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Abstract

This thesis presents an exploration of population growth via simulation in software to as-

certain if a massively parallel hardware system can manage applications running within.

Task execution happens dynamically and is controlled by the growth mechanism imple-

menting efficient mapping in simulation.

Algorithms that provide population simulation models are often inspired by those

evidenced in biology and in particular those of cellular automata and L-systems. These

algorithms are of particular interest due to their complexity and self-replication and

recent research has shown that it is the refinement of the biological methodology that

has resulted in their complexity. Further to this, adaptation of the design has moved the

algorithm on towards being able to organize and build itself from a single cell. A growth

model is utilized in software systems to provide production of meaningful data. The

development of bio-inspired software is constrained by using contemporary processor

architectures.
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1. Introduction

Currently there is a problem of how computational tasks maps to multiple processors,

for example many-core System on Chip (SoC) with Network on Chip (NoC) within

a multiple Field Programmable Gate Array (FPGA) environment. The problem is the

issue of task allocation and tasks spawning on multiple cores. NoC, SoC and FPGA‘s

are examples of a general problem. We address a high level view of this problem in this

thesis using these hardware environments as inspiring examples.

In search of the solution to the defined issue with task allocation, a distributed, bio-

inspired approach is used, relying upon rule-based local neighbourhood algorithms

within a two dimensional (2D) simulation. It is possible to develop algorithms for

growth and movement that are both decentralised and dynamic for a single agent and

multiple agents across an m * n grid. These algorithms will be applied to software pro-

cesses which have the ability to grow, move and spawn further processes in a dynamic

and discrete way. Each process will be applied to a single core with all processes oper-

ating in parallel. This will allow the question of how the size of the neighbourhood and

complexity of neighbour selection affect the agent’s growth pattern to be explored.

In the Field Survey and Review we focus upon several bio-inspired algorithms that

may be applicable for direct implementation onto a FPGA. An examination of the de-

velopments involving application of such algorithms allows their adaptation in order to

fulfil the cellular computation requirements of this work. This examination will also

provide methods for implementation on embedded hardware and the Architecture Sec-

tion is retained in the review so as to provide the selection basis for the simulations that

have been carried out.
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1.1. Research Outcomes

Local neighbourhood algorithms using the objective of task mapping to a many-core

system are investigated by simulation and based upon the results in chapters 5 and 6

a hierarchy of of neighbourhoods is identified that are suitable, dependant upon circuit

complexity for implementation in hardware. These neighbourhoods types are: von Neu-

mann; classical, extended and user defined. Similarly Moore classical and extended and

Radial extended. The complexity of each neighbourhood type using the concept that the

simulation link between nodes is directly transposed to the circuit wires in a hardware

implementation. Moore neighbourhood in figure 7.3 is obviously more complex than

the von Neumann one in figure 7.2. We also show that fault tolerance can readily be

implemented by placing a flag on any defective core preventing its use once identified.

2



1.2. Thesis Structure

Chapter 2 Field Survey and Review explores current research for task mapping and task

spawning on many-core systems.

Chapter 3 Research Question is what is researched in this thesis.

Chapter 4 Simulation Methodology describes how the simulation tools are used to

gather the research data.

Chapter 5 Simulation experiment using L-systems algorithm is preliminary research

from a time when it was intended to implement this in hardware.

Chapter 6 Simulation experiments that apply MASON Toolkit is the main research area

for this thesis

Chapter 7 Conclusions and Future Work discuses the results of this thesis and suggests

areas worthy of future research.

Appendix A JAVA Code.

Appendix B Moore and von Neumann heat-maps.

Appendix C Other figures.

Appendix D Google shared drive for media and link to observe simulation films.
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2. Field Survey and Review

In the Field Survey and Review we focus upon several Rewriting Systems algorithms,

possibly from the bio-inspired area that may be applicable for direct implementation

onto a FPGA. Examining what developments have been undertaken in application of

these algorithms and identifying how they may assist us in developing them in to a

form to suit our cellular computation requirements. Also we will examine methods of

implementation on embedded hardware as justification for the final simulations that are

undertaken.

2.1. Computer hardware

Architectures

For this review of processor architectures we take a high level view exploring the

attributes of the system visible to the programmer such as the instruction set. This allows

the identification of the architectures that are more suitable for parallel processing rather

than sequential operation. We will draw upon some low level designs by Corporaal

[14], Perrier [62] and Mudry [57] to assist in creating co-processors for multi-parallel

operation.

2.1.1. Basic architectures

The bio-inspired algorithms when modelling growth creates very large data sets and

needs a high amount of computational resources, they can also take a long time to pro-

cess. However when parallel processing is used this can both reduce the time taken and

improve the final outcomes. There are a number of architectures that could be consid-
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ered for parallel processing and these are explored in the following section. Flynn’s tax-

onomy [82] as shown in table 2.1 classifies computer architectures and are based upon

the number of concurrent instruction and data streams available in the architecture.

Table 2.1.: Flynn’s taxonomy, 1966.

Single instruction Multiple instruction
Single data SISD MISD
Multiple data SIMD MIMD

Single Instruction Single Data (SISD) stream [29] is the oldest computer type and no

longer available.

Single Instruction Multiple Data (SIMD) stream which operates on a lockstep basis

when given an instruction sequence which is applied to multiple items of distinct data

at the same time then the calculations are completed in parallel . These are typical in

operations carried out by a graphics processing unit. Lockstep causes all of the proces-

sors to synchronously operate on a global clock tick. When there is no data suitable for

parallelisation then the processor operates sequentially and array processors are in this

group [34].

Single program multiple data (SPMD) is a later addition to those of Flynn and was

proposed by Darema [16] at IBM in 1984. Programs emphasize parallelism at the sub

program level rather than at the instruction level. SPMD operates asynchronously by

running the same program on different data using a MIMD machine.

Multiple Instruction Multiple Data (MIMD) stream has a set of processors which simul-

taneously execute different instruction sequences on different data sets at the same time.

The MIMD may have a shared memory multi-processor or a distributed memory com-

puter and involves multiple control units as well as multiple execution units [29, 34].

MIMD computers with shared memory are known as multiprocessors or tightly cou-

pled machines, those with an interconnection network are known as multicomputers or

loosely coupled machines[15, 17].
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Multiple Instruction Single Data (MISD) is a type of parallel computing architecture

where fault tolerant computers which execute the same instruction in parallel to detect

any differences in the result. This model is not in general use.

Pipelining is a means of introducing parallelism into the essentially sequential nature of

a machine instruction program. Each instruction is broken down into a fetch - execute

cycle and steps through the pipeline, subsequent instructions are processed in turn but

are only one step behind each other rather than a full set of steps. This allows the pro-

cessor to maximise the instruction throughput. Distributed memory computer such as in

a MIMD type is known as an interconnection network or distributed system, where each

processor has its own private local memory with no shared memory. Data must be able

to communicate between processors. Granularity has different definitions for parallel

computing and reconfigurable computing. In the first instance, it means a qualitative

measure of the ratio of computation to communication. Coarse-grained: large amounts

of computation are done between data communication events. Fine-grained: individual

tasks are relatively small in terms of code size and execution time. Data is transferred

between processors in one or very few memory words. In the latter instance granularity

refers to data path width. Fine-grained: in an FPGA the configurable logic block one

bit wide processing elements and Coarse-grained: 32bit wide data paths such as used

by a microprocessor CPU.

From this we can see that there are several main techniques to implementing parallel

processing which can be implemented independently or combined:

• Multiprocessor system.

• Pipelining.

These architectures can also be based upon Multi-Processor Systems (MPSoC) which

are discussed in the next section.

Multi-core processor A multi-core processor is a computer processor on a single in-

tegrated circuit with two or more separate processing units, called cores, each of which
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reads and executes program instructions. The instructions are ordinarily CPU instruc-

tions, such as add, move data, and branch, but the single processor can run instructions

on separate cores at the same time, increasing overall speed for programs that support

multi-threading or other parallel computing techniques.

2.1.2. Multiprocessor Systems

System-on Chip (SoC), is an electronic circuit that implements most or all of the func-

tions of complete electronic system. An MPSoC is a system-on-chip that contains mul-

tiple instruction-set processors Central processing Unit (CPU). Software design is an

overall part of the chip design.

SoC constrains [35] that don’t apply to general computing are;

• Must perform real-time computations.

• Must be area efficient.

• Must be energy efficient.

• Must provide the proper I/O connections.

SoC’s can be compiled onto FPGA’s as they have all of these constraints built-in.

Implementation of SoC’s onto FPGA’s is a wide field of research but they are viable

currently for custom logic.

Network on a chip

A network on a chip (NoC) is a network based communications subsystem on an inte-

grated circuit, most typically between modules in a System on Chip (SoC).

Networks-on-Chips (NoC) use packet networks to interconnect the processors in the

SoC. MPSoC’s can be connected in large numbers over a network to create distributed

systems and consideration should be given to security in the design process [35, 34, 29].
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Given that the proposed hardware implementation is based upon four Xilinx Spartan

3 s4000 fg676 FPGA devices on an internal designed custom board then there are two

options that can be implemented: MicroBlaze™processor or a custom processor.

Using a “black box” system of modeling we will progress through several stages.

Firstly a single processor node on a single FPGA and then multiple processor nodes on

a single FPGA, this can be regarded as being tightly coupled. Secondly the same steps

but with a custom board containing four FPGA’s and lastly extending to other FPGAs

in groups of four on separate custom boards connected by Ethernet. All of these latterly

options are examples of being loosely coupled.

Xilinx MicroBlaze™

The 32 bit MicroBlaze™ embedded processor soft core is a Reduced Instruction Set

Computer (RISC) optimized for implementation on Xilinx® Field Programmable Gate

Arrays (FPGAs) [31]. The Xilinx FPGA architecture can embed several MicroBlaze

processors each of which takes up only about 2% of the total die area leaving plenty of

room for implementing buses, hardware Intellectual Property (IP) cores and interfaces.

Xilinx also provides a large IP library and useful development tools. Figure 2.1 contains

an overview of MicroBlaze™ features and information of a particular Spartan3 system.

Smaller functional units used in large parallel operations may not require full pro-

cessors, such as small state logic machines with registers or directly addressed memory

or Digital Signal Processing (DSP) units. these can easily be accommodated on the

FPGA. Figure 2.2 is a simple example of how an MPSoc can be built on an FPGA with

the MicroBlaze™ processors acting as CPU’s using memory and large amounts of small

parallel processing units.

Custom Processor

In this section we consider two differing approaches to implementation of custom pro-

cessors on relatively small FPGAs. Mazonka and Kolodin in their paper [55] consider
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Figure 2.1.: Spartan3 example taken from taught material IWC MSc, York.

Figure 2.2.: A sample microprocessor systems-on-chips.

three styles of design, Transport Triggered Architecture (TTA) machines, Bit manipu-

lating Machines (BMM) and Arithmetic Based Turing-Complete Machines with their

choice for implementation being the last one due to the limitations of the Field Pro-

grammable Gate Array (FPGA). They chose to make a multi-processor which consists

of twenty eight 32 bit processors.

Mudry [57], implements a processor targeted on the cellular computing paradigm

built on a Xilinx Spartan3-XCS200 FPGA that follows on from Corporaal’s micro-

processor book [14] and develops architectures from a base of Very Long Instruction

Word (VLIW) to TTA and the MOVE32INT processor. Figure 2.3 shows the intercon-
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Figure 2.3.: Interconnection network for the Ulysse1, internal and external custom
processor[57, fig.3.3, p. 31].

nection network (IN) for Mudry’s processor which uses a shared bus topology on which

Functional Units (FU) are plugged in. These functional units have a single functionality

and common access via addressable locations with or without a register. The IN has

three different buses for the source address, the destination address and the data being

transported [57].

Both of these custom processors have areas of interest but are not suitable for our

needs as they both require custom compilers to meet their programming needs. How-

ever the areas of interest are in the first case the connectivity of multiple processors on

a single FPGA. Secondly the FUs, as we are basing our processor on cellular comput-
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ing with a very large number of cells requiring parallel operation. The concept of for

instance in an L-system model using FUs as finite state machines for each cell will re-

quire relatively small silicone space and thus allow a very large number of them to be

implemented.

Tatas et.al. show a project utilising several MicroBlaze processors to create multi-

core processing using FPGA’s on pages 263 and 264 of [78] in chapter 11.6. A develop-

ment board such as Spartan based is recommended for a complete lab experience of this

project. The MicroBlaze processor will be used and can be connected to many different

cores with further MicroBlaze processors connected together.

2.1.3. Topology, Mapping and the Spidergon Architecture

Task Mapping

Task mapping is the process of mapping software processes to processing cores in a

many-core system. Tatas et al., [78] and Bonney [8]consider task mapping in relation

to energy efficiency and fault tolerance applications. It is suggested that task mapping

allows for the reservation of a small number of cores for fault tolerance and a larger

number can assist with heat dissipation. In this research a small number of cores are

used initially with an increase in usage of cores as the number of processes grows.

The development of many-core processors and NoCs realises increasing numbers

of processors on a chip. Thus, consideration must be given to undertaking parallel

computing and process mapping, routing algorithms are required to connect processors

to each other.

Task mapping is the action of mapping software processes to processing cores con-

tained within local neighbourhoods which are part of a many-core system. The many-

core system will, upon start-up, initialise all cores into an empty ready state. Subse-

quently, mapping occurs in real time responding to the hardware status of the many-core

system.
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There has been a lot of research into mapping of multiple applications for fault toler-

ance on many-cores. Khalili and Zerandi [38] allocate a single spare core to each appli-

cation during the mapping process. They then use a function to minimize the weighted

Manhattan Distance between vertices which are then placed upon cores. The Manhattan

Distance is the distance between two transmitting cores and the traffic volume between

tasks located at the cores.

Reddy et.al. [67] also suggest a mapping algorithm using spare core allocation to

different tile or vertices allocated to available cores. This is to address energy-efficient

fault tolerance using spare core for mainly faulty cores. Their proposed technique where

failure probability is calculated by Fault Aware Spare Allocation (FASA). Comparison

of their proposed algorithm and spare core placement algorithm (FASA) is shown in

figure 2.4. “Mapping simple Application Core graph (see figure 2.4a) onto a 5x5 grid

(see figure 2.4b). Proposed fault aware core mapping technique (see figure 2.4c), and

(see figure 2.4d) shows previous spare core placement.” They observed that throughput

increases for the proposed mapping in comparison with FASA.

Fig. 3. Comparison of spare core placement algorithm (a) an example CG, (b) 5x5 mesh NoC, (c) Proposed Mapping Technique, (d) FASA Spare core
placement.

TABLE I
EVALUATION OF REDUCTION IN ENERGY AND PERFORMANCE IMPROVEMENT OF PROPOSED ALGORITHM AND FASA SPARE CORE PLACEMENT.

NoC Size
Proposed algorithm against FASA spare core placement

Reduction in Communication Energy
(%)

Performance Improvement
(%)

Graph Vertices Edges 6 x 6 10 x 10 20 x 20 6 x 6 10 x 10 20 x 20
MPEG4
Decoder 12 13 36.8 38.9 39.8 32.6 34.2 36.5

MWD 12 13 35.9 36.6 37 30.8 32.8 34.9
VOPD 16 20 37 39.8 39.9 33.2 35.0 36.9

Average 36.6 38.4 38.9 32.2 34.0 36.1

calculated to be 7.5. This means that it require either 7 or 8
cores in one region for efficient mapping. As shown in Fig. 2c,
3X3 region has one busy core, one manager core and 7 free
unmapped cores. So 3X3 region will result in minimum NAD
and requirement of unmapped cores are exactly met. Spare
core can be placed in the middle of the NAD region (‘t11’)
in Fig. 2d and select first vertex ‘V1’, which has maximum
communication with its neighbours and mapped it to the corner
side of the NAD region (‘t02’) as in Fig. 2e. Based on step 6 &
7 in Fig. 2, vertices are selected for mapping on NoC platform
in the given order (‘V4’, ‘V3’, ‘V0’, ‘V2’) see in Fig. 2(f-i).
The result of the proposed core mapping technique is shown
in Fig. 2i. If faults occur at any core, tasks of the faulty core
is migrate to spare core. In this example based on Eq. 6. it
is evident that the probability of ‘t02’ position to fail is more.
So vertex V1 has to migrate from ‘t02’ to spare core (‘t11’)
position in NAD region. After migrating the vertex from failed
core to spare core position, communication energy is found to
be 1600 based on Eq. (3).

IV. EXPERMENT RESULTS

To calculate the effectiveness of the proposed Energy-
Efficient Fault Tolerant NoC technique, research on individual
real and simulated applications are done. Real applications
are MPEG4 decoder, MWD and Video Object Plane Decoder
(VOPD). Simulated application core graph are tested with
number of vertices ranging from 4 to 20 vertices which
are generated by using Task Graph For Free. The proposed
technique is evaluated by simulating application core graphs

on a 5x5, 6x6, 10x10 and 20x20 mesh NOC platform using
Noxim Simulator [14].

Comparison of proposed algorithm and spare core place-
ment algorithm (FASA) is shown in Fig. 3. Mapping the
simple Application Core Graph (see Fig. 3a) onto a given 5x5
platform (see Fig. 3b). Proposed fault aware core mapping
technique in Fig. 3c, and Fig. 3d shows previous spare core
placement (FASA). The evaluation of energy efficiency and
performance improvement of proposed algorithms and FASA
spare core placement [22] is given in Table 1. and also it
contains a number of the real application graph, vertices and
edges. Both real and simulation applications average energy
and performance is shown in the last row of Table 1. When
core fails in any application, performance and energy saving
automatically decreases, failure recovery can be achieved if
the faulty core is replaced with the spare core.These results
are compared with the spare core placements algorithm, the
proposed technique saves communication energy and improves
performance by about 38.4% and 34.0% respectively. It indi-
cates the effectiveness of the proposed method in dynamic
environment.

The impact of core failure on the communication energy
and performance of above example (see Fig. 3) is represented
in Fig. 4 & Fig. 5. Communication energy is shown in Y
axis, number of failed cores shown in X axis see in Fig. 4.
Here when failed core probability is increases communication
energy is increased as well as saving communication energy
compared to FASA [22] is also increase. In this paper, fail-
ures on links and routers are considered in addition to the
processing core failures. In Fig. 5, delay values are on the left
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Figure 2.4.: From [67], figure 3 on page 149: Comparison of spare core placement al-
gorithm (a) and example CG, (b) 5x5 mesh NoC, (c) Proposed Mapping
Technique, (d) FASA spare core placement.

Tatas et.al. [78] suggest five key elements to a fault tolerant design: avoidance, de-

tection, containment, isolation and recovery.

Bonney [8] considers reserving a small reserve of cores used for replacement from a

faulty core, whilst at the same time using large amounts of unused cores as heat dissi-

paters from the active cores. This area of unused cores is described as “dark silicon”
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and is about 20% of the chip area at any time. Bonney suggests that requirements for

dark silicon and the need to provide fault tolerance by having a reserve of cores unused

at any one time coincides.

Topology

The topology is the first fundamental aspect of NoC design, and it has a profound effect

on the overall network cost and performance. The topology determines the physical

layout and connections between nodes and channels.

Network topology

Figure 2.5.: Adapted from figure 7.2 on page 165 of [78]: Examples of regular network
topologies.

Network topology is the topological structure of a network and may be depicted phys-

ically or logically. Network topology is the structure of the elements (links, nodes,

etcetera.) of a network. It is an application of graph theory, wherein communication

devices are modelled as nodes and the connections between the devices are modelled

as links and are lines between the nodes. Physical topology is placement of the vari-

ous components of a network (e.g., device location and cable installation), while logical

topology illustrates how data flows within a network. Distances between nodes, physi-

cal interconnections, transmission rates or signal types may differ between two different

networks, yet there logical topologies may be identical and networks’ physical topology

is a particular concern of the physical layer of the Open Systems Interconnection (OSI)

model. Examples of networked topology are found in Local Area Network (LAN), a

common computer network installation. Any given node in the LAN has one or more

physical links to other devices in the network; graphically mapping these links results in
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a geometric shape that can be used to describe the physical topology of the network. A

wide variety of physical topologies have been used in LANs, including ring, bus, mesh

and star. Conversely, mapping the data flow between the components determines the

logical topology of the network in comparison, controller area networks, common in

vehicles are primarily distributed control system networks of one or more controllers

interconnected with sensors and actuators over, invariably a physical bus topology.

