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Abstract

Prediction of occurrence of an event in a patients’ lifecourse is gradu-
ally becoming very important in this era of stratified medicine. With
the availability of vast amounts of data in the form of Electronic Med-
ical Records (EMRs), many risk prediction models (RPMs) have been
developed for use in predicting future events in a patients’ journey.
RPMs use joint information collected from multiple predictors to pro-
vide a prospective insight into future ‘potential’ outcomes. Recent
research developments indicate that there is a keen interest amongst
researchers to develop RPMs that can be used to predict future events
using routinely available information with optimum accuracy. Im-
provements in the prediction accuracy of RPMs would provide better
quality guidance to health care policy makers in decision making pro-
cess. Most of RPMs suffer from methodological shortcomings due
to the inherent heterogeneity which causes patients to have differ-
ent underlying risk profiles and therefore respond differently to treat-
ment. Ignoring heterogeneity can affect the performance of RPMs
which may lead to bias and poor estimation of the underlying risk for
individuals. This thesis explores the benefits of using causal reason-
ing combined with latent variable methods to systematically improve
prediction modelling. Throughout the thesis, the potential benefit of
incorporating causal assumptions while predicting health outcomes is
introduced through a lifecourse perspective using simulated datasets.
Specifically, the thesis examines a latent class Cox proportional haz-
ards (PH) model compared to the standard statistical modelling ap-
proaches typically adopted that do not explicitly accommodate popu-
lation heterogeneity. The thesis also compares the Cox neural network
approach which uses machine learning principles against the latent
class Cox PH model. Lastly, this thesis explores the idea of predict-
ing change, which is a composite outcome, using simulated datasets
representing different possible data-generating scenarios and how this
can enhance the RPMs.



Contents

1 Introduction 1

1.1 Risk prediction modelling in Health . . . . . . . . . . . . . . . . . 1

1.2 Limitations of statistical methods that are commonly used for risk

prediction in Health . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Possible ways of addressing heterogeneity in predictive modelling . 7

1.4 Research aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Research hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Contributions to the literature . . . . . . . . . . . . . . . . . . . . 13

2 Overview of the Statistical and Machine Learning Methods 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 General notation and Terminology . . . . . . . . . . . . . . . . . . 16

2.3 Introduction to Survival Analysis . . . . . . . . . . . . . . . . . . 16

2.3.1 The Cox PH Model . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Model assumptions . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . 19

v



2.4 Introduction to Latent Class Analysis and Latent Class regression

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 The Latent Class Regression model . . . . . . . . . . . . . 22

2.4.2 The latent class regression Cox proportional hazards Model 23

2.5 Structural Equation Models and Wright’s rules . . . . . . . . . . . 25

2.5.1 Wright’s Rules for calculating a total association between

any two variables in a path diagram . . . . . . . . . . . . . 26

2.6 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Training process . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.2 The detailed steps in back propagation . . . . . . . . . . . 34

2.8 The Cox-nnet model . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.1 The Cox-nnet software package . . . . . . . . . . . . . . . 39

2.8.2 Training the Cox-nnet models . . . . . . . . . . . . . . . . 42

2.9 Performance evaluation of the models . . . . . . . . . . . . . . . . 42

2.9.1 General steps followed when calculating the c-index . . . . 43

2.9.2 Calculating the c-index for the Latent class Cox regression

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Using directed acyclic graphs (DAGs) to facilitate the data sim-

ulation process: An observation study 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Advantages of simulating using a DAG compared to simu-

lating directly from models with the specific distributions

and covariance structure . . . . . . . . . . . . . . . . . . . 48

vi



3.1.2 Overview of the illustrative examples . . . . . . . . . . . . 49

3.2 Procedure taken when simulating data . . . . . . . . . . . . . . . 50

3.3 Prediction of Change: Simulation 1 . . . . . . . . . . . . . . . . . 53

3.3.1 Dag 1: X0-Y0 orthogonal . . . . . . . . . . . . . . . . . 56

3.3.2 Dag 2: X0 confounds Y0 . . . . . . . . . . . . . . . . . 57

3.3.3 Dag 3: X0 mediates Y0 . . . . . . . . . . . . . . . . . . 58

3.3.4 Description of the DAGS . . . . . . . . . . . . . . . . . . . 59

3.4 Prediction of Survival or death in a heterogenous population: Sim-

ulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 An illustration of Wright’s Rules: Application to a DAG

depicting a temporal order of variables . . . . . . . . . . . 68

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Predicting change-scores and follow-up outcomes in an observa-

tional study setting; evaluation and recommendations 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Data generating mechanisms . . . . . . . . . . . . . . . . . 77

4.2.3 Estimand . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.5 Performance measures . . . . . . . . . . . . . . . . . . . . 85

4.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Assessing the predictive acuity and clinical utility of survival

vii



prognostication amongst UK-HEART study patients using Sta-

tistical Modelling techniques 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Aims of this chapter . . . . . . . . . . . . . . . . . . . . . 102

5.2 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Variable selection and Model specification . . . . . . . . . 103

5.3.2 Latent class model evaluation and classification diagnostic

statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3 Model selection and validation . . . . . . . . . . . . . . . . 106

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Evaluating the performance of Latent Class regression models

using simulations that respect a causal process 122

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.2 Data generating mechanisms . . . . . . . . . . . . . . . . . 126

6.2.3 Estimand . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.5 Performance Measures . . . . . . . . . . . . . . . . . . . . 130

6.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

viii



7 A Cox neural network (Cox-nnet) model for survival prediction139

7.1 Review of Applications of Machine learning (ML) in Survival pre-

diction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Application of Cox-nnet Model to UK-Heart study data . . . . . . 143

7.2.1 Application of the Cox neural network . . . . . . . . . . . 144

7.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3.1 Choice of an optimal regularisation parameter for the Cox-

nnet Model . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3.2 Comparison with the standard Cox proportional Hazards

Model and the Latent Class Cox regression model . . . . . 154

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Conclusions 160

8.1 Summary of main findings . . . . . . . . . . . . . . . . . . . . . . 160

8.2 Limitations of current work and proposed further work . . . . . . 163

8.3 Conclusions and recommendations . . . . . . . . . . . . . . . . . . 167

A Supplementary details for Chapter 2 168

A.1 Partial loglikelihood for the Cox PH model . . . . . . . . . . . . . 168

A.2 Partial loglikelihood for the Cox-nnet model . . . . . . . . . . . . 171

A.3 An illustration of the risk set . . . . . . . . . . . . . . . . . . . . 172

B Supplementary details for Chapter 4 175

B.1 Change-score simulation R-code . . . . . . . . . . . . . . . . . . . 175

C Supplementary details for Chapter 5 189

C.1 Rcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

ix



D Supplementary details for Chapter 6 202

D.1 Rcode for simulations . . . . . . . . . . . . . . . . . . . . . . . . . 202

References 232

x



List of Tables

4.1 Summary of the parameters for the Scenarios in which X0 and Y0

are orthogonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Summary of the parameters for the Scenarios in which X0 con-

founds Y0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Summary of the parameters for the Scenarios in whichX0 mediates

Y0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Summary of correlation structure for the predictors that were in-

cluded in the models. The predictors were selected from X0, U0.

The baseline outcome variable, Y0 was forcibly included as a pre-

dictor in each model. The last two columns indicate the set of

predictors retained for the best ANCOVA and change-score mod-

els, respectively, according to BIC . . . . . . . . . . . . . . . . . . 87

4.5 Summary of correlation structure for the predictors that were in-

cluded in the models. The predictors were selected from X0, U0

and Y0. The last two columns are the set of predictors retained for

the best ANCOVA and change-score models, respectively, accord-

ing to BIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



4.6 Summary of the correlation structure for the predictors that were

included in the models. The predictors were selected from X0, U0

and Y0 is forcibly ignored in both models. The last two columns

indicate the root mean square error values for the model with Y1

and ∆Y as outcomes . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Descriptive characteristics of the study cohort. . . . . . . . . . . . 109

5.2 Latent class analysis (LCA) model summaries – the preferred model

from this step was used in Procedures 2 and 3. . . . . . . . . . . . 110

5.3 Latent class regression model with model fit statistics. . . . . . . 111

5.4 Covariate coefficients for each preferred model (Procedures 1-4)

executed on the complete data, along with median c-index and

empirical 95% empirical confidence intervals generated through 10-

fold cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Summary of the odds ratios for the preferred Latent class regression

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Descriptive characteristics for the 2-class Cox proportional hazards

latent class regression model. . . . . . . . . . . . . . . . . . . . . . 113

5.7 A summary of the performance for each model under 10-fold cross

validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Summary of the eight scenarios for which data were simulated as

the basis on which the performance and practical utility of stan-

dard 1-class Cox PH vs. 2-class Cox PH LCR models was evaluated

in the present study together with a brief description of the distinct

causal features within each of these scenarios. . . . . . . . . . . . 127

xii



6.2 Covariance and correlation matrices derived for each of the eight

scenario-specific datasets; together with model c-statistics and other

summary measures, for standard 1-class Cox PH and 2-class Cox

PH LCR models using all three {X1, X2, X3}vs. only the two most

recent {X2, X3} candidate predictors as continuous variables to

jointly predict survival together with C. Values are in red where

the standard model on average outperforms the LCR model. . . . 133

6.3 Covariance and correlation matrices derived for each of the eight

scenario-specific datasets; together with model c-statistics and other

summary measures for standard (1-class) Cox PH and 2-class Cox

PH LCR models using all three {X1, X2, X3} vs. only the two

most recent {X2, X3} candidate predictors as binary variables to

jointly predict survival together with C. Values are in red where

the standard model on average outperforms the LCR model. . . . 134

6.4 A comparison of the median percentage improvement (+) or dete-

rioration (-) in c-statistics achieved by 2-class Cox PH LCR mod-

els vs. standard 1-class PH models and median percentage in c-

statistics achieved by models involving 2 vs. 3 candidate predic-

tors, disaggregated by the parameterisation of predictors as either

continuous or dichotomous. . . . . . . . . . . . . . . . . . . . . . 138

7.1 Performance evaluation for cross-validated Cox-nnet models with

different network architectures . . . . . . . . . . . . . . . . . . . . 152

7.2 A summary of performance for three models based on 10-fold cross

validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xiii



A.1 A sample dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.2 Risk set and likelihood contribution . . . . . . . . . . . . . . . . . 174

xiv



List of Figures

2.1 A path diagram depicting causal relations between wet-bulb de-

pression (B), wind velocity (W), radiation (R), and temperature

(T) taken from (Wright, 1921a). . . . . . . . . . . . . . . . . . . . 28

2.2 A DAG showing a confounder (C), exposure (E) , mediator (M)

and an outcome (O) . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 A typical feed forward neural network comprising three layers with

n input nodes and k hidden nodes and g output nodes. x0 is the

bias term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 A general architecture of a single hidden layer Cox-nnet with n

input nodes and k hidden nodes in the hidden layer and an out-

put node also called the Cox regression layer. A bias term x0 is

connected to each node in the hidden layer. . . . . . . . . . . . . 39

3.1 X0-Y0 orthogonal & no U0 confounding. . . . . . . . . . . . . . . . 56

3.2 X0-Y0 orthogonal and U0 confounds X0. . . . . . . . . . . . . . . . 56

3.3 X0-Y0 orthogonal & U0 confounds Y0. . . . . . . . . . . . . . . . . 56

3.4 X0-Y0 orthogonal & U0 confounds X0 & Y0. . . . . . . . . . . . . . 56

3.5 X0 confounds Y0 & no U0 confounding. . . . . . . . . . . . . . . . 57

xv



3.6 X0 confounds Y0 & U0 confounds X0. . . . . . . . . . . . . . . . . 57

3.7 X0 confounds Y0 & U0 confounds Y0. . . . . . . . . . . . . . . . . 57

3.8 X0 confounds Y0 & U0 confounds X0 & Y0. . . . . . . . . . . . . . 57

3.9 X0 confounds Y0 & no U0 confounding. . . . . . . . . . . . . . . . 58

3.10 X0 mediates Y0 & no U0 confounding. . . . . . . . . . . . . . . . . 58

3.11 X0 mediates Y0 & U0 confounds Y0. . . . . . . . . . . . . . . . . . 58

3.12 X0 mediates Y0 & U0 confounds X0 & Y0. . . . . . . . . . . . . . . 58

3.13 A hypothetical temporal-causal diagram depicting the causal rela-

tionships amongst three predictors (X1, X2 and X3), one latent

class (C), and the outcome (death/survival; S) in a simulated

observational setting where preceding covariates act as potential

causes of all subsequent variables, including class and/or death/-

survival. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.14 In the temporal-causal diagram of Figure 3.13, path coefficients are

either constant or summarised for all three scenarios considered.

The key paths that mediate distal and intermediate predictor influ-

ence to the outcome via population heterogeneity are given dotted

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.15 A hypothetical causal diagram for an observational study setting. 69

3.16 A hypothetical causal diagram for an observational study setting. 71

4.1 (a) Predictors for the outcome Y1 with Y0 included by default (b)

Predictors for the outcome ∆Y with Y0 included by default . . . . 88

4.2 Predictors for the outcome Y1 selected from X0, U0 and Y0. . . . . 90

4.3 Predictors for the outcome ∆Y selected from X0, U0 and Y0. . . . 91

xvi



4.4 A graph showing the difference between the solution spaces for

predictors selected in a model with Y as the outcome vs another

model with ∆Y as the outcome as shown in Figure 4.2 and Figure 4.3 92

4.5 (a) Predictors for the outcome Y1 selected from X0 and U0 with

Y0 forcibly excluded; (b) predictors for the outcome ∆Y selected

from X0 and U0 with Y0 forcibly excluded; and (c) the difference

between graph (a) and graph (b); upper-case letters are used depict

selected predictors for the outcome, ∆Y but not for outcome Y1

, and lower-case letters depict selected predictors for outcome Y1

but not for outcome ∆Y . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 A Scree-Plot showing fit-values for Latent Class Analysis Models . 114

5.2 A Scree-Plot showing fit-values for Latent Class Regression Models. 115

7.1 A single hidden layer Cox neural network with four input nodes

and one hidden node and a single output node. x0 is the bias term. 146

7.2 A single hidden layer Cox neural network with four input nodes,

two hidden nodes and an output node. Each node in the hidden

layer has a bias term b0 . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3 A single hidden layer Cox neural network with 4 input nodes and

10 hidden nodes and 1 output node. . . . . . . . . . . . . . . . . . 148

7.4 A single hidden layer Cox neural network with 4 input nodes and

4 hidden nodes and 1 output node. x0 is the bias term. . . . . . . 149

7.5 A Scree-Plot for the mean cross-validated likelihoods against the

fitted L2 parameter values . . . . . . . . . . . . . . . . . . . . . . 151

xvii



7.6 Graph showing Cost vs Iterations for a Cox neural network model

with 2 nodes in the hidden layer . . . . . . . . . . . . . . . . . . 153

7.7 A boxplot for the distribution of the c-statistic for three models . 156

xviii



Chapter 1

Introduction

1.1 Risk prediction modelling in Health

A risk prediction model (RPM) is a mathematical model that uses patient data

(e.g. patients’ demographic information, type of medication, genetic information

etc. ) obtained from a research study to estimate the probability of a patient ex-

periencing a particular outcome (e.g. death or disease onset) in the future (Grant

et al., 2018). Prediction of occurrence of events (e.g. mortality, hospital admission

and readmission, disease onset, critical events in intensive care units (ICUs), etc.

) is increasingly becoming important in medical research. With the availability of

huge amounts of data in the form of Electronic Medical Records (EMRs), many

risk prediction models have been developed for use in predicting future events in

a patient’s lifecourse. With the escalating costs related to the delivery of care,

developing accurate prognostic RPMs would offer massive help by providing guid-

ance to physicians and health care policy makers in decision making on treatment

allocation, especially amongst patients in high risk groups. This would help in

1



allocation of resources to patients in need and subsequently reduce the overall

cost of care.

There are different regression methods that are widely used to develop risk pre-

diction models. The choice of method depends on the type of outcome under

consideration. The outcome can be binary (e.g. death), categorical (e.g. blood

group) or continuous (e.g. blood pressure or time to disease onset). The common

regression models that are used for risk prediction in medical research are linear

regression models, e.g. (Gaudart et al., 2004), logistic regression models e.g. (Ze-

mek et al., 2016), and Cox proportional hazards regression models, e.g. (Sabouri

et al., 2020). This is what constitutes the traditional modelling methods.

Traditional modelling methods assume homogeneity in the population (i.e. the

relationship between an outcome and independent predictors is assumed to be the

same for the whole population), which is not usually the case, especially when

the population is heterogeneous.

This is only compounded when RPMs combine information from multiple pre-

dictors, to jointly provide prospective insight into future potential outcomes, e.g.

30-day mortality in patients suffering from an acute myocardial infarction (Steyer-

berg and Vergouwe, 2014), but each covariate might not behave exactly the same

across all individuals of the population.

Multiple linear regression (MLR) analysis is a method used for examining the

relationship between a single dependent variable (which in its basic form is as-

sumed to be continuous) and a collection of independent variables (i.e. predictors)

(Aiken et al., 2012). The independent variables may be quantitative (e.g. age,

height, and weight) or categorical (e.g. sex) and do not need to follow any under-

lying distribution.
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An extension to this is the generalised linear model (Skrondal and Rabe-Hesketh,

2004), which invokes a transformation of the outcome, by what is known as a

link function, to accommodate other outcome distributions, the most common

of which is encountered in health research is the logistic regression model for bi-

nary outcomes (Dreiseitl and Ohno-Machado, 2002). The Cox proportional haz-

ards model is commonly used to assess the relationship between a time-to-event

outcome (e.g. survival) and the independent model covariates (Ohno-Machado,

2001). This is achieved by relating the log of hazards function to the linear model

with additive covariates. The Cox model is regarded as a semi-parametric model

because it does not assume any distribution for it’s baseline hazard function (i.e.

a function that defines the instantaneous risk of the event, e.g. death)

The two main goals in risk prediction modelling are prognosis and diagnosis

(Hendriksen et al., 2013). The ultimate goal in prognosis is to use the RPM to

estimate the probability of a patient experiencing a clinical outcome (e.g. death);

while in diagnosis, the RPM plays a role in identifying patients that are at risk of

developing a particular condition. These two roles are very important in clinical

practice as they are key to informing patients about their condition as well as in

guiding potential therapeutic management needs.
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1.2 Limitations of statistical methods that are com-

monly used for risk prediction in Health

Despite their importance in decision making processes, most RPMs suffer from

methodological shortcomings. In the examples below, we discuss some of the

limitations associated with RPMs.

1. Misspecification of covariate-outcome associations: This mostly arises due

to inherent heterogeneity in the population of patients under study. Model

misspecification may lead to the wrong inferences surrounding the estimated

risk of patient outcomes. For example, in the presence of heterogeneity, pa-

tients respond differently to treatment. As such, using a standard model

to estimate the risk estimates for the whole population may yield biased

predictions. Heterogeneity in observational studies has given rise to in-

dividualised or personalised medicine, often termed ‘Precision Medicine’

(Currie and Delles, 2018). There are, however, epistemological limitations

in how individualised prediction models will ever be achieved, even using

more sophisticated approaches such as machine learning (Wilkinson et al.,

2020). Addressing population heterogeneity thus remains a huge challenge

in risk prediction modelling. Population heterogeneity may exist due to sev-

eral unmeasured (i.e. unobserved) factors operating, which cannot be taken

into consideration by the RPMs directly (i.e. these factors cannot be in-

cluded as model covariates or interactions between covariates to adequately

explain the inherent variation in the outcome). Ignoring the heterogeneity

that exists in the population causes lack of precision in predictions sought

and might lead to bias and underestimation of the underlying risk.
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2. Sensitivity to missing data: A sufficient sample size is one of the key re-

quirements in prediction research. RPMs require sufficient data to ensure

that the predictions are accurate. The presence of missing information in

the predictors may lead into inaccurate predictions and it may also affect

the overall performance of RPMs. However, If missingness is at random the

problem may be corrected by the method of multiple imputation to enable

RPMs to yield unbiased estimates (Donders et al., 2006).

3. Choice of predictors: When the number of predictors available for selection

is large, choosing the most parsimonious set of predictors to be included in

the RPM, to avoid overfitting, becomes a difficult task to do. The choice

of predictors to be included in a prediction model may be driven by expert

opinion, through a review of past literature, or through the use of algorithms

e.g. all possible subsets regression, stepwise methods like forward selection

and backward elimination (Hocking, 1976). In many cases, the predictors

are determined by first assessing their univariable associations with the

outcome, but this is not ideal because it is the joint information of all

selected predictors that is important, not the role any one isolated predictor

(Arnold et al., 2020).

4. The inability to support robust causal inference in observational data: To

generate robust causal inference from non-experimental (i.e. observational)

data, there is need for a careful consideration of covariates acting as poten-

tial confounders and colliders to estimate the (potential causal) relationship

between a specified exposure and a specified outcome (Tennant et al., 2017).
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This is essential to ensure that neither the sampling nor the analyses in-

troduce analytical or inferential bias through inappropriate conditioning

on covariates (either deliberately or inadvertently). Even when covariates

are accurately classified and appropriately treated in models designed to

generate causal inference, unadjusted and residual confounding (from un-

measured or imprecisely measured confounders, respectively) make these

models vulnerable to bias. Such considerations are largely irrelevant in mul-

tivariable prediction modelling, where the accuracy is derived from the joint

information available from measured covariates (regardless of whether these

are direct or indirect causes of the target variable and alternative covariate

selection and parameterisation procedures are used to optimise the per-

formance of prediction models). This means that multivariable prediction

modelling does not need to pay attention to the analytical and inferential

biases that can undermine causal inference models, except where counter-

factual prediction is of interest (Sperrin and McMillan, 2020; Sperrin et al.,

2018)
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1.3 Possible ways of addressing heterogeneity in

predictive modelling

The limited precision of standard methods in the presence of heterogeneity can

be overcome by adopting statistical methods that try to identify hidden sub-

groups (i.e. clusters) of patients with similar attributes when modelling outcomes

(Cochran et al., 2017). An example of a statistical procedure that relaxes the

assumption of population homogeneity that is assumed under the traditional re-

gression approach is the latent class regression (LCR) model. LCR models invoke

clustering to identify unobserved heterogeneity in observational data (Magidson

and Vermunt, 2004). LCR models can further be extended by integrating with

causal knowledge in contexts where population heterogeneity is prominent, to

embrace the cumulative consequences of variation which could also provide novel

insights into subgroup differences that may substantively improve the accuracy

of individual-level predictions.

Alternatively, machine learning (ML) methods are also gaining popularity in pre-

dictive modelling. ML can use artificial neural networks to find trends or rela-

tionships amongst variables, reduce dimensionality of ’big data’, and to identify

subgroups (i.e. clusters) based on the information extracted from the original

dataset to facilitate prediction (Papachristou et al., 2016). These neural network

algorithms provide an alternative to model-based LCR approaches to prediction

and classification. Using neural networks, ML provide a potential alternative to

latent class analysis with a few studies suggesting that they may offer significantly

better predictive performance against most traditional approaches (Song et al.,

2004; Zupan et al., 2000). So far, however there has been little investigation into:
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• How LCR and ML methods might be compared (or combined in some way)

for improved individual and subgroup prediction. Comparing ML methods

against the LCR approach would help to identify ways of generating more

reliable subgroups of patients with similar profiles and thereby improving

prediction of the individual patient outcomes.

• Whether integrating causal reasoning in prediction modelling helps to build

more reliable prediction models. Although this has been shown to work

(Piccininni et al., 2020; Richens et al., 2020), this is largely under-research

and it has not yet been considered whether prediction may be enhanced

even further by embracing a lifecourse perspective.

1.4 Research aim

This thesis therefore explores different methods in clinical risk prediction context

with interest in predicting change (in health status) as well as predicting discrete

life events (e.g. death). Despite the former being rare in clinical prediction con-

text, the interest of predicting change is not trivial. For this reason, we examine

the challenges of predicting change when assessed through the lens of a causal

framework and show, for the first time, how there may be more than one type

of change outcome sought within a prediction framework. In either case, of pre-

dicting change or predicting time to discrete events, using causal knowledge to

understand the underlying data generating processes may help to improve pre-

diction and this thesis examines both scenarios.

This thesis further compares LCR modelling and ML methods in providing im-
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proved prediction as well as to investigate whether incorporating causal reasoning

in prediction modelling may help to build more reliable prediction models, espe-

cially if framed in a lifecourse perspective, where appropriate.

1.5 Research hypotheses

The research hypotheses are:

1. Using directed acyclic graphs (DAGs) to summarise causal associations

amongst variables helps in the simulation process when addressing data

from heterogenous populations by allowing the covariance structures for

complex scenarios to be explored. Such simulation complexity may be over-

looked if DAGs were not used in such instances.

2. Predicting change-score outcomes without including the baseline outcome as

a predictor yields unreliable predictions; predicting the follow-up outcome

is more robust. This is not generally appreciated and demonstrates the

value of framing prediction from a causal thinking perspective.

3. Accounting for population heterogeneity by incorporating causal knowledge

from a lifecourse perspective within a data generation process facilitates

the identification of potentially clinically meaningful subgroups and helps

to improve individual predictions.

4. Within a lifecourse causal framework, early-life covariates more strongly

inform heterogeneity and subgroup classification in LCR models, whereas

later-life covariates more strongly inform the outcome, and intermediate-life

variable may inform both subgroup classification and the outcome.
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5. LCR models may offer improved prediction over traditional regression or

ML approaches when undertaking prediction on large and complex data

that exhibits population heterogeneity.

6. ML’s Cox neural network for survival modelling may offer improved pre-

dictions over standard regression or LCR Cox proportional hazards models

when undertaking prediction on large and complex data.

1.6 Structure of the Thesis

Chapter 2 provides an overview of the statistical and machine learning methods

applicable to this research. The emphasis is on the theoretical background of

these methods and other technical considerations which form the backbone of

the thesis.

Chapter 3 discusses how a directed acyclic graph (DAG) can be used to de-

fine the causal structure amongst variables to aid the data simulation process.

The goal of this chapter is to establish ways of exploring complex data struc-

tures that are commonly encountered in observational studies in human health,

through a carefully-considered simulation that reflects the underlying data gener-

ating mechanisms and not merely reflect its consequences as naively understood

through subsequent data covariance structure. Two illustrations are considered

in these simulations, the first illustration being an evaluation of prediction of

change where the outcome is generated from subtracting a baseline measure from

a follow-up measure (e.g. weight loss). The second illustration is the scenario of

adopting a lifecourse approach for improved prediction of a time-to-event out-

come (e.g. death).
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Chapter 4 examines the first illustration of simulations carried out in Chapter 3 .

The goal of this chapter is to examine the relationship between a baseline expo-

sure and the subsequent change in a health outcome in an observational research

setting. The objectives of this chapter are: to evaluate the impact of forcibly

including the baseline, Y0 as one of the predictors of either the change score, ∆Y

, or follow-up, Y1; to evaluate the impact of forcibly excluding the baseline, Y0 as

one of the predictors of either the change score, ∆Y , or follow-up, Y1; to assess

the implications of allowing the prediction model algorithm to select predictors

from candidates Y0 (i.e. baseline outcome), X0 (i.e. baseline exposure) and U0

(i.e. baseline competing exposure) while predicting either the change-score, ∆Y ,

or follow-up, Y1; and to assess the differences in root mean square error of the

second objective within test data between both the change-score model and the

follow-up model. A simulation approach is adopted for an illustrative example to

aid understanding and to facilitate the evaluation of different plausible scenarios

that may be encountered in real observational studies.

Chapter 5 explores four different statistical models to assess the predictive acuity

and clinical utility when predicting survival amongst patients with chronic heart

failure. The main goal in this chapter is to establish whether latent class regres-

sion models might outperform other standard modelling strategies in terms of

accuracy and clinical interpretations in predictive modelling. We illustrate these

issues using the UK-HEART study dataset.

Chapter 6 examines the second illustration of simulations carried out in Chap-

ter 3. The goal of this chapter is to extend the latent class regression modelling

by introducing the lifecourse concept. This chapter specifically aims at estab-

lishing the roles of different exposures throughout a patient journey and assesses
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whether these may help to improve the prediction when using latent class regres-

sion models.

Chapter 7 examines the cox neural network for survival prediction. The aim of

this chapter is to compare the Cox-nnet and LCR modelling for survival predic-

tion. Different Cox-nnet architectures are explored to find an optimum architec-

ture followed by an assessment of predictive acuity in each case. The generated

results are compared against the standard Cox model and the LCR approach,

specifically discussing how the integration of the LCR and neural network ap-

proaches might even further enhance predictive capabilities.

Chapter 8 summarises the results from the thesis in relation to the objectives.

This is followed by limitations and suggestions for further research.
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1.7 Contributions to the literature

The contributions to the literature arising from this thesis are as follows:

1. We have introduced DAGs to aid in defining causal structures to facilitate

the simulation process, especially when the goal is to improve prediction

of health outcomes. To our knowledge, no other authors to date have pro-

vided a detailed outline of the simulation process aimed at evaluating a

prediction problem together with examples of predicting change and sur-

vival, while adopting a natural ‘lifecourse’ approach to the longitudinal

data generating mechanism. This Chapter will therefore guide researchers

in exploring different data generating mechanisms for complex scenarios in

medical research.

2. Analysis and prediction of change is common, yet rarely is it appreciated

that the use of change-scores is problematic. This has only recently been

made clear for the causal interpretation of change-scores in observational

data (Tennant et al., 2021a). This thesis builds upon this new work by

examining the role of change-scores in the context of prediction. We have

examined two regression methods that are commonly used to assess the re-

lationship between the exposure(s) and the change in the outcome measured

at two time points. The role of these methods in prediction has not been

previously evaluated. Our conclusions from this work will guide researchers

when considering similar scenarios.
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3. We examined and compared four different modelling procedures to assess

whether LCR models may offer improved prediction and clinical utility over

traditional regression methods using real-world data. We concluded that

LCR modelling can improve the predictive acuity of GLMs and enhance the

clinical utility of their predictions. These methods have previously been

used in association studies where the focus is to study the relationships

between variables and outcomes, while in this application of these methods

we are interested in improving predictions at the population and individual

levels by accommodating heterogeneity within the models. This will add to

the literature on methods to address heterogeneity and thus offer improved

predictions.

4. We compared the LCR models against the recently proposed Cox-nnet

model for survival prediction. These comparisons will help researchers to

understand the methods better in terms of how each method works, the

similarities and differences, as well as how these two methods might be

integrated.
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Chapter 2

Overview of the Statistical and

Machine Learning Methods

2.1 Introduction

In this chapter, an overview of the statistical methods used in this thesis is pro-

vided. We begin by introducing fundamental aspects of survival analysis. The

purpose of this section is to highlight some challenges associated with analysing

survival data and to discuss why traditional regression methods may not be ap-

propriate for analysing survival data. We then introduce the Cox model by first

discussing its basic properties and assumptions and how parameters are esti-

mated, followed by a section describing its extension to a latent class regression

framework. We then discuss the technical aspects of the data generation process

in carefully designed simulations that correspond to plausible causal structures

that are common in real life studies. Before discussing the simulations in detail

in Chapter 3, we first provide a brief background on causality and structural
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equation modelling (SEM) as well as the associated thinking which underpins

how DAGs are used to generate causally structured datasets. We also discuss the

theoretical background and other technical details of the methods that are used

in machine learning survival prediction modelling, (e.g. the Cox neural network).

2.2 General notation and Terminology

This thesis uses the following notation and terminology.

All random variables are denoted by upper case italic letters while the corre-

sponding observed values are denoted by the lower case letters. For example, let

Y1, . . . , Yn be n variables. The realizations of each of these variables are presented

by y1, . . . , yn. Vectors are denoted by bold lower case letters while matrices are

denoted by bold upper case letters e.g. y = [y1, . . . , yn] and Y = [Y1, . . . , Yn]

respectively. All matrices are presented in squared brackets. Greek letters are

used to denote model parameters, e.g . β1, . . . , βn.

2.3 Introduction to Survival Analysis

Survival analysis refers to the process of analysing the time until an event occurs.

By event, we refer to occurrences like death, disease incidence, or any related

experience that may occur during the period of follow-up. In survival analysis,

the outcome variable of interest, which is also called Survival time, is the time

from the beginning of follow-up until an event of interest happens. Survival time

is usually presented in days, weeks, months or years depending on the objectives

of the study. For example, a study might be interested in assessing survival for a
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period of 5 years. In this instance, it might be more feasible to present survival

time in years rather than weeks.

In practice, survival time is not always known for all patients due to censoring.

Participants are said to be censored when information about their time-to-event

is unknown (Prinja et al., 2010). This presents a key analytical problem in data

analysis because the information about survival is incomplete. Censoring may

happen either because some patients may have withdrawn from the study or be-

cause some patients are lost to follow-up during the study period, such that the

only information about them is the time they were last in the study. Censoring

may also happen simply because the patients have not experienced the event of

interest during the finite follow-up period allocated.

One problem with survival analysis is that the time-to-event outcome variable

does not follow a normal distribution. Time until an event of interest is always

positive and often skewed, and it is therefore unreasonable to assume a nor-

mal distribution for a survival outcome. As such, the traditional ordinary least

square estimation method cannot be used for analysis of survival. There are

several methods in literature that are commonly used to analyse survival data.

These include the non-parametric Kaplan Meier and the well-known Cox propor-

tional hazards (PH) model. The Cox PH model is a semi-parametric model that

makes fewer distributional assumptions about the hazard function compared to

parametric methods. In parametric models, the functional form is completely

specified, e.g. the Weibull hazard model.

The survival function is defined as the probability that a patient will survive
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longer than some specified time t. It is represented mathematically as follows:

S(t) = P (T > t) (2.1)

The hazard function, h(t), is defined as the instantaneous likelihood at which

events occur. It is represented mathematically as follows:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
(2.2)

This numerator can be read as the conditional probability that the event will

occur in the interval [t, t+ ∆t] given that it has not happened. The denominator

is an expression for the width of the interval.

2.3.1 The Cox PH Model

LetXT = [X1, X2, . . . , Xp] be a vector of p covariates or predictors for individual

patient, t = [t1, t2, . . . , tn] be the survival times for the n patients. We can assess

the relation between the distribution of survival time and X through a Cox PH

model defined as

h(t|X,β) = h0(t) exp(βTX), (2.3)

where βT = [β1, β2, . . . , βp] is a vector of parameters and h0(t) is an unknown

baseline hazard function. The baseline hazard reflects the underlying hazard when

the effect of the covariates is equal to zero. In other words when X1, X2, . . . , Xp

is equal to zero.
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2.3.2 Model assumptions

A key assumption about the Cox PH model is the proportional hazards function

assumption (Hess, 1995). By assuming proportionality of the hazard function it

means that each covariate or predictor has a constant multiplicative effect in the

hazards function. In other words, the ratio of the hazards for two individuals

from the same population remains constant over time.

2.3.3 Parameter Estimation

Cox proposed a partial likelihood approach for estimating the model parameters

without necessarily specifying the distribution of the baseline hazard function.

Suppose we have data with (ti, σi,X i) for individual i where ti is the survival

time, σi is the censoring indicator, X i is the vector of covariates.

Let R(ti) be the set of individuals who have neither experienced the event, nor

been censored at t = ti. In other words, these are individuals who are at risk

of failure. Essentially, all individuals belong to the risk set R at t = 0 because

all of them have not been censored at that point hence all of them are at risk of

experiencing the event. The number of individuals in the risk set reduces when

some individuals start experiencing the event of interest e.g. death. In other

words, the number of individuals in the risk set reduces with time.

