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Abstract 

 This thesis presents Boxed Molecular Dynamics (BXD) as a useful method of 

accelerated sampling. It can be used to circumnavigate the rare event problem conduct 

simulations on extremely long timescales inaccessible to other forms of molecular 

dynamics, as well as to tackle complex problems for which a simple reaction coordinate 

cannot be defined and must be described in multidimensional collective variable space. 

 

The BXD method is discussed in both its most primitive one-dimensional form as well 

as after extension to multidimensional collective variable space. This is followed by a 

presentation of two new developments to the BXD method, which advance the scope 

of BXD simulations. 

 

1) Using a one-dimensional reaction coordinate, protein unfolding Atomic Force 

Microscopy experiments are simulated over a range of pulling velocities. 

Modifications to the results of unbiased BXD simulations combined with 

solution of the kinetic master equation allows Atomic Force Microscopy to be 

modelled at pulling speeds inaccessible to other forms of simulations, helping 

bridge the gap between experimental and computational methods. 

 

2) A new simulation pipeline for generating free energy surfaces is introduced in 

which trajectories from virtual reality are used to both define a set of collective 

variables for the system and as a path for the dynamics to follow. Results for 

three test systems, each presenting their own unique challenges are reported as 

a proof of concept for the method. Lastly, as a final validity check a free energy 

profile is generated for the unfolding of I27 and compared to a previously 

published version taken from BXD simulations in CHARMM. 
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Chapter 1: Molecular Dynamics 

 

1.1 Introduction 

 

Molecular Dynamics (MD) is a computer simulation method used to study the 

evolution of atomic and molecular positions with time, subject to relevant interatomic 

forces.  Before computers, researchers were forced to calculate the trajectories of 

chemical reactions by hand. 1 This is possible for very small systems such as two 

interacting particles as a solution can be found analytically, but even a small extension 

in system size increases the difficulty of such methods enormously. The desire for fast 

and accurate numerical computation gave rise to the use of computers in scientific 

research.2,3 

 

In 1959 Alder and Wainwright published work detailing how MD can be used to 

simulate perfectly elastic collisions between hard spheres,  which was later followed by 

Rahman’s 1964 study of liquid argon using a Lennard-Jones potential.2,3  Due to the 

power of computers growing, it  was not long after this until the first MD simulation of 

a protein was conducted in a landmark study by Martin Karplus.4 Although the 

simulation was short and used potentials considered inaccurate when compared to those 

of the modern day, the significance of this study cannot be overestimated. 

Demonstrating a protein as a dynamic object whose structure fluctuates shone a light 

on the role motion plays in the structure and function of biological molecules. Since 

then, MD has become increasingly helpful in understanding biological processes 

including molecular transport5,  enzyme catalysis6  and conformational changes7. 

 

1.2 Theory 

 

In a classical MD simulation a system comprised of N bodies, which are the nuclei of 

N atoms, is propagated forward in time from its initial state using Newton’s equations 

of motion. The interactions between the bodies are modelled using a potential energy 

https://en.wikipedia.org/wiki/Berni_Alder
https://en.wikipedia.org/wiki/Hard_spheres
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function, V, which for a conservative system is related to the force acting on the system 

of atoms through: 

 

 �⃗�(𝑡) =  −𝛻𝑉(𝑟(𝑡)) (1.1) 

 

Where r⃗(𝑡) ∈  ℝ3N is the vector of atomic positions at time t and F⃗⃗(𝑡) ∈  ℝ3N is the 

vector containing the corresponding forces acting on each atom. 

 

Using Newton’s second law the acceleration of the atoms in the system at time t can be 

expressed as: 

 

 �⃗�(𝑡)  =  𝐌−1�⃗�(𝑡) (1.2) 

 

 

where 𝐌−1 ∈  ℝ3N x 3N is the inverse of the diagonal matrix containing the masses of 

each atom and �⃗�(𝑡) ∈  ℝ3N is the resulting vector of the atomic accelerations. For N-

bodied systems the above equations cannot be solved analytically and are instead solved 

numerically over small iterations of time. 2,8 Perhaps the most widely used method of 

propagation in MD takes the form of the velocity Verlet integration.9 This is different 

expression of the original Verlet algorithm10 in that it explicitly includes velocity into 

the propagation equations, offering the advantage of being a self-starting method.  

 

In this method, an MD trajectory is considered as a series of ‘frames’ separated by a 

small time step, 𝛿t, each of which represents a different molecular configuration. For 

each time step the atomic positions, forces and accelerations are used to propagate the 

dynamics forward to the time step t + 𝛿t, using the following equations: 

 

 
𝑟(𝑡 + 𝛿𝑡)  =  𝑟(𝑡)  +  𝛿𝑡�⃗�(𝑡)  + 

1

2
 𝛿𝑡2�⃗�(𝑡) 

(1.3) 

 

   

 
�⃗�(𝑡 + 𝛿𝑡)  =  �⃗�(𝑡)  + 

1

2
 𝛿𝑡(�⃗�(𝑡)  + �⃗�(𝑡 + 𝛿𝑡)) 

(1.4) 
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Appendix 1 shows how equations (1.3) and (1.4) are obtained from Taylor expansions 

around the atomic coordinates and velocities at time t. 

 

Iterating over equations (1.1)-(1.4) gives the standard implementation scheme of an 

MD simulation.  A system is propagated according to the underlying potential energy 

function using the velocity Verlet algorithm as follows: 

 

1. Starting at an initial time t, apply potential energy function, V(r(t)) to the 

system to return the potential energy as function of atomic coordinates. 

 

2. Use equation (1.1) to get the associated forces acting each atom in the system. 

 

3. Apply Newton’s second law (equation (1.2)) to get the atomic accelerations at 

time t. 

 

4. Use the atomic velocities and accelerations to propagate the dynamics 

forward to time 𝑡 + 𝛿𝑡.  

 

5. Repeat steps 1- 4 until the simulation reaches an end. 

 

Another common method of integration is the leapfrog algorithm. Simulations follow 

the same method of iteratively solving Newton’s equations of motion, but with velocity 

calculated at half time steps: 

 

 
�⃗� (𝑡 +

𝛿𝑡

2
)  =  �⃗� (𝑡 − 

𝛿𝑡

2
 )  +   �⃗�(𝑡)𝛿𝑡 

(1.5) 

 

   

 
𝑟(𝑡 + 𝛿𝑡)  =  𝑟(𝑡)  + �⃗� (𝑡 +

𝛿𝑡

2
)  𝛿𝑡 

(1.6) 
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This scheme requires the specification of �⃗� (𝑡 − 
𝛿𝑡

2
 ) for its initiation. This can be done 

using the Euler method of integration, where the velocities at time 𝑡 − 
𝛿𝑡

2
 are given by: 

 

 
�⃗� (𝑡 − 

𝛿𝑡

2
 )  =  𝑣(0) − 

𝛿𝑡

2
�⃗�(0) 

(1.7) 

 

   

Where 𝑣(0) and �⃗�(0) are the initial velocities and accelerations respectively.  

 

To conduct an MD simulation, two things must be in place: a set of initial conditions 

and a suitable potential energy function. The initial conditions required for starting a 

simulation are the starting coordinates, usually taken from experimental data such as 

that found on the Protein Data Bank, and the initial velocities calculated from a 

Boltzmann distribution.  

 

There exists a wide variety of models for representing the way in which the particles of 

a system interact, but the choice of one over the other comes from weighing up the need 

for accuracy in a simulation against the computational expense of running it. The most 

accurate, and the most computationally expensive of these are the ab initio methods, 

which compute the forces acting on the nuclei from electronic structure calculations 

‘on the fly’ as the trajectory is generated.11,12 Although these methods are extremely 

accurate, the huge cost of running these simulations means they are limited to small 

systems and short timescales.  

 

On the other end of the scale lies the molecular mechanics (MM) method of generating 

potential energy functions. These potentials, or force fields, do not model electronic 

structure but rather approximate the quantum mechanical energy surface using classical 

mechanics, reducing the cost of simulations enormously.13 The sacrifice of accuracy 

for savings in computational expense means MM is unsuitable for studying processes 

such as bond breaking and formation, but excellent for modelling the dynamics of large 

systems like proteins over longer timescales. The initial model of the system is obtained 

from experimentally determined structures or comparative modelling data, which for 
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large biologicals with unfixed structures such as proteins, will be the atomic positions 

averaged over time.14  

 

From here on in all MD simulations are classical, using MM force fields. 

 

1.3 Molecular Mechanics 

 

Once an initial model is in place, the forces acting on each atom are obtained by 

differentiating the force field equations, which relate the potential energy of the system 

to the molecular structure.14,15  But before this can be done the equations of the force 

field must be derived. To do this, atom types are defined by their bonding and 

hybridisation16 (Figure 1.1(a)), before parameterising interactions with other atoms 

depending on their interconnectivity (Figure 1.1(b)). 

 

 

 

 

Figure 1.1: (a) Common atom types found in force fields as defined in reference [16]. They include 

sp2 hybridised carbons of aromatics (blue) and carbonyls (green), hydrogens bonded to aromatics 

(gold) and hydroxyl oxygens (pink), as well as oxygens bonded to one atom (purple), or found as part 

of a hydroxyl group (red).  (b) Bonded, angle, dihedral and non-bonded interaction types found in 

MM force field shown in blue, gold, green and purple respectively.  

 

 

a) b) 
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For cost and efficiency reasons, the force fields treat intramolecular interactions 

classically.13,15,17 Covalently bonded atoms are usually parameterised in terms of the 

sum of three components: the bond, angle, and dihedral terms. The bonded and angle 

interactions are modelled using harmonic, spring like potentials which each depend on 

a force constant  𝑘𝑏  or 𝑘𝜃 describing the strength of the interaction between the two 

atoms at a distance r or an angle 𝜃: 

 

 𝑉𝑏𝑜𝑛𝑑𝑠  =  ∑ 𝑘𝑏(𝑟 − 𝑟0)
2

𝑏𝑜𝑛𝑑𝑠

 

 

(1.8) 

 

 

 𝑉𝑎𝑛𝑔𝑙𝑒𝑠  =  ∑ 𝑘𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

 

 

(1.9) 

 

 

In the above equations 𝑟0 and 𝜃0 are the equilibrium distance and angle between the 

atoms respectively.  

 

Although the dihedral interaction can take a few forms18, the most common 

representation uses the cosine of the dihedral angel: 

 

 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠  =  ∑ 𝑘𝑑(1 + 𝑐𝑜𝑠(𝑛𝜙 − 𝜙𝑑))

𝑑𝑖ℎ𝑒𝑎𝑑𝑟𝑎𝑙𝑠

 
(1.10) 

 

 

Here, 𝑘𝑑  is the force constant representing the strength of the interaction, n is the 

periodicity, 𝜙𝑑  is the phase and 𝜙 is the dihedral angle between the four atoms as 

defined by two planes.  

 

Comparatively, atom pairs at a distance of four or more bonds apart are considered as 

non-bonded and are considered through their van der Waals interactions. Such 

interactions are modelled by Lennard-Jones potential, which is repulsive at short 

distances, attractive at intermediate distances and zero over long ranges 13,15,17 : 
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𝑉𝑉𝐷𝑊  =  ∑4𝜀

𝑖>𝑗

[(
𝜎

𝑅𝑖𝑗
)

12

− (
𝜎

𝑅𝑖𝑗
)

6

] 
(1.11) 

 

 

Here, 𝜀 is the well depth of the potential, R𝑖𝑗 is the distance between atoms i and j and 

𝜎 is the value of R𝑖𝑗 at which the potential is 0. In addition to van der Waals interactions, 

non-bonded atoms are also considered through their electrostatic interactions, as given 

by Coulomb’s law: 

 

 
𝑉𝑒𝑙𝑒𝑐  =  ∑

1

4𝜋𝜀

𝑞𝑖𝑞𝑗

𝑅𝑖𝑗
𝑖>𝑗

 
(1.12) 

 

 

where 𝑞𝑖 and 𝑞𝑗 are the partial charges of atoms i and j and here 𝜀 is a dielectric constant 

describing the reduction in the electrostatic force between the atoms arising from 

surrounding dielectric materials. 

 

The total energy of the system under a MM force field, 𝑉𝑡𝑜𝑡, is written as the sum of all 

these potentials:  

 

   𝑉𝑡𝑜𝑡 = 𝑉𝑉𝐷𝑊 + 𝑉𝑒𝑙𝑒𝑐 + 𝑉𝑏𝑜𝑛𝑑𝑠 +  𝑉𝑎𝑛𝑔𝑙𝑒𝑠 + 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 (1.13) 

 

 

Figure 1.2 shows the different atomic interactions and their corresponding potentials 

which contribute to 𝑉𝑡𝑜𝑡. 
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Figure 1.2: Atomic interactions and corresponding potentials used in a MM force field. (a) The 

harmonic potential used to model Vbond and Vangle and the corresponding interactions of two atoms at a 

distance of r (blue) and an angle of 𝜃 (gold). (b) the dihedral potential used to represent the interaction 

between 4 atoms at an angle 𝜙 defined between the two planes shown by dashed lines. (c) the van der 

Waals potential comprising of the repulsive and attractive (dashed) potentials of two atoms at a 

distance of R. 

 

1.4 Reaction Coordinates 

 

The progression of an MD simulation along a reaction pathway can be quantified in 

terms of its position in collective variable (CV) space.  A CV is a low-dimensional 

degree of freedom, which can be used to describe the molecular structure of system and 

monitor the state of the simulation. A single CV is referred to as a reaction coordinate, 

ρ, and is sometimes all that is required to describe a molecular process.  

 

Lots (but not all, see section 1.6) of enhanced sampling MD methods require a 

predefined CV system to accelerate sampling. Examples of such methods include 

umbrella sampling 19 and milestoning. 20–22  For low-dimensional systems, chemical 

intuition alone may be enough to determine the degrees of freedom crucial in reaction 

(b) (a) (c) 
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process sufficiently. For example, the change in end-to-end distance of a protein may 

be a good reaction coordinate for describing protein unfolding (see Chapter 4).  

 

However, for more complex systems (discussed in Chapter 5) identification of the 

multiple CVs needed to describe the molecular state of the system is more convoluted 

and less intuitive. In this case, a set of CVs can be returned from a principal component 

analysis as a linear combination of interatomic distances, multiplied by a coefficient 

representative of the degree to which the change in each distance is important in 

describing the molecular process. More details of this can be found in section 5.2.3. 

The BXD method central to this thesis requires the identification of a suitable reaction 

coordinate or set of CVs for the molecular process under investigation. The work in the 

following chapters shows how BXD can be used to accelerate molecular trajectories 

along a one-dimensional reaction coordinate enabling extremely long timescales to be 

reached within a simulation. Additionally, through the development of a new 

simulation pipeline the need to derive complex sets of CVs by hand is avoided as their 

acquisition becomes ‘blackbox’ in nature. Rather, the user need only analyse the results 

of the principal component analysis to determine if sufficient CVs have been used to 

capture the main structural variance along a reaction pathway, before BXD is used to 

accelerate the dynamics through this new CV space. 

1.5 The Rare Event Problem 

 

MD propagation from a set of initial conditions results in a trajectory which is a sample 

of all possible ones, each of which is sensitive to minute changes in the starting 

conditions.23 When running an MD simulation, it is easy to assume that with only a 

good set of initial conditions and a suitable force field the process expected to happen, 

will be that which is observed. In reality another problem must be overcome: the 

timescales on which interesting biological processes occur are usually longer than the 

length of MD simulations. 

 

Events such as protein folding and protein-ligand binding take place on timescales 

inaccessible to atomistic MD simulations. They occur over milliseconds or longer. 

Reaching such lengths using typical simulation time steps of around one femtosecond 
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would require too much computational power to simulate sufficient time steps.24,25 In 

fact, Kolinski et.al noted that even with a purpose built supercomputer dedicated to 

atomistic MD it is still only possible to simulate the folding of small, relatively fast 

folding proteins.26,27 Additionally, force fields parameterised using data from short 

timescale simulations have been shown to decrease in validity when their use is 

extended to the timescales seen in protein folding.28 

 

The rate of reaction for these long timescale processes is controlled by the shape of 

their free energy landscape, which often contain many barriers between meta-stable 

states. Given the common representation of an initial and product state separated by an 

activation energy barrier, ΔG‡, used to describe a reaction process, transition state 

theory (TST)29 describes the rate of reaction at a given temperature as: 

 

 
k(T)  ∝ (

−Δ𝐺‡

RT
) 

(1.14) 

 

 

Here, k is the rate of reaction at a given temperature T and R is the universal gas 

constant. Importantly, equation (1.14) shows that the rate of reaction decreases as the 

height of the energy barrier increases.  

 

The energy landscape of a real system is unlikely to be as simple as a single reactant 

and product state separated by one energy barrier. Protein folding as an example, is 

generally accepted to occur on a globally ‘funnelled’ energy landscape.30 Figure 1.3 

shows an example of such an energy landscape. 
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Figure 1.3: Protein folding is generally accepted to happen down a funnel shaped potential energy 

surface, along which exists meta-stable conformations exist in local minima. 

 

These landscapes are largely directed downwards towards the native state of the protein 

but exhibit many local minima along the path. This explains the tendency of proteins 

to eventually return to their native folded state, but why the process occurs over long 

timescales as there are many pathways through local meta-stable states in which the 

protein can get trapped in along the way. 

 

Since propagation of an MD trajectory is controlled by the underlying shape of the 

potential energy surface (PES), if such an energy well is entered throughout the course 

of a simulation, it can be difficult to get out. If the gradient surrounding the minima is 

steep then the longer it takes to escape the meta-state, just as described by TST above. 

This is how the rare event problem in MD arises. 

 

1.6 Addressing the Long Timescale Problem 

Addressing the long timescale problem can be done using in various types of 

accelerated sampling methods which work by controlling a variable within the 

simulation so that it becomes biased towards sampling the rare event. Some of these 

methods have the determination of one or more CVs as a prerequisite to simulation. 
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What follows is a series of examples of accelerated sampling methods. For reasons of 

simplicity, those requiring the predetermination of any CVs will be discussed in one 

dimension, with acceleration along a single reaction coordinate. 

 

Accelerated sampling methods can be categorised into three types as follows: 

 

1. Temperature based methods. In these methods increasing the temperature is 

used to overcome energy barriers which would otherwise prevent sampling 

certain regions of the PES. 

 

2. Potential energy biasing methods. In such methods biasing potentials are 

applied along the reaction coordinate such that energy barriers are easier to 

cross.  

 

3. Reactive Flux Methods. These are based on TST and divide the reaction 

coordinate of the system into sections, before rate constants are calculated for 

transitioning between them.  

 

1.6.1 Temperature Based Methods 

Increasing the temperature of simulations is a good way to increase the rate at which 

phase space is explored, as there is more kinetic energy available to overcome barriers 

along the PES. Replica exchange molecular dynamics (REMD) is one such method that 

uses this technique to overcome the rare event problem inherent to conventional MD 

simulations. 
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1.6.1.1 Replica Exchange 

 

In this method several copies of the same system, known as replicas, are simulated in 

parallel at different temperatures. The individual replicas cannot interact with one 

another, but attempts to swap neighbouring configurations are made periodically and 

accepted with a probability based on the Metropolis criterion.31 Configurations sampled 

at high temperature can therefore transition to simulations running at lower temperature 

(and vice versa if the probability of changing states is accepted).  Consequently, 

simulations can run with sufficient kinetic energy to cross barriers before cooling into 

minima that would have previously gone unsampled, thus enabling the rare events to 

be sampled. A schematic representation of the replica exchange method is shown in 

Figure 1.4 

 

 

Figure 1.4: Schematic of the replica exchange method. Configurations from high temperature runs 

can switch with those from lower temperatures allowing energy barriers to be overcome before the 

system cools into previously unreached minima. 
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Replica exchange offers the advantage of sampling phase space without portioning it 

into sections or adding biasing potentials and therefore determination of the reaction 

coordinate is not a prerequisite for such simulations. The method has been proven 

useful in the study of protein unfolding and self-assembly.32–34 However, the need to 

run many simulations in parallel makes the method computationally expensive, 

requiring careful consideration of the number of temperatures and runs to use .35 

 

1.6.2 Potential Energy Biasing methods 

 

These methods of accelerating MD involve modifying the potential energy of the 

system to make it easier for the trajectory to cross over energy barriers. Prior knowledge 

of the CVs or reaction coordinate for the system, ρ, is needed in these methods, an 

example of which is umbrella sampling.36,37  

 

1.6.2.1 Umbrella Sampling  

 

In this method of accelerated sampling, the potential energy function is modified by the 

addition of biasing potentials called umbrellas, which work to push the trajectory over 

energy barriers. For a one-dimensional system, the overall modified potential can be 

expressed as a function of the position along the reaction coordinate: 

 

 

where V’(ρ) is the newly modified potential energy function, V(ρ) is the original 

potential and W(ρ) is the biasing umbrella, usually expressed as a harmonic potential: 

 

 𝑊(𝜌) =  𝑘(𝜌 − 𝜌0)
2 (1.16) 

 

 

Here k is a spring constant and ρ0 is the centre of the umbrella. In this type of sampling 

many independent simulations are run, with umbrellas centred at different values of ρ0. 

 𝑉′(𝜌) = 𝑉(𝜌) + 𝑊(𝜌) (1.15) 
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These umbrellas work to confine each trajectory to a given ‘window’ of the reaction 

coordinate, although neighbouring windows overlap to ensure the entire system is 

sampled. Figure 1.5 shows how umbrellas placed along the reaction coordinate help to 

drive a trajectory over any energy barriers encountered.  

  

 

 

 

Figure 1.5: A series of overlapping harmonic potentials are added to the underlying potential energy 

surface in umbrella sampling. Independent MD simulations are run with the dynamics constrained by 

an umbrella such that higher energy regions of phase are easier to access and the sampling is 

accelerated, whilst overlapping of umbrellas ensures the entire system is explored. 

 

After the simulations have been run, the statistics gathered must be unbiased if the 

actual free energy of surface is to be recovered. This is done using the weighted 

histogram analysis method (WHAM) 38,39, the details of which are to be followed. 

 

The biased probability, P’i (ρ), of observing a state in the ith simulation in which the 

value of the reaction coordinate is ρ is: 
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𝑃𝑖
′(𝜌) =

𝑃(𝜌)𝑒
−𝑊𝑖(𝜌)

𝑘𝐵𝑇

∑ 𝑒
−

𝑉(𝜌)+𝑊𝑖(𝜌)
𝑘𝐵𝑇

𝑖

 

(1.17) 

 

 

As before V(ρ) is the unbiased potential and Wi(ρ) is the biasing potential from the ith 

simulation. P(ρ) is the probability of the reaction coordinate having a particular value 

at an unbiased free energy as given by the equation40: 

 

 
𝑃(𝜌) = 𝑒

−𝐺(𝜌)
𝑘𝐵𝑇  

(1.18) 

 

 

Obtaining P(ρ) from equation (1.17), allows the unbiased free energy along the reaction 

coordinate, G(ρ), to be found from a rearrangement of equation (1.18). 

 

 

Although umbrella sampling is effective at accelerating MD sampling such that the rare 

event problem can be overcome, the recovery of P(ρ) from equation (1.17) in the 

unbiasing process can be convoluted. Additionally, finding a suitable choice of biasing 

potential and window placement can require significant trial and error. However, both 

these issues can be addressed by using Adaptive Umbrella Sampling.41  

 

This is a more advanced version of umbrella sampling which expands the biasing 

potential to cover the entire reaction coordinate, with variations being made to it on the 

fly. This is continued until all states in the system are equally populated, at which point 

the combination of the free energy and biasing potential is a flat surface. Consequently, 

the free energy of the system can be recovered as the negative of the biasing potential 

without the need for complicated unbiasing methods. 

 

 

 

 𝐺(𝜌) = −𝑘𝐵𝑇 ln[𝑃(𝜌)] (1.19) 
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1.6.3 Reactive Flux Methods 

Reactive flux methods are types of accelerated MD which are based on transition state 

theory.29,42 Such methods involve splitting the phase space of a system into two, where 

states A and B are separated by a dividing surface. The flux through this surface defines 

the rate constant for transition from A to B: 

 

 

𝑘𝐴𝐵
𝑇𝑆𝑇 =  𝜅

𝑘𝐵𝑇

ℎ

𝑒
−

𝑊(𝜌∗)
𝑘𝐵𝑇

∫ 𝑒
−

𝑊(𝜌∗)
𝑘𝐵𝑇 𝑑𝑟

𝜌∗

−∞

 

(1.20) 

 

 

Where ρ is the reaction coordinate for the process being studied, and ρ* is the value of 

ρ at which the dividing surface is located, i.e., the transition state. W(ρ*) is the work 

required to move from state A to ρ* and is reversible, whilst 𝜅 represents the fraction 

of the trajectories which, upon reaching ρ * go on to reach state B. This is multiplied 

by the Boltzmann constant, kB, and temperature of the simulation, T, over Plank’s 

constant, h. 

 

The fraction in equation (1.20) represents the probability of the system reaching ρ * 

over the probability of being in state A anywhere before the transition state. Therefore, 

the rate constant for transition from state A to state B is given by the probability of 

finding the trajectory at the transition state multiplied by the chance of it crossing into 

state B and remaining there. This equation is the base of reactive flux methods. 

 

It should be noted that although in equation (1.20) ρ * is the formal transition state 

separating states A and B, the same equation can be applied to for arbitrary states even 

if they are not stable enough to be isolated.  It is in this way that reactive flux methods 

can accelerate MD sampling, by partitioning the phase space of reactions with multiple 

dividing surfaces and generating rate constants for transition from one region of phase 

space to another. 
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1.6.3.1 Milestoning 

 

Milestoning is a type of reactive flux accelerated sampling method which involves 

dividing up the reaction coordinate into milestones.20–22 A milestone can be defined as 

a hypersurface orientated orthogonal to the CV of the system. In the case of a one-

dimensional reaction coordinate, a milestone would be a point along the reaction 

coordinate, in two dimensions a line, in three a plane and so on.  

 

When using milestoning, an ensemble of conformations is first generated at each plane 

by running conventional MD simulations within each plane. Then, each conformation 

is run as a separate trajectory initiated from its original milestone and terminating once 

it reaches a neighbouring milestone as shown in Figure 1.6. 

 

 

 

 

Figure 1.6: A series of planes or milestones separating the reactant, R, and product, P, states of a 

reaction. Trajectories are set off from one milestone Hn and run until they hit Hn-1 or Hn+1 with the time 

taken to reach the respective milestones recorded as τ- or τ+ 

 

A trajectory starting at milestone Hn is said to have lifetime of τ+ if it terminates at Hn+1 

and τ—if it ends at Hn-1. The distribution of lifetimes for going from Hn to Hn±1 is 

recorded as either Kn
+(τ) for going to Hn+1 or Kn

- (τ) for transition to Hn-1. For a system 
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comprising of m planes, Km
+ and K0

- are both 0 as above plane Hm and below plane H0 

there are no more planes to reach. 

 

The equilibrium probability of finding a trajectory at a milestone n, Peq (n), represents 

the probability of finding a trajectory at that point along the reaction coordinate. As 

such, if this was known, the free energy along the reaction coordinate could be found 

as in equation (1.19).  

 

The probability of finding a trajectory at milestone Hn at time t is given by: 

 

 
𝑃𝑛(𝑡) = ∫ [1 −  ∫ 𝐾𝑛(𝑡 − 𝑡′)

𝑡−𝑡′

0

]𝑄𝑛(𝑡′)𝑑𝑡′
𝑡

0

 
(1.21) 

 

 

Where integrand is the probability of the trajectory arriving at Hn at time t’ and 

remaining there until time t. In equation (1.21) the probability of leaving Hn between 

time t’ and t is defined as 𝐾𝑛(𝑡 − 𝑡′) = Kn
+ + Kn

- and 𝑄𝑛(𝑡′) is given by: 

 

 
𝑄𝑛(𝑡′)  =  2𝛿(𝑡) 𝑃𝑛(0) +  ∫ 𝑄𝑛±1(𝑡′′) 𝐾𝑛±1

±
𝑡

0

(𝑡 − 𝑡′′)𝑑𝑡′′ 
(1.22) 

 

 

The above equation describes the probability of transition to plane Hn as the initial 

conditions of the starting trajectories, 𝑃𝑛(0), added to the sum over the probability of 

transitioning to Hn±1 before moving to Hn. 

 

Obtaining 𝑃𝑛(𝑡)  from equations (1.21) and (1.22) allows the equilibrium probability of 

finding a trajectory at Hn at time t to be found as: 

 

 

 𝑃𝑒𝑞(𝑛)  =  𝑙𝑖𝑚
𝑡→∞

𝑃𝑛(𝑡) (1.23) 
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Where finding 𝑙𝑖𝑚
𝑡→∞

𝑃𝑛(𝑡) is done by running many trajectories until convergence of the 

distributions of lifetimes is achieved. Now, with 𝑃𝑒𝑞(𝑛) in hand, the free energy along 

the reaction coordinate can be found using equation (1.19). 

 

Reactive flux methods like Milestoning are advantageous in their ability to calculate 

both kinetic and thermodynamic data from the same simulation. This is not something 

which is afforded from techniques such as Umbrella sampling, which only provide 

thermodynamic data. Additionally, the dynamical information obtained remains 

meaningful as no biasing potentials are required to accelerate the sampling. However, 

the large number of simulations required for sufficient sampling means that these 

methods can become relatively expensive.43 
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Chapter 2: Boxed Molecular Dynamics 

 

Boxed Molecular Dynamics (BXD) is an enhanced sampling MD technique which can 

be used to accelerate the modelling of rare events. Similar to the reactive flux methods 

discussed in Chapter 1, these simulations can be used to calculate kinetic and 

thermodynamic properties of slow processes simultaneously.40,44–46 However, BXD 

simulations have the added advantage of being very simple to conduct requiring no 

prior knowledge of the system under investigation or modification of its potential 

energy surface. Additionally, only a single trajectory is needed in BXD, which makes 

the process easier to set up than methods such as Milestoning. 

