Short-Lived Radical Characterisation: Novel Radical Trap Synthesis, Application and Methodology Development

Supporting Information

Peter J. H. Williams

University of York Chemistry January 2022

List of supporting information contents

List of supporting information contents	2
List of supporting information tables	4
List of supporting information figures	8
SI1. Chemicals	12
SI2. Synthesis	13
SI2.1. Grantham TART	13
SI2.2. AllyI-TEMPO	17
SI2.3. Abandoned 2-(bromomethyl)acrylic acid nucleophilic substitution by TMP and Meisenheimer rearrangement	21
SI2.4. Unsuccessful 2-(bromomethyl)acrylic acid UV irradiation	25
SI2.5. Methyl 2-(TEMPOmethyl)acrylate	26
SI2.6. 2-(TEMPOmethyl)acrylic acid	28
SI2.7. CHANT	30
SI2.8. COANT	32
SI2.9. DECANT	34
SI2.10. DANT	36
SI2.11. AGLANT	38
SI2.12. GLANT	39
SI2.13. Tabaqui-1	41
SI2.14. Tabaqui-2	42
SI2.15. BIOANT	44
SI2.16. DEADANT	46
SI2.17. TREADANT	48
SI2.18. SILANT	50
SI3. Synthetic radical reactions	52
SI3.1. Barton reaction	52
SI3.2. Hofmann-Löffler-Freytag (HLF) reaction	53
SI3.2.1. Precursor synthesis	53
SI3.2.2. Trapping reaction	54
SI3.3. Radical aromatic aminophosphinoylation	59
SI3.4. Radical decarboxylative aromatic iodination	60
SI4. Photochemistry	64
SI4.1. Radical cyanomethylation	64
SI4.2. Radical thiol-ene addition	65
SI4.2.1. Literature replication	65
SI4.2.2. Controls	66

SI4.2.3. TART-trapped radical isolation67
SI4.2.4. Kinetics experiments and kinetic modelling
SI4.2.5. Effect of different thiols on reaction kinetics
SI4.2.6. Effect of different alkenes on reaction kinetics
SI4.3. Radical dearomative spirocyclisation77
SI5. Biochemistry
SI5.1. Alcohols
SI5.2. Nucleobases
SI5.3. Dipeptides
SI6. Alkene ozonolysis
SI6.1. α-Pinene
SI6.1.1. Optimisation
SI6.1.1.1. TART phase
SI6.1.1.2. Functionality of TART, solvent and additives
SI6.1.1.3. TART concentration
SI6.1.2. Detailed results
SI6.1.2.1. Formula Find 88
SI6.1.2.2. HPLC-MS
SI6.1.2.3. Oligomers
SI6.1.2.4. Kinetic modelling92
SI7. •OH-initiated alkane degradation
SI7.1. Using water photolysis as an •OH source
SI8. Modelling equations
SI8.1. Radical thiol-ene addition95
SI8.2. α-Pinene ozonolysis
SI8.3. •OH-initiated <i>n</i> -nonane degradation
References

List of supporting information tables

Table SI1: Fragments identified from tandem MS of peak corresponding to $[R2/R3-ART+H]^+$ (*m/z* 254.212) from TART trapping of the Barton reaction, using isopentyl nitrite as substrate and CHANT as TART (11.4.2). Systematic *m/z* error = -0.0011; random *m/z* error = ±0.0007.

Table SI2: Fragments from tandem MS of peak corresponding to $[R2/R3-ART+H]^+$ (*m/z* 295.275) from TART trapping of the HLF reaction, using *N*-chlorodibutylamine as substrate and CHANT as TART (11.4.3.2). Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0003.

Table SI4: Fragments from tandem HPLC-MS of the peak corresponding to $[R2/R3-ART+H]^+$ (*m/z* 295.275) from TART trapping of the HLF reaction, using *N*-chlorodibutylamine as substrate and CHANT as TART (11.4.3.2), observed during the first peak (13.49 min) and second peak (13.62 min). Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0005..... 57

Table SI8: Fragments identified from tandem MS of peak corresponding to $[R3-ART+H]^+$ (*m/z* 274.181) from TART trapping of radical decarboxylative aromatic iodination, using *p*-anisic acid as substrate and CHANT as TART (11.4.6). Systematic *m/z* error = -0.0010; random *m/z* error = ±0.0004.

Table SI12: Fragments identified from tandem MS of peak corresponding to $[R2-ART+H]^+$ (*m/z* 394.220) from TART trapping of radical thiol-ene addition, benzyl mercaptan (S2.1) and

styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic m/z error = -0.0013; random m/zTable SI13: Fragments identified from tandem MS of peak corresponding to [R1-ART+H]+ (m/z 276.142) from TART trapping of radical thiol-ene addition, using thiophenol (S2.2) and styrene (S3.1) as substrates after 24 h (11.5.2.8). Systematic m/z error = -0.0007; random m/zTable SI14: Fragments identified from tandem MS of peak corresponding to [R2-ART+H]+ (m/z 380.205) from TART trapping of radical thiol-ene addition, using thiophenol (S2.2) and styrene (S3.1) as substrates after 24 h (11.5.2.8). Systematic m/z error = -0.0009; random m/zTable SI15: Fragments identified from tandem MS of peak corresponding to [R1-ART+H]+ (m/z 306.153) from TART trapping of radical thiol-ene addition, using 3-methoxythiophenol (S2.3) and styrene (S3.1) as substrates after 24 h (11.5.2.8). Systematic m/z error = -0.0007; Table SI16: Fragments identified from tandem MS of peak corresponding to [R1-ART+H]+ (m/z 282.189) from TART trapping of radical thiol-ene addition, using cyclohexanethiol (S2.4) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic m/z error = -0.0010; random Table SI17: Fragments identified from tandem MS of peak corresponding to [R2-ART+H]+ (m/z 386.252) from TART trapping of radical thiol-ene addition, using cyclohexanethiol (S2.4) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic m/z error = -0.0010; random Table SI18: Fragments identified from tandem MS of peak corresponding to [R1-ART+H]+ (m/z 334.148) from TART trapping of radical thiol-ene addition, using methyl thiosalicylate (S2.5) and styrene (S3.1) as substrates after 24 h (11.5.2.8). Systematic m/z error = -0.0007; Table SI19: Fragments identified from tandem MS of peak corresponding to [R1-ART+H]+ (m/z 256.173) from TART trapping of radical thiol-ene addition, using 'BuSH (S2.6) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic m/z error = -0.0009; random m/zTable SI20: Fragments identified from tandem MS of peak corresponding to [R2-ART+H]+ (m/z 360.236) from TART trapping of radical thiol-ene addition, using 'BuSH (S2.6) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic m/z error = -0.0011; random m/zTable SI21: Species identified from TART trapping of Ru-photocatalysed radical thiol-ene addition under standard conditions after 2 h, using benzyl mercaptan (S2.1) and different alkenes as substrates, CHANT as TART and MS for characterisation (11.5.2.9). CI containing species are shown with ³⁵Cl only. Systematic m/z error = -0.0005; random error m/z = ±0.0008; Table SI22: Fragments identified from tandem MS of peak corresponding to [R1-ART+H]+ (m/z 290.158) from TART trapping of radical thiol-ene addition, using benzyl mercaptan (S2.1) and different alkenes (S3.1-S3.6) as substrates after 24 h (11.5.2.9). Systematic m/z error Table SI23: Fragments identified from tandem MS of peak corresponding to [R1-ART+H]+ (m/z 256.173) from TART trapping of radical dearomative spirocyclisation, using 'BuSH (S2.6) as substrate (11.5.3.2). Systematic m/z error = -0.0008; random m/z error = ±0.0003......77

Table SI24: Fragments identified from tandem MS of peak corresponding to [R2/R3-ART+H]+ (m/z 529.289) from TART trapping of radical dearomative spirocyclisation, using 'BuSH (S2.6) as substrate (11.5.3.2). Systematic m/z error = -0.0012; random m/z error = ±0.0005.......77 Table SI25: Fragments identified from tandem MS of peak corresponding to [R1.1-ART+H]+ (m/z 219.134) from TART trapping of •OH-initiated methanol degradation, using DEADANT Table SI26: Fragments identified from tandem MS of peak corresponding to [R1.1.1.1.1–ART+H]⁺ (*m*/*z* 217.119) from TART trapping of •OH-initiated methanol degradation, using DEADANT as TART (11.6.2). Systematic m/z error = -0.0007; random m/zTable SI27: Fragments identified from tandem MS of peak corresponding to [R1-ART+H]+ (*m*/z 229.192) from TART trapping of •OH-initiated ^tBuOH degradation, using DEADANT as Table SI28: Fragments identified from tandem MS of peak corresponding to [R1.1-ART+H]+ (*m*/*z* 261.181) from TART trapping of •OH-initiated ^tBuOH degradation, using DEADANT as Table SI29: Fragments identified from tandem MS of peak corresponding to [R1.1.1-ART+H]+ (*m*/*z* 241.187) from TART trapping of •OH-initiated ^tBuOH degradation, using DEADANT as Table SI30: Fragments identified from tandem MS of peak corresponding to [R1.1-ART+H]+ (*m/z* 331.162) from TART trapping of •OH-initiated thymine degradation, using DEADANT as Table SI31: D exchanges observed for MS peaks corresponding to TART-trapped radicals from D₂O exchange of •OH-initiated Ac-Gly-Gly-OH degradation, using DEADANT as TART and MS for characterisation (Pos ESI-MS, 4.2.2.2). Systematic m/z error = 0.0000; random Table SI32: Species identified from TART trapping of α-pinene ozonolysis, using CHANT solution or solid supported CHANT with different additives and MS for characterisation (11.7.3.2). Systematic m/z error = -0.0006; random m/z error = ±0.0003; 100% intensity = Table SI33: Species identified from TART trapping of α-pinene ozonolysis, conducted using different TARTs and MS for characterisation (11.7.3). Systematic m/z error = -0.0006; random $m/z \, \text{error} = \pm 0.0012; \, 100\% \text{ intensity} = 5.08 \times 10^9 \text{ absolute count.}$ 85 Table SI34: Species identified from TART trapping of α -pinene ozonolysis, using different TARTs dissolved in different solvents and MS for characterisation (11.7.3). Systematic m/z error = -0.0006; random m/z error = ±0.0006; 100% intensity = 5.08×10^9 absolute count... 86 Table SI35: Species identified from TART trapping of α-pinene ozonolysis, using DEADANT as TART dissolved in different solvents and MS for characterisation (11.7.3). Systematic m/z error = -0.0006; random m/z error = ±0.0008; 100% intensity = 5.08×10^9 absolute count... 86 Table SI36: Species identified from TART trapping of α-pinene ozonolysis, conducted using Grantham TART and MS for characterisation (11.7.3). Systematic m/z error = -0.0006; random $m/z \, \text{error} = \pm 0.0005; \, 100\% \text{ intensity} = 5.08 \times 10^9 \text{ absolute count}.$ Table SI37: Species identified from TART trapping of α-pinene ozonolysis, using CHANT at different concentrations and MS for characterisation (11.7.3). Systematic m/z error = -0.0006; Table SI38: Five most intense peaks believed to correspond to monomeric products from TART trapping of α -pinene ozonolysis, obtained using the Formula Find programme.

Molecular formula limits were set as $C_{1-10}H_{0-100}O_{0-15}Na_{0-1}$ and m/z limits 100-1000. Illogical molecular formulae were eliminated. 90
Table SI39: Dimers from the ten most intense peaks from TART trapping of α -pinene ozonolysis, obtained using the Formula Find programme. Molecular formula limits were set as $C_{1-40}H_{0-100}N_{0-2}O_{0-15}Na_{0-1}$ and m/z limits 100-1000
Table SI40: Radical-alkene-alkene trimer species identified from TART trapping of α -pinene ozonolysis, using MS for characterisation (11.7.2). Systematic <i>m</i> / <i>z</i> error = -0.0005; random <i>m</i> / <i>z</i> error = ±0.0012; 100% intensity = 2.01×10 ⁹ absolute count. Radical-alkene dimer nomenclature is of the form PR-Trim-x, where R is the index of reactant radical species and x is the total oxygen count in the α -pinene unit, including the bridges between the two units (1-2), two new alkene inner rings (0-2) and new alkene alcohol/hydroperoxide (1-2) functionalisation
Table SI41: Species identified from TART trapping of •OH-initiated <i>n</i> -nonane degradation using water photolysis as an •OH source, DEADANT as TART and MS for characterisation after 10 min (11.8.2). Systematic m/z error = -0.0005; random m/z error = ±0.0005; 100% intensity = 6.11×10 ⁸ absolute count
Table SI42: Reactions and their rate constants for TART trapping of radical thiol-ene addition, using styrene (S3.1) and thiols S2.2, S2.3 or S2.5 as substrates (11.5.2.8, 11.10.2). Key parameters: time = 24 h. Concentrations / M: [thiol] ₀ = 0.400; [styrene] ₀ = 0.200; [TART] ₀ = 0.020
Table SI43: Reactions and their rate constants for TART trapping of radical thiol-ene addition, using styrene (S3.1) and thiols S2.1, S2.4 and S2.6 as substrates (11.5.2.8, 11.10.2). Key parameters: time = 24 h. Concentrations / mM: [thiol] ₀ = 0.400; [styrene] ₀ = 0.200; [TART] ₀ = 0.020
Table SI44: Reactions and their rate constants for TART trapping of radical thiol-ene addition, using benzyl mercaptan (S2.1) and alkenes S3.1, S3.4 and S3.6 as substrates (11.5.2.9, 11.10.2). Key parameters: time = 24 h. Concentrations / M: [benzyl mercaptan] ₀ = 0.400; [alkene] ₀ = 0.200; [TART] ₀ = 0.020
Table SI45: Reactions and their kinetic factors for TART trapping of radical thiol-ene addition, using benzyl mercaptan (S2.1) and alkenes S3.2, S3.3 and S3.5 as substrates (11.5.2.9, 11.10.2). Key parameters: time = 24 h. Concentrations / M: [benzyl mercaptan] ₀ = 0.400; [alkene] ₀ = 0.200; [TART] ₀ = 0.020
Table SI46: Reactions and their kinetic factors used for gas phase modelling of α -pinene ozonolysis (11.7.5, 11.10.3). Atmospheric reactions of α -pinene were imported into the Kintecus chemical simulation programme ²⁰⁷ from the MCM ⁵⁷ and truncated to remove late stage pathways. Key parameters: time = 56.5 ms. Concentrations / molec. cm ⁻³ : [O ₃] ₀ = 2.96×10 ¹⁵ ; [α -pinene] ₀ = 5.20×10 ¹⁶
Table SI47: Reactions and their kinetic factors used for liquid phase modelling of TART trapping of α -pinene ozonolysis (11.7.5). These rate constants were estimated from assorted literature sources between reactions of RO ₂ • with methyl methacrylate ²²⁶ and RO• with alkenes ²²⁸ respectively. [Trap] ₀ = 3.01×10 ¹⁷ molec. cm ⁻³ . For liquid phase, key parameters: time = 2 min. Concentrations added / molec. cm ⁻³ s ⁻¹ . For gas-liquid interface, key parameters: time = 6.79 ms; scaled to time = 2 min. Initial concentrations / molec. cm ⁻³
Table SI48: Reactions and their kinetic factors used for gas phase modelling of •OH-initiated <i>n</i> -nonane degradation (11.8.2, 11.10.4). Atmospheric reactions of <i>n</i> -nonane were imported into the Kintecus chemical simulation programme ²⁰⁷ from the MCM ⁵⁷ and truncated to remove late stage pathways. Key parameters: residence time = 129 ms. Concentrations / molec. cm ⁻³ : [•OH] ₀ = $3.4\pm0.5\times10^{11}$; [HO ₂ •] ₀ = $3.4\pm0.5\times10^{11}$; [<i>n</i> -nonane] ₀ = 1.01×10^{16}

List of supporting information figures

Figure SI1: 1-[(2,2,6,6-Tetramethylpiperidin-1-yl)oxy]cyclohexane-1-carbaldehyde ¹ H NI spectrum (CDCl ₃ , 400 MHz, 298 K).	ИR 13
Figure SI2: 1-[(2,2,6,6-Tetramethylpiperidin-1-yl)oxy]cyclohexane-1-carbaldehyde ¹³ C NI spectrum (CDCl ₃ , 100 MHz, 298 K).	MR 14
Figure SI3: 1-[(2,2,6,6-Tetramethylpiperidin-1-yl)oxy]cyclohexane-1-carbaldehyde ma spectrum (Pos ESI)	ass 14
Figure SI4: 1-[(2,2,6,6-Tetramethylpiperidin-1-yl)oxy]cyclohexane-1-carbaldehyde spectrum.	IR 15
Figure SI5: Grantham TART ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K)	15
Figure SI6: Grantham TART ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	16
Figure SI7: Grantham TART mass spectrum (Pos ESI)	16
Figure SI8: Grantham TART IR spectrum	17
Figure SI9: AllyI-TMP ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K).	17
Figure SI10: AllyI-TMP ¹³ C NMR spectrum (CDCI ₃ , 100 MHz, 298 K)	18
Figure SI11: AllyI-TMP mass spectrum (Pos ESI).	18
Figure SI12: AllyI-TMP IR spectrum	19
Figure SI13: AllyI-TEMPO ¹ H NMR spectrum (CDCl ₃ , 400 MHz, 298 K)	19
Figure SI14: AllyI-TEMPO ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	20
Figure SI15: AllyI-TEMPO mass spectrum (Pos ESI).	20
Figure SI16: AllyI-TEMPO IR spectrum.	21
Figure SI17: 2-(TMPmethyl)acrylic acid mass spectrum (Pos ESI)	21
Figure SI18: N-Cyclohexyl-2-([2,2,6,6-tetramethylpiperidine]methyl)acrylamide ¹ H NI spectrum (CDCI ₃ , 400 MHz, 298 K).	ИR 22
Figure SI19: <i>N</i> -Cyclohexyl-2-([2,2,6,6-tetramethylpiperidine]methyl)acrylamide ¹³ C NI spectrum (CDCl ₃ , 100 MHz, 298 K).	MR 22
Figure SI20: <i>N</i> -CyclohexyI-2-([2,2,6,6-tetramethylpiperidine]methyl)acrylamide ma spectrum (Pos ESI)	ass 23
Figure SI21: CHANT ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K)	23
Figure SI22: CHANT ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	24
Figure SI23: CHANT mass spectrum (Pos ESI).	24
Figure SI24: 2-(Iodomethyl)acrylic acid ¹ H NMR spectrum (CDCl ₃ , 400 MHz, 298 K)	25
Figure SI25: 2-(Iodomethyl)acrylic acid ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	25
Figure SI26: Methyl 2-(TEMPOmethyl)acrylate ¹ H NMR spectrum (CDCl ₃ , 400 MHz, 298	K). 26
Figure SI27: Methyl 2-(TEMPOmethyl)acrylate ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298	K). 26
Figure SI28: Methyl 2-(TEMPOmethyl)acrylate mass spectrum (Pos ESI)	27
Figure SI29: Methyl 2-(TEMPOmethyl)acrylate IR spectrum.	27
Figure SI30: 2-(TEMPOmethyl)acrylic acid ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K)	28
Figure SI31: 2-(TEMPOmethyl)acrylic acid ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	28

