refers to theoretical models proposed to characterise the physical nature of astronomical

Machine learning in time-domain astronomy 21

objects based on observational data. In chapter 1, we introduced how supernovae are

classified by looking for the absence or presence of specific line features in their spec-

tra. Below, we discuss two other examples of commonly used domain knowledge-based

classification.

Figure 2.1: GAIA data release 2 colour-magnitude diagram from Gaia Collaboration
(2018). The red colour scale represents the relative density of stars in the plot, a brighter
colour indicates a higher density. The absolute Gaia magnitude MG is plotted against
the colour GBP −GRP , and approximate temperature, spectral type, and luminosity for
main sequence stars are shown.

The Hertzsprung-Russell diagram plots the luminosity of stars against their surface

temperature, and is useful in visualising the evolution of stars. Typically, the absolute

magnitude of the stars is plotted against its colour (the difference in apparent magnitude

in two different bands) in a colour-magnitude diagram: its luminosity can be derived if

Machine learning in time-domain astronomy 22

the distance to the star is known, and the temperature can be derived from colour

information. Figure 2.1 shows the Hertzsprung-Russell diagram of stars from the second

Gaia data release (Gaia Collaboration, 2018). The bright diagonal feature across the

diagram represents the main sequence, where stars spend most of their lifetime. Stars

then evolve into the giant branch: the arm moving off into the upper right from the

main diagonal in the diagram. White dwarfs, the end-points for main sequence stars of

Sun-like mass, occupy the bottom left region of the diagram.

A scheme for dividing galaxies into either star-forming or active galactic nuclei was

developed by Baldwin et al. (1981) (BPT diagram), using the ratio of emission line

intensities in the spectra of galaxies. In star-forming galaxies, emission lines are powered

by massive stars whereas active galactic nuclei are powered by more energetic photons

which make collisionally excited lines more intense relative to the recombination lines.

Figure 2.2 shows the BPT diagram for SDSS galaxies, dividing the galaxies into star-

forming (blue) and active galactic nuclei (red). The dashed lines in Figure 2.2 represent

two different theoretical demarcations between star-forming galaxies and active galactic

nuclei, and the galaxies in grey represent those that lie between these two boundaries.

Figure 2.2: BPT diagram for SDSS galaxies from Trouille et al. (2011), where the ratio
of line intesities log([OIII]/Hβ) is plotted against log([NII]/Hα). Star-forming galaxies
are show in blue, and active galactic nuclei are shown in red.

Machine learning in time-domain astronomy 23

An alternative approach to domain knowledge-based classification is to use a feature-

based classification scheme. Features are metrics that can be derived from observational

data, such as statistical measures (e.g. mean and standard deviation) from time-series

data, or contextual information such as the on-sky location of the object. The features

created from the data may be simple (summary statistics) or complex (e.g. period-

fitting). For a given dataset (e.g. the light curves of multiple objects), a set of M

features can be derived for each sample (a single object) and a M -dimensional feature

space can be created. Machine learning is well suited to develop models that can operate

in high-dimensional feature space and create decision boundaries to classify the data.

Throughout this thesis, we refer to models developed using machine learning to classify

data as classifiers.

2.3 Machine learning

2.3.1 Defining machine learning

We define machine learning as an approach to create a computer program that can

improve its performance on some task by learning from experience. To provide a formal

definition, we use the one given in Mitchell (1997):

‘A computer program is said to learn from experience E with respect to some task T

and some performance measure P, if its performance on T, as measured by P, improves

with experience E. ’

For example, we can define a machine learning task to be classifying light curves of

astronomical objects, the performance measure as the accuracy at which it is able to

correctly separate objects into different classes, and the experience as a dataset of light

curves. In this case, machine learning is used to create a model that can classify light

Machine learning in time-domain astronomy 24

curves of objects into different classes by learning from the data (light curves of objects

belonging to different classes).

The types of tasks that can be used with machine learning can be divided into three

broad types (Bishop, 2006):

1. Supervised learning

2. Unsupervised learning

3. Reinforcement learning

Supervised learning problems involve the application of machine learning to create

a model that can map a set of input data to a set of corresponding target data. The

expected mapping of input to target is known beforehand (hence the name supervised

learning). Classification is an example of a supervised learning problem where the target

data is grouped into a finite number of discrete classes, and regression is an example

where the target data may consists of continuous variables. We have outlined an example

of a classification task above (light curve classification); an example of a regression task

may be estimating the redshift of an object with photometric measurements in place of

examining spectroscopic measurements.

Conversely, unsupervised learning involves the use input data without any corre-

sponding target data. Machine learning in this case may be used to identify some

correlation between variables in the data. Clustering is an example of an unsupervised

learning problem, where a machine learning algorithm is tasked to identify groupings of

similar objects within the data, or to identify outliers. This is useful in anomaly detec-

tion, where the aim is to identify peculiar or rare objects that are of interest within a

dataset (e.g Pruzhinskaya et al. 2019). Other examples include dimensionality reduction

where the aim is to project data in high-dimensional space into two or three dimen-

sions so they can be easily visualised (e.g. t-distributed stochastic neighbour embedding

(t-SNE), van der Maaten & Hinton 2008).

Machine learning in time-domain astronomy 25

Reinforcement learning is the problem of identifying actions to take in a specific

situation in order to maximise some reward. Common examples of this type of problem

involve using machine learning to play video games (see Justesen et al. 2017 for a review).

The focus of this thesis is applying machine learning in a supervised learning context

for classification, in particular the classification of transient and variable objects into

different classes by using their light curves and other additional information.

2.3.2 Supervised learning in the time domain

In the supervised learning paradigm, a set of input data is used to adjust the parameters

of a model. The task involves adapting the model (by changing its parameters) so that

it is able to map the input data to a set of target data, where the expected mapping

from input to target is known. We call the set of input-target pairs the training set. A

machine learning algorithm can be thought of as a function y(x; θ), where x represents

the input data and θ the model parameters. The process of tuning y(x; θ) by changing

the parameters θ so that it matches the expected target is known as the training phase

(or learning phase). For classification y(x; θ) can represent the predicted class of an

object and for regression it can represent a predicted continuous variable.

The optimal parameters for a model, so that its predictions match what is expected,

are found during the training phase by minimising some loss function. A loss function

describes the error between the model prediction and the expected outcome. For a

regression task, a loss function could be the mean-squared error (MSE):

MSE =
1

N

N∑
i=1

(yi − y′i)
2 (2.1)

where for a set of N data points, yi is the expected ith measurement and y′i is the

predicted ith measurement. We introduce a loss function for a classification task later

in this chapter.

Machine learning in time-domain astronomy 26

After a model is trained on the training set, it can then be used to make predictions on

new data (that is separate to the training set), called the test set. The test set contains a

set of inputs where the corresponding target data may be unknown. The goal of machine

learning is to be able to create a model y(x; θ) that can correctly produce target data

given input data from the test set. This property is known as generalisation; a good

machine learning algorithm has good generalisation if it is able to produce the expected

target data on a test set after being trained on a training set. The terms algorithm and

model are used interchangeably to refer to the mapping y(x; θ) in the context of machine

learning1.

For classification problems, the training set comprises of feature-label pairs, where

features may either be the raw data itself, or metrics derived from the data, and labels

are the class label for a set of features. An example of a feature-label pair is in the spec-

troscopic classification of supernovae (Filippenko, 1997); a feature may be the absence of

hydrogen and the presence of a Si II absorption line in a spectra, and its corresponding

label is a Type Ia supernova.

2.4 Machine learning algorithms for classification

The role of machine learning for the task of classification in supervised learning is to

create a classifier that can take as an input a set of features and map the features to

an expected label. In contrast to traditional ‘fitting the data’ approach, a classifier has

no specific functional form and a machine learning algorithm may have any number of

parameters that are tuned during training.

In addition to the parameters learnt from the data, a classifier may also have a

number of hyperparameters which are parameters not optimised during training and are

defined separately. Alongside the training and test set, a validation set may also be used
1See Bishop (2006) for an in-depth review of machine learning.

Machine learning in time-domain astronomy 27

during training. The validation set is a subset of data that is separate to the training and

test set, and may be used to identify the optimal hyperparameters of a classifier during

training. Once a classifier has been trained on the training set, it can be evaluated on

the validation set to find the best hyperparameters before being evaluated on the test

set. The role of a validation set is to approximate the degree of generalisation that a

classifier has developed during training.

Given a labelled training set, the classifier learns how to map the features to corre-

sponding labels (the feature-class relationship), and is then tasked with classifying on

new, unseen data (i.e. the test set). There are numerous machine learning algorithms

that can be used to build such classifiers. In this section we present some examples and

their uses for classification in astronomy.

2.4.1 Tree-based classifiers

Figure 2.3: Splitting objects of different classes (green, yellow, red) in two-dimensional
space by making cuts (left) and a decision tree representation of splitting the objects
represented as a series of cuts (right).

A simple and widely used algorithm for classification problems is the decision tree. A

decision tree splits the dataset into segments by successively applying selection criteria

Machine learning in time-domain astronomy 28

such that the number of members from the same class in that segment is maximised

(Ball & Brunner, 2010). In other words, the decision tree wants to maximise the purity

of the sample in a segment. A segment of the data is known as the terminal node

or leaf, which represents samples in the data that have traversed successive selection

criteria, which are referred to as the branches of the tree. A complex tree structure

may arise when attempting to split the data into classes, resulting in several layers of

branches and leaves. Figure 2.3 shows how a tree might split three different classes in a

two-dimensional feature space.

Decision trees are optimised by minimising a loss function. One such loss function

is the Gini impurity, where the decision tree identifies the best splits to make on the

training set to create nodes that have high purity by minimising the Gini impurity. The

Gini impurity Gi for a node i in the tree is

Gi = 1−
∑
k

p2ik (2.2)

where pik is the probability of drawing a sample from class k in node i (Breiman et al.,

1984). pik can be estimated as the number of samples from class k divided by the total

number of samples in node i. The decision tree minimises Gi, so that by traversing

through the branches of the tree, one will arrive at a node where the majority of samples

belong to the same class. To make a prediction on an unlabelled sample (i.e. a sample

from the test set), the sample is made to traverse through the tree to see which node it

arrives at according to which selection criteria apply to it. The node that the sample

arrives at is the predicted class of that sample.

Decision trees are however prone to becoming fine-tuned to the training data and

not being able to generalise well when classifying unseen data, leading to overfitting.

The decision tree may become too deep, having too many splits and not choosing the

best selection criteria when separating the training data. Ensemble methods, which

Machine learning in time-domain astronomy 29

create many weak classifiers and aggregate the prediction made by a population of weak

classifiers have been used to produce more robust predictions.

The random forest algorithm is an example of an ensemble method which uses an

ensemble of decision trees, where each tree is trained on a random subset of the training

data, and each split is determined by selecting criteria from a subset of all features, and

the final result is obtained through majority voting of all the trees in the ensemble, to give

a more robust classification (Breiman, 2001). For a single decision tree, the probability

of an object belonging to a class k is the fraction of samples belonging to class k in a

node. The random forest can return either the probability of an object belonging to a

particular class (by averaging the probabilities across all trees in the forest), or the class

of the object (by choosing the class with the highest mean probability).

An alternative ensemble method is the boosted decision tree (Friedman, 2001), which

utilises gradient descent (see section 2.5.3 for a discussion on gradient descent) to itera-

tively add decision trees to a forest by minimising a loss function. Similar to the random

forest, a classification probability can be obtained by averaging the probabilities across

all trees in the forest.

2.4.2 Support Vector Machines

Support vector machines separate objects into different classes by finding a hyperplane

in a multi-dimensional feature space that creates an optimal decision boundary (Cortes

& Vapnik, 1995). Data points in feature space are treated as vectors, and decision

boundaries are found with respect to support vectors. Support vectors are data points

that lie near the decision boundary between different classes. Non-linear relationships

between the data can be transformed into a higher-dimensional space so that they become

linear (Aizerman et al., 1964), and the hyperplane is found in this space. Figure 2.4 shows

how a SVM draws a decision boundary in a two-dimensional space, and Figure 2.5 shows

Machine learning in time-domain astronomy 30

the use of a kernel trick to find a hyperplane in a higher dimension when the data has a

non-linear relationship.

Figure 2.4: The hyperplane for a two-dimensional feature space between two classes
(pink and purple circles). The optimal decision boundary (hyperplane) is show as the
solid grey line, and the support vectors are circled in black. This figure is taken from
Baron (2019)

Figure 2.5: The hyperplane for a two-dimensional feature space between two classes (pink
and purple circles) for the case when the data has a non-linear relationship. A kernel trick
is used to map the data in three-dimensions, where a two-dimensional hyperplane can be
used to draw a linear decision boundary. The optimal decision boundary (hyperplane)
is show as the solid grey line, and the support vectors are circled in black. This figure is
taken from Baron (2019).

Machine learning in time-domain astronomy 31

2.4.3 Artificial neural networks

Artificial neural networks (also called multi-layer perceptrons) derive their name from

attempts to mathematically model biological processes, in particular information pro-

cessing in neurons (Rumelhart et al., 1986). They can be defined as a non-linear function

with a set of adjustable parameters that maps a set of input features to a set of outputs

(e.g. for classification these may be class labels, for regression this may be a continuous

variable). The parameters for an artificial neural network are found through gradient

descent, where the parameters are iteratively updated to minimise a loss function. An

in-depth discussion of neural networks and gradient descent is provided in section 2.5.

For feature-based classification, the inputs to an artificial neural network are the features

derived from the data.

2.4.4 Applications of machine learning for classification in tran-

sient astronomy

Feature-based machine learning has been widely used for classification tasks in time-

domain surveys. Given a properly trained classifier, the strength of machine learning

lies in the ability to perform classification at a faster rate than humans, which allows

for rapid follow-up with other facilities for the most interesting objects (Bloom et al.,

2012). Discoveries in the time domain are made through either catalogue searching or

difference imaging, where a ‘reference image’ is subtracted from a ‘science image’. We

introduced discovery methods in time-domain surveys in Chapter 1.

A disadvantage of the difference imaging technique is that errors in the data pro-

cessing pipeline (e.g. poor image reduction, CCD array defects, poor alignment) can

produce ‘bogus ’subtraction artifacts which may appear as a time-varying object after

subtraction. The first challenge in transient and variable source discovery is identifying

the real astrophysical objects from ‘bogus ’subtraction artifacts. Machine learning has

Machine learning in time-domain astronomy 32

been used to classify between real and bogus sources in difference images in time domain

surveys. Features derived from images of candidate objects have been used as inputs to

a random forest to classify real objects from bogus subtraction artifacts in the Palomar

Transient Factory (PTF; Rau et al. 2009; Bloom et al. 2012; Brink et al. 2013) and the

Zwicky Transient Facility (ZTF; Bellm et al. 2019; Mahabal et al. 2019). Brink et al.

(2013) find that to produce good classifications, it is important to have a large training

set and extracting features that describe the data well.

Once a real object has been found, the next step is to identify which class of astro-

physical objects it belongs to. Here, we provide examples of how machine learning has

been used to classify supernovae in time-domain surveys. The motivation for photomet-

ric supernova classification arises from the fact that there will be many more supernovae

that are discovered in time-domain surveys than can be followed up with spectroscopic

facilities to provide a spectroscopic classification.

Lochner et al. (2016) compared multiple feature extraction methods with a number of

machine learning algorithms to classify a set of simulated supernova light curves from the

Supernova Photometric Classification Challenge (SPCC) (Kessler et al., 2010) into three

classes (Type Ia, Ibc, II). They find that the boosted decision tree produced the best

classifications when combined with either highly model-dependent features (such as light

curve fitting) of highly model-independent features (performing wavelet decomposition),

and that having a representative training set (one that covers the same region of feature

space as the test set) improves classification performance. The original SPCC training

set emulated a spectroscopically-labelled dataset, where spectra are only available for

brighter supernovae. A representative training set was obtained by randomly sampling

the same number of supernovae as in the original training from the entire dataset.

Machine learning has also been used to classify real supernova light curves from the

Pan-STARRS survey (Pan & Yang, 2010). Villar et al. (2019) used the light curves of 518

spectroscopically classified supernovae to train a classifier to classify the supernovae into

Machine learning in time-domain astronomy 33

five classes (Type Ia, II, IIn, Ibc, SLSN-I). The training set of Pan-STARRS supernovae

was imbalanced, where there were many more samples of supernovae in one class than

other classes. Class imbalance can bias classifiers to perform well on classes where there

are many examples but perform poorly on classes with few examples. We discuss the class

imbalance problem and how to deal with it in Chapters 3 and 4. Data augmentation was

used to artificially generate additional samples for classes with the fewest samples (see

section 3.4.2 for a detailed discussion). Features extracted from the light curves were

used in a support vector machine, random forest, and an artificial neural network to

classify the light curves. Random forests were found to be the best performing classifier,

and Type Ia supernovae and SLSN-I had the best classification results due to uniformity

within the class (Type Ia) and high luminosity and long duration (SLSN-I).

The above examples are well-suited for manually extracted features from photometric

time-series data. By manually we mean that the feature extraction process requires

domain knowledge to identify the best features that capture information about objects

that enable machine learning algorithms to learn how to separate them in feature space.

Often, these features are extracted from ‘complete’ light curves, where the rise, peak,

and decline of transients have been observed. The ability to classify supernovae based

on just light curves will benefit the studies of cosmology with Type Ia supernovae (e.g.

Betoule et al. 2014) and accumulating a large sample of core-collapse supernovae allows

for population studies to understand their diversity (e.g. Modjaz et al. 2019). A goal of

time-domain astronomy is to enable the study of physical processes that occur early in

the photometric evolution (i.e. before peak brightness) of transients, so there is a need

for a classifier that can reliably classify objects with just a few observations.

Machine learning in time-domain astronomy 34

2.5 Deep learning

An alternative to feature-based machine learning is deep learning, where a model is

trained to learn how to extract features from the raw data itself and also perform the

subsequent input-to-target mapping using those extracted features. This has the benefit

of not having to manually select and extract features from the data for a machine learning

task. In this section, we provide an introduction on deep learning 2.

The basis for deep learning is the use of neural networks, which is essentially a

mathematical function y(x; θ) that has parameters θ and learns to map an input x to an

expected target. A neural network is composed of multiple simple functions (or neurons)

that applies transformations to the inputs. We begin our discussion of deep learning by

introducing the artificial neuron, and how an artificial neural network is constructed

from these artificial neurons.

2.5.1 Neural networks

An artificial neuron (or just neuron) is a mathematical function (more precisely a non-

linear mapping) that takes an input (which maybe a single valued scalar or a vector of

multiple values), and applies a transformation to the output and returns a scalar output.

As an example, consider the sigmoid function:

sigmoid(xxx) =
1

1 + exp(
∑m

i xi)
(2.3)

where xxx is an input in the form of an m-dimensional vector xxx = {x1, ..., xm}. The sigmoid

function transforms the inputs such that the output is in the range (0,1). This can be

used for a binary classification problem, where output may represent the probability p

of an object belonging to one class (and the probability of it belonging to the other class
2For a detailed review of deep learning, see Goodfellow et al. (2016) and Bishop (2006).

Machine learning in time-domain astronomy 35

is just 1 − p), given an input xxx. We can introduce some weights www1 and a bias w0 to

equation 2.3, so that it now has the form

sigmoid(www⊺
1xxx+ w0) =

1

1 + exp(www⊺
1xxx+ w0)

(2.4)

wherewww⊺
1xxx represents the dot product of the weights vectorwww1 and input vector xxx. This is

known as logistic regression, which can be used to produce a classification by returning a

probability that an object belongs to a class given some input xxx, and the weights www1 and

bias w0 are optimised so that the output matches the expected target. A neuron is just

a form of logistic regression; it takes in a set of inputs and returns a scalar value. Figure

2.6 shows a diagram of a neuron. The function that transforms the inputs is known as

the activation function, and it is not limited to just the sigmoid function. Other choices

of activation functions include the hyperbolic tangent tanh(x) and the rectified linear

unit ReLU(x). The ReLU function is defined as y(x) = 0 when x < 0 and y(x) = x

otherwise. Figure 2.7 shows the sigmoid, tanh and ReLU activation functions.

Figure 2.6: An artificial neuron. The inputs x1, x2, x3 with corresponding weights
w1, w2, w3 are represented by connections (lines in the diagram) that ‘connect’ to the
neuron, where the sigmoid symbol represents the application of an activation function.
The addition of a bias w0 is shown for the connection going out from the neuron.

A neural network is built up of multiple layers of neurons. Since the output of a single

neuron is a scalar, the output of a layer of neurons can be considered as a vector. As an

example, consider a neural network consisting of an input layer, one layer of neurons, and

Machine learning in time-domain astronomy 36

Figure 2.7: The sigmoid (left), tanh (middle), and ReLU (right) activation functions.

a final layer with a single neuron that outputs a value between 0 and 1. This example

neural network can be thought of a classifier that takes as an input a vector of features

xxx, and outputs a probability p of class membership in a binary classification scenario.

The intermediate layer of neurons is often called the hidden layer, and a neural network

may be made up of multiple hidden layers.

A neural network that is made up of several hidden layers can be considered as a

‘deep neural network’, and the central motivation of deep learning is to construct such

deep neural networks that can take in raw input data (without feature extraction) and

are able to learn a representation that allows the deep neural network to map the raw

input data to an expected target, hence the term ‘deep learning’.

To describe a neural network mathematically, one can consider a layer of neurons as

a function of the outputs of the previous layer in the network:

xkxkxk = fk(WWW
⊺
1kxxxk−1 +www0k) (2.5)

where WWW 1k is the weight matrix for the kth layer, xxxk−1 is the output of the (k − 1)th

layer, and www0k are the biases of each neuron in the kth layer. The weight matrix WWW 1k is

defined as such since each neuron in a layer takes as input the outputs of all neurons in

the previous layer. In the deep learning parlance, these are called ‘connections’ between

neurons across layers. This neural network structure is illustrated in Figure 2.8.

Machine learning in time-domain astronomy 37

Figure 2.8: A basic neural network. The lines between neurons are referred to as ’con-
nections’, and represent the weights and biases applied to the inputs fed into neurons.

In the case of the input layer of a neural network, the layer is a function of the input

vector and the layer weights and biases. For a neural network with multiple layers, the

first layer is given by

xxx1 = f1(WWW
⊺
11xxx0 +www01) (2.6)

where xxx0 is the input vector. The next layer is given by

xxx2 = f2(WWW
⊺
12xxx1 +www02) = f2

(
WWW ⊺

12

(
f1(WWW

⊺
11xxx0 +www01)

)
+www02

)
(2.7)

where xxx1 is the output of the first layer. Subsequent layers of the network are described

similarly, forming a chain-based architecture (i.e. subsequent layers of the network can

be described as a function of the previous layer). In the context of neural networks, the

term architecture refers to how the network is structured (i.e. how many neurons in a

layer, how many hidden layers there are and how are the layers connected to each other).

For classification tasks where there are more than two classes, the softmax activation

function can be used in the final output layer, which represents the probability that

Machine learning in time-domain astronomy 38

on object belongs to one of N classes. Given a vector of layer outputs xxx, the softmax

function is defined as

softmax(xxx)i =
exp(xi)∑N
j exp(xj)

(2.8)

where the xi is the ith value of the vector xxx. The final output is a vector of prob-

abilities [softmax(x)1, softmax(x)2, ..., softmax(x)N] that sums to 1, that describes the

probabilities of class membership to classes 1, 2, ..., N .

Now that we have defined what a neural network is, in the following sections we

discuss how the weights and biases of a neural network are optimised.

2.5.2 Network parameter optimisation

Given an input vector xxx and an expected target vector ttt, we want to find a neural network

f(xxx;WWW,www) that produces an output yyy that matches ttt. To do so, the network parameters

(WWW,www) (where WWW represents the weights and www represents the biases) need to be found

such that the error between yyy and ttt is minimised. We define a loss function as one that

describes the error between the neural network output yyy and the expected target ttt

E(WWW,www) = f(yyy, ttt) (2.9)

In the case of a multi-class classification task, where an input needs to be mapped to

one of N classes, the cross entropy loss function is used for neural networks:

E(WWW,www) = −
K∑
k=1

N∑
n=1

tkn ln(yn(xxxk,WWW,www)) (2.10)

where yn is the probability of object k with input vector xxxk belonging to class n, tkn

is the class label for object k (where if the object belongs to class 1 then tk1 = 1 and

tk2,...,N = 0), and the loss is obtained by summing over all K objects in the dataset.

To optimise the the network parameters (WWW,www) , we want to find the network param-

Machine learning in time-domain astronomy 39

eters (WWW,www) such that E(WWW,www) is minimised. We first redefine the neural network as a

mapping f from an input xxx to a target ttt, and represent the network parameters WWW,www as

ΘΘΘ, so the neural network can be expressed as f(xxx;ΘΘΘ). Then the problem of optimising

the network parameters becomes finding ΘΘΘ such that the loss E(ΘΘΘ) is minimised. To do

so, we use the information about the gradient of E(ΘΘΘ) in the parameter space ΘΘΘ.

The smallest value of E(ΘΘΘ) will occur where ∇E(ΘΘΘ) = 0 at a minimum in the

parameter space. E(ΘΘΘ) typically has a non-linear dependence on ΘΘΘ, so there may be

multiple minima in parameter space where E(ΘΘΘ) = 0. Where the minimum corresponds

to the smallest value for E(ΘΘΘ) for any ΘΘΘ is called a global minimum, and any other

minima that corresponds to higher values for E(ΘΘΘ) are called local minima. In practice,

most neural networks work well without having to find the global minimum. The process

of finding ∇E(ΘΘΘ) = 0 is usually done iteratively, by moving through the parameter space

in incremental steps:

ΘΘΘt+1 = ΘΘΘt + δΘΘΘt (2.11)

where t denotes the iteration step.

2.5.3 Gradient descent

To navigate the parameter space to find a minimum, one can use information about the

gradient of E(ΘΘΘ) by taking a small incremental step in the direction of the negative

gradient

ΘΘΘt+1 = ΘΘΘt − η∇E(ΘΘΘt) (2.12)

where η is known as the learning rate, and describes how much of a step is taken during

each iteration. During each iteration, ΘΘΘ moves in the direction of the greatest decrease

of the loss function, so this method is referred to as gradient descent. Since ∇E(ΘΘΘ) is

used, equation 2.12 requires the evaluation of the loss function over all training samples.

Gradient descent methods that require the use of the entire training set are called batch

Machine learning in time-domain astronomy 40

gradient descent methods. An iteration over the entire training sample is referred to as

one epoch of training. The number of training epochs to optimise the neural network

parameters can be found through experimentation. To find a satisfactory minimum that

minimises the loss, it may be necessary to perform gradient descent multiple times.

A method called stochastic gradient descent (LeCun et al., 1989) updates ΘΘΘ by taking

steps using the gradient evaluated for each training sample. Stochastic gradient descent

is defined as

ΘΘΘt+1 = ΘΘΘt − η∇En(ΘΘΘt) (2.13)

where the loss function En(ΘΘΘt) is the loss for the nth sample in the training set. The

update is repeated by going through the training samples sequentially or by randomly

selecting training samples with replacement. This approach is useful for loss functions

such as equation 2.10 that are comprised of a sum of terms for each training sample. We

visualise gradient descent in Figure 2.9.

The drawback of batch gradient descent is that it is evaluated over the entire training

sample for each iteration, and it is not guaranteed that the best minimum will be found.

