
Automated Classification and Repair of
Presentation Failures in Responsive Web Pages

Ibrahim Althomali
Supervisor:

Professor Phil McMinn

The University of Sheffield
Faculty of Engineering

Department of Computer Science

MAY 2022

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Abstract

Testing is an important part of software engineering that is employed while devel-
oping the layout of a responsively designed web page. This type of design pro-
duces a layout that aims to pleasantly responds to the available width within any
browser window by rearranging the layout along the way. With a large number
of possible screen sizes that a browser may conform to, from mobile phones to
large desktop monitors, manually testing the layout for presentation failures can
be a time-consuming and error-prone task. With help from the ReDeCheck tool
or its re-implementation in Layout DR, the developer can automatically test the
web page for five type of presentation failures known as Responsive Layout Failures.
Even though ReDeCheck alleviates some of the burdens, the developer must still
manually investigate the reported failures and classify them as either a real visi-
ble failure that will require a repair or as something that can be ignored. Since
the detection phase of the tool uses the underlying structure of the page to infer
failures, it can report failures in the structure that are not visible in the rendered
page, known as Non-Observable Issues. Finally, after filtering out the real failures
the developer must now investigate the root cause and manually repair the layout
as fast as possible.

Since any successful software, especially a web page, is continuously updated and
improved, there is a never-ending process of testing, investigating the findings of
these tests, and finally repairing any issues that are found. In this thesis, I propose
and evaluate new ways to further aid the developer, of a responsively designed
web page, in this process. This is by (1) automating the classification of three
failure types that are known to report non-observable issues, (2) extending it to
classify all five type of failures and I reassess the approach on additional subjects,
and (3) automating the patch generation process to quickly repair any of the five
type of failures. The benefits of my research include a further reduction in the time
dedicated to testing for presentation failures, reducing the time needed to repair
the failures, and reducing the chance for human-made errors. Thus, increasing the
adoption and retention of automated means for testing and repairing the web page.

The research that makes up this thesis concluded that my proposed classifica-
tion approach achieved a high agreement with the human-made alternative. The
findings also showed that for any given failure, the layout can always be repaired
automatically. In many cases, up to two alternative patches that successfully remove
the failure can be generated using my automated repair technique. In addition, I
identified multiple opportunities for future research in this domain.

ii

Dedicated to my mother Muzinah, my father Mohammad, and my whole family.
You are my prosperity.

Acknowledgements

First and foremost, I acknowledge Allah (The proper name of God in Arabic) for
his mercy on me, his never-ending sustenance, and generosity that no gratitude or
act of worship can satisfy. Bear witness, that I follow Allah’s message to his final
messenger, Mohammad, the same message carried by all the messengers that came
before him “that there is no god but I; therefore worship and serve Me.” [92]

After God, the most deserving acknowledgement is to my supervisor without
whom this thesis would not be, professor Phil McMinn. Thanks for seeing my
potential, recommending this topic, and nurturing the research that makes up my
thesis. Then I would like to thank Dr Gregory Kapfhammer for meeting with me
on a weekly bases, giving me feedback on my research, and collaborating with us to
get the work published. In line, I would like to thank my previous graduate-level
advisors and teachers, Dr Mark Grechanik and professor Jianwei Niu, who had a
great impact on me and my interest in the area of software testing. I thank them
for their inspiration and support during the years I spent learning under them.

My acknowledgements would not be complete without recognizing the impact
that my friends and colleagues, in the Software Verification and Testing lab at
the University of Sheffield, had on my PhD journey. These are my brothers in
arms: Nasser Albunian, Abdullah Alsharif, Islam Elgendy, John Michael Foster,
George O’Brien, Benjamin Clegg, and David Paterson. Thanks for sharing your
wealth of knowledge, your encouragement, and for making the lab and my life more
enjoyable. Moreover, I equally extend the same appreciation for the support and
knowledge that I received from my friends outside the lab: Bader Alotaibi, Abdullah
Alqahtani, Abdulmonem Alshahrani, and Fahad Algorain. Finally, I also thank
Duhaiman Alduhaiman and Hamad Almuqari for their friendship and invaluable
training during my time in the industry.

I am delighted to also acknowledge the roots of my happiness during this journey,
my sons Mohammad and Abdullah. Furthermore, I share my appreciation for their
mother, my wife Arwa, who stood by my side along the way. My sincere gratitude
also goes to my brothers and sister, Omar, Khalid, and Maryam for their unyielding
support that underpins my life. Finally, I acknowledge and appreciate the financial
support that I received from my employer Taif University through the Ministry of
Education in Saudi Arabia.

iv

Declaration

I, the author, confirm that the Thesis is my own work. I am aware of the University’s
Guidance on the Use of Unfair Means (www.sheffield.ac.uk/ssid/unfair-means). This
work has not been previously presented for an award at this, or any other, university.

Publications

Various pieces of research presented in this thesis have been previously published in
the following peer-reviewed venues:

1. Ibrahim Althomali, Gregory M. Kapfhammer, and Phil McMinn. “Automatic
Visual Verification of Layout Failures in Responsively Designed Web Pages.”
In: International Conference on Software Testing, Verification and Validation
(ICST 2019). 1

2. Ibrahim Althomali, Gregory M. Kapfhammer, and Phil McMinn. “Automated
Visual Classification of DOM-based Presentation Failure Reports for Respon-
sive Web Pages.” In: Software Testing, Verification and Reliability (STVR
2021).

3. Ibrahim Althomali, Gregory M. Kapfhammer, and Phil McMinn. “Automated
Repair of Responsive Web Page Layouts.” In: International Conference on
Software Testing, Verification and Validation (ICST 2022).

1Awarded IEEE distinguished paper award.

v

Contents

1 Introduction 1
1.1 Responsive Web Design . 2
1.2 Motivating the Research . 4
1.3 Thesis Objectives . 5
1.4 Thesis Structure and Contributions 6

2 Literature Review 8
2.1 Software Testing . 8
2.2 Software Repair . 11

2.2.1 Fault Localization . 14
2.2.2 Automated Program Repair 16

2.3 The Web . 19
2.3.1 Developing a Web Page . 20

2.4 Testing Web Pages . 22
2.4.1 Cross-Browser Testing . 24
2.4.2 Responsive Design Testing . 29
2.4.3 Regression Testing . 32
2.4.4 Internationalization Testing 34
2.4.5 General Layout Testing . 35

2.5 Repairing Web Pages . 36
2.5.1 Repairing Cross-Browser Failures 37
2.5.2 Repairing Internationalization Failures 38
2.5.3 Repairing Mobile-Friendly Issues 41
2.5.4 Generic Layout Repair . 44

2.6 Concluding Remarks . 46

3 Classifying Non-Observable Issues in Layouts 47

vi

CONTENTS

3.1 Motivating the Research . 48
3.2 Detection Prior to Classification . 50
3.3 Classifying NOI Failures . 52

3.3.1 Summary of Approach . 52
3.3.2 Classifying Presentation Failures 52
3.3.3 Identifying the Areas of Concern (AOCs) 53
3.3.4 Analysing the Areas of Concern 55

3.4 Empirical Evaluation . 58
3.4.1 Design of Experiments . 58
3.4.2 Results of the Experiments . 61
3.4.3 Discussion . 71

3.5 Concluding Remarks . 72

4 Classifying Observable Failures and Reassessing Automated Clas-
sification 73
4.1 Motivating the Research . 74
4.2 Detection Prior to Classification . 75
4.3 Classifying Wrapping and Small-Range Failures 79

4.3.1 Summary of Approach . 79
4.3.2 Classifying the Failure Reports 80

4.4 Empirical Evaluation . 86
4.4.1 Design of Experiments . 87
4.4.2 Results of Experiments . 93
4.4.3 Discussion . 115

4.5 Concluding Remarks . 116

5 Repairing Presentation Failures 119
5.1 Motivating the Research . 120
5.2 Detecting Failures . 121

5.2.1 Element Collision . 122
5.2.2 Element Protrusion . 124
5.2.3 Viewport Protrusion . 125
5.2.4 Element Wrapping . 125
5.2.5 Small-Range . 126

5.3 Repairing Failures . 127
5.3.1 Summary of Approach . 127
5.3.2 DOM Failure Assessment . 128

vii

CONTENTS

5.3.3 Patch Sourcing and Application 130
5.3.4 Repair Assessment . 133

5.4 Empirical Evaluation . 135
5.4.1 Design of Experiments . 136
5.4.2 Results of Experiments . 142
5.4.3 Discussion . 151

5.5 Concluding Remarks . 152

6 Conclusions and Future Research 153
6.1 Summary of Research . 153

6.1.1 Initial Point of Research . 154
6.1.2 Classifying Non-Observable Failures (Chapter 3) 154
6.1.3 Classifying Observable Failures (Chapter 4) 155
6.1.4 Reassessing Automated Classifications (Chapter 4) 155
6.1.5 Repairing Presentation Failures (Chapter 5) 156

6.2 Future Research . 157
6.2.1 Improving Detection of Failures 157
6.2.2 Improving Classification of Failures 159
6.2.3 Improving Repair of Failures 160

6.3 Final Remarks . 162

viii

List of Tables

3.1 Subject web page details . 59
3.2 Manual classification . 62
3.3 Minimum viewport classifications . 63
3.4 Middle viewport classifications . 67
3.5 Maximum viewport classifications . 68

4.1 Experimental subject web pages. 89
4.2 Verve’s results for wrapping failures from the initial subjects. 94
4.3 The manual classifications of failure from subject web pages 95
4.4 Results of classifying small-range failures using horizontal referencing 97
4.5 Results of classifying small-range failures using horizontal-plus-vertical

referencing . 98
4.6 Results using the minimum viewport and the additional set of web pages100
4.7 Results using the middle viewport and the additional set of web pages 101
4.8 Results using the maximum viewport and the additional set of web pages103
4.9 Verve’s results for wrapping failures from the additional subjects. . . 104
4.10 Small-range failures with the additional set and horizontal referencing 107
4.11 Small-range failures with the additional set and horizontal-plus-vertical

referencing . 108
4.12 Small-range failures with the fault-injected set and horizontal refer-

encing . 110
4.13 Small-range failures with the fault-injected additional set and horizontal-

plus-vertical referencing . 111
4.14 Prospective vs. retrospective thresholds 112

5.1 Subject web page details . 137
5.2 Automatic wider source-viewport repair results 142
5.3 Failure-free source-viewport . 144

ix

LIST OF TABLES

5.4 Technique introduced failures . 145
5.5 Human study results . 146

x

List of Figures

1.1 Responsive design example . 3
1.2 Devices using the Internet . 4

2.1 An example HTML file to illustrate it’s alignment graph. 27
2.2 An example web page to illustrate an RLG. 30

3.1 Observability of element overlap . 49
3.2 Failure wireframe examples . 51
3.3 Classification process . 53
3.4 Areas of concern . 54
3.5 Misclassified by Viser at minimum 65
3.6 Change classification at middle . 66
3.7 Disagreement of classifications to agreement 69
3.8 Timing box plots . 71

4.1 Viewport protrusion failure snapshots 76
4.2 Element wrapping failure snapshots 77
4.3 Wireframe of a wrapping and small-range failures 78
4.4 Comparing Verve to manual classification 80
4.5 Area of concern for wrapping . 81
4.6 The usage of the horizontal referencing system to determine AOCs . 83
4.7 The usage of the vertical referencing system to determine AOCs . . . 84
4.8 Initial set of subjects with misclassified wrappings 96
4.9 Initial set of subjects with misclassified small-range 99
4.10 Example misclassification of an out of flow element 102
4.11 Additional set of subjects with misclassified wrappings 105
4.12 Example of fault-injected small-range failure 109
4.13 Box plots of Verve’s runtime . 113

xi

LIST OF FIGURES

4.14 Example of fault-injected small-range failure 115
4.15 Example subject containing video . 117

5.1 Layout DR tool overview . 121
5.2 Failure and repair example snapshots 123
5.3 Repair process . 132
5.4 Repair snapshots vs source-viewport snapshots 135
5.5 Human study web page . 139
5.6 Human study MarkText failure 33 . 146
5.7 Human study Bower failure 1 . 147
5.8 Human study ConsumerReports failure 8 148
5.9 Runtime duration . 150

xii

Glossary

Snapshot An image capturing part-of or all the graphical output of a program
in execution that is ready for rendering on the screen.

xiii

1
Introduction

The value and practicality of using a web page are known to billions of people.
Individuals, private organizations, and government bodies all rely on them to be the
default gateway to communicate and interact with the world. A web page is used to
display information, expedite services, and facilitate endless entertainment. Given
the important status of a web page, the developers should organize the page in an
aesthetically pleasing way and strive to make the content easily accessible. Thus,
the presentation of the page should make the content easier to understand and use.

The simplest form of a web page is automatically organized and presented to
the visitor using the default style of the browser. Although this basic page will
display information, it is not enough. The developer must explicitly add styling
directives to colour, shape, and position the content appropriately for a real-world
use case. This involves the use of up to three different languages that markup
the content, style the page, and make it an interactive experience. Although there
is some complexity involved, the developer can make the page look desirable and
meet visitors’ expectations. This complexity increases when the developer takes into
consideration how the page will be presented on devices with different screen sizes.

Since devices with varying screen sizes are capable of accessing the page, the
challenge is to present the content in a way that does not require the visitor to
scroll the page horizontally regardless of the screen size. This should improve the
experience of using the web page because it is simpler to scroll vertically for more
content instead of scrolling in both directions. Moreover, the text and graphics
should be rendered appropriately as well. The user should not have to zoom in and
out of the page to properly view the content. Boiled down, the content presented
to the visitor should be based on the available width of the browser. To the point,
the page should respond to a smaller screen size of mobile phones differently than
for a large screen attached to a desktop.

Historically, a web page was developed for larger screen monitors but with the
release of the iPhone in 2007, developers had to take into consideration the increased
traffic coming from these smaller devices [90]. The first solution developers adopted
early on was to design and maintain two separate web pages, one for mobile devices
and the other for larger screen sizes [70]. To achieve this, the traffic coming from
mobile devices can be automatically diverted to a page designed for mobile phones.
Alternatively, the developer can provide a link for visitors to manually click on to

1

1.1. RESPONSIVE WEB DESIGN

go to the mobile version of the page. Since the release of the iPhone, this solution
has become impractical due to the release of many more devices with varying screen
sizes. Nevertheless, a better solution called Responsive Web Design (RWD) has
been adopted since then.

1.1 Responsive Web Design

As the technologies behind a web page continue to advance, developers are able
to create better web pages. Once the foundational technology became available,
responsive web design was coined by Ethan Marcotte in 2010 [69]. This design is
able to produce pages that are suitable for presentation on any device. Thus, the
page is able to scale and rearrange the content depending on the available display
space. This arrangement of the content is referred to as the layout of the page. A
responsively designed web page can be pleasantly presented on any devices available
in the market today and on any other one released in the future.

The key feature enabling responsive design is a styling directive called media
queries [70, 90]. These are media rules that allow a developer to ask the browser if
the size available for display meets some criteria. Furthermore, the rule embodies
more styling directives that are automatically triggered when the browser answers
yes to the display criteria. To make this rule work in a responsive manner, the
developer starts with a default layout based on the expected traffic. For example,
the default presentation of the page can for mobile devices if the developer expects
the majority of traffic to come from smaller devices. Then, media queries are added
to change the layout for larger devices. There can be multiple rules essentially acting
as breakpoints that rearrange the layout to better utilize the space available.

The second ingredient of responsive web design is flexibility [90]. To successfully
make a page responsive, the elements holding the content of the page will need to
scale in between the breakpoints introduced using media queries to rearrange the
elements. More precisely, the flexibility should be based on the available horizontal
display space within the browser. This means that elements should be styled with
flexible units which may extend to text size. Moreover, images as individual elements
or as part of the background are also expected to conform or change at certain
breakpoints.

Many frameworks are available to assist the developer in creating a responsive
web page. These include Bootstrap [13], Foundation [118], and Skeleton [110] just
to name a few. Figure 1.1 showcases the Skeleton framework changing the layout in
response to the available horizontal space. In part (a), a browser of a mobile phone
that is 320 pixels wide visits the Skeleton page. Using any device of this size, the
elements vertically align on top of each other due to the lack of horizontal space.
In contrast, a browser window of a computer that is 1024 pixels wide has plenty of
horizontal space and thus the elements can be positioned next to each other as seen
in part (b) of the figure. For a more content-rich layout, the page will need more
breakpoints between 320 and 1024 pixels and beyond this range.

Whether the developer is using a framework or a custom-made design, there
is a chance that the page will be presented to the visitor in an undesirable way
that is contrary to expectations and contrary to the directives set by the developer.

2

1.1. RESPONSIVE WEB DESIGN

s

Browser

Subject://Skeleton

320 pixels

(a) Mobile phone.

Browser

Subject://Skeleton

1024 pixels

(b) The layout for a desktop computers or a laptop.

Figure 1.1: Presents an example of a responsively designed page using two devices,
the mobile phone in (a) and the desktop in (b). These images are from the Skeleton
CSS framework for responsive design at http://getskeleton.com/.

This is known as a presentation failure [66]. As with any other piece of software,
a responsively designed web page must be tested to see how it will be presented
using different devices. Instead of purchasing every device available on the mar-
ket, the layout of the page can be tested through browser window resizing or using
browser built-in tools [90]. By manually resizing the browser window, the developer
can investigate how the layout conforms to different window sizes. Alternatively, a
browser’s built-in feature for inspecting a responsive layout can be used to manually
test the responsiveness of the page. They provide additional helpful features like
specifying the exact size of the canvas where the browser will render the layout,
referred to as the viewport size. The viewport size can also be set to known device
sizes which can make testing easier. This approach is superior to browser window re-
sizing because the viewport can be explicitly set and because it allows the developer
to, optionally, see the breakpoints of the layout on a ruler.

An alternative to manually testing a responsive page is to use the state of the art
tool ReDeCheck [124]. This tool can automatically sift through different viewport
widths in order to build a graph-based model of the page. This graph encodes the
relative position of elements from all the viewports tested by the tool. Using this
model and multiple specialized algorithms, the tool can automatically recognize an
anomalous position of elements over certain viewports and report five different type
of presentation failures specific to responsive web pages called Responsive Layout
Failures (RLFs).

3

1.2. MOTIVATING THE RESEARCH

0%

25%

50%

75%

100%

Feb
 2

01
2

Feb
 2

01
2

Feb
 2

01
3

Feb
 2

01
4

Feb
 2

01
5

Feb
 2

01
6

Feb
 2

01
7

Feb
 2

01
8

Feb
 2

01
9

Feb
 2

02
0

Feb
 2

02
1

Feb
 2

02
2

Feb
 2

02
2

Date

W
eb

 T
ra

ffi
c

Desktop Tablet Mobile

Figure 1.2: Presents the distribution of web traffic among desktops (including
laptops), tablets, and mobile devices. From https://gs.statcounter.com/.

1.2 Motivating the Research

When the traffic started to come from mobile devices, the value of a mobile-friendly
web page was immediately recognized. Visitors not only expected to see a different
version of the page made for the smaller mobile device, one study revealed that
the majority of participants would not purchase if a mobile-friendly version is not
available [36, 46]. Today, over half the web traffic is generated from mobile devices
when compared to larger devices [33]. To illustrate the change over the past ten
years, Figure 1.2 presents the percentage of web traffic broken down to desktops,
tablets, and mobile devices. This data was gathered using 2 million globally posi-
tioned sites based on page views, not unique visitors. It is also worthy to note, that
the “desktop" figures include laptop devices. This data suggests that there is a real
need for pages to handle different devices. Furthermore, a further breakdown based
on screen resolution would only magnify this effect [104].

Responsive web design can meet the demand for web pages that conform to any
device or screen resolution if programmed correctly. Naturally, producing a device-
friendly web page is of little to no use if it fails to present correctly. Therefore,
testing the responsiveness of the page is very critical. Moreover, for web pages that
frequently update the content, frameworks, libraries, or the style of the web page,
testing is a continuous activity. Therefore, automation is the key.

Although the ReDeCheck tool can automatically report failures that are ob-
servable in the presentation of a page, it can also capture structural failures that are
non-observable in the rendered page. The cause of this problem is that ReDeCheck
does not use any visual information in its model of the page. Instead, it uses an
interface provided by the browser to determine the visibility and the position of
all elements in the page. To overcome this issue, the developer has to read all the

4

1.3. THESIS OBJECTIVES

reports generated by the tool and investigate each one to prioritise the ones worthy
of attention and repair from the trivial problems. This lack of automation not only
undermines the usefulness of the tool, but it can be a time consuming, error-prone,
and largely subjective task.

Even with the aid of automated testing and further automation of failure classifi-
cation, the developer must still repair the presentation failures. Without the repair,
testing is essentially useless. It is well established that the longer it takes to iden-
tify a failure in software, the higher the cost of repair will be [5]. This is due to the
complexity associated with localizing the fault, correcting it, and distributing the fix
once the software is in production. With some degree of similarity, a live web page
is essentially software in production. Although a presentation failure can be limited
to some viewports within a specific browser, the complexity of repair remains the
same. The modification required to repair the page may be as simple as updating
a single style property or as complex as a redesign of the page [128]. Regardless,
automating the repair can either save on the cost of repairing the failure, save the
credibility of the web page while the failure is being manually localized and repaired,
or both.

The initial point for the research of this thesis begins after the ReDeCheck tool
automatically detected the presentation failures of a web page. Thus, the focus
of all the research is solely on responsively designed web pages. Two components
motivated the research of this thesis. The first is that the ReDeCheck tool does
not automatically classify an observable failure that is worthy of repair. The second
is that the developer can further benefit from automating the repair of the detected
responsive layout failures.

1.3 Thesis Objectives

The goal of the techniques developed and the experiments held for this thesis is to
improve the process of testing a responsibly designed layout and to automate the
repair of any problems found during the testing process. The intention is, to aid in
the development and maintenance of a responsively designed web page by adding
more automation. Given a set of presentation failures automatically detected in a
responsive layout, the first objective of this thesis is to help the developer prioritize
the important failure, worthy of attention and repair, by analysing the layout graph-
ically to automatically classify the reported failures. The second objective of this
thesis is to automatically produce repairs that the developer can use to efficiently
triage the reported failures. Minimally, these patches should buy the developer valu-
able time needed to diagnose the problem and create a customized repair. Therefore,
the two main objectives were...

1. Develop a technique to automate the classification of the five types of presen-
tation failures found in responsively designed web pages.

2. Develop a technique to automate the repair of the five types of presentation
failures found in responsively designed web pages.

5

1.4. THESIS STRUCTURE AND CONTRIBUTIONS

1.4 Thesis Structure and Contributions

In this chapter, I have introduced responsive web design which is the core criteria
for all the subjects investigated in this thesis. Furthermore, I identified the post
automated detection problems that motivated the research of this thesis, these were
the classification and repair of presentation failures. The content of the chapters to
follow are described next.
Chapter 2: Literature Review – presents a review of the literature on the
automated means to detect presentation failures and investigates the automated
means of repairing these failures. The chapter begins with software testing and
program repair in general and then looks at the different types of web pages and
how they are developed. Then, the topic is narrowed down to the testing and repair
of presentation failure in web pages.
Chapter 3: Classifying Non-observable Issues in Layouts – investigates
the usage of knowledge from multiple graphical layers of the layout to classify non-
observable issues. A graphical layer is removed by changing the opacity of certain
elements thus revealing what the elements introduced into the canvas. This approach
targeted three type of responsive layout failures that were associated with non-
observable issues. The key contributions of this chapter are:

1. A technique to automatically classify reports of non-observable issues.

2. An empirical study comparing manual and my automated approaches using
20 web pages which demonstrated that non-observable issues can be classified
automatically and effectively.

Chapter 4: Classifying Observable Failures and Reassessing Automated
Classification – investigates how to automatically classify the other two failure
types associated with only observable failures. For the first of these two failure
types, I extended the graphical layers approach used in Chapter 3 to classify it. The
second failure type required that I develop a new classification approach. For this,
I developed a colour histogram-based comparison approach that uses specialized
dissection of images from the layout with pre-determined thresholds to reach a clas-
sification. In this chapter, I also employed additional subject web pages to reassess
both of my automated classification approaches covering all five failure types. The
key contributions of this chapter are:

1. New algorithms to automatically classify two more failures types reported by
ReDeCheck.

2. An empirical evaluation comparing the automated classifications to the man-
ual ones for the two new failure types. For the evaluation, I used the same
pool of 25 web pages that I drew from the subjects of the previous chapter.
Demonstrating that it is possible to automatically and effectively classify the
two new failure types.

3. An empirical reassessment of the automated classification of all five failure
types over 20 new subject web pages. Demonstrating that the findings from
Chapter 3 and Chapter 4 do extend well onto new subject web pages.

6

1.4. THESIS STRUCTURE AND CONTRIBUTIONS

Chapter 5: Repairing Presentation Failures – presents an approach to au-
tomatically generate up to two CSS patches that are able to remove any of the five
type of failures from a problematic layout. The technique relies on borrowing a
neighbouring layout from a viewport that does not have the failure in order to over-
ride the layout of the problematic viewport. To verify the success of the patches,
the problematic viewport is automatically checked to ensure that it is free from that
failure. The key contributions of this chapter are:

1. A technique to automatically create up to two patches that repair each pre-
sentation failure.

2. An empirical study to evaluate the effectiveness and efficiency of my automated
repair strategy using 31 web pages. Demonstrating that any reported failure
can be automatically repaired.

3. A human study to evaluate alternative repairs against the original subject with
the failure. Demonstrating that humans generally prefer one of the automated
repair options over the original page with the failure.

Chapter 6: Conclusions and Future Research – concludes this thesis and
presents a summary of the techniques developed and evaluated in each chapter,
discloses the known limitations, and provides opportunities for future research.

7

2
Literature Review

As the standards and the underlying technology of the web continue to evolve,
more literature is published to automatically detect and repair the defects that
arise in the layout of a web page. These defects can cause the page to be less
functional, less informative, or less pleasing to the eye. As a result, it may decrease
the credibility [96] of the information and services presented by the page and may
reduce a visitor’s loyalty [31]. In this chapter, I will review of the current state of
knowledge on testing for defects in the presentation of a web page and how they are
automatically repaired.

At the start of my review, in the next section, I will be going over how a piece
of software is generally tested for defects. Then in Section 2.2, I will be going over
how to repair the defects that are detected in software. Then in Section 2.3, I will
be describing what a web page is and how it is developed. This is followed by
Section 2.4 where I describe how the layout of a web page can be tested for defects.
Then in Section 2.5, I will describe how to repair these presentational defects that
are detected in the layout of a web page are repaired. Finally, I give my concluding
remarks in Section 2.6.

2.1 Software Testing

The testing phase of any software is part of a bigger process referred to as software
verification and validation [111]. Both of these processes check that the software
meets the outlined specifications and that the people paying for the software get
the functionality that they expect. These two terms were famously described by
Boehm [12] as two separate questions. First, verification entails asking if the prod-
uct is being developed right? In other words, it ensures that the software meets
the functional and non-functional requirements already written down. Meanwhile,
validation of the software entails asking if the right product is being developed?
Thus, it goes beyond what is written down and attempts to meet the customer’s
real expectations. This is a necessary step because what is written down may not
be what the customer really wants.

Along with software testing, this umbrella process, verification and validation,
also includes software inspection and reviews. These additional processes look into

8

2.1. SOFTWARE TESTING

the system requirements, design models, as well as the source code. What is distinct
about the inspection and review process is that the software does not need to be
executed to verify it. More importantly, software inspection has three advantages
over testing. First, because inspection is a static process, a single inspection can
reveal multiple errors in the system. In contrast, an error can mask other errors
during testing. Secondly, an incomplete system can be verified without incurring
the additional cost of scaffolding code that would be needed to run the incomplete
system for testing. Finally, not only can an inspection reveal defects, it can identify
quality concerns that relate to maintainability, portability, and compliance with
standards.

The benefits of inspecting software are well known as early as the 1986 paper
by Fagan [75]. He reported that up to 60% of errors can be caught by informally
inspecting the software [111]. However, software inspection is not a replacement for
software testing. It is not an ideal process for discovering timing issues, performance
problems, and problems that arise due to unplanned interaction between subsystems.
Therefore, testing for defects is the primary way the industry evaluates software that
is under development [5].

In practice, testing for defects is a mixture of both manual and automated pro-
cesses. When manually testing software, the tester executes the code using input
data that is crafted by a human and compares the output to what the human ex-
pected. Here, a human’s wisdom serves as the test oracle that is able to judge the
correctness of an input-to-output mapping. This type of testing is best suited for
difficult to describe or unknown criteria like discovering unwanted side effects in the
system. Automating these tests by encoding the oracle into a program that can be
executed on demand is a more beneficial approach when a criterion is well defined.
By removing the manual labour, the automated tests can be used during the devel-
opment of the software and easily reused whenever the system is updated without
requiring a human the second time. Moreover, there also exists a body of work
that investigates partially or entirely removing the human from the testing process.
Automating the test oracle can be done implicitly by making assumptions about the
system or explicitly by deriving it from documentation or formal specifications [9].

There are three main keywords used to describe defective software which are
failure, error, and fault [5]. A software failure, is a defect in the behaviour of the
software that is observable externally. In whole, this thesis deals with failures that
are observable in the presentation of a web page. On the other hand, a software
error is an incorrect assignment to the variables in memory that are used by the
software, referred to as the program state. An error is observable internally and
may or may not manifest externally as a failure. Finally, a fault is a design mistake
in the software introduced by a human. Thus, a fault is the root cause of errors
and failures. Another term used frequently and informally to mean a fault, error,
or failure is a software bug. Meanwhile, the process of searching for the root cause
of the defect, the fault, is known as debugging.

A consideration to be made during the development of the software is the testing
stopping criteria. In other words, how much of the code needs to be exercised or
how much of the input space needs to be explored before the software is considered
of good quality. This is called the coverage criteria of testing [5]. This criteria
must be practically achievable. Therefore, it is critical to realize that even for a

9

2.1. SOFTWARE TESTING

small program that takes only three integer variables as input, it is impossible to
test all possible input. Thus the real goal is to determine how to best explore the
input space with minimal overlap. As a result, this should reduce the cost of testing
and improve the quality of the software since the number of tests is not the direct
measure of quality.

The coverage criteria of testing can be based on one of the four abstract cate-
gories: graphs, logic expressions, syntax descriptions, and the input domain. The
most common of the criteria are graphs and more specifically a control flow graph of
the source code [5]. Using this model, a graph is constructed based on the execution
of the code blocks in the source code. A code block is a contiguous set of instructions
that are all executed once the first instruction is executed. These blocks form the
nodes of the graph while how the program control is passed between the blocks form
the edges of the graph. During testing, the development team can decide how best
to cover this graph during testing. For example, they can decide that the test suite
must reach every node in the graph or that all edges are executed or that certain
paths are taken in the graph. Although the coverage criteria are a vital part of
testing, the details of these criteria are not of direct concern to this thesis.

Even though different criteria-based designs for testing exist, a human-based
design is still an important factor in the quality of the software. Using domain-based
knowledge, a human can capture parts of the system that an automated approach
may miss. Therefore, including human-based test designs is important when testing
the extremes of the software, stress testing. This type of testing explores the input
using large and small values, boundary values, invalid values, or generally untypical
input. Where the human has an advantage is when using domain-specific knowledge
and crafting inputs that an automated approach would miss.

While the software is being developed, testing can be broken down into levels
based on functionality. At a micro level, unit testing evaluates the smallest grouping
of related and contiguous program instructions that are called units. At one level
above, module testing evaluates the smallest collection of units that are assembled
in some abstraction (i.e., class or package) or file. At this level, the whole module
is tested in isolation but the interactions between the units that make the module
are also tested. One level above is integration testing which assumes that modules
are working correctly. At this level, the interfaces between modules are evaluated
to ensure different modules communicate as expected on both sides. At a macro
level, system testing evaluates the fully assembled system as a whole against the
specifications. Although there is an overlap at each level, system testing evaluates
all modules together including the ones adopted off the shelf.

After the software is fully developed comes another evaluation of the software
called acceptance testing. This type of testing aims to evaluate if the completed
software meets the original requirements and does what the customer wanted. This
should not be confused to mean that inspection and analysis of customer require-
ments should be delayed until the software is completed. In fact, the longer a bug
goes unnoticed, the harder it is to debug and the more expensive it is to repair. This
relationship between time and cost is referred to as the cost-to-change curve [5]. As
the gap increases between the time the fault is introduced into the system and the
time it is discovered and repaired, so does the cost at an exponential rate. Thus,
a problem in the requirements that are written down in non-executable format can

10

2.2. SOFTWARE REPAIR

be a great liability if discovered only during acceptance testing.
As software development evolved, demand for a faster turnaround from ideas to

artefacts grew. Meanwhile, the liability of mistakes in documentation became less
tolerated. From this evolution came agile software development. Agile methods do
away with the bulk of documentation to favour executable artefacts. To pull this
trade-off successfully, one agile method known as Test-Driven Development (TDD)
uses executable tests as the main way to define the behaviour of the system before
it is implemented. Thus the goal of TDD is to implement code that allows a test to
pass. Although this is a very beneficial approach that puts testing first, it changes
the traditional role of testing from evaluating to defining the software [5]. This
change can negatively impact the quality of the software if it is not considered in
advanced. Since the tests of TDD are biased toward the normal behaviour of the
user and the software, they may miss the testing of abnormal system behaviour.

Regardless of the methodology used to develop the software, the set of tests used
to evaluate the code should grow as the system grows. This test set is referred to
as the test suite. An important role of the test suite is to evaluate the software as
code is added, modified, or removed. This is known as regression testing. This is
especially important when using TDD. The benefits of the test suite reach beyond
the original release of the software, it is also repurposed to assess that the system
still achieves its original functionality with any future releases.

There is also another level of testing that targets the test suite, thus testing the
quality of the tests. This type of testing is referred to as program-based mutation
testing. It starts by purposefully injecting a fault into the program to produce a
mutated version of the program. This is done by changing the valid syntax of the
language in the program into another valid syntax. For example, a program with
the mathematical statement a=x-y can be changed to a=x+y in the mutated version.
To judge the adequacy of the test suite, the same tests are executed on multiple
mutant programs. The more faults that are uncovered in the mutated versions
of the program using the test suite, the better it is considered to be. Since tests
compare the input and output, they are limited to uncovering faults that propagate
into the output as a failure.

An fundamental principle of testing is that testing the software cannot prove
that it is free from failures. Instead, testing is done to show the absence of faults,
errors, and failures that were considered during testing. Overall, the goal of testing
is to reduce the risk of producing low-quality software. An even better goal for
testing is to improve the quality as measured in reliability, safety, maintainability,
security, and efficiency. More importantly, all this emphasis and effort put into
software testing is worthless if the bugs discovered are not repaired.

2.2 Software Repair

With a bug identified in the program, comes the important task of fixing the pro-
gram. While the testing and debugging process can be methodological or ad-hoc,
the actual repair requires good consideration. This is to avoid introducing regression
problems and to maintain overall quality as measured in reliability, safety, maintain-
ability, security, efficiency, and readability. Put elegantly by Butcher [19], “There’s

11

2.2. SOFTWARE REPAIR

more to a good fix than just making the software behave correctly.”
If the bug was found without using the test suite, all tests that executed the

statement with the fault in the code are passing. On the other hand, a new test
case could be the reason for detecting the bug. Regardless of how it was found, the
first step to properly repairing the failure is to know the current state of the test
suite. As in, the developer must identify all the passing and all the non-passing tests.
Then, the developer must modify the existing tests or add new ones so that the test
suite contains at least one non-passing test due to the bug. This is done to show
that a bug exists and that it can be reproduced using a test case. This is especially
important if TDD is used as the method of development. More importantly, the main
job of these non-passing tests is to verify that a change in the program successfully
repaired the bug. Moreover, the changes made to the program must not introduce
any regression issues. This can be measured by verifying that the previously passing
tests do not change over to the set of non-passing tests.

There are two ways of resolving a failure, by repairing the underlying fault or
by making the failure go away [19]. The easier of the two is usually not to over
investigate the source of the problem and do what it takes to suppress the failure.
This is not necessarily an ill-intentioned move to make because there are multiple
powers at play. First, there is time pressure to resolve the bugs in order to satisfy
the business bottom line (i.e., meet key performance indicators or please internal or
external people) or to move to another part of the project that requires implementa-
tion. Furthermore, sometimes the root cause is known but suppressing the failure is
the easier and safer choice given the time available. If the cause extends to multiple
modules of the code or is in the architecture of software, repairing the root cause
might take too long or come at a high risk of introducing compatibility problems
with older versions. Then it might be a good idea to put it off until enough time is
available to fix the root cause of the problem.

The second way to resolve a bug is to analyse the root cause and fix it. A thor-
ough analysis is very important because if the real cause is known, similar failures
can be prevented. Even if the root cause in the code is specific to a small number
of instructions and it will really repair the fault, it may not be the real cause. To
understand the real cause, the developer must investigate how the code ever worked
while it contained the failure and investigate why it was not detected any earlier.
These questions may uncover bigger bugs that need to be addressed like a secu-
rity vulnerability. Otherwise, it may also lead to improvements in the development
process by adopting better testing coverage or better oversight in design.

Sometimes to repair the real cause, the style and readability of some part of
the system needs to be updated. If multiple bugs arise when multiple developers
interact with the same unit, module, or subsystem, this part of the code may re-
quire refactoring. Essentially, refactoring improves the quality of the code without
changing its behaviour. By doing so, developers can better understand the code
and prevent similar failures from happening. It is important to note that repairing
a bug by modifying the code to behave differently should not be done at the same
time as refactoring. Even more importantly, refactoring without test cases is not
refactoring, it is simply hacking [19]. Refactoring requires the presence of tests in
order to verify that the behaviour remains the same after the improvements to the
quality of the code are completed.

12

2.2. SOFTWARE REPAIR

Regardless of how good the development process is or how experienced the de-
velopers are, bugs are to be expected. A clear process must be in place to manage
the tracking of known bugs, classifying the severity of the bug, and how a repair
is finally accepted. First, there should be a database in place that allows for bugs
to be reported and tracked during development and after the software is released.
Assigning a severity level of a bug and the repair priority can be tricky. As the
database grows, newer bug reports will be classified as more severe than they really
are just to put them ahead of the queue for repair [19]. One way to mitigate this
is to have it independently classified and prioritized by someone other than the re-
porter. Finally, to accept a repair, a good strategy is to have the changes reviewed
and signed off by another developer.

Estimating the time required to repair a failure is not very difficult once the
failure is identified. On the other hand, estimating the time needed to debug the
problem is practically impossible to do. This is an important realization if the “no
broken windows” policy is used during development [119]. This policy is derived from
a behavioural observation made on properties like a car or building [131] due to a
sense of abandonment. It was noticed that a property with no windows broken can
survive some time without being vandalized but as soon as one window is broken,
more participants joined in on the vandalization of the property in a very short
amount of time. Of course, developers are hopefully not concerned with crime
encouraging more crime but rather low-quality code or broken code that encourages
more problems down the road. Therefore, the “no broken window” policy is a
good idea but it will come with the added unknown cost of debugging and repair.
Nevertheless, one way to get a good sense of the time needed to debug and repair
is by statistically analysing the time it took to repair older failures [19].

In the real world, there will be broken glasses. But if the bug database is not
stable and continues to grow there are two ways to quickly tackle the problem which
are either through real repairs or suppression based repairs. To really repair the
failures, a special group can meet and find the most severe and dedicate people and
time to repair them immediately. Another way of really repairing the failures is to
bug blitz the out-of-control database [19]. The goal here is to repair as many bugs as
possible with all hands on deck. Using this strategy, the number of bugs repaired is
more important than fixing the more severe bugs. Alternatively, the broken glass can
be resolved by boarding up the windows. This can be done by entirely removing
the segment of code thought to be associated with the failure and scheduling for
its re-implementation. Another form of window boarding is to control as much as
possible of the problematic segment of the code by introducing an interface around
it so that it behaves more appropriately until a proper fix can be made.

The main principle of this section has been that the debugging and repair pro-
cesses are not trivial and automation can play an important role. Due to the time
constraint involved in debugging the failure, suppression of the failure is used in
practice as a fix to buy more time. If automated methods are able to really repair
or suppress the failure, it will surely help the development team manage the bugs
database. One type of automation that aids the developer in the debugging process
is fault localization.

13

2.2. SOFTWARE REPAIR

2.2.1 Fault Localization

Whether a failure is identified while testing the program or unintentionally discov-
ered while using the program, now comes the process of fault localization. Essentially,
this is the act of considering all the instructions that make up the program in order
to narrow them down to a single faulty instruction that caused the failure. Certainly,
there is always a chance that multiple faults are responsible for the program’s fail-
ure. The processing of debugging in this situation is officially known as Multiple
Fault Localization (MFL) [137]. But a more general classification of the existing
fault localizing methods is split into tradition and advanced techniques [129].

The traditional techniques for localizing a fault are intuitive and include logging,
assertions, breakpoints, and profiling. In program logging, manually inserted print
instructions are planted in the program to output certain variables in the program.
By reviewing the logs, the problem is narrowed down to a segment of the code.
Assertions are also used to guard against an incorrect program state. With the
assertions added to the program and the state of the assertion falsified, the program
terminates. The breakpoints (conditional or not) pause the program in certain
states for evaluation and more debugging. Finally, profiling measures the speed
performance or memory usage for specialized debugging like for optimization issues.
It can help narrow down the code to segments that are performing poorly or causing
a memory leak.

More advanced techniques of fault localization are a must for large scale software
where traditional methods would not be as useful. These can be subclassified into
at least seven main categories [129]. These categories can be based on program
slicing, program spectrum, statistical power, program state, machine learning, data
mining, and based on different types of modelling. Moreover, these categories are
not mutually exclusive and thus can work in combination for improved results. Next,
I will briefly describe each of these categories.

Program slicing is about removing parts of the code and keeping only the state-
ments that are associated with a slicing criterion. Based on the original definition
made by Weiser [130], this criterion is a subset of variables in the program asso-
ciated with a statement of interest in the program. Thus, slicing aims to exclude
the statements that are irrelevant to the outcome of the variables in the subset.
Therefore, reducing the search domain needed to find the fault associated with the
identified variables. This reduction can be achieved without running the program
through a process called static slicing. Alternatively, the reduction can also benefit
from execution traces of the program and use it to slice the program down in a pro-
cess called dynamic slicing. In static slicing, all the statements that could possibly
affect the statement associated with the variables in question are kept in the search
domain. This is because it cannot predict the runtime values of certain variables.
Alternatively in dynamic slicing, the values are known due to information from run-
time. This knowledge allows dynamic slicing to further reduce the statements to the
actual path taken in the program. Noteworthy, the output of both types of program
slicing approaches limits the number of statements that need to be investigated but
does not help prioritize one statement over the other.

The spectrum-based fault localization uses information from the execution path
of test cases to determine suspicious segments of the code [112]. The suspicious-

14

2.2. SOFTWARE REPAIR

ness of a code segment is determined based on statistical power. Information like
which statement or branches were covered by the test cases along with their outcome
(non-passing or passing) can provide good statistical insight into the code. Many
other parameters can be used to calculate the suspiciousness of the code like com-
plete paths executed, loop-free paths executed, and counting the number of variable
definition-usage pairs. Using this method, the output is ranked and the developer
should prioritize investigating each statement by its rank.

Another type of fault localization is through statistical debugging. Basically, this
is a dynamic analysis that examines the program behaviour during its execution by
sampling points in the program. For example, at some point in the program, an
instrumented predicate could monitor that an index of an array is less than its
length. Predicates can also monitor which branches are taken (false or true) or the
return value from a function. By monitoring these predicates, parts of the program
can be isolated for further debugging. Although many runs need to take place for
better statistical power, it does not need to monitor all traces of the program. To
get the number of runs needed, the instrumented predicates should be light enough
to include in the production code released to the users. This type of localization
is especially helpful in separating the effects of different bugs and identifying for
each bug the associated predicate [55]. The output of this method does rank the
suspiciousness of code segments for the developer.

The program state can also be used to localize a failure. As a reminder, a program
state is simply the values of variables that make up the program at a particular point
in execution. One way to localize faults using this approach is to compare the states
of different versions of the same program. Another approach is to change the value
of a variable in order to judge if it is responsible for a failure. Alternatively, the
states of the program for passing tests can be compared to the states of failing tests.
The output of using state-based localization does not explicitly rank the segments
of code identified as potentially faulty.

As is the case with many other tasks, machine learning and data mining ap-
proaches can be employed to localize faults. Machine learning builds a model based
on training data that is used later to evaluate decisions or make predictions. For
example, Wong and Qi [133] proposed a back propagation neural network for fault
localization. They used the coverage data and the result of each test to train the
neural network for it to learn the relationship between the coverage data and the
result of the test. Meanwhile, data mining helps analyse a large amount of data to
discover new knowledge or patterns. This approach is useful in evaluating the execu-
tion traces of a program since it produces too much data. Using data mining, one can
ask it to identify the pattern of executed statements that lead to failures [132]. The
output from applying machine learning or data mining does rank the suspiciousness
of code segments.

Different models can also be used to localize failures. Although a perfect oracle
model is ideal, models can also be derived from the code of a program that is known
to contain failures. The model-based debugging is achieved in three main steps [71].
First, the code of the program is automatically compiled into a logical model or a
constraint satisfaction problem. Second, the model is diagnosed. Third, the result
of diagnosing the model is mapped back to a location in the code. An example of
this model-based debugging is to model the dependency between statements in the

15

2.2. SOFTWARE REPAIR

program whether statically or dynamically. Alternatively to these dependency-based
models, value-based models that represent data flow can also be used to localize
faults but are more computationally intensive [132]. The output of using model-
based fault localization does not explicitly rank the potentially faulty segments.

Many of the fault localization techniques simplify the problem of debugging by
assuming that a single fault is the cause of failure [132]. Contrary to this assumption,
there was a study based on real-world projects that concluded, that it is often the
case that a failure is triggered by multiple faults that are spread out in a large
software system [43]. Furthermore, another study by Lucia et al. [58] concluded
that faults are not really localized in the program. They found that 67% of severe
faults are not associated with a single statement and 42% of severe faults are not
localized to a single method. This realization gave rise to many publications in the
area of multiple fault localization.

There are three ways to localize multiple faults [137], one-bug-at-a-time (OBA),
parallel debugging, and multiple-bugs-at-a-time (MBA). In the OBA approach, a
developer iteratively debugs and repairs each fault until all failures are resolved.
Using OBA, each suspected statement in the program can be ranked and repaired in
order of suspiciousness. In parallel debugging, the faults are split into fault-focused
clusters depending on their suspiciousness score and by profiling the execution of test
cases. As a result, more than one fault can be repaired simultaneously by multiple
developers. Finally, the MBA approach aims to tackle most or all the faults in a
single debugging iteration. This strategy can improve the fault detection rate and
reduce debugging time. Furthermore, the computational cost of clustering in the
alternative parallel technique is saved using the MBA method.