Suppose that the survival times are distinct with no ties such that t(1) < t(2) <

, . . . , < t(n), then the partial-likelihood function can be defined as

L(β) =
n∏
i=1

exp(βTX(i))∑
j∈Ri

exp(βTXj)
(2.4)
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where β denotes the collection of unknown parameters to be estimated. These

parameters can be estimated using the partial-likelihood approach (Cox, 1975).

The partial-likelihood function is derived by taking the product of the conditional

risk at time ti given the set of individuals who have not failed or been censored

by that time. A more detailed description for the partial-likelihood is given in

the appendix section A.1.

2.4 Introduction to Latent Class Analysis and La-

tent Class regression Analysis

Latent class analysis (LCA) can be described as a statistical method used to

classify individuals into unknown subgroups/clusters using measured or observed

categorical or/and continuous variables. Individuals in the same subgroup tend

to be similar with respect to the response patterns while those from different

subgroups are different. This is also termed as traditional LCA.

Latent class regression (LCR) is an extension to the traditional LCA. Covariates

are used to predict subgroup/latent class memberships. Each subgroup contains

its own sub-model so that the estimated model parameters may be specific to

that class (Gilthorpe et al., 2011). This is the main difference between LCA and

LCR.

In LCA, the purpose is to assign individuals into latent classes. Individuals are as-

signed to latent classes according to their posterior membership probability which

is determined using Bayes rule and this is called the probabilistic assignment. In-
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dividuals can also be assigned to the latent class with the highest probability.

This is termed modal assignment.

The optimum number of latent classes to be formed is typically determined by

examining the Bayesian information criteria (BIC) as this has been shown to

outperform other model fit statistics under simulations (Nylund et al., 2007).

The ideal strategy for determining the number of classes may also be driven by

interpretability decisions such as having clinical utility (Gilthorpe et al., 2011;

Harrison et al., 2013; Kubzansky et al., 2014) and therefore needs to be consid-

ered and developed depending upon the context and application. The probability

of any individual belonging to a particular class is based on the similarities in

characteristics of individuals attributed to each class. Individuals may be prob-

abilistically assigned to more than one class, with their total assignment over all

classes summing to one.

One challenge with the LCR modelling approach lies in its estimation, which has

to be achieved numerically and can be very sensitive to initial assumptions (i.e.

starting values) used to maximize the likelihood function when estimating model

parameters. If the starting values are far from optimum, the likelihood function

fails to converge or takes longer to do so. For example, if 30 random starts are

used, sometimes only 15 of them may give meaningful solutions when the like-

lihood function is maximized. For a solution to be meaningful, we expect the

highest likelihood value to be replicated many times. When this fails, it means

that the solution has not been achieved and one needs to increase the random

starts to converge on a global optimum solution. The values that gave an opti-

mum likelihood can be used as initial values for the final model in-order to reduce

the search process (Muthén and Muthén, 2012).
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2.4.1 The Latent Class Regression model

The latent class regression (LCR) model comes from a family of finite mixture

models which classifies observations into classes to model unobserved heterogene-

ity within a population. Suppose that a population P is naturally partitioned

into g classes p1, p2, . . . , pg. Let y= [y1, y2, . . . , yn] be an outcome variable from g

distinct classes. Let the probability density functions for each of the g classes be

f1, f2, . . . , fg with corresponding proportions π1, π2, . . . , πg for belonging to any

of the respective classes. Thus the mixture density function of y is defined as

f(y|Z,X, λ) =

g∑
i=1

πi(Z|γi, δi)fi(y|X,βi) (2.5)

where λ = (γi, δi,βi) represents a collection of model parameters and πi(Z|γi, δi)’s

are class-membership probabilities that are estimated for each class and are de-

pendent on a vector of covariates Z such that

g∑
i=1

πi(Z|γi, δi) = 1 (2.6)

with 0 ≤ πi(Z|γi, δi) ≤ 1 and fi(y|X,βi) is the conditional probability density

function for the observed response in the ith class model and X is the covariate

vector.

For a class membership model, the structural part of the model is given by

logit(πi(Z|γi, δi)) = γi + δT

i Z (2.7)
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hence

πi(Z|γi, δi) =
exp(γi + δi

TZ)∑g
j=1 exp(γj + δT

jZ)
(2.8)

where ZT=[Z1, Z2, . . . , Zp] is a covariate vector for the class-membership model

and δiT is the transpose of the vector δi for the multinomial logistic class-

membership model. Suffice to say, covariate vectors X and Z do not necessarily

have to be the same.

2.4.2 The latent class regression Cox proportional hazards

Model

We apply survival regression analysis within a latent class framework to predict

subgroups of patients with different prognosis based on the available covariates.

This is in conjunction with the prediction of survival distributions for different

subgroups of patients using patient covariates. The distribution of the survival

time variable for each component can be parametric (i.e. a scenario with distribu-

tional assumptions about the survival times), semi-parametric (i.e. a scenario with

relaxed distributional assumptions), or non-parametric (i.e. a scenario without

distribution assumptions about the survival times). If we assume a parametric

model for the response variable, the component’s densities are assumed to be

from the same family. Some common distribution functions that may be consid-

ered appropriate for survival times in a parametric case include the exponential,

Gamma and Weibull (Lee and Go, 1997). In a semi-parametric case, the Cox

proportional hazard model is an example.

If t is a non-negative random variable representing time-to-death or time-to-loss-
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of-follow-up or simply time to the end of the study for all patients with CHF,

and suppose that for each individual we have a covariate vector, denoted X that

affects the survival of patients in each class, we can define our survival model

within a Latent class framework as follows:

S(t|X,Z, θ) =

g∑
i=1

πi(Z|γi, δi)Si(t|X,βi), (2.9)

where θ = (γi, δi,βi) is the collection of parameters and πi(Z|γi, δi) satisfies the

constraints in 2.5. The vectors X and Z may include patient characteristics and

medications. These covariates do not necessarily need to be the same in each

class. If the effects of the covariates on the hazards (i.e. the instantaneous risk of

event) in each class is constant during the entire duration of the follow-up period,

then the hazard function can be specified as:

hi(t|X,βi) = h0i(t) exp(βT

iX), (2.10)

where h0i(t) is the baseline hazard for class i and exp(βT

iX) is the relative risk

associated with a vector of predictors X. We can derive a survival function from

equation 2.10 as follows:

Si(t|X,βi) =
[
S0i(t)

]exp(βT
i X)

(2.11)

where

S0i(t) = exp
{
−
∫ t

0

hi(u|x, βi) du
}

(2.12)
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is the baseline survival for class i at time t given a vector of predictors X in that

class.

2.5 Structural Equation Models andWright’s rules

Structural Equation Modelling (SEM) refers to a statistical technique that allows

one to assess causal hypotheses on a set of observed and latent variables (Ullman

and Bentler, 2012). Latent variables are variables that are not directly measured

or observed but rather inferred from other variables. For example, the risk of de-

veloping a cardiovascular disease cannot be directly measured, but other factors

e.g. (smoking status and age) may be used to classify an individual into the high

risk or low risk subgroups. Observed variables are variables that we measure or

observe, e.g. blood pressure, age, and smoking status.

Similar to traditional models, e.g. multiple regression, SEMs are based on an

assumption of a linear relationship between the dependent and independent vari-

ables. This is because the observed variables are fundamentally assumed to be

drawn from a multivariate normal, though this can be extended to other variable

distributions through transformations. Therefore, any relationship between the

variables is assumed to be linear. The linearity assumption is made because, It is

simpler to demonstrate the methods principles for multivariate normal variables

with linear relationships than other distributions, though non-normal variables

and nonlinear relationships can be accommodated through variable transforma-

tions. From the analysis of observational data, the assumption of linearity must

be validated through inspection of residuals (Gefen et al., 2000). The beta co-

efficients that are assigned to the causal graphs quantify the linear relationships
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between variables.

Work on Structural Equation Modelling first emerged from the biologist, Sewall

Wright (Wright, 1918, 1921a, 1934) who developed a path model with structural

coefficients estimated on the basis of the correlation of both observed and la-

tent variables. Wright introduced the method of path coefficients to show how

correlations between variables can be used to quantify functional relationships be-

tween variables using a system of linear equations. Through his work on animal

behaviour, Wright showed links between the correlations between variables and

model parameters, and then demonstrated how the system of linear equations

could be generated and used to estimate direct, indirect, and total causal effects

of one variable on another variable (Tarka, 2018).

2.5.1 Wright’s Rules for calculating a total association be-

tween any two variables in a path diagram

Sewall Wright (Wright, 1918, 1921a, 1934) proposed a set of rules for examining

a path diagram that can help in generating a system of equations to describe re-

lationships amongst a set of variables. The correlation between any two variables

in a path diagram can be expressed as a contribution from all paths (i.e direct and

indirect). The numerical contribution of an indirect path is the product of the

path coefficients for each constituent arrow along the route. For any compound

path:

• Loops are not allowed. This simply means that one cannot pass through

the same variable twice when following a particular route.
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• No going forward and then backward. This rule means that once one goes

forward on a particular route or path, one cannot go backward to the vari-

able(s) along the same or alternative backward route.

• A maximum of one curved arrow is allowed for each path. This rule allows

for correlation, i.e. causal flow that is not explicitly specified; but curved

arrows are allowed only the once for each path..

An illustration of Wright’s Rules: Application to factors affecting wet

bulb depression

To illustrate our understanding of Wright’s rules for path analysis, we will go

through an already existing example before applying the rules in our present

context. Wright investigated causal factors which determine wet bulb depression

(B). The factors Wright considered were temperature T , absolute humidity H

and wind velocity (W ). He also introduced radiation (R) as another factor cor-

related with all causal factors. Wind velocity was also assumed to be correlated

with temperature and radiation as shown in Figure 2.1. Let βBT = t be the

path coefficient which measures the relative influence of temperature on wet-bulb

depression, βBH = h be the path coefficient which measures the relative influence

of humidity on wet-bulb depression and βBW = w be the be the path coefficient

which measures the relative influence of wind velocity on wet-bulb depression.

Assuming that c, d, s, a, b are correlations between W and T , T and H, H and R,

R andW respectively, we can use Wright’s rules to find the following correlations

between B and W , B and R, B and T , W and R W and T , R and T .

• The correlation between B and W : There is a direct effect from B to W
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Figure 2.1: A path diagram depicting causal relations between wet-bulb depres-
sion (B), wind velocity (W), radiation (R), and temperature (T) taken from
(Wright, 1921a).

represented by w. There is also an indirect path from B to W through T

which can be represented by tc. Hence the total correlation between B and

W is given by w + tc

• The correlation between B and R: There is no direct effect from B to R.

There are three of indirect paths from B to R . The first path starts from

B to R through T which can be represented as ts. The second path starts

from B to R through W which can be represented as bw. The third path

starts from B to R through H which can be represented as ah. Hence the

total correlation between B and R is given by ts+ bw + ah.
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• The correlation between B and T : There is a direct effect from B to T

represented by t. There are two indirect paths between B to T . The first

indirect path starts from B to T through H which can be represented by

dh. The second indirect starts path from B to T through W . Hence the

total correlation between B and T is given by t+ dh+ wc.

• The correlation between W and R: There is a direct effect from W to R

represented by b and there is no indirect route from W to R.

• The correlation between W and T : There is a direct effect from W to T

represented by c and there is no indirect route from W to T .

• The correlation between R and T : There is a direct effect from R to T

represented by s and there is no indirect route from R to T .

2.6 Structural Causal Models

The ideas relating to structural causal models (SCMs) were proposed by Pearl

in the mid 90’s (Pearl, 1995). In his work, he introduced nonparametric causal

diagrams that may be used for identifying causal effects from non-experimental

data.

In standard statistical analysis, one can use parameters estimated from regres-

sion models to infer associations amongst variables, estimate the likelihood of

both past and future events happening as long as the experimental conditions

remain static. However, in causal analysis the likelihood of events is examined

under both static and variable conditions. This is the main distinction between

a causal analysis and an associational analysis.
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SCMs are defined as mathematical models that are used to represent causal re-

lationships between variables, represented in the form of graphs called directed

acyclic graphs. The Directed Acyclic Graph (DAG) can be viewed as causal path

diagram that is used to study the relationships among a set of variables (i.e. ex-

posure, outcome, confounders, and mediators). DAGs are called acyclic because

they do not contain any loops. DAG’s are the most recent nonparametric version

of Wright’s causal diagrams and parameterising a DAG under the assumptions

of multivariate normality and linearity implies that Wright’s rules then apply in

DAGs.

Causal graphs forms an integral part of path analysis and structural equation

modelling because they are used to summarise an investigator’s assumptions

about causal relations among variables.

Causal graphs are connected by unidirectional arrows (no bidirectional arrows

like in standard path diagrams). Variables in causal graphs are called nodes and

the connectors between variables are called edges or arcs.

The terminology used in causal graphs is similar to the one that is used in ordi-

nary path diagrams. For example, given that there is an arrow from X1 to X2 (X1

−→ X2), where X1 is a variable measured at time 1 and X2 is another variable

measured at time 2, then we would say that a variable X1 directly affects a vari-

able X2. Similarly if three variables were related as follows (X1 −→ X2 −→ X3),

where X2 is an intermediate variable measured at time 2 because it lies in the

causal pathway between X1 and X3, we would say that X1 indirectly affects X3.

The sequence of arrows from X1 to X3 is called a directed path or causal path.

Any variable along a causal path from X1 to X3 is called a mediator variable.

A variable X1 may affect X3 both directly and indirectly. For example, In this
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diagram, X1 affects X2 directly and X3 indirectly and that X2 is a mediator of

X1 and X3. The absence of a directed path between two variables represents the

assumption that there is no causal link between them.

An example of a DAG

E M

C

O
α β

δ σ

γ

Figure 2.2: A DAG showing a confounder (C), exposure (E) , mediator (M) and
an outcome (O)
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2.7 Artificial neural networks

Artificial neural networks (ANNs) are constructs consisting of interconnections

of nodes which act as information processing units synonymous with neurons in

the human nervous system (Goodfellow et al., 2016). ANNs were first developed

in 1943 to model non-linearities. The design of ANNs was motivated by the

structure of a human brain which contain the neurons as information processing

entities. There are two groups of ANNs that are common in medical literature.

These are a) Feed forward neural networks (e.g. the multilayer perceptron) and

Feed backward neural networks also known as recurrent networks (e.g. Hopfield

networks). The main difference between these two groups is that the former does

not have any loops while the latter include loops because of the feedback connec-

tions (Shahid et al., 2019). We will only focus on the multilayer perceptron in

this chapter because the Cox neural network uses the principles of a feed forward

neural network.

The basic rule in each of these ANNs is that a neuron in the network receives an

input signal, processes it before sending out an output signal. Each node has at

least one connection. Each connection has a weight coefficient that indicates the

level of importance of the given connection in the neural network. A simplest ar-

chitecture of an ANN comprises of three major layers of nodes, namely the input,

the hidden layer and the output layer. An example of a detailed architecture of a

single layer feed forward ANN is given in Figure 2.3. The input layer comprises

the nodes formed from the list of the selected variables. The hidden layer contains

hidden nodes which act as feature detectors for the neural network. A bias term

is connected to every node in the hidden layer which can be interpreted as an
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intercept in regression.

...

...
...

x0

x1

x2

xn

o1

og

Input
layer

Hidden
layer

Ouput
layer

Figure 2.3: A typical feed forward neural network comprising three layers with n
input nodes and k hidden nodes and g output nodes. x0 is the bias term.

2.7.1 Training process

During the training process, the network tries to capture some unknown hidden

information. There are two main types of training, namely supervised (i.e. the

network processes the learning task by adjusting the weight coefficients until the

desired result is achieved) and unsupervised also referred to as learning without a

teacher (i.e. the network is not provided with the required output. The network

explores the structure of the data, looks at any underlying correlations and uses

these to organise patterns within the data).
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Suppose that X = {x1, x2, . . . , xn} is a set of input values, H = {h1, h2, . . . , hk}

is a set of hidden nodes and O = {o1, o2, . . . , og} is the set of output nodes, the

network in Figure 2.3 can be trained to estimate an output ŷij for every subject

i and node j in the training sample by minimising the loss function.. Data is fed

forward through the network from the input to hidden and from hidden to output

layer but not vice versa. During the training process, the hidden layer extracts

important features from the training data by transforming the original input into

a new space from which important features can easily be separated. Prediction

or classification takes place on the output layer. Weights, wi are initialised to

every connection between the nodes. We seek values of the weights that make

the model fit the training data well so as to minimise the loss function. For bi-

nary classification, the preferred choice is cross-entropy error (Kline and Berardi,

2005). The generic approach to minimising the function is by gradient descent

through back-propagation (Li et al., 2012). Back-propagation is the process in

which the network is fine-tuned by adjusting its weights until the error rate is

minimised. In summary, an input is propagated forward via the hidden node(s)

to the output layer where an error signal is calculated. If the error signal is

significant, the signal is propagated back and weights adjusted accordingly. The

process repeats until the the network is fully trained.

2.7.2 The detailed steps in back propagation

1. Data are fed into input nodes and its output is multiplied by the first set

of connection weights then passed to the hidden layer
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2. In the hidden layer, the incoming signals are summed up and transformed

to an output that is multiplied by the second connection weight matrix then

passed to the output layer;

3. In the output layer, the incoming signals are summed and transformed to

produce the network output.

4. The difference between the output value and the target is assessed through

the loss function and the error is propagated backward through network.

5. The connection weights are adjusted according to the loss function.

6. The process is repeated until the loss function is minimised.

The input of every node in the hidden layer is equal to the sum of the product

of the weights wi and the input values xi plus a bias term bk. In mathematical

terms, we may describe the input and output at node j as

vj =
n∑
i=1

wijxj + bj (2.13)

and

φ
( n∑
i=1

wijxi + bj

)
(2.14)

respectively.

An activation function φ(v) is the function that is used to transform an input

signal at each node to generate the output signal that is used as an input for the

next layer. There are different types of activation functions that are commonly

used in neural networks. The common ones are sigmoid and tanh activation

functions (Sharma, 2017). The performance of different activation functions has
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been previously studied. A tanh activation function was found to have a wider

application and higher accuracy compared to other activation functions (Karlik

and Olgac, 2011). The tanh activation function defined as

φ(v) =
exp(v)− exp(−v)

exp(v) + exp(−v)
(2.15)

is used as an activation function for a survival outcome prediction.

Artificial Neural networks are typically developed to model non-linearities that

exist in complex datasets. For a network to capture as much non-linear relation-

ships as possible, hidden nodes are added between the input and output nodes as

shown in Figure 2.3. There are no standard rules available to help in choosing the

correct number of nodes in the hidden layer. The choice is largely dependent on

the number of inputs and the sample size. It may also be guided by the available

background knowledge or through experimentation.

Adding too many nodes in the hidden layer inflates the chances of over fitting

the data. An over-fitted model performs excellently on the training data but fails

to perform if tested on a new dataset. Over-fitting may be avoided by adding

a regularisation parameter (i.e. weight decay parameter) to the network’s loss

function which penalises larger weights according to the equation:

E2 = E1 + λ
∑

w2
ij (2.16)

where E1 is a loss function and λ ≥ 0. Larger values of the weight decay parameter

tend to penalize larger weights more than smaller weights.
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2.8 The Cox-nnet model

Cox-nnet model is an artificial neural network modelling framework that is an

extension to the Cox PH model. Cox-nnet may be used to predict patient prog-

nosis using high dimensional datasets (Ching et al., 2018). Cox-nnet is trained

to minimise the partial log-likelihood defined as follows:

PLL(β,W ) =
n∑
i=1

σi

[
βTφ(W TX(i) + b)− log

∑
j∈Ri

exp(βTφ(W TXj + b)

]
(2.17)

where

• σi is the censoring indicator for patient i.

• βT is a vector for the regression coefficients.

• W is the coefficient weight matrix between the input and the hidden layer.

• b is the bias term for each hidden node.

• X(i) is the covariate vector for patient i.

• φ(.) is the tanh activation function as shown in equation 2.15 and it is

applied element-wise on a vector.

• ‖.‖ is the L2 norm. The L2 norm is calculated as the square root of

the sum of the squared vector values, e.g. Let X=(x1, x2, x3), ‖X‖ =
√
x1

2 + x2
2 + x3

2

37



• Ri is the risk set. A risk set is defined as the set of individuals at risk of

experiencing an event of interest at a particular timepoint.

• Xj is the covariate vector for the patients in the risk set.

More details about the risk set and the partial log-likelihood function are given

in Section A.1. Apart from being optimised for survival prediction, a Cox-nnet

model may also be used to reveal useful biological information by analysing fea-

tures extracted from the hidden layer nodes.

Mathematically, a single layer Cox-nnet can be described as a function f : Rn 7→

R1, where n is the size of the input vector. Rn is the n dimensional input vector

and R1 indicates the single output layer which is the Cox regression layer. The

output of the Cox-nnet is the Cox regression layer where the linear predictor

(βTx) of the Cox model is replaced by the outputs of the hidden layer as follows:

θi = βTφ(W Txi + b) (2.18)

Therefore, the output is the risk score, θi for each patient which represents the log

hazards. This risk score is used to calculate the c-index for the Cox-nnet model.
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Figure 2.4: A general architecture of a single hidden layer Cox-nnet with n input
nodes and k hidden nodes in the hidden layer and an output node also called the
Cox regression layer. A bias term x0 is connected to each node in the hidden
layer.

2.8.1 The Cox-nnet software package

The Cox-nnet software package is used to implement artificial neural networks

that is used to predict patient prognosis by extending Cox Regression to the non-

linear neural network framework. It is built on the Theano math library. The

main function for building a Cox-nnet survival model is called trainCoxMlp.

The trainCoxMlp function has six parameters which must be specified when

building a Cox-nnet survival model. These are summarized below:

1. x_train - A training set matrix where a Cox-nnet model is trained.

2. ytime_train - Time to death or censoring for each patient in the training
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set.

3. ystatus_train - Censoring status of each patient in the training set

4. model_params - Contains a dictionary of model parameters that are

used when training a Cox-nnet model. It has the three parameters namely

L2_reg which is used as a regularization parameter value, a node_map

which defines the mapping of neurons in a network and as well as an in-

put_split which shows how the input layer of the neural network is split.

5. search_params - Contains a dictionary of optimization hyper-parameters

Below is an overview of all hyper-parameters associated with this function:

(a) method : This is the algorithm used to perform gradient descent

during parameter optimization process. Standard gradient descent

(gradient) is used by a Cox neural network model to minimise a

cost function (i.e. the partial log-likelihood function). The weights are

adjusted after every loop until a local minima is attained.

(b) learningrate : The learning rate relates to how much the network

weights should be adjusted in relation to the gradient of cost function.

The value of the learning rate must be chosen carefully to avoid over-

shooting the steps. Smaller values of the learning rate are preferred,

however this may also slow down the training process if the chosen

value is too small. The default value in a Cox-nnet model is 0.01.

(c) momentum : This is the proportion of momentum in momentum and

nesterov gradients. The default value in a Cox-nnet model is 0.9.
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(d) lrdecay : The decrease of the learning rate if the cost function is not

decreasing. The default value in a Cox-nnet model is 0.9.

(e) lrgrowth : The increase of the learning rate if the cost function is

decreasing. The default value in a Cox-nnet model is 1.0 (i.e. it does

not increase. Adding a small term could, e.g. 1.01, could improve

speed).

(f) evalstep - Number iterations between cost function evaluation in order

to determine learning rate decay or growth. Setting this to a lower

number will increase overhead. Default is 23.

(g) maxiter - The maximum number of iterations. The default value in

a Cox-nnet model is 10000.

(h) stopthreshold - The threshold for stopping. If the cost does not

decrease by this proportion, then allow the training to stop. The

default value in a Cox-nnet model is 0.995.

(i) patience - The least number iterations a model should undergo before

stopping. The default value in a Cox-nnet model is 2000.

(j) patienceincr - If a new lowest cost is found, wait at least patienceincr

current iteration before stopping. The default value in a Cox-nnet

model is 2.

(k) randseed - This is a random seed for initializing model parameters.

The default value in a Cox-nnet model is 123.

6. verbose- print more stuff if verbose =True.
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2.8.2 Training the Cox-nnet models

The training process involves adjusting the weights to ensure that the predictions

are optimized. The model parameters are updated in response to the output of

the partial likelihood function. The loss function acts a guide to the optimization

algorithm by providing feedback on how the training process is progressing.

One of the challenges with artificial neural networks in general is that a network

may perform incredibly well in the training data but poorly in the testing data due

to overfitting. This is a big problem because an overfitted ANN cannot perform

well in a new dataset hence results cannot be generalized. One way to address

this problem is through regularization (Srivastava et al., 2014). Regularization

is a process by which extra information is added to the cost function to reduce

overfitting and improve model performance. A penalty component is added to

the loss function to penalize large model coefficients to correct overfitting.

2.9 Performance evaluation of the models

The concordance statistic (i.e. c-index or c-statistic) is commonly used to assess

prediction performance in survival analysis (Harrell et al., 1982; Harrell Jr et al.,

1984). A c-index measures the proportion of observations that are concordant,

that is to say that the order of survival times and the model predictions are

in agreement. The predictive information is derived from a set of predictors in

the model. Patients with shorter survival times are supposed to have higher log

hazard predictions while those with longer survival are supposed to have lower

log hazards predictions. The c-statistic is similar to the area under the receiver

operating curve, which is also a measure of discrimination for models with binary
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outcomes. A c-statistic of 0.5 means that there is no predictive discrimination (i.e.

the predictions are due to chance). A c-statistic of 1 means perfect prediction.

Any c-statistic value above 0.8 is considered excellent.

The general procedure used to calculate the c-index advocated by Harrel et al

(Harrell Jr et al., 1996) is given below:

2.9.1 General steps followed when calculating the c-index

The c-index is the proportion of all usable patient pairs in which the predicted

and observed outcomes are concordant. Let t1, t2, . . . , tn denote distinct survival

times for the n patients and r1, r2, . . . , rn denote the corresponding predicted

risk (i.e. risk scores). c-index is calculated by considering pairs of patients in

which atleast one one of them has experienced the event. The following are the

conditions that must be satisfied

1. For each pair of patients (i, j) (with i 6= j), we look at their corresponding

risk scores (ri) and times-to-event (ti). If both Ti and Tj are not censored,

then we can observe when both patients experienced the event.

2. For each pair of patients (i, j) (with i 6= j), If the predicted risk score

is smaller for the patient who lived longer (i.e. ri > rj and Ti < Tj), the

predictions for that pair are said to be concordant with the outcomes.

3. For each pair of patients (i, j) (with i 6= j), If the predicted risk score

is larger for the patient who lived longer (i.e. ri > rj and Ti > Tj), the

predictions for that pair are said to be dis-concordant with the outcomes.

4. If both Ti and Tj are censored, then we do not know if they experienced the
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event or not. If they did, we do not know who experienced the event first,

and do not consider this pair in the computation of the c-index.

5. If the predicted risk is identical for a pair, 1
2
rather than 1 is added to the

count of concordant pairs in the numerator of c-index. Additionally, 1 is

still added to the denominator of c-index.

6. If both patients experienced the event at the same time or if one patient

experienced the event and the other hasn’t been followed long enough to

determine whether they will outlive the other, then the pair is considered

unusable. We do not consider the pair in the computation.

7. Harrell’s c-index is given by: c-index= concordant pairs
Total

where Total = concor-

dant pairs + discordant pairs

2.9.2 Calculating the c-index for the Latent class Cox re-

gression models

For a 2-class Cox proportional hazard model, the c-index was extended by ex-

ploiting the latent class structure through soft and hard clustering.

Hard clustering is a type of clustering where observations are allocated to a cluster

or subgroup with the highest probability (i.e. modal allocation). Soft clustering

on the other hand, is a type of clustering where observations are allocated to

more than one subgroup (i.e. separate probabilistic allocations). The allocation

in soft clustering is based on posterior probabilities. To calculate the c-index for

the latent class Cox PH model, the following steps are used:

• Firstly, we ensure that the probabilistic and modal allocation is done.
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• Generate the risk scores for each class.

• Generate the overall risk scores (R1) in models where soft clustering was

deployed. This was calculated as a weighted linear combination of the

product of each score by its posterior probability for each class.

• Generate the overall risk score (R2) in models where hard clustering was

deployed. This was calculated as a weighted linear combination of the

product of each score by its modal probability for each class.

• Use the general steps for calculating the c-index as outlined above to cal-

culate the c-index using the soft clustering and hard clustering approaches.
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Chapter 3

Using directed acyclic graphs

(DAGs) to facilitate the data

simulation process: An observation

study

In this Chapter, we discuss how the data simulation process can be done by first

using a directed acyclic graph (DAG) which was introduced in Chapter 2 to define

the causal structure amongst the variables. The ultimate goal is to establish

ways of improving the prediction process for a number of complex circumstances,

though the principles of having a carefully considered simulation apply when

evaluating any statistical process, not just improved prediction models. The two

illustrations that form the basis of this chapter are evaluated in detail within the

thesis in Chapter 4, when considering the prediction of change – the definition of

which we contemplate carefully when considering, specifically the use of change
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scores, and Chapter 6, where we consider improved prediction of a time-to-event

outcome while adopting a lifecourse approach informed by causal reasoning.

3.1 Introduction

Simulation studies are useful when evaluating the performance, adequacy and

properties of both current and novel statistical methods under a wide variety of

settings (Bender et al., 2005; Crowther and Lambert, 2013). The validity of the

simulations depends upon the way a data generation process has been specified.

A poorly designed simulation study may lead to poorly simulated data which may

then potentially affect the conclusions drawn from the statistical models being

investigated. The existence of a suitable data generation process that accurately

reflects the underlying causal relationships amongst variables improves the gen-

eralisation of the results from the simulations. A well-structured and carefully

thought through data generation process can also guide researchers when inter-

preting results.

In survival analysis, simulations have been used to assess the performance of the

parametric models (e.g. exponential, Weibull) as well as semi-parametric models

(e.g. Cox proportional hazards model) when modelling time-to-event data (Ben-

der et al., 2005). We seek to incorporate causal thinking in our data generation

process so that our simulated data can reliably reflect true underlying hypo-

thetical scenarios that give rise to the observed outcomes. We use causal path

diagrams to simulate datasets that respect a causal processes. Where necessary

and appropriate, we also consider latent structure to reflect more complex un-

derlying features that might not be attributable to a single candidate predictor
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phenomena, such as population heterogeneity.

3.1.1 Advantages of simulating using a DAG compared to

simulating directly from models with the specific dis-

tributions and covariance structure

• The main distinction between simulations that respect the causal data gen-

erating process and the naive approach of merely reflecting context through

the observed covariance structure is that the former closely emulates reality

directly as opposed to the latter only emulating consequences of the under-

lying processes. Therefore, simulating from the latter does not reflect the

mechanisms of data generation process, thereby potentially missing intrin-

sic latent but critical features that are only apparent if considered within

a causal temporal perspective. Simulating from a DGM more narrowly

specifies the underlying mechanism behind the observed variations that are

intrinsic to the context.

• The DAG based approach incorporates the known causal structures of the

assumed data generating mechanisms. This enables researchers to explore

the range of plausible scenarios that reflect the reality of these data gener-

ating mechanisms. This is not guaranteed to be the case when simulating

data from a specified covariance structure where the exploration of different

parameter values need not map directly onto the postulated causal struc-

ture.
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• To address heterogeneity in observational data, we introduced a lifecourse

context to frame the Data Generating Mechanisms to contextualise the

underlying processes that contribute to intrinsic population heterogeneity.

This could not have been achieved by simulating data from the observed

covariance structure.

• The interpretation of the results from DAG-based simulations is therefore

more robust because it explicitly incorporates knowledge of the data gen-

erating structure, opposed to merely capturing the consequences of it, as

would be seen cross-sectionally and upon which the simulations based on

a covariance structure would achieve. The DAG based approach therefore

has a greater scope to reflect the underlying reality.

3.1.2 Overview of the illustrative examples

1. The first illustration examines the deceptively challenging scenario of pre-

dicting the outcome described as change–specifically we examine the pre-

diction of change scores, which are generated from subtracting a baseline

measure from a followup measure. As this conflates the causal mechanisms

of both measures into a single outcome, we must reflect upon the data-

generating processes assumed and what is therefore ultimately the most

robust concept of change to be predicted and any corresponding assess-

ment of how good the prediction is.
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Examining this context through a causal lens differentiates predictive acu-

ity from mathematical artefact, thereby making clearer the objective and

achievement of prediction sought for what we perceive to be the drivers of

genuine change(not merely the misleading summary substitute offered by

change scores).

2. The second illustration is more specifically seeking to improve prediction in

the context of clinical risk prediction models (RPMs), where the illustrative

example is that of survival among coronary heart disease patients within

a heterogenous population. Focus is given to predictors that might be

measured at different stages of the lifecourse to reflect the multiple impacts

of different experiences throughout the lifecourse that compound to yield

population heterogeneity in both the survival outcome and its relationship

to candidate predictors.

We therefore explore different data generating possibilities in terms of both

population heterogeneity and the strength of predictor relationships to the

ultimate outcome of death, described in a causal framework using a DAG.

It is hoped that bringing a causal framework to bear on this context would

both improve prediction capability and provide additional insight into the

role of different predictors at various stages of the lifecourse.

3.2 Procedure taken when simulating data

1. Theory: In the first step, we hypothesize possible causal relationships

between variables within an observational study setting.
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2. Developing a measurement model: The second step involves translat-

ing the hypotheses generated in step 1 into a possible causal graph.

3. Developing a structural model: The third step uses the graph in part 2

to show how the variables are structurally related under the naïve assump-

tions of linearity and multivariate normality by assigning the beta coeffi-

cients to the causal graph to quantify the relationships between variables.

4. Assess the covariance matrix: Once a model has been specified, we

assess the model to ensure that that the covariance matrix is semi-positive

definite.

5. Simulate data: The fourth step is to simulate the data.

6. Transform data where necessary: Once data have been simulated, we

transform variables (i.e. the outcome and/or predictor variables) to match

the distributional properties of the data being sought (e.g. for a time-to-

event outcome, we generate an exponential distribution for survival time

and for a binary variable we simply dichotomise; other variables types may

also be constructed as necessary by appropriate transformation).

7. Check basic model statistics: Lastly, we compute basic statistics to as-

sess the simulated data relationships and contrast to real-world scenarios

– where there is discrepancy, tweaks to the path coefficients in the causal

graph may be pursued and steps 3 to 7 are repeated until a satisfactory

causal graph, corresponding covariance matrix, and simulated data are

achieved. If it is anticipated that any nonlinear relationships occur amongst

variables, these must be incorporated in the model being evaluated in step
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7 by making necessary transformations until the desired covariance matrix

is obtained.
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3.3 Prediction of Change: Simulation 1

Studies of changing phenomena are common in science, yet the methodological

issues involved in the analysis of change for observational data are deceptively

complex. For instance, the use and interpretation of change-scores, also called

difference scores, gain scores, or change-from-baseline variables, is problematic

due to change-scores being composite, i.e. constructed from two measures of a

single parent variable (Y ).

The composite change-score is determined by subtracting a future measure of the

parent (Y1, follow-up) from an earlier measure (Y0, baseline), yielding a single as-

sessment of change: ∆Y = Y1− Y0. Change-scores therefore contain tautological

information about both determining parents and when examined in relation to

other variables, it is not clear what is being evaluated. If researchers seek causal

insight, for instance, How do statins reduce the risk of heart failure?, change-

scores cannot yield meaningful insights within observational data (Tennant et al.,

2021a).