Stochastic gradient descent performs gradient descent a number of times equal to the

number of samples in the training set. While this may lead to finding a satisfactory

minimum, it requires performing gradient descent for each training sample which takes

longer to compute. In practice mini-batch gradient descent is used for updating neural

network parameters, where the training set is split into equally sized batches, and the

loss is evaluated for each batch and gradient descent is performed for each batch in an

iteration. The batch size sets the number of samples in a batch.

Machine learning in time-domain astronomy 41

Figure 2.9: A visualisation of gradient descent in a two-dimensional surface representing
a loss function E(w0, w1) as function of neural network parameters w0 and w1. The
parameters w0 and w1 are iteratively updated over increasing time steps (t0, ..., t3) until
a minimum for E(w0, w1) is found.

2.5.4 Error backpropagation

In this section we briefly describe how the gradient of a loss function for a neural net-

work is computed3. The process of training a neural network involves minimising a loss

function, by making small adjustments to the parameters in iterative steps. In each

iteration, there are two stages:

1. Evaluate the derivative of the loss function with respect to the parameters

2. Use the derivative to calculate the adjustments to be made to the parameters

The technique for passing information through the network to evaluate the gradient of

the loss function is known as error backpropagation, and is needed in the first stage. In
3A detailed discussion of error backpropagation is provided in Chapter 5 of Bishop (2006) and

Chapter 6 of Goodfellow et al. (2016)

Machine learning in time-domain astronomy 42

the second stage, the parameters are adjusted using an optimisation process, such as the

gradient descent method.

The process of passing an input xxx through the neural network and calculating the

outputs of all neurons in the hidden and output layers is known as forward propagation

since information is propagated forwards through the network. After forward propaga-

tion, the loss function can be evaluated.

The derivative of E(ΘΘΘ) can be expressed in terms of ‘errors’ in the hidden layers and

the output layer. An ‘error’ refers to a small change in the parameters of the hidden

layers of a neural network, which contributes to a small change in the output in the final

output layer. By knowing the error of the output layer, it is possible to infer the errors of

the hidden layers. The error of the output layer is backpropagated to evaluate the errors

of the hidden layers. Once these errors are known, it is possible evaluate the derivative

of the loss function with respect to the parameters. And once the derivatives are known,

adjustments to the parameters can be made using gradient descent methods.

2.5.5 Deep neural networks for classification

So far we have discussed the basis of how neural networks can take a set of training inputs

and corresponding targets, and generate a predicted output by adjusting the network

parameters so that the loss between the predictions and the targets are minimised. It

has been outlined that the motivation of deep learning with neural networks is to have

a neural network that can learn to extract features from the data automatically. In

this section, we review two deep neural network architectures that are well-suited for

processing sequential data and image data. These two particular architectures are used

for the work presented in Chapters 4 and 5.

Machine learning in time-domain astronomy 43

Recurrent neural networks

Recurrent neural networks (RNNs) are a class of neural networks that operate on a

sequence of vectors [xxx1, ...,xxxt], where the subscript indicates the time-step index. This

index is not strictly limited to representing time, but can also represent the position of

a vector in the sequence (e.g. words in a sentence). There are several possible mappings

with recurrent neural networks; producing an output at each time step using information

from previous time steps (many-to-many) or producing a single output after all time-

steps have been processed (many-to-one). In this chapter we discuss recurrent neural

networks in the context of the many-to-one mapping, as this is the architecture used for

time-series classification in Chapter 4.

A recurrent neural network uses the same weights across time-steps to learn time

dependencies in the data (a process known as parameter sharing). Consider a classical

dynamical system, where the state of the system at the current time-step t depends on

the state at the previous time-step t− 1, parameters θθθ, and an external signal xxxt at the

current time step:

ssst = f(ssst−1,xxxt;θθθ) (2.14)

To know the state of the system at t = 3, we use equation 2.14 and write

sss3 = f(sss2,xxx3;θθθ) = f(f(sss1,xxx2;θθθ);θθθ) (2.15)

We see that the state at the current time-step contains information about all previous

time-steps, and the parameters are shared across time. Recurrent neural networks use

a similar formulation to describe the outputs of the hidden layers, or in the context of

recurrent neural networks the hidden state hhht at a time step t given an input xxxt:

hhht = f(hhht−1,xxxt;θθθ) (2.16)

Machine learning in time-domain astronomy 44

The function f describes the activation function, which has the same operation for

recurrent neural networks as neural networks in section 2.5.1. In practice, recurrent

neural networks will use a number of different methods to retain some information about

past hidden states rather than all information of all past states (we discuss these later

in this section.)

To describe forward propagation in recurrent neural networks, we first define a hidden

state hhht. Given an input of a sequence of vectors xxxt where the time-step index runs from

t = 1 to t = τ , the hidden state at time t is:

hhht = f(WWW hhhht−1 +WWW ixxxt + bbbh) (2.17)

where WWW h is weight matrix for the connections between hidden states across time, and

WWW i is the weight matrix for the connections between the input layer to the hidden layer,

and bbbh is the bias vector applied to the hidden state. The final output of the recurrent

neural network, after reading in all time-steps of the input sequence is given by

yyy = g(hhhτ) (2.18)

where g represents an activation function for the final output layer (e.g. a softmax

function), and hhhτ is the hidden state of the final time-step (Figure 2.10).

In a many-to-one RNN, the loss takes the form of a loss function that describes

the error between the predicted output and the target (e.g. cross entropy loss). The

computation of the gradient of the loss function with respect to the parameters involves

the forward propagation moving in the direction of increasing time-steps (i.e. forward

in time) and then a backward propagation in the opposite direction. The analog of

backpropagation in neural networks to recurrent networks is known as backpropagation

through time (Werbos, 1990)4. The parameters of a recurrent neural network can then
4See chapter 10 of Goodfellow et al. (2016) for a discussion of how a gradient is computed in a

Machine learning in time-domain astronomy 45

Figure 2.10: A recurrent neural network.

be optimised via gradient descent methods.

From equation 2.16, we see that the hidden state for a long sequence is function of

many functions going back to the initial hidden state. The derivative of a function of a

function is evaluated using the chain rule which gives a product of partial derivatives.

Given a long sequence of nested functions (a function of a function of a function and

so on), the derivative of the nested function becomes a product of many terms. Since

recurrent neural networks share parameters across time, the gradient is evaluated with

respect to the shared parameters at each time step. The derivative of a hidden state for

a long sequence contains the product of gradients at each time-step t. This is a problem

because if the gradient is small, then the gradient will vanish after successive multipli-

cations, or conversely if the gradient is large then the gradient will grow exponentially

after successive multiplications. This problem is known as the vanishing and exploding

gradient problem for recurrent neural networks. Variants of the ‘traditional’ recurrent

neural network have been developed to overcome this problem.

Successful practical applications of recurrent neural networks utilise gated recurrent

recurrent neural network.

Machine learning in time-domain astronomy 46

neural networks that use connections between neurons that can change at each time-step,

and introduce derivatives that do not vanish or explode.

Long short-term memory recurrent neural network

The long short-term memory (LSTM) recurrent neural network (Hochreiter & Schmid-

huber, 1997; Graves, 2013) is an example of a gated recurrent neural network. The LSTM

introduces the ‘LSTM cell’ which has an internal recurrence, additional parameters, and

a series of ‘gates’ that regulates the flow of information from one hidden state to the next

hidden state. Here, we describe the LSTM implementation presented in Graves (2013).

At a time step t, we define an input xxxt, the hidden state from the previous time-step

hhht−1, and a cell state from the previous time-step ccct−1. The input gate iiit is

iiit = σ
(
WWW xixxxt +WWW hihhht−1 +WWW ciccct−1 + bbbi

)
(2.19)

and the forget gate fff t is

fff t = σ
(
WWW xfxxxt +WWW hfhhht−1 +WWW cfccct−1 + bbbf

)
(2.20)

where σ is the sigmoid function. The biases are denoted by bbb and the subscripts of

the weight matrices represents the connections; WWW xi are the weights for the connection

between the input xxxt and the input gate iiit, WWW hi are the weights for the connection

between the hidden state hhht and the input gate iiit etc. The cell state for the current

time-step is

ccct = fff t ⊙ ccct−1 + iiit ⊙ tanh
(
WWW xcxxxt +WWW hchhht−1 + bbbc

)
(2.21)

where ⊙ is the element-wise Hadamard product5.

From equations 2.19 and 2.20, we see that the input gate iiit and forget gate fff t are
5The Hadamard product of two identically shaped matrices A and B is simply a matrix C where

element Ci,j of C is the product of Ai,j and Bi,j .

Machine learning in time-domain astronomy 47

valued between 0 and 1 due to the application of the sigmoid function. In the cell state,

the forget gate fff t acts as a weight to control how much information from the cell state

in the previous time-step (which contains information about the input from the previous

time-step) carries over to the current state. In other words, it is adjusted to ‘forget’

information from previous timesteps. The input gate iiit acts as a weight to control how

much information about the previous hidden state and the input at the current time-step

is retained in the current state. The output gate ooot is

ooot = σ
(
WWW xoxxxt +WWW hohhht−1 +WWW coccct + bbbo

)
(2.22)

and finally the hidden state hhht is

hhht = ooot ⊙ tanh
(
ccct
)

(2.23)

The output gate ooot weights how much information about the cell state at the current

time-step is passed on in the hidden state to the next time-step. We illustrate how

information from previous time steps are processed with an LSTM in figure 2.11a.

The LSTM allows a recurrent neural network to ‘forget’ information from time-steps

in the past, and it does so by using a set of gates that have their own parameters. During

training, these parameters are optimised, and the recurrent neural network effectively

learns when to forget information about the past. This allows the LSTM recurrent neural

network to learn from long sequences, and deal with the vanishing and exploding gradient

problem, since the gradients do not depend on the entire history of the sequence.

Gated recurrent unit recurrent neural networks

Another gated recurrent neural network architecture makes use of gated recurrent units

(GRU) (Cho et al., 2014). Similar to the LSTM, the GRU uses gates to regulate the

Machine learning in time-domain astronomy 48

(a) LSTM cell diagram.

(b) GRU cell diagram.

Figure 2.11: Diagrams showing the flow of information through the LSTM and GRU
cells described in equations 2.19 to 2.26. In both diagrams, the ‘cross’ symbol represents
a multiplication operation and the ‘plus’ symbol represents an addition operation. The
‘σ’ represents the sigmoid function, ‘tanh’ represents the tanh and the ‘1 −’ represents
the (1−zzzt) term in equation 2.26. The gates in the cell diagrams are highlighted within
the dashed line boxes.

flow of information through time but uses a single gate to simultaneously control how

much information from previous time-steps is retained and how the current hidden state

is updated. This is done by using a reset gate and an update gate.

Machine learning in time-domain astronomy 49

Given an input xxxt at the current time-step t, and the hidden state of the previous

time-step hhht−1, the reset gate rrrt is

rrrt = σ
(
WWW xrxxxt +WWW hrhhht−1

)
(2.24)

and the update gate zzzt is

zzzt = σ
(
WWW xzxxxt +WWW hzhhht−1

)
(2.25)

The hidden state at the current time-step hhht is

hhht = zzzthhht−1 + (1− zzzt) tanh
(
WWW xhxxxt +WWW ph(rrrt ⊙ hhht−1)

)
(2.26)

where WWW ph is the weight matrix for the connection between (rrrt ⊙ hhht−1) and the hidden

layer. From equation 2.24, when the reset gate is close to 0 the hidden state forgets the

hidden state from the previous time-step and is only updated with the the input at the

current time-step. The update gate controls how much information is passed on to the

next time-step. We illustrate how information from previous time steps are processed

with a GRU in figure 2.11b. Like the LSTM, this mechanism allows the GRU to learn

dependencies over long time scales (i.e. long sequences).

Convolutional neural networks

Convolutional neural networks (CNNs; see Lecun 1989) are a class of neural networks

that can process data with a grid-like structure6. This can be in one dimension (such as

a sequence of measurements in time), two dimensions (an image made up of pixels), or

even three dimensions (a colour image decomposed into red, green, and blue channels).

This done by applying the convolution operation to the data, (hence the name of the

neural network) to identify spatial features (such as edges or corners in an image).
6See Chapter 9 of Goodfellow et al. (2016) for a detailed discussion on convolutional neural networks

Machine learning in time-domain astronomy 50

Consider a two-dimensional image I. The convolution S of I with a kernel K in two

dimensions is

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.27)

where i and j represent the pixel coordinates, and m and n represents the entries in the

kernel K. Here, a kernel refers to a matrix that typically has smaller dimensions than

the input image. A convolution is simply a a matrix multiplication of the kernel and

a subset of the image with the same dimensions as the kernel (see Figure 2.12 for an

example convolution) repeated over the image by shifting the kernel around the image

pixel by pixel. The output of a convolution is referred to as a feature map.

Figure 2.12: An example convolution with of a 2 × 2 kernel on a 3 × 3 image, and the
application of a 2× 2 average pooling window on the convolved output. The application
of a 2× 2 kernel on a 3× 3 image results in a 2× 2 output.

By making the kernel smaller than the input, a convolutional neural network has

sparse connectivity. Each output in the convolution only depends on a small region of

the input image which is set by the size of kernel. This is in contrast to fully-connected

hidden layers in neural networks where each neuron in a layer is connected to all neurons

in the previous layer. Due to this sparse connectivity, a convolutional neural network is

able to identify features in small regions of the input image. This is useful when the image

Machine learning in time-domain astronomy 51

dimensions are large, the size of kernel can be kept orders of magnitude smaller than

the image, and a convolutional neural network will still be able to identify meaningful

features in the image without a high computation cost.

Like a recurrent neural network, a convolutional neural network also makes use of

parameter sharing. The same kernel is applied at each position in the image, so the

convolutional neural network only has to learn the parameters of one kernel as opposed

to a separate kernel for each position. The form of parameter sharing in convolutional

neural networks means that a convolutional layer has a property known as equivariance.

This means that if the input to the convolution is changed in some way, then the output

is also changed in the same way.

The convolution operation is not the sole operation used in a convolutional neural

network, it also paired with a pooling function. After applying a convolution, the output

is passed through an activation function (e.g. ReLU), in what is called the detector stage,

which is followed by pooling. A pooling function replaces the output of a convolution

at a certain position with a summary statistic of values surrounding that position. The

size of the pooling window is an adjustable hyperparameter, and defines the size of the

window on the convolution output over which pooling is done. Examples of pooling

functions are Max pooling, where the summary statistic returned is the maximum value

of the pooling window, and average pooling where the summary statistic returned is the

average of the pooling window. Pooling helps to make the representation of the input

image approximately invariant to small translations of the input, and it summarises the

convolutions over a region. Thus, it is possible to use fewer pooling operations than

convolutions.

For both the convolution and pooling operations, it is possible to skip some positions

in the input image to reduce computational cost. We can define a stride parameter that

sets the number of pixels to skip when doing convolution and pooling.

For example, a stride of one for the convolution layer means that the kernel moves

Machine learning in time-domain astronomy 52

across one pixel at a time and a stride of two means that the kernel moves across two

pixels at a time over the image. The stride can also be defined in two dimensions (e.g.

kernel moves across horizontally a specified number of pixels at a time and vertically

specified number of pixels at a time for a given stride parameter). The number of

kernels used is not just limited to one, it is possible to have multiple kernels applied to

the same input image, and have multiple convolution outputs from a single image. Each

kernel can be randomised, and the parameters of the kernels learnt during training. In

Chapter 5, we use the term filters to refer to the number of kernels used to generate

convolutional outputs. For example, if n different kernels are used then the number of

filters is n.

To train a convolutional neural network, the gradients with respect to the kernel

parameters need to be computed to find the optimal parameters with gradient descent

methods. Convolution can be described as a matrix multiplication, and the use of matrix

multiplication operations can be used to back-propagate errors through a convolutional

layer to compute gradients7.

2.5.6 Applications of deep learning for classification in transient

astronomy

Deep learning has been successfully used in various classification tasks in time-domain

astronomy, with an advantage over feature-based machine learning techniques since deep

learning approaches do not require a feature extraction step. The raw data does require

some preprocessing before use with neural networks, but this is mainly done to format the

data in a specific manner rather than to compute features. In this section we highlight

some examples of how deep learning has been used to classify transients in time-domain

surveys.
7See Chapter 9 of Goodfellow et al. (2016) for an in-depth discussion of back-propagation in convo-

lutional neural networks.

Machine learning in time-domain astronomy 53

Charnock & Moss (2017) used recurrent neural networks (comparing the traditional

RNN, with LSTM and GRU) to classify simulated supernova light curves from the Su-

pernova Photometric Classification Challenge (Kessler et al., 2010). The data was pre-

processed so that at each time-step, the inputs to the recurrent neural network were

the flux and corresponding errors in four photometric bands (griz), the position of the

supernova on the sky, dust extinction, and host galaxy photometric redshift. Results

showed that classification performance with recurrent neural networks improves with

the size of the training set. The use of recurrent neural networks allows for classification

of supernovae with few light curve observations without needing the full light curve.

Möller & de Boissière (2020) used recurrent neural networks combined with Bayesian

inference (where a prior distribution of network weights is assumed, and a posterior dis-

tribution of weights is obtained during training) to classify a set of simulated supernova.

They simulated their own set of light curves similar to that of the SPCC dataset, using

more than 900, 000 light curves to train and test their classifiers. The inputs to the recur-

rent neural networks were the fluxes and corresponding errors in four photometric bands

(griz), time step since the first observation of the light curve, a vector representing the

filter, and also host galaxy redshift (both spectroscopic and photometric estimates). The

Bayesian implementation of recurrent neural networks provided good classification accu-

racy for a number of supernova classification tasks (eg. Ia/non-Ia, Ia/Ibc/II, and more

detailed classification by spectroscopic type), and also good performance for early clas-

sification before supernova peak brightness. When comparing models with and without

host galaxy redshift information, the performance improved when redshift information

was included.

The GRU recurrent neural network was used by Muthukrishna et al. (2019) to classify

a set of simulated Zwicky Transient Facility (ZTF) light curves, and is different to the

previous two examples in that classification was done for general transients (including

non-supernovae transients). Linear interpolation is used to fill in observational gaps in

Machine learning in time-domain astronomy 54

two photometric bands (g and r), and at each time step the recurrent neural network

is given the fluxes in the two bands, the host galaxy redshift, and dust reddening. The

classifier was able to achieve good classifications for most transients within two days of

a trigger alert, which improves as more observations are included.

The use of neural networks allows for the processing of different length light curves,

and early transient classification, which allows for timely follow-up with ancillary facil-

ities to obtain additional photometry and spectroscopy. These early time observations

are important for understanding the physical nature of transient events.

2.6 Overfitting and underfitting

The aim of machine learning is to be able to train an algorithm or a neural network

on a set of training data, and have it be able to generalise well on unseen test data.

During training, we want to minimise a loss function to find the best model parameters

to generalise on test data. We refer to this as the training error. What is really needed

is to also minimise the error on the test data, or the test error. There are two criteria

to be considered when using machine learning to solve tasks: have the training error be

small as possible, and have the difference between the training error and test error be as

as small as possible.

In the first criterion, if the training error is large, then the problem is underfitting. In

the second criterion, if the training error is small but the difference between the training

error and test error is large, than the problem is overfitting. A number of techniques can

be used to prevent both underfitting and overfitting, and these are discussed in the use

of deep learning for transient classification in Chapters 4 and 5.

Machine learning in time-domain astronomy 55

2.7 Metrics of performance

Once an algorithm or neural network has been trained on the training set, we want

evaluate its performance on the test set. We can quantify this by using a number of

metrics of performance.

Figure 2.13: A confusion matrix representing the possible outcomes in binary classifica-
tion for a positive and negative class. Class labels along the horizontal axis are the labels
predicted by the classifier, and class labels along the vertical axis are the true labels.
The total number of all true positives is denoted by P and the total number of all true
negatives is denoted by N .

For a binary classification task where one class is positive and the other class is

negative, there are four possible outcomes when evaluating the performance of a classifier.

If an example from the positive class is classified as positive, then the result is a true

positive; if it is classified as negative then the result is a false negative. If an example

from the negative class is classified as negative, the result is a true negative; if it is

classified as positive then the result is a false positive. Figure 2.13 shows a confusion

matrix that represents the possible outcomes from a classifier in a binary classification

task. There a number of commonly used classification metrics that can be calculated

from the confusion matrix. The accuracy of a classifier is

Machine learning in time-domain astronomy 56

Accuracy =
TP + TN

P +N
. (2.28)

The F1 score of a classifier is

F1 =
TP

TP + 1
2
(FP + FN)

. (2.29)

The true positive rate (TPR) or the recall, is

TPR =
Correctly classified positives

Total positives
=

TP

TP + FN
=

TP

P
. (2.30)

The positive predictive value (PPV) or precision, is

PPV =
Correctly classified positives

Total predicted positives
=

TP

TP + FP
. (2.31)

The false positive rate (FPR) or the false alarm rate is

FPR =
Incorrectly classified negatives

Total negatives
=

FP

FP + TN
=

FP

N
. (2.32)

When dealing with imbalanced data (where there are disproportionately more examples

of one class than others), metrics such as accuracy and F1 score are sensitive to the

class distribution in the dataset. For example, a classifier predicting on a test set that

contains 99% positive examples and 1% negative examples can achieve an accuracy of

99% by predicting all examples as positive. Consider the confusion matrix in figure 2.13.

The proportion of positive to negative examples is a relationship between the top row

(positive) and the bottom row (negative). Metrics that are calculated using values from

both rows (i.e. accuracy and F1 score) will be sensitive to class imbalance. Alternative

metrics for classification are Receiver Operating Characteristics (ROC) graphs and the

area under the ROC graph (AUC). The ROC is based on the TPR and FPR, where each

Machine learning in time-domain astronomy 57

metric is a ratio calculated from values along a row of the confusion matrix, and hence

is insensitive to class imbalance. ROC graphs plot the TPR on the y-axis and the FPR

on the x-axis.

Figure 2.14: Two example ROC curves, with corresponding AUC scores. The blue ROC
curve has a higher AUC score than the dotted black line, indicating that it is the better
classifier. This is because it achieves a higher true positive rate (TPR) for a given false
positive rate (FPR), as shown in the diagram.

A ROC graph shows the trade-off between true positives and false positives - an

ideal classifier will return all true positives and no false positives. A classifier that

returns discrete classifications (i.e. one that predicts the class labels) will produce a

single pair of values for TPR and FPR, and a corresponding point in ROC space. A

classifier that returns probabilities can produce a range of TPR and FPR values by

varying a threshold: if the probability is above the threshold, then the classifier returns

a positive classification, if it is below the threshold then the classifier returns a negative

classification. Since different threshold values produce different TPR and FPR values,

it is possible to plot a curve in ROC space by varying the threshold.

In order to compare different classifiers, it is convenient to have a single score that

represents classifier performance. Since the ROC curve is in two-dimensional space, the

Machine learning in time-domain astronomy 58

AUC is a fraction of the total area of ROC space, and will always have a value between

0 and 1. For an in-depth discussion of ROC analysis, see Fawcett (2006). In Figure 2.14

we show two example ROC curves and their corresponding AUC scores.

These metrics can extended to a multi-class classification problem: the confusion

matrix for n classes becomes an n × n matrix with the diagonal entries representing

correct classifications and the off-diagonal entries representing incorrect classifications.

A method for plotting ROC graphs for multiple classes is to plot ROC graphs for each

class, treating one class as the positive, and all others as negative. A formulation of the

AUC for multi-class classification that is insensitive to imbalanced data was derived by

Hand & Till (2001), which calculates the unweighted mean of the pairwise AUC over all

classes. Although this formulation of the AUC is insensitive to class imbalance, it is not

straightforward to visualise the ROC space with this method. Nevertheless, the pairwise

AUC metric is useful to evaluate the performance of multiple classification models during

hyperparameter optimization.

Chapter 3

Photometric classification for the

Gravitational-wave Optical Transient

Observer with machine learning

59

Machine learning with GOTO 60

3.1 Introduction

With the advent of large synoptic surveys such as the Zwicky Transient Facility (ZTF;

Bellm 2018), Pan-STARRS (Kaiser et al., 2010), and the Catalina Real-Time Transient

Survey (CRTS; Drake et al. 2009), the field of transient astronomy has been greatly

advanced. Future surveys such as the Vera Rubin Observatory Legacy Survey of Space

and Time (LSST) (Ivezić et al., 2008, 2019) hope to further revolutionize this field by

conducting repeat observations of the southern sky over ten years. Contemporary and

future surveys now face new challenges: the large volume of data collected exceeds the

human capacity for manual processing. The use of machine learning is becoming more

prevalent in astronomy to overcome this challenge.

The large number of images obtained through these surveys exceeds human capabil-

ity for manual identification and classification of sources. Errors in difference imaging

pipelines can introduce artifacts which may be flagged as real time-varying sources, cre-

ating the task of separating real sources from ‘bogus’ subtraction artifacts (Bloom et al.,

2012). There is also the challenge of determining interesting transients from more com-

mon objects such as asteroids or transients belonging to already well-known classes. The

use of machine learning for automated discovery and classification has seen rapid growth

in the past decade to alleviate these issues.

Before a machine learning algorithm can be employed a necessary step is feature

extraction, where the features that encapsulate class membership are extracted from the

data. A good feature set is crucial as a machine learning classifier needs to learn the

proper feature-class relationship to perform effective classification (Brink et al., 2013).

In this chapter, we present the application of a machine learning algorithm, a random

forest classifier, in the classification of light curves from the Gravitational-wave Optical

Transient Observer (GOTO) survey.

GOTO is a survey designed to search for the optical counterparts to gravitational

Machine learning with GOTO 61

waves, situated at the Roque de los Muchachos Observatory on La Palma, Canary Is-

lands (Steeghs et al., 2021) (see Chapter 1 for a review of the GOTO survey). While

not searching for gravitational wave optical counterparts, GOTO operates in an all-sky

survey mode, observing a large number time-varying sources to serve a multitude of

science goals (such as studying stellar variability, identifying supernovae for follow-up

observations to constrain progenitor scenarios, and studying active galactic nuclei).

In section 3.2, we introduce the dataset of GOTO light curves. The feature extraction

and data augmentation steps are outlined in sections 3.3 and 3.4. The random forest

classifier used to classify GOTO light curves is discussed in sections 3.5 and 3.6. We

provide a discussion of the results in section 3.8 and conclude with section 3.9.

3.2 GOTO data

Light curves for objects were created using photometry obtained from the GOTO dif-

ference imaging pipeline in the GOTO L filter, between February 2019 - October 2019.

Objects with at least three epochs of observations were used to form the dataset, where

an epoch is defined as an observation in a single night. A minimum of three epochs

are required to be able to calculate time-series features from the light curves for classi-

fication. Figure 3.1 shows some summary statistics of light curves in the dataset. The

typical cadence for the light curves in the dataset is roughly 7 days.

Objects in the dataset were cross-matched to identify sources that have been observed

by other groups and given a classification. First, the sources were cross matched to the

SIMBAD astronomical database (Wenger et al., 2000) and then to the Transient Name

Server 1. For the SIMBAD and TNS cross-matching, sources were matched to within 2.5

arcseconds. The classifications given by the cross-matching were assumed to be the true

classifications for the observed sources. Next, a search for any nearby galaxies for each
1https://wis-tns.weizmann.ac.il/

Machine learning with GOTO 62

Figure 3.1: Histograms showing the number of observations over all objects in the GOTO
dataset in a light curve (top), the length of the light curve in days (middle), and the
time between consecutive observations in a light curve (bottom)

source was done, to identify if the source had a host galaxy. This was done by searching

the NASA Extragalactic Database (NED) 2 for any galaxies within 1 arcminute of the

source. Where possible, if a redshift for a source was available from the SIMBAD or TNS

cross-matching, galaxies that lie within 1 arcminute with similar redshifts to the source

were counted as a ‘host galaxy’. Otherwise, the nearest galaxy within 1 arcminute was

assumed to be a potential ‘host galaxy’.