There are additional caveats to fault localization associated with the test cases
and the test suite used, as discussed by Wong et al. [132]. In their survey, they
noted that localization techniques that use multiple failing and multiple passing
test cases are superior to the techniques that use only one passing and one failing
test case. Some techniques assume, for effectiveness, that there are multiple test
cases from each class (non-passing and passing) available which is not always the
case. Nevertheless, using only one representative test case of each class can help
reach a better-detailed root cause. Another related issue is that of test coverage.
A test suite with low coverage may hinder the fault localization ability of many
techniques. Moreover, some research also adds that using the entire test suite is not
ideal for fault localization and thus either reduction or prioritization of test cases
are in order. Along the same line, the sequence and number of test cases executed
are important if changes in the order or number of test cases executed results in
a difference in the outcome of the test cases. Finally, although fault localization
techniques do not explicitly localize omission faults, they may raise suspicion of
other code and states that are implicitly caused by the missing code.

2.2.2 Automated Program Repair

The journey of problems and solutions that lead to the topic of automated program
repair started with emphasizing the need to test the program for failures. Once a
failure is revealed, the debugging process attempts to localize one or more faults
that are causing the failure. Then, automation is expected to repair the program

16

2.2. SOFTWARE REPAIR

by modifying the program source code in a way that satisfies a correctness criterion.
In automated program repair, the program is considered to be corrected once the
test cases that were once non-pass due to the fault are now passing after the code
is modified.

There is plenty of published literature about automated program repair. To get
a sense of attention this topic received, one living review of automated program
repair by Monperrus [80] accounted for 175 references in the year 2018 and 367
references in the year 2021. A definition of automated program repair was provided
in a recent paper, by Goues et al. [39], which gave an overview of the state-of-the-
art techniques in automated program repair. They defined the repair process as an
implicit search over the space of changes to the source code. In their paper, they
broke down the automated program repair techniques into two high-level categories,
heuristic-based repairs and constraint-based repairs. Within these categories, when
a machine learning technique is applied, they referred to it as learning-aided repair.
Next, I will describe each of these three types of automated repair.

The heuristics-based method of program repair iterates over a search space of
syntactical changes to the program using a generate-and-test methodology. In each
iteration, the Abstract Syntax Tree (AST), which represents the parsed source code
using a tree-like structure, is modified to produce a patched version of the code.
Even though a fault is localized and known, many possible mutants of the program
need to be naively made and checked if heuristics are not employed. To overcome
this problem, the edits to the program can be limited to insertion, replacement, or
deletion per statement or higher-level grouping of statements called a block. The
inserted and replaced code can also be derived from other code located at a different
part of the program.

Goues et al. [39] suggested that this trust in other parts of the same program
is based on the plastic surgery [44] and the competent programmer [32] hypotheses.
The first hypothesis uses plastic surgery as an example indicating that the solution
to the problem can come from another part of the body. Meanwhile, the second
hypothesis suggests that a programmer is competent and thus produces a program
that is very near to being semantically correct. In other words, the search for the
semantically correct syntax is not far from the current syntax. Overall, both of these
theories suggest that code elsewhere in the program is correct and can be used to
patch the fault or that the search for a proper repair is not far off.

Automated program repair techniques vary in how they explore for new patches [39].
One approach is to use genetic programming heuristics that change the code in the
direction of the solution. This guidance is done by using a fitness function. For
example, the number of test cases that pass can be used as an indicator of a good
direction in the search space. Underneath the hood, different mutation strategies
based on heuristics can provide additional effectiveness. Moreover, some techniques
randomly sample solutions but restrict the depth of edits to only one for efficiency.

After a solution is generated, the next step is to check if the fault is repaired
and that no new faults were introduced. To do this, the new version of the program
is validated by counting the number of passing tests. Therefore, the test suite is
executed every time a solution is generated to validate its correctness or to judge
how close it is to being correct or being wrong in order to guide the next phase

17

2.2. SOFTWARE REPAIR

of generation. If the search space is very big, this can come at a high cost on
performance. To overcome this limitation [39], techniques either reduce the number
of test cases, sample test cases, or prioritize the execution of test cases that are more
likely to fail first.

Aside from the heuristics-based repair approaches, the second way to automati-
cally repair a program is by creating a repair constraint for the patch to satisfy [39].
These repair constraints are typically derived using symbolic execution. This type of
execution analyses the program assuming symbolic values for input rather than real
values in order to cause parts of the program to execute. The solution to this repair
constraint can be achieved through constraint solving or search-based techniques.
Thus, the distinction is in formulating the repair constraint and not the how it is
solved.

The final distinction between alternative automated program repair techniques
is whether they are learning-enabled or not. These learning-based techniques apply
learning in one of three ways depending on when the learning is incorporated into
the repair process [39]. The first way, as done by Long and Rinard [57], is to
learn a model of the correct code from a corpus of successful patches made by
humans available in open-source repositories. This approach relies on a fundamental
principle or hypothesis that correct code from all types of software share universally
correct properties once the syntactical differences are abstracted away.

Similarly, the second way learning is incorporated into the repair process is by
sourcing templates that can be used for a code transformation by inferring them from
patches made by humans. For example, the work of Long et al. [56] infers AST-to-
AST transformation templates based on how the human-made patch changed the
faulty code into the corrected code. In turn, the template is used to transform new
faulty code into correct code. Another learning-based repair strategy is used in fixing
common programming errors that arise due to the developer’s lack of experience in
a particular programming language, as done by Gupta [40]. For example, the
trained model can fix missing closing brackets or braces, incompatible operators,
and missing declarations. In this strategy, the compiler of the language is used as
an oracle to validate the patch before suggesting the patch to the user.

When building or judging an automated program repair approach, the attributes
that should be considered are scalability, repairability, and quality of the repairs [73].
The scalability attribute is important because it judges if the repair approach can
be applied to a sizeable real-world program. Then, the repairability attribute helps
judge if the technique can repair a significant amount of failures and a broad spec-
trum of failure types. Finally, a good quality repair makes less change to the original
program, reduces the amount of deleted code, and is more likely to be accepted by a
human developer. Another good quality measure is to verify that the generated re-
pairs are functionally-equivalent to a human-made repair instead of judging quality
by simply passing the required test cases.

There are two interesting factors of automated program repair techniques that
may limit their effectiveness. This is the correctness criteria used to evaluate the
repairs and the original program size that is undergoing a repair. The majority of
work in the area uses the test suite as the main measure of correctness [39]. This
may result in an over-fitting problem because the generated repair aims to simply

18

2.3. THE WEB

pass the test suite. Two extreme examples, are the deleting of an entire segment
of code or changing variables in the program to constants just to pass the the test
suite. There are alternative criteria that have been used in the literature to measure
correctness including human judgment, crowdsourcing evaluation, comparing the
generated repair to a developer-made patch, and measuring the performance of the
repaired program on a given workload. The size of the program may also be an
enabling or hindering factor for some repair approaches that create a patch from
the same program based on the plastic surgery theory. One limitation of taking
code from elsewhere in the program is that a small program may not have sufficient
patching resources to fix the problem. Thus, these approaches should be reserved
for repairing larger programs.

Now that I have reviewed software testing, fault localization, and approaches to
automate the repair of programs in general, the next sections narrow down the scope
to the literature surrounding the topic of web pages. Even though the general topics
covered thus far are important, the research problems addressed in this thesis are
limited to the Web domain. More specifically, it is the front-end graphical interface
of web pages that is most relevant to this thesis.

2.3 The Web

The Web that pervasively entered our lives was invented by Sir Tim Berners-Lee in
1989. He intended to develop an information-sharing system that makes it easier
for his colleagues to share information across the Internet. The system was named
the “World Wide Web” which later became known as the Web [10]. This system
was composed of a Web server, Web client, Hypertext Transfer Protocol (HTTP),
Universal Resource Identifier (URI), and Hypertext Markup Language (HTML).
The HTML language was used to describe a document or page containing hypertext
links. Web servers simply held these HTML pages (web pages) ready to be shared
with others. The Web client was developed to create, edit, and browse these pages.
While HTTP described how the Web client (the Browser) and Web server would
communicate over the Internet. Finally, URI was used as the scheme to address
these pages. In 2016, Sir Berners-Lee received the ACM A.M. Turing Award for his
contributions that underpin our invaluable Web [29].

Since its inauguration, the Web continues to develop under the standards set by
Berners-Lee and his colleagues at the World Wide Web Consortium (W3C) [122].
Both the browsers and the web developers are expected to conform to HTTP, Cas-
cading Style Sheets (CSS), and JavaScript Web API standards set by the W3C [121].
Developers use the HTML language to describe the structure of a web page’s con-
tent whereas the CSS language is used to describe the presentation of the web page.
Although the browser has default settings, CSS can be used to describe the colours,
fonts, and how the layout should be rendered by the browser. Moreover, CSS can
describe how the web page should adapt its presentation to respond to different
browser widths. To be more specific, it responds to the size of the area where the
page will be rendered known as viewport size. This allows the developer to plan on
presenting the page on multiple devices and hence responsively design [123] the web
page using CSS. Finally, JavaScript Web API is an important standard that governs
how the JavaScript language communicates with the browser in order to make the

19

2.3. THE WEB

page interactive and the content dynamic.
The most fundamental JavaScript Web API standardized by the W3C is the

Document Object Model (DOM) interface. The DOM is a representation of the
web page which can be used by scripts to dynamically access and modify content,
structure, and the style of the HTML document [82]. The document is programmat-
ically represented, via the DOM interface, in an object-oriented fashion while the
hierarchical structure of HTML is represented using a tree data structure. There-
fore, each item in the HTML document is represented as an element object and as a
node in the tree structure. Using the DOM interface, the developer can make a web
page interactive by creating event listeners. These events can be fired by a script
or triggered by a user action like a mouse click. Fundamentally, HTML, CSS, and
JavaScript are the basic building blocks used to develop a web page.

2.3.1 Developing a Web Page

A growing list of front-end frameworks and libraries exist to assist in the development
of web pages. These tools facilitate easier coding, improve performance, and assist
in the design of a web page. Yet, the simplest way to start developing a professional
web page is to use a standard text editor. The code that is needed to turn any
content into a web page on the Internet is simple but may grow in complexity
as more features are added. A web page can be developed using only the HTML
language. The marked-up content, using HTML, is sufficient to be properly rendered
by the browser. Beyond that, the web page and its content can be brought to life
using CSS and JavaScript. The design of the web page can also be made responsive
by programming how the content should be resized and rearranged based on the
viewport size. On the back-end, code can be integrated with the front-end to better
manage the content of the page.

The developer has two core strategies when making a web page. The developer
can either make a static or dynamic web page. A static web page consists of a file
that does not change whether it is being viewed on the client’s browser or being
stored on the server. On the other hand, a dynamic page introduces new or updates
the content of the web page, based on some event, by running the relevant client-
side or server-side code. Both of these strategies, static and dynamic, have their
advantages and specific application.

Static Web Pages

Coding a static web page is the original and most basic form of web development [24].
A static web page is most often defined by the features it lacks [95]. The definition
of a static page entails that the rendered content and links of the page are not
dependent on data stored elsewhere like in a database. Since all the data is directly
coded in the web page file, this type of web development is best suited for content
that does not need to be updated frequently. When using a static site, any new
content can be accessed using the links provided within the current page thereby
requesting a new web page.

In the early days of the Web, content was manually coded into a static web page
and was published using the File Transfer Protocol (FTP) [95]. Any modifications

20

2.3. THE WEB

had to be manually inserted into a local copy of the web page and later transferred
to replace the old file on the server. As the number of web pages on a site grew, the
complexity of managing the links between pages also grew. Therefore, anyone who
wanted to make a static website required technical know-how in coding the content,
proper link management, and the process of deployment on the server.

Although static pages were not very popular, a new trend toward automatically
generating static websites has emerged. The StaticGen.com [113] website confirms
this trend and lists the top static site generators that automate the process of turning
content into static pages. Facilitated by automated tools, the motivation behind this
trend is better speed and security [24]. The performance of a static page is more
efficient since there is no need for server-side code or database access in order to
send the file to the client. They are easily cached since the web page file stored
on the server contains all of the content needed. The removal of the database and
server-side code also makes the web page more secure by reducing vulnerabilities
like the threat of a database injection attack. In this attack, the data sent to the
server, for processing by the database, is modified to do something unexpected. This
allows the attacker to act like someone else, retrieve private customer data, modify
important data like a bank balance, or give the attacker administrator privileges.

Dynamic Web Pages

The main advantage of a dynamically designed page is that the content can be up-
dated without manually re-coding the web page file. This is achieved by storing
content in a database and using a back-end programming language to manage pack-
aging the latest content and links into a web page structure. Another advantage
over the statically designed web pages is that all links are always up-to-date without
the need to fix any broken links. This approach also allows non-technical people to
manage the content of the web page by using content management software that
directly interacts with the database. On the downside, the database, back-end lan-
guage, and management software come at the cost of lower performance and the
need for frequent software updates.

In Zemmetti’s book [138], he gives a good historical perspective of the develop-
ment of dynamic web pages. In the early days, developers used Common Gateway
Interfaces (CGIs) to request new content from the server which made the web page
dynamic. Unfortunately, a CGI was limited to one request at a time and the server
suffered from performance issues as the number of requests increased. Other dy-
namic content technologies like Microsoft’s Active Server Pages (ASP) and Sun’s
Java Servlets were later introduced but the server still had to do all the work.

The introduction of JavaScript reduced the workload of the server and empow-
ered the page on the client-side to modify the web page. Soon developers switched
from developing dynamic web pages to building web applications using HTML and
JavaScript. With time, this naturally evolved into something called Single-Page
Applications (SPAs). Essentially, this type of page limited the number of web pages
for the entire site to just one [81]. This comes with the additional cost of increased
complexity in coding the SPA.

A new frontier for the web is something called Progressive Web Applications
(PWAs). This type of page attempts to look and feel like a native application of the

21

2.4. TESTING WEB PAGES

underlying device. The main motivation for this trend is increased usage of native
mobile phone applications as substitutes for web pages. To reduce the difference
from a native application, a progressive web application has a set of three new
features that give it better accessibility [109]. The first feature is a home-screen
button that provides access to the PWA without having to open a browser and type
a URL. The second feature allows access to the PWA while offline. The visitor of
a PWA, can use the set of cached content while being offline. The third feature is
the ability to send a notification to the device even when the browser is closed. The
main advantage of PWA over native applications is that the user does not need an
application store to start using the application.

Whether the developer decided to build a static or dynamic web page, it must
be tested to ensure that content is presented as the developer expected. The pre-
sentation layer, or Graphical User Interface, is the reason why web pages, native
applications, and even the operating system are easy to use. This type of interface
presents the user with a rendered representation of some content in memory using,
typically, a two-dimensional monitor. The graphical rendering is both informative
and allows input devices, like the mouse, to interact with the software. Therefore,
maintaining and testing the correctness of this presentation layer is fundamental to
all modern software.

Asserting that the web page is properly presented in the browser is an important
part of the development and maintenance phases. This testing can be manually
achieved but as the development of the web page grows more complex, there should
be automated measures in place to aid the developer in testing the page. The
significance and challenges of this task are described next.

2.4 Testing Web Pages

A browser is a commonly used piece of software that presents web pages using a
graphical user interface. It is mainly designed to graphically render web pages but
has evolved to include a larger set of file types. Ideally, the content of a web page is
presented to the user as intended by the original developer of the web page. Coding
the content into the web page and designing the layout of the content can be a
complex task. The developer may use multiple languages including HTML, CSS,
and JavaScript to build the content and the layout of a web page that will later be
presented using a web browser. Adding to the complexity, the developer should take
into account the common standards applied by different browsers and how different
monitor sizes will affect the presentation of the web page.

With a large number of browser vendors and monitor sizes to consider, developing
a web page can be a very challenging task. Whether due to programming complexity
or human error, a fault may seep into the code. Even if the developer is a competent
programmer and takes all of the variables into consideration, a browser may deviate
from the standards intentionally for exclusive features or unintentionally by mis-
implementing the standards. To this point, although there are standards set for the
DOM interface, Mozilla warns that “care must be exercised when using them” [82]
because many browsers extend the standards. The developer may also deviate,
intentionally or unintentionally, from the standards while utilizing certain features.

22

2.4. TESTING WEB PAGES

For any of these reasons, the page may fail to present as expected.
A failure in the layout can make the web page less appealing, less informative,

or as severe as being less functional. Appeal damage is a purely cosmetic issue
caused by an unintended rearrangement of HTML elements or a change in colours.
The second level of severity is when elements are visually distorted leading to the
loss of valuable information. One scenario where this can occur is when an element
is partially or fully outside the scrollable space and therefore cannot be rendered.
Another scenario is when two elements overlap in two-dimensional display space
and the information of the overlapped element is overwritten. The failure severity is
escalated if an event is associated with the overlapped element. Since the overlapped
element is hidden, the event cannot be triggered leading to a loss of functionality.

Collectively, the layout problems that cause loss of appeal, information, or func-
tionality are referred to using the umbrella term presentation failures [66]. Because
a browser’s graphical interface presents the page by laying out the content, these
problems are also referred to as layout failures. In the literature, the terms failure [6],
error [28], bug [42, 114], fault [26], or issue [26] are also used in reference to a layout
to mean a presentation failure. Further dissections of these terms are also used in
the literature to refer to a failure depending on how it was detected. For example,
if two different browsers are used to detect the failure, the term cross-browser is
used. If a newer version of the page is compared with an older one, the keyword
is regression. If an alternative display language is used (e.g., Arabic), the term in-
ternationalization is used. If an alternative viewport is used, the word responsive is
added to refer to a layout failure.

Multiple approaches were proposed in the literature to automatically test for a
presentation failure. These approaches relied on either a visual analysis of the layout
using snapshots, structural analysis based on the DOM of the page, or a combina-
tion of visual and structural analysis. Regardless of the underlying approach, the
techniques proposed were implemented into tools that made the best use of the
technology available at the time of development. As browsers and web languages
improve over time, more advanced techniques were proposed. The approaches to de-
tect cross-browser failures are described next in section 2.4.1. Then in section 2.4.2,
the approaches to detecting responsive layout failures in the literature are discussed.
While sections 2.4.3 and 2.4.4 describe regression failures and internationalization
failures respectively.

Many other tools and services that test the design of webpages are available to the
public. Some of these tools target responsively designed web pages ([93], [94]) and
mobile webpages [78] by visually rendering the site at multiple widths to allow the
developer to do a proper investigation. Others target cross-browser issues ([17], [30])
that test the webpage under different environments to report discrepancies to the
developer. Other tools also include monitoring for both cross-browser and regression
issues [79]. This literature review is limited in its ability to investigate the underlying
technology for such commercial services and tools due to the lack of transparency
and documentation.

23

2.4. TESTING WEB PAGES

2.4.1 Cross-Browser Testing

The early days of the web saw fierce browser competition. Their goal was not to
ensure that pages worked on a competitor’s browser, instead, it seemed the opposite
was happening. This time is referred to as the browser war days. During this time, it
was common to display a message stating that the web page is best suited for some
browser vendor. Nevertheless, the developer had to take into consideration how
the page will be presented on different browsers. To this day, differences between
browsers are expected and the page should be tested for cross-browser problems.

A cross-browser failure is a presentation failure that arises when comparing the
presentation of a web page in two different browsers. They are referred to as Cross-
Browser Issues (XBI) [26] or Cross-Browser Incompatibility [27, 28, 74]. More specif-
ically, a cross-browser failure is defined to be the difference in a web page’s visual
appearance or behaviour in different browsers. They may result in a minor cosmetic
issue or a critical change in the functionality of the web page.

According to Choudhary et al. [26] there are two types of XBI; layout and func-
tional issues. These issues could arise due to several underlying causes. First,
it could arise because the browser is non-compliant by not following the common
standards. Meaning that the browser did not fully implement the standard or has
mistakes in the implementation of the standards. In another case, a browser issue
can arise due to the usage of additional non-standard features of a browser that is
not available in other browsers. Alternatively, the issue could be raised due to the
differences in the default styling of browsers. The web page may also have issues
due to the local resources not being available, such as a browser plug-in or font. The
final possible underlying cause is a syntactically incorrect page. This could be an
issue because different browsers may resolve the syntax error differently which may
propagate visually as a cross-browser issue.

Six main techniques and tools have been proposed in the literature to detect XBIs
that I review here. The first proposed approach, WebDiff, introduces automation to
the process of testing a web page for XBIs. The second approach, CrossT, is specialized
in detecting functional XBIs in web applications. The third approach, CrossCheck,
improves on previous approaches and uses a machine learning technique to detect layout
and functional XBIs. Then, the more successful X-PERT approach introduces alignment
graphs to detect XBIs. At the same time, the tool BrowserBite also aimed to improve
the approach used by CrossCheck in its own way. Then came the X-Check tool which
improves on top of the X-PERT tool. The implementation of each approach is explained
in more detail next.

The tool WebDiff was developed by Choudhary et al. [26] to automatically identify
cross-browser issues in web applications. At the time, existing commercial tools were
limited to showing side by side views of the page thus requiring the developer to manually
find any issues. WebDiff is based on differential testing [72] which is an approach that
exposes potential bugs by looking at differences in two or more comparable systems. More
specifically, the tool finds differences by comparing the DOM and visual appearance of a
web page in two browsers to detect any issues.

WebDiff automatically finds cross-browser issues by doing the following. First, it
opens the web page under test in multiple browsers and chooses one browser to serve as
the reference to be compared to. Then, DOM-based information about the elements is
gathered from each browser and a snapshot of each browser is also taken. To identify the

24

2.4. TESTING WEB PAGES

elements with dynamically changing content which should be ignored, a second snapshot
is taken and compared with the first snapshot. To force these dynamic elements to match
in the snapshots, they are changed to a common colour so that they match visually. In
the next step, the locations of all elements are matched up to find differences between the
browsers.

To visually analyse the snapshots, a colour histogram [15] is used to group the colours
of each element into predefined ranges. Therefore, the same colour distribution is only
possible if the two renderings are similar. Any small shift in the position of elements
is ignored by using the Earth Mover’s Distance [98] metric. Here, it is used to ignore
slight changes, due to a small shift, between the images and to check for perceptual
similarity. Finally, the HTML tags of the elements are reported to the developer for
further investigation.

Another tool developed by Mesbah and Prasad to detect cross-browser issues is called
CrossT [74]. The process behind this tool consisted of two main steps. The first step
starts by opening multiple browsers and loading the web application. Then the appli-
cations are simultaneously crawled in order to capture their behaviour as a finite-state
machine, referred to as a navigation model. To do this, they used the Crawljax tool
which crawls and triggers behavioural events in the web application. In the navigation
model, every screen observable by the end-user is a state and a user action represents
a transition between the states. Finally, in the last step, these navigation models are
isomorphically compared.

As input, CrossT takes a URL, a list of browsers, and a list of HTML elements
to include or exclude in the run. After the navigation models are collected, they are
compared at a trace-level and screen-level. First, at the trace-level, the difference in the
sequence of events or user actions are checked. Then, at the screen-level, the internal DOM
representations are checked for differences. At this level, case sensitivity, white spaces,
attribute order, and more heuristics are ignored by CrossT to reduce the false positive
rate. During the run, a plug-in is used to take a snapshot of each state reached. Then a
report is generated for each pair of mismatched screens which includes two snapshots, a
DOM printout with highlighted differences, and a sequence of user actions to reach the
screen.

As an improvement to existing cross-browser testing tools, Choudhary et. al. [27]
unified two complementary tools, WebDiff [26] and CrossT [74], in the hope of better
XBI detection. Combined, a comprehensive technique emerges from WebDiff ability to
focus on visual XBIs and CrossT’s ability to detect functional XBI issues. This new
solution was implemented in a tool called CrossCheck. The authors also improve on the
previous visual analysis approach by using machine learning and new image processing
metrics.

The new machine learning applied is a classification approach which proved to be far
superior to the custom-made heuristics previously used in WebDiff. The classifier is
first trained on a data set that was generated using ten web applications where each XBI
was manually labelled true if it was substantially different. The classifier is provided to
CrossCheck as input along with the subject URL and a choice of two browsers. Because
the classifier is part of the input, it must be available before running CrossCheck.

The classifier uses a decision tree classification method with features that are picked
by Choudhary et al. [27] based on their personal experience with XBIs. The first feature
is size difference ratio and is used to detect differences in the size of two elements. The
second feature displacement captures the Euclidean distance between the position of two
elements. Third, the minimal area of the two elements is used by the classifier as a

25

2.4. TESTING WEB PAGES

threshold for other features. The fourth is a boolean feature that detects if there is a
difference in the text of two DOM leaf nodes. The final feature measures the distance
between colour histograms, as used in WebDiff [26] without the need to use the Earth
Mover’s Distance [98].

The technique used in CrossCheck is comprised of three phases. In the first phase,
the two browsers are simultaneously crawled and user-action events (e.g., mouse click) are
triggered to build a navigation model. Again, this model is a finite-state machine where
each state is a screen and the transitions are the events causing a change in the screen.
For each state, the DOM is recorded and a snapshot is taken. The tag name and event
type are also recorded as a label for each transition. In the second phase, the two models
generated in the first phase are compared for equivalence. The mismatched transitions
represent trace-level mismatches while the matching pair of states are used to compare the
DOMs for a mismatch by comparing each node. The DOM nodes that are mismatched
are recorded as a possible XBI. Then, the nodes that were matched are visually compared
using the snapshots taken in the first phase. Then, the features needed by the classifier
are computed for each of the matched DOM nodes. In the third phase, all the mismatches
from the model are analysed and the resulting XBIs are clustered and reported.

Another advancement in cross-browser testing by Choudhary et al. [28] is the X-
PERT tool. It was developed to detect XBIs based on a crawl-and-compare approach. A
goal of this tool is to provide a comprehensive solution by combining existing differencing
techniques with new ones. The crawling and comparing features of X-PERT are identical
to that of the previous tool CrossCheck [27]. Contrary to the approach of CrossCheck,
the technique implemented in X-PERT is derived from a study of XBIs in the public
domain; an improvement over previous techniques that largely depended on intuition.
The results of the XBI real-world study lead to the identification of three types of XBIs.

The X-PERT tool is capable of detecting three type of failures. These are structural,
content, and behaviour. The first type, structural, refers to a change in the layout. An
example of this type is when the relative alignment of HTML elements is rearranged. The
second type, content, refers to the differences noticed when comparing the same element
across different browsers. This type of failure is further divided into two sub-problems,
text-content and visual-content. An example of the first type was given by the authors as
an element that renders different text in different browsers. The second type refers to the
visual aspect of an element like a difference in the style of the text. The final type of XBI,
behaviour, is a category of XBIs where a difference in the functionality of a component is
observed.

The novelty of X-PERT lies in observing and comparing the structure of the page for
XBIs. The tool achieves this by using a graph-based model of the page called the alignment
graph. The alignment graph is a directed graph that represents a parent-child and sibling
relationships between HTML elements. A parent-child relationship is first determined by
the child’s XPath being a prefix of the parent’s XPath. Additionally, the rectangular
coordinates of the child element must fall within the bounds of the parent rectangle. As
for the sibling relationship, it is established between elements that share the same parent.
Moreover, other geometrical relationships are added to the model based on the relative
position of the elements. Meaning, that a child element can be horizontally aligned left-of,
above-of, or centre-justified within the parent element. The technique further breaks down
more relative positions to describe vertical positioning and to describe sibling relationships.

An illustration of an alignment graph is given in Figure 2.1. In this example, a simple
HTML file is shown in part (a) while the rendering of the file is shown in part (b).
Importantly, the alignment graph of the page can be seen in part (c). In the graph, the

26

2.4. TESTING WEB PAGES

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Student Account</title>
5 <style> @media (max-width: 450px)
6 {a { display: block;}} </style>
7 </head>
8 <body>
9 Home Page

10 Grades Page
11 <div>
12 <h1>My Grades</h1>
13 <p>Math: 100%</p>
14 <p>English: 100%</p>
15 </div>
16 </body>
17 </html>

(a) Simplistic HTML file.

Viewport Size 460 px

Student Account

Home Page Grade Page

My Grades

Math: 100%

English: 100%

(b) Web page.

<body>

<a>#10<a>#9 <div>

<p>#13 <p>#14<h1>

left-of

top-align
bottom-align

above-of

above-of

left-align
right-align

above-of

left-align
right-align

(c) Alignment graph.

Figure 2.1: An example HTML file to illustrate it’s alignment graph.

parent relationship is represented using solid edges while a dashed line represents a sibling
relationship. While only a single parent or sibling edge exists between any two nodes,
some sibling edges are omitted from the graph to avoid cluttering. Using an alternative
browser, X-PERT would generate another alignment graph and compares the two for
differences.

To begin testing a page using the X-PERT tool, the URL is required as input and
a choice of two browsers. Then the browsers are simultaneously crawled and compared.
Instead of comparing all DOM elements, only the leaf elements are compared for visual-
content XBIs. This is an improvement to the adapted features of CrossCheck in order
to reduce the false positive rate. Once an alignment graph is constructed, it provides the
needed insight into the layout. This information is used to properly compare different
layouts by isomorphically comparing two graphs to detect any structure XBIs. X-PERT
then generates an HTML formatted report containing a list of the failures detected. The
developer can now assess these reports using the side-by-side snapshots included in the
report.

The usage of a graph-based model to represent the relative layout of elements, as done
in X-PERT, went on to inspire more work on the detection of presentation failures. More
specifically, it inspired the development of similar graphs that capture differences across
viewport sizes [124, 125], languages [3], and versions of a responsive web page [6].

As was the goal of the X-PERT tool, a tool named BrowserBite [100, 101, 107]
aimed to reduce the high false positives produced by previous tools like CrossCheck
and WebDiff. Unlike the X-PERT tool, BrowserBite uses a pure image processing
approach that intentionally does not rely upon the DOM to detect XBIs. The Browser-
Bite tool with its basic configuration without any machine learning is also claimed to
perform just as well as the X-PERT tool [101]. Furthermore, BrowserBite was avail-
able as a patent-pending testing service [18] until the end of the year 2017. The tool is
comprised of four main phases. These are snapshot capturing, image segmentation, image
comparison, and machine learning classification.

With a URL and a browser chosen as a baseline reference, the tool begins by cap-
turing a snapshot of the page using the reference browser and another snapshot for each
testing-browser. Besides the URL, the input to the tool should include other runtime con-
figurations like the operating system to use while testing. This is used to spin off a virtual
machine with the runtime environment needed to test the page. The captured images are
then broken down into smaller Regions of Interest (ROIs) by focussing on intensity change
rather than a colour change. This is an attempt to mimic what a human visual system

27

2.4. TESTING WEB PAGES

would focus on [59]. The image processing is broken down using greyscale conversion, cor-
ner detection, dilation, and block analysis in order to create the ROIs. To overcome issues
with comparing ROIs with different sizes the dilation parameter is changed as needed. The
images are then compared using image coordinates and raw moments that describe the
image geometry like its orientation. After pairing ROIs from the reference browser to the
ROIs from the testing-browser, the images are compared for size, visibility, content, and
font style differences. Without using machine learning, the tool reports these differences
to the developer.

To reduce the number of false positives that the basic BrowserBite may produce,
machine learning is used to train the tool on what is safe to ignore. The authors of
the tool used two classifier variations, a binary and a quaternary classifier. For the bi-
nary classification, each XBI is either a true positive or a false positive. Meanwhile, the
quaternary classifier breaks the classes into levels of severity where the lowest is a false
positive followed by a minor, major, and critical issue. As with all manual classifications,
subjectivity should be noted especially as more classes are added. The authors also used
two classifier methods, decision tree and neural networks only to find out that the neural
network outperformed the decision tree method.

Building on the state of the art tool X-PERT, is a tool created by He et al. [45] that
was named X-Check. Like the BrowserBite tool, X-Check aimed to reduce the false
positives reported by the X-PERT tool. The main shortcoming of X-PERT in testing is
that it only captures user-initiated events (e.g., a mouse click). Since the same web page
is tested in multiple browsers, the appropriate state of the page must be compared across
the browsers. This means that the same sequence of events should be fired to match the
execution sequence of the reference browser. Since JavaScript has more than just user-
created events including time-based events and asynchronous server responses, X-PERT
may come to a wrong conclusion. To solve this problem, the X-Check tool uses a record
and replay strategy for testing web pages.

To capture the non-deterministic events like a browser response, the X-Check tool
integrated the Mugshot [76] JavaScript library. This tool allows individuals and auto-
mated tools to trace the execution of a webpage. Unlike the alternative Jalangi [108]
execution trace tool, Mugshot is not an extension of a specific browser and thus is
browser-independent. To capture the user-initiated events, the tool adds a listener to
the root window element to record all events. For timing and server request multiple
JavaScript functions are interposed with a wrapper function to monitor their execution.

Similar to the X-PERT tool, X-Check uses the alignment graph [28] to capture
structural changes in the layout of different browsers. To analyse the pages visually, the
tool uses the Chi-Squared [16] histogram distance method to evaluate differences in colours
of matched elements in the snapshots. Finally, to detect any text-based changes, the tool
compares the text content of DOM nodes for differences.

The output of the tool is a list of XBIs and the name of the page where the failures were
detected. The tool also outputs snapshots with highlights where a difference was found.
As a result of their empirical evaluation, the X-Check tool was found to outperform the
X-PERT tool especially in reducing the number of false positives in highly interactive
web applications.

Although each of the cross-browser testing tools was shown to help the developer
test for cross-browser issues, they have their limitations. This includes partial manual
intervention, false positive reports, duplication in failure reports, and some techniques that
required manual verification of the reported failures. For example, CrossT required a user
to specify which parts of a web page to include and exclude in the detection. Meanwhile,

28

2.4. TESTING WEB PAGES

a classifier is needed as input to CrossCheck before it can be used to detect failures.
As for the tools WebDiff, CrossT, and CrossCheck, they all produce a high false
positive rate with duplications in the reports. For the performance of the BrowserBite
tool, it will depend on the training set and the manual classification used. Furthermore,
these tools and both X-PERT and X-Check all required a reference browser to be used
as an oracle for the “correct” layout. Furthermore, all the techniques of this section were
limited to the detection of presentation failures and thus required a human to manually
repair the reported failures.

2.4.2 Responsive Design Testing

Responsively designed web pages present a different challenge to testing the presentation
of a web page. These web pages are developed to conform the layout of a web page in a
way that better presents the page depending on the available browser window width. By
prohibiting a design that requires horizontal scrolling, the visitor would vertically scroll
for more content. Two terms that generalize the presentation failures that exist for this
type of design. These are Responsive Layout Failures (RLFs) and Visibility Faults (VFs).
It is worthy to note that the research of this thesis solely revolves around responsively
designed web pages and their RLFs.

Responsive layout failures are presentation failures that are observed in responsively
designed web pages across different widths using the same browser. A goal of a responsively
designed web page is to provide an appropriate layout depending on the current browser
width. With a large range of possible browsers widths, testing the design of responsive
web pages for presentation failures is a challenging task. Walsh et al. [124] developed
ReDeCheck to tackle this challenge without the need for an explicit oracle. At the time,
developers of responsively designed web pages mainly relied on a manual effort to detect
RLFs. More specifically, ReDeCheck was developed to automatically detect five types
of RLFs that were defined by Walsh et al. [124].

The RLF detection technique of ReDeCheck [124] relies on comparing HTML ele-
ments of a web page to each other and across different viewport widths. More specifically,
the position of two elements is compared in two consecutive viewports to identify any
differences in their relative positions. To make this inference, the ReDeCheck tool uses
a graph model to represent the layout of a web page across different viewport widths, re-
ferred to as a Responsive Layout Graph (RLG). The original idea of modelling the layout
of a web page as a graph stems from alignment graphs introduced in X-PERT [28] to
handle cross-browser failures.

A key feature of the RLG that improves on the alignment graph is the incorporation
of multiple viewport widths. The RLG model is built by automatically quarrying the
DOM for the HTML elements that make up the page and retrieving their coordinates.
Moreover, the visibility and relative alignment of each element is recorded as the width
of the browser is changed. In the graph, HTML elements form the nodes while relation-
ships between the elements form the edges of the graph. These relationships between the
elements like parent-child, sibling, and relative alignments are not based on the HTML
hierarchical structure. Instead, they are calculated based on their coordinates. Along with
the relationship descriptors, edges are also labelled with an inclusive range of viewports
where the relationship holds true. The nodes of the graph also carry information about
the range of viewports where the element was visible.

Figure 2.2 illustrates a responsive layout and its RLG model using the same HTML
file from Figure 2.1 (a). In this example, the range of viewport widths visited for testing

29

2.4. TESTING WEB PAGES

Viewport ≤ 450 px

Student Account

Home Page
Grade Page

My Grades

Math: 100%

English: 100%

(a) Narrower viewport widths.

Viewport > 450 px

Student Account

Home Page Grade Page

My Grades

Math: 100%

English: 100%

(b) Wider viewport widths.
<body>

<a>#10<a>#9 <div>

<p>#13 <p>#14<h1>

[400-500 PC][400-500 PC] [400-500 PC]

[400-500 PC] [400-500 PC] [400-500 PC]

[400-450 S,L,TE,BE]
[451-500 S,T,LE]

[400-450 S,A]
[451-500 S,A,LE]

[400-450 S,A,LE,RE] [400-450 S,A,LE,RE]

(c) Responsive Layout Graph.

Figure 2.2: An example web page to illustrate an RLG.

begins from 400 pixels to 500 pixels wide. The responsive design of this page sets the
links to vertically align on smaller viewport sizes. For viewports larger than 450 pixels
wide, the page is designed to automatically switch the links into horizontal alignment.
This is achieved by using the @media CSS query as seen in the HTML file. With this rule,
the page will be rendered on smaller viewport sizes as shown in part (a) and for larger
viewport sizes as shown in 2.2 (b).

The RLG graph shown in Figure 2.2 (c) denotes the HTML elements of the page as
rectangular nodes, parent-child relationships “PC” using solid edges, and sibling relation-
ships “S” as dashed edges. More layout attributes that describe the relative layout of the
elements to each other are shown in the graph. These include above-of “A”, left-of “L”,
top-of “T”, left-edge aligned “LE”, right-edge aligned “RE”, top-edge aligned “TE”, and
bottom-edge aligned “BE”. The graph also shows the inclusive numerical values of the
viewport range where the relationships or layout attributes hold true. Omitted from the
graph, to avoid cluttering, is the visibility constraint of each node that denotes where the
element is found to be visible. This should be an entry to each node [400-500 VC]because
all the nodes are visible throughout the testing range. Some sibling edges are also omitted
to make the graph easier to read. Since the alignment of the second link (Grade Page)
changes within the testing range, the graph captures this change within the sibling edges.

In addition to the RLG model, Walsh et al. [124] also defined five type of responsive
layout failures. The first type is an element collision which occurs when two elements
overlap each other unintentionally. The second type, element protrusion, occurs when an
element is no longer confined within the area of its intended parent element. A viewport
protrusion occurs when an element protrudes outside of the main HTML element of the
page for displaying content, the body element. The fourth type of failure is called an
element wrapping and occurs when an element breaks its row formation and wraps into a
new line. The fifth and final type, a small-range failure, is a layout of two elements that

30

2.4. TESTING WEB PAGES

occurs within a small number of viewports in contrast to their layout in other viewports.
This number was experimentally defined to be five or fewer viewports. What is noteworthy
here is that by definition, a small-range failure can be a duplicate report of any of the
other four failure types that occur in five viewports or less. Nevertheless, they aim and can
capture other important failures that are associated with the breakpoints of the responsive
design.

With the RLG model, the ReDeCheck tool uses a set of specialized algorithms to
detect the five type of RLFs. First, an element collision is detected by finding an overlap
attribute “O” on a sibling edge in a narrower viewport but not at a wider viewport. The
detection of an element protrusion is also achieved by looking for the overlap attribute but
must also find a relationship change from sibling to parent-child in the immediately wider
viewport. A viewport protrusion is detected in a slightly different manner and depends on
the fact that all visible elements should have at least one parent-child relationship except
for the body element which has no parent in an RLG. ReDeCheck looks for an element
that is labelled as visible in the model but with a parent-child relationship that does not
fully cover the visibility range. To detect a wrapping failure, the tool first finds at least
two siblings with the alignment right-of or left-of. Furthermore, other siblings should
exist with above-of or below-of alignments. To report it as a failure, the alignments of the
siblings with above-of or below-of must change to right-of or left-of in the adjacent wider
viewport. Finally, small-range failures are detected by first finding alignment attributes
that are only applicable in less than five viewports. In order to report it as a failure, the
approach verifies that a different alignment attribute exists between the same two nodes
in the immediately wider and narrower viewports. Using ReDeCheck, the example
web page of Figure 2.2 would not report any responsive layout failures.

The ReDeCheck tool tests each responsively designed web page over a configurable
testing range of viewports, {testmin . .testmax}. In previous experiments and the ones
conducted for this thesis, 320 pixels is used for testmin and 1400 pixels for testmax . The
tool traverses this testing range to capture how the layout changes over different viewports.
Optionally, a customized stepping size can be configured to increase the efficiency of the
tool. A stepping size of 60 was shown to be ideal by Walsh. If any change occurs while
stepping over certain viewports, a binary search is used to find the exact viewport where
the change occurred. Once the viewports in the testing range are visited and the RLG
model is built, the detection algorithms are executed and any failures found are reported
with their failure range, {failmin . .failmax}. Since ReDeCheck uses a purely DOM-based
approach, some of the reported failures can be DOM-based structural problems that do
not manifest visually in the layout. These are known as non-observable issues.

Another term used in the literature to mean a presentation failure of responsively
designed web pages is a visibility fault. These faults are incurred due to the dynamic
changes of the layout that result in a change in the functionality of the web page. An
example is an interaction or event in the page over two different viewport widths that
produces two different layouts with an accessible link in one layout but not the other.
In this scenario, one layout has more functionality than the other which could be caused
by a change in the CSS property of an element. One possibility is that the change led
to a new back-to-front display order of the elements in the layout and thus the link is
inaccessible. Ryou and Ryu [99] proposed a technique, implemented in VFDetector, to
automatically detect loss of functionality due to layout changes in responsively designed
web pages. The change may be triggered by a user’s interaction with the web page or a
change in the width of the browser causing a rearrangement of the layout. In comparison
with previous work, ReDeCheck [124] does not consider JavaScript and therefore cannot
detect layout issues that are a result of a user’s interaction with the web page.

31

2.4. TESTING WEB PAGES

The VFDetector technique detects visibility faults by following three steps. Fur-
thermore, the tool assumes that the initial states of the web page across different widths
are comparable since no events have been triggered explicitly. In the first step, the tool
identifies pairs of layouts that should have consistent functionality. Second, VFDetec-
tor finds the subset of HTML elements that need to be compared. These are HTML
elements that are intended to be visible in both layouts and have one of 26 types of user
events associated with them. An example of this is an HTML button element with a click
event listener that is intended to be visible in both layouts. Furthermore, the visibility of
each element is categorized as either absent, full-cover, partial-cover, off-screen, or normal
depending on its position in the back-to-front display order. The third and final step is to
inspect the visual status of HTML elements and identify any visibility faults.

The two type of visibility faults detected by VFDetector are inconsistency fault
and covered error. To determine the type of visibility fault, VFDetector compares the
visibility of the same element in both layouts. If the element has a full-cover visibility
in only one layout and hence the event handler cannot be executed, it is referred to as a
covered error. Otherwise, if there is a difference in visibility other than full-cover visibility,
then it is referred to as an inconsistency fault.

The VFDetector tool is able to detect visibility faults by using a DOM API wrap-
pers to monitor and collect information about the registration of event handlers. This
is achieved by using a proxy that intercepts a web page request and injects the DOM
API wrappers. The proxy is also used to prevent the web page under test from loading a
different page. The tool then calculates the back-to-front order to determine the visibility
of elements that were recorded by the wrappers. Specifically, the visibility is calculated
based on the HTML structure, coordinates, and the size of elements. After that, only the
visible elements that do not have full-cover visibility are triggered until all dynamically
changed layouts have been reached and recorded or a timeout occurs. In their experimen-
tal evaluation of the tool, the timeout was set to 30 minutes. The tool then prints a report
that provides a replay description which specifies the width of the browser, sequence of
events to reach the layout, and the elements exhibiting the visibility faults.

Both the VFDetector and ReDeCheck tools have their limitations. While Re-
DeCheck is able to detect five type of RLFs, it is limited to the initial state of the web
page across different viewport widths. Although VFDetector overcomes this limitation
of testing only the initial state, it is limited to the layout failures of elements that have an
event associated with them. Moreover, both of these tools are restricted to a DOM-based
analysis and do not take into consideration the final rendering of the web page. This
created the need to distinguish between observable and non-observable failures. Another
limitation or potential advantage that ReDeCheck does not utilize is that the overall fre-
quency of alignment is not monitored for insight (e.g., suspiciousness) to infer if the change
was intended or not. Furthermore, all the reports generated by both these tools need to
be manually verified by a human and manually repaired to fix the problems detected.

2.4.3 Regression Testing

When the underlying HTML structure of a web page is modified for improvements and
updates, new layout failures could be unintentionally introduced [60]. An example of this
is when a page is refactored in order to move to a newer HTML version or when replac-
ing deprecated HTML tags. If the intention of the changes made was not to alter the
layout, the previous version of the web page can serve as a reference to verify that no
new presentation failures were introduced. This process of re-testing the software after a
recent modification is called regression testing [5]. The tool FieryEye was introduced by

32

2.4. TESTING WEB PAGES

Mahajan et al. to solve the problem of detecting failures in a refactored web page. Fiery-
Eye uses image-processing and probabilistic techniques to detect presentation failures. A
developer can benefit by using this technique to ensure that any structural changes made
do not manifest to a change in the appearance of the web page.

The first and most important input to the FieryEye is a snapshot of the previous
version of the web page to serve as a reference that shows how the web page should appear
after modification. With the snapshot, a list that excludes certain regions of the web page
must also be provided as input. These regions should exclude elements with dynamically
changing content from the analysis because the visual change of the element can increase
the rate of false positives. Finally, a URL of the web page to be tested must also be
provided in order to detect possible layout failures.

FieryEye starts by analysing the web page under test against the reference to find any
visual differences. The actual analysis follows the same approach used in their previous
tool WebSee [67, 68]. In that tool, the authors used Perceptual Image Differencing
[136] to mimic the human notion of similarity when comparing images. The change in
visual appearance is then used as input to the probabilistic model that should map the
failure to possible faults. The faults that cause a presentation failure are due to either an
incorrect value in an HTML attribute or a CSS property. Since there are many types of
attributes and properties, only the subset that could lead to a visual change were manually
identified from the HTML and CSS standards. This subset of attributes and properties are
reported as possible causes of presentation failures to the developer. The report provides
the possible causes as a ranked list mapped to a potentially faulty HTML element.

The model that is used to map the failures to possible causes is based on conditional
probability. The information gained by injecting faults into the web page under test is
used to build the model. The injections are made by systematically modifying properties
that influence the visual appearance of an element to see if there is a visible change.
By observing the generated data samples and learning the correlations, the authors of
the tool were able to build their probabilistic model. Although this model is based on
manufactured faults, the distribution of real faults can improve the model and the results.

The ranking of all possible causes is achieved by calculating the probability that a prop-
erty or attribute caused the failure given a specific visual symptom. The visual symptoms
are predicates grouped into abstraction; they are colour, visibility, size, text appearance,
decoration style, and the difference in pixels. These predicate conditions are used to cat-
egorize an image into specific groups. For example, if a colour is added or removed from
the visual rendering of an element then the specific predicate in the colour group is flagged
as true. Similarly, a visibility predicate is flagged true if the height or width of the ele-
ment is greater than zero which indicates that it is visible. The authors identified 24 of
these predicates and abstracted them into the 7 groups. As a result of this ranking, the
evaluation of the authors showed that the developer needed to inspect 8 possible causes
before reaching the right one.