Figure SI32: 2-(TEMPOmethyl)acrylic acid mass spectrum (Pos ESI)	29
Figure SI33: 2-(TEMPOmethyl)acrylic acid ESI (-ve) mass spectrum.	29
Figure SI34: 2-(TEMPOmethyl)acrylic acid IR spectrum.	30
Figure SI35: CHANT ¹ H NMR spectrum (CDCl ₃ , 400 MHz, 298 K).	30
Figure SI36: CHANT ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	31
Figure SI37: CHANT mass spectrum (Pos ESI).	31
Figure SI38: CHANT IR spectrum	32
Figure SI39: COANT ¹ H NMR spectrum (CDCl ₃ , 400 MHz, 298 K)	32
Figure SI40: COANT ¹³ C NMR spectrum (CDCI ₃ , 100 MHz, 298 K)	33
Figure SI41: COANT mass spectrum (Pos ESI).	33
Figure SI42: COANT IR spectrum.	34
Figure SI43: DECANT ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K)	34
Figure SI44: DECANT ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	35
Figure SI45: DECANT mass spectrum (Pos ESI)	35
Figure SI46: DANT ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K)	36
Figure SI47: DANT ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	36
Figure SI48: DANT mass spectrum (Pos ESI).	37
Figure SI49: DANT IR spectrum.	37
Figure SI50: AGLANT ¹ H NMR spectrum (CD ₃ OD, 400 MHz, 298 K)	38
Figure SI51: AGLANT ¹³ C NMR spectrum (CD ₃ OD, 100 MHz, 298 K)	38
Figure SI52: AGLANT mass spectrum (Pos ESI)	39
Figure SI53: GLANT ¹ H NMR spectrum (CD ₃ OD, 400 MHz, 298 K)	39
Figure SI54: GLANT ¹³ C NMR spectrum (CD ₃ OD, 100 MHz, 298 K)	40
Figure SI55: GLANT mass spectrum (Pos ESI)	40
Figure SI56: Tabaqui-1 ¹ H NMR spectrum (CD ₃ OD, 400 MHz, 298 K)	41
Figure SI57: Tabaqui-1 ¹³ C NMR spectrum (CD ₃ OD, 100 MHz, 298 K)	41
Figure SI58: Tabaqui-1 mass spectrum (Pos ESI)	42
Figure SI59: Tabaqui-2 ¹ H NMR spectrum (CD ₃ OD, 400 MHz, 298 K)	42
Figure SI60: Tabaqui-2 ¹³ C NMR spectrum (CD ₃ OD, 100 MHz, 298 K)	43
Figure SI61: Tabaqui-2 mass spectrum (Pos ESI)	43
Figure SI62: BIOANT ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K)	44
Figure SI63: BIOANT ¹³ C NMR spectrum (CDCI ₃ , 100 MHz, 298 K)	44
Figure SI64: BIOANT mass spectrum (Pos ESI)	45
Figure SI65: BIOANT IR spectrum	45
Figure SI66: DEADANT ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K)	46
Figure SI67: DEADANT ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)	46
Figure SI68: DEADANT mass spectrum (Pos ESI)	47
Figure SI69: DEADANT IR spectrum.	47
Figure SI70: TREADANT ¹ H NMR spectrum (CDCl ₃ , 400 MHz, 298 K)	48

Figure SI71: TREADANT ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K) 48
Figure SI72: TREADANT mass spectrum (Pos ESI)
Figure SI73: TREADANT IR spectrum
Figure SI74: SILANT ¹ H NMR spectrum (CDCl ₃ , 400 MHz, 298 K)50
Figure SI75: SILANT ¹³ C NMR spectrum (CDCI ₃ , 100 MHz, 298 K)50
Figure SI76: SILANT mass spectrum (Pos ESI)
Figure SI77: SILANT IR spectrum
Figure SI78: N-Chlorodibutylamine ¹ H NMR spectrum (CDCl ₃ , 400 MHz, 298 K)53
Figure SI79: N-Chlorodibutylamine ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)54
Figure SI80: HPLC-MS chromatogram of peak corresponding to $[R1-ART+H/Na]^+$ (<i>m/z</i> 318.171±0.002 and <i>m/z</i> 340.152±0.002), detected from TART trapping of radical decarboxylative aromatic iodination, using <i>p</i> -anisic acid as substrate and CHANT as TART (11.4.6). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (8.57 min, blue) shows <i>m/z</i> 318.171 cleanly isolated (blue)
Figure SI81: HPLC-MS chromatogram of peak corresponding to $[R2-ART+H/Na]^+$ (<i>m/z</i> 294.035±0.002 and <i>m/z</i> 316.017±0.002), detected from TART trapping of radical decarboxylative aromatic iodination, using <i>p</i> -anisic acid as substrate and CHANT as TART (11.4.6). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (7.82 min, red) shows <i>m/z</i> 294.035 cleanly isolated (red)
Figure SI82: HPLC-MS chromatogram of peak corresponding to $[R3-ART+H/Na]^+$ (<i>m/z</i> 274.181±0.002 and <i>m/z</i> 296.163±0.002), detected from TART trapping of radical decarboxylative aromatic iodination, using <i>p</i> -anisic acid as substrate and CHANT as TART (11.4.6). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (1.53 min, pink) shows <i>m/z</i> 274.181 cleanly isolated (pink)
Figure SI83: ¹ H NMR spectrum of radical thiol-ene addition literature replication (11.5.2.1, CD ₃ CN, 400 MHz, 298 K)
Figure SI84: HPLC-MS chromatogram of peak corresponding to $[CHANT+H]^+$ (<i>m/z</i> 323.270±0.002), detected from TART trapping of radical thiol-ene addition, using benzyl mercaptan and styrene as substrates (11.5.2.3). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (19.4 min, green) shows <i>m/z</i> 323.270 cleanly isolated (green)
Figure SI85: HPLC-MS chromatogram of peaks corresponding to $[R1-ART+H/Na]^+$ (<i>m/z</i> 290.158±0.002 and <i>m/z</i> 312.140±0.002), detected TART trapping of radical thiol-ene addition, using benzyl mercaptan and styrene as substrates (11.5.2.3). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (20.0 min, blue) shows <i>m/z</i> 290.158 cleanly isolated (blue)
Figure SI86: HPLC-MS chromatogram of peaks corresponding to $[R2-ART+H/Na]^+$ (<i>m/z</i> 394.220±0.002 and <i>m/z</i> 416.202±0.002), detected TART trapping of radical thiol-ene addition, using benzyl mercaptan and styrene as substrates (11.5.2.3). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (24.0 min, red) shows <i>m/z</i> 394.220 cleanly isolated (red)
Figure SI87: <i>N</i> -CyclohexyI-2-[(phenyIsulfanyI)methyI]acryIamide ¹ H NMR spectrum (CDCI ₃ , 400 MHz, 298 K)
Figure SI88: <i>N</i> -Cyclohexyl-2-[(phenylsulfanyl)methyl]acrylamide ¹³ C NMR spectrum (CDCl ₃ , 100 MHz, 298 K)

Figure SI89: *N*-CyclohexyI-2-[(phenylsulfanyl)methyl]acrylamide mass spectrum (Pos ESI).

Figure SI91: Kinetical model produced for radical thiol-ene addition, replicating conditions of TART trapping of thiol-ene addition (11.5.2.8) but in absence of TART, using thiophenol and styrene as substrates, showing [R1] and [R2], indicating R1 was the radical resting state. . 69

Figure SI95: HPLC-MS chromatogram and mass spectrum (inset) of peaks corresponding to R6/R7-ART (m/z 334.238±0.002 and m/z 356.220±0.002) from TART trapping of α -pinene ozonolysis (11.7.2). MS source was sent to waste between 13.5-14.0 min, to prevent injection of unreacted TART. Mass spectrum of [R6/R7-ART+H]⁺ (pink) is at time of maximum intensity (pink).

SI1. Chemicals

2.2.6.6-Tetramethylpiperidine 1-oxvl (TEMPO[•]. 98%. Acros Organics). cyclohexanecarboxaldehyde (97%, Acros Organics) pyrrolidine (99%, Sigma-Aldrich), iron(iii) chloride (97%, Sigma-Aldrich), methyltriphenylphosphonium bromide (98%, Sigma-Aldrich), sodium bis(trimethylsilyl)amide (1.0 M in dry THF, Sigma-Aldrich), allyl iodide (98%, Sigma-Aldrich), sodium sulfite (≥98%, Sigma-Aldrich), 2,2,6,6-tetramethylpiperidine (TMP, >98%, Alfa Aesar), allyl bromide (97%, Sigma-Aldrich), potassium iodide (≥99.0%, Sigma-Aldrich), meta-chloroperoxybenzoic acid (m-CPBA, ≤77%, Sigma-Aldrich), 2-(bromomethyl)acrylic acid Sigma-Aldrich), O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium (98%, hexafluorophosphate (HBTU, 98%, Alfa Aesar), N.N-diisopropylethylamine (DIPEA, \geq 99%, Sigma-Aldrich), cyclohexylamine (>98%, Alfa Aesar), sodium iodide (>99%, Thermo Scientific), methyl 2-(bromomethyl)acrylate (>97%, TCl), cyclooctylamine (97%, Sigma-Aldrich), 1-decanamine (≥99.0%, Sigma-Aldrich), ethanolamine (≥98%, Sigma-Aldrich), 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-D-glucopyranose hydrochloride (≥98%, Alfa Aesar), ethylenediamine (99%, Alfa Aesar), 1,8-diaminoctane (98%, Sigma-Aldrich), 4,7,10-trioxa-1,13-diaminotridecane (97%, Sigma-Aldrich), Boc anhydride (>99%, Acros Organics), D-biotin (>98%, Fluorochem), trifluoroacetic acid (≥99.0%, Sigma-Aldrich), N.N-dimethylethylenediamine (\geq 98%, Sigma-Aldrich), iodomethane (99%, Sigma-Aldrich) and (3-aminopropyl)tris(trimethylsiloxy)silane (95%, Fluorochem) were used for TART synthesis without further purification.

1-Dodecanethiol (≥98%, Sigma-Aldrich), azobisisobutyronitrile (AIBN, 98%, Sigma-Aldrich), lead(iv) oxide (99.998%, Sigma-Aldrich), isopentyl nitrite (97%, Alfa Aesar), diisopropylamine (99%, Acros Organics), dibutylamine (\geq 98%, Sigma-Aldrich), N-chlorosuccinimide (NCS, 98%, Sigma-Aldrich), octanoic acid (≥99%, Sigma-Aldrich), silver nitrate (≥99.0%, Sigma-Aldrich), bromine (≥95%, Sigma-Aldrich), 4-methylstyrene (96%, Sigma-Aldrich), diphenylphosphine oxide (97%, Sigma-Aldrich), 4-chloroaniline (98%, Sigma-Aldrich), iodine (≥99.8%, Sigma-Aldrich), p-anisic acid (≥99%, Sigma-Aldrich), tribasic potassium phosphate (>97%, Thermo Scientific), styrene (99%, Acros Organics), tris(2,2'-bipyrazine)ruthenium(II) hexafluorophosphate (95%, Strem), benzyl mercaptan (99%, Sigma-Aldrich), thiophenol (>99%, Alfa Aesar), 3-methoxythiophenol (98%, Sigma-Aldrich), cyclohexanethiol (97%, Sigma-Aldrich), methyl thiosalicylate (97%, Acros Organics), tert-butylthiol (99%, Sigma-Aldrich), methylenecyclohexane (98%, Acros Organics), 1-methylcyclohexene (97%, Sigma-Aldrich), allyl chloride (98%, Sigma-Aldrich), phenylacetylene (98%, Fluorochem), ethyl trans-cinnamate (98%, Acros Organics), sodium acetate (≥99%, Alfa Aesar), iron(II) sulfate heptahydrate (≥99%, Sigma-Aldrich), hydrogen peroxide (30wt.%, Fischer Chemical), tert-butanol (≥99.0%, Sigma-Aldrich), thymine (97%, Alfa Aesar), D(+)-glucose (≥99.5%, Sigma-Aldrich), L-ascorbic acid (99%, Sigma-Aldrich), cyclohexene (≥98%, Fischer Chemical), α-pinene (98%, Sigma-Aldrich), Celite® Analytical Filter Aid II (CAFA II, Sigma-Aldrich), p-toluenesulfonic acid (\geq 98.5%, Sigma-Aldrich), dodecamethylpentasiloxane (97%, Sigma-Aldrich), Galden[™] HT270 (Fluorochem) and *n*-nonane (99%, Acros Organics) were used for radical trapping without further purification.

Water (LC-MS grade, \geq 99.9%, Fischer Chemical), acetonitrile (LC-MS grade, \geq 99.9%, Fischer Chemical), formic acid (LC-MS grade, \geq 99%, Fischer Chemical), tetrabutylammonium hexafluorophosphate (98%, Sigma-Aldrich), water-d₂ (99.9 atom % D, Sigma-Aldrich), formic acid-d₂ (95 wt.% in D₂O, 98% atom % D, Sigma-Aldrich) were used for MS characterisation without further purification.

SI2. Synthesis

SI2.1. Grantham TART

Figure SI1: 1-[(2,2,6,6-Tetramethylpiperidin-1-yl)oxy]cyclohexane-1-carbaldehyde ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K).

Figure SI2: 1-[(2,2,6,6-Tetramethylpiperidin-1-yl)oxy]cyclohexane-1-carbaldehyde ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI3: 1-[(2,2,6,6-Tetramethylpiperidin-1-yl)oxy]cyclohexane-1-carbaldehyde mass spectrum (Pos ESI).

Figure SI5: Grantham TART ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K).

Figure SI6: Grantham TART ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI7: Grantham TART mass spectrum (Pos ESI).

Figure SI8: Grantham TART IR spectrum.

Figure SI9: AllyI-TMP ¹H NMR spectrum (CDCI₃, 400 MHz, 298 K).

Figure SI10: AllyI-TMP ¹³C NMR spectrum (CDCI₃, 100 MHz, 298 K).

Figure SI11: AllyI-TMP mass spectrum (Pos ESI).

Figure SI13: AllyI-TEMPO ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K).

Figure SI14: AllyI-TEMPO ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI15: AllyI-TEMPO mass spectrum (Pos ESI).

Figure SI16: AllyI-TEMPO IR spectrum.

Figure SI17: 2-(TMPmethyl)acrylic acid mass spectrum (Pos ESI).

Figure SI19: *N*-Cyclohexyl-2-([2,2,6,6-tetramethylpiperidine]methyl)acrylamide ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI20: N-Cyclohexyl-2-([2,2,6,6-tetramethylpiperidine]methyl)acrylamide mass spectrum (Pos ESI).

Figure SI21: CHANT ¹H NMR spectrum (CDCI₃, 400 MHz, 298 K).

Figure SI22: CHANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI23: CHANT mass spectrum (Pos ESI).

Figure SI25: 2-(Iodomethyl)acrylic acid ¹³C NMR spectrum (CDCI₃, 100 MHz, 298 K).

SI2.5. Methyl 2-(TEMPOmethyl)acrylate

Figure SI27: Methyl 2-(TEMPOmethyl)acrylate ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI28: Methyl 2-(TEMPOmethyl)acrylate mass spectrum (Pos ESI).

Figure SI29: Methyl 2-(TEMPOmethyl)acrylate IR spectrum.

Figure SI31: 2-(TEMPOmethyl)acrylic acid ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI32: 2-(TEMPOmethyl)acrylic acid mass spectrum (Pos ESI).

Figure SI33: 2-(TEMPOmethyl)acrylic acid ESI (-ve) mass spectrum.

Figure SI35: CHANT ¹H NMR spectrum (CDCI₃, 400 MHz, 298 K).

Figure SI36: CHANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI37: CHANT mass spectrum (Pos ESI).

Figure SI39: COANT ¹H NMR spectrum (CDCI₃, 400 MHz, 298 K).

Figure SI40: COANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI41: COANT mass spectrum (Pos ESI).

Figure SI43: DECANT ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K).

Figure SI44: DECANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI45: DECANT mass spectrum (Pos ESI).

SI2.10. DANT

Figure SI47: DANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI48: DANT mass spectrum (Pos ESI).

Figure SI49: DANT IR spectrum.

SI2.11. AGLANT

Figure SI51: AGLANT ¹³C NMR spectrum (CD₃OD, 100 MHz, 298 K).

Figure SI52: AGLANT mass spectrum (Pos ESI).

Figure SI53: GLANT ¹H NMR spectrum (CD₃OD, 400 MHz, 298 K).

Figure SI54: GLANT ¹³C NMR spectrum (CD₃OD, 100 MHz, 298 K).

Figure SI55: GLANT mass spectrum (Pos ESI).

Figure SI57: Tabaqui-1 ¹³C NMR spectrum (CD₃OD, 100 MHz, 298 K).

Figure SI59: Tabaqui-2 ¹H NMR spectrum (CD₃OD, 400 MHz, 298 K).

Figure SI60: Tabaqui-2 ¹³C NMR spectrum (CD₃OD, 100 MHz, 298 K).

Figure SI61: Tabaqui-2 mass spectrum (Pos ESI).

SI2.15. BIOANT

Figure SI63: BIOANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI65: BIOANT IR spectrum.

Figure SI67: DEADANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI69: DEADANT IR spectrum.

SI2.17. TREADANT

Figure SI71: TREADANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI73: TREADANT IR spectrum.

SI2.18. <u>SILANT</u>

Figure SI75: SILANT ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI77: SILANT IR spectrum.

SI3. Synthetic radical reactions

SI3.1. Barton reaction

Table SI1: Fragments identified from tandem MS of peak corresponding to $[R2/R3-ART+H]^+$ (*m/z* 254.212) from TART trapping of the Barton reaction, using isopentyl nitrite as substrate and CHANT as TART (11.4.2). Systematic *m/z* error = -0.0011; random *m/z* error = ±0.0007.

	Species	Predicted <i>m/z</i>	Intensity relative to [R2/R3-ART+H] ⁺	Implies radical
[R2-ART+H]+		254.2120	100	R2
[R3-ART+H]+	OH OH	254.2120	100	R3
	+o ^{-H} N H	236.2014	1400	R3
Fragments		154.1232	130	R2/R3
		137.0966	90.6	R3

Figure SI78: N-Chlorodibutylamine ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K).