The final GOTO dataset consisted of 10, 200 sources. The sources were grouped into

six different classes:
2The NASA/IPAC Extragalactic Database (NED) is funded by the National Aeronautics and Space

Administration and operated by the California Institute of Technology, https://ned.ipac.caltech.edu/

Machine learning with GOTO 63

1. Long-period variables (LPV): variable stars with periods longer than that of

other types of variables, such as Mira stars.

2. RR Lyrae stars (RR): a class of periodic variable star named after the prototyp-

ical star RR Lyrae.

3. Eclipsing binaries (EB): a stellar binary system whose light curves show periodic

variation due to one star eclipsing the other.

4. Cepheid variables (CEP): a class of periodic variable star with a well known

pulsation period and luminosity.

5. Cataclysmic variables (CV): a binary system composing of a white dwarf star

accreting from a companion star.

6. Supernovae (SN): Sources with spectroscopic confirmation of being a supernovae

that were reported on TNS. This includes all subtypes of supernovae such as type

Ia, Ibc, and II.

Classifications for long-period variables, RR Lyrae stars, eclipsing binaries, cepheid

variables, and cataclysmic variables were obtained following the SIMBAD object classifi-

cation scheme. The classifications were made to divide the data into distinct astrophys-

ical types of objects, and so that each class had enough samples to allow the classifier

to learn the differences between the different classes. Table 3.1 shows the distribution of

objects in the different classes.

The dataset was then split into a training and test set. 70% was used for the training

set, and 30% for the test set. Each split was done to preserve the same proportion of

samples in each class, so that the training and test set had the same class distributions.

Looking at the number of samples in each class in Table 3.1, it is apparent that

some classes have disproportionately more samples than others; there are many more

samples for some of the variable and eclipsing binary classes than Cepheids, cataclysmic

Machine learning with GOTO 64

Class No. of samples Training Testing

LPV 3, 958 (38.8%) 2, 802 1, 156

RR 3, 232 (31.7%) 2, 235 997

EB 2, 728 (26.7%) 1, 902 826

CEP 99 (1%) 70 29

CV 92 (0.9%) 64 28

SN 91 (0.9%) 67 24

Table 3.1: The number of samples in the dataset for each class: long-period variables
(LPV), RR Lyrae stars (RR), eclipsing binaries (EB), cepheid variable (CEP), cata-
clysmic variables (CV), and supernovae (SN). In the second column, the number of
samples for each class is also shown as a fraction of the total dataset.

variables, and supernovae. The dataset is imbalanced, which makes training a classifier

difficult since the classifier may be biased towards classes that have more samples. We

discuss methods to deal with imbalance datasets in section 3.4

3.3 Feature extraction

3.3.1 Features

To classify objects belonging to separate classes, a classifier needs to use features. Fea-

tures are metrics derived from the data such as summary statistics (e.g. median, range),

properties of the objects (e.g. mass, luminosity), or some form of dimensionality re-

duction done on the raw data (e.g. principal component analysis). During the training

process, a classifier will attempt to discover a feature-class relationship, and identify

features that discriminate between different classes of labelled objects in the training

set. To make a prediction on new objects (i.e. the test set or unlabelled objects), the

classifier will look at the features of the unlabelled sample, and make a prediction based

on its knowledge of the feature-class relationship in the training set.

To classify GOTO light curves, two sets of features are used, The first are time-series

features derived from the light curves that attempt to capture information about the

Machine learning with GOTO 65

shape of the light curves. The second are contextual features that do not vary with

time, such as the position of the source in the sky.

For the time-series features, Feature Analysis for Time Series (FATS) (Nun et al.,

2015) features are used. FATS was designed for the analysis and feature extraction of

astronomical time-series data. Standard time series features from the FATS library and

additional custom features were used to extract features from the training and test sets.

The python implementation of the FATS library feets (Cabral et al., 2018) was used to

do the feature extraction. The time-series features used are listed below. More detailed

explanations of the features can be found in Nun et al. (2015) and Richards et al. (2011).

• Linear trend: The gradient of a linear fit to the light curve.

• Standard deviation: The standard deviation of magnitudes in the light curve.

• Mean: The mean of the magnitudes in the light curve.

• Mean error: The mean of the error in magnitudes in the light curve.

• Mean variance: The ratio of standard deviation to the mean of magnitudes.

• Magnitude range: The range of the magnitudes in the light curve.

• Peak magnitude: The brightest magnitude measurement in the light curve.

• Amplitude: The half of the difference between the median of the maximum 5%

and the median of the minimum 5% magnitudes.

• Median buffer range percentage: The fraction of points within 10% amplitude

of the median magnitude.

• Above 20th magnitude: The number of magnitudes brighter than 20th magni-

tude in the light curve.

Machine learning with GOTO 66

• Range of a cumulative sum: The range of the cumulative sum of the light

curve.

• Auto-correlation function length: For a series of observations m1,m2, ...,mT

with mean m̄, the sample lag h auto-correlation is given by

ρ̂h =

∑T
t=h+1(mt − m̄)(mt−h − m̄)∑T

t=1(mt − m̄)2
. (3.1)

The auto-correlation function length is defined as the lag value h where ρ̂ becomes

less than e−1.

• Median absolute deviation: The median discrepancy of the data from the

median, defined as median(|mi −median(m)|) for m = m1,m2, ...,mi.

• Percent amplitude: The largest percentage difference between the minimum or

maximum magnitude and the median.

• Median minimum difference: The difference between median magnitude and

minimum.

• Median maximum difference: The difference between median magnitude and

maximum.

• Skew: The skew of the magnitudes in the light curve.

• G-skew: A median-of-magnitudes based measure of the skew, where the G-skew

is

Gskew = mq3 +mq97 − 2m, (3.2)

where mq3 is the median of magnitudes lesser or equal than the 3-quantile, mq97

is the median of magnitudes greater or equal than the 97-quantile, and m is the

median of magnitudes.

Machine learning with GOTO 67

• Standard deviation slope: The standard deviation of slopes in the light curve,

where slope is the change in magnitude with time between consecutive observations.

• Interquartile range Q3−1: The difference between the third and first quartile of

magnitudes.

• Pair slope trend: Considering time-sorted magnitudes in the light curve, the

pair slope trend is the fraction of increasing first differences minus the fraction of

decreasing first differences.

• Rise time: The time from first observation to peak, if the first observation is the

peak then the value is zero.

• Mean time spacing: The mean of the times between consecutive observations in

the light curve.

• Standard deviation of time spacing: The standard deviation of the times

between consecutive observations in the light curve.

• Span: The length of the light curve in days.

For the contextual features, the galactic longitude l and latitude b of the object,

and whether there was a nearby galaxy near the source determined by cross-matching,

described in section 3.2 were used. The galaxy matching flag was encoded as a vector,

so each object has two features representing if a nearby galaxy was detected: host_true

and host_false. If an object is associated with a nearby galaxy then host_true= 1

and host_false= 0, and vice-versa. This is done since categorical features need to be

represented in this format to be used with the other numerical features.

Machine learning with GOTO 68

3.3.2 Features from the data

Here we discuss how some of the features introduced in section 3.3.1 encapsulate the

differences between different classes. Firstly, we examine how the mean magnitude and

the standard deviation of magnitudes in a light curve varies for objects in the dataset.

Figure 3.2 shows a scatter plot of the mean magnitude against the standard deviation

of magnitudes, with accompanying histograms.

From Figure 3.2, we can see that the mean magnitude is a useful discriminant be-

tween some of the classes. Supernovae occupy the fainter end of the mean magnitude

distribution, while Cepheid variables and long-period variables occupy the brighter end

of the distribution. Cataclysmc variables and RR Lyrae stars also tend to have fainter

mean magnitudes, but not as faint as supernovae. Eclipsing binaries are distributed

across a wide range in mean magnitude. Looking at the the standard deviation of mag-

nitudes, all objects roughly follow the same distribution, with long-period variables and

Cepheid variables showing higher standard deviations in their light curves.

Secondly, we also look at how the contextual features vary across the different classes.

Figure 3.3 shows histograms of the Galactic latitude for the six classes of objects in the

dataset. All classes other than supernovae tend to be observed at lower Galactic latitudes

(∼< 30◦) , though RR Lyrae stars and eclipsing binaries are also observed at high Galactic

latitudes. Cepheid variables in particular are observed close to the Galactic plane, while

supernovae are observed away from the Galactic plane. There is a dip in the histograms

for long-period variables and RR Lyrae stars near the galactic plane which may be due

to difficulty in resolving sources within crowded stellar fields.

Machine learning with GOTO 69

Figure 3.2: A scatter plot of the mean against standard deviation of magnitudes in a
light curve, for all objects in the dataset, divided by class. The histogram for the mean
magnitude (top) and standard deviation (right) are plotted alongside. The y-axes for
the histograms are plotted as normalised counts.

Figure 3.3: The histograms of galactic latitudes of all objects in the dataset, divided by
class.

Table 3.2 shows the fraction of objects in each class that have a nearby galaxy when

Machine learning with GOTO 70

cross-matched to the NED catalogue (Section 3.3.1). The majority of supernovae have an

associated galaxy, while all other classes of objects have a low fraction that are associated

with a galaxy.

The features derived from light curves (mean magnitude and standard deviation in

magnitude in Figure 3.2) show that these two measures show some separability between

distant extra-galactic objects (supernovae) and nearby galactic sources. The contextual

features are very useful in differentiating between supernovae and the other classes of

objects, showing a clear difference in values for supernovae from the other classes.

Class Fraction with a nearby galaxy
LPV 1.3%
RR 11.1%
EB 13.2%

CEP 2.0%
CV 8.7%
SN 82.4%

Table 3.2: A table showing the fraction of each class in the dataset that are associated
with a galaxy when cross-matched with the NED catalogue.

3.4 Data augmentation

3.4.1 Data challenges in time-domain surveys

There is a challenge when trying to make a classifier for a new survey: a lack of labelled

data to train the classifier with and classes with large differences of the number of

samples (i.e. an imbalanced dataset). To develop a classifier, labelled data is needed

so that the features extracted from the data can be mapped to a corresponding class

label. Typically, machine learning algorithms used for classification assume that there

is an equal distribution of samples across all classes. In many real-world applications,

however, the data may be imbalanced, where there are disproportionately more examples

Machine learning with GOTO 71

in one class (the majority class) than in another class (the minority class). Extreme

imbalance can occur when the minority class contains significantly fewer examples than

the majority class. Classifiers will tend to misclassify examples from the minority class,

and will be optimised to perform well on classifying examples from the majority class.

In many classification tasks, the class of interest is usually the class with the smallest

number of samples since the aim of classification is to find rare examples (e.g. looking

for a small number of rare transients in a large dataset).

Previous work for building classifiers for new and upcoming surveys such as the ZTF

and Vera Rubin LSST (e.g. Muthukrishna et al. 2019; The PLAsTiCC team et al.

2018) rely on models that emulate the observing conditions of real telescopes to generate

training samples. This is convenient since it is possible to generate a desired number

of examples to train a classification model with. Simulations may not, however, be

representative of data obtained with real observations. Using real data to train a classifier

removes the need to use models to simulate observations. The caveat is that the classifier

will only have knowledge on what it is trained on, so it may struggle to characterise

peculiar instances of known objects, or completely new and yet undiscovered classes

of objects. In this work, we use a classifier to classify objects into well-known and

established classes. The challenge in working with real data is that it is often imbalanced,

and may have classes that have a small number of objects.

There are three main approaches for dealing with class imbalance in a dataset with

machine learning (Krawczyk, 2016):

1. Data-level methods : reduce imbalance by modifying the data with resampling

methods

2. Algorithm-level methods : modify the algorithm to reduce bias towards examples

from the majority class

3. Hybrid methods : combine both data resampling and algorithm-level methods

Machine learning with GOTO 72

Here we present a data-level method where the labelled data used to train a machine

learning model is altered to deal with class imbalance. A rudimentary method of deal-

ing with imbalance is to create multiple instances of samples from the minority class

so that there are artificially more minority samples (a method known as oversampling),

or inversely, removing samples from the majority class so the class distribution in the

dataset is more balanced (a method known as undersampling). Although this method

can be successful, the drawback is that there is either a loss of information (with under-

sampling) from the dataset or no real increase in information (with oversampling) in the

dataset.

3.4.2 Data augmentation with SMOTE

We perform data augmentation on the training set and create new training samples by

sampling in feature space with Synthetic Minority Over-sampling Technique (SMOTE;

Chawla et al. 2002). The purpose of augmenting only the training set is to allow the

classifier to learn from more examples of the minority classes, and to see if it is able to

generalise on the unseen test set of real light curves. SMOTE has previously been used for

data augmentation in classifying a small sample of supernovae from the Pan-STARRS1

survey (Villar et al., 2019) with good results.

SMOTE generates ‘synthetic’ samples by randomly introducing new samples along

line segments originating from a class sample to its k nearest neighbours in feature space,

where k is a parameter that can be tuned. The result is that the region in feature space

occupied by samples from the minority class is ‘filled in’ by newly generated synthetic

samples, forming a more robust decision boundary between classes in feature space. The

limitation of this method is that it can only generate new samples based on available

data, so for a class that has a small number of samples the region in feature space that

it occupies may be tightly constrained. Using SMOTE on this dataset has the added

Machine learning with GOTO 73

benefit of being able to consider the time-series and contextual features simultaneously

during augmentation.

We use the Imbalanced-learn python package (Lemaître et al., 2017) to implement

SMOTE for data augmentation on the training set, setting k = 5. The data augmen-

tation is done so that new samples are generated for all classes other than the majority

class (the class with the largest number of samples) until all classes have the same num-

ber of samples (N = 2, 802), for an augmented training consisting of 16, 812 objects.

We use both the original training set and the augmented training set to train a random

forest classifier and compare the performance between the two training sets.

3.5 Random Forest for classification

The random forest algorithm uses an ensemble of decision trees, where each tree is trained

on a random subset of the training data. Each split in the tree is determined by selecting

criteria from a subset of all features and the final result is obtained through majority

voting of all the trees in the ensemble to give a more robust classification (Breiman,

2001) (see Chapter 2 for an introduction to the random forest algorithm). For a single

decision tree, the probability of an object belonging to a class k is the fraction of samples

belonging to class k in a node. The random forest can return either the probability of

an object belonging to a particular class (by averaging the probabilities across all trees

in the forest) or the class of the object (by choosing the class with the highest mean

probability).

The random forest has a number of adjustable hyperparameters, parameters that

are not learnt during training and are instead set outside of training. We vary two

hyperparameters: n_estimators, the number of decision trees in the random forest and

max_depth, the maximum number of successive splits performed in a decision tree. We

vary the number of trees in the forest to see how increasing the size of the ensemble

Machine learning with GOTO 74

affects classification performance, and the maximum depth to see how model complexity

(i.e. how many times does a tree split the data in feature space) affects performance.

We set the maximum number of features that are sampled each time a split is made as

the square root of the total number of features (rounded to the nearest integer). For

the classification of GOTO light curves, the random forest classifier from the Python

package scikit-learn was used (Pedregosa et al., 2011).

3.6 Hyperparameter optimization

We create a grid of hyperparameters, selecting values [10, 100, 1000] for n_estimators

and [5, 10, 20, 30] for max_depth. To identify the best set of hyperparameters, we use

k-fold cross validation. The training set is split into k equally size folds, and k unique

groups are created by taking k− 1 folds as the training set, and the last fold as the test

set, so that in each group a different fold is used as the test set. The random forest is

trained on k−1 folds and then evaluated on the last fold. We calculate the F1 and AUC

scores for k = 5 folds, and calculate the average score and take the error as the standard

deviation.

We plot the F1 and AUC scores obtained by each hyperparameter combination as a

results matrix for the original training set in Figure 3.4, and for the augmented training

set in Figure 3.5. We choose the best set of hyperparameters as the combination that

gives the best AUC score, since AUC is a good indicator of how the purity-completeness

trade-off is maximised to give the best predictions. See section 2.7 for a discussion on

machine learning metrics. The best hyperparameters for the original and augmented

training set are then used for a random forest classifier to make predictions on the test

set.

Machine learning with GOTO 75

(a) F1 score matrix, original training set (b) AUC score matrix, original training set

Figure 3.4: Results matrix for hyperparameters, model trained on original training set.
The values for max_depth are on the x-axis, and the values for n_estimators are on the
y-axis.

(a) F1 score matrix, augmented training set (b) AUC score matrix, augmented training set

Figure 3.5: Results matrix for hyperparameters, model trained on augmented training
set. The values for max_depth are on the x-axis, and the values for n_estimators are
on the y-axis.

3.7 Results

Using the AUC score as a performance metric, the best set of hyperparameters for

the random forest trained on the original training set are n_estimators= 1, 000 and

max_depth= 10 , and for the random forest trained on the augmented training set

n_estimators= 1, 000 and max_depth= 30. We calculate the F1 and AUC scores for

both random forests when evaluated on the test set, and tabulate the results in Table

3.3, and also plot the confusion matrices in Figure 3.6.

Machine learning with GOTO 76

When trained on the original training set, the random forest classifier is able to clas-

sify eclipsing binaries, long-period variables, RR Lyrae, and supernovae with accuracies

ranging from 56% for eclipsing binaries to 78% for long period variables. The accuracy

for Cepheid variables and cataclysmic variables is poor, with only 14% of Cepheid vari-

ables being correctly classified, and no cataclysmic variables are correctly classified at

all. There is a high degree of confusion between the different classes of variable objects,

with 66% of Cepheid variables being classified as long-period variables.

With the augmented training set, there is some increase in classification performance.

The classifier is able to correctly classify an additional two supernovae (going from 71%

to 79% accuracy), and now correctly classifies 3 cataclysmic variables (compared to none

for when the original training set is used). Classification for the other classes remains

largely unchanged. The F1 score increases from 0.435 to 0.461, while the AUC score

decreases from 0.843 to 0.838 when the augmented training set is used. We discuss these

results in the next section.

(a) Confusion matrix, original training set (b) Confusion matrix, augmented training set

Figure 3.6: Confusion matrices for the random forest classifiers trained with the original
and augmented training set, evaluated on the test set. The rows of the matrix show the
fraction of correct and incorrect predictions for each class, and where incorrect predic-
tions between classes occur. Below the fractions are the number of objects that have
been predicted, in parentheses.

Machine learning with GOTO 77

Model F1 scoreF1 scoreF1 score AUC score
Original training set 0.435 0.843

Augmented training set 0.461 0.838

Table 3.3: The F1 and AUC scores for the random forest classifiers trained with the
original and augmented training set, evaluated on the test set.

3.8 Discussion

The use of data augmentation has increased the classification performance for the classes

with the smallest number of samples (supernovae and cataclysmic variables), while re-

taining the same performance for the other classes. The F1 score increases when the

augmented training set is used, reflecting the increased recovery for supernovae and cat-

aclysmic variables. The decrease in AUC score suggest that the data augmentation is

creating some overlap in feature space between classes when generating synthetic sam-

ples, which may make the classification of objects near the decision boundary in features

space harder to classify.

Even without data augmentation, the random forest classifier is able to accurately

classify 71% of the supernovae, which suggests that the features selected for classification

contained enough information to separate supernovae from the other classes. With a

random forest, it is possible to calculate a score that describes how important a feature

is for classification (feature importance). We use an impurity based measure for feature

importance, where the importance of a feature is calculated as the total reduction of

the Gini impurity (Equation 2.2) brought by that feature. A higher value for feature

importance indicates that the feature is important for creating decision boundaries in

feature space. We plot the feature importance for all features used when training the

random forest on the original training set in Figure 3.7. We show the feature importance

for the original training set since we want to examine feature importance without data

Machine learning with GOTO 78

augmentation, and the fact that data augmentation does not show a significant increase

in performance.

From Figure 3.7, we see that some of the most important features are the galactic lat-

itude b, the mean magnitude of the light curve mean, and host_false. In section 3.3.2,

we examined how some of the time-series derived features such as the mean magnitude

and contextual features were different for supernovae than the other classes, reflecting

their potential importance in classifying light curves. Two of the top four important

features are contextual features (galactic latitude and association with a nearby galaxy),

reflecting the importance of using contextual information alongside time-series informa-

tion when classifying light curves.

The confusion between the variable object classes suggest that they overlap in feature

space, making it difficult for the decision trees in the random forest to draw appropriate

decision boundaries. This is also coupled with the fact that two of the variable object

classes (Cepheid variables and cataclysmic variables) have a relatively small number

of samples (< 100) compared to the other variable object classes (> 2, 500), limiting

the number of samples that the classifier is able to learn from. The small number of

samples in these minority classes also make it challenging for the SMOTE augmentation

to increase information in the dataset. Since SMOTE works by drawing samples along

line segments between objects of the same class in feature space, if there is a small

number of objects then the region of feature space occupied by objects of that class

becomes constrained. This is the limitation of a small sample of labelled data available

for training with a machine learning algorithm, along with class imbalance.

Machine learning with GOTO 79

Figure 3.7: Feature importance in a random forest classifier trained with the original
training set.

3.9 Conclusion

In this chapter we presented a machine learning approach to classifying light curves

from the GOTO survey with a random forest classifier. We use a set of time-series

features extracted from the light curves, along with additional contextual features as

inputs to the classifier. The random forest identifies the best separations in feature

space to split light curve of object belonging to six classes: long-period variables, RR

Lyrae stars, eclipsing binaries, Cepheid variables, cataclysmic variables, and supernovae.

The dataset comprising the GOTO light curves is imbalanced, with some classes having

a much smaller number of samples than others. To deal with the class imbalance present

Machine learning with GOTO 80

in the data, we use SMOTE as a data augmentation method and compare random forest

classifiers trained on the original training set and the augmented training set.

The choice of features led to good classification accuracy for supernovae, eclipsing

binaries, long-period variables, and RR Lyrae stars, but poor performance for Cepheid

variables and cataclysmic variables. With data augmentation, there was a slight increase

in classification performance for supernovae and cataclysmic variables. The small class

sizes and class imbalance in the dataset makes it challenging to classify minority classes

even with data augmentation. The need for a representative training set, one that accu-

rately represents the region of feature space occupied by unlabelled samples is important

for making a classifier that is able to generalise well.

At this stage, GOTO is still a new survey, and the effort to create a representative la-

belled training set for training classifiers is an ongoing process. As the survey progresses,

more labelled samples will become available, as well as more observations in additional

filters that will increase the amount of information available to be extracted from ob-

jects to aid classification efforts. The method presented in this chapter utilises features

extracted from full light curves that have multiple observations over an extended period

of time. To better identify interesting transients early in their photometric evolution

(e.g. a supernova before reaching peak brightness), a method to be able to classify light

curves with few observations in a short amount of time is required. Methods that utilise

deep neural network architectures such as recurrent neural networks (e.g. Muthukrishna

et al. 2019; Carrasco-Davis et al. 2019; Möller & de Boissière 2020) that are able to

provide ‘real-time’ classifications on light curves as new observations are made would be

useful for this goal.

Chapter 4

Photometric classification for the

Gravitational-wave Optical Transient

Observer with recurrent neural

networks

81

GOTO recurrent neural network 82

4.1 Introduction

In this chapter, we improve upon the work presented in Chapter 3. Both feature-based

machine learning and deep learning methods have been used to classify astronomical

objects into distinct classes. In contrast to feature-based machine learning models, deep

learning models are able to learn salient features from the data, and do not require a

feature extraction step prior to training. We provide a review of how machine learning

and deep learning have been used for classification in time-domain astronomy in Chapter

2.

Recently, the growing number of surveys across the world has facilitated a new era

of multi-messenger astronomy. Observing a single event across multiple wavelengths

and through different detectors allows for a deeper understanding of the physics behind

transient phenomena. In 2017, the gravitational wave signals of a binary neutron star

merger (designated GW170817) were detected by the Advanced LIGO and Advanced

Virgo gravitational-wave detectors (Abbott et al., 2017). Follow-up observations across

the electromagnetic spectrum led to the discovery of the kilonova AT2017gfo, thought to

be powered by the radioactive decay of r-process nuclei following a binary neutron star

merger (Abbott et al., 2017; Chornock et al., 2017; Coulter et al., 2017; Drout et al.,

2017; Shappee et al., 2017; Smartt et al., 2017; Villar et al., 2017).

In search of the optical counterparts to gravitational wave signals is the Gravitational-

wave Optical Transient Observer (GOTO) (Steeghs et al., 2021) survey. When GOTO

receives an alert for gravitational wave or gamma-ray burst detection from other facilities,

it will rapidly begin observing the localised region of sky to look for optical counterparts

(Dyer et al., 2020). See Chapter 1 for a discussion on the GOTO survey.

While not in gravitational wave follow-up mode, GOTO conducts an all-sky survey

to search for transient and variable sources. The next step in object classification is

classifying real discoveries into distinct astrophysical types. Providing object classifica-

GOTO recurrent neural network 83

tions for real objects will be useful for the GOTO collaboration in helping to identify

interesting targets for follow-up and further science goals.

Effective classification by machine learning and deep learning models rely on good

representation of the labelled classes in the dataset to learn class separability across the

labelled objects. In real-world applications, the data will typically contain one or more

classes that have more examples than other classes. This type of data is referred to as

‘imbalanced data’, and it poses a difficulty for classification as models will be biased

towards the class where there are many more examples to learn from. Here, we present

a recurrent neural network (RNN) classifier to classify objects discovered by GOTO.

In section 4.2, we provide an overview of the data used to train and test the RNN

classifier. In section 4.3, we introduce the RNN architecture, the class imbalance prob-

lem, and the approach taken to deal with an imbalance dataset. In section 4.4, we outline

the training process, and in section 4.5, we discuss the performance of the classifier and

how contextual information plays a role in how models learn to classify. We discuss how

the work presented in this chapter can be improved upon, and conclude with sections

4.6 and 4.7.

4.2 Data

The dataset used to train the classifier is obtained from GOTO observations spanning

the period of 20 March 2019 to 4 November 2020, during the GOTO prototype phase.

Light curves of objects observed during this period are created using photometric mea-

surements derived from the GOTO difference imaging pipeline (Steeghs et al., 2021) in

the L filter (see Chapter 1 for a summary of the GOTO survey). The catalog of GOTO

objects is then cross-matched to a number of external catalogs to determine objects that

have also been observed by other telescopes and surveys, and to obtain classification

labels. The list of external catalogs include:

GOTO recurrent neural network 84

1. The American Association of Variable Star Observers (AAVSO) International Vari-

able Star Index (Watson et al., 2006)

2. The Veron Catalog of Quasars & AGN, 13th edition (Véron-Cetty & Véron, 2010)

3. The Transient Name Server 1

Variable stars (99.3%)

Active galactic nuclei (0.5%)
Supernovae (0.2%)

Figure 4.1: A pie chart showing the class distribution in the GOTO dataset, illustrating
the high degree of class imbalance present in the data

Additionally, the GOTO objects are also cross-matched against the Galaxy List for

the Advanced Detector Era (GLADE) (Dálya et al., 2018) galaxy catalog to identify

if there is a nearby galaxy associated with the object. In total, the dataset comprises

99, 201 labelled objects, and are split into three broad classes: variable stars (VS), active

galactic nuclei (AGN), and supernovae (SN). The dataset is heavily imbalanced with

99 % (98, 457) of labelled objects belonging to the variable star class, and only 543 and

201 belonging to the active galactic nuclei and supernovae classes, respectively (Fig.