The 2D mesh topology in figure 2.5, provides a simple physical design where the

links are assumed to be the same length. In addition, the grid shape simplifies the area

required and as the number of nodes are increased the growth is almost linear. However,

the 2D mesh topologies can exhibit congestion within the centre of the architecture and

not at the edges because of particular routing algorithms used [78].

Figure 2.6.: Hybrid version network topology, Combination of 2D-Mesh and Spidergon.

Mapping

Requires real time task mapping [8].

Node (networking) The definition of a node depends on the network and protocol
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layer referred to. A physical network node is an electronic device that is attached to

a network, and is capable of creating, receiving, or transmitting information over a

communication channel. A passive distribution point such as a distribution frame or

patch panel is consequently not a node.

Computer networks, If the network in question is a local area network (LAN) or a

Wide Area Network (WAN), every LAN or WAN node that participates on the data link

layer must have a network address, typically one for each network interface controller

it possesses. Equipment such as an Ethernet hub or modem with serial interface, that

operate only below the data link layer does not require a network address. If the net-

work in question is the Internet or an Intranet, many physical network nodes are host

computers, also known as Internet nodes, identified by an IP address and all hosts are

physical network notes. However, some data link layer devices such as switches, bridges

and wireless access points do not have an IP host address, and are not considered to be

Internet nodes or hosts, but are considered as physical network nodes and LAN nodes.

Improvements in the processors mean that they are operating at an increased fre-

quency and are able to implement an architecture that exploits instruction level paral-

lelism. These improvements are now reaching their limitations in their own complexity

and the next refinement is to add thread level parallelism. This will be achieved through

the use of a multi-stage process using the following developmental stages: [i] Simple

software simulation, [ii] dynamic software simulation using various types of neighbour-

hoods.

In the future it is hoped to create a dedicated processor which will apply both instruc-

tion level and thread level parallelism via a black box model utilizing a Xilinx© Field

Programmable Gate Array (FPGA). With this in mind, development of bio-inspired al-

gorithms for growth and movement of single and or multiple agents which are seeded

across an m * n grid of FPGA logic cells, both dynamically and scalable distributed,

thus, there will not be a single primary controller.
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2.1.4. FPGA Implementation

Figure 2.7.: Routing Sblock (R) to logic block (OR) shows (W) input matches (OR)
output. [81, fig.1, p. 71].

Tufte and Haddow in [81] describe a Virtual Evolvable Hardware (VEHW) FPGA by

mapping from their virtual technology to a physical FPGA, this can be considered to be

a one-to-one mapping for the genotype-phenotype transition. The biological develop-

ment is based upon L-systems which are a rule based artificial development system (see

section 2.3). They have created an Sblock which can be considered as the equivalent

of our FU which resides in a neighbourhood of four with the Sblock sides being the

neighbourhood connection. These Sblock’s have no external routing and they may be

configured as a logic or memory component with direct connections to its four neigh-

bours or as a routing element to non-local nodes thus allowing connections to further

away nodes. Figure 2.7 shows Sblock (R) configured as routing and the logic block

(OR) to the north of (R) outputs the (w) input, which can be confirmed by examination

of the LUT. They go on to say that they require further research into a development
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algorithm that can control pattern formation within the cells based upon the cell types.

In [39, 40], Kyparissas and Dollas investigate a new architecture for Cellular Au-

tomata (CA) simulation on FPGA technology, along with a framework to generate the

architecture.

• The entire architecture is available as open-source under the Creative Commons

Licence, and it can be found in:

https://github.com/nkyparissas/Cellular_Automata_FPGA.

This paper gives a review of these prior FPGA based accelerators, with a description

of prior results and architectures.

• Toffoli and Margolus, Cellular Automata Machines (1984 - 2000)

• CEPRA: Cellular Processing Architecture (1994 - 2000)

• SPACE: Scalable Parallel Architecture for Concurrency Experiments (1996)

• Kobori, Maruyama and Hoshino: FPGA CA system (2001)

• Other significant work

– Bouazza et al. ArMen Machine (1991)

– Cappuccino and Cocorullo, CAREM (2001)

– Murtaza, Hoekstra and Sloot: FPGA CA system (2007 - 2010)

– Lima and Ferreira, CA Architecture (2013)

It goes on to describe a proposed architecture for large neighbourhood CA simulation

on a medium sized FPGA. This system supports either 4-bit or 8-bit cells with neigh-

bourhood sizes of up to 29 x 29 cells. Users of this system are only required to create

the rule computations, possibly, by modifying an existing template. ‘Every line that is

loaded into the graphics controller buffer is also loaded into the CA Engine buffer’. The

key variables are:
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• n, n x n neighbourhood size, n ∈ [3..29].

• c, cell size in bits, c ∈ {4, 8} .

• b, memory burst size in bits, b ∈ N.

• x, y, the grid dimension in cells, x, y ∈ N.

‘A CA is a discrete world with a discrete time, operating in distinct time steps’. All state

changes must have occurred within a single time step and double buffering is used, with

one copy of the current state and one copy of the next state.
5:12 N. Kyparissas and A. Dollas

Fig. 10. A simplified schematic of the system architecture.

to form, propagate, and interact with each other across the CA universe. The grid size chosen is
also the resolution of modern Full-HD screens, with each pixel of the screen representing a CA
cell. The grid size for the computation engine can be easily extended (to tens of thousands of cells
in the X direction and as much as the DDR memory will allow in the Y direction), however, this
would a�ect synchronization of the computation engine with the graphics engine, and thus the
graphical output of the system.

4.2 System Architecture and Implementation
A simpli�ed schematic of the design is shown in Figure 10. As will be shown below, a number of
parameters can be chosen by the user. These parameters lead into a compiled-in design; however,
thanks to the framework, which will be presented in Section 5, the user only needs to de�ne the
parameter values, and all connectivity, timing, synchronization, and so on, are known to work for
all cases (including the corner cases). The only actual code that the user needs to write has to do
with the rule computations, which generally means that the user will modify one of the supplied
templates to determine weights, neighborhoods, and state transitions. Our system was designed
in VHDL and consists of four basic subsystems:

(1) Memory Initialization and Frame Extraction running at 100 MHz.
(2) Memory Controller generated by Xilinx’s Memory Interface Generator running at

325 MHz, providing a user interface clock at 81.25 MHz (4:1).
(3) CA Engine datapath and bu�ers running at 200 MHz.
(4) Full-HD Graphics running at 148.5 MHz.

Initially, the system’s external DDR memory needs to be loaded with the value for each cell of
the grid at time t = 0. In stand-alone FPGA boards, this can be done via UART from a computer.
After memory initialization, the system starts displaying the stored CA grid on screen via VGA
at 1080p. Every line that is loaded into the Graphics Controller’s bu�er is also loaded into the CA
Engine’s bu�er. The CA Engine’s bu�er holds all of the grid lines needed to provide the engine
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Figure 2.8.: A simplified schematic of the system architecture. [40, fig.10, p. 5:12].

Large-scale Cellular Automata on FPGAs: A New Generic Architecture and a Framework 5:17

Fig. 16. The Grid Lines Bu�er’s internal structure.

(typically, �oating point) is better suited to CPUs and GPUs—parallelism is achieved by di�erent
means.

The Grid Lines Bu�er (Figure 16) consists of n BRAMmodules that store the grid lines needed to
supply the CA Enginewith then × n neighborhood of the all the cells located in a grid line, plus one
BRAM module used as a write bu�er. As a result, the amount of BRAM resources required equals
to (n + 1) × x × c bits = (n + 1) × bl × b bits. In our case, the maximum values for our architecture
(corner case) are x = 1920,n = 29, c = 8.

The Grid Lines Bu�er’s control is implemented as two communicating FSMs; a reader and a
writer. The writer operates at 81.25 MHz, which is the frequency at which the memory bursts ar-
rive, and writes the bu�er every time the system receives a grid line requested by the Graphics
Feeder. In the meantime, the reader drains n BRAM modules at 200 MHz to feed the CA Engine.
As soon as a complete grid line has been drained/�lled, the bu�er’s control logic will “shift down”
the bu�er window. The line that was loaded last is ready to be drained along with the n − 1 most
recently loaded lines, and the earliest loaded line is ready to take upon the role of the write bu�er.
The reader and the writer communicate with each other via a recirculation multiplexer synchro-
nizer, so that the system will not start �lling a line that has not yet been drained.

To maintain correct system timing without user intervention in the Grid Lines Bu�er, the num-
ber and size of the required BRAM modules and the depth of the pipeline are generated automat-
ically based on n and c . Hence, the latency of the bu�er is also variable and equal to n cycles. In
e�ect, we make sure that the timing between the CA Engine and the Graphics Engine remains
valid no matter what the user’s neighborhood size and weight patterns, at the cost of the pipeline
latency, which does not a�ect system performance, because we have slowed down the CA Engine
to match the speed of the Graphics Engine. In Section 4.4, we have shown how the CA Engine al-
ways reads a neighborhood column at clock rate without having an input signal enabling its data
input. This feature allows us to pre-load the neighborhood of the CA Engine before providing it
with valid cells as shown in Figure 17. As a result, we can de�ne the neighborhood of the cells lo-
cated at the edge of the rectangular grid, which would normally have incomplete neighborhoods.
By pre-loading the CA Engine’s pipelined neighborhood window with zero values, we create a
zero-padded rectangular grid for our CA simulation.

The cylindrical grid is implemented by pre-loading the CA Engine’s neighborhoodwindowwith
the (n − 1)/2 last cells of the bu�er’s lines before sending for processing the valid cells. For the
rightmost cells of the grid, the bu�er sends the �rst (n − 1)/2 cells of the bu�er’s lines even after
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Figure 2.9.: The Grid Lines Buffer’s internal structure. [40, fig.16, p. 5:17].
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The grid lines buffer, figure 2.9 is designed on the ideas of Margolus pipeline buffer

[51]. Which allows the CA Engine to produce a new cell per clock cycle if the neigh-

bourhood cells arrive at clock rate.

“ ‘The grid lines buffer consists of n Block RAM (BRAM) modules that store the

grid lines needed to supply the CA Engine with the n x n neighbourhood of all the cells

located in a grid line. Plus one BRAM module used as a write buffer. Thus the number

of BRAM sources is equal to (n + 1) x x x c bits = (n + 1) x bl x b bits. In the case

described in the paper the most values for this architecture (corner case) are x = 1920 n

= 29, c = 8.’ ”

Ortega and Tyrrell in [60] present a new version of the MUXTREE embryonic cell

for implementation in a Virtex R⃝ from Xilinx™. The embryonic project takes biolog-

ical processes and transports those universal mechanisms to the arena of electronic,

programmable arrays. Figure 2.10 suggests the widespread structure of an embryonic

array.

2 The embryonics project

When biological multicellular organisms reproduce, a new individual is formed out of
a single cell (the fertilised egg). During the days that follow the time of conception,
the egg divides itself by a mechanism called mitosis. Through mitosis two cells with
identical genetic material (DNA) are created. The new cells also divide, passing to
every offspring a copy of the DNA that corresponds to the individual under
development. At some point during their reproduction, cells differentiate into the
different tissues that give shape to a complete healthy individual. Differentiation takes
place according to “instructions” stored in the DNA (the genome). Different parts of
the DNA are interpreted depending on the position of the cell within the embryo.
Before differentiation cells are (to a certain extent) able to take over any function
within the body because each one possess a complete copy of the genome [8].

The embryonics project transports these biological mechanisms to the world of
electronic, programmable arrays. Figure 1 shows the generic architecture of an
embryonic array. A detailed description of the cell can be found in [9]
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Fig. 1 Generic architecture of an embryonic cell

The configuration register of a cell defines the functionality of its processing
element and routing resources. Every cell in an embryonic array stores not only its
own configuration register, but also those of its neighbours. When differentiation
takes place, cells select a configuration register according to their position within the
array. Position is determined by a set of co-ordinates that are calculated from the co-
ordinates of the nearest neighbours. Every embryonic cell performs self-checking by
means of built-in self-test (BIST) logic. A detailed description of the self-testing
mechanisms can be found in [7].

When a failure is detected, the faulty cell issues a status signal that propagates to
the nearest neighbours. In response, some cells become transparent to the calculation
of co-ordinates and consequently, they are logically eliminated from the array. Cells
are eliminated according to the reconfiguration mechanism in use, e.g. cell
elimination, row-elimination. The remaining cells recalculate their co-ordinates and

156 C. Ortega and A. Tyrrell

Figure 2.10.: Generic architecture of an embryonic cell. [60, fig.1, p. 156].

This version allows the implementation of complete arrays. The memory required in

this version is much reduced over the generic embryonic cell by using a chromosomic

way, storing only the configuration registers for all of the relevant cells. The result of

this is that every cell is only required to store (n + 1) registers for an n x n grid. It is

also suggested that implementing the memory block as a look-up table results in an area
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efficient circuit. Where there are reductions in the uses of resources this lends itself to

releasing these for further functions.

2.2. Agent-based Modeling and Simulation

2.2.1. Simulation Tools

In Railsback et al., [66], five different platforms are reviewed including Agent Based

Model Simulations (ABMS). MASON, Repast and Swarm are “framework and library”

platforms this imparts a conceptual framework for setting up and designing ABMS and

corresponding software program libraries. NetLogo is the highest-degree platform, pre-

senting an easy but effective programming language, integrated graphical interfaces, and

complete documentation. There are two versions of Swarm, Java Swarm and Objective-

C Swarm.

Their conclusions for each of the ABMS are, that NetLogo, is most suitable for novice

programmers but is more limited as the model complexity increases. Both Swarm ver-

sions have similar benefits and limitations such that they are not as good as MASON

and Repast. For these last two there are pros and cons for each and the user should

identify which is most suitable for their particular requirements.

A complete literature survey of the state of the art in software programs for agent

based computing and its embodiment inside the modelling and simulation domain is

provided by Abar et al., [1]. The importance of this survey is two-fold: (1) Highlighting

the salient features, merits, and shortcomings of such multi-faceted utility software pro-

gram; this text covers eighty five agent based toolkits that can help the device designers

and builders with common tasks. (2) Provide a usable reference that aids engineers, re-

searchers and academicians in effectively deciding on the precise agent based modelling

and simulation toolkit for designing and growing their device prototypes, conscious of

both their know-how in their utility domain. In essence, an extensive synthesis of Agent

Based Modelling and Simulation (ABMS) assets has been executed so this evaluation
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stimulates similar research into this topic.

One of the most fundamental attributes of the ABMS tool is its range; specifically

the area where it is capable of performing modeling and simulation scenarios. ABMS

is recognised in many scientific disciplines to simulate large-scale dynamic complex

systems and observe emerging behaviours. These systems can be thought of simply as

a collection of interacting actors or entities. The integrated development environment

(IDE) is a standalone application programming environment with a typical code editor,

compiler, tester/debugger, and an interactive graphical user interface generator (GUI).

Typically, agent-based modeling (ABM) simulations involve processing a large number

of agents (millions) that cannot be modelled in a single computer node due to memory

problems. This implies that any ABM simulations would need to be run on a dedicated

workstation or a high-performance parallel programming platform. Therefore, it is often

necessary to run distributed simulations using a dedicated computing cluster or grid

to reduce simulation time. In order to exploit the full potential of the ABMS model,

researchers are carefully working on next-generation agent-based simulation test panels

that can be extended into exascale computational structures. The authors [1] recommend

that readers should investigate the ABMS tools further for greater in-depth analysis in

line with their specific demands.

Based upon the ABMS requirements given in the introduction, and the ABMS scope

or application domain in this paper [1], suggests that there are thirty eight different

toolkits that meet the application domain criteria. However, when the other criteria are

considered from this list there are only two possibilities MASON and Repast Simphony.

2.2.2. Mason Toolkit

MASON has been chosen as it meets all of the requirements of this project and it is in

use by others within the research groups, which means that there is likely to provide

a support pool available locally. MASON is described in [45], p.9 as a Multi-Agent

Simulation of ‘Neighbourhoods and Networks’. The architectural layout is divided into
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two sections, where the first section is the model and the second section is the visuali-

sation. The architecture and visualisation can be generated in either 2D or 3D, however

for our purposes we have only considered the 2D presentation. As these are both sepa-

rate it is possible to have a simulation without the visualisation. In addition the model

can be checkpointed, allowing the simulation to be paused and reused by saving the

checkpoint to storage. The manual [45] has full documentation of the system including

a 14-part tutorial. The ECJ owner’s manual [44] is the documentation for an ‘evolution-

ary computation framework written in Java‘. This work is only referenced here because

MASON uses the random number generator created by the ECJ referenced on p. 41.

Luke et. al., give a description of the history and current position for MASON, [43].

There are also many suggestions from the workshop in 2013 on how MASON could be

revised and upgraded to benefit cutting edge research in the future. They are improv-

ing MASON by making it more robust and creating a distributed version that includes

Geographical Information Science (GIS). [37].

2.3. Algorithms under investigation

The primary algorithms under consideration are those that fall within the Rewriting

Systems field. Some but not all Cellular Automata (CA) are included in this area [33].

Rewriting systems are derived from formal grammars and consist of the formation

of rules for strings in a formal language. The word “formal” refers to the fact that all

the rules for the language are explicitly stated in terms of what strings of symbols can

occur. A Lindenmayer system or L-system is a parallel rewriting system where each

rule is applied to every symbol in parallel with repeated application. They can be used

to describe plant development, fractal, and complex geometric design.
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2.3.1. Rewriting Systems

Rewriting systems define complex objects by successively replacing parts of a simple

object using a set of rewriting rules or productions. Among those most studied and un-

derstood are operations on character strings such as Chomsky’s work on formal gram-

mars mentioned below and Lindenmayer’s L-systems discussed in 2.3.2. Rewriting

systems are shown to cover a range of other types [18], such as strings, terms, graphs,

constrained and parallel. Other classic examples of rewriting are the Koch snowflake

curve and the array-rewriting system of Conway’s game of life [65, 85, 28]. Also the

rewriting research field covers two diverging directions, programming languages and

automated deduction [18], which covers these topics, symbolic and algebraic computa-

tion, unification and matching and parallel deduction. A formal grammar is a system

that produces a language which comprises a set of strings. The symbols used in the

language are called the alphabet. For example Σ = { a b c ... x y z ′ - } are the whole

set of letters in the alphabet of the English language plus the apostrophe and hyphen.

Languages can be defined to have strings or words of certain lengths. For example

language L1 can go from zero characters through to say length four characters and the

empty word will be represented by Λ.

Language L1 has words of length 0, 1, 2, 3, 4.

The empty word has zero characters equals Λ.

Thus if a word has four characters then length will be 4.

Language L will contain all of the words of any length possible for that language

including the empty word and L+ for all of the possible words not including the empty

word.

A string is a sequence of characters, such as a word or phrase or some numbers and

a string within a string is called a sub-string. The length of a string is the number of

characters in it, such as bab which has length 3, the empty string has length 0 and
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a single character is a one-character string. Concatenation consists of appending one

string to another, for example bab and aba give bababa.

2.3.2. L-systems

Lindenmayer systems or L-systems for short are named after their creator Aristid Lin-

denmayer who was a Hungarian biologist, [65]. The string rewriting system grew out of

“an attempt to describe the development of multicellular organisms in a manner which

takes genetic, cytological and physiological observations into account in addition to

purely morphological ones.” [65, 75] The distinguishing characteristics of L-systems is

to create complex objects by successively replacing parts of simple objects by applying

rewriting rules or productions. Due to the biological motivations of L-systems produc-

tions are applied in parallel and replace all characters in a string simultaneously whereas

in Chomsky grammars productions are applied sequentially [65, 59, 3].

Figure 2.11.: Relations between Chomsky classes of languages and language classes
generated by L-systems. the symbols OL and 1L denote language classes
generated by context-free and context-sensitive L-systems, respectively.
taken from, [65, fig. 1.2, p. 3].

D0L-systems are the simplest class of L-systems the D0L comes from D for deter-

ministic, 0 for zero and L-systems. Consider the simple example shown in figure 2.12

with the following explanation.

The alphabet Σ = { a, b } is used by two productions or rules;
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a → ab means that the letter a is replaced with the string ab,

and the rule b → a replaces the letter b with a letter a.

Figure 2.12.: Example of a derivation in a D0L system. taken from, [65, fig. 1.3, p. 4].

Starting at the top of figure 2.12 and working down, b is the starting string also

known as the axiom and is rewritten by using production b → a . In the next cycle

the production a → ab is applied. The third cycle is applied in parallel with both

productions being used simultaneously replacing the a with ab and the b with a giving

the resulting string of aba, this process can continue as long as wished. Two further

cycles are shown in figure 2.12 .