In addition to detecting failures that arise during HTML migration to a newer version,
responsively designed web pages require special regression consideration. For example, a
developer may modify certain CSS properties of a web page to alter the layout at a specific
browser width. The modification may appear as intended in the desired viewport size but
it can also manifest into layout failures in alternative viewport widths. To monitor for
these unintended changes, Walsh et al. developed the original ReDeCheck to detect
regression-based layout failures in responsively designed web pages [6].

This version of ReDeCheck originally introduced a graph-based model that captures
HTML elements and their relative positions across a range of viewport sizes, known as

33

2.4. TESTING WEB PAGES

the RLG. The RLG is an improvement to the alignment graph first developed by Choud-
hary et al. [28] which was limited to a fixed viewport size. This improvement allows for
the modelling of the visibility, width, and relative alignment of elements across a range of
viewports. To detect any layout failures, ReDeCheck first extracts the RLG of the old
version and the new version of the web page. Then a pairwise comparison of the models is
made for visibility, width, and relative alignment of the DOM elements. Any differences
are then reported to the developer.

Interesting to note, that during the evaluation of the ReDeCheck regression testing
mode, referred to as ReDeCheck-RM [126], the page is mutated using eight operators.
In essence, these operators modify specific CSS and HTML of the page in an attempt
to introduce synthetic regression failures. The target CSS modifications were to, prop-
erty value (e.g., 20px to 15px), property unit change(e.g., % to px), media query fea-
ture (e.g., min-width to max-width), media query breakpoint (e.g., min-width:700px to
min-width:702px). While the target HTML modification was to the text of an element
(i.e., increase and decrease length) and the HTML class attribute by adding, removing,
and replacing a class-name that is used to specify the style of a specific element.

Both of the tools ReDeCheck and FieryEye had some limitations. In the case of
FieryEye, the tool had limited automation because the developer had to manually distin-
guish regions of the web page to exclude from testing. A problem with the ReDeCheck
tool was that it detected both intended and unintended changes to the web page. Fur-
thermore, both of the tools assumed and required a correct version of the web page to
be available as a reference, the previous version of the page. This means that the tools
will not detect any failures that existed in the older version of the page. Importantly, the
developer is left with the manual task to identify false positives from the reported layout
failures and has to manually repair all the true positive failures.

2.4.4 Internationalization Testing

The layout of a web page is typically designed with the text-based content of the page
set to some default language. Supporting multiple languages is possible through the use
of isolated “need-to-translate” strings located in a resource file or through translation
APIs. Both of which allow the web page to support thousands of languages but at the
risk of introducing presentation failures. These failures occur when the HTML elements
visually distort while accommodating the alternative text length, width, and height. With
a large number of supported languages, manually checking the layout for each language
can quickly become an unfeasible solution. Alameer et al. [2, 3] termed the distortions
that occur while elements expand, contract, or move to accommodate the translated text
as Internationalization Presentation Failures (IPFs).

The tool GWALI, developed by Alameer et al. [3], was developed to automatically
detect these failures. To do this, the tool builds a layout graphs model of the web page in
the default language and compares it against a second model of the same page under a dif-
ferent language. The layout graph represents the relative position and visual relationships
of text elements and HTML tags of the web page. The nodes of the two layout graphs
are mapped and the differences are calculated using specialized parameters determined
through experimentation to generate a list of potential failures. Then, each node is given
a suspiciousness score using three heuristics that ignore a certain level of change based
on a threshold value set by the authors. Finally, the list is ranked before outputting an
ordered list of IPFs.

Although not as efficient as GWALI, other non-IPF tools can be adapted to detect

34

2.4. TESTING WEB PAGES

possible IPFs including X-PERT, FLB, and WebSee as evaluated by the authors. The
reason for the efficiency of GWALI is that it is specialized in text elements. On the
other hand, this also limits the ability of the tool to detect other type of layout failures.
Another limitation of the tool is that it assumes that the web page displaying the default
language is free from layout failures. Thus it is used to serve as the correct reference
layout. Another vulnerability of the tool is that the false positive rate is highly dependent
on the threshold set for acceptable changes. Finally, the task of verifying the reported
IPFs and the process of repairing them is a manual task left for the developer.

2.4.5 General Layout Testing

The testing tools that I have reviewed thus far were easily classified into a specific category
of presentation failures. Some tools are simply more generic in their approach to testing
the layout of a web page. These generic tools do not require a reference browser, viewport,
language, nor an older version of the page to detect the failures. This flexibility gives them
broader applicability but hinders their ability to compete as well as other specialized tools.

In the year 2009, Michael Tamm [114] released a tool under the name “Fighting Layout
Bugs” (FLB) to mitigate and detect layout issues. The technique uses HTML validation,
CSS validation, and image processing to detect layout issues. By validating the HTML
of a web page, the tool essentially prevents different browsers from guessing the correct
structure of the page which may lead to layout issues. Furthermore, HTML validation
prevents CSS from using the possibly incorrect HTML structure. The validation of CSS
is as also important to have a consistent rendering of a web page and mitigate any issues.
Nevertheless, validating HTML and CSS does not eliminate all layout issues.

Michael Tamm also saw the importance of visually analysing the web page to detect
layout issues. His solution ensures that pixels associated with text do not overlap with the
location of pixels that represent graphical edges. First, the text pixels are identified by
using a JQuary [47] to dynamically change the colour property of all HTML text to black
and a snapshot is taken. Then, the colour of all the text in the document is changed to
white and another snapshot is taken. By comparing the change in the two snapshots, the
pixels associated with text-based content are identified. The tool then needs to identify the
pixels that are located in any vertical or horizontal edges. It starts by setting the colour
of all text to be transparent and takes a snapshot. Then all vertically and horizontally
neighbouring pixels are checked for high contrast to detect the graphical edges of the page.
With this information, the tool can detect any text that overlaps an edge and reports it
as a layout issue. Furthermore, it is able to report any text that is in low contrast with
its surrounding pixels as a layout issue.

Another generic method for testing the layout was proposed by Tanno and Adachi [115]
to make the process of manually classifying the reported failures (differences in the lay-
out) more efficient. Their method is independent of the underlying runtime environment.
Instead, all that is required is a reference snapshot assumed to be correct and another
snapshot to test. It does not matter whether it came from two different viewports, two
browsers, or the same application running on two devices.

The approach of Tanno and Adachi aimed to detect differences between two images
that are due to addition, omission, movement, or scaling of content. It works by first
matching the size of the two images that were provided as input for comparison. Then
it segments the image into rectangular areas then extracts and matches features in each
rectangle. To segment the image into rectangular regions, the process involves the use
of a Sobel filter [15] for targetting larger gradation differences and using the Canny edge

35

2.5. REPAIRING WEB PAGES

detector [25] to determine edges. Moreover, the KAZE [4] method is used to investigate
image features within the matched rectangular areas. This results in finding a difference
in the rectangular units rather than pixel units.

The output of the Tanno and Adachi method is a list of differences presented using
a graphical interface. The developer can use this interface to manually classify each of
the findings as either an acceptable difference or not. Since the aim of the approach
is efficiency, the developer can also add custom rules in order to reduce sensitivity. For
example, the developer can add a rule to ignore differences of 20 pixels or less in movement
and up to 3% scaling. Although helpful, this approach is still mostly manual.

Another general-purpose specifications-based approach to test the layout of the page
was suggested by Hallé et al. [42]. Their approach provides a tester with a declarative
language that is able to express constraints that uphold known layout specifications or
prevent a specific failure from recurring. This makes regression testing an ideal use case
for their approach. Nevertheless, it is not solely for regression testing. The language was
implemented into a tool called Cornipickle that is able to make expressions about the
DOM and CSS properties. A prototype of the tool provided a sufficient grammar for
testing the layout of a web page which includes the ability to express events or temporal
operators. Moreover, the grammar can be extended by the user to make it more readable.
This means that the tester can add new definitions to the vocabulary of Cornipickle
which will be read by the interpreter and handled appropriately. This is in done in an
attempt to improve the readability and adoption of the language that gets its inspiration
from Cucumber [8, 134].

So long as the tester expresses the correct layout or what contradicts a correct layout,
Cornipickle can catch many type of presentation failures. The authors of the tool
identified six variations of disruption that occur to the layout and four behaviour-based
layout bugs. The layout disrupting bugs involve the element position, element size, element
visibility, number of elements in the page, resource files used to style the page, and encoding
problems. The behavioural bugs include a change in the position due to some event,
inactivity of buttons, lack of update to the page, and incorrect updates to the content
of the page. Nevertheless, expressing these failures is a manual task that may not be as
useful as automated tools that can detect what the tester misses.

The Cornipickle language is not as familiar nor as competitive as basic test-running
tools like Cypress [49], Selenium [106], Puppeteer [91], or Playwright [35]. More impor-
tantly, the last thing the developer needs is another language on top of HTML, CSS, and
JavaScript. It is reasonable to also expect that the developer is already using other lan-
guages, pre-processors, and libraries that make the job easier or safer like TypeScript [120],
Sass [103], or BootStrap [13]. On the other hand, the readability of the Cornipickle lan-
guage allows the process of testing the web page to reach beyond the technically savvy
tester. In theory, other business affiliates or stakeholders with minimal technical knowledge
can also participate in testing by writing constraints using the human-readable language
of Cornipickle.

2.5 Repairing Web Pages

Although the published literature presented multiple automated techniques to test a
web page for different types of presentation failures, there were fewer techniques that
automatically repair them. The work was primarily focused on three areas, the repair of
cross-browser issues, internationalization failures, and mobile-friendly problems. Impor-
tantly, no previous research that I reviewed attempted to automatically repair responsive

36

2.5. REPAIRING WEB PAGES

design failures. As such, one of my contributions in this thesis, discussed in Chapter 5,
has been the automated repair of responsive design failures. Next, I will review what has
been proposed to automatically repair presentation failures in web pages.

2.5.1 Repairing Cross-Browser Failures

While many techniques have been proposed to detect cross-browser issues, discussed in
Section 2.4.1, there were far fewer attempts to automatically repair these type of fail-
ures. More specifically, there was only two approach that aided in the repair of XBIs
implemented into the tools XFix and X-Diag. While XFix can automatically generate
patches that repair the layout, the X-Diag tool is designed to debug the issue and find
the root cause.

To repair the layout failures that arise in different browsers known as structural
XBIs[28], Mahajan et al. [62, 63] employed a search-based technique to reach the CSS
values that will repair the XBI from the browser exhibiting the issue. This process be-
gins by finding the layout XBIs using the X-PERT tool. Included in the output of this
XBI detection tool is the misalignments resulting from comparing two alignment graphs.
Moreover, the report also includes the two elements involved in the failure which will be
the target elements for repair. The authors manually determined CSS properties that
have the potential of dealing with the reported misalignment. Thus, one or more of these
properties are assumed to be the root cause of the misalignment.

A search-based technique aims to explore a large solution space in a rewarding way
in terms of efficiency or effectiveness. The search of XFix for an optimal solution used
the Alternative Variable Method (AVM) [50, 52] which consists of an exploratory and
a pattern step. In the case of XFix, the exploratory step makes a small increment to
the CSS value in the positive or negative direction. Then, based on the feedback about
the exploratory move from a fitness function, the pattern step makes exponential leaps
in the same direction. The fitness function used by XFix is based on quantifiable pixel
differences between the position and size of the elements in the reference browser and the
browser exhibiting the failure. Specifically, they used a combination of differences in the
size of the target element, location of the target element, and the location of the elements
neighbouring to the target element.

Once the optimal value is found or the limit of attempts is reached, the CSS value
concluded by the first phase of searching is considered to be a fix. This search is repeated
for each element reported as problematic and all the CSS properties identified by the
authors to have a potential effect on the XBI (e.g., the margin and padding properties).
This results in the output of multiple competing fixes that are able to repair the failure.
Therefore, a second phase of searching is used to repair as many XBIs as possible using
a subset of all the fixes. This is important since in combination, different fixes can either
work better with other fixes, break other fixes, or create more XBIs. Thus, this second
phase of searching for the best combination of fixes aims to minimize the XBIs reported
by the X-PERT tool.

In their evaluation of XFix, the authors found that it is able to repair 86% of the
failures reported by X-PERT and up to 99% of the human observable failures that are
reported by X-PERT. The performance of this patch searching process ranged from 43
seconds to 110 minutes with a mean of 30 minutes. This cost was split 67% to searching
for fixes and 32% to searching for the best combination of fixes. To save time, the authors
suggested parallelization for future work but I believe that the position and size criteria
as used in AVM can be better tuned. More specifically, the target position and size are

37

2.5. REPAIRING WEB PAGES

known in advance and potentially could be used while searching for the fix.
In semi-competition with the XFix tool is the X-Diag tool that was proposed by

Xu et al. [135]. While XFix automatically generates CSS that is able to resolve the issue,
the X-Diag tool automatically localizes the failure to a specific JavaScript DOM API call,
CSS property, or HTML attribute. Nevertheless, the process of repairing the problem is
still a manual task using the X-Diag tool.

To detect the XBIs that will be diagnosed by X-Diag, the authors used the X-Check
tool. This tool utilizes an approach similar to X-PERT’s in the detection of XBIs with
the addition of monitoring JavaScript events using Mugshot. In the X-Diag tool, the
Jalangi [108] tool is also used for stronger monitoring and localization of JavaScript code.
These events are replayed in a reference browser and a testing browser to appropriately
compare the page across different states of the application.

The first root cause analysis done by X-Diag is on calls made to the DOM during
the execution of the application. This is achieved by instrumenting the JavaScript code
using Jalangi. While code is executing, it is monitored for differences in the returned
values during replayed of events or for calls that return an exception. The second level of
root cause analysis is done on CSS properties. This is done by collecting all the declared
CSS properties from the codebase and comparing them to the final values applied by
the browser using the getComputedStyle() function across different browsers. Finally,
the third level of root cause analysis is on the HTML element tags and attributes across
different browsers. This is achieved by checking for syntax errors in the declaration of the
HTML tag and by checking the value of HTML attributes across different browsers. It is
worthy to note that the root cause analysis of the tool stops at the first level that is able
to detect a difference. Thus only one root cause is reported.

During the evaluation of the X-Diag tool, they found it to have 89% precision and
88% recall in debugging visible failure when compared to human debugging. In terms
of performance, the analysis revealed that the tool’s runtime ranges from 3.34 to 11.83
seconds with a median of 7.95 seconds. In comparison, the majority of XBIs took a human
over half an hour to debug.

Both of XFix and X-Diag specialize in helping the developer resolve the XBIs de-
tected in the page. Although the authors of X-Diag suggest that the tool can be adapted
to work with the X-PERT tool, it is still limited to fixing cross-browser issues as is the
case for the XFix tool. For the X-Diag tool, the actual fix is still a manual process since
it does not suggest a solution to the root cause. Meanwhile, the XFix tool is limited to
suggesting CSS based patches and does not directly resolve any JavaScript-based faults in
the code.

2.5.2 Repairing Internationalization Failures

For a web page that is designed to address different audiences, the language of the text-
based content is translated to the language of the target audience. Because the page was
originally designed using a particular language, the translated text may not fit as well as
the untranslated text into the design of the page. This is due to the nature of languages
as some translations are longer or shorter than the original language. This expansion or
contraction can lead to text overflowing, element movement, text wrapping, and other
general misalignments in the page. The layout failures that occur due to this change are
known as Internationalization Presentation Failures (IPFs).

To automatically repair a layout failure that occurs due to a change in the language
of the text-based content, Mahajan et al. [64] proposed a combination of a similarity

38

2.5. REPAIRING WEB PAGES

clustering approach and a search-based approach. This combination aims to find a set of
appropriate values of predefined CSS properties that eliminate the IPF from the subject
web page. This technique was implemented into a tool called IFix which uses the GWALI
tool to automatically detect and report IPFs. More details of the detection technique
followed by GWALI were described in Section 2.4.4.

To avoid a repair that is over-fitted to a target element, the repair should include re-
lated neighbouring elements. For example, a repair of a menu item that leaves it extremely
larger or smaller than the other menu items is not ideal. Instead, all the menu items should
give way to maintain the same style across all menu items. This is where IFix employed
the clustering technique DB-SCAN [34] with a customized distance function. In the case
of IFix, the distance function is used to measure style metrics instead of the location of
an element. A benefit of using this technique is that each element can only belong to a
single cluster and does not require the number of clusters to be determined beforehand.
For repair, all the elements of the page are first clustered and then the clusters containing
the GWALI reported elements are picked as the target for the repair. The style metrics
defining the distance function include, as binary differences between any pair of elements,
the height, width, edge alignment match (i.e., top, right, bottom, and left), and tag name
match. The style metrics also included, as a ratio, explicitly defined and matched CSS
values and the XPath similarity using Levenshtein distance [54].

Before the search for the ideal values that will repair the failure begins, an initial
population of repairs is generated using the target clusters. More specifically, the repair
aims to resolve three CSS properties of each cluster which are the width, height, and
font-size. The initial repair values are calculated based on the expansion rate of the
text before and after translation. Then, the Alternative Variable Method [50, 52] is used
to fine-tune these values. In addition to the AVM method, the values are mutated using
a randomly picked value from the Gaussian distribution from the previous value. This
is to explore areas of the solution space that may not be reachable using AVM alone.
From this population of candidate repairs, a fitness function guides the search to pick the
best repairs based on two components. First, the amount of layout change that quantifies
the dissimilitude of two layouts is measured based on pixel differences that arise when
comparing two layout graphs. The second is a measure of change due to applying the
solution. Specifically, the squared percentage of change to each CSS value as compared
with the original is used to penalize too much change in the layout. In combination,
these two components help IFix pick the best set of candidate repairs. This process is
terminated if the time expires or no improvements to the solutions can be made over 20
iterations.

The evaluation of IFix compared three different modes of the tool that reduce its main
features. Thus, the full featured tool is compared to a mode that runs without clustering
and another mode using an unguided random search. The results suggested that the full
mode is far superior to the other modes averaging a 98% reduction in IPFs. Furthermore,
it was found that the tool takes anywhere between 73 seconds up to 17 minutes to complete
with an average runtime of 4 minutes. Noteworthy is that the clustering feature is a time-
saving feature as well. Finally, a human study revealed that 64% of participants preferred
the automatically repaired version of the page.

Although the results of IFix were largely promising, there were three limitations.
First is the length of time needed to produce a repair which can take up to 17 minutes
in certain cases. Second is the low quality of repairs because they were found to be less
readable and less aesthetically pleasing. This is mainly because it focuses the repair on the
cluster of elements involved in the failure. As a result, this can leave them in proportion
to other elements in the page less aesthetically pleasing and less readable. To overcome

39

2.5. REPAIRING WEB PAGES

these limitations, Alameer et al. [1] suggested the usage of a constraint solver to repair
IPFs as implemented in CBRepair.

The CBRepair tool works in three steps; extract relative relationships, convert re-
lationships to constraints, and solve the constraints to repair the failure. Some example
relative relationships between HTML elements are top-of, top-aligned, and contained-by.
The first strategy to find the relationships that need to be modelled by the tool is based
on the differences in alignment as reported by GWALI, thus the two failing elements are
reported as out of alignment. The second approach is to find the lowest common ancestor,
in the DOM, of the two elements reported by GWALI as failing. This is a simple heuristic
to ensure that the style of similar elements is also modelled in the system. Overall, for
the identified elements, the correct relative relationships are those formed in the reference
untranslated page.

The second step of CBRepair is to convert the relative relationships into linear con-
straints. Here the constraints describe the correct relationship between two elements as
dictated by the layout of the elements in the untranslated page. For example, if in the
untranslated page the top edge of two elements (e1 and e2) are aligned, the constraint
that should be upheld in the repaired version would be e1_top = e2_top. Besides these
relative alignments, the tool also generates constraints on the font size to prevent the sys-
tem from reducing the text size which can cause readability issues. It does this by making
sure the width and height of any text content are equal to a constant value in the repaired
version as derived from the untranslated page. In other words, when adjusting an element
size the repair must keep the original font size.

The variables of this constraint-based system will represent the CSS properties that
have an effect on the size and position of the elements in the page as defined by W3C Box
Model [14]. In this model there are four boxes which help the browser render the element
starting with the innermost box for content, then a padding area, then a border area, and
finally the outermost box the margin area. This results in 16 variables per element since
each side of the boxes can be specified separately; top, right, bottom, and left.

The final step of CBRepair is to solve the constraints in order to produce a repair.
Each repair represents new values for the content, padding, border, and margin that resolve
the IPF. For this task, the tool uses Google’s OR-Tools [86] to solve the constraints of
the system. This results in multiple solutions that are able to resolve the issues but
CBRepair must decide which one is the best. By using Linear Programming, the tool
sets an objective function to pick a preferred solution from multiple solutions by favouring
the ones that minimize any change to the original values based on the untranslated page.

The CBRepair tool was evaluated against the IFix tool for effectiveness, efficiency,
and quality. The results showed that CBRepair reduces the failures by 65% while IFix
outperformed with a 98% reduction. The root cause for the disadvantage was determined
by the authors to be the lack of font size reduction in CBRepair. In terms of efficiency,
CBRepair had an average runtime of 13 seconds while the IFix tool had a 5 minute
average. Finally, in a human study that evaluate the quality of the repairs generated by
both tools, the CBRepair repairs were determined to be more readable, more attractive,
and more similar to the original page than the repairs made by IFix.

In addition to CBRepair’s attempt to resolve the readability problem of the IFix
generated repairs (due to the over reduction of font size), a newer version of the tool
named IFix++ [65] aimed to do the same. Although CBRepair solved the problem by
preserving the original font sizes, the IFix++ tool keeps it as a last resort in resolving
the internationalization failure. Arguably, this is a better choice since CBRepair did not
perform as good as the original IFix in terms of the number of repairs.

40

2.5. REPAIRING WEB PAGES

Because IFix++ is an improvement to the original IFix, much of the underlying tech-
nique is the same. This includes the usage of GWALI to generate failures and the usage
of clustering to find elements that are similar in style. The improvements were mainly in
adding new CSS properties during the search for a repair and the prioritization of prop-
erties other than the font-size. The original tool used only the width, height, and
font-size properties in repairing the failure. In the new tool, the W3C Box Model [14]
inspired the use of the margin and padding properties. This is an addition of eight prop-
erties split into the four sides of the Box Model; top, right, bottom, and left. Furthermore,
they intentionally excluded letter-spacing, word-spacing, font-weight, and the four
sides of the border property due to its limited effect in resolving an IPF.

Before the search begins, the new tool IFix++ initializes a value for these eleven CSS
properties as done in the original tool. The only difference is that the new tool has
eleven instead of three properties. Then as done in the first tool, AVM is employed to
search for new values and mutation is also added to diversify the solution space. During
the production of a repair, related sides of the Box Model are taken into consideration
to maintain the aesthetics of an element. For example, if the left side is modified then
the right side is also modified by the same amount. To prioritize the changes to each
CSS property, a preference weight is used to multiply the percentage of change caused by
each property. More specifically, the least weight was given to the padding and margin
properties, then ten folds that weight was given to the width and height properties,
then four times that weight was given to the font-size property. This leads the fitness
function to prefer the repair with the least changes to the page using the lower weights.
The search terminates after 20 iterations or if no improvements occur after 2 iterations.

The new version IFix++ was evaluated against the original IFix for effectiveness,
efficiency, and quality. As the underlying technique in both tools is the same, both tools
were able to reduce the number of IPFs by about 94% on average. In terms of efficiency,
IFix++ required 23% more runtime than the original IFix. This is to be anticipated since
the solution space is much larger using eleven properties when compared to only three
properties. Finally, a human study determined that the quality of IFix++’s repairs were
more legible and visually appealing than the IFix repairs.

All three tools IFix, CBRepair, and IFix++ demonstrated success in repairing IPFs
but had some limitations. The most obvious is their limited applicability to only inter-
nationalization failures. Furthermore, they all require the use of a reference page that is
assumed to have a correct layout, namely the untranslated page. This makes it harder to
adapt these tools to repair other type of failures. Nevertheless, the underlying problem
solved using a cluster-based, constraint-based, or search-based can be retrofitted to other
type of layout failures.

2.5.3 Repairing Mobile-Friendly Issues

There exists a set of mobile usability issues that arise due to the lack of planning for
devices with smaller screens. These issues include improper viewport configuration, the
page doesn’t fit the limited width of the device, the text in the page is not readable, usage
of incompatible plug-ins, and the inappropriateness of clickable elements in terms of size
and spacing between the elements for a mobile device that mainly relies on touch screen
input [11, 77]. It is critical for pages to be mobile friendly since the search engine requests
that originate from a mobile device take into consideration the mobile-friendliness score
when ranking the pages.

To resolve these issues, the page can be made responsively designed, use dynamic

41

2.5. REPAIRING WEB PAGES

serving, or make a separate page for mobile devices [83]. The responsive design solution
provides all the rules and settings to the browser for it to execute the proper design for
that device. Meanwhile, a dynamically served design is one where the appropriate design
for the specific device is completed by the server. Finally, the last solution is to make
an entirely separate page with its own URL for mobile devices. Although these solutions
provide a page that is designed for a mobile page, they may still contain mobile-friendly
issues.

To reduce the number of mobile-friendly issues, Mahajan et al. [61] proposed a tech-
nique to automatically repair three type of mobile-friendly problems. These were issues
with font sizing, tap target spacing, and content sizing which should be limited to the
viewport width. This leaves out two type of problems that are not handled by their ap-
proach. First, for viewport configuration problems, it is simply a one time task of adding
the meta viewport tag to resolve the issue. Therefore, it is not a hard manual task to
claim automation benefits from. The second type of problem not handled is related to
browser plug-in issues like accommodating Flash-based content. This type of problem
is rightly treated as out of scope since a layout modification will not resolve the issue.
Mahajan and his colleagues proposed a technique, implemented in MFix, that builds a
graph model of the layout and uses the constraints encoded into the model to improve the
mobile-friendliness of the page while minimising the amount of layout change incurred on
the page.

The technique implemented in MFix has three phases, segmentation, localization, and
repair. In the segmentation phase, similar elements that require simultaneous and pro-
portional adjustment of values are grouped into segments. To achieve this, they employed
a clustering-based partitioning algorithm originally proposed by Romero et al. [97]. This
algorithm starts with each leaf element of the DOM tree in its own segment and gradually
merges two segments based on the number of hopes and a threshold to the lowest common
ancestor. The algorithm terminates when no further mergers are possible. Thus, the re-
sults of this phase are segments that group elements in the page which should be repaired
together.

The localization phase of MFix consists of two parts. First, it needs to localize
the faulty HTML elements and then it needs to identify the faulty CSS properties. To
identify the HTML element and the type of failure, MFix uses Google’s Mobile Friendly
Test (GMFT) [77] which localizes the problem to a few HTML elements and describes the
type of problem. To target all the elements that need a repair, MFix uses the segment
associated with the reportedly problematic elements. For example, if GMFT reports an
HTML element with font size issues, MFix will find the associated segment and target all
the text nodes of the segment for repair.

To localize specific CSS properties that require the repair and apply values to maintain
the style dependencies between different elements, MFix uses a property dependence graph.
This graph is built based on CSS inheritance rules and style similarity between different
elements. The goal of this graph is to maintain the original proportion of values for
stylistically similar elements which are the segments identified in the first phase of the
tool.

To improve the mobile-friendliness of the page, MFix aims to reduce the amount of
change incurred on the layout while making improvements to the mobile-friendliness score
of the page. To do this, the tool builds two graph models from the page. The first one
represents the relative alignments of segments and the other represents the alignments of
elements in each segment. Then, the graphs of the original page are compared against
the graphs of the repaired page to identify how many relationships have changed. Ini-

42

2.5. REPAIRING WEB PAGES

tially, the GMFT tool suggested improvements that are used by MFix with customized
modifications. For example, if GMFT suggested that the font should be 16 pixels, MFix
adds a constant equal to 14 pixels. To test more values, they used a Gaussian distribution
around the original values. The goal of which is to make as many small changes as possible
throughout the segment rather than a few large changes to a few elements. The property
dependence graph is used here to apply different values to the target HTML elements
based on the established ratios in the dependence graph. To score the friendliness of the
page, the APIs of the GMFT tool and Google’s PageSpeed Insights (PSI) [38] tool are
used. Finally, a media query is added to limit the application of the patch to the viewports
associated with mobile devices. For performance, the tool used Amazon Web Services to
parallelize these computations.

In the evaluation of MFix, they found that it was able to improve mobile-friendliness
by 33% on average with 36 out of 38 subject web pages passing GMFT after an MFix
patch is applied. The MFix tool will cost anywhere from 2 minutes to 10 minutes per
subject with an average runtime of 5 minutes per repair. The quality of the repairs was
judged in a human study which revealed that participant preferred 26 out of 38 repairs
over the original page. Overall, the study also revealed that the repaired versions were
more aesthetically pleasing and 17% of the repairs had improved readability.

One limitation of MFix is that it does not consider the structural symmetry of the
page when making repairs. As such, Azmain and Ganguly [7] proposed and evaluated
improvements to the MFix tool. The first upgrade to the tool is in its segmentation phase.
During this phase, the authors opted to use the VIPS [23] algorithm which combines DOM
structure information with visual cues to segment the page. According to the authors, the
tool is also able to detect symmetry problems as well as resolve them. This process is
largely unclear but involves using balance and proportion metrics. Where the balance
score measures the distance to the closest headline and the nearest call to action button
among other measurements. The proportion metric is calculated by dividing the height
over the width of each element, then they are averaged for the right side of the page
and the left side which are later subtracted from each other to reach a final score for the
page. Then a search-based approach is employed to balance the symmetry score and the
mobile-friendliness score.

Unfortunately, the approach of Azmain and Ganguly is not clearly described but the
examples showcased illustrated impressive improvements over the MFix tool. As a result
of their own evaluation, 88% of human participants preferred the symmetric solution over
the MFix repair. The validity of their work is not clear.

Another work by Le-Cong et al. [53] also saw the opportunity to improve MFix by
adding two new search-based alternatives that take into account usability and aesthetics.
In their work, they use the same segmentation and localization features of MFix and
the novelty of their work is in the repair phase of the tool. By using the Particle Swarm
Optimization (PSO) [51] algorithm over a random search, it can improve the values used
for the repair over multiple iterations. The authors used this algorithm because of its
“high quality” solutions but also noted that it can come at a high cost in terms of runtime.
Therefore, they also studied the use of the Tabu [37] search algorithm to optimize for time.
For both algorithms, the initial solution values are the ones suggested by the GMFT tool.

When the Le-Cong version of the tool was compared with the original MFix, the PSO
algorithm significantly outperformed both the Tabu algorithm and the MFix tool in im-
proving the usability score. Moreover, both PBO and Tabu search algorithms significantly
outperform MFix in aesthetics. More precisely, PSO was better than Tabu for 36 out of
38 subjects in mobile-friendliness and 30 out of 38 in terms of aesthetics. Suggesting that

43

2.5. REPAIRING WEB PAGES

it is a better fit than the original MFix tool.
Although MFix and the upgraded versions of it do not require or use a correct layout

as a reference to detect presentation failures, they did rely on Google’s PSI and GMFT to
score the page. This can be considered an advantage but it will limit its usage to the three
type of mobile-friendly problems identifiable by these tools. Thus it is not as beneficial
in repairing cross-browser issues, internationalization failures, or even responsive design
failures.

2.5.4 Generic Layout Repair

The approaches that I reviewed so far can automatically repair a presentation failure but
they are specialized in repairing either cross-browser issues, internationalization failures,
or mobile-friendliness issues. This specialization restricts their usefulness to resolve other
types of failure. Nevertheless, there were also public tools and some literature that was not
concerned with the type of failure, but rather a general approach to repair or mitigation
of presentational defects.

A generic approach to verification of the layout and repairing any violations was pre-
sented by Jacquet et al. [48]. Their approach uses Mixed Integer Linear Programming
(MILP) and IBM’s CPLEX software to solve constraints about the page in order to gen-
erate a repair. This is a declarative system which assumes that the constraints are known
in advance and manually identified. The overall aim of the system is to produce a“hot fix”
(a repair that suppresses the failure) in less than two seconds. To achieve this, the type
and number of constraints are reduced, the number of elements that need to be looked at
by the solver to generate the solution are also minimized, and no re-rendering of the page
is used to test the generated repair.

In this Jacquet system, four type of constraints are applied. These were alignment,
inclusion, disjointness, and non-decreasing sizes constraints. The layout constraints like
alignment, inclusion, and disjointness are expressed on pairs of elements. They include
horizontal alignment, vertical alignment, containment (inclusion), and separation (dis-
jointness). For the solver not to go for the choice of setting the width or height of an
element to 0, the non-decreasing size constraint is added. Moreover, this constraint adds
a time-saving property because not all elements should be affected by the change. In-
stead, part of the DOM tree is affected which is referred to as the zone of influence. More
precisely, the parent and siblings are affected recursively in one direction up the DOM
tree.

To prevent the solver from producing a layout that is drastically different from the
original layout, an objective function is also defined for the solver. To represent the amount
of change the layout is undergoing, the change in position of each element is calculated on
the x and y axis. The overall change in the layout is the cumulative change in the position
of all elements. Thus, for the solver to reduce the amount of change to the layout, this
value is minimized by the objective function.

The Jacquet prototype tool has two phases, the detection and correction phase. In the
detection phase, the DOM is traversed to produce a unique identifier for each element, their
unique positions in the coordinate system, and the set of constraints for that elements.
This is used to generate an input model for the solver to solve. In the correction phase,
the resulting solution outputted by the solver is applied to the layout and expected to
repair the issue without any feedback. To achieve this, the position CSS property is set
to the absolute value in order to force the element to be fixed into the position generated
by the constraint solver relative to another element with the same value for the property.

44

2.5. REPAIRING WEB PAGES

In order to expand an element as part of the solution, the width and height properties
are modified while taking into consideration the padding and border size.

In their evaluation of the Jacquet tool, they used real-world pages and developed a
helper tool PageGen [88] to create synthetic DOMs from a real DOM with the ability
to create synthetic presentation failures. This helped them generate 100 synthetic DOM
trees with failures and variable number of elements (2 to 10,450). The purpose of which is
to stress the tool in order to evaluate its efficiency. The overall results showed that it can
resolve the issues in a matter of seconds but it comes with critical limitations. First, the
input requires the developer to manually provide complete constraints which ensure that
their satisfaction equates to the correct layout. Their “hot fixes” are also limited since they
modify the original code drastically in a way that does not work for any other viewport,
browser, or translation of the page which makes the patch impractical. Furthermore, the
repairs can never reduce the sizes of elements which is not a realistic criterion for a repair.
Without this constraint on size, the performance advantage is lost.

A more powerful framework that uses constraint solving to verify the correctness of
a layout and also repair the violation raised was presented by Panchekha [89]. Their
framework, Cassius, is a formalization for a considerable portion of CSS semantics. It
can efficiently reduce the problem to the theory of quantifier-free linear real arithmetic
to allow the use of Satisfiability Modulo Theories (SMT) solvers. It can be used to build
other tools that automate the verification, debugging, and synthesis of CSS. Essentially,
it is a declarative implementation of a browser’s layout engine. Compared to the standard
layout engine, Cassius can similarly compute a layout from an HTML document and a
CSS stylesheet. With superiority, Cassius can also compute a CSS stylesheet from an
HTML document and a mock-up of the desired layout.

As proof of the capabilities of Cassius, the authors built a verifier, debugger, and
CSS synthesizer in a matter of a few days per build. An example job for the verifier is
to ensure that a given layout contracts or expands as intended for all viewports. The
debugger can then be used to localize the violations, as identified by the verifier, to parts
of a stylesheet. Then, the synthesizer can automatically repair the problematic constraints
to enforce the intended properties. As mentioned previously, the synthesizer can also work
in the opposite directions to produce a stylesheet.

During the evaluation of the Cassius framework, it is first measured with 2075 tests
relevant to the conformance to standards. During this testing, the Mozilla Firefox browser
is used as an oracle since it is known to pass these tests. Only six failed due rounding
errors on the part of Firefox, which are technically not observable. The framework was
also tested to see if it rejects invalid rendering which resulted in a 99.3% success rate. Only
failing due to the CSS standards that were not implemented in Cassius like calculating
the font metrics which determine the height of a text-line.

For evaluation of the three tools built using Cassius, they used five famous web pages
including the Amazon web page. To evaluate the verifier, they used it to verify that no
text box or link element <a> overlap for any viewport in the range 800 to 1920 pixels. For
evaluating the debugger, they added non-satisfiable assertions which negate the position
and size of randomly selected boxes. To evaluate the synthesizer, random expressions of
some rules were purposefully left with primitive holes. These experiments revealed that
the verification took 2 to 12.2 seconds to complete, debugging took 0.7 to 5.5 seconds,
and synthesis took, in the best case, minutes to complete 25 expression holes. The main
reason for the delay in synthesis is due to usage of CSS selectors that match many elements.
Another finding is that the debugger was able to narrow the problem to anywhere between
2 to 7 CSS rules and 4 to 10 CSS properties.

45

2.6. CONCLUDING REMARKS

There were also more generic approaches to preventing layout failures from happening,
in a sense repairing the fault before it propagates to a failure. Generally, they help prevent
any type of failure but are better fitted to preventing cross-browser issues. These are
mainly split into validating tools, CSS normalizing libraries, or CSS resting libraries. First,
the HTML and CSS validation tools [41, 84, 102, 116, 117] aim to remove syntax issues,
based on W3C standards, from the codebase before it is ever deployed. If they are not
corrected before deployment, different browsers may render the page differently depending
on how they handle the specific syntax error. Then, some libraries that aim to normalize
the CSS [85] so that it is applied equally in all browsers. This approach overrides the
default styles set by a browser with a new common style. Finally, there are CSS resetting
libraries [20, 21] that aim to unstyle the browser by removing the styles usually added by
the browsers. These basic approaches are undoubtedly helpful in preventing layout issues
from occurring.

2.6 Concluding Remarks

Since the development of the web, the need to test a layout for failures started becoming
apparent. The growing features of the web and growing dependency on web services
made testing for presentation failures a worthy problem to solve. Furthermore, testing
only reduces the problem of finding failures in the page. Without repairing these failures,
testing serves no purpose. In this chapter, I have reviewed what has been proposed to test
and repair the layout failures that occur in a web page.

Many techniques, implemented into tools, have been proposed in the literature and
successfully shown to automatically test the layout of a web page for presentation fail-
ures. They were mainly divided into specialized testing for cross-browser issues, regres-
sion failures, internationalization failures, and responsive design failures. First of which,
cross-browser testing, aimed to identify failures in the layout when an alternative browser
is used. Regression testing aimed to automatically detect the failures in the layout based
on an older version of the layout. Internationalization testing aimed to test the layout for
correctness after the text-based content of the page is translated using the untranslated
page as a reference. Most relevant to my work in this thesis, automated responsive design
testing was developed to detect layout failures that occur between alternative viewports
width.

Although an automated technique to test for responsive layout failures exists [124–
126, 128], it leaves two manual tasks for the developer to complete. First, since the
testing technique does not use any graphical information about the layout to detect the
failures, it may report DOM structural issues that are not observable in the rendered
page. These non-observable issues are less of a priority in terms of repairing them. To find
the real observable failures, the developer must manually inspect these reported failures
and manually filter out the ones requiring a repair. This leads me to the second task
that must be manually done, the repair of these failures. As described in this chapter,
the development team may not have the luxury of time or possess the skills needed to
fully analyse the root cause and manually repair the failure. Fundamentally, these two
limitations are the basis of the work of my thesis. First, to automatically classify the
reported responsive layout failures as observable, non-observable, and false positive and
second to develop a technique that automatically repairs these failures. In the next chapter,
I begin with the problem of automatically classifying non-observable failure reports.

46

3
Classifying Non-Observable Issues in
Layouts

Although the state of the art tool for responsive layout testing, called ReDeCheck,
assists a developer in automatically finding potential presentation failures, many of the
reported failures are not visually evident in the layout. Some of which may be false positive
reports while the others are only a problem in the underlying structure, the DOM, of the
layout. These structural issues that are not reflected in the rendered layout, known as non-
observable issues [124], may require the attention of the developer but are less important
than the observable failures. To distinguish these apart, the developer using ReDeCheck
must manually scrutinize many reports generated by the tool to identify observable from
non-observable failure reports. This is a potentially time consuming, error-prone, and in
some instances a subjective task. This chapter presents a technique that automatically
analyses images of the layout to identify the non-observable failure reports.

The technique that I present in this chapter is able to automatically classify each re-
port generated by ReDeCheck into either a true positive, non-observable issue, or a false
positive report. Since there were only three types of presentation failures that were asso-
ciated with non-observable issues in the previous research done by Walsh et al. [124], the
technique presented in this chapter covers these three out of the five that the ReDeCheck
tool is capable of reporting. They are known as element collision, element protrusion, and
viewport protrusion responsive layout failures. To classify them, the technique works by
pealing back graphical layers of the layout, in the live web page, and compares specific
pixels across different layers to reach a classification of the failure report. For evaluation of
the approach, I used the manual classification made in the original research of Walsh et al.
as a baseline to evaluate the effectiveness and efficiency of the automated approach.

The chapter begins by explaining the problem followed by a brief overview of back-
ground information. Then the technique is explained and empirically evaluated.

The key contributions of this chapter are:

1. A technique to automatically classify reports of non-observable issues.
2. An empirical study of manual and automated approaches using 20 web pages.

Demonstrating that non-observable issues can be automatically and effectively clas-
sified.

47

3.1. MOTIVATING THE RESEARCH

3.1 Motivating the Research

A developer of a responsively designed web page must plan and build the structure of a
web page, that will later form the layout, in a way that is ideal for display in the available
width of the screen for any given device. Due to the large number of devices with different
screen sizes that may visit the web page, manually inspecting the layout to make sure that
it is presented as originally planned for all these devices is a difficult task. To be more
precise, it is the space available for rendering the web page within the browser window,
referred to as the viewport, is what the developer must take into consideration. While
inspecting how the layout adapts to different viewport widths, the developer is testing the
layout for a failure to display as expected. This is referred to as a presentation failure and
more specifically for responsively designed web pages, it is known as a Responsive Layout
Failure (RLF).

To assist the developer, the tool ReDeCheck automates the testing of a layout across
multiple viewport widths in order to raise concerns about potential presentation failures.
Although beneficial, the tool uses no visual information from the page to find these failures.
Instead, it relies on the underlying structure of the page to detect these failures and
assumes that the rendered layout reflects the underlying issue. Due to this fact, there
are three possible classifications that a report may fall under. The first and most helpful
outcome is a true positive failure that is observable in the rendered layout. The second
is a non-observable issue (NOI) for reports with no visual evidence of a problem but do
have an underlying issue. Finally, a false positive report is one where no issue is evident
visually nor is it evident in the underlying structure of the layout. To get a sense of how
many NOIs are to be expected, during a manual classification made by Walsh et al. [124]
of 118 reports from 26 subject web pages there was a total of 83 NOI reports. That is to
say, if the developer was more concerned about true positive reports, 70% of the reports
are not a priority to investigate or repair.

To aid in visualizing the NOI problem, four wireframes are presented in Figure 3.1
that depict alternative layout positions of two HTML elements. In all four wireframes,
the background of the page is coloured in white. Meanwhile, the elements are coloured
in a light and dark grey colour to distinguish them apart. Moreover, both elements
have a white border that matches the background colour. In part (a) of the figure, the
elements are not overlapping each other and are one pixel apart from each other with no
layout failure. In part (b), a layout failure occurs because the elements are now slightly
overlapping when they should not. Since the overlapping pixels are coloured in white, the
overlap is essentially non-observable. In another scenario presented in part (c), the area
of overlap between the two elements is much greater and is observable due to the colour
differences noticeable within the overlapping area. To clarify this further, part (d) of the
figure depicts a layered view of the overlap.

Considering the different layouts presented in Figure 3.1, the ReDeCheck tool would
not distinguish between the non-observable and observable overlap scenarios showcased
in parts (b) and (c) and would generate a report in either case. One of the algorithms
implemented into the tool infers a problem in the structure of the layout if at some
viewport width the elements were not overlapping but in a narrower viewport, the tool
finds that they do overlap. This algorithm detects one of five types of responsive layout
failure known as an element collision. It is left to the developer to manually investigate
all the reports generated by the ReDeCheck tool to weed out all non-observable issues
that lack sufficient evidence to justify a repair.

Although the NOI structural issues reported by ReDeCheck are not a priority for
repair, they could require the attention of the developer. Ideally, they should not be

48

3.1. MOTIVATING THE RESEARCH

(a) No overlap. (b) Non-observable. (c) Observable. (d) Layered view.

Figure 3.1: Wireframes depicting the observable and non-observable overlap of two
HTML elements. The elements are coloured in light and dark grey with a white
border that is the same colour as the background. In part (a) the elements are not
overlapping while in (b), (c), and (d) they are. As only pixels of the same colour
overlap in part (b) it is non-observable while in (c) it is. Part (d) shows a layered
view of the overlap.

dismissed as false positives. A false positive report is expected to remain as such even if
the developer decided to change the colour of elements associated with the false positive
report. On the other hand, a simple colour modification of the elements may change an
NOI classification into a true positive one. Therefore, the NOI reports could require a
repair but are of less priority than the observable issues raised by the tool.

An important consideration is the relationship between the viewport size and the
severity of the presentation failure. Any failure reported by ReDeCheck conveniently
includes the range of consecutive viewports {failmin . .failmax} where the failure manifests.
This range, referred to as the failure range, starts at the failmin viewport which is the
minimum point of the range and ends at the failmax viewport is the maximum point of
the range. At the failmax+1 viewport, the viewport is big enough to accommodate the
layout and does not have the same failure. While at the failmin−1 viewport, the same
failure is mitigated as a result of the layout adjusting to either a developer made rule or
the browser default behaviour. One exception is when the failmin−1 viewport was not
tested and therefore the failure manifests there as well. Within the failure range, the
severity of the failure is expected to become worse as the viewport size becomes narrower.
Going back to the example layouts presented in Figure 3.1, this would mean that it could
be the case that part (b) is from the failmax viewport where the collision starts to occur.
Furthermore, it would also mean that part (c) is from a viewport nearer to failmin of the
failure range as the collision becomes more severe. This means that a manual investigation
of two different viewports from the same failure range would lead to two different outcomes
about the same failure.

To alleviate the burden on the developer, automation can be used to weed out non-
observable issues and therefore improve the usability of the ReDeCheck tool and help
pave the way for automated repair of true positive failures. Since multiple viewports
may need to be investigated for a large number of reported failures, this can be a time
consuming and error-prone task using the manual approach. In this chapter, I present
an approach to automatically peek into multiple graphical layers of a layout in order to
classify non-observable issues for three responsive layout failure types that were associated
with NOIs by Walsh et al. [124]. But first, I will give an overview of these three failure
types and how they are detected.

49

3.2. DETECTION PRIOR TO CLASSIFICATION

3.2 Detection Prior to Classification

Before I present my automated technique to classify non-observable failures in a web page,
it is essential to understand the different types of failures that are subject to the classi-
fication. For responsively designed web pages, the tool ReDeCheck can automatically
detect five types of presentation failures. It is able to achieve this by first visiting a range
of viewport widths to extract information about the layout of each viewport. Then, it
uses the information extracted to build a graph-based model of the web page called the
Responsive Layout Graph (RLG). Based on the coordinates of each element and relative
to the others, the RLG model groups elements into a common container called the par-
ent. Furthermore, other alignments are determined between elements that share the same
parent, called siblings. One example of an alignment is whether or not the coordinates of
two siblings overlap each other. Using the RLG model, the ReDeCheck tool uses a set
of algorithms to detect five types of failures specific to responsively designed web pages
that are referred to as Responsive Layout Failures (RLFs).