4.1). The largest class (VS) contains almost 500 times more examples than the smallest

class (SN).

Within the astronomical taxonomy for transient and variable sources, there are a wide

range of classification schemes: classifying variable stars by the physical mechanism that
1https://wis-tns.weizmann.ac.il/

GOTO recurrent neural network 85

causes variability (eclipsing binaries, RR Lyrae stars, Cepheids) and classifying super-

novae by spectroscopic features (Type Ia, Ib/c, II). The use of ‘super-classes’ that group

together distinct types of objects simplifies the classification task while still providing

clear classifications. For rapidly evolving objects that would benefit from early time

follow-up observations such as supernovae, it is beneficial to separate them from objects

that show photometric variation over longer timescales with just a few observations.

Providing a more general classification in real-time acts as a ‘first-pass’ classification,

and further classification into more specific sub-types can be done when additional ob-

servations become available.

Figure 4.2 shows the distribution of mean magnitudes and standard deviation in

magnitudes, where each statistic is calculated from all measurements in a light curve.

Figure 4.2: A scatter plot of the mean magnitude of light curves against the standard
deviation in magnitudes of light curves for variable stars (VS) in grey, supernovae (SN) in
red, and active galactic nuclei (AGN) in blue. In the top and right panels are histograms
showing the distribution of mean magnitudes (top) and standard deviation in magnitudes
(left). The histograms are plotted as normalised counts, for each class.

GOTO recurrent neural network 86

Figure 4.3: Normalised histograms showing different properties of the light curves in the
dataset, separated by class. From top to bottom: the time between the first and last
observations of the light curves (length of observation), the number of observations in
the light curves, and the time between successive observations over all light curves.

GOTO recurrent neural network 87

VS have a broad range of magnitudes, while SN and AGN tend to be fainter compared

to VS. Figure 4.3 summarises the light curve properties within the dataset. SN are

typically observed no longer than 100 days, while VS and AGN are observed over longer

timescales (> 300 days). The median number of points in a light curve for the dataset

is 6, and the median time between successive observations is ∼ 11 days. The dataset

contains light curves ranging in duration from a single day to a few hundred days. The

distribution of number of observations in a light curve and the time between successive

observations within a light curve over all classes is fairly similar.

4.2.1 Data preprocessing

Before being used as input into the classifier, the data needs to be preprocessed. For

each light curve, the time-series input matrix consists of the times of observation t, the

magnitudes m, and the errors in magnitude σσσm. The time is scaled to the time of the

first observation, so that it starts at zero, and subsequent time steps are times since the

first observation. The time-series input matrix XT for a light curve with n observations

is

XT =

t

m

σσσm

 =

t1 t2 ... tn

m1 m2 ... mn

σm1 σm2 ... σmn

 . (4.1)

For each object, the contextual information used are the galactic longitude l and

latitude b in degrees, and distance in arcseconds to the nearest galaxy in the GLADE

catalog dG. Objects that have dG > 60 arcseconds have their dG set to a dummy value.

The contextual information input vector XC = (l, b, dG) is used alongside the time-series

input matrix XT as inputs for the classifier. Figure 4.4 shows the distribution of dG and

b for all objects. AGN and SN are more commonly found to have a nearby galaxy in the

GLADE catalog than VS. VS are mostly located close to the galactic plane, while AGN

GOTO recurrent neural network 88

and SN are usually found ∼> 10◦ away from the galactic plane.

Figure 4.4: Normalised histograms showing how the distance to the nearest galaxy in
the GLADE catalog and galactic latitude for all objects in the dataset varies by class.

4.3 Model

4.3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural networks that operate on se-

quential data. The sequential data can take the form [xxx0,xxx1, . . . ,xxxτ], where xxxt is a vector

with time step index t running from t = 0 to t = τ for a sequence with τ time steps.

The time step index t does not necessarily have to represent the passage of time, but can

also denote the position of a vector in the sequence. RNNs make use of ‘hidden states’

(similar to the hidden layers of a deep neural network) that incorporate information from

the hidden state at the previous time step. For an in-depth review of recurrent neural

GOTO recurrent neural network 89

networks, see Chatper 2.

In the work presented in this chapter, both LSTM and GRU networks are used to

process light curve data and produce a set of class probabilities. It should be noted that

the values returned by the classifier are not true probabilities, rather they are scores

given to an object by the classifier that indicate the level of ‘belongingness’ to a certain

class. In this work, the scores returned by the RNN classifiers are referred to as the class

or prediction probabilities. The outputs are produced after reading in the entire light

curve, along with additional contextual information.

4.3.2 Mixed input network

In order to utilise both the time-series data from the light curve and contextual informa-

tion, the neural network model is formed of two branches: the first branch reads in the

time-series input matrix XT and the second branch reads in the contextual information

input vector XC. Since recurrent neural networks are optimised for processing sequential

data, the contextual information is fed to the model separately as opposed to together

with the time-series data (e.g. as a vector of constant values), so that the RNN can

extract high-level time-series features from the light curve. We use a similar approach to

Muthukrishna et al. (2019) to construct the RNN branch of the network, since they find

that their configuration works well for classifying light curves. Further investigation of

different RNN configurations is beyond the scope of the work presented in this chapter.

The first branch acts as a standard RNN, consisting of two RNN layers, and the

second branch is just an input layer for XC. The output of the final layer in RNN

branch is concatenated with XC, and forms the input for two dense layers, the latter of

which is connected to the final output layer. The output layer produces a list of numbers

which sum to 1, which are the class probabilities of an object belonging to each of the

defined classes. Figure 4.5 illustrates the model architecture. To avoid overfitting (where

GOTO recurrent neural network 90

Figure 4.5: Diagram of the mixed input network. The time-series input XT is passed to
the RNN branch, and the contextual information input XC is appended to the output
of the final RNN layer, before being passed on to merged branch of the network.

a model performs well on the training set but underperforms on the test set) dropout

and regularisation are used within the model. A summary of the different components

of the model is presented below.

• Masking layer: The masking layer is placed between the input layer of the time-

GOTO recurrent neural network 91

series branch of the model and the first RNN layer. It applies a mask to a sequence

of of time steps, where each time step refers to a column in the vector XT, and uses

a mask value to skip time steps. Subsequent layers will ignore masked timesteps.

A masking layer allows the model to process sequences with a different number of

time steps.

• Long short-term memory (LSTM) layer: The LSTM layer takes in the

masked XT as input, and applies the LSTM operation. The dimension of the

output nout from this layer is an adjustable hyperparameter. Two LSTM layers are

stacked in the RNN branch of the model: the first LSTM layer returns a sequence

of outputs each with dimension nout, which is passed on to the second LSTM layer

that returns a single output with dimension nout.

• Gated recurrent unit (GRU) layer: The GRU layer functions in the same

way as the LSTM layer and has the same adjustable hyperparameter nout, but it

applies the GRU operation to the data instead. Like the LSTM layers, two GRU

layers are stacked and the first GRU layer passes a sequence to the second GRU

layer, which returns a single output with dimension nout.

• Dropout: A dropout layer randomly drops input neurons and their corresponding

connections during training, as a method to reduce overfitting (Srivastava et al.,

2014). This forces the neurons to derive more meaningful features from the data

without heavily relying on other neurons in the network. During testing, the data

is passed through the network without dropout. The dropout fraction sets the

fraction of input neurons that are dropped.

• Batch normalisation: During training the parameters for each layer change,

affecting the distribution of the inputs in the preceeding layers in the network.

The change in the distribution of inputs in the layers requires the layers to adapt

GOTO recurrent neural network 92

to the new distribution, a phenomenon known as internal covariate shift. Batch

normalisation scales the inputs to a layer for each batch so that the mean value is

close to 0 and the standard deviation is close to 1, reducing the impact of internal

covariate shift (Ioffe & Szegedy, 2015).

• Dense layer: A dense layer is the simplest layer in a neural network: it consists

of a fully connected layer of neurons and takes in a fixed size input. The number

of neurons in the dense layer is an adjustable hyperparameter. All dense layers in

the merged branch have the same number of neurons, which is set by the hyperpa-

rameter. The output layer is just a dense layer with three neurons with a softmax

activation function that ensures the values returned by the output layer all sum to

1.

• Regularisation: Regularisation introduces a penalty term to the loss function

as a method to reduce overfitting. The L2 regularisation is used, which adds a

penalty term equal to the sum of all the model weights squared, multiplied by a

regularisation factor λ. The regularisation factor λ sets the strength of ’weight

decay’ in the loss function. A larger value of λ forces the weights to have smaller

values and helps to reduce overfitting (Goodfellow et al., 2016).

The LSTM and GRU layers serve the purpose of extracting meaningful features from

the time-series data. The dense layers then combine the time-series representations

and contextual information and further extract features from the combined features to

produce a prediction. After each LSTM/GRU layer and the first dense layer, dropout is

applied in an attempt to reduce overfitting, and batch normalisation is applied to reduce

internal covariate shift throughout the network. We use a combination of three methods

as an approach to deal with potential overfitting: dropout, batch normalisation, and

regularisation in the loss function.

GOTO recurrent neural network 93

4.3.3 Class imbalance

In Chapter 3, we used a data-level method with a random forest classifier to deal with an

imbalanced dataset. Despite the popularity of deep learning-based classifiers, there is a

lack of research into dealing with class imbalance when using deep learning architectures

(Johnson & Khoshgoftaar, 2019). Data augmentation for light curves of different astro-

physical objects can be a laborious process, as models are needed to generate simulated

examples of real observations, and multiple models may be required to simulate objects

from multiple classes. In this chapter, we attempt an algorithm-level approach for deal-

ing with class imbalance by using a focal loss function to optimise the RNN classifier, as

an alternative to a data-level approach such as data augmentation.

In supervised learning, a model is trained for a prediction task by minimising a loss

function. The model adjusts its internal weights to reduce the error by calculating the

gradient in weight space that will minimise the loss function via gradient descent. See

Chapter 2 for a discussion on loss functions and gradient descent.

For multi-class classification, the cross-entropy loss is typically used. Given a multi-

class problem with N classes, the cross entropy loss (CE) for an example i is

CE = −
N∑
j=1

δij log(pij), (4.2)

where pij is the probability of example i belonging to class j, and δij is the Kronecker delta

function. The loss for the entire dataset is given by summing the loss of all examples.

The focal loss (Lin et al., 2017) addresses class imbalance by down-weighting examples

from the majority class. For the same multi-class problem as above, the focal loss (FL)

for an example i is

FL = −
N∑
j=1

δij(1− pij)
γ log(pij), (4.3)

GOTO recurrent neural network 94

where (1− pij) is the modulating factor, and γ is the parameter that adjusts the rate at

which majority class examples are down-weighted. Increasing γ reduces the contribution

from well classified examples to the loss, and increases the importance of improving

misclassified examples (Lin et al., 2017). For a misclassified example, pij is small so

the modulating factor is close to 1 and the loss is unaffected. Examples that are well

classified will have pij close to 1, so the modulating factor is small, and the loss from

well classified examples will be down-weighted. The focal loss is equivalent to the cross

entropy loss when γ = 0. In practice, a weighted version of the focal loss can be used,

which Lin et al. (2017) find to perform better than the unweighted focal loss (eq. 4.3)

for imbalanced classification tasks:

FL = −
N∑
j=1

δijαj(1− pij)
γ log(pij), (4.4)

where αj is a weighting factor for class j. In this work, the weighting factor is given by

αj =
1

n
× N

Nj

(4.5)

where N is the total number of examples in the training set, Nj is the number of examples

in class j in the training set, and n is the total number of classes which in this case is

n = 3. For all the above loss functions, the best case is a loss value of zero.

4.4 Method

The GOTO dataset is split into 70% for training, and 30% for testing. Of the training

set, 30% is set aside for validation. The data are split so that the training, validation, and

test sets all have the same proportions of VS, AGN, and SN. This is done so that there

are a good number of samples from each class in the validation and test set so we can

evaluate classification performance on the classes with fewer examples (AGN and SN). A

GOTO recurrent neural network 95

Hyperparameter Value
Batch size 128
Learning rate 1× 10−4

LSTM/GRU output dimension [100, 150]
Dropout 0.4
Number of neurons in dense layers [100, 200]
Focal loss γ [1.0, 2.0]
Regularization factor λ 0.01

Table 4.1: Adjustable hyperparameters in the model. Hyperparameters with values in
square brackets indicate the range of values used during training.

validation set is useful as it provides a measure of how well a model is able to generalise

during training. The RNN is implemented and trained using the TensorFlow 2.0 package

for Python (Abadi et al., 2016)2 with Keras (Chollet et al., 2015) for implementation of

network layers.

4.4.1 Hyperparameters

The model has a number of adjustable hyperparameters: parameters that are not de-

rived through training but are pre-defined before the training process. Table 4.1 lists

the adjustable hyperparameters of the model. Two hyperparameters are varied during

training for all models: the dimension of the LSTM/GRU output and the number of

neurons in the dense layers. We select the values of the LSTM/GRU output dimension

to be similar to those used in Muthukrishna et al. (2019). For models trained with

the focal loss, there is another hyperparameter that is varied: the focal loss γ param-

eter. We limit the number of adjustable hyperparameters since we want to limit the

total number of models to be trained - there are a total of 32 models with all possible

hyperparameter combinations. We find that varying the hyperparameters during hyper-

parameter optimisation does not hugely impact performance on the validation set, and

the hyperparameters listed in Table 4.1 produce good classification results.
2https://www.tensorflow.org/

GOTO recurrent neural network 96

Hyperparameters that remain fixed are the batch size, the learning rate, the dropout

fraction, and the regularization factor. Batch size sets the number of samples that is

passed through the model at each epoch of training before the weights are updated. Given

that the data is imbalanced, the batch size is set to 128 to ensure that examples from

the minority class are passed through the model while the weights are being updated.

We note that this is a rudimentary method, and a more thorough approach would be to

employ ‘stratified’ batching, where each batch has the same proportion of minority and

majority examples. Nevertheless, we find that simply setting the batch size to 128 is

sufficient to achieve good results (see section 3.7). The learning rate defines the step size

taken during gradient descent to determine the optimal set of weights, in other words

it controls how much the weights are changed during training. A learning rate that is

too small will fail to find a minimum in weight space, and a learning rate too large will

result in unstable training and fail to find a minimum. During training, the learning rate

is left to the default TensorFlow value of 1× 10−4.

Srivastava et al. (2014) find that setting the probability of retaining a unit in the

network between 0.4 and 0.8 optimally reduces test error on a classification task with

a deep neural network. In this work, the dropout fraction used in the TensorFlow

implementation is defined as the fraction of units that are dropped, so the optimal range

found by Srivastava et al. (2014) translates to 0.2−0.6 when expressed as the fraction of

units to be dropped. We opt for a dropout fraction of 0.4 in this work. The regularization

factor λ is set to the default TensorFlow value 0.01.

The dropout fraction and regularization factor λ could have been used as additional

hyperparameters to see if varying their values would impact classification performance,

but we choose to keep these values constant as to minimise the total number possible

model configurations that need to be trained. The main motivation for the work pre-

sented in this chapter is to see how using weighted loss functions affects performance on

imbalanced data.

GOTO recurrent neural network 97

4.4.2 Training process

There are two different RNN architectures used, one with LSTM and the other with

GRU, and three different loss functions: an unweighted cross entropy loss (eq. 4.2),

a weighted cross entropy loss, and a weighted focal loss (eq. 4.4). In total there are

six classes of models, each trained with a range of hyperparameters (Table 4.1). For

models trained with the cross entropy loss functions, the focal loss parameter γ is not

an adjustable parameter.

All models are trained for 200 epochs with no early stopping using the Adam opti-

mizer (Kingma & Ba, 2014), and then evaluated on the validation set. The best per-

forming model is selected by choosing the model that has the best AUC score calculated

on the validation set. The best models from the six different configurations are then

evaluated on the test set. Training was executed on an 8-core CPU. The average time

taken to train a single model was approximately one hour at an average of 20 seconds

per epoch, and the total time taken to train all models presented in this chapter was

∼ 44 hours. The trained models were able to return predictions on the entire test set

within ∼ 5 seconds. We show how the loss changes with time during training in Figure

4.6

GOTO recurrent neural network 98

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Model loss
Train loss
Validation loss

(a) GRU with weighted focal loss.

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Model loss
Train loss
Validation loss

(b) LSTM with weighted focal loss.

0 25 50 75 100 125 150 175 200
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Model loss
Train loss
Validation loss

(c) GRU with weighted cross entropy loss.

0 25 50 75 100 125 150 175 200
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Model loss
Train loss
Validation loss

(d) LSTM with weighted cross entropy loss.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Model loss
Train loss
Validation loss

(e) GRU with unweighted cross entropy loss.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Model loss
Train loss
Validation loss

(f) LSTM with unweighted cross entropy
loss.

Figure 4.6: Evolution of training and validation loss for the best performing models
during training. Models with the cross entropy loss converge quickly, but the loss is
dominated by contribution from easy to classify examples. Models with the weighted
cross entropy loss and focal loss eventually converge within 200 epochs of training, and
are also able to account for examples from the minority classes.

GOTO recurrent neural network 99

4.5 Results

4.5.1 Hyperparameter optimisation

The models are trained with all possible hyperparameter combinations presented in

Table 4.1. After training, all models are evaluated on the validation set. The best set of

hyperparameters for the six different model configurations are summarised in Table 4.2,

with both AUC and the F1 score shown for each model. All models converge within 200

epochs (Figure 4.6). At each epoch, the model weights are updated through gradient

descent such that the loss will be minimized. A model is said to converge once the loss

stops decreasing, indicating that the model has reached a minimum in weight space.

The weighted cross entropy models show a small increase of ∼ 0.03 in AUC over

the unweighted cross entropy models, and the weighted focal loss shows an additional

increase of ∼ 0.05 in AUC. In this work we used the unweighted F1 score, which calculates

the F1 score for each class and takes the unweighted mean. Although the unweighted

cross entropy loss models both have higher F1 scores, the models with weighted loss

functions perform better overall across all classes - the F1 score is skewed towards the

class with more examples and is not a metric well-suited for imbalanced data. For the

weighted focal loss models, the LSTM appears to perform slightly better than the GRU

on the validation set.

4.5.2 Test set performance

After the best hyperparameters are determined for all the models, the models are then

evaluated on the test set. The test set consists of data that the classifier has not seen

during the training phase. Columns 8 and 9 of table 4.2 summarises the performance of

the six different model configuration on the test set, using all available observations.

As in the results for the validation set, the performance of the models on the test set

G
O

T
O

recurrent
neuralnetw

ork
100

RNN type Loss Dense neurons RNN output γ
Validation Test

AUC F1 AUC F1

LSTM Weighted focal loss 200 150 1 0.958 0.469 0.966 0.486
GRU Weighted focal loss 200 150 2 0.947 0.425 0.972 0.468
LSTM Weighted cross entropy 200 100 - 0.939 0.404 0.967 0.464
GRU Weighted cross entropy 200 150 - 0.932 0.378 0.968 0.442
LSTM Unweighted cross entropy 200 150 - 0.899 0.727 0.948 0.794
GRU Unweighted cross entropy 200 150 - 0.909 0.758 0.937 0.806

GRU NC Weighted focal loss 100 100 1 0.922 0.322 0.909 0.324

Table 4.2: Results for the best performing models and their best hyperparameters with AUC and F1 scores, evaluated on
the validation and test sets. The dense neurons column denotes the number of neurons in all dense layers preceeding the
final output layer, and the RNN output column denotes the dimension of the output of the LSTM and GRU layers. On the
bottom row, GRU NC denotes the GRU model with weighted focal loss trained only on time-series data without contextual
information.

GOTO recurrent neural network 101

indicate that simply adding weights to the loss function to account for class imbalance

improves performance. Both the weighted cross entropy and weighted focal loss models

show an increase of ∼ 0.02 in AUC over the unweighted cross entropy. The F1 scores are

also shown for illustrative purposes; although the models with unweighted cross entropy

loss have the highest F1 scores, they have the lowest AUC scores. To better clarify the

improvement of weighted loss models over the unweighted cross entropy models, it is

prudent to also look at the confusion matrices for each of these models.

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

1.00
(29498)

0.00
(9)

0.00
(30)

0.34
(21)

0.63
(39)

0.03
(2)

0.26
(43)

0.05
(9)

0.68
(112)

0.0

0.2

0.4

0.6

0.8

1.0

(a) LSTM with unweighted
cross entropy

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

0.95
(28061)

0.01
(372)

0.04
(1104)

0.03
(2)

0.87
(54)

0.10
(6)

0.07
(12)

0.05
(9)

0.87
(143)

0.0

0.2

0.4

0.6

0.8

1.0

(b) LSTM with weighted cross
entropy

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

0.96
(28234)

0.01
(276)

0.03
(1027)

0.02
(1)

0.87
(54)

0.11
(7)

0.07
(12)

0.06
(10)

0.87
(142)

0.0

0.2

0.4

0.6

0.8

1.0

(c) LSTM with weighted focal
loss

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

1.00
(29518)

0.00
(5)

0.00
(14)

0.34
(21)

0.58
(36)

0.08
(5)

0.27
(44)

0.04
(7)

0.69
(113)

0.0

0.2

0.4

0.6

0.8

1.0

(d) GRU with unweighted
cross entropy

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

0.94
(27637)

0.01
(402)

0.05
(1498)

0.00
(0)

0.85
(53)

0.15
(9)

0.07
(11)

0.05
(9)

0.88
(144)

0.0

0.2

0.4

0.6

0.8

1.0

(e) GRU with weighted cross
entropy

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

0.95
(28111)

0.01
(337)

0.04
(1089)

0.03
(2)

0.87
(54)

0.10
(6)

0.08
(13)

0.08
(13)

0.84
(138)

0.0

0.2

0.4

0.6

0.8

1.0

(f) GRU with weighted focal
loss

Figure 4.7: Confusion matrices for the best performing models on test data. The labels
on the x-axis are the labels predicted by the classifier, and the labels on the y-axis
are the true labels. Correct predictions are represented by values along the diagonal,
incorrect predictions are represented by values in the off-diagonal. The rows of the matrix
show the fraction of correct and incorrect predictions for each class, and where incorrect
predictions between classes occur. Below the fractions are the number of objects that
have been predicted, in parentheses.

Figure 4.7 shows the confusion matrices for all the models evaluated on the test set.

GOTO recurrent neural network 102

Confusion matrices are useful evaluation tools for multi-class classification problems; they

visualise how often a classifier makes correct predictions, and where misclassifications

between classes occur. The models with unweighted cross entropy loss perform the worst,

and the confusion matrices for these models show the impact of class imbalance on the

model.

Using a weighted cross entropy loss function improves performance on AGN and

SN, but slightly decreases performance for VS. Figures 4.7b and 4.7e show increased

recovery for SN and AGN: up to 87% and 85% accuracy for SN with the LSTM and

GRU models, respectively, and up to 87% and 88% accuracy for AGN with the LSTM

and GRU models, respectively. The accuracy for VS dropped to 95% for the LSTM

model and 94% for the GRU model, with misclassifications occurring in both SN and

AGN. There is a small amount of confusion (< 15%) between SN and AGN for the

LSTM and GRU models with weighted cross entropy loss functions.

The models using weighted focal loss show similar performance to the weighted cross

entropy models, with minor improvements. Figures 4.7c and 4.7f show that both LSTM

and GRU models with weighted focal loss are able to achieve 88% accuracy for SN, up

to 96% accuracy for VS (with the GRU model achieving 95% accuracy for VS), and

up to 87% accuracy for AGN (with the GRU model achieving 84% accuracy for AGN).

There is some degree of confusion between SN and AGN, but no more that 11% of

examples from these classes are misclassified as the other. Only up to 3% of examples

from SN are classified as VS, and up to 8% of AGN are classified as VS. This is a

significant improvement over the models with unweighted cross entropy, where up to a

third of objects from the minority classes (SN, AGN) are misclassified as the majority

class (VS).

Looking at the number of predictions made for each entry in the confusion matrix for

the GRU model trained with focal loss (Figure 4.7f), it can be seen that the number of

VS predicted as SN and AGN is greater than the number of actual SN and AGN in the

GOTO recurrent neural network 103

test set. The classifier is designed to produce prediction probabilities, and the predicted

class is simply selected by choosing the class prediction that has the highest probability.

We can examine how varying the threshold value for the class probability can refine

the classification results. By breaking down the three class problem into three binary

classification problems, where for each case the positive class is one of VS, SN, or AGN,

and the negative class are the other two, we can calculate the true positive rate (TPR)

and false positive rate (FPR) for each case. The probability of a negative prediction is

simply given as the sum of the probability of the two non-positive classes. We use the

predictions given by the GRU model trained with focal loss since it has the highest AUC

score on the test set, and compute the TPR and FPR, and produce a ROC curve for each

class (Figure 4.8). The ROC curves for all the classes reflects the high AUC score of the

GRU model trained with weighted focal loss, covering most of the TPR-FPR space and

reaching the top left-hand corner (high TPR at low FPR). See Chapter 2 for a review of

machine learning metrics.

Figure 4.8: Receiver operating characteristic (ROC) curves for the VS, SN, and AGN
classes (grey, red, and blue respectively). ROC curves plot the true positive rate (TPR)
against the false positive rate (FPR) for a range of threshold values that dictate whether
an object is classified as positive or negative. The curve is obtained by considering a
separate binary classification case for each class, treating one class as positive, and the
rest as negative.

GOTO recurrent neural network 104

Class Threshold TPR FPR
VS 0.7 86.2% (25,465) 1.8% (4)
SN 0.7 74.2% (46) 0.2% (57)
AGN 0.7 72.6% (119) 0.7% (213)

Table 4.3: The true positive rate (TPR) and false positive rate (FPR) for each class,
evaluated on the test set at a threshold for the GRU model trained with focal loss. The
positive and negative predictions are obtained by treating each class as positive, and
the other two as negative, creating a binary classification problem for each of the three
classes. The number of true positive predictions and false positive predictions are shown
in parentheses with the TPR and FPR values.

We can examine how varying the threshold can reduce contamination, that is, to

reduce the number of false positives in each class. By selecting a ’cut-off’ threshold,

any objects that have a prediction probability below the threshold can be regarded as

negative, and those with a prediction probability above the threshold can be regarded as

positive. Table 4.3 shows the TPR and FPR along with the number of true positive and

false positive predictions for each class by using a threshold value of 0.7. By selecting a

cut-off threshold, the number of false positive predictions for all classes is reduced. At

a threshold value of 0.7, the TPR of SN and AGN is > 70% at a FPR of < 1%. The

number of false positives for SN and AGN is still significant, and we note that reducing

contamination on minority classes in an imbalanced data setting remains a challenge.

4.5.3 Time-dependent performance

With an RNN architecture, it is possible to take in sequential inputs of different lengths.

Hence, it is possible to evaluate the classifiers performance by varying the number of light

curve observations used. To do this, the time-series input matrix can be formatted so

that it contains only the first n observations, and the remaining values are padded. The

models are then evaluated on the test data, using an increasing number of observations

from n = 1 to a maximum of n = 30.