In figure 2.12 the productions are context-free and apply regardless of context. In

other cases where the production is dependant upon the predecessor’s context then this

is known as context-sensitive [74, 75, 76].

The relationship between Chomsky grammars and L-systems grammars can be seen

in figure 2.11. It can also be seen in figure 2.11 that 0L-systems can generate some of the

context-free and some of the context-sensitive languages whilst Chomsky context-free

and or context-sensitive languages are mutually exclusive.

Figure 2.13 shows a further model of D0L-systems for the development of a “frag-

ment of a multicellular filament such as that found in the blue-green bacteria Anabaena

catenula” [65]. The symbols a and b represent cytological states of the cells. The sub-

scripts l and r indicate cell polarity, specifying the positions in which daughter cells of

type a and b will be produced. The development is described by the following L-system:
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Figure 2.13.: Development of a filament (Anabaena catenula ) simulated using a D0L
system. taken from, [65, fig. 1.4, p. 5].

ω : ar

P1 : ar → albr

P2 : al → blar

P3 : br → ar

P4 : bl → al

“Under a microscope, the filaments appear as a sequence of cylinders of various

lengths, with a-type cells longer than b type cells. Figure 2.13 is the corresponding

schematic image of filament development. Note due to the discrete nature of L-systems,

the continuous growth of cells between subdivisions is not captured by this model,” [65].

Turtle interpretation of strings Figure 2.13 is a very simple graphical representa-

tion that is not complex enough to model higher order plants, [65, p. 6], Prusinkiewicz

developed just such a system based upon a LOGO-style turtle. The turtle state is a

triplet (x, y, α) where (x, y) are Cartesian coordinates representing the turtle’s position,

and angle α, called the heading, is interpreted as the direction in which the turtle is
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facing. Given step size d and an angle increment δ, the turtle can respond to commands

represented by the following symbols:

F Move forward a step of length d. The state of the turtle changes to

(x′, y′, α), where x′ = x + d cos α and y′ = y + d sin α. A line segment

between points (x, y) and (x′, y′) is drawn.

f Move forward a step of length d without drawing a line.

+ Turn left by angle δ. The next state of the turtle is (x, y,α + δ). The

positive orientation of angles is counter-clockwise.

– Turn right by angle δ. The next state of the turtle is (x, y,α – δ).

Figure 2.14 is a graphical representation of the turtle rules given above [65, p. 7].

Figure 2.14.: (a) Turtle interpretation of string symbols. (b) Interpretation of a string.
Angle increment δ is equal to 90 deg. Initially the turtle faces up., taken
from, [65, fig. 1.5, p. 7].

Context-sensitive L-systems Several types of context-sensitive L-systems exist

but we examine one with the production form U < A > X → DA. Where the letter A

can produce the word DA if and only if A is preceded by the letter U and followed by

X [75, p. 196]. Hence, letters U and X form the context of A in this production. The

strict predecessor can also have a one sided context such as to the left as shown in the

example below, or to the right. This results in the formation of a growth function and

can include rules for termination of a string.

The following 1L-system uses context to simulate signal propagation throughout a
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string of symbols [65, p. 31]:

ω : baaaaa

P1 : b < a→ b

P2 : b→ a

The first few words generated by this L-systems are:

baaaaa

abaaaa

aabaaa

aaabaa

aaaaba

Figure 2.15.: Comparison of von Neumann model and 0L-systems model, taken from,
[54, fig.1, p. 303].
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The standard bracketed system uses square brackets to indicate when a branch is in-

troduced, examples can be seen in ABOP [65, Figure 1.24, p. 25]. Both of these papers

by Mayoh [54] and Stauffer [75] take a non-standard approach to brackets that repre-

sent branching. It is interesting to note the model comparison from Mayoh [54] shown

in figure 2.15, where comparison is made between von Neumann and an 0L-system

for the same red algae Callithanion Roseum. The model assumes that it occupies a 2-

dimensional space and each cell has eight neighbours. Mayoh shows there are three

disadvantages of the von Neumann model: growth and cell division can only occur

when the cells are in a particular state; unwanted interaction because of the severe re-

strictions on growth direction; and inflexibility caused by having a fixed global limit on

the number of neighbours a cell can have. The von Neumann model fails this time but

if the Stauffer method shown below had been applied the the outcome would have been

more favourable.

Figure 2.16.: Some simple growing structures along with their CA interpretation. taken
from, [75, fig.4, p. 200].

Stauffer, now describes how L-systems can be used to describe cellular development.

The L-system grows a one-dimensional string of characters and also can be translated

into a one-, two-, three-dimensional image [75, p. 199]. “This developmental model

comprises of four main processes: [1] simple growth, (fig. 2.16), [2] branching growth,

(fig. 2.17), [3] signal propagation, (fig. 2.18), and [4] signal divergence (fig. 2.19).”

In figures 32-35 various parts of a tree can be represented and in a biological context

has branch segments which are represented by the () and [] symbols, giving a left and

right branch. The a is an apex and the i an internode, so plants can be fully modelled with

left and right branches and left and right sub branches [75]. Figure 34-35 additionally
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Figure 2.17.: Some simple branching structures along with their CA interpretation.
taken from, [75, fig.5, p. 200].

show signal propagation and signal diversion where signal s changes an internode i on

the right to an s. In the divergent phase it is reminiscent of Langton, Stauffer and Sipper,

of a change of direction at the loop corner. [47, 75]

Figure 2.18.: Productions used to obtain signal propagation, along with their CA inter-
pretation. taken from, [75, fig.6, p. 201].

Figure 2.19.: Productions used to obtain signal divergence, along with their CA inter-
pretation. taken from, [75, fig.7, p. 201].

2.3.3. Cellular Automata

Cellular Automata (CA) were known as tessellation structures and iterative circuit com-

puters [9, p. xi] before Ulam suggested to von Neumann that the area that he, von Neu-
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mann called automaton was best described as CA in [7, p. 86], and [6, p. 232], also

[9]. Since then CA’s have been used for simulations in biology, computer science and

physics with the purpose of complex computations, parallelism of multiple processors

and complex natural processes. Cellular automata can also be considered as rewriting

systems on rectangular arrays and matrices.

A CA has a finite or infinite d-dimensional grid of cells. One, two and three-dimensional

cases are the most commonly used [36] but in this review the focus is on one- and two

dimensional CAs [61, 85, 86, 88]. Each cell can have a value from a finite set of states.

A neighbourhood relation is defined over the grid, which shows which neighbours, af-

fect each individual cell. The value of a cell at time t is based upon the values of the cell

and relevant neighbours at t-1 and subsequent application of the transition rules [69, 86].

All of the cells are updated synchronously according to the relevant transition rules. The

following formal definition comes from [72, p. 50-52]. Hence a cellular automaton A is

a quadruple

A = (S , G , d , f ),

where S is a finite set of states, G is the cellular neighbourhood, d ∈ Z+ is the

dimension of A , and f is the local transition function.

Given the position of a cell i, i ∈ Zd, in a regular d - dimensional uniform grid, its

neighbourhood G is defined by:

G = {i, i + r1, i + r2, ..., i + rn},

where n is a fixed parameter that determines the size of the neighbourhood and rj is a

fixed vector in the d - dimensional space.

The local transition rule f

f : Sn → S
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maps the state si ∈ S of a given cell i into another state from the set S, as a function of

the states of the cells in neighbourhood G i. In uniform CAs f is identical for all cells,

whereas in non-uniform ones f may differ between different cells, i.e., f depends on i,

f1.

For a finite size CA of size N a configuration of the grid at time t is defined as

C(t) = (s0(t), s1(t), ..., sN–1(t)),

where si(t) ∈ S is the state of cell i at time t . The progression of the CA in time is then

given by the iteration of the global mapping F

F : C(t)→ C(t + 1), t = 0, 1, ...

through the simultaneous application in each cell of the local transition rule f.

One-dimensional CA

The simplest class of one-dimensional CAs is a special case named elementary CA [84,

p. 8] with two possible states per cell, S = {0, 1}. The cells form a single horizontal row

in the panel and after each generation the new row is formed on the top of the last row.

A history of generations can be seen showing however many generations have occurred.

Then f is a function and the neighbourhood size n is usually taken to be n = 2r + 1 such

that:

f : {0, 1}n → {0, 1}, si(t + 1) = f(si–r(t), ..., si(t), ..., si+r(t)),

where r ∈ Z+ is a parameter known as the radius, representing the cellular neighbour-

hood and r = 1 which gives a neighbourhood size of n = 3, [84, p. 8], [72, p. 52]

f : {0, 1}3 → {0, 1}, si(t + 1) = f(si–1(t), si(t), si+1(t)).
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The domain of f is the set of all 23 tuples which are indicated in the three state truth

table 2.2, on page 33, which shows what the next states are for each of the three cell

neighbourhoods of transition rules 30 and 110 [84].

Table 2.2.: One-dimensional Elementary Cellular Automata Transition Rules.

3 Cell Neighbourhood Rule 30 Rule 110

Start state Next state Next state Decimal
0 0 0 0 0 1
0 0 1 1 1 2
0 1 0 1 1 4
0 1 1 1 1 8
1 0 0 1 0 16
1 0 1 0 1 32
1 1 0 0 1 64
1 1 1 0 0 128

Right Centre Left 30 110

As can be seen from table 2.2 each elementary rule is specified by an eight bit se-

quence, 28 = 256 different elementary CA’s. The grid boundaries are typically calcu-

lated in one of two ways, either the leftmost neighbour of the left hand end cell on a row

is the rightmost end cell of that row, giving a wrap around effect based upon Modulo N.

Rule 30 in binary is (00011110)b, hence if the row of cells comprises of:

11001010110

then the left end cell will be changed based upon neighbours (0, 1, 1) giving new state 1

and the right hand end will use neighbours (1, 0, 1) which gives new state 0. Thus at t+1

the new states will be:

10111010100

alternatively an additional cell is added to the beginning and end of the row which

always holds a zero value then the first and last cells counted within the grid only use

two cell values that are changeable rather than three for the remainder of the row.

Empirical investigations of CA’s as dynamical systems were carried out by Wolfram
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[85, 88, p. 413-423] and after many experiments four distinct classes of CA behaviour

has been identified. It should be noted in the first papers covering these four classes

Wolfram [84, 85] identified 32 of the 256 rules as being legal rules. These rules are

identified by the Wolfram code which is the 8 bit binary number of the rule. The legal

rules have amongst the other rules copies and mirror images of themselves which is

why these other rules have been discounted. However further investigations have been

carried out and some of the non-legal rules have been found to have interesting proper-

ties which has resulted in there being 88 possible unique elementary cellular automata,

one of which, rule 110, is now included in Class IV behaviour [12]. Additionally rule

110 is known as the simplest Turing machine and supports universal computation [88,

p. 575-577][13]. In each space-time diagram the horizontal rows are consecutive con-

figurations with the top row being the initial configuration.

Class I Cellular Automata evolve to a homogeneous state after a finite number of

time steps. The transaction rule and graphical output as a space-time diagram is shown

in figure 2.20.

Class II Cellular Automata evolve to short period structures. The transaction rule and

graphical output as a space-time diagram is shown in figure 2.21.

Class III Cellular Automata evolve to a chaotic aperiodic pattern, The transaction rule

and graphical output as a space-time diagram is shown in figure 2.22.

Class IV Cellular Automata evolve to complex localised structures, sometimes long

lived. The transaction rule and graphical output as a space-time diagram is shown in

figure 2.23.

Wolfram states in [87], "The simple structures generated by class 2 CA’s are stable or

periodic with typically small periods and can act as filters." They also correspond to a set

of words in a regular grammar. Whilst in class 3 they are aperiodic chaotic patterns but

there may be small groups of sites that can be considered defects and execute random

walks. One such example is rule 30 that provides the random number generator in
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Figure 2.20.: One-dimensional CA rule 62, Class 1 behaviour.

Mathematica. In the case of class 1 CA’s all initial states yield the same final state.

Gosper’s, unpublished work cited by Wolfram [87] speculates that class 4 CA’s have

the capability for universal computation and that this applies to the two dimensional CA

known as ’Game of Life’. The final problem with Wolfram’s classification systems is

that the class cannot be predicted before [88] implementation of the rule algorithm, but

rather, the rule must be run and then the diagrammatic output be assessed for property

matching to a particular class.[9, 36, 50, 72, 84, 88]

Two-dimensional CA

In a CA of two dimensions there are primarily three shapes for the cells within the grid

that can be used, square, triangular and hexagonal. Figure 2.24 shows a representation

of both the 5 cell and 9 cell neighbourhood used in a two dimensional square shaped

cell grid CA [61]. Each cell can have k states, typically k = 2 and a neighbourhood of r

= 1 which gives the general neighbourhood case as the 9 cell neighbourhood. On some

occasions the neighbourhood can comprise of more than the immediate neighbours with

r = 2 or more. The 5 cell version is a special case and it can be seen that by overlapping

the 5 cell onto the 9 cell neighbourhood the 5 cell fits within the 9 cell boundaries on
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Figure 2.21.: One-dimensional CA rule 56, Class 2 behaviour.

figure 2.24. In figure 2.24 the dark central square with the white C in each pattern

is the one that is updated and the shaded squares make-up the surrounding neighbours

[50, 61].

The Game of Life is Conway’s simplification of von Neumann’s two dimensional

cellular automaton based upon the square grid and was initially a board game similar to

’Go’. It is also of interest to a wide range of research fields such as; computer scientists;

biologists; mathematicians; physicists; and others looking at complex systems emerging

from simple rules [28, 2, 52, 50, 4]. The criteria to be met for Conway’s rules are: [26]

1. There should be no explosive growth.

2. There should exist small initial patterns with chaotic, unpredictable outcomes.

3. There should be potential for von Neumann universal constructors.

4. The rules should be as simple as possible.

The standard rules for Game of Life are that a cell can be alive or dead. K0 = white

and dead and K1 = black and alive. Each cell has the same rule for cell updating. As

the cellular automaton evolves, emergent computation begins to appear [77, 28]. The
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Figure 2.22.: One-dimensional CA rule 30, Class 3 behaviour.

rule is that every cell with two or three living neighbouring cells survives to the next

generation. For deaths there are two conditions, four or more living neighbours then the

cell dies from overpopulation and one or less living neighbours the cell also dies from

isolation. Cells become alive with exactly three neighbours.

The patterns in figure 2.25 show two of the three main types of pattern occurring;

still life’s such as block d; oscillators like the blinker e with period 2; and spaceships

that travel across the board,[2] not shown. Also shown are the three cell arrangements

that do not die in the first generation a, b, c but do die on the second generation.
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Figure 2.23.: One-dimensional CA rule 110, Class 4 behaviour.

Figure 2.24.: The Moore 9 cell neighbourhood at top left and The von Neumann 5 cell
neighbourhood at bottom right for use with two dimensional CAs.
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Figure 2.25.: Diagram of five triplets that do not fade on the first move, from an article
by M.Gardner in the Scientific American, 223 (October 1970): 120-123.
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Self-Replication in Cellular Automata

Figure 2.26.: Timeline from von Neumann to the present for self-reproduction in cellu-
lar automata.

This part of the review concentrates upon self-replication in cellular automata which

stem directly from the initial work done by von Neumann on his universal constructor.

The chronological connections can be seen in figure 2.26. Sipper states ‘the motivation

of this work is to understand the information processing principles and algorithms in

self-replication’ [71]. This work can be broadly broken down into several categories, the

first of which are the universal constructor-computers which are capable of complicated

tasks beyond just self-reproduction, [9, 11] produced by von Neumann and Codd.

Secondly are the machines derived from Langton [41], which are based upon Codd’s

[11] periodic emitter with eight states per cell but does not require a facility for univer-

sal construction. This machine is very simple and is completely achievable but can do

nothing other than self-replication. Byl follows on from Langton using Langton’s cri-

teria for self-reproduction but minimises the time steps by changing the transition steps

such that only six states are required rather than the eight previously, also the inner wall

of the sheath is removed. Reggia et al. [68] discovered that sheaths on one or both sides

of the data path were not essential and thus was able to construct smaller self-replicated
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Figure 2.27.: von Neumann Universal Constructor taken from, [9] [fig. 27, p. 44].

loops.

The next category are those simple machines with a capacity to operate an inbuilt

program, first of which by Tempesti [79], adapts Langton’s loop to perform independent

constructional and computational tasks where the program is stored entwined with the

replication code. Perrier et al. [62] goes beyond Tempesti by their system having three

parts: loop, program and data produced in that order.

Petraglio et al.[49] suggests a new algorithm, the Tom Thumb algorithm will create a

self-replicating loop with both universal construction and computation properties. This

may be a further category in the complexity of self-replication in cellular automata.
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von Neumann More detailed examination is made of some of the self-replication

systems described above starting with figure 2.27 is the final version of von Neumann’s

universal constructor. It should be borne in mind that all of the design as carried out

by von Neumann is purely theoretical and was new and unimplementable at that time,

Burks [9] and Thatcher [9, p. 132-186] continued the theoretical development after von

Neumann’s death. Additionally even today it is unlikely that there are the resources to

implement a hardware version of the universal constructor.

The universal constructor is intended to have two powers:

1. Simulate any Turing machine.

2. Construct an automaton in a designated “Empty” region of the cellular space.

Von Neumann’s self reproducing machine requires around 200,000 cells to meet the

above powers and it intends to create electrical circuits and components ultimately re-

producing itself. The Game of Life is also a 2d CA but is of much simpler construction

as seen in section 2.3.3 which can produce abstract structures such as gliders.

The first design of the 29-state automaton had both a single path in the construction

arm and also the tape input unit [9, p. xii] with a later design changing to a dual path

constructor arm as shown in figure 2.27. The reason for the change was to accommodate

a separate path for each of the ordinary and special transaction states. Burk states [9,

p. xiii] that he thinks that von Neumann had realised that the dual path could also be

implemented on the tape unit but that this design change was not implemented due to

von Neumann’s death.

Each cell in the automaton can have one of twenty nine different states as can be seen

in table 2.3, on page 43. There are five categories of these states four of which take

one time step to operate and the fifth where confluents take two time steps.

There are two types of transmission states which represent wires and an OR gate in a

circuit, ordinary and special, each type can be in an excited state which is indicated by a
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Table 2.3.: Von Neumann’s 29 states.

State Symbol

Sensitised states Sθ, Sl0, S1, S00, S01, S10, S11 and S000
Passive Active

Quiescent state U

Ordinary Transmission

↑ ·↑
↓ ·↓
← ·←
→ ·→

Special Transmission

⇑ ·⇑
⇓ ·⇓
⇐ ·⇐
⇒ ·⇒

Confluents
C00 C01

C10
C11

dot next to the directional arrow or a quiescent state. When in a quiescent state the cell

has no influence on its neighbourhood. The ordinary transmission state can receive input

from all non-output directions and transmits the excited state in the output direction. The

special transmission state acts similarly to the ordinary transmission states except when

they output to a confluent state where it is converted to a quiescent state U. An example

of an ordinary transmission passing the excitation is shown in figure 2.29. The ordinary

and special transmission states are mutually antagonistic.

The confluents, Cuv, where u and v can be 0 or 1, u is the current state and v is

the next output state, shows the double delay in this component. Confluents receive

excitation from ordinary transmission states and transmit to both ordinary and special

transmission states. A confluent acts as an AND logical gate to the excited inputs. Also

it can act as a fan out by splitting the transmission excitation to all of the neighbouring

cells that do not point to it. Figure 2.28 shows the progression of confluent states in this

situation.

A cell in the quiescent state U is an unexcited or blank state. The construction process

changes U into the sequence of sensitised states and subsequently to passive forms of
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Figure 2.28.: Confluent states progression modified from, [5, Fig. 6. p. 303].

Figure 2.29.: Ordinary transmission progression modified from, [5, Fig. 5. p. 303].

confluent or transmission states. In the destruction process any confluent or transmission

state changes into U in one time step [9, 70, 63, 5].

The sensitised states do not propagate signals but are intermediate states, that convert

a quiescent state to one of the nine unexcited states, of which there are four ordinary

transmission states, four special transmission states and a confluent state. Examination

of figure 2.30 details the sensitised tree progression. the quiescent state that is excited

enters the sensitised tree path and then dependant upon the subsequent signals received

moves down the tree to reach the required final constructed state. A cell in the sensitised

state has no effect upon any neighbours.