A persistent confusion stems from the concept of what is inferred to be a useful

assessment of change. As argued by Shahar and Shahar (2012), change-scores are

not of causal interest (Shahar and Shahar, 2012); what matters is the exogenous

change in the outcome, i.e. the part of Y1 that cannot be explained by Y0, which

we can depict as CY . Thus, to enquire of a causal relationship between an expo-

sure, X0, and change in Y is to define the focus of interest to be an assessment

of the impact of X0 on CY , which is not the same as an assessment of the impact

of X0 on the change-score, ∆Y = Y1 − Y0. The focus of interest is therefore esti-

53



mated by assessing the impact of X0 on Y1, controlling for Y0 or not depending

upon the causal relationship between Y0 and X0 (Tennant et al., 2021a).

If the analytics of change matter substantially for a longitudinal outcome when

examined in relation to its putative causes, how, if at all, might it matter when

we seek to predict what we describe as change? In a casual framework, it is

clear that we should consider change to be assessed through the evaluation of the

follow-up outcome, so how might this impact our view of how we evaluate and

assess the merits of predicting change? Should we be concerned about the choice

between predicting change-scores, or predicting follow-up outcome and calculat-

ing the change-score afterwards, if reporting summary statistics of the latter is

important? To investigate this, mindful of the additional insights that a causal

lens would bring to this prediction challenge, we simulated data for a few simpli-

fied scenarios to see what unfolded differently in relation to what we seek in the

prediction of change according to both outcome options..

We thus examine a longitudinal study setting in which we are interested in pre-

dicting an outcome Y which is recorded at two time points, with values, Y0 and

Y1 denoting the values of Y at baseline and at follow-up, respectively. We can

calculate the change-score by subtracting the value recorded at baseline from

that recorded at follow-up (∆Y = Y1 − Y0). Suppose that X0 and U0 are ex-

posure variables measured at baseline. If the objective is purportedly to predict

change, it might seem intuitive to seek to predict the change-score; we can do

this using both X0 and U0 as candidate predictors. We have seen that it is

also possible, and indeed better practice, to predict follow-up and calculate the

change-score post-hoc (Senn, 2006). In our simulations, we can use DAGs to
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define a range of scenarios that are plausible, as shown below. We define various

DAGs with the four variables, X0, Y0, Y1 and U0. The path coefficients from

U0 −→ X0, U0 −→ Y0, U0 −→ Y1, X0 −→ Y0 , X0 −→ Y1 and Y0 −→ Y1

are represented by ρU0X0, ρU0Y0, ρU0Y1, ρX0Y0, ρX0Y1 and ρY0Y1 respectively.

We explore a range of plausible data generating processes with path coefficients

defined as follows: ρY0Y1 ∈ {0, . . . , 0.95}; ρX0Y1 ∈ {−0.95,−0.90, . . . , 0.95};

ρU0Y1, ρX0Y0 ∈ {−0.5, 0.5}; ρU0X0, ρU0Y0 ∈ {-0.5,0,0.5}.
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3.3.1 Dag 1: X0-Y0 orthogonal

Y0

U0

X0

Y1

±

Figure 3.1: X0-Y0

orthogonal & no U0

confounding.

U0

Y0

X0

Y1

±

±

Figure 3.2: X0-Y0 or-
thogonal and U0 con-
founds X0.

U0

Y0

X0

Y1

±

±

Figure 3.3: X0-Y0 or-
thogonal & U0 con-
founds Y0.

Y0

U0

X0

Y1

±

±

Figure 3.4: X0-Y0 or-
thogonal & U0 con-
founds X0 & Y0.
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3.3.2 Dag 2: X0 confounds Y0

U0
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Y0

Y1

±±

Figure 3.5: X0 con-
founds Y0 & no U0 con-
founding.
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X0

Y0
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±±

±

Figure 3.6: X0 con-
founds Y0 & U0 con-
founds X0.
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Figure 3.7: X0 con-
founds Y0 & U0 con-
founds Y0.
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Figure 3.8: X0 confounds Y0

& U0 confounds X0 & Y0.
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3.3.3 Dag 3: X0 mediates Y0

Y0
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Y1
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Figure 3.9: X0 confounds Y0

& no U0 confounding.
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Figure 3.10: X0 mediates Y0

& no U0 confounding.
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Figure 3.11: X0 mediates Y0

& U0 confounds Y0.
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±
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±

±

Figure 3.12: X0 mediates Y0

& U0 confounds X0 & Y0.
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3.3.4 Description of the DAGS

1. Dag 1: In Figures 3.1- 3.4, we assume that X0 and Y0 are orthogonal as

there is no causal relationship between them, analogous to the situation for

a randomised controlled trial (RCT) – although we are primarily interested

in the context of prediction within observational data, RCT scenarios are

important for completeness when making comparison across different po-

tential underlying data generating structures. We generate four different

scenarios as described below:

• Scenario 1: In Figure 3.1, we assume that there is no confounding of

X0 and Y1 by U0. The correlation between U0 and Y1 is sampled from

{−0.5, 0.5}. The correlations between U0 and Y0, U0 and X0 as well as

X0 and Y0 are set to 0. The correlation between Y0 and Y1 is sampled

from the set {0.05, 0.10, . . . , 0.95} and the correlation between X0 and

Y1 is sampled from {−0.95,−0.90, . . . , 0.95}.

• Scenario 2: In Figure 3.2, we assume that U0 confounds X0 and Y1,

but does not confound Y0 and Y1. The correlation between X0 and Y0

and between U0 and Y0 is set to 0. The correlation between U0 and

Y1 as well as between U0 and X0 is sampled from {−0.5, 0.5} . The

correlation between Y0 and Y1 is sampled from {0.05, 0.10, . . . , 0.95}

and that between X0 and Y1 is sampled from{−0.95,−0.90, . . . , 0.95}.

• Scenario 3: In Figure 3.3, we assume that U0 confounds Y0 and Y1, but

does not confound on X0 and Y1. We let the correlations between X0

and Y0 and that between U0 and X0 to be equal to 0. The correlations

between U0 and Y1 as well as between U0 and Y0 is sampled from
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{−0.5, 0.5} . The correlations between Y0 and Y1 are sampled from

the set {0.05, 0.10, . . . , 0.95} and that between X0 and Y1 is sampled

from {−0.95,−0.90, . . . , 0.95}.

• Scenario 4: In Figure 3.4, we assume that X0 and Y0 are orthogonal

and that U0 mediates Y0 and Y1. The correlation between X0 and

Y0 as well as between U0 and X0 to be equal to 0. The correlation

between U0 and Y0 as well as between U0 and Y1 is sampled from

{−0.5, 0.5}. The correlation between Y0 and Y1 is sampled from the

set {0.05, 0.10, . . . , 0.95} and that between X0 and Y1 is sampled from

{−0.95,−0.90, . . . , 0.95}.

2. Dag 2: In Figures 3.5- 3.8, we assume that X0 confounds Y0

• Scenario 1: In Figure 3.5, we assume there is no confounding of X0 and

Y0 by U0. We let the correlation between U0 and Y1 is sampled from

{−0.5, 0.5}. The correlation between U0 and Y0 as well as between U0

andX0 are both set to 0. The correlation between Y0 and Y1 is sampled

from the set {0.05, 0.10, . . . , 0.95} while the correlation betweenX0 and

Y1 is sampled from {−0.95,−0.90, . . . , 0.95}.

• Scenario 2: In Figure 3.6, we assume that U0 confounds X0 and Y1,

but does not confound on Y0 and Y1. The correlation between U0 and

Y0 is set to 0. The correlation between U0 and Y1 as well as between U0

and X0 is sampled from {−0.5, 0.5}. The correlation between Y0 and

Y1 is sampled from {0.05, 0.10, . . . , 0.95} and that between X0 and Y1

is sampled from {−0.95,−0.90, . . . , 0.95}..
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• Scenario 3: In Figure 3.7, we assume that U0 confounds Y0 and Y1,

but does not confound X0. The correlation between U0 and X0 is set

to 0. The correlation between U0 and Y1 as well as between U0 and

Y0 is sampled from {−0.5, 0.5}. The correlation between Y0 and Y1

is sampled from {0.05, 0.10, . . . , 0.95} and that between X0 and Y1 is

sampled from {−0.95,−0.90, . . . , 0.95}.

• Scenario 4: In Figure 3.8, we assume that U0 confounds X0, Y0 and

Y1. The correlation between X0 and Y0 and that between U0 and X0 is

sampled from {−0.5, 0.5}. The correlation between U0 and Y0 as well

as between U0 and Y1 is set to ±0.5. The correlation between Y0 and

Y1 is sampled from {0.05, 0.10, . . . , 0.95} and that between X0 and Y1

is sampled from {−0.95,−0.90, . . . , 0.95}.

3. Dag 3: In Figures 3.9- 3.12, X0 mediates Y0

• Scenario 1: In Figure 3.9, we assume that there is no confounding of

X0 and Y1 by U0. The correlation between U0 and Y0 as well as between

U0 and X0 is set to 0. The correlation between U0 and Y1 is sampled

from {−0.5, 0.5}. The correlation between Y0 and Y1 is sampled from

the set {0.05, 0.10, . . . , 0.95} while the correlation between X0 and Y1

is sampled from {−0.95,−0.90, . . . , 0.95}.

• Scenario 2: In Figure 3.10, we assume that U0 confounds X0 and Y1,

but does not confound Y0 and Y1. The correlation between U0 and Y0 is

set to 0. The correlations between U0 and Y1 as well as between U0 and

X0 are both sampled from {−0.5, 0.5} . The correlations between Y0
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and Y1 are sampled from the set {0, 0.10, . . . , 0.95} and that between

Y0 and X0 is sampled from {−0.95,−0.90, . . . , 0.95}.

• Scenario 3: In Figure 3.11, we assume that U0 confounds Y0 and Y1,

but does not confound X0 and Y1. The correlation between X0 and Y0

and that between U0 and X0 is set to 0. The correlation between U0

and Y1 as well as between U0 and Y0 is sampled from {−0.5, 0.5}. The

correlations between Y0 and Y1 is sampled from {0.05, 0.10, . . . , 0.95}

and that between X0 and Y0 is sampled from {−0.95,−0.90, . . . , 0.95}.

• Scenario 4: In Figure 3.12, we assume that U0 confounds X0 and Y1

and U0 confounds Y0 and Y1. The correlation between U0 and Y0 as well

as between U0 and X0 is sampled from {−0.5, 0.5}. The correlation

between U0 and Y0 as well as between U0 and Y1 is sampled from

{−0.5, 0.5} . The correlation between Y0 and Y1 is sampled from the

set {0.05, 0.10, . . . , 0.95} and that between X0 and Y0 is sampled from

{−0.95,−0.90, . . . , 0.95}.
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3.4 Prediction of Survival or death in a heteroge-

nous population: Simulation 2

We now consider a prediction challenge for longitudinal data, as might arise in

many clinical prediction models. We therefore adopt a lifecourse perspective for

our simulation study and seek to evaluate – within a hypothetical cohort of pa-

tients with a history of chronic heart failure – the role of exposures at different

stages of the lifecourse in predicting both the outcome of death or survival, S,

and unobserved population heterogeneity captured by a categorical latent class

variable C. In this instance, we adopt a lifecourse framework to understand how

different experiences encountered during different periods of an individual’s life

might predict the risk of death later in life and contribute to the accumulated

variations that give rise to population heterogeneity. The initial step is to con-

struct a DAG to represent our hypothesized causal effects among the observed

variables and the latent variable for population heterogeneity; this will become

the data generating processes for our simulations.

We consider three variables X1, X2 and X3 representing exposures that have oc-

curred at different times throughout an individual’s life. We arbitrarily assume

that X1 represents all variables or attributes which pertain to a period during the

early life of an individual. Examples of such variables are: genetics, birthweight,

and socioeconomic background. Variable X2 represents all variables or attributes

of individuals which pertain to a period midway through an individual’s life. Ex-

amples of these variables are: obesity, lack of physical exercise, and smoking.

Finally we have another set of variables represented by X3. These variables per-

tain to the period just before the outcome of interest. Examples could be body
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size, comorbidities, treatment type, and drug adherence. In a DAG, variables

X1, X2 and X3 are represented by square boxes to indicate that these are mea-

sured variables. However, variable Ĉ is represented as a circle to indicate that

this is not a directly observed variable but rather inferred from other observed

or unobserved variables. In this instance, we might assume that variable Ĉ is

binary with two categories that, post-hoc, we can describe as representing high

and low risk of death within the population. Survival (Ŝ) is the outcome variable

that describes the period an individual is observed during the follow-up period

till either death or the end of the study (i.e. censored).

A hypothetical scenario presented in Figure 3.13 describes a plausible relation-

ship among all variables. Variable X3 has a direct causal impact on the outcome

S while the path between X1 and S is both direct and also mediated by X2, X3

and class (Ĉ), with X1 possibly having a higher direct causal impact on class (Ĉ)

than its direct impact on the outcome (S). X2 has a causal impact on both class

and survival. This hypothetical scenario justifies the position of X1 and X3 in a

life course framework, where distal exposures (e.g. X1 ) tend to have a weaker

direct causal impact on the outcome while proximal exposures, such as X3 , have

a stronger direct causal impact on the outcome, but the former nevertheless still

contributes to population heterogeneity.
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X1 X2

Ĉ

X3 Ŝ
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ρ
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ρ3 ρ8

Figure 3.13: A hypothetical temporal-causal diagram depicting the causal rela-
tionships amongst three predictors (X1, X2 and X3), one latent class (C), and the
outcome (death/survival; S) in a simulated observational setting where preced-
ing covariates act as potential causes of all subsequent variables, including class
and/or death/survival.

These simulations are designed to mimic an observational study setting so that we

can investigate the role of lifecourse exposures in predicting both class-membership

and the health outcome (e.g. survival). Informed by real life studies, we let

X = {X1, X2, X3, Ŝ, Ĉ} be a vector of predictors drawn from the multivariate

normal distribution. The class C variable was generated by arbitrarily splitting

a normally distributed variable, Ĉ into two groups such that 70% in class 1 and

30% in class 2–as approximately observed in the example dataset on patients

with coronary heart failure disease. To mimic this dataset, we transformed a
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Figure 3.14: In the temporal-causal diagram of Figure 3.13, path coefficients
are either constant or summarised for all three scenarios considered. The key
paths that mediate distal and intermediate predictor influence to the outcome
via population heterogeneity are given dotted lines.

normally distributed variable Ŝ into a survival outcome S to represent the length

of followup for patients with CHF disease.

There are many distributions that are used to model survival data. The exponen-

tial distribution is the common approach which is commonly adopted. Other dis-

tributions such as the Weibull and gamma, Gompertz, lognormal, and log-logistic

are useful alternatives. The Weibull distribution (i.e. W(η, λ)) characterised by

two parameters, η (shape parameter) and λ (scale parameter) has been recom-

mended in some previous studies(Lee and Go, 1997). The time to event, S was
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initially drawn from a normal (i.e N(µ, σ2)) and converted to an exponential

random variable with survival time ranging from 0 to 25 years.

Assumptions for the Data generation mechanism in Figure 3.13

It is important to realise that initially naïve assumptions are being made about

the causal graph in order to arrive ultimately at the desired data structure. This

DGM makes three plausible assumptions on the basis of the relative temporal

position of each variable (Ellison, 2021):

• Only preceding variables could act as potential causes of subsequent vari-

ables. This is supported by Pearl and Verma (Pearl and Verma, 1995) who

argued that temporal ordering of variables is essential for defining causa-

tion and that it may also help to distinguish causal from other types of

associations.

• Any preceding variable could act as a potential cause of all subsequent vari-

ables. For example, early life nutritional health status could be a potential

cause of obesity later in life.

• The strength of the causal relationships and their associated path coeffi-

cients are dependent upon the variables concerned and the specific con-

text(s) involved.

It is important to note that he pre-transformed simulated data are drawn from

a multivariate normal distribution. The path coefficients in the causal DAG will

not therefore represent the true relationship in the post-transformed simulated
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data, which is why there is an iterative process in arriving at the correct path

coefficients involving variables in the DAG that will need to be transformed.

To simulate data in R, we created a hypothetical diagram using an R package

called daggity (Textor et al., 2016) with arrows depicting causal relationships

between covariates (X1, X2, X3) and outcomes (Ĉ and Ŝ) in an observational

study setting. Data were simulated using a simulateSEM function within the

daggity package. The simulateSEM function interprets a causal path diagram

using Wright’s rules. Both the class variable (Ĉ) and survival (Ŝ) are initially

simulated as multivariate normal, with Ĉ transformed to binary C(i.e. represent-

ing latent subgroups of patients) and Ŝ transformed to S.

3.4.1 An illustration of Wright’s Rules: Application to a

DAG depicting a temporal order of variables

In this DAG, X1,X2 and X3 depict a temporal order of variables. These vari-

ables are used to predict the pre-transformed patients’ survival (Ŝ) and class-

membership (Ĉ).
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Figure 3.15: A hypothetical causal diagram for an observational study setting.

The path coefficients are represented by a, b, c, d, e, f, g, h as shown in Fig 3.16.

Suffice to note that b, c and e represent correlations amongst independent vari-

ables. To generate a covariance structure for Fig 3.16, we first of all decompose

the correlation structure amongst the five variables where Ĉ and Ŝ are outcome

variables.

There are two direct effects to Ĉ, the first one is from X1 to Ĉ and another one

from X2 to Ĉ. X1 indirectly causes Ĉ mediated by X2. similarly, X2 causes C

through X1. X3 has no direct causal impact on C, but it indirectly impacts C

through X2 and X1. Similarly, there are two direct effects to Ŝ, the first one is

from X2 to Ŝ and another one from X3 to S. X1 indirectly causes S mediated

by Ĉ. X1 also indirectly causes Ŝ mediated by X2 and X3. Additionally, X1

indirectly causes Ŝ mediated by X2 and Ĉ. X2 indirectly causes Ŝ through X3

and Ĉ. Additionally, X2 indirectly causes Ŝ mediated by X1 and Ĉ. X3 has an
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indirect causal impact on Ŝ through X2 and Ĉ. X3 has another indirect causal

impact on Ŝ through X1 and Ĉ as well as through X2.

Using wright’s rules outlined on section 2.5.1, the correlations among these five

variables can be decomposed as follows: The correlation between X1 and X2 is

represented by b. The correlation between X2 and X3 is represented by e while

the correlation between X1 and X3 is represented by c. Therefore, we can write

r12 = b, r23 = e and r13 = c respectively. The correlation between X1 and Ĉ is

given by rcx1 = a+bd. The correlation betweenX2 and Ĉ is given by rcx1 = d+ab.

The correlation between X3 and Ĉ is given by rcx1 = de+ ac. Similarly, the cor-

relation between X1 and Ŝ is given by rsx1 = ah+ bdh+ cg+ bf . The correlation

between X2 and Ŝ is given by rsx2 = f + eg + dh + bdh. Finally, the correlation

between X3 and Ŝ is given by rsx3 = g + edh+ cah+ ef .

In summary, we have a correlation matrix defined as follows:

Ω =



1

h 1

a+ bd ah+ bdh+ cg + bf 1

d+ ab f + eg + dh+ bdh b 1

de+ ac g + edh+ cah+ ef c e 1


To illustrate how this works, assume that the the observed correlations are as

follows: r12 = 0.02, r13 = 0.01 and r23 = 0.02. Let us further assume that the

path coefficients are given as follows, a = 0.6, d = 0.2, f = 0.4, g = 0.7, h = 0.5.
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Figure 3.16: A hypothetical causal diagram for an observational study setting.

Then the correlation structure is given by:

Ω′ =



1.00

0.50 1.00

0.60 0.32 1.00

0.21 0.52 0.02 1.00

0.01 0.71 0.01 0.02 1.00


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3.5 Chapter Summary

The standard simulation process involves simulating data that follows a particu-

lar covariance structure. The challenge with this approach is that sometimes the

range of simulations considered might fail to capture the realistic potential sce-

narios as dictated by the underlying data generating mechanisms, which may not

be apparent by simply specifying the resultant covariance structure. To simulate

data that reflect the underlying truth in more complex real-world settings, we

must inspect the temporal ordering of variables to consider their causal interplay

and thus examine how this may affect any future outcomes – where this is not

known a priori, as with lifecourse data, then all potential options for a dataset

must be anticipated.

We have introduced the process of how to generate simulations that respect the

causal data generation processes operating a longitudinal setting, to reflect the un-

derlying realistic scenarios we hypothesise, that lie behind the observed data. We

have explored different contexts to illustrate the benefits of simulating the data

generating process over merely simulating the consequential covariance struc-

ture, but these illustrations will have a practical utility in the next two chapters

where we evaluate the consequence of having a range of data generating processes

when exploring a particular method. Adopting a DAG based simulation provides

greater complexity in the simulation to capture realistic problems and features of

real data. For instance, in the prediction of change example, we drew attention

to the importance of recognising composite measures and deconstructing these

into their parent components; in the prediction of longitudinal outcomes, we out-

lined the different roles of predictors at various stages of life, and how this can

72



lead to an understanding of latent inherent heterogeneity within a dataset. This

highlights the benefits that stems from including a temporal component in our

thinking behind causal understanding of the data generation and the explicit use

of DAGs to exploit this in informing simulations that would otherwise be totally

lost in the simpler standard methods of beginning with a postulated covariance

matrix.

While we acknowledge that simulating with respect to a causal structure is

not novel, substantial novelty exists in the simulations undertaken in this the-

sis around the assumed Data Generating Mechanisms (DGMs) adopted to reflect

natural process change in an outcome over time (e.g. follow-up change, opposed to

change-scores) and the lifecourse consequences of enigmatic variation (i.e. small

but frequent random nudges in one direction or another) that generates popula-

tion heterogeneity in all outcomes over time. Heterogeneity is extremely common

in health data, yet very poorly or inadequately addressed explicitly. To our

knowledge, none of these DGMs have been previously examined with respect to

prediction (i.e. through the lens of causal inference with a view to improve pre-

diction). Others have shown the utility of causal insight for improved prediction

e.g. (Piccininni et al., 2020; Richens et al., 2020) but we specifically examine two

scenarios in depth (i.e. the analysis of follow-up change versus change-scores, and

the later-life outcome (survival) in response to substantially varied lives within

heterogeneous populations). No previous work has consolidated either idea in a

comprehensible illustration that addresses the prediction challenges we highlight,

to guide researchers who may be interested in doing similar work to improve

prediction models and their reliability for different contexts.
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Chapter 4

Predicting change-scores and

follow-up outcomes in an

observational study setting;

evaluation and recommendations

In this Chapter, we discuss the first illustration of our simulation process de-

scribed in Chapter 3. We begin by introducing the concept of change before

introducing an illustrative example where we evaluate prediction models under

different scenarios. The ultimate goal in this chapter is to establish ways of im-

proving the prediction of change given a number of complex circumstances within

an observation study setting.
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4.1 Introduction

Longitudinal studies examining the relationship between baseline exposure(s) and

the subsequent change in health status or the putative outcome of interest are

common in epidemiological research. For instance, suppose that in an epidemio-

logical study, a dependent outcome, Y is measured at baseline, Y0 and follow-up,

Y1. Assuming that we are interested in assessing the relationship between an

exposure variable X , measured at baseline (hence depicted X0) and the changes

that arise in the outcome Y . To assess this relationship between X and Y , there

are two proposed regression method strategies that are commonly applied, namely

the change score analysis and the regressor method known as the analysis of co-

variance method (Allison, 1990; Senn, 2006).

The change score analysis involves regressing the outcome-change score (∆Y =

Y1 − Y0) on the baseline exposure (X0) while ANCOVA is where the follow-up

outcome, Y1 is regressed on the baseline exposure, X0 while adjusting for the

baseline outcome Y0 (Tennant et al., 2021a). It has been shown mathematically

that these two approaches are equivalent and both yield the same model coeffi-

cients and standard errors (Werts and Linn, 1970).

Even though these methods have been widely used to analyse change or followup

measurements, there has been very little evaluation of their role in prediction.

Applications of these methods for prediction of change in a longitudinal outcome

have not been widely explored. The main focus has been on the interpretations

of the model coefficients and not on the assessment of the outcome predictions,

e.g. how model performance and parsimony might differ between strategies.
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This chapter aims at applying the change score and regressor method to predict

the change or follow-up outcomes to evaluate potential differences in predictor

variable selection and prediction performance under a range of controlled (and

therefore known) conditions. An illustrative example that follows the ADEMP

structure of reporting simulation studies as described by Morris et al (Morris

et al., 2019) is adopted to aid in understanding and facilitate the evaluation

of different plausible scenarios that may be encountered in real epidemiological

studies.

4.2 An illustrative example

Suppose that Y is an outcome variable with two measurements , Y0 (i.e. measured

at baseline meaning that the outcome value is obtained at the beginning of the

study) and Y1 (i.e. measured at follow-up meaning that the outcome value is

obtained at the end of the study period). Let X0 and U0 be the exposure and

competing exposure variables for the outcome Y . For example, suppose weight at

baseline is denoted Y0 and the weight after one year is denoted Y1. The predictors

X0 and U0 could represent age and BMI respectively. Using these variables, we

now describe a simulation study to evaluate the two proposed regression strategies

(i.e. the change score analysis and the regressor method) in terms of prediction

performance and variable selection.

4.2.1 Aims

The aim of the study is to:

1. Evaluate the impact of forcibly including the baseline, Y0 as one of the
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predictors of either change score, ∆Y , or follow-up, Y1 .

2. Evaluate the impact of forcibly excluding the baseline, Y0 as one of the

predictors of either change score, ∆Y , or follow-up, Y .

3. Assess the implications of allowing the prediction model algorithm adopted

to select from candidate predictors, Y0, X0 and U0 while predicting the

change-score, ∆Y , or follow-up, Y .

4. Assess the differences in root mean square error of option (3) within the

test data between the change-score model and the follow-up model.

4.2.2 Data generating mechanisms

We considered twelve directed acyclic graphs (DAGs) depicting several plausible

causal scenarios for simulation, as shown in Figures 3.1 - 3.12. These fall into

three broad causal contexts:

In the first context we assume orthogonality between the baseline exposure and

the baseline outcome measurements, meaning that the two are uncorrelated (as

within a randomised trial setting)-as such, there is no arrow connecting X0 and

Y0 in all DAGs under this assumption.

In the second context, it was assumed that X0 confounds Y0, meaning that two

are correlated. There is thus an arrow from X0 to Y0 for all DAGs under this

assumption.

In the third context, the assumption is that X0 mediates Y0, meaning that again

the two are correlated- this time, however, there is an indirect route from Y0 to Y1

through X0. For each context, different assumptions and parameter specifications
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were considered for the data generating mechanism, as shown in the tables 4.1-

4.3. It is these correlations and the specified path coefficients that were used

to generate a positive definite covariance matrix for each scenario which formed

the solution space. For each scenario, 100 simulated datasets were generated,

each with 1000 observations and four variables, Y0, Y1, X0 and U0 where Y0 is the

baseline measurement for the outcome, Y1 is the follow-up measurement, X0 and

U0 are assumed to be the baseline exposure and competing exposure variables

respectively. All variables were sampled from a multivariate normal distribution.

Description of data generating mechanisms

Firstly, we assume that X0 and Y0 are orthogonal -this would be a typical of the

situation for a randomised control trial, for instance, where the randomisation

ensure orthogonality. Below is a summary of the parameters.
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Scenario 1: X0 and Y0 are orthogonal
& no U0 confounding

Coding Correlation Parameters Description

ρX0Y0 0.0 1 X0 and Y0 are orthogonal, no correlation
ρU0Y0 , ρU0X0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Both positive and negative correlation between X0 and Y1.
ρU0Y1 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and Y1

Scenario 2: X0 and Y0 are orthogonal
& U0 confounds X0

ρX0Y0 0.0 1 X0 and Y0 are orthogonal
ρU0Y0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 Baseline outcome serial correlation path coefficient
ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0X0 , ρU0Y1 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and X0 as well as between U0 and Y1

Scenario 3: X0 and Y0 are orthogonal
& U0 confounds Y0

ρX0Y0 0.0 1 X0 and Y0 are orthogonal
ρU0X0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0Y0 , ρU0Y1 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and Y0 as well as between U0 and Y1

Scenario 4: X0 and Y0 are orthogonal
& no U0 mediates Y0

ρX0Y0 0.0 1 X0 and Y0 are orthogonal
ρU0X0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0Y0 , ρU0Y1 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and Y0 as well as between U0 and Y1

Table 4.1: Summary of the parameters for the Scenarios in which X0 and Y0 are
orthogonal

Secondly, we assume thatX0 confounds Y0 -this would represent a situation where

X0 crystallises before Y0. The following are the parameters used to simulate data.
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Scenario 1: X0 confounds Y0

& no U0 confounding

Coding Correlation Parameters Description

ρU0Y0 , ρU0X0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0Y1 , ρX0Y0 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5

between X0 and Y0 as well as between U0 and Y1

Scenario 2: X0 confounds Y0

& U0 confounds X0

ρU0Y0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0X0 , ρU0Y1 , ρX0Y0 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and X0,

between U0 and Y1 as well as between X0 and Y0

Scenario 3: X0 confounds Y0

& U0 confounds Y0

ρU0X0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0Y0 , ρU0Y1 , ρX0Y0 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and Y0,

between U0 and Y1 as well as between X0 and Y0

Scenario 4: X0 confounds Y0

& no U0 confounds X0 & Y0

ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0Y0 , ρU0Y1 , ρU0X0 ,ρX0Y0 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and Y0,

between U0 and Y1, between U0 and X0 as well as between X0 and Y0

Table 4.2: Summary of the parameters for the Scenarios in which X0 confounds
Y0.

Lastly, we assume that X0 mediates Y0 -this would represent a situation where

Y0 crystallises before X0, for instance. The following are the parameters used to

simulate data.

4.2.3 Estimand

Our targeted estimand is the change-score which would represent a change in

blood pressure after an intervention in an observational study setting.
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Scenario 1: X0 mediates Y0

& no U0 confounding

Coding Correlation Parameters Description

ρU0Y0 , ρU0X0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0Y1 , rhoY0X0 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0

and Y1 as well as between Y0 and X0

Scenario 2: X0 mediates Y0

& U0 confounds X0

ρU0Y0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0X0 , ρU0Y1 , ρY0X0 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and Y1,

between U0 and X0 as well as between Y0 and X0

Scenario 3: X0 mediates Y0

& U0 confounds Y0

ρU0X0 0.0 1 No U0 confounding
ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0Y0 , ρU0Y1 , ρY0X0 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and Y0,

between U0 and Y1 as well as between Y0 and X0

Scenario 4: X0 mediates Y0

& no U0 confounds X0 & Y0

ρY0Y1 {0.05, 0.10, . . . , 0.95} 19 A positive correlation between Y0 and Y1

ρX0Y1 {−0.95,−0.90, . . . , 0.95} 38 Main covariate effect size path coefficient
ρU0Y0 , ρU0Y1 , ρU0X0 , ρX0Y0 {−0.5, 0.5} 2 Either a correlation of −0.5 or 0.5 between U0 and Y0,

between U0 and Y1, between U0 and X0 as well as between X0 and Y0

Table 4.3: Summary of the parameters for the Scenarios in which X0 mediates Y0

4.2.4 Methods

Each simulated dataset is analysed using the two linear regression models as

described below. The first regression model is constructed for the outcome Y1

regressed on candidate covariates, X0, U0 and Y0 with predictors retained in the

best model selected according to the Bayesian Information Criterion (BIC) adopt-

ing the all subsets regression method which runs regression models on all possible

permutations of candidate predictors (Nimon and Oswald, 2013). Bayesian In-

formation Criterion (BIC) and Alkaike Information Criteria (AIC) have been

widely used for model selection in linear regression models (Lee et al., 2014; Li
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and Nyholt, 2001). The BIC is calculated as follows:

BIC = −2 log(L) +K log(N) (4.1)

while AIC is calculated as follows

AIC = −2 log(L) + 2K (4.2)

where L is the maximum likelihood, K the number of parameters to be estimated

in the model, andN the sample size. In this analysis we deployed BIC to select the

best model from a list of competing models because it is the most parsimonious

and thus avoids overfitting more than the AIC. The lower the BIC, the better

the model.

The first regression model was constructed as follows:

Y1 = β0 + β1Y0 + β2U0 + β3X0 + ε1 (4.3)

The second regression model uses the constructed change score, ∆Y , as the out-

come and this is regressed on candidate covariates, X0, U0 and Y0 with predictors

retained in the best model according to the BIC when adopting the all subsets

regression method, as before.

∆Y = β0 + β1Y0 + β2U0 + β3X0 + ε2 (4.4)

82



Training Process

Each simulated data comprised four variables Y0, Y1, X0 and U0 with a sample size

of 1000. All the variables were drawn from a multivariate normal distribution.

A change-score variable was calculated by subtracting the baseline measurement

from the follow-up measurement (i.e. ∆Y = Y1−Y0). Each dataset was randomly

split into the training and datasets. The training dataset comprised 70% of the

original dataset (i.e. n=700) and testing dataset comprised the remaining 30% of

the original data (i.e. n=300). Two models were considered for training in each

case, the first being the ANCOVA model with the follow-up variable (i.e. Y1) as

its outcome followed by the change-score model with the change variable (i.e.

∆Y = Y1 − Y0) as its outcome.

To address the four objectives for this chapter, three types of models were explored

for each outcome. The three scenarios that were of interest were:

1. Forcibly including the baseline as a predictor while selecting from the two

exposure variables based on the best BIC.

2. Selecting predictors from the baseline outcome and two exposure variables

based on the best BIC.

3. Forcibly excluding the baseline as a predictor while selecting from the two

exposure variables based on the best BIC.

Each scenario involved two models, one for each choice of outcome. In the first

scenario, where Y0 was forcibly included, some models retained both candidate

predictors while others dropped one or both candidate predictors, depending upon

the strength of the joint associations between the predictors and the outcome.
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The following are the four possible models that were explored for an ANCOVA

model with Y1 as an outcome.

1. Model 1: Y1 ∼ β0 + β1Y0 + ε1 - Both X0 and U0 dropped.

2. Model 2: Y1 ∼ β0 + β1Y0 + β2X0 + ε1 - U0 dropped.

3. Model 3: Y1 ∼ β0 + β1Y0 + β2U0 + ε1 - X0 dropped.

4. Model 4: Y1 ∼ β0 +β1Y0 +β2U0 +β3X0 +ε1 - Both X0 and U0 retained.

The same set of models were explored for the change-score outcome where ∆Y =

Y1 − Y0 defined as the outcome variable.

In the second scenario, the predictors for the two models were selected from a set

of three candidate predictors, Y0, U0, X0. Some models retained the baseline, Y0

while other models did not, depending on the underlying covariance structure.

The following are the eight possible models that were explored for a model with

Y1 as an outcome.

1. Model 1: Y1 ∼ β0 + ε1 - X0, Y0 and U0 dropped.

2. Model 2: Y1 ∼ β0 + β1Y0 + ε1 - Both X0 and U0 dropped.

3. Model 3: Y1 ∼ β0 + β1U0 + ε1 - Both X0 and Y0 dropped.

4. Model 4: Y1 ∼ β0 + β1X0 + ε1 - Both Y0 and U0 dropped.

5. Model 5: Y1 ∼ β0 + β1Y0 + β2X0 + ε1 - U0 dropped.

6. Model 6: Y1 ∼ β0 + β1Y0 + β2U0 + ε1 - X0 dropped.
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7. Model 7: Y1 ∼ β0 + β1U0 + β2X0 + ε1 - Y0 dropped.

8. Model 8: Y1 ∼ β0+β1Y0+β2X0+β3U0+ε1 - all three predictors retained.

The same set of models were also explored for the change score outcome with

∆Y = Y1 − Y0 defined as the outcome variable.

Lastly, the baseline measurement variable was forcibly ignored when modelling

the two outcomes. Models were allowed to select predictors from the set of candi-

date predictors; U0 and X0. The following are possible models that were explored

for a model with Y1 as an outcome.