Figure 4.9 shows how the AUC of all models vary as the number of observations

GOTO recurrent neural network 105

Figure 4.9: AUC scores evaluated for all models on the test data, plotted as a function
of increasing number of light curve observations included in the light curve. The black
dotted line with triangular markers shows the AUC scores for the GRU model trained
with weighted focal loss without contextual information (labelled GRU Focal Loss (NC)).

included in the light curves are increased. In this case, the number of observations refers

to the maximum number of observations that are included. If the maximum number of

observations is m, then a light curve with fewer than m observations will have all its

observations included. If a light curve has more than m observations, then only the first

m observations are used.

With just one light curve observation, the unweighted cross entropy models, weighted

cross entropy models, and the LSTM model with weighted focal loss achieve AUC scores

of ∼ 0.82. The GRU model with weighted focal loss achieves the highest AUC score

with a single light curve observation with 0.84. As more observations are included, all

models show an increase in AUC until around ten observations, after which the AUC

scores maintain a constant value. Since a majority of the light curves in the dataset only

have up to ten observations (see Figure 4.3), it is not surprising that model performance

remains constant after a maximum of ten light curve observations are included. The

final values of the AUC for all models are shown in column 8 of table 4.2.

We perform some additional analysis on how the GRU model with weighted focal

loss performs over time, choosing the aforementioned model since it has the highest AUC

GOTO recurrent neural network 106

score on the test set. Figure 4.10 shows the confusion matrices for the GRU model with

weighted focal loss evaluated with different numbers of light curve observations. With

one observation, the model is already able to separate out VS from other objects to a

good degree of accuracy, achieving 93% accuracy for VS. At one epoch of observation,

the model achieves 73% accuracy for SN, and 42% accuracy for AGN, with 43% of AGN

being misclassified as SN. Other than AGN being misclassified as supernovae, there is

some degree of confusion between all classes: 13% of SN are misclassified as AGN, and

15% of SN and AGN are misclassified as variable stars.

With up to six light curve observations, the accuracy for SN and AGN improves.

89% of supernovae and 76% of AGN are correctly classified, with some misclassifications

between the two (< 16%), and few SN and AGN being misclassified as variable stars. At

a maximum of twenty observations, the model reaches the maximum performance. The

confusion matrix for the GRU model with weighted focal loss at twenty epochs in figure

4.10c appears similar to the confusion matrix evaluated with all epochs of observations

as in figure 4.7f. The SN accuracy drops from 89% at six observations to 87% at twenty

observations, suggesting some confusion as more observations are included and light

curves appearing similar to each other at longer timescales.

(a) Single epoch observation (b) Maximum 6 observations (c) Maximum 20 observations

Figure 4.10: Confusion matrices for the GRU model with weighted focal loss, evaluated
with an increasing number light curve observations.

GOTO recurrent neural network 107

(a) Single epoch observation (b) Maximum 6 observations (c) Maximum 20 observations

Figure 4.11: Confusion matrices for the GRU model with weighted focal loss trained
only on time-series data, evaluated with an increasing number light curve observations.

4.5.4 Importance of contextual information with t-SNE

Imaging surveys such as GOTO will be able to provide contextual information for newly

discovered objects (for example, cross matching to galaxy catalogs) in addition to photo-

metric data. We now discuss the importance of contextual information for the model in

learning to differentiate between objects from different classes. To investigate the impact

of contextual information, we train a grid of GRU models with weighted focal loss using

the hyperparameters in Table 4.1 on the same data as the other models, but without

additional contextual information. The inputs to these models are just the time-series

data from the light curves XT. We identify the best performing model by selecting the

model that achieves the highest AUC score on validation set.

Performance without contextual information

The hyperparameters, AUC and F1 scores of the best performing GRU model with

weighted focal loss trained only on time-series data are shown in the bottom row of

Table 4.2. The model achieves an AUC score of 0.922 on the validation set, which is

higher than the validation AUC scores of the unweighted cross entropy models.

We follow the same process as in section 4.5.2 and evaluate this model on the test

set. The model achieves an AUC score of 0.902 on the test set, which is the lowest AUC

GOTO recurrent neural network 108

Figure 4.12: ROC curves for the VS, SN, and AGN classes (grey, red, and blue respec-
tively) for the GRU model with weighted focal loss, trained only on time-series data.

score out of all models. In figure 4.9, we plot how the AUC score evolves as more light

curve observations are included. At one observation, the model achieves an AUC score

of 0.717 and then increases up until the six observations after which is starts to maintain

a constant value.

Figure 4.11 shows the confusion matrices evaluated on the test set using an increasing

number of maximum observations. With just one light curve observation, the model

performs worse than the GRU model with weighted focal loss trained with contextual

information. The model achieves an accuracy of 39% for VS and incorrectly classifying

55% of VS as SN, and 34% accuracy for AGN and incorrectly classifying 62% of AGN as

SN. SN accuracy for the model is similar to the models trained with weighted focal loss,

with an accuracy of 73%. When using all available light curve observations, the model

trained only on time series data achieves a similar accuracy for SN as the weighted focal

loss models at 87%, but lower accuracy for VS at 78% and AGN at 70%. There is a

slightly higher degree of misclassification between classes compared to the models with

weighted loss functions trained with contextual information.

Figure 4.12 shows the ROC curve for the model trained only on time-series data

GOTO recurrent neural network 109

(using all available light curve observations), by separating the three-class problem into

three separate binary classification problems. Compared to Figure 4.8, the ROC curves

show that the model does not perform as well when contextual information is excluded.

Overall, the model trained only with time-series data performs worse than its coun-

terpart trained with contextual information, but is able to achieve comparable accuracy

for SN. This suggests that the model is able to extract information from the light curves

that allows for good separation of SN from the other classes. We expand on this in the

following analysis.

t-Distributed Stochastic Neighbor Embedding representation

We use t-Distributed Stochastic Neighbor Embedding (t-SNE) to represent how the

model transforms the input data at different layers of the network. t-SNE is a data

visualization technique used to map a high-dimensional dataset into a low-dimensional

dataset that can be visualised in a two or three dimensional scatter plot (van der Maaten

& Hinton, 2008).

t-SNE is a dimensionality reduction technique, that takes a high-dimensional dataset

X = {x1, x2, ..., xn} and converts it into a low-dimensional representation Y = {y1, y2, ..., yn}.

The low-dimensional data points Y are mappings of the high-dimensional data points X

in the low-dimensional space.

The high-dimensional Euclidean distances between points are converted into proba-

bilities that represent similarities between points by centering a Gaussian distribution

onto each point. The similarity between points xi and xj are encapsulated in the joint

probability Pij; if xi and xj are near, then Pij will be high and if they are far apart then

Pij will be low.

In the low-dimensional mapping, the probability Qij is a measure of similarity be-

tween yi and yj, and Qij will be high if the two points are near each other and low

if they are far apart. Instead of centering a Gaussian distribution onto the points in

GOTO recurrent neural network 110

low-dimensional space, a student t-distribution is used instead. Using a heavier-tailed

distribution allows moderate distances in the high-dimensional map to be modelled by

larger distances in the lower-dimensional map, preventing a ‘crowding’ of points that are

not too dissimilar (van der Maaten & Hinton, 2008).

The variance of the Gaussian distribution is set so that the probability distribution

produced by the variance has a fixed perplexity, which is set by the user. The perplexity

can be thought of as a measure of the effective number of neighbors in the region of the

data point in question. Here, the perplexity parameter is set to 20.

Given the two joint probabilities Pij and Qij, t-SNE determines an optimal low-

dimensional mapping Y of the high-dimensional dataset X by minimising the Kullback-

Leibler divergence (Kullback & Leibler, 1951) of Qij and Pij using a gradient descent

method.

t-SNE has been used to visualise class separability in supernovae classification with

machine learning classifiers (Lochner et al., 2016). In this analysis, we use t-SNE to

visualise how class separability changes at different layers in the network. We consider

two models: the GRU model with weighted focal loss trained with contextual information

and the same model trained with only time-series data.

We take the output of the model at two points: the output after the final GRU

layer, where the model only considers time-series information from the light curve, and

the output after the final dense layer before the output layer. In the model trained

with contextual information, the output of the final dense layer will encode the contex-

tual information introduced after the final GRU layer. The model is fed the training

data as input, and t-SNE is used to produce a low-dimension visualization of the high-

dimensional intermediate outputs. Figure 4.13 shows the two-dimensional mapping of

the model outputs at the final GRU layer and the final dense layer, for both models.

The scikit-learn Python package (Pedregosa et al., 2011) implementation of t-SNE is

used in this analysis.

GOTO recurrent neural network 111

Looking at the t-SNE representation of the outputs for the model trained without

contextual information, there appears to be no clear clustering in the representation for

the output after the GRU layer in Figure 4.13a. The majority of AGN occupy the right

side of the plot, the majority of SN are sparsely clustered in the bottom-right region,

and few AGN and SN occupy the left side. In Figure 4.13b, the t-SNE representation of

the output after the final dense layer shows some coherent clustering of SN and AGN.

AGN cluster around the top-right and bottom-left region, with some spread out in the

middle. There is a compact structuring of SN on the left side, and a cluster of SN in the

bottom-left near the AGN. There are a few AGN and SN in the top-left region of the

plot.

From Figure 4.13c for the output after the final GRU layer for the model trained

with contextual information, there appears to be no clear clusters of objects from the

same class. AGN are spread out across the plot, and there is some clustering of SN in

the top-right region. Looking at Figure 4.13d after including contextual information, the

clustering of objects from the same class becomes more apparent. There appears to be a

compact and distinct cluster of AGN near the bottom of the plot, and a tight clustering

of SN along with AGN in the bottom-right region. There is some overlap between SN

and AGN, indicating where some of the misclassifications are occurring.

We note that the VS class is a very broad class, containing a multitude of different

variable objects with distinct subclassifications. In Figure 4.13d, there seems to be a few

coherent structures which may indicate where variable objects from the same or similar

classes are located.

From Figure 4.13, it is clear that the incorporation of contextual information into

the classifier provides useful information that allows the model to learn better class

separability. Using t-SNE in this way is a method to provide an approximate measure of

‘feature importance’ in deep learning classifiers, which can be challenging compared to

deriving feature importance in feature-based machine learning classifiers such as random

GOTO recurrent neural network 112

forests which utilize hand-made features.

It should be noted that t-SNE is primarily a data visualization tool, and here it is

used to visualise class separability learnt by the model at different stages. It is possible

to explore the hyperparameter space when generating t-SNE plots, and use a number

of diagnostics to assess the ‘quality’ of the dimensionality reduction (such as comparing

distances between points in high and low-dimensional space) and identify any correlating

features within the high-dimensional dataset (Chatzimparmpas et al., 2020). However,

further interpretation of the t-SNE plots is beyond the scope of the work presented in

this chapter.

GOTO recurrent neural network 113

(a) t-SNE representation of model output af-
ter the final GRU layer, with no contextual
information.

(b) t-SNE representation of model output af-
ter the dense layer before the output layer,
with no contextual information.

(c) t-SNE representation of model output af-
ter the final GRU layer, with contextual in-
formation.

(d) t-SNE representation of model output af-
ter the dense layer before the output layer,
with contextual information.

Figure 4.13: t-SNE representation for the network outputs at different stages. Each
datapoint corresponds to a single object in the training set; grey points are VS, red
points are SN, and blue points are AGN.

GOTO recurrent neural network 114

4.6 Discussion

Here, we provide a discussion on the task of object classification in the context of the

GOTO survey, how we handle class imbalance in this work, and how the use of contextual

information in addition to time-series data from light curves can help classifiers produce

more robust classifications.

In this work, the dataset of 99,201 labelled objects are split into three broad classes:

variable stars, supernovae, and AGN. There are over 98,000 variable star light curves

in the dataset, and more than 350 unique class labels provided in the AAVSO catalog

(Watson et al., 2006). A number of these labels include a mixture of classes, where there

is no certainty to which class an object belongs to. Grouping all variable type objects

into a single super-class makes the classification task simpler for the model, and allows

for reliable early-time classifications. We also assume that the classifications provided

in these catalogs are the ground-truth. To create an extended and more robust labelled

dataset, additional catalogs can be used to provide more labelled examples, and also

verify the labels provided for already known objects.

The dataset used to train the classifier was obtained from observations conducted

in the GOTO all-sky survey mode. Given that the light curves in the dataset can be

quite sparse, and are only in a single filter, this may have presented a challenge for

classification into multiple object subtypes. A more refined classifier can be trained to

classify between subtypes of objects. An approach for a more refined classification could

be to take a hierarchical classification scheme as in Hosenie et al. (2020), where once

a subset of objects have been classified into broad types, another classifier is used to

further classify the subset into more specific classes.

Targeted sub-sky surveys that focus on observing a smaller area of sky and local

galaxy clusters in search of transients present a chance to conduct observations at higher

cadences and in multiple filters. Additional colour information and more uniform light

GOTO recurrent neural network 115

curve sampling can provide data that can be used to train models to produce better

and more refined classifications into object subtypes. Models trained on light curves in

multiple filters have been shown to be able to differentiate between different types of

transients and supernovae subtypes (Villar et al., 2019; Muthukrishna et al., 2019).

One of the objectives of this work was to highlight the usefulness of RNNs for real-

time object classification in surveys. This classifier can be implemented in the GOTO

discovery pipeline, where new objects observed by GOTO are classified and the classifi-

cation is returned to the GOTO Marshall (Steeghs et al., 2021), where it can be displayed

in a web interface for users to see.

The classifier returns class probabilities that give a measure of how confident the

classifier thinks an object belongs to certain class. This information can be used to

decide to trigger additional follow-up observations. With the RNN architecture, it is

possible to update the classification probability as new observations of an object are

made.

4.6.1 Handling class imbalance in deep neural network architec-

tures

The dataset used to train the RNN classifier for GOTO light curves presented a class

imbalance problem. Other works dealing with class imbalance have utilised data augmen-

tation methods for classification with feature based machine learning algorithms (Hosenie

et al., 2020; Villar et al., 2019; Boone, 2019; Revsbech et al., 2018) and achieved good

performance. Here, we provide an alternative to data augmentation with a RNN classi-

fier, and use an algorithm-level approach to dealing with imbalance, where a weighted

cross entropy loss function and a weighted focal loss function are used to account for im-

balanced class distribution in the training set. We train two types of RNN architectures,

the LSTM and GRU, with three different loss functions: an unweighted cross entropy, a

GOTO recurrent neural network 116

weighted cross entropy, and a weighted focal loss.

Weighting the cross entropy loss function shows an improvement over the unweighted

cross entropy, going from an AUC of 0.948 to 0.968 for the best unweighted cross entropy

and weighted cross entropy loss models when evaluated on the test set, respectively. The

confusion matrices show that the degree of confusion between the majority and minority

classes is reduced by simply weighting the cross-entropy loss function.

The focal loss models perform similar to the weighted cross entropy loss models. The

AUC for the best focal loss model was 0.972, evaluated on the test set. For the focal loss

models, the GRU model achieves a higher AUC score. We have shown that by using an

appropriate loss function to account for imbalanced data, it is possible to achieve good

real-time classification of transient and variable sources, without having to artificially

augment the training data.

Krawczyk (2016) note that even if a dataset is heavily imbalanced, if the classes are

well represented and come from non-overlapping class distributions, it is still possible to

achieve good classifications. Future surveys may benefit from obtaining spectroscopy of a

wider diversity of targets, and not just based on good signal-to-noise ratios. Having good

spectroscopic coverage of sources over a range of magnitudes can help data augmentation

efforts to create representative training sets for supernovae classification (Carrick et al.,

2020).

4.6.2 Contextual information

We trained a GRU model with weighted focal loss to classify light curves using only

time-series data without additional contextual information, to investigate the impact of

contextual information on classification. The model trained without contextual infor-

mation achieved an AUC score of 0.902 on the test set, which is the lowest AUC score

on the test set out of all models. Without contextual information, the model has an

GOTO recurrent neural network 117

overall worse performance compared to the models with weighted focal loss functions

that incorporate contextual information.

Using t-SNE to visualise the intermediate outputs of the GRU models trained with

and without contextual information, it can be seen that using contextual information

such as location in the sky and distance to the nearest galaxy allows the model to

learn better class separability compared to just using information from the light curve.

In principle, the model architecture used in this work where contextual information is

ingested into the model separately to the time-series information from the light curve

can be applied to any survey. We show that this is possible in Chapter 6.

Only three values were used as the contextual information input into all the models:

the galactic latitude and longitude, and the distance to the nearest galaxy from the

object. It is possible to include additional information, such as the physical properties

of nearby galaxies (colour and metallicity), redshift, and galactic extinction.

In the era of large sky surveys such as ZTF and LSST, and the availability of multiple

alert brokers (Möller et al., 2020; Förster et al., 2020; Smith et al., 2019; Narayan et al.,

2018) that ingest the data produced by these surveys and distribute it to the astronomy

community, additional information on newly discovered objects other than photometric

data should be leveraged to provide accurate real-time classification of objects. Being

able to classify explosive transients early in their light curve evolution allows for follow-

up in the early stages of evolution that can provide constraints on explosion mechanisms

and progenitor environments (Zhang et al., 2018; Khazov et al., 2016).

4.7 Conclusion

In this chapter we presented a recurrent neural network classifier to classify objects

observed with the GOTO survey using their light curves, and additional contextual

information such as on-sky position and distance to the nearest galaxy obtained by cross-

GOTO recurrent neural network 118

matching with a catalog. We create a labelled dataset from the GOTO data, and split

the dataset into three classes: variable stars (VS), supernovae (SN), and active galactic

nuclei (AGN). The dataset is imbalanced, with 99% of labelled objects belonging to the

variable star class. We adopt weighted cross entropy and focal loss functions to account

for the imbalance, and reduce the model bias towards the majority class. The weighted

loss functions improves overall classification performance over the standard approach of

an unweighted cross entropy loss function with deep neural network classifiers. We also

train a model without contextual information and only time-series data, and find that

it performs worse than the model with the same configuration trained with contextual

information, but is still able to provide meaningful classification. Looking at the low-

dimensional representations of model outputs shows that contextual information allows

the model to make better distinctions between objects.

Chapter 5

Classification of supernova light curves

from multiple surveys and transfer

learning for future surveys

119

Multi-survey classification and transfer learning 120

5.1 Introduction

With larger telescopes and an increased coverage of the night sky (both in area and

time), astronomers are discovering more objects more quickly. The rate of discovery and

data collection has prompted work on machine learning and deep learning approaches to

automate the identification and classification of new objects. In the past decade or so, a

lot of work has been done on supernova light curve classification, to classify supernovae

using only photometric observations. At the time of writing, most of these studies focus

on classifying supernovae from a single survey with either real or simulated data - the

work presented in Chapters 3 and 4 use data from only the GOTO survey.

Lochner et al. (2016) and Charnock & Moss (2017) used simulated supernovae light

curves from the Supernova Photometric Classification Challenge (SPCC) (Kessler et al.,

2010) to build models to classify the light curves into three classes (Ia, Ib/c, II). Muthukr-

ishna et al. (2019) used a recurrent neural network to classify simulated ZTF light curves

of various explosive transients, including supernovae. Pasquet et al. (2019) used a convo-

lutional neural network to classify supernovae using simulated data and also real SDSS

data. Möller & de Boissière (2020) developed a bayesian neural network approach to

classify a set simulated supernova light curves similar to the SPCC dataset. Dauphin

et al. (2020), Hosseinzadeh et al. (2020), Villar et al. (2019) created classifiers trained on

Pan-STARRS1 supernova light curves. Takahashi et al. (2020) used a neural network to

classify supernova light curves from the Hyper Suprime-Cam transient survey. In all the

examples listed above, the overall classification performance is good for a number of clas-

sification tasks (binary Ia/non-Ia or a multi-class problem into the different supernova

subtypes), achieving accuracies of ⪆ 85%.

As mentioned, the above studies all focus on classifying supernova light curves that

have been obtained from a single survey or simulated to resemble the light curves of a

particular survey. Pruzhinskaya et al. (2019) used supernova light curves from multiple

Multi-survey classification and transfer learning 121

surveys, obtained through the Open Supernova Catalog (Guillochon et al., 2017) to

develop an anomaly detection algorithm, capable of identifying rare supernovae classes

and non-supernovae objects within the dataset. In this chapter, we present an approach

to use data from the Open Supernova Catalog to develop a classifier that is capable of

classifying supernova light curves from different surveys. The challenge in working with

light curves from different surveys is dealing with differences in how the photometry is

calibrated, and the different filters used when making observations. By having a classifier

that is agnostic to differences across different surveys, it allows the use of more available

real data so that model training is not limited to the size of a sample obtained from

just a single survey. We expand on the literature by applying a deep learning approach

to classification on a heterogeneous dataset of supernova light curves, combined from

multiple surveys which also allows access to a wider wavelength coverage in broadband

photometric observations.

One approach to working with a heterogeneous dataset is to find a way to standardise

the data, so that they are represented in a more uniform manner. Boone (2019) used

a Gaussian process to model simulated LSST light curves from the PLAsTiCC dataset,

by interpolating in both time and wavelength. Gaussian processes have also been used

to generate a two-dimensional representation of supernovae light curves (Qu et al., 2021;

Qu & Sako, 2021), which are then used as inputs to a convolutional neural network to

produce classifications. By using a Gaussian process to interpolate light curves in both

time and wavelength, it is possible to create a uniform representation of light curves

that consist of observations made in different filters. We use this approach to classify

supernova light curves from the Open Supernova Catalog (Guillochon et al., 2017).

A challenge in creating classifiers for new surveys is the lack of a labelled training set

with which to train a model with. Many machine learning and deep learning classification

methods assume that the training and test data come from the same distribution and

share a common feature space. When the distribution changes, the models need to

Multi-survey classification and transfer learning 122

be retrained again with a new labelled training set. In most cases, creating a new

labelled training set to account for the change in distribution can be extremely difficult.

Transfer learning (Pan & Yang, 2010) is an approach that uses the knowledge gained

in performing a task (e.g. classification) in one domain (e.g. data from one particular

survey) to perform another task in a different domain (e.g. data from a different survey).

We investigate the use of transfer learning to classify light curves from the PLAsTiCC

dataset (The PLAsTiCC team et al., 2018), transferring domain knowledge from the

task of classifying Open Supernova Catalog light curves.

In section 5.2 we introduce data from the Open Supernova Catalog, and in section

5.3 we present a two-dimensional Gaussian process to generate a two-dimensional rep-

resentation of supernova light curves. Section 5.4 introduces the convolutional neural

network used for classification. We present the results of classifying Open Supernova

Catalog data in section 5.5. We introduce transfer learning in section 5.6, the PLAs-

TiCC data in section 5.7, and results on classifying PLAsTiCC data in section 5.8. We

provide a discussion of the work presented in this chapter in section 5.9 and conclude

with section 5.10.

5.2 Open Supernova Catalog data

Supernovae light curves and metadata (such as the supernova classification obtained via

spectroscopy or through expert human inspection, any available spectroscopic data, and

the R.A. and Dec) were downloaded from the Open Supernova Catalog website 1. The

downloaded data consisted of supernovae discovered from before 1989 and up to the end

of 2019, totalling 80, 914 objects. All objects that were labelled as ’Candidate’ or other

non supernovae classes were discarded. Only objects that had been labelled as type Ia,

Ibc, or II (including all sub-classifications within those types) were kept.
1https://sne.space/download/

Multi-survey classification and transfer learning 123

5.2.1 Standardising magnitudes and filters

Figure 5.1: A plot of the effective wavelength λeff against the full width half-maximum
(FWHM) of the filters available in the Open Supernova Catalog dataset. Both λeff and
FWHM are given in Angstroms.

The light curves in the Open Supernova Catalog dataset consists of observations

that have been made with a variety of instruments across a number of different surveys.

Table A.1 in the appendix lists the filters used in the Open Supernova Catalog dataset,

along with the associated effective wavelengths and full width half-maxima. The data

tabulated in table A.1 was obtained from the Spanish Virtual Observatory (SVO) Filter

Profile Service (Rodrigo & Solano, 2020)2. The effective wavelength against full width

half-maximum for the filters listed in Table A.1 is plotted in Figure 5.1.

The dataset also contains photometry that have been generated using models or sim-

ulations, we discard these and only keep real photometric observations. Where available

we use the system column in the photometry data to identify which magnitude system

the data is calibrated to, otherwise the instrument column is used to identify which
2http://svo2.cab.inta-csic.es/theory/fps/

Multi-survey classification and transfer learning 124

Figure 5.2: Histograms of magnitudes in the AB system in the filters included in the
dataset. The red dashed line indicates the mean, and the shaded grey regions indicated
the 1σ, 2σ, and 3σ values - these are included for illustration purposes only. The filters
used include the Swift (UVW1, UVW2, UVM2) filters, the Johnson-Cousins filters, SDSS
ugrizy filters, and the Gaia G filter. The histogram in orange shows the distribution
over the whole dataset.

instrument was used to make the observation. The next step is then to convert all the

magnitudes so that they are in the same magnitude system. The majority of magni-

tudes in the dataset are given in the AB magnitude system, so we convert the rest of

the magnitudes into AB magnitudes. Magnitudes given in systems other than AB were

converted using Tables A.2, A.3, and A.4 listed in the appendix. Figure 5.2 shows the

distribution of AB magnitudes in each filter used in the dataset. After converting all

magnitudes into the AB system, the magnitudes are then converted into flux (in units

Multi-survey classification and transfer learning 125

of erg s−1 Hz−1 cm−2) using

mAB = −2.5 log10 fν − 48.60 (5.1)

where fν is the monochromatic flux. We introduced the AB magnitude system in Chapter

1.

5.2.2 Light curve trimming

Some light curves in the dataset span periods of up to multiple years due to seasonal

gaps, and where the only photometry available is the host galaxy without the supernova.

To shorten these longer light curves so that it covers the rise, peak, and decline of the

supernova, the steps listed below are taken. Figure 5.3 shows some example trimmed

light curves. We find that this method is good at isolating the rise, peak, and decline of

supernovae in the Open Supernova Catalog dataset.

• Split long light curves (longer than 300 days of observations) into shorter light

curve chunks if there is a gap in observations longer than 60 days

• Compare the standard deviation in magnitudes of each light curve chunk σchunk to

the standard deviation of the whole light curve σlc

• If σchunk < σlc, then that portion of the light curve is discarded.

5.2.3 Selection cuts

To create the dataset, the following selection cuts were made:

• Total number of observations in a the light curve is ≥ 6

• At least two or more filters used

Multi-survey classification and transfer learning 126

Figure 5.3: Light curves from the Open Supernova Catalog, before (left) and after trim-
ming (right).

• The average number of observations per filter is ≥ 2

• The length of observations spans at least 20 or more days

The cuts were made to ensure that the light curves had good coverage across multiple

wavelengths and in time, so that there was enough information in each light curve to

allow a model to learn to differentiate between the different classes.

Multi-survey classification and transfer learning 127

After the cuts, the number of remaining objects is 6330 of the total. The dataset is

split into 60% for training (3796 objects), 15% for validation (951), and 25% for testing

(1583). The data is split into three classes for the classification task: Ia, Ibc, and II. The

proportion of each class in the training, validation, and test set is the same. This is done

so that there are a good number of samples from each class in the validation and test

set so we can evaluate classification performance on the class with fewer examples (Ibc),

and enough examples to in the training set to learn from. Table 5.1 summarises how the

dataset is partitioned. Type Ia and II supernovae make up the majority of objects in

the dataset, with only a small amount of type Ibc supernovae in the data, presenting an

imbalanced dataset. Figure 5.4 shows some summary statistics of all the light curves in

the final dataset.