The transition from a transmission or confluent state can be reversed and the cell is

returned to a quiescent state. An unexcited special transmission state which receives

an excitation from an ordinary transmission state is destroyed . Similarly, the opposite

is also true with the addition that if the receiving cell is in the confluent state this will

be destroyed and examples of destruction are shown in figure 2.31. There are several

limitations to von Neumann’s two dimensional system design. The first issue is the
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Figure 2.30.: Sensitised tree progression taken from, [5, Fig. 7. p. 303].

signal crossing problem, where circuits meet head on has no way for the signal to pass

and secondly there is no NOT gate which by its absence can make circuit construction

harder.

Figure 2.31.: Destruction examples modified from, [5, Fig. 8. p. 303].

Von Neumann designed some basic organs in the system and nearly completed the

design of an indefinitely expandable tape and its control. The organs, Pulser and De-

coder shown in figure 2.32 and 2.33 are derived from Thatcher [9, p. 132-186]. The

pulser will be used for coding of commands to the main channel and also for the tape

and constructing operations. It has one input and one output and is operated by the input

of a single pulse. The output is formed by multiplexing within the pulser as can be see

in figure 2.32 which gives the output sequence P(1101). The decoder can also be built to

recognise various sequences of input and restrict unwanted sequences. From these two
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organs other more complex organs can be created. A decoder that recognises D(1101)

is shown in figure 2.33. Each of those that give a method for the creation of the basic

organs do so in slightly different ways, however I prefer Thatcher’s algorithmic methods

as being fairly straight forward in its construction.

Figure 2.32.: Pulser (1101) modified from, [9, p. 147].

Figure 2.33.: Decoder (1101) modified from, [9, p. 148].

Figure 2.34.: Langton’s loop showing stages of daughter construction taken from, [41,
fig. 7, p. 141].

Langton In terms of complexity where von Neumann [9] and Codd [11] are the most

complex, Langton’s loop [41] is at the opposite end of the scale and can be considered

to be the most simple. This self reproducing loop is an adaption from Codd’s universal

constructor of which the timing unit is called the periodic emitter. This has the form

of a loop and a constructing arm at the bottom right hand corner formed of an outer
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Figure 2.35.: Langton’s loop showing subsequent steps after daughter completion taken
from, [41, fig. 9, p. 143].

sheath then a data path and finally an inner sheath [11]. As the data travels around the

path when it reaches the T-junction the signal is duplicated with one copy going up the

right hand side of the loop and the second out along the exiting path. Langton identified

that the periodic emitter can be used as a storage unit and thus with modification of the

transaction rules created his self-replication loop. As can be seen in figure 2.34 the

configuration of the loop is a square path equal to the number of instructions to build

one side and a left hand corner, which are:

70 – 70 – 70 – 70 – 70 – 70 – 40 – 40

where the ‘70’ cells extend the construction arm by six cells and then the two ‘40’

signals build a left hand corner at the end of the arm. On the fourth of these cycles the

end of the arm fuses back on to itself using the transaction rules, which separate the

two loops and then implement the signals for new constructor arms to be implemented

for each loop as shown in figure 2.35. The original loop can make four copies of itself

assuming there is space to do so, then the offspring can only create new copies in the

unused grid area until the edge of the grid is reached. When each loop has made all

permitted copies the data instructions are erased and the loop becomes dead.
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Tempesti This self-replicating loop extends beyond Langton’s loop by adding com-

putational and constructional capabilities. The main differences are the use of the 9-cell

neighbourhood, a single sheath on the inside of the loop [79], rather than on the outside

of the loop as described by Byl [10]. In addition there are four ‘gate cells’ in the same

state as the sheath. These cells are initially in the open position and allow the construct-

ing arms to extend beyond the loop through them, then once the loop is replicated and

the program data has been transferred the cells close[79]. The gate cells are indicated by

the four number 1’s outside the program loop in the time equals zero part of figure 2.36.

The constructing arms extend automatically and only require signalling as to when to

turn by ‘messengers’ who move at twice the speed of the constructing arm. The loop

is constructed in two parts, first the sheath is constructed in its entirety and then then

secondly the program data to complete the loop. Finally the constructing arm withdraws

and the cell gate closes, however the loop does not die as the program contained within

remains able to execute. The constructing arm is border sensitive and upon reaching an

edge detects the edge and retracts without crashing in the way Langton’s does [41, 79].

Figure 2.36 is an example of different stages in the loop described above. The program

operation is carried out in space that forms the loop centre starting from the top left hand

side. [5, 48, 63, 70, 71, 80]

Perrier, Sipper and Zahnd This self-reproducing loop uses Langton’s version as a

starting point with the capability of universal computation. It comprises of three parts;

loop, program and data, as indicated in figure 2.37, where the dots indicate the sheath,

the arm to the right is the constructing arm. The program is run by a Turing machine

model, the W-machine, introduced by [Wang, 1957, p. 11] as cited in [62]. The repro-

duction of the loop is carried out in the same manner as Langton does with the exception

of the special signals required for the program and data operations. Once the loop has

been created, the constructing arm partially withdraws leaving the bottom sheath, which

becomes the data path for both the program and data to be copied to the reproduction.

48



Figure 2.36.: Tempesti’s loop taken from, [79, fig. 3, p. 2].

Figure 2.37.: Perrier’s loop taken from, [62, fig. 4, p. 11].

Upon completion of these steps, the constructing arm fully withdraws and the program

is executed in the first machine whilst the offspring machine starts its own reproduction.

There are possible issues with the data tape where the copy is identical to the original

and in theory is of unlimited length, but in practice is limited by the capacity of the

machine system, and the number of CA states in use is 63, [62, p. 24].

Stauffer et al. A new kind of cellular automaton is created for this hardware imple-

mentation of the ‘Tom Thumb algorithm’, as it has both processing and control units
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Figure 2.38.: Universal construction loop using Tom Thumb algorithm taken from, [49,
fig. 1, p. 180].

Figure 2.39.: Universal construction loop using Tom Thumb algorithm taken from, [49,
fig. 10, p. 188].

[62]. These authors change the definition for cell in the CA’s to molecule as they do not

wish to conflict with the biological definition. Thus, this self-replicating loop is capable

of universal construction and can be implemented within hardware effortlessly. In addi-

tion, they wish to introduce ‘ the data and signals of cellular automaton which perfectly

suits the specifications of their basic molecule. Thus allowing a straightforward and

systematic methodology for synthesising cellular automata’ [62, p. 179]. The minimal

cell compatible with the Tom Thumb algorithm is made up of four molecules in a two

by two matrix (fig. 2.38). Each molecule can hold, in its four memory positions, four

hexadecimal characters of the artificial genome, thus the whole cell has a maximum of

sixteen such characters. In figure 2.38 the cell to the right shows the completed cell
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after forty time steps, based upon the initial input shown. The character spaces can have

one of three types, empty, molcode data ( for molecule code data, from 1 to 7) or flag

data (from 8 to E). Molcode data is used for the final artificial organism configuration

and flag data is used to construct the skeleton of the cell. Moreover, each character has

a status of fixed data or mobile data. The characters in the final cell (fig. 2.38) are fixed

where the background of the character is shaded and mobile where the background is

white. In this algorithm, the odd characters of the genome are always a flag F, whilst

the even characters are always a molcode M. The mother cell should be able to con-

struct two daughter cells, northward and eastward, so that the artificial organism can

grow in both horizontal and vertical directions. Figure 2.38 shows two examples of

non-minimal loops. The molcode can be used as a configuration string for controlling

a field-programmable gate array(FPGA). This has been used with two thousand FPGAs

for the LSL Biowall to demonstrate self-replication in hardware [62, p. 188-189].

2.3.4. von Neumann’s 29-state cellular automaton software

simulations

There are three main approaches to simulation of von Neumann’s 29-state cellular au-

tomaton, Signorini 1989, Pesavento 1995 and Beuchat & Haenni 2000.

The first, Signorini, concentrated on an implementation of the transition rule on a

Single Instruction, Multiple Data (SIMD) class of parallel computers [70]. A Gapp

NCR45CG72 processor has 72 cells available for parallel processing and a collection

of these is used to give the required cellular structure. From the 29 states shown in

table 2.3 there are four sets of data to be encoded and will need a total of thirteen bits in

a memory frame as seen in figure 2.40.

Figure 2.40.: Signorini’s data encoded binary values memory frame, [70, fig. 8, p. 180].
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Figure 2.41.: Block diagram of a cell on the automaton, taken from, [70, fig. 11, p. 182].

The algorithm to undertake this will be implemented in two phases, cell marking and

then cell updating. Cell marking is where any excited cells mark their neighbour cells

which they are pointing to. A marked cell, depending on what group it is in, is then at the

next time step killed or excited. For the second phase seven sets of micro-instructions

are executed in succession [70, p. 181] and finally, the block diagram (fig. 2.41) is the

transition algorithm circuit. The mark register takes two cycles to operate with the first

cycle for writing and the second for reading to then compare with the group register

contents and subsequent updating of other registers dependent upon the comparison

outcome. Signorini states ‘The transition rule is computed each time step, and imple-

menting this CA goes through the development of new tools for the construction of

complex configurations from organs, and programming them’[70].

In the second software simulation Pesavento makes some alterations to the basic

self-reproducing machine structure. The main one being the changes to the conflu-

ent element, which means that it is no longer a 29-state machine but rather a 32-state

machine. The primary goal here is for self-replication and not universal computation.
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This design follows quite closely to that of von Neumann’s and in Thatcher’s work[9,

p. 132-186]. A lot of the components follow von Neumann’s design whilst others have

been replaced by smaller pieces of equipment. The confluent has the same four uses

as those mentioned in 2.3.3 and these extra uses: ‘as a memory unit (when none of

its four neighbours is an outgoing transmission element); as a one step delay (when

one of its neighbours is an incoming transmission element and another is an outgoing

transmission element); and as a crossing unit (when its neighbourhood consists of two

pairs of transmission elements, with each pair containing an incoming and an outgoing

transmission element)’ [63, p. 347].

Figure 2.42.: Alternative implementation of signal crossing in confluent element,
adapted from, [63, fig. 11, p. 348].

Figure 2.42 demonstrates what is meant by the description described in the last con-

fluent use. Pesavento concludes his work by stating that using cellular automata as

models for parallel processing requires more complex transition rules. Moreover, using

von Neumann’s machine to simulate a sequential Turing machine is not efficient and

other strategies should be considered [63, p. 350].

The final simulation described here comes from Beuchat and Haenni and is a hard-

ware solution to the logic to implement the behaviour of a single cell and an algorithm

for a simple approach to the construction of organs which use the same methodology as

von Neumann which is described in section 2.3.3. [5, p. 300].

The hardware logic module for a single cell is called a “biodule” and has connections

to allow other modules to be interconnected to build a small cellular array. As seen in

figure 2.43 the logic module is made in two parts. The first is the computation unit and
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Figure 2.43.: Block diagram of the “biodule”, taken from, [5, fig. 11, p. 304].

is built on an FPGA and calculates the cell’s future state, stores the current state and

outputs it to the second unit, the display unit. The display unit is a dot-matrix display

which shows the current state of the cell at all times. In this implementation each cell

only needs to know five of the twenty nine states and so these neighbour notifications

are coded on three bits as shown in table 2.4.

Table 2.4.: Cell State Transmission between Neighbours.

Code Meaning
0ΦΦ don’t care
100 unexcited ordinary transmission state
101 special excitation
110 confluent excitation
111 ordinary excitation

Hence each cell has three bits of input and output and doing this reduces complication

of the computation for this part. State encoding is based on three fields with a total size

of ten bits as shown in figure 2.44 and we can see the state type content in table 2.5.

Figure 2.44.: Ten bit encoding divided into three fields, taken from, [5, fig. 12, p. 304].
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Table 2.5.: Encoding of the State Type.

Code Meaning
0000 quiescent state
0001 special transmission state
0010 confluent state
0011 ordinary transmission state
1xxx sensitised state number xxx

Figure 2.45.: FPGA content, taken from, [5, fig. 13, p. 305].

The transition rules are implemented on an FPGA, the content of which is seen in

figure 2.45 with the logic circuit (c) shown in figure 2.46. The three logic circuits serve

the following operations; logic circuit (a) makes the outputs of the current cell according

to the current state, logic circuit (b) generates the seven signals shown on the left hand

side of figure 2.46 and logic circuit (c) ascertains the future state of the cell.

In figure 2.46 the ROM is a look-up table based upon the arbitrary rule of the last

step in figure 2.30. The constructing arm as described by von Neumann is not used

in this implementation due to the limited number of “biodules” so they are physically

configured as the required organ. The single path construction procedure is used to

extend to a new area within the grid without using the external arm to achieve this.

Hence the algorithm computes all of the required signals with each cell having a state

and a mark. The mark is used to identify the cell for the construction order. The cell

mark number is the length of the path across the cells from the connector to a particular

cell with all cells initially being marked zero. So the cells are built from the last to the

first, one cell at a time and the path through the organ being built is the constructing arm.
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Figure 2.46.: Logic circuit, taken from, [5, fig. 14, p. 304].

Also where there are alternative paths of the same length the choice is made randomly.

Only small organs can be created due to resource restrictions but are a successful first

hardware implementation [5].

2.4. Emergence

Artificial Life – Biologically Inspired Engineering In this section we begin

to examine several strands of research by Doursat and associates into artificial devel-

opment and programmed networks. This [22] introduces a multi-agent simulation and

exploitation of morphogenetic processes by integrating self-assembly, pattern formation

and genetic regulation to form an evo-dev inspired approach. In emergent engineering

[23, 24], self-assembling networks composed of dynamic nodes with the ability to have

wireless connectivity are considered for Internet and e-networking using simple chain-

ing and lattice formations.

2.4.1. Morphogenesis

How can we link the biological development idea of morphogenesis to computer science

and engineering? Morphogenesis is sometimes stated as being “more than the sum of

56



its parts”, leading to the idea that emergence [21] is one of the key concepts in the study

of morphogenesis.

From previous examination of Conway’s game of life in section 2.3.3, we found that

it had emergent behaviour from the three simple transaction rules. Hence we can see that

this is similar to a biological cell where no one cell is any more important than another

and the growth is purely based upon the transaction rules in force at any particular time

step. In the biological sense these rules may also change whereas in Life the rules

remain the same for the full run time.

An example of morphogenesis in the game of life is shown in Figure 2.47. The pat-

terns are created within the same three by four cell grid and occupy the same x,y coor-

dinates within the overall grid. The change occurs at each time step with the individual

cells changing according to the transition rules.

1. Shape A and B are two possible patterns which will create pattern D at the next

time step.

2. Shape C or shape D will then create pattern E at the subsequent time step.

3. Finally the last change will turn shape E into shape F.

Figure 2.47.: Example of morphogenesis in the game of life.

The final shape is a still life known as a Beehive and is considered to be an attractor

because several other shapes converge to it. The pattern will remain in the beehive shape
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from one generation to the next, providing there is no further interaction from external

neighbours in subsequent time steps. Still life’s are considered to be an oscillator with

unit period 1 [83].

These three steps demonstrate the idea of ’trap doors’ where once the pattern has gone

through the trap door then there can be no going back. This is due to the pattern that

was used not being retained and therefore cannot be replicated correctly. This leads to

another concept that morphogenetic processes cannot be deduced from their final form.

2.4.2. Embryonic Development

Self-assembly and adaptive self-organisation. In these sections we consider research

undertaken by Doursat in the area of artificial life and in particular biologically inspired

engineering.

There is huge growth in computer systems and traditional system design is having

difficulty in keeping up with future trends. Currently, open source software is leaderless

and programmers operate in groups where they modularise the work and do not rely on

a single controlling mind. This method is approaching the one proposed by Doursat.

“Biological organisms, which might give the illusion of deliberate design are in fact

the product of undesigned evolution through random variation and non-random natu-

ral selection, excluding the need to invoke any form of intelligent design for them [22,

p. 168].” Figure 2.48 leads us on from this statement where undesigned evolution(UE)

is beyond the brick wall and is not achievable by current design methodologies. How-

ever it is suggested that intelligent design(ID) is the standard engineering design point

which moves towards intelligent meta-design(IMD) and a final goal of evolutionary

meta-design(EMD) at some future point. This means that the fundamental laws re-

quired to model the self-organisation and self-building of structures from a single cell

with the ability to differentiate the differing stages of growth have to be created for the

IMD stage and then the possibility of evolution taking over at the EMD stage.

Self-organised and structural systems in this model are initially based upon a cellular
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Figure 2.48.: Design versus evolution spectrum [22, fig.8.1, p. 169].

automata lattice as discussed previously but much closer attention is paid to emulate

the genetics and biological development or ’evo-devo’. Each cell contains a genetic

regulatory network (GRN) [19, 20, 22] which is modelled as a feed-forward hierarchy

of switches [19]. In [19], Doursat talks about reverse engineering possible solutions

but does not categorically state that there is not more than one path in the GRN switch

process and thus the issue of ’trap doors’, may arise without us knowing what route to

take and thus reverse engineering may not be possible.

Figure 2.49.: Gene regulatory interactions GRN [22, fig.8.3, p. 179].

Complex morphogenesis has three fundamental ingredients; self assembly(SA); pat-

tern formation(PF) and genetic regulation(GR), where the model can be thought of as

either moving cellular automata or heterogeneous collective motion [20] and modularity

is an essential condition of evolvability.

Figures 2.49 and 2.50 show the complete pathway from start to finish where fig-

ure 2.49 is the switches for a single cell GRN which can settle in various on/off states.

Figure 2.50 then shows (b) continuing from (a) and on to (c) a lattice of cells and (d) final

positioning by the local morphogen gradients (X, Y). The creation grows by cell pro-
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Figure 2.50.: GRN subsequent positions [22, fig.8.3, p. 179].

liferation, creating new local gradients within single identity domains in (d) [22]. This

cellular process intends to create a novel engineering model capable of self-assembly

by an abstraction of biological development rather than a central control.

2.4.3. Emergent engineering

There are broadly two types of abstract model for a self made e-network, [23, 24],

simple chaining and lattice formation. The nodes have limited positional awareness and

during self assembly can exchange messages and make links. As the network expands

and node positions change, nodes adapt by switching different rule subsets on or off,

thus triggering growth of chains, lattices and more complex composite topologies.

Simple Chaining, figure 2.51 is the basic node for this type of self assembling struc-

ture, it is realised with two ports X, X’ and two internal gradient values x, x’ in each

node. Initial conditions for nodes are both ports open and gradients set to 0.

Figure 2.51.: Simple Chaining [24, p. 13].

The ports can be free or occupied and also open or closed. New ports are set to open

with a gradient of zero and the value of x is sent out of X’ with a value of x+1. Each

new node can connect to any available port and the ports are closed as soon as x+x’ =

n – 1. The gradient counters keep track of the position of the node in the chain. Then

the gradient number can be used for decisions such as length of chain or branching
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to allow more complicated structures. Its not clear in [23] in the case where a port is

occupied and then closed whether the connection is retained. Finally node operations

are carried out in this order G⇒ P⇒ L and then back to G. Gradient update(G); port

management(P); both of which are executed by nodes in the network and link creation

(L) generic logic to select an open port.

Figure 2.52.: Lattice formation by guided attachment. [24, p. 16].

Lattice formation by guided attachment has the same routines as above G⇒ P⇒ L

and then back to G. It also now has two pairs of ports with X, X’ and Y, Y’ and also two

sets of internal gradients x, x’ and y, y’ as shown in figure 2.52. The lattice begins with

one node above and one node to the side as the basic start and subsequently expands

by filling the in the internal corner until x+x’ = n – 1and or y+y’ = n – 1. The nodes

can continue branching even though one or more chains has reached its limit as long as

the branch line has not. Single nodes can be replaced with a cluster of nodes to give an

element of mutability by the addition of an extra port (C). Possible other features are

modular structures. Modules can do one of several things with one of these being that

they can have different gradient ports identified by tags a, b, c. Hence a change of rule

is required for L so links can only be created between ports with the same tag. Also

this can give the option of alternative paths instead of branching. Finally it can now be

seen that figures 2.49 and 2.50, have the same modular structures by local gradients

as does e-networks created by the modular structures by local gradients methodology

mentioned above.
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3. Research Question

3.1. Why

This is an exploration of many-core parallel systems based upon a NoC where each

software process can either move or spawn further software processes within a local

neighbourhood of processor cores across a large grid of cores by simulation. There

is a need to have local rules to allocate dynamically changing processes to multiple

processors.

3.2. Example and terminology

We use an Agent-Based simulation approach. This section defines some terminology.