1. Model 1: Y1 ∼ β0 + ε1 - X0 and U0 dropped.

2. Model 2: Y1 ∼ β0 + β1X0 + ε1 - U0 dropped.

3. Model 3: Y1 ∼ β0 + β1U0 + ε1 - X0 dropped.

4. Model 4: Y1 ∼ β0 +β1X0 +β1U0 +ε1 - Both X0 and U0 have been retained.

The same set of models were explored for the change-score outcome with ∆Y =

Y1 − Y0 defined as the outcome variable.

4.2.5 Performance measures

The root mean square error (RMSE) is typically used as a standard method

for model performance evaluation in many studies (Brassington, 2017; Chai and

Draxler, 2014). The RMSE is calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.5)
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All models were trained using 70% of the dataset and the BIC’s calculated. The

best model (i.e. the model with the lowest BIC value) was selected and tested

using 30% of the sample. To assess the performance of the predictions, the RMSE

was calculated. The model with the lowest RMSE is the best model.

4.3 Summary of results

Table 4.4 provides a summary of the results from the models with predictors

selected from the choice amongst X0 and U0 only with Y0 forcibly included as

default, for either Y1 as the outcome or ∆Y = Y1 − Y0 as the outcome. The first

column shows the correlations between the baseline and the follow-up measure-

ments. The second column shows the correlation between the exposure variable

and the follow-up measurement. The third and fourth column shows the correla-

tions between the competing exposure variable and the follow-up measurement as

well as between the competing exposure variable and the baseline outcome mea-

surements. The fifth column shows the correlation between the baseline exposure

and baseline outcome measurements. The sixth column shows the correlation be-

tween the baseline exposure variable and the competing exposure. The last two

columns indicate the predictors that are retained in each model for both outcomes

based on different solution spaces where the implied covariance matrix is posi-

tive definite. When the baseline outcome measurement, Y0, is forcibly included

as a predictor for the scenarios evaluated, there is never any difference between

predicting the change-score outcome, ∆Y or the ANCOVA followup outcome, Y1

as expected, since we know that once Y0 is conditioned on for the outcome ∆Y ,

this is mathematically equivalent to modelling the outcome Y1. Inspecting the

86



graphs in Figure 4.1, we notice that when Y0 is forcibly included in the model as

a default variable for the two models (either Y1 as the outcome or ∆Y = Y1 − Y0

as the outcome), the same predictors are retained in both cases. The first graph

(a) is the solution space for the model predicting Y1 while the second graph (b)

is the solution space for the model predicting change score, ∆Y . The two graphs

are clearly the same. There are no differences between the predictors retained in

both models suggesting that the two models are equivalent.

Force Y0

ρY0Y1 ρX0Y1 ρU0Y1 ρU0Y0 ρX0Y0 ρU0X0 pred Y1 pred ∆Y

0.05 −0.70 −0.5 −0.5 −0.5 −0.5 {X0, U0} {X0, U0}
0.05 −0.95 −0.5 0.0 −0.5 −0.5 {X0, U0} {X0, U0}
0.05 0.05 0.5 0.5 −0.5 0.0 {U0} {U0}
0.95 0.95 −0.5 0.0 −0.5 0.5 {X0, U0} {X0, U0}
0.25 0.4 −0.5 0.0 0.5 −0.5 {X0} {X0}
0.6 0.65 −0.5 0.0 −0.5 0.0 {X0, U0} {X0, U0}

Table 4.4: Summary of correlation structure for the predictors that were included
in the models. The predictors were selected from X0, U0. The baseline outcome
variable, Y0 was forcibly included as a predictor in each model. The last two
columns indicate the set of predictors retained for the best ANCOVA and change-
score models, respectively, according to BIC

In the second analysis, Y0 is available for selection together with U0 and X0

as candidate predictors for the follow-up, Y1 outcome or change-score outcome

∆Y = Y1 − Y0 outcome. A summary of the results for the scenario where Y0 is

not forcibly included as a predictor for the change score or follow-up outcomes in

the models is shown in Table 4.5. The first five columns provides a summary for
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(a)

(b)

Figure 4.1: (a) Predictors for the outcome Y1 with Y0 included by default (b)
Predictors for the outcome ∆Y with Y0 included by default
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the correlations between variables, as before. The last two columns are again the

retained predictors for the two models based on different solution spaces where the

implied covariance matrix is positive definite. From the results, we see that when

Y0 is not forcibly included in the model, there are sometimes some differences

between the selected predictors for either ∆Y or Y1 as outcomes for the scenarios

evaluated. This is evident when we compare the final model for each scenario.

Some models retained the same set of predictors while other models retained

different sets of predictors.

Choose Y0

ρY0Y1 ρX0Y1 ρU0Y1 ρU0Y0 ρX0Y0 ρU0X0 pred Y1 pred ∆Y

0.05 −0.70 −0.5 −0.5 −0.5 −0.5 {X0, U0} {X0, U0, Y0}
0.05 −0.95 0.5 0.0 −0.5 −0.5 {X0, U0} {X0, U0, Y0}
0.05 −0.70 −0.5 0.5 −0.5 −0.5 {X0, U0} {X0, U0, Y0}
0.5 0.10 0.5 0.0 −0.5 0.0 {U0} {X0, U0, Y0}
0.5 0.20 −0.5 0.0 0.5 −0.5 {X0} {X0, Y0}
0.05 −0.95 −0.5 0.0 −0.5 −0.5 {X0, U0, Y0} {X0, U0, Y0}
0.95 0.95 −0.5 0.5 −0.5 0.5 {X0, U0, Y0} {X0, U0, Y0}

Table 4.5: Summary of correlation structure for the predictors that were included
in the models. The predictors were selected from X0, U0 and Y0. The last two
columns are the set of predictors retained for the best ANCOVA and change-score
models, respectively, according to BIC.
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Figure 4.2: Predictors for the outcome Y1 selected from X0, U0 and Y0.
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Figure 4.3: Predictors for the outcome ∆Y selected from X0, U0 and Y0.
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Figure 4.4: A graph showing the difference between the solution spaces for pre-
dictors selected in a model with Y as the outcome vs another model with ∆Y as
the outcome as shown in Figure 4.2 and Figure 4.3

The graph in Figure 4.2 shows the predictors selected for the outcome Y1 when Y0

is not forcibly included as a predictor. There are more marked patterns for either

X0 or U0 than Y0 suggesting X0 and U0 are mostly favoured as predictors for

the Y1 outcome model depending upon the implied covariance structure amongst

X0, U0 and Y0. X0 is picked as a predictor if the correlation X0 − Y1 is close

to 0 because of the indirect effect through Y0. The graph in Figure 4.3 shows

the predictors selected for the outcome ∆Y when Y0 is not forcibly included as

a predictor in an ANCOVA model. The graph shows that Y0 is mostly selected

as a predictor of Y1. There are marked patterns for the three predictors (i.e. X0

, U0 and Y0) suggesting that all predictors are favoured as a predictors for the

∆Y outcome model depending upon the implied covariance structure amongst
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X0, U0 and Y0. This pattern is consistent in all scenarios evaluated. The graph

in Figure 4.4 shows the difference between the two graphs in Figures 4.2 and

Figure 4.3. Upper-case letters are used depict selected predictors selected for the

change-score model with an outcome, ∆Y but not for the ANCOVA model with

an outcome Y1, while lower-case letters depict predictors that are selected for

the outcome, Y1 but not for outcome ∆Y . There are some obvious differences

between graphs in Figure 4.2 and Figure 4.3; it is clearly seen that the predictor

Y0 is more often not selected for the Y1 outcome model than either X0 or U0

is not selected, and this is predominantly around circumstances where the path

coefficient between X0 and Y1 is small, though occasionally patterned for much

larger path coefficients betweenX0 and Y1, depending upon the implied covariance

structure amongst X0, U0 and Y0. Assuming the baseline outcome measurement,

Y0, were missing, we would be unable to consider it a candidate predictor and it

would never be included as a selected predictor for either outcome model. We

would then consider the two models with only X0 and U0 as candidate predictors.

A summary of the results for this scenario where Y0 is missing and hence not

included as a predictor for the change-score or follow-up outcomes is shown in

Table 4.6. The first five columns provides a summary of the correlations between

variables, as before, while the last two columns are the root mean square error

(RMSE) values for the two models evaluated on different solution spaces, where

the implied covariance matrix is positive definite. From these results, we note

that when Y0 is not available for selection as a predictor in both models, the

model with ∆Y consistently performs poorly compared to the model with Y1 as

the outcome for the scenarios evaluated. This is evident when we compare the

RMSE values for the two models. The RMSE values are higher in the model with
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∆Y as the outcome suggesting that the model predictions are less accurate in the

change-score model.

Ignore Y0

ρY0Y1 ρX0Y1 ρU0Y1 ρU0Y0 ρX0Y0 ρU0X0 Y1_RMSE ∆Y_RMSE

0.05 −0.95 0.5 0.0 −0.5 −0.5 1.01 2.32
0.15 0.05 0.5 0.0 −0.5 0.5 1.33 1.43
0.15 0.10−0.5 0.5 −0.5 0.0 1.29 1.42
0.2 −0.75 0.5 0.5 −0.5 0.5 1.18 1.04
0.95 0.95 0.5 −0.5 −0.5 −0.5 0.89 2.25

Table 4.6: Summary of the correlation structure for the predictors that were
included in the models. The predictors were selected from X0, U0 and Y0 is
forcibly ignored in both models. The last two columns indicate the root mean
square error values for the model with Y1 and ∆Y as outcomes
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From the graphs in part (a) and part (b) of Figure 4.5, we see the different

shapes of the plausible solution space (i.e. where the covariance matrix is positive

definite). Examining the graph in part (c), we notice that patterns are seen for

either X0 or U0 being favoured as a predictor for the Y1 outcome model over

the ∆Y outcome model, or vice versa, depending upon the implied covariance

structure amongst X0, U0 and Y0. This shows considerable difference between

the two model options, with potential sign reversal for some predictors in some

instances.

4.3.1 Conclusion

This chapter has demonstrated through simulations what we already knew, namely

that provided Y0 is conditioned for either a model (outcome Y1 or the outcome

∆Y ), the two models are equivalent. It has also demonstrated what has not been

examined before: (i) that allowing the two models to select Y0 as a candidate

predictor, different preferred models emerge from the training exercise; and (ii)

that omitting Y0 as a predictor in the model for Y1 or ∆Y results in a consider-

able differences in terms of prediction performance between the two models, with

poorer performance predicting ∆Y .

The first of these new observations raises serious questions around the validity

of prediction models for change-scores, since it is clearly shown that the concept

of change typically sought for causal inference is only obtainable by modelling

follow-up outcome Y1. Were this principle applied to prediction and the change-

score calculated post-hoc, this could yield in some instances a different value

to that derived through predicting ∆Y directly. The question of which is the
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‘correct’ change-score one should seek to predict might seem debatable for re-

searchers not interested in causal inference, but causal knowledge underpins the

data generating mechanisms evaluated and would therefore suggest that it is the

change-score derived post-hoc that should be favoured.

In any event, researchers need to be very cautious when predicting change in an

observational study setting. The baseline, Y0 should always be included where

available as a predictor, whether predicting Y1 or ∆Y . Otherwise, failure to

include the baseline outcome as a candidate predictor may yield incorrect predic-

tions.
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(a)

(b)

(c)

Figure 4.5: (a) Predictors for the outcome Y1 selected from X0 and U0 with Y0

forcibly excluded; (b) predictors for the outcome ∆Y selected from X0 and U0

with Y0 forcibly excluded; and (c) the difference between graph (a) and graph (b);
upper-case letters are used depict selected predictors for the outcome, ∆Y but
not for outcome Y1 , and lower-case letters depict selected predictors for outcome
Y1 but not for outcome ∆Y
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Chapter 5

Assessing the predictive acuity and

clinical utility of survival

prognostication amongst

UK-HEART study patients using

Statistical Modelling techniques

In this chapter we assess different statistical models for survival prognostication

using the UK-Heart study dataset. We begin with the introduction which high-

lights some of the pitfalls of the commonly used statistical models and propose

the extension of these models in a latent class framework.

98



5.1 Introduction

Risk prediction models (RPMs) remain popular for prognostication in cardio-

vascular medicine (DeFilippis et al., 2015; O’Donnell, 2020). While RPMs and

their wider utility remain contentious beyond strict prognostication, and particu-

larly in prevention (Arnold et al., 2020; Holmberg and Parascandola, 2010; Killu

et al., 2019), many of the standard statistical modelling techniques commonly

used are on clinical datasets that remain relatively small atleast when compared

to contemporary notions of ‘Big Data’ (Diebold, 2012). A substantial statistical

weakness of the commonest of these generalised linear models as a predictive tool

is that they often fail to make full use of the joint information available amongst

all candidate predictor variables. This is because these models rarely explore

nonlinear relationships and interactions. Moreover, even when analysts optimally

parameterise the candidate predictors available, and carefully consider all possible

interaction terms between these, the clinical utility of GLMs is typically limited

to predictions made at the population level (Arnold et al., 2020; Holmberg and

Parascandola, 2010; Killu et al., 2019; Rockhill et al., 2000), while predictions at

the individual level often lack precision. Although more sophisticated machine

learning techniques may overcome the rigidity of GLMs and analysts’ tendency to

ignore nonlinear relationships and interactions, population-level predictions gen-

erated using cutting edge machine learning techniques will still be more reliable

than individual-level predictions. Indeed, this bald fact applies to all prediction

modelling techniques, including those underpinning contemporary claims of ‘per-

sonalised’ or ‘precision medicine’ (Wilkinson et al., 2020). It is therefore critical to

recognise that while it is possible to determine what proportion of any given pop-
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ulation will experience a specified outcome with a reasonable degree of accuracy,

all such models provide less accuracy in determining outcomes for each individ-

ual within that population. Due to these caveats, predictions that are generated

using GLMs cannot address the two key concerns of attending physicians:

• Which of the covariates are amenable to clinical intervention, so as to pre-

vent any adverse outcome (or promote and amplify any favourable outcome)

in each (or all) of these patients?

• Which particular patients will experience an adverse (or favourable) out-

come?

To address the first of these questions, analysts need to switch their focus from

predicting outcome values to estimating each of the relationships between covari-

ates considered plausible targets for intervention and the outcome – an approach

that can capitalise on recent advances in causal inference modelling techniques

(Tennant et al., 2021b).

To address the second question, the best that can be achieved is to identify clini-

cally meaningful subgroups of patients with shared characteristics that set them

apart from other (subgroups of) patients using multivariable ‘risk profiling’. Mul-

tivariable risk profiling can be achieved using latent class analysis (LCA) in which

the exploration of nonlinearity, and of important interactions amongst included

covariates, forms an integral part of classifying patients into subgroups (Dean and

Raftery, 2010). Despite these benefits, the clinical utility of the resulting latent

classes ultimately depends upon the extent to which this approach optimally ex-

ploits the joint information amongst available covariates. This approach perhaps

has greatest clinical utility where there are: (i) factors known to be associated
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with the outcome (which therefore facilitate prediction); but (ii) there are no

known, modifiable causes of the outcome, or aetiological understanding is poor/-

contested (as is the case with many rare, novel or complex diseases). Indeed,

providing that the specified outcome is excluded from the LCA process (to avoid

conditioning on the outcome) (Gadd et al., 2019), combining LCA class mem-

bership with candidate predictors provides increased complexity that can help

exploit the joint covariate information in multivariable GLM prediction. That

said, it is important to stress that causal interpretation of any covariate coeffi-

cients for latent class membership in such models remains deeply flawed for the

very same reasons that causal interpretations of any covariate coefficient in pre-

diction GLMs is flawed. Ostensibly this consideration might appear to limit the

clinical utility of LCA-generated class membership, and it is true that describing

class membership as a ‘risk factor’ often generates, and commonly reflects, a lack

of understanding. Indeed, it risks conflating prediction and causal inference/de-

termination just as it does when individual covariates are described in similar

terms as ‘risk factors’ (Huitfeldt, 2016). Thus, while classifying subgroups of

individuals using LCA can improve analytical practice and strengthen consider-

ation of nonlinear relationships and important interactions amongst covariates,

it does not address the clinical appetite for identifying so-called ‘modifiable risk

factors’, or for individually tailored risk probabilities (the so-called ‘holy grail’

of personalised or precision medicine)(Rockhill et al., 2000). This might explain

why the use of latent variable methods in prediction modelling remains largely

under-explored, even though more sophisticated approaches exist that incorpo-

rate such techniques within GLM and offer substantial advantages for clinicians

through subgroup risk profiling. These approaches involve the construction of la-
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tent classes ‘across’ multivariable GLMs to: integrate consideration of nonlinear

relationships and important interactions between covariates; and better capture

(and exploit) the joint information amongst the available/included covariates.

For example, in what is termed latent class regression (LCR) modelling, pop-

ulation data are partitioned into their constituent latent classes and a distinct

GLM is simultaneously generated for each class. In the process, this approach ac-

commodates any inherent population heterogeneity and thereby improves model

precision.

5.1.1 Aims of this chapter

The aims of this chapter are:

1. To explore whether LCR models might improve the accuracy and precision

of predictions at the population and individual level, by comparing LCR

generated predictions to standard GLM.

2. To explore the use of LCA-generated class membership (Probabilistic or

modal) variable as either the only candidate predictor in univariable GLMs,

or as an additional candidate predictor alongside all other available covari-

ates in multivariable GLMs might help to improve the predictive acuity in

standard GLMs.

5.2 Data description

This chapter used data from the United Kingdom Heart Failure Evaluation and

Assessment of Risk Trial 2 (UK-HEART2) a prospective cohort of ambulant pa-
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tients with signs and symptoms of chronic heart failure (CHF) (Witte et al.,

2018a). The study recruited 1,802 adult patients with CHF who attended spe-

cialist cardiology clinics in four UK hospitals between July 2006 and December

2014 (Witte et al., 2018b). Patients were eligible for recruitment if they: were

aged 18 years or older; had had clinical signs and symptoms of CHF for at least

3 months; and had a left ventricular ejection fraction that was less than or equal

to 45% (Witte et al., 2018a,b). Ethical approval was obtained from the research

ethics committee at each participating hospital and eligible study participants

were only recruited following informed consent (Cubbon et al., 2011). Additional

information regarding UK-HEART-2’s study design, patient eligibility and inclu-

sion criteria, together with a detailed description of the study cohort has been

reported elsewhere (Cubbon et al., 2011; Witte et al., 2018a,b).

5.3 Statistical methods

5.3.1 Variable selection and Model specification

The UK-HEART2 study data include 1802 patients with 88 variables. One of the

challenging task was to select a subset of covariates to be used as predictors in

the models. The following criteria was used:

1. Firstly, all potential predictors were checked for percentage missingness. All

the predictors with more than 10% missingness (i.e. more than 180 missing

values) were excluded from the analysis (38 covariates remained for further

scrutiny)

2. Secondly, all the remaining candidate covariates were checked for prognostic
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importance.

To simplify the methodological comparisons undertaken in the present study, only

four covariates selected as candidate predictors comprising two demographic vari-

ables (age, sex), a single physiological parameter (haemoglobin level), and a single

clinical characteristic (type 2 diabetes). These four covariates were then used to

generate prognostic predictions of survival amongst UK-HEART2 participants

using four separate statistical Procedures:

• Procedure 1 involved a single step multivariable Cox proportional hazard

model that considered all four covariates as candidate predictors of survival,

with no consideration of nonlinear relationships or interactions between co-

variates.

• Procedure 2 involved two sets of models, each involving two separate steps.

Firstly, LCA was used to identify any latent classes or subgroups of par-

ticipants using the four selected covariates, with individual membership to

each latent class allocated using modal and probabilistic assignments.

Secondly, a univariable Cox proportional hazard model examined latent

class membership as the sole predictor of survival, with two separate mod-

els generated using latent class membership derived using modal (Procedure

2a) or probabilistic (Procedure 2b) assignment.

• Procedure 3 was an extension of Procedure 2 and it involved two sets of

models, each involving two separate steps. Firstly, LCA was used to allo-

cate latent class membership using modal (Procedure 3a) and probabilistic
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(Procedure 3b) assignment.

Secondly, a multivariable Cox proportional hazard model considered all four

covariates (as used in Procedure 1) plus latent class membership as multi-

ple predictors of survival. Two separate models were generated using latent

class membership derived using probabilistic assignment (Procedure 3a) or

modal assignment (Procedure 3b).

• Procedure 4 involved single step latent class regression (LCR) models that

considered all four covariates as candidate predictors to simultaneously pre-

dict both latent class membership and survival within each latent class.

5.3.2 Latent class model evaluation and classification diag-

nostic statistic

There are a number of model fit criteria that may be used for model evaluation

in LCA to determine the final solution (i.e. a solution with an optimum number

of latent classes). These are Bayesian information criteria (BIC), sample ad-

justed Bayesian information criteria (SABIC), Alkaike information criteria (AIC)

as well as likelihood tests (Weller et al., 2020). In this analysis, covariate selection

was guided by the desire to achieve parsimonious models according to the BIC,

the statistic preferred as the most parsimonious penalised likelihood statistic to

minimise the risk of overfitting (Hitchcock and Sober, 2004). In choosing the

optimum number of latent classes for the latent variable models (i.e. LCA and

LCR), BIC was again the preferred statistic as simulations have demonstrated it

outperforms other model fit statistics (Nylund et al., 2007). Strategies for deter-

mining the optimal number of classes may also be influenced by interpretability
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(such as clinical salience and/or utility (Gilthorpe et al., 2014; Harrison et al.,

2013). In terms of model diagnostics in latent class models, entropy is reported

which assesses the extent that individuals are aligned predominantly to a single

class (i.e. it assesses how well a model is able to define latent classes), as this

facilitates a clearer interpretation of each latent class as a near complete collec-

tion of individuals (Wang et al., 2017). Generally, an entropy value close to 1 is

regarded as perfect and an entropy value above 0.8 is acceptable. The higher the

entropy value, the lower the perceived misclassification error. It should be noted,

however, there is no actual ‘error’ as such, since an entropy below 0.8 simply

means a larger degree of uncertainty has been accommodated in the probabilistic

classification process. A high entropy thus indicates that individuals are more

aligned to a single class (large modal probability), which leads to clearer inter-

pretation of each latent class (Celeux and Soromenho, 1996). A low entropy does

not preclude latent classes having utility and substantive meaning, but individu-

als may not be as clearly aligned to just one class, making modal assignment a

poor representation of the latent class structure. Model optimisation may thus

depend upon both the overall predictive acuity of the latent class structure as

evident from the model BIC and the intended utility of the determined classes

thereafter as indicated by the model entropy.

5.3.3 Model selection and validation

All subsets regression was deployed (Kuk, 1984), along with k-fold cross-validation

as recommended by Grimm et al. (Grimm et al., 2017), to find the best-fitting

model for Procedures 1 − 4, with four covariates considered for both Cox pro-
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portional hazards models and (where applicable) the latent class models. The

concordance statistic (c-statistic or c-index) was used to evaluate all models gen-

erated an approach that has been widely used in medical research to determine

how well a risk prediction model could predict a higher risk score for a patient

with an event than another randomly selected patient without an event (Hajian-

Tilaki, 2013; Heagerty et al., 2000; Metz, 1978). In this way the c-index was used

in this analysis to quantify the extent to which each modelling Procedure was able

to assign a higher risk score to patients with shorter survival times and a lower

risk score to patients with higher survival times. c-index values range from 0.5

to 1, where 0.5 indicates that the discrimination achieved is equivalent to (and

no better than that that could be achieved) by chance; a value of 1 indicates

perfect discrimination; and a value > 0.8 is interpreted as evidence of good dis-

crimination. k-fold cross-validation involved randomly dividing the dataset into

k partitions of approximately equal size, where k − 1 partitions were used as a

training set and the model was evaluated and validated using the remaining kth

partition, repeated k times. The value k = 10 was chosen based on established

(and evaluated) best practice (Kuhn et al., 2013), with k = 10 favoured for less

biased model parameters, according to experimentation (Harrison et al., 2013).

The c-index was calculated for each of the 10 test samples, with subsequent con-

firmation of the results obtained from 10 iterations assessed using a bootstrap

re-sampling procedure 100 times (creating datasets from the original data with-

out making further assumptions) to provide empirical 95% confidence intervals

(Bland and Altman, 2015).
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5.4 Results

Table 5.1 provides a summary of the distribution of each covariate amongst par-

ticipants in the UK-HEART-2 cohort. The mean age of the cohort’s participants

was 70 years, around two thirds (69.7%) were male and over a quarter (28%) had

type 2 diabetes. The mean level of circulating haemoglobin was 13.5 g/dl; and

59% died during the period of follow-up (equivalent to a median survival of 3.4

years).
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Table 5.1: Descriptive characteristics of the study cohort.

Study Cohort
N(%)

Participants 1,796 (100.0)
Deaths 1,061 (59.1)
Male 1,313 (73.1)

Type 2 Diabetes 504 (28.1)
Median(IQR)

Survival Time (years) 3.40 (2.11, 5.78)

Mean(95% CI)
Age (years) 69.7 (69.1, 70.2)

Haemoglobin (g/dl) 13.46 (13.38, 13.54)

N = number; % = percentage; IQR = interquartile range; CI = confidence interval.
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Table 5.2: Latent class analysis (LCA) model summaries – the preferred model
from this step was used in Procedures 2 and 3.

Latent Class Analysis model summaries
Number
of classes

Number of
parameters BIC Entropy Class Modal N (%) Probabilistic N (%)

1 6 19,818.53 - 1,796 (100.0) -

2 11 19,537.79 0.75 Class 1 1,452 (80.8) 1425.3 (79.4)
Class 2 344 (19.2) 370.7 (20.6)

3 16 19,445.74 0.74
Class 1 1,203 (67.0) 1175.0 (65.4)
Class 2 480 (26.7) 500.7 (27.9)
Class 3 113 (6.3) 120.3 (6.7)

4 21 19,422.35 0.80

Class 1 811 (45.2) 797.0 (44.4)

Class 2 486 (27.1) 504.4 (28.1)
Class 3 381 (21.2) 371.4 (20.7)
Class 4 118 (6.6) 123.2 (6.9)

5 26 19,421.44 0.67

Class 1 586 (32.6) 566.7 (31.6)
Class 2 470 (26.2) 459.7 (25.6)
Class 3 324 (18.0) 296.9 (16.5)
Class 4 317 (17.7) 368.6 (20.5)
Class 5 99 (5.5) 104.1 (5.8)

6 31 19,422.87 0.63

Class 1 527 (29.3) 517.7 (28.8)
Class 2 474 (26.4) 470.5 (26.2)
Class 3 276 (15.4) 247.7 (13.8)
Class 4 234 (13.0) 232.6 (13.0)
Class 5 186 (10.4) 229.8 (12.8)
Class 6 99 (5.5) 97.6 (5.4)

BIC = Bayesian information criterion; N = number; % = percentage; the optimal LCA model according
to the BIC is emboldened.
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Table 5.3: Latent class regression model with model fit statistics.

Latent Class regression model summaries
Number
of classes

Number of
parameters BIC Entropy Class Modal N (%) Probabilistic N (%)

1 3 3696.06 - 1,796 (100.0) -

2 10 3659.49 0.68 Class 1 1566 (87.2) 1425.3 (79.4)
Class 2 230 (12.8) 370.7 (20.6)

3 17 3682.45 0.91
Class 1 1064 (59.2) 1175.0 (65.4)
Class 2 611 (34.1) 500.7 (27.9)
Class 3 121 (6.7) 120.3 (6.7)

4 24 3728.31 0.61

Class 1 896 (49.9) 797.0 (44.4)

Class 2 697 (38.8) 504.4 (28.1)
Class 3 125 (7.0) 371.4 (20.7)
Class 4 78 (4.3) 123.2 (6.9)

5 38 3822.50 0.94

Class 1 1064 (59.2) 566.7 (31.6)
Class 2 606 (33.7) 459.7 (25.6)
Class 3 120 (6.7) 296.9 (16.5)
Class 4 4 (0.2) 368.6 (20.5)
Class 5 2 (0.1) 104.1 (5.8)

BIC = Bayesian information criterion; N = number; % = percentage; the optimal LCA model according
to the BIC is emboldened.
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Table 5.4: Covariate coefficients for each preferred model (Procedures 1-4) exe-
cuted on the complete data, along with median c-index and empirical 95% em-
pirical confidence intervals generated through 10-fold cross-validation.

Model (c-index: 95% CI) HR (95% CI)

Procedure 1 - CPH (c-index = 0.69: 0.67, 0.71)
Type 2 Diabetic vs. not 1.35 (1.16, 1.59)

Male vs. Female 1.76 (1.47, 2.11)
Age (per 5 years) 1.24 (1.20, 1.29)

Haemoglobin (per g/dl) 0.82 (0.78, 0.86)
Procedure 2a - LCA (modal) / CPH (c-index= 0.65: 0.61, 0.67)
†Class 1 (N = 586) vs: Class 2 (470) 0.35 (0.30, 0.44)

Class 3 (324) 1.33 (1.10, 1.60)
Class 4 (317) 0.71 (0.57, 0.87)
Class 5 (99) 0.17 (0.10, 0.29)

Procedure 2b - LCA (probabilistic) / CPH: (c-index = 0.65: 0.65, 0.66)
‡Class 1 (32.0%) vs: Class 2 (26.0%) 0.26 (0.19, 0.34)

Class 3 (18.0%) 1.00 (0.71, 1.39)
Class 4 (18.0%) 1.58 (1.27, 1.97)
Class 5 (6.0%) 0.17 (0.09, 0.32)

Procedure 3a - LCA (modal) / CPH (c-index = 0.69: 0.66, 0.71)
Type 2 Diabetic vs. not 1.51 (1.13, 2.01)

Male vs. Female 1.80 (1.49, 2.17)
Age (per 5 years) 1.21 (1.13, 1.29)

Haemoglobin (per g/dl) 0.82 (0.79, 0.86)
†Class 1 (N = 586) vs: Class 2 (470) 0.77 (0.53, 1.10)

Class 3 (324) 0.84 (0.59, 1.19)
Class 4 (317) 0.92 (0.71, 1.20)
Class 5 (99) 0.79 (0.38, 1.67)

Procedure 3b - LCA (probabilistic) / CPH (c-index = 0.69: 0.66, 0.71)
Type 2 Diabetic vs. not 1.44 (1.01, 2.06)

Male vs. Female 1.70 (1.31, 2.21)
Age (per 5 years) 1.21 (1.11, 1.32)

Haemoglobin (per g/dl) 0.81 (0.76, 0.88)
‡Class 1 (32.0%) vs: Class 2 (26.0%) 0.78 (0.41, 1.49)

Class 3 (18.0%) 0.90 (0.55, 1.48)
Class 4 (18.0%) 1.15 (0.56, 2.36)
Class 5 (6.0%) 0.99 (0.35, 2.78)

Procedure 4 – LCR (c-index = 0.86: 0.84, 0.88)
Cox proportional hazards model
Class 1 (‘High risk’): Type 2 Diabetic vs. not 1.26 (0.91, 1.75)

Male vs. Female 2.07 (1.58, 2.71)
Age (per 5 years) 1.36 (1.28, 1.44)

Class 2 (‘Low risk’): Type 2 Diabetic vs. not 0.44 (0.23, 0.82)
Male vs. Female 1.01 (0.64, 1.60)
Age (per 5 years) 1.17 (1.06, 1.29)

c-index = concordance index; CI = empirical confidence interval obtained from the 2.5% to 97.5% centiles
of bootstrapped samples following 10-fold cross-validation; HR = hazards ratio; OR = odds ratio; CPH =
Cox proportional hazards; LCA = latent class analysis (modal assignment or probabilistic assignment);

LCR = latent class regression.
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Table 5.5: Summary of the odds ratios for the preferred Latent class regression
model.

Class membership model OR (95% CI)
‘High’ vs. ‘Low’ risk: Type 2 Diabetic vs. not 0.27 (0.09, 0.76)

Haemoglobin (per g/dl) 2.16 (1.64, 2.84)

Table 5.6: Descriptive characteristics for the 2-class Cox proportional hazards
latent class regression model.

Latent Class Regression Model

Class 1 (‘High risk’) Class 2 (‘Low risk’)
Modal N (%) Probabilistic N (%) Modal N (%) Probabilistic N (%)

Participants 1,566 (87.2) 1507.8 (84.0) 230 (22.8) 288.2 (16.0)
Deaths 1,046 (66.8) 1014.7 (67.3) 15 (6.5) 45.8 (15.9)
Male 1,160 (74.1) 1112.8 (73.8) 153 (66.5) 200.9 (69.7)

Type 2 Diabetes 368 (23.5) 342.3 (22.7) 136 (59.1) 162.5 (56.4)

Median (IRQ) Median (IRQ)
Survival Time (years) 3.86 (2.41, 5.89) 1.13 (0.50, 2.27)

Mean (95% CI) Mean (95% CI)
Age (years) 69.2 (68.6, 69.9) 72.5 (71.1, 73.9)

Haemoglobin (g/dl) 13.80 (13.72, 13.88) 11.14 (10.99, 11.30)

N = number; % = percentage; IQR = interquartile range; CI = confidence interval.
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Table 5.7: A summary of the performance for each model under 10-fold cross
validation

Model Median
c-index

Minimum
c-index

Maximum
c-index

Standard Cox-PH model 0.69 0.61 0.72
LCR Cox model (Soft clustering) 0.86 0.68 0.91
LCR Cox model (Hard clustering) 0.77 0.63 0.84

Figure 5.1: A Scree-Plot showing fit-values for Latent Class Analysis Models
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Figure 5.2: A Scree-Plot showing fit-values for Latent Class Regression Models.
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In Procedure 1, the single step Cox proportional hazard model that considered

all four covariates as candidate predictors of survival found that the model in

which all four covariates were retained achieved the highest c-statistic (0.68) a

level of acuity considered ‘modest to poor’ (Mandrekar, 2010). In Procedure 2,

the LCAs conducted during the first step found that the 5-class model which

retained all four covariates had the most favourable BIC (Table 5.2). Apply-

ing this 5-class model during the second step as the sole predictor of survival

in a Cox proportional hazards model, achieved a c-statistic of 0.64 using modal

assignment (Procedure 2a) and 0.65 using probabilistic assignment (Procedure

2b). These levels of acuity were both lower than that achieved using Procedure

1 (c-statistic=0.68). In Procedure 3, the second step involved consideration not

only of the four covariates as candidate predictors of survival in the Cox pro-

portional hazards model (as in Procedure 1), but also membership of the same

5-class model developed in the first step of Procedure 2. These analyses found

that the best fitting model did not retain class membership as a predictor and

forcibly retaining class membership in the model did not improve the c-statistics

compared to what was achieved in Procedure 1, regardless of how class member-

ship was assigned (modal: c-statistic = 0.68; probabilistic: c-statistic = 0.68).

In Procedure 4, with all four covariates eligible for inclusion as candidate predic-

tors of both latent class membership and the Cox Proportional Hazards models,

some of the models were over-parameterised and failed to converge. Nonetheless,

the most favourable of the models that successfully converged involved a latent

class variable with just two classes (Table 5.3) and a c-statistic of 0.86 for mod-

els where soft clustering was deployed vs a c-statistic of 0.77 for models where

hard clustering was deployed (Table 5.7). The improvement is down to the soft
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clustering implicitly allowing for uncertainty in the latent class allocation and

therefore provides a more robust model because it incorporates this latent class

feature that addresses inherent heterogeneity amongst individuals. It is thus this

very powerful feature that provides the step change in forming subgroups and

prediction improvement. We also explored further by ignoring the uncertainty by

considering each class separately. The majority class resulted in a lower c-index

(0.57) compared to the minority class (0.79). It should however be noted that the

hard classification deteriorates model robustness, as this neglects to exploit the

very structural feature of latent decomposition that is utilised when we use the

soft classification. It is this aspect of this approach which provides such improved

predictions. When compared to the best performing models in Procedures 1− 3,

these results suggest that Procedure 4 with soft clustering achieved a substantial

improvement in predictive acuity of 18− 22%.