 

This chapter will detail the principles underpinning BXD simulations, including the 

assumptions upon which it relies and the conditions under which the method works. 

 

2.1 Accelerated Molecular Dynamics 

 

Continuing the likeness to reactive flux methods, BXD has its roots in Transition State 

Theory.47  For a system in a BXD simulation, reflective boundaries are placed along a 

reaction coordinate to separate the phase space of the system into boxes, into which the 

trajectory can be confined. Figure 2.1 shows how this is done using velocity inversions. 

The value of the reaction coordinate is continually monitored throughout the simulation 

and if it exceeds the value at which the extremities of the box lie, then the velocity is 

inverted so that the trajectory remains within the box.  This is done relative to the 

reaction coordinate, which for a one-dimensional system gives a new velocity of v’= v 

- 2vparallel, where vparallel is the component of the vector v lying along the reaction 

coordinate. 
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Figure 2.1: Upon collision of the trajectory with a boundary the velocity of each atom is reflected 

with respect to the reaction coordinate. If the atoms collide with boundary with velocity v and a 

component along the reaction coordinate of vparallel then the reflected velocity will be v’= v - 2vparallel. 

 

The link between BXD and TST is most easily seen when a primitive version of BXD 

known as Accelerated Molecular Dynamics (AXD) is considered.46,47 AXD differs 

from BXD in the number of boxes placed along the reaction coordinate. Figure 2.2 

shows the setup of an AXD simulation. Only two reflective boundaries are required: 

one on the transition state (TS) of a system and one just before. Once the trajectory 

enters the region of phase space near the transition state, Γ1 it is prevented from entering 

Γ2 or Γ0 by the reflective boundaries separating these regions.  

 

This differs from TST in the fact that TST assumes the trajectory always crosses the 

boundary to the product state Γ0, rather than remaining confined to the region 

surrounding it. But, provided the boxes are in equilibrium, the reflection of a trajectory 
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about to collide with a boundary is identical to the reverse of transition across the TS.48 

Thus, if the boxes are in equilibrium, the two approaches become equivalent. 

 

 

 

 

Figure 2.2: The setup of an AXD simulation. Reflective boundaries confine the trajectory to be near 

the transition state so that this area becomes well sampled and kAXD is converged quickly. 

 

A trajectory which is confined to Γ1 will sample the area around the TS more often than 

one which is left to sample the PES freely. Ergo, the reaction rate constant for AXD, 

kAXD, is accelerated compared to the actual one from TST, kTST. But they are related: 

 

 𝑘𝑇𝑆𝑇  =  𝑘𝐴𝑋𝐷𝑃𝑐𝑜𝑟𝑟 (2.1) 

 

 

Here, Pcorr is a correction factor describing the probability of finding the trajectory in 

Γ1. It is equal to the fraction of the phase space found within the region Γ1 compared to 

that in both Γ1 and Γ2. 46 

 

 
𝑃𝑐𝑜𝑟𝑟  =  

Γ1

Γ1  +  Γ2 
 

(2.2) 

 

 

Describing Pcorr in terms of rate constants for diffusion across the boundary separating 

regions Γ1 and Γ2 means that equation (2.2) can be written as: 
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𝑃𝑐𝑜𝑟𝑟  =

Γ1

Γ1  +  Γ2
 =  

1

1 + 
Γ2
Γ1

 =
1

1 + 
k1,2

𝑘2,1

 
(2.3) 

 

 

Where k1,2 is the flux into the region Γ2 and k2,1 is that into Γ1. Equation (2.3) can be 

derived from TST, in which the rate constant of reaction, 𝑘𝑇𝑆𝑇 , is defined as 29,40: 

 

 
𝑘𝑇𝑆𝑇  =  

< |𝜇|𝛿(𝑞, 𝑟)𝛩(𝑞, 𝑟) >

Γ𝑅
 

(2.4) 

 

 

Where |μ| is the magnitude of the velocity vector normal to the dividing surface in phase 

space, Θ(q,r) is a function of the position, r,  and momentum, q,  of the system which 

is equal to one when the trajectory is in the reactant region of the system, R, or 0 

otherwise and 𝛿(q,r) is a Dirac delta function equal to one at the dividing surface. It is 

worth noting that here, 𝑘𝑇𝑆𝑇 , would describe the same transition as 𝑘𝐴𝑋𝐷 in Figure 2.2, 

provided the trajectory hadn’t been confine to the region Γ1.  

 

Recalling that the reactant phase space, ΓR, is divided into Γ1 and Γ2 by a reflective 

boundary equation (2.4) can be rewritten to reveal kAXD: 

 

 
𝑘𝑇𝑆𝑇  =  

< |𝜇|𝛿(𝑞, 𝑟)𝛩(𝑞, 𝑟) >

Γ𝑅
 

             =  
< |𝜇|𝛿(𝑞, 𝑟)𝛩(𝑞, 𝑟) >

Γ1 + Γ2
  

                                  =  
< |𝜇|𝛿(𝑞, 𝑟)𝛩(𝑞, 𝑟) >

Γ1
  

Γ1

Γ1 + Γ2
   

=     𝑘𝐴𝑋𝐷𝑃𝑐𝑜𝑟𝑟          

(2.5) 

 

 

Where 𝑘𝐴𝑋𝐷 =
<|𝜇|𝛿(𝑞,𝑟)𝛩(𝑞,𝑟)>

𝛤1
  is calculated directly from AXD simulations by 

confining the trajectory into Γ1. 

 

The rate constants k1,2 and k2,1 required for the calculation of Pcorr can be calculated by 

molecular dynamics confined to ΓR split into Γ1 and Γ2 with  
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𝑘1,2  =  

ℎ𝑏𝑜𝑢𝑛𝑑

𝑡1
 

𝑘2,1  =  
ℎ𝑏𝑜𝑢𝑛𝑑

𝑡2
 

(2.6) 

 

 

 

Where hbound is the number of hits on the boundary separating Γ1 and Γ2 and t1 and t2 

are the time spent in each respective area of phase space. 

 

AXD is very good at accelerating MD simulations as its much quicker to converge kAXD 

and Pcorr separately rather than to converge kTST as one. This is because the trajectory is 

confined to sampling the area near the TS which, if there was a barrier to reaction, 

would rarely be visited if the dynamics were allowed to sample the PES freely.  

 

This method is comparable to that suggested by Voter49, in that the sampling is 

accelerated by confining the dynamics to regions of phase space near the transition 

state. The exception being that here they are confined using a reflective boundary 

placed near the TS, whilst in Voter’s method it is additional ‘boosting’ potentials that 

work to push the dynamics towards the TS.  However, AXD is advantageous in 

imposing phase space constraints that can be hard to describe by a boosting potential. 

47,49 

 

2.2 The Boxed Molecular Dynamics Algorithm 

2.2.1 General method for conducting a BXD 

simulation 

The difference between AXD and BXD is the number of boundaries which are placed 

along the reaction coordinate, ρ, with BXD using more than two. Placing boundaries at 

locations other than the formal transition state accelerates the sampling in all areas of 

phase space whilst remaining a valid approach as TST boundaries do not have to lie 

only at transition states.49 
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BXD in its simplest form is shown in Figure 2.3. It is assumed that an atomistic process 

can be described by a reduced description of the configuration space of the system. In 

one dimension this is usually referred to as a reaction coordinate and it can be split into 

multiple boxes into which the dynamics of a trajectory can be locked. To conduct a 

BXD simulation the trajectory is set off running and is confined to remain within the 

first box by inverting its velocity as if it had collided with a hard wall upon each 

collision with a box boundary. After sufficient statistics have been generated for the 

current box, the trajectory is allowed to diffuse into the subsequent box. Here it 

becomes confined again until a predetermined number of hits on the boundary to the 

next box have been recorded and diffusion is permitted once again. A trajectory can 

only enter the next box along the reaction coordinate in the direction of travel, not the 

previous one. In this way the boxes push the trajectory along ρ until the final box is 

reached.  

 

 

 

 

Figure 2.3: Reflective boundaries in BXD help push a trajectory along the reaction coordinate, by 

only allowing diffusion into the next box in the direction of travel. In this way the BXD boundaries 

help accelerate trajectories over energy barriers by preventing them from re-entering regions of lower 

energy.  

 

From here, the course of travel is reversed back down the reaction coordinate until the 

starting box is reached where the direction is inverted yet again. This is repeated until 

the entire reaction coordinate has been explored several times in each direction and the 

sampling converges. Figure 2.4 shows a typical plot of the reaction coordinate vs 

simulation time step taken from a BXD simulation for the unfolding of a protein – a 

process in which ρ can be defined as the end-to-end distance of the protein – where 

sampling is done in both directions multiple times until it converges. 
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Figure 2.4: A plot of reaction coordinate against the simulation time step demonstrates how a 

trajectory (red) samples the reaction coordinate multiple times to ensure convergence. Reflective BXD 

boundaries have been placed at distances of 1 Å along the reaction coordinate. 
 

Division of phase space into boxes not only helps trajectories over energy barriers as 

highlighted in Figure 2.3, but also allows calculation of the rate constants and the 

change in free energy for passing from one box to another, from which the free energy 

along ρ can be extracted.  

 

Figure 2.5 shows how the BXD method enables calculation of the box-to-box rate 

constants and subsequent free energies.  
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Figure 2.5: Schematic of BXD, where a reaction coordinate, ρ, is split into m boxes into which a 

trajectory can be confined. After a given number of inversions (two in this case), the trajectory in box 

m can diffuse across the boundary into box m-1. Dividing the number of hits at boundary hm,m−1 by the 

lifetime of the trajectory in the box gives a rate coefficient for the diffusion into box m-1. This process 

is repeated until the trajectory has sampled up and down the entire reaction coordinate multiple times 

generating a set of box-to-box rate coefficients. 

 

For a trajectory locked inside box m the times between successive collisions with 

boundaries ρm+1 and ρm-1 are referred to as the first passage times (FPTs) for moving up 

or down a box. Sets of FPTs can be recorded for collisions with both boundaries and 

used to calculate the rate constants for diffusion up or down a box 40: 

 

 
𝑘𝑚,𝑚+1 =

ℎ𝑚,𝑚+1

𝑡𝑚
=

1

< 𝜏𝑚,𝑚+1 >
 

𝑘𝑚,𝑚−1 =
ℎ𝑚,𝑚−1

𝑡𝑚
=

1

< 𝜏𝑚,𝑚−1 >
 

 

(2.7) 

 

 

Here, km,m+1 and km,m-1 are the rate constants for entering box m+1 or m-1 respectively. 

hm,m+1 and  hm,m-1 represent the number of collisions with either boundary ρm+1 or ρm-1, 

and tm is the time spent inside this box. This is equivalent to the inverse of the mean of 
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the first passage times (MFPTs) for collisions with the upper and lower boundaries of 

the mth box, <τm, m+1> and <τm, m-1>. 

 

Having obtained rate constants for diffusion from one box into another, the change in 

free energy for diffusion between boxes m-1 and m, Δ𝐺𝑚−1,𝑚 , can be calculated as 

follows:  

 

 
𝐾𝑚−1,𝑚 =  

𝑘𝑚−1,𝑚

𝑘𝑚,𝑚−1
= exp (−

Δ𝐺𝑚−1,𝑚

𝑅𝑇
) 

(2.8) 

 

 

where Km-1,m is the equilibrium constant for diffusion from box m-1 to m, R is the 

universal gas constant and T is the temperature.  Summation of the box-to-box free 

energy change generates the free energy along the whole reaction coordinate. This can 

then be differentiated to give the force as a function of the reaction coordinate, 𝐹(𝜌): 

 

 
𝐹(𝜌) =  

𝑑𝐺

𝑑𝜌
 

(2.9) 

 

 

An advantage of the BXD method is that the box-to-box rate constants not only allow 

for thermodynamic information to be gathered as above, but they also allow the 

evolution of the box populations to be seen. By obtaining rate constants for diffusion 

into and out of every box along the reaction coordinate, the dynamics can be reduced 

to a set of kinetic equations for the time evolution in each box.  

 

 𝑑𝑛1(𝑡)

𝑑𝑡
= −(𝑘12(𝑡) + 𝑘10(𝑡))𝑛1(𝑡) + 𝑘21𝑛2(𝑡) 

 

𝑑𝑛2(𝑡)

𝑑𝑡
= 𝑘12(𝑡)𝑛1(𝑡) + 𝑘32(𝑡)𝑛3(𝑡) − (𝑘21(𝑡) + 𝑘23(𝑡))𝑛2(𝑡) 

 

… . . 

 

𝑑𝑛𝑚(𝑡)

𝑑𝑡
= 𝑘𝑚−1,𝑚(𝑡)𝑛𝑚−1(𝑡) − 𝑘𝑚,𝑚−1(𝑡)𝑛𝑚(𝑡) 

 

 

 

(2.10) 
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Equation (2.10) is the kinetic master equation (KME).5,65–66 n1(t), n2(t) and nm(t) are the 

populations of the 1st, 2nd and mth box as a function of time. The right-hand side of the 

system of equations is the flux into minus the flux out of each box, where the equation 

for n1 assumes diffusion across ρ0 is irreversible.48  Equation (2.10) can be written in 

matrix form: 

 

 𝑑𝒏(𝑡)

𝑑𝑡
= 𝑴(𝑡)𝒏(𝑡) 

(2.11) 

 

 

where M(t) is an N by N sparse matrix of the box-to-box rate constants and n(t) is a 

vector of length N containing the box populations as a function of time. The solution of 

equation (2.11) is given by: 

 

 𝒏(𝑡) = 𝑼(𝑡)Λ𝑼−1(𝑡)𝒏(0) (2.12) 

 

 

where n(0) contains the initial conditions for each box using a Boltzmann distribution, 

U is the eigenvector matrix resulting from diagonalisation of M, and  Λ is a diagonal 

matrix whose elements, Λ 𝑖𝑗 = 𝑒𝜆𝑗𝑡, are determined by λ, the eigenvalue vector 

corresponding to M. The total number of eigenvalue elements in vector λ is equal to 

the number of boxes. Generally, the eigenvalues are all negative and one of them is 

separated from the rest by orders of magnitude. If the process being studied is an 

irreversible one then the flux out of the product box will be zero and the smallest 

eigenvalue can typically be set as the rate constant of the process.40,52  

 

 

2.2.2 Decorrelation and Ergodicity in BXD 

2.2.2.1 Decorrelation 

 

BXD assumes the motion of trajectories is stochastic and sequential boundary collisions 

are uncorrelated. For this to be true, the time between successive boundary hits must be 

larger than the correlation time such that the trajectory no longer remembers its state 
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after the previous collision. However, this is often not the case as reflected trajectories 

can turn back on themselves rapidly causing multiple collisions on the same boundary 

within such short timescales that the dynamics is still correlated to the previous hit.  

 

To overcome this, FPTs corresponding to short time-correlated events are removed by 

defining a cut off value, τcorr, below which FPTs are disregarded. This can be done 

using one of two methods. Firstly, several values of increasing τcorr, can be defined and 

the free energy of the system calculated for each, with FPTs below τcorr removed from 

the calculation. This is repeated until the free energies converge, at which point the 

correct correlation time has been found and any events occurring before this remain 

ignored.   

 

Alternatively, the survival probability or decay trace, R(t), can be calculated from the 

lifetime distribution N(t) for diffusion across a particular boundary of a given box 48: 

 

 
𝑅(𝑡) = ∫ 𝑁(𝑡′)𝑑𝑡′ − ∫ 𝑁(𝑡′)𝑑𝑡′

𝑡

0

𝑡𝑚𝑎𝑥

0

 
(2.13) 

 

 

Where tmax is the maximum value within the lifetime distribution. In other words, the 

survival probability at time t is given by the sum of all the FPTs between 0 and tmax 

minus the sum of those between 0 and time t. Inspection of a decay trace such as that 

seen in Figure 2.6 is used to identify τcorr. Initial steep regions of the trace correspond 

to dynamically correlated collisions on the given boundary whilst flatter regions of the 

plot arise from collisions after ergodic exploration of the box. Therefore, τcorr is defined 

as the FPT at which the steeper region ends and the flatter region begins.  
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Figure 2.6: Typical decay trace for FPTs of a box boundary in a BXD simulation. Blue points 

correspond to BXD FPTS whilst orange to Milestoning FPTs. If there is an initial steep region in the 

decay trace (BXD FPTs) then FPTs in this region are said to be below τcorr and are removed from the 

free energy calculation.  Milestoning FPTs may be used as an alternative BXD FPTs in an effort to 

avoid need to decorrelate the statistics by hand. 

 

Furthermore, the use of Milestoning FPTs (defined as the number of MD steps between 

hits on alternate BXD boundaries, see Chapter 2.2.3.5 for more detail) can provide an 

alternative to decorrelating the statistics by hand after the fact. Providing the boxes are 

large enough, it is safe to assume that by the time the trajectory reaches the next 

boundary it will no longer have any memory of the previous collision. The size of a 

BXD box is important when considering if the system is ergodic, something which is 

an important assumption in BXD simulations. 

 

2.2.2.2 Ergodicity 

 

An important assumption is made in BXD simulations. Equation (2.2) relies on the 

assumption that the system under investigation is ergodic and every point in phase 

space has an equal probability of being explored. But this can only be true if boundary 
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hits are decorrelated from one another. This requirement imposes a restriction on the 

size of the box. If the box is too small the time between boundary collisions will be less 

than τcorr and the trajectory will not have time to relax. Hence, the box length should be 

larger than the correlation length – the length at which the trajectory loses all memory 

of its initial conditions.44 This removes any contribution to the rate coeffects stemming 

from short time-correlated velocity inversions, improving the quality of the kinetic 

results.44 

 

Inspection of the dynamics within a given BXD box can be used to determine whether 

or not the box is of an appropriate size. Figure 2.7 shows the differing dynamics 

between a trajectory confined to a box that is too small (a) and one of an acceptable 

size (b). If the box is too small, then the trajectory bounces between the boundaries very 

quickly and remains correlated to the previous hit. Whereas if the box is of an 

appropriate size, there is ample time to explore the phase space before the next collision. 

However, it is important to note that the boxes should not be so large as to fail in 

accelerating the progression of the dynamics along the reaction coordinate. 

 

(a) (b)  

Figure 2.7: (a) If a BXD box is too small the trajectory does not have time to relax between boundary 

collisions and bounces between boundaries in a ballistic manner rather than exploring all of phase 

space with equal probability. (b) If the BXD box is larger than the decorrelation length it is possible 

for the trajectory to come to a state equilibrium with no memory of the previous collision as it explores 

the box before it’s next collision with a boundary. 

 

Consideration of the box sizes in this way is important when using conventional BXD.  

However, the development of adaptive sampling BXD means such inspections may not 
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be necessary as boundaries are placed according to the underlying dynamics of the 

system meaning correlated dynamics from boxes of insufficient size are likely to be 

avoided. 

 

2.2.3 Adaptive sampling BXD 

2.2.3.1  Introduction to Adaptive boundary placing  

 

The BXD method discussed in section 2.2.1  is the simplest form of BXD with 

boundaries placed at even intervals along a one-dimensional reaction coordinate.  

 

However, more recent work from O’Connor et. al. 53 involved developing an algorithm 

for placing BXD boundaries adaptively based upon the needs of the sampled dynamics. 

The idea being that the size of the BXD boxes is determined by the shape of the PES.  

A schematic outlining this idea is shown in  

Figure 2.8. In flat regions, it is easy to explore large regions of configuration space and 

boundaries can be placed quite far apart from one another. But, as the gradient of the 

PES increases the volume of configuration space which is readily available for the 

trajectory to explore decreases resulting in the need for more closely spaced boundaries. 

Boundaries are placed in this manner until the top of the energy barrier is reached and 

the trajectory is free to proceed downhill towards the product state without the need to 

place more boundaries (frame a.) To converge the free energy in the region of space 

after the energy barrier, boundaries are placed adaptively in the reverse direction using 

the same methodology (frame b).  
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The aim of adaptive boundary placement is to achieve boundaries which are placed at 

optimal distances from one another. That is one which leads to boxes that are narrow 

enough to ensure the MD trajectory can traverse from one side to another in a relatively 

small number of MD steps, but wide enough for the dynamics of each box to decorrelate 

between boundary hits and ensure ergodicity.  

 

The full algorithm for adaptive boundary placement is discussed later in this chapter 

but first, extending the BXD algorithm to multidimensional space into which the 

adaptive boundaries will be placed must be discussed. 

 

 

 

(a) 

 

(b) 

 

Figure 2.8: Schematics showing BXD boundary placement for a fictitious trajectory along a single 

dimension, some reaction coordinate ρ. The black curve shows some potential energy barrier which 

is a function of ρ. The trajectory (blue) progresses along ρ through the various BXD boundaries 

represented by vertical lines. The panels show the progress of the BXD trajectory when placing 

adaptive boundaries. For each panel boundaries being placed are shown by dashed lines whilst existing 

ones are solid. (a) Adaptive boundary placing in the forwards direction. In flat regions of the PES 

large boxes can be used, whilst in steeper regions smaller boxes are needed to help the trajectory over 

the potential energy barrier so it can freely proceed to the product state. (b) Adaptive BXD in the 

reverse direction. Once the product state is reached the direction of the sampling is reversed, with 

additional boundaries placed when required to get over any potential energy barriers. 
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2.2.3.2 Extending BXD to Multiple Dimensions 

 

The main outcome from the O’Connor et. al.53 paper was to generalise the BXD method 

to multiple dimensions. To extend BXD to multidimensional collective variable space 

for a system of N atoms, we must first define the Cartesian coordinates and velocities 

of the atoms as the vectors 𝑟(𝑡) ∈  ℝ3𝑁 and �⃗�(𝑡) ∈  ℝ3𝑁. A CV at time t, 𝑠(𝑡), is a 

function of 𝑟(𝑡) and can be used to describe a system in M dimensions as 𝑠(𝑡) =

[𝑠1(𝑡),  𝑠2(𝑡), . . . , 𝑠𝑀(𝑡)].  

 

Generally, for an M dimensional CV space the BXD boundaries are of dimension M-1. 

In its most primitive form, as discussed in section 2.2.1, BXD partitions a one-

dimensional CV space, referred to as a reaction coordinate, into evenly spaced points 

of dimension 0.  From here on in the term reaction coordinate with the symbol ρ, will 

be used when discussing a one-dimensional CV and 𝑠 for a CV of two or more 

dimensions.  

 

For simulations in multidimensional CV space, BXD boundaries are defined as planes 

in Hessian normal form.53 That is, for the CV 𝑠(𝑡) a BXD boundary can be written as: 

 

 

𝑏𝑗 = (∑𝑛𝑖𝑠𝑖

𝑀

𝑖=1

) + 𝐷𝑗  = 0 

(2.14) 

 

 

Where �⃗⃗� = [𝑛1,  𝑛2, . . . , 𝑛𝑀] is a unit norm and 𝐷𝑗 is a constant which describes the 

distance from the origin. 

 

For a boundary described by equation (2.14), the following function gives a measure of 

how far the system is from that boundary at time t: 

 

 𝜙(𝑟(𝑡)) = 𝑠(𝑡) ∙ �⃗⃗�𝑗 + 𝐷𝑗 (2.15) 
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Changes to the sign in function (2.15), indicate that the boundary 𝑏𝑗 has been crossed. 

Thus, for time steps at which 𝑏𝑗 is crossed a single constraint can be enforced on the 

dynamics such that the trajectory remains on a given side of the boundary 

 

 𝜙(𝑟(𝑡)) ≥ 0 (2.16) 

 

When generating box-to-box rate constants in a BXD run if, at time t  𝜙(𝑟(𝑡)) ≥ 0 but 

at the next time step 𝜙(𝑟(𝑡 + ∆𝑡 )) < 0 𝑏𝑗 has been crossed and the constraint requires 

enforcing. To do this, the BXD procedure reverts the coordinates back to 𝑟(𝑡) and 

inverts the corresponding velocities �⃗�(𝑡) to generate new ones, 𝑣′⃗⃗⃗ ⃗(𝑡), which when 

propagated result in a trajectory that satisfies the constraint.  Using the chain rule, the 

derivative of the constraint function with respect to time can be expressed via the 

projection of the velocities onto the gradient of 𝜙(𝑟(𝑡)) 

 

 𝑑 𝜙(𝑟(𝑡))

𝑑𝑡
 =  

𝑑𝜙(𝑟(𝑡))

𝑑𝑟
 ∙  

𝑑 𝑟 

𝑑𝑡
  =  ∇𝜙 ∙ �⃗�(𝑡) 

(2.17) 

 

 

where ∇𝜙 is a row vector of 3 columns representing the x, y and z coordinates of the 

system. 

 

Only by meeting the equality in equation (2.16) will the constraint remain satisfied at 

time 𝑡 + ∆𝑡 whilst ensuring the velocities normal to the boundary 𝑏𝑗 have been reflected 

in a truly elastic manner. Ensuring the constraint will be met at time 𝑡 + ∆𝑡 can only be 

achieved if the inverted velocities satisfy the following: 

 

 ∇𝜙. �⃗�′(𝑡)  + ∇𝜙. �⃗�(𝑡)  =  0 (2.18) 

 

The equation of motion for dynamics under a single constraint is 54: 

  

 𝐌�⃗� = 𝑓   + �⃗� (2.19) 
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Where 𝐌 ∈  ℝ3𝑁𝑥3𝑁 is a matrix whose diagonal contains the atomic masses, �⃗�  ∈  ℝ3𝑁 

is the vector of accelerations, 𝑓 is the force vector from the MD simulation and �⃗� 

represents the forces due to the constraint, given by: 

 

 �⃗� =  −𝜆∇𝜙𝑇 (2.20) 

 

where 𝜙𝑇 is the transpose of 𝜙 and 𝜆 is a time-dependent Lagrangian multiplier. The 

constraint is applied to the newly inverted velocities rather than the accelerations, so 

they become: 

 

 �⃗�′(𝑡)  =  �⃗�(𝑡)   +  𝜆𝐌−1∇𝜙𝑇 (2.21) 

 

For the inverted velocities to be returned from equation (2.21) computation of 𝜆 and 

∇𝜙𝑇  is required. By subbing equation (2.21) into equation (2.18) and rearranging, the 

Lagrangian multiplier is found as: 

 

 ∇𝜙 �⃗�(𝑡)   +  ∇𝜙 + 𝜆𝐌−1∇𝜙𝑇  +  ∇𝜙. �⃗�(𝑡)  = 0 

2∇𝜙 �⃗�(𝑡)   +  ∇𝜙 + 𝜆𝐌−1∇𝜙𝑇  =  0 

g∇𝜙 + 𝜆𝐌−1∇𝜙𝑇 = −2∇𝜙 �⃗�(𝑡) 

𝜆 =  
−2∇𝜙 ∙ �⃗�(𝑡)

∇𝜙𝐌−1∇𝜙𝑇
 

(2.22) 

 

 

Provided the CV of a system is readily differentiable with respect to Cartesian 

coordinates, ∇𝜙𝑇 can be evaluated whenever a BXD inversion is required. Details of 

how to do this can be found in Appendix 2. With ∇𝜙𝑇 in hand, present is everything 

needed to reflect the velocities according to equation (2.21)  and the new velocities can 

be returned. These new velocities have components normal to the boundary that have 

been inverted and the constraint is once again satisfied. 
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2.2.3.3 Boundary Placing in Multidimensional Space 

 

Now that BXD has been generalised to multidimensional space an adaptive scheme for 

boundary placement within this space can be introduced. Adaptive boundaries are 

placed according to the sampling dynamics within a given number of MD steps, nsamp. 

 

A region of CV space bound only by a single BXD boundary 𝑏𝑗 shall be considered. 

After nsamp MD steps have been run the set of the sampled nsamp values of 𝑠, 𝑺 ∈ ℝ𝑀×𝑛 

can be obtained, where M is the number of dimensions in the system.  From this, the 

set �⃗⃗� ∈ ℝ𝑛 consisting of the distance (𝑟) of each element of 𝑺  from the lower boundary 

𝑏𝑗 can be defined. A normalised histogram of �⃗⃗� gives the cumulative probability 

distribution function, 𝑃(𝑟), representing the likelihood of a given trajectory frame being 

a certain distance from the lower boundary, which can be used to calculate the optimal 

region of CV space for placing a new BXD boundary. Then, the distance 𝑟𝑚𝑎𝑥 from 𝑏𝑗 

is calculated, where 𝑟𝑚𝑎𝑥 is the centre of bin ℎ𝑚𝑎𝑥 defined by 𝑃(𝑟𝑚𝑎𝑥) ≥ 1 − 𝜖, with 𝜖 

typically taking values of between 0.01 and 0.1. It is at this position that the new 

“upper” boundary is placed.  By defining points 𝑠𝑚𝑖𝑛corresponding to the mean value 

of 𝑠 in the first bin of the histogram and 𝑠𝑚𝑎𝑥 corresponding to the mean value of 𝑠 in 

the bin ℎ𝑚𝑎𝑥 an approximation can be made for the dynamical path through the box. 

The new upper boundary is then orientated normal to this trajectory, with the unit norm: 

 

 
�⃗⃗�𝑛𝑒𝑤 =  

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

|𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛|
 

(2.23) 

 

A schematic for placing an adaptive BXD boundary after nsamp steps based on the 

current trajectory through the box is shown in Figure 2.9. 
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Figure 2.9: After nsamp MD steps each sampling a value 𝑠 (blue dots) a new boundary is placed at 

distance rmax from the lower boundary, bj. The difference between 𝑠𝑚𝑎𝑥 and 𝑠𝑚𝑖𝑛, the average value 

of 𝑠 in the last and first bins gives and approximate path through the box (orange) from which the new 

upper boundary is orientated normal to.  