Figure 3.1a is a 2D simulation grid which represents a many-core system. Each cell is

a single processor or core. Agents are shown as a coloured object contained within a

single cell and are a software process, Each process can operate within a single core

until they either terminate, move by relocating within the local neighbourhood and or

spawn further software processes in the local neighbourhood.

Figure 3.1b has a single active cell at coordinates (2, 2) with the cells within one

hop in the classic von Neumann method shown with blue hatching. The cells shown

in green and blue hatching combined are the classic Moore neighbours for a hop of

one. Hop’s are the distance in cells from the current active cell that constitutes the local

neighbourhood.
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(a) Inactive Simulation grid. (b) Active simulation grid.

Figure 3.1.: Simulation grids showing an empty grid and a grid with an active core. The
cells with hatching are the local neighbourhood for a hop of one for both
classic von Neumann and Moore.

3.3. How

Given a simulation where the cells of the grid have state, which either contain a software

process or are awaiting to receive one, the processes are distributed within the grid by

the local neighbourhood algorithm. The algorithms under investigation provide:

• A local neighbour selection ordering.

• A transition function dictating operation conditions.

• Neighbourhood size dependant on local distance of neighbourhood.

3.4. What

The detailed research question investigated is: how is the agent growth pattern affected

by the size of the neighbourhood and complexity of neighbour selection?
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4. Simulation Methodology

4.1. Agent-based Modeling and Simulation

The criteria required by us for Agent Based Modeling and Simulation (ABMS) toolkits

are as follows:

• Source Code: Java.

• Type of Agents based upon its interaction behaviour: Agents / objects as Java

classes.

• Integrated Development Environment (IDE): Eclipse.

• Simulation models’ scalability level: High/Large scale.

• Application domain: General purpose 2D simulations, cellular automata, complex

adaptive systems.

• Utilise the MVC Design Pattern: Model, View, Controller.

• Free for Academic use.

4.2. Simulation Grid Structure

ObjectGrid2D 1 is our choice for most of the experiment grid structures due to only

allowing 0 or 1 objects per location. In most of the simulations each cell can only

1Whilst using the built-in neighbourhood methods in Grids of Objects we identified three different soft-
ware bugs which turned out to be undocumented default behaviours. After consultation with Professor
Sean Luke, lead developer of MASON,
https://cs.gmu.edu/~eclab/tools.html
these areas of undocumented behaviour were resolved.
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contain a single agent thus ObjectGrid2D is the most appropriate for these simulations.

Section 5.3.2.1 of the MASON manual [45] gives a comparison of the differing grid

choices to help make the best choice. All simulation grids are bounded regardless of the

size of the grid, hard edged and cannot be crossed. Whilst we are limiting this research

to simulation the ultimate goal is to implement the model directly in hardware.

The following terminology has been chosen:

“Hop” Is the distance from the central location of the local neighbourhood to the

farthest neighbours.

“Step” Is a process of calculating the simulation’s next state.

“Time step” Is the time interval for which the simulation will progress during the

next “Step”.

Thus in the simulation experiments shown in chapter 6, an example of Hop and Step

are; change of agent state for each step dependant upon the hop size and time step.

In some of the neighbourhoods we have chosen to have a designated starting cell

position in nine different positions. These are: the four corners, four edge mid points

and a central cell. This shows if any of these positions are better starting points when

compared to their total occupancy. Some of the grids have odd sides and others have

even sides. In the case of an odd sided grid the starting cells are shown in figure 4.1a

and similarly the starting cells for even sided grids is shown in figure 4.1b.

These simulations in terms of mapping processes are using local neighbourhood al-

gorithms to move or spawn processes within the grid structure. As each cell represents

a core this is a direct link of the processes being brought into action on the cores.

(a) Odd grid starting cell choices (b) Even grid starting cell choices.

Figure 4.1.: Cells for all fixed start point simulations
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4.3. Neighbouring cell order disruption

Each of the built-in neighbourhood methods has the option of including or excluding

the central cell within the local neighbourhood array. These methods have a lot of

overhead and the manual [45], advises that omitting the central cell reduces the total

load. When omitting the central neighbourhood cell, the latter half of the coordinate

arrays are disrupted. In order to rectify the disruption, a JAVA class extension is added

to revise ObjectGrid2D to MyObjectGrid2D. The table 4.2 is the coordinate neighbour

array of a Moore neighbourhood for a hop of one, with both the ObjectGrid2D class and

the MyObjectGrid2D class neighbourhoods with and without the origin for comparison.

The origin cell in this table for all versions is at location (2,2). The ObjectGrid2D

version without the origin has one location with the coordinates shown in bold text. The

reordered neighbour is the cause of early ending of this simulation.

0

1

2

3

5

7

4

6

9 8

11 10

13 12

1415

Figure 4.2.: Numbered path of selected neighbouring cell occupied for each time step.
The cell containing the red ring is the location that has stopped the simula-
tion by having no empty cell within a hop of one.

The table 4.1 shows the neighbouring cell coordinates for the Moore neighbourhood

at an internal origin position, a corner origin position and an edge origin cell location.

Each of these has one cell reordered, such that rather than filling cells from the left to the
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right. The changed cell position when it becomes the origin leaves an empty cell to the

left. That empty cell becomes the next to be occupied whereupon all other empty cells

are out of reach. Such as the one shown at coordinates (6,0) in figure 4.2 is occupied.

This is the bottom left hand cell of the grid and is shown with a red ring containing the

number 15 is positioned, such that all further empty cells are beyond a hop of one.

Neighbour Cell Coordinates for ObjectGrid2D version

with inside without origin
origin cell (2,2) cell

Location X Y X Y

0 1 1 1 1
1 1 2 1 2
2 1 3 1 3
3 2 1 2 1
4 2 2 3 3
5 2 3 2 3
6 3 1 3 1
7 3 2 3 2
8 3 3

with corner without origin
origin cell (0,0) cell

0 0 0 1 1
1 0 1 0 1
2 1 0 1 0
3 1 1

with edge without origin
origin cell (0,2) cell

0 0 1 0 1
1 0 2 1 3
2 0 3 0 3
3 1 1 1 1
4 1 2 1 2
5 1 3

Table 4.1.: Classical Moore neighbours location array for a hop of one, showing neigh-
bours for an inside, corner and edge location. Bold numbers are the coordi-
nates for the neighbour which has changed its selection order.

The JAVA class extension code for the revised MyObjectGrid2D is in appendix A.1.
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Neighbour Cell Coordinates

ObjectGrid2D version MyObjectGrid2D version
with origin with origin

Locations X Y X Y

0 1 1 1 1
1 1 2 1 2
2 1 3 1 3
3 2 1 2 1
4 2 2 2 2
5 2 3 2 3
6 3 1 3 1
7 3 2 3 2
8 3 3 3 3

ObjectGrid2D version MyObjectGrid2D version
without origin without origin

Locations X Y X Y

0 1 1 1 1
1 1 2 1 2
2 1 3 1 3
3 2 1 2 1
4 3 3 2 3
5 2 3 3 1
6 3 1 3 2
7 3 2 3 3

Table 4.2.: Moore neighbours array for a hop of one, origin at coordinates (2,2). The
coordinates (3,3) in bold is the one that has changed position within the
neighbour selection ordering.

This extension resolves the cell order disruption.
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4.4. von Neumann neighbourhood - Tunnelling

At each time step of the simulation a local neighbourhood array of cores is generated for

each agent. The number of cores is dependent upon the hop size. What happens during

each time step is down to the particular algorithm being applied. The array of cores

is checked for an unoccupied core from left to right. If an unoccupied core is found

then the it is used as the next location for a process to be applied. If no empty core is

found then the last (X,Y) coordinates are held in the next core method and tunnelling

can happen.

Tunnelling is when the next location finder method holds the last pair of coordi-

nates within the array and moves to the next step and those (X,Y) coordinates. This

is repeated until an empty core is found, whereupon a process is applied to that core.

Assuming there are now one or more empty cores the normal operation continues. Fig-

ures 4.3a, 4.3b and 4.3c will help explain what is occurring during a simulation. This

example uses the von Neumann neighbourhood and cores that can be selected if empty

are in the following order, West, North, East and South from the origin. Figure 4.3a is

step one of the simulation with the first cell occupied and indicated with ‘O‘. The next

figure 4.3b, is ten steps further on. Each letter in the cells indicates which direction was

used to get to that particular core. This core ‘W⊙‘ has all four neighbours occupied.

This is where tunnelling begins on the next step. The simulation at each step looks for

an empty core to occupy and if none are found the next core coordinates for the last

direction in the array is used but no object is added. The last figure 4.3c shows two

cores where the tunnelling has occurred and are indicated by the downward arrow in

those two cells. The one with the ‘S‘ being the empty cell reached and the remainder of

cells are occupied in the normal manner. Tunnelling is not detrimental to the simulation

once one understands what is happening. An alternative which prevents this is to have

a finish condition when a cell whose neighbours are all occupied is entered. In large

grids preventing tunnelling caused a substantial amount of cells to be unavailable. Tun-
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nelling was identified when considering multi-process experiments. These required the

simulation speed to be reduced and the and tunnelling was observed. Subsequently the

single agent simulations were re-run and in some cases the occupancy factors are much

reduced. It was decided that the finish condition would be applied to all simulations as

if tunnelling is allowed then all most all cores are occupied regardless of algorithm or

neighbourhood size and shape.

(a) Step 1 of simulation. (b) Blocked cell at step 11. (c) Tunnelling shown.

Figure 4.3.: von Neumann neighbourhood, full simulation

4.5. Constraints on grid height in built-in
neighbourhood methods

In order to identify if there is an optimal grid shape or size both in simulation and

subsequently in hardware, simulations were carried out on differing shape rectangles.

Long horizontally, square or long vertically. Both square and horizontal shapes com-

pleted successful simulations. However, the built-in neighbourhood methods did not

work fully with the vertical grids, failing to fill cells with an Y coordinate greater than

the maximum X coordinate. This is due to the the developers of MASON designing

these built-in neighbourhood methods with an expectation that simulations would have

a square shape. In a typical grid with width of five cells and a depth of ten cells we

carried out von Neumann simulations as shown in 4.4a, 4.4b and Zig-Zag simulation

in 4.4c.

Figure 4.4a shows the starting cell with coordinates (2,5) and subsequent three steps

in the von Neumann neighbourhood simulation. One must note that JAVA coordinates
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start at zero rather than one and the Y axis is in the opposite direction to what is consid-

ered normal. Table 4.3 at the top of the table with start position (2,5), the next five items

are the neighbourhood for this cell position. The next step’s neighbourhood should be

(1,5) from the first set rather than what is shown (1,0). Thus the Y coordinate is out

of bounds as Y > X. The next two steps show normal neighbour selection . Figure

4.4b then shows the final step and if the simulation is allowed to run no further cells are

occupied below Y = 4. On the other hand figure 4.4c is the Zig-Zag neighbourhood

which starts in cell (0,0) and travels to the last cell as shown. It occupies each cell in

turn and and leaves the cells a differing shaded grey depending on how long since they

were visited.

Both of these methods use similar code to generate the simulations with the exception

of the neighbourhood method. Experiments have shown that the in-built methods are

constrained to square and long horizontal grids.

(a) Simulation start and three
steps, von Neumann.

(b) Simulation end, von
Neumann.

(c) Simulation end, Zig-Zag.

Figure 4.4.: von Neumann and Zig-Zag neighbourhoods, full simulation

4.6. Random Number Generation

Random number generation is required in those simulations where the starting cell lo-

cation is randomly chosen, particularly for those with multiple-agents. The random

number generator used within MASON is derived from ECJ 27 a Java based evolution-

ary computation research system [44], and is the MersenneTwisterFast version. This

is not a subclass of java.util.Random and cannot be used for multiple threads. Thus a
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Bounded = 5x10 Start position: (2, 5)

0: ( 1, 5)
1: ( 2, 4)
2: ( 2, 5)
3: ( 2, 6)
4: ( 3, 5)

Start position: (1, 0)

0: ( 0, 0)
1: ( 1, 0)
2: ( 1, 1)
3: ( 2, 0)

Start position: (0, 0)

0: ( 0, 0)
1: ( 0, 1)
2: ( 1, 0)

Table 4.3.: von Neumann Neighbourhood Bounded 5x10 grid, origin at cell (2,5).

copy of the MersenneTwisterFast and MersenneTwister classes have been included in

the MASON Toolkit. MersenneTwister class is threadsafe and a direct replacement for

java.util.Random. The MASON manual page 57, [45] recommends both of these rather

than the default java.util.Random. Whilst java.util.Random is threadsafe, concurrent

use over the same java.util.Random instance, suffers from contention if used with many

threads, and consequent poor performance. Michaelis in [56] investigated Randomness

of Java Runtime Libraries and found that the Java Development Kit (JDK) version ran

slower and only passed 30 out of 114 black-box tests.

The MersenneTwisterFast and MersenneTwister classes are Java versions of the C-

program for MT19937 Integer version created by Makoto Matsumoto and Takuji Nishimura

[53]. These versions of the MersenneTwister are seeded with a 32 bit integer and if you

set the seed to be the same for different runs with the same parameters then the agent

start position created is the same each time. Therefore if high occupancy is required

then preselecting the random seed chosen from previous simulations which have had

agent starting positions that achieved high occupancy can be beneficial.
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5. Simulation experiment using
L-systems algorithm

Initial experiments used an L-system approach to examine process "growth". Experi-

ment 0 describes this preliminary work, and why change to an agent-based approach

was made.

5.1. Experiment 0 (a simulation using L-system

algorithm.)

If we consider the simulation to represent a hardware layer and a virtual machine layer

with a link between each, so, as the cell multiplication takes place the virtual list is a

double linked list with knowledge of the cells to the left and right, also each cell will

know the id of the state machine processor. This allows the insertion of additional cells

between a cell and its creator whilst simultaneously adding new cells to the hardware

state machines at the end of the processor list which in later versions will be hardware

based upon different FPGA’s. Here actual cells are being simulated, where each cell

occupies a single core and thus when the simulation grows many cores are being occu-

pied.

D0L simple model

Figure 5.1 shows a model of D0L-systems for the development of a “fragment of a

multicellular filament such as that found in the blue-green bacteria Anabaena catenula”

[65], which is now to be used for the first attempt at a simulation model in software
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to help identify the issues that may be relevant to the creation of a suitable parallel

processing architecture.

Figure 5.1.: Development of a filament (Anabaena catenula ) simulated using a D0L
system. taken from, [65, fig. 1.4, p. 5].

The simulation is based upon a finite state automaton which uses the transactions

shown to create the next generation of cells.

Transactions:

ω : ar

P1 : ar → albr

P2 : al → blar

P3 : br → ar

P4 : bl → al

Figures 5.2 and 5.3 helped in the program design. The activity diagram shows an

outer loop for the generation cycles and an inner loop to select the cell to be processed

by the inner state machine.
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Figure 5.2.: UML Use case diagram for bacteria Anabaena catenula simulation.

Figure 5.3.: UML activity diagram for two while loops, and an inner switch that forms
the finite state automaton.
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This simulation model is based upon the Java collection ArrayList which is a linked

list inside an array. This allows the list to dynamically resize as the cells are generated

at each turn and the total number of cells grows. Procid is the index for the content

of ArrayList and matches the cell type to its processor position. In this simulation the

cell types are generated but the process is sequential rather than parallel. This type

of bacteria generally grows for ten generations and rarely up to a maximum of twenty

generations therefore each process will only occupy a core for a relatively short time.

Table 5.1 shows the output for a simulation run of seven generations starting from cell

type “A”. The simulation follows the Fibonacci series and produces correct cell growth

for a maximum of thirty eight generations with 39088169 cells output. The program

fails on inputs beyond thirty nine due to running out of memory despite running on a

computer with eight Gigabyte of memory. hence the decision was made to move to an

Agent-based simulation approach.

Table 5.1.: D0L run output for seven generations.

procid: cellType

1 A
2 C, B
3 D, A, A
5 C, C, B, C, B
8 D, A, D, A, A, D, A, A

13 C, C, B, C, C, B, C, B, C, C, B, C, B
21 D, A, D, A, A, D, A, D, A, A, D, A, A, D, A, D, A, A, D, A, A
34 C, C, B, C, C, B, C, B, C, C, B, C, C, B, C, B, C, C, B, C, B, C,

C, B, C, C, B, C, B, C, C, B, C, B
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6. Simulation experiments that
apply MASON Toolkit

6.1. Introduction

Table 6.1.: Glossary of simulation terminology

Simulation grid is the many-core system.
Cell is a single core of the many-core system.
Agent is a task or a software process or an application implemented on a single core.
Local neighbourhood is those neighbouring cells available for task mapping.
Some researchers refer to the local neighbourhood as a tile.

In this chapter we use the MASON simulation toolkit as the simulation core for all

experiments. In chapter 4 we identified several MASON default behaviours, one of

which we referred to as “Tunnelling”. This is where the local neighbourhood has no

empty cores available within the hop distance and uses the last pair of x,y coordinates

within the neighbourhood search as the next location to centre upon for the next search.

Hence the central location is changed at each step even though no new task is mapped

to a core. Until an empty core is found and a new task is applied to that core. If this

is allowed then each simulation occupies all cores eventually. This defeats our investi-

gation of the different local neighbourhood comparison. Therefore for all simulations a

finish condition has been applied for when a local neighbourhood has no empty cells.

All of the grid cells represent a single core processor and each agent represents a

single process their relationship within simulations is shown in table 6.1. Five different

local neighbourhood algorithms are examined; three built-in and two we created. These

are von Neumann, Moore, Radial, Zig-Zag and Selective Travel. Each of the simulations

follows the Model-View-Controller (MVC) design pattern, which is used to separate the
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application’s concerns.

• Model - Model represents an object carrying data. It can also have logic to update

controller if its data changes.

• View - View represents the visualisation of the data that the model contains.

• Controller - Controller acts on both model and view. It controls the data flow

into model object and updates the view whenever data changes. It keeps view and

model separate.

The agent’s can have three different behaviours move, grow and spawn. Not all sim-

ulations include all of these behaviours. Move is used to analyse behaviour. Whilst

growth has several uses: firstly a time for the agent to take an action such as move,

spawn new agents and or finally terminate. Spawning creates a number of new agents

dependant on the available empty cores within the local neighbourhood.

• Move - Move an agent by relocating from current position to a new position

within the local neighbourhood.

• Grow - Growth is shown by the agent’s starting colour transitioning to a different

colour over a number of time steps.

• Spawn - Spawn where an agent creates one or more new agents within available

local neighbourhood empty cores.

Experiment one is the preliminary investigation of MASON to identify how it can be

used in creating simulations. Zig-Zag, this experiment helped to identify and guide the

simulation outcomes. Experiments, two starting with a single agent and three starting

with multiple agents, allowed verification of how the size and shape of the simulation

grid combined with the local neighbourhood affects the total cell occupancy. Finally

experiment four combines all three areas of experiments one, two and three. It is a

pre-cursor of possible future simulations for future research.
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Experimental set-ups, there are two different approaches:

• Designated start position which only requires one run because it’s deterministic

and it is true all of the time.

• Random start position where 100 runs are done to gather statistics as each run is

different.

It should be noted that in both JAVA and MASON the Y-axis is different to the ex-

pected norm in that the cell with coordinates X = 0, Y = 0 is located at the top left hand

corner. Y-axis increments positively in a downward direction.

6.2. Experiment 1 (Initial MASON investigation)

In this experiment two views have been provided for each simulation. The first contains

the single agent presented as an oval which traverses over each cell as the simulation

proceeds. The second is a rectangle and also has a trail from the start position to the

final position. Experiment 1, examines a rule based algorithm for a single agent from

a designated starting point through movement across the grid until unable to move any

further. At each step the agent moves from the current location to a new designated

location from a single cell neighbourhood for a hop of one. The Zig - Zag simulation

is being used as a initial development tool and proof of concept. These two simulations

have either a defined start point or a random start point. The designated start Zig-Zag

is an initial calibration exercise and the random start is the first true experiment. In

addition random placement of agents are more commonly used in the later experiments.

6.2.1. Zig - Zag designated start position

MASON is used here as a calibration exercise and identifies the features required for

MVC. This simulations start coordinates are [0, 0] as shown in figure 6.1a. The neigh-
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bourhood consists of a single cell defined by the following rules. Obviously starting in

this position ensures that all of the cores are occupied one core at a time.

• If Y is even then X = X + 1

• else if Y is odd then X = X - 1

• If X = MinX or MaxX then Y = Y + 1

• When last core is reached, stop.