Improvements in predictive acuity aside, the most favourable of the LCR mod-

els had only three of the covariates (age, sex, and type 2 diabetes) retained in

the Cox proportional hazards models for each membership class, and only one

of these covariates (type 2 diabetes) and the remaining covariate (haemoglobin

level) retained as covariates in the LCR class membership model (Table 5.5). Sex

and age were not covariates that contributed sufficiently to the class membership

prediction model. As this sub model is a prediction model, focus is not on the

coefficients of the model, rather the final predictions.

Given that all four covariates were retained in the most favourable CPH models

generated by Procedures 1 and 3, and in the LCA models generated in the first

step of Procedures 2 and 3, these findings suggest that Procedure 4’s 18 − 22%

improvement in c-statistic is likely to have been achieved by exploiting the avail-
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able covariate information differently to each of the three other Procedures. An

indication of what this entailed can be found in the distribution of covariate char-

acteristics amongst the two classes of the most favourable LCR model (Table 5.6),

which suggest that these classes might warrant post-hoc labelling as ‘high risk ’

and ‘low risk ’ subgroups and might thereby offer substantial additional clinical

utility in guiding the allocation of diagnostic, therapeutic, and/or palliative re-

sources.

A further key finding that emerges from closer examination of the Cox propor-

tional hazards models generated for each of the two classes within the optimum

LCR model (Table 5.3) is that the contribution made by each of the covariates

therein varied by class, and was dissimilar to the contribution these covariates

made in those Procedures where all covariates were available for inclusion as

separate candidate predictors (i.e. Procedure 1 and 3a/b). While the coefficient

estimates of covariates in each of these models cannot be interpreted as measures

of causal effects (Westreich and Greenland, 2013), their contribution as candidate

predictors is strikingly different and depends upon the choice of model(s) used

in each Procedure (Table 5.3). For example, the hazard of death associated with

being male was 1.7 to 1.8 in Procedures 1 and 3, whilst for Procedure 4 being

male was associated with a substantially higher hazard of death in one class (HR

= 2.07; 1.58, 2.71) yet was unrelated to the hazard of death in the other class

(HR = 1.01; 0.64, 1.60). Likewise, Type 2 diabetes was consistently associated

with an elevated hazard of death in models generated under Procedure 1 and 3,

while in Procedure 4 this covariate was associated with both an elevated hazard

of death in one class (HR = 1.26; 0.91, 1.75) and a reduced hazard of death in

the other class (HR = 0.43; 0.23, 0.82). Clearly, the joint information available
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amongst each of the candidate predictors is selected and utilised very differently

by each of the Procedures examined as seen in Table 5.4. Nonetheless, what sets

the LCR model in Procedure 4 apart from the models used in Procedures 1 − 3

is that LCR allows the predictive contribution from each covariate to be parti-

tioned across any latent substructures existing within the study population, such

that covariates are able to operate differently within each of the latent subgroups,

thereby capturing and reflecting population heterogeneity that is unavailable to

any of the other modelling Procedures; and, crucially, of substantial (additional)

value when predicting the specified outcome.

5.5 Conclusions

The novelty in this chapter is that we have successfully compared three different

approaches for incorporating latent variable methods within prediction modelling

and demonstrated that LCR models with soft clustering can outperform not only

the standard GLM (in which membership of latent classes is ignored – Procedure

1), but also those that include latent class membership identified using LCA to

generate an alternative (Procedure 2) or additional candidate predictor (Proce-

dure 3). This improvement in predictive acuity (which, as shown above, resulted

in a 18−22% improvement in c-index, despite the modest number of participants

and covariates involved) illustrates the potential benefits of LCR for prediction

modelling which, in this instance, shifted the acuity of prediction from ‘modest

to poor’ to ‘substantial’ (Mandrekar, 2010).

We have further demonstrated how exhibiting the latent features through soft

clustering that more explicitly addresses heterogeneity amongst individuals pro-
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vides an improvement compared to the hard clustering approach in which hetero-

geneity is only partially exploited, and that the main benefit of latent structure

is lost, showing some, but only modest, overall improvement.

We have further demonstrated that the latent class or subgroup structure that

is revealed through LCR may have potential clinical utility. This is because it

might as in the example examined here facilitate the identification of discrete

subgroups (i.e. latent classes) of populations with very different underlying risks

of the outcome. While such subgroups may not necessarily be amenable to effec-

tive intervention (given that LCR models support prediction, not causal inference

(Westreich and Greenland, 2013)), they should help to improve the efficient al-

location/targeting of outcome-relevant diagnostic, therapeutic and/or palliative

resources to those subgroups identified as more likely to require (and perhaps

even benefit from) these. However, to maximise the clinical exploitation of latent

subgroups identified using LCR, model selection must focus on those achieving

higher entropy where the probability of class assignment is closer to one for most

assignments as this better aligns individuals/participants to a predominant single

class (rather than aligning individuals/participants to multiple classes). For ex-

ample, in Procedure 4, the 3-class model had lower predictive acuity but greater

entropy than the 2-class model (see Table 5.1); and had the identification of clin-

ically meaningful subgroups been the focus of these analyses, then it might have

been appropriate to accept a modest reduction in predictive acuity in favour of

enhanced clinical utility i.e. recognising three (‘high’, ‘medium’ and ‘low’ risk)

subgroups rather than just the two (‘high’ and ‘low’ risk) subgroups identified

by the LCR model with the most favourable predictive acuity (Table 5.2). In-

deed, when clinical resources are scarce, such an approach might prove a more
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reliable approach to resource allocation than one based upon the interpretation

of predictive acuity alone.
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Chapter 6

Evaluating the performance of

Latent Class regression models

using simulations that respect a

causal process

In this Chapter, we discuss the second illustration of our simulation process de-

scribed in Chapter 3. We begin by highlighting the potential benefits of electronic

medical records and how these may be used to improve latent class regression

modelling. This is followed by an illustrative example where we evaluate our

proposed methods.
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6.1 Introduction

The adoption of computerised medical records, digital medical devices, and data

linkage protocols together with developments in high-powered computing have

radically extended the potential scope, speed and accuracy of risk prediction

models (RPMs). RPMs are derived by selecting predictors that are relevant to

a particular circumstance and combining them into a multivariable model which

can then be used to make predictions for the estimated risk or probability that a

particular type of disease or condition is present in a person’s body (or the prob-

ability that a disease or event will occur in future). There are many limitations

of RPMs as discussed in Chapter 1, especially in the presence of heterogeneity

which may affect the interpretation.

In contexts where population heterogeneity is prominent, any technique capa-

ble of embracing the cumulative consequences of variation should also provide

novel insights into subgroup differences that substantively improve the accu-

racy of individual-level predictions. Latent class regression (LCR) is one such

technique that may be used to aggregate data. It combines two distinct model

concepts in a single estimation process and has better predictive acuity (and

potentially greater clinical utility) than traditional regression-based generalised

linear models (Mbotwa et al., 2021). LCR models allow both class membership

and class-specific predictions of the target variable to make optimal use of the

combined information contained in covariates (i.e. candidate predictors) such that

each set of predictors may vary in relation to each specific analytical task and its

related objectives (be that class membership or predictive acuity).

This flexibility in the choice of covariates used by LCR models in each of their
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simultaneous analytical procedures has the potential to yield a step-change in

parsimonious model complexity, and hence the accuracy of prediction, by ex-

ploiting more of the available covariate information to better predict the target

outcome (directly and indirectly), leading to improved population and individual

level predictions (Mbotwa et al., 2021).

With the recent developments in ’Big Data’, new opportunities exist for exploring

the latent class regression further by examining the covariate selection, parame-

terisation procedures by embracing the use of covariates (as candidate predictors)

from a far broader range of sources and over much longer periods of time regard-

less of context or target variable.

6.2 Illustrative example

Assuming we are interested in an observational study setting where patients are

followed up for a considerable number of years to study their survival from chronic

heart failure (CHF) infections. To simulate data of this nature, the DGM de-

scribed in Figure 3.13 was used. Simulated data were used to predict the survival

of CHF patients, a context similar to the dataset used in a recent study (Mbotwa

et al., 2021) which is discussed in Chapter 5. The candidate predictors were

{X1, X2, X3}, where each one represents a time-invariant phenomena that occur

or time-variant characteristic that crystallize at discrete time points during an

individual’s lifecourse.

The first of these measured variables {X1} occurs in early life of an individual

and therefore is the most distal to the target outcome (e.g death). Examples of

predictors corresponding to {X1} might therefore include such features as geno-
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type, size at birth, early life nutritional health or postnatal development. The

second variable, {X2} is intermediate to the first and third variables, occurring

midway through the lifecourse and might encompass such features as educational

attainment, health-relevant lifestyles (e.g. obesity, lack of physical exercise and

smoking) as well as occupation-related circumstances. The third of these, {X3}

occurs in later life and is most proximal to the target outcome and might plausibly

comprise recent symptoms and signs of CHF, adherence, or treatment behaviour

post-diagnosis.

6.2.1 Aims

The aims of this chapter are:

1. To establish whether including covariates that are distal from the target

variable (i.e. outcome variable) as candidate predictors of the heterogeneity

may offer potential improvements in prediction acuity offered by latent class

regression (LCR) models.

2. To assess the impact of dichotomising the candidate predictors to check if

this may reduce the performance of LCR models.

3. To compare the performance and practical utility of standard 1-class Cox

PH models and 2-class Cox PH LCR models in terms of their ability to

generate accurate predictions of the target outcome given the simulated

ground truth.
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6.2.2 Data generating mechanisms

A data generating mechanism (DGM) can be described as a set of rules describing

how data is generated. The data generating mechanism (DGM) adopted for the

study used a temporal-causal framework as shown in Figure 3.13 in chapter 3

and simulated data for a range of plausible scenarios. The DGM assumes prior

knowledge about the existing relationships between variables. Five multivariate

normal variables, X1, X2, X3, Ŝ, Ĉ were simulated using ten path coefficients,

ρ1, . . . , ρ10. Each path coefficient or correlation represents the strength of a causal

relationships amongst the five measured variables {X1, X2, X3, Ĉ, Ŝ}, where three

are candidate predictors {X1, X2, X3} and {Ŝ} is transformed into a measure of

survival time S, plus {Ĉ} is also transformed into a latent variable, C, which

is an assessment of population heterogeneity emerging from enigmatic variation

during the lifecourse of individuals.

To simulate data for this experiment, eight scenarios were considered in which

seven of the ten path coefficients {ρ2, ρ3, ρ5, ρ6, ρ7, ρ8, ρ10} were held constant,

while three {ρ1, ρ4, ρ9 } were assigned coefficients of either 0.5 to represent a

strong causal contribution or relationship or 0.0 to indicate the absence of any

causal influence or effect see Table 6.1 below.
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Table 6.1: Summary of the eight scenarios for which data were simulated as the
basis on which the performance and practical utility of standard 1-class Cox PH
vs. 2-class Cox PH LCR models was evaluated in the present study together with
a brief description of the distinct causal features within each of these scenarios.

Path coefficients

Scenario X1 → Ĉ X1 → Ŝ X2 → Ĉ Distinct causal features

1 0.5 0.0 0.0 Only X1 makes a strong contribution to Ĉ;
and X1 has no direct causal effect on
the target outcome Ŝ.

2 0.5 0.5 0.0 Only X1 makes a strong contribution to Ĉ;
and X1 has a strong direct causal effect
on the target outcome Ŝ.

3 0.5 0.0 0.5 Both X1 and X2 make a strong contribution
to Ĉ; and X1 has no direct causal effect
on the target outcome Ŝ.

4 0.5 0.5 0.5 Both X1 and X2 make a strong contribution
to Ĉ; and X1 has a strong direct causal effect
on the target outcome Ŝ.

5 0.0 0.0 0.0 Neither X1 nor X2 makes any contribution to Ĉ;
and X1 has no direct causal effect on the target
outcome Ŝ.

6 0.0 0.5 0.0 Neither X1 nor X2 makes any contribution to Ĉ;
and X1 and has a strong direct causal effect on
the target outcome Ŝ.

7 0.0 0.0 0.5 Only X2 makes a strong contribution to Ĉ;
and X1 has no direct causal effect on the target
outcome Ŝ .

8 0.0 0.5 0.5 Only X2 makes a strong contribution to Ĉ
and X1 has a strong direct causal effect on the
target outcome Ŝ.
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These three key paths are through which distal and intermediate variables might

plausibly affect the target outcome. This could happen either directly through

the causal effects of phenomena occurring (or characteristics crystallising) in early

life impacting directly on the risk of death from CHF in later life (e.g. X1 → Ŝ)

or indirectly through the causal contribution that distal and intermediate phe-

nomena make to population heterogeneity during the lifecourse that mediates the

(indirect) effects of these early and intermediate phenomena on risk of death from

CHF in later life (e.g. X1 → Ĉ → Ŝ and X2 → Ĉ → Ŝ) .

Of the seven path coefficients that were constant across the eight scenarios, the

strongest (0.5) were assumed to be those between latent class membership, {Ĉ},

the most proximal measured variable, X3 , and the target outcome, Ŝ. In con-

trast, those between the intermediate variable X2 and the target outcome, Ŝ;

and between each successive measured variable (i.e. between X1 and X2; and

between X2 and X3 were assumed to be weaker (0.3); while those between the

most distal X1 and most proximal X3 measured variables, and between latent

class membership {Ĉ} and the most proximal measured variable X3, were both

assumed to be weaker still (0.2). Each of the eight scenarios for which data were

generated in the present study have been summarised in Table 6.1, together with

a brief description of their distinct causal structures. In four of these (scenarios

2, 4, 6 and 8), the most distal measured variable X1 is assumed to have a strong

direct causal effect on the target outcome Ŝ; whilst in the remainder (scenarios

1, 3, 5, and 7), the most distal measured variable X1 has no direct causal effect

on the target outcome Ŝ. In two of each group of scenarios, the most distal mea-

sured variable X1 makes a strong causal contribution to population heterogeneity

(as captured by latent class membership {Ĉ}, while in the remainder it makes
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no such contribution. Finally, across each of these scenarios the intermediate

measured variable X2 makes either a strong or zero contribution to population

heterogeneity {Ĉ}.

6.2.3 Estimand

Our targeted estimand is the log hazard ratios. Patients with shorter survival

times are expected to have higher log hazard ratios while those with longer sur-

vival are expected to have lower hazard ratios.

6.2.4 Methods

For each of the scenarios described above, continuous data were simulated for

200 datasets of 1000 cases per dataset. Each dataset comprised five multivariate

normal variables {X1, X2, X3, Ŝ, Ĉ}. The survival outcome, {Ŝ} was generated

by exponentiating the normal variable, S to yield a right skewed outcome. We

designed our simulations to have survival times ranging between 0 and 25 years.

All exponentiated survival times above 25 were replaced by simulated data drawn

from a uniform distribution with a minimum 0 and a maximum at 25. For

simplification, censoring was zero across the hypothetical 25 year study. The

binary latent class variable, Ĉ was derived by categorising the normal variable

C at the 0.7 quantile to obtain two classes comprising 70% and 30% of the

simulation sample, post-hoc labelled low-risk and high-risk, respectively. Finally,

for the second set of simulations, the continuous predictors {X1, X2, X3} were

also converted to binary variables by categorising each at the 0.7 quantile (all

values below 0.7 were assigned zero while values above were assigned one).
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6.2.5 Performance Measures

The performance and practical utility of standard 1-class Cox PH and 2-class

Cox PH LCR models was formally assessed using 200 simulated datasets of con-

tinuous and dichotomised data for each of the eight scenarios. Separate models

were generated using all three of the measured candidate predictors (distal, in-

termediate and proximal; {X1, X2, X3} as well as using two most recent of these

predictors (intermediate and proximal {X2, X3} for which measurements might

be more readily available in most applied clinical settings. For each of the eight

scenarios, two datasets (continuous vs. dichotomised); and three {X1, X2, X3}

vs. two {X2, X3} measured candidate predictors, the accuracy achieved by stan-

dard 1-class Cox PH and 2-class Cox PH LCR models was evaluated by the mean

c-statistic and 95% simulation interval [SI]). The percentage of 2-class Cox PH

LCR models that exceeded the accuracy achieved by standard 1-class Cox PH

models was also assessed. Finally, the percentage of 2-class Cox PH LCR models

that failed to converge was also recorded to provide a further indication of the

practical utility of 2-class Cox PH LCR models vs. standard 1-class Cox PH

models for the range of scenarios and datasets examined in the present study.
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6.3 Summary of results

Tables 6.2 and 6.3 summarise the findings in terms of the correlation and co-

variance matrices of the data simulated under each of the eight scenarios for

continuous and dichotomised predictors, respectively. The scenario-specific as-

sessments of performance and practical utility of standard 1-class Cox PH against

2-class Cox PH LCR models and contrasts between models with all predictors

{X1, X2, X3} against those using only the two most recent predictors {X2, X3}

are also presented. Model assessments were made in terms of mean (95% SI)

c-statistic, percentage of 2-class Cox PH LCR models that failed to converge,

and percentage of 2-class Cox PH LCR models whose accuracy exceeded that of

standard 1-class Cox PH models.

The results confirm that 2-class Cox PH LCR models outperformed 1-class Cox

PH models across all eight scenarios, regardless of the number of measured can-

didate predictors available (i.e. {X1, X2, X3} vs. {X2, X3}) or whether these were

parameterised as continuous or dichotomised variables. These improvements were

evident in terms of:

• Higher mean c-statistics (which averaged 0.72 and 0.67 amongst 2-class Cox

PH LCR models using three and two candidate predictors, respectively;

compared to averages of 0.69 and 0.64 amongst standard 1-class Cox PH

models).

• The overall percentage of models that achieved higher c-statistics between

standard 1-class Cox PH and 2-class Cox PH LCR models (which averaged

60.9% across all 32 pairs of models).
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• The median percentage improvement in c-statistic between standard 1-

class Cox PH and 2-class Cox PH LCR models (+6.0%; range: −11.3% to

+21.1%) although this was even higher (+9.4%; range: -7.3% to +21.1%)

with continuous predictor variables.

There was reduced performance of both sets of models when the number of mea-

sured candidate predictors available was reduced from three to two (i.e. from

{X1, X2, X3} to {X2, X3}), and when information was lost through dichotomi-

sation of continuous predictors. The 2-class Cox PH LCR models displayed a

similar median decline in c-statistic (−6.7%; range: −15.9% to +4.2%) com-

pared to the standard 1-class Cox PH models (−6.2%; range: −21.9% to +5.7%)

when the number of predictors included was reduced from three to two, but a

substantially greater median decline in c-statistic (−12.8%; range: −19.5% to

−5.6% compared to −7.6%; range: −17.4% to 0.0% for standard 1-class Cox PH

models) when the predictors were dichotomised. The potential improvements in

2-class Cox PH LCR models over standard 1-class Cox PH models was therefore

more substantially diminished by loss of general predictor information than by

the loss of distal predictor information. Indeed, in 9 out of 32 pairs (28.1% of

models), 1-class Cox PH LCR models on average outperformed 2-class Cox PH

LCR models in terms of c-statistic, this was twice as common when the pre-

dictors had been dichotomised and in most instances this occurred in scenarios

where a relatively high percentage of 2-class Cox PH LCR models had failed to

converge. These findings suggest that 2-class Cox PH models provide additional

predictive value and greater practical utility in analytical contexts where distal

predictors are unavailable or unmeasured, provided that predictors and/or their

parameterisation offers more information.
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Table 6.2: Covariance and correlation matrices derived for each of the eight
scenario-specific datasets; together with model c-statistics and other summary
measures, for standard 1-class Cox PH and 2-class Cox PH LCR models using
all three {X1, X2, X3}vs. only the two most recent {X2, X3} candidate predictors
as continuous variables to jointly predict survival together with C. Values are in
red where the standard model on average outperforms the LCR model.

Path Coefficients
D M

X1 X2 X3 C S Model Predictors: X1, X2, X3, Ĉ X2, X3, Ĉ

X1 1.00 0.30 0.39 0.16 2.46 Standard (1-class) Cox PH 0.63(0.55, 0.68) 0.60(0.51, 0.71)

X1 → Ĉ 0.5 X2 0.29 1.09 0.42 0.04 2.78 2-class Cox PH LCR 0.72(0.65, 0.82) 0.68(0.57, 0.72)

X1 → Ŝ 0.0 X3 0.34 0.35 1.28 0.12 4.25 LCR models failed 9% 3%

X2 → Ĉ 0.0 C 0.35 0.09 0.24 0.21 1.31 LCR > Standard 98.9% 89.7%
C 0.37 0.40 0.56 0.42 45.21

X1 X2 X3 C S
X1 1.00 0.30 0.42 0.17 2.72 Standard (1-class) Cox PH 0.76(0.73, 0.80) 0.72(0.68, 0.76)

X1 → Ĉ 0.5 X2 0.29 1.09 0.53 0.19 4.07 2-class Cox PH LCR 0.78(0.67, 0.84) 0.76(0.58, 0.79)

X1 → Ŝ 0.5 X3 0.36 0.43 1.38 0.18 5.03 LCR models failed 8% 1%

X2 → Ĉ 0.0 C 0.36 0.41 0.34 0.21 1.66 LCR > Standard 57.6% 90.9%
C 0.39 0.55 0.61 0.52 49.59

X1 X2 X3 C S
X1 1.00 0.30 0.39 0.15 4.23 Standard (1-class) Cox PH 0.73(0.65, 0.80) 0.57(0.50, 0.77)

X1 → Ĉ 0.5 X2 0.29 1.09 0.42 0.04 3.14 2-class Cox PH LCR 0.82(0.71, 0.86) 0.69(0.60, 0.73)
X1 → S 0.0 X3 0.34 0.35 1.28 0.12 4.71 LCR models failed 6% 5%

X2 → Ĉ 0.5 C 0.32 0.08 0.22 0.21 1.45 LCR > Standard 96.8% 87.4%
C 0.59 0.42 0.58 0.44 50.51

X1 X2 X3 C S
X1 1.00 0.30 0.42 0.17 4.02 Standard (1-class) Cox PH 0.83(0.81, 0.85) 0.81(0.77, 0.83)

X1 → Ĉ 0.5 X2 0.29 1.09 0.53 0.18 3.97 2-class Cox PH LCR 0.86(0.69, 0.89) 0.75(0.54, 0.78)
X1 → S 0.5 X3 0.36 0.43 1.38 0.18 5.14 LCR models failed 2% 1.0%

X2 → Ĉ 0.5 C 0.38 0.38 0.33 0.21 1.81 LCR > Standard 77.6% 2.0%
C 0.58 0.54 0.63 0.56 48.91

X1 X2 X3 C S
X1 1.00 0.30 0.29 -0.01 1.13 Standard (1-class) Cox PH 0.62(0.51, 0.72) 0.56(0.50, 0.64)

X1 → Ĉ 0.0 X2 0.29 1.09 0.039 0.00 2.55 2-class Cox PH LCR 0.66(0.58, 0.79) 0.66(0.57, 0.73)
X1 → S 0.0 X3 0.26 0.34 1.21 0.06 4.15 LCR models failed 15% 0%

X2 → Ĉ 0.0 C -0.02 0.01 0.13 0.21 1.08 LCR > Standard 68.2% 95.0%
C 0.16 0.35 0.54 0.34 49.12

X1 X2 X3 C S
X1 1.00 0.30 0.32 0.05 1.48 Standard (1-class) Cox PH 0.74(0.69, 0.78) 0.62(0.55, 0.67)

X1 → Ĉ 0.0 X2 0.29 1.09 0.50 0.18 3.90 2-class Cox PH LCR 0.71(0.59, 0.78) 0.74(0.60, 0.78)
X1 → S 0.5 X3 0.28 0.42 1.30 0.14 4.66 LCR models failed 10% 3%

X2 → Ĉ 0.0 C 0.11 0.38 0.27 0.21 1.56 LCR > Standard 18.9% 96.9%
C 0.21 0.53 0.58 0.48 50.03

X1 X2 X3 C S
X1 1.00 0.30 0.29 -0.01 3.33 Standard (1-class) Cox PH 0.72(0.65, 0.77) 0.69(0.63, 0.75)

X1 → Ĉ 0.0 X2 0.29 1.09 0.39 -0.01 3.06 2-class Cox PH LCR 0.78(0.69, 0.84) 0.68(0.53, 0.74)
X1 → S 0.0 X3 0.26 0.34 1.21 0.05 4.40 LCR models failed 9% 1%

X2 → Ĉ 0.5 C -0.01 -0.02 0.10 0.21 0.83 LCR > Standard 87.9% 34.3%
C 0.47 0.41 0.56 0.26 50.39

X1 X2 X3 C S
X1 1.00 0.30 0.32 0.05 3.39 Standard (1-class) Cox PH 0.70(0.59, 0.77) 0.74(0.66, 0.78)

X1 → Ĉ 0.0 X2 0.29 1.09 0.50 0.17 4.18 2-class Cox PH LCR 0.82(0.62, 0.86) 0.76(0.58, 0.79)
X1 → S 0.5 X3 0.28 0.42 1.30 0.13 4.88 LCR models failed 4% 2%

X2 → Ĉ 0.5 C 0.11 0.35 0.25 0.21 1.53 LCR > Standard 94.8% 63.3%
C 0.47 0.56 0.59 0.46 51.67
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Table 6.3: Covariance and correlation matrices derived for each of the eight
scenario-specific datasets; together with model c-statistics and other summary
measures for standard (1-class) Cox PH and 2-class Cox PH LCR models using
all three {X1, X2, X3} vs. only the two most recent {X2, X3} candidate predictors
as binary variables to jointly predict survival together with C. Values are in red
where the standard model on average outperforms the LCR model.

Path Coefficients
D M

X1 X2 X3 C S Model Predictors: X1, X2, X3, C X2, X3, C

X1 0.21 0.03 0.04 0.07 0.88 Standard (1-class) Cox PH 0.59(0.51, 0.68) 0.56(0.53, 0.66)
X1 → C 0.5 X2 0.13 0.21 0.05 0.02 1.00 2-class Cox PH LCR 0.67(0.50, 0.76) 0.61(0.56, 0.69)
X1 → S 0.0 X3 0.19 0.23 0.21 0.04 1.35 LCR models failed 39% 15%
X2 → C 0.0 C 0.32 0.10 0.20 0.21 1.31 LCR > Standard 67.2% 74.1%

C 0.28 0.32 0.44 0.42 45.21

X1 X2 X3 C S
X1 0.21 0.04 0.05 0.06 1.00 Standard (1-class) Cox PH 071(0.68, 0.74) 0.66(0.64, 0.69)

X1 → C 0.5 X2 0.20 0.21 0.06 0.07 1.43 2-class Cox PH LCR 0.67(0.51, 0.76) 0.63(0.58, 0.68)
X1 → S 0.5 X3 0.24 0.30 0.21 0.05 1.48 LCR models failed 47% 15%
X2 → C 0.0 C 0.30 0.33 0.24 0.21 1.66 LCR > Standard 22.6% 17.6%

C 0.31 0.44 0.46 0.52 49.59
X1 X2 X3 C S

X1 0.21 0.04 0.05 0.06 1.59 Standard (1-class) Cox PH 0.65(0.56, 0.73) 0.54(0.51, 0.69)
X1 → C 0.5 X2 0.17 0.21 0.05 0.01 1.10 2-class Cox PH LCR 0.66(0.51, 0.77) 0.62(0.58, 0.69)
X1 → S 0.0 X3 0.23 0.24 0.21 0.04 1.53 LCR models failed 41% 18%
X2 → C 0.5 C 0.26 0.06 0.18 0.21 1.45 LCR > Standard 57.6% 80.5%

C 0.49 0.34 0.47 0.44 50.51
X1 X2 X3 C S

X1 0.21 0.03 0.05 0.07 1.48 Standard (1-class) Cox PH 0.75(0.73, 0.76) 0.71(0.69, 0.72)
X1 → C 0.5 X2 0.14 0.21 0.06 0.06 1.38 2-class Cox PH LCR 0.71(0.52, 0.79) 0.63(0.58, 0.68)
X1 → S 0.5 X3 0.22 0.27 0.21 0.06 1.72 LCR models failed 49% 18%
X2 → C 0.5 C 0.34 0.30 0.27 0.21 1.81 LCR > Standard 15.7% 0.0%

C 0.46 0.43 0.54 0.56 48.91
X1 X2 X3 C S

X1 0.21 0.03 0.04 0.00 0.44 Standard (1-class) Cox PH 0.57(0.51, 0.67) 0.53(0.50, 0.62)
X1 → C 0.0 X2 0.14 0.21 0.05 0.00 0.79 2-class Cox PH LCR 0.62(0.51, 0.79) 0.61(0.56, 0.69)
X1 → S 0.0 X3 0.19 0.21 0.21 0.02 1.40 LCR models failed 40% 15%
X2 → C 0.0 C -0.01 0.00 0.08 0.21 1.08 LCR > Standard 60.0% 90.6%

C 0.14 0.25 0.44 0.34 49.12
X1 X2 X3 C S

X1 0.21 0.04 0.03 0.02 0.54 Standard (1-class) Cox PH 0.69(0.56, 0.71) 0.62(0.52, 0.65)
X1 → C 0.0 X2 0.17 0.21 0.05 0.07 1.43 2-class Cox PH LCR 0.67(0.51, 0.78) 0.62(0.58, 0.69)
X1 → S 0.5 X3 0.14 0.23 0.21 0.04 1.43 LCR models failed 47% 18%
X2 → C 0.0 C 0.09 0.32 0.19 0.21 1.56 LCR > Standard 45.3% 57.3%

C 0.17 0.44 0.44 0.48 50.03
X1 X2 X3 C S

X1 0.21 0.04 0.04 -0.01 1.13 Standard (1-class) Cox PH 0.62(0.56, 0.72) 0.57(0.54, 0.68)
X1 → C 0.0 X2 0.19 0.21 0.05 0.01 1.18 2-class Cox PH LCR 0.68(0.51, 0.76) 0.61(0.55, 0.69)
X1 → S 0.0 X3 0.34 0.35 1.28 0.12 4.25 LCR models failed 34% 11%
X2 → C 0.5 C -0.02 0.02 0.05 0.21 0.83 LCR > Standard 56.1% 62.9%

C 0.35 0.36 0.46 0.26 50.39
X1 X2 X3 C S

X1 0.21 0.04 0.03 0.02 1.15 Standard (1-class) Cox PH 0.65(0.53, 0.74) 0.68(0.54, 0.70)
X1 → C 0.0 X2 0.19 0.21 0.06 0.06 1.50 2-class Cox PH LCR 0.68(0.51, 0.76) 0.63(0.55, 0.69)
X1 → S 0.5 X3 0.16 0.28 0.21 0.05 1.56 LCR models failed 45% 14%
X2 → C 0.0 C 0.10 0.28 0.22 0.21 1.53 LCR > Standard 58.2% 22.1%

C 0.35 0.46 0.47 0.46 51.67
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The results of the analyses presented in Tables 6.2 and 6.3 also reveal the extent

to which the specific causal structures operating within each of the eight differ-

ent scenarios appeared to affect not only the performance and practical utility

of standard 1-class Cox PH and 2-class Cox PH LCR models but also the causal

insights these models might provide.

When all three measured predictors were used, 2-class Cox PH LCR models were

consistently better than standard 1-class Cox PH models in scenarios 1, 3, 5, 7,

and 8; and consistently worst in scenario 6, regardless of predictor parameteri-

sation. Likewise, when only the two most recent measured candidate predictors

were used, 2-class Cox PH LCR were consistently better than standard 1-class

Cox PH models in scenarios 1, 3, 5 and 6, and consistently worse in scenario 4.

In other words, the three scenarios in which 2-class Cox PH LCR models consis-

tently outperformed standard 1-class Cox PH models (regardless of the number of

predictors or their parameterisation) were scenarios 1, 3 and 5; there was no sce-

nario in which the latter consistently out-performed the former. This is striking

since the common factor across these three scenarios (1, 3 and 5) is the absence

of a direct causal path between the most distal measured variable X1 and the

target outcome S, such that the former only contributes to the prediction of the

latter indirectly (i.e. mediated through its causal relationships with other predic-

tors X2, X3 and latent class C. If the specific causal structure operating within

such contexts affects the performance of different modelling strategies, then it is

plausible that differences in the performance of such models might offer insight

into the causal structure of underlying data generating mechanisms in real world

contexts where the presence or role of enigmatic variation is unknown or uncer-

tain.
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Scenarios 1, 3 and 5 are not however the only instances in which there was no

direct causal relationship between the most distal measured variable X1 and the

target outcome S, and it is unclear why the 2-class Cox PH LCR models gen-

erated under scenario 7, for instance, did not consistently outperform standard

1-class Cox PH models. Further exploration of this apparent anomaly is war-

ranted to establish whether this finding is simply due to the chance phenomena,

or the specific influence of key features in the causal structure of scenario 7 which

distinguish this from scenarios 1, 3 and 5.

The first of these possibilities appears plausible given that in only one of the

four sets of models concerned did the 1-class Cox PH models outperform the

2-class Cox PH LCR models (this being the models involving a reduced number

of predictors parametrised as continuous variables), and the differences involved

were modest and somewhat equivocal (mean c-statistic of standard 1-class Cox

PH models was 0.69 [95% SI: 0.63, 0.75] compared to 0.68 [95% SI: 0.53, 0.74]

for the 2-class Cox PH LCR, while the percentage of standard 1-class Cox PH

with c-statistics that were larger than the equivalent 2-class Cox PH models was

65.7%.

The second possibility is perhaps less plausible, i.e. there is something peculiar

to scenario 7 which favours 1-class Cox PH over 2-class Cox PH LCR, but only

for models involving a reduction in the number of continuous predictors, and

not for those involving dichotomised and/or additional predictors). In scenario

7, only the intermediate candidate predictor X2 makes a strong contribution to

C. Although the distal candidate predictor X1 makes no direct contribution to

either C or S, its exclusion from the models involving only two candidate pre-

dictors X2, X3 means that any contribution that X1 makes to either C or S will
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be entirely mediated through the modest causal path coefficients operating be-

tween X1 and the intermediate X2; ρ4 = 0.3 and proximal predictors X3; ρ5 = 0.2.

What is unclear is why this reduction in the information available for prediction

should prefer standard 1-class Cox PH models over 2-class Cox PH LCR models

only when the predictors are parameterised as continuous variables and not when

the information available is further reduced through dichotomisation of predic-

tors (where the mean c-statistic of the standard 1-class Cox PH = 0.57 [95% SI:

0.54, 0.68] was actually 6.6% lower than that for the 2-class Cox PH LCR = 0.61

[95% SI: 0.55, 0.69], and the percentage of standard 1-class Cox PH that exceeded

2-class Cox PH LCR models was only 37.1%; see Table 6.3).

6.3.1 Conclusion

In this chapter, we have demonstrated that the 2-class Cox PH model can perform

better than the 1-class Cox PH LCR model given the simulated ground truth in

many instances. It has also been shown that the overall performance of the models

reduced when the distal candidate predictor was excluded from the model and it

diminished further after dichotomisation of all candidate predictors. Therefore,

we conclude that the Latent class regression can exploit latent heterogeneity to

strengthen prediction and generate causal insight.
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Table 6.4: A comparison of the median percentage improvement (+) or deteri-
oration (-) in c-statistics achieved by 2-class Cox PH LCR models vs. standard
1-class PH models and median percentage in c-statistics achieved by models in-
volving 2 vs. 3 candidate predictors, disaggregated by the parameterisation of
predictors as either continuous or dichotomous.