SI3.2.2. Trapping reaction

Table SI2: Fragments from tandem MS of peak corresponding to $[R2/R3-ART+H]^+$ (*m/z* 295.275) from TART trapping of the HLF reaction, using *N*-chlorodibutylamine as substrate and CHANT as TART (11.4.3.2). Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0003.

	Species	Predicted <i>m/z</i>	Intensity relative to [R2/R3-ART+H] ⁺	Implies radical
[R2-ART+H]+		295.2749	100	R2
[R3-ART+H]+	O NH	295.2749	100	R3

Table SI3: Fragments from tandem MS of peak corresponding to $[R2-ART+D]^+$ (*m/z* 295.275) from TART trapping of the HLF reaction, using *N*-chlorodibutylamine as substrate and CHANT as TART (11.4.3.2). This was compared to previous tandem MS intensities obtained in protonated solvent. Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0003.

	Species	Predicted <i>m/z</i>	Intensity te [R2/R3-/ H ₂ O	v relative o ART+H] ⁺ D ₂ O	Implies radical
[R2-ART+H]+		295.2749	100	100	R2
[R3-ART+H]+	O NH	295.2749	100	100	R3

Table SI4: Fragments from tandem HPLC-MS of the peak corresponding to $[R2/R3-ART+H]^+$ (*m/z* 295.275) from TART trapping of the HLF reaction, using *N*-chlorodibutylamine as substrate and CHANT as TART (11.4.3.2), observed during the first peak (13.49 min) and second peak (13.62 min). Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0005.

	Species	Predicted <i>m/z</i>	Intensity [R2/R3−, 1 st peak	relative to ART+H] ⁺ 2 nd peak	Implies radical
[R2-ART+H]+		295.2749	100	100	R2

	N H ₂				
[R3−ART+H]⁺	O NH	295.2749	100	100	R3
		142.1596	39.7	39.6	R2/R3
	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	128.1439	11.8	11.3	R2/R3
	H O NH	166.1232	1.09	1.15	R2/R3
Fragments	O NH	222.1858	0.912	0.402	R3
		194.1545	0.653	0.531	R3

SI3.3. Radical aromatic aminophosphinoylation

Table SI5: Fragments identified from tandem MS of peak corresponding to $[R2-ART+H]^+$ (*m*/z 243.094) from TART trapping of radical aromatic aminophosphinoylation, using 4-methylstyrene, 4-chloroalanine, and DPPO as substrates and allyl-TEMPO as TART (11.4.5). Systematic *m*/z error = -0.0009; random *m*/z error = ±0.0002.

	Species	Predicted <i>m/z</i>	Intensity relative to parent ion / %
[R2-ART+H]*	OH PPh ₂	243.0939	100
Fragments	OH HO ^{^PPh} 2	219.0575	490
ragments	O PPh ₂ +	201.0469	62.7

Table SI6: Fragments identified from tandem MS of peak corresponding to $[R3-ART+H]^+$ (*m/z* 361.172) from TART trapping of radical aromatic aminophosphinoylation, using 4-methylstyrene, 4-chloroalanine, and DPPO as substrates and allyl-TEMPO as TART (11.4.5). Systematic *m/z* error = -0.0009; random *m/z* error = ±0.0004.

	Species	Predicted <i>m/z</i>	Intensity relative to parent ion / %
[R3−ART+H]⁺	ÖH PPh2	361.1721	100
	O PPh ₂	201.0469	212
Fragments	+	159.1174	57.2

SI3.4. Radical decarboxylative aromatic iodination

Table SI7: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 318.171) from TART trapping of radical decarboxylative aromatic iodination, using *p*-anisic acid as substrate and CHANT as TART (11.4.6). Systematic *m/z* error = -0.0011; random *m/z* error = ±0.0006.

	Species	Predicted <i>m/z</i>	Intensity relative to parent ion / %
[R1-ART+H]*	HN HN O O O O O O Me	318.1705	100
	O O	135.0446	829
	OMe	107.0497	46.8
Fragments		219.0657	14.0
	OMe HN +	166.1232	1.46

	Species	Predicted <i>m/z</i>	Intensity relative to parent ion / %
[R3-ART+H]+	HN OH OMe	274.1807	100
Fragmonts	+ O OMe	175.0759	52.0
Fragments	H ₃ N ⁺ O OMe	192.1024	24.9

Table SI8: Fragments identified from tandem MS of peak corresponding to $[R3-ART+H]^+$ (*m/z* 274.181) from TART trapping of radical decarboxylative aromatic iodination, using *p*-anisic acid as substrate and CHANT as TART (11.4.6). Systematic *m/z* error = -0.0010; random *m/z* error = ±0.0004.

Figure SI80: HPLC-MS chromatogram of peak corresponding to [R1-ART+H/Na]⁺ (*m/z* 318.171±0.002 and *m/z* 340.152±0.002), detected from TART trapping of radical decarboxylative aromatic iodination, using *p*-anisic acid as substrate and CHANT as TART (11.4.6). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (8.57 min, blue) shows *m/z* 318.171 cleanly isolated (blue).

Figure SI81: HPLC-MS chromatogram of peak corresponding to [R2-ART+H/Na]⁺ (*m/z* 294.035±0.002 and *m/z* 316.017±0.002), detected from TART trapping of radical decarboxylative aromatic iodination, using *p*-anisic acid as substrate and CHANT as TART (11.4.6). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (7.82 min, red) shows *m/z* 294.035 cleanly isolated (red).

Figure SI82: HPLC-MS chromatogram of peak corresponding to [R3–ART+H/Na]⁺ (*m/z* 274.181±0.002 and *m/z* 296.163±0.002), detected from TART trapping of radical decarboxylative aromatic iodination, using *p*-anisic acid as substrate and CHANT as TART (11.4.6). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (1.53 min, pink) shows *m/z* 274.181 cleanly isolated (pink).

SI4. Photochemistry

SI4.1. Radical cyanomethylation

Table SI9: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 286.181) from TART trapping of Ru-photocatalysed radical cyanomethylation (11.5.1). Systematic *m/z* error = -0.0008; random *m/z* error = ±0.0002.

Table SI10: Fragments identified from tandem MS of peak corresponding to $[R4-ART+H]^+$ (*m*/*z* 248.163) from TART trapping of Ru-photocatalysed radical cyanomethylation (11.5.1). Systematic *m*/*z* error = -0.0007; random *m*/*z* error = ±0.0002.

	Species	Predicted <i>m/z</i>	Intensity relative to most intense fragment / %
[R4-ART+H]+	HO *HO NH	248.1626	0 ^a
	*HO NH	208.1701	100
Fragments	O NH	126.0919	13.6
		109.0653	6.95

^aParent ion cleanly isolated prior to CID, but CID caused total peak fragmentation.

SI4.2. Radical thiol-ene addition

SI4.2.1. Literature replication

A. 74, 74
 A. 74, 76
 A. 74, 76
 A. 74, 76
 A. 75, 75
 A. 75, 75

Figure SI83: ¹H NMR spectrum of radical thiol-ene addition literature replication (11.5.2.1, CD₃CN, 400 MHz, 298 K).

Figure SI84: HPLC-MS chromatogram of peak corresponding to [CHANT+H]⁺ (*m/z* 323.270±0.002), detected from TART trapping of radical thiol-ene addition, using benzyl mercaptan and styrene as substrates (11.5.2.3). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (19.4 min, green) shows *m/z* 323.270 cleanly isolated (green).

Figure SI85: HPLC-MS chromatogram of peaks corresponding to [R1–ART+H/Na]⁺ (*m/z* 290.158±0.002 and *m/z* 312.140±0.002), detected TART trapping of radical thiol-ene addition, using benzyl mercaptan and styrene as substrates (11.5.2.3). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (20.0 min, blue) shows *m/z* 290.158 cleanly isolated (blue).

Figure SI86: HPLC-MS chromatogram of peaks corresponding to [R2–ART+H/Na]⁺ (*m/z* 394.220±0.002 and *m/z* 416.202±0.002), detected TART trapping of radical thiol-ene addition, using benzyl mercaptan and styrene as substrates (11.5.2.3). Mass spectrum (inset) recorded at time of maximum chromatogram intensity (24.0 min, red) shows *m/z* 394.220 cleanly isolated (red).

SI4.2.3. TART-trapped radical isolation

Figure SI87: N-Cyclohexyl-2-[(phenylsulfanyl)methyl]acrylamide ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K).

Figure SI88: N-Cyclohexyl-2-[(phenylsulfanyl)methyl]acrylamide ¹³C NMR spectrum (CDCl₃, 100 MHz, 298 K).

Figure SI89: N-Cyclohexyl-2-[(phenylsulfanyl)methyl]acrylamide mass spectrum (Pos ESI).

SI4.2.4. Kinetics experiments and kinetic modelling

Figure SI90: Experimental data (scatter, 11.5.2.7) and fitted simulation (lines, 11.10.2) of TART trapping of radical thiol-ene addition, using thiophenol and styrene as substrates and TART (purple) and R1–ART (sky blue). Initiation rate constant used in the simulation was informed from experimental data.

Figure SI91: Kinetical model produced for radical thiol-ene addition, replicating conditions of TART trapping of thiol-ene addition (11.5.2.8) but in absence of TART, using thiophenol and styrene as substrates, showing [R1] and [R2], indicating R1 was the radical resting state.

SI4.2.5. Effect of different thiols on reaction kinetics

Table SI11: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 290.158) from TART trapping of radical thiol-ene addition, using benzyl mercaptan (S2.1) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic *m/z* error = -0.0010; random *m/z* error = ±0.0004.

Table SI12: Fragments identified from tandem MS of peak corresponding to $[R2-ART+H]^+$ (*m/z* 394.220) from TART trapping of radical thiol-ene addition, benzyl mercaptan (S2.1) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic *m/z* error = -0.0013; random *m/z* error = ±0.0004.

	Species	Predicted <i>m/z</i>	Intensity relative to parent ion / %
[R2-ART+H]+	HO NH	394.2204	100
Fragments	S O	295.1157	28.8

Table SI13: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 276.142) from TART trapping of radical thiol-ene addition, using thiophenol (S2.2) and styrene (S3.1) as substrates after 24 h (11.5.2.8). Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0002.

Table SI14: Fragments identified from tandem MS of peak corresponding to $[R2-ART+H]^+$ (*m/z* 380.205) from TART trapping of radical thiol-ene addition, using thiophenol (S2.2) and styrene (S3.1) as substrates after 24 h (11.5.2.8). Systematic *m/z* error = -0.0009; random *m/z* error = ±0.0003.

Table SI15: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 306.153) from TART trapping of radical thiol-ene addition, using 3-methoxythiophenol (S2.3) and styrene (S3.1) as substrates after 24 h (11.5.2.8). Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0002.

Table SI16: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 282.189) from TART trapping of radical thiol-ene addition, using cyclohexanethiol (S2.4) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic *m/z* error = -0.0010; random *m/z* error = ±0.0004.

Table SI17: Fragments identified from tandem MS of peak corresponding to $[R2-ART+H]^+$ (*m/z* 386.252) from TART trapping of radical thiol-ene addition, using cyclohexanethiol (S2.4) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic *m/z* error = -0.0010; random *m/z* error = ±0.0002.

Table SI18: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 334.148) from TART trapping of radical thiol-ene addition, using methyl thiosalicylate (S2.5) and styrene (S3.1) as substrates after 24 h (11.5.2.8). Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0002.

S	pecies	Predicted <i>m/z</i>	Intensity relative to parent ion / %
[R1-ART+H] ⁺	S HO NH	334.1477	100
	S OT + O NH	302.1215	242
Fragments	S O	177.0374	29.5
	S O NH ₂	220.0432	20.4

Table SI19: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 256.173) from TART trapping of radical thiol-ene addition, using ¹BuSH (S2.6) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic *m/z* error = -0.0009; random *m/z* error = ±0.0003.

Table SI20: Fragments identified from tandem MS of peak corresponding to $[R2-ART+H]^+$ (*m/z* 360.236) from TART trapping of radical thiol-ene addition, using ^tBuSH (S2.6) and styrene (S3.1) as substrates after 72 h (11.5.2.8). Systematic *m/z* error = -0.0011; random *m/z* error = ±0.0004.

SI4.2.6. Effect of different alkenes on reaction kinetics

Table SI21: Species identified from TART trapping of Ru-photocatalysed radical thiol-ene addition under standard conditions after 2 h, using benzyl mercaptan (S2.1) and different alkenes as substrates, CHANT as TART and MS for characterisation (11.5.2.9). CI containing species are shown with ³⁵Cl only. Systematic *m*/z error = -0.0005; random error *m*/z = ±0.0008; 100% intensity = 2.11×10⁹ absolute count.

A	Alkenes S3.	1	2	3	4	5	6
	Species	Intensit	y relative	e to unrea	acted TA	RT stand	ard / %
TART	[CHANT+H]⁺	111	56.7	35.3	13.6	48.1	56.5
	[<mark>R1−</mark> ART+H]⁺	0.018	0.309	0.210	0.913	0.072	0.178
	[<mark>R1</mark> −ART+Na]⁺	0.238	2.46	2.04	7.83	0.616	1.26
Trapped	[<mark>R1</mark> −TEMPO+H]⁺	0	0	0	0.005	0	0
radicals	[<mark>R2−</mark> ART+H]⁺	0.091	0.003	0	0.040	0	0
	[<mark>R2</mark> −ART+Na]⁺	0	0	0	0	0	0
	[R2-TEMPO+H]⁺	1.45	0.017	0.013	0.112	0.057	0.043
Other	[<mark>R1</mark> -ART+S2+H] ⁺ (thiol-ene addition)	0	0.037	0.026	0	0.003	0.013
radicals	[R1-ART+S2+Na] ⁺ (thiol-ene addition)	0	0.039	0.047	0.347	0.002	0.011
Droducto	[P2+H]⁺	0.016	0.007	0.001	0.011	0	0.019
FIDDUCIS	[P2+Na]⁺	0.018	0	0	0.038	0	0.191
Other products	[TART+S2+H] ⁺ (thiol-ene addition)	0.426	5.58	3.57	13.3	0.979	2.53

Table SI22: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 290.158) from TART trapping of radical thiol-ene addition, using benzyl mercaptan (S2.1) and different alkenes (S3.1-S3.6) as substrates after 24 h (11.5.2.9). Systematic *m/z* error = -0.0009; random *m/z* error = ±0.0004.

Species	Predicted	In	tensity	relative	to pare	nt ion / 9	%
Species	m/z	S3.1	S3.2	S3.3	S3.4	S3.5	S3.6
[R1-ART+H] ⁺ HO ⁺ NH	290.1578	100	100	100	100	100	100

SI4.3. Radical dearomative spirocyclisation

Table SI23: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 256.173) from TART trapping of radical dearomative spirocyclisation, using ^tBuSH (S2.6) as substrate (11.5.3.2). Systematic *m/z* error = -0.0008; random *m/z* error = ±0.0003.

Table SI24: Fragments identified from tandem MS of peak corresponding to $[R2/R3-ART+H]^+$ (*m/z* 529.289) from TART trapping of radical dearomative spirocyclisation, using ^tBuSH (S2.6) as substrate (11.5.3.2). Systematic *m/z* error = -0.0012; random *m/z* error = ±0.0005.

^aAll peaks could equally be assigned to [R2-ART+H]⁺ fragments.

SI5. Biochemistry

SI5.1. Alcohols

Table SI25: Fragments identified from tandem MS of peak corresponding to $[R1.1-ART+H]^+$ (*m/z* 219.134) from TART trapping of •OH-initiated methanol degradation, using DEADANT as TART (11.6.2). Systematic *m/z* error = -0.0008; random *m/z* error = ±0.0003.

	Species	Predicted <i>m/z</i>	Intensity relative to parent ion / %
[R1.1-ART+H]+		219.1345	100
	NO-O O-O HNN O	201.1239	121
		156.0661	85.0
Fragments		115.0871	53.1
		174.0766	26.6

Table SI26: Fragments identified from tandem MS of peak corresponding to [R1.1.1.1–ART+H]⁺ (m/z 217.119) from TART trapping of •OH-initiated methanol degradation, using DEADANT as TART (11.6.2). Systematic m/z error = -0.0007; random m/z error = ±0.0002.

Table SI27: Fragments identified from tandem MS of peak corresponding to $[R1-ART+H]^+$ (*m/z* 229.192) from TART trapping of •OH-initiated ¹BuOH degradation, using DEADANT as TART (11.6.2). Systematic *m/z* error = -0.0007; random *m/z* error = ±0.0002.

Table SI28: Fragments identified from tandem MS of peak corresponding to $[R1.1-ART+H]^+$ (*m/z* 261.181) from TART trapping of •OH-initiated ^tBuOH degradation, using DEADANT as TART (11.6.2). Systematic *m/z* error = -0.0008; random *m/z* error = ±0.0003.

Table SI29: Fragments identified from tandem MS of peak corresponding to $[R1.1.1-ART+H]^+$ (*m/z* 241.187) from TART trapping of •OH-initiated ^tBuOH degradation, using DEADANT as TART (11.6.2). Systematic *m/z* error = -0.0006; random *m/z* error = ±0.0003.

^aParent ion cleanly isolated prior to CID, but CID caused total peak fragmentation.

SI5.2. Nucleobases

Table SI30: Fragments identified from tandem MS of peak corresponding to [R1.1–ART+H]⁺ (m/z 331.162) from TART trapping of •OH-initiated thymine degradation, using DEADANT as TART (11.6.4). Systematic m/z error = -0.0008; random m/z error = ±0.0003.

Spe	ecies	Predicted <i>m/z</i>	Intensity relative to parent ion / %
[R1.1-ART+H]*	O HN O NH O NH O NH O NH	331.1618	100
	O HN O NH O NH O NH O NH O NH H NH	313.1512	78.8
Fragments	NH NH O	115.0871	57.3
		286.1039	43.9

^aAll peaks could equally be assigned to [R2.1-ART+H]⁺, [hydroxylated R1.1.1-ART+H]⁺ and [hydroxylated R2.1.1-ART+H]⁺ fragments.

SI5.3. Dipeptides

Table SI31: D exchanges observed for MS peaks corresponding to TART-trapped radicals from D₂O exchange of [•]OH-initiated Ac-Gly-Gly-OH degradation, using DEADANT as TART and MS for characterisation (Pos ESI-MS, 4.2.2.2). Systematic m/z error = 0.0000; random m/z error = ±0.0008.