Figure 6.1b shows the path that the agent has followed with the shade of grey becom-

ing lighter the further from the end position and the red rectangle represents an agent in

the final position for this calibration exercise. Thus a verification of the environment is

shown.

(a) Zig-Zag Neighbourhood starting position. (b) Zig-Zag full simulation path.

Figure 6.1.: Zig-Zag neighbourhoods with designated start position.

6.2.2. Zig - Zag random start position

This simulation uses the same rules as Zig - Zag designated start except for placement

of the first agent which is a randomly selected core using the MersenneTwister random

number generator described earlier [45]. The aim is to visit as many cores as possible

and figures 6.2a and 6.2b show that this algorithm is flawed as there are more cells
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unoccupied than occupied. This simulation gives a different start position each time it

is run and does not accidentally fill the whole grid as the programmed travel direction

is downwards from the start position. Generally there are more cells unoccupied than

occupied. For the random start simulation over a large number of runs very few had a

nearly full cell occupancy The random start position had an occupancy average of 72

cores for 100 runs. The main benefit of the random algorithm is the implementation of

the random start position code which is used in the later experiments.

Both of these Zig-Zag simulations have provided the framework for the creation of

simulations for the experiments that follow and is a proof of concept.

(a) Zig-Zag Neighbourhood starting position. (b) Zig-Zag full simulation path.

Figure 6.2.: Zig-Zag neighbourhoods with random start position.

6.3. Experiment 2 (Single agent spawning).

Experiment 2 gives consideration to the in-built neighbourhoods; von Neumann, Moore

and Radial. The simulations all start with a single task randomly placed within the

simulation grid. Subsequently at each time step a single new task is spawned into one

of the empty cores in the local neighbourhood. That new task reorientates the local

neighbourhood by becoming the central occupied core. Each local neighbourhood is

different dependant upon the type of neighbourhood and the hop distance. Regardless of
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the type of local neighbourhood there is an assumption that the cores are closer together

and this is better than them being widely distributed within the simulation grid.

Firstly, to the Radial neighbourhood as there is a requirement of using whole cells

and some of the radial boundary options use partial cells.

Initial inspection of the Radial algorithm is restricted to just identifying the number

of neighbours that make a local neighbourhood for a hop of one for each of the different

options. Subsequently simulations of a hop of one, two, four and eight have been carried

out on von Neumann and Moore neighbourhoods in turn. These start with a single agent

an at each time step replicate that agent within an empty core in the local neighbourhood.

This continues until all of the cores are occupied or there are no empty cores within

the neighbourhood that can be reached by the active agent which would result in the

simulation being terminated.

The same algorithms are applied to a number of differing size grids.

Figures 6.4a, 6.4b, 6.8a and 6.8b show the neighbouring cores in von Neumann and

Moore local neighbourhood for a hop of one and a hop of two. These cores are those

available for either placement of a new agent or existing agent to be relocated into an

unoccupied core. Grids are five by five and the starting core is located at coordinates [2,

2]. The numbers in the von Neumann figures 6.4a, 6.4b and Moore figures 6.8a, 6.8b

indicate the order in which the search for an empty core occurs. All grids occupancy

are shown as heatmaps. von Neumann, hop of one and Moore, hops of one, two, four

and eight are shown in appendix B. Whilst the von Neumann heatmaps for hops of two,

four and eight are contained in the von Neumann section 6.3.2 below.

6.3.1. Radial neighbourhood

The getRadialLocations is different to the von Neumann and Moore neighbourhoods

as the neighbouring cells are from a circular area based upon the real-valued radius.

There are three measurement rules to define how the cells fall within the boundary of

the circle. Figure 6.3 is extracted from the MASON manual [45] showing all of the
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boundary options described below. .

1. Grid2D.ANY, some part of the cell must fall within the circle boundary.

2. Grid2D.CENTER, the centre of the cell must fall within the circle boundary.

3. Grid2D.ALL, the entire cell must fall within the boundary of the circle.

Center touches surface of circle
(included when "CENTER" and "closed"

but NOT included when "CENTER" and "open")

Touches surface of circle
(included when "ANY" and "closed"

Centers not within the circle

Touches surface of circle
(NOT included when "ALL" and "open")

ALL, Closed ALL, Open ANY, Closed

CENTER, Closed

ANY, Open

CENTER, Open

Figure 5.3 Examples of certain cells falling within the region returned by the method getRadialLocations(...) with various settings of
measurement rule (ALL, ANY, or CENTER) and closed-ness (open, closed).

cell must fall within the circle boundary, Grid2D.ANY, which means that some part of the cell must fall
within the circle boundary, and Grid2D.CENTER, which means that the center of the cell must fall within
the circle boundary.

• Closedness MASON also provides two ways of determining exactly what the “circle boundary” means.
If the value is true, then the circle is closed, meaning that a point lying exactly on the outer edge of the
circle is considered to be “within” the boundary. If the value is false, then the circle is open, meaning
that a point lying exactly on the outer edge is considered to be “outside” the boundary.

Figure 5.3 illustrates some of these concepts. If you’re in doubt, you probably want Grid2D.ANY and a
closedness of true.

Grid3D is similar, though it does not have hexagonal neighborhoods:

sim.field.grid.Grid3D Utility Methods

public void getMooreLocations(int x, int y, int z, int dist, int mode, boolean includeOrigin, IntBag xPos, IntBag yPos, IntBag zPos)

Computes the neighboring locations lying within the (2 dist + 1) × (2 dist + 1) × (2 dist + 1) cube centered at
x, y, z. That is, all neighbors 〈Xi, Yi, Zi〉 of a location that satisfy max(|(x − Xi)|, |(y − Yi)|, |(z − Zi)|) ≤ dist. If
dist= 1, this is equivalent to the center location itself and its eight neighbors, the so-called “Moore Neighborhood”.
If The mode variable determines the boundedness assumptions of the environment, one of: Grid3D.BOUNDED,
Grid3D.UNBOUNDED, or Grid3D.TOROIDAL. Note that array grids do not support Grid3D.UNBOUNDED, though
sparse grids do. For each such neighboring location 〈Xi, Yi, Zi〉, the values Xi, Yi, and Zi are added to xPos, yPos,
and zPos respectively, clearing them first. If includeOrigin is false, then the 〈x, y, z〉 location is not included among
the returned locations.

public void getVonNeumannLocations(int x, int y, int z, int dist, int mode, boolean includeOrigin, IntBag xPos, IntBag yPos, IntBag zPos)

Computes the neighboring locations lying within the (2 dist + 1) × (2 dist + 1) × (2 dist + 1)
diamond-shaped volume centered at x, y, z. That is, all neighbors 〈Xi, Yi, Zi〉 of a location that satisfy
|(x − Xi)| + |(y − Yi)| + |(z − Zi)| ≤ dist. If dist= 1, this is equivalent to the center location itself and its
“Von-Neuman Neighborhood” (the four neighbors above, below, and to the left and right). The mode variable
determines the boundedness assumptions of the environment, one of: Grid3D.BOUNDED, Grid3D.UNBOUNDED,
or Grid3D.TOROIDAL. Note that array grids do not support Grid3D.UNBOUNDED, though sparse grids do. For

123

Figure 6.3.: Examples of certain cells falling within the region returned by the method
getRadialLocations(...) with various settings of measurement rule (ALL,
ANY, or CENTER) and closed-ness (open, closed). Figure from MASON
Manual [45], page 123.

Mason provides an additional consideration, ’Closedness’, defining what the circle

boundary does in relation to a point lying exactly on the circle boundary. If true then

the circle is closed and any point on the outer edge of the circle is within the boundary,

when if false the circle is open and any similar point is outside the boundary.

The radial simulation for a hop of one investigates which of any of the boundary

options are suitable. Each of the six options have been tried with a single agent within a

5x5 grid and designated location of x=2 and y=2. Appendix A.2 shows the code for all

three of the Grid.2D rules with true Closedness. Table 6.2 is the local neighbourhood

for all Grid.2D radial rules with both true and false closedness for comparison and the

cells coordinates. This table is also the results for this part of the investigation.
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True False True False True False

Any Any Center Center All All

0 (3, 3) (3, 3) (3, 2) (2, 2) (3, 3) (3, 3)
1 (3, 2) (3, 2) (2, 3) (3, 2) (3, 2)
2 (3, 1) (3, 1) (2, 2) (3, 1) (3, 1)
3 (2, 3) (2, 3) (2, 1) (2, 3) (2, 3)
4 (1, 3) (1, 3) (1, 2) (2, 2) (2, 2)
5 (1, 1) (1, 1) (1, 3) (1, 3)
6 (1, 1) (1, 1)

Table 6.2.: Radial neighbourhood, Bounded 5x5 Grid, Object Centre: (2,2):Radius 1.

For these examples of the three rules, CENTER has the lowest number of cells with

the false choice for closedness having a single cell within the neighbourhood. Rule ALL

has the greatest number of cells for both true and false whilst rule ANY has one cell less

than rule ALL in their neighbourhood.

6.3.2. von Neumann neighbourhood

The von Neumann neighbourhood for a hop of one, has four cells in the shape of a cross

as shown in figure 6.4a. Whilst the neighbourhood for a hop of two has twelve cells as

in figure 6.4b. Hops of four have forty one cells as in figure 6.4b and eight have one

hundred and forty five cells as in figure 6.4b respectively. Each of these neighbourhoods

have the selection ordering within each node.

von Neumann simulations start with a single agent and each simulation uses different

hop sizes. There are nine simulations with a designated start position. Each simulation is

only run once as the final outcome cannot change. Also a random selected start position

is used for one hundred runs and the arithmetic mean of these runs is reported in the

heatmap. The current agent spawns a single new agent at each time step. The newly

spawned agent’s coordinates takes on the role of local neighbourhood central location

for the next step. Further time steps continue until no empty cores can be found in the

local neighbourhood. Simulation’s end when either there are no empty cores within the
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(a) Neighbourhood for a hop of 1. (b) Neighbourhood for a hop of 2.

(c) Neighbourhood for a hop of 4. (d) Neighbourhood for a hop of 8.

Figure 6.4.: von Neumann neighbourhoods.

local neighbourhood or all of the simulation grid cores are occupied.

Simulation runs for hops of one, two and four can be inspected in film vN1_2_4e.wmv

with a link to its location in Google Drive appendix D. It can be seen that in this film

each simulation successfully occupies all cells.

In the simulations the larger hops locate empty cores more readily and where an agent

cannot find an empty core the simulation is terminated.

A heatmap is a graphical representation of the grid core occupancy where pale yellow

are low numbers of cores transitioning to dark blue which are high numbers of cores.

The actual numbers for each box are also included. There are four heatmaps comprising

of sixteen different grid shapes with nine designated starting points and an average of

one hundred random starting points for both the default ObjectGrid2D and the extended

MyObjectGrid2D as described within section 4.3. Comparison of the heat maps for a
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hop of one for both versions of the grid structure can be seen in appendix B.1. Heat

maps for a hop of two, four and eight are shown in figures 6.5, 6.6 and 6.7.

As new agents are added the local neighbourhood is redefined, centring on the new

agent that was added. All simulation runs shown in the heatmaps mentioned above

start at the either the same designated start location or a random location depending

upon which combination of start location and grid shape has been chosen. Most of the

MyObjectGrid2D are superior to the default ObjectGrid2D, due to MyObjectGrid2D

maintaining the correct order of the local neighbourhood array.
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(a) Heatmap for default ObjectGrid2D, neighbours distance two cell.
Alg 22 vN Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 822 900 900 883 894 889 889 887 895 893
45*20 897 900 897 889 896 158 147 900 900 894
60*15 821 900 895 900 895 900 116 900 900 900
90*10 747 900 900 900 891 900 900 900 900 900
150*6 659 900 900 897 183 900 900 900 900 146

40*40 1600 1454 1584 1586 1598 1597 1600 286 1600 1591 1598
50*32 1502 1600 1597 1599 1585 1600 1600 1600 1600 1585
80*20 1451 1600 1557 1597 1600 1600 156 1600 1600 1560
100*16 1434 1600 1600 1600 1594 1600 133 16000 1600 1600
160*10 1062 1600 1600 1594 1597 1600 106 1600 1600 1600
320*5 999 1600 275 1600 227 1600 111 1600 1600 1600

50*50 2500 2475 2500 2497 2499 2469 2500 2500 2500 2500 2479
125*20 2261 2500 2499 2497 2491 198 2497 2500 2500 2499
100*25 2312 2500 2497 2495 2493 2496 196 2496 2500 2427
250*10 1611 2500 2500 2498 2498 2500 2500 2500 2500 2500
500*5 1552 2500 320 2500 317 2500 156 2500 2500 2500

(b) Heatmap for extended MyObjectGrid2D, neighbours distance two cell.
Alg 22m vN Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 900 900 900 900 893 900 900 900 900 900
45*20 900 900 900 900 895 900 900 900 900 900
60*15 900 900 900 900 897 900 900 900 900 900
90*10 900 900 900 900 898 900 900 900 900 900
150*6 900 900 900 900 899 900 900 900 900 900

40*40 1600 1600 1600 1600 1600 1590 1600 1600 1600 1600 1600
50*32 1600 1600 1600 1600 1592 1600 1600 1600 1600 1600
80*20 1600 1600 1600 1600 1595 1600 1600 1600 1600 1600
100*16 1600 1600 1600 1600 1593 1600 1600 1600 1600 1600
160*10 1600 1600 1600 1600 1598 1600 1600 1600 1600 1600
320*5 1600 1600 1600 1600 1599 1600 1600 1600 1600 1600

50*50 2500 2500 2500 2500 2500 2495 2500 2500 2500 2500 2500
125*20 2500 2500 2500 2500 2495 2500 2500 2500 2500 2500
100*25 2500 2500 2500 2500 2494 2500 2500 2500 2500 2500
250*10 2500 2500 2500 2500 2498 2500 2500 2500 2500 2500
500*5 2500 2500 2500 2500 2499 2500 2500 2500 2500 2500

Figure 6.5.: von Neumann neighbourhood, Occupied cells for each simulation grid ver-
sion.

Heatmap for a hop of two is shown with the default ObjectGrid2D in figure 6.5a

and the extended MyObjectGrid2D in figure 6.5b. In comparison with each other fig-

ure 6.5b has more starting positions that are fully occupied than figure 6.5a. Thus

MyObjectGrid2D is the better choice here.
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(a) Heatmap for default ObjectGrid2D, neighbours distance four cell.
Alg 24 vN Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 896 900 897 897 900 896 900 898 896 897
45*20 896 900 900 900 900 900 896 897 897 897
60*15 898 900 896 900 900 897 900 897 900 895
90*10 898 898 900 900 900 900 900 896 900 900
150*6 900 900 900 900 900 900 900 900 900 900

40*40 1600 1571 1571 1596 1569 1595 1579 1584 1593 1596 1598
50*32 1589 1598 1575 1600 1579 1582 1592 1593 1596 1600
80*20 1595 1598 1600 1598 1589 1589 1600 1588 1590 1597
100*16 1598 1600 1597 1600 1600 1600 1598 1600 1597 1600
160*10 1600 1600 1600 1598 1598 1600 1596 1598 1600 1597
320*5 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600

50*50 2500 2474 2455 2495 2448 2469 2414 2496 2392 2494 2476
125*20 2497 2496 2497 2500 2492 2500 2500 2492 2495 2500
100*25 2494 2494 2488 2496 2490 2490 2495 2494 2500 2486
250*10 2500 2498 2498 2500 2500 2498 2500 2500 2496 2500
500*5 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

(b) Heatmap for extended MyObjectGrid2D, neighbours distance four cell.
Alg 24m vN Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 900 900 900 900 900 900 900 900 900 900
45*20 900 900 900 900 900 900 900 900 900 900
60*15 900 900 900 900 900 900 900 900 900 900
90*10 900 900 900 900 900 900 900 900 900 900
150*6 900 900 900 900 900 900 900 900 900 900

40*40 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
50*32 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
80*20 1600 1600 1600 1600 1600 1600 1600 1600 1600 16000
100*16 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
160*10 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
320*5 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600

50*50 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
125*20 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
100*25 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
250*10 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
500*5 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

Figure 6.6.: von Neumann neighbourhood, Occupied cells for each grid version.

Heatmap in figure 6.6 for a hop of four is shown with the default ObjectGrid2D in

figure 6.6a and the extended MyObjectGrid2D in figure 6.6b. In comparison with each

other figure 6.6b has all starting positions fully occupied whilst figure 6.6a has very

high values but not as good. Thus MyObjectGrid2D is the best choice here.
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(a) Heatmap for default ObjectGrid2D, neighbours distance eight cells.
Alg 28 vN Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 896 897 897 891 894 897 898 892 894 895
45*20 900 898 898 900 900 898 900 900 900 900
60*15 900 900 900 900 900 900 900 900 900 898
90*10 900 900 900 900 900 900 900 900 900 900
150*6 900 900 900 900 900 900 900 900 900 900

40*40 1600 1600 1600 1598 1600 1600 1600 1600 1598 1600 1600
50*32 1598 1600 1594 1594 1598 1600 1598 1598 1598 1598
80*20 1598 1600 1600 1600 1600 1600 1598 1598 1600 1598
100*16 1598 1600 1598 1599 1600 1600 1600 1598 1600 1598
160*10 1600 1600 1600 1600 1600 1600 1598 1600 1600 1600
320*5 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600

50*50 2500 2500 2498 2494 2495 2500 2486 2487 2498 2498 2500
125*20 2500 2500 2500 2500 2500 2498 2500 2500 2500 2500
100*25 2498 2500 2498 2500 2498 2500 2500 2500 2498 2500
250*10 2494 2500 2498 2500 2498 2500 2500 2498 2498 2500
500*5 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

(b) Heatmap for extended MyObjectGrid2D, neighbours distance eight cells.
Alg 28m vN Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 900 900 900 900 900 900 900 900 900 900
45*20 900 900 900 900 900 900 900 900 900 900
60*15 900 900 900 900 900 900 900 900 900 900
90*10 900 900 900 900 900 900 900 900 900 900
150*6 900 900 900 900 900 900 900 900 900 900

40*40 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
50*32 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
80*20 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
100*16 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
160*10 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
320*5 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600

50*50 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
125*20 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
100*25 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
250*10 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
500*5 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

Figure 6.7.: von Neumann neighbourhood, Occupied cells for each grid version.

Heatmap in figure 6.7 for a hop of eight is shown with the default ObjectGrid2D in

figure 6.7a and the extended MyObjectGrid2D in figure 6.7b. In comparison with each

other figure 6.7b has all starting positions fully occupied whilst figure 6.7a is very close

to fully occupied but not quiet as good. Thus MyObjectGrid2D is the best choice here.

It has become obvious that as the local neighbourhoods became larger in size fuller

occupancy occurs. However, it is clear that MyObjectGrid2D provided better outcomes

for all three hop sizes.
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6.3.3. Moore neighbourhood

The Moore neighbourhood has eight cells surrounding the start cell for a hop of one as

shown in figure 6.8a, while the neighbourhood for a hop of two has twenty four cells as

figure 6.4b. Hops of four and eight have eighty and one hundred and ninety five cells

respectively but are not shown here. The numbers within the cells for figures 6.8a, and

6.8b are the order in which the next empty cell is chosen with the blank central cell as

the origin for this local neighbourhood.

(a) Neighbourhood for a hop of 1. (b) Neighbourhood for a hop of 2.

Figure 6.8.: Moore neighbourhoods.