2-class Cox PH LCR
vs. standard (1-class) Cox PH

2 predictors {X2, X3&C}
vs. 3 predictors {X1, X2, X3&C}

Models (n) 32 32
Median +6.0% -6.5%
Minimum -11.3% -21.9%
Maximum +21.1% +5.7%

3 predictors{X1, X2, X3&C} 2 predictors{X2, X3&C} 1-class Cox PH 2-class Cox PH LCR

Models (n) 16 16
Median +5.5% +6.3 -6.2% -6.7%
Minimum -5.6% -11.3% -21.9% -15.9%
Maximum +14.3% +21.1% +5.7% +4.2%

Continuous Dichotomised Continuous Dichotomised Continuous Dichotomised Continuous Dichotomised

Models (n) 8 8 8 8 8 8 8 8
Median +7.4% +3.1% +9.4% +3.5% -5.0% -7.0% -4.1% -7.4%
Minimum -4.1% -5.6% -7.3% -11.3% -21.9% -16.9% -15.9% -11.3%
Maximum +14.3% +13.6% +21.1% +15.1% +5.7% +4.6% +4.2% -1.6%
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Chapter 7

A Cox neural network (Cox-nnet)

model for survival prediction

The Cox Proportional hazard model is the most popular choice for modelling

time-to-event data. The Cox PH enables one to assess the relationship between

the patient’s survival and a number of explanatory variables through the hazard

ratios of the patients. Despite being a reasonably straightforward and very easy

to interpret, a Cox PH model has some limitations when dealing with a large

and complex datasets. One of the assumptions in a Cox PH model is that the

baseline hazard function is common to all individuals in a population and that

the relationship between the outcome and predictors is linear especially when

dealing with continuous predictors. This assumption is not always true because

in many ideal scenarios the relationship between the outcome and the predictors

is non-linear.

Different machine learning (ML) methods have been widely proposed as useful

alternatives to traditional statistical methods especially when the relationship
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between variables is non-linear (Khan et al., 2020). ML methods are capable

of determining complex, nonlinear relationships within datasets that cannot be

easily captured using standard regression methods (Kuhle et al., 2018). A neural

network extension of the Cox proportional hazard model known as Cox-nnet has

been recently proposed (Ching et al., 2018). The Cox-nnet is fundamentally de-

signed for survival prediction using high throughput genetic data. The Cox-nnet

is a two-layer artificial neural network that is designed to perform cox regression

on the output layer. The model is trained to minimise the partial log likelihood

function using back propagation. The Cox-nnet has three main uses namely:

1. To provide a neural network alternative to the standard Cox model, espe-

cially when modelling non-linear relationships.

2. To help in revealing useful biological information through features of the

hidden layer. The hidden layer of the Cox-nnet is capable of revealing

relevant genetic pathways through the heterogeneity amongst the nodes.

3. To help in dimension reduction through analysis of the hidden nodes fea-

tures.

The chapter is organised as follows, we begin by summarising some previously

published work on applications of ANN in modelling survival data. We then ap-

ply the Cox-nnet on UK-Heart study data to predict survival of patients with

chronic heart failure. We compare our findings to a standard Cox proportional

hazards model and latent class Cox PH Model described in detail in Chapter 5.
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7.1 Review of Applications of Machine learning

(ML) in Survival prediction

The Cox Proportional hazard model is the most popular choice for modelling

time-to-event data (Jerez et al., 2005; Ohno-Machado, 2001). The Cox PH model

is a semi-parametric multivariate regression model that enables one to assess the

relationship between the patients’ survival and a number of explanatory variables.

Different ML methods have been widely proposed as useful alternatives to the

standard Cox PH model. Unlike the Cox PH model, ML methods makes fewer

assumptions about the data. For example, ML do not require the assumption

about proportional hazards to hold. The proportional hazards assumption stipu-

lates that the ratio of the hazards for any two individuals is constant over a given

period of time. ML methods are also preferred when the task requires exploiting

complex relationships and interactions between several explanatory variables and

the outcome of interest. In a standard Cox PH model, the effect of the covariates

on the outcome is assumed to be linear on a log risk scale. In this section, we

briefly review and discuss some of the ML methods that are used as alternatives

to the Cox PH model.

A number of papers exist in the literature comparing different ML methods

against traditional statistical models (TSM). In a survival analysis context, many

researchers have attempted to compare the predictive performance of the Cox PH

model against the artificial neural networks (ANN) in predicting survival of pa-

tients in different scenarios. We searched in Web of Science database for articles

that contain information about applications of ML in survival prediction. We

were particularly interested in neural networks methods and how these methods
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can be used as alternatives to standard Cox PH model. The search terms used

were ((Cox proportional hazard model) AND (Artificial neural network) AND

(prediction)). Below are some of the examples with neural network applications

in survival context:

Faraggi and Simon (Faraggi and Simon, 1995) proposed a Cox Proportional Haz-

ard modelling approach for censored survival data using a feed forward neural

network. Two NN models were constructed. The first one had 4 input variables,

one hidden layer with 2 nodes and an output node. The second NN model has 4

input nodes, one hidden layer with three nodes and an output layer. The coeffi-

cients and hazard ratios of the semi-parametric Cox proportional hazards model

are estimated using maximum likelihood.

Another study by (Jerez et al., 2005) used an ANN model to predict breast cancer

relapse as well as to identify important prognostic factors in breast cancer relapse

after surgery. A three layer ANN was used with every node in the input layer cor-

responding to the prognostic factor plus one node for the bias term. The number

of nodes in the hidden layer was determined by exploring different network ar-

chitectures. Different sets of variables were also used to determine the correct set

of variables for the input node. Apart from the identified prognostic factors that

were identified, followup time was also used as an input variable. The output of

the network represent the cumulative probability of relapse for each patient. The

network was trained using back-propagation (i.e. the input data was fed-forward

through the model parameters towards the loss function. An error was calculated

and propagated back to adjust the initial weights or parameters until the error

was minimised) with gradient descent. The predictive performance of the neural

network was compared against the standard Cox PH model. The neural network
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model performed better than the Cox model.

Another study compared Cox PH model against a neural network model that was

designed to have a categorical output (i.e. death at the end of a given interval 1

year, 2 years, 3 years or more than 3 years) (Ohno-Machado, 1997). This neural

network model was used as a prognostic tool for people living with HIV/AIDs.

The network was trained by back-propagation. A Cox PH model was built based

on a particular set of predictors that were identified through backward selection

process. The same set of variables were also used as inputs in the neural net-

work model. The input constitutes patient demographics, laboratory markers and

other clinical variables. Area under the curve was used to evaluate the predictive

performance of these models. The standard approach yielded a similar predictive

performance as the neural network model.

A more recent neural network extension of the Cox proportional hazard model

known as Cox-nnet use a similar approach to that of Faraggi and Simon but

with different optimisation functions to maximise the partial likelihood function.

Faragi and Simon used Newton-Raphson iterations to maximise the loss function

while (Ching et al., 2018) used different optimisation options namely: standard

gradient descent, momentum gradient descent and Nesterov accelerated gradient.

7.2 Application of Cox-nnet Model to UK-Heart

study data

In this section, the application of Cox-nnet is described using UK-Heart study

data. We provide a detailed analysis procedure and summarise the results. We

143



compare the results from Cox-nnet prediction to that of LCM described in Chap-

ter 2. We begin by defining hyper-parameters that are used to train a Cox-nnet

model. We explore different Cox-nnet structures for improved survival prognosis.

These results are discussed further in the discussion and conclusion chapter of

the thesis.

7.2.1 Application of the Cox neural network

Using the UK-Heart study data, we trained different Cox-nnet models using 80%

of the sample comprising of 1436 patients with four input variables namely, age,

sex, diabetes status and haemoglobin content. We first performed a 5-fold cross-

validation to determine a regularisation parameter that optimises the the loss

function. After generating a parameter that optimises a loss function, new Cox-

nnet models were built based on the modified loss function that incorporates extra

information to penalise the large weights to curb overfitting. Possible methods

for regularisation include ridge, dropout and a combination of ridge and dropout.

The Cox-nnet models were tested using the remaining 20% of the data. The

evaluation was repeated 10 times and the c-statistic was calculated for each repli-

cation.

We explored different network structures with different number of nodes in the

hidden layer. We used four covariates to generate an input with four nodes with

each covariate representing a node in the input layer. The hidden layer was exper-

imented by varying the number of nodes from 1 to 10 and in each case we assessed

the predictive acuity of the model using the c-statistic. We further explored Cox-

nnet structures with 2 hidden layers. We present four Cox-nnet architectures
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followed by a summary of the model parameters generated during the training

process. A dropout regularisation parameter was used to avoid overfitting. To

determine a regularisation parameter, we used a 5-fold cross validation using a

randomly chosen 80 % of the training dataset and evaluated the performance on

the remaining 20 % optimisation dataset. After generating our regularisation pa-

rameter, we updated our cost function and assessed our predictions. We assessed

the performance of each model for all the 10 repetitions. We used a concordance

statistic also known as the c-statistic as a prediction performance index for each

model as advocated by Harrel (Harrell et al., 1982; Harrell Jr et al., 1984).

Scenario 1

One hidden layer with one node

Here, we consider a Cox-nnet structure with a single node in the hidden layer.

The network has four input variables x1, x2, x3 and x4 which correspond to sex,

age, haemoglobin content and diabetes status respectively. Each input variable

is connected to the node in the hidden layer. Each connection between an input

and the hidden node has an associated weight, wij where i represents the input

while j represents a hidden layer. Thus, wij is read as weight between input node

i and hidden node j. Each node in the hidden layer has an associated bias term,

b0.

The total input at node j is the weighted sum of k nodes in the input layer

using equation 2.13. To generate an output at node j, we apply a tanh activation

function on the output at node j using equation 2.15.
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Figure 7.1: A single hidden layer Cox neural network with four input nodes and
one hidden node and a single output node. x0 is the bias term.

Scenario 2

One hidden layer with two nodes

In scenario 2, we consider a Cox-nnet structure with two nodes in the hidden layer.

This network has four input variables x1, x2, x3 and x4 which have corresponding

weights. The input at node j is found by multiplying each input by the weight

and summing the product plus the bias term.
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Figure 7.2: A single hidden layer Cox neural network with four input nodes, two
hidden nodes and an output node. Each node in the hidden layer has a bias term
b0 .

Scenario 3

One hidden layer with ten nodes

In scenario 3, we consider a Cox-nnet structure with ten nodes in the hidden

layer. This network has four input variables x1, x2, x3 and x4 which have corre-

sponding weights. The input at node j is found by multiplying each input by the

weight and summing the product plus the bias term.
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Figure 7.3: A single hidden layer Cox neural network with 4 input nodes and 10
hidden nodes and 1 output node.

148



Scenario 4

Two hidden layers with four nodes in the first layer and four nodes in

the second layer

x1

x2

x3

x4

b0 b1

o1

α11

α12

α13

α14

α21

α22

α23

α24

α31

α32

α33

α34

α41

α42

α43

α44

ω11

ω12

ω13

ω14

ω21

ω22

ω23

ω24

ω31

ω32

ω33

ω34

ω41

ω42

ω43

ω44

β11

β21

β31

β41

Input
layer

Hidden1
layer

Hidden2
layer

Cox Regression
layer

b01

b02

b03

b04

b11

b12

b13

b14

Figure 7.4: A single hidden layer Cox neural network with 4 input nodes and 4
hidden nodes and 1 output node. x0 is the bias term.
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7.3 Summary of results

7.3.1 Choice of an optimal regularisation parameter for the

Cox-nnet Model

To identify an optimal regularisation parameter, 5-fold cross validation was used.

A function, L2CVProfile was used to perform cross-validation on a list of values

ranging from −4.5 to 0.5 returning a matrix of cross validated log likelihoods for

each fold (i.e. 5 cross validated likelihoods were returned). To ensure that the

model trains properly, a graph for the mean cross-validated likelihoods for each

fold against the L2 parameter values was plotted to check if an optimal parameter

was attained as shown in Figure 7.7 .
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Figure 7.5: A Scree-Plot for the mean cross-validated likelihoods against the
fitted L2 parameter values

A regularisation parameter (L2) was identified by choosing an L2 parameter value

that optimised the partial likelihood function. A chosen parameter was added to

the partial likelihood function. Cox-nnet structures with one hidden layer and

two hidden layers were explored and compared. A two hidden layer Cox-nnet

structure did not offer any improvement in terms of the c-index. In fact, a two

layer Cox-nnet structure yielded a significantly lower c-index compared to the

single layer network. As a result, a single hidden layer Cox-nnet model with

ridge regularisation was chosen. A five-fold cross-validation was performed on

the training set for a 1 to 10 nodes. A list of other parameters that were used
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to train the Cox-nnet models include: Learning rate which was set to 0.001, the

proportion of momentum was set to 0.99, The maximum number of iterations

which was set to 2000. A random seed was set to 123 to ensure that the same

subjects were selected for each fold. The stopping threshold was set to 0.995 to

allow the training to stop if the cost function does not decrease by that proportion.

The graph in Figure 7.6 shows the trend for the loss (i.e. the partial log-likelihood)

vs. number of iterations for the training dataset. The partial log-likelihood begins

by reducing significantly. As the number of iterations increases, we see that there

is no further reduction in the cost function, suggesting that the model has fully

trained and the optimum cost function has been attained. During the process

of cross-validation nine folds were used to train the Cox-nnet model while the

tenth fold was used to evaluate the performance. This process was repeated

until a model was tested in each fold. The c-index was used to evaluate model

performance in the test data. The summary of the results obtained from a 10-fold

cross-validation are summarised in Table 7.1.

Table 7.1: Performance evaluation for cross-validated Cox-nnet models with dif-
ferent network architectures

Model Mean (SD) Median Minimum Maximum

Model 1 0.67(0.02) 0.68 0.65 0.69
Model 2 0.67 (0.03) 0.67 0.62 0.72
Model 3 0.67(0.02) 0.66 0.61 0.72
Model 4 0.66(0.03) 0.66 0.61 0.70
Model 1 is the Cox-nnet with 1 hidden layer with 1 node, Model 2 is the Cox-nnet with 1 hidden layer with 2
nodes, Model 3 is the Cox-nnet with 1 hidden layer with 10 nodes, Model 4 is the Cox-nnet with 2 hidden layer
with 4 nodes in the first hidden layer and 2 nodes in the second hidden layer.
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Figure 7.6: Graph showing Cost vs Iterations for a Cox neural network model
with 2 nodes in the hidden layer
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A tanh activation function was used to transform the output from the hidden

layer to the Cox regression layer. We used the predict function to obtain the log

hazard predictions (i.e. linear predictor) for the test dataset which are required

when assessing the performance. To calculate the c-statistic we first created a

data-frame with a vector of survival times and a censoring status indicator as well

as all predictors used as input variables in the Cox-nnet model (age, haemoglobin

content, diabetes status and sex). We then calculated the predicted log hazards

for each patient based on the available predictors/ covariates . A c-index was

calculated by first ranking the data according to the survival times. For every pair

of patients that experienced the event, we looked at their survival and their log

hazards. We then calculated the c-index as a proportion concordant pairs against

the total (concordant and non-concordant). A pair was deemed concordant if a

patient with a higher survival had a corresponding lower log hazard ratio.

7.3.2 Comparison with the standard Cox proportional Haz-

ards Model and the Latent Class Cox regression model

Table 7.2 shows the overall performance for the standard Cox PH model, the cox

neural network model and the latent class Cox regression model. A standard Cox

PH model performed slightly better than the Cox-nnet model with a single hid-

den layer and two nodes (i.e. The median c-statistic for the standard Cox model

was 0.69 while the Cox-nnet yielded a median c-statistic of 0.67.) The median

c-statistic for the latent class Cox regression model was 0.86 which is higher than

the median statistic for the standard Cox PH model (0.69) as well as the median

c-statistic for the Cox-nnet model (0.67) which indicate that the latent class Cox
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regression approach is able to discriminate better between high and low risk sub-

groups.

Figure 7.7 shows the box plots for the cross-validated c-statistics for three meth-

ods: Cox-nnet, latent class Cox regression model and the standard Cox regression

model. It is clear that the latent class Cox regression approach outperformed the

other methods. The latent class regression approach has an outstanding higher

performance compared to other methods. This further confirms that the latent

class Cox regression approach offers a better discriminatory ability compared to

the standard Cox PH model and the Cox-nnet.

Table 7.2: A summary of performance for three models based on 10-fold cross
validation

Model c-statistic

Description Mean (SD) Median (IQR) Minimum Maximum
Cox PH 0.68(0.04) 0.67(0.65− 0.70) 0.62 0.72
Cox-nnet 0.67(0.03) 0.69(0.67− 0.71) 0.61 0.72
Latent class Cox regression 0.83(0.08) 0.86(0.84− 0.88) 0.68 0.91
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Figure 7.7: A boxplot for the distribution of the c-statistic for three models
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7.4 Discussion

In this chapter, the aim was to compare the predictive performance of three pre-

diction models using the concordance index (c-index). The c-index was used to

compute the proportion of concordant pairs over all possible combinations. The

c-index was constructed based on the prognostic index that was generated for each

patient. A pair of observations was deemed to be concordant if a subject with

highest prognostic index had a shorter survival time. The opposite was considered

true for dis-concordant pairs. The first model is the standard Cox PH model with

four predictors namely, age, sex, diabetes status and haemoglobin concentration.

The second model is the Cox-nnet which is a neural network extension of the

standard Cox PH model uses the same variables that were used as predictors in

a standard Cox model as four input variables. The third model is the latent class

Cox regression model which aimed at partitioning data into subgroups of latent

classes and estimating separate risk models for each class. Latent class member-

ship was predicted by diabetes status and haemoglobin content while separate

Cox risk models used age, sex and diabetes status as predictors.

The results from a 10-fold cross validation show that the standard Cox PH model

and the Cox-nnet exhibited a very similar performance in terms of c-index. How-

ever, the latent class Cox regression model performed better than the two meth-

ods. The LC Cox-PH model has worked better than the Cox-nnet because it

accommodates the inherent population heterogeneity through modelled latent

structure (i.e. through the soft clustering) which is either ignored in a standard

Cox PH model or not fully captured when using the Cox-neural network. The

Cox-nnet does not fully capture heterogeneity because its architecture is not ex-
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plicitly designed to accommodate uncertainty like the Latent Cox Class regression

model.

The standard Cox (i.e. Cox-nnet with no hidden layer) performed slightly better

than the Cox-nnet with 1 hidden layer (2 nodes) [c-index: 0.69 vs 0.67]. This

shows that the Cox-nnet with more parameters does not improve the quality of

the model fit. A Cox-nnet with no hidden layer is therefore preferred because it

has fewer parameters and therefore less prone to overfitting.

Comparing these methods in terms of their advantages, disadvantages and sim-

ilarities we note that the Cox PH model is easy to implement and interpret the

model findings. However, the proportional hazard assumption is not always true.

The main disadvantage is that, unlike Cox-nnet, the interaction terms have to

be manually added to the model when exploring non-linearity. This can be a

challenging task especially when dealing with a large number of variables. The

Cox-nnet does not require any prior assumptions e.g. the proportional hazard

assumption. The Cox-nnet is also able to handle a large number of variables with

ease, hence it is easier to investigate non-linearities and interactions. Cox-nnet

uses a variable importance feature which calculates relative variable importance

of a variable by drop-out method. This task is done by calculating the difference

between the original log likelihood with all features and the new log likelihood

without a particular feature. The difference is the variable importance score.

Cox-nnet’s variable importance feature could help in choosing variables for in-

clusion in the standard Cox PH model and the latent class Cox model more

especially when dealing with a large dataset where variable selection is usually

problematic. The main problem is that Cox-nnet requires tuning a large number

of hyper-parameters which is not an easy task and it may sometimes yield unre-
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liable results due to overfitting.

On the other hand, an advantage of the Latent class Cox regression over Cox-

nnet and Standard Cox PH model is that it relaxes an assumption of having a

global risk model. It allows formation of risk subgroups and subsequently esti-

mates separate risk models for each subgroup. Latent Class Cox regression uses

a standard statistical diagnostic approach to determine the correct number of la-

tent classes using Bayesian information criteria (BIC), but the Cox-nnet does not

have any reliable diagnostic statistic to determine the correct architecture. As

a result, Cox-nnet requires more time to experiment with a range of parameter

combinations and assessments. A Latent Class Cox regression approach allows

inclusion of covariates to explain class-membership thereby improving its clinical

usefulness.

In conclusion, the aim of this chapter was to compare the predictive acuity of the

standard Cox PH model, the Latent Class Cox regression model as well as the

Cox-nnet model which is a machine learning version of the standard Cox PH in

predicting survival of patients with Chronic heart failure using four predictors,

age, sex, diabetes status and haemoglobin content. It has been illustrated that

the Latent Class Cox regression model provides a superior approach to modelling

the survival of patients with chronic heart failure as compared to the standard

Cox PH and Cox-nnet models based on the c-statistic.
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Chapter 8

Conclusions

In this chapter, we provide a summary of the main findings from this thesis

followed by limitations of current work and recommendations for further research.

This thesis has six objectives and chapter 3 -7 have addressed all the objectives.

8.1 Summary of main findings

In this thesis, we explored statistical and machine learning models to determine

if they offer any improvement in predicting either change (in health status) or

specific discrete events (e.g. death) within an observational study setting. The

motivation behind this research has been to find ways of improving prediction of

group and individual outcomes to facilitate the delivery of personalised care.

In Chapter 3 we addressed objective number 1 and we demonstrated how a DAG

can be used to used to simulate data that respects a defined causal structure.

We also highlighted the benefits of using a DAG to simulate data as opposed to

a naive approach that uses the observed covariance structure. The main benefit
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of adopting DAG based simulations as demonstrated in this chapter is that it

offers a flexible way of exploring scenarios which may not be easily captured by

simply specifying an observed covariance structure. Two examples were explored

to demonstrate how complex scenarios are easily captured with a DAG based ap-

proach. The first application we explored is about a prediction of change problem

while the second application is about predicting the survival or death amongst pa-

tients with chronic heart failure (CHF) in a heterogeneous population. The main

achievement in this chapter is that we successfully integrated a causal thinking in

our data generating process which is novel. The main message in this chapter is

to emphasise the importance of understanding the data generation process when

exploring prediction problems to avoid making incorrect predictions.

In Chapter 4 we addressed objective number 2. We explored the first appli-

cation from Chapter 3 in which we aimed at evaluating the two methods (i.e.

change-score and regressor method) that are commonly used to analyse change

or followup. The aim in this chapter was to assess the implications of including

or excluding the baseline measurement when predicting change or followup. The

results from the simulations revealed that both the change score and regressor

approach yield the same output provided the baseline measurement is conditioned

for, in each model. It was also demonstrated that forcibly excluding the base-

line measurement as a predictor in the change-score prediction model affects the

precision of the estimates generated from the model as evidenced by the higher

mean square errors compared to the regressor method. Again, this is the first

time extensive simulations have been used to confirm that the change score and

regressor methods yield the same output when the baseline measurement is con-

ditioned for, in each method. Another novel finding is that when we forcibly
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exclude the baseline measurement as a predictor in the change-score method, we

get wrong predictions and the results may therefore be misleading.

In Chapter 5, we addressed objective number 3. We examined four different

modelling procedures to assess whether LCR models may offer improved predic-

tion and clinical utility over traditional regression methods using the real world

demographic and clinical data from 1, 802 heart failure patients enrolled in the

UK-HEART2 cohort. The LCR model demonstrated a substantial improvement

in predictive acuity and clinical utility over traditional methods. The standard

regression approaches which are frequently used fail to generate reliable predic-

tions in the presence of heterogeneity which is usually overlooked and it leads into

poor predictions and wrong inferences. LCR modelling resulted in an 18 − 22%

improvement in predictive acuity over alternative standard models which clearly

showed that standard statistical models are limited because these methods do

not take into account the inherent heterogeneity and therefore lack clinical util-

ity. We therefore concluded that LCR modelling can improve the predictive acuity

of GLMs and enhance the clinical utility of their predictions.

In Chapter 6 we addressed objective number 4 by exploring the second appli-

cation of the simulations generated in Chapter 3. The aim of this chapter was

to examine whether using distal, intermediate and proximal information about

patients combined with causal reasoning might help to improve prediction when

using latent class regression modelling. We also investigated the impact of di-

chotomising candidate predictors on the overall prediction. From the results, two

class latent class Cox PH model showed an improvement in terms of predictive

acuity over the standard 1-class Cox PH model. Therefore, we concluded that in-

tegrating a causal insight within the latent class regression modelling can exploit

162



latent heterogeneity to strengthen prediction.

Lastly, in Chapter 7, we addressed objective number 5. The aim of this chapter

was to compare the predictive performance of the Cox neural network (Cox-nnet),

the standard Cox PH model and the latent class regression Cox PH modelling.

The results showed that the Cox-nnet does not offer any substantive improvement

in predictive performance when compared to the standard Cox PH model. The

Latent class regression approach offered a better predictive performance when

compared to the Cox-nnet and the standard Cox PH model. Therefore, we con-

cluded that ML Cox neural network does not offer improved prediction over

standard statistical methods.

8.2 Limitations of current work and proposed fur-

ther work

It has been demonstrated in Chapters 3, the benefits of simulating data that

respects a causal process and how this aspect can help to facilitate prediction

modelling. However, several caveats associated with this process must be noted.

Due to several hypotheses being considered at the same time, more parameters

are required when defining DGMs to simulate complex datasets. This in turn

leads to problems such as model identification and/or model convergence.

Simulating data that follow a predefined causal structure is computationally in-

tensive and, in some cases, algorithms may not converge. One possible way of

addressing this issue is by reformulating the hypotheses and repeating the pro-

cess until the model is identified and converges within acceptable timeframes.
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The trade-off of computational investment and improved prediction is part of the

challenges that warrants further exploration.

Due to the complexity in the DGM, prediction models generated for such data

require more variables which might lead to over-parameterisation which may even-

tually lead to overfitting. On the other hand, as the number of parameters in-

crease, bias decreases because the models are able to capture the underlying non-

linear patterns more easily. However, complex models are likely to exhibit higher

variance due to overfitting and therefore do not generalise to other datasets.

Model misspecification is another limitation associated with this approach. Most

real-life studies contain complex relationships and patterns that are hard to hy-

pothesise. Even though, using DGMs in such contexts can help reveal new causal

mechanisms and lead to the development of new hypotheses, there is a chance

that the simulated dataset may not fully capture whole ground truth, which may

eventually introduce bias.

It has been demonstrated in Chapters 5 and 6 that LCR models can provide

substantive improvements in predictive acuity and clinical utility over standard

approaches using generalised linear models (GLM). Nonetheless, there are sev-

eral potential limitations that warrant consideration and further investigation.

Firstly, it would be insightful to compare these alternative approaches to predic-

tion using larger datasets and larger numbers of covariates than those chosen for

illustration in this thesis. This might involve comparing all models considered

for Procedures 1− 4 in Chapters 5 using different numbers and sets of covariates

from similar sized datasets as well as extending the application of LCR modelling

to more complex scenarios and much larger datasets.

Our conclusions in Chapter 6 are somewhat preliminary since no subsequent iter-
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ations of the models were attempted involving, for example, iterative selections of

candidate predictors, alternative numbers of latent classes and so on and no sub-

sequent calibration or evaluation of external validity was performed. While the

approach adopted was intended to simplify the analyses summarised and facili-

tate comparisons between models generated using different modelling techniques

in different scenarios (and with different numbers of continuous and dichotomised

predictors). Further development of these models would be required to fully opti-

mise (and evaluate) their performance and practical utility. Testing (and refining)

such models is computationally resource-intensive and is beyond the scope of the

present study, but much would be gained by further research on similar (sim-

ulated or real world) data, relevant to a range of scenarios in which the causal

structure of the underlying data generated mechanism is either known (and fixed,

through simulation) or well enough understood to facilitate interpretation (such

as those where the mechanisms involved are subject to established physical laws,

determined through design, or has been robustly interrogated through prior ex-

perimentation).

We explored the Machine learning’s Cox-nnet model for survival prediction with

different architectures and compared against the LCR modelling, from which we

concluded that the LCR approach is better. It would also be worthy exploring

whether novel architectures can be explored for easy comparison with the LCR

modelling. Future work should explore a novel architecture with two nodes in the

cox regression output layer of the Cox-nnet model to assess whether the appar-

ent benefits of a 2 class LCR models might be easily replicated within the new

Cox-nnet architecture.

Further analysis of the node structure of the Cox-nnet would also be insightful to
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determine whether it can be compared with the latent classes obtained through

a latent class regression model.

We also notice the absence of consistent improvements in performance between

1-class and 2-class models, and given the sizeable number of 2-class Cox PH mod-

els that failed to converge, it is not yet possible to recommend that 2-class Cox

PH LCR models should always be used in preference to standard 1-class Cox PH

models (or in which causal scenarios each is likely to perform best); and it is not

yet possible to conclude whether differences in performance might offer reliable

insights into underlying causal structures. However, our work suggests that such

recommendations and insights may well emerge following more in-depth research

and development which warrants further attention.

An important challenge with latent class modelling is its sensitivity to starting

values, because these are used to maximise the likelihood function when esti-

mating model parameters. Where the starting values are far from the optimum

solution, the likelihood function takes longer to converge and may even fail to

do so. Occasionally, up to 50% of the random starts chosen will generate mean-

ingful solutions when the likelihood function is maximised. For a solution to be

meaningful, the highest likelihood value is expected to be replicated many times.

When this does not occur, it signifies that either no solution has been achieved

and the number of random starts needs to be increased to converge on a global

optimum solution or the specified model structure is unsuitable for the given

dataset. While this can add to the time required to explore optimum solutions,

once the target values are estimated they can be used as initial values for the

final models derived, thereby reducing the duration of the final search process.
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8.3 Conclusions and recommendations

Understanding and respecting the data generation process when conducting pre-

diction modelling is important because it helps to avoid making incorrect infer-

ences due to incorrect and inappropriate predictions. We therefore recommend

that researchers should aim to use their theoretical understanding of the data

generation process when making predictions for individuals or subgroups of pa-

tients, instead of merely applying ‘big’ data into the existing methods without

paying attention to the underlying causal structure.
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Appendix A

Supplementary details for

Chapter 2

A.1 Partial loglikelihood for the Cox PH model

LetXT = [X1, X2, . . . , Xp] be a vector of p covariates or predictors for individual

patients, t = [t1, t2, . . . , tn] be the survival times for the n patients. The Cox PH

model can be defined as

h(t|X,β) = h0(t) exp(βTX), (A.1)

where βT = [β1, β2, . . . , βp] is a vector of parameters and h0(t) is called the base-

line hazard function, and reflects the underlying hazard when the effect of the

covariates is equal to zero. In other words when X1, X2, . . . , Xp is equal to zero.

Suppose that all the failure times are distinct (no ties), the probability that an

event will happen at ti given the number of individuals in a risk set, R(ti) is given
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by

P (ti|R(ti)) =
exp(βTX(i))∑

j∈R(ti)
exp(βTXj)

(A.2)

where R(ti) is the set of all subjects that are at risk of experiencing the event at

that point (t = ti).

The partial likelihood function is given as a product over the observed failure

times of conditional probabilities, of observing an event of interest, given the risk

set at that time.

L(β) =
n∏
i=1

[
exp(βTX(i))∑
j∈Ri

exp(βTXj)

]σi
(A.3)

where

σi =


1, if an event occurred

0, if an event did not occur
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Taking logs of both sides of equation A.3 yields

logL(β) = log

{
n∏
i=1

[
exp(βTX(i))∑
j∈Ri

exp(βTXj)

]σi}

= log

{[
exp(βTX(1))∑
j∈Ri

exp(βTXj)

]σ1
× . . .×

[
exp(βTX(n))∑
j∈Ri

exp(βTXj)

]σn}

= log

[
exp(βTX(1))∑
j∈Ri

exp(βTXj)

]σ1
+ . . .+ log

[
exp(βTX(n))∑
j∈Ri

exp(βTXj)

]σn

= σ1 log

[
exp(βTX(1))∑
j∈Ri

exp(βTXj)

]
+ . . .+ σn log

[
exp(βTX(n))∑
j∈Ri

exp(βTXj)

]

= σ1

[
βTX(1) − log

∑
j∈Ri

exp(βTXj)
]

+ . . .+ σn

[
βTX(n) − log

∑
j∈Ri

exp(βTXj)
]

=
n∑
i=1

σiβ
TX(i) −

n∑
i=1

σi log
∑
j∈Ri

exp(βTXj)

=
n∑
i=1

σi

[
βTX(i) − log

∑
j∈Ri

exp(βTXj)

]
(A.4)

The partial-log likelihood function is given by

PLL(β) =
n∑
i=1

σi

[
βTX(i) − log

∑
j∈Ri

exp(βTXj)

]
(A.5)
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A.2 Partial loglikelihood for the Cox-nnet model

In a Cox-nnet model, the covariate vector is replaced by the output of the hidden

layer yielding a modified PLL defined as

PLL(β,W ) =
n∑
i=1

σi

[
βTφ(W TX(i) + b)− log

∑
j∈Ri

exp(βTφ(W TXj + b))

]
(A.6)

Subsequently, the partial-log likelihood in A.6 is extended by adding a ridge

regularisation term yielding a cost function C(β,W ) which is minimised through

back propagation.

C(β,W ) = PLL(β,W ) + λ(‖β‖2 + ‖W ‖2) (A.7)

where

• σi is the censoring indicator for patient i.

• βT is a vector for the regression coefficients.

• W is the coefficient weight matrix between the input and the hidden layer.

• b is the bias term for each hidden node.

• X(i) is the covariate vector for patient i.

• φ(.) is the tanh activation function as shown in equation 2.15 and it is

applied element-wise on a vector.

• λ is the regularisation parameter.
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• ‖.‖ is the L2 norm. The L2 norm is calculated as the square root of

the sum of the squared vector values, e.g. Let X=(x1, x2, x3), ‖X‖ =
√
x1

2 + x2
2 + x3

2

• Ri is the risk set. A risk set is defined as the set of individuals at risk of

experiencing an event of interest at a particular timepoint.

• Xj is the covariate vector for the patients in the risk set.

• φ(W TX(i) + b) is the output for patient i

• φ(W TXj + b) is the output for patient j where j ∈ Ri

A.3 An illustration of the risk set

Consider a sample dataset with 4 variables namely: Patient Id, survival time,

censoring indicator and Age of the patients. We first of all rank the patients

according to their survival time.

Table A.1: A sample dataset

ID Time Indicator Age
1 5.37 1 75
2 7.78 1 72
3 2.05 1 70
4 9.25 0 55
5 8.85 1 68
6 2.25 1 76

In Table A.2 below we have created a column called risk set which has the set

of individuals at risk of experiencing an event of interest at each timepoint. The
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patient with ID number of 3 was the first to experience the event. The number

of individuals in the risk set at the time the patient with ID = 3 experienced the

event is 6 (i.e. the risk set is 1, 2, 3, 4, 5, 6). The next patient to experience the

event is patient with ID = 6. The risk set at this point is 1, 2, 4, 5, 6. The risk set

does not include the patient with ID = 3 because this patient is no longer in the

study. The number of patients keeps on reducing until there is only one patient

remaining in the risk set.