		Proportion of total intensity of all D- shifted species / %				
Species	Predicted D shift	3D	4D	5D	6D	7D
R1:R3-ART	5D	0	9.7	90.3	0	0
R1.1:R3.1-ART	5D	0	1.3	17.6	81.1	0
R1.1.1:R3.1.1-ART	5D	0	14.6	85.4	0	0

SI6. Alkene ozonolysis

SI6.1. <u>α-Pinene</u>

SI6.1.1. Optimisation

SI6.1.1.1. TART phase

Additives dodecamethylpentasiloxane (A.1), GaldenTM HT270 (A.2), $[C_4 mim]^+[Tf_2N]^-$ (A.3) and $[C_4 pyrr]^+[Tf_2N]^-$ (A.4) were used for TART trapping of α -pinene ozonolysis using solid supported TART (Table SI32).

Table SI32: Species identified from TART trapping of α -pinene ozonolysis, using CHANT solution or solid supported CHANT with different additives and MS for characterisation (11.7.3.2). Systematic *m/z* error = -0.0006; random *m/z* error = ±0.0003; 100% intensity = 5.08×10⁹ absolute count.

		Intensity relative to unreacted TART standard / %						
Species		Solution		Function	onalised	celite/		
		Solution	-	A.1	A.2	A.3	A.4	
TART	[CHANT+H] ⁺	19.7	11.2	20.0	7.14	17.4	18.0	
	[<mark>R1.1/R1.2</mark> -ART+Na] ⁺	0.047	0.016	0	0.026	0.002	0.003	
Trapped	[<mark>R1.1.1/R1.2.1</mark> -ART+Na] ⁺	0.040	0.050	0	0.119	0.005	0.005	
radicals	[<mark>R2.1</mark> −ART+Na]⁺	0.053	0.005	0	0.009	0	0	
	[<mark>R2.1.1</mark> −ART+Na]⁺	0.029	0.008	0	0.014	0	0	
	[Pinaldehyde+Na] ⁺	2.81	0.202	0.001	0.278	0.055	0.058	
	[Pinonic acid+Na] ^{+a}	0.676	0.286	0	0.381	0.074	0.071	
Producto	[P1.1.3/P1.2.3+Na] ^{+a}	0.676	0.286	0	0.381	0.074	0.071	
FIUUUCIS	[P1.2.4+Na]+	0.005	0.017	0	0.022	0.003	0.003	
	[P2.1.3+Na] ⁺	0.105	0.010	0	0.013	0.001	0.001	
	[P2.1.4+Na] ⁺	0.071	0.019	0	0.026	0.006	0.004	

^aOther table entries have predicted species with same *m*/*z*.

SI6.1.1.2. Functionality of TART, solvent and additives

Table SI33: Species identified from TART trapping of α -pinene ozonolysis, conducted using different TARTs and MS for characterisation (11.7.3). Systematic *m*/*z* error = -0.0006; random *m*/*z* error = ±0.0012; 100% intensity = 5.08×10⁹ absolute count.

	Intensity relative to unreacted CHANT standard /						
	Species	Grantham TART ^a	CHANT ^a	DEADANT ^b	TREADANT℃		
TART	[CHANT+H]⁺	0.055	11.9	0.034	1.066		
	[<mark>R1.1/R1.2</mark> -ART+Na/H/0] ⁺	0.738	0.024	0.007	0		
Trapped	[<mark>R1.1.1/R1.2.1</mark> -ART+Na/H/0] ⁺	0.759	0.053	0.011	0		
radicals	[<mark>R2.1</mark> -ART+Na/H/0]	1.10	0.055	0	0		
	[<mark>R2.1.1</mark> -ART+Na+Na/H/0] ⁺	0.558	0.100	0.005	0.005		
	[Pinaldehyde+Na] ⁺	1.93	2.04	1.58	1.48		
	[Pinonic acid+Na] ^{+d}	2.59	1.91	4.82	1.07		
Draduata	[P1.1.3/P1.2.3+Na] ^{+d}	2.59	1.91	4.82	1.07		
Products	[P1.2.4+Na]⁺	0.020	0.017	0.010	0.007		
	[P2.1.3+Na]+	0.117	0.091	0.122	0.053		
	[P2.1.4+Na]⁺	0.194	0.140	0.024	0.032		

^aTART-trapped radicals shown as sodiated MS adducts. ^bTART-trapped radicals shown as protonated MS adducts. ^cTART-trapped radicals pre-charged and hence have no (0) cation. ^dOther table entries have predicted species with same *m/z*.

Table SI34: Species identified from TART trapping of α -pinene ozonolysis, using different TARTs dissolved in different solvents and MS for characterisation (11.7.3). Systematic *m*/*z* error = -0.0006; random *m*/*z* error = ±0.0006; 100% intensity = 5.08×10⁹ absolute count.

		Intensity relative to unreacted CHANT								
	0			standard / %						
	Species	CHA	NT ^a /	DEADANT ^b /						
		MeCN	DMF	MeCN	DMF	H_2O				
TART	[CHANT+H] ⁺	19.7	13.4	0	0	0.069				
	[<mark>R1.1/R1.2</mark> -ART+Na/H] ⁺	0.047	0	0.002	0.001	0.001				
Trapped	[<mark>R1.1.1/R1.2.1</mark> -ART+Na/H] ⁺	0.040	0.001	0	0	0.002				
radicals	[<mark>R2.1</mark> -ART+Na/H]+	0.053	0	0	0	0				
	[<mark>R2.1.1</mark> -ART+Na/H]+	0.029	0.004	0	0	0				
	[Pinaldehyde+Na] ⁺	2.81	0.107	1.12	0.669	0.078				
	[Pinonic acid+Na]+c	0.676	0.024	0.291	0.321	0.022				
Droducto	[P1.1.3/P1.2.3+Na]⁺°	0.676	0.024	0.291	0.321	0.022				
Products	[P1.2.4+Na]+	0.005	0	0.002	0.003	0				
	[P2.1.3+Na]+	0.105	0	0.007	0.037	0				
	[P2.1.4+Na]+	0.071	0.002	0.025	0.027	0.002				

^aTART-trapped radicals shown as sodiated MS adducts. ^bTART-trapped radicals shown as protonated MS adducts. ^cOther table entries have predicted species with same *m/z*.

Table SI35: Species identified from TART trapping of α -pinene ozonolysis, using DEADANT as TART dissolved in different solvents and MS for characterisation (11.7.3). Systematic m/z error = -0.0006; random m/z error = ± 0.0008 ; 100% intensity = 5.08×10^9 absolute count.

		Intens	sity relati	ve to unr	eacted C	HANT		
		standard / %						
	Species	MeC	CN/		$H_2O/$			
		-	TFA	-	TFA	AcOH/		
						NaOAc		
TART	[CHANT+H] ⁺	0.028	1.28	0.069	19.7	18.8		
	[<mark>R1.1/R1.2</mark> -ART+Na] ⁺	0.014	0.004	0.001	0.001	0.003		
Trapped	[<mark>R1.1.1/R1.2.1</mark> -ART+Na] ⁺	0.006	0.014	0.002	0.002	0.005		
radicals	[<mark>R2.1</mark> −ART+Na]⁺	0.000	0.003	0	0.004	0.006		
	[<mark>R2.1.1</mark> -ART+Na] ⁺	0.001	0.004	0	0.001	0.001		
	[Pinaldehyde+Na] ⁺	0.466	0.755	0.078	1.65	2.16		
	[Pinonic acid+Na] ^{+a}	0.251	1.30	0.022	0.461	0.744		
Producto	[P1.1.3/P1.2.3+Na] ^{+a}	0.251	1.30	0.022	0.461	0.744		
FIDUUCIS	[P1.2.4+Na] ⁺	0.002	0.008	0	0.016	0.009		
	[P2.1.3+Na] ⁺	0.006	0.070	0	0.017	0.022		
	[P2.1.4+Na] ⁺	0.010	0.017	0.002	0.104	0.126		

^aOther table entries have predicted species with same *m/z*.

Table SI36: Species identified from TART trapping of α -pinene ozonolysis, conducted using Grantham TART and MS for characterisation (11.7.3). Systematic m/z error = -0.0006; random m/z error = ±0.0005; 100% intensity = 5.08×10^9 absolute count.

Species			Intensity relative to unreacted CHANT		
		Predicted	stand	ard / %	
		111/2	Trapless	Grantham	
			control	TART	
TART	[CHANT+H] ⁺	266.2484	0	0.055	
	[<mark>R1.1/R1.2</mark> -ART+Na] ⁺	331.1885	0.686	0.738	
Trapped	[<mark>R1.1.1/R1.2.1</mark> -ART+Na] ⁺	315.1936	1.068	0.759	
radicals	[<mark>R2.1</mark> -ART+Na]	303.1936	0.951	1.10	
	[<mark>R2.1.1</mark> -ART+Na+Na] ⁺	287.1987	0.267	0.558	
	[Pinaldehyde+Na] ⁺	191.1048	2.229	1.93	
	[Pinonic acid+Na] ^{+a}	207.0997	2.549	2.59	
Droducto	[P1.1.3/P1.2.3+Na] ^{+a}	207.0997	2.549	2.59	
Products	[P1.2.4+Na] ⁺	205.0841	0.022	0.020	
	[P2.1.3+Na]+	179.1048	0.094	0.117	
	[P2.1.4+Na] ⁺	177.0891	0.234	0.194	

^aOther table entries have predicted species with same m/z.

SI6.1.1.3. TART concentration

Table SI37: Species identified from TART trapping of α -pinene ozonolysis, using CHANT at different concentrations and MS for characterisation (11.7.3). Systematic m/z error = -0.0006; random m/z error = ± 0.0009 ; 100% intensity = 5.08×10^9 absolute count.

Species		Predicted	Intensity relative to unreacted TART standard / %			
			50 µM	500 µM	5000 µM	
TART	[CHANT+H] ⁺	323.2698	40.7	21.8	56.6	
	[<mark>R1.1/R1.2</mark> -ART+Na] ⁺	388.2100	0.012	0.013	0.012	
Trapped	[R1.1.1/R1.2.1-ART+Na]+	372.2151	0.030	0.037	0.006	
radicals	[<mark>R2.1</mark> -ART+Na] ⁺	360.2151	0.011	0.061	0.005	
	[<mark>R2.1.1</mark> -ART+Na] ⁺	344.2202	0.001	0.017	0	
	[Pinaldehyde+Na] ⁺	191.1048	0.529	1.45	0.217	
	[Pinonic acid+Na] ^{+a}	207.0997ª	0.169	1.51	0.040	
Draduata	[P1.1.3/P1.2.3+Na]+ª	207.0997ª	0.169	1.51	0.040	
FIDUUCIS	[P1.2.4+Na]+	205.0841	0.003	0.010	0	
	[P2.1.3+Na] ⁺	179.1048	0.007	0.059	0	
	[P2.1.4+Na]+	177.0891	0.014	0.034	0.001	

^aOther table entries have predicted species with same m/z.

SI6.1.2. Detailed results

SI6.1.2.1. Formula Find

Figure SI92: Background corrected mass spectrum from TART trapping of α -pinene ozonolysis (11.7.2), showing the peak corresponding to [R6/R7–ART+Na]⁺ (*m*/z 356.220, pink). 100% intensity = 2.01×10⁹ absolute count.

Figure SI93: HPLC-MS chromatogram and mass spectrum (inset) of peaks corresponding to R1.1.1/R1.2.1–ART (*m/z* 350.233±0.002 and *m/z* 372.215±0.002) from TART trapping of α-pinene ozonolysis (11.7.2). MS source was sent to waste between 13.5-14.0 min, to prevent injection of unreacted TART. Mass spectrum of [R1.1.1/R1.2.1–ART+H]⁺ (red) is at time of maximum intensity (red).

Figure SI94: HPLC-MS chromatograms of peaks corresponding to R5.1/R5.2–ART (m/z 384.239±0.002 and m/z 406.221±0.002, top, green) and C₁₀H₁₇O₆–ART (m/z 400.234±0.002 and m/z 422.216±0.002, bottom, light blue) from TART trapping of α -pinene ozonolysis (11.7.2). MS source was sent to waste between 13.5-14.0 min, to prevent injection of unreacted TART.

Figure SI95: HPLC-MS chromatogram and mass spectrum (inset) of peaks corresponding to R6/R7–ART (*m/z* 334.238±0.002 and *m/z* 356.220±0.002) from TART trapping of α-pinene ozonolysis (11.7.2). MS source was sent to waste between 13.5-14.0 min, to prevent injection of unreacted TART. Mass spectrum of [R6/R7–ART+H]⁺ (pink) is at time of maximum intensity (pink).

SI6.1.2.3. Oligomers

Table SI38: Five most intense peaks believed to correspond to monomeric products from TART trapping of α -pinene ozonolysis, obtained using the Formula Find programme. Molecular formula limits were set as $C_{1-10}H_{0-100}O_{0-15}Na_{0-1}$ and m/z limits 100-1000. Illogical molecular formulae were eliminated.

Observed <i>m/z</i>	Intensity relative to unreacted TART standard / %	Corresponding molecular formula	Structure identified
225.1098	1.74	$C_{10}H_{18}O_4$	P5.1.3/P5.2.3/P5.3.1.2/P5.3.2.2
191.1043	1.12	$C_{10}H_{16}O_2$	Pinaldehyde/P4.3/P6.2/P7.2
207.0993	0.242	$C_{10}H_{16}O_3$	Pinonic acid/P5.3.2.4
193.1200	0.109	$C_{10}H_{18}O_2$	P3.3
209.1152	0.104	$C_{10}H_{18}O_3$	P3.2/P4.2/P5.3.1.3/P5.3.2.3

Table SI39: Dimers from the ten most intense peaks from TART trapping of α-pinene ozonolysis, obtained using the Formula Find programme. Molecular formula limits were set as C₁₋₄₀H₀₋₁₀₀N₀₋₂O₀₋₁₅Na₀₋₁ and *m/z* limits 100-1000.

Observed <i>m/z</i>	Intensity relative to unreacted TART standard / %	Corresponding dimer molecular formula	Corresponding monomer cluster molecular formula
393.2249	32.8	[C ₂₀ H ₃₄ O ₆ Na] ⁺	[(C ₁₀ H ₁₈ O ₄)(C ₁₀ H ₁₆ O ₂)Na] ⁺ [(C ₁₀ H ₁₆ O ₃)(C ₁₀ H ₁₈ O ₃)Na] ⁺
409.2200	11.9	[C ₂₀ H ₃₄ O ₇ Na] ⁺	[(C ₁₀ H ₁₈ O ₄)(C ₁₀ H ₁₆ O ₃)Na] ⁺
391.2094	9.16	[C ₂₀ H ₃₂ O ₆ Na]⁺	[(C ₁₀ H ₁₆ O ₃)(C ₁₀ H ₁₆ O ₃)Na] ⁺
375.2144	5.06	[C ₂₀ H ₃₂ O₅Na]⁺	[(C ₁₀ H ₁₆ O ₂)(C ₁₀ H ₁₆ O ₃)Na] ⁺
425.2149	4.83	[C ₂₀ H ₃₄ O ₈ Na]⁺	-
359.2195	2.19	[C ₂₀ H ₃₂ O ₄ Na] ⁺	$[(C_{10}H_{16}O_2)(C_{10}H_{16}O_2)Na]^+$

Figure SI96:HPLC-MS chromatograms of peaks ($m/z \pm 0.002$) corresponding to dimers and their potential clusterforming monomers from TART trapping of α -pinene ozonolysis (11.7.2). Peaks corresponding to each dimer and their potential cluster-forming monomers either did not overlap or overlap poorly, indicating dimers were formed during TART trapping of α -pinene ozonolysis and not during MS.

Table SI40: Radical-alkene-alkene trimer species identified from TART trapping of α -pinene ozonolysis, using MS for characterisation (11.7.2). Systematic *m*/z error = -0.0005; random *m*/z error = ±0.0012; 100% intensity = 2.01×10⁹ absolute count. Radical-alkene dimer nomenclature is of the form PR-Trim-x, where R is the index of reactant radical species and x is the total oxygen count in the α -pinene unit, including the bridges between the two units (1-2), two new alkene inner rings (0-2) and new alkene alcohol/hydroperoxide (1-2) functionalisation.

		Intensity relative to unreacted TART					
			standard / %				
Species	Predicted <i>m/z</i>	No substrate	No O ₂ / No UV ^a	No TART	Trapping reaction ^b		
[CHANT+H] ⁺	323.2698	0.019	98.1/ 92.5	0	29.5±1.2		
[P1.1/1.2-Trim-3+Na] ⁺	511.3399°	0	0	0.009	0.003±0.001		
[P1.1/1.2-Trim-4+Na] ⁺	527.3348°	0.003	0	0.030	0.020±0.001		
[P1.1/1.2-Trim-5+Na] ⁺	543.3297°	0	0	0.092	0.049±0.003		
[P1.1/1.2-Trim-6+Na] ⁺	559.3246°	0	0	0.752	0.66±0.11		
[P1.1/1.2-Trim-7+Na] ⁺	575.3196°	0	0	0.674	0.58±0.04		
[P1.1/1.2-Trim-8+Na] ⁺	591.3145°	0	0	0.277	0.24±0.02		
[P1.1/1.2-Trim-9+Na] ⁺	607.3095	0	0	0.083	0.037±0.002		
[P1.1/1.2-Trim-10+Na] ⁺	623.3044	0	0	0.026	0		
[P5.1/5.2-Trim-3+Na]+	529.3505	0.006	0	0.019	0.013±0.002		
[P5.1/5.2-Trim-4+Na] ⁺	545.3454°	0	0	0.711	0.311±0.005		
[P5.1/5.2-Trim-5+Na]+	561.3403°	0.002	0	0.250	0.120±0.003		
[P5.1/5.2-Trim-6+Na] ⁺	577.3352°	0	0	3.32	3.41±0.14		
[P5.1/5.2-Trim-7+Na] ⁺	593.3301°	0	0	6.18	4.8±0.3		
[P5.1/5.2-Trim-8+Na] ⁺	609.3251°	0	0	1.57	1.15±0.04		
[P5.1/5.2-Trim-9+Na]+	625.3200 ^c	0	0	0.250	0.193±0.013		
[P5.1/5.2-Trim-10+Na] ⁺	641.3150°	0	0	0.043	0.018±0.001		
[PC ₁₀ H ₁₇ O ₆ -Trim-3+Na] ⁺	545.3454°	0	0	0.711	0.311±0.005		

[PC ₁₀ H ₁₇ O ₆ -Trim-4+Na] ⁺	561.3403°	0.002	0	0.250	0.120±0.003
[PC ₁₀ H ₁₇ O ₆ -Trim-5+Na]⁺	577.3352°	0	0	3.32	3.41±0.14
[PC ₁₀ H ₁₇ O ₆ -Trim-6+Na] ⁺	593.3301°	0	0	6.18	4.8±0.3
[PC ₁₀ H ₁₇ O ₆ -Trim-7+Na]⁺	609.3251°	0	0	1.57	1.15±0.04
[PC ₁₀ H ₁₇ O ₆ -Trim-8+Na] ⁺	625.3200°	0	0	0.250	0.193±0.013
[PC ₁₀ H ₁₇ O ₆ -Trim-9+Na]⁺	641.3150°	0	0	0.043	0.018±0.001
[PC ₁₀ H ₁₇ O ₆ -Trim-10+Na] ⁺	657.3099	0	0	0.008	0.004±0.001
[P6/7-Trim-3+Na]+	479.3501	0	0	0	0
[P6/7-Trim-4+Na]+	495.3450	0	0	0	0
[P6/7-Trim-5+Na]+	511.3399°	0	0	0.009	0.003±0.001
[P6/7-Trim-6+Na]+	527.3348°	0.003	0	0.030	0.020±0.001
[P6/7-Trim-7+Na]+	543.3297°	0	0	0.092	0.049±0.003
[P6/7-Trim-8+Na]+	559.3246°	0	0	0.752	0.66±0.11
[P6/7-Trim-9+Na]+	575.3196°	0	0	0.674	0.58±0.04
[P6/7-Trim-10+Na]+	591.3145°	0	0	0.277	0.24±0.02

^aNo UV and no N₂ controls combined into single column. ^bThree repeats undertaken and an average and associated error calculated. ^cOther table entries have predicted species with same *m/z*.