Type Training Validation Test All data
Ia 2145 (56.5%) 542 (57.0%) 883 (55.8%) 3570 (56.4%)
II 1563 (41.2%) 385 (40.5%) 657 (41.5%) 2605 (41.2%)
Ibc 88 (2.3%) 24 (2.5%) 43 (2.7%) 155 (2.4%)

Total: 3796 951 1583 6330

Table 5.1: A breakdown of how the Open Supernova Catalog dataset is divided for
training, validation, and testing, along with the class distribution of the three supernova
classes.

Multi-survey classification and transfer learning 128

Figure 5.4: Histograms showing the summary statistics of all the light curves in the final
dataset. Top left : the total number of observations in the light curve in all filters. Top
right : the number of filters in which observations were made. Bottom left : the average
observations per filter, obtained by counting the number of observations in each filter
and then dividing by the total number of filters used. Bottom left : the duration of the
light curve in days.

5.3 Gaussian processes for interpolation in time and

wavelength

5.3.1 Gaussian Processes

A Gaussian process is a generalisation of the Gaussian probability distribution (which de-

scribe random variables) and can be thought of as a distribution over functions. Gaussian

process regression attempts to find a function f(x) given a number of observed points

Multi-survey classification and transfer learning 129

y(x) that determines the value y(x′) for unobserved independent variables x′ (over a

finite interval of x′ values) by drawing from a distribution of functions. The distribu-

tion of functions is determined by selecting a covariance function, which specifies the

covariance between pairs of random variables. Covariance functions have adjustable hy-

perparameters, which determine the form of the Gaussian process prediction for f(x).

For a detailed discussion on Gaussian processes see Rasmussen & Williams (2005).

5.3.2 Two-dimensional Gaussian process regression

In order to create a uniform representation of light curves in different filters, we follow the

approach used in Qu et al. (2021) and Boone (2019), and use a two-dimensional Gaussian

process regression to interpolate the light curves in wavelength and time. We model the

light curves to create a two-dimensional image, referred to as a ’flux heatmap’ in Qu

et al. (2021) and Qu & Sako (2021), where flux is a function of time t and wavelength λ.

We label each flux measurement in all light curves in the dataset with the effective

wavelength λeff of the filter with which it was observed with. The values for λeff for each

filter are listed in table 5.2, and are obtained from the SVO Filter Profile Service (Rodrigo

& Solano, 2020)3. Observations covering wavelengths from the Swift UVW2 filter (with

λeff = 2085.73Å) up to the SDSS y filters (with λeff = 12355.0Å) were used. These filters

were used as the vast majority of observations in the dataset were made using filters

within this wavelength range. All flux values of each light curve are associated with

a time measurement t (time of observations) and a wavelength value λeff , the effective

wavelength of the filter used to make the observation. We scaled the time so that the

time of the first observations is t = 0.

As in Qu et al. (2021) and Boone (2019), we use the Matérn 3/2 kernel in our two-

dimensional Gaussian process, with a fixed characteristic length scale in wavelength of

2567.32Å, which is obtained by dividing the wavelength range covered by all the filters
3http://svo2.cab.inta-csic.es/theory/fps/

Multi-survey classification and transfer learning 130

Filter λeff (Å)
UVW2 2085.73
UVW1 2684.14
UVM2 2245.78

U 3751.0
B 4344.0
V 5456.0
R 6442.0
I 7994.0
J 12355.0
u 3546.0
g 4670.0
r 6156.0
i 7472.0
z 8917.0
y 10305.0

Table 5.2: The effective wavelengths λeff of the filters used to create flux heatmaps from
light curves.

in table 5.2 by 4. We note that this value is arbitrary, and that other values of fixed

characteristic length scale could be used. Boone (2019) find that their analysis on using

Gaussian processes to model light curves is not sensitive to the choice of the length scale

in wavelength, so we do not further investigate the choice of wavelength scale. We leave

the time length scale as a trainable parameter. The Matérn 3/2 kernel has the form

k(r) = σ2(1 +
√
3r) exp(−

√
3r) (5.2)

where σ2 is the variance parameter, which is left as a trainable parameter, and r is the

Euclidean distance between the input points, scaled by a length scale parameter l (which

can be set as a constant value or left as a trainable parameter):

r =
x1 − x2

l2
. (5.3)

The kernel used for the two-dimensional Gaussian process regression to model the light

Multi-survey classification and transfer learning 131

curves in wavelength and time is

k2D = σ2kλ(rλ)kt(rt) (5.4)

where rλ is the Euclidean distance between the wavelength input points, scaled by the

fixed wavelength length scale parameter, and rt is the Euclidean distance between the

time input points, scaled by the time length scale parameter.

The two-dimensional Gaussian process is trained on each light curve in the dataset,

and then used to predict flux measurements on a time-wavelength grid. The wavelength

dimension in the grid runs from 2085.73Å to 10305.0Å divided into 25 bins resulting

in a wavelength interval of 410.77Å, and the time dimension runs from 10 days before

and 110 days after the first observation with an interval of 1 day. The resulting flux

heatmap image has dimensions of 120 × 25 pixels, where each pixel represents a flux

measurement. Figure 5.5 shows example flux heatmaps. The flux heatmaps are used as

input for a convolutional neural network for classification.

5.3.3 Using two-dimensional Gaussian processes to infer spectra

from light curves

Here, we present the use of two-dimensional Gaussian processes as a method to infer

supernova spectra from their light curves. We select iPTF13bvn from the Open Super-

nova Catalog dataset as an example, a type Ib supernova that has good photometric

coverage in time and across multiple filters. Figure 5.6 shows the light curve, and the

corresponding flux heatmap generated with a two-dimensional Gaussian process.

We examine three spectra for iPTF13bvn, made available through the Open Super-

nova Catalog (Guillochon et al., 2017; Shivvers et al., 2019). To obtain the ‘simulated’

spectra from the flux heatmap, we take a single column at the time the spectra were

taken, giving a vector that measures flux as a function of wavelength. The time of ob-

Multi-survey classification and transfer learning 132

Figure 5.5: Examples of light curves (left) of SN2006kb (type Ia), SN2006lc (type Ibc),
and SN2007lj (type II) and the corresponding flux heatmaps (right) generated from using
a two-dimensional Gaussian process. The light curves are plotted as flux fν converted
from AB magnitudes in each filter against time. The heatmaps show flux (brighter pixels
indicating higher flux values) as a function of time (in days) and wavelength (in).

Multi-survey classification and transfer learning 133

servation of the spectra is scaled to the time of first observation in the light curve, so it

is given as the number of days since the first light curve observation. The real spectra

for iPTF13bvn are taken at 20.6, 23.7, and 47.5 days after the first light curve observa-

tion, so the corresponding simulated spectra are obtained by taking columns from the

flux heatmap at 20, 24, and 48 days after the first light curve observation. Figure 5.7

compares the real spectra of iPTF13bvn to the simulated spectra obtained from the flux

heatmap.

Figure 5.6: The light curve of the type Ib supernova iPTF13bvn (left) and its flux
heatmap generated from the light curve (right).

From Figure 5.7, it can be seen that the spectra generated from the flux heatmap cor-

relates quite well with the real spectra of iPTF13bvn. In all three spectra, the heatmap

generated spectra appear to trace the continuum shape. For the spectra obtained at 47.5

days, the heatmap generated spectrum correlates with the Ca II IR triplet emission fea-

ture at ∼ 8700Å. Although there is a correlation, there is a poor match between the real

spectrum and the heatmap generated spectrum which could be due to the width of the

red filters (see Figure 5.1). Here, we have shown one example where the two-dimensional

Gaussian process to create a flux heatmap can be used to generate low resolution spectra,

provided there is good photometric coverage across multiple filters.

Multi-survey classification and transfer learning 134

Figure 5.7: The spectra of iPTF13bvn are shown in black, and the spectra obtained from
the flux heatmap are shown in red. The time of the spectra is given as days from the
time of the first observation of the light curve. The spectra have been normalised (using
the maximum value for each individual spectra) and shifted for clarity.

5.4 Convolutional neural networks

5.4.1 Model architecture

Convolutional neural networks (CNNs) are used to process data that have spatial features

(e.g. a two-dimensional grid of pixels in an image, or a sequence of measurements in

time-series data where there may be one or more measurements at each time step). CNNs

were introduced in Chapter 2. We use a CNN to classify the flux heatmaps created from

the Open Supernova Cataolog light curves (section 5.3.2) into three different classes:

supernovae of types Ia, Ibc, and II. We build the CNN using the TensorFlow 2.0 package

for Python (Abadi et al., 2016)4 with Keras (Chollet et al., 2015) for implementation of
4https://www.tensorflow.org/

Multi-survey classification and transfer learning 135

Figure 5.8: A diagram of the convolutional neural network. The grey dashed box in-
dicates the layers that make up a convolutional block. The dimensions of the output
tensors in the layers in the convolutional blocks (Conv 1D, Conv 2D, Max Pooling 2D),
number of neurons in the dense layers (Dense), and the dropout fractions (Dropout) are
shown in parentheses.

network layers.

The input to the CNN is a two-dimensional flux heatmap image of a supernova light

curve, with dimensions 120× 25 pixels where each pixel represents a flux value. All flux

heatmaps are normalised by dividing by the highest flux value, so that the pixels in every

heatmap have values between 0 and 1. One caveat of this approach is that information

Multi-survey classification and transfer learning 136

about the supernova intrinsic brightness or distance is not included. We use a CNN with

three convolutional blocks, followed by two fully-connected layers before the final output

layer. Each convolutional block consists of a convolution layer, a batch normalisation

layer, and a 2 × 2 max pooling layer. Figure 5.8 illustrates the model architecture

used. For the convolutional and dense layers, the rectified linear unit (ReLU) activation

function is used, and in the final output layer the softmax activation function is used

to produce a list of probabilities that sum to unity. The probabilities returned by the

model are scores that describe the level of ‘belongingness’ to a class.

In the first convolutional block we apply a one-dimensional convolution (also called

a temporal convolution) in the time dimension instead of a standard two-dimensional

convolution. This is done since the flux heatmap is generated from a light curve which

measures the brightness of a supernova over time, so we attempt to extract temporal

features in the first convolutional block. The output of each convolutional block has

dimensions (nrows, ncolumns, nfilters), where nfilters is a convolutional layer parameter. Note

here that nfilters refers to the number of kernels used to generate feature maps as ex-

plained in Chapter 2. In the second and third convolutional blocks, a two-dimensional

convolution is applied to the output of the preceding convolutional block. Table 5.3 lists

the series of convolutions and max pooling applied in the convolutional blocks, with the

corresponding layer parameters and output dimensions at each stage.

The output of the last convolutional block is then flattened into a one-dimensional

vector and then passed on to two fully-connected layers, each with dropout applied

with the dropout fraction set to 0.5. We apply a L2 regularization in the second fully-

connected layer with a regularization parameter of 0.01, which is the default TensorFlow

value. The final output layer is a fully-connected layer with the same number of neurons

as the number of classes, which is three. In total, the CNN model has 536,003 trainable

parameters.

Multi-survey classification and transfer learning 137

Layer Kernel/Pool size Filters Output dimension
Conv 1D (5) 32 (25, 116, 32)

BatchNorm - - (25, 116, 32)
MaxPool 2D (2,2) - (13, 58, 32)

Conv 2D (3,3) 64 (11, 56, 64)
BatchNorm - - (11, 56, 64)
MaxPool 2D (2,2) - (6, 28, 64)

Conv 2D (3,3) 128 (4, 26, 128)
BatchNorm - - (4, 26, 128)
MaxPool 2D (2,2) - (2, 13, 128)

Flatten - - 3328

Table 5.3: The layer parameters and output dimension for each layer in the convolutional
blocks. For the convolutional layers, the kernel size is the shape of the convolutional
window and filters sets the number of convolutional filters that are learnt during training.
For the max pooling layers, the pool size sets the shape of the window over which to
take the maximum. The number of strides is one for the convolutional layers and two
for the max pooling layers. The flattening layer takes the multidimensional output of
the convolutions and shapes into a single dimensional output.

5.4.2 Model training

Figure 5.9: The training and validation loss for the CNN model trained on the Open
Supernova Catalog data.

The CNN model is trained on the Open Supernova Catalog flux heatmaps with a

learning rate of 1 × 10−5 for 1500 epochs with the Adam optimizer (Kingma & Ba,

2014), using a batch size of 128. Figure 5.9 shows how the training and validation loss

Multi-survey classification and transfer learning 138

evolve with training. Within 1500 epochs of training, both the training and validation

loss begin to converge (i.e. stops improving). We use the categorical cross entropy loss

function, weighted to take into account the class imbalance present in the data. The

class weight αi for class i is

αi =
1

n
× N

Ni

(5.5)

where n is the total number of classes, N is the total number of samples in the dataset,

and Ni is the number of samples in class i. The class weights are obtained using samples

in the training set.

The model is trained on an NVIDIA Quadro P2200 graphics processing unit with

1280 cores and 5GB of memory, which takes 4 seconds per epoch for a total time of

∼ 100 minutes to train the model.

5.5 Results on classifying Open Supernova Catalog data

Once the model has been trained, it is then used to make predictions on the test set. The

test set consists of data that is kept apart from the training and validation sets, and used

to evaluate how well the model is able to generalize on unseen data. On the testset, the

model achieves an area under the receiver operating characteristic curve (AUC) score of

0.859, and an F1 score of 0.708. Figure 5.10 shows the confusion matrix for the model

evaluated with the test set.

From the confusion matrix, the model shows good classification of Type Ia and II

supernovae with 92% (812) and 89% (586) accuracy for each class, respectively. The

performance for Type Ibc supernovae is poor, with the model only achieving 26% (11)

accuracy for that class and misclassifying 65% (28) of Type Ibc supernovae as Type

Ia. This may be due to the small number of samples of type Ibc supernovae in the

dataset, and the fact that it is also the class with the smallest number of samples. The

Multi-survey classification and transfer learning 139

Figure 5.10: Confusion matrix for the test set of heatmaps generated from the Open
Supernova Catalog light curves. The y-axis shows the true class label, and the x-axis
shows the class label predicted by the model. Entries along the diagonal represent
where the predicted label matches the true label, and the off-diagonal entries show where
misclassifications occur. Reading along the rows, the fractional values show how samples
from a class have been classified, with the absolute numbers below in parentheses.

majority of Type Ibc supernovae are misclassified as Type Ia, and it is known that it

can be challenging to differentiate between Type Ia and Type Ibc with only photometry

(Lochner et al., 2016). The misclassifications between Type Ia and Type II are quite

low, with ∼< 10% (61 for Type Ia and 66 for Type II) of each being misclassified as the

other.

5.6 Transfer learning

5.6.1 Overview

In the case of a classification task where there is a lack of labelled training data, the

ability to transfer classification knowledge from one domain to the new one is useful.

In astronomy, new surveys can experience the problem of a small or complete lack of a

Multi-survey classification and transfer learning 140

labelled training set since it can take time to accumulate enough sources and also label

them (e.g. using spectroscopy or visual inspection of the photometry). In the following

sections, we present the application of transfer learning to classify supernova light curves

from the Photometric LSST Astronomical Time Series Classification Challenge (PLAs-

TiCC) dataset (The PLAsTiCC team et al., 2018) by using classification knowledge from

Open Supernova Catalog light curves presented in the previous sections.

Transfer learning is defined as improving the learning of a target predictive function

(e.g classification, mapping inputs to a class) in a target domain DT using knowledge

from a source domain DS and source task TS (Pan & Yang, 2010). In this case, the target

domain is the PLAsTiCC dataset, the source domain is the Open Supernova Catalog

dataset, the source task is classifying Open Supernova Catalog light curves into one of

three classes (Ia, Ibc, II), and the target predictive function is classifying light curves

from the PLAsTiCC dataset.

5.6.2 The new classification task

Transfer learning can be used to borrow classification knowledge from one task in one

domain to another task in another domain, As defined above, the domains are the two

different datasets. We define a new classification task for the PLAsTiCC dataset, which

is different to the classification task presented in section 5.2. We select only supernova

from the PLAsTiCC dataset, and define six classifications (based on the PLAsTiCC

defined classifications in The PLAsTiCC team et al. (2018)): types Ia, Iax, Ia-91bg, Ibc,

II, SLSN-I. The classifications now divide type Ia supernovae into three sub-classes, and

and also include a new class, type I superluminous supernova (SLSN-I).

Multi-survey classification and transfer learning 141

5.7 PLAsTiCC data

The Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)

was launched in 2018 to challenge participants from the wider science community (open

to not just astronomers but experts in other fields such as computer science) to develop

classification algorithms or models to classify a large dataset of simulated LSST obser-

vations (The PLAsTiCC team et al., 2018). The dataset consisted of over 3.5 million

objects with a total of over 450 million observations, divided into a wide range of classes

(supernovae of various types, variable objects, tidal disruption events, and more), each

with light curves in six filters (LSST ugrizy) that include the fluxes and corresponding

errors, with the time of observation. The dataset contains labelled ∼ 8, 000 objects with

known types that formed a training set, which is ∼ 0.2% of the total dataset, with the

remainder comprising the test set. For each object, contextual information such as the

R.A. and Dec, galactic latitude and longitude, and host galaxy spectroscopic and pho-

tometric redshifts were available. Each object also had a flag indicating whether it was

observed under the wide-fast-deep (WFD) main survey, or was observed in one of the

LSST deep drilling fields (DDF).

The goals of the challenge were to identify classification methodologies that were able

to:

• Classify objects using photometric information in six filters

• Identify interesting objects for additional follow-up with spectroscopic instruments

The motivation for photometric classifiation arises from the fact that the number of

expected LSST nightly discoveries (approximately on the order of 106) greatly exceeds

the available spectroscopic resources. The light curves were generated using transient

and variable source models provided by the astronomical community, coupled with an

LSST operations simulator to generate realistic observing conditions (Kessler et al.,

Multi-survey classification and transfer learning 142

2019). The PLAsTiCC dataset presents its own unique set of challenges, such as the

presence of ‘seasonal gaps’ in the light curves where an object is not visible during

the observation campaign, a wide distribution of class sizes (with some classes having

only hundreds of examples vs. others having millions), and a training set that is not

representative in redshfit of the test set (to simulate a realistic training set obtained from

a spectroscopically confirmed sample).

5.7.1 Data selection

From the original PLAsTiCC dataset, we select only supernova objects of six types:

Ia, Iax, Ia-91bg, Ibc, II, SLSN-I. The light curves in the PLAsTiCC dataset span the

duration of the observing campaign and feature seasonal gaps when an object is not

observable. We use only photometry obtained from the image-subtraction pipeline (using

the flag detected_bool = 1), which removes the seasonal gaps and produces light curves

covering the period of supernova rise and decline. We also select only observations from

up to 20 days before and 100 days after the peak (which is taken as the maximum flux

measurement in any filter).

After applying the selection cuts, the final dataset consists of 397, 990 objects with

2, 398 remaining from the original training set. For the transfer learning process, we use

two training sets and compare their performance. The first is the original training set,

and the second is an augmented training set which is obtained by randomly sampling 3%

of the test set added to the original training set. No stratification is used when sampling

the test set, so the proportion of the six classes is unchanged, still presenting a class

imbalance problem. The test set with the 3% removed for creation of the augmented

training set is used as the test set for both the original training set and the augmented

training set, so that the models trained on the two training sets are evaluated on the same

test set. In both training sets, 10% is used for validation. Table 5.4 shows the breakdown

Multi-survey classification and transfer learning 143

of the PLAsTiCC dataset. The original PLAsTiCC training set contains fewer samples

than the Open Supernova Catalog training set. This transfer learning approach emulates

using classification knowledge from another domain after a small labelled training set

has been obtained for a new survey.

Type Training 1 Training 2 Test All data
Ia 1,136 (47.4%) 7,168 (50.5%) 197,884 (51.9%) 206,188 (51.8%)
Iax 115 (4.8%) 341 (2.4%) 6,730 (1.8%) 7,186 (1.8%)

Ia-91bg 78 (3.3%) 197 (1.4%) 4,151 (1.1%) 4,426 (1.1%)
Ibc 259 (10.8%) 1,082 (7.6%) 26,271 (6.9%) 27,612 (6.9%)
II 670 (27.9%) 4,735 (33.4%) 128,958 (33.8%) 134,363 (33.8%)

SLSN-I 140 (5.8%) 671 (4.1%) 17,404 (4.6%) 18,215 (4.6%)
Total: 2,398 14,194 381,398 397,990

Table 5.4: Breakdown of the PLAsTiCC dataset by type. The column labelled ’Training
1’ shows the original training set, and the column labelled ’Training 2’ shows the aug-
mented training set.

5.7.2 Creating heatmaps

We follow the same steps outlined in section 5.3, and use a two-dimensional Gaussian

process to generate heatmaps from the PLAsTiCC supernova light curves. The time

of observation was scaled so that the time of the first observation is t = 0. Each flux

measurement in a light curve are labelled with the time it was observed, and the effective

wavelength λeff of LSST filter it was observed in. Table 5.5 lists the effective wavelengths

for the LSST filters.

The light curves were then used to train a two-dimensional Gaussian process to create

flux heatmaps. A fixed characteristic wavelength scale of 2980.09Å was used, obtained by

dividing the wavelength range coverage of the filters by two. The time length scale and

variance parameter were left as trainable parameters. The flux heatmaps were generated

onto a grid, where −5 < t < 115 with a one-day interval and wavelength runs from

3751.36Å to 9711.53Å , divided into 25 bins giving an interval of 238.81Å. The flux

Multi-survey classification and transfer learning 144

Filter λeffλeffλeff(Å)
u 3751.36
g 4741.64
r 6173.23
i 7501.62
z 8679.19
y 9711.53

Table 5.5: The effective wavelength λeff of the LSST filters used to simulate observations
in the PLAsTiCC dataset. The values were obtained from the SVO Filter Profile service
Rodrigo & Solano (2020).

Figure 5.11: An example of a type Ia supernova light curve (left) and the flux heatmap
generated from the light curve (right). The interpolated flux from the two-dimensional
Gaussian process at the wavelength corresponding to the filter effective wavelength is
also plotted.

heatmaps have dimensions of 120 × 25 pixels, where each pixel represents a flux value.

Figure 5.11 shows an example light curve and the flux heatmap generated using the

two-dimensional Gaussian process.

5.7.3 Applying transfer learning to PLAsTiCC light curves

We compare two models on their classification performance on the PLAsTiCC dataset,

one with transfer learning and without. In both cases we examine how including redshift

information and using the augmented training set affects performance. We use the

Multi-survey classification and transfer learning 145

estimated host galaxy photometric redshift value in the PLAsTiCC data listed in the

hostgal_photoz column. We use the same CNN model architecture presented in section

5.4, but change the output layer to have six neurons (for the six classes in the PLAsTiCC

classification task). For the models that include redshift information, we append the

redshift value to the flattened output of the last convolutional block.

Transfer learning is implemented by setting the parameters of the convolutional block

as non-trainable parameters, a method known as ’freezing’ layers in a neural network.

The parameters in the convolutional blocks are fixed, and the model only changes the

parameters in the dense layers during training. The idea is that the ’knowledge’ of

extracting salient features from the heatmaps developed in the convolutional blocks of

the model trained on the Open Supernova Catalog is used to extract features from

heatmaps in the PLAsTiCC dataset. Since the only trainable parameters are those in

the dense layers, the model is then just tasked with learning the feature-class relationship

to group the data into different classes using the features extracted from the heatmaps.

For the models without transfer learning, all parameters are left as trainable pa-

rameters. In this case, the model has to learn to extract features from heatmaps in

the convolutional blocks as well as the feature-class relationship in the dense layers to

classify the heatmaps into the six classes. Since the models used in transfer learning

have fewer trainable parameters, the time needed to train them is less than the time

needed to train the models without transfer learning. The models were trained on a

NVIDIA Quadro P2200 graphics processing unit with 1280 cores and 5GB of memory,

and the models with transfer learning required 0.29s per epoch of training, while the

model without transfer learning required 0.51s per epoch. With transfer learning, the

models could be trained ∼ 56% faster. All models are trained for 500 epochs with a

learning rate of 1× 10−4. Figure 5.12 shows the training and validation loss for models

trained without transfer learning, and Figure 5.13 shows the training and validation loss

for models trained with transfer learning. From these figures, it can be seen that 500

Multi-survey classification and transfer learning 146

epochs is sufficient for the models to converge. The models trained on the augmented

training set without transfer learning suffer from overfitting, where the validation loss

begins to increase as the training loss continues to decrease.

(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure 5.12: Training and validation loss during training for models without transfer
learning.

Multi-survey classification and transfer learning 147

(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure 5.13: Training and validation loss during training for models with transfer learn-
ing.

5.8 Results on classifying PLAsTiCC light curves with

transfer learning

5.8.1 Models without transfer learning

After training, all models were evaluated on the test set. Figure 5.14 shows the confusion

matrices for the models trained without transfer learning, using the original and aug-

mented training set, with and without redshift information. Looking at the confusion

matrices for the original training set, the model achieves good accuracy (> 80%) for

type Ia and II supernovae, a medium level of accuracy for type Ibc, Ia-91bg, and SLSN-I

(> 60%), and poor accuracy for type Iax supernovae. The biggest sources of confusion

are type Iax and Ia-91bg being classified as Ia, and type Iax, Ibc, and SLSN-I being

Multi-survey classification and transfer learning 148

(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure 5.14: Confusion matrices for models without transfer learning, evaluated on the
test set.

classified as type II. When redshift information is included, there is no major sign of

improvement in performance.

When the augmented training set is used, there is a slight improvement in accuracy

for type II supernovae (and increase of ∼ 7% in accuracy), but no major change in

performance in the other classes. Including redshift information does not have any sig-

nificant improvement over the model without redshift information. There is an increase

in the number of type Iax being classified as type Ia, and fewer SLSN-I being classified

Multi-survey classification and transfer learning 149

as type II.

5.8.2 Models with transfer learning

Figure 5.15 shows the confusion matrices trained with transfer learning, using the original

and augmented training set, with and without redshift information. For models trained

on the original training set, both have slightly overall better performance over the same

models without transfer learning, with an increase in accuracy by a few percent across

most classes, and fewer misclassifications. When including redshift, there is no significant

improvement in performance.

Looking at the models trained with the augmented training set, the performance for

the model without redshift information is similar to the performance for the same model

without transfer learning. When redshift information is included, the performance of the

model with transfer learning is improved over the same model without transfer learning.

There is good accuracy for type Ia and II supernovae (> 80%), and improved accuracy

for type Ibc, Ia-91-bg, and SLSN-I (> 70%). There are fewer misclassifications overall

(< 15%), and the model trained with transfer learning and redshift information achieves

the best accuracy out of all models on type Iax (45%). We plot the difference between

the confusion matrices for the models trained with transfer learning and without, for

the augmented training set with redshift in Figure 5.16, to illustrate the change in

performance between the two models.