The last column shows the contribution of each patient to the partial likelihood
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Table A.2: Risk set and likelihood contribution

Time Indicator Age ID Risk set Likelihood

2.05 1 70 3 {1,2,3,4,5,6}
e(70β)

e(75β) + e(72β) + e(70β) + e(55β) + e(68β) + e(76β)

2.25 1 76 6 {1,2,4,5,6}
e(76β)

e(75β) + e(72β) + e(55β) + e(68β) + e(76β)

5.37 1 75 1 {1,2,4,5}
e(75β)

e(75β) + e(72β) + e(55β) + e(68β)

7.78 1 72 2 {2,4,5}
e(72β)

e(72β) + e(55β) + e(68β)

8.85 1 68 5 {4,5}
e(68β)

e(55β) + e(68β)

9.25 0 55 4 {4} 1

The partial likelihood function is given as a product over the observed failure

times of conditional probabilities, of observing an event of interest, given the risk

set at that time. The product of the terms in the last column in Table A.2 is what

gives us the partial likelihood function. The column for the likelihood shows each

individual’s contribution to the likelihood. The risk set introduces dependency

between the terms. As such, it is meaningless to evaluate partial sums, hence, it

is impossible to have mini batches or to do stochastic gradient descent.
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Appendix B

Supplementary details for

Chapter 4

B.1 Change-score simulation R-code

rm(list=ls())
if( packageVersion(’dagitty ’)<"0.2.3" ){

warning("Please install at least version
0.2.3 of the dagitty package!")

stop("Use this command:
devtools :: install_github(’jtextor/dagitty/r’)") }

require(dagitty ); require(MASS); require(rpsychi );
library(matrixcalc ); library(tidyverse ); library(dplyr)

##############################
## Define various functions ##
##############################

# function to summarise best fitting model
Val <- function(txt) {

Code <- sum(9000,grep("X0",txt)*100,
grep("U0",txt)*10, grep("Y0",txt),na.rm=TRUE)
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return(Code) }

getmode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv )))] }

# function to execute multiple simulations and summarise findings
runSim <- function(Mu,Sigma ,Nobs ,Nreps) {

if (!is.positive.definite(round(Sigma ,8))) {
Sum <- matrix(rep(0,3*24),nrow=3,ncol=24)
colnames(Sum) <- c("Y1","DY","Y0","X0","U0","Y1"

,"DY","Y0","X0" ,"U0","Y0_Y1","Y0_U0"
,"Y0_X0","Y0_DY" ,"Y1_U0","Y1_X0","Y1_DY","U0_X0",

"U0_DY","X0_DY","Y1_RMSE","DY_RMSE",
"Y1_XUY","DY_XUY")

} else {
Sum <- NULL
for (itn in 1:Nreps) {

# simulate a single dataset & calculate change score
& summary information

dat <- data.frame(mvrnorm(Nobs ,Mu,Sigma ,empirical=FALSE ));
names(dat) <-c("Y0","Y1","U0","X0")
dat$DY <- dat$Y1 - dat$Y0
MyData <- select(tibble(data.frame(dat)),Y1,DY,Y0,X0,U0)
Means <- apply(MyData ,2,mean)
SDs <- apply(MyData ,2,sd)
CorMat <- cor(MyData)
Corrs <- CorMat[lower.tri(CorMat )]
names(Corrs) <- c("Y0_Y1","Y0_U0","Y0_X0","Y0_DY","Y1_U0","Y1_X0"
,"Y1_DY","U0_X0","U0_DY","X0_DY")

# create Train & Test datasets
Select <- sample(c(1:Nobs),Nobs*0.7,replace=FALSE)
Train <- MyData[Select ,]
Test <- MyData[-Select ,]

# generate list of prediction covariates & lm formulae ignoring
Y0

Vars <- as.character(names(MyData)[-c(1:3)])
input <- expand.grid(data.frame(matrix(rep(c(TRUE ,FALSE)

,length(Vars)),nrow=2)))
Y1.Form <- apply(input ,1,function(x)
{as.formula(paste(c("Y1 ~ 1",Vars[x]),collapse = "+"))} )
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DY.Form <- apply(input ,1,function(x)
{as.formula(paste(c("DY ~ 1",Vars[x]),collapse = "+"))} )

# run lm on Train data & calculate RMSEs on Test data
Y1.BIC <- sapply(Y1.Form ,function(x)
{BIC(lm(x,data=Train ))} )
DY.BIC <- sapply(DY.Form ,function(x)
{BIC(lm(x,data=Train ))} )
Y1.Best <- Reduce(paste ,deparse(Y1.Form[[which(Y1.BIC

==min(Y1.BIC ))]]))
DY.Best <-Reduce(paste ,deparse(DY.Form[[which(DY.BIC

==min(DY.BIC ))]]))
Y1.lm <- lm(Y1.Best ,data=Train)
DY.lm <- lm(DY.Best ,data=Train)
Y1.pred <- predict(Y1.lm,Test)
DY.pred <- predict(DY.lm,Test)
Y1.RMSE <- sqrt(mean((Test$Y1-Y1.pred)^2))
DY.RMSE <- sqrt(mean((Test$DY-DY.pred)^2))
Best <- c(Val(Y1.Best),Val(DY.Best ));
names(Best) <- c("Y1_XUY","DY_XUY")

RMSE <- c(Y1.RMSE ,DY.RMSE);
names(RMSE) <- c("Y1_RMSE","DY_RMSE")

Sum <- rbind(Sum ,c(Means ,SDs ,Corrs ,RMSE ,Best))
}

}
return(Sum) }

DAG_con_con_con <- function(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,pX0_Y1,pY0_Y1) {
# X0 -> Y0 / U0 -> X0 / U0 -> Y0 #

dag <- dagitty(paste0("dag{ X0->Y0 [beta=",pX0_Y0,"]
U0->X0 [beta=",pU0_X0,"] U0->Y0 [beta=",pU0_Y0,"]

U0->Y1 [beta=",pU0_Y1,"] Y0->Y1
[beta=",pY0_Y1,"] X0->Y1
[beta=",pX0_Y1,"] }"))

return(dag) }

DAG_con_con_med <- function(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,pX0_Y1,pY0_Y1) {
# X0 -> Y0 / U0 -> X0 / Y0 -> U0 #
dag <- dagitty(paste0("dag{ X0->Y0 [beta=",pX0_Y0,"]

U0->X0 [beta=",pU0_X0,"] Y0->U0 [beta=",pU0_Y0,"]
U0->Y1 [beta=",pU0_Y1,"] Y0->Y1
[beta=",pY0_Y1,"] X0->Y1
[beta=",pX0_Y1,"] }"))
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return(dag) }

DAG_med_con_con <- function(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,pX0_Y1,pY0_Y1){
# Y0 -> X0 / U0 -> X0 / U0 -> Y0 #
dag <- dagitty(paste0("dag{ Y0->X0 [beta=",pX0_Y0,"]
U0->X0 [beta=",pU0_X0,"] U0->Y0 [beta=",pU0_Y0,"]

U0->Y1 [beta=",pU0_Y1,"] Y0->Y1
[beta=",pY0_Y1,"] X0->Y1
[beta=",pX0_Y1,"] }"))

return(dag) }

DAG_med_con_med <- function(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,pX0_Y1,pY0_Y1){
# Y0 -> X0 / U0 -> X0 / Y0 -> U0 #

dag <- dagitty(paste0("dag{ Y0->X0 [beta=",pX0_Y0,"]
U0->X0 [beta=",pU0_X0,"] Y0->U0 [beta=",pU0_Y0,"]

U0->Y1 [beta=",pU0_Y1,"] Y0->Y1
[beta=",pY0_Y1,"] X0->Y1
[beta=",pX0_Y1,"] }"))

return(dag)}

DAGsim <- function(dag ,Nmu ,Sigma ,Nobs ,Nreps) {
Cor <- impliedCovarianceMatrix(dag)
Sigma <- r2cov(sqrt(Nvar),Cor)
Sim <- runSim(Nmu ,Sigma ,Nobs ,Nreps)
return(Sim) }

##############################################
## Simulates scenarios for orthogonal X0-Y0 ##
##############################################

RCTSim <- function(Nmu ,Sigma ,Nobs ,Nreps ,Y0Y1Seq ,X0Y1Seq ,U0Y1Seq) {

start <- Sys.time()
# set consistent path coefficient
pX0_Y0 <- 0.0
Summ <- Mode <- NULL
Nruns <- length(Y0Y1Seq)* length(X0Y1Seq)* length(U0Y1Seq)*7
Step <- 1; PctProg <- round(100*(Step/Nruns),2)
for (pY0_Y1 in Y0Y1Seq) {

for (pX0_Y1 in X0Y1Seq) {
for (pU0_Y1 in U0Y1Seq) {

178



## X0-Y0 orthogonal & no U0 confounding
pX0_Y0 <- pU0_X0 <- pU0_Y0 <- 0
dag <- DAG_con_con_con(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,

pX0_Y1,pY0_Y1)

Config <- data.frame(pY0_Y1=pY0_Y1, pX0_Y1=pX0_Y1,
pU0_Y1=pU0_Y1, pU0_Y0=pU0_Y0, pX0_Y0=pX0_Y0,
pU0_X0=pU0_X0, U0_Y0=1, X0_Y0=1)

Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],2,getmode)),

Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],2,function(x)

{quantile(x,c(0.025,0.5,0.975))}), Config ))
print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1; PctProg <- round(100*(Step/Nruns),2)

## X0-Y0 orthogonal & U0 confounds X0

pX0_Y0 <- pU0_Y0 <- 0
for (pU0_X0 in c(-0.5,0.5)) {

dag <- DAG_con_con_con(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0
,pX0_Y1,pY0_Y1)

Config <- data.frame(pY0_Y1=pY0_Y1, pX0_Y1=pX0_Y1
, pU0_Y1=pU0_Y1, pU0_Y0=pU0_Y0,

pX0_Y0=pX0_Y0, pU0_X0=pU0_X0,
U0_Y0=1, X0_Y0=1)

Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))}),
Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1; PctProg <- round(100*(Step/Nruns),2) }

## X0-Y0 orthogonal & U0 confounds Y0
pX0_Y0 <- pU0_X0 <- 0
for (pU0_Y0 in c(-0.5,0.5)) {

dag <- DAG_con_con_con(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0
,pX0_Y1,pY0_Y1)
Config <- data.frame(pY0_Y1=pY0_Y1, pX0_Y1=pX0_Y1

, pU0_Y1=pU0_Y1, pU0_Y0=pU0_Y0,
pX0_Y0=pX0_Y0, pU0_X0=pU0_X0, U0_Y0=1,
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X0_Y0=1)
Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))}),
Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1; PctProg <- round(100*(Step/Nruns),2) }

## X0-Y0 orthogonal & U0 mediates Y0
pX0_Y0 <- pU0_X0 <- 0
for (pU0_Y0 in c(-0.5,0.5)) {

dag <- DAG_con_con_med(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,
pX0_Y1,pY0_Y1)

Config <- data.frame(pY0_Y1=pY0_Y1,
pX0_Y1=pX0_Y1, pU0_Y1=pU0_Y1,
pU0_Y0=pU0_Y0, pX0_Y0=pX0_Y0,
pU0_X0=pU0_X0, U0_Y0=0, X0_Y0=1)

Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))})
,Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1; PctProg <- round(100*(Step/Nruns),2) }

}
}

}
end <- Sys.time (); print(end -start)
return(list(Mode ,Summ))

}

#############################################
## Simulates scenarios for X0 confounds Y0 ##
#############################################

ConSim <- function(Nmu ,Sigma ,Nobs ,Nreps ,Y0Y1Seq ,X0Y1Seq ,U0Y1Seq) {

start <- Sys.time()
Summ <- Mode <- NULL
Nruns <- length(Y0Y1Seq)* length(X0Y1Seq)* length(U0Y1Seq)*2*9
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Step <- 1; PctProg <- round(100*(Step/Nruns),2)
for (pY0_Y1 in Y0Y1Seq) {

for (pX0_Y1 in X0Y1Seq) {
for (pU0_Y1 in U0Y1Seq) {

for (pX0_Y0 in c(-0.5,0.5)) {

## X0 confounds Y0 & no U0 confounding
pU0_X0 <- pU0_Y0 <- 0
dag <- DAG_con_con_con(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0

,pX0_Y1,pY0_Y1)
Config <- data.frame(pY0_Y1=pY0_Y1, pX0_Y1=pX0_Y1,

pU0_Y1=pU0_Y1, pU0_Y0=pU0_Y0,
pX0_Y0=pX0_Y0, pU0_X0=pU0_X0,

U0_Y0=1, X0_Y0=1)
Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))}),
Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1; PctProg <- round(100*(Step/Nruns),2)

## X0 confounds Y0 & U0 confounds X0

pU0_Y0 <- 0
for (pU0_X0 in c(-0.5,0.5)) {

dag <- DAG_con_con_con(pU0_X0,pU0_Y0,pU0_Y1,
pX0_Y0,pX0_Y1,pY0_Y1)

Config <- data.frame(pY0_Y1=pY0_Y1,pX0_Y1=pX0_Y1,
pU0_Y1=pU0_Y1, pU0_Y0=pU0_Y0,

pX0_Y0=pX0_Y0, pU0_X0=pU0_X0,
U0_Y0=1, X0_Y0=1)

Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],
2,function(x) {quantile(x,c(0.025,0.5,0.975))}), Config ))
print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1;
PctProg <- round(100*(Step/Nruns),2)}
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## X0 confounds Y0 & U0 confounds Y0
pU0_X0 <- 0
for (pU0_Y0 in c(-0.5,0.5)) {

dag <- DAG_con_con_con(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,
pX0_Y1,pY0_Y1)

Config <- data.frame(pY0_Y1=pY0_Y1,
pX0_Y1=pX0_Y1, pU0_Y1=pU0_Y1

, pU0_Y0=pU0_Y0, pX0_Y0=pX0_Y0,
pU0_X0=pU0_X0, U0_Y0=1, X0_Y0=1)

Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))})
,Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1; PctProg <- round(100*(Step/Nruns),2)}

## X0 confounds Y0 & U0 confounds X0 & U0 confounds Y0
for (pU0_X0 in c(-0.5,0.5)) {

for (pU0_Y0 in c(-0.5,0.5)) {
dag <- DAG_con_con_con(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,

pX0_Y1,pY0_Y1)
Config <- data.frame(pY0_Y1=pY0_Y1,
pX0_Y1=pX0_Y1, pU0_Y1=pU0_Y1,
pU0_Y0=pU0_Y0, pX0_Y0=pX0_Y0,
pU0_X0=pU0_X0, U0_Y0=1, X0_Y0=1)

Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))})
,Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1;
PctProg <- round(100*(Step/Nruns),2)}}

}
}

}
}
end <- Sys.time (); print(end -start)
return(list(Mode ,Summ))

}
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############################################
## Simulates scenarios for X0 mediates Y0 ##
############################################

MedSim <- function(Nmu ,Sigma ,Nobs ,Nreps ,Y0Y1Seq ,X0Y1Seq ,U0Y1Seq)
{

start <- Sys.time()
Summ <- Mode <- NULL
Nruns <- length(Y0Y1Seq)* length(X0Y1Seq)* length(U0Y1Seq)*2*9
Step <- 1; PctProg <- round(100*(Step/Nruns),2)
for (pY0_Y1 in Y0Y1Seq) {

for (pX0_Y1 in X0Y1Seq) {
for (pU0_Y1 in U0Y1Seq) {

for (pX0_Y0 in c(-0.5,0.5)) {

## X0 mediates Y0 & no U0 confounding
pU0_X0 <- pU0_Y0 <- 0
dag <- DAG_med_con_con(pU0_X0,pU0_Y0,pU0_Y1,

pX0_Y0,pX0_Y1,pY0_Y1)
Config <- data.frame(pY0_Y1=pY0_Y1, pX0_Y1=pX0_Y1,

pU0_Y1=pU0_Y1, pU0_Y0=pU0_Y0,
pX0_Y0=pX0_Y0, pU0_X0=pU0_X0,

U0_Y0=1, X0_Y0=0)
Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))})
,Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1; PctProg <- round(100*(Step/Nruns),2)

## X0 mediates Y0 & U0 confounds X0
pU0_Y0 <- 0
for (pU0_X0 in c(-0.5,0.5)) {

dag <- DAG_med_con_con(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,
pX0_Y1,pY0_Y1)

Config <- data.frame(pY0_Y1=pY0_Y1,
pX0_Y1=pX0_Y1, pU0_Y1=pU0_Y1,
pU0_Y0=pU0_Y0, pX0_Y0=pX0_Y0,

pU0_X0=pU0_X0, U0_Y0=1, X0_Y0=0)
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Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))})
,Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1;

PctProg <- round(100*(Step/Nruns),2) }

## X0 mediates Y0 & U0 confounds Y0
pU0_X0 <- 0
for (pU0_Y0 in c(-0.5,0.5)) {

dag <- DAG_med_con_con(pU0_X0,pU0_Y0,pU0_Y1,
pX0_Y0,pX0_Y1,pY0_Y1)

Config <- data.frame(pY0_Y1=pY0_Y1,
pX0_Y1=pX0_Y1,pU0_Y1=pU0_Y1,

pU0_Y0=pU0_Y0, pX0_Y0=pX0_Y0,
pU0_X0=pU0_X0, U0_Y0=1, X0_Y0=0)

Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))})
,Config ))

print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1;
PctProg <- round(100*(Step/Nruns),2) }

## X0 mediates Y0 & U0 confounds X0 & U0 confounds Y0
for (pU0_X0 in c(-0.5,0.5)) {

for (pU0_Y0 in c(-0.5,0.5)) {
dag <- DAG_med_con_med(pU0_X0,pU0_Y0,pU0_Y1,pX0_Y0,

pX0_Y1,pY0_Y1)
Config <- data.frame(pY0_Y1=pY0_Y1,

pX0_Y1=pX0_Y1, pU0_Y1=pU0_Y1,
pU0_Y0=pU0_Y0, pX0_Y0=pX0_Y0,

pU0_X0=pU0_X0, U0_Y0=1, X0_Y0=0)
Sim <- DAGsim(dag ,Nmu ,Sigma ,Nobs ,Nreps)
Mode <- rbind(Mode ,cbind(t(apply(Sim[,21:22],

2,getmode)),Config ))
Summ <- rbind(Summ ,cbind(apply(Sim[,1:20],

2,function(x) {quantile(x,c(0.025,0.5,0.975))})
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,Config ))
print(c(as.numeric(as.character(Config)),PctProg ))
Step <- Step + 1;

PctProg <- round(100*(Step/Nruns),2)} }
}

}
}

}
end <- Sys.time (); print(end -start)
return(list(Mode ,Summ))

}

#################################################
## Set the simulation configuration parameters ##
#################################################

# scale of simulations
Nobs <- 1000 # vary study sizes
Nreps <- 100 # choose appropriate number

# of repeated simulations for each
# scenario

# means and variances
U0mu <- 10
U0var <- 1.5^2
X0mu <- 10
X0var <- 1.5^2
Y0mu <- 10
Y0var <- 1.5^2
Y1mu <- 10
Y1var <- 1.5^2

# vectors for simulations
Nmu <- c(Y0mu, Y1mu, U0mu, X0mu)
Nvar <- c(Y0var ,Y1var ,U0var ,X0var)
Mode <- Summ <- NULL

# baseline outcome serial correlation path coefficient
Y0Y1Seq <- seq(0.05,0.95,0.05) #; Y0Y1Seq <-

seq(0.05,0.95,0.15)

# main covariate effect size path coefficient
X0Y1Seq <- c(seq(-0.95,-0.05,0.05),Y0Y1Seq) #; X0Y1Seq <-
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c(seq(-0.95,-0.05,0.15),Y0Y1Seq)

# confounding options
U0Y1Seq <- c(-0.5,0.5)

###################################################################
## loop key path coefficients - in 3 part for parallel execution ##
###################################################################

# orthogonal X0-Y0
set.seed(13)
ResRCT <- RCTSim(Nmu ,Sigma ,Nobs ,Nreps ,Y0Y1Seq ,

X0Y1Seq ,U0Y1Seq)
Mode <- ResRCT [[1]]
Summ <- ResRCT [[2]]
NameRCT1 <- paste0("Mode_RCT_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
NameRCT2 <- paste0("Summ_RCT_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
write.table(t(colnames(Mode)),NameRCT1,sep=",",row.names=

TRUE ,col.names=FALSE)
write.table(signif(Mode),NameRCT1,sep=",",row.names=

TRUE ,col.names=FALSE ,append=TRUE)
write.table(t(colnames(Summ)),NameRCT2,sep=",",row.names=

TRUE ,col.names=FALSE)
write.table(signif(Summ),NameRCT2,sep=",",row.names=

TRUE ,col.names=FALSE ,append=TRUE)

# X0 confounds Y0
set.seed(13+length(Y0Y1Seq)* length(X0Y1Seq)* length(U0Y1Seq)*7)
ResCon <- ConSim(Nmu ,Sigma ,Nobs ,Nreps ,Y0Y1Seq ,X0Y1Seq ,U0Y1Seq)
Mode <- ResCon [[1]]
Summ <- ResCon [[2]]
NameCon1 <- paste0("Mode_Con_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
NameCon2 <- paste0("Summ_Con_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
write.table(t(colnames(Mode)),NameCon1,sep=",",row.names=

TRUE ,col.names=FALSE)
write.table(signif(Mode),NameCon1,sep=",",row.names=

TRUE ,col.names=FALSE ,append=TRUE)
write.table(t(colnames(Summ)),NameCon2,sep=",",row.names=

TRUE ,col.names=FALSE)
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write.table(signif(Summ),NameCon2,sep=",",row.names=
TRUE ,col.names=FALSE ,append=TRUE)

# X0 mediates Y0
set.seed(13+length(Y0Y1Seq)* length(X0Y1Seq)*
length(U0Y1Seq)*7+length(Y0Y1Seq)* length(X0Y1Seq)* length(U0Y1Seq)*2*9)
ResMed <- MedSim(Nmu ,Sigma ,Nobs ,Nreps ,Y0Y1Seq ,X0Y1Seq ,U0Y1Seq)
Mode <- ResMed [[1]]
Summ <- ResMed [[2]]
NameMed1 <- paste0("Mode_Med_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
NameMed2 <- paste0("Summ_Med_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
write.table(t(colnames(Mode)),NameMed1,sep=",",row.names=

TRUE ,col.names=FALSE)
write.table(signif(Mode),NameMed1,sep=",",row.names=

TRUE ,col.names=FALSE ,append=TRUE)
write.table(t(colnames(Summ)),NameMed2,sep=",",row.names=

TRUE ,col.names=FALSE)
write.table(signif(Summ),NameMed2,sep=",",row.names=

TRUE ,col.names=FALSE ,append=TRUE)

#####################
## Combine results ##
#####################

if (FALSE) {
# final output file identifier
NameRCT1 <- paste0("Mode_RCT_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
NameRCT2 <- paste0("Summ_RCT_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
Mode <- read.csv(NameRCT1)[,-1]
Summ <- read.csv(NameRCT2)[,-1]
NameCon1 <- paste0("Mode_Con_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
NameCon2 <- paste0("Summ_Con_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
Mode <- rbind(Mode ,read.csv(NameCon1)[,-1])
Summ <- rbind(Summ ,read.csv(NameCon2)[,-1])
NameMed1 <- paste0("Mode_Med_Ignore_",Nreps ,"reps_",

(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
NameMed2 <- paste0("Summ_Med_Ignore_",Nreps ,"reps_",
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(Nobs/1000),"kobs_",substr(Sys.time(),1,10),".csv")
Mode <- rbind(Mode ,read.csv(NameMed1)[,-1])
Summ <- rbind(Summ ,read.csv(NameMed2)[,-1])
Name1 <- paste0("Mode_Ignore_",Nreps ,"reps_",(Nobs/1000)

,"kobs_",substr(Sys.time(),1,10),".csv")
Name2 <- paste0("Summ_Ignore_",Nreps ,"reps_",(Nobs/1000),

"kobs_",substr(Sys.time(),1,10),".csv")
write.table(t(colnames(Mode)),Name1,sep=",",row.names=TRUE ,

col.names=FALSE)
write.table(signif(Mode),Name1,sep=",",row.names=TRUE ,

col.names=FALSE ,append=TRUE)
write.table(t(colnames(Summ)),Name2,sep=",",row.names=TRUE

,col.names=FALSE)
write.table(signif(Summ),Name2,sep=",",row.names=TRUE

,col.names=FALSE ,append=TRUE)
}
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Appendix C

Supplementary details for

Chapter 5

C.1 Rcode

#Create Mplus text file for LCA and save it as mplus1.txt
[[init]]
iterators = classes;
classes = 1:7;
filename = "[[ classes]]-classLCA.inp";
outputDirectory = "/Users/LCA";
[[/ init]]

TITLE: Latent Class Analysis;
DATA: FILE = "Data.dat";
VARIABLE:
NAMES = PatientID MaleSex Diabetes StatusDeath TimeDeath
ClinicAge Haemoglobin;
USEVARIABLES = Diabetes MaleSex ClinicAge Haemoglobin;
CATEGORICAL = Diabetes MaleSex;
CLASSES = c ([[ classes ]]);
MISSING =.;
ANALYSIS: TYPE = MIXTURE;
SAVEDATA:
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FILE IS Data2.dat;
SAVE IS cprob;
FORMAT IS free;

#Create another Mplus text file for LCR and save it as mplus2.txt
[[init]]
iterators = classes;
classes = 2:5;
filename = "[[ classes]]-classLCR.inp";
outputDirectory = "/Users/londt4/Documents/PhDwork/LCR";
[[/ init]]

TITLE: Latent Class Analysis;
DATA: FILE = "Data.dat";

VARIABLE:
NAMES = PatientID MaleSex Diabetes StatusDeath TimeDeath
ClinicAge Haemoglobin Sex2;
USEVARIABLES = Diabetes StatusDeath TimeDeath
ClinicAge Haemoglobin Sex2;

SURVIVAL = TimeDeath(ALL);
TIMECENSORED = StatusDeath(1 = NOT 0 = RIGHT);

CLASSES = c ([[ classes ]]);
MISSING =.;
ANALYSIS:
ESTIMATOR = ML;

TYPE = MIXTURE ;
STARTS = 1000 20;
PROCESSORS = 2;

MODEL:

%OVERALL%
TimeDeath on Diabetes ClinicAge Sex2;
c on Diabetes Haemoglobin;
%c#1%
TimeDeath on Diabetes ClinicAge Sex2;
%c#2%
TimeDeath on Diabetes ClinicAge Sex2;

SAVEDATA:
FILE IS Data2.dat;
SAVE IS cprob;
FORMAT IS free;
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# Clear the working environment
rm(list=ls())
#Installing required packages
packages <- c("foreign", "MplusAutomation", "dplyr", "tidyverse",
"MASS", "ROCR", "tidyr","pROC","synthpop")

new_packages <-packages [!( packages %in%
installed.packages ()[,"Package"])]
# Load all required packages
if(length(new_packages )) install.packages(new_packages)
for (i in 1:length(packages )) require(packages[i],character.only = T)

# import Data from SPSS
MyData <- tibble(read.spss(file="heart.sav", to.data.frame = TRUE))
MyData <- na.omit(MyData[ ,c(1,3,4,17,18,25,33)])
MyData$TimeDeath <- MyData$TimeDeath / 365.2422
MyData$Sex2 <- as.integer(MyData$MaleSex)

################################################
#### Latent Class Analysis Section ####################
################################################
prepareMplusData(MyData , file="Data.dat")
createModels("mplus1.txt")
runModels ()
models=readModels ()

################################################
#### Latent Class Regression Section ##############
################################################
prepareMplusData(MyData , file="Data.dat")
createModels("mplus2.txt")
runModels ()
summary=extractModelSummaries ()
models=readModels ()

###############
## Functions ##
###############

# Defining the function
cindex <- function(data){
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# Define event time variable , status variable , and a
risk score (A linear predictor)
time <- data$time
status <- data$status
x <- data$LP
n <- length(time)

# Order variables on time (ascending), and
# on status (descending - 1s first)

# ord <- order(time ,-status)
ord <- order(time)
time <- time[ord]
status <- status[ord]
x <- x[ord]

#Select only individuals who experienced the event
wh <- which(status ==1)

# Every individual i with an event is compared to all other i
ndividuals
# with a later event time j with event times sorted in
ascending order
total <- concordant <- 0
for (i in wh) {

for (j in ((i+1):n)) {
if (time[j] > time[i]) { # ties not counted

total <- total + 1
# The total number of concordant and tied pairs is counted
if (x[j] < x[i]) concordant <- concordant + 1
if (x[j] == x[i]) concordant <- concordant + 0.5

}
}

}

# The proportion of concordant pairs over the total of
evaluable pairs gives the C-index

return(concordant/total)
}
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# create input file for standard Cox PH (1-Class) model in Mplus
StdCox <- function(data) {

CoxModel <- mplusObject(
TITLE = "RealDataset;",
VARIABLE = USEVARIABLES=TimeDeath StatusDeath
Diabetes MaleSex ClinicAge Haemoglobin;

SURVIVAL = TimeDeath(ALL);
TIMECENSORED = StatusDeath(1 = NOT 0 = RIGHT);
CLASSES=cl(1);,

ANALYSIS = ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 1000 20;
PROCESSORS = 8;,

MODEL=
%OVERALL%
TimeDeath on Diabetes ClinicAge MaleSex Haemoglobin;,

SAVEDATA =
FILE IS sim.dat;
SAVE IS CPROBABILITIES;
FORMAT IS free;,

usevariables = c("MaleSex", "Diabetes", "StatusDeath", "TimeDeath",
"ClinicAge", "Haemoglobin"), rdata = Data

)
}

# create input file for Cox PH Latent Class Regression model in Mplus
LCRCox <- function(data) {

LCRCoxModel <- mplusObject(
TITLE = "RealDataset;",
VARIABLE = USEVARIABLES = TimeDeath StatusDeath Diabetes
MaleSex ClinicAge Haemoglobin;

SURVIVAL = TimeDeath(ALL);
TIMECENSORED = StatusDeath(1 = NOT 0 = RIGHT);
CLASSES=cl(2);,

ANALYSIS = ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 1000 20;
PROCESSORS = 8;,

MODEL=
%OVERALL%
TimeDeath on Diabetes ClinicAge MaleSex;
cl on Haemoglobin Diabetes;
%cl#1%
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TimeDeath on Diabetes ClinicAge MaleSex;
%cl#2%
TimeDeath on Diabetes ClinicAge MaleSex;,

SAVEDATA =
FILE IS sim.dat;
SAVE IS CPROBABILITIES;
FORMAT IS free;,

usevariables = c("MaleSex", "Diabetes", "StatusDeath", "TimeDeath",
"ClinicAge", "Haemoglobin"), rdata = Data

)
}

##############################
## Model Evaluation Section ##
##############################

# evaluate standard Cox PH model
StdMod <- StdCox(Data)
StdFit <- mplusModeler(StdMod , modelout = "StdData.inp", run = 1L)
StdData <- StdFit$results$savedata
StdOut <- readModels("StdData.out", what = "all")
StdBeta <- as.numeric(StdOut$parameters$unstandardized[1:5,"est"])

LP <- (StdData$DIABETES - mean(StdData$DIABETES )) * StdBeta[1]
+ (StdData$CLINICAG - mean(StdData$CLINICAG )) * StdBeta[2] +

(StdData$MALESEX - mean(StdData$MALESEX )) * StdBeta[3] +
(StdData$HAEMOGLO - mean(StdData$HAEMOGLO )) * StdBeta[4]

# Calculating C-index for the standard Cox PH model
time <- Data$TimeDeath
status <- Data$StatusDeath
StdX <- tibble(data.frame(time , status , LP))
C_Std <- c_index(StdX)

# evaluate Cox PH LCR model
LCRMod <- LCRCox(Data)
LCRFit <- mplusModeler(LCRMod , modelout = "LCRData.inp", run = 1L)
LCRData <- LCRFit$results$savedata
LCROut <- readModels("LCRData.out", what = "all")
LCRBeta <- as.numeric(LCROut$parameters$unstandardized[1:8,"est"])
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# Linear predictor for class 1 plus linear predictor for
class 2 weighted by class probabilities

LP <- ( (( LCRData$DIABETES - mean(LCRData$DIABETES )) * LCRBeta[1]
+ (LCRData$CLINICAG - mean(LCRData$CLINICAG )) * LCRBeta[2] +
(LCRData$MALESEX - mean(LCRData$MALESEX )) * LCRBeta[3] +
LCRBeta[4] ) * LCRData$CPROB1 ) +
( (( LCRData$DIABETES - mean(LCRData$DIABETES )) * LCRBeta[5] +
(LCRData$CLINICAG - mean(LCRData$CLINICAG )) * LCRBeta[6] +

(LCRData$MALESEX - mean(LCRData$MALESEX )) * LCRBeta[7] +
LCRBeta[8] ) * LCRData$CPROB2 )

#Evaluate the c-index for a Latent Class Cox Model
time <- Data$TimeDeath
status <- Data$StatusDeath
LCRX <- tibble(data.frame(time , status , LP))
C_LCR <- c_index(LCRX)

##########################################################
###################### CROSSVALIDATION #################
##########################################################
# 1. Partition Data into Training and Test Set
# 2. Create Syntax for training dataset
# 3. Run model #2
# 4. Take parameter estimates from #3 and create syntax

#with those estimates as fixed values and test dataset
# 5. Run model #4
# 6. Output model fit information from #5 and save to a file
# 7. Repeat 10 times (10-fold CV)

set.seed(20210306)
# loopReplace function is needed to fill in parameters in
Mplus script with specified values

loopReplace <- function(text , replacements) {
for (v in names(replacements )){

text <- gsub(sprintf("\\[\\[%s\\]\\]",v),replacements [[v]],text)
}
return(text)

}
STDCoxCindex1 = matrix(NA,10,1)
STDCoxCindex2 = matrix(NA,10,1)
LCCoxCindex1 = matrix(NA,10,1)
LCCoxCindex2 = matrix(NA,10,1)

195



###### 10-fold Cross -Validation for the standard Cox Model #########
for(i in 1:10){

#Segment data by fold using the which() function
testIndexes <- which(folds==i,arr.ind=TRUE)
testData <- MyData[testIndexes , ]
trainData <- MyData[-testIndexes , ]

# Create Syntax for the standard Cox Training Data
STDtrain_script <- mplusObject(

TITLE = Standard Cox Model using a Training Dataset;,
VARIABLE = USEVARIABLES = Diabetes StatusDeath TimeDeath

ClinicAge Haemoglobin Sex2;
SURVIVAL = TimeDeath(ALL);
TIMECENSORED = StatusDeath(1 = NOT 0 = RIGHT);
CLASSES=c(1);,
ANALYSIS = ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 1000 20;
PROCESSORS = 2;,
MODEL=
%OVERALL%
TimeDeath on Diabetes ClinicAge Sex2 Haemoglobin;,
SAVEDATA =

FILE IS STDtrainData.dat;
SAVE IS cprob;
FORMAT IS free;,

usevariables = c( "Diabetes" ,"StatusDeath" ,"TimeDeath",
"ClinicAge" , "Haemoglobin","Sex2" ),rdata = trainData)

STDtrainModel = mplusModeler(STDtrain_script ,
modelout = "STDtrainModel.inp", run = 1L)
STDTrainData <- STDtrainModel$results$savedata
STDOut <- readModels("STDtrainModel.out", what = "all")
STDBeta <- as.numeric(STDOut$parameters$unstandardized[1:5,"est"])

#Linear predictor for the standard Cox model using the training data
LP <-(STDTrainData$DIABETES - mean(STDTrainData$DIABETES ))* STDBeta[1]
+ (STDTrainData$CLINICAG - mean(STDTrainData$CLINICAG )) * STDBeta[2]+
(STDTrainData$SEX2 - mean(STDTrainData$SEX2))* STDBeta[3] +
(STDTrainData$HAEMOGLO -mean(STDTrainData$HAEMOGLO ))* STDBeta[4]

#Evaluate the c-index for a Stadard Cox Model using training data
time <- trainData$TimeDeath
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status <- trainData$StatusDeath
STDX <- tibble(data.frame(time , status , LP))
STDCoxCindex1[i,1]<- c_index(STDX)

STDparms = STDtrainModel$results$parameters
df_parms <- data.frame(STDparms [[1]]$param , STDparms [[1]]$est)
names(df_parms) <- c("param","est")
df_parms2 <- t(df_parms)
df_parms2 <- as.data.frame(df_parms2)
df2 <- df_parms2[2,]
names(df2) <- c("DIAB_c1","AGE_c1","SEX_c1","HAEM_c1","TIME_c1")