 

2.2.3.4  Adaptive BXD runs 

 

With the method of boundary placement dealt with, the exact procedure for conducting 

an BXD simulation to place these boundaries based on the PES of the system can be 

outlined. From here on in, such simulations will be termed ‘adaptive runs’. 

 

To start an adaptive run a single box, B0, is generated. However, at this point only the 

lower boundary b0,lower of the box is defined and is located at starting geometry and 

orientated with a unit norm along the starting path segment. Then, an MD run is started 

and left to run for nsamp steps. During this time, whenever the lower boundary is hit the 

BXD inversion procedure described in section 2.2.3.2 is invoked. After nsamp steps the 

data in the box is binned according to the projected distance of each MD frame along 

the path and an upper boundary b0,upper is placed following the procedure in section 

2.2.3.3.  A new box B1, with a lower boundary b1,lower  corresponding the upper bound 

of the previous b0,upper is defined and appended to a the list of BXD boxes. The MD run 
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continues and if b0,upper is hit, the dynamics is allowed to enter the new box B1 where 

adaptive sampling procedure is repeated. 

 

A BXD box Bi is considered to be “sampling” if the number of data point in the box is 

less than nsamp and “fixed” otherwise. When conducting an adaptive run, a progress 

metric p is formulated such that it is equal to 0 at the reactant geometry and 1 and the 

target product geometry. Then, if at any given MD step p ≥ 1, the process under 

investigation is considered complete in the forwards direction and the direction of the 

sampling is reversed as soon as the BXD box changes from “sampling” mode to 

“fixed”. 

 

Reversing the direction of the adaptive procedure is required to fill in extra boxes along 

the reaction path as required (see Figure 2.8(b)). Upon entering reverse mode, nsamp is 

reset to zero for each box and sampling is restarted from the current box. 

 

For an adaptive run in the reverse direction, if at any point bound bi,lower is hit, the 

dynamics is allowed to move into box Bi-1. It does not matter if this happens at an MD 

step much smaller than nsamp. But, if there is a BXD box in which nsamp data points are 

recorded, a new box is inserted between Bi and Bi-1. Here, boundary bi, lower is redefined 

based upon the sampled dynamics and bi-1, upper is identical to bi,lower whilst bi-1, lower is 

set to bi-2, upper. The process is repeated until the boundary bo,lower is hit, and the adaptive 

run is complete. In the reverse direction, lower boundaries are always described as 

transparent, that is, no inversion occurs upon hitting them, whereas at upper boundaries 

the BXD inversion is always enforced. A flow chart and diagram outlining this 

procedure can be found in Figure 2.10. 
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(a) 

 

(b) 

 

 

(c) 

 

Figure 2.10: (a) A flow chart depicting the workflow for adaptive boundary placing. (b) Adaptive 

boundary placing in the forward direction. After nsamp steps, the data is binned and an upper boundary 

is placed at a distance rmax from the lower boundary, where rmax is the centre of the bin bmax=(𝑟𝑚𝑎𝑥) ≥

1 − 𝜖 and is orientated noral to the approximate path through the box defined by 𝑠𝑚𝑎𝑥 −  𝑠⃗⃗⃗𝑚𝑖𝑛. (c) 

Adaptive boundary placing in the reverse direction to fill in extra boxes as required. If the trajectory 

hits the lower boundary of a box at any point it is allowed to diffuse through to the lower box. But if 

in any box nsamp MD steps are reached before hitting the lower boundary a new box is inserted between 

Bi and Bi-1.  
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2.2.3.5 Converging BXD runs 

 

Once an adaptive run has been performed to generate set of boundaries in CV space a 

‘converging run’ is conducted to obtain box-to-box rate coefficients for diffusion from 

one box to another.  

 

During a converging run, the box data and number of boundary hits, nhits, are tracked. 

In the forward direction the lower boundaries of each box are always “fixed” and a 

velocity inversion is performed each time the trajectory collides with them. The upper 

boundaries, however, have the ability to change from “fixed” to “transparent” after nhits 

reaches a user defined limit, thus allowing the trajectory to diffuse into the next box. 

Upon reaching the final box in the forwards direction, the upper boundaries are set to 

“fixed” and the lower boundaries are set to become transparent after nhits. and the 

direction of travel is reversed. 

 

All of the hits on all of the boundaries are recorded and used to generate sets of MFPTs 

for diffusion of the trajectory from box to box, the same way as in section 2.2.1. 

Additionally, Milestoning FPT’s are defined as the number of MD steps between hits 

on alternate boundaries. For example, if the lower boundary is hit on time steps t1,t2 and 

t3, and the upper boundary on step t4, the BXD FPTs on the lower boundary would be 

equal to t2-t1 and t3-t2 whilst the Milestoning FPT on the upper boundary would be equal 

to t4-t1 regardless of the number of intervening hits on the lower boundary. The 

distinction between Milestoning and normal FPTs is explained in more detail in 

reference [48] and is highlighted in Figure 2.11.  
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Figure 2.11: BXD FPTs are calculated as successive hits on the same boundary, whilst Milestoning 

FPTs are taken from successive hits on alternate boundary of the same box. 

 

Once the MFPTs have been calculated from the FPTs collected for each boundary, be 

that normal BXD or Milestoning FPT’s, a free energy profile for the system can be 

calculated using equations (2.7) and (2.8), just as in section 2.2.1. 
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Chapter 3: Atomic Force Microscopy Protein 

Pulling 

 

3.1 Protein Structure and Function 

 

Proteins are large, complex biopolymers that are vital to many functions of the body 

such as catalysing biochemical reactions to aiding immune response, as well as 

enabling movement and providing structural support.55–57 

 

The functions of proteins are directly linked to their three-dimensional structure, 

however this is determined by the order of amino acids within their primary structure.56 

The primary structure of a protein is defined as the linear sequence of amino acid 

residues contained within the polypeptide chain58.   

 

There are 20 naturally occurring amino acids, all of which share a general structure of 

a central carbon atom branched by a carboxyl (-COOH), an amino (-NH2) and an R 

group, each of which has unique chemical properties.59 The general structure of an 

amino acid is given in  

Figure 3.1. 

   

 

 

Figure 3.1: General structure the 20 naturally occurring amino acids. 

 

The properties of the different R groups can be used to divide the amino acids into 

smaller groups categorised by whether they contain non-polar, polar, or ionic side 

chains. 
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To avoid water, amino acids containing non-polar hydrophobic side chains aggregate 

to form the water-insoluble core of proteins. Whilst those with polar and ionic side 

chains tend to be located on the surface of proteins, where they can interact with water 

such that they become soluble in aqueous solutions. 60 Additionally, ionic interactions 

can be found between cationic and anionic side chains, governing the way in which the 

protein folds itself.61  

 

Following this reasoning, the sequence of amino acids in the polypeptide chain, each 

imposing their own conformational preference, provides a major contribution in 

determining the ultimate structure and function of proteins.62 

 

Peptide bonds formed in condensation reactions link amino acids together one unit at a 

time to form polypeptide chains. A reaction scheme of a condensation reaction is given 

in Figure 3.2. During this process hydrogen and oxygen atoms are lost from the chain 

as water is formed as a biproduct of condensation reactions, and the amino acids are 

now termed residues. 

 

 

 

Figure 3.2: The formation of a peptide bond via a condensation reaction. 

 

After the formation of the primary structure, the protein becomes folded into local 

structural conformations via backbone hydrogen bonding between carbonyl oxygens 

and amide hydrogens. This is termed the secondary structure and highlights the 

dependence of three-dimensional protein structure on the original amino acid 

sequence.58 

 

The secondary structure of proteins takes the form of either α-helices or β-sheets. An 

α-helix is formed when the backbone of a protein becomes folded into a right-handed 

helical shape, with side chains that radiate outward. Whereas if the protein backbone is 
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folded into parallel strands with side chains protruding to the side, the structure is that 

of a β-sheet.  

 

The folding of a protein into its secondary structure brings amino acid residues into 

close enough proximity for side chain interactions. As a result, the entire polypeptide 

chain folds to form individual protein domains. This is the tertiary structure of the 

protein and is stabilised by numerous interactions between amino acid side chains 

including hydrogen bonding, dipole-dipole interactions, hydrophobic interactions and 

disulphide bonds between cysteine residues. 60 It is these forces that cause the twisting 

and folding of α-helices and β-sheets into compact domains in an effort to minimise the 

energy of the structure. Consequently, both primary and secondary structures control 

the overall three-dimensional structure of a protein. 

 

The highest level of protein structure is the quaternary structure, which is defined as 

the arrangement of multiple protein subunits into a multi-subunit complex.58 Each 

domain binds to other protein subunits through chemical interactions previously 

discussed, creating a complex of smaller domains. Figure 3.3 shows the hierarchical 

structure of proteins.63  

 

 

Figure 3.3: The hierarchical nature of protein structure. Picture adapted from reference [63] 

 

The structure and dynamic behaviour of proteins regulates their functions. For example, 

flexibility is required for haemoglobin to undergo allosteric transition in the presence 

or absence of oxygen.64 Whilst the function of the molecular spring titin relies heavily 

on the protein’s mechanical stability. Titin is responsible for the elastic response of  

sacromeres within skeletal muscle, allowing it to stretch and recoil during muscle 

movement.65,66 As it is continually subject to mechanical forces, it is clear flexibility 

and mechanical robustness are critical to its function.67   
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Understanding the dynamics of conformational changes behind important biological 

processes carried out by proteins is vital in the prevention and treatment of disease. 

Investigation into protein structure and dynamics can be carried out by experimental 

and computational methods, examples of which will be discussed in sections 3.2 and 

3.3. 

 

3.2 Experimental Methods 

 

Many experimental methods have been used to monitor protein dynamics. For example, 

Lewandowski et. al.68 employed multinuclear solid-state nuclear magnetic resonance 

(NMR) to measure motion of the full hydrated crystalline protein GB1 over various 

temperatures and time scales. In this experiment NMR observables sensitive to 

dynamics occurring on different time scales in different regions of the system were 

monitored over various temperatures, to produce a comprehensible picture of the 

system dynamics. 68 

 

Knab et. al.69 monitored the dynamics of egg white lysosome from hens using terahertz 

time domain spectroscopy; in which the terahertz response was likely due to relaxation 

response from side chain rotations. Whereas x-ray diffraction was used by Rasmussen 

et. al.70 to show at 220K ribonuclease A does not bind substrate or inhibitor but at 228K 

it does so rapidly. This could suggest below 220K the enzyme lacks the flexibility 

required for the active site atoms to be in the correct position for binding, or even that 

water molecules bound in the active site are too rigid at low temperatures to be 

displaced.70 

 

There have been many more experimental methods used to examine protein dynamics 

such as neutron scattering71 and dielectric spectroscopy.72 However, the only 

experimental method relevant to the research in this thesis is atomic force microscopy 

(AFM) and so this is the only technique that shall be discussed in more depth.  
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3.3 Atomic Force Microscopy 

 

The atomic force microscope has been used in physical and biological sciences for 

multiple purposes.73 It can be used to image the topography of living biological cells74 

as well as to probe the mechanical properties of proteins.75  

 

In 1995 the first AFM studies into the mechanical properties of proteins were conducted 

by Florin and Moy et. al. in which the interaction force between two complimentary 

strands of DNA was investigated.76,77 One of the strands was attached to a solid bead 

whilst the other was affixed to the AFM tip. The two strands were brought together for 

a period of time before being pulled apart, during which the AFM tip measured the 

force required to separate the two strands.   

 

They found the force required to separate the strands differed depending on the length 

of time the strands were initially in contact. The dependence of force on initial contact 

time suggested a dynamical process such as conformational change occurred within the 

contact time, resulting in interactions of different strength being probed. 28   

 

These early studies demonstrated that functional groups of large protein molecules 

could be attached to AFM tips and pulled apart. In turn, a new field of experimental 

biochemistry concerning AFM force spectroscopy emerged.  

 

In protein pulling AFM experiments the protein is allowed to adsorb from solution onto 

a flat surface (usually a cleaned cover glass or a gold coated surface to which a C-

terminal cysteines can bind),78,79 before bringing a thin cantilever into contact with the 

protein for a few seconds so the other end of the protein can bind to it.80 The cantilever 

is then pulled away from the surface, causing the protein domains to stretch and unfold.  

 

Deflection of the cantilever from its original position is measured by focusing a laser 

beam on its rearside and detecting reflected light with a photodiode, which is accurate 

down to the nanometre scale.67 The experimental setup of AFM protein pulling is 

shown in Figure 3.4. 
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Figure 3.4: Schematic of AFM protein pulling experiment. 

 

Two methods of AFM pulling are in common use: Force Clamp (FC) and Velocity 

Clamp (VC). The former refers to AFM experiments in which the tip is pulled at a 

constant force and the latter at a constant velocity.  

 

3.3.1 Force Clamp Atomic Force Microscopy 

FC experiments measure domain unfolding as a function of time, producing plots of 

extension vs time at a range of forces. 81,82 Extension vs time traces from FC 

experiments demonstrate a staircase pattern in which each step represents the time it 

takes for each module of the protein chain to unfold, measured from the time the force 

is applied.78 An example of one such plot is given in Figure 3.5 
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Figure 3.5: Extension vs time plots obtained in FC experiments display a characteristic staircase 

pattern.  

 

FC experiments have been used to study the unfolding times of many protein domains. 

For example, Oberhauser et. al.83 stretched engineered I2712 under FC conditions and 

found its elongation occurred in the characteristic time steps. It was reasoned the 

staircase shape of the plot was due to waiting times for unfolding of its modules being 

exponentially distributed. The stepwise nature of protein rupture demonstrated by 

Oberhauser et. al.83 was mirrored in the FC elongation of ubiquitin carried out by 

Fernandez and Li.84   

 

However, perhaps a more insightful use of AFM when it comes to studying protein 

dynamics is though VC AFM experiments which can be used to measure the 

mechanical robustness of protein domains which can be related back to their underlying 

structure. 

3.3.2 Velocity Clamp Atomic Force Microscopy 

Velocity Clamp experiments yield force vs extension plots. When stretching a protein, 

the AFM cantilever behaves like a spring, so provided the force constant of the 

cantilever is known, Hooke’s law can be used to calculate the force acting on the AFM 

tip from its measured displacement. 

 



 52 

Stretching of mechanically engineered homopolyproteins (a protein consisting of 

repeated identical domains) produces a unique saw tooth pattern often with a piecemeal 

increase in peak size along the reaction coordinate, as more domains are 

unfolded.78,80,85,86 Analysis of such profiles suggests the rising phase of the sawtooth 

reflects the elasticity of the protein and the linker molecule attaching it to the AFM 

cantilever as they are stretched.80,86 

 

Figure 3.6 shows the typical outcome of a single domain unfolding experiment and its 

interpretation.  The domains are connected in sequence.   At point 1 element B of the 

concatemer is ruptured and the cantilever is relaxed.  Then, B is extended up to point 2 

at which point it is almost straight and stress is put on the next element E, as shown in 

red.  The stress reaches its maximum at point 3 at which point E is ruptured.  This 

coincides with a rapid reduction in force as the cantilever ‘snaps back’ giving rise to 

the very steep edge of the sawtooth shape between points 3 and 4. The cantilever further 

relaxes to reach its equilibrium at point 4 as E continues to unfold E without further 

resistance. Then the cycle starts again with a new unfolding element (any of A, C, D or 

F).   

 

Smaller unfolding events are often seen in the sawtooth between points 1 and 3 as 

weaker structures within the protein are ruptured.  Point 3’ in Figure 3.6 is an example 

of one such point. Thus, the region 1-3’-2 of the tooth shown in Figure 3.6 can 

correspond further extension of domain B, to be followed by the extension and rupture 

of domain E in the region 2-3-4. Alternatively, peak 3’ can correspond to an 

intermediate unfolding event, such as the partial break of E before its strongest bonds 

are broken in the main rupture event. The peak forces, i.e. the forces at the points 3 or 

3’ are of particular interest as they determine the mechanical properties of the protein 

molecule. 



 53 

 

 

Figure 3.6: In a VC AFM pulling experiment, point 1 corresponds to the concatemer element B (gold) 

being ruptured but not fully extended. At this point, the cantilever is at equilibrium. Then, the element 

B is extended, and the cantilever deforms producing Hooke’s force. At point 2, B is nearly fully 

extended, and the next unfolding element E (red) comes under stress. At point 3, the stress reaches its 

maximum and E ruptures. Then, between the points 3 and 4, the cantilever ‘snaps back’ and E extends 

rapidly. After this, the cycle repeats for one of the remaining unfolded domains. On the tooth shaped 

image, the unfolding events of the domains B and E are indicated by corresponding colours. The 

extension of a domain can reveal smaller unfolding events, one of which is indicated as 3′. The 

unfolding forces Funfld that rupture the protein structures are the forces at points 3 and 3′. 

 

Additional information regarding the unfolding process of protein domains can be 

probed from force-extension profiles. The worm-like chain model (WLC) is used for 

characterising the behaviour of semi-flexible polymers 87,88 and gives an estimate of the 

length of the domain, termed the contour length. The increment in contour length, ΔL, 

must therefore reflect the elongation length of a domain; predicted by subtraction of the 

folded domain length from the unfolded one.86 Consistent values of ΔL reflect the 

similar unfolding processes of the identical domains. These incremental contour lengths 

can be used to fingerprint engineered homopolyproteins based on their mechanical 

properties. 78,89  

 

Li and Fernandez85 used VC AFM to produce a saw-toothed force-extension plot for 

the engineered polyprotein (I27-I1)4, in which there were two clear levels of unfolding 
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force (Figure 3.7). Comparison of the experimental results to the mechanical unfolding 

fingerprint of I27 confirmed the higher-level forces corresponded to unfolding of I27 

domains.  In turn, the lower level forces were from the unfolding of I1 domains, 

suggesting I1 is less mechanically stable than I27. 85  

 

 

Figure 3.7: Force extension plot of (I27-I1)4. Comparison of the two levels of peaks to fingerprints 

of I27 domains can be used to assign the higher-level peaks with ΔL = 27.3 nm as the ones 

corresponding to the unfolding of I27 domains. Figure adapted from reference [85] 

 

3.3.2.1 Experimental Trends and Bell’s Model of Unfolding 

 

The original motivation behind AFM studies was to offer some explanation as to why 

some domains are more mechanically stable than others 90 by linking the observed 

unfolding force with the secondary structure of the domains. However, new and 

interesting phenomena have been observed in constant velocity AFM unfolding 

experiments which potentially can shed some light not only on the structure of the 

protein but also on the kinetics of the unfolding.  For example, experimentation has 

shown that rupture force i.e., the force at point 3 or 3’ in Figure 3.6 depends on pulling 

velocity.79,80,91 
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When pulling at intermediate velocities speed (<100 μm/s) the unfolding force often 

varies linearly with the log of pulling velocity.80,92 Theoretical explanation of this 

phenomenon is usually based upon the predictions of Bell’s phenomenological model 

of mechanically assisted biological processes.93 This is a two-state model in which the 

folded and unfolded conformations are separated by a single transition state.  

 

In the absence of pulling, the unfolding rate given by transition state theory would be 

𝑘𝑢
𝑜 = 𝜅𝑉𝑒

−∆𝐺𝑇𝑆−𝐹
𝑘𝐵𝑇   where κ is the transmission coefficient, V is the vibrational frequency 

at the TS, ΔGTS-F is the activation energy for unfolding, kB is the Boltzmann constant 

and T is the temperature. Bell’s insight was to explicitly account for the impact of 

mechanical force from the AFM cantilever on such systems. When a constant additional 

force is applied to pull the protein by the cantilever spring, the work of pulling force, 

W = - F·x, where F is the externally applied force and x is the distance from the folded 

state to the TS, should be included in the free energy. This decreases the free energy, 

and the unfolding rate now includes an additional factor 𝑘𝑢(𝐹) = 𝜅𝑉𝑒
−(∆𝐺𝑇𝑆−𝐹 − 𝑊)

𝑘𝐵𝑇 =

𝑘𝑢
𝑜𝑒

 𝐹∙𝑥

𝑘𝐵𝑇. If 𝑘𝑢(𝐹) is also equal to the loading rate, r = kv, (i.e., the rate at which force 

is loaded onto the bonds in the protein), times by the distance to the transition state, 

then the logarithmic relationship between unfolding force and the pulling velocity seen 

in experiments can be given as 𝐹𝑖 =
𝑘𝐵𝑇

𝑥
𝑙𝑛 (

𝑟𝑥

𝑘𝑢
𝑜𝑘𝐵𝑇

) =
𝑘𝐵𝑇

𝑥
𝑙𝑛 (

𝑘𝑣𝑥

𝑘𝑢
𝑜𝑘𝐵𝑇

). 80,86,91,94,95 Where 

Fi is the unfolding force of the protein domain, k is the cantilever force constant and v 

is the pulling velocity. 

 

3.3.2.2 More advanced models of unfolding 

 

3.3.2.2.1 Friddle and Noy’s model of unfolding 

 

A more sophisticated model by Friddle and Noy96 accounts for the effect of the pulling 

more accurately, by assuming that the pulling cantilever is a harmonic spring so that 

the work of pulling force includes a quadratic term with respect to the extension of the 

protein.  This model predicts that at very slow pulling velocities unfolding force is 
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independent of the velocity, but when moving to faster pulling velocities typically seen 

in experiment, a  Bell-Evans logarithmic dependence is observed.80,91,94 

 

3.3.2.2.2 Hummer and Szabo’s microscopic model  

 

Experimentally, differences have been seen in the force-pulling velocity relationship 

when using intermediate and high pulling speeds. Hummer and Szabo’s microscopic 

model has been used to address the differences in the dynamics for high and low speed 

pulling and has suggested the presence of three distinct dynamical regions. 79,97  In the 

first region,  when approaching the limit of slow pulling velocities it is suggested the 

cantilever works to hold back the molecular coordinate, resulting in slower rupture and 

a negative average unfolding force.97,98  

 

Secondly, at intermediate velocities like the ones seen in most AFM experiments (v = 

10-1 - 10 μm/s) there is a contribution from both the pulling and stochastic motion 

towards the unfolding force, which averages out to produce an approximately linear  

relationship with the logarithm of pulling velocity, similar to that predicted by Bell’s 

model. 80,93,97,99 .  In their study 97, Hummer and Szabo found a comparison of the exact 

results from Brownian Dynamics simulations 100,101 of a model system with their 

microscopic model showed an approximate linear dependency on the logarithm of 

pulling velocity in this region.  

 

The models’ third region occurs at extremely high pulling speeds (> 100 μm/s) at which 

point stochastic motion becomes irrelevant and the dynamics becomes deterministic 

due to insufficient time for energy landscape to be explored properly.  At this point, 

TST breaks down as a steady influx into the TS cannot be maintained and Bell’s model 

becomes invalid. 

 

In a recent experiment, Rico et. al.79 used specially designed equipment to pull the I27 

domain of titin at velocities extending into this region and observed an upturn in force 

from the usual linear force vs logarithm of pulling speed dependence. This suggests 

there may indeed be a more complex relationship between unfolding force and pulling 
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velocity than originally suggested by Bell; one which bares more similarity to these 

more advanced models.  

 

3.3.3 Previous computational studies of AFM protein 

unfolding 

In principle, comparison between experiment with MD simulations should be possible.  

However, AFM experiments usually take place on micro to millisecond timescale102,103 

or even longer, timescales of which are out of reach for conventional unbiased MD 

simulations.  

 

Instead, most simulations of AFM experiments are conducted using a technique known 

as Steered Molecular Dynamics (SMD) or Constant-Velocity Molecular Dynamics 

(CVMD). 104,105 SMD involves attaching a virtual harmonic spring to each end of the 

protein and moving them apart at a constant velocity, stretching the protein in a similar 

way to AFM experiments.104 From this, force vs extension plots are produced similar 

to those from VC AFM experiments. Alternatively, applying a constant force along the 

vector between the two ends of the protein during the SMD simulation can be used to 

reproduce FC AFM experiments.45 

 

SMD has been used to investigate mechanical unfolding of several protein domains 

including the I27 domain of titin. This all β-sheet domain has demonstrated high 

mechanical robustness in AFM experiments, which SMD simulations by Lu et. al. 

suggest is a result of hydrogen bonding between terminal β-sheets.106–108 They reported 

a 10 Å extension of I27 produced a relatively stable unfolding intermediate in which 

only hydrogen bonds between  β-sheets A and B were broken, and it was not until an 

elongation of 25 Å that all backbone hydrogen bonds were broken and the domain 

unfolded with less resistance. 106 Figure 3.8 shows the β-sheet hydrogen bonds that are 

broken in I27 when transitioning from the native to the unfolded structure through an 

unfolding intermediate. 
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Figure 3.8: As I27 is unfolded in an SMD simulation, β-sheet hydrogen bonds between strands A-B 

and A’-G seen in the native structure (left) are broken. First, rupture occurs between sheets A-B to 

move into an intermediate unfolding state at an extension of around 10 Å. This is followed by breaking 

of the hydrogen bonds between strands A’-G as the domain unfolds at extensions of around 25 Å. 

Image adapted from reference [106] 

 

Domains containing a mixture of α-helices and β-sheets as well as α-only domains have 

also been studied using SMD. Brockwell et.al.104 investigated the mechanical unfolding 

of protein L, a mixed α-helix/β-sheet domain. Similar to I27, a cluster of backbone 

hydrogen bonding between β-sheets withstood the initial force, but ruptured suddenly 

causing complete unfolding of the domain. Whilst SMD simulations of α-only domains 

have shown them to be less mechanically stable and unfold with lower forces. This is 

thought to be because of a lack of backbone hydrogen bonding between α-helices over 

which the applied force can be shared.104,109 

 

SMD simulations have been useful in highlighting the importance of the secondary 

structure of proteins to their overall mechanical stability.102 However, the pulling 

speeds used in SMD simulations are much faster than in AFM pulling experiment, 

sometimes by as much as six orders of magnitude. Although AFM studies of I27 have 

tended to support the results of SMD simulations, the use of such high pulling speeds 

can spark debate as to the validity of SMD simulations when comparing directly to 

experimental data.92,109  
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BXD offers an alternative method to SMD for simulating AFM unfolding experiments, 

without the need to use excessively high pulling speeds. Modelling of AFM at the 

slowest experimental speeds can be done using BXD simulations without applying 

extra forces to the system and so can avoid such debate. Moreover, modifications can 

be made to the results of these BXD simulations to account for the dynamics of the 

AFM cantilever when pulling at the higher speeds seen in AFM.  A discussion of both 

scenarios will follow in Chapter 4. 
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Chapter 4: Simulating Atomic Force 

Microscopy with Boxed Molecular Dynamics 

 

The work in the chapter involves modifying the rate constants obtained from unbiased 

BXD simulations for the unfolding of I27 conducted in the same way as in refs [40,44,45]. 

Adjustments were made to these results so that the non-equilibrium kinetics of AFM 

assisted unfolding could be replicated, allowing a direct comparison of our simulated 

results to experimental ones taken from refs [79,92,99]. 

 

4.1 Pulling at Slow Velocities with BXD 

 

BXD has been used in recent years as a way of circumnavigating the rare event problem 

inherent to MD simulations thus enabling atomistic simulations to be conducted over 

very long timescales. 44–46,48,52 Previous work within the Shalashilin group has seen the 

BXD method described in section 2.2.1 used to generate box to-box rate coefficients 

for the unfolding of the I27 domain of titin. 40,44,45  

 

These simulations rely solely on BXD boundaries preventing the trajectory from 

diffusing down the reaction coordinate back towards the initial state to accelerate the 

dynamics, and do not have any additional force applied to the system that is 

representative of an AFM tip. The assumption of equilibrium between boxes made by 

BXD means that the rate constants from these simulations can only be applied to very 

slow pulling speeds which do not perturb this equilibrium. Therefore, such simulations 

are not representative of a typical AFM pulling experiment in which the unfolding force 

is tested at multiple pulling velocities.  

 

The rate coefficients can, however, be modified after the fact to account for the 

cantilever dynamics in an AFM experiment. But first, they must be obtained from 

conventional BXD simulations. 
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4.1.1 Method of obtaining rate constants  

Simulations to obtain these rate constants were done in same way as in refs [40,44,45]. 

Briefly, this was as follows: 

 

After the initial structure of I27 had been equilibrated and a reaction coordinate for 

unfolding determined as the end-to-end distance between its two termini, simulations 

were conducted using the BXD subroutine implemented in CHARMM. This subroutine 

works by receiving the atomic coordinates and velocities from the CHARMM 

integrator which are used to update the value of the reaction coordinate. If this value is 

such that a boundary has been crossed, then a velocity inversion is implemented 

according to Figure 2.1 and the inverted velocities are used to further propagate the 

dynamics.  After a sufficient number of inversion events (minimum 2000 in this case) 

have been recorded the diffusion across the boundary is allowed and the process 

repeated for the next box and all the way along the reaction coordinate.  

 

To converge box-to-box rate constants BXD usually scans boxes back and forth along 

the reaction coordinate several times.  But once a large protein is fully extended along 

its end-to-end reaction coordinate it would not fold back to native state when BXD 

moves back towards the boxes with a smaller end-to-end distance.  For that reason, the 

protein was stretched from its native state to full extension several times without 

refolding the protein.  In all BXD trajectories the rate coefficients were similar, and 

their potential of mean force profiles (PMFs) have shown similar features.   

 

The simulations were conducted with the EEF1 implicit solvent model110 and 

CHARMM 19 force field with a Langevin thermostat set to 303 K and a friction 

coefficient of 50 ps-1 to replicate bulk water.  
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4.1.2 Results using rate constants obtained from the 

original BXD simulations 

Rate constants were obtained using the method above, the same as in  references [40,45]. 