The intuition behind the detection algorithms of ReDeCheck is based on the changes
observed between consecutive viewport widths as the size decreases. At the wider viewport
width, the elements of the page may have the space needed to be presented as intended
by design. Meanwhile, at a narrower viewport, the space is constrained and hence may
force certain HTML elements in the layout into a failed state. With the improperly laid
out elements identified at the narrower viewport, the only step left for the algorithm to
do is to measure the range of viewports where the elements are improperly positioned.
From the five types of RLFs detectable by ReDeCheck, only three types were found to
output reports of non-observable issues during the manual classification made by Walsh
et al. [124]. These types, which are the focus of this chapter, are the element collision,
element protrusion, and the viewport protrusion failures.

Figure 3.2 depicts six wireframes showing three correct layouts paired with three im-
proper layouts at a different viewport showcasing the three failure type. Each of the
wireframes illustrates a web page with two HTML elements coloured in either light or
dark grey. The correct layouts occur at some wide viewport width and are showcased in
parts (a), (c), and (e) of the figure. While the wireframes in parts (b), (d), and (f) show-
case the same HTML elements in a failed state of the layout at some narrower viewport
width. The algorithms implemented in ReDeCheck use this difference in the relative
position of the two elements across the wider and narrower viewport to detect and report
element collision, element protrusion, and viewport protrusion failures that are explained
next.

element collision – for elements that are laid out next to each other without any
overlap by design, they are expected to remain separated regardless of the viewport size.
An example of this layout can be seen in Figure 3.2 (a) where the two elements are laid out
side by side. The space available to maintain some distance without any overlap becomes
less possible as the viewport width decreases. If the overlap occurs in the layout of a
narrower viewport, as seen in part (b), an element collision failure is detected due to the
new overlap of the siblings. The collision is not solely a visual problem, interacting with
any functionality associated with the element covered by the other is no longer possible
with the hidden portion. An element collision report generated by ReDeCheck would
include the failure type, the XPaths of the two elements in collision, and the failure range
spanning the observed overlap.

element protrusion – While building the structure of a web page that makes up the
layout, some elements are created to organize and contain other elements of the page. For
example, the dark grey coloured element in Figure 3.2 (c) is designed to contain the lighter

50

3.2. DETECTION PRIOR TO CLASSIFICATION

Web Page

Wide Viewport

(a) Correct Layout

Web Page

Narrow Viewport

(b) Element Collision Failure
Web Page

(c) Correct Layout

Web Page

(d) Element Protrusion Failure
Web Page

(e) Correct Layout

Web Page

(f) Viewport Protrusion Failure

Figure 3.2: Three wireframe examples of the types of RLFs reported by ReDeCheck
and automatically classified by Viser. The figures to the left-hand side illustrate a
responsively designed web page with a correct layout while the figures to the right-
hand side depict a type of responsive layout failure.

grey element. As the viewport width becomes smaller, some containers may not be able
to accommodate all of the elements that they contain. As a consequence, one or more of
the contained elements may protrude the boundary of their intended container. This is
the case for the light grey element depicted in the layout shown in part (d) of the figure.
In this scenario, an algorithm implemented in ReDeCheck would observe that the light
grey element overlaps an element that was its container at the wider viewport but is no
longer fully contained by it at the narrower viewport. Therefore, it would generate an
element protrusion report that includes the failure type, XPaths of the elements involved,
and the failure range where the overlap was observed.

viewport protrusion – in a responsively designed web page, it is allowed and expected
for the content of the page to exceed the viewport height and therefore the user would
vertically scroll to view more content. On the contrary, content is not allowed to exceed
the viewport width. For illustration, Figure 3.2 (e) shows that the light grey element is
correctly contained within the available viewport width and its parent. Nevertheless, as
the viewport width becomes smaller, the available horizontal space may not be sufficient
enough to accommodate elements that are laid out horizontally by design or a very wide
element. In my simplified example in Figure 3.2 (f), the extra-wide light grey coloured
element exceeded the viewport. In reality, the portion exceeding the viewport would not
be visible to the user except after scrolling. In a worst-case scenario when there is no scroll
bar available, the element would be unreachable. With a high degree of similarity to an
element protrusion failure, a viewport protrusion failure occurs when the element exceeds
the boundary of the viewport. A specialized ReDeCheck algorithm uses the main body
HTML element as the boundary of the viewport. The ReDeCheck tool would report the
failure type, the two elements involved, and the range of viewports where the element is
protruding the viewport.

51

3.3. CLASSIFYING NOI FAILURES

3.3 Automatically Classifying Non-Observable Issues

Given a set of presentation failures reported by the ReDeCheck tool, the approach that
I will present in this section is able to distinguish and classify the solely structural issues
of the layout that are not observable visually. Since the underlying technique used in
ReDeCheck detects presentation failures between pairs of elements, the classification
technique that I developed investigates only the two elements reported by the detection
tool for failure. I implemented this approach into a tool named “Viser” (VISual VerifiER)
that classifies each report generated by ReDeCheck into either a non-observable issue,
true positive, or a false positive report. I begin the section with a summary of the approach.
Followed by a comparison between the manual and the automatic approach before I explain
the details behind my automated RLF classification approach.

3.3.1 Summary of Approach

Since ReDeCheck only uses the structure of the layout and does not use any visual
information about the web page to detect failures, it may report issues that are non-
observable to the human eye in the layout. To automate the classification of these failures,
I implemented a tool, Viser, that peeks into multiple graphical layers of the layout in
order to compare them for an invalid colour change. This analysis takes place in a region
of the layout that is identified using the positions of the faulty elements reported by
ReDeCheck. I refer to this region as the Area Of Concern (AOC). When handling any
failure report, the first step to classification is to identify the AOC. Then the tool captures
multiple snapshots of the graphical layers within the AOC. These layers are uncovered by
alternately hiding one or both of the faulty elements, using CSS, from view to reveal the
layer rendered behind. The intuition is that an element that introduces content should
not be unintentionally overwritten by other content in the page. Here, the introduction
of content can be simplified to a colour change of a specific pixel in the AOC made by a
different layer. By comparing pixels across multiple layers in the area of concern, Viser is
able to distinguish the reports of non-observable issues from the true positive observable
presentation defects in the layout.

3.3.2 Classifying Presentation Failures

The failures reported by ReDeCheck can be one of three classifications which are a True
Positive (TP), Non-Observable Issue (NOI), or a False Positive (FP) report. In the case of
a false positive report, the ReDeCheck tool is simply wrong. Meaning that an inspection
using the DOM of the layout would not be able to corroborate the same structural defect
raised in the report. Obviously, there should also be no visible defects associated with
the reported elements since the structural integrity of the layout is in order. In the case
of a non-observable issue, an inspection of the layout would corroborate the structural
problem with the reported elements but with no recognizable presentation defects in the
layout. Finally, a true positive report would have both a structural and a visible defect in
the presentation of the layout.

The fundamental steps needed to classify a reported presentation failure are common
to both the manual and the automated approach. Figure 3.3 compares both the automated
process implemented in Viser and the human-based manual process. Both processes start
after the developer runs ReDeCheck on a web page to detect and report presentation
failures. Assuming failures are found, each report will include information about the failure
type, the XPaths of the HTML elements involved, and the failure range of viewport

52

3.3. CLASSIFYING NOI FAILURES

V
is

er

web page
R

eD
eC

he
ck

====

RLFs
Manual

Approach

Access

Web page

Set

Viewport
Scroll to

Failure

Classify

Failure

Automated

Approach

Web page

Explorer
DOM

Filter

Image

Analyser
====

Automatically

Classified

====
Manually

Classified

Figure 3.3: The high-level architecture of the Viser tool for the automatic clas-
sification of layout failures. Along with the external input sources, this figure also
shows the alternative manual process steps that require a human expert.

widths where the failure occurred in the form of a lower bound and an upper bound
{failmin . .failmax}. To classify the reported failures, the first step is to read and understand
the report. Then the web page must be loaded into a browser to begin the investigation.
To view the presentation failure, the viewport width of the browser must be set to one
of the viewports reported in the failure range. If the content of the page exceeds the
viewport size, searching the page by scrolling to the location of the faulty element may be
required. Finally and most significantly, the structural and visual analyses of the layout
for the alleged failure are required in order to reach a classification verdict.

The automated approach to classifying a reported failure using Viser starts with
the Web page explorer component as seen in Figure 3.3. This stage is responsible for
launching the browser, loading the web page, setting the appropriate viewport width, and
locating the faulty elements in the layout. Then Viser investigates ReDeCheck’s report
by examining the DOM of the layout during the DOM Filter stage. This investigation
will either corroborate the structural problem or reject it and classify the report as false
positive. Any report of a presentation failure that passes this stage is either a true positive
report or a non-observable issue. For this final distinction in classification, the image
analyser component goes to work.

The key feature behind Viser’s automated classification is the image-based analysis
of the reported presentation failure. This analysis involves investigating a specific region
of the web page associated with reported failure that I refer to as the Area of Concern
(AOC). The AOCs are rectangular areas derived from the coordinates of the elements
involved in the reported layout failure. On a graphical level, the tool expects any associated
presentation defect in the layout to be in the AOC. The goal of the analysis is to conclude
if the graphical layers within the AOC have an observable true positive layout failure.
For example, if the report involves a transparent element with no content but is not in its
proper structural position in the layout, the analysis should yield an NOI classification. In
the following section, I describe how Viser identifies these AOCs for different RLF types
followed by the details of how the image analysis and final classification are completed.

3.3.3 Identifying the Areas of Concern (AOCs)

Calculating an AOC depends on three sources of information. They are the coordinates
of the faulty elements, the layout scenario of the faulty elements relative to one another,
and the type of responsive layout failure being handled. First, the coordinates of the
elements involved in the failure are retrieved using the DOM. Logically, any presentation
defect caused by the faulty elements is expected to be apparent in the area where the
elements are rendered in the page. Therefore, the AOC is limited to the area spanning

53

3.3. CLASSIFYING NOI FAILURES

Layout scenario

A

Contained

B C

Overlapped

D

Separated
Element Collision A B -

Element Protrusion - B, C D
Viewport Protrusion - B, C D

Figure 3.4: For purposes of identifying the area of concern (AOC) that requires
analysis in the layout, the positioning of any two elements relative to one another are
generalized into three scenarios. The scenarios contained, overlapped, and separated
are illustrated using two elements coloured in light and dark grey. For each scenario,
the AOCs are identified with the letters A, B, C, and D for the three failure type.

the coordinates of both elements or a portion of it.
The layout scenario indicating how the two elements are laid out relative to one another

is the second source of information needed to calculate an AOC. For this, the positions
of both elements are generalized into three layout scenarios as seen in Figure 3.4. They
are the contained, overlapped, and separated layout scenarios. In all three scenarios of
the figure, the two faulty elements are coloured in a light and a dark grey to distinguish
them apart. In the contained scenario, the coordinates of one element fully lie within the
coordinates of the other. Alternatively, in the overlapped scenario, there is only a partial
overlap of both elements and no single element fully contains the other. Finally, in the
separated scenario there is no overlap of the coordinates.

Along with the coordinates and the layout scenario, the final information needed to
calculate the AOC is the failure type. Depending on the type and the scenario, as seen
in Figure 3.4, Viser calculates an AOC differently. Since there are three scenarios and
three types of failures, there is a total of nine possible outcomes that are represented as a
matrix in the figure. Looking at an element collision in the contained scenario first, The
AOC is equal to the coordinates of the contained element represented with the light grey
colour and labelled A. Again with an element collision but in an overlapped scenario, the
AOC is restricted to the coordinates of both elements that are overlapping and labelled
B. Finally, for an element collision report in the separated scenario, there is no AOC to
analyse since the elements are not in collision. Instead, the report is rightly treated as
false positive.

Since both an element protrusion and a viewport protrusion involve an element pro-
truding its container, an AOC is calculated in the same matter for both type of failures.
For these two type of failures in all three scenarios, the dark grey coloured element in Fig-
ure 3.4 depicts the container element while the lighter grey element depicts the reportedly
protruding element. In the case of a contained scenario for these two type of failures, there
is no protrusion occurring by the definition of the scenario. Hence, this will be correctly
treated as a false positive report. In the overlapped scenario, two AOCs are calculated to
carry out a different analysis depending on the AOC. The first is the area labelled B where
the coordinates of both elements overlap. The second AOC in the overlapping scenario,
labelled C, is equal to the non-overlapping coordinates of the protruding element. Finally,
for the separated scenario, the AOC is equal to the entire coordinates of the protruding
element.

54

3.3. CLASSIFYING NOI FAILURES

3.3.4 Analysing the Areas of Concern

Once an AOC is calculated by Viser for a failure report, the image analysis component
of the tool peeks into the underlying graphical layers of the AOC to determine if the
content of an element has been overwritten by other content in the page or if it was
written out of position. Since the elements of a layout are stacked on top of each other in
the rendered web page, CSS can be used to reveal an element by changing the stacking
order. An illustration of the stack or layers was presented earlier in Figure 3.1 (d). The
actual image-based analysis of the presentation failure is made on snapshots of these layers
captured by the Viser tool. More specifically, the pixels in the AOC are compared for a
colour difference across different layers. If the tool finds a difference between the graphical
layer, the failure is deemed observable and classified as a true positive report. Otherwise,
the failure is a non-observable issue.

To reveal an underlying graphical layer in the layout of the web page, the Viser tool
changes the opacity property of the faulty elements described in the report. This CSS
property once applied to an element using the value 0, would make the element and all of
its descendant elements invisible. Thereby, revealing the other elements that were stacked
lower in the rendering stack of the layout. A special characteristic of this property is
that the position occupied by the element is reserved for it regardless of its visibility. In
other words, changing this property does not change the layout since the space is always
reserved for the element. Any change to the layout may compromise the integrity of the
classification. An added benefit of using the opacity property to reveal hidden layers of
the layout is that it is a browser-independent method.

To analyse the presentation of the web page, snapshots must be taken of the layout.
Unfortunately, the canvas where the layout of a web page is rendered by the browser is
limited to the viewport size. Therefore if the content of the web page is larger than the
viewport size, only a portion of the layout equal to the size of the viewport will be visible
at any one time. Changing the viewport size in order to view more content may affect the
size and position of elements and therefore compromise the integrity of the classification
due to a change in the layout. Therefore, capturing a snapshot of an AOC that exceed
the size of the viewport requires multiple steps. The first step is to scroll the page and
capture the required portion of the layout alternatively. Then, the individual portions are
assembled into their proper positions by Viser.

There is a challenge that arises when using scrolling to reach different parts of the
layout. When the maximum scrolling distance allowed by the browser is reached for that
specific page, any portion of an element that goes beyond this distance is not included
in the snapshot. To evaluate the failure properly, the full AOC must be included in the
snapshot. Because basic scrolling will not resolve this case, the Viser tool takes a best
effort approach to modify the position of the element in order to bring it into view for the
snapshot. By calculating the coordinates value that goes beyond the maximum scrolling
distance, the tool can pull the element only as much as needed for the snapshot. To
achieve this, the tool sets the margin properties of the element to a negative value and
therefore offsetting its original position to be fully within the rendered page. Importantly,
the portion of the element that is visible using scrolling alone is captured and evaluated
first before applying the best effort approach that modifies the layout only when necessary.

Prior to analysing the AOC for a presentation failure, the Viser tool automatically
filters out the false positive reports. To do this, the tool relies on the semantics of the failure
type to corroborate the report at the time of classification. If it cannot be corroborated,
then the report is classified as a false positive. The tool accomplishes this by first setting
the viewport to a viewport where the failure was reportedly found. Then the coordinates

55

3.3. CLASSIFYING NOI FAILURES

Algorithm 1 Top-level Viser algorithm

INPUT: Two HTML elements, back and front, and the failure type, ft.
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure Viser(back, front, ft)
2: scenario ← getScenario(back, front)
3: if scenario = contained then
4: AOC ← getContainedAOC(back, front) ▷ AOC = A (Figure 3.4)
5: return ThreeLayersAnalysis(back, front, ft, AOC)
6: if scenario = overlapped then
7: AOC ← getContainedAOC(back, front) ▷ AOC = B (Figure 3.4)
8: return ThreeLayersAnalysis(back, front, ft, AOC)
9: if scenario = separated then

10: AOC ← getDetachedAOC(back, front) ▷ AOC = D (Figure 3.4)
11: return TwoLayersAnalysis(front, AOC)

of the elements involved in the failure are retrieved from the DOM of the web page.
Depending on the semantics of the failure type, the coordinates are assessed for truth.
For an element collision type of failure, it is classified as a false positive report if the
coordinates of the two elements do not overlap. For an element protrusion or a viewport
protrusion failure, a false positive classification is reached when the coordinates of the
reportedly protruding element are found to be within the coordinates of the container
element. These false positive layout scenarios for each failure type do not require an AOC
as indicated previously in Figure 3.4 with the - sign.

After filtering out all the false positive reports, Algorithm 1 outlines the top-level
procedure followed by Viser to classify all other reports. The overall objective of this
procedure is to calculate the AOC needed for analysis and route it to one of two special-
ized procedures for the analysis. The procedure starts by identifying the scenario using
getScenario() in line 2. Depending on the layout scenario of the failure being handled
by the algorithm, one or both of the Algorithms 2 and 3 are used to analyse the AOC.
In the case of a contained layout scenario, the AOC labelled A in Figure 3.4 covering the
overlap of the two elements is passed to Algorithm 2, see lines 3 - 5. Similarly in the
overlapped layout scenario, the overlapping portion of the element labelled B in the figure
is routed to Algorithm 2, see lines 6 - 8. Finally, in the case of a separated layout scenario,
the AOC labelled D in the figure that is equal to the coordinates of the protruding element
is passed to Algorithm 3, see lines 9 - 11.

Once an AOC is calculated and control is passed to Algorithm 2, the next step for
the tool is to capture snapshots of the AOC for usage in the analysis of the failure. This
procedure specializes in AOCs that require analysis of snapshots taken from three layers.
The first snapshot captures the layer of content hidden behind both elements involved in
the failure. These are the elements identified in the report and passed in as input to the
procedure. The second snapshot captures the layer with the “back” element visible which
is stacked and hidden behind the “front” element. The third and final snapshot captures
the top layer with the “front” element visible. To do this, the algorithm starts by making
both elements transparent using the makeTransparent procedure in order to reveal the
deepest layer in lines 2 to 3. Then the snapshot procedure captures a snapshot and
saves it to imgNoElements in line 4. It is important to note that the snapshot procedure
captures a specific part of the page defined by the AOC. Then the restore procedure is
used to restore the opacity of the “back” element to its original value and a snapshot of it
is saved into imgBack in lines 5 and 6. For the final snapshot in lines 7 and 8, the opacity
of the “front” element is restored and a snapshot is saved into imgFront.

56

3.3. CLASSIFYING NOI FAILURES

Algorithm 2 Image analysis for three layers of an AOC

INPUT: Two HTML elements, back and front, the failure type, ft, the AOC AOC .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure ThreeLayersAnalysis(back, front, ft, AOC)
2: back ← makeTransparent(back)
3: front ← makeTransparent(front)
4: imgNoElements ← snapshot(AOC)
5: back ← restore(back)
6: imgBack ← snapshot(AOC)
7: front ← restore(front)
8: imgFront ← snapshot(AOC)
9: if imgNoElements ̸= imgBack ∧ imgNoElements ̸= imgFront then

10: if ft = element_collision then
11: return TP
12: if ft = element_protrusion ∨ ft = viewport_protrusion then
13: AOC ← getDetachedAOC(back, front) ▷ AOC =C (Figure 3.4)
14: return TwoLayersAnalysis(front, AOC)
15: return NOI

With the three snapshots of the AOC captured and the control remaining in Algo-
rithm 2, the images are compared in line 9 of the algorithm for differences. If there are no
differences found between the images, the failure report is classified as a non-observable
issue regardless of the failure type and the end of the procedure is reached. On the other
hand, if a difference between the images is found, the next step depends on the failure type
currently being handled by the algorithm. In the case of an element collision failure type,
the failure is deemed observable and therefore is classified as a true positive in line 11.
In the case of an element protrusion or a viewport protrusion type of failure, Viser must
analyse another AOC to reach a final classification decision. This AOC covers the portion
of the element protruding from the container element that is labelled C in Figure 3.4. For
this, the AOC and the control are then passed to Algorithm 3.

Once the control finally reaches Algorithm 3 from either of the two other algorithms,
the alternative image analysis begins. This algorithm specializes in analysing an AOC with
only a single element in its coordinates. This would be the area without overlap between
the two elements corresponding to the labels C and D in Figure 3.4. More specifically, the
two images needed are of the layer hidden behind the element and an image of the element
itself. To this end, the algorithm starts by making the element transparent and captures
a snapshot of the AOC and saving it into imgNoElement, see lines 2 and 3. Then in lines
4 and 5, the opacity of the element is restored to its original value and a snapshot of the
AOC is saved to imgFront. Next, the two images are compared for differences in line 6. If
there is a difference, Viser classifies the report as a true positive failure. Otherwise, the
failure is classified as a non-observable issue. With this, the presentation failure report is
automatically classified by Viser for a specific viewport chosen to do the classification.

To classy any failure, the Viser tool must first pick a viewport width from the failure
range to carry out the classification within. If the failure range is long enough, it is
reasonable to expect the layout to change or vary throughout the range. At the very least,
the layout becomes more compact and there may be less space for the element to spread
apart as the viewport size decreases. Therefore, the outcome of the classification may
differ from viewport to viewport. The developer can configure which viewport Viser uses
to automatically classify the reported failures but the default value is set to the minimum
of the failure range, failmin . It is reasonable to expect the failure to be more noticeable in
the narrower viewports as opposed to the wider viewports with less constraint on space.

57

3.4. EMPIRICAL EVALUATION

Algorithm 3 Image analysis for two layers of an AOC

INPUT: An HTML element, front, and the AOC AOC .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure TwoLayersAnalysis(front, AOC)
2: front ← makeTransparent(front)
3: imgNoElement ← snapshot(AOC)
4: front ← restore(front)
5: imgFront ← snapshot(AOC)
6: if imgNoElement ̸= imgFront then
7: return TP
8: return NOI

3.4 Empirical Evaluation

In this section, I investigate the effectiveness and efficiency of automatically classifying
reported presentation failures using Viser. To this end, I used the same set of web pages
used in the previous evaluation of ReDeCheck [124]. Moreover, the manual classifications
of that study were adopted as a baseline to compare with Viser’s automated classifica-
tions. The empirical evaluation focused on answering these three research questions:

Research Question One – Can Viser automatically distinguish non-observable issues
from true positives and how does it compare to manual classification? To answer this ques-
tion, I compare Viser’s results using the default setting of performing the image analysis
at the minimum viewport of the failure range to the results of manual classifications.

Research Question Two – Within the range of viewport where a presentation failure is
reported, which viewport has the best chance of matching the manually set classifications
and which has the best chance of revealing a true positive failure report? To answer this
question, I used Viser to classify each failure at three points in the failure range: the
minimum or narrowest from the first research question, the middle or halfway point of the
range, and the maximum viewport of the range. At each of these viewport widths, the
manual classifications are compared with Viser’s classifications to reach a conclusion.

Research Question Three – How long does Viser take to classify a presentation fail-
ure? In this question, I investigate how efficient Viser is to run and if it is a practical
addition to ReDeCheck for layout testing.

The design of the experiments set forth to answer these research questions are explained
next.

3.4.1 Design of Experiments

In this section, I will identify the subject web pages used in the experiments and their
details, the runtime environment used to build Viser and used to run the tool during
the experiments, the methodology followed to answer each of the research questions, and
finally disclose any known threats to the validity of the results and any mitigating steps
taken to reduce these threats.

58

3.4. EMPIRICAL EVALUATION

Table 3.1: The details of the web pages used in the experiments of this chapter.

Web Site Name URL Number of HTML Elements Number of CSS Declarations

3MinuteJournal 3minutejournal.com 80 5499
AirBnb airbnb.com 1470 9890
BugMeNot bugmenot.com 42 658
CloudConvert cloudconvert.com 908 6731
ConsumerReports consumerreports.org 1042 8007
CoveredCalendar coveredcalendar.com 148 8414
DaysOld daysold.com 66 2930
Dictation dictation.io 195 8271
Duolingo duolingo.com 856 4260
Honey joinhoney.com/install 461 7903
HotelWiFiTest hotelwifitest.com 359 6746
Mailinator www.mailinator.com 280 8697
MidwayMeetup midwaymeetup.com 86 4147
PDFescape pdfescape.com 179 1954
PepFeed pepfeed.com 343 7276
Pocket getpocket.com 664 6607
TopDocumentary topdocumentaryfilms.com 411 1501
UserSearch usersearch.org 866 3900
WhatShouldIReadNext whatshouldireadnext.com/search 112 2314
WillMyPhoneWork willmyphonework.net 782 6576

Total 9350 112281

Subject Web Pages

The subjects used in the experiments of this chapter were selected from a set of web pages
used to evaluate ReDeCheck’s effectiveness at detecting five types of responsive layout
failure by Walsh et al. [124]. Their study featured a total of 26 subject web pages that
were not all included in the experiments of this chapter. Since the purpose of the ap-
proach implemented in Viser aims to automatically identify and classify non-observable
issues, only the three failure types that reported non-observable issues are handled by
Viser. Therefore, the pool of subjects that did not report an element collision, element
protrusion, or a viewport protrusion failures were not included in the set of subjects used
to evaluate Viser. An additional subject, StumbleUpon, was also excluded from the set
of web pages used in this chapter because it failed to load correctly during preparations
for the experiments. Most likely, the tool used to save an offline version of the page was
not successful at saving all of the resources required by the page. Since the web page is
no longer online to load the required resources from, the page must be omitted from the
study.

These subjects, used in this chapter, were previously selected in a random fashion
by Walsh et al. using the randomusefulwebsites.com website which has changed to
discuvver.com. I downloaded these subjects and used them without modification from
the repository cited in their paper github.com/redecheck/example-webpages. Although
the repository contains 26 web pages, only the 20 eligible subjects were used in the experi-
ments of this chapter. The name of each web page used and other information about each
subject are listed in Table 3.1. Collectively, these subjects had a total of 117 presentation
failure reports.

Runtime Environment

To evaluate Viser, I matched the execution environment of my experiments to that of
the original ReDeCheck evaluation experiments to the best extent possible. This was
needed to reduce a threat to validity avoiding discrepancies in the results that might arise
due to differences in the experimental setup between the two evaluations. Therefore I ran
Viser on an iMac with 8GB of RAM, running OS version 10.13 and using Firefox browser

59

3.4. EMPIRICAL EVALUATION

version 46. This is the same machine that was used in the original evaluation. Similar to
ReDeCheck, the Viser tool uses Selenium WebDriver [105] to launch and control the
web browser in order to load the web pages and take the snapshots needed in order to
classify the failures. Finally, to match the browser settings used in the original evaluation,
Viser disabled the scrollbars associated with the browser window and fixed the viewport
height to 1000 pixels as done in the original research.

Methodology

The answers to the first two research questions rely on comparing the human-made man-
ual classifications with Viser’s automated classifications for agreement. To clarify the
disagreement, I grouped the reasons behind these differences into the subjective, obscured,
and misclassified categories. Where the subjective category is for a difference in classifica-
tion that is due to a minor visual change detected by Viser but would be imperceptible
to a human. The obscured category is for edge cases where other than the reported fail-
ing elements are used to conclude a classification about the failure. In other words, the
category is used when a conclusion about either of the two approaches is obscured be-
cause each approach used a different portion of the page to classify the failure. Finally,
a misclassification categorization is due to an incorrect outcome from either of the two
approaches.

RQ1 Methodology – To answer RQ1, I used Viser to automatically classify all 117
presentation failure reported from the set of 20 subjects. Specifically for this question,
Viser was configured to use the minimum viewport width, failmin , to classify each of
the reports. The possible classification outcome can be either false positive (FP), non-
observable issue (NOI), or true positive (TP). An FP is a result of the ReDeCheck
tool being wrong while a TP is the result of attesting to a visually evident presentation
failure. The NOI classification is reached when a structural problem is corroborated but
does not manifest visual evidence in the presentation of the layout. I then cross-checked if
Viser’s classifications agreed with the manual classification as previously decided in the
original study by Walsh et al. [124]. Along with calculating the percentage of agreement,
I investigate the differences behind the classifications.

RQ2 Methodology – To answer RQ2, I used Viser to automatically classify two
more viewports spanning the failure range to reach a total of three classifications per
failure report. These are at the minimum (i.e., the lower bound), middle, and maxi-
mum (i.e., the upper bound) viewports from the reported failure range. The method-
ology of the first research question was repeated to classify the failure at the middle,
failmid= floor((failmin+failmax)/2), and the maximum, failmax . While running this ex-
periment, Viser helped discover a defect in ReDeCheck which caused the tool to be
inaccurate at determining the upper bound of the failure range for 35 viewport protrusion
failures. This defect is due to an efficiency feature of ReDeCheck that samples view-
ports instead of visiting all viewports when testing for layout failures. The feature uses
an interval to skip over a configurable number of viewports to save time. The tool then
performs a binary search when needed between these interval points. To overcome this
defect, I used an interval setting of 1 to force the ReDeCheck tool to visit every viewport
in the testing range of 320 - 1400 pixels wide. Moreover, the findings of this workaround
were used to correct the failure ranges of the 35 viewport protrusions.

RQ3 Methodology – To answer RQ3, I recorded the time it takes for Viser to classify
each of the 117 failures at the minimum viewport of the reported failures range, failmin .
I repeatedly run this experiment a total of 30 times to get a reliable estimate of the

60

3.4. EMPIRICAL EVALUATION

running time of Viser. This is to minimize the chance of an implicit effect from the
operating system or other software that may impact the execution time of the experiments.
Moreover, the machine was not explicitly used during these experiments.

Threats to Validity

The findings of my research rely on the baseline manual classifications adopted from
Walsh et al. [124] that were used to measure the effectiveness of Viser’s classifications.
Therefore, the validity of the results depends on accurately matching the manual classifica-
tion with the automatic classification produced by Viser. Since the manual classification
did not include the XPath of elements involved in the failure, I matched the failures using
the snapshots available. These snapshots, combined with the type of failure, range, and
name of the web page enabled me to confidently perform this matching.

Another threat to validity is the possibility of mistakes in the implementation of the
Viser tool. To control this threat, I configured Viser to keep a record of all the images
used to analyse and classify each of the reported failures. Furthermore, Viser also outputs
a record of the coordinates of each of the elements involved in the failure. I consulted these
records during the examination of the classifications that differed between the manual and
automated Viser approach. Thereby, raising confidence that the tool operated correctly.
More importantly, to support the replication of the experiments in this chapter, I made
the Viser tool publicly available at https://github.com/redecheck/viser.

3.4.2 Results of the Experiments

Answer to RQ1 – the manual classifications performed by Walsh et al. [124] were used
to measure the outcome of Viser’s automated classifications. For completeness, these
manual classifications are broken down in Table 3.2. Notable in the table for both the
element collision and element protrusion failures, a large majority were classified as non-
observable issues. More specifically, the element collision failures had 24 NOI classifications
and only 7 TPs. Meanwhile, the element protrusion failures had 36 NOIs and 3 TPs. For
the viewport protrusion failures, about half were assigned the non-observable classification
with 23 as NOI and 24 as TP. It is also worthy to note that there were no false positives
recorded during the manual classification of this set of presentation failures.

For this research question, Viser used the minimum viewport width of each reported
failure range to automatically classify the failure. The results of this experiment are
furnished in Table 3.3. To make comparing manual and automatic classification easier,
the manual classifications from Table 3.2 are repeated in this table as the denominator of
the ratio values. The totals of these ratios across all the subjects are shown in the row
titled “Agreement with manual”. The overall results of this table show an 86.3% level of
agreement between the manual and Viser’s classifications as shown in the “Agreement
per viewport” row of the table. On a per failure type level, the element collision type had
the highest agreement amongst the three failure types with a 93.5% agreement level as
shown in the row labelled “Agreement per failure type”. Out of the 117 classifications,
there were 16 failures in disagreement between the automated and manual approaches for
the minimum viewport. Next, I will provide more details about the disagreements between
the classifications.

A total of 9 disagreements fall into the subjective category. These failures had a small
number of pixels that were changed as a result of the presentation failure and therefore
were labelled by Viser as TPs. Nevertheless, these changes are imperceptible to the

61

3.4. EMPIRICAL EVALUATION

Table 3.2: The manual classification of presentation failures from a prior study [124].
In this table “TP”, “NOI”, and “FP” respectively denote true positive, non-
observable issue, and false positive. The “Element Collision”, “Element Protrusion”,
and “Viewport Protrusion” columns correspond to the failure types of Figure 3.2.

Manual Classifications
Element Collision Element Protrusion Viewport Protrusion
TP NOI FP TP NOI FP TP NOI FP Total

3MinuteJournal - 1 - - 2 - 8 - - 11
AirBnb - 1 - - 4 - - 4 - 9
BugMeNot - - - 1 3 - 2 - - 6
CloudConvert 1 - - - - - - - - 1
ConsumerReports - 7 - 1 3 - 9 3 - 23
CloudConvert - - - - - - - 3 - 3
DaysOld - - - - - - - 1 - 1
Dictation - - - - - - - 1 - 1
Duolingo - 1 - - - - 2 2 - 5
Honey - - - - 8 - - 2 - 10
HotelWiFiTest - - - - - - 1 - - 1
Mailinator - 1 - - - - - - - 1
MidwayMeetup 1 - - - 1 - - 1 - 3
PDFescape - - - 1 5 - 1 3 - 10
PepFeed 4 3 - - 2 - 1 1 - 11
Pocket - 2 - - 3 - - - - 5
TopDocumentary - 7 - - 4 - - - - 11
UserSearch - 1 - - - - - - - 1
WhatShouldIReadNext - - - - - - - 2 - 2
WillMyPhoneWork 1 - - - 1 - - - - 2
Total 7 24 - 3 36 - 24 23 - 117
Total per failure type 31 39 47 -

human eye. In one case, the total AOC affected was only two pixels in width and a little
more in height but yielded no human observable failure in the layout. Suffice it to say, all
nine were subjectively labelled as NOI during original manual classifications due to these
minor changes in the layout. An avenue for future work lies in advancing the automated
classification approach of Viser to take the number of pixels changed and the degree of
colour change into account when analysing failures.

There were also 2 disagreements that I categorized as obscured. Both of these failures
were reported from the ConsumerReports subject and were manually classified as TPs.
The Viser tool disagreed and classified them as NOIs. While Viser’s analysis was correct
for the elements identified in the failure report made by ReDeCheck, there is also a
visual defect in the layout near the AOC that is noticeable by a human. I attribute this
problem to the imprecise reporting made by ReDeCheck rather than a problem with the
classification approach followed by Viser.

Among the disagreements in classifications are an additional 2 reports that were
misclassified by Viser. The first is an element protrusion failure that comes from the
PDFescape subject and was misclassified because the parent or container element had the
overflow property set to the value hidden. This caused the reportedly protruding con-
tent or element to not be rendered by the browser and hence can’t be “seen” by Viser
in the captured snapshots. Logically, this led Viser to classify it as an NOI because it
does not have knowledge beyond what is apparent in the snapshot of the current viewport.
Meanwhile, the content missing from the page is really a TP failure report as correctly
classified by the manual approach due to what the human knows from other viewports.

62

3.4. EMPIRICAL EVALUATION

Table 3.3: The results of Viser’s classifying 117 presentation failures reported by
ReDeCheck using the minimum viewport of the reported failure range.

Minimum Viewport
Element Collision Element Protrusion Viewport Protrusion
TP NOI FP TP NOI FP TP NOI FP Total

3MinuteJournal - 1/1 - - 2/2 - 8/8 - - 11
AirBnb - 1/1 - - 1/4 3/- 2/- 2/4 - 9
BugMeNot - - - 1/1 3/3 - 2/2 -/- - 6
CloudConvert 1/1 - - - - - - - - 1
ConsumerReports 1/- 6/7 - 1/1 3/3 - 9/9 3/3 - 23
CoveredCalendar - - - - - - - 3/3 - 3
DaysOld - - - - - - - 1/1 - 1
Dictation - - - - - - - 1/1 - 1
Duolingo 1/- -/1 - - - - 2/2 2/2 - 5
Honey - - - - 8/8 - - 2/2 - 10
HotelWiFiTest - - - - - - -/1 1/- - 1
Mailinator - 1/1 - - - - - - - 1
MidwayMeetup 1/1 - - - 1/1 - 1/- -/1 - 3
PDFescape - - - -/1 6/5 - 3/1 1/3 - 10
PepFeed 4/4 3/3 - - 2/2 - 1/1 1/1 - 11
Pocket - 2/2 - - 3/3 - - - - 5
TopDocumentary - 7/7 - - 4/4 - - - - 11
UserSearch - 1/1 - - - - - - - 1
WhatShouldIReadNext - - - - - - - 2/2 - 2
WillMyPhoneWork 1/1 - - - 1/1 - - - - 2
Total 9 22 - 2 34 3 28 19 - 117
Agreement with manual 7/7 22/24 - 1/3 32/36 - 22/24 17/23 - -
Agreement per failure type 93.5 % 84.6 % 83 % -
Agreement per viewport 86.3 % -

See Figure 3.5 (a) for a snapshot of the layout with the presentation failure and added
borders around the elements reported by ReDeCheck associated with failure.

The failure from PDFescape reveals one limitation of the basic heuristics implemented
in Viser when dealing with this edge case. Considerably, this limitation extends to the
detection of layout failures as well. Here, the hiding of the overflowing content may be
intended as the layout makes a change from the wider menu to the more compact “burger”
menu icon. This is an icon with three horizontal lines that look like the buns and meat of a
burger that is used for devices with a small screen. For clarity, the wider menu of the page
can be seen in Figure 3.5 (b). I believe the source of the problem to be premature hiding
of the wider menu or delinquency in displaying the alternative compact menu. Therefore,
I leave it for future experimentation to improve Viser in order to track content across
different viewports or to modify the overflow property which is expected to improve the
classification in this case but may also negatively impact other cases.

The second failure misclassified by Viser is a viewport protrusion that comes from
the HotelWiFiTest subject. Here, ReDeCheck detected an element containing a large
portion of the page’s content overflowing the viewport width. Although the overflowing
content was not hidden from view, it did not align properly with the main menu header
due to the overflow. Since the Viser tool focuses on the reported elements and does not
account for other misalignments in the page, the failure was labelled by the tool as an NOI
failure. Worse than the alignment, this failure requires that the user horizontally scrolls the
page in order to view the content. In retrospect, a viewport protrusion classification should
take into account the scrolling that is required by the user to view the overflowing content
even if it is an NOI. In which case, the failure should be escalated to a TP classification.

63

3.4. EMPIRICAL EVALUATION

Future improvements of the algorithm should treat the visual content written outside the
viewport that requires horizontal scrolling as a true positive presentation failure. See
Figure 3.5(c) for a snapshot of the layout with the presentation failure.

Finally, there were a total of 3 failures that were misclassified by Walsh et al. during
their manual classification. For these three element protrusion failures, the ReDeCheck
reported elements with no associated defects in the layout. Most likely, they were assumed
to be NOIs in error when classifying these failures. Meanwhile, the Viser tool automat-
ically classified these failures as FPs since the elements mentioned in the ReDeCheck
report did not even cause a protrusion in the underlying layout structure. These reports
were filtered and classified as false positives without the need for visual analysis. Based
on the DOM readings, I also investigate the coordinates of the elements and found them
to be free from failure as well. Ultimately, I believe the root cause of this misclassification
to be a defect in ReDeCheck ’s collection of DOM information when constructing the
RLG.

Conclusion for RQ1 – the Viser tool demonstrates a high agreement of 86.3%
with the human-made manual classification using the minimum viewport of the
reported failure range.

Answer to RQ2 – Table 3.4 and Table 3.5 respectively show Viser’s results when
it is configured to classify the middle and maximum viewport of the reported range of
viewports where the failure was detected. Combined with the results of the minimum
viewport covered in the previous research question, it is clear that Viser’s classifications
can vary across the three viewports spanning the reported failure range depending on the
chosen viewport for classification. These results show that Viser is more likely to agree
with the manual classifications at the minimum viewport of the range of the reported
failure. Compared to an agreement of 86.3% at the minimum viewport, the agreement
for the middle and maximum viewports of the range respectively drop to 83.8% and
78.6%. This also extends to matching true positives where at the minimum viewport
there were 30 failure reports out of 34 matched. While in the middle viewport, the
number of matches dropped to 26 true positives and 19 at the maximum viewport. As
was done for the minimum viewport in the answer to the previous research question, the
disagreements between the manual and Viser’s classifications are discussed next with
references to specific subjects highlighting the key trade-offs between the approaches.

Classifications of the middle viewport - From the set of classifications agreed at the
minimum viewport, 4 failures had their classifications automatically changed by Viser
at the middle viewport. All of these four cases were of the viewport protrusion type. Of
which, the first two come from the PDFescape and PepFeed subjects. Both of these failures
were correctly reclassified by Viser as NOIs. Furthermore, it would be a misclassification
to use the TP manual classification for this viewport. It is also important to reiterate that
both approaches correctly classified these two failures as TPs at the minimum viewport.
In effect, for these two failures, the observability of the defect in the presentation of the
layout varied depending on the viewport width chosen for classification. As the viewport
width expanded, elements had enough space to spread apart and become a non-observable
issue at the middle viewport. Therefore, the judgment made during the manual analysis
of the failure does not hold for the entire range. Importantly, Viser can automatically
detect these differences in observability.

The two failures correctly reclassified by Viser are showcased in Figure 3.6. In the
figure, the snapshots taken at the minimum viewport are showcased in part (a) for the

64

3.4. EMPIRICAL EVALUATION

Browser

Subject://PDFescape

Minimum Viewport

(a) The element protrusion failure misclassified by Viser as a non-observable failure. The yellow
dashed line highlights the coordinates of the container element while the maroon dashed line shows
the coordinates of the protruding element. The content missing here is the menu as shown below.

Browser

Subject://PDFescape

A Wider Viewport

(b) Captured from a wider viewport before the presentation failure occurred. In this viewport, the
full menu is displayed.

Browser

Subject://HotelWiFiTest

Minimum Viewport

(c) The viewport protrusion failure that was misclassified by Viser as a non-observable issue.
Although there is no missing content or lost functionality, the user is required to horizontally scroll
in order to view the content beyond the browser’s size that is surrounded by a dashed line in the
figure.

Figure 3.5: The figure presents two failure reports that were misclassified by Viser
as non-observable issues. The first of which comes from the PDFescape subject and
is showcased in parts (a) and (b) while the second comes from the HotelWiFiTest
subject and can be seen in part (c).

65

3.4. EMPIRICAL EVALUATION

Browser

Subject://PDFescape

Minimum Viewport

(a) At the minimum viewport, the element containing the “PCWorld" is protruding the viewport.

Browser

Subject://PepFeed

Middle Viewport

(b) At the middle viewport, the “PCWorld" logo is not visisibly protruding the viewport.

Browser

Subject://PepFeed

Minimum Viewport

(c) At the minimum viewport, the element containing the “Amazon" is protruding the viewport.

Browser

Subject://PepFeed

Middle Viewport

(d) At the middle viewport, the “Amazon" logo is not visibly protruding the viewport.

Figure 3.6: The figure presents two failure reports that were reclassified by Viser
as non-observable issues in the middle viewport. The first of which comes from the
PDFescape subject and is showcased in parts (a) and (b) while the second comes
from the PepFeed subject and can be seen in parts (c) and (d).

66

3.4. EMPIRICAL EVALUATION

Table 3.4: The results of Viser’s classifying 117 presentation failures reported by
ReDeCheck using the middle viewport of the reported failure range.

Middle Viewport
Element Collision Element Protrusion Viewport Protrusion
TP NOI FP TP NOI FP TP NOI FP Total

3MinuteJournal - 1/1 - - 2/2 - 6/8 2/- - 11
AirBnb - 1/1 - - 1/4 3/- 2/- 2/4 - 9
BugMeNot - - - 1/1 3/3 - 2/2 -/- - 6
CloudConvert 1/1 - - - - - - - - 1
ConsumerReports - 7/7 - 1/1 3/3 - 9/9 3/3 - 23
CoveredCalendar - - - - - - - 3/3 - 3
DaysOld - - - - - - - 1/1 - 1
Dictation - - - - - - - 1/1 - 1
Duolingo 1/- -/1 - - - - 2/2 2/2 - 5
Honey - - - - 8/8 - - 2/2 - 10
HotelWiFiTest - - - - - - -/1 1/- - 1
Mailinator - 1/1 - - - - - - - 1
MidwayMeetup 1/1 - - - 1/1 - 1/- -/1 - 3
PDFescape - - - -/1 6/5 - 2/1 2/3 - 10
PepFeed 4/4 3/3 - - 2/2 - -/1 2/1 - 11
Pocket - 2/2 - - 3/3 - - - - 5
TopDocumentary - 7/7 - - 4/4 - - - - 11
UserSearch - 1/1 - - - - - - - 1
WhatShouldIReadNext - - - - - - - 2/2 - 2
WillMyPhoneWork 1/1 - - - 1/1 - - - - 2
Total 8 23 - 2 34 3 24 23 - 117
Agreement with manual 7/7 23/24 - 1/3 32/36 - 18/24 17/23 - -
Agreement per failure type 96.8 % 84.6 % 74.5 % -
Per inspection point 83.8 % -

failure from PDFescape and in part (c) for the PepFeed subject. For this viewport, the
agreed-upon true positive classification is appropriate since the “PCWorld” and “Amazon”
logos are protruding from the viewport in each case. Meanwhile, both failures at the middle
viewport are non-observable issues as seen in parts (b) and (d) for PDFescape and PepFeed
respectively. In both cases, the logos that were visibly protruding from the viewport are no
longer protruding at the middle viewport. Since the underlying structural issues remain
to be true at the middle viewport, these failures should not be classified as false positives.

Moving on to the other two classifications in disagreement, both were a misclassification
by Viser. Both these viewport protrusion reports come from the 3MinuteJournal subject.
Initially, at the minimum viewport, both classification approaches agreed that the failure
is a TP. However, in the middle viewport, Viser changed its classification to NOI. In this
case, the content of the page overflows the viewport and requires a user to scroll the page
horizontally. Because Viser does not consider scrolling as a problem when classifying
a failure, this led to misclassification by the tool. This scenario is essentially identical
to that of the HotelWiFiTest subject discussed as part of the answer to the first research
question and showcased in Figure 3.5 (c). Again, this scrolling effect that breaks the RWD
principle should be addressed as part of future work.

Classifications of the maximum viewport - there were a total of 7 disagreements associ-
ated with the maximum viewport that previously agreed with the manual classification at
the minimum and middle viewports. Only at the widest viewport in the reported failure
range did Viser conclude a different classification. All seven were true positive viewport
protrusion failures at the smaller viewports. Since the viewport is wider at the maxi-
mum of the range, the space is sufficient for the previously visible defects in the layout to

67

3.4. EMPIRICAL EVALUATION

Table 3.5: The results of Viser’s classifying 117 presentation failures reported by
ReDeCheck using the maximum viewport of the reported failure range.