SI6.1.2.4. Kinetic modelling

Figure SI97: Liquid phase model of TART trapping of gaseous α-pinene ozonolysis between 0-10 min at residence time 56.5 ms. Simulation indicated [RO[•]] was extremely low, whilst [RO₂•] existed in solution at concentrations greater than TART-trapped RO₂•.

SI7. OH-initiated alkane degradation

SI7.1. Using water photolysis as an •OH source

Figure SI98: HPLC-MS chromatograms of peaks corresponding to RO₂-ART (*m*/z 326.270±0.002 and *m*/z 348.251±0.002) from TART trapping of •OH-initiated *n*-nonane degradation, using water photolysis as an •OH source and CHANT as TART, after 100 min and with controls (11.8.2). HPLC output was sent to waste between 13.5-14.0 min, to prevent spectrometer contamination by unreacted TART.

Table SI41: Species identified from TART trapping of •OH-initiated *n*-nonane degradation using water photolysis as an •OH source, DEADANT as TART and MS for characterisation after 10 min (11.8.2). Systematic m/z error = -0.0005; random m/z error = ±0.0005; 100% intensity = 6.11×10^8 absolute count.

			Intensity relative to unreacted			
S	pecies	Predicted <i>m/z</i>	Trapless control	Unreacted TART standard	Trapping reaction	
TART	[CHANT+H]⁺	323.2698	0.909	100	120	
TART degradation	[N-oxidised CHANT+H]+	323.2698	0	0.067	1.91	
Trapped	[RO ₂ -ART+Na] ⁺	348.2515	0	0	0	
radicals	[RO-ART+Na] ⁺	332.2565	0	0	0.041	
	[RH+Na]⁺	151.1463	0	0	0	
Droducto	[ROH+Na]⁺	167.1412	0	0	0	
Products	[RCO+Na]⁺	165.1255	0	0	0	
	[ROOH+Na]⁺	183.1361	0	0	0	

Figure SI99: HPLC-MS chromatograms of the peak corresponding to RO₂-ART (*m*/z 315.265±0.002) from TART trapping of •OH-initiated *n*-nonane degradation, using water photolysis as an •OH source and DEADANT as TART, with controls (11.8.2).

SI8. Modelling equations

SI8.1. Radical thiol-ene addition

Table SI42: Reactions and their rate constants for TART trapping of radical thiol-ene addition, using styrene (S3.1) and thiols S2.2, S2.3 or S2.5 as substrates (11.5.2.8, 11.10.2). Key parameters: time = 24 h. Concentrations / M: [thiol]₀ = 0.400; [styrene]₀ = 0.200; [TART]₀ = 0.020.

Pagationa	A		
Reaction	S2.2	S2.3	S2.5
S==>R1		6.81E-06 ^b	
R1+A==>R2	3.54E+07°	3.54E+09 ^c	3.54E+10 ^c
R2==>R1+A		5.31E+07 ^d	
R2+S==>P+R1	2.48E+06 ^c	2.48E+05 ^c	2.48E+04 ^c
P+R1==>R2+S		1.45E+00 ^d	
2R1==>T		1.00E+08 ^e	
R1+R2==>T		1.00E+08 ^e	
2R2==>T		1.00E+08 ^e	
R1+TART==>R1.ART+TEMPO	4.35E+06 ^f	3.03E+06 ^g	3.03E+06 ^g
R2+TART==>R2.ART+TEMPO		4.50E+02 ^h	
R2+TEMPO==>R2.TEMPO		1.64E+08 ⁱ	
R1+R1.ART==>R1.ART.R1	4.35E+06 ^f	3.03E+06 ^g	3.03E+06 ^g
R1.ART.R1==>R1+R1.ART	7.99E+06 ^f	1.35E+07 ^g	1.35E+07 ^g
R1.ART.R1+S==>R1+R1.ART.R1.P	1.00E+06 ^f	1.32E+07 ^g	1.32E+07 ^g
R1+R1.ART.R1.P==>R1.ART.R1+S	5.74E-01 ^f	1.44E+01 ^g	1.44E+01 ^g
R1.ART.R1+ART==>R1.ART.R1.ART+TEMPO		4.50E+02 ^h	
R1.ART.R1+TEMPO==>R1.ART.R1.TEMPO		1.64E+08 ⁱ	
R1+R2.ART==>R2.ART.R1	4.35E+06 ^f	3.03E+06 ^g	3.03E+06 ^g
R2.ART.R1==>R1+R2.ART	7.99E+06 ^f	1.35E+07 ⁹	1.35E+07 ^g
R2.ART.R1+S==>R1+R2.ART.R1.P	1.00E+06 ^f	1.32E+07 ^g	1.32E+07 ^g
R1+R2.ART.R1.P==>R2.ART.R1+S	5.74E-01 ^f	1.44E+01 ^g	1.44E+01 ^g
R2.ART.R1+ART==>R2.ART.R1.ART+TEMPO		4.50E+02 ^h	
R2.ART.R1+TEMPO==>R2.ART.R1.TEMPO	1.64E+08 ⁱ		
R1.ART.R1+R1==>T		1.00E+08 ^e	
R1.ART.R1+R2==>T	1.00E+08 ^e		
2R1.ART.R1==>T	1.00E+08 ^e		
R1.ART.R1+R2.ART.R1==>T	1.00E+08 ^e		
R2.ART.R1+R1==>T	1.00E+08 ^e		
R2.ART.R1+R2==>T		1.00E+08e	
2R2.ART.R1==>T		1.00E+08e	

^aS = thiol, A = alkene; P = thioether product; T = terminated product; R1.ART = R1-ART; R2.ART = R2-ART; R2.TEMPO = R2-TEMPO; R1.ART.R1.P = R1-ART+S2. ^bEstimated using experimental data and kinetic modelling. ^cEstimated from literature reaction of thiophenol with styrene²⁰⁸ and altered by hand until experimental [R1-ART]/[R2-ART] was achieved. ^dEstimated from literature reaction of thiophenol with styrene.²⁰⁸ ^eRadicalradical termination rate defined by literature.²⁰⁴ ^fEstimated from literature reaction of thiophenol with methyl methacrylate.²⁰⁸ ^gEstimated from 4-chlorothiophenol with methyl methacrylate.²⁰⁸ ^hEstimated from literature reaction of benzyl radical with methyl methacrylate.²⁰⁹ ⁱEstimated from literature reaction of PhC•HCH₃ reaction with TEMPO•.²¹⁰

Pagatiana	А			
Reaction	S2.1	S2.4	S2.6	
S==>R1		6.81E-06 ^b		
R1+A==>R2	3.10E+06°	3.10E+07°	3.10E+07℃	
R2==>R1+A		1.30E+03 ^d		
R2+S==>P+R1	5.00E+02 ^c	5.00E+02°	5.00E+01°	
P+R1==>R2+S		4.00E+01 ^d		
2R1==>T		1.00E+08 ^e		
R1+R2==>T		1.00E+08 ^e		
2R2==>T		1.00E+08 ^e		
R1+TART==>R1.ART+TEMPO		3.20E+06 ^f		
R2+TART==>R2.ART+TEMPO		4.50E+02 ^g		
R2+TEMPO==>R2.TEMPO		1.64E+08 ^h		
R1+R1.ART==>R1.ART.R1		3.20E+06 ^f		
R1.ART.R1==>R1+R1.ART		1.50E+04 ^f		
R1.ART.R1+S==>R1+R1.ART.R1.P	2.10E+03 ^f			
R1+R1.ART.R1.P==>R1.ART.R1+S		2.30E-01 ^f		
R1.ART.R1+ART==>R1.ART.R1.ART+TEMPO		4.50E+02 ^g		
R1.ART.R1+TEMPO==>R1.ART.R1.TEMPO		1.64E+08 ^h		
R1+R2.ART==>R2.ART.R1		3.20E+06 ^f		
R2.ART.R1==>R1+R2.ART		1.50E+04 ^f		
R2.ART.R1+S==>R1+R2.ART.R1.P		2.10E+03 ^f		
R1+R2.ART.R1.P==>R2.ART.R1+S		2.30E-01 ^f		
R2.ART.R1+ART==>R2.ART.R1.ART+TEMPO		4.50E+02 ^g		
R2.ART.R1+TEMPO==>R2.ART.R1.TEMPO		1.64E+08 ^h		
R1.ART.R1+R1==>T		1.00E+08 ^e		
R1.ART.R1+R2==>T		1.00E+08 ^e		
2R1.ART.R1==>T		1.00E+08 ^e		
R1.ART.R1+R2.ART.R1==>T		1.00E+08e		
R2.ART.R1+R1==>T		1.00E+08e		
R2.ART.R1+R2==>T		1.00E+08 ^e		
2R2.ART.R1==>T		1.00E+08 ^e		

Table SI43: Reactions and their rate constants for TART trapping of radical thiol-ene addition, using styrene (S3.1) and thiols S2.1, S2.4 and S2.6 as substrates (11.5.2.8, 11.10.2). Key parameters: time = 24 h. Concentrations / mM: [thiol]₀ = 0.400; [styrene]₀ = 0.200; [TART]₀ = 0.020.

^aS = thiol, A = alkene; P = thioether product; T = terminated product; R1.ART = R1-ART; R2.ART = R2-ART; R2.TEMPO = R2-TEMPO; R1.ART.R1.P = R1-ART+S2. ^bEstimated using experimental data and kinetic modelling. ^cEstimated from literature reaction of methylthiol with styrene²⁰⁴ and altered by hand until experimental [R1-ART]/[R2-ART] was achieved. ^dEstimated from literature reaction of methylthiol with styrene.²⁰⁴ ^eRadical-radical termination rate defined by literature.²⁰⁴ ^fEstimated from literature reaction of methylthiol with methyl acrylate.²⁰⁴ ^gEstimated from literature reaction of benzyl radical with methyl methacrylate.²⁰⁹ ^hEstimated from literature reaction of PhC•HCH₃ reaction with TEMPO[•].²¹⁰

Reaction ^a	A			
	S3.1	S3.4	S3.6	
S==>R1		6.81E-06 ^b		
R1+A==>R2	3.10E+06 ^c	3.10E+05°	3.10E+05°	
R2==>R1+A		1.30E+03 ^d		
R2+S==>P+R1	5.00E+02°	5.00E+02°	5.00E+03°	
P+R1==>R2+S		4.00E+01 ^d		
2R1==>T		1.00E+08 ^e		
R1+R2==>T		1.00E+08 ^e		
2R2==>T		1.00E+08 ^e		
R1+TART==>R1.ART+TEMPO		3.20E+06 ^f		
R2+TART==>R2.ART+TEMPO		4.50E+02 ^g		
R2+TEMPO==>R2.TEMPO		1.64E+08 ^h		
R1+R1.ART==>R1.ART.R1		3.20E+06 ^f		
R1.ART.R1==>R1+R1.ART		1.50E+04 ^f		
R1.ART.R1+S==>R1+R1.ART.R1.P	2.10E+03 ^f			
R1+R1.ART.R1.P==>R1.ART.R1+S		2.30E-01 ^f		
R1.ART.R1+ART==>R1.ART.R1.ART+TEMPO		4.50E+02 ^g		
R1.ART.R1+TEMPO==>R1.ART.R1.TEMPO		1.64E+08 ^h		
R1+R2.ART==>R2.ART.R1		3.20E+06 ^f		
R2.ART.R1==>R1+R2.ART		1.50E+04 ^f		
R2.ART.R1+S==>R1+R2.ART.R1.P		2.10E+03 ^f		
R1+R2.ART.R1.P==>R2.ART.R1+S		2.30E-01 ^f		
R2.ART.R1+ART==>R2.ART.R1.ART+TEMPO		4.50E+02 ^g		
R2.ART.R1+TEMPO==>R2.ART.R1.TEMPO		1.64E+08 ^h		
R1.ART.R1+R1==>T		1.00E+08 ^e		
R1.ART.R1+R2==>T		1.00E+08 ^e		
2R1.ART.R1==>T		1.00E+08 ^e		
R1.ART.R1+R2.ART.R1==>T		1.00E+08 ^e		
R2.ART.R1+R1==>T		1.00E+08 ^e		
R2.ART.R1+R2==>T		1.00E+08 ^e		
2R2.ART.R1==>T		1.00E+08 ^e		

Table SI44: Reactions and their rate constants for TART trapping of radical thiol-ene addition, using benzyl mercaptan (S2.1) and alkenes S3.1, S3.4 and S3.6 as substrates (11.5.2.9, 11.10.2). Key parameters: time = 24 h. Concentrations / M: [benzyl mercaptan]₀ = 0.400; [alkene]₀ = 0.200; [TART]₀ = 0.020.

^aS = thiol, A = alkene; P = thioether product; T = terminated product; R1.ART = R1–ART; R2.ART = R2–ART; R2.TEMPO = R2–TEMPO; R1.ART.R1.P = R1–ART+S2. ^bEstimated using experimental data and kinetic modelling. ^cEstimated from literature reaction of methylthiol with styrene²⁰⁴ and altered by hand until experimental [R1–ART]/[R2–ART] was achieved. ^dEstimated from literature reaction of methylthiol with styrene.²⁰⁴ ^eRadicalradical termination rate defined by literature.²⁰⁴ ^fEstimated from literature reaction of methylthiol with methyl acrylate.²⁰⁴ ^gEstimated from literature reaction of benzyl radical with methyl methacrylate.²⁰⁹ ^hEstimated from literature reaction of PhC•HCH₃ reaction with TEMPO^{•.210}

Desetters	А			
Reaction	S3.2	S3.3	S3.5	
S==>R1		6.81E-06 ^b	•	
R1+A==>R2	1.10E+05°	1.10E+05°	1.10E+06 ^c	
R2==>R1+A		1.10E+07 ^d		
R2+S==>P+R1	2.30E+05°	2.30E+05°	2.30E+05°	
P+R1==>R2+S		4.70E-02 ^d		
2R1==>T		1.00E+08 ^e		
R1+R2==>T		1.00E+08 ^e		
2R2==>T		1.00E+08 ^e		
R1+TART==>R1.ART+TEMPO		3.20E+06 ^f		
R2+TART==>R2.ART+TEMPO		1.09E+06 ^g		
R2+TEMPO==>R2.TEMPO		7.60E+08 ^h		
R1+R1.ART==>R1.ART.R1		3.20E+06 ^f		
R1.ART.R1==>R1+R1.ART		1.50E+04 ^f		
R1.ART.R1+S==>R1+R1.ART.R1.P		2.10E+03 ^f		
R1+R1.ART.R1.P==>R1.ART.R1+S		2.30E-01 ^f		
R1.ART.R1+ART==>R1.ART.R1.ART+TEMPO		1.09E+06 ^g		
R1.ART.R1+TEMPO==>R1.ART.R1.TEMPO		7.60E+08 ^h		
R1+R2.ART==>R2.ART.R1		3.20E+06 ^f		
R2.ART.R1==>R1+R2.ART		1.50E+04 ^f		
R2.ART.R1+S==>R1+R2.ART.R1.P		2.10E+03 ^f		
R1+R2.ART.R1.P==>R2.ART.R1+S		2.30E-01 ^f		
R2.ART.R1+ART==>R2.ART.R1.ART+TEMPO		1.09E+06 ^g		
R2.ART.R1+TEMPO==>R2.ART.R1.TEMPO		7.60E+08 ^h		
R1.ART.R1+R1==>T		1.00E+08 ^e		
R1.ART.R1+R2==>T		1.00E+08 ^e		
2R1.ART.R1==>T		1.00E+08 ^e		
R1.ART.R1+R2.ART.R1==>T		1.00E+08 ^e		
R2.ART.R1+R1==>T		1.00E+08e		
R2.ART.R1+R2==>T		1.00E+08e		
2R2.ART.R1==>T		1.00E+08e		

Table SI45: Reactions and their kinetic factors for TART trapping of radical thiol-ene addition, using benzyl mercaptan (S2.1) and alkenes S3.2, S3.3 and S3.5 as substrates (11.5.2.9, 11.10.2). Key parameters: time = 24 h. Concentrations / M: [benzyl mercaptan]₀ = 0.400; [alkene]₀ = 0.200; [TART]₀ = 0.020.

^aS = thiol, A = alkene; P = thioether product; T = terminated product; R1.ART = R1-ART; R2.ART = R2-ART; R2.TEMPO = R2-TEMPO; R1.ART.R1.P = R1-ART+S2. ^bEstimated using experimental data and kinetic modelling. ^cEstimated from literature reaction of methylthiol with propene²⁰⁴ and altered by hand until experimental [R1-ART]/[R2-ART] was achieved. ^dEstimated from literature reaction of methylthiol with propene.²⁰⁴ ^eRadical-radical termination rate defined by literature.²⁰⁴ ^fEstimated from literature reaction of methylthiol with methyl acrylate.²⁰⁵ ^hEstimated from literature reaction of (CH₃)₃C[•] with methyl acrylate.²²⁵ ^hEstimated from literature reaction of (CH₃)₃C[•] reaction with TEMPO[•].²¹⁰

SI8.2. <u>a-Pinene ozonolysis</u>

Table SI46: Reactions and their kinetic factors used for gas phase modelling of α -pinene ozonolysis (11.7.5, 11.10.3). Atmospheric reactions of α -pinene were imported into the Kintecus chemical simulation programme²⁰⁷ from the MCM⁵⁷ and truncated to remove late stage pathways. Key parameters: time = 56.5 ms. Concentrations / molec. cm⁻³: [O₃]₀ = 2.96×10¹⁵; [α -pinene]₀ = 5.20×10¹⁶.