Although, it should be noted this could have also been done as in Chapter 6, in which 

adaptive BXD sampling was used to generate box-to-box rate constants for unfolding 

I27. Then, using equation (2.8) a free energy profile for unfolding along the reaction 

coordinate was generated and subsequently differentiated to give the force as a function 

of extension. These are shown in Figure 4.1(a) and (b) respectively.  

 

(a) 

(b)  
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(c)  

(d)  

 

Figure 4.1: Frame (a) shows PMF of I27, i.e. its free energy as a function of extension, calculated 

with BXD using the EEF1 implicit solvent model and (b) its gradient representing low velocity pulling 

force.  Point A corresponds to the native state of the protein and PMF minimum (not shown). 

Following this there is a steep increase in PMF to point B without any significant change in the 

equilibrium structure as the pulling force is spread over hydrogen bonds between I27’s β-sheets. After 

reaching the point B the hydrogen bonds rupture almost simultaneously causing a drop in PMF 

gradient to point C as the protein slackens and extends.  Further pulling increases the gradient up to 

point D as the next pair of β-sheets connected by hydrogen bonds comes under stress.  The hydrogen 

bond link between these β-sheets is weaker. Fluctuation of the force reflects incomplete convergence 

of the calculation, however it still qualitatively captures the main features of the PMF. Frame (c) 

shows a modified PMF1 with flat regions at extensions of 25Å- 60Å and 95Å-145Å to account for 
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the formation of hydrogen bonds with water and frame (d) shows PMF2 with flat regions positioned 

at extensions of 5-60 Å and 95-145 Å as well as multiplication of the upwards rate coefficients before 

5 Å by 0.0025. This modification provides the best fit to experiment. 

In these figures point A corresponds to the native state of the protein, which if I27 were 

to be compressed as well as extended, would sit in the resulting PMF minimum. 

Compression of the protein is not shown as only the extension of I27 is relevant to 

protein pulling experiments.   At first, extension of the end-to-end distance from point 

A causes the PMF increase rapidly whilst there is little change to the equilibrium 

structure of I27.  This is because of hydrogen bonding between the β-sheets of I27. 

Initially, the force is shared between them, but once it becomes too great to withstand 

the hydrogen bonds between the A’ and G β-sheets of I27 rupture, consistent with the 

findings of reference [106]. The maximal gradient, marked in frame (b) by Fmax, 

corresponds to the steepest region of the PMF curve, just before the β-sheet hydrogen 

bonds fail. They rupture quickly allowing the I27 domain to slacken and extend in 

length leading to a reduction in force from the inflection point B to point C.  Point D in 

the figures corresponds to the rupture of another set of hydrogen bonds between β-

sheets formed in the middle of the amino-acid sequence.  Further extension to 

approximately 300 Å would see the greatest increase in the PMF gradient as the protein 

approaches a fully extended linear conformation as was seen in the references [40,44,45]. 

The overall shape and analysis of the PMF in Figure 4.1(a) matches well with previous 

explanations of experimental86 and computational106 observations. 

 

It should be noted that the unfolding force from protein pulling experiments Funfld 

experiment is not equal to Fmax, although there might be a correlation between the two. 

What follows is how Funfld from experiment can be calculated with the help of BXD. 

 

4.2 Modifications to Better Model AFM 

 

Only in recent years has it been possible to perform AFM  experiments at sufficiently 

high pulling speeds and conduct SMD  simulations over long enough timescales for the 

uppermost and lowermost velocities of the respective methods to overlap.79 However, 

the majority of the experimental speeds are still way out of reach of atomistic MD  

methods and can be described by phenomenological models only. A technique which 
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bridges the gap between experiment and computational studies in this area such that 

direct comparison of the results is possible, would clearly be beneficial in furthering 

the understanding of the mechanical properties of proteins. In this section the results 

above will be used to describe the unfolding kinetics in AFM experiments.  The 

previously obtained rate coefficients will be used to develop a kinetic model of the 

pulling process in AFM and model the experimentally observed dependence of 

unfolding force on pulling velocity.   

 

4.2.1 Modifications to the original PMF 

For a good description of experimental AFM to be made, modifications to the above 

results are needed. Modifications were made to the rate coefficients to both alter the 

PMF in Figure 4.1(a) as well as to account for effect the AFM cantilever has on the 

dynamics of the system. The latter of these is discussed in section 4.2.2 but firstly, the 

alteration of the PMF in Figure 4.1(a) will be discussed.  

 

Modified PMF1 and PMF2 are shown in frames (c) and (d) of Figure 4.1.  The implicit 

solvent model used to generate the rate constants above underestimates the effect of 

hydrogen bond formation between the newly ruptured protein β-sheets and the 

surrounding water molecules.  Hydrogen bond formation significantly lowers the PMF 

of the system after the point of rupture (point B in Figure 4.1(a) and (b)) such that areas 

of the PMF with small gradients become even flatter.  If, for regions of the PMF at 

which protein-solvent hydrogen bond formation is important, the original rate 

coefficients are replaced by their geometric mean, the PMF becomes flat in these 

regions. Figure 4.1(c) shows the modified PMF1, with flat regions introduced at 

extensions of 25-60 Å and 95-145 Å, both around the inflection points B and D in 

Figure 4.1(a). Whilst Figure 4.1(d) shows PMF2 with flat regions at extension of 5-60 

Å and 95-145 Å which coincide with multiplication of the BXD rate coefficients before 

5 Å extension by 0.0025 so that the PMF value at the flat region is similar to that of 

point B in Figure 4.1(a). As will be shown in later sections, the modifications shown in 

frame (d) help achieve unfolding forces in better agreement with those from 

experiment. 
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4.2.2 Accounting for cantilever dynamics 

BXD assumes equilibrium within each box, allowing box-to-box rate constants to be 

defined.  However, global equilibrium is not required, and as a result BXD is capable 

of describing nonequilibrium kinetics with the help of the Master Equation.  In the case 

of protein unfolding assisted by AFM, even if initially the protein was in equilibrium 

the motion of the cantilever distorts the initial equilibrium between boxes, and makes 

the population move from one box to the next.   

 

Accounting for the effect of the cantilever on the system’s dynamics can only be 

achieved if a term is included within the simulation which represents the interaction 

between the cantilever and protein. Such a term can be used to modify the rate 

coefficients from unbiased BXD simulations so that the cantilever dynamics become 

reflected in the PMF profile. 

  

It is not unusual to assume the total PMF of a system comprising of a protein being 

pulled by an AFM cantilever can be expressed as the sum of the free energy of 

unfolding and the mechanical potential energy of cantilever extension.96,111 Similar to 

many other works 97,107,108,112,113 the cantilever can be modelled as a harmonic spring 

with potential energy: 

 

 
𝑉ℎ𝑎𝑟𝑚  =  

𝑘𝑥2

2
 =  

𝑘[(𝜌 − 𝜌0(𝑡)])
2

2
 

(4.1) 

 

where k is the cantilever spring constant and x is the displacement of the cantilever tip 

from its initial position, given by the box position along the reaction coordinate, ρ, 

minus the time dependent position of the tip 𝜌0(𝑡). 

 

The tip is moved with velocity v such that its position at time t is given by: 

 

 𝜌0(𝑡) = 𝜌0(0) + 𝑣𝑡 (4.2) 

 

where r0(0) is the initial position of the tip.  The modified PMF becomes:  
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𝐺𝑡𝑜𝑡(𝜌) = 𝐺𝐵𝑋𝐷(𝜌) + 𝑉ℎ𝑎𝑟𝑚(𝜌, 𝑡) = 𝐺𝐵𝑋𝐷(𝜌) +

𝑘(𝜌 − 𝜌0(𝑡))
2

2
 

(4.3) 

 

The time dependent potential, Vharm(ρ,t) creates a new potential difference, 

𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚
 , for diffusion of the population of one box into the next: 

 

 𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚
= 𝑉ℎ𝑎𝑟𝑚(𝜌𝑚−1, 𝑡) − 𝑉ℎ𝑎𝑟𝑚(𝜌𝑚 , 𝑡) (4.4) 

 

The box-to-box rate coefficients are modified such that they reflect the potential 

difference between boxes imposed by the cantilever tip: 

 

 
𝑘𝑚−1,𝑚(𝑡) = 𝑘𝑚−1,𝑚

𝐵𝑋𝐷  𝑒−  
𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚

2𝑅𝑇  

𝑘𝑚,𝑚−1(𝑡) = 𝑘𝑚,𝑚−1 
𝐵𝑋𝐷 𝑒  

𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚
2𝑅𝑇  

(4.5) 

 

 

Where 𝑘𝑚−1,𝑚
𝐵𝑋𝐷  and 𝑘𝑚,𝑚−1 

𝐵𝑋𝐷  are the original rate coefficients from unbiased BXD 

simulations for diffusion from box m-1 to m and m to m-1 respectively. 

 

By rephrasing equation (2.8) to include the modified rate constants, the change in free 

energy for diffusion into box m from box m-1 can now be written as: 

 

 Δ𝐺𝑚−1,𝑚 = Δ𝐺𝑡𝑜𝑡𝑚−1,𝑚  

                  =  −𝑅𝑇 ln(𝐾)   

                   =  −𝑅𝑇 ln(
𝑘𝑚−1,𝑚

𝐵𝑋𝐷  𝑒−  
𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚

2𝑅𝑇

𝑘𝑚,𝑚−1 
𝐵𝑋𝐷 𝑒  

𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚
2𝑅𝑇

)  

                   = Δ𝐺𝐵𝑋𝐷 𝑚−1,𝑚
+ 𝛥𝑉ℎ𝑎𝑟𝑚𝑚−1,𝑚

 

           

(4.6) 
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The modified time-dependent rate constants are calculated at time zero before any 

pulling takes place and used to generate a starting free energy.  An initial equilibrium 

population in all the boxes is assumed before pulling:  

 

 

𝑛𝑚(0) =
𝑒− 

𝐺𝑚
𝐵𝑋𝐷

𝑅𝑇

∑ 𝑒− 
𝐺𝑚

𝐵𝑋𝐷

𝑅𝑇𝑚

 

(4.7) 

 

 

At each time step in a simulation, Δt, the position of the cantilever tip along the reaction 

coordinate, ρ0(t), is moved to ρ0(t+ Δt) = ρ0(t)+ vΔt.  Here, new box-to-box rate 

coefficients are generated using equation (4.5) and the KME (equations (2.10) and 

(2.11)) is solved (equation (2.12)) to get the corresponding box populations 𝑛𝑚(𝑡 +

𝛥𝑡) after time Δt, calculated from the new initial conditions 𝑛𝑚(t) at time t. This drags 

the box populations along the reaction coordinate.   

 

Such a kinetic approach to AFM pulling has been outlined in reference [96] albeit with 

only two states and model kinetic parameters.  But our approach uses many boxes with 

the kinetic rate coefficients between them calculated in atomistic BXD simulations.  

Therefore, although the evolution of the populations along the reaction coordinate is 

gathered by solving the KME, our approach remains based on fully atomistic 

simulations. 

 

The box populations after each time step are used to get the average peptide extension 

at that time, ⟨𝜌(𝑡)⟩:  

 

 ⟨𝜌(𝑡)⟩ = ∑𝑛𝑚(𝑡)𝜌𝑚

𝑚

 
(4.8) 

 

Which can be used to estimate the experimentally observed force according to the 

Hooke’s law: 

 

 𝐹𝑒𝑥𝑝(𝜌0(𝑡))  =  −𝑘(< 𝜌(𝑡) > −𝜌0(𝑡)) (4.9) 
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where 𝜌0(𝑡) is the position of the cantilever at time t. 

 

This kinetic approach to modelling AFM experiments allows the time evolution of box 

populations along the total free energy of the system accounting for new hydrogen 

bonding to be seen as they are dragged along by the cantilever tip.  

 

Following the above method, a two-state model of unfolding appears. The blue line in 

Figure 4.2 represents the sum of the harmonic spring (with a cantilever force constant 

of k=2 pN/Å) and the flattened PMF profile. As pulling begins and the tip is moved to 

the right (going from frame (a) to (b)) two minima appear. Protein rupture occurs as the 

evolution of the populations as described by the KME leads to them transitioning from 

the first minimum to the second. This is shown by the gold arrow in frame (b). 

 

 

 

Figure 4.2: The Total PMF (blue) obtained by the addition of a harmonic spring (green) to the new 

flattened PMF1 profile (red) same as the red line in Figure 4.1(c).  Frames (a) and (b) are for two 

different positions of the cantilever, 25 Å and 80 Å respectively.  Unfolding as shown by the yellow 

arrow at the frame (b) occurs after the tip is pulled to the right and a second minima which is lower in 

energy than the first appears in Gtot.  The figure covers 145 boxes as the box size of 1 Å was used. 

 

 

 

(b) (a) 
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4.3 Results and Discussion 

 

The modifications discussed in sections 4.2.1 and 4.2.2 were used to simulate AFM 

pulling experiments over a range pulling speeds large enough to cover both 

conventional AFM and high speed force spectrometry (HS-FS).79,80,99 The following 

sections detail the results of these simulations, focusing first on those obtained using 

PMF1, before discussing the ones generated from PMF2 that better match experiment. 

 

4.3.1 Simulations at all timescales reproduced the 

characteristic sawtooth shape of AFM force-extension 

profiles  

The characteristic sawtooth shape of the force-extension profiles in AFM was produced 

for all simulations at each pulling speed. Two examples of these profiles are given in 

Figure 4.3. The figure shows force-extension profiles for simulations using a force 

constant of k=2 pN/Å applied to PMF1 conducted at pulling speeds of v=0.01 and 

v=10,000 μm/s shown in frames (a) and (b) respectively.   

(a)  
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(b)  

Figure 4.3: The dependence of the Hooke’s force on time and cantilever position for v=0.01 (frame 

(a)) and v=10,000 μm/s (frame (b)) for simulations conducted using a force constant k=2 pN/Å and a 

flattened PMF1 in the region of 25-60 Å and 95-145 Å. Pulling at higher velocities results in greater 

unfolding forces occurring on shorter timescales. 

 

Figure 4.3 highlights many important features of pulling experiments that BXD is 

capable of reproducing, including the shape of the tooth, as well an increase in force 

with speed.  More importantly, it illustrates the main power of BXD.  The timescale of 

the protein pulling process shown frame (a) is in seconds. Timescales of such lengths 

are usually inaccessible for atomistic MD simulations due to the rare event problem. 

Nevertheless, combining atomistic MD calculations of the box-to-box rate coefficients 

with the KME allows such timescales to be reached.  

4.3.2 The unfolding kinetics changes with pulling 

velocity 

Figure 4.4 illustrates how the kinetics of unfolding changes with pulling velocity.  

The green, purple and cyan lines show the total PMF (PMF1, shown in red, with the 

addition of the harmonic potential energy) when the cantilever is positioned at 

extensions of 40, 67 and 120 Å along the reaction coordinate which are reached at time 
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steps of 4 x107, 6.7x107 and 1.2x108 and 4 x102, 6.7x102 and 1.2x103 ns for cantilever 

speeds of 0.1 and 10000 μm/s respectively.  

 

The general scheme for unfolding along this total PMF is as follows. At first, although 

the total PMF is substantially distorted by the cantilever the populations are still located 

near the original native state (green line). Then, as the cantilever is moved to the right, 

and the second well becomes lower in energy than the first (purple line) the populations 

transition into it, corresponding to the breaking of the first set of hydrogen bonds. As 

the cantilever continues to move to the right another well is formed and further 

unfolding occurs upon transition to the next well, as the next set of hydrogen bonds is 

ruptured (cyan).  

 

 

(a)  
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(b)  

 

Figure 4.4: Population dynamics taken at three time points, corresponding to the cantilever extended 

by 40, 67 and 120 Å in an AFM pulling simulation using a force constant of k=2 pN/Å for low (fame 

(a), v=0.1 μm/s) and high (fame (b), v=10,000 μm/s) speeds.  In the figure the leftmost well 

corresponds to a folded protein domain (green line) and the right wells (purple and cyan) to unfolded 

protein domains as the protein is stretched.  At higher pulling speeds there is less time to transition 

into the next well and so populations remain in the well for longer. The red line is the PMF1 curve 

with flat regions at extensions of 25-60 Å and 95-145 Å, whilst the populations at an early, 

intermediate and later time step have been superimposed onto their corresponding modified 

PMF1+Vharm (equation (4.3)) curve (shown in green, purple and cyan). 

 

However, at high pulling speeds this process is interrupted. Comparing frames (a) and 

(b) of Figure 4.4 shows that at high pulling speeds (v=10000 μm/s) kinetic inertia leads 

to populations which lag behind. This results in a in smaller average length of the 

protein < 𝑟 > and therefore a larger force calculated from equation (4.9).   

 

At lower pulling velocities the kinetics drives the populations along the unfolding 

coordinate and over the barrier95 as soon as the unfolded state becomes 

thermodynamically lower or equal to the native folded state.  Whereas at higher speeds 

a combination of kinetic inertia and less time available for transition into the next 

available well lead to a delay in population transfer. As pulling velocity is increased the 

population density fails to overcome the barrier and follows the cantilever with 

significant delay. This provides more time for the cantilever to shift to the right during 
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the transition period, resulting in a larger 𝑟0(𝑡) and larger force (equation (4.9)). 

Alternatively, one can think of this as faster pulling reducing the time available to 

escape the first well, therefore either a lower barrier or greater force is required to help 

population transfer. An important advantage of this technique is that although similar 

pictures have been suggested 96, BXD combined with the KME enables the population 

dynamics of a system to be visualised.  

4.3.3 At the slowest pulling velocities unfolding force 

depends only on the cantilever stiffness before 

transitioning to a linear dependence on velocity as 

higher ones are used  

Figure 4.5 shows the value of Funfld over a range of pulling velocities using different 

force constants of the cantilever.  For all force constants there is no relationship between 

pulling speed and unfolding when pulling at slower velocities.  This could be because 

unfolding occurs after the next well becomes thermodynamically equal to (or lower 

than) the previous one and if the pulling speed is very slow the cantilever does not move 

much during the time interval at which population transfer takes place. Therefore, when 

concentrated to the lower end of the range of pulling speeds, changes in velocity do not 

result in large changes to the force when calculated according to equation (4.9). But 

with faster pulling speeds, a greater increase in 𝜌0(𝑡) is seen when increasing the 

pulling velocity and following the reasoning above, the force increases linearly with 

the logarithm of the pulling speed. Additionally, there is a clear ‘kink’ between the flat 

region of the force spectrum, and the region displaying linear growth in force with the 

log of pulling speed.  Similar behaviour has been seen in a model approach96, but BXD 

yields this picture based on atomistic simulations. 
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Figure 4.5: The dependence of the unfolding force on the pulling speed.  At the lowest pulling speeds 

the force is independent of v. With increased pulling velocity populations have less time to escape the 

first well and cross the transition state to unfolding, resulting in a higher unfolding force. Increasing 

the cantilever force constant increases the overall unfolding force and shifts the max force – pulling 

velocity curve to the right. All lines on the graph are for simulations done with PMF1 shown in Figure 

4.1(c).  The red line uses a cantilever with 2 pN/Å, purple with 3 pN/Å and green k= 4 pN/Å. Circles 

mark the velocity for each curve at which the ’kink’ in force spectrum appears as the force shifts from 

being independent of speed, to increasing linearly with it. 

 

BXD reveals a minimum peak unfolding force that is dependent on and increases with 

cantilever stiffness. This is similar to the work of Friddle and Noy 96 who developed a 

model of protein unfolding very similar to ours, with the exception of describing the 

process qualitatively rather than quantitatively through the use of a real PMF as is the 

case in our work.  They too used the sum of a moving parabolic potential and a PES to 

model bond rupture in AFM, which when moved to the right produced a second minima 

into which population transition defined protein rupture.  

 

According to their model 96 there is a minimum force required to rupture protein bonds 

in an AFM experiment which varies with the cantilever force constant. They suggest 

any bonds in a protein that rupture from thermal fluctuations alone are held in place 
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long enough by the rest of the structure to reform, and so an external force is required 

to destabilise all of the bonds long enough for complete rupture. This implies the 

existence of a minimum externally applied force required for a protein to unfold in a 

force spectrometry experiment. In such two-state models of unfolding, the steepness of 

the barrier separating the bound and unbound states is controlled by the additional 

potential added to the PES, which varies with cantilever stiffness. Therefore, the 

minimum amount of externally applied force needed to rupture a protein is dependent 

on the force constant of the AFM cantilever 

 

This applies only at very slow loading rates near where global equilibrium can be 

assumed. At higher pulling speeds the observed unfolding force follows Bell’s model 

in which the changing external force exponentially amplifies the unfolding rate, leading 

to non-equilibrium unfolding kinetics and a logarithmic force-pulling speed 

relationship. 93,96 At this point, kinetic parameters including the unfolding rate and the 

distance to the transition state begin to control the unfolding force (see section 3.3.2.1) 

and the cantilever stiffness becomes less relevant.  

 

The different regions should be easily identifiable on a force spectrum which results 

from an AFM experiment covering a large enough range of pulling velocities and tests 

multiple cantilever force constants. According to this model96 if such an experiment 

were done, the force spectrum would show several flat lines in the near equilibrium 

range corresponding to the minimum unfolding force for each cantilever force constant, 

merging into a single line displaying the linear increase in force associated with Bell’s 

model at higher pulling speeds. 93,96 

 

Figure 4.5 shows how the results of simulations using BXD and the KME support this 

model, albeit with the trend shifted to the right of where Friddle and Noy’s model 

predicts.96 However if the same methodology is applied to PMF2 (Figure 4.1(d)), then 

the different regions come much more into line with the velocities they are expected to 

occur at (see  

Figure 4.6(b)). The modifications used to create PMF2 and the reasoning behind them 

will be discussed in more detail shortly. It is valid to use PMF2 over PMF1 for this as 

the modifications to the rate constants to create PMF2 ensure the value of the PMF at 

which the flat region begins is similar in both PMF1 and 2.  
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Systematic investigation of the effect of the cantilever force constant on the unfolding 

force of proteins by experimentalists is something for which we were unable to find 

results, but is something which could provide future validation of this theory. Not only 

that, but in combination with the results of this study and others similar, it could provide 

further insight into the PMFs surrounding these processes. 

4.3.4 The use of PMF2 allows for a better fit to 

experiment 

A recent study by Rico et. al. 79 used specially designed high-speed force spectrometry 

(HS-FS) equipment to unfold I27 at many different pulling velocities. The range of 

velocities covered those found in conventional AFM experiments as well unusually 

high ones, reaching the lower limits of SMD smulations.79,109  They observed a linear 

increase in unfolding force with pulling speed, like that of Bell’s model, when pulling 

at conventional speeds (≤ 100 µm/s), but with faster pulling speeds found a much more 

rapid increase in unfolding force. The microscopic model developed by Hummer and 

Szabo 97 (discussed in section 3.3.2.2.2) was used to fit their data and explain the non-

linear rise in rupture force with pulling velocity. Consequently, the results of the HS-

FS study also suggest the observed upturn in unfolding force at the highest pulling 

velocities was due to insufficient time for exploration of the energy landscape. 79,97,114 

 

The method in section 4.2.2 can be used to simulate protein unfolding using a wide 

range of pulling velocities and so in theory should be capable of reproducing the results 

of the HS-FS experiment.79 The results presented thus far have used the rate coefficients 

from previous BXD molecular dynamics simulations 40,45 with only some corrections 

to account for the interaction of protein with the solvent. However, further 

modifications were required to better fit the force-pulling speed dependence of the HS-

FS experiment. Modifications were made such that the simulations were conducted on 

PMF2 (Figure 4.1(d)) rather than PMF1(Figure 4.1(c)) as above.  

 

To match experiment several changes were made.  Firstly, a new force constant of 10 

pN/Å was used, the same as in the HS-FS experiment.79 Increasing the cantilever force 
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constant increases the steepness of the additional potential and so without any 

additional modifications to the PMF profile, the maximum separating the folded and 

unfolded states in the Gtot curve disappears. Multiplying the upwards box-to-box rate 

coefficients before the flat region by 0.0025 steepens the initial region of the PMF and 

so compensates for the increase in force constant by ensuring the maximum between 

the two states is maintained. This is atoned for by moving the flat region to begin at 5 

Å so that the flat regions on PMFs 1 and 2 lie at similar energies despite the other 

alterations to the rate coefficients. 

 

Although shortening and steepening the initial rise in PMF2 ensures the beginning of 

the flat regions in PMF1 and PMF2 are at a similar energy, such changes cannot be 

made without confidence in the freedom to do so. As with all MD studies BXD 

simulations rely on a force field, which is based on approximations and is therefore not 

entirely accurate. Variations between force fields can significantly alter the outcome of 

the calculations.  Given these uncertainties, combined with converging errors and the 

impact they can have on BXD rate coefficients, there is the freedom to make such 

changes. 

 

(a) 
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(b) 

 

Figure 4.6: (a) Fit of BXD pulling calculations using a spring constant of 10 pN/Å and PMF2 to the 

experimental HS-FS data using different parameters. The black lines are taken from the dynamic force 

spectrums for I27 (solid line, square points from conventional AFM and circular from HS-FS) and its 

unfolding intermediate (black dashed line, circular points from HS-FS) in reference [79]. The gold 

lines are for the flattened PMF in Figure 4.1(d) and show the overall maximum unfolding force as a 

function of pulling speed (solid line) and our second maxima for each pulling speed (dashed line), 

corresponding to the intermediate unfolding species in [79] (b) BXD calculations match experiment at 

conventional AFM speeds. The top gold, middle orange and bottom maroon lines are for simulations 

on PMF2 with k=10,4 and 2 pN/Å respectively. Experimental data taken from [79] is shown by black 

circles and squares as in frame (a), whilst that taken from [92] and [99] are shown by black diamonds 

and triangles. 

Figure 4.6(a) shows the relationship between unfolding force and pulling velocity for 

the overall maximum unfolding force, Funfld, and the intermediate unfolding force of 

I27 from our simulations, as shown by the gold solid and dashed lines respectively. 

Examples of the peaks corresponding to Funfld are shown by the first and largest peaks 

in Figure 4.3 whilst the smaller peaks show give rise to the intermediate unfolding 

force. In the HS-FS experiment 79 rupture of the hydrogen bonds between I27’s  A’ and 

G β-sheets was interpreted as the main unfolding event responsible for the peak force, 

consistent with our findings and previous SMD studies.106  Whilst breaking of the 

hydrogen bonds between the A and B β-sheets was said to be the weaker unfolding 

event in this study, prior to the main A’-G rupture event.  However, using BXD the 

weaker unfolding of two other β-sheets is observed after the main event. It is not easy 



 80 

to interpret smaller peaks and humps hidden within an AFM sawtooth, like peak 3’ in 

Figure 3.6. As suggested in reference [79], they can come from intermediate unfolding 

events before the rupture of the main set of hydrogen bonds, but they can also arise 

from events after the main unfolding event such as the “unzipping” of another weaker 

set of hydrogen bonds.  BXD calculations suggest the latter of these options.  Different 

studies have reported more than one secondary unfolding event as possible causes of  

‘humps’ in AFM spectra when unfolding I27 and as such their interpretation remains 

ambiguous.79,102,115 

 

All simulations with results shown in frame (a) used a cantilever force constant of 10 

pN/Å,  just as in the HS-FS experiment. 79 The calculated forces have been compared 

to the overall and intermediate unfolding forces of I27 from this experiment as shown 

by the black solid and dashed lines.79 Agreement with experiment within error limits 

has been achieved at conventional pulling speeds (v=0.1-100 μm/s), but the BXD 

method was unable to reproduce the steep upturn in force expected in the high-speed 

region of the experiment. Nevertheless, these results do show BXD to be capable of 

modelling AFM at usual pulling velocities to within experimental limits, reproducing 

the predicted linear increase in force with pulling speed. 

 

Frame (b) of Figure 4.6 shows Funfld  compared to experimental results taken from 

several references [79,92,99] for velocities typically seen in AFM experiments. The 

experimental data in frame (b) is taken from different studies which used various 

cantilever force constants of k=10 79, 5 99 and 4 92 pN/Å shown by black circles, squares, 

triangles and diamonds respectively. Whilst the simulated results shown by the gold 

orange and light-yellow line use force constants of k=10, 4, and 2 pN/Å applied to 

PMF2, ensuring the full experimental range of cantilevers was covered. The results 

from BXD simulations show slightly higher unfolding forces than experimentally 

determined ones, but quantitative deviation between different studies is normal and can 

happen for a number of reasons. For example, sample preparation can vary from one 

study to another and may lead to variation of the observed unfolding force. 

 

Qualitatively however, the results in Figure 4.6(b) are consistent. Both simulation and 

experiment show the linear relationship between unfolding force and pulling velocity 

predicted by Bell’s model as well as an overall increase in the force when using stiffer 
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cantilevers. The figure also further highlights how a systematic investigation into the 

dependence of the unfolding force on cantilever stiffness may be useful in expanding 

the breadth of knowledge surrounding protein unfolding. 

 

Overall Figure 4.6(a) and (b) demonstrate the ability of BXD to reproduce the linear 

increase in unfolding force with pulling velocity expected at intermediate pulling 

speeds. This is shown qualitatively for all experimental results 79,92,99 and quantitively 

for the HS-FS study79 when pulling using the same cantilever force constant (k=10 

pN/Å). However, similar to the predictions of Friddle and Noy96, BXD failed to 

reproduce the rapid upturn in unfolding force with speed precited by the microscopic 

model97 and observed in HS-FS 79 at velocities higher than 100 µm/s. This may be 

because at such high speeds the kinetic description of pulling from BXD fails because 

the MD is faster that the rate of protein-environment equilibration within each box. 