Maximum Viewport
Element Collision Element Protrusion Viewport Protrusion
TP NOI FP TP NOI FP TP NOI FP Total

3MinuteJournal - 1/1 - - 2/2 - -/8 7/- 1/- 11
AirBnb - 1/1 - - 1/4 3/- 2/- 2/4 - 9
BugMeNot - - - 1/1 3/3 - 2/2 -/- - 6
CloudConvert 1/1 - - - - - - - - 1
ConsumerReports - 7/7 - 1/1 3/3 - 8/9 4/3 - 23
CoveredCalendar - - - - - - - 3/3 - 3
DaysOld - - - - - - - 1/1 - 1
Dictation - - - - - - - 1/1 - 1
Duolingo 1/- -/1 - - - - 2/2 2/2 - 5
Honey - - - - 8/8 - - 2/2 - 10
HotelWiFiTest - - - - - - -/1 1/- - 1
Mailinator - 1/1 - - - - - - - 1
MidwayMeetup 1/1 - - - 1/1 - - 1/1 - 3
PDFescape - - - -/1 6/5 - 2/1 2/3 - 10
PepFeed 4/4 3/3 - - 2/2 - -/1 2/1 - 11
Pocket - 2/2 - - 3/3 - - - - 5
TopDocumentary - 7/7 - - 4/4 - - - - 11
UserSearch - 1/1 - - - - - - - 1
WhatShouldIReadNext - - - - - - - 2/2 - 2
WillMyPhoneWork 1/1 - - - 1/1 - - - - 2
Total 8 23 - 2 34 3 16 30 1 117
Agreement with manual 7/7 23/24 - 1/3 32/36 - 11/24 18/23 - -
Agreement per failure type 96.8 % 84.6 % 61.7 % -
Per inspection point 78.6 % -

become non-observable issues. Six out of the seven originated from the 3MinuteJournal
subject and one came from the ConsumerReports subject. These cases are all similar to
the failures that went from TPs to NOIs at the middle viewport as seen in Figure 3.6.

An additional, notable, change in classification involved a viewport protrusion failure
from the 3MinuteJournal subject that was classified as a false positive report by Viser at
the maximum viewport. For this failure, Viser agreed with the TP manual classification
at the minimum viewport and disagreed in the middle viewport with an NOI classification.
An investigation of the issue revealed that the ReDeCheck tool reported a protrusion of a
single pixel in width based on the coordinates read from the DOM while Viser coordinates
calculated to a non-protrusion. It is worthy to note that the two tools use alternative
approaches to retrieving DOM coordinates. The ReDeCheck tool relies on a customized
JavaScript script adopted from another tool that is injected into the web page while the
Viser tool uses Selenium’s built-in methods to retrieve the readings and consequently
reported no protrusion in this instance.

Agreement after disagreement from minimum to maximum - The differences in clas-
sification discussed so far looked at newer disagreements as the viewport expanded. On
the contrary, there are 2 cases where Viser originally disagree but later agreed with the
manual classification at a wider viewport. The first is a viewport protrusion failure from
the MidwayMeetup subject showcased in Figure 3.7 parts (a) and (b). This failure report
involved an image of a map that presents most of the United States and happens to pro-
trude the viewport size based on the coordinates retrieved from the DOM. Although there
is an observable part of the map missing, as “noticed" by Viser, subjectively this should
really be a non-observable issue that could also be considered a non-failure to begin with.

68

3.4. EMPIRICAL EVALUATION

Browser

Subject://MidwayMeetup

Minimum Viewport

(a) Viser classified as TP.

Browser

Subject://MidwayMeetup

Maximum Viewport

(b) Viser classified as NOI.

Browser

Subject://ConsumerReports

Minimum Viewport

(c) Viser classified as TP.

Browser

Subject://ConsumerReports

Middle Viewport

(d) Viser classified as NOI.

Browser

Subject://ConsumerReports

Maximum Viewport

(e) Viser classified as NOI.

Figure 3.7: The figure showcases two presentation failures that Viser initially
disagreed with the manual classification on but at a wider viewport agreed with the
manual classification. The first is a viewport protrusion from the MidwayMeetup
subject seen in parts (a) and (b). The second is an element collision that comes
from the ConsumerReports subject and is showcased in parts (c), (d), and (e).

69

3.4. EMPIRICAL EVALUATION

The second case is an element collision failure that comes from the ConsumerReports
subject. Again, the human that manually classified the failure was able to dismiss the
report and classify it as a non-observable issue. While the tool, Viser, classified it as
a TP in the minimum viewport and as an NOI in the middle and maximum viewports.
The failure is showcased in Figures 3.7 (c), (d), and (e) for visual reference. Largely
unnoticeable, the collision occurs in the middle of the page towards the lower portion of
the blue region. The only noticeable difference is the missing lower portion of the blue
region in the snapshot of part (c). At the minimum viewport, part (c), the bottom black
border of the white banner in the middle of the blue region is in collision with the content
positioned below the blue region. Therefore, it was classified by Viser as a TP failure.
At the middle and maximum viewport, parts (d) and (e), only a transparent portion of
the element is in collision with the lower content. Hence, it was classified as an NOI by
Viser.

The key findings from these two cases are that, ideally, some observably missing content
should be dismissed. One way to do this with Viser is to look at a winning classification
over all three viewports. Furthermore, the overflow property is a key feature that may
be able to distinguish an acceptable overflow and avoid reporting it in the first place as
seen in the case from the MidwayMeetup subject.

Conclusion for RQ2 – Viser is more likely to agree with a manual classification
when is set to use the minimum viewport width from the reported failure range.
Nevertheless, the classification of larger viewports in the reported range is the only
way to ensure the consistency of the classification throughout the range. The changes
in classification, as the viewport widens, can be explained by: (1) the fact that the
observability of the failure changes as the space expands in wider viewports; (2) the
role of subjectivity over “minor" observable issues; and (3) that a small number of
misclassifications were made by Viser. Notably, almost all the failures involved in
the change of classifications were exclusively of the viewport protrusion type.

Answer to RQ3 – To analyse how long it takes to automatically classify a responsive
layout failure, the runtime of the Viser tool was recorded across 30 runs. Figure 3.8 shows
box plots that visualize the runtime of the tool for element collision, element protrusion,
and viewport protrusion failures. The figure reveals that the time to classify a viewport
protrusion failure has a “longer tail”, resulting in a slightly higher median runtime. This
effect is attributed to the extra work that Viser does to move elements into view for a
snapshot and to investigate AOCs that may be larger than the viewport. Nevertheless, no
major distinction can be made between different failure types. Across all failure types, the
tool took a median of 0.79 seconds and a mean of 0.91 seconds to automatically classify
a presentation failure. Importantly, the time to load the web page and resize the browser
were excluded from measurement as this cost would be shared by any other technique,
whether manual, semi-automated, or automated. All of the recorded times account for
the overhead of finding the reportedly problematic elements, checking the structure of the
layout, taking the required snapshots, classifying the failure, and writing all diagnostic
images to disk.

Conclusion for RQ3 – On average, Viser took under a second to classify a
presentation failure. Arguably, a manual classification of the same failure is expected
to take longer than a second. This suggests that using Viser is practical and
efficient.

70

3.4. EMPIRICAL EVALUATION

1

2

3

Element Collision Element Protrusion Viewport Protrusion

Failure Type

R
un

ti
m

e
(S

ec
on

ds
)

Figure 3.8: Viser’s execution time across all of the 117 presentation failures and
30 trials for each type of layout failure. In these plots the bottom and top whiskers
show the minimum and maximum data values excluding outliers, while the box itself
represents the inter-quartile range, the middle line represents the median value, and
the circles are outliers.

3.4.3 Discussion

The results from the empirical study suggest that Viser is a good automated alternative
to the manual classification of presentation failures reported by the ReDeCheck. In this
section, I will examine a few open points for discussion and opportunities for improving
Viser in greater detail.

Questioning Observability – is not always discernible whether the reported presentation
failure is an observable visual defect in the layout of the web page or not. This makes the
final manual classification decision somewhat subjective. Essentially, the task requires an
observer to recognize a difference between what is visually expected and what is visually
apparent. I found that the previously published manual classifications by Walsh et al. [124],
which I used in the experiment of this chapter, employed “exemptions” based on the
severity of a change in the layout. For instance, consider an element A and an element
B with n overlapping pixels. In this case, a human would decide whether the n pixels
of overlap are negligible and if the overall aesthetics remain satisfactory. Both of these
criteria are not easily defined and remain to a great extent subjective. It may also depend
on the content that each element brings to the layout. Nevertheless, this is an avenue
that can be studied in future work. For example, it may be useful to measure the number
of changed pixels, determine if a colour change is visible to the human eye, or introduce
general heuristics that are concerned with the overall AOC size.

It is also worthy to note that I had concerns with the previously published manual
classifications used in the empirical experiments of this chapter that I was not aware of
prior to using them. After a deeper examination of the manual classification, I found that
some classifications were neither confined to the type of failure nor the XPaths reported.
This may be considered a bias or illustrates the subjectivity and difficulty of the task.
For instance, an element was reported protruding out of an ancestor container, which is
an NOI, but was manually classified as a TP due to a simultaneous protrusion out of
the immediate container. Although a visual defect is apparent in the layout, the reports
were not specific to the elements involved in the defect. Therefore, reclassifying some

71

3.5. CONCLUDING REMARKS

of these manual classifications may be justifiable but I refrained from “tampering” with
the benchmark classification not to introduce any further sources of bias from my end.
Moreover, a reclassification would not tackle the underlying subjective nature that is
inherent in the process of manually classifying a presentation failure.

Since all of the previous research that I reviewed in the area of testing web page’s
for presentation failures used a manual approach to visually confirm the reports from
their prototype tools, the accuracy and consistency of the manual approach will influence,
positively or negatively, the research outcomes. Although I did not experimentally study
the output of other testing tools and alternative types of presentation failures, clearly
from the results of the experiments carried out in this chapter, there are consistency and
efficiency benefits associated with the automation of the classification process.

Revealing Layers – using the opacity CSS property is one way to reveal the graphical
layers needed to analyse and classify the presentation failures without making Viser
browser dependent. An alternative strategy is to manipulate the visibility property
of an element. However, descendant HTML elements can override the inheritance of this
property. This means that Viser would have to traverse the DOM tree in order to check
and set the visibility property of all descendant HTML elements. One negative aspect
of this approach is the added implementation complexity and execution time overhead.

3.5 Concluding Remarks

While responsive web design allows a developer to build layouts for a variety of devices
with different screen sizes, the developer still needs to check for presentational problems in
the web page across different layouts for different devices. Even though the ReDeCheck
tool automatically checks a web page for presentation failures in a responsively designed
web page, the developer must manual verify ReDeCheck’s failure reports. This manual
task can be time-consuming, imprecise, and error-prone. As such, in this chapter, I pre-
sented a new technique to automatically classify the element collision, element protrusion,
and viewport protrusion failures reported by ReDeCheck. Implemented into the tool
Viser, this automated technique adjusts the opacity property of the HTML elements
in an area of concern looking for a visible difference to distinguish non-observable layout
issues from observable ones.

Using the results of the manual classification of presentation failures from a previously
published paper as a baseline, this chapter’s experiments showed that Viser’s automati-
cally generated classifications agreed with the manual ones 86.3% of the time. The results
also demonstrate that Viser is more likely to agree with a manual classification and reveal
a true positive failure when it is set to analyse a web page at the minimum viewport of the
failure range that was reported by ReDeCheck. With Viser taking less than a second
in runtime to classify a presentation failure, the empirical results suggest that Viser is a
good alternative to the manual classification.

Unfortunately, the Viser tool is limited in its ability to automatically classify the fail-
ures reported by ReDeCheck because it only handles three out of five failure types that
can be reported by the tool. These three failure types were associated by Walsh et al. [124]
with non-observable issues and thus handled by Viser. This leaves two more failure types
that were not associated with NOIs which a developer must manually classify before at-
tempting to repair them. This problem motivated me to extend automation to the two
new failure types in order to alleviate the developer from their burden. Furthermore, I
wanted to know how well the findings of this chapter extend to new subjects. This research
is the focus of the next chapter.

72

4
Classifying Observable Failures and
Reassessing Automated Classification

In the previous chapter, I presented a technique that automatically classifies three types
of presentation failures reported by the layout testing tool ReDeCheck. Moreover, this
technique was specifically developed to solve the problem of identifying and classifying
non-observable issues from the reported failures. Only three out of five types of presenta-
tion failures were associated with non-observable issues based on a published experiment
conducted by the creators of ReDeCheck, Walsh et al. [124], where they manually clas-
sified the reported failures. These were the element collision, element protrusion, and the
viewport protrusion type of failures that Viser can automatically classify, as presented in
the previous chapter. In this chapter, classification is extended to the element wrapping
and small-range failure types that were not associated with non-observable issues.

Although the results from the experiments of the previous chapter were positive, they
still warranted further work. Fundamentally, the technique was limited by the fact that
Viser did not support the classification of two types of presentation failures reported
by ReDeCheck. Since Viser cannot classify failures pertaining to either an incorrect
element wrapping or the sporadic rearrangement of element at a small number of view-
port widths, this chapter introduces “Verve” (Visual classifiEr for ResponsiVe tEsting),
a tool that automatically classifies all five types of presentation failures detected by Re-
DeCheck. To do this, the strategy behind Viser that manipulates the opacity of HTML
elements is extended to classify element wrapping failures in the new tool Verve. Further-
more, the new tool employs a new approach that uses a histogram-based image comparison
technique to classify the reported failure involving layout mistakes at a small number of
viewport widths, the small-range failures.

This chapter begins by explaining the problem that Verve was created to resolve.
Then, a brief overview is given of how the two new failure types are detected. To follow
is an explanation of the techniques implemented in the new tool Verve. Finally, the
empirical evaluation of Verve and the results are presented.
The key contributions of this chapter are:

1. New algorithms to automatically classify the element wrapping and small-range
failures types reported by ReDeCheck.

2. An empirical evaluation comparing the manual and automated classification of el-
ement wrapping and small-range failures using the 25 subjects from the previous
chapter. Demonstrating that the two new failure types can be automatically and

73

4.1. MOTIVATING THE RESEARCH

effectively classified.
3. An empirical reassessment of the automated classification of all five failure types,

as implemented in Verve, over 20 new subject web pages. Demonstrating that my
automated classification technique does extend well onto new subject web pages.

4.1 Motivating the Research

The problem presented in this chapter is similar to the problem that was presented in
Section 3.1 of the previous chapter. Although the ReDeCheck tool helps the developer
of a responsively designed web page test the layout as it changes to befit a different
viewport width of the browser, the classification of the reported presentation failures is a
task left for the developer. Therefore, the developer must read the reports and inspect the
live web page to determine if there is a valid concern. The result of the inspection could
lead the developer to classify the failure as either a true positive or a false positive report.
Where a true positive is labelled when an observable defect is found in the presentation
of the layout while a false positive is the result of a ReDeCheck mistake.

The problem solved in the previous chapter relates to the identification and classifi-
cation of reports that have a measurable issue in the structure of the web page but are
visually non-observable in the rendered layout. This is a class of failure reports known
as Non-Observable Issues (NOIs). The main reason for their existence is due to the fact
that the tool uses the DOM to detect failures and does not gather or analyse information
about the rendered layout. Therefore, the reports of the DOM-based ReDeCheck tool
may report NOIs. This class of reports was associated with the element collision, element
protrusion, and viewport protrusion failure types reported by ReDeCheck. Even though
the element wrapping and small-range failure types were not associated with NOIs in pre-
vious research, the results of ReDeCheck must still be checked for false positive reports.
A human may come to this conclusion if the tool made a mistake or the issue was so minor
it is imperceptible to the eye.

To illustrate the complexity of classifying these reported failures, Figure 4.1 shows a
failure that is both an NOI and true positive failure at a different viewport. This is a
real example of a viewport protrusion failure from the SB-Admin-2 subject found in the
viewport range 320-379 during the experiments of this chapter. At a viewport width of 379
pixels as seen in part (a), there is no apparent problem in the presentation of the web page.
Nevertheless, the DOM-based coordinates of the container of the top-right profile image
is protruding out of the main body element. Therefore, at this maximum viewport size of
the reported failure range, it should be classified as a non-observable issue. At the middle
of the range, 349 pixels as seen in part (b), the horizontal space available is more confined
and the profile image is now protruding off to the right edge of the page. At a minimum
viewport of the failure range, 320 pixels as seen in part (c), the profile image is entirely
missing from view and is no longer accessible.

Another real example of a presentation failure, of a different type, is shown in Fig-
ure 4.2. This failure is an element wrapping from the SB-Resume subject that was detected
in viewports 1056-1121 pixels during the experiments of this chapter. One viewport wider
than the maximum of the failure range, viewport 1122 pixels as seen in part (a), at the
bottom right of the snapshot there are twelve icons of programming languages and tools
that are properly aligned in a single row. At this viewport, there is no failure since all
the icons are aligned in a row. While at the immediately narrower viewport of 1121 pixels
as seen in part (b), the last icon wraps into a new row and is therefore flagged by Re-
DeCheck as a presentation failure. Although slightly less problematic than the loss of

74

4.2. DETECTION PRIOR TO CLASSIFICATION

functionality seen in the previous example, this may break the intended design.
Without automating the classification of element wrapping and small-range types of

failures raised by ReDeCheck, the user must still manually sift through the reports to
classify these two failure types since Viser does not support them. Doing so, manually,
over many reports generated by the tool can be time-consuming and error-prone. During
one such case, Walsh et al. [124] et al. had to manually classify 209 presentation failure
reports specific to these two type of failures from 25 subjects. Moreover, they found 47
of these reports to be false positives. In other words, about 22% of the failures reported
by the tool were of no good to the developer while the other 78% are all true positives
according to their manual classifications. In an extreme case, the PepFeed subject had
only 2 true positive reports out of 16 reported presentation failures. Automating the
classification of this large number of reports that may require the inspection of multiple
viewport widths for each failure report will pass on more benefits to the developer. This
is done by reducing the required labour and time to test the layout and eliminating the
chance for a human-made error during the classification. Thus improving the quality of
the reports that are finally handled by the developer.

4.2 Detection Prior to Classification

As explained in Section 3.2 from the previous chapter, the ReDeCheck tool detects pre-
sentation failures by building a Responsive Layout Graph (RLG) model of a web page [125].
An RLG captures the behaviour of the layout of the web page as it responds to a change
in viewport width [127]. For each viewport width, the relative alignment of the visible
HTML elements with respect to one another (e.g., “above-of”, “right-of”, “contained-by”)
are represented in the model. To construct the RLG, ReDeCheck gathers the required
information using the DOM after instructing a desktop browser to navigate to a web page
and change the viewport widths to values from a specified testing range, {testmin . .testmax}.
This viewport testing range typically starts with a narrow width of 320 pixels that mim-
ics the width of a mobile phone and extends to a more spacious width of 1400 pixels
corresponding to a desktop computer. The class of presentation failures found by the
ReDeCheck tool are referred to as responsive layout failures (RLFs).

In the previous chapter, the process of detecting three types of responsive layout
failures was explained. Briefly, the first type called element collision is detected when two
elements, that share the same container element, do not overlap at one viewport but later
overlap in a narrower viewport. Therefore, the range of viewports where the overlap occurs
is reported as the failure range. The second called element protrusion is detected when
at some viewport, the area of one element is contained within the container element but
at a narrower viewport width protrudes the area of the previously determined container
element. At the smaller viewport, none of the two elements fully overlap the other. For
this type, the failure range is equal to viewport widths where there is only partial overlap
between the elements. With high similarity, a viewport protrusion failure is detected when
an element protrudes the main container element, the body element. Hence, it will not
be contained by any other element. A real-world example was showcased in Figure 4.1.
All of these failures may lead to undesirable aesthetics or cause a loss of functionality for
important links, input fields, or buttons if they are unreachable or obscured due to the
presentation failure.

The first of the new failure types handled by Verve is referred to as an element
wrapping failure. This type of failure occurs when, by design, a group of HTML elements
that are aligned to appear together in a single row formation can no longer remain side

75

4.2. DETECTION PRIOR TO CLASSIFICATION

Browser

Subject://SB-Admin-2

Viewport Size 379 px

(a) NOI Viewport Protrusion

Browser

Subject://SB-Admin-2

Viewport Size 349 px

(b) TP Viewport Protrusion

Browser

Subject://SB-Admin-2

Viewport Size 320 px

(c) TP Viewport Protrusion

Figure 4.1: Three snapshots of the SB-Admin-2 web page that capture a viewport
protrusion failure at the maximum of the reported failure range of 320 – 379 pixels,
in (a), and at the middle of the range in (b), and at the minimum of the range in
(c), as reported by ReDeCheck and correctly classified by Verve.

76

4.2. DETECTION PRIOR TO CLASSIFICATION

Browser

Subject://SB-Resume

Viewport Size 1122 px

(a) No Layout Failure

Browser

Subject://SB-Resume

Viewport Size 1121 px

(b) Wrapping Layout Failure

Figure 4.2: Two snapshots of the SB-Resume web page that capture its layout
before a wrapping failure occurs, in (a), and a wrapping failure with the range of
1056–1121 pixels in (b), as reported by the ReDeCheck and correctly classified,
without human intervention, as a true positive by Verve.

77

4.2. DETECTION PRIOR TO CLASSIFICATION

Web Page

Wide Viewport

(a) Correct Layout

Web Page

Narrow Viewport

(b) Wrapping Failure

Web Page

Wider Viewport

(c) Correct Layout

Web Page

Inbetween Viewport

(d) Small-Range Failure

Web Page

Narrower Viewport

(e) Correct Layout

Figure 4.3: Wireframe examples of the element wrapping and small-range respon-
sive layout failures. The actual failures are represented in part (b) for the wrapping
failure and part (d) for small-range failure while the other parts of the figure repre-
sent a correct layout at a different viewport.

by side. Although the formation of elements is feasible at a wide viewport width, the
narrower viewports may not be wide enough for the formation to persist. This scenario
is represented in the wireframe example of Figure 4.3 parts (a) and (b). The elements in
dark and light grey colours are properly aligned in a row formation at the wider viewport
width as seen in part (a). While at a narrower viewport width, illustrated in part (b),
the light grey element is forced to wrap below the darker grey elements that remain in a
row formation. In this scenario, the wrapping failure is caused by a confinement in the
horizontal space of the smaller viewport width.

To detect an element wrapping failure, the ReDeCheck tool first iterates over the
alignments between any pair of elements that share the same parent in order to determine
if they are in a row. A parent element in the RLG model is another element with the most
confined coordinates that contain the coordinates of the element in question. To determine
row formation, the tool uses the existence of the alignment “right-of” without the existence
of an “above-of” or “below-of” alignments to identify if two or more elements are in a row.
If at a smaller viewport width one of the row forming elements wraps and establishes the
“above-of” or “below-of” alignment, the tool reports the wrapped element as a failure in
the layout. A real-world element wrapping example found during the experiments of this
chapter was presented in Figure 4.2. Along with the list of XPaths of the elements making
up the row, the ReDeCheck tool also reports the range of viewport widths where the
failing element wrapped below the row.

The second type of layout failure automatically classified by the new Verve tool is the
small-range failure. This type of failure report indicates a layout that occurs anomalously
for only a small number of consecutive viewport widths. Figure 4.3 (c), (d), and (e)
illustrate a wireframe example of this failure type. For the majority of viewport widths
(i.e., parts (c) and (e)), a total of four web page elements are correctly laid out in a 2 × 2
grid formation. Yet, over a small number of viewports in between as seen in part (d), the
light grey element to the button left of the figure falls out of alignment with the others.

Unlike the other four type of responsive layout failures detected by ReDeCheck that

78

4.3. CLASSIFYING WRAPPING AND SMALL-RANGE FAILURES

are likely to be caused by a lack of available space to layout the elements as the viewport
tightens, a small-range presentation failure is more likely to be a programming mistake.
More precisely, an improper usage of media queries in the web page may be the cause
of this type of failure. For example, the media query “@media (max-width: 768px)
{...}” may be used by the developer to display a layout specific to viewport widths of up
to 768 pixels. The media query “@media (min-width: 768px) {...}” may be added to
display a layout specifically tailored for viewport widths that are bigger than 768 pixels.
However, since the viewport ranges defined by both of these media queries are inclusive,
both will be activated at the 768 pixels viewport width. Potentially, this will lead to a
problem in the layout due to the simultaneous activation of two competing sets of rules
when only one set was intended to be active at a time. This type of failure is more difficult
for the developer to detect manually since it occurs only at a few viewport widths.

To detect small-range failures, the ReDeCheck tool uses the signature of the failure
characterized by a temporary change in relative alignment of elements that suspiciously
occur at only a few viewport widths. To do this, the tool iterates over pairs of elements
investigating the range of their relative alignments. This is done to find an alignment
between a pair of elements that holds true for only a predetermined number of viewports.
During the experiments of Walsh et al. [124], the threshold of 5 viewports was used to
indicate a potential small-range failure. If the two elements have different alignments at
both the immediately narrower and wider than the consecutive viewports falling within
the threshold, the two elements are reported as a small-range failure. The change in
alignments observed by the algorithm is also included in the report as well as the range of
viewport where the temporary re-arrangement occurred. A failure report of this type may
also be a duplication of any of the other four type of failure if the failure range happens
to be five viewports or less.

4.3 Classifying Wrapping and Small-Range Failures

Given a set of wrapping and small-range presentation failures reported by the ReDeCheck
tool, the automated approach that I am presenting in this section aims to classify the re-
ports to identify true positive failures. To achieve this, the prototype Verve automatically
examines the underlying structure of the layout and captures images of the layout to anal-
yse the failure. Next, I will give an overview of the approach implemented in Verve
followed by details of how this is achieved for an element wrapping and a small-range
failure.

4.3.1 Summary of Approach

The technique followed by Verve is able to automate the classification of all failures
reported by ReDeCheck using images captured from the layout. Prior to capturing
and analysing images, the tool first corroborates the reported failure using a DOM-based
reading at the time of classification. This step is important in order to filter out false
positive reports generated by ReDeCheck that may have been raised in error or as a
limitation of the detection algorithms. Thereby leaving only non-observable issues and
true positive reports to be distinguished and classified. After filtering all false positives,
the tool needs to calculate the area of the layout that will be graphically analysed. To do
this, the coordinates of the elements involved in the failures are used to limit the image
analysis to a region of the web page where the failure occurred. This region, referred to as
the Area of Concern (AOC). Then, the layout in the AOC is captured using snapshots and

79

4.3. CLASSIFYING WRAPPING AND SMALL-RANGE FAILURES

V
er

ve

web page

R
eD

eC
he

ck

====

RLFs
Manual

Approach

Access

Web page

Set

Viewport
Scroll to

Failure

Classify

Failure

Automated

Approach

Web page

Explorer
DOM

Filter

Image

Analyser
====

Automatically

Classified

====
Manually

Classified

Figure 4.4: The high-level architecture of the Verve tool for the automatic clas-
sification of layout failures. Along with the external input sources, this figure also
shows the alternative manual process steps that require a human expert.

analysed in one of two ways depending on the failure type. The first approach compares
different graphical layers of an AOC to classify element wrapping failures, as done by
Viser and described in the previous chapter for element collision, element protrusion,
and viewport protrusion

The second image analysis approach of Verve uses colour histograms in order to clas-
sify small-range failure reports. Unique to this type of failure, a colour histogram of the
AOC is generated for three viewport widths associated with the reported failure range
{failmin . .failmax}. By definition, the failure range of all small-range reports is limited to
five viewport widths. Therefore, little layout change is expected between these viewports
and hence only one viewport is sufficient to represent the failure. This is the failmin view-
port corresponding to the minimum viewport within the failure range. A snapshot of the
AOC is captured with the viewport set to failmin and is used to create a colour histogram.
Then two comparison snapshots of the AOC from the immediately narrower, failmin−1,
and immediately wider viewports, failmax+1, are captured for comparison against the one
captured using viewport failmin . Depending on a predetermined threshold value, Verve
uses the result of differencing the colour histograms to automatically identify true positive
presentation failure reports.

4.3.2 Classifying the Failure Reports

After a developer runs ReDeCheck in order to test the layout of a web page, two possible
failures that the tool may detect and report is an element wrapping and small-range
failures. If a report is generated, it will state the responsive layout failure type (e.g.,
element wrapping), the range of viewport widths for which the failure was deemed to occur
(in the form of a lower and an upper bound such as {failmin . .failmax}), and the XPaths of
the HTML elements involved. If Verve is not used, the developer must manually decide
what to do with these reports. The lower portion of Figure 4.4 illustrates the steps the
developer needs to do in order to investigate the reports generated by ReDeCheck. This
involves loading up the web page, setting the viewport width of the browser to one within
the reported failure range, manually identifying the elements involved and scrolling to the
failure if necessary, and finally deciding if the report is a true positive or not.

As depicted in the top portion of Figure 4.4, the Verve tool automates these steps.
The Web Page Explorer component first opens the browser, sets the viewport width, and lo-
cates the faulty elements automatically. Then the Verve tool cross-checks ReDeCheck’s
results by examining the DOM in the DOM Filter step. For this, Verve checks that each
element reported has a physical size (i.e., its width and height are not zero), and that
they can be reached, if not initially present, by scrolling the web page. More specifically,

80

4.3. CLASSIFYING WRAPPING AND SMALL-RANGE FAILURES

E

Figure 4.5: The area of concern (the element marked “E”) for a wrapping failure.

Verve checks the coordinates of the bounding box of each element and treats negative
coordinates as unreachable since the browsers do not scroll to negative coordinates nor
render its content. Furthermore, coordinates that are greater than the maximum position
that can be scrolled to are also deemed to be off the page. The tool Verve makes further
checks at this stage depending on the responsive layout failure type as will be detailed
in the following subsections. Any reports that do not pass these checks are classified as
false positives. Otherwise, Verve proceeds to the Image Analyser component for visual
analysis of the failure.

The Image Analyser step investigates specific regions of a web page referred to as areas
of concern (AOCs). AOCs are specific to each type of responsive layout failure. An AOC
is a rectangular area within the page that pertains to the elements involved in a layout
failure. This is the area where graphical content is suspected to have been inadvertently
overwritten by other content on the page or to have been written out of its designated
position. The Image Analyser component ultimately intends to determine if this is the case
(i.e., the presentation failure produces a visible and observable defect). For example, if the
misplaced element has no content and is transparent, the failure will not be detectable by
a human and so a failure report produced by ReDeCheck will likely be of little concern
to the developer of the web page.

The remainder of this section describes how Verve identifies AOCs for the two new
failure types not described in the previous chapter, and how the image analysis of the
AOC can automatically classify the failure reports.

Element Wrapping Failures

To classify an element wrapping report, the Verve tool re-purposes the graphical-layer
revealing technique used to classify element collision, element protrusion, and viewport
protrusion failure reports explained in the Section 3.3.4 of the previous chapter. Briefly,
the approach uses the CSS opacity property in order to reveal the lower graphical layer
hidden behind the rendering of an HTML element. By comparing the lower layer against
the top layer, the tool can infer if an element is overwriting other content of the page or
if the element is written out of position. Prior to any graphical analysis taking place, the
Verve tool begins by filtering out any false positive reports in the DOM Filter phase.

Specifically for wrapping failures, the DOM Filter phase of Verve makes a check of
the DOM to check three criteria. First, it ensures that there are at least three elements in
the original “row” (as per the original ReDeCheck algorithm [124]). Second, it checks
that the wrapped element is below all other row elements and that all row elements are of
valid size for display with a width and height greater than zero. If the criterion is not met,
then Verve concludes that it is a false positive report. Otherwise, Verve proceeds to
the image analysis phase in order to determine if the report being handled is true positive
or just a non-observable issue.

The Image Analyser component of Verve treats a wrapping failure report as if it
was another “separated” scenario that was illustrated in Figure 3.4 and discussed in the
previous chapter. Therefore, the AOC of wrapping failure that requires visual analysis
is equal to the entire coordinates of the wrapped element as shown in Figure 4.5. The

81

4.3. CLASSIFYING WRAPPING AND SMALL-RANGE FAILURES

algorithm that handles wrapping failures, described in Algorithm 4, takes this AOC and
passes it to the TwoLayersAnalysis procedure of Algorithm 5. In turn, the algorithm
will check if the wrapped element is visible and therefore returns TP. Otherwise, it will
return NOI if the wrapped element is fully transparent. For this type of presentation
failure, a transparent element could be introduced by the developer to add padding or
used as a placeholder for future content that has not made it into the page yet.

Algorithm 4 Classification of wrapping failures

INPUT: The wrapped element wrapped.
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure ClassifyWrappingFailures(wrapped)
2: AOC ← getWrappingAOC(wrapped) ▷ AOC = E (Figure 4.5)
3: return TwoLayersAnalysis(wrapped, AOC)

Algorithm 5 Image analysis for two layers of an AOC

INPUT: An HTML element, front, and the AOC AOC .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.
1: procedure TwoLayersAnalysis(front, AOC)
2: front ← makeTransparent(front)
3: imgNoElement ← snapshot(AOC)
4: front ← restore(front)
5: imgFront ← snapshot(AOC)
6: if imgNoElement ̸= imgFront then
7: return TP
8: return NOI

Small-Range Failures

As described in Section 4.2, the detection of small-range failures and their effect on the
layout are altogether different from the other failure types. Unlike other failure types,
The small-range algorithm intends to catch mistakes in the coding of media queries rather
than the problems associated with the lack of horizontal space available within a particular
viewport width. More specifically, it is expected to be caused by a programming mistake in
the logic of a media query resulting in some media rules being activated when they should
not be. The interaction between different CSS properties of one or more HTML elements
may create an anomalous layout for a few viewports while some rules are inadvertently
activated.

Because small-range failures represent general element misalignments with positions
that are difficult to characterize in advance, this type of failure requires a new classification
approach that is different from the approach used to classify the other four failure types.
Instead of examining different graphical layers, the new approach, implemented in Verve,
attempts to measure the level of visual disturbance caused by the misalignment in the
layout. If the visual difference between a snapshot of the failure is above a predetermined
threshold when compared with snapshots of the web page at viewport widths on either side
of the reported viewport failure range, failmin−1 or failmax+1, Verve flags it as a true
positive failure. If the visual difference is negligible and therefore under the experimentally
determined threshold, the report is flagged as a false positive by Verve. Nevertheless,
like other failure types, an area of concern must be calculated to do the image comparison.

82

4.3. CLASSIFYING WRAPPING AND SMALL-RANGE FAILURES

Web Page

F

Web Page

G

Web Page

H

Web Page

I

(a) A layout of a viewport where a small-range failure occurs (referred to as a failure viewport)

Web Page

J

Web Page

K

Web Page

L

Web Page

M

(b) The immediately narrower viewport without a failure (referred to as a “comparison” viewport)

Figure 4.6: Showcasing the horizontal referencing system for identifying the areas
of concern (AOCs) for visual or graphical scrutiny using a small-range responsive
layout failure involving two distinct HTML elements, represented by the light grey
and dark grey boxes. Each AOC from the failure viewport, part (a), is labelled with
a letter and has a counterpart AOC labelled in the comparison viewport directly
below it.

As with the other failure types, Verve automatically identifies regions of the web page
(i.e., the areas of concern) for graphical scrutiny. The difference with other failures is that
Verve not only identifies AOCs using a viewport containing the failure from the failure
range {failmin . .failmax} as reported by ReDeCheck, instead it also uses the viewports
failmin−1 and failmax+1 that are at either side of the failure range. I refer to these two
additional viewports as the comparison viewports and any viewport from the failure range
as the failure viewport. On a technical level, Verve compares multiple AOCs from the
failure viewport to their counterparts from a comparison viewport in order to ascertain if
there is a visual difference and assign an appropriate classification.

The ReDeCheck tool reports small-range failures as pairs of elements whose relative
alignment has changed for a small number of viewport widths. To illustrate this, Fig-
ures 4.3(c), (d), and (e) depict a light grey element that moved from the left of the dark
grey element to its bottom-left and therefore ReDeCheck will report both of these ele-
ments. In this case, Figure 4.6 depicts the same scenario but with the AOCs labelled. In
part (a) of the figure, the small-range failure from the failure viewport is presented. While
in part (b) of the figure presents the narrower comparison viewport, failmin−1, where the
anomalous alignment is no longer evident.

There are many different ways in which a page can be dissected into AOCs in order
to capture any visual disturbance associated with the reported failure. Since the problem
requires measuring the misalignment in the relative position of an element, the content
of the page in a given direction of an element is used by Verve as a reference for its
position. For example, if element Y is to the right-hand of element X in the comparison
viewport but not in the failure viewport, an AOC covering the area to the right of element
X will capture this change in the relative position of the two elements. Since a change
in the layout is expected for different viewports in a responsively designed web page, the
Verve tool relies on the two comparison viewports nearest to the failure range to reach
a conclusion. Using the same example, if the element Y is also not on the right-hand side

83

4.3. CLASSIFYING WRAPPING AND SMALL-RANGE FAILURES

Web Page

N

Web Page

O

Web Page

P

Web Page

Q

(a) A layout of a viewport where a small-range failure occurs (referred to as a failure viewport)

Web Page

R

Web Page

S

Web Page

T

Web Page

U

(b) The immediately narrower viewport without a failure (referred to as a “comparison” viewport)

Figure 4.7: Showcasing the vertical referencing system for identifying the areas
of concern (AOCs) for visual or graphical scrutiny using a small-range responsive
layout failure involving two distinct HTML elements, represented by the light grey
and dark grey boxes. Each AOC from the failure viewport, part (a), is labelled with
a letter and has a counterpart AOC labelled in the comparison viewport directly
below it.

of X in the second comparison viewport, then Verve treats it as an expected responsive
design change.

There are at least two possible positional referencing systems that arise from this
example. The first is the horizontal referencing system which is illustrated in Figure 4.6.
This system dissects AOCs using the coordinates of the bounding boxes of each reported
element and extended out horizontally to either the right or left edge of the page at each
viewport width (e.g., F and G). This results in two AOCs per element, four AOCs for each
viewport, and a total of 12 AOCs for all three viewports. To reduce the complexity of
the illustrated example, the wider comparison viewport with similar AOCs was omitted.
A naturally alternative positional referencing system, illustrated in Figure 4.7, would
be the vertical referencing system with AOCs extending out from the reported element
vertically to the top or the bottom of the page (e.g., N and O). Combining the referencing
style of both systems creates a horizontal-plus-vertical referencing system covering all four
directions from the element that is seeking a positional reference. For the experiments
of this chapter, I implemented the horizontal referencing and the horizontal-plus-vertical
referencing systems into Verve and evaluated them in Section 4.4.

Using either the horizontal referencing or horizontal-plus-vertical referencing options,
Verve’s classification algorithm for small-range failures creates a colour histogram of each
AOC using snapshots of the page. That is a histogram of the number of pixels with a
certain colour. Then, each colour histogram from a failure viewport is compared with
a corresponding histogram of an AOC from a comparison viewport. An example pair of
corresponding AOCs from Figure 4.6 are the AOCs labelled F and J. Algorithm 6 shows the
steps Verve follows to classify a failure using AOCs identified with the horizontal-plus-
vertical referencing option. Alternatively, the steps of the algorithm with the horizontal
referencing option set are the same but omit the steps associated with the “vertical” AOCs
(e.g., lines 7–11 and 17–21).

The first part of the small-range algorithm is dedicated to calculating the AOCs needed

84

4.3. CLASSIFYING WRAPPING AND SMALL-RANGE FAILURES

Algorithm 6 Classification of small-range failures

INPUT: Two HTML elements, element1 and element2 involved in the failure; the failure viewport failureVP; the
narrower comparison viewport narrVP; the wider comparison viewport widerVP; and finally, the colour histogram
distance metric metric.
OUTPUT: TP if the RLF is deemed observable, FP otherwise.

1: procedure ClassifySmallRangeFailures(element1 , element2 , failureVP, narrVP, widerVP, metric)
2: ▷ Get horizontal AOCs from failure viewport
3: element1RightFailureAOC ← getRightAOC(element1 , failureVP) ▷ AOC = F (Figure 4.6)
4: element1LeftFailureAOC ← getLeftAOC(element1 , failureVP) ▷ AOC = G (Figure 4.6)
5: element2RightFailureAOC ← getRightAOC(element2 , failureVP) ▷ AOC = H (Figure 4.6)
6: element2LeftFailureAOC ← getLeftAOC(element2 , failureVP) ▷ AOC = I (Figure 4.6)
7: ▷ Get vertical AOCs from failure viewport
8: element1TopFailureAOC ← getTopAOC(element1 , failureVP) ▷ AOC = N (Figure 4.7)
9: element1BottomFailureAOC ← getBottomAOC(element1 , failureVP) ▷ AOC = O (Figure 4.7)
10: element2TopFailureAOC ← getTopAOC(element2 , failureVP) ▷ AOC = P (Figure 4.7)
11: element2BottomFailureAOC ← getBottomAOC(element2 , failureVP) ▷ AOC = Q (Figure 4.7)
12: ▷ Get horizontal AOCs from narrower (comparison) viewport
13: element1RightNarrAOC ← getRightAOC(element1 , narrVP) ▷ AOC = J (Figure 4.6)
14: element1LeftNarrAOC ← getLeftAOC(element1 , narrVP) ▷ AOC = K (Figure 4.6)
15: element2RightNarrAOC ← getRightAOC(element2 , narrVP) ▷ AOC = L (Figure 4.6)
16: element2LeftNarrAOC ← getLeftAOC(element2 , narrVP) ▷ AOC = M (Figure 4.6)
17: ▷ Get vertical AOCs from narrower (comparison) viewport
18: element1TopNarrAOC ← getTopAOC(element1 , narrVP) ▷ AOC = R (Figure 4.7)
19: element1BottomNarrAOC ← getBottomAOC(element1 , narrVP) ▷ AOC = S (Figure 4.7)
20: element2TopNarrAOC ← getTopAOC(element2 , narrVP) ▷ AOC = T (Figure 4.7)
21: element2BottomNarrAOC ← getBottomAOC(element2 , narrVP) ▷ AOC = U (Figure 4.7)
22: ▷ Get vertical and horizontal AOCs from wider (comparison) viewport
23: element1RightWiderAOC ← getRightAOC(element1 , widerVP)
24: . . .
25: ▷ Match up the AOCs for colour histogram analysis
26: setsOfAOCs ← {(element1LeftFailureAOC , element1LeftNarrAOC , element1LeftWiderAOC),
27: (element1RightFailureAOC , element1RightNarrAOC , element1RightWiderAOC),
28: . . .}
29: ▷ Compare the colour histograms for each set of AOCs
30: for each (failureAOC , narrAOC , widerAOC) ∈ setsOfAOCs do
31: histogramForFailureAOC ← getColourHistogram(snapshot(failureAOC, failureV P))
32: histogramForNarrAOC ← getColourHistogram(snapshot(narrAOC, narrV P))
33: histogramForWiderAOC ← getColourHistogram(snapshot(widerAOC, widerV P))
34: distanceNarrower ← getDistance(metric, histogramF orF ailureAOC, histogramF orNarrAOC)
35: distanceWider ← getDistance(metric, histogramF orF ailureAOC, histogramF orW iderAOC)
36: distance ← min(distanceNarrower, distanceW ider)
37: if SatisfyThreshold(metric, distance) then
38: return TP
39: return FP

for analysis as seen in lines 2–24. These AOCs are then matched up into sets of three from
the three viewports involved as seen in lines 25–28. Next, a loop iterates over each set of
AOCs for comparison in lines 29–38. Within the loop, in line 31, the snapshot procedure
creates an image of the AOC by cropping a snapshot taken from the failure viewport which
is then passed to the getColourHistogram procedure that returns a colour histogram
of the cropped image. This is repeated for the narrower and wider comparison viewports
in lines 32 and 33 with each histogram saved into a different variable.

With the three histograms ready for analysis, the algorithm then uses a metric to
compute a distance between a histogram of the failure viewport against that of a narrower
or wider comparison viewport in lines 34 and 35 respectively. The algorithm then, in
line 36, chooses the smaller of the two distances for the analysis. This means that Verve
will use the layout of the comparison viewport that better resembles the failure viewport.
The intention is to overcome any intended layout changes programmed in the responsive
design of the web page. Thus, allowing the tool to distinguish the difference between the
failure occurring or not while overcoming unrelated but intended changes in the layout.

85

4.4. EMPIRICAL EVALUATION

If this distance is above a threshold, as determined by the satisfyThreshold procedure
in line 37, Verve will conclude that the visual disturbance to the presentation of the web
page is sufficient to classify the reported failure as a true positive, see line 38. Otherwise,
Verve will classify the report as a false positive once the loop iterates over all sets of
AOCs, terminating the algorithm in line 39.

To compute the colour histogram of an image and to calculate the distance between
any two histograms, Verve integrated and outsourced these tasks to the publicly available
OpenCV [87] tool. Since there were five distance metrics available in OpenCV, I employed
all five distance measures in order to evaluate the better metric for the web page layout
use case as part of the experiments of this chapter. Namely, these were the Bhattacharyya
Distance, Chi-Square, Alternative Chi-Square, Correlation, and Intersection [16]. The
Kullback-Leibler Divergence measurement was not included in this thesis because images
from different viewports with different sizes may output negative values. Thus, the results
of Kullback-Leibler Divergence may not be fairly compared against other distance measure.
For the thresholds required by each metric, I determined it in an automated fashion
during preliminary experimentation (This will be explained in more detail in Section 4.4.1).
These predetermined thresholds are also evaluated for suitability using the subjects in the
empirical study of this chapter, which I will introduce and discuss next.

4.4 Empirical Evaluation

To empirically evaluate Verve’s new small-range and element wrapping failure automated
classification algorithms for effectiveness and efficiency, I conducted experiments using
Verve to classify the presentation failures found in the web pages used in the previous
evaluation of ReDeCheck by Walsh et al. [124], henceforth referred to as initial set, as
done in the previous chapter for the other three failure types. Furthermore, a new set of
subjects henceforth referred to as the additional set is introduced in this chapter that was
not used in the prior chapter to study Viser. The aim of the new subjects is to evaluate
how well Verve’s performance extends into the new set of subject web pages and compare
it with the previous results. All of the experiments were conducted to answer the following
research questions:

Research Question One: – Can Verve automatically classify wrapping failure reports
when compared with the human-made manual classifications? To answer this question, I
employed the original set of web pages used to assess the ReDeCheck tool, called the
initial set, in order to analyse for agreement between Verve’s classification against the
human-made manual classifications specifically for wrapping failures. This initial set of
subjects was also used in the experiments of the previous chapter to analyse the Viser’s
ability to classify element collision, element protrusion, and the viewport protrusion fail-
ures. See Section 3.4.1 of the previous chapter for the subjects used for that purpose.

Research Question Two: – How do Verve’s automatically classified small-range failure
reports compare with the manual classification and which colour histogram distance metric
performed the best and which referencing approach is better? To answer this question, I
employed the initial set of subjects to analyse the level of agreement between Verve’s
automated classifications and the manual classifications specifically for small-range failure
reports. Moreover, I also analyse which of the five histogram distance methods is the most
effective at increasing the agreement. Finally, I compare both the horizontal referencing
and horizontal-plus-vertical referencing alternative approaches implemented into Verve.