# Create Syntax for the standard Cox model for the Test Data
STDtest_script <- mplusObject(

TITLE = Standard Cox Model on a Testing dataset;,
VARIABLE = USEVARIABLES = Diabetes
StatusDeath TimeDeath ClinicAge

Haemoglobin Sex2;
SURVIVAL = TimeDeath (ALL);
TIMECENSORED = StatusDeath(1 = NOT 0 = RIGHT);
CLASSES=c(1);,

ANALYSIS = TYPE=MIXTURE ,
MODEL = loopReplace(

%OVERALL%
TimeDeath on Diabetes ClinicAge Sex2 Haemoglobin;
TimeDeath on Diabetes@ [[DIAB_c1]]
ClinicAge@ [[AGE_c1]]
Sex2@[[SEX_c1]]
Haemoglobin@ [[HAEM_c1]];
[TimeDeath@ [[TIME_c1]]];
OUTPUT: NOCHISQUARE;, df2),

SAVEDATA =
FILE IS STDtestData.dat;
SAVE IS cprob;
FORMAT IS free;,

usevariables = c("Diabetes" ,"StatusDeath" ,"TimeDeath",
"ClinicAge" , "Haemoglobin","Sex2" ), rdata = testData)

STDtest = mplusModeler(STDtest_script ,
modelout = "STDtestModel.inp", run = 1L)
STDTestData <-STDtest$results$savedata
head(STDTestData)
STDTestOut <- readModels("STDtestModel.out", what = "all")
STDTestBeta <-
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as.numeric(STDTestOut$parameters$unstandardized[1:8,"est"])

# Linear predictor for the Standard Cox Model using the testing data
LP <-(STDTestData$DIABETES -mean(STDTestData$DIABETES ))* STDTestBeta[1]
+( STDTestData$CLINICAG -mean(STDTestData$CLINICAG )) * STDTestBeta[2]
+( STDTestData$SEX2 - mean(STDTestData$SEX2))* STDTestBeta[3] +

(STDTestData$HAEMOGLO -mean(STDTestData$HAEMOGLO ))* STDTestBeta[4]

#Evaluate the c-index for a Standard Cox Model using testing data
time <- testData$TimeDeath
status <- testData$StatusDeath
STDX <- tibble(data.frame(time , status , LP))
STDCoxCindex2[i,1]<- c_index(STDX)

# Create Syntax for the Latent Class Cox regression Training Data
LCRtrain_script <- mplusObject(

TITLE = Latent Class Regression on Training dataset;,
VARIABLE = USEVARIABLES = Diabetes StatusDeath TimeDeath
ClinicAge Haemoglobin Sex2;

SURVIVAL = TimeDeath(ALL);
TIMECENSORED = StatusDeath(1 = NOT 0 = RIGHT);
CLASSES=c(2);,
ANALYSIS = ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 1000 100;
PROCESSORS = 4;,
MODEL=
%OVERALL%
TimeDeath on Diabetes ClinicAge Sex2;
c on Diabetes Haemoglobin;
%c#1%
TimeDeath on Diabetes ClinicAge Sex2;
%c#2%
TimeDeath on Diabetes ClinicAge Sex2;,
SAVEDATA =

FILE IS LCRtrainData.dat;
SAVE IS cprob;
FORMAT IS free;,

usevariables = c( "Diabetes" ,"StatusDeath" ,"TimeDeath",
"ClinicAge" , "Haemoglobin","Sex2" ),rdata = trainData)

LCRtrain = mplusModeler(LCRtrain_script ,
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modelout = "LCRtrainModel.inp", run = 1L)
LCRtrainData <-LCRtrain$results$savedata
LCRtrainOut <- readModels("LCRtrainModel.out", what = "all")
LCRtrainBeta <- as.numeric(LCRtrainOut$parameters$unstandardized

[1:8,"est"])
# Linear predictor for class 1 plus linear predictor

# for class 2 weighted by class probabilities
LP <-

((( LCRtrainData$DIABETES -mean(LCRtrainData$DIABETES ))* LCRtrainBeta[1]
+ (LCRtrainData$CLINICAG -mean(LCRtrainData$CLINICAG ))* LCRtrainBeta[2]
+( LCRtrainData$SEX2-mean(LCRtrainData$SEX2))* LCRtrainBeta[3]
+ LCRtrainBeta[4] ) * LCRtrainData$CPROB1 ) +
((( LCRtrainData$DIABETES -mean(LCRtrainData$DIABETES ))* LCRtrainBeta[5]
+ (LCRtrainData$CLINICAG -mean(LCRtrainData$CLINICAG ))* LCRtrainBeta[6]
+ (LCRtrainData$SEX2-mean(LCRtrainData$SEX2))* LCRtrainBeta[7]
+ LCRtrainBeta[8])* LCRtrainData$CPROB2 )

#Evaluate the c-index for a Latent Class Cox Model
# using a testing dataset

time <- LCRtrainData$TIMEDEAT
status <- trainData$StatusDeath
LCRX <- tibble(data.frame(time , status , LP))
LCCoxCindex1[i,1] = c_index(LCRX)

parms = LCRtrain$results$parameters
df_parms <- data.frame(parms[[1]]$param , parms [[1]]$ est)
names(df_parms) <- c("param","est")
df_parms2 <- t(df_parms)
df_parms2 <- as.data.frame(df_parms2)
df2 <- df_parms2[2,]
names(df2) <- c("DIAB_c1","AGE_c1","SEX_c1","TIME_c1","DIAB_c2",
"AGE_c2","SEX_c2","TIME_c2","DIAB_cc1","HAEM_cc1","c1_cc1")

# Create Syntax for the LCR Test Data
LCRtest_script <- mplusObject(

TITLE = Latent Class Regression on Testing dataset;,
VARIABLE = USEVARIABLES = Diabetes
StatusDeath TimeDeath
ClinicAge Haemoglobin Sex2;

SURVIVAL = TimeDeath (ALL);
TIMECENSORED = StatusDeath(1 = NOT 0 = RIGHT);
CLASSES=c(2);,

ANALYSIS = TYPE=MIXTURE ,

199



MODEL = loopReplace(
%OVERALL%
TimeDeath on Diabetes ClinicAge Sex2;
c#1 on Diabetes Haemoglobin;
c#1 on Diabetes@ [[DIAB_cc1]]
Haemoglobin@ [[HAEM_cc1]];
%c#1%
TimeDeath on Diabetes@ [[DIAB_c1]]
ClinicAge@ [[AGE_c1]]
Sex2@[[SEX_c1]];
[TimeDeath@ [[TIME_c1]]];
%c#2%
TimeDeath on Diabetes@ [[DIAB_c2]]
ClinicAge@ [[AGE_c2]]
Sex2@[[SEX_c2]];

[TimeDeath@ [[TIME_c2]]];

OUTPUT: NOCHISQUARE;, df2),
SAVEDATA =

FILE IS LCRtestData.dat;
SAVE IS cprob;
FORMAT IS free;,

usevariables = c( "Diabetes" ,"StatusDeath" ,"TimeDeath",
"ClinicAge" , "Haemoglobin","Sex2" ), rdata = testData)

LCRtest = mplusModeler(LCRtest_script ,modelout = "LCRtestModel.inp",
run = 1L)

LCRtestData <-LCRtest$results$savedata
LCRtestOut <- readModels("LCRtestModel.out", what = "all")
LCRtestBeta <-
as.numeric(LCRtestOut$parameters$unstandardized[1:8,"est"])

# Linear predictor for class 1 plus linear predictor for
# class 2 weighted by class probabilities

LP <-
((( LCRtestData$DIABETES -mean(LCRtestData$DIABETES ))* LCRtestBeta[1]
+ (LCRtestData$CLINICAG -mean(LCRtestData$CLINICAG ))* LCRtestBeta[2]
+ (LCRtestData$SEX2-mean(LCRtestData$SEX2))* LCRtestBeta[3]
+ LCRtestBeta[4] )* LCRtestData$CPROB1 )
+((( LCRtestData$DIABETES -mean(LCRtestData$DIABETES ))* LCRtestBeta[5]
+ (LCRtestData$CLINICAG -mean(LCRtestData$CLINICAG ))* LCRtestBeta[6]
+( LCRtestData$SEX2-mean(LCRtestData$SEX2))* LCRtestBeta[7]
+ LCRtestBeta[8])* LCRtestData$CPROB2)
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#Evaluate the c-index for a Latent Class Cox Model using
# a testing dataset
time <- LCRtestData$TIMEDEAT
status <- testData$StatusDeath
LCRX <- tibble(data.frame(time , status , LP))
LCCoxCindex2[i,1] <- c_index(LCRX)

}

# Summary statistics(minimum , lower -hinge , median ,upper -hinge , maximum)
fivenum(STDCoxCindex1)
fivenum(STDCoxCindex2)
fivenum(LCCoxCindex1)
fivenum(LCCoxCindex2)
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Appendix D

Supplementary details for

Chapter 6

D.1 Rcode for simulations

# Clear workspace
rm(list=ls())

#Installing required packages
packages <- c("survival", "gridExtra", "matrixStats", "dplyr",

"tidyverse", "dagitty","MASS", "rpsychi",
"ROCR","MplusAutomation", "pROC", "matrixcalc",
"summarytools", "pec", "riskRegression")

new_packages <- packages [!( packages %in%
installed.packages ()[,"Package"])]

if(length(new_packages )) install.packages(new_packages)
for (i in 1:length(packages ))
require(packages[i],character.only = T)
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##################
## setup values ##
##################

op <- options(digits.secs = 6)
Nobs <- 1000 # study sample size
reps <- 1000 # number of bootstrap simulations/replications
names0 <- c("S0", "C0", "X1", "X2", "X3")
names1 <- c("S1", "C1", "X1", "X2", "X3", "DTH")
names2 <- c("Bin", "C1", "X1", "X2", "X3")

####################################################
## assign DAG path coefficients for each scenario ##
####################################################

DAG <- function(x) {
if (x == 1) {

# DAG1a
# S0/S1:
#heart failure among patients with coronary hearth disease
# x1: SEB - early -life socioeconomic background influences

# lifestyle and mediating factors that lead
# population heterogeneity

# X2: SMK - smoking history
# X3: ADH - drug adherence
# C0/C1: mix of lifestyle , diet , exercise and

# other multifactortial issues

X1X2 <<- 0.25 # modest early -life SEB
# influence on smoking behaviours
## THIS CHANGES ##

X1X3 <<- 0.25 # modest early -life SEB influences on
# later -life treatment adherence
## THIS CHANGES ##

X2X3 <<- 0.10 # modest link between smoking
# behaviours and treatment adherence behaviour
X1C0 <<- 0.50 # strong early -life SEB influences on
# latent population heterogeneity

C0S0 <<- 0.50 # strong latent population heterogeneity
# influence on outcome; NB:
# indirect X1S0 effect is modest (0.25)

X2S0 <<- 0.50 # strong influence of smoking on outcome
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X2C0 <<- 0.10 # modest influence of smoking behaviours on
# latent population heterogeneity that is not

# explained by SEB
C0X3 <<- 0.05 # weak influence of latent population

# heterogeneity on drug adherence
X3S0 <<- 0.50 # strong influence of drug adherence on outcome
X1S0 <<- 0.00 # zero influence of early -life SEB on outcome not

# mediated through latent population heterogeneity

## THIS CHANGES ##
}
if (x == 2) {

# DAG1b
# X1: GEN - family history suggestive of underlying genetic

# predisposition to both CVD and early death

X1X2 <<- 0.05 # weak genetic predisposition to
# smoking behaviours
## THIS CHANGES ##

X1X3 <<- 0.20 # modest genetic influences on
# treatment adherence
## THIS CHANGES ##

X2X3 <<- 0.10 # modest influence of smoking behaviours on
# treatment adherence behaviour

X1C0 <<- 0.50 # strong genetic influences on latent population
# heterogeneity

C0S0 <<- 0.50 # strong latent population heterogeneity
# influence on outcome; NB: indirect

# X1S0 effect is modest (0.25)
X2S0 <<- 0.50 # strong influence of smoking on outcome
X2C0 <<- 0.10 # modest influence of smoking behaviours

# on latent population heterogeneity
# that is
# not explained by genetics

C0X3 <<- 0.10 # modest influence of latent
# population heterogeneity on
# drug adherence

X3S0 <<- 0.50 # strong influence of drug adherence on outcome
X1S0 <<- 0.20 # modest -to -strong genetic

# influence on outcome not
# explained by latent population heterogeneity

## THIS CHANGES ##
}
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if (x == 3) {
# DAG1b
# X1: GEN - family history suggestive of underlying genetic

# predisposition to both CVD and early death

X1X2 <<- 0.05 # weak genetic predisposition to
# smoking behaviours

X1X3 <<- 0.20 # modest genetic influences on
# treatment adherence

X2X3 <<- 0.10 # modest influence of smoking behaviours on
# treatment adherence behaviour

X1C0 <<- 0.00 # NO # genetic influences on latent
# population heterogeneity

## THIS CHANGES ##
C0S0 <<- 0.50 # strong latent population heterogeneity

# influence on outcome;
# NB: indirect X1S0 effect
# is modest (0.25)

X2S0 <<- 0.50 # strong influence of smoking on outcome
X2C0 <<- 0.00 # NO # influence of smoking

# on latent population
# heterogeneity that is
# not explained by genetics

## THIS CHANGES ##
C0X3 <<- 0.00 # NO # influence of latent population

# heterogeneity on drug adherence
## THIS CHANGES ##

X3S0 <<- 0.50 # strong influence of drug adherence on
# outcome

X1S0 <<- 0.50 # strong genetic influence on outcome
# not explained by latent population heterogeneity

}
return(x) }
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#####################
## other functions ##
#####################

# create DAG
MakeDAG <- function(x) {

DAG(x)
dag <- paste0(dag {
X1 -> X2 [beta = , X1X2, ]
X1 -> X3 [beta = , X1X3, ]
X2 -> X3 [beta = , X2X3, ]
X1 -> C0 [beta = ", X1C0, "]
C0 -> S0 [beta = ", C0S0, "]
X2 -> S0 [beta = ", X2S0, "]
X2 -> C0 [beta = ", X2C0, "]
C0 -> X3 [beta = ", C0X3, "]
X3 -> S0 [beta = ", X3S0, "]
X1 -> S0 [beta = ", X1S0, "] }

)
return(dag) }

# create input file for Mplus with modest number of starts
LCRSurv <- function(data) {

LCR <- mplusObject(
TITLE = "Simulations;",
VARIABLE = "USEVARIABLES = X1 X2 X3 DTH S1;
SURVIVAL = S1(ALL);
TIMECENSORED = DTH(1 = NOT 0 = RIGHT);
CLASSES = CL(2);",

ANALYSIS = "ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 200 20;
PROCESSORS = 8;",

MODEL="
%OVERALL%
S1 on X1 X2 X3;
CL on X1 X2;
%CL#1%
S1 on X1 X2 X3;
%CL#2%
S1 on X1 X2 X3;",

SAVEDATA = "
FILE IS sim.dat;
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SAVE IS CPROBABILITIES;
FORMAT IS free;",

usevariables = c("S1", "DTH", "X1", "X2", "X3"), rdata = data)}

# create input file for Mplus with more starts if needed
LCRSurvExtra <- function(data) {

LCR <- mplusObject(
TITLE = "Simulations;",
VARIABLE = "USEVARIABLES = X1 X2 X3 DTH S1;
SURVIVAL = S1(ALL);
TIMECENSORED = DTH(1 = NOT 0 = RIGHT);
CLASSES = CL(2);",

ANALYSIS = "ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 2000 200;
PROCESSORS = 8;",

MODEL="
%OVERALL%
S1 on X1 X2 X3;
CL on X1 X2;
%CL#1%
S1 on X1 X2 X3;
%CL#2%
S1 on X1 X2 X3;",

SAVEDATA = "
FILE IS sim.dat;
SAVE IS CPROBABILITIES;
FORMAT IS free;",

usevariables = c("S1", "DTH", "X1", "X2", "X3"), rdata = data)
}

# create input file for Mplus with modest number of starts
LCRSurvNoX1 <- function(data) {

LCR <- mplusObject(
TITLE = "Simulations;",
VARIABLE = "USEVARIABLES = X2 X3 DTH S1;
SURVIVAL = S1(ALL);
TIMECENSORED = DTH(1 = NOT 0 = RIGHT);
CLASSES = CL(2);",

ANALYSIS = "ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 500 50;
PROCESSORS = 8;",
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MODEL="
%OVERALL%
S1 on X2 X3;
CL on X2;
%CL#1%
S1 on X2 X3;
%CL#2%
S1 on X2 X3;",

SAVEDATA = "
FILE IS sim.dat;
SAVE IS CPROBABILITIES;
FORMAT IS free;",

usevariables = c("S1", "DTH", "X2", "X3"), rdata = data)}

# create input file for Mplus with more starts if needed
LCRSurvExtraNoX1 <- function(data) {

LCR <- mplusObject(
TITLE = "Simulations;",
VARIABLE = "USEVARIABLES = X2 X3 DTH S1;
SURVIVAL = S1(ALL);
TIMECENSORED = DTH(1 = NOT 0 = RIGHT);
CLASSES = CL(2);",

ANALYSIS = "ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 2000 200;
PROCESSORS = 8;",

MODEL="
%OVERALL%
S1 on X2 X3;
CL on X2;
%CL#1%
S1 on X2 X3;
%CL#2%
S1 on X2 X3;",

SAVEDATA = "
FILE IS sim.dat;
SAVE IS CPROBABILITIES;
FORMAT IS free;",

usevariables = c("S1", "DTH", "X2", "X3"), rdata = data) }
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# create input file for Mplus with more starts if needed
LCRSurvExtraExtraNoX1 <- function(data) {

LCR <- mplusObject(
TITLE = "Simulations;",
VARIABLE = "USEVARIABLES = X2 X3 DTH S1;
SURVIVAL = S1(ALL);
TIMECENSORED = DTH(1 = NOT 0 = RIGHT);
CLASSES = CL(2);",

ANALYSIS = "ESTIMATOR = ML;
TYPE = MIXTURE ;
STARTS = 5000 500;
PROCESSORS = 8;",

MODEL="
%OVERALL%
S1 on X2 X3;
CL on X2;
%CL#1%
S1 on X2 X3;
%CL#2%
S1 on X2 X3;",

SAVEDATA = "
FILE IS sim.dat;
SAVE IS CPROBABILITIES;
FORMAT IS free;",

usevariables = c("S1", "DTH", "X2", "X3"), rdata = data) }

# derive S1 such that all subjects die within 20
# years and we have $70\%$ $5$-year survival -
# censoring at $5$ years only

GetS1 <- function(S0) {
span <- 25
gap <- 0
Delta <- 1
while (abs(Delta) > 0.2) {

Optimal <- optimise(
Exponentiate <<- function(x) {

S1 <<- rexp(Nobs ,x)
Extra <- runif(length(S1[S1>span]), gap , span)
S1[S1>span] <<- Extra
return(5 - quantile(S1,0.3))

}, c(0.05,0.5)
)
Delta <- Optimal$objective
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}
Map <- bind_cols(id = 1:Nobs , S0 = S0)
Map <- bind_cols(Map[order(S0),], S1 = S1[order(S1)])
S1 <<- Map[order(Map$id),]$S1
return(Optimal$minimum) }

# Derive Harrell ’s C-statistic from Cox PH model and given data set
C_index <- function(ph, data) {

Xstart <- 1
if (class(ph) == "coxph") {

beta <- ph$coefficients
nCovars <- length(beta)

} else {
beta <- ph
Xstart <- if_else (length(beta)/4 == round(length(beta)/4), 1, 2)
nCovars <- length(grep("X",names(data )))

}
nClass <- length(grep("CPROB",names(data )))
time <- data$S1
status <- data$DTH
if (nClass ==0) LP <- as.matrix(data[,paste0("X",Xstart:nCovars)],

ncol = nCovars) %*% beta else
if (nClass ==2) {

Cprob <- data[,c("CPROB1","CPROB2")]
LPC1 <- (as.matrix(data[,paste0("X",Xstart:nCovars)],

ncol = nCovars) %*% beta[1:nCovars ])
* Cprob[,1]

LPC2 <- (as.matrix(data[,paste0("X",Xstart:nCovars)],

ncol = nCovars) %*% beta[( nCovars+1)
:(2*nCovars )]) * Cprob[,2]

LP <- as.numeric(unlist(LPC1 + LPC2)) }
n <- length(time)
ord <- order(time)
time <- time[ord]
status <- status[ord]
LP <- LP[ord]
wh <- which(status ==1)
total <- concordant <- 0
for (i in wh) {

for (j in ((i+1):n)) {
if (time[j] > time[i]) { # ties not counted
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total <- total + 1
# The total number of concordant an tied pairs is counted
if (LP[j] < LP[i]) concordant <- concordant + 1
if (LP[j] == LP[i]) concordant <- concordant + 0.5

}
}

}
# The proportion of concordant pairs over
# the total of evaluable pairs gives the C-index

return(concordant/total) }

# calculate how well the LCR model performs
# better than the standard model

PctBetter <- function(Sdata) {
Better1 <- sum(Sdata$LCR1 >= Sdata$CoxC1, na.rm = TRUE)
Worse1 <- sum(Sdata$LCR1 < Sdata$CoxC1, na.rm = TRUE)
Better2 <- sum(Sdata$LCR2 >= Sdata$CoxC2, na.rm = TRUE)
Worse2 <- sum(Sdata$LCR2 < Sdata$CoxC2, na.rm = TRUE)
pct1 <- 100 * Better1 / (Better1 + Worse1)
pct2 <- 100 * Better2 / (Better2 + Worse2)
return(round(c(pct1, pct2),1)) }

################################################
## preliminary simulations to generate important
# summary descriptive information ##
################################################

# simulate empirical = TRUE data sets
dag <- dagData <- Mu <- MyCov <- MyCor <- CorCov <-

vector(mode = "list", length = 2)
set.seed(17)
for (itn in 1:3) {

dag[[itn]] <- MakeDAG(itn)
dagData [[itn]] <- simulateSEM(dag[[itn]], N = Nobs , eps = 1,

standardized = FALSE , empirical = TRUE)[,names0] }

# derive correlation & covariance structures from empirical = TRUE
simulated survival data

MedSurv <- vector(mode = "numeric", length = 2)
for (itn in 1:3) {

data <- tibble(dagData [[itn]])[, names0]
Mu[[itn]] <- as.numeric(round(data %>%

summarise_if(is.numeric , mean),3))
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MyCov[[itn]] <- var(dagData [[itn]])
MyCor[[itn]] <- cor(dagData [[itn]])
dagData [[itn]]$C1 <- ifelse(data$C0 <= quantile(data$C0, 0.7),

0, 1) # make binary latent class
S1 <- data$S0;
x <- GetS1(dagData [[itn]]$S0) # create exponential

# survival data (global assignment to S1)
dagData [[itn]]$S1 <- S1

CorCov [[itn]] <- lower.triangle(’diag <-’(round(cor(dagData [[itn]]),2),
0)) + upper.triangle(round(var(dagData [[itn]]),2))

MedSurv[itn] <- median(dagData [[itn]]$S1)}

############################################################
## main simulations of data sets to be evaluated by both models ##
############################################################

# simulated all empirical = FALSE data sets from DAGs and store
MyData <- vector(mode = "list", length = 6)
MyData [[1]] <- vector(mode = "list", length = reps)
t0 <- Sys.time()
for (itn in 1:3) {

for(repi in 1:reps){
set.seed(repi*Nobs)
MyData [[itn ]][[ repi]] <- tibble(data.frame(mvrnorm(Nobs ,
Mu[[itn]], MyCov[[itn]], empirical = FALSE))[,names0])
MyData [[itn ]][[ repi ]]$C1 <- ifelse(MyData [[itn ]][[ repi ]]$C0 <=
quantile(MyData [[itn ]][[ repi ]]$C0, 0.7), 0, 1) # make binary

# latent class
S1 <- MyData [[itn ]][[ repi ]]$S0 # create survival data
x <- GetS1(MyData [[itn ]][[ repi ]]$S0) # exponentiate
MyData [[itn ]][[ repi ]]$S1 <- S1
MyData [[itn ]][[ repi ]]$DTH <- ifelse(MyData [[itn ]][[ repi ]]$S1

< 5, 1, 0)
# 30\% binary death

MyData [[itn ]][[ repi ]][ MyData [[itn ]][[ repi ]]$S1 > 5 ,]$S1 <- 5 } }
# censor at 5 years
save(MyData , file = paste0(path ,"MyData.rda"))
print("Data generation runtime"); print(Sys.time()-t0)
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###################################################
## model evaluation for all covariates selected ##
###################################################

t0 <- Sys.time()
for (itn in 1:3) {

ts <- Sys.time()
CoxC1 <- CoxC2 <- LCR1 <- LCR2 <- Extra1
<- Extra2 <- Fail1 <- Fail2 <- matrix(NA, reps , 1)

for(repi in 1:reps){
print("############################");
print(paste0("# SCENARIO ",itn ," REPLICATION ",repi ));
print("############################")
Extra1[repi] <- Extra2[repi] <- Fail1[repi]

<- Fail2[repi] <- 0
ConData <- tibble(MyData [[itn ]][[ repi]][,names1])
# assign continuous predictors

BinData <- ConData
# assign binary predictors
BinData[,3:5] <- apply(ConData[,3:5], 2, function(x){
ifelse(x<= quantile(x,0.7), 0, 1) })

# convert X1, X2 & X3 to binary
Cox1 <- coxph(Surv(S1, C1) ~ X1 + X2 + X3,
data = ConData , x = TRUE , y = TRUE)
Cox2 <- coxph(Surv(S1, C1) ~ X1 + X2 + X3,
data = BinData , x = TRUE , y = TRUE)
C1 <- C_index(Cox1, ConData)
C2 <- C_index(Cox2, BinData)
CoxC1[repi] <- if_else(C1 >= 0.5, C1, 1 - C1)
CoxC2[repi] <- if_else(C2 >= 0.5, C2, 1 - C2)
LCR1mod <- LCRSurv(ConData[,names1])
LCR2mod <- LCRSurv(BinData[,names1])
Fit1 <- mplusModeler(LCR1mod , modelout =
paste0("LCR1_S",itn ,"_",repi ,".inp"), run = 1L)
Fit2 <- mplusModeler(LCR2mod , modelout =
paste0("LCR2_S",itn ,"_",repi ,".inp"), run = 1L)

Out1 <- readModels(paste0("lcr1_s",itn ,"_",repi ,".out"),
what = "all")

Out2 <- readModels(paste0("lcr2_s",itn ,"_",repi ,".out"),
what = "all")

Err1 <- sum(grep("NON -POSITIVE", Out1$errors )) +
sum(grep("DID NOT TERMINATE", Out1$errors ))

Err2 <- sum(grep("NON -POSITIVE", Out2$errors ))
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+ sum(grep("DID NOT TERMINATE", Out2$errors ))
War1 <- length(Out1$warnings)
War2 <- length(Out2$warnings)
X <- as.matrix(MyData [[itn ]][[ repi]][,

c("X1","X2","X3")])
if (Err1 == 0) {

if (War1 != 0) {
if (length(grep("BEST LOGLIKELIHOOD VALUE WAS NOT REPLICATED",

War1))!=0) {
LCR1mod <- LCRSurvExtra(BinData[,names1])
Fit1 <- mplusModeler(LCR1mod , modelout =

paste0("LCR1_S",itn ,"_",repi ,".inp"),
run = 1L)

Out1 <- readModels(paste0("lcr1_s",itn ,"_",
repi ,".out"), what = "all")

War1 <- length(Out1$warnings)
Extra1[repi] <- 1
Fail1[repi] <- if_else (War1 == 0, 0, 1)

}
}
if (War1 == 0) {
Beta1 <- as.numeric(Out1$parameters$unstandardized[1:8,"est"])
Check1 <- as.numeric(Out1$parameters$unstandardized[1:8,"se"])

Beta1[Check1==0]<- 0
if (sum(is.na(Beta1))==0 & length(Check1)!=0) {

LCR1data <- tibble(Fit1$results$savedata)
###################################
LCR1data$DTH <- 1 - LCR1data$DTH
###################################
C1 <- C_index(Beta1, LCR1data)
LCR1[repi] <- if_else(C1 >= 0.5, C1, 1 - C1)

} else LCR1[repi] <- NA
}

} else LCR1[repi] <- NA
if (Err2 == 0) {

if (War2 != 0) {
if (length(grep("BEST LOGLIKELIHOOD VALUE WAS
NOT REPLICATED", War2))!=0) {
LCR2mod <- LCRSurvExtra(BinData[,names1])
Fit2 <- mplusModeler(LCR2mod , modelout =

paste0("LCR2_S",itn ,"_",repi ,".inp"), run = 1L)
Out2 <- readModels(paste0("lcr2_s",itn ,"_",repi ,".

out"), what = "all")
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War2 <- length(Out2$warnings)
Extra2[repi] <- 1
Fail2[repi] <- if_else (War2 == 0, 0, 1)

}
}
if (War2 == 0) {

Beta2 <- as.numeric(Out2$parameters$unstandardized[1:8,"est"])
Check2 <- as.numeric(Out2$parameters$unstandardized[1:8,"se"])
Beta2[Check2==0]<- 0
if (sum(is.na(Beta2))==0 & length(Check2)!=0) {

LCR2data <- tibble(Fit2$results$savedata)
###################################
LCR2data$DTH <- 1 - LCR2data$DTH
###################################
C2 <- C_index(Beta2, LCR2data)
LCR2[repi] <- if_else(C2 >= 0.5, C2, 1 - C2)

} else LCR2[repi] <- NA
}

} else LCR2[repi] <- NA
}
Update <- data.frame(Scenario=itn ,Model=1:reps ,

CoxC1=CoxC1,LCR1=LCR1,
Extra1=Extra1,Fail1=Fail1,CoxC2=CoxC2,

LCR2=LCR2,Extra2=Extra2,Fail2=Fail2)
Results <- bind_rows(Results , Update)

}; print("Total runtime"); print(Sys.time()-t0)

#####################################################
## model evaluation for X1 covariate NOT selected ##
#####################################################

t0 <- Sys.time()
for (itn in 1:3) {

ts <- Sys.time()
CoxC1 <- CoxC2 <- LCR1 <- LCR2 <- Extra1 <-

Extra2 <- Fail1 <- Fail2 <- matrix(NA , reps , 1)
for(repi in 1:reps){

print("############################");
print(paste0("# SCENARIO ",itn + 3," REPLICATION
",repi )); print("############################")

Extra1[repi] <- Extra2[repi] <- Fail1[repi] <-
Fail2[repi] <- 0

ConData <- tibble(MyData [[itn ]][[ repi]][,names1])
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# assign continuous predictors
BinData <- ConData

# assign binary predictors
BinData[,3:5] <- apply(ConData[,3:5], 2,

function(x){ ifelse(x<= quantile(x,0.7), 0, 1) })
# convert X1, X2 & X3 to binary

Cox1 <- coxph(Surv(S1, C1) ~ X2 + X3,
data = ConData , x = TRUE , y = TRUE)

Cox2 <- coxph(Surv(S1, C1) ~ X2 + X3,
data = BinData , x = TRUE , y = TRUE)

C1 <- C_index(Cox1, ConData)
C2 <- C_index(Cox2, BinData)
CoxC1[repi] <- if_else(C1 >= 0.5, C1, 1 - C1)
CoxC2[repi] <- if_else(C2 >= 0.5, C2, 1 - C2)
LCR1mod <- LCRSurvNoX1(ConData[,names1])
LCR2mod <- LCRSurvNoX1(BinData[,names1])
Fit1 <- mplusModeler(LCR1mod , modelout =

paste0("LCR1_S",itn ,"_",repi ,".inp"), run = 1L)
Fit2 <- mplusModeler(LCR2mod , modelout =

paste0("LCR2_S",itn ,"_",repi ,".inp"), run = 1L)
Out1 <- readModels(paste0("lcr1_s",itn ,"_"

,repi ,".out"), what = "all")
Out2 <- readModels(paste0("lcr2_s",itn ,"_"

,repi ,".out"), what = "all")
Err1 <- sum(grep("NON -POSITIVE", Out1$errors ))

+ sum(grep("DID NOT TERMINATE", Out1$errors ))
Err2 <- sum(grep("NON -POSITIVE", Out2$errors ))

+ sum(grep("DID NOT TERMINATE", Out2$errors ))
War1 <- length(Out1$warnings)
War2 <- length(Out2$warnings)
X <- as.matrix(MyData [[itn ]][[ repi]][,c("X2","X3")])
if (Err1 == 0) {

if (War1 != 0) {
if (length(grep("BEST LOGLIKELIHOOD

VALUE WAS NOT REPLICATED", Out1$warnings ))!=0) {
LCR1mod <- LCRSurvExtraNoX1(BinData[,names1])
Fit1 <- mplusModeler(LCR1mod , modelout =

paste0("LCR1_S",itn ,"_",repi ,".inp"), run = 1L)
Out1 <- readModels(paste0("lcr1_s",itn ,"_"
,repi ,".out"), what = "all")
War1 <- length(Out1$warnings)
Extra1[repi] <- 1
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Fail1[repi] <- if_else (War1 == 0, 0, 1)
}

}
if (War1 == 0) {

Beta1 <- as.numeric(Out1$parameters$unstandardized[1:6,"est"])
Check1 <- as.numeric(Out1$parameters$unstandardized[1:6,"se"])
Beta1[Check1==0]<- 0
if (sum(is.na(Beta1))==0 & length(Check1)!=0) {

LCR1data <- tibble(Fit1$results$savedata)
###################################
LCR1data$DTH <- 1 - LCR1data$DTH
###################################
C1 <- C_index(Beta1, LCR1data)
LCR1[repi] <- if_else(C1 >= 0.5, C1, 1 - C1)

} else LCR1[repi] <- NA
}

} else LCR1[repi] <- NA
if (Err2 == 0) {

if (War2 != 0) {
if (length(grep("BEST LOGLIKELIHOOD

VALUE WAS NOT REPLICATED", Out2$warnings ))!=0) {
LCR2mod <- LCRSurvExtraNoX1(BinData[,names1])
Fit2 <- mplusModeler(LCR2mod ,
modelout = paste0("LCR2_S",itn ,"_",repi ,".inp"), run = 1L)

Out2 <- readModels(paste0("lcr2_s",itn ,"_",repi ,"
.out"), what = "all")

War2 <- length(Out2$warnings)
Extra2[repi] <- 1
Fail2[repi] <- if_else (War2 == 0, 0, 1)

}
}
if (War2 == 0) {

Beta2 <- as.numeric(Out2$parameters$unstandardized[1:6,"est"])
Check2 <- as.numeric(Out2$parameters$unstandardized[1:6,"se"])
Beta2[Check2==0]<- 0
if (sum(is.na(Beta2))==0 & length(Check2)!=0) {

LCR2data <- tibble(Fit2$results$savedata)
###################################
LCR2data$DTH <- 1 - LCR2data$DTH
###################################
C2 <- C_index(Beta2, LCR2data)
LCR2[repi] <- if_else(C2 >= 0.5, C2, 1 - C2)

} else LCR2[repi] <- NA

217



}
} else LCR2[repi] <- NA

}
Update <- data.frame(Scenario=itn+3,Model=1:reps ,CoxC1=CoxC1
,LCR1=LCR1,Extra1=Extra1,Fail1=Fail1,CoxC2=CoxC2
,LCR2=LCR2,Extra2=Extra2,Fail2=Fail2)
Results <- bind_rows(Results , Update)

}; print("Total runtime"); print(Sys.time()-t0)
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