 

Another explanation can also be considered.  If a plot is made showing the difference 

between the observations of Rico et. al. 79 and the linear extrapolation of the unfolding 

force vs logarithm of pulling speed curve from BXD simulations for low speeds 

displaying a linear dependence, then the extra force is proportional to speed. This is 

shown in Figure 4.7.  

 

In the figure,  the Stokes formula F=6πηvR for the friction in water of  a spherical object 

of size R moving at speed v is plotted for several values of R, each representing one 

dimension of the AFM tip, the length, width and depth as used in experiment as shown 

by the purple gold and green lines resoectively.79 If the extra upturn in force was to be 

explained by viscous drag, then the extrapolated experimental results would present 

themselves as a linear trend between unfolding force and pulling velocity laying 

somewhere between the three calculations of Stokes force. This is indeed observed in 

Figure 4.7. This raises suspicion that the extra force is simply the Stokes friction acting 

on the moving cantilever due to the viscosity of water described by its viscosity 

coefficient η= 8.90 × 10−4 Pa s. However, Rico et. al. 79 report adjusting their results to 

account for the additional contribution to the pulling force from viscous drag. Further 

experiment to investigate the effect of Stokes force in pulling experiments would be a 

good way to clear up any ambiguity surrounding this matter. 
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Figure 4.7: Stokes drag force for a moving object with radius R = 8, 2 and 0.13 μm, the dimensions 

of the cantilever used in [79] shown by the green, yellow and purple lines respectively. When this is 

compared to the difference between the linear extrapolation of unfolding force vs logarithm of the 

pulling velocity for v ≤10 µm/s from BXD simulations and the results of [79] for both the total 

unfolding force (solid black line) and the intermediate species (dashed black line) then suspicion is 

cast that the extra force observed may just be a result of drag acting on the cantilever. 

 

4.4 Conclusions 

The main points to be taken away from the above discussion are: 

 

• BXD can be used to directly simulate protein unfolding at very slow pulling 

velocities at which equilibrium can be assumed between the boxes, but to 

simulate AFM over a range of pulling velocities modifications need to be made 

to the original BXD rate coefficients. 

 

• By accounting for hydrogen bond formation between the ruptured protein and 

the solvent underestimated by the implicit solvent model used in the original 

simulations, as well as the potential imposed by the AFM tip, the kinetic 

equilibrium between BXD boxes is distorted and the populations move from 

box-to-box. 
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• This enables the predictions of Friddle and Noy 96 to be reproduced, with the 

unfolding force depending only on the cantilever force constant at the slowest 

pulling speeds, before following a Bell-Evans linear increase at convectional 

pulling speeds. 

 

• But obtaining quantitative agreement with experiment required further 

adjustments to the rate coefficients such that the Vharm was added to PMF2 rather 

than PMF1. 

 

• With the extra modifications, BXD combined with the KME was able to 

reproduce the  predicted unfolding force vs pulling speed dependence at slow 

and intermediate velocities as seen in the HS-FS experiment.79  

 

• For problems such as protein unfolding chemical intuition would suggest that a 

one-dimensional reaction coordinate, the change in end-to-end distance of the 

protein, would be sufficient in describing the reaction progress. However, better 

fit with experimental data after modifications made to account for the impact of 

ruptured protein-solvent hydrogen bonding would suggest that a more complex 

CV inclusive of some water coordinate may be more appropriate. 

 

• However, the rapid increase in unfolding force seen at the very highest pulling 

speeds was not reproduced with this method. This could be because at such 

speeds the MD is faster than the rate of equilibration between the protein and 

the environment in each box, or because of an underestimation of Stokes’ force 

in experiment. 

 

• Combining BXD with the KME allows the kinetic effects which lead to an 

increase in unfolding force with pulling speed to be rationalised by visualising 

the box populations moving along the PMF throughout the simulations. 

 

• Using this method AFM unfolding has been modelled over a large range of 

pulling velocities. These include slow velocities inaccessible to other forms of 
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MD, with simulations reaching timescales as long as seconds, all the way 

through to the higher speeds usually seen in experiment.  

 

•  Therefore, BXD combined with the KME can be used to bridge the gap 

between atomistic simulations and protein pulling experiments and help to 

make a quantitative connection between experimental results and protein 

structure.   

 

4.5 Future work 

Future work to better understand the findings of this project would include: 

 

• Further BXD simulations for the unfolding of I27, done in explicit water to try 

and understand more about the importance of hydrogen bonding between the 

ruptured protein and the solvent.  These simulations may also be done using a 

more complex CV which includes a contribution from protein-water hydrogen 

bond formation after rupture. 

 

• Conducting an experiment to systematically test the dependence of the 

unfolding force on the force constant of the AFM cantilever.  

 

• Further investigation of the effect of Stokes’ force on the observed unfolding 

force of protein domains through experiment. 
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Chapter 5: Sampling trajectories from virtual 

reality 

The following chapter contains details of a project in which molecules are manipulated 

in virtual reality, for which the trajectories are recorded and fed into a BXD code to be 

used as a guide such that processes that challenging-to-model processes can be 

simulated. The project builds on the work of O’Connor 53,116 which introduced virtual 

reality as a tool for MD simulations as well as extending BXD so that boundaries could 

be placed adaptively in multidimensional CV space and utilises the ChemDyME code 

for BXD simulations written by Robin Shannon (available from 

https://github.com/RobinShannon/ChemDyME). 

 

5.1 Introduction and Motivation 

Technologies typically associated with gaming are being more frequently used in 

scientific research117 due to the enhanced performance of video game processors 

compared to that of a personal computer’s CPU. Interactive molecular dynamics 

(iMD)118–121 is an emerging field in computational chemistry in which the immersive 

environment afforded by virtual reality (VR) technologies can be used for both the 

visualisation of molecules 122–124 and the study of their interaction.125–127  Such an iMD-

VR approach is implemented in the Narupa code 128, and a number of recent studies 

have shown this method to be a useful way of intuitively sampling both chemical 

reaction and conformation space. 116,129–133 The ease with which users can manipulate 

and guide a simulation in VR goes someway to alleviating the rare event problem 

inherent to MD. However, the large forces which may be imparted by the user in an 

iMD-VR simulation must be accounted for if one wishes to extract the free energy of 

the system directly, and a method for doing so is not immediately obvious. 

 

If an efficient pipeline is created which allows a path to be sampled in VR and then 

used to guide the BXD process such that a free energy surface can be produced, then 

the above is no longer a problem and instead emerges a method for simulating processes 

otherwise hindered by the rare event problem. Previous studies134–137 have utilised 

guess paths to define collective variables and associated methods for optimising the 

https://github.com/RobinShannon/ChemDyME
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guess reaction path have been developed.138,139 However, the use of guess paths from 

iMD-VR as a guide for BXD boundary placement and the restrainment of BXD 

trajectories to be within regions of CV space close to them, could provide a new way 

of simulating systems otherwise challenging to the BXD method. 

 

Through combining iMD-VR and BXD, the aim is to generate free energy surfaces for 

prototypical examples of three particularly challenging problems; the permeation of a 

nanotube membrane, changing screw sense of helicine and knot tying in the long 

protein chain 40 Alanine. If this new workflow is capable of producing scientifically 

reasonable free energy profiles for the three systems, it would be an indication of the 

effectiveness and robustness of the method.  

 

What follows is a presentation of workflow for integrating VR trajectories into the BXD 

procedure through use of the ChemDyME code, followed by results for each of the test 

systems and some final conclusions. The results for each section will be split into three 

parts: some background information surrounding this class of molecular problem, the 

specific BXD implementation details and finally the BXD paths and corresponding free 

energy surfaces. 

 

5.2 Simulation method 

 

5.2.1 The iMD-VR to BXD pipeline seen in 

ChemDyME  

All systems were studied by first creating a guess trajectory using Narupa128 which was 

then followed by BXD . The BXD functionality is implemented though ChemDyME, 

a fully open source BXD code obtainable from: 

https://github.com/RobinShannon/ChemDyME. What follows in this section is a 

general description of the key parts involved in an adaptive, path based BXD 

simulation. Figure 5.1 provides a schematic of the iMD-VR to free energy surface 

pipeline utilised in ChemDyME. 

https://github.com/RobinShannon/ChemDyME
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Figure 5.1: Workflow to get from an iMD-VR trajectory to free energy profile using ChemDyME. 

 

5.2.2 The iMD-VR trajectory 

The BXD pipeline in ChemDyME does not necessitate a path. In fact, the simplest way 

of conducting a BXD simulation only requires the specification of starting and target 

structures, with the path assumed to be a straight line connecting the two points in CV 

space. However, the focus of this project is to incorporate guess paths into ChemDyME 

to guide BXD such that challenging systems can be modelled.  
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Guess paths are easy to obtain by guiding the desired process by hand in Narupa. The 

Narupa framework allows for the manipulation of rigorous real-time molecular 

simulations.116,128 This is shown in Figure 5.2. The figure shows how tracked 

participants, through the use of head-mounted displays, can be immersed in VR such 

that they can use wireless hand controllers as atomic ‘tweezers’ to manipulate 

molecular systems, in this case a C60 molecule.  

 

 

 

Figure 5.2: The physical set-up of creating an iMD-VR trajectory. Narupa allows participants in VR 

to manipulate real-time MD simulations of molecular systems and record the resulting trajectory as 

an xyz file which can be read into ChemDyME as a guess path for BXD. Image taken from reference 

[128] 

 

The experience of the users in the real world is the same of that within the simulation. 

In other words, the interaction site between the ‘tweezers’ and the molecular system is 

exactly the same in 3D physical space as in 3D simulation space. 128 Consequently, 

users can intuitively ‘lock onto’ individual atoms within the system and manipulate the 

real-time dynamics of the system. Figure 5.3 gives three examples of molecular 

manipulation in VR via Narupa which shall function as the test systems for the new 

workflow presented in this chapter. They are: pulling methane through a nanotube (top), 

reversing the ‘screw sense’ of helicine (middle) and knot tying in 40 Alanine (bottom).  

Narupa can record the trajectory of such manipulations as xyz files, which can be read 

into ChemDyME as list of structures. These guess paths can then be pruned in 

ChemDyME to remove any unwanted trajectory frames and create a smoother path for 

BXD to follow.  
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Figure 5.3: Manipulation of iMD-VR trajectories to create guess paths for BXD in ChemDyME. (top) 

a methane molecule is guided through a carbon nanotube (middle) the helicity of a helicine molecule 

is reverse and (bottom) a knot is tied in the long protein chain 40 Alanine 
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5.2.3 Dimensionality Reduction / Collective Variable 

 

Once a guess path has been fed into ChemDyME, the next step in the BXD procedure 

is to define the CV space to work in. In theory, BXD can be performed in an any number 

of dimensions/collective variables. But for reasons of efficiency, it is best to use the 

smallest number possible whilst still describing the most important aspects of any 

structural change. For example, protein unfolding as discussed in Chapter 4 uses a one-

dimensional reaction coordinate, whilst the structural variance of other reactions may 

be more convoluted requiring multiple CVs to adequately describe the system. When 

considering complex geometric rearrangements of molecules however, it is not always 

obvious how to describe the process with a manageable number of CVs, or even to 

determine which CVs (interatomic distances, angles etc) are most important to the 

process. 

 

ChemDyME interfaces with the dimensionality reduction code pathReducer 140 to 

return a user-defined number of principal coordinates (PCs) which aim to capture the 

most important aspects of structural variance along the path. This code works to 

perform a principal component analysis141 (PCA) based dimensionality reduction (DR) 

on the molecular trajectory data140,142–144, resulting in a set of PCs formed as a linear 

combination of either interatomic distances or Cartesian coordinate basis functions.  

 

Briefly, this is done as follows: 

 

Consider some data of n dimensions, which in this case would be the interatomic 

distances, r, of each unique atom pair considered in the DR at every frame in the 

molecular trajectory.  Each value is first standardised by subtraction of the mean of the 

data in that dimension, r̄. An example of this mean adjusted is shown in Table 5.1. 

Adjusting the data in this way is done so that the distribution of the altered values sit 

around a mean of 0, or the origin of a graph. 
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 Frame 1 Frame 2 Frame 3 … 

rC1,C2 r - r̄ r - r̄ r - r̄ … 

rC1,C3 r - r̄ r - r̄ r - r̄ … 

rC1,C4 r - r̄ r - r̄ r - r̄ … 

… … … … … 

 

Table 5.1: Example mean adjusted data for conducting a principal component analysis.  

 

From here, the covariance matrix of the data is found. This is a square matrix of the 

form 𝐶𝑖,𝑗 =  𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑗) where 𝐶 ∈ ℝ𝑛×𝑛 containing 
𝑛(𝑛−1)

2
 covariance values. As a simple 

illustration, if n = 3 the covariance matrix would be given by: 

 

 
𝐶 = (

𝑐𝑜𝑣(𝑥, 𝑥) 𝑐𝑜𝑣(𝑥, 𝑦) 𝑐𝑜𝑣(𝑥, 𝑧)

𝑐𝑜𝑣(𝑦, 𝑥) 𝑐𝑜𝑣(𝑦, 𝑦) 𝑐𝑜𝑣(𝑦, 𝑧)
𝑐𝑜𝑣(𝑧, 𝑥) 𝑐𝑜𝑣(𝑧, 𝑦) 𝑐𝑜𝑣(𝑧, 𝑧)

) 

(5.1) 

 

 

Where x, y and z represent the three dimensions of the system. Along the main diagonal 

of the matrix, the covariance value is calculated between one of the n dimensions and 

itself and is simply the variance along that dimension, whilst the non-diagonal elements 

give an indication of the relationship between the two variables. 

 

Next, the normalised eigenvectors and corresponding eigenvalues of the covariance 

matrix are calculated. The eigenvectors are the axes along which there is most variance 

and thus the most information about the system and the corresponding eigenvalues are 

coefficients describing the amount of variance along each axis. The eigenvector with 

the largest eigenvalue is the one along which the data is best characterised and 

corresponds the first principal coordinate, PC1, this is followed by the one with the 

second largest eigenvalue which belongs to PC2 and so on. 

 

Following this, the feature vector is created. This is a matrix containing as columns the 

eigenvalues being kept, ordered so that the first column contains the eigenvalues 

corresponding to PC1, the second to PC2 etc. This is the first step in reducing the 



 92 

dimensions of the system, as by choosing to keep only p eigenvectors out of the original 

n, the final data set will be only of dimensionality p.  

 

Finally, the feature vector is used to reorientate the data from the original axes so that 

it is expressed solely in terms of the selected axes. This is done by multiplying the 

transpose of the feature vector by the transpose of the mean adjusted data: 

 

 PCs =  FeatureVector𝑇  x MeanAdjustedData𝑇 (5.2) 

 

Deriving the PCs in this way means they are constructed as linear combinations of the 

n dimensions considered. In turn, the system can be expressed along axes that 

characterise it, in this case that is in terms of the structural variance of the system. 

Additionally, the PCs are uncorrelated with most of the information from the initial 

dimensions compressed into the first PCs. By keeping only the PCs containing the most 

information and transforming the system data so that it is expressed in terms of those 

axes, systems of high dimensionality can be reduced to ones of lower dimensionality 

whilst still being described to a reasonable accuracy. 

 

This method of DR is particularly appealing for the proposed pipeline. Trajectories can 

be taken straight from Narupa and passed into pathReducer to automatically produce a 

given number of PCs describing the main structural variations over the course of the 

trajectory. ChemDyME then prints the percentage of the structural variance captured 

by each PC to provide users with a measurable estimate of whether or not a sufficient 

number of PCs have been chosen. Performing the DR in this way streamlines the 

process as choosing the CVs important in describing the process is made as automated 

and ‘blackbox’ as possible. Rather than painstakingly derive bespoke CVs for a given 

problem by hand, the user need only make two considerations. Firstly, by applying a 

degree of ‘chemical intuition’ to which structural changes within the molecule are most 

likely to be important in describing the process being modelled; a decision can be made 

as to whether all atoms in the system should be considered in the DR or if a specific 

subset of atoms will suffice. Secondly, by inspecting the percentage of structural 

variance along the trajectory that is captured when retaining a given number of PCs 
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from the PCA, the number which leads to a sufficient description of the system can be 

determined. Furthermore, the CVs are returned in a form which is convenient for 

inputting into the BXD algorithm. 

 

The key requirement for a CV to be used in in BXD is that it is readily differentiable 

with respect to the Cartesian coordinates, such that the constraint matrix, ∇𝜙, can be 

evaluated whenever a BXD inversion is required (see section 2.2.3.2 and Appendix 2). 

By default, the form of each PC produced by the dimensionality reduction is a linear 

combination of interatomic distances which can be easily differentiated with respected 

to the Cartesian coordinates of the system using the chain rule (see Appendix 2). 

 

Having performed the DR, ChemDyME stores the CV as an object containing functions 

designed to transform any point in Cartesian space into the defined PC space. 

 

5.2.4 Adaptive and Converging runs 

Having defined a CV in which to work, the next steps are to conduct the adaptive and 

converging runs to first create and place the BXD boundaries and then collect the rate 

coefficients for diffusion of the trajectory from one box to another. The procedures that 

these runs follow are detailed in sections 2.2.3.4 and 2.2.3.5 respectively. Importantly 

though, both types of run require some measurement of the progression along the 

reaction coordinate/collective variable so that the BXD procedure can tell once the 

product geometry has been reached and the direction of the sampling should be reverse 

and halted altogether upon returning to the initial conformation. 

5.2.5 Progress metric 

5.2.5.1 “Path based” modifications to the BXD method 

 

When O’Connor 53 introduced the adaptive scheme for BXD boundary placing in 

multidimensional CV space, the system being sampled was defined simply by the 

reactant and target geometries. In such a situation, the progression along the reaction 

coordinate for a point in CV space is defined only by the distance of the lower boundary 
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of the current BXD box from the starting geometry. This may be sufficient for simple 

biomolecular reactions, but when studying more complex reactions or those of a higher 

dimensionality, the system has the potential to get ‘lost’ and a method of monitoring its 

position along the CV is required.  

Furthermore, it may be desirable to sample the free energy along the specific reaction 

pathway which is not possible using the progress metric described above. Thus, a way 

of projecting any point back onto the guess path is needed to monitor the evolution of 

trajectory along the specified reaction path.  

 

Through the introduction of a guess path from VR, three modifications can be made to 

the BXD algorithm which allow a specific reaction pathway to be followed. Firstly, 

through the addition of extra BXD constraints running parallel to the guess path, the 

sampled dynamics are confined within a hypercylinder around the path whose radius is 

defined by the user; secondly, the orientation of the BXD boundaries are calculated 

from the sampling dynamics within this region and therefore controlled by the guess 

path; thirdly, a new procedure for projecting any point in  CV space onto the guess path 

can be introduced as metric for determining progress along the reaction coordinate. The 

details outlining how this final procedure is conducted follow below. 

 

5.2.5.2 The “path” as a progress metric 

 

The simplest way to represent a path in an n dimensional CV space is through linear 

interpolation of each individual points along the path. Let 𝑆 = (𝑠1, … , 𝑠𝑀) , 𝑠𝑖 ∈ ℝ𝑛 be 

a list of M molecular trajectory frames projected into some CV space. The linear 

interpolated path then consists of a set of M-1 linear segments 𝐿 = (𝑙1, … , 𝑙𝑀−1) , 𝑙𝑖 ∈

ℝ𝑛 where 𝑙𝑖 = 𝑠𝑖+1 − 𝑠𝑖 . It also necessary to define the cumulative distance along the 

path at each point 𝑠𝑖 as 𝐷 = (𝑑1, … , 𝑑𝑀−1) , 𝑑𝑖 ∈ ℝ where 𝑑𝑖 = ∑ ‖𝑙𝑖‖
𝑖
𝑖=1  .  

 

To project an arbitrary point �⃗� in CV space, onto this linearly interpolated path the 

shortest distance between �⃗� and each path segment 𝑙𝑖 needs to be determined. To do 

this, at each segment a vector is created between �⃗� and the starting point of the segment, 

(�⃗� = �⃗� − 𝑠𝑖), for which the scalar projection onto the segment, 𝑐𝑜𝑚𝑝𝑙𝑖�⃗� =  
�⃗⃗�∙𝑙𝑖

|𝑙𝑖|⃗⃗ ⃗⃗ ⃗⃗
, is 
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calculated as seen in Figure 5.4(a). Then, the corresponding vector projection, 

𝑝𝑟𝑜𝑗𝑙𝑖�⃗� = 𝑠𝑖  +  𝑐𝑜𝑚𝑝𝑙𝑖�⃗�
𝑙𝑖

|𝑙𝑖|⃗⃗ ⃗⃗ ⃗⃗
, can be used to calculate the distance of the point from the 

path as the magnitude of �⃗�  −  𝑝𝑟𝑜𝑗𝑙𝑖�⃗� (Figure 5.4 (b)).  

The distance to the path is calculated for a user-specified number of segments which 

neighbour the current segment. Then, the cumulative distance along the path for the 

current MD frame is calculated as the path segment with the smallest distance to the 

point, 𝑑𝑖 , added to the scalar projection of the point onto that segment. When comparing 

frames (b) and (c), it can be seen �⃗� lies closer to segment 𝑙𝑖than to 𝑙𝑖+1 and as such the 

distance of the point to the path in this case would be given as 𝑑𝑖  + 𝑐𝑜𝑚𝑝𝑙𝑖�⃗�. 

 

(a) 

(b)  
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(c)  

 

Figure 5.4: Projecting an arbitrary point �⃗� onto the linearly interpreted path. In frame (a) the scalar 

projection of �⃗� onto a path segment is used to obtain the corresponding vector projection. Following 

this, the magnitude of �⃗�  −  𝑝𝑟𝑜𝑗𝑙𝑖�⃗� gives the distance of �⃗� from the segment 𝑙𝑖 (frame (b)). This is 

calculated for several path segments near �⃗� and the one with the smallest difference defines the 

segment closest to �⃗�. The cumulative distance along the path up to this segment is calculated and onto 

which the scalar projection of �⃗� is added to return the cumaltive distance along the path for �⃗� at a 

given MD frame. When comparing frames (b) and (c) it can be seen the closest path segment is that 

of 𝑙𝑖, not 𝑙𝑖+1. 

 

ChemDyME stores a python object containing all the details of the progress metric 

which is used to convert each point in the BXD trajectory into progress along the 

reaction path and is subsequently used to determine whether or not sampling in a given 

direction has finished. Then, once both the adaptive and converging runs have been 

completed and the sampling terminated, the box-to-box rate coefficients can be used as 

in equation (2.8) to obtain a free energy profile for the process being studied. It should 

be noted that although beyond the scope of this project, the rate coefficients from the 

converging runs could also be used in combination with the KME to investigate the 

kinetics of the process under investigation, in the manner discussed in section 2.2. the 

difference here being that here, the CV of the system is created through a PCA of a 

molecular trajectory taken from VR. 
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5.3 Results 

 

The above workflow was followed to generate reaction paths and free energy profiles 

for the following test systems: methane travelling through a nanotube, changing the 

helicity of helicine and tying a knot in 40 Alanine. The results for each system are 

presented in the following sections. 

5.3.1 Nanotube 

5.3.1.1 Background and Motivation 

 

Ion channels are specialised proteins embedded within cell membranes whose 

structures enable them to selectively control the passage of ions through the plasma 

membrane. There exists a wide variety of ion channels, which can open and close in 

response to different stimuli including temperature, pH and mechanical force.145 

Excitable cells, so called because of their ability to generate tiny electrical currents 

which enable cell signalling and muscle constriction within the body, rely on voltage 

gated ion channels to selectively allow permeation of the membrane. This creates 

electrochemical gradients between extracellular and intracellular environments, along 

which ion flow produces electrical signals which are propagated along neurons and 

used to communicate with other cells. 

 

Disruption to the usual functions of ion channels can cause serious disease such as 

Cystic Fibrosis (CF), Parkinson’s and Lambert–Eaton myasthenic syndrome 

(LEMS).146–148 For example, antibodies against P/Q-type voltage-gated calcium 

channels (VGCC) which block Ca2+ influx into nerve endings have been found in 85–

90% of patients with LEMS.148 This reduces the amount of the neurotransmitter ACh 

released from presynaptic membranes, so less can bind to postsynaptic receptors and 

induce muscle contraction. 

 

Without doubt, the more is understood about the biological processes that cause such 

diseases, the better equipped we are for preventing and treating future cases. In fact, 

greater scientific insight within recent years has led to the emergence of membrane-
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based nanoparticles capable of mimicking the surface features of native cells as an 

approach to targeted drug delivery.149,150  

 

The complexity of structures comprising biological systems and the convoluted 

interactions between them makes achieving an exhaustive understanding of the nano-

bio interface from experiment alone challenging. Therefore, the need for computational 

modelling as a counterpart to experimental studies becomes clear if we hope to gain 

further insight into the molecular conformations and interactions controlling these 

processes.151,152 

 

Monitoring the progression of a methane molecule through a carbon nanotube acts as a 

primitive and archetypal model of ion transportation through a nanopore. If this new 

method of simulation proves to be capable of simulating such a system, one could hope 

to move on to systems of greater complexity where the real-life implications are more 

apparent.   

 

5.3.1.2 Method 

 

A system comprising of a carbon nanotube and a methane molecule was parameterised 

using MM3 forcefield parameters defined in a bespoke openMM xml file. Then, 

openMM was used to generate forces and energies for the system which were interfaced 

into NarupaIMD and ChemDyME respectively to propagate the MD. Using Narupa-

iMD a methane molecule was guided through a carbon nanotube to create a guess path 

for BXD to follow. The resulting trajectory was passed into pathReducer to perform a 

dimensionality reduction, in which the hydrogen atoms were omitted. Two PCs taken 

from this analysis were found to be sufficient for describing the process, capturing 98% 

of the structural variance along the trajectory.   

 

All BXD simulations for this system were run at 500 K to accelerate the dynamics and 

a friction of 0.5 was used in the Langevin integrator. This friction is much higher than 

that used is in other simulations (by factor of 50 for helicine and 5 for 40 Alanine). This 

was necessary in reducing the timescale for dynamical decorrelation given the steep 

potential energy gradient surrounding either end of the nanotube faces as methane 
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enters or leaves the nanotube. In such regions of the PES, the potential energy 

dominates over kinetic energy, dragging the dynamics down the slope leading to 

correlated collisions on the BXD boundary positioned at the point in CV space lower 

in potential energy. By increasing the friction to simulate more collisions with water, 

there is greater kinetic contribution to the overall energy of the system and the potential 

and kinetic energies equilibrate faster so the downwards drag of the PES is felt less.   

 

Following the procedure outlined in section 2.2.3.5 ,the adaptive BXD runs sampled 

each box with nsamp = 2500 MD steps before placing a new boundary with an epsilon 

value of 0.05. After some initial test simulations, it was found that the radius of the 

hypersphere surrounding the guess was crucial in determining whether or not the 

methane would pass through the nanotube. Placing path boundaries at a distance of 4 

Å from the guess path was sufficient to force the methane through the nanotube, whilst 

if they were placed at 8 Å methane would travel along the outside of the nanotube to 

avoid the energetic penalty of entering the nanotube faces. BXD runs were performed 

for both cases so that the free energy profiles for travelling through and along the 

outside of the nanotube could be compared. For both cases converging runs were 

performed to generate milestoning rather than BXD MFPTs for the box-to-box 

transitions, which were then used to calculate free energy profiles for the trajectories. 

 

5.3.1.3 Results and Discussion 

 

Figure 5.5(a) and (b) show the adaptive sampling data points obtained from confining 

BXD to within 4 or 8 Å of the reduced VR path projected into CV space, onto which 

they are superimposed. Utilising VR in this way avoids the need to derive reaction 

coordinates by hand. Rather, the user simply pulls the methane through the nanotube 

and pathReducer returns a set of PCs describing the structural variance occurring 

throughout the process. All that is required of the user is to decide on how many PCs 

are sufficient to describe the most important aspects of the structural change. In this 

case 2 PCs is clearly enough, capturing 98% of the overall process. These PCs make up 

the x and y axes of Figure 5.5 (a) and (b), with PC1 as the x axis and PC2 as the y axis. 

The axes are somewhat arbitrary, not simply describing the position of the methane 

molecule along the nanotube. Rather, they describe multiple degrees of freedom within 
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the system, in the form of a linear combination of interatomic distances. Methane 

travelling through a nanotube may not be the most convoluted system to conduct a 

dimensionality reduction on and an educated guess could be made as to what the 2 PCs 

represent could be made. For example, one of these PCs may correspond mainly to 

changes in the interatomic distances between the carbon atom of the methane molecule 

and carbons along the nanotube, whilst the other to small changes in the diameter of 

the nanotube as the methane passes through it. However, what these PCs physically 

represent is irrelevant to this project as the whole iMD-ChemDyME pipeline is 

designed to circumvent the need for users to define sets of CVs for themselves. There 

exists other ‘less-intuitive’ systems for which avoiding such thinking is more 

advantageous, some of which will be discussed later. Nevertheless, this is still 

convenient. 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

Figure 5.5: Reduced path considering only the carbon atoms in the system when pulling methane 

through a nanotube projected into CV space for simulations at 500K and 0.5 friction. Superimposed 

on top are the BXD adaptive sampling points when confining BXD to within 4 and 8 Å of the path 

shown in frames (a) and (b) respectively. In these frames, the x-axis corresponds to PC1, likely a 

linear combination of changing interatomic distances (in units of Angstroms) between the carbon atom 

of the methane and other carbons along the nanotube, and the y-axis to PC2, possibly representative 

of small changes in the diameter of the nanotube. The free energy profiles from converging runs at 

the same temperature and fiction, are shown in frames (c) and (d) when simulations are conducted 

with path boundaries places at 4 and 8 Å respectively. When BXD is allowed to deviate further from 

the reduced path, it takes the energetically more favourable path alongside the nanotube rather than 

through it. 