Research Question Three: – Reassessment of automated classifications.

86

4.4. EMPIRICAL EVALUATION

(a) Does Verve effectively classify collision, element protrusion, and viewport protru-
sion failure reports for the new responsive web pages and how does it compare with results
from the initial set of subjects?

(b) Does Verve effectively classify wrapping failure reports for the new responsive web
pages and how does it compare with results from the initial set of subjects?

(c) Does Verve effectively classify small-range failure reports for the new responsive
web pages and how does it compare with results from the initial set of subjects?

Since this question aims to reassess the performance and therefore is essentially a
repeat of the first two research questions in both this chapter and the prior one, the same
methodology was followed to reach a conclusion about Verve’s automated classifications
when using a new set of subjects referred to as the additional set of subjects. Furthermore,
the results are compared between the two sets for major degradation or improvement in
efficacy.

Research Question Four: – Does Verve efficiently classify the failure reports? To
determine if Verve operates fast enough to support its practical use in the testing of
responsive web pages, I recorded the time the tool takes to perform failure report classifi-
cation for all of the subjects.

The design of the experiments set forth to answer these research questions are explained
next.

4.4.1 Design of Experiments

In this section, I will identify the subject web pages used in the experiments and their
details, the runtime environment used to build Verve and used to run the tool during
the experiments, the methodology followed to answer each of the research questions, and
finally disclose any known threats to the validity of the results and any mitigating steps
taken to reduce these threats.

Subject Web Pages

For the experiments of this chapter, I used a total of 45 web pages with 469 presenta-
tion failures to be automatically classified by Verve as part of its empirical evaluation.
This total comes from two sets of subjects. The first set, called the initial set, is the
same set of subject web pages used to evaluate Verve’s (Viser’s, before rebranding)
element collision, element protrusion, and viewport protrusion classification algorithms.
Moreover, this is the same set of web pages used to evaluate ReDeCheck’s effectiveness
by Walsh et al. [124]. Its usage is now extended to evaluate the element wrapping and
small-range classification algorithms introduced into the tool for this chapter. To reassess
the performance of Verve on the initial set of subjects, I further evaluated all of Verve’s
algorithms on 20 new subjects, called the additional set of pages.

The initial set of subjects that is comprised of 25 web pages and made available by
Walsh et al. [124] are listed in Table 4.1(a). I took these subjects, without modifica-
tion, directly from the repository cited in Walsh et al.’s paper (github.com/redecheck/
example-webpages). However, as I previously disclosed in Section 3.4.1, although 26 sub-
jects were used in their study, the StumbleUpon subject was no longer usable since some
of the resources required by the page are no longer hosted online. Nevertheless, the initial
set has a total of 326 failures reported by ReDeCheck for the evaluation of Verve. This
figure includes the 117 failures used to evaluate Viser in the previous chapter. For the

87

4.4. EMPIRICAL EVALUATION

manual classifications of these 326 failures that are used as a benchmark against Verve’s
automated classification, I used the classifications made by Walsh et al. [124] that are
publicly available at redecheck.org/issta17.

The additional set of subjects used in the experiments of this chapter is the 20
web pages shown in Table 4.1(b). This set is made up of a collection of seven real
web pages and 13 example web pages for themes. Although these Bootstrap-based ex-
ample web pages are not meant to be hosted as is, they demonstrate features for different
types of web pages. For instance, among these 13 themes is a full-featured template for
web dashboards, advertising agencies, and art portfolios. Moreover, these web pages are
maintained in popular GitHub repositories and publicly hosted in the “Blackrock Dig-
ital” organization’s site at github.com/blackrockdigital. Their repositories are also
regularly updated, frequently forked, and starred. This gives a strong indication that the
responsive web development community views them as useful templates for usage in their
own websites. The popularity of these themes can be illustrated by noting that at the time
of using subjects, the SB-Admin-2 subject was created by 14 contributors who made 19
releases to the project that has over 4,400 forks and 7,300 stars. I was able to collect this
additional set of subjects by searching the public GitHub repositories for demonstration
based responsive web pages. As for the seven real web pages, they were derived from
another pool of pages used in Walsh’s PhD thesis [128] for further evaluation of improve-
ments to the ReDeCheck tool. Collectively, this set has 20 web pages with a total of
143 presentation failures reported by ReDeCheck.

Runtime Environment

As done with the runtime setup of Viser, see Section 3.4.1, I attempted to match the
environment of the original evaluation of ReDeCheck by using the same machine once
again for evaluating Verve. This is to avoid any discrepancies in the results that are due
to differences in the experimental setup for the evaluation of the three tools. Thus I ran
Verve on an iMac with 8GB of RAM, running OS version 10.13 and using version 46
of the Firefox browser. Similar to ReDeCheck and Viser, the new tool Verve uses
Selenium WebDriver [105] to interact with the web browser that is set to a fixed viewport
height of 1000 pixels and set to render the web pages without scrollbars. To support the
automated classification of small-range failures, I integrated OpenCV [87] version 3.2 into
Verve. This is to allow for the generation and comparison of colour histograms of images
captured from the layout under investigation.

Methodology

Throughout Section 4.4.2 where I answer the research questions, I will discuss instances
where Verve disagrees with the manual classification in three categories: subjective, ob-
scured, and misclassified failures. For subjective disagreements, Verve classified the failure
report as a true positive but based on a human’s subjective judgement of the failure, the
report was dismissed. This is because the visual discrepancy caused by the failure is not
substantial and therefore only amounts to a few pixels or it is imperceptible to the human
eye. This subjectivity may also carry over to the obscured disagreement. For the obscured
disagreements, the ReDeCheck tool reported and Verve subsequently analysed differ-
ent HTML elements to those actually causing the visual anomaly. Therefore, the final
judgement is obscure since both approaches can be considered correct. For the misclassi-
fied disagreements, either Verve or the human classification was deemed incorrect in my
final analysis. These three categories were also described in Section 3.4.1 and used during

88

4.4. EMPIRICAL EVALUATION

Table 4.1: Experimental subject web pages.

(a) The initial set of web pages.

Web Site Name URL HTML Elements CSS Declarations

3-Minute-Journal 3minutejournal.com 80 5408
AccountKiller accountkiller.com/en 344 4685
AirBnb airbnb.com 1470 9964
BugMeNot bugmenot.com 42 654
CloudConvert cloudconvert.com 908 6494
Consumer-Reports consumerreports.org 1079 8330
Covered-Calendar coveredcalendar.com 148 8324
Days-Old daysold.com 66 2800
Dictation dictation.io 195 8290
Duolingo duolingo.com 856 4150
Honey joinjoney.com/install 461 7999
HotelWifiTest hotelwifitest.com 359 6833
Mailinator mailinator.com 280 8729
MidwayMeetup midwaymeetup.com 86 4072
Ninite ninite.com 642 4091
Pdf-Escape pdfescape.com 180 2041
Pepfeed pepfeed.com 343 7341
Pocket getpocket.com 664 6416
RainyMood rainymood.com 89 112
RunPee runpee.com 438 14788
TopDocumentary topdocumentaryfilms.com 411 1521
UserSearch usersearch.org 866 3590
WhatShouldIReadNext whatshouldireadnext.com/search 112 2224
WillMyPhoneWork willmyphonework.net 782 6572
ZeroDollarMovies zerodollarmovies.com 247 11228

Total 11148 146656

(b) The additional set of web pages.

Web Site Name URL HTML Elements CSS Declarations

EatThisMuch eatthismuch.com 807 12318
Forvo forvo.com 584 19722
GMapStreetViewPlayer brianfolts.com/driver 268 5617
RetailMeNot retailmenot.com 1336 2823
HoursOf hoursof.com 1258 9513
SB-Admin-2 startbootstrap.com/themes/sb-admin-2 360 6656
SB-Agency startbootstrap.com/previews/agency 420 6303
SB-Business-Casual startbootstrap.com/previews/business-casual 56 4438
SB-Clean-Blog startbootstrap.com/previews/clean-blog 93 6160
SB-Coming-Soon startbootstrap.com/previews/coming-soon 43 5969
SB-Creative startbootstrap.com/previews/creative 135 6318
SB-Freelancer startbootstrap.com/previews/freelancer 284 6064
SB-Grayscale startbootstrap.com/previews/grayscale 116 6120
SB-Landing-Page startbootstrap.com/previews/landing-page 130 6146
SB-New-Age startbootstrap.com/previews/new-age 127 6649
SB-One-Page-Wonder startbootstrap.com/previews/one-page-wonder 68 4424
SB-Resume startbootstrap.com/previews/resume 176 5924
SB-Stylish-Portfolio startbootstrap.com/previews/stylish-portfolio 143 6363
SimilarSites similarsites.com 478 10268
Tiiime tiii.me 80 847

Total 6962 138642

89

4.4. EMPIRICAL EVALUATION

the evaluation of Viser. As done in the previous chapter, I discuss the reasons for the
disagreement and identify the subject web page while outlining possible future work to
improve Verve, if any work is needed.

RQ1 Methodology – To answer RQ1, I used Verve to classify each of the 14 wrapping
failures detected in the initial set of 25 web pages. Given the failure viewport range
of each responsive layout failure, in the form {failmin . .failmax}, I instructed Verve to
inspect and automatically classify the reported wrapping failures at failmin referred to
as the minimum viewport, failmid= floor((failmin+failmax)/2) referred to as the middle
viewport, and at failmax referred to as the maximum viewport of the failure range. For
each of these viewports, the tool outputs an automatic classification for each reported
failure as either a TP, an NOI, or an FP.

I then checked whether Verve agreed with the human manual classifications of the
reported failure as decided in the original study by Walsh et al. [124]. Where it can
be either a true positive (TP, an observable failure), non-observable issue (NOI), or false
positive (FP, no failure). Here, the FPs are reports by ReDeCheck that do not exhibit an
issue visually in the rendering of the web page nor in its internal DOM representation. On
the other hand, NOIs are reports that are not visually problematic but have a confirmable
issue in the underlying DOM structure. Finally, TPs, are failures that manifest visually
in the rendered layout and in the underlying DOM structure. To reach a conclusion, I
calculated the percentage of agreement between Verve and the manual classification and
investigated any differences in classifications.

RQ2 Methodology – To answer RQ2, I used Verve to automatically classify the 195
small-range failures detected in the initial set of web pages. Since small-range failures are
restricted to a range of 1–5 viewports, only the minimum viewport, failmin , is used to
automatically classify the failure. While the viewports immediately narrower and wider
than the small-range failure are used as comparison points as discussed in Section 4.3.2.
These two viewports respectively correspond to the failmin−1 and failmax+1 values of the
failure range. To establish the best histogram comparison measure, I used the five of the
methods available in the OpenCV library. More specifically, these were Bhattacharyya
Distance, Chi-Square, Alternative Chi-Square, Correlation, and Intersection [87]. For
the Bhattacharyya Distance, Chi-Square, and Alternative Chi-Square metrics, the lower
the distance value, the better the match, with zero representing a perfect match. The
Correlation and Intersection metrics, however, use a higher-is-better score. Correlation’s
score is bounded at one, while Intersection’s score is unbounded. So that I could easily
and consistently compare the results using each metric, I wrote a wrapper function around
Correlation and Intersection to convert its result to a lower-is-better score, as is the default
for the other metrics. The wrapper for Correlation inverts its score, while the wrapper for
Intersection normalizes its score and inverts its result.

In order for Verve to conclude that it has detected enough of a visual disturbance
to classify a small-range failure as TP, I needed to set a TP threshold for each of the
five metrics. To establish the thresholds, I made a preliminary run of Verve to find the
AOCs, create a colour histogram for each AOC, and output the distance between all pairs
of histograms. Throughout this process, each pair of histograms was sourced from the fail-
ure viewport and a comparison viewport, as explained in Algorithm 6. To automate the
process and ensure its correctness, I implemented a helper tool called ThresholdFinder
and used it to establish a TP threshold for each of the five measures with the ultimate
goal of maximizing accuracy. That is, the goal of ThresholdFinder is to automatically
find the thresholds that will maximize agreement with the manual classification. This tool
takes the distances as input and uses them as candidate thresholds along with ±0.01 of

90

4.4. EMPIRICAL EVALUATION

each distance. Alternating through each candidate threshold, ThresholdFinder auto-
matically classifies all failures in the set based on the candidate threshold. The resulting
classifications assigned by ThresholdFinder are then compared to the manual classifi-
cation to calculate the accuracy for each candidate threshold. When matching against the
manual classification, ThresholdFinder used a balanced score for both classes, namely
TP and FP. Ultimately, the tool reported the threshold with the maximum accuracy from
the set of candidate thresholds. Whenever multiple candidate thresholds may achieve the
same accuracy, ThresholdFinder reports the threshold in the middle position of the
identified set.

With two alternative approaches implemented in Verve to classify small-range fail-
ures, horizontal referencing and horizontal-plus-vertical referencing, this required that I es-
tablish two sets of thresholds, one for each approach. Therefore, I ran ThresholdFinder
twice using the failures reported from the initial set of web pages, once for each approach.
I refer to both these sets of thresholds determined before running the real experiments
as the prospective thresholds. To establish whether these thresholds are more generally
applicable, the prospective thresholds are also used by Verve to automatically classify
the small-range failure from the additional set of web pages as part of RQ3(c). While the
prospective thresholds were determined using the initial set of subjects, I used Thresh-
oldFinder again to determine retrospective thresholds using all 45 web pages after run-
ning the experiments. As part of RQ3 (c), the retrospective thresholds are used to weigh
in on the overall performance of Verve as compared to when the tool used the prospective
thresholds. This should solidify or correct any findings that may be influenced by a change
in the thresholds retrospectively.

RQ3 Methodology – To answer RQ3, I assessed how well all five failure type clas-
sification algorithms implemented in Verve extend to the 20 subject web pages in the
additional set. Similar to the methodology of the research questions involving all but
the small-range failure type, I set Verve to investigate and classify the failmin , failmid ,
and failmax viewports of each reported failure range. For small-range failures, I once
again employed all five histogram methods and used the ThresholdFinder-established
prospective thresholds from RQ2 to classify the failures reported from the additional set.
Unlike the previous experiments, for this new set of web pages, I manually classified the
failures produced by ReDeCheck in advanced to be able to compare them with the
classifications automatically produced by Verve.

To control a validity threat arising from the lack of true positive small-range failures in
the additional set of pages reported by ReDeCheck, I manually injected faults into each
page from the additional set to create small-range failures suitable for analysis as part of
this research question. To complete this task, I manually selected a target element that
seemed likely to cause a layout failure if displaced. Then I made two changes to the coding
of the web page. First, I manually injected a single media query rule into each page, with
the viewport range of 992–995 pixels wide. Secondly, I added CSS rules nested within this
query pertaining to the margin-left or margin-top property of the chosen element to
cause it to be offset from its original position only within the range of the media query.
Both of these modifications were intended to produce a layout failure limited to a small
number of viewport widths that ReDeCheck would report as a small-range failure. I
picked the range of 992–995 pixels since the majority of the additional set of subjects had
a manually programmed breakpoint in the CSS at 992 pixels, making that position in the
viewport range a realistic position where a small-range defect may occur in practice.

RQ4 Methodology – To answer RQ4, I ran Verve to classify all 469 failures from
both sets that are comprised of 45 web page subjects. Instructing the tool to examine

91

4.4. EMPIRICAL EVALUATION

each report at the minimum viewport of the failure range reported by ReDeCheck,
failmin , and recording the time it takes for Verve to classify each failure. I repeated this
process 30 times for each failure to obtain a reliable estimate of Verve’s running time and
to minimize the chance of effects that might be caused by, for example, the underlying
operating system hosting the experiments.

Influencing the runtime of Verve is an added delay of 200 milliseconds that is used for
all web pages and experiments in this chapter. This is to allow the HTML elements to load
and “settle” into their final location to support, for instance, any programmed temporary
transitional effects. This delay time is repeated whenever Verve resizes the browser,
scrolls the web page, or changes the opacity of an element. Meaning, that multiple delays
may be introduced throughout the entire classification process. Therefore, I recorded
Verve’s execution times with and without this added delay. Importantly, I excluded the
time it takes to load the web page and resize the browser as this cost is shared by any
technique, whether manual, semi-automated, or automated. All of the recorded times
account for the overhead of finding the offending HTML elements, classifying the failure
with Verve, and writing to disk all the diagnostic images of the web pages.

Threats to Validity

One threat to the validity of this chapter’s results is the extent to which they generalize
to other web pages. However, care was taken to ensure the overall set of subjects was
diverse in terms of functionality and complexity. Meaning, that they should represent a
wide variety of web pages. As Tables 4.1 (a) and (b) show, the subjects vary considerably
in complexity from 42 to 1470 HTML elements and from 112 to 19722 CSS declarations.
The functionality and responsive layout of the chosen web pages also differ substantially;
from SB-Admin-2, a template for back-end administrative portals; to DaysOld, providing
calendar features; and AirBnb, supporting international e-commerce corporations.

Another threat related to the pool of subjects used in my experiments is that the ad-
ditional set of subjects did not contain any small-range failures and only had false positive
reports. Although it is difficult to find candidate subjects for ReDeCheck that contain
detectable presentation failures, it is much more difficult to find small-range failures as ev-
ident by the final set of subjects used in the experiments. Nevertheless, the ReDeCheck
tool detects and reports many false positives which will require manual or automated clas-
sification in order to realize that these are in truth false positives. To control the threat
of the missing true positives, I manually injected code to create this failure in the new
subjects as detailed in Section 4.4.1. Even though these failures are synthetic, and so may
not be representative of all real-world small-range failures, they exemplify the concerns
that practising web developers have about this type of layout defect [22].

As with the experiments of the previous chapter, the validity of this chapter’s ex-
periments depended on accurately matching the manual classifications of ReDeCheck’s
failure reports with the automatically produced classifications. Since the manual classi-
fications, involving the initial set of subjects, from the experimental evaluation of Re-
DeCheck [124] did not include the XPath of offending elements, the failures were manu-
ally matched using the available snapshots. These snapshots, combined with the type of
failure, range, and name of the web page enabled me to confidently perform this match-
ing. For the additional set of subjects, I undertook the manual classification process of the
failures found in the additional set. Since the conclusions of the manual process are inher-
ently subjective, I made my classification publicly available for independent evaluation at

92

4.4. EMPIRICAL EVALUATION

verve-tool.github.io. Importantly, many of the failures reported by ReDeCheck for
the additional set of subjects had very little subjectivity. Therefore, limiting this validity
threat since they were easy to classify.

A further threat to validity is a defective implementation of the Verve tool, which
would compromise its classification of the responsive layout failures reported by Re-
DeCheck. To control this threat, I programmed and configured Verve to keep a record
of all the images used to evaluate each responsive layout failure. Moreover, I programmed
Verve to also maintain a record of the coordinates of each offending element. I consulted
these records during the examination of all classifications in disagreement. Thus helping
me verify that the prototype operated correctly.

In relation to the threat surrounding the implementation of the tool, Verve’s usage
of the Firefox web browser, the Selenium testing tool, and the OpenCV library may be
an additional threat. Although the tool is limited to one browser, Firefox is a popular
browser that is frequently used for responsive web page testing and therefore a good option
for ensuring that the results are representative of the real world. I am also confident
that Selenium did not compromise Verve’s correctness because, in addition to my error-
free experiences when using Selenium, this web automation framework has a large and
active community that is committed to reporting and fixing defects. Similarly, defects
in the OpenCV library are also a validity threat that may compromise this chapter’s
experimental results. Even though OpenCV is a widely used library for image analysis, I
addressed this concern by manually confirming OpenCV’s analysis of a few selected images
and by consulting the manuals of OpenCV for its proper usage when needed (e.g., [16]).

Finally, since the runtime results for RQ4 are subject to the interference of background
operating system processes, I ran all of the experiments 30 times to reduce the chance of
them influencing the recorded timing. Importantly, to support the replication of this
chapter’s experiments and to further control all the aforementioned validity threats, I
made the Verve tool, its documentation, and the scripts needed to run the experiments all
available in a GitHub repository at github.com/verve-tool/verve. To further support
the confirmation of this chapter’s results, I have made a screenshot of every ReDeCheck
failure report, its manual classification, and details about Verve’s automatic classification
available at the verve-tool.github.io site.

4.4.2 Results of Experiments

Answer to RQ1 – For wrapping failures, Table 4.2 shows the results of using Verve
to classify the reports of wrapping failures, produced by ReDeCheck, from the initial
set of 25 web pages. Moreover, it shows the agreement with the manual classifications
that were classified by Walsh et al. [124] broken down to the subject web page level. The
overall results show that the two classification approaches agree 78.6% of the time for
all viewports used by the tool for classification. These were the minimum, middle, and
maximum values from the reported viewport failure range. In the table, the result from
each viewport is described in a separate column accordingly labelled. It should also be
noted that the table describes Verve’s classification in the numerator position and the
manual classification in the denominator position. For completeness, Table 4.3 gives the
full manual classification results from the original Walsh et al. study in table (a). For
ease of comparison, my manual classification of the failures reported from the additional
set of subjects, that will be used to answer RQ3, are introduced in table (b).

Out of a total of 14 reported failures, Verve disagreed with the manual analysis for
three element wrapping failures. Two of these failures come from the Duolingo subject.

93

4.4. EMPIRICAL EVALUATION

Table 4.2: Verve’s results of automatically classifying the wrapping failures reported
from the initial set of subjects using three viewports from the failure range. As
explained in Section 4.4.1, these three viewports are the minimum, middle, and
maximum values of the reported failure range. In this table “TP”, “NOI”, and
“FP” respectively denote a true positive, non-observable issue, and false positive.

Wrapping

Minimum Middle Maximum

TP NOI FP TP NOI FP TP NOI FP Total

3-Minute-Journal - - - - - - - - - -
AccountKiller 1/2 - 1/- 1/2 - 1/- 1/2 - 1/- 2
AirBnb 2/2 - - 2/2 - - 2/2 - - 2
BugMeNot 1/1 - - 1/1 - - 1/1 - - 1
CloudConvert - - - - - - - - - -
Consumer-Reports - - - - - - - - - -
Covered-Calendar 2/2 - - 2/2 - - 2/2 - - 2
Days-Old - - - - - - - - - -
Dictation - - - - - - - - - -
Duolingo 2/- - -/2 2/- - -/2 2/- - -/2 2
Honey - - - - - - - - - -
HotelWifiTest - - - - - - - - - -
Mailinator - - - - - - - - - -
MidwayMeetup - - - - - - - - - -
Ninite 1/1 - 1/1 1/1 - 1/1 1/1 - 1/1 2
Pdf-Escape - - - - - - - - - -
Pepfeed 1/1 - - 1/1 - - 1/1 - - 1
Pocket - - - - - - - - - -
RainyMood - - - - - - - - - -
RunPee - - 1/1 - - 1/1 - - 1/1 1
TopDocumentary - - - - - - - - - -
UserSearch 1/1 - - 1/1 - - 1/1 - - 1
WhatShouldIReadNext - - - - - - - - - -
WillMyPhoneWork - - - - - - - - - -
ZeroDollarMovies - - - - - - - - - -

Total failures 11 - 3 11 - 3 11 - 3 14
Agreement with manual 9/10 - 2/4 9/10 - 2/4 9/10 - 2/4 -

Per inspection point 78.6 % 78.6 % 78.6 % -

In both cases, the HTML elements are text-based links that form several rows in the
footer of the page. For reference, Figure 4.8 (a) showcases a snapshot of the footer being
described. Clearly, the developer intended for these elements to naturally wrap around as
the viewport size gets smaller, even if this would single out an element on its own row.
Therefore, the manual analysis classified these failures as false positives. On the other
hand, Verve reported them as true positives. Justifiably, this difference is categorized
as a misclassification by Verve. Since Verve correctly detected a visual change in the
layout but was semantically incorrect, the shortcoming can also be attributed back to the
wrapping failure detection algorithm implemented in ReDeCheck.

The third and final classification of a wrapping failure in non-agreement comes from
AccountKiller subject. This failure is showcased in Figure 4.8 (b) using the maximum
viewport from the reported failure range. Here, the Twitter social media button was
detected to have wrapped below a row of 15 other elements. This failure was manually
classified as a true positive while being automatically classified as a false positive by
Verve. As part of the DOM checking phase used to filter out false positives before
analysing the AOCs, see Section 4.3.2, Verve concluded that the ReDeCheck reportedly
wrapped element is not below all the 15 row elements. More specifically, it was not
completely positioned below the container of the Google Plus social media icons sitting
between the third, from the left-hand side, square icon of a white envelope and the Pinterest

94

4.4. EMPIRICAL EVALUATION

Table 4.3: The manual classification of all failure reports used in the experiments.

(a) Manual classification of failures from the initial set of web pages from a published study [124].

Element Collision Element Protrusion Viewport Protrusion Wrapping Small-range

TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP Total

3-Minute-Journal - 1 - - 2 - 8 - - - - - - - 1 12
AccountKiller - - - - - - - - - 2 - - 147 - 5 154
AirBnb - 1 - - 4 - - 4 - 2 - - - - 2 13
BugMeNot - - - 1 3 - 2 - - 1 - - - - - 7
CloudConvert 1 - - - - - - - - - - - 1 - - 2
Consumer-Reports - 7 - 1 3 - 9 3 - - - - - - 1 24
Covered-Calendar - - - - - - - 3 - 2 - - - - - 5
Days-Old - - - - - - - 1 - - - - - - - 1
Dictation - - - - - - - 1 - - - - - - - 1
Duolingo - 1 - - - - 2 2 - - - 2 - - 1 8
Honey - - - - 8 - - 2 - - - - - - 3 13
HotelWifiTest - - - - - - 1 - - - - - - - 2 3
Mailinator - 1 - - - - - - - - - - - - 2 3
MidwayMeetup 1 - - - 1 - - 1 - - - - - - - 3
Ninite - - - - - - - - - 1 - 1 - - - 2
Pdf-Escape - - - 1 5 - 1 3 - - - - - - - 10
Pepfeed 4 3 - - 2 - 1 1 - 1 - - 2 - 14 28
Pocket - 2 - - 3 - - - - - - - - - 3 8
RainyMood - - - - - - - - - - - - - - - -
RunPee - - - - - - - - - - - 1 - - 5 6
TopDocumentary - 7 - - 4 - - - - - - - - - 2 13
UserSearch - 1 - - - - - - - 1 - - - - - 2
WhatShouldIReadNext - - - - - - - 2 - - - - - - - 2
WillMyPhoneWork 1 - - - 1 - - - - - - - 2 - - 4
ZeroDollarMovies - - - - - - - - - - - - - - 2 2

Total failures 7 24 - 3 36 - 24 23 - 10 - 4 152 - 43 326

Total per failure type 31 39 47 14 195 -

(b) The manual classification of the failures reported from the additional set of subject web pages.

Element Collision Element Protrusion Viewport Protrusion Wrapping Small-range

TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - 5 - - 6 - 1 1 - - - 1 - - 2 16
Forvo - - - - 3 - - - - 2 - 2 - - 29 36
GMapStreetViewPlayer - - - - 2 - - - - - - - - - - 2
HoursOf - - - - 1 - - 1 - - - - - - - 2
RetailMeNot 2 - - - 30 - - - - - 2 4 - - 15 53
SB-Admin-2 - - - - - - 1 - - - - - - - 1 2
SB-Agency - 4 - - 8 - 1 - - - - 3 - - - 16
SB-Business-Casual - - - - - - - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - - - - - - - -
SB-Creative - - - - - - - - - - - - - - - -
SB-Freelancer - - - - - - - - - - - - - - - -
SB-Grayscale - - - - - - 1 - - - - - - - - 1
SB-Landing-Page - - - - - - - - - - - 1 - - - 1
SB-New-Age - - - - - - - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - - - - - - - -
SB-Resume - 1 - - - - - - - 2 - - - - - 3
SB-Stylish-Portfolio - - - - - - - - - - - - - - 4 4
SimilarSites - - - - - - 4 - - - - - - - 1 5
Tiiime - - - - 1 - - - - - - - - - 1 2

Total failures 2 10 - - 51 - 8 2 - 4 2 11 - - 53 143

Total per failure type 12 51 10 17 53 -

95

4.4. EMPIRICAL EVALUATION

Browser

Subject://Duolingo

1400 Pixels

(a) The snapshot shows the footer at the bottom of the Duolingo subject using the widest viewport
tested by ReDeCheck. From this wide viewport all the way to the narrowest, 320 pixels, the
collection of text-based elements never formed a single row and some of the elements naturally
wrap as the viewport gets smaller.

Browser

Subject://AccountKiller

459 Pixels

(b) A snapshot from the AccountKiller subject captured at the widest viewport where the failure
occurred, known as the maximum viewport. In this viewport, the Twitter social media button
wraps below the other 15 social media elements that ReDeCheck deemed to be in a row. This
failure was manually classified as true positive while Verve classified it as a false positive.

Figure 4.8: The figure presents two subject web pages with failure reports that were
misclassified by Viser. The first subject, Duolingo, is showcased in part (a) while
the second subject, AccountKiller, can be seen in part (b).

square icon. This effect is not apparent in the rendered layout but is true at the lower
DOM structure level. This misclassification by Verve can be overcome by introducing
into the tool a sufficient distance-based tolerance for elements not quite below the row.
Subjectively, this can also be considered an acceptable formation for the elements and
hence be labelled as a false positive report.

Conclusion for RQ1 – Verve consistently classified wrapping failures throughout
the reported failure range. Therefore, a single viewport chosen for classification
should be sufficient for automatic classification. Importantly, Verve achieves 78.6%
agreement with the manual analysis for wrapping failures with the initial set of
subjects. Further work on both ReDeCheck and Verve is required to improve
the analysis of the three cases where the manual analysis disagreed with Verve.

Answer to RQ2 – Table 4.4 summarizes the results for automatically classifying small-
range failures using the horizontal referencing approach with the five distance metric
integrated into Verve. The table also compares Verve’s classification with the manual
classification for agreement. As for the threshold values used in the experiment, they are
reported in the headings against each metric using the ϵ symbol. These values were auto-
matically established during preliminary experimentation using the ThresholdFinder
tool as explained in the methodology section.

The results show that the level of agreement can be as high as 97.4% using the In-

96

4.4. EMPIRICAL EVALUATION

tersection method or as low as 87.2% with the Correlation method. A close second to
the top position was the Chi-Square method performing at 96.4% followed by 93.3% us-
ing the Alternative Chi-Square method. In fourth place comes Bhattacharyya Distance
with 91.8% followed by the lowest performer Correlation. All of which performed very
well when compared, solely based on numbers, to the results of automatically classifying
wrapping failure seen in answer to the first research question.

For the highest performer, Intersection, there were a total of five classification disagree-
ments to blame for the imperfection in the results. From these five, Verve misclassified
two as true positives and three as false positives. Nevertheless, two of these failures,
from the CloudConvert and WillMyPhoneWork subjects, happen to be duplicate reports
of element collision failures that Verve was able to successfully classify with its element
collision algorithm. Suggesting, that when a small-range failure is also an instance of an-
other type of failure, it is better to use Verve’s other classification algorithms specifically
tailored for that type of failure. I expect the efficacy of the tool to improve, for future
work to prove, if the small-range histogram method is reserved for situations where there
is no duplication in the reporting of the failure.

Table 4.4: The results of using Verve to classify the small-range failures detected
in the initial set of web pages while configured to use the horizontal referencing
approach described in Section 4.3.2. This table features five histogram comparison
measures and uses ϵ to denote the threshold value used for each method.

Small-range
horizontal referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection
Distance Chi-Square
ϵ = 0.20 ϵ = 0.11 ϵ = 0.14 ϵ = 0 ϵ = 0.09

TP FP TP FP TP FP TP FP TP FP Total

3-Minute-Journal - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
AccountKiller 137/147 15/5 147/147 5/5 147/147 5/5 128/147 24/5 147/147 5/5 152
AirBnb - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
BugMeNot - - - - - - - - - - -
CloudConvert -/1 1/- 1/1 - -/1 1/- -/1 1/- -/1 1/- 1
Consumer-Reports - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Covered-Calendar - - - - - - - - - - -
Days-Old - - - - - - - - - - -
Dictation - - - - - - - - - - -
Duolingo - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Honey 1/- 2/3 3/- -/3 3/- -/3 3/- -/3 2/- 1/3 3
HotelWifiTest 1/- 1/2 1/- 1/2 2/- -/2 - 2/2 - 2/2 2
Mailinator - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
MidwayMeetup - - - - - - - - - - -
Ninite - - - - - - - - - - -
Pdf-Escape - - - - - - - - - - -
Pepfeed -/2 16/14 5/2 11/14 5/2 11/14 -/2 16/14 2/2 14/14 16
Pocket - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 3
RainyMood - - - - - - - - - - -
RunPee 1/- 4/5 - 5/5 3/- 2/5 - 5/5 - 5/5 5
TopDocumentary - 2/2 - 2/2 1/- 1/2 - 2/2 - 2/2 2
UserSearch - - - - - - - - - - -
WhatShouldIReadNext - - - - - - - - - - -
WillMyPhoneWork 2/2 - 2/2 - 2/2 - 2/2 - -/2 2/- 2
ZeroDollarMovies - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2

Total 142 53 159 36 163 32 133 62 151 44 195
Agreement with manual 139/152 40/43 152/152 36/43 151/152 31/43 130/152 40/43 149/152 41/43 -

Agreement per measure 91.8 % 96.4 % 93.3 % 87.2 % 97.4 % -

For the results based on the alternative horizontal-plus-vertical referencing approach,
see Table 4.5. The thresholds determined specifically for this approach are also reported as
ϵ values in the table. Once again, Intersection outperformed the other four metrics with
only three failure misclassifications resulting in a 98.5% agreement outcome. Ranking
in the second position with an agreement of 97.9% are the Bhattacharyya Distance and

97

4.4. EMPIRICAL EVALUATION

Correlation measures after misclassifying a total of four failures each. Then comes the Chi-
Square measure which had an agreement of 97.4% after misclassifying five responsive layout
failures. With all measures achieving a high agreement with the manual classification, the
lowest was Alternative Chi-Square at 96.9%, with a total of six misclassifications.

Table 4.5: The results of using Verve to classify the small-range failures detected
in the initial set of web pages while configured to use the horizontal-plus-vertical
referencing approach. Here, ϵ denotes the threshold value used in the experiment.

Small-range
horizontal-plus-vertical referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection
Distance Chi-Square
ϵ = 0.23 ϵ = 0.46 ϵ = 0.82 ϵ = 0 ϵ = 0.15

TP FP TP FP TP FP TP FP TP FP Total

3-Minute-Journal - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
AccountKiller 147/147 5/5 147/147 5/5 147/147 5/5 147/147 5/5 147/147 5/5 152
AirBnb - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
BugMeNot - - - - - - - - - - -
CloudConvert -/1 1/- -/1 1/- -/1 1/- -/1 1/- -/1 1/- 1
Consumer-Reports - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Covered-Calendar - - - - - - - - - - -
Days-Old - - - - - - - - - - -
Dictation - - - - - - - - - - -
Duolingo - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Honey - 3/3 2/- 1/3 1/- 2/3 3/- -/3 - 3/3 3
HotelWifiTest 1/- 1/2 - 2/2 - 2/2 - 2/2 - 2/2 2
Mailinator - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
MidwayMeetup - - - - - - - - - - -
Ninite - - - - - - - - - - -
Pdf-Escape - - - - - - - - - - -
Pepfeed -/2 16/14 2/2 14/14 -/2 16/14 2/2 14/14 2/2 14/14 16
Pocket - 3/3 - 3/3 - 3/3 - 3/3 - 3/3 3
RainyMood - - - - - - - - - - -
RunPee - 5/5 - 5/5 - 5/5 - 5/5 - 5/5 5
TopDocumentary - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
UserSearch - - - - - - - - - - -
WhatShouldIReadNext - - - - - - - - - - -
WillMyPhoneWork 2/2 - -/2 2/- -/2 2/- 2/2 - -/2 2/- 2
ZeroDollarMovies - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2

Total 150 45 151 44 148 47 154 41 149 46 195
Agreement with manual 149/152 42/43 149/152 41/43 147/152 42/43 151/152 40/43 149/152 43/43 -

Agreement per measure 97.9 % 97.4 % 96.9 % 97.9 % 98.5 % -

Shedding light on a limitation of both referencing approaches, implemented in Verve
that are used to classify failures via histogram distances, is the only small-range failure
reported from the CloudConvert subject. Although a duplicate element collision failure
report was correctly classified by Verve, the small-range failure was misclassified using
all five metrics of the horizontal-plus-vertical referencing approach and five out of six from
the horizontal referencing approach. This layout failure, seen in Figure 4.9 (b), results in
the loss of content from the header of the page as a consequence of collapsing under the
top menu of the page. It is important to note that the elements reported as failing, the
header and the top menu, span the entire viewport width of the page and are positioned
at the top of the page. Therefore, there is nothing to the right or left of the elements to
capture for referencing, using either approach, and minimal to none on the top. Although
lots of content exists below both elements for referencing, it is basically the content of
the entire page. Hence defeating the purpose of using it for referencing the position of
the elements relative to other content in the page. In the future, Verve can potentially
overcome this edge case by first catching any case that lacks referencing and breaking
down the only direction available into smaller AOCs.

Since the threshold values produced by ThresholdFinder were tuned to the optimal
agreement level for both of the referencing approaches implemented Verve, the two can

98

4.4. EMPIRICAL EVALUATION

Browser

Subject://CloudConvert

981 Pixels

(a) Captured at one viewport wider than the failure range, the snapshot shows the header of the
CloudConvert web page with no failure.

Browser

Subject://CloudConvert

980 Pixels

(b) Captures a layout failure in the header of the CloudConvert web page that was detected by
ReDeCheck twice, resulting in an element collision report and a duplicate small-range failure
report.

Browser

Subject://CloudConvert

979 Pixels

(c) Captured at one viewport narrower than the failure range, the snapshot shows the header of
the CloudConvert web page with no failure.

Figure 4.9: The figure showcases three snapshots from the CloudConvert web page
capturing the layout before the failure occurs at a wider viewport in (a), the failure
in (b), and after the failure occurs at the narrower viewport in (c). The failure occurs
in only a single viewport and was reported as collision failures and a small-range
failure.

99

4.4. EMPIRICAL EVALUATION

be compared for performance. It is clear from the results that the horizontal-plus-vertical
referencing approach is the better performer since it achieved the highest agreement level
of 98.5% using Intersection. More importantly, it virtually scraped the need to carefully
choose a specific histogram method with no more than a 1.6% difference between the
top and lowest-performing metric. Nevertheless, this referencing approach uses more im-
ages and thus requires more processing time and memory than the horizontal referencing
approach which performed just as good using Intersection or even Chi-Square.

Conclusion for RQ2 – When configured to use the horizontal referencing ap-
proach, Verve can classify small-range failures with up to a 97.4% agreement with
the manual classification using the Intersection distance metric. Even better is the
horizontal-plus-vertical referencing configuration which was able to achieve 98.5%
agreement using Intersection and this configuration is the best for use in Verve.

Table 4.6: The results from using Verve for element collision, element protrusion,
and viewport protrusion failures of the additional set of web pages after inspecting
the “Minimum” of the reported failure range.

Minimum
Element Collision Element Protrusion Viewport Protrusion
TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - 5/5 - 1/- 5/6 - 2/1 -/1 - 13
Forvo - - - - 3/3 - - - - 3
GMapStreetViewPlayer - - - - 2/2 - - - - 2
HoursOf - - - - 1/1 - 1/- -/1 - 2
RetailMeNot 2/2 - - - 30/30 - - - - 32
SB-Admin-2 - - - - - - 1/1 - - 1
SB-Agency - 4/4 - 3/- 5/8 - 1/1 - - 13
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - 1/1 - - 1
SB-Landing-Page - - - - - - - - - -
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume - 1/1 - - - - - - - 1
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - 4/4 - - 4
Tiiime - - - - 1/1 - - - - 1
Total 2 10 - 4 47 - 10 - - 73
Agreement with manual 2/2 10/10 - - 47/51 - 8/8 0/2 - -
Agreement per failure type 100 % 92.2 % 80 % -
Per inspection point 91.8 % -

Answer to RQ3 (a) – Table 4.6 presents the results from running Verve on the element
collision, element protrusion, and viewport protrusion failures reported by ReDeCheck
for the 20 web pages in the additional set of subjects. This table also reports the agreement
between the results of Verve and the manual classification that I performed for the
additional set. While this table gives the results from running Verve at the minimum
viewport of the failure range, Tables 4.7 and 4.8 respectively present the results from using
the tool at the middle and maximum viewports. It is important to note that all of the

100

4.4. EMPIRICAL EVALUATION

manual classifications from Table 4.3 (b) are shown as the denominator of ratio values in
all the result tables.

Table 4.7: The results from using Verve for element collision, element protrusion,
and viewport protrusion failures of the additional set of web pages after inspecting
the “Middle” of the reported failure range.

Middle
Element Collision Element Protrusion Viewport Protrusion
TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - 5/5 - 1/- 5/6 - 2/1 -/1 - 13
Forvo - - - - 3/3 - - - - 3
GMapStreetViewPlayer - - - - 2/2 - - - - 2
HoursOf - - - - 1/1 - 1/- -/1 - 2
RetailMeNot 2/2 - - - 30/30 - - - - 32
SB-Admin-2 - - - - - - 1/1 - - 1
SB-Agency - 4/4 - 3/- 5/8 - 1/1 - - 13
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - 1/1 - - 1
SB-Landing-Page - - - - - - - - - -
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume - 1/1 - - - - - - - 1
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - 4/4 - - 4
Tiiime - - - - 1/1 - - - - 1
Total 2 10 - 4 47 - 10 - - 73
Agreement with manual 2/2 10/10 - - 47/51 - 8/8 0/2 - -
Agreement per failure type 100 % 92.2 % 80 % -
Per inspection point 91.8 % -

At the minimum and middle viewports, there were six failures in disagreement while
at the maximum viewport there were an additional three classifications in disagreement.
The six at the minimum and middle viewports were all automatically classified by Verve
as true positives, whereas during my manual classification I categorized them as non-
observable issues. After analysing the differences, I concluded that all six were a misclas-
sification by Verve. Two of which were viewport protrusion failures from the EatThis-
Much and HoursOf subjects which had only a few pixels changed that are not visible to
the human eye. Three were protrusion failures from the SB-Agency web page which were
misclassified due to a shortcoming of applying Algorithm 2 on failures. This algorithm
fails in these cases because it does not make an exception for minor changes involving a
few pixels, the degree of colour change, nor does it consider other elements that may be
involved. For this particular case, a container with other elements that overlap by design
with the reported protruding element requires a more sophisticated approach to classify
them. I plan, as part of future work, to investigate if additional heuristics would improve,
or negatively influence, the overall results.

The sixth and final disagreement comes from the EatThisMuch web page which per-
tains to an out of flow HTML element that was falsely reported as protruding. At the
lower bottom right-hand corner of the viewport, the out of flow element is always avail-
able for the user at this position, thus it is floating around the page. As the viewport size
changes, it continues to float with different elements coincidentally falling into position be-

101

4.4. EMPIRICAL EVALUATION

Browser

Subject://EatThisMuch

800 Pixels

Figure 4.10: A snapshot from the EatThisMuch subject which contains an out of
flow element at the bottom right-hand corner of the viewport. This element remains
positioned in the same place, relative to the viewport size, to make it easier for a
visitor of the page to provide feedback or ask a question regardless of the scrolling
position, essentially floating around the page.

hind it. Since there is no logic implemented in ReDeCheck to prevent floating elements
from being associated with non-floating containers, it may falsely assume a non-floating
container to be the parent of a floating element. Although ReDeCheck should not have
reported this as a failure, Verve’s visual approach cannot correctly classify it as a false
positive either. Furthermore, during my manual classification, I also misclassified it as a
non-observable issue.

For the results from the maximum viewport, seen in Table 4.8, there were an additional
three viewport failures in disagreement with the manual classification. Verve classified
these failures from SB-Admin-2, EatThisMuch, and SB-Grayscale as non-observable issues
while I manual classification them as true positives. These failures are more visible at the
minimum viewport. This affirms the findings from RQ2 of the previous chapter, that
Verve is more likely to agree at the minimum viewport where the failure is most severe.
Figure 4.1 shows snapshots of the viewport failure from SB-Admin-2, illustrating how the
failure is observable (TP) at the narrower inspection points and becomes non-observable
(NOI) at a wider inspection point.

Compared to the results of Verve using the initial set of subjects, the new results
from the additional set of subjects showed an improvement in agreement from 86.3% to

102

4.4. EMPIRICAL EVALUATION

Table 4.8: The results from using Verve for element collision, element protrusion,
and viewport protrusion failures of the additional set of web pages after inspecting
the “Maximum” of the reported failure range.

Maximum
Element Collision Element Protrusion Viewport Protrusion
TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - 5/5 - 1/- 5/6 - 1/1 1/1 - 13
Forvo - - - - 3/3 - - - - 3
GMapStreetViewPlayer - - - - 2/2 - - - - 2
HoursOf - - - - 1/1 - 1/- -/1 - 2
RetailMeNot 2/2 - - - 30/30 - - - - 32
SB-Admin-2 - - - - - - -/1 1/- - 1
SB-Agency - 4/4 - 3/- 5/8 - 1/1 - - 13
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - -/1 1/- - 1
SB-Landing-Page - - - - - - - - - -
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume - 1/1 - - - - - - - 1
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - 4/4 - - 4
Tiiime - - - - 1/1 - - - - 1
Total 2 10 - 4 47 - 7 3 - 73
Agreement with manual 2/2 10/10 - - 47/51 - 5/8 0/2 - -
Agreement per failure type 100 % 92.2 % 50 % -
Per inspection point 87.7 % -

91.8%. It is worthy to note that there were only 73 reports from the additional set for
element collision, element protrusion, and viewport protrusion failures while there were
117 reported from the initial set. Nevertheless, a trend was observed in both sets for
the agreement level across the three failure types and all three viewports. The trend
showed that Verve tends to agree most over element collision failures, then element
protrusion, followed by viewport protrusion failures with the least agreement. Given that
the distribution of reported failure varied in both sets and that the element collision failure
achieved 100% agreement in the additional set, this suggests that future improvements
should focus on the automated classification of element protrusion and viewport protrusion
failures.

Conclusion for RQ3 (a) – For the element collision, element protrusion, and
viewport protrusion failures reported by ReDeCheck on the 20 pages in the ad-
ditional set of subjects, Verve’s automatic classification frequently matched the
manual classification. Notably, it achieved a 91.8% agreement with my manual clas-
sifications, an increase from the 86.3% agreement using the initial set of subjects
with independently classified failures.

Answer to RQ3 (b) – For wrapping failures, Table 4.9 tallies the classifications out-
putted by Verve when the 20 subjects from the additional set are provided as input to
the tool. The table further compares them with the manual classifications for agreement
resulting in a 64.7% agreement between automated and manual classifications. Moreover,

103

4.4. EMPIRICAL EVALUATION

all 17 wrapping failures reported from this set were consistently classified by Verve and
agree with the manual analysis at all three of the viewports used in the experiment (i.e.,
minimum, middle, and maximum). This result supports the intuition, and findings of
RQ1, that a single viewport is sufficient for classifying a wrapping failure.

Table 4.9: Results when using Verve to classify wrapping failures for the additional
set of web pages.