Table 5.6 shows the area under the receiver operating characteristic curve (AUC)

score and the F1 score for all trained models. The Hand & Till (2001) formulation is used

to obtain the multi-class AUC scores presented in Table 5.6. In both cases with models

trained with and without transfer learning, including redshift shows an improvement in

the AUC score, but not always an improvement in the F1 score. A higher AUC score

indicates that the model is able to produce fewer false positives, so when redshift is

Multi-survey classification and transfer learning 150

(a) Original training set, no redshift (b) Original training set, with redshift

(c) Augmented training set, no redshift (d) Augmented training set, with redshift

Figure 5.15: Confusion matrices for models with transfer learning, evaluated on the test
set.

included the models are able to make predictions that have slightly less contamination

at the small cost of not correctly classifying all true positive samples in each class.

We also examine how selecting a threshold for class membership reduces the number

of false positives in each class. Since the model makes predictions by producing a list

of scores that represent how likely an object belongs to a specific class, we can define

a threshold score so that if the score is above the threshold then the object belongs to

that class, and if it is below then it is considered to not belong to that class. Three

Multi-survey classification and transfer learning 151

Figure 5.16: The difference between the confusion matrix for models trained on the aug-
mented training set with redshift for with and without transfer learning. Positive values
along the diagonal indicate an improvement when transfer learning is used. Negative
values in the off diagonals indicate fewer misclassifications.

threshold values are selected: 0.5, 0.7, and 0.9. We consider the model trained with

transfer learning using the augmented training set and redshift information. For each

threshold value, any predictions that are below the threshold are excluded (looking at

the highest score out of the six classes). Table 5.7 lists the AUC score, F1 score, and

the fraction of samples retained at the different threshold values. Figure 5.17 shows the

confusion matrices for thresholds at 0.7 and 0.9. As the threshold value increases, the

AUC score and F1 score improves but the fraction of samples retained decreases.

Multi-survey classification and transfer learning 152

Model AUC F1F1F1

No transfer learning

Original, no redshift 0.893 0.624
Original, with redshift 0.895 0.614
Augmented, no redshift 0.924 0.680

Augmented, with redshift 0.921 0.669

With transfer learning

Original, no redshift 0.901 0.617
Original, with redshift 0.915 0.620
Augmented, no redshift 0.925 0.683

Augmented, with redshift 0.945 0.657

Table 5.6: AUC and F1 scores, trained on the original and augmented training sets with
and without redshift, for both with and without transfer learning.

(a) Augmented training set, with redshift,
at a threshold of 0.7

(b) Augmented training set, with redshift,
at a threshold of 0.9

Figure 5.17: Confusion matrices for the model with pre-training, trained on the aug-
mented training set with redshift at different thresholds.

Threshold AUC F1F1F1 Fraction retained
0.5 0.950 0.684 95.6%
0.7 0.960 0.752 83.2%
0.9 0.971 0.838 65.7%

Table 5.7: AUC and F1 scores for the transfer learning model trained on the augmented
training set with redshift, evaluated at different probability thresholds. The column on
the right shows the fraction of the test set retained when discarding predictions that are
below the threshold.

Multi-survey classification and transfer learning 153

5.9 Discussion

Here, we provide a discussion on the work presented in this chapter on how to classify

supernova light curves from multiple surveys, using a Gaussian process to create an image

representation of light curves, and how transfer learning can be useful when developing

classifiers for new surveys.

5.9.1 Classifying supernovae from multiple surveys

In order to classify the heterogeneous supernova light curve dataset, we use a two-

dimensional Gaussian process to model the light curves, and create a flux heatmap image

for each light curve where each pixel in the image represents flux, as a function of time

and wavelength. We also show that in the case where a supernova has good photometric

coverage in multiple filters (measuring the flux at different wavelengths), the Gaussian

process can be used to generate a low-resolution spectra of the supernova. Comparing

the real spectra and Gaussian process generated spectra of supernova iPTF13bvn, we

find that the two are comparable and the generated spectra does resemble the real

spectra. It is not guaranteed, however, that all supernovae will have the same quality

of photometric observations. Out of the original ∼ 80, 000 supernova light curves from

the Open Supernova Catalog, only 6,330 were used to generate flux heatmaps with a a

two-dimensional Gaussian process after selection cuts. A larger sample could be used,

but at the cost of lower quality light curves (i.e. poor sampling in time and lack of

multi-colour observations) which may result in poor fitting with Gaussian processes.

We used a convolutional neural network to classify the supernova flux heatmaps, since

the data is in a grid format which is well suited for the convolution operations carried

out in the neural network. The model is able to classify type Ia and II supernovae with

good accuracy, but the class imbalance in the dataset presents a challenge for classifying

type Ibc supernovae, since it is the class with the smallest number of samples and is

Multi-survey classification and transfer learning 154

not well represented in the training set. Deep learning approaches benefit from having

a large dataset to learn from, and we note that the Open Supernova Catalog dataset is

rather small for a deep learning application with less than 4,000 samples in the training

set.

5.9.2 Transfer learning for future surveys

We used a subset of 397, 990 supernova light curves from the PLAsTiCC dataset (The

PLAsTiCC team et al., 2018), and use the two-dimensional Gaussian process to generate

flux heatmaps from the light curves. For the PLAsTiCC dataset we split the data into

six classes, presenting a different classification task than the one for the Open Supernova

Catalog dataset. The original training set (containing 2,398 SNe) and an augmented

training set (containing 14,914) are used. Typically in most machine learning and deep

learning methods, the training set is larger than the test set. Here, we use training sets

that are much smaller than the test set to emulate the case where there is a scarcity of

labelled data (the training set) and a large amount of unlabelled data (the test set).

We demonstrate that it is possible to transfer knowledge between two different do-

mains (Open Supernova Catalog data and PLAsTiCC data) and two different classi-

fication tasks (three classes to six classes). The use of transfer learning shows a small

improvement over when no transfer learning is used (and the model is only trained on the

PLAsTiCC training set). We find the best increase in performance comes when redshift

information is included and the augmented training set is used. It is possible to obtain

better classifications with fewer misclassifications between classes when a threshold is

used to remove ‘unconfident’ classifications provided by the classifier.

A limitation of the two-dimensional Gaussian process approach used in this work is

the requirement for sufficiently good coverage across multiple photometric bands and also

in time. For future surveys such as LSST, this is dependent on the choice of observing

Multi-survey classification and transfer learning 155

strategy to provide a good enough cadence and wavelength coverage. The use of a two-

dimensional Gaussian process also relies on the full supernova light curve to create a

good flux heatmap representation.

5.10 Conclusion

In this chapter, we present an approach to classify Open Supernova Catalog light curves

from multiple surveys with a convolutional neural network by using a two-dimensional

Gaussian process to generate an image representation of supernova light curves. We find

that using this method achieves good classification when there is good representation of

the data in the training set. In the case of type Ibc classification, the performance is

poor since there is a lack of representation of type Ibc supernovae in the training set. For

classification tasks, it is important to have a good representative training set with good

coverage in feature space for all classes so that a model is able to learn the feature-class

relationship to make robust classifications.

We then investigate the usefulness of transfer learning in the context of future surveys

where theyre may be a lack of labelled data to form a training set with which to train

classifiers. The use of transfer learning shows a small improvement in classifiers compared

to when no transfer learning is used when classifying PLAsTiCC supernova light curves.

The addition of contextual information such as redshift and an augmented training set

provided the best improvement in classification performance, highlighting the importance

of a representative training set and the benefits of incorporating contextual information

when classifying light curves.

The methods presented in this chapter could also be extended to classifying light

curves of other non-supernova objects (such as variable stars, flare events, and AGN).

The flux heatmaps generated with the two-dimensional Gaussian process could be used

with a different neural network architecture such as a recurrent neural network, where

Multi-survey classification and transfer learning 156

each the input at each time step is a single column of the heatmap representing the

flux interpolated along wavelength. This would allow classifications to be obtained with

time, and also be used to classify partial light curves (unlike the full light curves used in

this chapter), where the Gaussian process is used to interpolate the light curves up to

the most recent observation as in Qu & Sako (2021).

A classification model that is agnostic to the different filters used across different

surveys would be useful in the near future of time-domain astronomy. New objects

observed by surveys such as LSST with the Vera Rubin Observatory could trigger follow-

up observations by various instruments world wide, which could be ingested by such a

model to provide fast early-time classifications to identify good candidates for time-

sensitive observations.

Chapter 6

Conclusions

157

Conclusions 158

In this final chapter we summarise the work presented in this thesis and provide some

concluding remarks of the results and findings of our work. We also present how the

recurrent neural network classifier presented in Chapter 4 can be adapted for two other

use cases (one in astronomy and one in the medical field), highlighting the flexibility

and utility of the classifier. We end with a discussion on some possible limitations of the

work in this thesis, and possible directions for future work.

6.1 Time-series classification in time-domain astron-

omy

We presented the use of a machine learning algorithm, the random forest, to classify

light curves from the Gravitational-wave Optical Transient Observer (GOTO) survey in

Chapter 3, and the use of a recurrent neural network to classify light curves from the

same survey but on a larger dataset in Chapter 4. In both instances, the datasets used

presented a class imbalance problem where some classes had much fewer examples com-

pared to other classes, and a combination of time-series information as well contextual

information were used to perform the classification. Here, we summarise the results of

classification on GOTO light curves, and key findings for the work presented in Chapters

3 and 4.

For the random forest classifier, the dataset of GOTO light curves consisted of 10,200

labelled light curves, divided into six classes. A set of handcrafted features were extracted

from the light curves to create a set of features that were used as inputs for the random

forest, including time-series features from the light curves, as well as additional contex-

tual information such as on-sky position and association with any nearby galaxies. To

deal with the imbalanced dataset, data augmentation was performed by drawing syn-

thetic samples in the feature space to increase the number of examples from minority

Conclusions 159

classes. Two random forest classifiers were trained on the original training set and on

the augmented training set. In both cases, the random forest provided adequate classifi-

cation for four out of seven classes (achieving between 56% to 79% accuracy for eclipsing

binaries, long-period variables, RR Lyrae stars and supernovae) but performed poorly on

the other two classes (which were classes with relatively few examples). Training on the

augmented training set showed an improvement for supernova classification. Exploring

the feature importance showed that contextual features were useful in discriminating

between Galactic sources and extra-galactic transients. Although useful, the random

forest classifier requires a feature extraction step on complete light curves and can only

provide classifications after an object has been observed for an extended duration.

A larger dataset of GOTO light curves was used to train a recurrent neural network

classifier, comprising light curves of 99,201 labelled objects, almost an order of magnitude

larger than the dataset used for the random forest classifier. The dataset was divided into

three broad but distinct classes: variable stars, active galactic nuclei, and supernovae.

Two separate inputs were provided to the recurrent neural network: the light curves as a

time-series input, and contextual information about the object. An alternative method

was used to deal with class imbalance to the data-level approach used for the random

forest classifier; the recurrent neural network was trained with loss functions weighted to

the number of samples in each class and the focal loss function (Lin et al., 2017) to heav-

ily penalise misclassified samples from minority classes. The recurrent neural network

classifier provided good classification for all three classes, and is able to provide good

classification on incomplete light curves with only a few observations. Recurrent neural

networks were trained with and without contextual information, and our findings showed

that classification performance improves when contextual information was included.

When developing classifiers for time-domain optical surveys, it is important to have a

representative training set with which to train the classifier. In Chapter 3, some classes

had an inadequate number of examples for the random forest classifier to learn from,

Conclusions 160

resulting in confusion between those minority classes with majority classes that had

many more examples. In Chapter 4, although there was still a class imbalance problem

present, each class in the training set contained enough examples so that the recurrent

neural network classifier could learn to differentiate between the different classes. It

also helped to reformulate the classification problem by grouping together similar classes

(e.g. different types of variable stars/eclipsing binaries into a single class) so that the

classification task is not too complex.

For time-series photometric classification, it is useful to include additional contextual

information relating to the objects to be classified where possible. Non time-dependent

information, such as the position of the object, benefits classifiers by giving additional

information to differentiate between different objects.

To be able to rapidly characterise interesting transients, a recurrent neural network

works better than a random forest to provide early classification when only a few ob-

servations of a new object are available. Early classification is useful, for example, to

identify supernovae before peak brightness to allow for follow-up observations for the

study the early-time behaviour of such transients.

6.2 Applications of a recurrent neural network to other

problems

6.2.1 Classifying Zwicky Transient Facility alerts

During an average night of observation with clear conditions, ZTF carries out approxi-

mately 700 science exposures, yielding about 1 TB of uncompressed data. The number

of 5σ alerts (where the signal-to-noise ratio of a candidate object is S/N > 5) that ZTF

generates every night varies from 105 to 3× 106 (Mahabal et al., 2019). The ZTF alerts

are made available to the public as ‘alert packets’, that contain image data of the object,

Conclusions 161

metadata specific to science, nearest cross-matches to objects in other catalogs, and the

history of the object for the past 30 days.

Figure 6.1: Example ZTF light curves. The light curves are scaled in time so that the
time of the first observation is zero.

We use a dataset of ZTF public alerts, with labels obtained by cross-matching with

the SIMBAD catalog and identifying alerts with available classifications on the Transient

Name Server (TNS). This dataset was used by Leoni et al. (2021) to train a classifier for

early Type Ia supernova identification with active learning, and made available through

a Zenodo online data repository1. Photometric information for the alerts in ZTF g and

r for this dataset was obtained through the FINK broker (Möller et al., 2020) interface.

Each alert contained a unique alert ID, a ZTF object ID, observation history of up to

30 days (given in g and r magnitudes, with corresponding errors), the R.A. and Dec,

and classifications obtained via cross-matching. We divide the alerts into six classes:

SN Ia, SN Ibc, SN II, SLSN, AGN/QSO, and Var/Star. The AGN/QSO and Var/Star
1https://zenodo.org/record/5645609#.YhipM1SnxUQ

Conclusions 162

Class Training Validation Testing
Var/Star 68,130 11,991 19,968

AGN/QSO 15,926 2,791 4,785
SN Ia 2,849 517 814
SN II 1,240 250 355
SN Ibc 245 38 75
SLSN 149 38 44

Table 6.1: The number of samples in each class for the ZTF alerts dataset.

classes were made following the SIMBAD classification schema, and contain objects that

are not supernovae. The supernovae classes were made following classifications provided

from TNS. Example light curves for each class are shown in Figure 6.1. Since each alert

contains the observation history of an object for up to 30 days, for objects that vary on

longer timescales than transients such as Var/Star and AGN/QSO there may be multiple

alerts for a single object. There were over 4 million alerts that were cross-matched to

SIMBAD, so we randomly remove duplicate alerts for each object so that each Var/Star

and AGN/QSO object had one alert. We only use alerts that had at least 3 observations

in both g and r bands. The final dataset consisted of 132,205 alerts. We divide the

alerts into 80% for training and 20% for testing, and of the training set we use 15% for

validation. Table 6.1 shows the class distribution of the ZTF alerts dataset, and it shows

that the dataset is imbalanced, with more Var/Star alerts compared to some supernova

classes (e.g. Type Ibc and superluminous supernovae).

We perform minimal preprocessing to the alerts, binning the light curve in both

bands into nightly bins, so observations made in one night are grouped together. Then

a matrix is constructed from the photometry information contained in each alert in the

following format:

XT =

t0 tN

g0 gN

r0 rN

 (6.1)

Conclusions 163

where t0, ..., tN are the times of observations up to N days after the first observation

scaled so that t0 = 0, gt is the g-band magnitude at t days and rt is the r-band magnitudes

at t days. If there is only an observation in one band at the same time-step, the missing

magnitude value is filled in using the mean magnitude of all other available magnitudes in

that band. We also include additional contextual information: the Galactic longitude and

latitude of the object which have been scaled so that they range from 0 to 1 for latitude,

and -1 to 1 for longitude. We also cross-match each alert to the GLADE catalogue

(Dálya et al., 2018) to find the on-sky separation to the nearest galaxy in arcminutes.

With this preprocessing method, approximately 50 alerts can be preprocessed per second

with an 8-core CPU. The combination of the light curve and contextual information are

used as inputs for the classifier.

We train a GRU recurrent neural network with focal loss, using the hyperparameters

listed in Table 6.2 for 500 epochs. Training was carried out on a NVIDIA Quadro P2200

graphics processing unit with 1280 cores and 5GB of memory, and took approximately

130 seconds per epoch of training. After training, the classifier was evaluated on the test

set, and we show the confusion matrix in Figure 6.2a.

Hyperparameter Value
Batch size 128
Learning rate 1× 10−4

LSTM/GRU output dimension 100
Dropout 0.4
Number of neurons in dense layers 128
Regularization factor λ 0.01
Focal loss γ 1.0

Table 6.2: Adjustable hyperparameters in the GRU RNN.

From the confusion matrix, we can see that there is good classification for Var/Star

and AGN/QSO but the performance for the supernova classes is sub-par, with confu-

sion occurring between supernova types. Some SLSNe are misclassified as AGN/QSO.

However, the classifier is able to distinguish most supernovae from the non-supernovae

Conclusions 164

(a) Confusion matrix on the ZTF alerts test
set.

(b) Confusion matrix on the ZTF alerts test
set, at a threshold of 0.6

Figure 6.2: Confusion matrices for the trained classifier evaluated on the test set.

Class
No threshold cut Threshold = 0.6
Precision Recall Precision Recall

Var/Star 99.5% 86.1% 99.7% 95.3%
AGN/QSO 86.3% 76.0% 92.2% 87.3%

SN Ia 45.5% 47.7% 75.5% 66.1%
SN II 17.8% 41.5% 33% 41.4%
SN Ibc 4% 57.4% 4.7% 41.2%
SLSN 1.6% 57.7% 2.3% 90%

Table 6.3: Precision and recall for each class.

objects. These results could benefit from additional exploration of hyperparameter space

and attempting alternative methods of light curve preprocessing for a recurrent neural

network (e.g. using interpolation methods to fill in missing obervations). We can re-

duce the number of false positives in each class by employing a classification probability

threshold as in Chapter 4. We show the confusion matrix when a threshold of 0.6 is

used in Figure 6.2b. In Table 6.3, we show the precision and recall for each class when

no threshold is used and when a threshold of 0.6 is used. The trained classifier is able

to classify the entire test set (26,401 alerts) in 5 seconds, and the preprocessing step can

Conclusions 165

process ∼ 50 light curves per second.

6.2.2 Categorizing heartbeats

Figure 6.3: Example ECGs for the five categories outlined in Kachuee et al. (2018)

Electrocardiograms (ECG) can be used to monitor the functionality of human car-

diovascular systems, and are widely used in medicine to monitor cardiac health. The

challenge in manually analysing ECG measurements is identifying and categorizing the

different features in the signals. Here, we apply the recurrent neural network presented

in Chapter 4 in an attempt to categorise a dataset of ECG heartbeat measurements. We

Conclusions 166

Label Description Number

N

• Normal
• Left/right bundle branch block
• Atrial escape
• Nodal escape

90,589

S

• Atrial premature
• Aberrant atrial premature
• Nodal premature
• Supra-ventricular premature

2,779

V • Premature ventricular contraction
• Ventricular escape 7,236

F • Fusion of ventricular and normal 803

Q
• Paced
• Fusion of paced and normal
• Unclassifiable

8,039

Table 6.4: A summary of the five categories of heartbeats with the number of measure-
ments for each category, from Kachuee et al. (2018)

use the MIT-BIH Arrhythmia Database (Moody & Mark, 2001), which has been prepro-

cessed and categorised into five different types of heartbeats (Kachuee et al., 2018).

The dataset contains 109,446 ECG measurements of single heartbeats in a 1.4s time

windows, sampled with a frequency of 125Hz, and normalised so the signal values range

from zero to one. Each sequence had a length of 187 elements. The different categories of

heartbeats are tabulated in Table 6.4, along with the number of measurements for each

type. For a more detailed discussion on the dataset, preprocessing, and categorisation,

see Kachuee et al. (2018). Examples of ECG measurements for each category are shown

in Figure 6.3.

The dataset was divided into 87,554 samples for training, and 21892 for testing, with

similar class proportions for both training and test. Out of the training set, 10% was used

for validation. From Table 6.4, it can be seen that the dataset is imbalanced, making

it well suited for a test case with the focal loss approach to dealing with imbalance in

recurrent neural networks. We trained a single GRU recurrent neural network with focal

loss, with a GRU output dimension of 100, 128 neurons in the dense layers, a focal loss

Conclusions 167

gamma value of 1.0 for 100 epochs at a learning rate of 1 × 10−4 using a batch size of

256. We show the confusion matrix of the classifier evaluated on the test set in Figure

6.4.

N S V F Q
Predicted label

N

S

V

F

Q

Tr
ue

 la
be

l

0.86
(15562)

0.07
(1302)

0.04
(732)

0.02
(368)

0.01
(154)

0.26
(145)

0.71
(392)

0.02
(13)

0.00
(2)

0.01
(4)

0.05
(66)

0.00
(1)

0.91
(1323)

0.03
(44)

0.01
(14)

0.04
(7)

0.01
(1)

0.07
(12)

0.88
(142)

0.00
(0)

0.01
(11)

0.01
(10)

0.02
(26)

0.00
(0)

0.97
(1561)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.4: ECG classification confusion matrix, evaluated on the test set.

From the confusion matrix, we see that the classifier is able to achieve good classi-

fication across all classes. There is some degree of confusion between the ‘N’ and ‘S’

type heartbeats. The classifier is able to achieve good classifications for the classes

where there were relatively fewer samples (‘Q’ and ‘F’), highlighting the usefulness of

the focal loss when dealing with imbalanced data. The results shown here were obtained

with minimal hyperparameter exploration. Further work could include optimising over a

grid of hyperparameters, or incorporating additional information into the classifier (e.g.

additional patient information) as ‘contextual information’ as done in Chapter 4.

Conclusions 168

6.3 Classifying data from multiple surveys

In Chapter 5, we presented a method to classify supernova light curves from multiple

surveys. Supernova light curves from different surveys were obtained from the Open

Supernova Catalog (Guillochon et al., 2017) to create a heterogeneous dataset (i.e. one

where the samples in the dataset may not necessarily come from the same distribution).

We used a two-dimensional Gaussian process to generate standardised flux heatmaps

(using a similar approach used by Qu et al. (2021)) from the supernova light curves.

Data with a grid-like topology are well suited for convolutional neural networks, which

we used to classify the supernova flux heatmaps. Due to the limited sample size, the

classifier struggles to classify Type Ib/c supernova, but is able to classify Type Ia and

Type II supernovae with good accurcacy.

We also apply transfer learning, by taking a classifier trained on Open Supernova

Catalog supernova light curves and applying it to a subset of supernova light curves from

the PLAsTiCC dataset (The PLAsTiCC team et al., 2018). The motivation behind this

is to ‘borrow’ expertise from one domain and apply it to a different domain. We generated

flux heatmaps from PLAsTiCC supernova light curves with the same two-dimensional

Gaussian process used for the Open Supernova Catalog supernova light curves, and

compare convolutional neural networks trained with and without transfer learning. The

use of transfer learning showed improvement in classification for a number of classes in

the PLAsTiCC dataset, and including photometric redshift information provided a small

improvement to overall classification.

Large ground-based time-domain surveys such as the Vera Rubin Observatory Legacy

Survey of Space and Time will be able to discover millions of transients during its cam-

paign, but with an expected cadence of ∼ 3 days in its main survey strategy (Ivezić et al.,

2019), it will be useful to utilise additional facilities to provide auxiliary observations

(for increased time and also wavelength coverage). A classifier that can aggregate data

Conclusions 169

from different facilities to provide classifications will be useful in this regard. Transfer

learning can be useful in developing classifiers for new surveys, where there is a lack of

labelled data to create a training set. A classifier trained on data from other surveys can

be used to develop an initial classifier for a new survey, which can be refined as the new

survey progresses.

6.4 Limitations

The main work presented in this thesis is focused on the task of supervised classifica-

tion for optical time-domain ground-based surveys. In this context, machine learning

and deep learning is used to learn a mapping from a set of inputs (e.g. light curves

and contextual information) to a set of outputs (pre-defined classes of objects). The

expected outputs are known beforehand, which are the different classes of time-varying

astronomical objects. These are usually well-understood, with theoretical understanding

and models built on decades of observational data to provide a physical description of

such objects, and how they differ from one another. This highlights the first limitation

of the work presented in this thesis: we provide a means of classifying new objects into

already established classes, but not how to identify new kinds of transients. The second

limitation is that we provide a ‘static’ description of machine learning and deep learn-

ing in time-domain surveys. In reality, time-domain surveys will continually make new

discoveries, and classifiers will need to be re-trained to ‘keep up’ with the incoming data

stream.

The task of identifying new and unknown objects that do not fall into any classes of

known objects falls under anomaly detection. Given a set of known objects with a known

distribution, a new object may be discovered that lies outside the known distribution,

which can be considered anomalous. Anomaly detection has been applied to identify

anomalous objects in the Open Supernova Catalog using an isolation forest (Pruzhin-

Conclusions 170

skaya et al., 2019), identifying non-supernovae events or instances of rare supernova

classes. On average, an anomalous object will traverse fewer splits to reach a node in a

tree compared to common objects, and this distance can be used as an anomaly score.

A real-time approach to anomaly detection has been developed by Muthukrishna et al.

(2021) applied to ZTF survey data. A model is used to predict the future photometric

evolution of a transient given its past observations, and anomaly score is calculated us-

ing the discrepancy from the prediction to the observation. This approach was able to

identify rare classes of transients such as kilonovae and superluminous supernovae with

respect to common supernovae classes.

An outstanding challenge of developing classifiers for new surveys is the scarcity of

labelled objects to create a training set. Active learning is a field of machine learning

that tackles the problem of maximising the performance of a classifier by constructing

a training set with a minimum number of labels. This is done by iteratively identifying

samples in the test set that would give the best improvement in a classifier if it were

included as part of a labelled training set. Ishida et al. (2018) used an active learning

approach to select the best supernova candidates for spectroscopic follow-up, to create

an optimised labelled training set for supernova photometric classification.

6.5 Future work

We have shown how the recurrent neural network classifier can be used to classify ZTF

alerts. This can be incorporated into a transient broker such as FINK (Möller et al.,

2020). Transient brokers such as FINK, and others (LASAIR; Smith et al. (2019),

ALeRCE; Förster et al. (2020)) ingest data from large surveys such as ZTF, and dis-

tribute them to the scientific community. This is done in preparation for LSST, which

will generate an order of magnitude more data per night than ZTF, and to trial the data

processing and distribution pipelines. Our classifier can be used to provide initial clas-

Conclusions 171

sifications for ZTF alerts using their light curves, and be used to provide classification

reports as part of the broker ‘eco-system’.

In Chapter 4, we generated a high-dimensional output of the recurrent neural network

that carries some feature representation of the data. This data representation could be

fed into an anomaly detection algorithm, to identify anomalous objects. Both supervised

and unsupervised classifications are useful in astronomical surveys: supervised classifi-

cation provides utility and automation by classifying new objects into known classes,

and unsupervised classification acts as a facilitator for specific science goals that utilise

observations of rare and novel objects or even discovery of new transients.

In this thesis, we have used a random forest, a recurrent neural network, and a convo-

lutional neural network, which have been widely used in astronomy with much success.

Although they achieve good results, however, there may be algorithms or network ar-

chitectures that are better suited for time-series photometric classification. Temporal

convolution networks (TCNs) have been shown as a viable alternative to recurrent neu-

ral networks for processing transient light curves, and are faster to train (Muthukrishna

et al., 2021).