Reaction ^{a,b}	A	Ea
OH + O3 ==> HO2	1.7E-12	940
OH + H2 ==> HO2	7.7E-12	2100
OH + CO ==> HO2	1	0
OH + H2O2 ==> HO2	2.9E-12	160
HO2 + O3 ==> OH	2.03E-16	-693
OH + HO2 ==> H2O + O2	4.8E-11	-250
HO2 + HO2 ==> H2O2	2.2E-13	0
APINENE + O3 ==> APINOOA	4.83E-16	640
APINENE + O3 ==> APINOOB	3.22E-16	640
APINENE + OH ==> APINAO2	6.864E-12	-440
APINENE + OH ==> APINBO2	4.236E-12	-440
APINENE + OH ==> APINCO2	9E-13	-440
APINOOA ==> C107O2 + OH	550000	0
APINOOA ==> C109O2 + OH	450000	0
APINOOB ==> APINBOO	500000	0
APINOOB ==> C96O2 + OH + CO	500000	0
APINAO2 + HO2 ==> APINAOOH	2.65974E-13	-1300
APINAO2 + RO2 ==> APINAO	6.44E-14	0
APINAO2 + RO2 ==> APINBOH	2.76E-14	0
APINBO2 + HO2 ==> APINBOOH	2.65974E-13	-1300
APINBO2 + RO2 ==> APINBCO	1.76E-13	0
APINBO2 + RO2 ==> APINBO	5.28E-13	0
APINBO2 + RO2 ==> APINBOH	1.76E-13	0
APINCO2 + HO2 ==> APINCOOH	2.65974E-13	-1300
APINCO2 + RO2 ==> APINCO	4.69E-15	0
APINCO2 + RO2 ==> APINCOH	2.01E-15	0
C107O2 + HO2 ==> C107OOH	2.65974E-13	-1300
C107O2 + RO2 ==> C107O	6.44E-14	0
C107O2 + RO2 ==> C107OH	2.76E-14	0
C109O2 + HO2 ==> C109OOH	2.65974E-13	-1300
C109O2 + RO2 ==> C109CO	1E-13	0
C109O2 + RO2 ==> C109O	1.8E-12	0
C109O2 + RO2 ==> C109OH	1E-13	0
APINBOO + CO ==> PINAL	1.2E-15	0
APINBOO +M[-H2O(1);] ==> PINAL + H2O2	1.4E-17	0
APINBOO +M[-H2O(1);] ==> PINONIC	2E-18	0
C96O2 + HO2 ==> C96OOH	2.5899E-13	-1300
C96O2 + RO2 ==> C96O	7.8E-13	0
C96O2 + RO2 ==> C96OH	2.6E-13	0
C96O2 + RO2 ==> NORPINAL	2.6E-13	0
APINAOOH + OH ==> APINAO2	1.83E-11	0
APINAO ==> PINAL + HO2	1000000	0
APINBOH + OH ==> APINBCO + HO2	1.49E-11	0
APINBOOH + OH ==> APINBCO + OH	3.28E-11	0
APINBO ==> PINAL + HO2	1000000	0

APINBCO + OH ==> C96CO3	8.18E-12	0
APINCOOH + OH ==> APINCO2	1.03E-10	0
APINCO ==> CH3COCH3 + C720O2	1000000	0
APINCOH + OH ==> APINCO	9.91E-11	0
PINAL + OH ==> C96CO3	4.0144E-12	-600
PINAL + OH ==> PINALO2	1.1856E-12	-600
C96CO3 + HO2 ==> C96O2 + OH	2.288E-13	-980
C96CO3 + HO2 ==> PERPINONIC	2.132E-13	-980
C96CO3 + HO2 ==> PINONIC + O3	7.8E-14	-980
C96CO3 + RO2 ==> C96O2	7E-12	0
C96CO3 + RO2 ==> PINONIC	3E-12	0
C107OOH + OH ==> C107O2	3.01E-11	0
C107O ==> C108O2	1000000	0
C107OH + OH ==> C107O	2.66E-11	0
C109OOH + OH ==> C109CO + OH	5.47E-11	0
C109O ==> C89CO3 + HCHO	800000	0
C109O ==> C920CO3	200000	0
C109CO + OH ==> C89CO3 + CO	5.47E-11	0
C109OH + OH ==> C109CO + HO2	4.45E-11	0
PINONIC + OH ==> C96O2	6.65E-12	0
C96OOH + OH ==> C96O2	1.9E-12	-190
C96OOH + OH ==> NORPINAL + OH	1.3E-11	0
C96O ==> C97O2	42000000000	3523
C96OH + OH ==> NORPINAL + HO2	7.67E-12	0
NORPINAL + OH ==> C85CO3	2.64E-11	0
CH3COCH3 + OH ==> CH3COCH2O2	8.8E-12	1320
HCC7CO + OH ==> C719O2	1.19E-10	0
C720O2 + HO2 ==> C720OOH	2.3862E-13	-1300
C720O2 + RO2 ==> C720O	1.5E-13	0
C720O2 + RO2 ==> C720OH	5E-14	0
C720O2 + RO2 ==> HCC7CO	5E-14	0
PINALO2 + HO2 ==> PINALOOH	2.65974E-13	-1300
PINALO2 + RO2 ==> PINALO	4.69E-15	0
PINALO2 + RO2 ==> PINALOH	2.01E-15	0
PERPINONIC + OH ==> C96CO3	9.73E-12	0
C108O2 + HO2 ==> C108OOH	2.65974E-13	-1300
C108O2 + RO2 ==> C108O	4.69E-15	0
C108O2 + RO2 ==> C108OH	2.01E-15	0

^aRO2 = [APINAO2; APINBO2; APINCO2; C107O2; C109O2; C96O2; C96CO3; C72OO2; PINALO2; C108O2]. ^bAPINENE = α -pinene; APINOOA = R1; APINOOB = R2; APINAO2 = R3; APINBO2 = R4; APINCO2 = R5; C107O2 = R1.1; C109O2 = R1.2; C96O2 = R2.1; APINAOOH = P3.2; APINAO = R3.1; APINBOH = P3.3; APINBOOH = P4.2; APINBCO = P4.3; APINBO = R4.1; APINCO = R5.3; C107OOH = P1.1.2; C107O = R1.1.1; C107OH = P1.1.3; C109OOH = P1.2.2; C109CO = P1.2.4; C109O = R1.2.1; C109OH = P1.2.3; PINAL = pinaldehyde; PINONIC = pinonic acid; C96OOH = P2.1.2; C96O = R2.1.1; C96OH = P2.1.3; NORPINAL = P2.1.4; C108O2 = R1.1.1.1; C89CO3 = R1.2.1.1; C920CO3 = R1.2.1.2; C97O2 = R2.1.1.1. Table SI47: Reactions and their kinetic factors used for liquid phase modelling of TART trapping of α -pinene ozonolysis (11.7.5). These rate constants were estimated from assorted literature sources between reactions of RO₂• with methyl methacrylate²²⁶ and RO• with alkenes²²⁸ respectively. [Trap]₀ = 3.01×10¹⁷ molec. cm⁻³. For liquid phase, key parameters: time = 2 min. Concentrations added / molec. cm⁻³ s⁻¹. For gas-liquid interface, key parameters: time = 6.79 ms; scaled to time = 2 min. Initial concentrations / molec. cm⁻³.

Reaction	A	Ea
APINAO2 + Trap ==> APINAO2.Trap + TEMPO	1.00E-22	0
APINBO2 + Trap ==> APINBO2.Trap + TEMPO	1.00E-22	0
APINCO2 + Trap ==> APINCO2.Trap + TEMPO	1.00E-22	0
C107O2 + Trap ==> C107O2.Trap + TEMPO	1.00E-22	0
C109O2 + Trap ==> C109O2.Trap + TEMPO	1.00E-22	0
C96O2 + Trap ==> C96O2.Trap + TEMPO	1.00E-22	0
APINAO + Trap ==> APINAO.Trap + TEMPO	1.00E-15	0
APINBO + Trap ==> APINBO.Trap + TEMPO	1.00E-15	0
APINCO + Trap ==> APINCO.Trap + TEMPO	1.00E-15	0
C107O + Trap ==> C107O.Trap + TEMPO	1.00E-15	0
C109O + Trap ==> C109O.Trap + TEMPO	1.00E-15	0
C96O + Trap ==> C96O.Trap + TEMPO	1.00E-15	0

^aAPINAO2 = **R3**; APINBO2 = **R4**; APINCO2 = **R5**; C107O2 = **R1.1**; C109O2 = **R1.2**; C96O2 = **R2.1**; APINAO = **R3.1**; APINBO = **R4.1**; APINCO = **R5.3**; C107O = **R1.1.1**; C109O = **R1.2.1**; C96O = **R2.1.1**.

SI8.3. OH-initiated n-nonane degradation

Table SI48: Reactions and their kinetic factors used for gas phase modelling of •OH-initiated *n*-nonane degradation (11.8.2, 11.10.4). Atmospheric reactions of *n*-nonane were imported into the Kintecus chemical simulation programme²⁰⁷ from the MCM⁵⁷ and truncated to remove late stage pathways. Key parameters: residence time = 129 ms. Concentrations / molec. cm⁻³: [•OH]₀ = $3.4\pm0.5\times10^{11}$; [HO₂•]₀ = $3.4\pm0.5\times10^{11}$; [n-nonane]₀ = 1.01×10^{16} .

Reaction ^{a,b}	A	Ea
OH + O3 ==> HO2	1.7E-12	940
OH + H2 ==> HO2	7.7E-12	2100
OH + CO ==> HO2	1	0
OH + H2O2 ==> HO2	2.9E-12	160
HO2 + O3 ==> OH	2.03E-16	-693
OH + HO2 ==> H2O + O2	4.8E-11	-250
HO2 + HO2 ==> H2O2	2.2E-13	0
OH + NC9H20 ==> NONO2	2.51E-17	-447
NONO2 + HO2 ==> NONOOH	2.5899E-13	-1300
NONO2 + RO2 ==> NON3ONE	5.00E-14	0
NONO2 + RO2 ==> NONO	1.5E-13	0
NONO2 + RO2 ==> NONOH	5E-14	0
OH + NONOOH ==> NON3ONE + OH	3.65E-11	0
NONO ==> HO3C96O2	2.58E+11	3430
OH + NON3ONE ==> C91O2	1.07E-11	0
OH + NONOH ==> NON3ONE + HO2	1.87E-11	0
HO3C96O2 + HO2 ==> HO3C96OOH	2.5899E-13	-1300
HO3C96O2 + RO2 ==> HO36C9	5E-14	0
HO3C96O2 + RO2 ==> HO3C96O	1.5E-13	0
HO3C96O2 + RO2 ==> HO4CO7C9	5E-14	0
C91O2 + HO2 ==> C91OOH	2.5899E-13	-1300
C91O2 + RO2 ==> C91O	2.5E-13	0
OH + HO3C96OOH ==> HO4CO7C9 + OH	4.55E-11	0
HO3C96O ==> HO4CO7C9 + HO2	5.55E+11	2945
OH + HO36C9 ==> HO4CO7C9 + HO2	2.43E-11	0

OH + HO4CO7C9 ==> C93O2	6.0496E-12	0
OH + HO4CO7C9 ==> CO36C9 + HO2	1.38504E-11	0
OH + C5H11CHO ==> C5H11CO3	2.88E-11	0
OH + C91OOH ==> C91O2	8.8E-11	0
C91O ==> C92O2	1.15E+11	3430
OH + CO36C9 ==> C94O2	1.14E-11	0

^aRO2 = [NONO2; HO3C96O2; C91O2; C2H5O2; HO5C6O2; C93O2; HO1C6O2; C5H11CO3; C92O2; C94O2]. ^bNC9H20 = *n*-nonane; NONO2 = RO_2^{\bullet} ; NONOOH = ROOH; NON3ONE = RCO; NONO = RO^{\bullet} ; NONOH = ROH; HO3C96O2 = $R(OH)O_2^{\bullet}$.

References

- 1 J. Fossey, D. Lefort and J. Sorba, *Free Radicals in Organic Chemistry*, Wiley, New York, 1995.
- 2 A. F. Parsons, *An Introduction to Free Radical Chemistry*, Blackwell Science, Oxford, 2000.
- 3 W. A. Braunecker and K. Matyjaszewski, *Prog. Polym. Sci.*, 2007, **32**, 93–146.
- 4 K. Matyjaszewski and J. Xia, *Chem. Rev.*, 2001, **101**, 2921–2990.
- 5 C. K. Prier, D. A. Rankic and D. W. C. MacMillan, *Chem. Rev.*, 2013, **113**, 5322–5363.
- 6 M. H. Shaw, J. Twilton and D. W. C. MacMillan, *J. Org. Chem.*, 2016, **81**, 6898–6926.
- 7 N. A. Romero and D. A. Nicewicz, *Chem. Rev.*, 2016, **116**, 10075–10166.
- 8 K. Apel and H. Hirt, *Annu. Rev. Plant Biol.*, 2004, **55**, 373–399.
- 9 M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur and J. Telser, *Int. J. Biochem. Cell Biol.*, 2007, **39**, 44–84.
- 10 M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, T. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski and J. Wildt, *Atmos. Chem. Phys.*, 2009, **9**, 5155–5236.
- B. Nozière, M. Kalberer, M. Claeys, J. Allan, B. D'Anna, S. Decesari, E. Finessi, M. Glasius, I. Grgić, J. F. Hamilton, T. Hoffmann, Y. Iinuma, M. Jaoui, A. Kahnt, C. J. Kampf, I. Kourtchev, W. Maenhaut, N. Marsden, S. Saarikoski, J. Schnelle-Kreis, J. D. Surratt, S. Szidat, R. Szmigielski and A. Wisthaler, *Chem. Rev.*, 2015, **115**, 3919–3983.
- 12 A. L. Zanocco, A. Cañete M. and M. X. Melendez, *Bol. Soc. Chil. Quím.*, 2000, **45**, 123– 129.
- 13 H. Togo, Advanced Free Radical Reactions for Organic Synthesis, Elsevier B.V., 2004.
- 14 K. J. Romero, M. S. Galliher, D. A. Pratt and C. R. J. Stephenson, *Chem. Soc. Rev.*, 2018, **47**, 7851–7866.
- 15 P. Nesvadba, in *Encyclopedia of Radicals in Chemistry, Biology and Materials*, John Wiley & Sons Ltd., 2012.
- 16 K. C. Berger, P. C. Deb and G. Meyerhoff, *Macromolecules*, 1977, **10**, 1075–1080.
- 17 T. Posner, Berichte der Dtsch. Chem. Gesellschaft, 1905, 1, 646–657.
- 18 N. B. Cramer and C. N. Bowman, *J. Polym. Sci. Part A Polym. Chem.*, 2001, **39**, 3311–3319.
- 19 O. Okay and C. N. Bowman, *Macromol. Theory Simul.*, 2005, **14**, 267–277.
- 20 A. B. Lowe, *Polym. Chem.*, 2010, **1**, 17–36.
- 21 C. E. Hoyle and C. N. Bowman, *Angew. Chem. Int. Ed.*, 2010, **49**, 1540–1573.
- 22 B. H. J. Bielski, D. E. Cabelli, R. L. Arudi and A. B. Ross, *J. Phys. Chem. Ref. Data*, 1985, **14**, 1041–1100.
- 23 L. Gaohua, X. Miao and L. Dou, *Expert Opin. Drug Metab. Toxicol.*, 2021, **17**, 1103–1124.

- 24 S. Yoshikawa, K. Muramoto, K. Shinzawa-itoh and H. Aoyama, *Biochim. Biophys. Acta*, 2006, **1757**, 1110–1116.
- 25 K. Schmidt-Rohr, ACS Omega, 2020, 5, 2221–2233.
- X. Li, P. Fang, J. Mai, E. T. Choi, H. Wang and X. F. Yang, *J. Hematol. Oncol.*, 2013, 6, 1–19.
- 27 A. W. Segal, Annu. Rev. Immunol., 2005, 23, 197–223.
- 28 M. Herb and M. Schramm, *Antioxidants*, 2021, **10**, 1–39.
- 29 J. F. Curtin, M. Donovan and T. G. Cotter, J. Immunol. Methods, 2002, 265, 49–72.
- 30 T. Ozben, J. Pharm. Sci., 2007, 96, 2181–2196.
- 31 M. Hayyan, M. A. Hashim and I. M. Alnashef, *Chem. Rev.*, 2016, **116**, 3029–3085.
- 32 M. J. Davies, *Biochim. Biophys. Acta Proteins Proteomics*, 2005, **1703**, 93–109.
- 33 S. B. Nimse and D. Pal, *RSC Adv.*, 2015, **5**, 27986–28006.
- 34 P. Sharma, A. B. Jha, R. S. Dubey and M. Pessarakli, *J. Bot.*, 2012, **2012**, 1–26.
- 35 P. Chelikani, I. Fita and P. C. Loewen, Cell. Mol. Life Sci., 2004, 61, 192–208.
- 36 A. Meister and M. E. Anderson, Ann. Rev. Biochem., 1983, **52**, 711–760.
- 37 F. Q. Schafer and G. R. Buettner, *Free Radic. Biol. Med.*, 2001, **30**, 1191–1212.
- 38 N. Couto, N. Malys, S. J. Gaskell and J. Barber, *J. Proteome Res.*, 2013, **12**, 2885–2894.
- 39 C. E. Ofoedu, L. You, C. M. Osuji, J. O. Iwouno, N. O. Kabuo, M. Ojukwu, I. M. Agunwah, J. S. Chacha, O. P. Muobike, A. O. Agunbiade, G. Sardo, G. Bono, C. O. R. Okpala and M. Korzeniowska, *Foods*, 2021, **10**, 699.
- 40 Y. P. A. de Oliveira, L. C. Pontes-de-Carvalho, R. D. Couto and A. A. Noronha-Dutra, *Brazilian J. Infect. Dis.*, 2017, **21**, 19–26.
- 41 F. Ahmadinejad, S. Geir Møller, M. Hashemzadeh-Chaleshtori, G. Bidkhori and M.-S. Jami, *Antioxidants*, 2017, **6**, 51.
- 42 Y. Liu, Q. Jia, Q. Guo, A. Jiang and J. Zhou, *Anal. Chem.*, 2017, **89**, 12299–12305.
- 43 D. Harman, J. Gerontol., 1956, **11**, 298–300.
- 44 H. C. Birnboim, *Carcinogenesis*, 1986, **7**, 1511–1517.
- 45 J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J. P. Pouget, J. L. Ravanat and S. Sauvaigo, *Mutat. Res.*, 1999, **424**, 9–21.
- 46 L. C. Colis, P. Raychaudhury and A. K. Basu, *Biochemistry*, 2008, **47**, 8070–8079.
- H. C. Box, E. E. Budzinski, J. D. Dawidzik, J. C. Wallace, S. Marianne, J. S. Gobey, H. C. Box, E. E. Budzinski, D. Dawidzik, C. Wallace, S. Evans and S. Gobey, *Radiat. Res.*, 2014, 145, 641–643.
- 48 A. Parent, A. Benjdia, A. Guillot, X. Kubiak, C. Balty, B. Lefranc, J. Leprince and O. Berteau, *J. Am. Chem. Soc.*, 2017, **140**, 2469–2477.
- 49 C. N. Hewitt and R. M. Harrison, *Atmos. Environ.*, 1985, **19**, 545–554.
- 50 S. Gligorovski, R. Strekowski, S. Barbati and D. Vione, Chem. Rev., 2015, 115, 13051-

13092.