Wrapping

Minimum Middle Maximum

TP NOI FP TP NOI FP TP NOI FP Total

EatThisMuch - - 1/1 - - 1/1 - - 1/1 1
Forvo 4/2 - -/2 4/2 - -/2 4/2 - -/2 4
GMapStreetViewPlayer - - - - - - - - - -
HoursOf - - - - - - - - - -
RetailMeNot - 2/2 4/4 - 2/2 4/4 - 2/2 4/4 6
SB-Admin-2 - - - - - - - - - -
SB-Agency 3/- - -/3 3/- - -/3 3/- - -/3 3
SB-Business-Casual - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - -
SB-Creative - - - - - - - - - -
SB-Freelancer - - - - - - - - - -
SB-Grayscale - - - - - - - - - -
SB-Landing-Page 1/- - -/1 1/- - -/1 1/- - -/1 1
SB-New-Age - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - -
SB-Resume 2/2 - - 2/2 - - 2/2 - - 2
SB-Stylish-Portfolio - - - - - - - - - -
SimilarSites - - - - - - - - - -
Tiiime - - - - - - - - - -

Total failures 10 2 5 10 2 5 10 2 5 17
Agreement with manual 4/4 2/2 5/11 4/4 2/2 5/11 4/4 2/2 5/11 -

Per inspection point 64.7 % 64.7 % 64.7 % -

There were a total of 6 out of the 17 reported wrapping failures where Verve did not
agree with my manual classification. Although I manually classified these failures as false
positives, Verve concluded that they were true positive reports. Of the six, two are from
the Forvo subject, three are reported from SB-Agency, and one from the SB-Landing-
Page. As noticed in RQ1, although the ReDeCheck tool correctly detected an element
that does wrap around to a new row when inspected later visually, some of these cases
should be exempt from being reported as a failure. In other words, some elements are
expected and allowed to wrap. Since Verve does not feature any artificial intelligence that
allows it to distinguish these cases, it results in a misclassification. Nevertheless, many
can be prevented during the detection phase of ReDeCheck. For example, the detection
can introduce a condition to check that at some smaller viewports that the elements are
fully rearranged to stack vertically. Otherwise, it may be an acceptable behaviour that
was omitted from the design intentionally. Alternatively or in addition, it can also avoid
reporting wrappings that contain only text-based links.

As seen with a few disagreements arising from the initial set of subjects, again in the
additional set, three failures had textual links that do, in fact, wrap but should not be
considered failures. Two of these failures were from the Forvo web page and one was from
the SB-Landing-Page. For reference, Figure 4.11 part (a) shows a screenshot of the first
failure reported from the Forvo subject and part (b) of the figure showcases the failure
from the SB-Landing-Page. In part (a), an element containing the link labelled “FAQ”

104

4.4. EMPIRICAL EVALUATION

Browser

Subject://Forvo

874 Pixels

(a) Captured using the maximum viewport of the failure range, the snapshot shows the footer of
the Forvo web page that has multiple links forming a row except for the wrapped “FAQ" link.

Browser

Subject://SB-Landing-Page

405 Pixels

(b) Captured using the maximum viewport, the “Privacy Policy” is reported as a wrapping failure.

Browser

Subject://SB-Agency

767 Pixels

(c) Captured using the maximum viewport and the SB-Agency subject where there were three
separate wrapping failures reported by ReDeCheck. In each case, the circular Instagram social
media icon is reported to have wrapped below the other two icons.

Figure 4.11: The figure presents three subject web pages with element wrapping
failure reports that were misclassified by Viser as true positives. Snapshots cap-
turing the failures from Forvo, SB-Landing-Page, and SB-Agency are respectively
showcased in parts (a), (b), and (c).

105

4.4. EMPIRICAL EVALUATION

is reported to have wrapped. The second failure from Forvo reports the same element
wrapping at a smaller viewport but now forming two rows above it instead of one. In the
case of the SB-Landing-Page failure, part (b), the link labelled “Privacy Policy” has also
wrapped into a new row. Evidently, these three element wrapping reports do not warrant
a repair nor the attention of the developer.

Finally, there were three failures from SB-Agency in disagreement with Verve. All
three failures reported a wrapping of a social media icon from a set of three circular icons.
For reference, Figure 4.11 (c) shows these three Instagram icons simultaneously wrapping
three different rows as reported by ReDeCheck. Even though the awkward wrapping
of icons would normally be a layout failure, this one includes three icons that wrap in an
aesthetically pleasing fashion which leaves the layout largely unchanged. Although the
developer may want to stop this from occurring, I am more inclined to think that this
is an intentional design feature. This leads me to conclude that these reports fall under
subjective disagreements.

Conclusion for RQ3 (b) – For wrapping failures, the agreement between the
manual classification and the one reported by Verve dropped from 78.6% to 64.7%
when moving from the initial to additional subjects. Yet for both sets of subjects,
the effectiveness of Verve is expected to improve if the detection algorithms of
ReDeCheck are updated with new conditions that allow some row aligned elements
to wrap without penalty.

Answer to RQ3 (c) – ReDeCheck reported a total of 53 small-range failures from the
additional set of web pages that were all false positives. Suggesting how rare small-range
failures occur in comparison to the other failure types or that ReDeCheck’s detection
algorithm may need improvements. Regardless of the reason, to properly evaluate Verve
on true positive reports, I had to manually inject small-range failures and run ReDeCheck
on this fault-injected additional set of pages. For details about the fault injection procedure
that I followed see Section 4.4.1.

Using the fault-injected set, ReDeCheck was able to detect 96 more small-range
failures. I manually classified all of these failures as true positives except for a single failure
that did not pertain to the target element of the injection, which is a false positive. This
failure from HoursOf had an element positioned in the middle of its container at both
viewports nearest to the reported failure range. Meanwhile, at the viewports reported
having the failure, the element was very close to the middle but not identified as such.
Hence, no visual disturbance was observed in the layout. Next, I will begin by investigating
the results of the unmodified additional set of subjects containing only false positives with
no synthetic failures.

Table 4.10 gives the results from using Verve on the small-range failures reported
for the additional set of web pages using horizontal referencing. This table shows that
Correlation obtained the highest level of agreement with a 94.3% match, which is different
from the findings of RQ2 where I concluded that Intersection was the best performer for the
initial subjects. Yet, for the additional set of subjects, Intersection came in second place
with 67.9% agreement by misclassifying 17 of the 53 failures as true positives. Noteworthy,
all of these 17 were also misclassified using Bhattacharyya Distance, Chi-Square, and
Alternative Chi-Square. Two of these 17 were also misclassified by Correlation.

A closer examination of these 17 disagreements revealed that 12 were reporting a
single textual link that changed its own position in reference to other textual links and
its position within the element containing it. These links list the available languages

106

4.4. EMPIRICAL EVALUATION

Table 4.10: The results from using Verve to classify small-range failures detected
in the additional set of web pages using the horizontal referencing approach and
featuring five histogram comparison measures. In this table, ϵ denotes the threshold
value used for histogram comparison.

Small-range
horizontal referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection
Distance Chi-Square
ϵ = 0.20 ϵ = 0.11 ϵ = 0.14 ϵ = 0 ϵ = 0.09

TP FP TP FP TP FP TP FP TP FP Total
EatThisMuch - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
Forvo 16/- 13/29 25/- 4/29 26/- 3/29 - 29/29 13/- 16/29 29
GMapStreetViewPlayer - - - - - - - - - - -
HoursOf - - - - - - - - - - -
RetailMeNot 5/- 10/15 6/- 9/15 9/- 6/15 3/- 12/15 4/- 11/15 15
SB-Admin-2 1/- -/1 1/- -/1 1/- -/1 - 1/1 - 1/1 1
SB-Agency - - - - - - - - - - -
SB-Business-Casual - - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - - -
SB-Creative - - - - - - - - - - -
SB-Freelancer - - - - - - - - - - -
SB-Grayscale - - - - - - - - - - -
SB-Landing-Page - - - - - - - - - - -
SB-New-Age - - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - - -
SB-Resume - - - - - - - - - - -
SB-Stylish-Portfolio - 4/4 2/- 2/4 3/- 1/4 - 4/4 - 4/4 4
SimilarSites - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Tiiime - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Total 22 31 34 19 39 14 3 50 17 36 53
Agreement with manual - 31/53 - 19/53 - 14/53 - 50/53 - 36/53 -
Agreement per measure 58.5 % 35.8 % 26.4 % 94.3 % 67.9 % -

of the Forvo subject as seen in Figure 4.11 (a). Essentially, this change in position is a
wrapping of the textual link that only happens within four viewport widths, a small range.
This suggests or affirms that the small-range failure detection algorithm implemented in
ReDeCheck can be oversensitive to minor changes resulting in the reporting of many
failures that are really about a single element.

Still using the unmodified additional set of web pages, Table 4.11 gives the results of
Verve while configured to use the horizontal-plus-vertical referencing approach. Consis-
tent with the findings of RQ2, Intersection ranked the highest for this set of web pages
achieving a 73.6% agreement with the manual classifications. Therefore, misclassifying
14 out of 53 reported small-range failures. Similarly, the other five measures were in
disagreement over the same 14 failures as the top performer. In the second rank comes Al-
ternative Chi-Square and Correlation both achieving 71.7% agreement after misclassifying
one failure more than Intersection. The next measure, Chi-Square, had a 66% agreement
due to a total of 18 failures that were misclassified. Finally, the lowest-ranked measure,
Bhattacharyya Distance, misclassified six more failures when compared to Intersection
achieving only a 60.4% agreement with the manual classifications.

Before getting into the results of the fault-injected set of pages, Figure 4.12 showcases
snapshots of the SB-Business-Casual subject featuring one of the synthetic small-range
failures. This failure occurs at the viewport width range of 992–995 pixels, where I orig-
inally injected the fault. Parts (a) and (c) of the figure show the web page rendered at
the 991 and 996 pixel viewport widths, respectively. These are the comparison viewports

107

4.4. EMPIRICAL EVALUATION

Table 4.11: The results from using Verve to classify small-range failures detected
in the additional set of web pages using the horizontal-plus-vertical referencing ap-
proach and featuring five histogram comparison measures. In this table, ϵ denotes
the threshold value used for histogram comparison.

Small-range
horizontal-plus-vertical referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection
Distance Chi-Square
ϵ = 0.23 ϵ = 0.46 ϵ = 0.82 ϵ = 0 ϵ = 0.15

TP FP TP FP TP FP TP FP TP FP Total
EatThisMuch - 2/2 - 2/2 - 2/2 - 2/2 - 2/2 2
Forvo 16/- 13/29 12/- 17/29 12/- 17/29 12/- 17/29 12/- 17/29 29
GMapStreetViewPlayer - - - - - - - - - - -
HoursOf - - - - - - - - - - -
RetailMeNot 4/- 11/15 2/- 13/15 2/- 13/15 3/- 12/15 2/- 13/15 15
SB-Admin-2 1/- -/1 - 1/1 - 1/1 - 1/1 - 1/1 1
SB-Agency - - - - - - - - - - -
SB-Business-Casual - - - - - - - - - - -
SB-Clean-Blog - - - - - - - - - - -
SB-Coming-Soon - - - - - - - - - - -
SB-Creative - - - - - - - - - - -
SB-Freelancer - - - - - - - - - - -
SB-Grayscale - - - - - - - - - - -
SB-Landing-Page - - - - - - - - - - -
SB-New-Age - - - - - - - - - - -
SB-One-Page-Wonder - - - - - - - - - - -
SB-Resume - - - - - - - - - - -
SB-Stylish-Portfolio - 4/4 4/- -/4 1/- 3/4 - 4/4 - 4/4 4
SimilarSites - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Tiiime - 1/1 - 1/1 - 1/1 - 1/1 - 1/1 1
Total 21 32 18 35 15 38 15 38 14 39 53
Agreement with manual - 32/53 - 35/53 - 38/53 - 38/53 - 39/53 -
Agreement per measure 60.4 % 66 % 71.7 % 71.7 % 73.6 % -

bordering the failure range. At the narrower bordering viewport of 991 pixels wide, shown
in part (a), an image element of a barista in a coffee shop is positioned above a block of
text with a white background. At the wider viewport of 996 pixels, these two elements are
overlapping by design. Part (b) of the figure shows the failure at the viewport width of
992 pixels, with these two elements positioned abnormally. Additional, unrelated changes
to the layout start at the 992 pixels viewport width and remains for wider viewports.
These include a larger logo in the header of the page and an expanded menu that are part
of the design for larger viewports. Verve was able to correctly classify this failure as a
true positive report using all five distance metrics for both the horizontal referencing and
the horizontal-plus-vertical referencing approach.

Table 4.12 presents the results from running Verve on the set of synthetic faults
using the horizontal referencing approach. From the result, my analysis revealed that
27 failures were misclassified by Verve as false positives using all five histogram mea-
sures. The top-performing measure, Chi-Square, with 67.7% agreement had an additional
four misclassifications. A close second was Alternative Chi-Square, which achieved 64.6%
agreement by misclassifying three more than Chi-Square. In third place, with only a 43.8%
agreement are Bhattacharyya Distance and Correlation. Finally, the poorest performing
measure was Intersection, at 29.2% agreement. This result contradicts the Intersection
measure’s first-place performance with the initial set, and its position as the second-ranked
in the non-fault-injected additional set of web pages.

Still using the fault-injected set of web pages, Table 4.13 presents the results of using

108

4.4. EMPIRICAL EVALUATION

Browser

Subject://SB-Business-Casual

991 Pixels

(a) Narrower comparison.

Browser

Subject://SB-Business-Casual

992 Pixels

(b) Failure viewport.

Browser

Subject://SB-Business-Casual

996 Pixels

(c) Wider comparison.

Figure 4.12: Three snapshots of the SB-Business-Casual web page that capture its
layout before a small-range failure occurs, in (a), and a synthetic small-range failure
in the range of 992–995 pixels in (b), and after the layout failure in (c), as reported
by the ReDeCheck and correctly classified, without human intervention, as a true
positive by the Verve tool using all five metrics and both referencing approaches.

Verve to classify the failures from this set while configured to use the horizontal-plus-
vertical referencing approach. The results show that all five of the measures were in
disagreement with the manual classification for 12 out of the 96 failures reported. The
top performer for this set was Chi-Square with a 79.2% agreement and a total of 20
failures in non-agreement. In the second place, Correlation achieved a 68.8% agreement
with 30 misclassifications. It is followed in rank by Bhattacharyya Distance with 65.6%,
Intersection with 55.2%, and Alternative Chi-Square with 45.8% agreement. The most
interesting result is that Intersection comes in fourth place even though it is the top
performer for the subjects in the initial set and unmodified additional set.

The results from the initial set, additional set, and the fault-injected set of subjects do
not clearly answer, in isolation, what is the best histogram distance metric to use nor the
better referencing strategy. More importantly, the prospective thresholds that were tuned
using the initial set of subjects may not be optimal for use in the later sets of subjects thus
reducing the possibility of making a strong recommendation. This deliberate omission was
made to answer if the thresholds values can extend to different sets of subjects using the
same referencing approach but newer subjects. To conclusively answer these questions,

109

4.4. EMPIRICAL EVALUATION

Table 4.12: The results from using Verve to classify small-range failures detected
in the fault-injected additional set of web pages using the horizontal referencing
approach and featuring five histogram comparison measures. In this table, ϵ denotes
the threshold value used for histogram comparison.

Small-range
horizontal referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection
Distance Chi-Square
ϵ = 0.20 ϵ = 0.11 ϵ = 0.14 ϵ = 0 ϵ = 0.09

TP FP TP FP TP FP TP FP TP FP Total
EatThisMuch 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3
Forvo -/9 9/- 5/9 4/- 5/9 4/- -/9 9/- -/9 9/- 9
GMapStreetViewPlayer 4/4 - 4/4 - 4/4 - 2/4 2/- 4/4 - 4
HoursOf -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 3
RetailMeNot -/8 8/- -/8 8/- -/8 8/- -/8 8/- -/8 8/- 8
SB-Admin-2 12/12 - 12/12 - 12/12 - 12/12 - 12/12 - 12
SB-Agency 5/5 - 5/5 - 5/5 - 5/5 - -/5 5/- 5
SB-Business-Casual 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1
SB-Clean-Blog -/5 5/- 3/5 2/- 3/5 2/- 3/5 2/- -/5 5/- 5
SB-Coming-Soon 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3
SB-Creative -/6 6/- -/6 6/- -/6 6/- -/6 6/- -/6 6/- 6
SB-Freelancer 7/7 - 7/7 - 7/7 - 7/7 - -/7 7/- 7
SB-Grayscale -/5 5/- -/5 5/- -/5 5/- -/5 5/- -/5 5/- 5
SB-Landing-Page 2/4 2/- 2/4 2/- 2/4 2/- -/4 4/- -/4 4/- 4
SB-New-Age 2/2 - 2/2 - 2/2 - -/2 2/- 2/2 - 2
SB-One-Page-Wonder -/3 3/- 3/3 - 3/3 - -/3 3/- -/3 3/- 3
SB-Resume 1/4 3/- 4/4 - 4/4 - 4/4 - 1/4 3/- 4
SB-Stylish-Portfolio -/5 5/- 3/5 2/- -/5 5/- -/5 5/- -/5 5/- 5
SimilarSites -/6 6/- 6/6 - 6/6 - -/6 6/- -/6 6/- 6
Tiiime 1/- -/1 1/- -/1 1/- -/1 1/- -/1 1/- -/1 1
Total 41 55 64 32 61 35 41 55 27 69 96
Agreement with manual 41/95 1/1 64/95 1/1 61/95 1/1 41/95 1/1 27/95 1/1 -
Agreement per failure type 43.8 % 67.7 % 64.6 % 43.8 % 29.2 % -

I have taken two steps. First, I aggregated the results from the three sets of subjects
to investigate the overall results. Second, I tuned the retrospective thresholds using all
failures reported from the aggregated set, using the ThresholdFinder tool, in order to
assess the performance of the prospective thresholds and make a final recommendation.

Table 4.14 presents the agreement for all failures reported from the 45 pages used
in the study including the synthetic ones. Moreover, the table re-presents the agree-
ments of the three sets, in isolation, for comparison. The table also provides both the
prospective thresholds used in the experiments and the retrospective thresholds used to
assess for possible improvements in agreement. The overall top-performing measure for
all web pages using the prospective threshold was Chi-Square for both the horizontal ref-
erencing approach and the horizontal-plus-vertical referencing approach. While the hor-
izontal referencing approach achieved 79.1% agreement, the better performing approach,
horizontal-plus-vertical referencing, achieved 87.5% agreement. With exceptionalism, us-
ing the retrospective thresholds and horizontal referencing, Chi-Square was the top per-
former once again with an agreement of 80.8%. As for the better performing approach,
horizontal-plus-vertical referencing, Chi-Square was an almost top performer with 87.5%
agreement only second to the Intersection method which achieved an 87.8% agreement.

The results definitively showed that horizontal-plus-vertical referencing was the supe-
rior approach used for automated classification. This is a logical outcome since it uses more
images than the horizontal referencing approach, to reference a change in the position of an
element. The results further definitively showed that the lower values of the retrospective

110

4.4. EMPIRICAL EVALUATION

Table 4.13: The results from using Verve to classify small-range failures detected
in the fault-injected additional set of web pages using the horizontal-plus-vertical
referencing approach and featuring five histogram comparison measures. In this
table, ϵ denotes the threshold value used for histogram comparison.

Small-range
horizontal-plus-vertical referencing

Bhattacharyya Chi-Square Alternative Correlation Intersection
Distance Chi-Square
ϵ = 0.23 ϵ = 0.46 ϵ = 0.82 ϵ = 0 ϵ = 0.15

TP FP TP FP TP FP TP FP TP FP Total
EatThisMuch 3/3 - 3/3 - -/3 3/- 3/3 - 3/3 - 3
Forvo 5/9 4/- 7/9 2/- -/9 9/- 9/9 - 9/9 - 9
GMapStreetViewPlayer 2/4 2/- -/4 4/- -/4 4/- 2/4 2/- 2/4 2/- 4
HoursOf -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 -/2 3/1 3
RetailMeNot 6/8 2/- 6/8 2/- -/8 8/- -/8 8/- -/8 8/- 8
SB-Admin-2 12/12 - 12/12 - 12/12 - 12/12 - 12/12 - 12
SB-Agency 5/5 - 5/5 - 5/5 - 5/5 - 5/5 - 5
SB-Business-Casual 1/1 - 1/1 - 1/1 - 1/1 - 1/1 - 1
SB-Clean-Blog 3/5 2/- 4/5 1/- -/5 5/- 4/5 1/- -/5 5/- 5
SB-Coming-Soon 3/3 - 3/3 - 3/3 - 3/3 - 3/3 - 3
SB-Creative 4/6 2/- 4/6 2/- 4/6 2/- 6/6 - 4/6 2/- 6
SB-Freelancer 7/7 - 7/7 - 7/7 - 7/7 - 5/7 2/- 7
SB-Grayscale -/5 5/- -/5 5/- -/5 5/- -/5 5/- -/5 5/- 5
SB-Landing-Page 2/4 2/- 2/4 2/- 2/4 2/- 2/4 2/- 2/4 2/- 4
SB-New-Age 2/2 - 2/2 - 2/2 - 1/2 1/- 2/2 - 2
SB-One-Page-Wonder 2/3 1/- 3/3 - 3/3 - -/3 3/- -/3 3/- 3
SB-Resume 1/4 3/- 4/4 - -/4 4/- 4/4 - -/4 4/- 4
SB-Stylish-Portfolio 3/5 2/- 5/5 - 3/5 2/- 5/5 - 3/5 2/- 5
SimilarSites -/6 6/- 6/6 - -/6 6/- -/6 6/- -/6 6/- 6
Tiiime 1/- -/1 1/- -/1 1/- -/1 1/- -/1 1/- -/1 1
Total 62 34 75 21 43 53 65 31 52 44 96
Agreement with manual 62/95 1/1 75/95 1/1 43/95 1/1 65/95 1/1 52/95 1/1 -
Agreement per failure type 65.6 % 79.2 % 45.8 % 68.8 % 55.2 % -

thresholds provided better classifications using all metrics except for Correlation which
was already at the minimal possible value. Another exception is Chi-Square, where the
thresholds showed less sensitivity to a change in subjects and thus did extend well with
little to no change in the threshold values. With its excellent performance, whether using
the prospective or retrospective thresholds, the Chi-Square is the best histogram distance
metric to apply using Verve.

Conclusion for RQ3 (c) – For small-range failures, the Chi-Square method
showed superior performance regardless of referencing approach being used. More
importantly, the established thresholds for Chi-Square were ideal to use and gener-
alized well showing minimal to no possible improvements. Finally, the horizontal-
plus-vertical referencing approach is the better classifier using either threshold and
regardless of the histogram measure applied in the experiments. Therefore, Verve
should be configured, by default, to use the horizontal-plus-vertical referencing ap-
proach in combination with the Chi-Square measure.

Answer to RQ4 – Verve took 4.08 seconds, on average, to automatically classify each
responsive failure with a median value of 3.57 seconds. Figure 4.13 (a) showcases a box
plot for the runtime for each failure type with the added 200ms delay. Verve included
this delay to allow the web page to complete any transitional visual effects and for all
elements to settle into their final positions in the layout. The delay is repeated any time

111

4.4. EMPIRICAL EVALUATION

Table 4.14: The results from using Verve’s two alternative approaches to small-
range classification, the horizontal referencing approach and the horizontal-plus-
vertical referencing approach. This table re-presents the results from applying the
prospective thresholds used in the study over the three sets: the initial set, the ad-
ditional set, and the fault-injected additional set. The table also newly presents the
combined results of all sets of subjects; it also presents the retrospective thresholds
and the results from applying them.

Resulting Classification Agreement
Threshold Values Initial Set Additional Set Fault-injected Set All Sets Combined

Approach Measure prospective retrospective prospective prospective prospective prospective retrospective
Horizontal-plus-vertical Intersection 0.15 0.08 98.5 % 73.6 % 55.2 % 82.6 % 87.8 %
Horizontal-plus-vertical Chi-Square 0.46 0.46 97.4 % 66.0 % 79.2 % 87.5 % 87.5 %
Horizontal-plus-vertical Correlation 0.00 0.00 98.0 % 71.7 % 68.8 % 85.8 % 85.8 %
Horizontal-plus-vertical Bhattacharyya Distance 0.23 0.19 98.0 % 62.3 % 65.6 % 83.4 % 85.5 %
Horizontal-plus-vertical Alternative Chi-Square 0.82 0.30 96.9 % 71.7 % 45.8 % 78.8 % 84.6 %
Horizontal Chi-Square 0.11 0.05 96.4 % 35.9 % 67.7 % 79.1 % 80.8 %
Horizontal Alternative Chi-Square 0.14 0.05 93.3 % 26.4 % 64.6 % 75.0 % 78.8 %
Horizontal Bhattacharyya Distance 0.20 0.05 91.8 % 58.5 % 43.8 % 73.3 % 78.5 %
Horizontal Intersection 0.09 0.02 97.4 % 67.9 % 29.2 % 73.8 % 76.5 %
Horizontal Correlation 0.00 0.00 87.2 % 94.3 % 43.8 % 76.2 % 76.2 %

the page is loaded or when the viewport, opacity, or scrolling position is changed. For a
more detailed discussion of the reasons behind adding this delay, see the methodology for
this research question in Section 4.4.1.

The runtime for the element collision, element protrusion, viewport protrusion, and
wrapping failures had similar medians/means of 4.05/5.25, 3.88/3.98, 3.73/4.01, and
3.67/4.21 seconds, respectively, while small-range failures had a median value of 0.99
and a mean value of 3.92 seconds. As shown in Section 4.3.2, the algorithm for classify-
ing small-range failures is fundamentally different from the other four. Since it requires
snapshots of multiple AOCs across different viewports it will need additional runtime to
complete these steps. It also has additional processing time for of answering the research
questions associated with small-range failures. This time includes identifying the better
referencing approach and the best histogram metric. Thus, the runtime for a real use case
is expected to be better once Verve is configured to use only the recommended, from
RQ3, horizontal-plus-vertical referencing approach and Chi-Square.

From the failure types that use the opacity strategy to classify failures, namely el-
ement collision, element protrusion, viewport protrusion, and element wrapping failures,
the most notable box plot is the wrapping box plot which is comparability taller. One
main distinction of a wrapping failure report is that at least three elements are reported
by ReDeCheck while all others always report two. Since I was not objectively optimizing
Verve for runtime, the effect of the delay used to scroll to each element reported is visible
on the box plot. In the future, I plan to alleviate this oversight by making improvements
to the implementation of Verve.

To better understand the execution times, it is important to note that I designed
Verve to reuse snapshots where possible. The main reason for this is that many failures
share the same viewports required for analysis. Therefore, avoiding the recapture of the
same viewport can reduce the number of scrolling delays required. To bring this into
perspective, the AccountKiller web page from the initial set of subjects had 147 small-
range failure reports in the range of 476–480 pixels wide. Even though this causes a longer
execution time for the first failure to request the snapshots from this range, the time to
retrieve a failure-specific AOC from the saved snapshots and the time to calculate all five
histogram metrics are within the processing time of the relevant failure.

Although the execution time of Verve is normally stable, some subjects had execu-

112

4.4. EMPIRICAL EVALUATION

0.0

2.5

5.0

7.5

10.0

Element Collision Element Protrusion Viewport Protrusion Wrapping Small-range
Failure type

Ru
nt

im
e

in
 s

ec
on

ds

(a) Verve’s runtime using a 200 milliseconds delay for opacity, viewport, and scroll changes.

0.0

2.5

5.0

7.5

10.0

Element Collision Element Protrusion Viewport Protrusion Wrapping Small-range
Failure type

Ru
nt

im
e

in
 s

ec
on

ds

(b) Verve’s runtime using no added delay.

Figure 4.13: Verve’s execution time in seconds across all of the 469 presentation
failures and 30 trials using the horizontal-plus-vertical referencing approach. In
these box plots, the bottom and top whiskers show the minimum and maximum
data values excluding outliers, while the box itself represents the inter-quartile range
and the bold middle line represents the median value.

113

4.4. EMPIRICAL EVALUATION

tion times that are far outliers from the median value. For instance, when Verve was
configured to use the added delay setting, there was one trial that ran for 795.4 seconds
when classifying an element collision failure reported from the TopDocumentary subject.
Importantly, this was the only outlier from the 30 trials, as evident by the fact that the
execution time for the other 29 trials was between 4.01 and 4.58 seconds. To ensure that
the performance trends in the graphs are not skewed by these rare outliers, Figure 4.13
presents box plots that omit the values that are far outliers. To exclude the outliers from
the plots without removing any other data points, I used the default option of the ggplot2
package in the R language for statistical computation.

To further investigate the runtime of Verve without the influence of the important but
optional time delay, I temporarily disabled it and re-ran the timing experiments. Using
this no-delay configuration, Verve took, on average, 2.24 seconds to classify a reported
failure with a median value of 0.91 seconds. Notably, without the delay for opacity or
scrolling Verve performed better on average. The opacity delay is used to ensure that
the element is fully opaque or transparent prior to taking a screenshot. On the other
hand, the scrolling delay is used to move the visible portion of the page, dictated by the
viewport height and width, to an AOC in order to capture a snapshot. The larger the
AOC, in proportion to the viewport, the more scrolling is required to capture the images
needed for analysis by Verve and thus the greater the number of delays that are needed
in the delay-based configuration of the tool.

A closer inspection of Verve’s automated classification results without the added
time delay provided evidence of why it was important to introduce it in the first place.
Without the delay, Verve classified three failures from BugMeNot, Ninite, and Retail-
MeNot inconsistently. This was for two reasons. First, when Verve sends an instruction,
through Selenium to the web browser, to change an element’s opacity, sometimes it does
not fully complete before a snapshot is taken. Thus, asynchronously capturing an image
of the web page while in an unintended state may result in an incorrect classification. The
second reason is that the rectangle coordinates retrieved from the DOM may vary if the
element has not settled into its final position. This occurs due to a transitional effect of an
element or possibly due to an optimization feature that speeds up the rendering of content
that is available while other content is loading.

Figure 4.13 (b) showcases the runtime of each failure type in a box plot with no added
delay. For element collision, element protrusion, viewport protrusion, and wrapping fail-
ures the median/mean values were 0.82/1.10, 0.85/1.01, 0.90/1.22, and 0.75/0.89 seconds,
respectively. For small-range failures, the median was 0.99 and the mean was 3.29 seconds.
Similar to the runs of Verve with the added delay, the most notable difference between
all five failure types is the runtime of the small-range failures which is fundamentally
different from the other approaches. Furthermore, the median value of 0.99 seconds for
small-range remained the same with and without the added delay while the mean was
mostly unaffected by the removal of the delay. With both parts (a) and (b) of the figure
using the same scale, the effect of the delay on runtime can be observed as the box plots
are lower in the time scale, in (b), and are generally more compact.

Conclusion for RQ4 – On average, Verve takes 4.08 seconds to classify a re-
ported failure. This includes the use of a 200 milliseconds delay to allow elements
of the web page to load and settle from a transitional effect. Without this delay,
misclassifications are more likely. These results indicate that Verve is practical,
requiring developers to wait a very short amount of time for its classification results.

114

4.4. EMPIRICAL EVALUATION

4.4.3 Discussion

For the classification of small-range failures, subjectiveness and mistakes in the manual
classification may negatively influence the thresholds tuned by ThresholdFinder and
thereafter the resulting agreement on newer subjects. This is a consequence of essentially
“training” Verve to distinguish a true positive from a false positive on imperfect manual
classification. Furthermore, tuning the threshold using multiple web pages simultaneously
may not be ideal. In a real use case of ReDeCheck and Verve, a developer is expected to
test and automatically classify layout failures from a single web page. Since the developer
has the ultimate ruling over the manual classification of the reported failures, subjectivity
is of little to no concern. For this reason, using custom thresholds made specifically for
the page under test is expected to result in better classification. With the Chi-Square now
identified as the best performing histogram measure for automated classification, future
experiments can investigate the use of a custom threshold for each subject web page.

Browser

Subject://AccountKiller

481 Pixels

(a) Wider comparison.

Browser

Subject://AccountKiller

476 Pixels

(b) Failure viewport.

Browser

Subject://AccountKiller

475 Pixels

(c) Narrower comparison.

Figure 4.14: Three snapshots of the AccountKiller web page that capture its layout
before multiple small-range failures occurs, in (a), and while the small-range failures
are occurring in the range of 476–480 pixels in (b), and after the layout failures
disappears again in (c), as reported by the ReDeCheck. The layout failure here
is the square elements, seen in the lower portion of the screenshots, taking a three
columns format for only four viewports widths.

Another related discussion point is the distribution of true positive to false positive
manual classifications. This distribution may influence the thresholds and thus negatively
or positively affects the agreement over newer subjects. Whether the classifications are
balanced or imbalanced, the results may be either good or bad depending on if it matches
the distribution of the classifications of the newer subjects. Even deeper, the visual di-
versity of the failures within each class, TP or FP, is another variable to consider. In the
experiments, the pool of manual classifications from the initial set of subjects, indepen-

115

4.5. CONCLUDING REMARKS

dently made by Walsh et al. [124], were used to find the thresholds. This pool contained
152 true positives and 43 false positive reports totalling 195 small-range failures. Of which,
147 true positives and 5 false positives come from a single source, the AccountKiller page.
Moreover, many of these failures from the AccountKiller page were visually similar to each
other. Potentially, this is one reason why ThresholdFinder was able to find thresholds
that achieve an agreement as high as 98.5% using the initial set while only achieving as
high as 87.8% using all of the subjects.

Many of the small-range failures arising from the AccountKiller subject are of high
similarity. These failures pertain to 20 square, relatively large, elements that initially
take on a five-column formation at the widest possible viewport. As the viewport width
becomes narrower, the elements wrap around thus reducing the total number of columns.
For reference, Figure 4.14 (a) shows these elements when the number of columns reduces
to two. For the next four smaller viewports, the number of columns becomes three again
as seen in part (b). Moreover, in one viewport smaller they become two columns again as
seen in part (c). This anomalous layout of the 20 elements for only four viewport widths
is picked up by ReDeCheck and reported as a small-range failure. Since many elements
shift their relative position, this causes many reports to be generated. In turn, this large
amount of reports caused by 20 elements that are visually similar and come from a single
source may have biased the thresholds in the favour of this subject and specifically these
elements.

The final point for discussion concerns a class of web pages with elements that feature
alternating background colours or with running visual content like videos. Since Verve
relies solely on a single snapshot from any given viewport and if the AOC includes this
content, the captured image may result in a different colour histogram for the same AOC
depending on the timing of capture. Consequently, the thresholds and classifications may
vary. Since the initial conditions are inconsistent, the classification of Verve is potentially
non-deterministic for this class of web pages. Logically, if it is not a temporary transitional
effect, the added delay will not be of any help. One possible experiment for future work
is to see if multiple snapshots of the same AOC, spanning some time delay, would aid in
the automated classification of failures from this class of web pages.

One web page featured in the experiments, SB-Coming-Soon, did contain looping visual
content in the form of a video. For reference, Figure 4.15 presents a snapshot of the subject
at the widest viewport tested of 1400 pixels. This subject uses a video in the background
that starts by showing a notebook with a hand pinning a pencil down on an empty page
while the other hand holds the notebook in place. When the video is in motion, the hand
begins to sketch out a rough drawing of a mobile phone. During the experiments, this
was not an issue for Verve. Nevertheless, this is an impotent example since the video
lies under an overlaying but partially transparent element with insignificant changes in
scenery. Furthermore, this subject was not part of the initial set and hence was not part
of the threshold tuning process.

4.5 Concluding Remarks

Even though responsive web design principles enable the creation of web pages that display
correctly on a wide variety of devices with different viewport widths, developers may still
introduce failures in the presentation of a web page even with the assistance of RWD
based frameworks. Although the ReDeCheck tool automatically detects and reports
responsive layout failures, a human web developer must manually classify each reported
failure as being either a true positive, false positive, or a non-observable issue. This

116

4.5. CONCLUDING REMARKS

Browser

Subject://SB-Coming-Soon

1400 Pixels

Figure 4.15: A snapshot from the SB-Coming-Soon subject which contains a looping
video that spans the entire page. In motion, a human hand sketches out a mobile
phone using a pencil starting with an empty page on a notebook.

process can be time-consuming, subjective, and error-prone. The previous chapter of this
thesis introduced the Viser tool that is able to automatically perform this classification
by manipulating the opacity of the HTML elements in a web page. While the empirical
results from that previous chapter highlighted the efficiency and effectiveness of Viser, the
tool was limited because it could only classify the element collision, element protrusion,
and viewport protrusion layout failures reported by ReDeCheck.

Since Viser does not classify either the wrapping or small-range responsive layout
failures, this chapter presented Verve, a tool that can automatically classify all five type
of failures reported by ReDeCheck. Along with extending Viser’s opacity manipulation
method to detect element wrapping failures, Verve employs a colour histogram-based
image comparison method that effectively classifies the small-range failures reported by
ReDeCheck. Considering 20 new pages in addition to the 25 web pages from the pre-
vious chapter’s experiments, this chapter reported on the results from a comprehensive
study of Verve’s efficiency and effectiveness, revealing its classification of all five types of
failures frequently agreed with the manual ones produced by a human. The experiments
also showed that Verve normally took about 4 seconds to classify a failure among the 469
reported by ReDeCheck. Given that a failure’s classification with Verve is less sub-
jective and less error-prone than the manual counterpart, the results suggest that Verve
can support the testing of web pages that must responsively display at different viewport
widths.

Using ReDeCheck and Verve, the developer can automatically detect layout failures
in the web page and automatically filter out the more important real observable failures
from the detected failures. Now comes the task of repairing these failures as quickly as
possible. Without further automation, this must be done manually by investigating the
code base, identifying the set of CSS properties that caused the problems, identifying the
new values and CSS properties that will repair the layout, and finally making sure no new

117

4.5. CONCLUDING REMARKS

problems arise in the patched code base. To further help the developer in this manual
task, the focus of the research in the next chapter is on automating the repair of all five
type of failures raised by the ReDeCheck tool.

118

5
Repairing Presentation Failures

The previous two chapters addressed the issue of classifying the presentation failures that
were automatically detected by the responsive layout testing tool ReDeCheck. While
in this chapter, I present an approach to automatically repair the failures detected in a
subject web page. Fundamentally, it works to automatically repair a layout that contains
a failure report by generating a patch using another layout from a different viewport where
the same failure does not exist. Then it automatically verifies the success of the repair
after applying the patch using the same constraints that identified the failure in the first
place, namely the presentation failure detection algorithms.

The first section of the chapter begins by detailing the problem for which my automated
repair approach was created to solve and introduces the tool Layout DR (Pronounced
“Layout Doctor”, responsive layout failure detection and repair) that detects and repairs
presentation failures in responsively designed web pages. Then in Section 5.2, the detec-
tion part of the tool is covered. Essentially, this is a re-implementation of the detection
algorithms of ReDeCheck into the new tool while undertaking minor improvements.

Then in Section 5.3, I will describe with details the steps involved in the repairing
feature of the Layout DR tool. Briefly, the first step is to verify the reported presenta-
tion failure before attempting to repair it. Followed by the checking of the two nearest
viewports that are not associated with the reported failure to be free from the same layout
failure. Then I will explain how the Layout DR tool generates from these two viewports
two responsive layout patches. Finally, I describe, the process of automatically accepting
or rejecting a patch based on whether the failure was eliminated, or not, from the patched
subject.

As part of my evaluation of the approach implemented in the Layout DR, Section 5.4
will begin by listing the research questions and methodology of the experiments of this
chapter. Then the limitations are explored and the research questions are answered. The
first question looks at Layout DR’s capability of patching any given presentation failure
and automatically verifying its repair. Then a human study is employed to judge the
preference between the two repaired versions of the subject against the original unpatched
web page using a subset of reported failures. Finally, the efficiency of the tool is examined.

The key contributions of this chapter are:

1. A technique to automatically create up to two repairs for each presentation failure
reported by the ReDeCheck algorithms.

119

5.1. MOTIVATING THE RESEARCH

2. An empirical study to evaluate the effectiveness and efficiency of my automated
repair technique. Demonstrating that it is always possible to automatically repair
a failure reported by the ReDeCheck algorithms.

3. A human study to evaluate alternative repairs against the original subject. Demon-
strating that humans generally prefer an automatically repaired web page over the
original page containing the presentation failure.

5.1 Motivating the Research

Due to the dynamic nature of web content and the many viewports widths that a responsive
layout must accommodate, frequent testing for presentation failures is important. The
developer should make sure that the layout of the web page looks as expected in different
viewport widths as the code base, content, or underlying browser changes. Tools like
ReDeCheck aim to automate the process of testing a responsive layout under different
viewport widths. Although beneficial for identifying presentation failures, the developer
is left with the potentially long process of manually patching the layout failure of the
web page. This may involve a simple change in a CSS property for a single HTML element
or could require an extensive redesign of many elements and properties [128]. Therefore,
it is ideal to extend automation beyond detection to suggest a solution for each reported
failure that can be used at the very least to buy time for a more customized solution.
To this end, the Layout DR tool is able to detect layout failures and suggest up to two
patches that repair the layout issue in a responsively designed web page.

In one scenario when manually repairing a reported presentation failure, the developer
must start by locating and assessing the potential problem in the webpage. This is done by
first setting the browser to a viewport width where the failure reportedly manifested. Then
they must identify the elements involved in the failure. Followed by an investigation of the
possible causes and identification of the CSS properties that are most appropriate to repair
the failure. This may take multiple attempts using different elements and CSS properties
to reach an ideal layout. After repairing the failure, the developer must test the layout once
again to verify that the repair eliminated the failure layout in all viewports. Furthermore,
they must repair any new failures that might have been inadvertently introduced to fully
repair the problem or try another approach to repair the original failure report.

The Layout DR tool alleviates the burdens associated with the manual repair process
by automatically proposing up to two patches for each failure detected. These patches use
a layout borrowed from another viewport width that does not contain the same failure.
Moreover, the borrowed layout is scaled appropriately to fit the range of viewports where
the failure originally manifested. The tool then automatically injects each patch into the
live subject web page in order to reach an acceptance or rejection of the generated patch.
If the patch eliminates the failure from the viewports associated with the failure it is
accepted and saved for the developer as a repair. Otherwise, the patch is rejected and
optionally saved for further manual analysis of the patch.

In addition to the repair feature of the tool, Layout DR integrated the detection
algorithms of ReDeCheck [124] to streamline the process of automated detection and
repair. A further benefit of reprogramming the algorithms into the new tool is to resolve
known issues with the legacy tool. These include resolving the minor false positive reports
that were generated by the legacy tool, achieving a more precise categorization of failure
types, and reducing installation complexity. More importantly, the new tool is capable of
detecting all five types of presentation failure found in responsively designed web pages as
did the legacy tool.

120

5.2. DETECTING FAILURES

Extract
DOMs Build RLG RLG

Assessment

Failure Detection

DOM Failure
Assessment

Patch
Sourcing

Patch
Application

Patch Generation

DOM Failure
Assessment

sub-RLG
Assessment

Repair Assesment

Layout DR
Web Page

A B C D E
- - - - - - -
- - - - - - -

{testmin. .testmax}

Web Page

A B C D E
- - - - - - -
- - - - - - -

Web Page

Dropdown ∇

- - - - -

Figure 5.1: A high-level overview of Layout DR’s three internal phases and tasks
for the automated detection and repair of presentation failures featuring the capa-
bility of outputting up to two alternative repairs for a single presentation failure.

A high-level overview of the phases and internal components of the Layout DR tool
is illustrated in Figure 5.1. As input, the tool expects a URL to the web page under
test. In the figure, the page under test contains a collision failure between elements
D and E over some viewports. The tool also expects as input, the range of viewport
widths {testmin . .testmax} to test for responsive layout failures. The tool outputs up to
two alternative repairs for each presentation failure detected as featured in this figure.
The main phases of the tool are failure detection, patch generation, and repair assessment.
In the next section, I will describe the first phase while the patch generation and repair
assessment phases are described in the section to follow.

5.2 Detecting Failures

Prior to detecting the different types of failures, the Layout DR tool must first extract
the positions of each HTML element of a web page from the viewport widths in the testing
range, {testmin . .testmax}, and build a model of the page on which the algorithms can infer
failures. This involves extracting the rectangular coordinates of visible HTML elements
by querying the DOM for each viewport width in the testing range. This process is part of
the Extract DOMs component of the tool shown in Figure 5.1. The tool steps through each
viewport by setting the browser viewport, querying the DOM and storing the information
to be later used to build a model of the page.

In the Build RLG component of the tool shown in Figure 5.1, the relative position of
each element is calculated using the extracted rectangular coordinates. For each of the
extracted elements, a parent element is assigned. The parent of a child element is the one
with the most confined rectangle containing the child elements coordinates. The children
that share the same parent are referred to as siblings. Then the relative positions between

121

5.2. DETECTING FAILURES

siblings are calculated to establish more relationships, namely the above or below, right or
left, and overlap relationships. These relationships or relative alignments between pairs of
HTML elements are the foundation for a graph-based model of the web page called the
Responsive Layout Graph (RLG) [124, 127]. Over different viewport widths, the model
also incorporates the range of viewports where the alignments between elements hold true.
The root element in the RLG model is the body HTML element which is a container of
other elements but does not have a parent.

With an RLG model of the web page, the detection algorithms are able to report five
types of presentation failures referred to as Responsive Layout Failures (RLFs). This is
a task carried out by the RLG Assessment component of the tool shown in Figure 5.1.
By comparing the positions of elements over different viewport widths encoded into the
RLG, the algorithms can infer and report failures. The five types of RLFs detected by
Layout DR are element collision, element protrusion, viewport protrusion, element wrap-
ping, and small-range failures. Example snapshots of the types of failures detected in the
subjects used in the experiments of this chapter can be seen in Figure 5.2 (a), (d), (g),
and (j). The figure shows four presentation failures as the top snapshot of each subject
web page. Followed by two lower snapshots for each subject showcasing two alternative
repairs after Layout DR automatically applied two alternative patches to the viewport
with the failure. Although the Layout DR repair approach does not depend on the failure
type, a summary of each failure type explaining how it is detected and the improvements
made in the new tool are described next.

5.2.1 Element Collision

As the layout responds to smaller viewport widths, a parent element will have less space
to accommodate the child elements it contains. Due to the reduced space of the parent
element, siblings may start to overlap each other. As a result, one of these overlapping
elements may be covering the other and distorting its visibility and accessibility. This
unintended consequence of overlap between elements is referred to as an element collision
failure. This type is detected and reported if over a range of viewports widths two siblings
overlap but at a wider viewport do not overlap while the parent of both elements remains
the same. The report of the failure made by Layout DR discloses the web page, failure
type, failure range {failmin . .failmax} which is equal to the range of consecutive viewport
widths where the overlap occurs, and the XPaths of the two elements involved in the
overlap.

A real example of an element collision is presented in Figure 5.2(a). The collision
in the image occurs between the blue header and the yellow information banner partly
hidden behind the blue header. This failure was detected by Layout DR in viewport
widths 990-991 pixels of the WillMyPhoneWork subject. Prior to the failure at the wider
than the range viewport width of 992 pixels, failmax+1, the yellow text and the banner
are not in collision. This is identical to the automatically repaired version of the page seen
in part (b) of the figure. Likewise, at the narrower width of 989 pixels, failmin−1, as seen
in the alternative repaired version of the subject in part (c), the two elements are not in
collision.