Observing astronomical objects is not only limited to optical wavelengths; space-

based observatories such as the James Webb Space Telescope (Gardner et al., 2006),

eROSITA (Predehl et al., 2021) and radio array observatories such as Square Kilometer

Array (Dewdney et al., 2009) are able to observe at wavelengths beyond the optical, from

X-ray to radio - the techniques presented in this thesis could be applied for classification

of transients visible in other wavelengths. Machine learning has been applied to classify

radio transient and variable sources using features extracted from radio light curves with

a random forest (Sooknunan et al., 2018). We have shown how machine learning and

deep learning can be used to provide classifications in the discovery process of time-

domain surveys operating in optical wavelengths. This is just a means to an end; the

task of automated classification provides utility and enables further scientific study of

Conclusions 172

individual objects in a new ‘Big Data’ era of astronomy.

Bibliography

Abadi, M., Barham, P., Chen, J. et al 2016, in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16) Tensorflow: A system for large-scale
machine learning. pp 265–283

Abbott, B.P., Abbott, R., Abbott, T.D. et al 2016, Physical Review Letters, 116, 061102

Abbott, B.P., Abbott, R., Abbott, T.D. et al 2017, ApJL, 848, L12

Abbott, B.P., Abbott, R., Abbott, T.D. et al 2017, , 119, 161101

Abbott, B.P., Abbott, R., Adhikari, R. et al 2009, Reports on Progress in Physics, 72,
076901

Acernese, F., Agathos, M., Agatsuma, K. et al 2015, Classical and Quantum Gravity,
32, 024001

Aihara, H., Arimoto, N., Armstrong, R. et al 2018, Publications of the Astronomical
Society of Japan, 70, S4

Aizerman, M.A., Braverman, E.A. and Rozonoer, L. 1964, in Automation and Remote
Control, No. 25 in Automation and Remote Control„ Theoretical foundations of the
potential function method in pattern recognition learning.. pp 821–837

Baldwin, J.A., Phillips, M.M. and Terlevich, R. 1981, PASP, 93, 5

Ball, N.M. and Brunner, R.J. 2010, International Journal of Modern Physics D, 19, 1049

Baltay, C., Rabinowitz, D., Hadjiyska, E. et al 2013, PASP, 125, 683

Baron, D. 2019, arXiv e-prints, p. arXiv:1904.07248

Bellm, E.C. 2018, arXiv e-prints, p. arXiv:1802.10218

Bellm, E.C., Kulkarni, S.R., Graham, M.J. et al 2019, PASP, 131, 018002

Betoule, M., Kessler, R., Guy, J. et al 2014, A&A, 568, A22

Bishop, C.M. 2006, Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg

173

BIBLIOGRAPHY 174

Blanton, M.R. and Roweis, S. 2007, AJ, 133, 734

Bloom, J.S. and Richards, J.W. 2012, Data Mining and Machine Learning in Time-
Domain Discovery and Classification. Chapman and Hall/CRC, pp 89–112

Bloom, J.S., Richards, J.W., Nugent, P.E. et al 2012, PASP, 124, 1175

Boone, K. 2019, The Astronomical Journal, 158, 257

Breeveld, A.A., Landsman, W., Holland, S.T. et al 2011, in McEnery J. E., Racusin
J. L., Gehrels N., eds, Gamma Ray Bursts 2010 Vol. 1358 of American Institute of
Physics Conference Series, An Updated Ultraviolet Calibration for the Swift/UVOT.
pp 373–376

Breiman, L. 2001, Machine Learning, 45, 5

Breiman, L., Friedman, J., Stone, C. et al 1984, Classification and Regression Trees.
Taylor & Francis

Brink, H., Richards, J.W., Poznanski, D. et al 2013, MNRAS, 435, 1047

Burhanudin, U.F., Maund, J.R., Killestein, T. et al 2021, MNRAS, 505, 4345

Cabral, J.B., Sánchez, B., Ramos, F. et al 2018, Astronomy and Computing, 25, 213

Carrasco-Davis, R., Cabrera-Vives, G., Förster, F. et al 2019, PASP, 131, 108006

Carrick, J.E., Hook, I.M., Swann, E. et al 2020, arXiv e-prints, p. arXiv:2012.12122

Charnock, T. and Moss, A. 2017, ApJL, 837, L28

Chatzimparmpas, A., Martins, R.M. and Kerren, A. 2020, arXiv e-prints, p.
arXiv:2002.06910

Chawla, N.V., Bowyer, K.W., Hall, L.O. et al 2002, J. Artif. Int. Res., 16, 321–357

Cho, K., van Merrienboer, B., Bahdanau, D. et al 2014, arXiv e-prints, p.
arXiv:1409.1259

Chollet, F. et al, 2015, Keras, https://keras.io

Chornock, R., Berger, E., Kasen, D. et al 2017, ApJL, 848, L19

Cortes, C. and Vapnik, V. 1995, Mach. Learn., 20, 273–297

Coulter, D.A., Foley, R.J., Kilpatrick, C.D. et al 2017, Science, 358, 1556

Dálya, G., Galgóczi, G., Dobos, L. et al 2018, MNRAS, 479, 2374

Dark Energy Survey Collaboration 2016, MNRAS, 460, 1270

https://keras.io

BIBLIOGRAPHY 175

Dauphin, F., Hosseinzadeh, G., Villar, V. et al 2020, in American Astronomical Society
Meeting Abstracts American Astronomical Society Meeting Abstracts, Photometric
Classification of Transients from the Pan-STARRS1 Medium-Deep Survey. p. 276.18

De, K., Kasliwal, M.M., Ofek, E.O. et al 2018, Science, 362, 201

Dewdney, P.E., Hall, P.J., Schilizzi, R.T. et al 2009, IEEE Proceedings, 97, 1482

Djorgovski, S.G., Drake, A.J., Mahabal, A.A. et al 2011, arXiv e-prints, p.
arXiv:1102.5004

Drake, A.J., Djorgovski, S.G., Mahabal, A. et al 2009, ApJ, 696, 870

Drout, M.R., Piro, A.L., Shappee, B.J. et al 2017, Science, 358, 1570

Duev, D.A., Mahabal, A., Masci, F.J. et al 2019, MNRAS, 489, 3582

Dyer, M.J. 2020, PhD thesis, University of Sheffield, UK

Dyer, M.J., Steeghs, D., Galloway, D.K. et al 2020, arXiv e-prints, p. arXiv:2012.02685

Fawcett, T. 2006, Pattern Recognition Letters, 27, 861

Filippenko, A.V. 1997, ARAA, 35, 309

Foley, R.J., Challis, P.J., Chornock, R. et al 2013, ApJ, 767, 57

Foley, R.J., Chornock, R., Filippenko, A.V. et al 2009, The Astronomical Journal, 138,
376

Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E. et al 2020, arXiv e-prints, p.
arXiv:2008.03303

Friedman, J.H. 2001, The Annals of Statistics, 29, 1189

Gaia Collaboration 2018, A&A, 616, A10

Gal-Yam, A. 2012, Science, 337, 927

Gal-Yam, A. 2019, Annual Review of Astronomy and Astrophysics, 57, 305

Galama, T.J., Vreeswijk, P.M., van Paradijs, J. et al 1998, Nature, 395, 670

Gardner, J.P., Mather, J.C., Clampin, M. et al 2006, Space Science Reviews, 123, 485

Gehrz, R.D., Truran, J.W., Williams, R.E. et al 1998, PASP, 110, 3

Gieseke, F., Bloemen, S., van den Bogaard, C. et al 2017, MNRAS, 472, 3101

Goodfellow, I., Bengio, Y. and Courville, A. 2016, Deep Learning. The MIT Press

Graves, A. 2013, CoRR, abs/1308.0850

BIBLIOGRAPHY 176

Guillochon, J., Parrent, J., Kelley, L.Z. et al 2017, ApJ, 835, 64

Hamuy, M., Phillips, M.M., Suntzeff, N.B. et al 1996, AJ, 112, 2391

Hand, D. and Till, R. 2001, Hand, The, 45, 171

Hernanz, M. 2005, in Hameury J.-M., Lasota J.-P., eds, The Astrophysics of Cataclysmic
Variables and Related Objects Vol. 330 of , Classical nova explosions. p. 265

Hochreiter, S. and Schmidhuber, J. 1997, Neural Comput., 9, 1735–1780

Hosenie, Z., Lyon, R., Stappers, B. et al 2020, MNRAS, 493, 6050

Hosseinzadeh, G., Dauphin, F., Villar, V.A. et al 2020, arXiv e-prints, p.
arXiv:2008.04912

Ioffe, S. and Szegedy, C., 2015, Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift

Ishida, E.E.O., Beck, R., González-Gaitán, S. et al 2018, Monthly Notices of the Royal
Astronomical Society, 483, 2

Ivezić, Ž., Kahn, S.M., Tyson, J.A. et al 2008, ArXiv e-prints, p. arXiv:0805.2366

Ivezić, Ž., Kahn, S.M., Tyson, J.A. et al 2019, ApJ, 873, 111

Johnson, J. and Khoshgoftaar, T. 2019, Journal of Big Data, 6, 27

Justesen, N., Bontrager, P., Togelius, J. et al 2017, arXiv e-prints, p. arXiv:1708.07902

Kachuee, M., Fazeli, S. and Sarrafzadeh, M. 2018, CoRR, abs/1805.00794

Kaiser, N., Burgett, W., Chambers, K. et al 2010, , 7733, 7733

Kasliwal, M.M. 2011, PhD thesis, California Institute of Technology

Kasliwal, M.M., Kulkarni, S.R., Arcavi, I. et al 2011, ApJ, 730, 134

Kasliwal, M.M., Kulkarni, S.R., Gal-Yam, A. et al 2012, The Astrophysical Journal, 755,
161

Kasliwal, M.M., Kulkarni, S.R., Gal-Yam, A. et al 2010, The Astrophysical Journal
Letters, 723, L98

Kessler, R., Conley, A., Jha, S. et al 2010, arXiv e-prints, p. arXiv:1001.5210

Kessler, R., Narayan, G., Avelino, A. et al 2019, PASP, 131, 094501

Khazov, D., Yaron, O., Gal-Yam, A. et al 2016, ApJ, 818, 3

Killestein, T.L., Lyman, J., Steeghs, D. et al 2021, MNRAS, 503, 4838

BIBLIOGRAPHY 177

Kingma, D.P. and Ba, J. 2014, arXiv e-prints, p. arXiv:1412.6980

Kochanek, C.S., Shappee, B.J., Stanek, K.Z. et al 2017, PASP, 129, 104502

Krawczyk, B. 2016, Progress in Artificial Intelligence, 5, 221

Krisciunas, K., Contreras, C., Burns, C.R. et al 2017, AJ, 154, 211

Kulkarni, S.R. 2013, The Astronomer’s Telegram, 4807

Kulkarni, S.R., Ofek, E.O., Rau, A. et al 2007, Nature, 447, 458

Kullback, S. and Leibler, R.A. 1951, Ann. Math. Statist., 22, 79

Law, N.M., Kulkarni, S.R., Dekany, R.G. et al 2009, PASP, 121, 1395

Leavitt, H.S. and Pickering, E.C. 1912, Harvard College Observatory Circular, 173, 1

Lecun, Y. 1989, Generalization and network design strategies. Elsevier

LeCun, Y., Boser, B., Denker, J.S. et al 1989, Neural Comput., 1, 541–551

Lemaître, G., Nogueira, F. and Aridas, C.K. 2017, Journal of Machine Learning Re-
search, 18, 1

Leoni, M., Ishida, E.E.O., Peloton, J. et al 2021, arXiv e-prints, p. arXiv:2111.11438

Li, W., Filippenko, A.V., Chornock, R. et al 2003, PASP, 115, 453

Lin, H.W., Chen, Y.T., Wang, J.H. et al 2018, Publications of the Astronomical Society
of Japan, 70, S39

Lin, T.Y., Goyal, P., Girshick, R. et al 2017, arXiv e-prints, p. arXiv:1708.02002

Liu, J., Soria, R., Wu, X.F. et al 2021, An. Acad. Bras. Ciênc. vol.93 supl.1, 93, 20200628

Lochner, M., McEwen, J.D., Peiris, H.V. et al 2016, The Astrophysical Journal Supple-
ment Series, 225, 31

LSST Science Collaboration, Abell, P.A., Allison, J. et al 2009, arXiv e-prints, p.
arXiv:0912.0201

Mahabal, A., Rebbapragada, U., Walters, R. et al 2019, Publications of the Astronomical
Society of the Pacific, 131, 038002

Maoz, D., Mannucci, F. and Nelemans, G. 2014, Annual Review of Astronomy and
Astrophysics, 52, 107

Margutti, R., Metzger, B.D. and Chornock, R.e.a. 2019, ApJ, 872, 18

Maund, J.R., Crowther, P.A., Janka, H.T. et al 2017, Philosophical Transactions of the
Royal Society of London Series A, 375, 20170025

BIBLIOGRAPHY 178

Maund, J.R. and Smartt, S.J. 2005, MNRAS, 360, 288

Metzger, B.D., Martínez-Pinedo, G., Darbha, S. et al 2010, Monthly Notices of the Royal
Astronomical Society, 406, 2650

Mitchell, T.M. 1997, Machine Learning. McGraw-Hill, New York

Modjaz, M., Gutiérrez, C.P. and Arcavi, I. 2019, Nature Astronomy, 3, 717

Möller, A. and de Boissière, T. 2020, MNRAS, 491, 4277

Möller, A., Peloton, J., Ishida, E.E.O. et al 2020, MNRAS

Mong, Y.L., Ackley, K., Galloway, D. et al 2020, arXiv e-prints, p. arXiv:2008.10178

Moody, G. and Mark, R. 2001, IEEE Engineering in Medicine and Biology Magazine,
20, 45–50

Muthukrishna, D., Mandel, K.S., Lochner, M. et al 2021, arXiv e-prints, p.
arXiv:2111.00036

Muthukrishna, D., Narayan, G., Mandel, K.S. et al 2019, PASP, 131, 118002

Narayan, G., Zaidi, T., Soraisam, M.D. et al 2018, ApJS, 236, 9

Nun, I., Protopapas, P., Sim, B. et al 2015, arXiv e-prints, p. arXiv:1506.00010

Oke, J.B. and Gunn, J.E. 1983, ApJ, 266, 713

Pan, S.J. and Yang, Q. 2010, IEEE Transactions on Knowledge and Data Engineering,
22, 1345

Pasquet, J., Pasquet, J., Chaumont, M. et al 2019, A&A, 627, A21

Pastorello, A., Mason, E., Taubenberger, S. et al 2019, Astronomy Astrophysics, 630,
A75

Pedregosa, F., Varoquaux, G., Gramfort, A. et al 2011, Journal of Machine Learning
Research, 12, 2825

Perley, D.A., Fremling, C., Sollerman, J. et al 2020, The Astrophysical Journal, 904, 35

Perley, D.A., Mazzali, P.A. and Yan, L.e.a. 2019, MNRAS, 484, 1031

Perlmutter, S., Aldering, G., Goldhaber, G. et al 1999, ApJ, 517, 565

Phillips, M.M. 1993, ApJL, 413, L105

Poznanski, D., Chornock, R., Nugent, P.E. et al 2010, Science, 327, 58

Predehl, P., Andritschke, R., Arefiev, V. et al 2021, A&A, 647, A1

BIBLIOGRAPHY 179

Pruzhinskaya, M.V., Malanchev, K.L., Kornilov, M.V. et al 2019, MNRAS, 489, 3591

Qu, H. and Sako, M. 2021, arXiv e-prints, p. arXiv:2111.05539

Qu, H., Sako, M., Möller, A. et al 2021, AJ, 162, 67

Quimby, R.M., Aldering, G., Wheeler, J.C. et al 2007, ApJ, 668, L99

Rasmussen, C.E. and Williams, C.K.I. 2005, Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press

Rau, A., Kulkarni, S.R., Law, N.M. et al 2009, PASP, 121, 1334

Revsbech, E.A., Trotta, R. and van Dyk, D.A. 2018, MNRAS, 473, 3969

Richards, J.W., Starr, D.L., Butler, N.R. et al 2011, ApJ, 733, 10

Riess, A.G., Filippenko, A.V., Challis, P. et al 1998, The Astronomical Journal, 116,
1009

Rodrigo, C. and Solano, E. 2020, in XIV.0 Scientific Meeting (virtual) of the Spanish
Astronomical Society The SVO Filter Profile Service. p. 182

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. 1986, Nature, 323, 533

Scalzo, R.A., Yuan, F., Childress, M.J. et al 2017, PASA, 34, e030

Shappee, B.J., Prieto, J.L., Grupe, D. et al 2014, ApJ, 788, 48

Shappee, B.J., Simon, J.D., Drout, M.R. et al 2017, Science, 358, 1574

Shivvers, I., Filippenko, A.V., Silverman, J.M. et al 2019, MNRAS, 482, 1545

Smartt, S.J. 2009, Annual Review of Astronomy and Astrophysics, 47, 63

Smartt, S.J., Chen, T.W., Jerkstrand, A. et al 2017, Nature, 551, 75

Smith, K.W., Williams, R.D., Young, D.R. et al 2019, Research Notes of the AAS, 3, 26

Smith, M., D’Andrea, C.B., Sullivan, M. et al 2020, The Astronomical Journal, 160, 267

Sooknunan, K., Lochner, M., Bassett, B.A. et al 2018, arXiv e-prints, p.
arXiv:1811.08446

Srivastava, N., Hinton, G., Krizhevsky, A. et al 2014, Journal of Machine Learning
Research, 15, 1929

Starrfield, S., Iliadis, C. and Hix, W.R. 2016, PASP, 128, 051001

Steeghs, D., Galloway, D., Ackley, K. et al 2021, Monthly Notices of the Royal Astro-
nomical Society

BIBLIOGRAPHY 180

Sullivan, M. 2013, Astronomy & Geophysics, 54, 6.17

Takahashi, I., Suzuki, N., Yasuda, N. et al 2020, Publications of the Astronomical Society
of Japan

The PLAsTiCC team, Allam, Tarek, J., Bahmanyar, A. et al 2018, arXiv e-prints, p.
arXiv:1810.00001

Tonry, J.L. 2011, Publications of the Astronomical Society of the Pacific, 123, 58

Tonry, J.L., Denneau, L., Heinze, A.N. et al 2018, Publications of the Astronomical
Society of the Pacific, 130, 064505

Trouille, L., Barger, A.J. and Tremonti, C. 2011, arXiv e-prints, p. arXiv:1110.0008

Valenti, S., Benetti, S., Cappellaro, E. et al 2008, Monthly Notices of the Royal Astro-
nomical Society, 383, 1485

Valenti, S., David, J.S., Yang, S. et al 2017, The Astrophysical Journal Letters, 848, L24

van der Maaten, L. and Hinton, G. 2008, Journal of Machine Learning Research, 9, 2579

Véron-Cetty, M.P. and Véron, P. 2010, A&A, 518, A10

Villar, V.A., Berger, E., Miller, G. et al 2019, ApJ, 884, 83

Villar, V.A., Guillochon, J., Berger, E. et al 2017, ApJL, 851, L21

Watson, C.L., Henden, A.A. and Price, A. 2006, Society for Astronomical Sciences An-
nual Symposium, 25, 47

Wenger, M., Ochsenbein, F., Egret, D. et al 2000, A&A Suppl., 143, 9

Werbos, P.J. 1990, Proceedings of the IEEE, 78, 1550

Wright, D.E., Smartt, S.J., Smith, K.W. et al 2015, MNRAS, 449, 451

Zhang, J., Wang, X., Vinkó, J. et al 2018, ApJ, 863, 109

Appendix A

Filters and magnitude conversions
Open Supernova Catalog light curves

Filter λeffλeffλeff FWHM
SDSS u′ 3542.19 614.25
SDSS g′ 4724.6 1434.93
SDSS r′ 6202.58 1392.09
SDSS i′ 7673.03 1564.83
SDSS z′ 10506.54 5117.17
Pan-STARRS g 4810.88 1256.27
Pan-STARRS r 6156.36 1404.4
Pan-STARRS w 5985.87 3625.0
Pan-STARRS open 6439.35 5020.68
Pan-STARRS i 7503.68 1296.71
Pan-STARRS z 8668.56 1034.32
Pan-STARRS y 9613.45 628.19
Swift UVW2 2085.73 584.89
Swift UVM2 2245.78 527.13
Swift UVW1 2684.14 656.6
Swift U 3520.95 778.49
Swift white 3885.68 3866.59
Swift B 4346.25 978.33
Swift V 5411.43 744.99
EFOSC U 3572.7 530.98
EFOSC B 4345.36 1011.22
EFOSC V 5457.99 1133.39
EFOSC R 6416.14 1667.47
ZTF g 4722.74 1320.55
ZTF r 6339.61 1557.05
ZTF i 7886.13 1522.14

181

Filters and magnitude conversions for Open Supernova Catalog light curves 182

SITe3 u 3670.92 404.4
SITe3 B 4394.17 964.87
SITe3 g 4734.32 1487.5
SITe3 V 5358.16 864.15
SITe3 r 6185.57 1321.94
SITe3 i 7585.98 1366.52
CFH12K B 4311.67 990.37
CFH12K V 5338.0 973.98
CFH12K R 6516.05 1250.9
CFH12K I 8090.53 2163.85
CFHT U 3890.07 607.39
CFHT G 4781.92 1447.11
CFHT R 6515.87 1250.9
CFHT I 8090.45 2163.85
CFHT Z 8777.99 925.28
DECam u 3857.11 256.06
DECam g 4770.83 1299.43
DECam r 6371.33 1484.35
DECam i 7774.19 1481.73
DECam z 9157.9 1471.42
DECam Y 9886.35 660.79
ATLAS cyan 5183.87 2291.8
ATLAS orange 6632.15 2577.94
CRTS clear 5618.41 5668.12
Gaia Gbp 5017.28 2520.03
Gaia G 5845.67 4372.44
Gaia Grp 7593.4 2794.54
MEGACam u 3751.88 516.26
MEGACam g 4722.38 1537.58
MEGACam r 6336.47 1478.52
MEGACam i 7641.47 1526.57
MEGACam z 8972.59 730.84

Table A.1: The effective wavelength λeff and full width half-maximum (FWHM) of filters
used in the Open Supernova Catalog dataset, given in angstroms.

Filters and magnitude conversions for Open Supernova Catalog light curves 183

Filter AB - Vega
V -0.01
B -0.13
U +1.02
UVW1 +1.51
UVM2 +1.69
UVW2 +1.73

Table A.2: Conversion table for Swift magnitudes given in the Vega system into AB
magnitudes, obtained from Breeveld et al. (2011)

Filter AB - Vega
U 0.79
B -0.09
V 0.02
R 0.21
I 0.45
u 0.91
g -0.08
r 0.16
i 0.37
z 0.54
J 0.91
H 1.39
Ks 1.85

Table A.3: Conversion table for Vega magnitudes into AB magnitudes, obtained from
Blanton & Roweis (2007)

Filters and magnitude conversions for Open Supernova Catalog light curves 184

Filter AB - CSP
u -0.06
g -0.02
r -0.01
i 0.00
B -0.013
V -0.02
YRC 0.63
J 0.90
HRC 1.34
YWIRC 0.64
JWIRC 0.90
HWIRC 1.34

Table A.4: Conversion table for magnitudes given in the Carnegie Supernova Project
(CSP) system into AB magnitudes, obtained from Krisciunas et al. (2017)

Appendix B

List of Publications

This is a list of publications from the work I have done during my PhD.

• Burhanudin, U. F.; Maund, J. R.;Killestein, T.; Ackley, K.; Dyer, M. J.; Lyman,
J.; Ulaczyk, K.; Cutter, R.; Mong, Y. -L.; Steeghs, D.; Galloway, D. K.; Dhillon,
V.; O’Brien, P.; Ramsay, G.; Noysena, K.; Kotak, R.; Breton, R. P.; Nuttall, L.;
Pallé, E.; Pollacco, D.; Thrane, E.; Awiphan, S.; Chote, P.; Chrimes, A.; Daw,
E.; Duffy, C.; Eyles-Ferris, R.; Gompertz, B.; Heikkilä, T.; Irawati, P.; Kennedy,
M. R.; Levan, A.; Littlefair, S.; Makrygianni, L.; Mata-Sánchez, D.; Mattila, S.;
McCormac, J.; Mkrtichian, D.; Mullaney, J.;Sawangwit, U.; Stanway, E.; Starling,
R.; Strøm, P.; Tooke, S.; Wiersema, K., 2021, MNRAS, 5, 4345, "Light-curve
classification with recurrent neural networks for GOTO: dealing with imbalanced
data"1.

1Presented in Chapter 4

185

y e b o i i i i

	Introduction
	Explosive transients
	Novae eruptions
	Luminous red novae
	Supernovae
	Fast blue optical transients
	Gravitational Waves & Kilonovae

	Studying variability
	Current and future surveys
	The Palomar Transient Factory
	The Zwicky Transient Facility
	The Gravitational-wave Optical Transient Observer
	LSST

	Challenges of time-domain surveys
	This thesis

	Machine learning in time-domain astronomy
	Introduction
	Object classification in astronomy
	Machine learning
	Defining machine learning
	Supervised learning in the time domain

	Machine learning algorithms for classification
	Tree-based classifiers
	Support Vector Machines
	Artificial neural networks
	Applications of machine learning for classification in transient astronomy

	Deep learning
	Neural networks
	Network parameter optimisation
	Gradient descent
	Error backpropagation
	Deep neural networks for classification
	Applications of deep learning for classification in transient astronomy

	Overfitting and underfitting
	Metrics of performance

	Photometric classification for the Gravitational-wave Optical Transient Observer with machine learning
	Introduction
	GOTO data
	Feature extraction
	Features
	Features from the data

	Data augmentation
	Data challenges in time-domain surveys
	Data augmentation with SMOTE

	Random Forest for classification
	Hyperparameter optimization
	Results
	Discussion
	Conclusion

	Photometric classification for the Gravitational-wave Optical Transient Observer with recurrent neural networks
	Introduction
	Data
	Data preprocessing

	Model
	Recurrent Neural Networks
	Mixed input network
	Class imbalance

	Method
	Hyperparameters
	Training process

	Results
	Hyperparameter optimisation
	Test set performance
	Time-dependent performance
	Importance of contextual information with t-SNE

	Discussion
	Handling class imbalance in deep neural network architectures
	Contextual information

	Conclusion

	Classification of supernova light curves from multiple surveys and transfer learning for future surveys
	Introduction
	Open Supernova Catalog data
	Standardising magnitudes and filters
	Light curve trimming
	Selection cuts

	Gaussian processes for interpolation in time and wavelength
	Gaussian Processes
	Two-dimensional Gaussian process regression
	Using two-dimensional Gaussian processes to infer spectra from light curves

	Convolutional neural networks
	Model architecture
	Model training

	Results on classifying Open Supernova Catalog data
	Transfer learning
	Overview
	The new classification task

	PLAsTiCC data
	Data selection
	Creating heatmaps
	Applying transfer learning to PLAsTiCC light curves

	Results on classifying PLAsTiCC light curves with transfer learning
	Models without transfer learning
	Models with transfer learning

	Discussion
	Classifying supernovae from multiple surveys
	Transfer learning for future surveys

	Conclusion

	Conclusions
	Time-series classification in time-domain astronomy
	Applications of a recurrent neural network to other problems
	Classifying Zwicky Transient Facility alerts
	Categorizing heartbeats

	Classifying data from multiple surveys
	Limitations
	Future work

	Filters and magnitude conversions Open Supernova Catalog light curves
	List of Publications