There is also a film for the Moore neighbourhood with the same designated start cell

as the von Neumann runs for comparison. Again, the film M1_2_4e.wmv shows that

the larger hop more readily selects empty cells. Link to film location in Google Drive,

appendix D. Also, the same runs were made for the grid structures with designated and

random starts as mentioned previously in the von Neumann section. Comparison of

the heat maps for hops of one for both versions of the grid structure are shown in the

appendix B, heatmaps B.2.
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(a) Heatmap for default ObjectGrid2D, neighbours distance two cell.
Alg 6-2 Moore Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 678 864 500 507 507 823 877 872 321 823
45*20 824 874 886 875 874 891 889 871 890 887
60*15 891 889 882 881 884 895 894 889 892 891
90*10 895 893 897 897 898 896 892 896 896 892
150*6 731 898 56 93 93 93 56 898 898 56

40*40 1600 1505 1562 1303 1551 1545 1586 1525 1524 1590 1528
50*32 1574 1531 1564 1537 1575 1583 1584 1576 1586 1589
80*20 1578 1585 1597 1563 1576 1588 1591 1551 1591 1594
100*16 1590 1596 1592 1590 1592 1589 1583 1594 1594 1589
160*10 1594 1596 1593 1584 1584 1596 1593 1593 1593 1598
320*5 697 16 96 1600 1600 1600 96 16 16 96

50*50 2500 2027 2029 2415 2383 2425 2455 2460 2406 2448 2394
125*20 2416 2494 2486 2475 2475 2489 2497 2497 2489 2489
100*25 2473 2487 2486 2399 2401 2472 2492 2460 2471 2478
250*10 2495 2496 2497 2497 2498 2496 2492 2493 2493 2492
500*5 878 16 141 2500 2500 2500 141 16 16 141

(b) Heatmap for extended MyObjectGrid2D, neighbours distance two cell.
Alg 62m Moore Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 900 900 900 900 892 900 900 900 900 900
45*20 900 900 900 900 895 900 900 900 900 900
60*15 900 900 900 900 896 900 900 900 900 900
90*10 900 900 900 900 897 900 900 900 900 900
150*6 900 900 900 900 898 900 900 900 900 900

40*40 1600 1600 1600 1600 1600 1590 1600 1600 1600 1600 1600
50*32 1600 1600 1600 1600 1592 1600 1600 1600 1600 1600
80*20 1600 1600 1600 1600 1595 1600 1600 1600 1600 1600
100*16 1600 1600 1600 1600 1596 1600 1600 1600 1600 1600
160*10 1600 1600 1600 1600 1597 1600 1600 1600 1600 1600
320*5 1600 1600 1600 1600 1599 1600 1600 1600 1600 1600

50*50 2500 2500 2500 2500 2500 2487 2500 2500 2500 2500 2500
125*20 2500 2500 2500 2500 2495 2500 2500 2500 2500 2500
100*25 2500 2500 2500 2500 2494 2500 2500 2500 2500 2500
250*10 2500 2500 2500 2500 2497 2500 2500 2500 2500 2500
500*5 2500 2500 2500 2500 2499 2500 2500 2500 2500 2500

Figure 6.9.: Moore neighbourhood, Occupied cells for each grid version.

Heatmaps in figure 6.9 for a hop of two is shown with the default ObjectGrid2D in

figure 6.9a and the extended MyObjectGrid2D in figure 6.9b. In comparison with each

other figure 6.9b has nearly all starting positions fully occupied whilst figure 6.9a has

very variable occupancy. Thus MyObjectGrid2D is the better choice here.
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(a) Heatmap for default ObjectGrid2D, neighbours distance four cell.
Alg 64 Moore Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 881 884 884 878 869 889 888 880 877 884
45*20 892 892 892 894 893 892 893 892 892 892
60*15 896 896 896 897 896 896 896 896 893 896
90*10 896 896 896 897 896 896 896 896 896 896
150*6 900 900 900 900 900 900 900 900 900 900

40*40 1600 1574 1582 1581 1542 1540 1586 1564 1570 1582 1582
50*32 1580 1584 1573 1575 1574 1573 1589 1575 1590 1574
80*20 1591 1592 1592 1591 1590 1592 1592 1592 1592 1590
100*16 1596 1596 1596 1594 1594 1596 1596 1596 1596 1596
160*10 1597 1598 1598 1597 1596 1596 1598 1596 1596 1598
320*5 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600

50*50 2500 2455 2463 2484 2478 2456 2483 2483 2449 2476 2483
125*20 2492 2492 2492 2494 2493 2492 2492 2492 2492 2492
100*25 2489 2492 2479 2494 2492 2492 2481 2488 2488 2481
250*10 2496 2496 2496 2497 2496 2496 2496 2496 2496 2496
500*5 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

(b) Heatmap for extended MyObjectGrid2D, neighbours distance four cell.
Alg 64m Moore Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 900 900 900 900 900 900 900 900 900 900
45*20 900 900 900 900 900 900 900 900 900 900
60*15 900 900 900 900 900 900 900 900 900 900
90*10 900 900 900 900 900 900 900 900 900 900
150*6 900 900 900 900 900 900 900 900 900 900

40*40 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
50*32 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
80*20 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
100*16 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
160*10 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
320*5 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600

50*50 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
125*20 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
100*25 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
250*10 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
500*5 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

Figure 6.10.: Moore neighbourhood, Occupied cells for each grid version.

Heatmap in figure 6.10 for a hop of four is shown with the default ObjectGrid2D in

figure 6.10a and the extended MyObjectGrid2D in figure 6.10b. In comparison with

each other figure 6.10b has all starting positions fully occupied whilst figure 6.10b is

close to fully occupied but not quiet as good. MyObjectGrid2D is the best choice here.
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(a) Heatmap for default ObjectGrid2D, neighbours distance eight cells.
Alg 68 Moore Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 889 885 885 893 892 892 892 892 892 885
45*20 892 892 892 893 892 892 892 894 894 892
60*15 900 900 900 900 900 900 900 900 900 900
90*10 900 900 900 900 900 900 900 900 900 900
150*6 900 900 900 900 900 900 900 900 900 900

40*40 1600 1582 1581 1584 1566 1566 1584 1581 1579 1564 1581
50*32 1589 1592 1592 1593 1592 1592 1592 1592 1592 1592
80*20 1593 1594 1594 1593 1592 1594 1594 1592 1592 1594
100*16 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
160*10 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
320*5 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600

50*50 2500 2480 2476 2477 2478 2477 2476 2482 2477 2477 2476
125*20 2493 2492 2492 2493 2492 2492 2492 2494 2494 2492
100*25 2492 2492 2492 2493 2492 2492 2492 2492 2492 2492
250*10 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
500*5 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

(b) Heatmap for extended MyObjectGrid2D, neighbours distance eight cells.
Alg 68m Moore Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 900 900 900 900 900 900 900 900 900 900
45*20 900 900 900 900 900 900 900 900 900 900
60*15 900 900 900 900 900 900 900 900 900 900
90*10 900 900 900 900 900 900 900 900 900 900
150*6 900 900 900 900 900 900 900 900 900 900

40*40 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
50*32 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
80*20 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
100*16 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
160*10 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600
320*5 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600

50*50 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
125*20 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
100*25 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
250*10 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500
500*5 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500

Figure 6.11.: Moore neighbourhood, Occupied cells for each grid version.

Heatmap in figure 6.11 for a hop of eight is shown with the default ObjectGrid2D in

figure 6.11a and the extended MyObjectGrid2D in figure 6.11b. In comparison with

each other figure 6.11b has all starting positions fully occupied whilst figure 6.11a is

very close to fully occupied but not as good. Thus MyObjectGrid2D is the best choice

here.

The extended class is shown to have preferable outcomes to that of the default grid

class, due to the correct order of the neighbour coordinates which keep the last cores on
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the outside edge of the local neighbourhood, this experiment has shown that both von

Neumann and Moore neighbourhoods have comparable occupancy. Regardless of grid

size or start location for a hop of two or more is very successful.

6.4. Experiment 3 (Multiple agent spawning).

This experiment focusses on the exploration of three in-built local neighbourhoods and

an additional neighbourhood that is rule based and each of these have more than one

agent placed randomly on initialisation. The same random number seed when used with

the same simulation parameters always returns the same agent start positions.

The many-core system will have multiple tasks or applications in operation at the

same time and this simulation is closer to this. At each subsequent step, they each

create another agent in an empty core within their current local neighbourhood. The

built-in neighbourhood’s simulation terminate if any single agent becomes unable to

locate a new empty core within their local neighbourhood. The additional rule based

neighbourhood is called Selective Travel and uses a different grid class. Which allows

some agents to continue even if one has stopped.

6.4.1. Radial multi agent

For the radial local neighbourhood six simulations are undertaken. All simulations have

the form .ALL and Closedness is False and table 6.2 shows these option choices have

the most complete cells within the neighbourhood.

There are five agents randomly placed within the grid. The local neighbourhood has

a hop of four. Figure 6.12a has a random seed of three and includes the starting cell

positions and figure 6.12b the simulation end with the number of cells occupied. As

all of the agents are the same colour it was difficult to identify how many and which

agents were unable to find an empty core. To better understand why figure 6.12b ends

with so many cells unoccupied. an image of each step with each of the five agents
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coloured differently is shown in appendix C.1. Figure 6.12c has the same simulation

parameters as used in figure 6.12a but with a different random seed of four. The end

image figure 6.12d shows one hundred percent occupancy. This particular simulation

was run many times whilst incrementing the random seed for each run. It was observed

that some of those with an odd random number in particular produced start positions

that ended before occupying all cores. This was the reason for choosing random seeds

of three and four for these images shown in figure 6.12.

The film R_all_H4_A5.wmv, has a link to its location in Google Drive appendix D,

shows several similar Radial neighbourhood simulations. Analysis of all of these radial

simulations shows that random seed choice can be a critical to the start location of each

agent. This start position can affect the final outcome by allowing one or more agent’s

to become distanced from the empty cores.

(a) Random seed of three, start. (b) Random seed of three, end.

(c) Random seed of four, start. (d) Random seed of four, end.

Figure 6.12.: Comparison of two Radial neighbourhood simulations, each with five
agents and a hop of four. Figure 6.12a shows start positions for a ran-
dom seed of three and figure 6.12c a random seed of four. The occupancy
shown in figures 6.12b and 6.12d is quite different.
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6.4.2. von Neumann multi agent

For the von Neumann neighbourhood figure 6.13 is the start position for four separate

simulations each with the same random start position and three agents. Figures 6.14a,

6.14b, 6.14c, 6.14d show the final position for hops of one, two, four and eight.

Figure 6.13.: von Neumann neighbourhood simulation with three agents and the same
randomised start position for all four different hop sizes.

(a) von Neumann with a hop of one, end. (b) von Neumann with a hop of two, end.

(c) von Neumann with a hop of four, end. (d) von Neumann with a hop of eight, end.

Figure 6.14.: von Neumann neighbourhood simulations with three agents and hops of
one, two, four and eight when finished .

In these four simulations it can be seen that the hop of two has early termination and

reduced cell occupancy. This can be identified from figure 6.14b. As all the agents are
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close to the left hand boundary the possible cores available are restricted. The agents

travel in a downwards direction and when the bottom left hand cell is occupied the next

empty cell is beyond the reach of that agent which terminates the simulation. The other

three hops’ agents more readily access much more cells due to the local neighbourhood

becoming larger and allowing more empty core availability.

The film vN_H2_A3.wmv, has a link to its location in Google Drive appendix D has

a simulation of three agents with a hop of two showing that this neighbourhood is very

successful at accessing all of the available cells.

6.4.3. Moore multi agent

For the Moore neighbourhood figure 6.15 shows the start position for four separate

simulations with each one having the same random start and five agents. Figures 6.16a,

6.16b, 6.16c, 6.16d show the final position for hops of one, two, four and eight.

The film M_H2_8_A3_10.wmv, has a link to its location in Google Drive appendix D,

shows the full simulation run for both a hop of two and a hop of eight with three agents.

The final section of this film includes a hop of eight with ten agents. Figure 6.16a

shows a hop of one simulation and indicates that it produces reduced core occupancy. A

Mann-Whitney U test showed that there was a significant difference (W = 235, p-value =

0.02145) between the even random number seed and the odd random number seed. The

estimated effect size using Cohen’s d calculation in R, shown in Appendix E, difference

of d estimate: 0.5990212 (medium). Whereas the other three simulations access from

most to all available cores in the neighbourhood.

6.4.4. Selective Travel multi agent

Selective travel simulation is a progression from the von Neumann and Moore multi

agent simulations.

Rather than using ObjectGrid2d for this algorithm, SparseGrid2d is used because the
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(a) Moore neighbourhood, five agents,
randomised start positions.

Figure 6.15.: Moore neighbourhood simulation with five agents and the same ran-
domised start position for all four different hop sizes.

(a) Moore with a hop of one, end. (b) Moore with a hop of two, end.

(c) Moore with a hop of four, end. (d) Moore with a hop of eight, end.

Figure 6.16.: Moore neighbourhood simulations with five agents and hops of one, two,
four and eight when finished .

coloured background counts as an object and the agent is also an object. ObjectGrid2D

does not allow more than one object within a cell.

Each different colour denotes a particular agent grouping. The circular agent is the

current cell selection for the background colour family grouping. Its position also iden-

tifies the possible future locations. This neighbourhood uses a one hop neighbourhood

similar to von Neumann, that is at each time step after the start each agent examines the

four directions.
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The path directions are ordered from a maximum to a minimum number of empty

cores. The direction with the longest empty path is selected for the next empty core.

The agents act in series and if more than one agent chooses the same empty core then

an agent is selected randomly to occupy that core with a new agent and the other will

choose a different core if available. Should there be no empty cores, that agent finishes.

The simulation continues until the last moving agent can move no further then the whole

simulation ends. A sample simulation is shown in figure 6.17. The starting agents are

the cream ovals and the coloured background is the complete core family for that agent.

In the film ST_H1_A10.wmv the whole simulation can be observed with a link to its

location in Google Drive appendix D.

(a) Selective travel neighbourhood start. (b) Selective travel neighbourhood end.

Figure 6.17.: Selective travel neighbourhoods with ten agents and a hop of one.

Experiment 3 Conclusions

It is assumed that all or nearly all cores should be occupied in each simulation. How-

ever, there are some which do not meet this criteria. In the simulations examined, the

differing neighbourhoods all show similar behaviour when used for multi-agents. Ran-

dom numbers for starting positions are influenced by the random number seed. In par-

ticular, there is a noticeable difference between odd and even number seeds as is shown

in our statistical analysis in Appendix E. Thus careful selection of random number seed

should be undertaken. These simulations also show that in general, bigger local neigh-

bourhoods can access more cells and more readily occupy all available cells within
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larger grids.

Selective Travel is the best of those tested, it has the ability to halt agents when they

are blocked and allow others which can still move to do so. In addition the differ-

ing cores each agent occupies are identified with appropriate colouring. Lastly, is its

relationship with von Neumann neighbourhood shape. von Neumann and Moore neigh-

bourhoods are better than Radial of the built-in local neighbourhoods because Radial

can identify partial cells within its neighbourhood and we are looking for whole cells.

On the other hand both von Neumann and Moore neighbourhoods have very similar

core occupancy.

For the proposed hardware, selection of the neighbourhood is a key parameter, as it

provides the number of possible cell states and how many transition rules are available.

Even with the small number of neighbourhoods examined, differences in symmetry and

size of the neighbourhood can have greatly different results. Thus, depending upon the

particular implementation neighbourhoods from both von Neumann and Moore could

be suitable. The von Neumann neighbourhood always creates a common relationship

between neighbours, whilst the Moore neighbourhood has multiple neighbour relation-

ships, edges and corners, perhaps even different types of corners. From these relation-

ships of neighbours it can be seen that each type of neighbour has a direct link to the

number of physical connections that needs to be designed into any hardware.

6.5. Experiment 4 (Multiple agent moving, growing

and spawning).

Experiment 4, is the most complex simulation undertaken. It brings together many of

the threads of the current research and is an indication of future simulations for further

research. This combines elements of the previous three experiments and ultimately

ensures that all three actions can be carried out at the same time. It could be suggested

100



there should be an intermediate simulation that omits the move function but retains all

other objectives. There are three different simulation runs, one Moore and two von

Neumann. The two von Neumann ones have one similar to the Moore version and one

on a much smaller grid to allow inspection of the transitions more clearly.

The rules for this algorithm are as follows:

1. Simulation start.

• Agents have 1.0 units of processing power.

• Cells have 0.0 units of processing power.

2. Simulation at each step.

• Cells accumulate 0.1 units of processing power.

• Agent moves to a local neighbouring cell.

• Agent entering a cell has a transaction cost of minus 0.2 units of processing

power.

• Agent gathers from the cell available processing power up to a maximum of

1.0 unit.

• Agent has a five percent chance of early termination and no new agents are

created.

• When Agent attains 10.0 units or greater of processing power:

– Agent terminates and is removed.

– New agents are created in the surrounding local neighbourhood

– New agents have 0.0 units of processing power.

The neighbourhood bags of coordinates, occupancy and processing power for each

agent are copied into temporary bags which are then sorted into higher to lower process-

ing power. Hence when the agent is moved to a new core then the best one is chosen

and if new agents are being created then the best cores are also chosen for them.
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(a) Moore neighbourhood at step 1, agents initial
placement.

(b) Moore neighbourhood at step 36, first four new
agents created from two terminated agents.

(c) Moore neighbourhood at step 500, agent colours
indicate which are nearing termination. White is new
agent, pink is transitioning and red is near
termination.

Figure 6.18.: Moore neighbourhood simulations with twenty agents and a hop of four at
different steps.

These three films have a link to their location in Google Drive appendix D. For the

simulation film M_H4_A50.wmv fifty agents are placed in a ten thousand cells square

grid. The neighbourhood is a hop of four and up to eight new agents are created upon

agent termination. Whilst for the simulation film vN7_H2_A50.wmv the fifty agents
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(a) von Neumann neighbourhood at step 1, agents initial
placement.

(b) von Neumann neighbourhood at step 36, first ten new
agents created from three terminated agents.

(c) von Neumann neighbourhood at step 500, agent
colours indicate which are nearing termination.
White is new agent, pink is transitioning and red is
near termination.

Figure 6.19.: von Neumann neighbourhood simulations with twenty agents and a hop
of four at different steps.

are placed in a two thousand five hundred cells square grid with a hop of two neigh-

bourhood, up to five new agents are created as described above. Finally the smaller

von Neumann simulation film vN_H1_A5.wmv has five agents starting in a one hundred

cells square grid with a hop of one. It can also create up to five new agents but as the
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neighbourhood only contains four cells this is the maximum that can be created at any

one time.
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Experiment 4 has all of the abilities that are ultimately required, multiple agents with

the ability to relocate to different processors. At predefined stages, create new processes

utilising the best processors that are available within a local neighbourhood. Finally the

ability to transition to any available processor within the grid.

Figure 6.20 shows a system with two hundred and fifty thousand cores, starting with

five hundred agents at an intermediate point within the simulation. It can be clearly

seen that there are agents at different stages within their growth by their colour, starting

at white then shades of pink to final red colour. In addition, the patches of agents

indicates local neighbourhoods where red agents can terminate and new white agents

are spawned.

In the field review, section 2.1.3, fault tolerance and energy efficiency from dark

silicon are discussed, so within Figure 6.20 the black patches can be considered to be

dark silicon and most of those cores are cooler than the occupied cores, although some

of the cores may have had the agent transition to an empty core and be in the cooling

down phase. When a defective core is identified it can be marked permanently as an

occupied core and thus not used by any agent when the defective core appears within

that agent’s local neighbourhood as a method of gaining fault tolerance.
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Figure 6.20.: von Neumann local neighbourhood simulation of a many-core system.
Depicting agents at various stages and core occupancy. Each local
neighbourhood covers those cores within a hop of four.
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7. Conclusions and Future Work

7.1. Conclusions

In this thesis we have focused upon bio-inspired algorithms that may be applicable for

direct implementation onto an FPGA. There are two main algorithms. Cellular au-

tomata, offer an effective massively fine grained parallel computation model and rewrit-

ing systems, of which, in particular L-systems. The self-replicating arena is widely

based upon CA’s but a few researchers are using L-systems in a similar way. The L-

systems model is naturally suited for modelling growth processes and self-replication

can be considered a special case of this. It can also be seen that both models could be

combined to provide a very similar outcome to von Neumann, in that if the L-system

was used to generate the string of characters which are then passed along a construct-

ing arm to the CA implementation phase. However it does appear that neither of these

systems are of a high enough level in the design chain for our possible usage. Whilst all

of the local neighbourhood algorithms examined are capable of being implemented in a

hardware environment some are more difficult than others. These algorithms should be

considered in this order:

1. von Neumann local neighbourhood.

2. Moore local neighbourhood.

3. User created local neighbourhood.

4. Radial local neighbourhood.

von Neumann and Moore are considered both in the classical version of a single

hop and larger hop versions. User created rules are algorithms that don’t use the local
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neighbourhoods in the same way as the others but may be derived from evolutionary

algorithms.

7.2. Future Work

The experiments in chapter 6 have helped to identify good local neighbourhoods. The

von Neumann and Moore neighbourhoods appear to be comparable in simulation.