- C. M. Spivakovsky, J. A. Logan, S. A. Montzka, Y. J. Balkanski, M. Foreman-Fowler, D. B. A. Jones, L. W. Horowitz, A. C. Fusco, C. A. M. Brenninkmeijer, M. J. Prather, S. C. Wofsy and M. B. McElroy, *J. Geophys. Res. Atmos.*, 2000, **105**, 8931–8980.
- 52 R. P. Adamsa and J. W. Wrightb, J. Essent. Oil Res., 2012, 24, 435–440.
- 53 H. J. Kim, K. Kim, N. S. Kim and D. S. Lee, J. Chromatogr. A, 2000, 902, 389–404.
- 54 H. Wittcoff and B. Reuben, *Industrial Organic Chemicals*, John Wiley, New York, NY, 1996.
- 55 R. E. Dunmore, J. R. Hopkins, R. T. Lidster, J. D. Lee, M. J. Evans, A. R. Rickard, A. C. Lewis and J. F. Hamilton, *Atmos. Chem. Phys.*, 2015, **15**, 9983–9996.
- 56 P. Ciccioli, E. Brancaleoni, R. Mabilia and A. Cecinato, *J. Chromatogr. A*, 1997, **777**, 267–274.
- 57 Master Chemical Mechanism, MCM v3.3.1 (Jenkin *et al.*, *Atmos. Environ.*, 1997, **31**, 81; Saunders *et al.*, *Atmos. Chem. Phys.*, 2003, **3**, 161; Jenkin *et al.*, *Atmos. Chem. Phys.*, 2015, **15**, 11433), http://mcm.york.ac.uk.
- 58 D. Zhang and R. Zhang, J. Chem. Phys., 2005, **122**, 114308.
- 59 M. Camredon, J. F. Hamilton, M. S. Alam, K. P. Wyche, T. Carr, I. R. White, P. S. Monks, A. R. Rickard and W. J. Bloss, *Atmos. Chem. Phys.*, 2010, **10**, 2893–2917.
- 60 S. D. Tetali, *Planta*, 2019, **249**, 1–8.
- 61 K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J. F. Müller, U. Kuhn, P. Stefani and W. Knorr, *Atmos. Chem. Phys.*, 2014, **14**, 9317–9341.
- A. Guenther, C. Nicholas Hewitt, E. David, R. Fall, G. Chris, G. Tom, H. Peter, L. Klinger, L. Manuel, W. A. Mckay, P. Tom, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor and P. Zimmerman, *J. Geophys. Res.*, 1995, **100**, 8873–8892.
- 63 G. I. Gkatzelis, M. M. Coggon, B. C. McDonald, J. Peischl, J. B. Gilman, K. C. Aikin, M. A. Robinson, F. Canonaco, A. S. H. Prevot, M. Trainer and C. Warneke, *Environ. Sci. Technol.*, 2021, **55**, 4332–4343.
- 64 C. Stönner, A. Edtbauer and J. Williams, *Indoor Air*, 2018, **28**, 164–172.
- M. Ehn, J. A. Thornton, E. Kleist, M. Sipilä, H. Junninen, I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee, F. Lopez-Hilfiker, S. Andres, I. H. Acir, M. Rissanen, T. Jokinen, S. Schobesberger, J. Kangasluoma, J. Kontkanen, T. Nieminen, T. Kurtén, L. B. Nielsen, S. Jørgensen, H. G. Kjaergaard, M. Canagaratna, M. D. Maso, T. Berndt, T. Petäjä, A. Wahner, V. M. Kerminen, M. Kulmala, D. R. Worsnop, J. Wildt and T. F. Mentel, *Nature*, 2014, **506**, 476–479.
- 66 A. Mutzel, L. Poulain, T. Berndt, Y. Iinuma, M. Rodigast, O. Böge, S. Richters, G. Spindler, M. Sipilä, T. Jokinen, M. Kulmala and H. Herrmann, *Environ. Sci. Technol.*, 2015, 49, 7754–7761.
- F. Bianchi, T. Kurtén, M. Riva, C. Mohr, M. P. Rissanen, P. Roldin, T. Berndt, J. D. Crounse, P. O. Wennberg, T. F. Mentel, J. Wildt, H. Junninen, T. Jokinen, M. Kulmala, D. R. Worsnop, J. A. Thornton, N. Donahue, H. G. Kjaergaard and M. Ehn, *Chem. Rev.*, 2019, **119**, 3472–3509.
- 68 D. Johnson and G. Marston, *Chem. Soc. Rev.*, 2008, **37**, 699–716.
- 69 R. Criegee, Angew. Chem. Int. Ed., 1975, **14**, 745–752.

- C. A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival and D. E. Shallcross, *J. Am. Chem. Soc.*, 2008, **130**, 11883–11885.
- 71 O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, *Science*, 2012, **335**, 204–207.
- 72 Y. Te Su, Y. H. Huang, H. A. Witek and Y. P. Lee, *Science*, 2013, **340**, 174–176.
- 73 M. J. Newland, A. R. Rickard, M. S. Alam, L. Vereecken, A. Muñoz, M. Ródenas and W. J. Bloss, *Phys. Chem. Chem. Phys.*, 2015, **17**, 4076–4088.
- 74 E. Zavoisky, J. Phys. USSR, 1945, 9, 211–245.
- 75 V. Parish, *NMR, NQR, EPR and Mössbauer Spectroscopy in Inorganic Chemistry*, Ellis Horwood Limited, Chichester, UK, 1990.
- 76 C. A. Rice-Evans, A. T. Diplock and M. C. R. Symons, in *Techniques in Free Radical Research*, Elsevier Science Publishers B.V., Amsterdam, 1991, pp. 51–100.
- 77 V. Chechik, E. Carter and D. Murphy, *Electron Paramagnetic Resonance*, Oxford University Press, Oxford, UK, 2016.
- A. Yamada, M. Abe, Y. Nishimura, S. Ishizaka, M. Namba, T. Nakashima, K. Shimoji and N. Hattori, *Beilstein J. Org. Chem.*, 2019, **15**, 863–873.
- A. C. Eslami, W. Pasanphan, B. A. Wagner and G. R. Buettner, *Chem. Cent. J.*, 2010, 4, 1–4.
- 80 D. Mihelcic, D. H. Ehhalt, G. F. Kulessa, J. Klomfass, M. Trainer, U. Schmidt and H. Röhrs, *Pure Appl. Geophys.*, 1978, **116**, 530–536.
- 81 D. Mihelcic, P. Müsgen and D. H. Ehhalt, J. Atmos. Chem., 1985, **3**, 341–361.
- 82 D. Mihelcic, D. Klemp, P. Müsgen, H. W. Pätz and A. Volz-Thomas, *J. Atmos. Ocean. Technol.*, 1993, **16**, 313–335.
- 83 E. G. Janzen, Acc. Chem. Res., 1971, 4, 31–40.
- 84 D. F. Church, Anal. Chem., 1994, 66, 419–427.
- 85 R. Kaptein and J. L. Oosterhoff, *Chem. Phys. Lett.*, 1969, **4**, 195–197.
- M. Goez, in Annual Reports on NMR Spectroscopy, Elsevier Ltd., 2009, vol. 66, pp. 77– 147.
- 87 C. Karunakaran, P. Santharaman and M. Balamurugan, *1H and 13C nuclear magnetic resonance spectroscopy*, Elsevier Inc., 2018.
- 88 O. A. Krumkacheva, V. R. Gorelik, E. G. Bagryanskaya, N. V. Lebedeva and M. D. E. Forbes, *Langmuir*, 2010, **26**, 8971–8980.
- J. A. McCloskey, *Mass Spectrometry*, Academic Press, San Diego, 1990.
- 90 J. R. Chapman, *Practical Organic Mass Spectrometry: A Guide for Chemical and Biological Analysis*, John Wiley, Chichester, UK, 1993.
- 91 E. de Hoffmann and V. Stroobant, *Mass Spectrometry: Principles and Applications*, John Wiley & Sons Ltd., Chichester, UK, 2007.
- 92 G. L. Glish and R. W. Vachet, *Nat. Rev. Drug Discov.*, 2003, **2**, 140–150.
- 93 F. W. McLafferty, Annu. Rev. Anal. Chem., 2011, 4, 1–22.

- 94 H. Awad, M. M. Khamis and A. El-Aneed, *Appl. Spectrosc. Rev.*, 2015, **50**, 158–175.
- 95 A. Gaudel-Siri, C. Marchal, V. Ledentu, D. Gigmes, D. Siri and L. Charles, *Eur. J. Mass Spectrom.*, 2019, **25**, 229–238.
- 96 M. J. Eirod, J. Phys. Chem. A, 1999, **103**, 4378–4384.
- 97 D. Hanson, J. Orlando, B. Nozière and E. Kosciuch, *Int. J. Mass Spectrom.*, 2004, **239**, 147–159.
- 98 B. Nozière and D. R. Hanson, J. Phys. Chem. A, 2017, **121**, 8453–8464.
- 99 B. Nozière and L. Vereecken, *Angew. Chem. Int. Ed.*, 2019, **58**, 13976–13982.
- 100 C. Zhu, K. Kawamura and B. Kunwar, *Atmos. Chem. Phys.*, 2015, **15**, 1959–1973.
- 101 H.-H. Perkampus, UV-Vis Spectroscopy and Its Applications, Springer-Verlag, New York, 1992.
- 102 J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, Springer, New York, 2006.
- 103 A. Celebioglu and T. Uyar, J. Agric. Food Chem., 2017, 65, 5404–5412.
- 104 Y. Beldjoudi, M. A. Nascimento, Y. J. Cho, H. Yu, H. Aziz, D. Tonouchi, K. Eguchi, M. M. Matsushita, K. Awaga, I. Osorio-Roman, C. P. Constantinides and J. M. Rawson, J. Am. Chem. Soc., 2018, 140, 6260–6270.
- 105 V. Sick and N. Wermuth, *Appl. Phys. B Lasers Opt.*, 2004, **79**, 139–143.
- 106 X. Ren, H. Harder, M. Martinez, I. C. Faloona, D. Tan, R. L. Lesher, P. Di Carlo, J. B. Simpas and W. H. Brune, *J. Atmos. Chem.*, 2004, **47**, 169–190.
- 107 D. E. Heard, Annu. Rev. Phys. Chem., 2006, 57, 191–216.
- 108 D. Stone, L. K. Whalley and D. E. Heard, *Chem. Soc. Rev.*, 2012, **41**, 6348–6404.
- 109 Y. Gong and L. Andrews, J. Phys. Chem. A, 2011, 115, 3029–3033.
- 110 H. Li, Y. Cheng, H. Tang, Y. Bi, Y. Chen, G. Yang, S. Guo, S. Tian, J. Liao, X. Lv, S. Zeng, M. Zhu, C. Xu, J. X. Cheng and P. Wang, *Adv. Sci.*, 2020, **7**, 1903644.
- 111 A. Saiz-Lopez, A. S. Mahajan, R. A. Salmon, S. J. B. Bauguitte, A. E. Jones, H. K. Roscoe and J. M. C. Plane, *Science*, 2007, **317**, 348–351.
- 112 M. Sangwan and L. Zhu, J. Phys. Chem. A, 2018, **122**, 1861–1872.
- 113 N. Wei, B. Fang, W. Zhao, C. Wang, N. Yang, W. Zhang, W. Chen and C. Fittschen, *Anal. Chem.*, 2020, **92**, 4334–4339.
- 114 P. L. Zamora and F. A. Villamena, J. Phys. Chem. A, 2012, **116**, 7210–7218.
- 115 M. Pelletier, V. Lavastre and D. Girard, *Toxicol. Sci.*, 2002, **69**, 210–216.
- 116 F. Poulhès, E. Rizzato, P. Bernasconi, R. Rosas, S. Viel, L. Jicsinszky, A. Rockenbauer, D. Bardelang, D. Siri, A. Gaudel-Siri, H. Karoui, M. Hardy and O. Ouari, *Org. Biomol. Chem.*, 2017, **15**, 6358–6366.
- 117 M. Cassien, C. Petrocchi, S. Thétiot-Laurent, M. Robin, E. Ricquebourg, C. Kandouli, A. Asteian, A. Rockenbauer, A. Mercier, M. Culcasi and S. Pietri, *Eur. J. Med. Chem.*, 2016, **119**, 197–217.
- 118 K. Abbas, M. Hardy, F. Poulhès, H. Karoui, P. Tordo, O. Ouari and F. Peyrot, *Free Radic. Biol. Med.*, 2014, **71**, 281–290.

- 119 M. A. Rudat and C. N. McEwen, J. Am. Chem. Soc., 1981, **103**, 4349–4354.
- 120 H. Iwahashi, C. E. Parker, R. P. Mason and K. B. Tomer, *Rapid Commun. Mass Spectrom.*, 1990, **4**, 352–354.
- 121 C. E. Parker, H. Iwahashi and K. B. Tomer, *J. Am. Soc. Mass Spectrom.*, 1991, **2**, 413–418.
- 122 Q. Guo, S. Y. Qian and R. P. Mason, J. Am. Soc. Mass Spectrom., 2003, 14, 862–871.
- 123 P. Domingues, C. Fonseca, A. Reis and M. R. M. Domingues, *Biomed. Chromatogr.*, 2012, **26**, 51–60.
- 124 Y. Wang, M. Liu, Y. Zhu, K. Cheng, W. Da, B. Liu and F. Li, *Talanta*, 2016, **160**, 106–112.
- 125 C. Giorio, S. J. Campbell, M. Bruschi, F. Tampieri, A. Barbon, A. Toffoletti, A. Tapparo, C. Paijens, A. J. Wedlake, P. Grice, D. J. Howe and M. Kalberer, *J. Am. Chem. Soc.*, 2017, **139**, 3999–4008.
- 126 A. Zaytsev, M. Breitenlechner, A. Novelli, H. Fuchs, D. Knopf, J. Kroll and F. Keutsch, *Atmos. Meas. Tech. Discuss.*, 2020, **14**, 1–20.
- 127 F. Leinisch, J. Jiang, E. F. Derose, V. V. Khramtsov and R. P. Mason, *Free Radic. Biol. Med.*, 2013, **65**, 1497–1505.
- 128 S. Pou, D. J. Hassett, B. E. Britigan, M. S. Cohen and G. M. Rosen, *Anal. Biochem.*, 1989, **177**, 1–6.
- 129 G. R. Buettner and L. W. Oberley, *Biochem. Biophys. Res. Commun.*, 1978, 83, 69–74.
- 130 N. Sankuratri, Y. Kotake and E. G. Janzen, *Free Radic. Biol. Med.*, 1996, **21**, 889–894.
- 131 N. Khan, C. M. Wilmot, G. M. Rosen, E. Demidenko, J. Sun, J. Joseph, J. O'Hara, B. Kalyanaraman and H. M. Swartz, *Free Radic. Biol. Med.*, 2003, **34**, 1473–1481.
- 132 K. Stolze, N. Udilova, T. Rosenau, A. Hofinger and H. Nohl, *Biochem. Pharmacol.*, 2003, **66**, 1717–1726.
- 133 T. Vogler and A. Studer, *Synthesis*, 2008, **13**, 1979–1993.
- 134 Y. Matsuoka, Y. Izumi, M. Takahashi, T. Bamba and K. Yamada, *Anal. Chem.*, 2020, **92**, 6993–7002.
- 135 X. F. Xia, S. L. Zhu, Y. N. Niu, D. Zhang, X. Liu and H. Wang, *Tetrahedron*, 2016, **72**, 3068–3072.
- 136 H. Yan, G. Rong, D. Liu, Y. Zheng, J. Chen and J. Mao, *Org. Lett.*, 2014, **16**, 6306–6309.
- 137 A. P. Dobbs, P. Jones, M. J. Penny and S. E. Rigby, *Tetrahedron*, 2009, **65**, 5271–5277.
- 138 P. J. Wright and A. M. English, *J. Am. Chem. Soc.*, 2003, **125**, 8655–8665.
- 139 Y. R. Luo, *Comprehensive Handbook of Chemical Bond Energies*, CRC Press, Boca Raton, FL, 2007.
- 140 D. H. R. Barton, V. N. Le Gloahec and J. Smith, *Tetrahedron Lett.*, 1998, **39**, 7483–7486.
- 141 C. D. Cook and R. C. Woodworth, J. Am. Chem. Soc., 1953, 75, 6242–6244.
- 142 V. A. Khizhnyi and G. A. Goloverda, *Teor Eksperim Khim*, 1988, **24**, 154–159.
- 143 P. Griva and E. T. Dexisov, Int. J. Chem. Kinet., 1973, 5, 869–877.
- 144 M. A. DaRooge and L. R. Mahoney, J. Org. Chem., 1967, 32, 1–6.
- 145 M. Tomita, T. Okuyama, S. Watanabe and H. Watanabe, *Arch. Toxicol.*, 1994, **68**, 428–433.
- 146 X. Yang, M. Zhan, L. Kong and L. Wang, J. Environ. Sci., 2004, 16, 687–689.
- 147 H. Jian, Chinese J. Chem., 2005, 23, 1273–1274.
- 148 H. Karoui, F. Le Moigne, O. Ouari and P. Tordo, in Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, ed. R. G. Hicks, John Wiley & Sons, Inc., 2010, vol. 12, pp. 173–229.
- 149 E. G. Bagryanskaya and S. R. A. Marque, Chem. Rev., 2014, 114, 5011–5056.
- 150 Y.-M. Dang and X.-Q. Guo, Appl. Spectrosc., 2006, 60, 203–207.
- 151 R. Toba, H. Gotoh and K. Sakakibara, *Org. Lett.*, 2014, **16**, 3868–3871.
- 152 A. Grantham, PhD thesis, University of York, 2017.
- 153 J. F. Van Humbeck, S. P. Simonovich, R. R. Knowles and D. W. C. Macmillan, *J. Am. Chem. Soc. Commun.*, 2010, **132**, 10012–10014.
- 154 M. E. Jenkin, T. P. Murrells, S. J. Shalliker and G. D. Hayman, *J. Chem. Soc. Faraday Trans.*, 1993, **89**, 433–446.
- 155 T. Wang, G. Kehr, L. Liu, S. Grimme, C. G. Daniliuc and G. Erker, *J. Am. Chem. Soc.*, 2016, **138**, 4302–4305.
- 156 D. E. Bergbreiter and B. Walchuk, *Macromolecules*, 1998, **31**, 6380–6382.
- 157 O. Ito, Y. Arito and M. Matsuda, J. Chem. Soc. Perkin Trans. 2, 1988, 869–873.
- 158 A. M. Tsedilin, A. N. Fakhrutdinov, D. B. Eremin, S. S. Zalesskiy, A. O. Chizhov, N. G. Kolotyrkina and V. P. Ananikov, *Mendeleev Commun.*, 2015, **25**, 454–456.
- 159 S. J. Gaskell, J. Mass Spectrom., 1997, **32**, 677–688.
- 160 S. Banerjee and S. Mazumdar, Int. J. Anal. Chem., 2012, 2012, 1–40.
- 161 P. Liigand, J. Liigand, K. Kaupmees and A. Kruve, *Anal. Chim. Acta*, 2021, **1152**, 238117.
- 162 S. Indelicato, D. Bongiorno and L. Ceraulo, *Front. Chem.*, 2021, **8**, 1–6.
- 163 F. W. McLafferty, Acc. Chem. Res., 1980, **13**, 33–39.
- 164 J. J. Coon, J. E. P. Syka, J. Shabanowitz and D. F. Hunt, *Biotechniques*, 2005, **38**, 519– 523.
- 165 A. R. Johnson and E. E. Carlson, Anal. Chem., 2015, 87, 10668–10678.
- 166 J. F. Parcher, M. Wang, A. G. Chittiboyina and I. A. Khan, *Drug Test. Anal.*, 2018, **10**, 28–36.
- 167 J. W. Flora, J. C. Hannis and D. C. Muddiman, *Anal. Chem.*, 2001, **73**, 1247–1251.
- 168 K. A. Herrmann, A. Somogyi, V. H. Wysocki, L. Drahos and K. Vekey, *Anal. Chem.*, 2005, **77**, 7626–7638.