 

Frame (c) and (d) of Figure 35 show the free energy profiles calculated from the results 

of BXD simulations at 500K and 0.5 friction in which the dynamics were limited to 

only exploring CV space within 4 or 8 Å from the reduced path. With greater restriction 

on the phase space available for sampling, BXD is forced to follow the guess path more 

rigorously (Figure 5.5 (a)), thus it follows the energetically unfavourable path through 

the nanotube (Figure 5.5 (c)). However, with greater sampling freedom afforded to 

BXD it is free to pass by the nanotube encountering a much lower free energy penalty 

as shown in Figure 5.5(b) and (d). It should be noted that one would expect the free 

energy profile in Figure 5.5(c) to be almost completely flat in the region corresponding 

to travel through the nanotube, and a reason as to why this is not the case is still under 
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investigation. Nevertheless, there is a clear distinction between the two free energy 

profiles resulting from the different levels of dynamical confinement. This combined 

with the structures taken at relevant time steps in the simulations, as superimposed onto 

the corresponding free energy profiles, indicates the use of path boundaries to control 

the path of a trajectory through CV space does indeed work as expected. 

 

Integrating VR guess paths into ChemDyME which BXD can follow to differing 

degrees of rigour provides an easy method of comparing alternative paths to the same 

endpoint. This is something which may come in useful when trying to understand the 

dynamics of biological mechanisms such as transportation through ion channels.  

 

5.3.2 Helicine 

5.3.2.1 Background and motivation 

 

Helical structures are commonplace within the human body. In fact, estimates put the 

percentage of the human proteome made up of alpha-helical membrane proteins to be 

as high as 27%.153 Transmissible spongiform encephalopathies (TSEs) are a group of 

uniquely transmittable neurovegetative prion diseases, in which the formation of tiny 

holes within the brain lead to it’s distinctly ‘spongy’ degradation and death.  

 

One possible explanation for the onset of TSEs is the ‘protein-only hypothesis’. This 

suggests it is a conformational change of the cellular prion protein from one rich in α-

helices (PrPC) to one mainly consisting of β-sheets (PrPSc) that is responsible for 

causing such diseases.154–156 Such a change initiates an autocatalytic reaction leading 

protein aggregation in the central nervous system and the deterioration of mental and 

physical abilities of the affected.  

 

Although the initial steps have been taken in investigating the exact mechanism which 

drives the conformational change of PrPC to PrPSC, there is still much more that needs 

to be understood.157 Coupling experimental findings with the insights from 

computational studies would be a good approach to deepening this understanding along 

with that of other disease-causing changes in protein conformation. Changing the 
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screw-sense of helicine works as a test case for proving ChemDyME capable of 

modelling structural changes in helical type proteins.  

 

5.3.2.2 Method 

 

The helicene system was parameterised using MM3 forcefield parameters defined in a 

bespoke openMM xml file. Following this, forces and energies for the system were 

generated using openMM and interfaced with Narupa and ChemDyME such that the 

MD could be integrated. A guess path was generated in VR in which the helicity of the 

helicene molecule was reversed. This was then passed into pathReducer to conduct a 

dimensionality reduction using only every third carbon atom in the system. From this, 

six PCs consisting of linear combinations of interatomic distances within the helicene 

molecule were found to capture 98% of the structural variance along the trajectory. The 

BXD simulations were all run at 500 K to accelerate the BXD process and a friction of 

0.01 was used in the Langevin integrator. The adaptive BXD run sampled each box 

with nsamp = 50000 MD steps before placing a new boundary using an epsilon value of 

0.025. These adaptive runs were repeated, each time altering the position of the path 

boundaries so that runs were conducted with them positioned at 0.5, 0.75 and 1.0 Å 

from the path. For each distance at which the path boundaries were placed, adaptive 

runs were successfully used to switch the helicene screw-sense before generating 

milestoning MFPTs with converging runs. 

 

5.3.2.3 Results and discussions 

 

Figure 5.6 shows the reduced path in CV space for reversing the screw-sense of helicine 

as conducted in Narupa. Superimposed on top are the BXD data points and boundaries 

taken from an adaptive run following this path to within 0.5 Å. Helicine starts with its 

screw-sense orientated anticlockwise and BXD follows the guess path until the 

conformation of helicine is altered so that its helicity is rotating clockwise.  
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For systems such as this, the quality of the guess path is very important and must be as 

smooth as possible. A comparison of the quality of different VR paths is beyond the 

scope of this project, designed only to prove the iMD-ChemDyME workflow as an 

effective method of molecular simulation. However, the ability to control the type and 

number of atoms considered in the dimensionality reduction in the ChemDyME-

pathReducer interface offers an easy and efficient way of optimising the reduced path.  

 

The whole conformational change occurs in a relatively small area of CV space. 

Therefore, if molecular vibrations are not taken into consideration sections of the path 

 

 

Figure 5.6: Reduced path projected into CV space for changing the screw sense of helicine when 

considering only every third carbon atom in the system. The data points from adaptive sampling 

simulations at simulations at 500K using a friction of 0.01 when confining BXD to within 0.5 Å are 

superimposed on top. Helicine begins with a screw sense orientated in the anticlockwise (bottom) and 

finishes with a clockwise helicity (top).  
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can become so close that they end up intersecting or containing overlapping BXD 

boundaries. This can cause problems in converging runs in which the BXD algorithm 

to either get ‘lost’ or stuck in an infinite loop as another boundary is hit when invoking 

the velocity inversion procedure upon collision with a boundary. It is for this reason 

that only every third carbon atom was considered in the dimensionality reduction, 

resulting in a much smoother path.  

 

However, even with so few atoms considered in the dimensionality reduction, 98% of 

the important structure variance along the reaction coordinate was captured with 6 PCs. 

This highlights the true power of utilising iMD for defining reaction coordinates. 

Simply by constructing the workflow in this manner the need to define a complex 

reaction coordinate by hand is circumvented. Instead, 6 PCs whose physical meaning 

may not be immediately obvious are obtained without the need for any ‘chemical 

intuition’ that may have previously been required. 

 

Figure 5.7 shows the free energy profiles for the helicine system when confining BXD 

to within 0.5, 0.75 and 1 Å from the guess path, shown by the black, green and purple 

lines respectively. The shape of these profiles makes sense given the symmetrical 

nature of the reduced path. There is an increase in free energy as intramolecular bonds 

break enabling the conformation of helicine to change and energetically unfavourable 

sterics are encountered along the path; but his is followed by a decrease in free energy 

as the helicine enters its other enantiomeric form.  

 

In the provision of a good quality reduced path, allowing the dynamics to deviate a 

small way from the guess path doesn’t have much of an impact on the resulting free 

energy profile. There isn’t an energetically more favourable path between the 

anticlockwise and clockwise enantiomers of helicine obvious to the naked eye and so 

such findings are not surprising.  
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Combining iMD with adaptive BXD for systems in which deriving a mathematical 

expression for the reaction coordinate may not be trivial, but with the application of 

some ‘chemical intuition’ in the creation of trajectories and their subsequent 

dimensionality reduction, can provide an efficient way of obtaining both kinetic 

(MFPTs) and thermodynamic (free energy) data simultaneously.  

5.3.3 40 Alanine 

5.3.3.1 Background and motivation 

 

Although very rare (one analysis of the PDB showing only 0.8%), knotted proteins have 

been found to exist in nature. 158–160 In most cases the functional reasons for their 

 

Figure 5.7: Free energy profiles for changing the helicity of helicine, taken from converging runs at 

500K, 0.01 friction and using path boundaries placed at 0.5, 0.75 and 1 Å shown by black, purple and 

green lines respectively. Changing the maximum distance BXD is allowed to stray from path does not 

change the free energy profiles very much as no other path for changing the screw-sense of helicine 

that is lower in energy is immediately available. 



 108 

existence have proved challenging to decipher. However, some suggestions include 

helping to shape the binding site of enzymes and even alter their activity. 160–162 

 

The structure of all proteins, including knotted ones, are determined by the way in 

which they fold. This is a process which, if it goes wrong, plays a central role in the 

causation of neurodegenerative diseases.163,164 For example, the tau hypothesis states 

that the main cause of cell death and subsequent development of Alzheimer’s disease 

is the existence of neurofibrillary tangles formed of misfolded, hyperphosphorylated 

tau protein.164–166  

 

Without the identification of such disease-causing pathways, the fight against 

neurodegenerative diseases is all but lost. Thus, it is paramount to explore all avenues 

towards such and computational studies are increasingly being used as a way of 

complementing the experimental studies in this area. Knot tying 40 Alanine can be 

thought of as a more intricate version of protein misfolding. Therefore, by 

demonstrating this methodology as being robust enough to obtain free energy profiles 

for a system of such complexity, it can be inferred as being more than capable of 

simulating simpler, more biologically relevant problems. 

 

5.3.3.2 System setup 

 

The 40 Alanine was parameterised using MM3 forcefield parameters defined in a 

bespoke openMM xml file. Subsequently, openMM was used to generate forces and 

energies for the system such that the MD could be propagated. Using Narupa-iMD a 

knot was tied in 40 Alanine 20 times to create 20 different guess paths, for each of 

which the change in the x, y and z coordinates of the carbon atoms only were used to 

generate a PC file. In the following BXD simulations all 20 PCs were used in the CV 

space, and the guess trajectory was taken to be a combination of the smoothest five VR 

trajectories.  

 

To accelerate the dynamics the adaptive run was run at 1000K and with friction of 0.01 

in the Langevin integrator. Path boundaries were set to be at a distance 0.1 Å from the 

reduced path whilst CV space was sampled for nsamp = 10000 MD steps before placing 
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a new boundary using an epsilon value of 0.01. Under these conditions, a knot was tied 

in 40 Alanine and subsequent converging runs were performed at a friction of 0.1 to 

generate milestoning MFPTs for diffusion from one box into the next.   

 

5.3.3.3 Results and discussion 

 

Figure 5.8 shows the reduced path for knot tying in 40 Alanine projected into Cartesian 

CV space. The data points and BXD boundaries from the adaptive run when following 

the guess path to within 0.1 Å have been superimposed on top.  

 

For each of the previous systems the PCs were given by a linear combination of 

interatomic distances in the form of 𝑃𝐶 = 𝑐1 ∗  𝑟1  ⋯ 𝑐𝑛 ∗  𝑟𝑛. In this expression n 

represents the number of unique pairs of atoms considered in the reduction, r the 

interatomic distances between the atoms in each pair, and c a coefficient detailing the 

degree to which the change in r helps capture the overall structural variance of the 

system throughout the trajectory. However, a Cartesian coordinate system is a more 

appropriate CV for knot tying in 40 Alanine. For this study, each PC is simply the 

change in the x, y and z coordinate of each atom considered when defining the CV, 

which in this case was the carbon atoms only.  

 

The angles between atoms cannot be ignored when defining a CV for knot tying. The 

region of space occupied by the loop when attempting to tie the knot is so cramped that 

two atoms in this region could remain at the same distance to each other but be in a 

conformation of 40 Alanine in which the knot ties or one in which it ‘slips past’ the 

loop, depending on the angle with which they’re orientated to one another. By using a 

Cartesian coordinate system for 40 Alanine as opposed to conducting a PCA, the 

interatomic angles remain as feature of the CV and BXD can follow the guess path 

effectively enough to tie the knot. 
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Figure 5.8: Reduced path projected into CV space tying a knot in 40 Alanine considering only the 

carbons atom in the system. The data points from adaptive sampling simulations at simulations at 

1000K using a friction of 0.01 when confining BXD to within 0.1 Å are superimposed onto the path. 

 

Figure 5.9 shows the free energy profile obtained for the 40 Alanine system when using 

a friction coefficient of 0.1 and confining BXD to within 0.1 Å from the reduced guess 

path. A higher friction was used in the converging runs than in the adaptive runs after 

considering the possibility of any correlation effects in steep regions of the potential 

energy surface for knot tying.  Only by placing path boundaries at 0.1 Å from the guess 

path would the knot tie. If the dynamics were free to stray further from the path it would 

take the energetically ‘easier’ path of slipping past the loop, rather than tying the knot. 

Conversely, restricting the freedom of BXD further so that it can roam only to distances 

smaller than 0.1 Å from the guess path leaves too little space for the dynamics to move 

in. This project is formatted to be a proof of concept rather than a set of results for 

medicinally relevant real-life problems, and as such only attaining results for knot tying 

under very limited conditions is inconsequential. Rather, it should be thought of that 

the success of ChemDyME in simulating such an energetically unfavourable and 

chemically intricate system is a good indicator for success with simpler, more realistic 

problems. 
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Figure 5.9: Free energy profile for tying a knot in 40 Alanine from BXD converging runs done at 

1000K and 0.1 friction with a maximum distance from the path set to 0.1 Å. Only one distance from 

the path was used as deviation of more than 0.1 Å resulted in no knot tying, whilst confining it more 

left insufficient room for the dynamics to move in. 

 

5.4 Conclusions 

 

Through studying the three problems above, this workflow has been shown to be 

suitable for tackling a range of problems, offering advantages specific to the challenges 

of each: 

 

• Through setting path boundaries at different distances from the guess path in 

the nanotube system, the ability to contrast different pathways to the same end 

point just by changing some input parameters in ChemDyME was highlighted. 

This could be particularly useful if studying a system where more than one route 

to a given end geometry is suspected. By controlling the path boundaries in such 

a way that the dynamics must follow the route set out by the guess path, one can 
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ensure the dynamical path aiming to be studied is indeed that under 

investigation. For additional piece of mind in such a situation a comparative 

BXD simulation with much greater freedom to explore alternative pathways 

could be conducted and the resulting free energy profiles compared. 

 

• Being able to create trajectories in VR which can be interfaced with 

pathReducer to create a set of PCs for the system automatically, enables the user 

to elude deriving a CV for the system by hand. For systems like that of helicine, 

this is a big advantage as the changes in interatomic distance which are the most 

important in describing the overall structural variance of the system may not be 

immediately obvious, and so a ‘black box’ approach to define a CV can have a 

dramatic increase on efficiency and the ease with which a simulation is done. 

 

• Finally, by tying a knot in 40 Alanine, this workflow has been shown as robust. 

This system presents a couple of challenges which ChemDyME must overcome 

for a successful simulation. Firstly, it is such an energetically unfavourable 

process that BXD will naturally want to work against it.  Secondly, small 

deviations from the guess path can lead to the end of the peptide chain ‘slipping 

past’ the loop rather than going through, so that no knot is tied. However, 

despite these challenges, the iMD-ChemDyME workflow was proves 

successful in simulating such a challenging problem and is therefore more than 

likely capable of tackling other tricky systems. 

 

5.5 Future work 

Future developments of this project could include: 

 

• Using the above workflow to generate a free energy profile for a well-studied 

system, so that the results can be compared to previously published work as a 

final sanity check of the validity of this method. 

 

• Using the iMD-ChemDyME workflow to simulate real-life systems with greater 

biological significance, for example nucleic acids. 
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Chapter 6: Further validation of ChemDyME 

through adaptive sampling of I27 

 

6.1 Introduction 

 

In Chapter 5, a proposed area of future work to further validate the iMD-ChemDyME 

workflow was to compare the free energy profiles for a well-known system resulting 

from the interactive BXD method described and an alternative method of simulation. 

The unfolding of I27 has been studied widely both in experiment 78  and through 

computational methods, in which recent work has seen free energy profiles for the 

process emerge. 76,163,164 Therefore, I27 would seem a natural choice for a comparison 

of free energy profiles generated from the different methodologies. Comparing the free 

energy profile shown in Figure 4.1(a) for the unfolding of I27 taken from unbiased 

BXD simulations done in CHARMM to one produced using the iMD-BXD method 

would be a good way to further validate the new method whilst simultaneously 

strengthening the link between the projects in Chapters 4 and 5. As before, all 

simulations conducted using the iMD-BXD workflow build on the work of O’Connor 

128,129 and use the ChemDyME code developed by Robin Shannon. 

 

6.2 Method 

 

Like the work in Chapter 5, MM3 forcefield parameters were defined in a bespoke 

openMM xml file and used to parameterise the I27 system. Using openMM, the forces 

and energies for the system were generated and interfaced with Narupa such that the 

MD could be propagated. Once the system was set up in VR, I27 was pulled apart by 

its termini to generate a guess path for it’s unfolding. This guess path was then 

minimised before being passed into pathReducer so that a dimensionality reduction 

could be performed using only the carbon atoms in the system. Three PCs, each 

representing a linear combination of interatomic distances within I27 were produced 

from this which accounted for 99.5% of the structural variance along the trajectory.  
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Due to the large size of the I27 system and the slower nature of python, the language 

of ChemDyME, as compared to Fortran for which CHARMM is written in, the original 

guess path was split into 19 trajectories. Each of these were used as a shorter guess path 

for a separate adaptive BXD run. This resulted in 19 smaller adaptive BXD simulations, 

corresponding to different chunks of the overall guess path being run in parallel. 

However, all simulations were run in the same CV space.  

 

Each BXD simulation was run at 298 K and a friction of 0.01 was used in the Langevin 

integrator. The dynamics in each adaptive BXD run followed the guess path to within 

0.5Å and sampled each box with nsamp = 25000 MD steps before placing a new boundary 

with an epsilon value of 0.05. Following this procedure, adaptive runs were conducted 

for each trajectory, all of which successfully unfolded that section of the overall guess 

path. 

 

Since the adaptive runs were all completed in the same CV space, it was possible to 

alter the sets of BXD boundaries for each run to include the last boundary of the nth 

trajectory as the first boundary of the nth+1 trajectory. i.e. the uppermost boundary of 

the first trajectory would be appended to the set of boundaries for the second trajectory 

as the lowermost boundary, etc. This way, after the converging runs were completed 

for each of the cropped down trajectories, the resulting free energy profiles could be 

joined together without leaving any regions of CV space unexplored.  

 

Under the same conditions as before, converging runs were performed for each of the 

shorter trajectories to generate milestoning MFPTs. These were used to obtain free 

energy data for each trajectory, which were joined together to create an overall free 

energy profile for the unfolding of I27.   

 

6.3 Results and Discussion 

 

Figure 6.1 shows the free energy profile obtained using the iMD-ChemDyME 

workflow and from CHARMM simulations (see Figure 4.1(a)) for the unfolding of I27. 

The output from ChemDyME lists columns for each BXD box and the point in CV 
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space for each value of the free energy. Since both these values are somewhat arbitrary, 

it was possible to convert the x-axis into the more meaningful quantity of extension by 

dividing the number of the BXD box by 1.65, such that the free energy profiles from 

each simulation could be compared along the same axis.  

 

 

Both profiles in Figure 6.1, show the free energy for I27 as the hydrogen bonds holding 

its secondary structure in place are ruptured, but neither reach extensions long enough 

to change the conformation of I27 to being fully linear as is shown in reference [45] 

where the rate constants for unfolding simulations in CHARMM were taken from. This 

is simply because for the work in Chapter 4, only data for extensions up to the point of 

rupture within I27 was required and the extensions achievable in VR are limited by the 

 

Figure 6.1: Free energy profile for the unfolding of I27 from simulations conducted using CHARMM 

(blue line) and the iMD-ChemDyME workflow (black line). Compassion of the structures taken at 

point C taken from reference  [45] at the top and from ChemDyME at the bottom, shows them to be 

similar indicating the conversion from BXD box to extension for the x-axis is sensible. The profiles 

show very similar free energies for the same extensions and therefore this comparison of data from 

ChemDyME to the well-established software CHARMM is further evidence of the validity of the 

iMD-ChemDyME method. 
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physical reach of the user. However, to double check the check the conversion of BXD 

box into extension, the structures of I27 at point C in Figure 4.1(a) (i.e. point C in the 

corresponding PMF Figure 1 of [45]) and that at the same extension in the ChemDyME 

simulation were compared and found to be similar indicating the conversion was 

reasonable. These structures have been superimposed onto the free energy profiles in 

Figure 6.1, with the all blue structure being taken from reference [45] and the 

multicoloured one taken from the ChemDyME simulation. 

 

Obtaining a very similar free energy profile from simulations conducted with 

ChemDyME to those done in a well-established simulation package such as CHARMM 

further validates the iMD-ChemDyME workflow. Previously, the largest system tested 

on this workflow was 40 Alanine. Whereas the use of I27 as a test case has proved the 

effectiveness of the method against larger systems, of sizes more comparable to those 

found in real-life biological systems. Data on the PBD shows I27 to contain 98 amino 

acid residues, which when compared to the average length of a protein domain, 100 

amino acids 169, would suggest I27 as an excellent test case in relation to potential 

studies of protein domains.  

 

6.4 Conclusions 

 

A summary of the work in this chapter can be written as: 

 

• Through the use of iMD combined with ChemDyME a free energy profile for 

the unfolding of I27 was generated and found to closely resemble that of 

previous work conducted in CHARMM.76,163,164 Generating such similar results 

through both methods provides evidence of the validity of the new workflow 

presented in chapter 5. 

 

• By running the simulations in parallel, the size of the system which can be 

studied using this procedure can be increased to that of a typical protein domain, 

indicating the method is suitable for simulating biologically relevant systems. 
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• Comparing the results of unfolding simulations for I27 from Chapter 4 to those 

conducted using the iMD-ChemDyME workflow makes for a nice way of 

connecting the two main projects in this thesis by another means than just the 

BXD method. 

 

6.5 Future work 

 

The work in this chapter could be expanded on by: 

  

• Increasing the number of atoms in the system under investigation with this 

method, in search of the limiting system size for this workflow. It would be 

interesting to know whether the method is more likely to be limited by the 

number of atoms which can be rendered in VR or the required time to conduct 

all the simulations in ChemDyME becoming too computationally expensive for 

it to be worthwhile. 

 

• Taking the free energy profile for unfolding I27 from iMD-ChemDyME and 

using it as the starting PMF from which to make the modifications required to 

simulate AFM experiments over a range of velocities as in Chapter 4. This could 

be done to see if the small differences between the two starting PMFs lead to 

one set of results with a better match to experiment than the other. 
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Chapter 7: Conclusions and outlook 

 

The rare event problem in MD sampling is one which still limits the length of 

simulations to this day and makes producing well converged data for processes which 

occur over long timescales a challenge to this day. BXD has been shown to be a 

powerful tool in tackling this problem, by providing a method for enhancing sampling 

along a reaction coordinate without requiring any modifications to the PES. It is 

because of this, BXD has proven itself to be a simple yet effective way to simulate long 

timescale problems such as protein unfolding. But the assumption of equilibrium 

between BXD boxes means these simulations can only apply to VC AFM experiments 

at very slow pulling speeds. 

 

However, using the methods introduced in this thesis to modify the results of unbiased 

BXD simulations it is possible to successfully simulate AFM experiments over the full 

range of pulling speeds seen in conventional AFM. This is something that other 

methods of simulation have failed to do. However, for the very highest speeds like the 

ones seen in HS-FS further work needs to be done to understand why the BXD method 

fails to reproduce the expected upturn in force with pulling velocity seen in experiment. 

Nonetheless, the work in this thesis has gone some way to bridging the gap between 

experimental and computational studies.  

 

Additional work in this thesis has shown the development of a novel method of 

chemical simulation in which trajectories can be created in VR and then interfaced into 

a BXD code to guide the dynamics.  Several archetypes of biological systems, all 

presenting their own unique challenges, were simulated using the iMD-ChemDyME 

workflow and reasonable free energy profiles generated for each. This was taken as an 

initial ‘proof of concept’ before a comparison of the results from ChemDyME for the 

well-studied system I27 for which the free energy profile was already known, provided 

further validation of the method.  

 

Through this work, integrating iMD with BXD has been shown as an effective way to 

ensure the exact dynamical path between a starting and final geometry is sampled, 

whilst also eliminating the need to define a reaction coordinate or set of CVs for the 
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process by hand, increasing the overall ease with which a simulation is conducted. The 

ability of ChemDyME to interface with the pathReducer code means that BXD 

simulations can be guided along both a one-dimensional reaction coordinate, as well as 

through multidimensional CV space with relative ease. Therefore, systems of greater 

complexity can be described in higher dimensionality CV space without bestowing 

much extra effort on the user, opening the possibility of using BXD to simulate more 

convoluted biologically relevant problems. 

 

All work in this thesis is linked through BXD, a technique whose main advantage lies 

in its simplicity and ability to simultaneously produce kinetic and thermodynamic data 

for long timescale processes, even reaching the second timescale. The work in this 

thesis has shown the power of BXD as a base from which to tackle more complicated 

problems; be that simulating experimental AFM over a wide range of pulling velocities 

inaccessible to other forms of MD or extending the algorithm so it can follow 

trajectories from VR in multidimensional CV space. Further work to build on the power 

of BXD could include: 

 

• Conducting BXD simulations in explicit water to better understand the impact 

of hydrogen bond formation between ruptured protein domains and the solvent 

system. MD modelling of protein unfolding in explicit water requires a large 

simulation box containing many water molecules, which can quickly become 

prohibitively expensive and so a hybrid hydrodynamics/molecular dynamics 

approach to such simulations may be considered. 

 

• Extending AFM simulations to concatamers rather than just single protein 

domains to better match experiment. 

 

• Further study of challenging systems using the iMD-ChemDyME workflow to 

ensure its suitability in future research. 

 

• Integrating the BXD algorithm into other MD software packages such as 

LAMMPS or GROMACS for wider usage. 
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Appendices 

Appendix 1 

 

Equations (1.3) and (1.4) for the propagation of an MD trajectory can be derived as 

follows. 

 

A Taylor expansion around the current atomic coordinates gives an estimate of them at 

time 𝑡 + 𝛿𝑡: 

 

 

By definition 
𝑑�⃗�(𝑡)

𝑑𝑡
 is �⃗�(𝑡) and 

𝑑2�⃗�(𝑡)

𝑑𝑡2  is �⃗�(𝑡), and therefore equation 1.3 is returned 

 

 
𝑟(𝑡 + 𝛿𝑡)  =  𝑟(𝑡)  +  𝛿𝑡�⃗�(𝑡)  +  

1

2
 𝛿𝑡2�⃗�(𝑡) 

(1.3) 

 

 

Similarly, a Taylor expansion around velocities  �⃗�(𝑡) gives: 

 

 

But the third term in this Taylor expansion,  
𝛿𝑡2

2!
 
𝑑2𝑣(𝑡)

𝑑𝑡2  , is complicated it’s 

simplification not trivial. Instead, a further Taylor expansion can be done around 
𝑑�⃗⃗�(𝑡)

𝑑𝑡
: 

 

 

𝑟(𝑡 + 𝛿𝑡)  =  𝑟(𝑡)  +  𝛿𝑡 
𝑑𝑟(𝑡)

𝑑𝑡
 + 

𝛿𝑡2

2!
 
𝑑2𝑟(𝑡)

𝑑𝑡2
 ⋯ 

(A1 1) 

 

�⃗�(𝑡 + 𝛿𝑡) =  �⃗�(𝑡)  +  𝛿𝑡 
𝑑�⃗�(𝑡)

𝑑𝑡
 + 

𝛿𝑡2

2!
 
𝑑2𝑣(𝑡)

𝑑𝑡2
 ⋯ 

(A1 2) 

 

�⃗�(𝑡 + 𝛿𝑡)

𝑑t
=  

𝑑�⃗�(𝑡)

𝑑𝑡
 +  𝛿𝑡 

𝑑2𝑣(𝑡)

𝑑𝑡2
  ⋯ 

(A1 3) 
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Multiplying A1 3 by 
𝛿𝑡

2
 and rearranging yields: 

 

 

 

By substituting A1 5 into A1 2 we get: 

 

 

Recalling the derivative of velocity with respect to time is acceleration equation A1 6 

can be written as in equation 1.4: 

 

 

  

𝛿𝑡

2
 
�⃗�(𝑡 + 𝛿𝑡)

𝑑t
=  

𝛿𝑡

2

𝑑�⃗�(𝑡)

𝑑𝑡
 + 

𝛿𝑡2

2
 
𝑑2𝑣(𝑡)

𝑑𝑡2
   

 

(A1 4) 

 

𝛿𝑡2

2
 
𝑑2𝑣(𝑡)

𝑑𝑡2
 =  

𝛿𝑡

2
 
�⃗�(𝑡 + 𝛿𝑡)

𝑑t
 − 

𝛿𝑡

2

𝑑�⃗�(𝑡)

𝑑𝑡
  

(A1 5) 

 

�⃗�(𝑡 + 𝛿𝑡) =  �⃗�(𝑡)  +  𝛿𝑡 
𝑑�⃗�(𝑡)

𝑑𝑡
 +  

𝛿𝑡

2
 
�⃗�(𝑡 + 𝛿𝑡)

𝑑t
 − 

𝛿𝑡

2

𝑑�⃗�(𝑡)

𝑑𝑡
 

 

=  �⃗�(𝑡)  +  
𝛿𝑡

2
 
�⃗�(𝑡 + 𝛿𝑡)

𝑑t
 + 

𝛿𝑡

2

𝑑�⃗�(𝑡)

𝑑𝑡
     

 

(A1 6) 

 

�⃗�(𝑡 + 𝛿𝑡)  =  �⃗�(𝑡)  + 
1

2
 𝛿𝑡(�⃗�(𝑡)  + �⃗�(𝑡 + 𝛿𝑡)) 

(1.4) 
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Appendix 2 

 

What follows is an illustration of calculating ∇𝜙𝑇 in a BXD velocity inversion. 

 

Equation (2.17) showed how the chain rule is used to obtain the derivative of the 

constraint function with respect to time in terms of the gradient of 𝜙.  