The custom hardware known as SMBH has on-board four Xilinx Spartan 3E field

programmable gate arrays each of which can be configured as master or slave. There

are 8 of these boards connected by Ethernet. An Ethernet is a simple bus-like con-

nection of wires which operates by ’carrier sensing’ with collision detection known as

(CSMA/CD) belonging to the class of contention bus networks. Access is managed by

a medium access control (MAC) protocol. As a single link connects all hosts, the MAC

protocol combines the functions of a data link layer protocol and a network protocol in

a single protocol layer as in figure 7.1.

Preamble SFD MAC Destination MAC Source Ether Type Payload FCS

Figure 7.1.: Ethernet packet - physical layer, and Frame - data link layer.

The node to node interconnection can be considered as local neighbourhood within

each FPGA. Four FPGAs as a local area network (LAN) on each board. A wide area

network (WAN) over all the boards within the Intranet and an external connection to

the Internet as presented in figure 7.4. This can be achieved by the use of a hybrid

routing methodology, where the local local network uses a 2D-mesh topology and the

wider network utilises Spidergon topology. The Spidergon STNoC allows the selection

of these two routing strategies for a network.

Each of these papers have used either single FPGAs; [27], [30], [42], [46], [47], [81],

[73], [58] and or multiple FPGAs; [25], [32], [64] to create a node by node grid. The

size of the grids range from 3 by 3 up to 29 by 29; dependant upon the purpose of the
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core. Also, the model of FPGA must be taken into consideration for the amount of cores

created. As the model available on the SMBH is relatively small the number of cores

are limited to the lower end of the scale. Thus, figures 7.2 and 7.3 display the smallest

neighbourhood available. When hardware implementation is explored it’s expected that

the final grid size could be between 5 by 5 and 10 by 10.

As to which neighbourhood should be implemented in the custom hardware available

for this purpose. Consideration of figure 7.2 and figure 7.3 highlights the problem in

the circuit connectivity for the Moore neighbourhood. The wires for von Neumann can

be implemented in a 2 layer circuit, the 1st layer could carry the horizontal wires and

the 2nd layer the vertical wires. In the case of the Moore neighbourhood a 3rd or more

layers is required to connect the 4 corners with the centre. However the current custom

hardware does not allow for this. Thus the wires would need to be connected as depicted

in figure 7.3. When the router look up table 7.1 and table 7.2 are compared, the Moore

neighbourhood is more complex and has greater hop cost for many of the node to node

connections.

1 A B C D E Out
A 0 • • • • •
B • 0 •
C • 0 •
D • 0 •
E • 0 •

Out • • • • • 0

Table 7.1.: Node to node router lookup table for FPGA 1 on Board A from figure 7.2,
Out refers to routing beyond the local area network.

109



Figure 7.2.: SMBH custom board with 4 Spartan 3E FPGAs, von Neumann internal
neighbourhood with Spidergon STNoC Architecture.

Figure 7.3.: SMBH custom board with 4 Spartan 3E FPGAs, Moore internal neighbour-
hood with Spidergon STNoC Architecture.
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1 A B C D E F G H I Out
A 0 2 •1 2 •1 •1 2 •1 2 •1
B 2 0 •1 2 •1 3 4 3 2 •1
C •1 •1 0 •1 2 2 3 2 3 •1
D 2 2 •1 0 3 •1 2 3 4 •1
E •1 •1 2 3 0 2 3 2 •1 •1
F •1 3 2 •1 2 0 •1 2 3 •1
G 2 4 3 2 3 •1 0 •1 2 •1
H •1 3 2 3 2 2 •1 0 •1 •1
I 2 2 3 4 •1 3 2 •1 0 •1

Out •1 •1 •1 •1 •1 •1 •1 •1 •1 0

Table 7.2.: Node to node router lookup table for FPGA 1 on Board A from figure 7.3,
Out refers to routing beyond the local area network. The number is the hop
cost between two nodes, those that are directly connected also have a bullet
point next to the number.

Figure 7.4.: 8 SMBH custom boards within local Intranet and external connection to
Internet with Spidergon STNoC Architecture.
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A. JAVA Code.

A.1. MyObjectGrid2D class extension

package sim.field.grid;
import sim.util.IntBag;
public class MyObjectGrid2D extends ObjectGrid2D {

// Modifications to ObjectGrid2D class to prevent
// disruption to the cell coordinate array.

private static final long serialVersionUID = 1L;
public MyObjectGrid2D(int width, int height) {

super( width, height);
this.width = width;
this.height = height;
field = new Object[width][height];

}
protected void removeOrigin(int x, int y, IntBag xPos,

IntBag yPos)
{
int size = xPos.size();
for(int i = 0; i <size; i++)

{
if (xPos.get(i) == x && yPos.get(i) == y)

{
xPos.removeNondestructively(i);
yPos.removeNondestructively(i);
return;
}

}
}

// only removes the first occurrence
protected void removeOriginToroidal(int x, int y, IntBag xPos,

IntBag yPos)
{
int size = xPos.size();
int width = getWidth();
int height = getHeight();
x = tx(x, width, width*2, x+width, x-width);
y = ty(y, height, height*2, y+height, y-height);
for(int i = 0; i <size; i++)
{
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if (tx(xPos.get(i), width, width*2, x+width, x-width) ==
x && ty(yPos.get(i), height, height*2, y+height, y-
height) == y)
{
xPos.removeNondestructively(i);
yPos.removeNondestructively(i);
return;
}

}
}

}

A.2. Code for Radial Neighbourhood

package sim.alg;

import sim.field.grid.*;
import sim.util.*;

public class RadialObjectTest {

public static void bagOut(IntBag xs, IntBag ys)
{
if (xs.size() != ys.size()) System.err.println("WARNING,

sizes not same");
for(int i = 0; i < xs.size(); i++)

System.err.println("" + i + ": (" + xs.get(i) + ", " +
ys.get(i) + ")");

}
public static void main(String[] args)

{
{

System.err.println("Bounded 5x5 Object Cell: (2,2) :
Radius 1, ALL");

ObjectGrid2D grid = new ObjectGrid2D(5, 5);
// Bag result = new Bag();

IntBag xs = new IntBag();
IntBag ys = new IntBag();
grid.getRadialLocations(2, 2, 1, Grid2D.BOUNDED, true,

Grid2D.ALL, true, xs, ys);
bagOut(xs,ys);

}

{
System.err.println("Bounded 5x5 Object Cell: (2,2) :

Radius 1, ANY");
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ObjectGrid2D grid = new ObjectGrid2D(5, 5);
Bag result = new Bag();
IntBag xs = new IntBag();
IntBag ys = new IntBag();
grid.getRadialNeighbors(2, 2, 1, Grid2D.BOUNDED, true,

Grid2D.ANY, true, xs, ys);
bagOut(xs,ys);

}

{
System.err.println("Bounded 5x5 Object Cell: (2,2) :

Radius 1, CENTER");
ObjectGrid2D grid = new ObjectGrid2D(5, 5);
Bag result = new Bag();
IntBag xs = new IntBag();
IntBag ys = new IntBag();
grid.getRadialLocations(2, 2, 1, Grid2D.BOUNDED, true,

Grid2D.CENTER, true, xs, ys);
bagOut(xs,ys);
}

}

}

A.3. Code for D0L Simple Model

package combug.first;

import javax.swing.*;
import java.awt.event.*;
import java.util.*;

public abstract class TimeCycle extends JFrame implements
ActionListener {

//private static Object celltype;

public static void timeCycle() {
// Open a window to get the time cycle length and convert from

a string
// to an integer.

String tc = JOptionPane
.showInputDialog("Enter number of growth cycles, must

be < 38.");
int tcycle = Integer.parseInt(tc);
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// create an ArrayList with seed cell A.
ArrayList<Character> cellType = new ArrayList<Character>();
cellType.add(’A’);
System.out.println("cellType: " + cellType);
ArrayList<Character> newType = new ArrayList<Character>();

while (tcycle > 0) {

int procid = (cellType.size() - cellType.size());

while (procid != cellType.size()) {
char type = cellType.get(procid).charValue();

switch (type) {
case ’A’:

newType.add(’C’);
newType.add(’B’);
break;

case ’B’:
newType.add(’A’);
break;

case ’C’:
newType.add(’D’);
newType.add(’A’);
break;

case ’D’:
newType.add(’C’);
break;

default:
System.out.println("Invalid cell type." + type);
break;
}

procid++;
}
List<Character> temp = new ArrayList<Character>(cellType);
cellType.clear();
cellType.addAll(newType);
newType.clear();
// newType.addAll(temp);

System.out.println("procid: " + procid);
System.out.println("cellType: " + cellType);
/*
* When using this program do not input a number for growth

cycles

* greater than 37, as my computer ran out of resources.

* For inputs greater than 8 one of the println line should
be // out

* dependent on which is more important.
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*
*/

tcycle--;
}
}

public static void main(String[] args) {
// Schedule a job for the event-dispatching thread:
// creating and showing this application’s GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {

@Override
public void run() {

timeCycle();
}
}

);
}

}
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B. Moore and von Neumann
heat-maps.

Heatmaps for both von Neumann and Moore for hops of 2, 4, and 8 are shown in 6.3,

the heatmaps for a hop of 1 are shown below.

1. The Heatmap transitions from low values through the 50th percentile to the high-

est values with the following colours:

a) Pale yellow is the lowest values.

b) Pale blue is the 50th percentile.

c) Dark blue is the highest values.

2. Each Heatmap consists of sixteen different simulations in three sets. Each set of

simulations has one random average of one hundred simulation runs. There are

also nine designated start points:

• the four corners,

• the four edge centres,

• the central cell.

a) von Neumann Heatmap for ObjectGrid2D hops 1, 2, 4 and 8.

b) von Neumann Heatmap for extended ObjectGrid2D hops 1, 2, 4 and 8.

c) Moore Heatmap for ObjectGrid2D hops 1, 2, 4 and 8.

d) Moore Heatmap for extended ObjectGrid2D hops 1, 2, 4 and 8.
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(a) Heatmap for default ObjectGrid2D, neighbours distance one cell.
Alg 21 vN Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 821 900 900 900 480 900 900 900 900 900
45*20 732 900 900 900 495 900 900 900 900 474
60*15 759 900 885 900 480 900 871 900 848 877
90*10 746 900 900 900 540 900 900 900 900 406
150*6 868 900 900 900 600 900 900 900 900 376

40*40 1600 1239 1600 800 1600 840 1600 1600 1600 1600 821
50*32 802 1600 1600 1600 850 1600 1600 1600 1600 826
80*20 1315 1600 1600 1600 880 1600 1600 1600 1600 841
100*16 1169 1600 1600 1600 900 1600 1600 1600 1600 850
160*10 1339 1600 1600 1600 960 1600 1600 1600 1600 1600
320*5 1237 1600 1445 1600 960 1600 1441 1600 1600 801

50*50 2500 2061 2500 2500 2500 1300 2500 2500 2500 2500 2500
125*20 2048 2500 2500 2500 1375 2500 2500 2500 2500 1314
100*25 2099 2500 2475 2500 1230 2500 2450 2500 2500 1250
250*10 2111 2500 2500 2500 1250 2500 2500 2500 2500 1126
500*5 1953 2500 2255 2500 1500 2500 2250 2500 2500 1250

(b) Heatmap for extended ObjectGrid2D, neighbours distance one cell.
Alg 21m vN Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 774 900 900 900 450 900 450 900 480 900
45*20 749 900 900 900 450 900 480 900 200 640
60*15 711 900 900 900 420 900 480 900 120 600
90*10 628 900 900 900 450 900 500 900 60 500
150*6 790 900 900 900 450 900 900 900 24 468

40*40 1600 1576 1600 16000 1600 800 1600 880 1600 1600 1600
50*32 1146 1600 1600 1600 800 1600 1600 1600 1600 1600
80*20 1476 1600 1600 1600 800 1600 840 1600 1600 1040
100*16 1408 1600 1600 1600 800 1600 832 1600 1600 960
160*10 1267 1600 1600 1600 800 1600 820 1600 60 1600
320*5 1084 1600 820 1600 960 1600 810 1600 1600 820

50*50 2500 2410 2500 2500 2500 1250 2500 2500 2500 1300 2500
125*20 2488 2500 2500 2500 1250 2500 2500 2500 2500 2500
100*25 2240 2500 1850 2500 1300 2500 1300 2500 2500 1600
250*10 2268 2500 2500 2500 1250 2500 2500 2500 2500 1300
500*5 1814 2500 1270 2500 1500 2500 1260 2500 2500 1270

Figure B.1.: von Neumann neighbourhood, Occupied cells for each grid.

Heatmap for a hop of one is shown with the default ObjectGrid2D in figure B.1a

and the extended MyObjectGrid2D in figure B.1b. In comparison with each other

figure B.1a has more starting positions that are fully occupied than figure B.1b. Thus

ObjectGrid2D is the better choice here.
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(a) Heatmap for default ObjectGrid2D, neighbours distance one cell.
Alg 6-1 Moore Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 77 59 74 88 88 87 87 88 73 73
45*20 66 39 61 83 83 83 61 58 48 61
60*15 47 29 59 88 88 88 59 43 35 59
90*10 63 19 19 64 108 108 64 28 23 64
150*6 108 11 86 160 160 160 86 16 896 86

40*40 1600 108 79 99 118 118 117 117 118 98 98
50*32 90 63 88 112 112 112 93 94 78 88
80*20 94 39 79 118 118 118 79 58 48 79
100*16 72 31 81 130 130 130 81 46 38 81
160*10 95 19 99 178 178 178 99 28 23 99
320*5 184 9 167 328 328 328 169 13 1598 169

50*50 2500 130 99 124 148 148 147 147 148 123 123
125*20 98 39 101 163 163 163 101 58 48 101
100*25 90 49 99 148 148 148 99 73 60 99
250*10 151 19 144 268 268 268 144 28 23 144
500*5 282 9 259 508 508 508 259 13 2498 259

(b) Heatmap for extended MyObjectGrid2D, neighbours distance one cell.
Alg 61m Moore Neighbourhood

Square Rectangle
Max 
Cells

Cells 
Occupied Min x, Mid x, Max x, Max x, Max x, Mid x, Min x, Min x, Mid x,

X*Y X*Y Random Min y Min y Min y Mid y Max y Max y Max y Mid y Mid y

30*30 900 899 899 899 899 899 900 900 900 899 899
45*20 891 900 900 900 889 900 899 899 889 889
60*15 899 899 899 899 899 900 899 900 899 899
90*10 899 899 899 899 899 1600 900 900 899 899
150*6 900 899 899 899 899 900 900 900 899 899

40*40 1600 1599 1599 1599 1599 1599 1600 2499 1600 1599 1599
50*32 1599 1599 1599 1599 1599 1600 1600 1600 1599 1599
80*20 1599 1599 1599 1599 1599 1600 1599 1600 1599 1599
100*16 1599 1599 1599 1599 1599 1600 1599 1600 1599 1599
160*10 1599 1599 1599 1599 1599 1600 1599 1600 1599 1599
320*5 1599 1599 1599 1599 1600 1600 1599 1600 1600 1600

50*50 2500 2499 2499 2499 2499 2499 2500 2500 2500 2499 2499
125*20 2491 25000 2500 2500 2500 2500 2499 2499 2489 2489
100*25 2499 2499 2499 2499 2499 2500 2499 2500 2499 2499
250*10 2499 2499 2499 2499 2499 2500 2500 2500 2499 2499
500*5 2499 2499 2499 2499 25000 2500 2499 2500 2500 2500

Figure B.2.: Moore neighbourhood, Occupied cells for each grid.

Heatmaps in figure B.2 for a hop of one is shown with the default ObjectGrid2D in

figure B.2a and the extended MyObjectGrid2D in figure B.2b. In comparison with

each other figure B.2b has nearly all starting positions nearly fully occupied whilst

figure B.2a has very variable and low occupancy. Thus MyObjectGrid2D is the better

choice here.
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C. Other figures.

C.1. Radial Neighbourhood step by step
The figures below are for the radial simulation discussed in 6.4.1.

Figure C.1.: Simulation of a radial neighbourhood with a hop of four. Starting with five
agents and increasing by a further five at each step. Random seed of 3
and limited cell occupation shown at step twenty. The cell at coordinates
(10, 0), coloured cyan with a black border is the one that is blocked from
further movement and stops the whole simulation.

(a) Step one. (b) Step two. (c) Step three.

(d) Step four. (e) Step five. (f) Step six.

(g) Step seven. (h) Step eight. (i) Step nine.
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(j) Step ten. (k) Step eleven. (l) Step twelve.

(m) Step thirteen. (n) Step fourteen. (o) Step fifteen.

(p) Step sixteen. (q) Step seventeen. (r) Step eighteen.

(s) Step nineteen. (t) Step twenty.
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D. Google drive for media.

D.1. Google Drive link for Simulation films:

https://drive.google.com/drive/folders/13K_vl0gLHzQ9m5d_

kAnEWO6lbdqJHq5m?usp=sharing

D.2. Simulation film listing:

1. Films of simulation runs

a) Experiment 1.

• ZigZag0.wmv

• ZigZag1a.wmv

b) Experiment 2.

• M1_2_4e.wmv

• R_all_H4_A5.wmv

• vN1_2_4e.wmv

c) Experiment 3.

• M_H2_8_A3_10.wmv

• R_all_H4_A5.wmv

• vN_H2_A3.wmv

• ST_H1_A10.wmv

d) Experiment 4.
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• M_H4_A50.wmv

• vN_H2_A50.wmv

• vN_H1_A5.wmv
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E. Cohens’d calculation

E.1. Statistical analysis of Radial local

neighbourhood core occupancy

Statistically p-values are often used to determine if there is a significant difference be-

tween two groups. However, it does not tell the size of the impact. To understand this,

we need to know the effect size. Effect size can tell how large this difference actually is.

In practice, effect sizes are much more interesting and useful to know than p-values.

To calculate the effect size through a standardised mean difference using Cohen’s d,

which is calculated as:

Cohen′s d = (x1 – x2) / s

where x1 and x2 are the sample means of group even and group odd, respectively, and

s is the standard deviation of the population from which the two groups were taken. The

effect size with a d of 0.2 or smaller is considered to be small effect size, a d of around

0.5 is considered to be a medium effect size and a d of 0.8 or larger is considered to be

large effect size. The larger the effect size, the larger the difference between the average

core in each group. If the means of two groups don’t differ by at least 0.2 standard

deviations the difference is trivial, even if the p-value is statistically significant.

Table E.1 shows the two samples data and the calculation and result for d which in

this case is 0.597596. This is a medium effect size difference. Figure E.1 shows two

boxplots, one for even and one for odd, where it can be seen that even has the bulk of

high core occupancy within a narrow range, whereas odd core occupancy is much more
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wider spread.

Figure E.1.: Boxplot of cell occupancy for odd random number seed versus even
random number seed. Even random start positions lead to higher core
occupancy than odd random start positions.
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Table E.1.: Random number generator seed, Odd and Even comparison
Mean SD n

odd even Odd 166.9444 63.98113 18
23 222 Even 200.5 47.03472 18

116 225
200 220 M1-M2 33.55556
105 222 Pooled SD 56.15091
95 225 Cohen’s d 0.597596

219 222
224 224
224 224
110 120
120 223
85 223

195 90
215 225
210 200
205 220
215 90
219 210
225 224
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F. List of Acronyms

F.1. Acronyms
SoC System on Chip

NoC Network on Chip

FPGA Field Programmable Gate Array

2D two dimensional

SISD Single Instruction Single Data

SIMD Single Instruction Multiple Data

MISD Multiple Instruction Single Data

MIMD Multiple Instruction Multiple Data

CPU Central processing Unit

MPSoC Multi-Processor Systems

RISC Reduced Instruction Set Computer

IP Intellectual Property

DSP Digital Signal Processing

TTA Transport Triggered Architecture
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BMM Bit manipulating Machines

VLIW Very Long Instruction Word

FU Functional Units

VEHW Virtual Evolvable Hardware

OSI Open Systems Interconnection

LAN Local Area Network

WAN Wide Area Network

CA Cellular Automata

BRAM Block RAM

F.1.1. Acronyms that cannot be linked

Due to a problematic interaction between the Acronym package and the Koma-Script

document layout some acronyms are warned as unreferenced and fail to link. These are

the acronyms that this happened to.

SPMD Single Program Multiple Data shown in chapter 2.1, Basic architectures.

IN Interconnection Network shown in chapter 2.1, Custom processor.

GUI Graphical User Interface shown in chapter 2.2, Simulation tools.

IDE Integrated Development Environment shown in chapter 2.2, Simulation tools.

CSMA/CD Carrier Sense Multiple Access / Carrier Detection, shown in chapter 7.2,

Future Work.
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