- 169 W. A. Korfmacher, Drug Discov. Today, 2005, 10, 1357–1367.
- 170 J. J. Pitt, Clin. Biochem. Rev., 2009, 30, 19–34.
- 171 N. A. Pratima, Arch. Org. Inorg. Chem. Sci., 2018, 1, 26–34.
- 172 I. M. Klotz and B. H. Frank, J. Am. Chem. Soc., 1965, 87, 2721–2728.
- 173 N. Hogg, J. Biol. Chem., 1996, 271, 6000–6009.
- 174 L. Engman, J. Lind and G. Merényi, *J. Phys. Chem.*, 1994, **98**, 3174–3182.
- 175 P. Carloni, E. Damiani, M. Iacussi, L. Greci, P. Stipa, D. Cauzi, C. Rizzoli and P. Sgarabotto, *Tetrahedron*, 1995, **51**, 12445–12452.
- 176 M. Méndez, J. S. Francisco and D. A. Dixon, *Chem. Eur. J.*, 2014, **20**, 10231–10235.
- 177 D. H. R. Barton and J. M. Beaton, J. Am. Chem. Soc., 1961, 83, 4083–4089.
- 178 D. R. Barton, J. M. Beaton, L. E. Geller and M. M. Pechet, J. Am. Chem. Soc., 1961, 83, 4076–4083.
- 179 D. H. R. Barton, R. H. Hesse, M. M. Pechet and L. C. Smith, *J. Chem. Soc., Perkin Trans.* 1, 1979, 1159–1165.
- 180 M. Akhtar and M. M. Pechet, *J. Am. Chem. Soc.*, 1964, **86**, 265–268.
- 181 A. W. Hofmann, *Chem. Ber.*, 1885, **18**, 109–131.
- 182 K. Löffler and C. Freytag, *Chem. Ber.*, 1909, **42**, 3427–3431.
- 183 E. J. Corey and W. R. Hertler, *J. Am. Chem. Soc.*, 1960, **82**, 1657–1668.
- 184 C. Martínez and K. Muñiz, *Angew. Chem. Int. Ed.*, 2015, **54**, 8287–8291.
- 185 P. Becker, T. Duhamel, C. J. Stein, M. Reiher and K. Muñiz, *Angew. Chem. Int. Ed.*, 2017, **56**, 8004–8008.
- 186 P. Becker, T. Duhamel, C. Martínez and K. Muñiz, *Angew. Chem. Int. Ed.*, 2018, **57**, 5166–5170.
- 187 S. Shkunnikova, H. Zipse and D. Šakić, Org. Biomol. Chem., 2021, **19**, 854–865.
- 188 A. Artaryan, A. Mardyukov, K. Kulbitski, I. Avigdori, G. A. Nisnevich, P. R. Schreiner and M. Gandelman, *J. Org. Chem.*, 2017, **82**, 7093–7100.
- A. E. Bosnidou, T. Duhamel and K. Muñiz, *European J. Org. Chem.*, 2020, 6361–6365.
- 190 S. Wawzonek and P. J. Thelen, J. Am. Chem. Soc., 1950, 72, 2118–2120.
- 191 A. Borodine, Justus Liebigs Ann. Chem., 1861, **119**, 121–123.
- 192 H. Hunsdiecker and C. Hunsdiecker, *Berichte der Dtsch. Chem. Gesellschaft*, 1942, **75**, 291–297.
- 193 R. G. Johnson and R. K. Ingham, Chem. Rev., 1956, 56, 219–269.
- 194 J. A. den Hollander and J. P. M. van der Ploeg, Tetrahedron, 1976, 32, 2433–2436.
- 195 J. W. Hilborn and J. A. Pincock, J. Am. Chem. Soc., 1991, **113**, 2683–2686.
- 196 A. Bhattacherjee, M. Sneha, L. Lewis-Borrell, O. Tau, I. P. Clark and A. J. Orr-Ewing, *Nat. Commun.*, 2019, **10**, 1–7.
- 197 J. C. Bevington and J. Leech, *Eur. Polym. J.*, 1980, **16**, 917–920.

- 198 J. Chateauneuf, J. Lusztyk and K. U. Ingold, J. Am. Chem. Soc., 1987, 109, 897–899.
- 199 J. Chateauneuf, J. Lusztyk and K. U. Ingold, *J. Am. Chem. Soc.*, 1988, **110**, 2886–2893.
- 200 Y. Wang, W. Wang, R. Tang, Z. Liu, W. Tao and Z. Fang, Org. Biomol. Chem., 2018, 16, 7782–7786.
- 201 G. J. P. Perry, J. M. Quibell, A. Panigrahi and I. Larrosa, *J. Am. Chem. Soc.*, 2017, **139**, 11527–11536.
- 202 L. Buzzetti, G. E. M. Crisenza and P. Melchiorre, *Angew. Chem. Int. Ed.*, 2019, **58**, 3730–3747.
- 203 J. R. Donald and S. L. Berrell, *Chem. Sci.*, 2019, **10**, 5832–5836.
- 204 B. H. Northrop and R. N. Coffey, J. Am. Chem. Soc., 2012, **134**, 13804–13817.
- 205 E. L. Tyson, M. S. Ament and T. P. Yoon, J. Org. Chem., 2013, 78, 2046–2050.
- 206 C. M. Q. Le, F. Morlet-Savary and A. Chemtob, *Polym. Chem.*, 2021, **12**, 6594–6605.
- 207 J. C. Ianni, Kintecus, Windows Version 6.50, www.kintecus.com.
- 208 V. Fındık, I. Degirmenci, Ş. Çatak and V. Aviyente, *Eur. Polym. J.*, 2019, **110**, 211–220.
- 209 G. S. Prementine and D. A. Tirrell, *Macromolecules*, 1989, 22, 52–55.
- 210 J. Chateauneuf, J. Lusztyk and K. U. Ingold, J. Org. Chem., 1988, 53, 1629–1632.
- 211 I. Degirmenci and M. L. Coote, J. Phys. Chem. A, 2016, **120**, 7398–7403.
- H. E. Ho, A. Pagano, J. A. Rossi-Ashton, J. R. Donald, R. G. Epton, J. C. Churchill, M. J. James, P. O'Brien, R. J. K. Taylor and W. P. Unsworth, *Chem. Sci.*, 2020, **11**, 1353–1360.
- 213 M. S. Cooke, M. D. Evans, M. Dizdaroglu and J. Lunec, *FASEB J.*, 2003, **17**, 1195–1214.
- 214 B. Halliwell, *Biochem. J.*, 2007, **401**, 1–11.
- 215 M. Dizdaroglu and P. Jaruga, *Free Radic. Res.*, 2012, **46**, 382–419.
- J. Cadet and J. Richard Wagner, Cold Spring Harb. Perspect. Biol., 2013, 5, 1–18.
- 217 G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, *J. Phys. Chem. Ref. Data*, 1988, **17**, 513–886.
- 218 L. M. Smith, H. M. Aitken and M. L. Coote, Acc. Chem. Res., 2018, 51, 2006–2013.
- 219 M. Dorfman L. and E. Adams G., *Reactivity of the Hydroxyl Radical in Aqueous Solutions*, Columbus, OH, 1973.
- 220 B. Maillard, K. U. Ingold and J. C. Scaiano, J. Am. Chem. Soc., 1983, **105**, 5095–5099.
- 221 P. Neta, R. E. Huie and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 1027–1284.
- 222 S. Korcek, J. H. B. Chenier, J. A. Howard and K. U. Ingold, *Can. J. Chem.*, 1972, **50**, 2285–2297.
- 223 J. K. Thomas, J. Phys. Chem., 1967, 71, 1919–1925.
- 224 K. Münger and H. Fischer, *Int. J. Chem. Kinet.*, 1985, **17**, 809–829.
- H. Rubin, PhD Thesis, University of Zurich, 1993.

- 226 J. A. Howard, Can. J. Chem., 1972, 50, 2298–2304.
- 227 P. Koelewijn, Recl. des Trav. Chim. des Pays-Bas, 1972, 91, 759–779.
- 228 P. C. Wong, D. Griller and J. C. Scaiano, J. Am. Chem. Soc., 1982, **104**, 5106–5108.
- C. Wang, Z. Wang, B. Zeng, M. Zheng, N. Xiao and Z. Zhao, *Chem. Commun.*, 2021, 57, 12293–12296.
- 230 I. H. Madshus, *Biochem. J.*, 1988, **250**, 1–8.
- A. Fischbacher, C. von Sonntag and T. C. Schmidt, *Chemosphere*, 2017, **182**, 738–744.
- 232 M. Kimura, M. Tohma and T. Tomita, *Chem. Pharm. Bull.*, 1972, **20**, 2185–2190.
- 233 J. Woodward, K. W. Lennon, G. Zanin, M. Wagner and M. A. Scott, *Biotechnol. Lett.*, 1985, **7**, 197–202.
- 234 S.-S. Liang, Y.-L. Shiue, C.-J. Kuo, S.-E. Guo, W.-T. Liao and E.-M. Tsai, *Sci. World J.*, 2013, 189162.
- 235 C. P. Rao and K. Geetha, *BioMetals*, 1994, 7, 25–29.
- 236 Y. S.H., Y. H. and J. P., Handbook of Aqueous Solubility Data, CRC Press, 2010.
- J. Cadet and J. R. Wagner, Cold Spring Harb. Perspect. Biol., 2013, 5, 1–18.
- 238 C. L. Hawkins and M. J. Davies, *Biochim. Biophys. Acta Bioenerg.*, 2001, **1504**, 196–219.
- 239 A. E. Counterman, A. E. Hilderbrand, C. A. Srebalus Barnes and D. E. Clemmer, *J. Am. Soc. Mass Spectrom.*, 2001, **12**, 1020–1035.
- 240 M. N. Schuchmann and C. Von Sonntag, *J. Chem. Soc. Perkin Trans.* 2, 1977, 1958–1963.
- 241 R. A. M. Vreeburg, O. B. Airianah and S. C. Fry, *Biochem. J.*, 2014, 463, 225–237.
- 242 A. Matros, D. Peshev, M. Peukert, H. P. Mock and W. Van Den Ende, *Plant J.*, 2015, **82**, 822–839.
- 243 W. D. Kumler and T. C. Daniels, J. Am. Chem. Soc., 1935, 57, 1929–1930.
- 244 D. J. Stewart, S. H. Almabrok, J. P. Lockhart, O. M. Mohamed, D. R. Nutt, C. Pfrang and G. Marston, *Atmos. Environ.*, 2013, **70**, 227–235.
- 245 D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker and J. Warnatz, *J. Phys. Chem. Ref. Data*, 2005, **34**, 757–1397.
- 246 R. X. Fernandes, K. Luther and J. Troe, J. Phys. Chem. A, 2006, **110**, 4442–4449.
- 247 N. M. Panich and B. G. Ershov, J. Mol. Liq., 2021, **340**, 117318.
- 248 A. Hansel, W. Scholz, B. Mentler, L. Fischer and T. Berndt, *Atmos. Environ.*, 2018, **186**, 248–255.
- 249 L. Vereecken and J. Peeters, J. Phys. Chem. A, 2004, 108, 5197–5204.
- 250 V. K. Yadav and K. G. Babu, European J. Org. Chem., 2005, 452–456.
- 251 L. Vereecken, J. F. Müller and J. Peeters, *Phys. Chem. Chem. Phys.*, 2007, **9**, 5241– 5248.

- 252 T. Berndt, S. Richters, T. Jokinen, N. Hyttinen, T. Kurtén, R. V. Otkjær, H. G. Kjaergaard, F. Stratmann, H. Herrmann, M. Sipilä, M. Kulmala and M. Ehn, *Nat. Commun.*, 2016, **7**, 1–8.
- 253 T. Jokinen, T. Berndt, R. Makkonen, V. M. Kerminen, H. Junninen, P. Paasonen, F. Stratmann, H. Herrmann, A. B. Guenther, D. R. Worsnop, M. Kulmala, M. Ehn and M. Sipilä, *Proc. Natl. Acad. Sci. U. S. A.*, 2015, **112**, 7123–7128.
- J. Kirkby, J. Duplissy, K. Sengupta, C. Frege, H. Gordon, C. Williamson, M. Heinritzi, M. Simon, C. Yan, J. Almeida, J. Trostl, T. Nieminen, I. K. Ortega, R. Wagner, A. Adamov, A. Amorim, A. K. Bernhammer, F. Bianchi, M. Breitenlechner, S. Brilke, X. Chen, J. Craven, A. Dias, S. Ehrhart, R. C. Flagan, A. Franchin, C. Fuchs, R. Guida, J. Hakala, C. R. Hoyle, T. Jokinen, H. Junninen, J. Kangasluoma, J. Kim, M. Krapf, A. Kurten, A. Laaksonen, K. Lehtipalo, V. Makhmutov, S. Mathot, U. Molteni, A. Onnela, O. Perakyla, F. Piel, T. Petaja, A. P. Praplan, K. Pringle, A. Rap, N. A. D. Richards, I. Riipinen, M. P. Rissanen, L. Rondo, N. Sarnela, S. Schobesberger, C. E. Scott, J. H. Seinfeld, M. Sipila, G. Steiner, Y. Stozhkov, F. Stratmann, A. Tomé, A. Virtanen, A. L. Vogel, A. C. Wagner, P. E. Wagner, E. Weingartner, D. Wimmer, P. M. Winkler, P. Ye, X. Zhang, A. Hansel, J. Dommen, N. M. Donahue, D. R. Worsnop, U. Baltensperger, M. Kulmala, K. S. Carslaw and J. Curtius, *Nature*, 2016, **533**, 521–526.
- 255 J. Peeters, L. Vereecken and G. Fantechi, *Phys. Chem. Chem. Phys.*, 2001, **3**, 5489– 5504.
- 256 A. Zaytsev, M. Breitenlechner, A. Novelli, H. Fuchs, D. A. Knopf, J. H. Kroll and F. N. Keutsch, *Atmos. Meas. Tech.*, 2021, **14**, 2501–2513.
- 257 E. S. C. Kwok and Atkinson, *Science*, 1995, **29**, 1685–1695.
- 258 J. W. Raymonda and W. T. Simpson, J. Chem. Phys., 1967, 47, 430–448.
- 259 M. S. Alam, A. R. Rickard, M. Camredon, K. P. Wyche, T. Carr, K. E. Hornsby, P. S. Monks and W. J. Bloss, *J. Phys. Chem. A*, 2013, **117**, 12468–12483.
- 260 L. Onel, A. Brennan, P. W. Seakins, L. Whalley and D. E. Heard, *Atmos. Meas. Tech.*, 2017, **10**, 3985–4000.
- 261 S. Goldstein and A. Samuni, J. Phys. Chem. A, 2007, **111**, 1066–1072.
- 262 L. Whalley, E. Slater, C. Ye, R. Woodward-Massey, J. Lee, F. Squires, J. Hopkins, R. Dunmore, J. Hamilton, A. Lewis, L. Crilley, L. Kramer, W. Bloss and D. Heard, *Geophys. Res. Abstr.*, 2018, **20**, 7409.
- 263 L. P. E. Yunker, Z. Ahmadi, J. R. Logan, W. Wu, T. Li, A. Martindale, A. G. Oliver and J. S. McIndoe, *Organometallics*, 2018, **37**, 4297–4308.
- 264 L. E. Greene, R. Lincoln and G. Cosa, J. Am. Chem. Soc., 2017, **139**, 15801–15811.
- 265 M. Braun, U. Hartnagel, E. Ravanelli, B. Schade, C. Böttcher, O. Vostrowsky and A. Hirsch, *European J. Org. Chem.*, 2004, 1983–2001.
- 266 X. Chen, L. Henschke, Q. Wu, K. Muthoosamy, B. Neumann and T. Weil, *Org. Biomol. Chem.*, 2013, **11**, 353–361.
- 267 R. Göttlich, *Synthesis*, 2000, **11**, 1561–1564.
- 268 S. Pandiancherri and D. W. Lupton, *Tetrahedron Lett.*, 2011, **52**, 671–674.
- 269 Y. Xie, M. Sun, H. Zhou, Q. Cao, K. Gao, C. Niu and H. Yang, *J. Org. Chem.*, 2013, **78**, 10251–10263.

- 270 S. L. Titouani, J.-P. Lavergne, P. Viallefont and R. Jacquier, *Tetrahedron*, 1980, **36**, 2961–2965.
- 271 J. Cason, M. J. Kalm and R. H. Mills, J. Org. Chem., 1953, 18, 1670–1674.
- 272 H. Merten and H. Gilman, J. Am. Chem. Soc., 1954, 76, 5798–5799.
- 273 H. J. Perera, H. Mortazavian and F. D. Blum, *Langmuir*, 2017, **33**, 2799–2809.
- 274 J. Ortega, C. González and S. Galván, J. Chem. Eng. Data, 2001, 46, 904–912.