 

This can be calculated as the linear combination of the derivatives of the components 

of the system’s collective variable: 

 

 𝑑 𝜙

𝑑𝑟
 =  𝑛1

𝑑 𝑠1

𝑑𝑟
 +  𝑛2

𝑑 𝑠2

𝑑𝑟
 . . . 𝑛𝑀

𝑑 𝑠𝑀

𝑑𝑟
   

(A2 1) 

 

 

 

Where M is the number of dimensions in the CV. 

 

If, as an illustration we think of a system comprising of atoms A,B and C, in which for 

reasons of simplicity is restricted to 2 spatial coordinates, the coordinates and 

corresponding velocities can be defined as 𝑟 = [𝑎𝑥, 𝑎𝑦 , 𝑏𝑥, 𝑏𝑦 , 𝑐𝑥 , 𝑐𝑦] and �⃗� =

[𝑉𝑥
𝑎, 𝑉𝑦

𝑎, 𝑉𝑥
𝑏, 𝑉𝑦

𝑏, 𝑉𝑥
𝑐, 𝑉𝑦

𝑐] respectively. The atomic masses can also be represented in the 

diagonal matrix: 

 

 

𝐌 =

[
 
 
 
 
 
𝑚𝑎 0 0 0 0 0
0 𝑚𝑎 0 0 0 0
0 0 𝑚𝑏 0 0 0
0 0 0 𝑚𝑏 0 0
0 0 0 0 𝑚𝑐 0
0 0 0 0 0 𝑚𝑐]

 
 
 
 
 

 

(A2 2) 

 

 

 Then, the CV can be defined in terms of the interatomic distances 𝑟𝐴𝐵 and 𝑟𝐵𝐶: 

 

 𝑠(𝑟) = (𝑟𝐴𝐵, 𝑟𝐵𝐶) 

 

(A2 3) 
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with: 

 
𝑟𝐴𝐵 = √(𝑎𝑥  −  𝑏𝑥)2  +  (𝑎𝑦  −  𝑏𝑦)

2
 

 

𝑟𝐵𝐶 = √(𝑏𝑥  −  𝑐𝑥)2  +  (𝑏𝑦  −  𝑐𝑦)
2
 

(A2 4) 

 

Now there is an expression for 𝑠(𝑟) equation A2 1 can be used to calculate ∇𝜙 , whose 

transpose is given by: 

 

 
     ∇𝜙𝑇 =

𝑑𝜙

𝑑𝑟
 =  𝑛1

𝑑𝑟𝐴𝐵

𝑑𝑟
 + 𝑛2

𝑑𝑟𝐵𝐶

𝑑𝑟
 

=

[
 
 
 
 
 
 

𝑛1(𝑎𝑥  −  𝑏𝑥)/𝑟𝐴𝐵

𝑛1(𝑎𝑦  −  𝑏𝑦)/𝑟𝐴𝐵

𝑛1(𝑎𝑥  −  𝑏𝑥)/𝑟𝐴𝐵  +  𝑛2(𝑏𝑥  −  𝑐𝑥)/𝑟𝐴𝐵

𝑛1(𝑎𝑦  −  𝑏𝑦)/𝑟𝐴𝐵 + 𝑛2(𝑏𝑦  −  𝑐𝑦)/𝑟𝐴𝐵

𝑛2(𝑏𝑥  −  𝑐𝑥)/𝑟𝐴𝐵

𝑛2(𝑏𝑦  −  𝑐𝑦)/𝑟𝐴𝐵 ]
 
 
 
 
 
 

 

 

(A2 5) 

 

 

Where: 
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      𝑛1

𝜕𝑟𝐴𝐵

𝜕𝑟
 =  𝑛1

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕

𝜕𝑎𝑥
 𝑛1√(𝑎𝑥  −  𝑏𝑥)2  +  (𝑎𝑦  −  𝑏𝑦)

2

𝜕

𝜕𝑎𝑦
 𝑛1√(𝑎𝑥  −  𝑏𝑥)2  +  (𝑎𝑦  −  𝑏𝑦)

2

𝜕

𝜕𝑏𝑥
 𝑛1√(𝑎𝑥  −  𝑏𝑥)2  +  (𝑎𝑦  −  𝑏𝑦)

2

𝜕

𝜕𝑏𝑦
 𝑛1√(𝑎𝑥  −  𝑏𝑥)2  +  (𝑎𝑦  −  𝑏𝑦)

2

𝜕

𝜕𝑐𝑥
 𝑛1√(𝑎𝑥  −  𝑏𝑥)2  +  (𝑎𝑦  −  𝑏𝑦)

2

𝜕

𝜕𝑐𝑦
 𝑛1√(𝑎𝑥  −  𝑏𝑥)2  +  (𝑎𝑦  −  𝑏𝑦)

2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
𝑛1(𝑎𝑥  −  𝑏𝑥)/𝑟𝐴𝐵

𝑛1(𝑎𝑦  −  𝑏𝑦)/𝑟𝐴𝐵

𝑛1(𝑎𝑥  −  𝑏𝑥)/𝑟𝐴𝐵

𝑛1(𝑎𝑦  −  𝑏𝑦)/𝑟𝐴𝐵

0
0 ]

 
 
 
 
 
 

 

(A2 6) 

 

 

and  

 

 

      𝑛2

𝜕𝑟𝐵𝐶

𝜕𝑟
 =  𝑛2

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕

𝜕𝑎𝑥
 𝑛2√(𝑏𝑥  −  𝑐𝑥)

2  +  (𝑏𝑦  −  𝑐𝑦)
2

𝜕

𝜕𝑎𝑦
 𝑛2√(𝑏𝑥  −  𝑐𝑥)2  +  (𝑏𝑦  −  𝑐𝑦)

2

𝜕

𝜕𝑏𝑥
 𝑛2√(𝑏𝑥  −  𝑐𝑥)2  +  (𝑏𝑦  −  𝑐𝑦)

2

𝜕

𝜕𝑏𝑦
 𝑛2√(𝑏𝑥  −  𝑐𝑥)2  +  (𝑏𝑦  −  𝑐𝑦)

2

𝜕

𝜕𝑐𝑥
 𝑛2√(𝑏𝑥  −  𝑐𝑥)2  +  (𝑏𝑦  −  𝑐𝑦)

2

𝜕

𝜕𝑐𝑦
 𝑛2√(𝑏𝑥  −  𝑐𝑥)

2  +  (𝑏𝑦  −  𝑐𝑦)
2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 

0
0

𝑛2(𝑏𝑥  −  𝑐𝑥)/𝑟𝐴𝐵

𝑛2(𝑏𝑦  −  𝑐𝑦)/𝑟𝐴𝐵

𝑛2(𝑏𝑥  −  𝑐𝑥)/𝑟𝐴𝐵

𝑛2(𝑏𝑦  −  𝑐𝑦)/𝑟𝐴𝐵]
 
 
 
 
 
 

 

(A2 7) 
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Now we have the atomic coordinates, velocities, and masses and have obtained an 

expression for  ∇𝜙𝑇, along with, we can use equations (2.21)and (2.22) to return the 

newly inverted velocities. 

  



 126 

References 

 

(1)  Hirschfelder, J.; Eyring, H.; Topley, B. Reactions Involving Hydrogen 

Molecules and Atoms. J. Chem. Phys. 1936, 4 (3), 170. 

https://doi.org/10.1063/1.1749815. 

(2)  Alder, B. J.; Wainwright, T. E. Studies in Molecular Dynamics. I. General 

Method. J. Chem. Phys. 1959, 31 (2), 459. https://doi.org/10.1063/1.1730376. 

(3)  Rahman, A. Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev. 

1964, 136 (2A), A405. https://doi.org/10.1103/PhysRev.136.A405. 

(4)  JA, M.; BR, G.; M, K. Dynamics of Folded Proteins. Nature 1977, 267 (5612), 

585–590. https://doi.org/10.1038/267585A0. 

(5)  Roux, B.; Schulten, K. Computational Studies of Membrane Channels. Structure 

2004, 12 (8), 1343–1351. https://doi.org/10.1016/j.str.2004.06.013. 

(6)  Yang, W.; Gao, Y. Q.; Cui, Q.; Ma, J.; Karplus, M. The Missing Link between 

Thermodynamics and Structure in F1-ATPase. Proc. Natl. Acad. Sci. 2003, 100 

(3), 874–879. https://doi.org/10.1073/pnas.0337432100. 

(7)  Shan, Y.; Seeliger, M. A.; Eastwood, M. P.; Frank, F.; Xu, H.; Jensen, M. O.; 

Dror, R. O.; Kuriyan, J.; Shaw, D. E. A Conserved Protonation-Dependent 

Switch Controls Drug Binding in the Abl Kinase. Proc. Natl. Acad. Sci. 2009, 

106 (1), 139–144. https://doi.org/10.1073/pnas.0811223106. 

(8)  Leach, A. R. Molecular Modelling Principles and Application, 2nd ed.; Pearson 

Education Ltd: Essex, 2001. 

(9)  Frenkel, D.; Smit, B. Understanding Molecular Simulation, 2nd ed.; Academic 

Press: London, UK, 2002. https://doi.org/10.1016/B978-0-12-267351-1.X5000-

7. 

(10)  Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical 

Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159 (1), 98. 

https://doi.org/10.1103/PhysRev.159.98. 

(11)  Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced 

Methods ; Cambridge University Press: Cambridge, 2009. 

(12)  Iftimie, R.; Minary, P.; Tuckerman, M. E. Ab Initio Molecular Dynamics: 

Concepts, Recent Developments, and Future Trends. Proc. Natl. Acad. Sci. 

2005, 102 (19), 6654–6659. https://doi.org/10.1073/PNAS.0500193102. 



 127 

(13)  Vanommeslaeghe, K.; Guvench, O.; MacKerell, A. D.; Jr. Molecular Mechanics. 

Curr. Pharm. Des. 2014, 20 (20), 3281. 

(14)  Hospital, A.; Goñi, J. R.; Orozco, M.; Gelpí, J. L. Molecular Dynamics 

Simulations: Advances and Applications. Adv. Appl. Bioinform. Chem. 2015, 19 

(8), 37–47. https://doi.org/10.2147/AABC.S70333. 

(15)  Adcock, S. A.; Mccammon, J. A. Molecular Dynamics: Survey of Methods for 

Simulating the Activity of Proteins. Chem. Rev. 2006, 106 (5), 1589–1615. 

https://doi.org/10.1021/cr040426m. 

(16)  Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. 

Development and Testing of a General Amber Force Field. J. Comput. Chem. 

2004, 25 (9), 1157–1174. https://doi.org/10.1002/JCC.20035. 

(17)  Maple, J. R.; Dinurt, U.; Hagler, A. T. Derivation of Force Fields for Molecular 

Mechanics and Dynamics from Ab Initio Energy Surfaces; 1988; Vol. 85. 

(18)  González, M. A. Force Fields and Molecular Dynamics Simulations. École 

thématique la Société Française la Neutron. 2011, 12, 169–200. 

https://doi.org/10.1051/SFN/201112009. 

(19)  Torrie, G. M. M.; Valleau, J. P. P. Nonphysical Sampling Distributions in Monte 

Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977, 23 

(2), 187–199. https://doi.org/10.1016/0021-9991(77)90121-8. 

(20)  West, A. M. A.; Elber, R.; Shalloway, D. Extending Molecular Dynamics 

Timescales with Milestoning: Example of Complex Kinetics in a Solvated 

Peptide. J. Chem. Phys. 2007, 126 (14). https://doi.org/10.1063/1.2716389. 

(21)  Faradjian, A. K.; Elber, R. Computing Time Scales from Reaction Coordinates 

by Milestoning. J. Chem. Phys. 2004, 120 (23), 10880–10889. 

https://doi.org/10.1063/1.1738640. 

(22)  Wei, W.; Elber, R. ScMile: A Script to Investigate Kinetics with Short Time 

Molecular Dynamics Trajectories and the Milestoning Theory. J. Chem. Theory 

Comput. 2020, 16 (2), 860. https://doi.org/10.1021/ACS.JCTC.9B01030. 

(23)  Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to 

Applications; Academic press: California, 2002; Vol. 1. 

(24)  Dill, K. A.; MacCallum, J. L. The Protein-Folding Problem, 50 Years On. 

Science 2012, 338 (6110), 1042–1046. 

https://doi.org/10.1126/SCIENCE.1219021. 

(25)  Stank, A.; Kokh, D. B.; Fuller, J. C.; Wade, R. C. Protein Binding Pocket 



 128 

Dynamics. Acc. Chem. Res. 2016, 49 (5), 809–815. 

https://doi.org/10.1021/ACS.ACCOUNTS.5B00516. 

(26)  Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A. E.; Kolinski, A. 

Coarse-Grained Protein Models and Their Applications. Chem. Rev. 2016, 116 

(14), 7898–7936. 

https://doi.org/10.1021/ACS.CHEMREV.6B00163/SUPPL_FILE/CR6B00163

_LIVESLIDES.MP4. 

(27)  SHAW, D. .; GROSSMAN, J. W.; Bank, J. A.; Batson, B.; Butts, J. A.; Chao, J. 

C.; Deneroff, M. M.; Dror, R. O.; Even, A.; Fenton, C. H.; et al. Anton 2: 

RAISING the Bar for Performance and Programmability in a Special-Purpose 

Molecular Dynamics Supercomputer. In Proceedings of the International 

Conference for High Performance Computing, Networking, Storage and 

Analysis; IEEE Press: New Orleans, 2014; pp 41–53. 

(28)  Piana, S.; Klepeis, J. L.; Shaw, D. E. Assessing the Accuracy of Physical Models 

Used in Protein-Folding Simulations: Quantitative Evidence from Long 

Molecular Dynamics Simulations. Curr. Opin. Struct. Biol. 2014, 24 (1), 98–

105. https://doi.org/10.1016/J.SBI.2013.12.006. 

(29)  Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current Status of Transition-

State Theory. J. Phys. Chem. 1996, 100 (31), 12771–12800. 

https://doi.org/10.1021/JP953748Q. 

(30)  Leopold, P. E.; Montal, M.; Onuchic, J. N. Protein Folding Funnels: A Kinetic 

Approach to the Sequence-Structure Relationship. Proc. Natl. Acad. Sci. U. S. 

A. 1992, 89 (18), 8721. https://doi.org/10.1073/PNAS.89.18.8721. 

(31)  Liu, P.; Kim, B.; Friesner, R. A.; Berne, B. J. Replica Exchange with Solute 

Tempering: A Method for Sampling Biological Systems in Explicit Water. Proc. 

Natl. Acad. Sci. 2005, 102 (39), 13749–13754. 

https://doi.org/10.1073/PNAS.0506346102. 

(32)  Arefi, H. H.; Yamamoto, T. Communication: Self-Assembly of a Model 

Supramolecular Polymer Studied by Replica Exchange with Solute Tempering. 

J. Chem. Phys. 2017, 147 (21), 211102. https://doi.org/10.1063/1.5008275. 

(33)  Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for 

Protein Folding. Chem. Phys. Lett. 1999, 314 (1–2), 141–151. 

https://doi.org/10.1016/S0009-2614(99)01123-9. 

(34)  Qi, R.; Wei, G.; Ma, B.; Nussinov, R. Replica Exchange Molecular Dynamics: 



 129 

A Practical Application Protocol with Solutions to Common Problems and a 

Peptide Aggregation and Self-Assembly Example. Methods Mol. Biol. 2018, 

1777, 101. https://doi.org/10.1007/978-1-4939-7811-3_5. 

(35)  Valsson, O.; Tiwary, P.; Parrinello, M. Enhancing Important Fluctuations: Rare 

Events and Metadynamics from a Conceptual Viewpoint. Annu. Rev. Phys. 

Chem. 2016, 67 (1), 159–184. https://doi.org/10.1146/annurev-physchem-

040215-112229. 

(36)  Mills, M.; Andricioaei, I. An Experimentally Guided Umbrella Sampling 

Protocol for Biomolecules. J. Chem. Phys. 2008, 129 (11). 

https://doi.org/10.1063/1.2976440. 

(37)  You, W.; Tang, Z.; Chang, C. E. A. Potential Mean Force from Umbrella 

Sampling Simulations: What Can We Learn and What Is Missed? J. Chem. 

Theory Comput. 2019, 15 (4), 2433–2443. 

https://doi.org/10.1021/ACS.JCTC.8B01142/SUPPL_FILE/CT8B01142_SI_00

1.PDF. 

(38)  Souaille, M.; Roux, B. Extension to the Weighted Histogram Analysis Method: 

Combining Umbrella Sampling with Free Energy Calculations. Comput. Phys. 

Commun. 2001, 135 (1), 40–57. https://doi.org/10.1016/S0010-4655(00)00215-

0. 

(39)  Bartels, C.; Karplus, M. Multidimensional Adaptive Umbrella Sampling: 

Applications to Main Chain and Side Chain Peptide Conformations. J. Comput. 

Chem. 1997, 18 (12), 1450–1462. https://doi.org/10.1002/(SICI)1096-

987X(199709)18:12<1450::AID-JCC3>3.0.CO;2-I. 

(40)  Booth, J. J. New Applications of Boxed Molecular Dynamics: Efficient 

Simulation of Rare Events, University of Leeds, 2016. 

(41)  Mezei, M. Adaptive Umbrella Sampling: Self-Consistent Determination of the 

Non-Boltzmann Bias. J. Comput. Phys. 1987, 68 (1), 237–248. 

https://doi.org/10.1016/0021-9991(87)90054-4. 

(42)  Pechukas, P. Transition State Theory. Annu. Rev. Phys. Chem. 1981, 32 (1), 159–

177. https://doi.org/10.1146/ANNUREV.PC.32.100181.001111. 

(43)  Votapka, L. W.; Amaro, R. E. Multiscale Estimation of Binding Kinetics Using 

Brownian Dynamics, Molecular Dynamics and Milestoning. PLOS Comput. 

Biol. 2015, 11 (10), e1004381. 

https://doi.org/10.1371/JOURNAL.PCBI.1004381. 



 130 

(44)  Glowacki, D. R.; Booth, J.; Vazquez, S.; Martinez-Nunez, E.; Marks, A.; 

Rodgers, J.; Shalashilin, D. V. Recent Applications of Boxed Molecular 

Dynamics: A Simple Multiscale Technique for Atomistic Simulations. Philos. 

Trans. R. Soc. Lond. A. 2014, 372, 20130384. 

https://doi.org/10.1098/rsta.2013.0384. 

(45)  Booth, J. J.; Shalashilin, D. V. Fully Atomistic Simulations of Protein Unfolding 

in Low Speed Atomic Force Microscope and Force Clamp Experiments with the 

Help of Boxed Molecular Dynamics. J. Phys. Chem. B 2016, 120 (4), 700–708. 

https://doi.org/10.1021/acs.jpcb.5b11519. 

(46)  Glowacki, D. R.; Paci, E.; Shalashilin, D. V. Boxed Molecular Dynamics: A 

Simple and General Technique for Accelerating Rare Event Kinetics and 

Mapping Free Energy in Large Molecular Systems. J. Phys. Chem. B 2009, 113 

(52), 16603–16611. https://doi.org/10.1021/jp9074898. 

(47)  Martínez-Núñez, E.; Shalashilin, D. V. Acceleration of Classical Mechanics by 

Phase Space Constraints. J. Chem. Theory Comput. 2006, 2 (4), 912–919. 

https://doi.org/10.1021/ct060042z. 

(48)  Glowacki, D. R.; Paci, E.; Shalashilin, D. V. Boxed Molecular Dynamics: 

Decorrelation Time Scales and the Kinetic Master Equation. J. Chem. Theory 

Comput 2011, 7, 1244–1252. https://doi.org/10.1021/ct200011e. 

(49)  Voter, A. F. A Method for Accelerating the Molecular Dynamics Simulation of 

Infrequent Events. 1997, 106 (11), 4665. https://doi.org/10.1063/1.473503. 

(50)  Buchete, N.-V.; Hummer, G. Coarse Master Equations for Peptide Folding 

Dynamics†. J. Phys. Chem. B. 2008, 112 (19), 6057–6069. 

https://doi.org/10.1021/JP0761665. 

(51)  Wales, D. J. Energy Landscapes: Calculating Pathways and Rates. Int. Rev. Phys. 

Chem. 2006, 25 (2), 237–282. https://doi.org/10.1080/01442350600676921. 

(52)  Shalashilin, D. V; Beddard, G. S.; Paci, E.; Glowacki, D. R. Peptide Kinetics 

from Picoseconds to Microseconds Using Boxed Molecular Dynamics: Power 

Law Rate Coefficients in Cyclisation Reactions. J. Chem. Phys. 2012, 137, 

165102. https://doi.org/10.1063/1.4759088. 

(53)  O’Connor, M.; Paci, E.; McIntosh-Smith, S.; Glowacki, D. R. Adaptive Free 

Energy Sampling in Multidimensional Collective Variable Space Using Boxed 

Molecular Dynamics. Faraday Discuss. 2016, 195 (0), 395–419. 

https://doi.org/10.1039/C6FD00138F. 



 131 

(54)  Lotsted, P. Mechanical Systems of Rigid Bodies Subject to Unilateral 

Constraints. SIAM J. Appl. Math. 1982, 42 (2), 281–296. 

https://doi.org/10.1137/0142022ï. 

(55)  O’Connor, C.; Adams, J. Essentials of Cell Biology; MA: NPG Education: 

Cambridge, 2010. 

(56)  Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry. 5th Ed., 5th ed.; New 

York: W H Freeman: New York, 2002. 

(57)  U.S National Library of Medicine. What are proteins and what do they do? 

https://ghr.nlm.nih.gov/primer/howgeneswork/protein (accessed Jan 21, 2019). 

(58)  Oxford Dictionary of Biochemistry and Molecular Biology; Cammack, R., 

Atwood, T., Campbell, P., Parish, H., Smith, A., Vella, F., Stirling, J., Eds.; 

Oxford University Press, 2006. 

https://doi.org/10.1093/acref/9780198529170.001.0001. 

(59)  Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular 

Biology of the Cell. 4th Ed., 4th ed.; Garland Science: New York, 2002. 

(60)  Lodish, H.; Berk, A.; Zipursky, S. L.; Matsudaira, P.; Baltimore, D.; Darnell, J. 

Molecular Cell Biology. 4th Ed., 4th ed.; W. H. Freeman: new York, 2000. 

(61)  Zhou, N. E.; Kay, C. M.; Hodges, R. S. The Role of Interhelical Ionic 

Interactions in Controlling Protein Folding and Stability: De Novo Designed 

Synthetic Two-Stranded α-Helical Coiled-Coils. J. Mol. Biol. 1994, 237 (4), 

500–512. https://doi.org/10.1006/JMBI.1994.1250. 

(62)  Damodaran, S. Beyond the Hydrophobic Effect: Critical Function of Water at 

Biological Phase Boundaries — A Hypothesis. Adv. Colloid Interface Sci. 2015, 

221, 22–33. https://doi.org/10.1016/j.cis.2015.03.005. 

(63)  Volkert, M. High Pressure-Low Temperature Induced Structures in Dairy Foams 

and Protein Model Systems, Technischen Universität Berlin, 2009. 

(64)  Janin, J.; Sternberg, M. J. E. Protein Flexibility, Not Disorder, Is Intrinsic to 

Molecular Recognition. F1000 Biol. Rep. 2013, 5, 2. https://doi.org/10.3410/B5-

2. 

(65)  Minajeva, A.; Kulke, M.; Fernandez, J. M.; Linke, W. A. Unfolding of Titin 

Domains Explains the Viscoelastic Behavior of Skeletal Myofibrils. Biophys. J. 

2001, 80 (3), 1442–1451. https://doi.org/10.1016/S0006-3495(01)76116-4. 

(66)  von Castelmur, E.; Marino, M.; Svergun, D. I.; Kreplak, L.; Ucurum-Fotiadis, 

Z.; Konarev, P. V.; Urzhumtsev, A.; Labeit, D.; Labeit, S.; Mayans, O. A 



 132 

Regular Pattern of Ig Super-Motifs Defines Segmental Flexibility as the Elastic 

Mechanism of the Titin Chain. Proc. Natl. Acad. Sci. 2008, 105 (4), 1186–1191. 

https://doi.org/10.1073/pnas.0707163105. 

(67)  Rico, F.; Rigato, A.; Picas, L.; Scheuring, S. Mechanics of Proteins with a Focus 

on Atomic Force Microscopy. J. Nanobiotechnology 2013, 11 Suppl 1 (Suppl 1), 

S3. https://doi.org/10.1186/1477-3155-11-S1-S3. 

(68)  Lewandowski, J. R.; Halse, M. E.; Blackledge, M.; Emsley, L. Protein 

Dynamics. Direct Observation of Hierarchical Protein Dynamics. Science (80-. 

). 2015, 348 (6234), 578–581. https://doi.org/10.1126/science.aaa6111. 

(69)  Knab, J. R.; Chen, J.-Y.; He, Y.; Markelz, A. G. Terahertz Measurements of 

Protein Relaxational Dynamics. Proc. IEEE 2007, 95 (8), 1605–1610. 

https://doi.org/10.1109/JPROC.2007.898906. 

(70)  Rasmussen, B. F.; Stock, A. M.; Ringe, D.; Petsko, G. A. Crystalline 

Ribonuclease A Loses Function below the Dynamical Transition at 220 K. 

Nature 1992, 357, 423–424. https://doi.org/10.0. 

(71)  Doster, W.; Cusack, S.; Petry, W. Dynamical Transition of Myoglobin Revealed 

by Inelastic Neutron Scattering. Nature 1989, 337 (6209), 754–756. 

https://doi.org/10.1038/337754a0. 

(72)  Frauenfelder, H.; Chen, G.; Berendzen, J.; Fenimore, P. W.; Jansson, H. N.; 

Mcmahon, B. H.; Stroe, I. R.; Swenson, J.; Young, R. D. A Unified Model of 

Protein Dynamics; 2009; Vol. 106. 

(73)  Last, J. A.; Russell, P.; Nealey, P. F.; Murphy, C. J. The Applications of Atomic 

Force Microscopy to Vision Science. Invest. Ophthalmol. Vis. Sci. 2010, 51 (12), 

6083–6094. https://doi.org/10.1167/iovs.10-5470. 

(74)  Puricelli, L.; Galluzzi, M.; Schulte, C.; Podestà, A.; Milani, P. Nanomechanical 

and Topographical Imaging of Living Cells by Atomic Force Microscopy with 

Colloidal Probes. Rev. Sci. Instrum. 2015, 86 (3). 

https://doi.org/10.1063/1.4915896. 

(75)  Carrion-Vazquez, M.; Oberhauser, A. F.; Fowler, S. B.; Marszalek, P. E.; 

Broedel, S. E.; Clarke, J.; Fernandez, J. M. Mechanical and Chemical Unfolding 

of a Single Protein: A Comparison. Proc. Natl. Acad. Sci. U. S. A. 1999, 96 (7), 

3694–3699. https://doi.org/10.1073/PNAS.96.7.3694. 

(76)  Florin, E.-L.; Rief, M.; Lehmann, H.; Ludwig, M.; Dornmair, C.; Moy, V. T. T.; 

Gaub, H. E. E. Sensing Specific Molecular Interactions with the Atomic Force 



 133 

Microscope; Elsevier, 1995; Vol. 10, pp 895–901. https://doi.org/10.1016/0956-

5663(95)99227-C. 

(77)  Moy, V. T.; Florin, E. L.; Rief, M.; Lehmann, H.; Ludwig, M.; Gaub, H. E.; 

Dornmair, K. Probing the Forces between Complementary Strands of DNA with 

the Atomic Force Microscope. Proc. SPIE - Int. Soc. Opt. Eng. 1995, 2384, 2–

12. 

(78)  Linke, W. A.; Grützner, A. Pulling Single Molecules of Titin by AFM—Recent 

Advances and Physiological Implications. Pflügers Arch. - Eur. J. Physiol. 2008, 

456 (1), 101–115. https://doi.org/10.1007/s00424-007-0389-x. 

(79)  Rico, F.; Gonzalez, L.; Casuso, I.; Puig-vidal, M.; Scheuring, S. High-Speed 

Force Spectroscopy Molecular Dynamics Simulations. Science (80-. ). 2013, 342 

(November), 741–743. https://doi.org/10.1126/science.1239764. 

(80)  Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Reversible 

Unfolding of Individual Titin Immunoglobulin Domains by AFM; 1997; Vol. 

276. 

(81)  Brujić, J.; Hermans Z., R. I.; Walther, K. A.; Fernandez, J. M. Single-Molecule 

Force Spectroscopy Reveals Signatures of Glassy Dynamics in the Energy 

Landscape of Ubiquitin. Nat. Phys. 2006, 2, 282–286. 

https://doi.org/10.1038/nphys269. 

(82)  Garcia-Manyes, S.; Brujić, J.; Badilla, C. L.; Fernández, J. M. Force-Clamp 

Spectroscopy of Single-Protein Monomers Reveals the Individual Unfolding and 

Folding Pathways of I27 and Ubiquitin. Biophys. J. 2007, 93 (7), 2436–2446. 

https://doi.org/10.1529/biophysj.107.104422. 

(83)  Oberhauser, A. F.; Hansma, P. K.; Carrion-Vazquez, M.; Fernandez, J. M. 

Stepwise Unfolding of Titin under Force-Clamp Atomic Force Microscopy. 

Proc. Natl. Acad. Sci. 2001, 98 (2), 468–472. 

https://doi.org/10.1073/pnas.021321798. 

(84)  Fernandez, J. M. Force-Clamp Spectroscopy Monitors the Folding Trajectory of 

a Single Protein. Science (80-. ). 2004, 303 (5664), 1674–1678. 

https://doi.org/10.1126/science.1092497. 

(85)  Li, H.; Fernandez, J. M. Mechanical Design of the First Proximal Ig Domain of 

Human Cardiac Titin Revealed by Single Molecule Force Spectroscopy. J. Mol. 

Biol. 2003, 334 (1), 75–86. https://doi.org/10.1016/J.JMB.2003.09.036. 

(86)  Taniguchi, Y.; Kobayashi, A.; Kawakami, M. Mechanical Unfolding Studies of 



 134 

Protein Molecules. Biophys. (Nagoya-shi, Japan) 2012, 8, 51–58. 

https://doi.org/10.2142/biophysics.8.51. 

(87)  Bouchiat, C.; Wang, M. D.; Allemand, J.-F.; Strick, T.; Block, S. M.; Croquette, 

V. Estimating the Persistence Length of a Worm-Like Chain Molecule from 

Force-Extension Measurements. Biophys. J. 1999, 76 (1), 409–413. 

https://doi.org/10.1016/S0006-3495(99)77207-3. 

(88)  Hsu, H.-P.; Paul, W.; Binder, K. Breakdown of the Kratky-Porod Wormlike 

Chain Model for Semiflexible Polymers in Two Dimensions. EPL (Europhysics 

Lett. 2011, 95, 68004. https://doi.org/10.1209/0295-5075/95/68004. 

(89)  Fernandez, J. M. Fingerprinting Single Molecules In Vivo. Biophys. J. 2005, 89, 

3676–3677. https://doi.org/10.1529/biophysj.105.072223. 

(90)  Hedberg, C.; Toledo, A. G.; Gustafsson, C. M.; Larson, G.; Oldfors, A.; Macao, 

B. Hereditary Myopathy with Early Respiratory Failure Is Associated with 

Misfolding of the Titin Fibronectin III 119 Subdomain. Neuromuscul. Disord. 

2014, 24 (5), 373–379. https://doi.org/10.1016/j.nmd.2014.02.003. 

(91)  Best, R. B.; Clarke, J. What Can Atomic Force Microscopy Tell Us about Protein 

Folding? Chem. Commun. 2002, No. 3, 183–192. 

https://doi.org/10.1039/b108159b. 

(92)  Tych, K. M.; Hughes, M. L.; Bourke, J.; Taniguchi, Y.; Kawakami, M.; 

Brockwell, D. J.; Dougan, L. Optimizing the Calculation of Energy Landscape 

Parameters from Single-Molecule Protein Unfolding Experiments. Phys. Rev. E 

Stat. Nonlinear, Soft Matter Phys. 2015, 91 (1), 012710-012719 (10). 

https://doi.org/10.1103/PhysRevE.91.012710. 

(93)  Bell, G. Models for the Specific Adhesion of Cells to Cells. Science (80-. ). 1978, 

200 (4342), 618–627. https://doi.org/10.1126/science.347575. 

(94)  Evans, E.; Ritchie, K. Dynamic Strength of Molecular Adhesion Bonds. 

Biophys. J. 1997, 72 (4), 1541–1555. https://doi.org/10.1016/S0006-

3495(97)78802-7. 

(95)  Yu-Shiu Lo; Ying-Jie Zhu, A.; Thomas P. Beebe, J. . Loading-Rate Dependence 

of Individual Ligand−Receptor Bond-Rupture Forces Studied by Atomic Force 

Microscopy. Langmuir 2001, 17, 3741–3748. 

https://doi.org/10.1021/LA001569G. 

(96)  Noy, A.; Friddle, R. W. Practical Single Molecule Force Spectroscopy: How to 

Determine Fundamental Thermodynamic Parameters of Intermolecular Bonds 



 135 

with an Atomic Force Microscope. Methods 2013, 60 (2), 142–150. 

https://doi.org/10.1016/J.YMETH.2013.03.014. 

(97)  Hummer, G.; Szabo, A. Kinetics from Nonequilibrium Single-Molecule Pulling 

Experiments. Biophys. J. 2003, 85 (1), 5–15. https://doi.org/10.1016/S0006-

3495(03)74449-X. 

(98)  Heymann, B.; Grubmüller, H. Dynamic Force Spectroscopy of Molecular 

Adhesion Bonds; 2000. 

(99)  Brockwell, D. J.; Beddard, G. S.; Clarkson, J.; Zinober, R. C.; Blake, A. W.; 

Trinick, J.; Olmsted, P. D.; Smith, D. A.; Radford, S. E. The Effect of Core 

Destabilization on the Mechanical Resistance of I27. Biophys. J. 2002, 83 (1), 

458–472. https://doi.org/10.1016/S0006-3495(02)75182-5. 

(100)  Satō, A. Introduction to Practice of Molecular Simulation : Molecular 

Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann, Dissipative 

Particle Dynamics; Elsevier: London, 2011. 

(101)  Rojnuckarin, A.; Kim, S.; Subramaniam, S. Brownian Dynamics Simulations of 

Protein Folding: Access to Milliseconds Time Scale and Beyond. Proc. Natl. 

Acad. Sci. U. S. A. 1998, 95 (8), 4288–4292. 

https://doi.org/10.1073/pnas.95.8.4288. 

(102)  Marszalek, P. E.; Lu, H.; Li, H.; Carrion-Vazquez, M.; Oberhauser, A. F.; 

Schulten, K.; Fernandez, J. M. Mechanical Unfolding Intermediates in Titin 

Modules. Nature 1999, 402 (6757), 100–103. https://doi.org/10.1038/47083. 

(103)  Crampton, N.; Brockwell, D. J. Unravelling the Design Principles for Single 

Protein Mechanical Strength. Curr. Opin. Struct. Biol. 2010, 20 (4), 508–517. 

https://doi.org/10.1016/j.sbi.2010.05.005. 

(104)  Brockwell, D. J.; Beddard, G. S.; Paci, E.; West, D. K.; Olmsted, P. D.; Smith, 

D. A.; Radford, S. E. Mechanically Unfolding the Small, Topologically Simple 

Protein L. Biophys. J. 2005, 89 (1), 506–519. 

https://doi.org/10.1529/biophysj.105.061465. 

(105)  Strzelecki, J.; Mikulska, K.; Lekka, M.; Kulik, A.; Balter, A.; Nowak, W. AFM 

Force Spectroscopy and Steered Molecular Dynamics Simulation of Protein 

Contactin 4; 2009; Vol. 116. 

(106)  Lu, H.; Schulten, K. The Key Event in Force-Induced Unfolding of Titin’s 

Immunoglobulin Domains. Biophys. J. 2000, 79, 51–65. 

(107)  Lu, H.; Schulten, K. Steered Molecular Dynamics Simulations of Force-Induced 



 136 

Protein Domain Unfolding. Proteins Struct. Funct. Genet. 1999, 35 (4), 453–

463. https://doi.org/10.1002/(SICI)1097-0134(19990601)35:4<453::AID-

PROT9>3.0.CO;2-M. 

(108)  Lu, H.; Isralewitz, B.; Krammer, A.; Vogel, V.; Schulten, K. Unfolding of Titin 

Immunoglobulin Domains by Steered Molecular Dynamics Simulation. 

Biophys. J. 1998, 75 (2), 662–671. https://doi.org/10.1016/S0006-

3495(98)77556-3. 

(109)  Lee, E. H.; Hsin, J.; Sotomayor, M.; Comellas, G.; Schulten, K. Discovery 

Through the Computational Microscope. Structure 2009, 17 (10), 1295–1306. 

https://doi.org/10.1016/J.STR.2009.09.001. 

(110)  Lazaridis, T.; Karplus, M. Effective Energy Function for Proteins in Solution. 

https://doi.org/10.1002/(SICI)1097-0134(19990501)35:2. 

(111)  Friddle, R. W.; Noy, A.; De Yoreo, J. J. Interpreting the Widespread Nonlinear 

Force Spectra of Intermolecular Bonds. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 

(34), 13573–13578. https://doi.org/10.1073/pnas.1202946109. 

(112)  Gao, M.; Wilmanns, M.; Schulten, K. Steered Molecular Dynamics Studies of 

Titin I1 Domain Unfolding; 2002. 

(113)  Balsera, M.; Stepaniants, S.; Izrailev, S.; Oono, Y.; Schulten, K. Reconstructing 

Potential Energy Functions from Simulated Force-Induced Unbinding 

Processes. Biophys. J. 1997, 73 (3), 1281–1287. https://doi.org/10.1016/S0006-

3495(97)78161-X. 

(114)  Dudko, O. K.; Hummer, G.; Szabo, A. Intrinsic Rates and Activation Free 

Energies from Single-Molecule Pulling Experiments. 2006. 

https://doi.org/10.1103/PhysRevLett.96.108101. 

(115)  Nunes, J. M.; Hensen, U.; Ge, L.; Lipinsky, M.; Helenius, J.; Grubmüller, H.; 

Muller, D. J. A “Force Buffer” Protecting Immunoglobulin Titin. Angew. 

Chemie - Int. Ed. 2010, 49 (20), 3528–3531. 

https://doi.org/10.1002/ANIE.200906388. 

(116)  O’Connor, M.; Deeks, H. M.; Dawn, E.; Metatla, O.; Roudaut, A.; Sutton, M.; 

Thomas, L. M.; Glowacki, B. R.; Sage, R.; Tew, P.; et al. Sampling Molecular 

Conformations and Dynamics in a Multiuser Virtual Reality Framework. Sci. 

Adv. 2018, 4 (6), eaat2731. 

(117)  Narumi, T.; Kameoka, S.; Taiji, M.; Yasuoka, K. Accelerating Molecular 

Dynamics Simulations on PlayStation 3 Platform Using Virtual-GRAPE 



 137 

Programming Model. SIAM J. Sci. Comput. 2008, 30 (6), 3108–3125. 

https://doi.org/10.1137/070692054. 

(118)  Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. 

Mol. Graph. 1996, 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-

5. 

(119)  Schroeder, D. V. Interactive Molecular Dynamics. J. Phys 2015, 83 (3), 210–

218. https://doi.org/10.1119/1.4901185. 

(120)  Grayson, P.; Tajkhorshid, E.; Schulten, K. Mechanisms of Selectivity in 

Channels and Enzymes Studied with Interactive Molecular Dynamics. Biophys. 

J. 2003, 85 (1), 36–48. https://doi.org/10.1016/S0006-3495(03)74452-X. 

(121)  Dreher, M.; Piuzzi, M.; Turki, A.; Chavent, M.; Baaden, M.; Férey, N.; Limet, 

S.; Raffin, B.; Robert, S. Interactive Molecular Dynamics: Scaling up to Large 

Systems. In Procedia Computer Science; Elsevier B.V., 2013; Vol. 18, pp 20–

29. https://doi.org/10.1016/j.procs.2013.05.165. 

(122)  Cassidy, K. C.; Šefčík, J.; Raghav, Y.; Chang, A.; Durrant, J. D. ProteinVR: 

Web-Based Molecular Visualization in Virtual Reality. PLOS Comput. Biol. 

2020, 16 (3), e1007747. https://doi.org/10.1371/journal.pcbi.1007747. 

(123)  Goddard, T. D.; Brilliant, A. A.; Skillman, T. L.; Vergenz, S.; Tyrwhitt-Drake, 

J.; Meng, E. C.; Ferrin, T. E. Molecular Visualization on the Holodeck. Journal 

of Molecular Biology. Academic Press October 2018, pp 3982–3996. 

https://doi.org/10.1016/j.jmb.2018.06.040. 

(124)  Anderson, A.; Weng, Z. VRDD: Applying Virtual Reality Visualization to 

Protein Docking and Design. J. Mol. Graph. Model. 1999, 17 (3–4), 180–186. 

https://doi.org/10.1016/S1093-3263(99)00029-7. 

(125)  Juárez-Jiménez, J.; Tew, P.; o’connor, M.; Llabres, S.; Sage, R.; Glowacki, D.; 

Michel, J. A Virtual Reality Ensemble Molecular Dynamics Workflow to Study 

Complex Conformational Changes in Proteins. 2020. 

https://doi.org/10.26434/CHEMRXIV.11833470.V2. 

(126)  Férey, N.; Nelson, J.; Martin, C.; Picinali, L.; Bouyer, G.; Tek, A.; Bourdot, P.; 

Burkhardt, J. M.; Katz, B. F. G.; Ammi, M.; et al. Multisensory VR Interaction 

for Protein-Docking in the CoRSAIRe Project. Virtual Real. 2009, 13 (4), 273–

293. https://doi.org/10.1007/s10055-009-0136-z. 

(127)  Doblack, B. N.; Allis, T.; Dávila, L. P. Novel 3D/VR Interactive Environment 

for MD Simulations, Visualization and Analysis. J. Vis. Exp. 2014, No. 94. 



 138 

https://doi.org/10.3791/51384. 

(128)  O’connor, M. B.; Bennie, S. J.; Deeks, H. M.; Jamieson-Binnie, A.; Jones, A. J.; 

Shannon, R. J.; Walters, R.; Mitchell, T. J.; Mulholland, A. J.; Glowacki, D. R. 

Interactive Molecular Dynamics in Virtual Reality from Quantum Chemistry to 

Drug Binding: An Open-Source Multi-Person Framework; American Institute 

of Physics Inc., 2019; Vol. 150. https://doi.org/10.1063/1.5092590. 

(129)  O’Connor, M. B.; Bennie, S. J.; Deeks, H. M.; Jamieson-Binnie, A.; Jones, A. 

J.; Shannon, R. J.; Walters, R. K.; Mitchell, T. J.; Mulholland, A. J.; Glowacki, 

D. R.; et al. Interactive Molecular Dynamics in Virtual Reality for Accurate 

Flexible Protein-Ligand Docking. J. Chem. Phys. 2020, 150 (22). 

https://doi.org/10.1371/journal.pone.0228461. 

(130)  Bennie, S. J.; Ranaghan, K. E.; Deeks, H.; Goldsmith, H. E.; O’Connor, M. B.; 

Mulholland, A. J.; Glowacki, D. R. Teaching Enzyme Catalysis Using 

Interactive Molecular Dynamics in Virtual Reality. J. Chem. Educ. 2019, 96 

(11), 2488–2496. https://doi.org/10.1021/acs.jchemed.9b00181. 

(131)  Thomas, L. M.; Deeks, H. M.; Jones, A. J.; Metatla, O.; Glowacki, D. R. Somatic 

Practices for Understanding Real, Imagined, and Virtual Realities. 2019. 

(132)  Amabilino, S.; Bratholm, L. A.; Bennie, S. J.; Vaucher, A. C.; Reiher, M.; 

Glowacki, D. R. Training Neural Nets to Learn Reactive Potential Energy 

Surfaces Using Interactive Quantum Chemistry in Virtual Reality. J. Phys. 

Chem. A 2019, 123 (20), 4486–4499. https://doi.org/10.1021/acs.jpca.9b01006. 

(133)  Arbon, R. E.; Jones, A. J.; Bratholm, L. A.; Mitchell, T.; Glowacki, D. R. 

Sonifying Stochastic Walks on Biomolecular Energy Landscapes; International 

Community for Auditory Display, 2018; pp 232–239. 

https://doi.org/10.21785/icad2018.032. 

(134)  Zinovjev, K.; Tuñón, I. Reaction Coordinates and Transition States in Enzymatic 

Catalysis. Wiley Interdisciplinary Reviews: Computational Molecular Science. 

Blackwell Publishing Inc. January 2018, p 1329. 

https://doi.org/10.1002/wcms.1329. 

(135)  Pérez de Alba Ortíz, A.; Vreede, J.; Ensing, B. The Adaptive Path Collective 

Variable: A Versatile Biasing Approach to Compute the Average Transition Path 

and Free Energy of Molecular Transitions. In Methods in Molecular Biology; 

Humana Press Inc., 2019; Vol. 2022, pp 255–290. https://doi.org/10.1007/978-

1-4939-9608-7_11. 



 139 

(136)  Mandelli, D.; Hirshberg, B.; Parrinello, M. Metadynamics of Paths. Phys. Rev. 

Lett. 2020, 125 (2), 026001. https://doi.org/10.1103/PhysRevLett.125.026001. 

(137)  Bešker, N.; Gervasio, F. L. Using Metadynamics and Path Collective Variables 

to Study Ligand Binding and Induced Conformational Transitions. Methods Mol. 

Biol. 2012, 819, 501–513. https://doi.org/10.1007/978-1-61779-465-0_29. 

(138)  Zinovjev, K.; Tuñón, I. Exploring Chemical Reactivity of Complex Systems 

with Path-Based Coordinates: Role of the Distance Metric. J. Comput. Chem. 

2014, 35 (23), 1672–1681. https://doi.org/10.1002/jcc.23673. 

(139)  Zinovjev, K.; Tuñón, I. Adaptive Finite Temperature String Method in 

Collective Variables. J. Phys. Chem. A 2017, 121 (51), 9764–9772. 

https://doi.org/10.1021/acs.jpca.7b10842. 

(140)  Hare, S. R.; Bratholm, L. A.; Glowacki, D. R.; Carpenter, B. K. Low 

Dimensional Representations along Intrinsic Reaction Coordinates and 

Molecular Dynamics Trajectories Using Interatomic Distance Matrices. Chem. 

Sci. 2019, 10 (43), 9954–9968. https://doi.org/10.1039/c9sc02742d. 

(141)  Jollife, I. T.; Cadima, J. Principal Component Analysis: A Review and Recent 

Developments. Philosophical Transactions of the Royal Society A: 

Mathematical, Physical and Engineering Sciences. Royal Society of London 

April 2016. https://doi.org/10.1098/rsta.2015.0202. 

(142)  Yoo, C. K.; Shahlaei, M. The Applications of PCA in QSAR Studies: A Case 

Study on CCR5 Antagonists. Chem. Biol. Drug Des. 2018, 91 (1), 137–152. 

https://doi.org/10.1111/cbdd.13064. 

(143)  Hemmateenejad, B.; Miri, R.; Elyasi, M. A Segmented Principal Component 

Analysis-Regression Approach to QSAR Study of Peptides. J. Theor. Biol. 2012, 

305, 37–44. https://doi.org/10.1016/j.jtbi.2012.03.028. 

(144)  Liu, C.; Kelley, C. T.; Jakubikova, E. Molecular Dynamics Simulations on 

Relaxed Reduced-Dimensional Potential Energy Surfaces. J. Phys. Chem. A 

2019, 123 (21), 4543–4554. https://doi.org/10.1021/acs.jpca.9b02298. 

(145)  Hille, B. Ion Channels of Excitable Membranes., 3rd Edition.; Sinauer 

Associates: Massachusetts , 2001. 

(146)  Mall, M. A.; Galietta, L. J. V. Targeting Ion Channels in Cystic Fibrosis. J. Cyst. 

Fibros. 2015, 14 (5), 561–570. https://doi.org/10.1016/J.JCF.2015.06.002. 

(147)  Chen, X.; Xue, B.; Wang, J.; Liu, H.; Shi, L.; Xie, J. Potassium Channels: A 

Potential Therapeutic Target for Parkinson’s Disease. Neurosci. Bull. 2018, 34 



 140 

(2), 341–348. https://doi.org/10.1007/s12264-017-0177-3. 

(148)  Titulaer, M. J.; G M Verschuuren, J. J.; Titulaer, M. J.; Lang, B.; G M 

Verschuuren, J. J. Lambert-Eaton Myasthenic Syndrome: From Clinical 

Characteristics to Therapeutic Strategies; 2011; Vol. 10. 

https://doi.org/10.1016/S1474-4422(11)70245-9. 

(149)  Yurkin, S. T.; Wang, Z. Cell Membrane-Derived Nanoparticles: Emerging 

Clinical Opportunities for Targeted Drug Delivery. Nanomedicine (Lond). 2017, 

12 (16), 2007–2019. https://doi.org/10.2217/nnm-2017-0100. 

(150)  Sushnitha, M.; Evangelopoulos, M.; Tasciotti, E.; Taraballi, F. Cell Membrane-

Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory 

Interactions to Therapeutic Applications. Front. Bioeng. Biotechnol. 2020, 8, 

627. https://doi.org/10.3389/fbioe.2020.00627. 

(151)  Chandana Epa, V.; Burden, F. R.; Tassa, C.; Weissleder, R.; Shaw, S.; Winkler, 

D. A. Modeling Biological Activities of Nanoparticles. Nano Lett 2012, 12, 49. 

https://doi.org/10.1021/nl303144k. 

(152)  Casalini, T.; Limongelli, V.; Schmutz, M.; Som, C.; Jordan, O.; Wick, P.; 

Borchard, G.; Perale, G. Molecular Modeling for Nanomaterial-Biology 

Interactions: Opportunities, Challenges, and Perspectives. Front. Bioeng. 

Biotechnol. 2019, 7, 268. https://doi.org/10.3389/fbioe.2019.00268. 

(153)  Almén, M. S.; Nordström, K. J. V; Fredriksson, R.; Schiöth, H. B. Mapping the 

Human Membrane Proteome: A Majority of the Human Membrane Proteins Can 

Be Classified According to Function and Evolutionary Origin. BMC Biol. 2009, 

7 (50). https://doi.org/doi: 10.1186/1741-7007-7-50. 

(154)  Kupfer, L.; Hinrichs, W.; Groschup, M. . Prion Protein Misfolding. Curr. Mol. 

Med. 2009, 9 (7), 826. https://doi.org/10.2174/156652409789105543. 

(155)  Westergard, L.; Christensen, H. M.; Harris, D. A. The Cellular Prion Protein 

(PrPC): Its Physiological Function and Role in Disease. Biochim. Biophys. Acta 

2007, 1772 (6), 629. https://doi.org/10.1016/J.BBADIS.2007.02.011. 

(156)  Wulf, M.-A.; Senatore, A.; Aguzzi, A. The Biological Function of the Cellular 

Prion Protein: An Update. BMC Biol. 2017 151 2017, 15 (1), 1–13. 

https://doi.org/10.1186/S12915-017-0375-5. 

(157)  Ma, J.; Wang, F. Prion Disease and the ‘Protein-Only Hypothesis.’ Essays 

Biochem. 2014, 56 (1), 181. https://doi.org/10.1042/BSE0560181. 

(158)  Lua, R. C.; Grosberg, A. Y. Statistics of Knots, Geometry of Conformations, and 



 141 

Evolution of Proteins. PLoS Comput. Biol. 2006, 2 (5), e45. 

https://doi.org/10.1371/journal.pcbi.0020045. 

(159)  Jamroz, M.; Niemyska, W.; Rawdon, E. J.; Stasiak, A.; Millett, K. C.; 

Sułkowski, P.; Sulkowska, J. I. KnotProt: A Database of Proteins with Knots and 

Slipknots. Nucleic Acids Res. 2015, 43 (D1), D306–D314. 

https://doi.org/10.1093/nar/gku1059. 

(160)  Faísca, P. F. N. Knotted Proteins: A Tangled Tale of Structural Biology. Comput. 

Struct. Biotechnol. J. 2015, 13, 459–468. 

https://doi.org/10.1016/J.CSBJ.2015.08.003. 

(161)  Nureki, O.; Watanabe, K.; Fukai, S.; Ishii, R.; Endo, Y.; Hori, H.; Yokoyama, S. 

Deep Knot Structure for Construction of Active Site and Cofactor Binding Site 

of TRNA Modification Enzyme. Structure 2004, 12 (4), 593–602. 

https://doi.org/10.1016/J.STR.2004.03.003. 

(162)  Alam, M. T.; Yamada, T.; Carlsson, U.; Ikai, A. The Importance of Being 

Knotted: Effects of the C-Terminal Knot Structure on Enzymatic and 

Mechanical Properties of Bovine Carbonic Anhydrase II. FEBS Lett. 2002, 519 

(1–3), 35–40. https://doi.org/10.1016/S0014-5793(02)02693-5. 

(163)  Shacham, T.; Sharma, N.; Lederkremer, G. Z. Protein Misfolding and ER Stress 

in Huntington’s Disease. Front. Mol. Biosci. 2019, 6, 20. 

https://doi.org/10.3389/fmolb.2019.00020. 

(164)  Mroczko, B.; Groblewska, M.; Litman-Zawadzka, A. The Role of Protein 

Misfolding and Tau Oligomers (TauOs) in Alzheimer’s Disease (AD). Int. J. 

Mol. Sci. 2019, 20 (19). https://doi.org/10.3390/ijms20194661. 

(165)  Hammond, T. C.; Xing, X.; Wang, C.; Ma, D.; Nho, K.; Crane, P. K.; Elahi, F.; 

Ziegler, D. A.; Liang, G.; Cheng, Q.; et al. β-Amyloid and Tau Drive Early 

Alzheimer’s Disease Decline While Glucose Hypometabolism Drives Late 

Decline. Commun. Biol. 2020, 3 (1), 352. https://doi.org/10.1038/s42003-020-

1079-x. 

(166)  Hallinan, G. I.; Vargas-Caballero, M.; West, J.; Deinhardt, K. Tau Misfolding 

Efficiently Propagates between Individual Intact Hippocampal Neurons. J. 

Neurosci. 2019, 39 (48), 9623–9632. 

https://doi.org/10.1523/JNEUROSCI.1590-19.2019. 

(167)  Mapplebeck, S.; Booth, J.; Shalashilin, D. Simulation of Protein Pulling 

Dynamics on Second Time Scale with Boxed Molecular Dynamics. J. Chem. 



 142 

Phys. 2021, 155 (8), 085101. https://doi.org/10.1063/5.0059321. 

(168)  Booth, J.; Vazquez, S.; Martinez-Nunez, E.; Marks, A.; Rodgers, J.; Glowacki, 

D. R.; Shalashilin, D. V. Recent Applications of Boxed Molecular Dynamics: A 

Simple Multiscale Technique for Atomistic Simulations. Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences. Royal Society August 2014. https://doi.org/10.1098/rsta.2013.0384. 

(169)  Lin, M. M.; Zewail, A. H. Hydrophobic Forces and the Length Limit of Foldable 

Protein Domains. Proc. Natl. Acad. Sci. 2012, 109 (25), 9851–9856. 

https://doi.org/10.1073/PNAS.1207382109. 

 


	Chapter 1: Molecular Dynamics
	1.1 Introduction
	1.2 Theory
	1.3 Molecular Mechanics
	1.4 Reaction Coordinates
	1.5 The Rare Event Problem
	1.6 Addressing the Long Timescale Problem
	1.6.1 Temperature Based Methods
	1.6.1.1 Replica Exchange

	1.6.2 Potential Energy Biasing methods
	1.6.2.1 Umbrella Sampling

	1.6.3 Reactive Flux Methods
	1.6.3.1 Milestoning



	Chapter 2: Boxed Molecular Dynamics
	2.1 Accelerated Molecular Dynamics
	2.2 The Boxed Molecular Dynamics Algorithm
	2.2.1 General method for conducting a BXD simulation
	2.2.2 Decorrelation and Ergodicity in BXD
	2.2.2.1 Decorrelation
	2.2.2.2 Ergodicity

	2.2.3 Adaptive sampling BXD
	2.2.3.1  Introduction to Adaptive boundary placing
	2.2.3.2 Extending BXD to Multiple Dimensions
	2.2.3.3 Boundary Placing in Multidimensional Space
	2.2.3.4  Adaptive BXD runs
	2.2.3.5 Converging BXD runs



	Chapter 3: Atomic Force Microscopy Protein Pulling
	3.1 Protein Structure and Function
	3.2 Experimental Methods
	3.3 Atomic Force Microscopy
	3.3.1 Force Clamp Atomic Force Microscopy
	3.3.2 Velocity Clamp Atomic Force Microscopy
	3.3.2.1 Experimental Trends and Bell’s Model of Unfolding
	3.3.2.2 More advanced models of unfolding
	3.3.2.2.1 Friddle and Noy’s model of unfolding
	3.3.2.2.2 Hummer and Szabo’s microscopic model


	3.3.3 Previous computational studies of AFM protein unfolding


	Chapter 4: Simulating Atomic Force Microscopy with Boxed Molecular Dynamics
	4.1 Pulling at Slow Velocities with BXD
	4.1.1 Method of obtaining rate constants
	4.1.2 Results using rate constants obtained from the original BXD simulations

	4.2 Modifications to Better Model AFM
	4.2.1 Modifications to the original PMF
	4.2.2 Accounting for cantilever dynamics

	4.3 Results and Discussion
	4.3.1 Simulations at all timescales reproduced the characteristic sawtooth shape of AFM force-extension profiles
	4.3.2 The unfolding kinetics changes with pulling velocity
	4.3.3 At the slowest pulling velocities unfolding force depends only on the cantilever stiffness before transitioning to a linear dependence on velocity as higher ones are used
	4.3.4 The use of PMF2 allows for a better fit to experiment

	4.4 Conclusions
	4.5 Future work

	Chapter 5: Sampling trajectories from virtual reality
	5.1 Introduction and Motivation
	5.2 Simulation method
	5.2.1 The iMD-VR to BXD pipeline seen in ChemDyME
	5.2.2 The iMD-VR trajectory
	5.2.3 Dimensionality Reduction / Collective Variable
	5.2.4 Adaptive and Converging runs
	5.2.5 Progress metric
	5.2.5.1 “Path based” modifications to the BXD method
	5.2.5.2 The “path” as a progress metric


	5.3 Results
	5.3.1 Nanotube
	5.3.1.1 Background and Motivation
	5.3.1.2 Method
	5.3.1.3 Results and Discussion

	5.3.2 Helicine
	5.3.2.1 Background and motivation
	5.3.2.2 Method
	5.3.2.3 Results and discussions

	5.3.3 40 Alanine
	5.3.3.1 Background and motivation
	5.3.3.2 System setup
	5.3.3.3 Results and discussion


	5.4 Conclusions
	5.5 Future work

	Chapter 6: Further validation of ChemDyME through adaptive sampling of I27
	6.1 Introduction
	6.2 Method
	6.3 Results and Discussion
	6.4 Conclusions
	6.5 Future work

	Chapter 7: Conclusions and outlook