A minor improvement to the detection and reporting of an element collision failure in
Layout DR is the consideration of a concurrent element protrusion failure. To suppress
unnecessary reporting of a collision while the same element is involved in a protrusion (is
outside the boundary of its intended parent), the failure range of the collision is checked
against the failure ranges of known protrusion failure for crossover. If the range of view-
ports of the collision is fully within the range of a protrusion failure involving the same

122

5.2. DETECTING FAILURES

(a) Presentation failure in viewport widths
990-991 pixels.

(b) Repaired using the wider source-viewport
of 992 pixels.

(c) Repaired using the narrower source-
viewport of 989 pixels.

(d) Presentation failure in viewport widths
980-991 pixels.

(e) Repaired using the wider source-viewport
of 992 pixels.

(f) Repaired using the narrower source-
viewport of 979 pixels.

(g) Presentation failure in viewport widths
768-1222 pixels.

(h) Repaired using the wider source-viewport
of 1223 pixels.

(i) Repaired using the narrower source-
viewport of 767 pixels.

(j) Presentation failure in viewport widths
768-1028 pixels.

(k) Repaired using the wider source-viewport
of 1029 pixels.

(l) Repaired using the narrower source-
viewport of 767 pixels.

Figure 5.2: Four snapshots of presentation failures in (a), (d), (g), and (j) all
captured at the lower bound of the failure range. Displayed below each of the fail-
ure snapshots are two alternative repair snapshots after Layout DR automatically
patched the subject using alternative source-viewports to create the CSS of the
patch.

element, the collision report is suppressed. Beyond the benefit of reducing reports, a repair
attempt benefits by resolving the origin of the problem.

123

5.2. DETECTING FAILURES

5.2.2 Element Protrusion

As the width of the viewport becomes smaller and the area of a parent becomes more
confined, the coordinates of a child element may exceed the boundary of the parent. Once
the element protrudes from its parent, the protruding element will overlap its previous
parent or with one of its ancestors, higher-level parents. Therefore, the overlapping el-
ements are now siblings and share a common parent while prior to the protrusion one
was in the ancestry of the other. This type of failure may lead to visual changes in the
layout that are unpleasing in design and may prevent visibility and access of elements.
This type of failure is detected when an overlap between siblings is observed but at the
wider viewport, one of the two elements is a parent or ancestor of the other. The report
includes the name of the web page under test, failure type, failure range {failmin . .failmax}
equal to the overlap range, and the XPaths of the overlapping elements.

An example of an element protrusion from the MidwayMeetup subject can be seen in
Figure 5.2(g). This failure was automatically detected by Layout DR in the viewport
range 768-1222 pixels where an invisible container of two elements, a button labelled ‘Add’
and an input bar, protruded its own container. Although the containers are not visible,
the overlap with other elements is evident in the snapshot. The overlap causes other
elements to be rendered on top of the button effectively hiding the button which is no
longer accessible while it is under the other elements of the page. At one viewport wider
than the failure range failmax+1, 1223 pixels, the button is both accessible and visible
as seen in the repaired version of the page in part (h) of the figure. The layout of the
narrower viewport failmin−1, 767 pixels, repositions the first container above the other to
allow for more space which in turn allows elements to expand horizontally. This can be
seen in the second alternative repaired version of the page by Layout DR in part (i) of
the figure.

Related to this failure type, two improvements were made in Layout DR to mitigate
against ambiguity, account for edge cases, and to increase the stability of encoding the
layout into the RLG model. The root causes of these issues are best described in two
scenarios. The first is when two or more elements have the same coordinates. In this case,
the ambiguity is in determining which of these elements contains the other. Adding to
the complexity, they may be overlapping siblings and not containers of one another. To
resolve this dilemma, Layout DR uses the XPath of the element to resolve this ambiguity
emulating the approach used in the X-PERT tool of Choudhary et al. [28]. Therefore,
Layout DR uses the DOM hierarchy preserved in the XPaths to discern parents from
children when this scenario arises.

The second scenario where Layout DR improved over its predecessor, ReDeCheck,
is when the coordinates of elements undergo minor changes between succeeding viewports.
These changes could be as small as a fraction of a pixel but effectively sway the results of
determining the alignments between elements. These slight variations in coordinates may
also be frequent and intermittent and therefore cause an increase in the number of reported
failures that are not visible. Although the predecessor tool used a tolerance value for minor
protrusion of an element, it did not have a tolerance for including a candidate parent and
therefore made the decision solely on the bases of the tightest container. Meanwhile,
the new tool considers neighbouring coordinates within a fixed tolerance value as equals.
Therefore, adding further stabilization to the extracted model across different viewports.

124

5.2. DETECTING FAILURES

5.2.3 Viewport Protrusion

Similar to an element protrusion, a viewport protrusion occurs when an element exceeds
the boundary of the main body HTML element. This may cause a portion of the element
to be out of view due to the size of the viewport width which is limited by the browser
window size. In a favourable outcome, this will require the user to horizontally scroll
the page to view the portion of the element exceeding the viewport width. Otherwise, if
the browser does not have a scroll bar displayed, the viewport protruding portion of the
element will not be viewable. Since the body element is the root parent in the RLG model,
the protruding element will not be assigned a parent. Therefore, a viewport protrusion
failure is detected when an element has no parent over some viewport range while at the
wider viewport it did have a parent in the RLG. The failure range for this type is equal
to the range where the element did not have a parent in the RLG. Along with the failure
range {failmin . .failmax}, the failure report includes the name of the web page, failure
type, the XPath of the element that temporarily had no parent, and the XPath of the
body element.

An example of a viewport protrusion is showcased in the snapshot from the Con-
sumerReports subject in Figure 5.2(j). In the snapshot of the web page, an element with
a white background containing images and text does not fit in the viewport width of 768
pixels and therefore is largely not visible. The protrusion of the viewport was detected by
Layout DR in the viewport range of 768-1028 pixels. At the wider viewport width of
1029, failmax+1, the element and its content are fully visible within the viewport size. The
successfully patched web page seen in part (k), is based on and therefore identical to, the
layout of the wider viewport. The alternative repair seen in part (l) showcases the layout
of the narrower viewport size of 767 pixels, failmin−1. In this layout, the developers hid
some elements to allow more space for the remaining elements.

For the detection of viewport protrusion failures, two improvements were made in the
Layout DR tool. The first is to the modifying the height of the body element in the RLG
model. Because some web pages limit the height of the body element while other elements
go beyond the defined height, the page would not be accurately modelled in the RLG.
Ideally, a pseudo node in the RLG should represent the viewport width and should have
infinite height. Not to deviate from the essence of the RLG model, Layout DR used an
infinite height for the body element to resolve this issue. The second improvement is to
add a secondary condition to the algorithm when checking that the viewport protruding
element has a parent at the wider viewport. This secondary condition makes sure that
the element must also have an ancestry connecting back to the root of the RLG model,
the body element. In edge cases, elements may have a parent that is not connected to
the root of the RLG and in smaller viewports does not have a parent. This evolution in
Layout DR properly handles these cases.

5.2.4 Element Wrapping

At larger viewport widths, related elements may be laid out in row formation as intended
by design. For example, the row may present the main menu of links for the user to access
different parts of the page. An element wrapping failure occurs when an element breaks
from row formation and wraps into a new row due to a decrease in viewport space. This
may lead to an unpleasing layout in the web page. Detecting this failure mainly relies on
the ability to determine rows of elements. To achieve this, a minimum of three HTML
elements is predetermined to constitute a row. Then, a row is formed only if the elements
have a right or left alignment with each other but do not have an above or below alignments.

125

5.2. DETECTING FAILURES

Once detected, the web page name, failure type, failure range {failmin . .failmax}, the XPath
of the wrapped element, and the XPaths of the other row elements are reported.

An example of a wrapping failure from the MantisBT subject is shown in the snapshot
of Figure 5.2(d). In this snapshot, the Hosting link has wrapped below other menu items
to form its own row. This holds true for the entire viewport width range of 980-991 pixels.
At one viewport wider than the failure range, failmax+1 or 992 pixels, all menu items are
properly aligned in a row. This is identical to the repaired version of the page seen in part
(e) of the figure. At one viewport narrower than the range, failmin−1 or viewport 979, the
menu changes to a drop-down list. This effect can be seen in the snapshot of the repaired
version of the page in part (f) of the figure.

For this failure, the new tool uses a reversed form of the original detection algorithm
process. While the original approach determines rows of elements first and then seeks
to find a wrapped element, the new approach in Layout DR searches for the wrapped
element and then the existence of the row. Furthermore, the original algorithm involved
sorting and splicing of alignment ranges that were not necessary using the RLG imple-
mentation choices used in Layout DR. While the implementation of the predecessor tool
used a sibling edge between children of the same parent, the Layout DR tool infers this
relationship using a common parent as an identifier of siblings. Furthermore, the new tool
uses an edge to model each type of alignment between siblings while its predecessor used
constraint labels (i.e. , above and right) on sibling edges to achieve the purpose. More
importantly, no false positives were encountered during the experiments of this chapter as
was the case in the predecessor tool during the experiments of the previous chapter.

Layout DR detects a wrapping failure of an element by first iterating over all of its
ranges to find above/below edges. The element that does have another sibling above it will
surely have an above/below edge between the two nodes. Meaning, that the element below
is a candidate wrapped element and the element above is a candidate row member. If this
candidate wrapped element was part of a row – that includes the above element – before
the above/below edge was observed at the wider viewport, then it meets the criteria of a
wrapping failure. Namely, the element is part of a row and later, at a smaller viewport,
wrapped below the other row elements. Therefore, the algorithm checks the wider viewport
for siblings in row formation with the wrapped element as a member. Then checks again
that the row is intact after the element has wrapped. If the other elements of the row
maintain formation after the wrapping occurs then the failure is reported. Here, the failure
range is equal to the range when the row is above the wrapped element.

5.2.5 Small-Range

As the viewport width changes, a responsive web page uses media rules to change the
layout of the web page in response to the available viewport width. Inaccurately setting
one or more rules may cause unintended layouts over a few viewports widths. Hence, a
small-range failure occurs when elements take on a layout only true for a small number
of viewport widths. The failure is detected by first identifying the alignments with ranges
spanning five viewports or less for any of the above, bellow, right, left, or overlap align-
ments between any two elements. The Layout DR tool uses the five viewports threshold
by default to duplicate what the predecessor tool did. Then, the number of alignments
between the two elements is calculated within this range. The calculation is repeated to
know the number of alignments at the narrower viewport and again at the wider viewport.
If the set difference in the number of alignments is two or greater within the range and at
the narrower and wider viewports, the failure is reported. The report includes the name
of the web page, failure type, failure range {failmin . .failmax}, and the XPaths of the two

126

5.3. REPAIRING FAILURES

elements involved.
An example of a small-range failure from the WillMyPhoneWork subject is presented in

Figure 5.2(a). This failure is reported twice by Layout DR, once as an element collision
and again as a small-range failure. The detection algorithm for small-range and that of
the element collision failures are independent of each other but in this case, are both
satisfied. Since the range of viewports where the overlap between the elements occurs in
only two viewports, 990 and 991 pixels, the small-range algorithm creates its own report
of the failure. Not surprisingly, both reports with two different failure types detected by
Layout DR were successfully repaired as seen in parts (b) and (c) of the figure. When I
compared both failures along with their repairs, I found them to be indistinguishable.

For this type of failure, Layout DR used the latest version of the detection algo-
rithm [128]. This is because the older version of the algorithm was prone to reporting a
large number of false positive failures, up to thousands of reports. After all, it was too
sensitive to minor changes in alignments. On the other hand, the latest version is less
sensitive because it looks for multiple simultaneous alignment changes. These changes are
observed in the number of alignments for a pair of sibling elements over a maximum of
five consecutive viewports against the immediately wider and against the immediately nar-
rower than the range viewports. During the experiments of this chapter, the Layout DR
tool reported a low number of small-range failures and did not have the same problem of
creating false positives reports as did the older version of the algorithms.

5.3 Repairing Failures

The main feature of Layout DR is the automated repair of presentation failures de-
tected in responsively designed web pages. The previous section looked at the failure
detection feature integrated into the tool while in this section the approach implemented
in Layout DR to repair the presentation failure is explained. This section starts with a
summary of the approach followed by the detailed process of repair.

5.3.1 Summary of Approach

To repair a responsive layout that contains a presentation failure, the Layout DR tool
creates a patch using a layout from a viewport outside of the set of consecutive viewports
where the failure was reported {failmin . .failmax}. This viewport used as a source for
harnessing the CSS of the patch that makes up the layout of the repair is referred to as
the source-viewport. Once the patch is applied, the layout derived from the source-viewport
is imposed on the viewports in the failure range {failmin . .failmax} by rules added to the
patch. The current implementation of Layout DR uses up to two source-viewports to
generate up to two alternative repairs. More specifically, the two bordering viewports
on either side of the failure range are used by the tool as source-viewports. I refer to
the smaller bordering viewport failmin−1 as the narrower source-viewport and the larger
bordering viewport failmax+1 as the wider source-viewport.

Prior to harnessing the source-viewport, the repair process starts by first assessing
the findings of the RLG based detection algorithms at three sample viewports spanning
the reported failure range. These are failmin , failmax , and the middle point of the range
failmid= floor((failmin+failmax)/2). This is similar to the process presented in the previ-
ous two chapters where the DOM is used to classify a given failure report at three viewports
from the failure range. This process of corroborating the failures detected using the RLG

127

5.3. REPAIRING FAILURES

model is important in order to identify false positives before a repair is attempted. More
importantly, the corroboration of the report allows the tool to confidently assess the suc-
cess of a repair once the patch is applied. Since the failure was detected using the RLG
model and corroboration using the DOM prior to patching the web page, Layout DR
only accepts a patch if the failure is not observed in the DOM nor detected in the RLG
of the patched subject.

There are two requirements that must be met before Layout DR uses a source-
viewport to create a patch. The first is that it must be free from the reported presenta-
tion failure and the second is that the source-viewport was included in the testing range
{testmin . .testmax} used to find the failure in the first place. Both of these requirements
are automatically checked by the Layout DR tool prior to generating a patch from any
source-viewport. For the source-viewport that meets the requirements, the tool sets the
browser’s viewport to the source-viewport and captures all of the CSS making up the
layout for usage in the patch. Using the failure range, media rules are added to the patch
to restrict the application of the layout to only the viewports of the failure range. Finally,
the layout of the patch is scaled appropriately for each viewport in the failure range. The
patch is then injected into the web page to repair the failure at hand. Then the success
of the patch at repairing the failure is automatically determined by Layout DR. It is
deemed successful if the same failure no longer exists in the subject after applying the
patch. Outputting, for each failure report, up to two alternative patches that successfully
repaired the presentation failure.

5.3.2 DOM Failure Assessment

With a failure report ready from the Failure Detection phase of the tool, the second
phase, Repair Generation begins with the DOM Failure Assessment component as shown
in Figure 5.1. The role of this component is to confirm the existence of the failure that
was detected using the RLG model. For this, the coordinates of the elements associated
with the failure are extracted from the DOM and examined using the relative positions
of the elements. Therefore, attempting to corroborate what the RLG-based failure report
indicated. Looking ahead into the next phase of Repair Assessment, this component is
repeated in order to reject or accept a given patch depending on whether the failure
persists or not in the patched web page. Therefore, the tool must assess for the existence
of the failure using the DOM prior to using it to assess the repair in order to avoid a false
indication of successful repair if the failure never existed. This may be the case if the
report was made in error due to a flaw in the code or as a result of a limitation in the
RLG model. In general, the DOM failure assessment step raises the quality assurance of
the reports generated using the RLG model and the later automated repair assessment.

To assess a reported failure using the DOM, the DOM Failure Assessment component
of Layout DR, see Figure 5.1, revisits the viewports where the failure was detected to
check the relative position of the elements. More precisely, three sample viewports span-
ning the reported failure range are used to evaluate the entire range {failmin . .failmax}.
These are the failmin , failmid= floor((failmin+failmax)/2), and failmax viewports of the
reported failure range. To do this, the Layout DR tool sets the browser to these view-
ports and extracts the bounding-box coordinates of the elements associated with the failure
from the DOM. Next, the relative positions of the elements are checked for failure. De-
pending on the failure type, this may be rectangles not containing one another, rectangles
overlapping, or the rectangles are not in the correct relative direction like being below
instead of to the right of the other.

Each type of presentation failure is assessed using the elements mentioned in the re-

128

5.3. REPAIRING FAILURES

port based on the semantics of the RLF type. For an element collision, the semantics of
the failure indicates that two elements are overlapping when they should not be, hence
the word collision. Therefore, if the DOM coordinates indicate an overlap between the
two elements then the failure is confirmed. For an element protrusion or a viewport pro-
trusion failure, they are confirmed if the DOM readings conclude that the coordinates of
the protruding element go beyond the coordinates of the parent element. For an element
wrapping failure, the wrapped element is checked to make sure it is below all other ele-
ments. Finally, a small-range failure is confirmed if, based on the report, the alignments
between the two elements holds true at the viewport being investigated.

One requirement for a layout of the source-viewport to be used to generate a patch
is that it must be free from the reported failure. This is another task for the DOM
Failure Assessment component where the tool now seeks a negative outcome when checking
for failure at the source-viewport. Since the detection algorithms primarily infer the
proper layout of elements from the wider viewport, the failure should never be observed
in the wider source-viewport. This does not follow for the narrower source-viewport. The
reported failure range is specific to the failure type and hence does not indicate the end of
the failure at the failmin−1 viewport. For example, when an element protrudes out of its
non-root container in the RLG over a range of viewports it is of type element protrusion.
If at a smaller viewport the protrusion is great enough to also leave the confines of the
root container of the RLG, then it can no longer be reported as a protrusion failure.
Instead, it would be a new viewport protrusion failure with its own range. Therefore,
the narrower source-viewport must undergo a DOM-based failure assessment to confirm
it is free from the same failure. Although expected to be free from the failure, the wider
source-viewport is also checked. Assuming it is true on faith and finding out it was not will
cause a repair to be rejected during its assessment because the patch copied the CSS from
a layout containing the same failure. This may have a negative impact on the approach
for the wrong reasons.

There is also a second requirement for a source-viewport that must be met before
Layout DR accepts the layout for usage in a patch. Only if the source-viewport is a
member of the testing range {testmin . .testmax} used to build the RLG will it be used
to generate a patch. This is always true for the wider source-viewport since it is used
in the RLG to infer the proper layout of elements. Unfortunately, this not the case for
the narrower source-viewport which may be smaller than the smallest viewport in the
presentation testing range. For example, if the RLG is built using the viewport widths
320-1400 pixels and a failure is reported within the range 320-450 pixels, the narrower
source-viewport of 319 will not be used by the tool. In this case, the narrower source-
viewport would be categorized as “not applicable” in the experiments of this chapter.

The Repair() procedure described in Algorithm 7 takes care of assessing the failure
and checks the viability of the source-viewport for usage in repair. As input, the HTML
elements, type, and range of the failure are passed to the procedure to repair the failure.
The algorithm starts by calculating the minimum, middle, and maximum points of the
failure range in lines 2 to 4 and puts them into a set in line 5. Then the isFailing()
procedure of line 6 is used to assess whether the failure manifests in these three viewports
or not. Then the narrower viewport and wider viewport are calculated in lines 8 and
9. Followed by another call to the isFailing() procedure, line 10, but this time it is to
confirm that the layout of the wider source-viewport is free from the failure. If it is, a
call to generate the patch is made in line 11. Then the isCoveredByRLG() procedure,
in line 12, makes sure that the narrower source-viewport is part of the viewports covered
during the detection phase. Finally, the isFailing() procedure, line 14, is used on the
narrower source-viewport to confirm the failure does not exist there before an attempt to

129

5.3. REPAIRING FAILURES

Algorithm 7 Repair Presentation Failures

INPUT: Failure HTML elements, viewport range, and RLF type.

1: procedure repair(elements, range, type)
2: Fmin ← min(range) ▷ failmin
3: Fmid ← floor((min(range) + max(range))/2) ▷ failmid
4: Fmax ← max(range) ▷ failmax
5: F ← {Fmin, Fmid, Fmax} ▷ viewports covering failure range
6: confirmedFailure ← isFailing(F , elements, type)
7: if confirmedFailure = True then
8: ns ← Fmin − 1 ▷ narrower source
9: ws ← Fmax + 1 ▷ wider source

10: if isFailing(ws, elements, type)) = False then
11: patch(elements, range, type, ws)
12: covered ← isCoveredByRLG(ns)
13: if covered = True then
14: if isFailing(ns, elements, type)) = False then
15: patch(elements, range, type, ns)
16: return

patch the failure is made in line 15 using the narrower source-viewport.

5.3.3 Patch Sourcing and Application

Once Layout DR confirms the existence of the failure within the reported range and ver-
ifies that the layout of the source-viewport is free from the failure being repaired, the heart
of the repair process begins. Its purpose is to collect the CSS from the source-viewport
layout, rescale it, and apply it to all viewports in the failure range. First, the Patch
Sourcing component of the tool sets the browser viewport width to the source-viewport
in order to access the final CSS that is applied to all elements in that viewport. Here,
applied refers to the final CSS values making up a layout after the browser resolved all
rules and property settings of the web page’s external CSS files, internal style HTML
elements, inline style attribute, and any browser-specific defaults. Starting at the root
element of the DOM tree, the html element, the DOM is traversed to capture all avail-
able CSS properties of each element in the tree. To do this, the getComputedStyle()
JavaScript method is utilized by Layout DR. This method returns the CSS settings and
the computed pixel values associated with the element after the browser resolves the CSS.
These values of all CSS properties for each element in the DOM are what the tool needs
to reproduce the layout in any other viewport.

Now that the tool has the CSS properties needed to build the patch, it must first
create a CSS selector for each element so that the properties can be reapplied to the same
element they were extracted from. For this, Layout DR uses the XPath of each element
to generate a unique CSS selector which will encompass all the properties of an individual
element in the patch. Since the CSS properties in the patch will be competing with other
CSS of the original web page, the !important flag is added to all properties in the patch
to override any competing declarations. With the selectors set to target each element, the
tool must now target the viewports for which the patch should take effect. Otherwise,
the patch will be applied to all viewports. To restrict the patch to the failure range, the
selectors and their properties are encapsulated within a media rule spanning the failure
range.

130

5.3. REPAIRING FAILURES

Without further improvements to the patch, the web page will cease to be responsive
where the patch is applied. This is because the patch contains absolute values specific to
a single viewport. These pixel specific values from the source-viewport are not ideal for
displaying in other viewports of a responsively designed web page. Making the repaired
version of the web page too wide for the viewport using the wider source-viewport patch.
In which case, only some portion of the total width of the layout will be displayed within
the viewport of the page. To illustrate this, the first web page wireframe from the left-
hand side of Figure 5.3(d) is an example of this effect where the layout borrowed from
part (c) with a viewport of 901 pixels is too big for the smaller viewport width of 850
pixels where the failure used to be before applying the borrowed layout. Conversely, the
narrower source-viewport patch will not use all the available viewport width and will have
empty space displayed. This is due to the failure viewport width being bigger than the
narrower source-viewport where the layout is borrowed from thus allowing for additional
empty space to exist within the viewport. This effect is illustrated in the layout of the
first wireframe of Figure 5.3(e) that is borrowed from part (a).

To equalize the size of the layout to match the size of the viewport width and noth-
ing more or less, Layout DR uses the scale() CSS method with the transform CSS
property for this purpose. The transform property can modify the coordinates of the
target element to rotate, scale, skew, or translate from its original coordinates. As for the
scale() method, it is used to scale the coordinates of the target element to be smaller
or larger than the original coordinates resulting in a ‘zoom’. The effect of the scale()
method is illustrated in the second wireframe of Figure 5.3(d) and Figure 5.3(e) using
the layouts borrowed from the wider source-viewport and narrower source-viewport re-
spectively. The result is a scaled-down version of the layout that shrinks to the centre.
The application of this property and method on an element exceeds the element itself and
affects all descendant elements in the DOM tree. Therefore, the tool applies this property
to the root element of the DOM, the html element, to scale all elements of the layout
appropriately.

Since presentation failures usually manifest in more than a single viewport, the layout
of the patch should adjust appropriately to each viewport in the reported failure range.
The Layout DR tool considers this when creating the patch by calculating a different
scale value for each viewport. The value is calculated based on the ratio of the browser’s
current viewport over the source-viewport, making the patch responsive to different view-
ports. For example, the presentation failure of Figure 5.3 has a failure range of 800-900
pixels. The failure illustrated in part (b) is from the viewport 850 pixels and has two dif-
ferent ratios depending on the source-viewport of the patch. For the wider source-viewport
shown in part (d), the value is 850/901 which decreases the size of the layout imposed by
the patch. While for the narrower source-viewport shown in part (e), the ratio is 850/799
which increases the size of the layout. The full CSS of the patch would include multiple
media rules, one for each viewport in the range of the failure.

Although Layout DR scaled the patch using the transform property, the scaled
page transformation is anchored to the centre of the original coordinates. The result is a
web page with empty space to the top, right, bottom, or left of the page. This is the case
in the layout of the second wireframe seen in Figure 5.3(d) that used the wider source-
viewport. Even worse than the empty space surrounding the layout, is the portion of the
page that will not be visible without scrolling horizontally breaking one of the responsive
design principles. For the narrower source-viewport viewport, the scale effect seen in
part (e) is even worse. Since no scrolling will allow a user in the negative direction of
coordinates of the page, a large portion of the layout from the left and the top will be
missing. To resolve this issue, the transform-origin CSS property is also added to the

131

5.3. REPAIRING FAILURES

Web Page

799 pixels wide

Dropdown ∇
- - - - -
- - - - -

...
D {

width: auto;
height: auto;
...

}
...

CSS

(a) Narrower source-viewport.

Web Page

901 pixels wide

A B C D E
- - - - - - -
- - - - - - -

...
D {

width: 100px;
height: 100px;
...

}
...

CSS

(c) Wider source-viewport.

Web Page

850 pixels wide

A B C DE
- - - - - - -
- - - - - - -

...
D {

width: 80px;
height: 80px;
...

}
...

CSS

(b) Viewport with failure.

Web Page

850 pixels wide

A B C D E
- - - - - - -
- - - - - - -

Web Page

850 pixels wide

A B C D E
- - - - - - -
- - - - - - -

Web Page

850 pixels wide

A B C D E
- - - - - - -
- - - - - - -

scaling anchoring

...
@media (min-width: 800px) and (max-width:900px) {

D {
width: 100px !important;
height: 100px !important;
...}

...
}
...

Layout from 901 px applied ...
@media (min-width: 850px) and (max-width:850px) {

html {
transform: scale(850/901) !important;
transform-origin: top left !important;

}
}
...

Layout scaled and anchored

Wider source-viewport patch

(d) The failure patched using the wider source-viewport and showing the scaling and anchoring effect.

Web Page

850 pixels wide

Dropdown ∇
- - - - -
- - - - -

Web Page

850 pixels wide

- - - -

Web Page

850 pixels wide

Dropdown ∇

- - - - -
scaling anchoring

...
@media (min-width: 800px) and (max-width:900px) {

D {
width: auto !important;
height: auto !important;
...}

...
}
...

Layout from 799 px applied ...
@media (min-width: 850px) and (max-width:850px) {

html {
transform: scale(850/799) !important;
transform-origin: top left !important;

}
}
...

Layout scaled and anchored

Narrower source-viewport patch

(e) The failure patched using the narrower source-viewport and showing the scaling and anchoring effect.

Figure 5.3: A wireframe example of the steps involved in producing two repairs for
the presentation failure illustrated in (b) where the elements labelled D and E are
in collision from viewport 800px to 900px. The first repair in (d) uses the layout
of the wider source-viewport of 901px while the repair in (e) uses the layout of the
narrower source-viewport of 799px. The CSS snippets of different viewports from
the original page are shown (a), (b), and (c) while the CSS snippets of the two
patches are in (d) and (e).

132

5.3. REPAIRING FAILURES

patch to position the scaled page appropriately at the top left of the original coordinates.
This property identifies the position around which a transformation is applied using the
transform property. Therefore, anchoring the scaled layout to the proper location. This
can be seen in the final wireframe of Figures 5.3(d) and (e) where the repair is completed.

With the patch now ready, Layout DR can proceed to apply the patch to the
web page in order to repair the failure. To this end, the Patch Application component of
the tool creates a style element that contains the patch and injects it into the DOM tree.
The browser then automatically applies the CSS of the patch and refreshes the rendered
web page. This injection method results in a patch that persists when the viewport width
is changed but does not persist through a page reload or if the page navigates to another
URL. Once Layout DR assesses the repair, whether the patch is accepted or rejected,
the tool ejects the patch from the page by removing the style element from the DOM
allowing another patch to be processed.

5.3.4 Repair Assessment

With the web page now patched, Layout DR automatically checks to see if the repair
was successful. To reach a negative verdict faster, the tool starts by trying to reject the
patch as part of verifying its success. The patch is rejected if after checking the DOM at a
single viewport from the failure range, the tool finds that the failure remains in the patched
subject. To do this, the DOM Failure Assessment component of the tool is employed again
to check for the failure using the DOM. It first sets the viewport width to the minimum
viewport of the reported failure range, failmin . The minimum is used because it has the
most confined display space and hence has a higher potential of retaining the failure than
larger viewports of the failure range. To reject the failure, Layout DR repeats the DOM-
based failure assessment process explained in Section 5.3.2. If the failure persisted with
the patch applied, it is rejected and saved as a failed attempt. Otherwise, to fully confirm
the success of the repair, the tool needs to build a new RLG using the patched subject
and confirm that the failure is not detected using the RLG detection algorithms.

To check the RLG of the patched web page, the tool uses information gathered from
a subset of viewports in the patched subject that are associated with the reported failure
range. Therefore, skipping some viewports for time efficiency. This approach to efficiency
by not going through all viewports was used in the legacy tool to detect failures faster
while Layout DR uses it during repair assessment. I refer to this model that uses a
subset of the viewport that were used to build the full RLG as the sub-RLG. They include
failmin , failmid , and failmax from the failure range of the original report. Furthermore,
since the detection algorithms depend on the viewport immediately wider than the failure
range to infer the failure, failmax+1 is added to the sub-RLG. The narrower viewport,
failmin−1, is included when repairing a small-range failure because it is required by the
detection algorithm of this type of failure. If the original failure from the original RLG
is not reported by the detection algorithms in the sub-RLG, the patch is accepted, saved,
and reported as a successful repair by Layout DR.

The patch sourcing, patch application, and repair assessment processes of Layout DR
are described in the Patch() procedure of Algorithm 8. As input, the algorithm expects
the HTML elements, type, and range of the failure along with the intended patch source-
viewport. The algorithm first calculates the failmin , failmid , and failmax of the failure in
lines 2 to 4 and creates a set from these viewports in line 5. The wider source-viewport
and narrower source-viewport are calculated next in lines 6 and 7. Then the getCSS()
procedure of line 8 sets the viewport width to the source viewport and extracts the ap-
plied CSS of all DOM elements. Then, the addMediaRules() procedure of line 9 adds

133

5.3. REPAIRING FAILURES

Algorithm 8 Patch Presentation Failures

INPUT: Failure elements, range, type, and patch sourceViewport.

1: procedure patch(elements, range, type, sourceViewport)
2: Fmin ← min(range) ▷ failmin
3: Fmid ← floor((min(range) + max(range))/2) ▷ failmid
4: Fmax ← max(range) ▷ failmax
5: F ← {Fmin, Fmid, Fmax} ▷ viewports covering failure range
6: nv ← Fmin − 1 ▷ narrower viewport
7: wv ← Fmax + 1 ▷ wider viewport
8: css ← getCSS(sourceViewport)
9: patch ← addMediaRules(sourceViewport, css)

10: patchHandle ← inject(patch)
11: if isFailingAt(Fmin, elements, type)) = True then
12: save(patch, ‘Failed’)
13: else
14: V ← F ∪ wv ▷ viewports covered by sub-RLG
15: if type = SmallRange then
16: V ← V ∪ nv ▷ add narrower viewport
17: subRLG ← captureRLG(V)
18: failures ← detectFailures(subRLG)
19: if {elements, type} ∈ failures then
20: save(patch, ‘Failed’)
21: else
22: save(patch, ‘Successful’)
23: eject(patchHandle)
24: return

media rules to the patch in order to cover the failure range and scales the layout to the
size of the viewports in the failure range. The patch is then injected into the page in
line 10. If the patch is rejected using the isFailing() procedure of line 11 which used
the lower bound viewport of the failure, the patch is saved in line 12 and marked as a
failed attempt. Otherwise, the wider source-viewport and narrower source-viewport are
added to the set of failures as needed for the sub-RLG and noted in lines 14 to 16. The
captureRLG() procedure of line 17 uses this set of viewports to create the sub-RLG
and the detectFailures() procedure of line 18 detects the failures in the sub-RLG. If
the same failure is found in the sub-RLG then the patch failed to repair the web page.
Otherwise, Layout DR has automatically generated a successful patch that repaired the
presentation failure. In either case, the patch is saved and marked appropriately. Finally,
the patch is ejected from the page in line 23.

The resulting layout of a repair is indistinguishable from the source-viewport lay-
out where the patch was created from. To showcase the similarity between the repaired
layout and the source-viewport layout, Figure 5.4 displays adjacent snapshots of both
layouts. The repair snapshots, in parts (a), (c), (e), and (g) of the figure, are from the
MidwayMeetup and ConsumerReports subjects presented earlier in Figure 5.2. These two
failures were chosen from the earlier example of four because they had longer failure ranges
than the other two. The failure from MidwayMeetup had a range of 768-1222 pixels and
the failure from ConsumerReports had a range of 768-1028 pixels. Despite the length of
the ranges being over 450 viewports, the scaled layouts are still identical to the source-
viewport layout. Therefore, the relative layout of elements in the webpage is preserved as
the automated repair assessment of Layout DR indicated. It is worthy to notice that
the snapshots of the repaired subjects were captured at the most extreme distant point in

134

5.4. EMPIRICAL EVALUATION

1222 pixels

(a) Repair.

767 pixels

(b) Narrower S-V.

768 pixels

(c) Repair.

1223 pixels

(d) Wider S-V.
1028 pixels

(e) Repair.

767 pixels

(f) Narrower S-V.

768 pixels

(g) Repair.

1229 pixels

(h) Wider S-V.

Figure 5.4: Snapshots of four successful repairs compared with snapshots of their
source-viewport, denoted as S-V, which is the layout that was used to build the
patch. The repairs are of the presentation failures from the MidwayMeetup and
the ConsumerReports showcased in Figure 5.2. Here the repair is compared to the
source-viewport side by side.

the range away from the source-viewport.

5.4 Empirical Evaluation

This section evaluates the effectiveness and efficiency of the repair approach implemented
in Layout DR and presented in this chapter. I carried out experiments over 31 respon-
sively designed web pages to answer the following research questions:

Research Question One – Can Layout DR repair any presentation failure detected in
the subjects using the narrower or wider source-viewport? To answer this question, I ran
Layout DR’s to detect and patch any presentation failure found. Using Layout DR’s
automated DOM and RLG repair assessment (see Section 5.3.4), the results are analysed.

Research Question Two – (a) How many of the automated repairs are free from other
presentation failures? (b) Do the narrower or wider source-viewport patches introduce
new presentation failures in the web page? To answer part (a) of this question, I manually
investigate a subset of presentation failures repaired by Layout DR to see if they copy
other failures detected by the tool. To answer part (b), I ran Layout DR setting it to
create a patch from the largest viewport in the testing range {testmin . .testmax} and apply
to all other viewports {testmin . .testmin−1} to reach a conclusion about the wider source-
viewport. In a second run, I set it to create a patch from the smallest viewport and apply
it to {testmax+1. .testmax} to decide if the narrower source-viewport introduces any new
presentation failures that are detectable by Layout DR.

Research Question Three – Would a human prefer the repaired web page based on
the narrower or wider source-viewport over the unpatched web page that contains the pre-
sentation failure? To answer this question, I presented a subset of the detected failures

135

5.4. EMPIRICAL EVALUATION

along with their associated repairs to participants in a human study to identify human
preferences. Presenting them with the original web page manifesting the failure and both
the automatically repaired versions by Layout DR.

Research Question Four – How long does Layout DR take to detect and repair pre-
sentation failures? To answer this question, I recorded the time the tool takes to collect
data from the web page to build the RLG and detect failures, and the time it takes to
repair the failures detected in each subject.

The design of the experiments set forth to answer these research questions are explained
next.

5.4.1 Design of Experiments

In this section, I will identify the subject web pages used in the experiments and their
details, the runtime environment used to build Layout DR and used to run the tool
during the experiments, the methodology followed to answer each of the research questions,
and finally disclose any known threats to the validity of the results and any mitigating
steps taken to reduce these threats.

Subject Web Pages

In the experiments of this chapter, a total of 31 web pages were used to evaluate Layout DR
converged from two sources. First, I enrolled the 21 subjects used by Walsh et al. [124] to
evaluate ReDeCheck, the predecessor tool that the detection algorithms of Layout DR
were adopted from. Then, I added 10 new subjects not used in previous experiments. The
details of all the subjects used in the experiments of this chapter are listed in Table 5.1.

The re-employed 21 web pages were previously selected in a random fashion by Walsh
et al. using the randomusefulwebsites.com website which has recently changed to
discuvver.com. I downloaded these subjects and used them without modification from
the repository cited in their paper github.com/redecheck/example-webpages. Although
the repository contains 26 web pages, five were excluded from the experiments for two rea-
sons. First, I did not use the StumbleUpon subject because the downloaded web page was
not loading successfully. This is due to online resources that are requested by the page but
are no longer available online. This is because the original web page does not exist and
the resources were not saved offline. The other four subjects, ZeroDollarMovies, RunPee,
RainyMood, and Mailinator, were excluded because they did not report any presentation
failures during preliminary experimentation.

For the 10 subjects newly accrued for the experiments of this chapter, I set out to
collect web pages related to the topic of software. Initially, I used the google.com search
engine with the keywords open-source software to find subjects to use in the experiment.
To access posts on the internet that had multiple links to open-source software web pages,
I prefixed the keyword top to reach more candidate web pages. Although I did find five
web pages containing presentation failures using this approach, the lists of “top open-source
software” were limited and largely repetitive using this approach. Therefore, I migrated
to searching github.com/search for candidates using the keywords HTML, JavaScript,
Python, and Java alternatively. After sorting the results using "Most Stars", I combed the
results of the first 20 pages for a web page linked to the repositories.

As part of the criteria for accepting a subject web page into the empirical study is
that it must be responsively designed, use English for display, and contain a presentation

136

5.4. EMPIRICAL EVALUATION

Table 5.1: The details of the web pages used in the experiments of this chapter.

Web Site Name URL Number of HTML Elements Number of CSS Declarations

3MinuteJournal 3minutejournal.com 80 5499
AccountKiller accountkiller.com/en 344 4691
AirBnb airbnb.com 1470 9890
Ardour ardour.org 222 3774
Bottender bottender.js.org 243 2202
Bower bower.io 370 844
BugMeNot bugmenot.com 42 658
CloudConvert cloudconvert.com 908 6731
ConsumerReports consumerreports.org 1042 8005
CoveredCalendar coveredcalendar.com 148 8414
DaysOld daysold.com 66 2930
Dictation dictation.io 195 8271
Django djangoproject.com 242 4732
DjangoRest django-rest-framework.org 610 3787
Duolingo duolingo.com 856 4260
ElasticSearch elastic.co/elasticsearch 1243 21467
Honey joinhoney.com/install 461 7903
HotelWiFiTest hotelwifitest.com 359 6746
MantisBT mantisbt.org 247 7731
MarkText marktext.app 560 1890
MidwayMeetup midwaymeetup.com 86 4147
Ninite ninite.com 642 4213
OrchardCore orchardcore.net 234 6352
PDFescape pdfescape.com 179 1954
PepFeed pepfeed.com 343 7276
Pocket getpocket.com 664 6607
Selenium selenium.dev 286 4980
TopDocumentary topdocumentaryfilms.com 411 1501
UserSearch usersearch.org 866 3900
WhatShouldIReadNext whatshouldireadnext.com/search 112 2314
WillMyPhoneWork willmyphonework.net 782 6576

Total 14313 170245

failure detectable by Layout DR. Moreover, the web page must be successfully copied
offline using the GNU Wget tool to mitigate against unexpected changes in the content
between experiments. I verified this by manually ensuring that the content loaded using
the downloaded copy resembles that of the online web page. Loading of advertisement
banners was not part of the criteria and an empty element was acceptable. Another
criterion is that the candidate must not have any continuous visual effects (e.g. moving
elements across the page in a loop). In other words, the state of the web page, specifically
the element relative positions, must be stable. The detection algorithms do not support
this feature in web pages and enhancing the algorithms to support it in Layout DR is
out of scope for the experiments of this chapter. Finally, I did not use any links that lead
to personal social media web pages or that lead to corporate sponsors. To make it easier
for others to reproduce the findings of my experiments, the newly acquired subjects used
in this study are available at github.com/ResponsiveRepair/webpages.

Runtime Environment

To evaluate Layout DR, the experiments were done on a laptop with 16GB RAM, 1 TB
SSD, Intel Core i7-4720HQ, and running Ubuntu version 20.04.2 64-bit operating system.
The GNU Wget version 1.20.3 was used to download all candidate web pages for the
experiments. The laptop had Node version 14.15.4 with NPM version 6.14.10 installed
during the experiments. Layout DR used Puppeteer version 4.0.1 to control the browser.
Puppeteer is a Node library that provides an API to control the browser. The Chromium
browser packages with Puppeteer was used in the experiments. Moreover, the browser
was configured to run in headless mode with a fixed viewport height of 1000 pixels.

137

5.4. EMPIRICAL EVALUATION

Methodology

This section presents the methodology followed to answer the research questions proposed
in this chapter.

RQ1 Methodology – To answer RQ1, I ran Layout DR on all 31 subject web pages
using the testing range 320-1400 pixels. Then, using the automated DOM and RLG repair
assessment of the tool (see Section 5.3.4 for full details), the results are disclosed and
analysed for both the narrower source-viewport and wider source-viewport based repairs.

Since many of the reports raised by Layout DR are only true at the DOM level
and do not equate to a visible problem on the web page that would justify the repair, I
manually categorized the severity of all 398 reported failures after examining the minimum
viewport of the failure range. The intention being, to add insight into the evaluation of
Layout DR repairs based on the severity of the layout problem. To do this, I categorized
each report as either dismissible, disputable, or a definite failure by manually analysing
the web page and the snapshots made by Layout DR. Here, the dismissible category
refers to the DOM only failures presented in the first two chapters of this thesis as “non-
observable issues" while the disputable label refers to the other visible but contentious
issues that may not require a repair. All other failures that showed a visible problem in
the layout that are most likely to warrant a repair, are labelled as definite failure reports.
All of the manual categorizations are available at responsiverepair.github.io/manual/
rlf-classifications.html with highlighted borders around the failing elements.

RQ2 (a) Methodology – To answer RQ2 (a), I investigated the set of definite failures
for possible copying of other presentation failures that manifest the source-viewport used
in the repair. First, I identified the other failures, in the same set, that coincided with a
source-viewport used in a repair. Since the severity of the failure may change depending
on the viewport chosen from the failure range for examination, it does not necessarily
follow that the coincidence of source-viewport with failure ranges that a repair “copied" a
definite failure. This was observed in the findings of the first two chapters of this thesis,
where the classification of the failure changed depending on the viewport used. Therefore,
I manually investigated the web page at the source-viewport to see if the cross-over failures
are also definite at that viewport. If it is, then the repair is not failure-free for that specific
source-viewport. Otherwise, it is a failure-free repair. I did this for both the narrower and
wider source-viewport that were used in a repair made by Layout DR.

RQ2 (b) Methodology – To answer RQ2 (b), I ran the Layout DR tool using a
specialized mode for this research question. Without the need for a failure report, the
specialized mode uses a viewport from the testing range used in the experiments in this
chapter, 320 to 1400 pixels, to “repair" (patch) all other viewports. First, to investigate
the wider source-viewport, the tool uses the 1400 pixels viewport as a source-viewport and
applies it in a patch to the range of 320 to 1399 pixels. Followed by a second run that
uses the 320 pixels viewport as source-viewport to patch the range of 321 to 1400 in order
to investigate the narrower source-viewport. For each run, the detection phase of the tool
is run to report any failures after applying the patch to each of the 31 subjects. If the
patch does not introduce a failure, there should be no presentation failure reported by the
tool. This is because the relative position of all elements remains consistent throughout
the testing range 320 to 1400 pixels during both runs.

RQ3 Methodology – To answer RQ3, I employed a human study to record and evaluate
the preference of participants when presented with a choice between the web page with
the failure against one of two alternative repairs made by Layout DR.

138

5.4. EMPIRICAL EVALUATION

For the human study, I utilized the services of Mechanical Turk at mtruk.com to
reach participants willing to answer the questionnaire for compensation. Sensibly, the
experiments that require a distinction to be made should focus on the reports labelled
as definite failures. This is to facilitate proper judgement of the repairs against only the
failures that are apparent in the webpage and therefore require a repair. Moreover, to
showcase both the narrower and wider source-viewport based repairs, I used all 20 definite
failures for which Layout DR produced two alternative repairs. To limit the time each
participant spends in the study, only a total of 10 randomly selected and randomly ordered
failures are presented to each participant. The questionnaire was hosted on an external
web page that I hosted and linked to the services of Mechanical Turk. You can see the
web page as seen by the participants in Figure 5.5.

Figure 5.5: The user interface of the webpage used as a medium for the human
study showcasing a presentation failure from the ConsumerReports subject.

As clear in Figure 5.5, each section presents the participant with a mock browser with
three tabs. These tabs are labelled as Containing Bug, Repair A, and Repair B. The
Containing Bug tab is the default initial tab presented to the participant to showcase a
snapshot of the web page that contains the failure. While the Repair A and Repair B tabs
present the participant, once they are clicked, with either the narrower source-viewport
repair or the wider source-viewport repair depending on the result of a random assignment
for each participant. All the snapshots presented to the participant captured the entire
web page and were never explicitly scaled for the study. Nevertheless, due to the height
limitation caused by presenting a mock browser in a real browser and to leave enough space
for a question and answer at any one time, the participant is presented with 500 pixels in
height of the snapshot. This amounts to half the size of the browser height used in the
experiments of this chapter. Meanwhile, the viewport width of the mock browser matches
that of the browser during the experiments. Importantly, the mock browser allows the
user to scroll freely to investigate other parts of the web page but the scroll position is
initially set to the location of the presentation failure within the web page.

Above the mock browser, the participant is presented with a short text-based descrip-

139

5.4. EMPIRICAL EVALUATION

tion of the presentation failure. The description was mostly a single sentence pointing
out the position of the failure within the mock browser and briefly describing the layout
failure. In the same area above the mock browser, I asked the participant Which web page
do you prefer?. Using three radio buttons, the participant is forced to choose between
Containing Bug, Repair A, or Repair B before they can proceed to the next section. Fur-
thermore, the same area provides the participant with a button labelled “Instructions"
that will lead them to the instructions that were presented to them at the start of the
study. In the instructions page, the participant is instructed to read the description of
the bug, identify the bug in the web page, and compare the three tabs before choosing a
preference. Finally, above the mock browser, the participant has another button labelled
“Submit" which is only enabled after all questions are answered.

I released the questionnaire to participants on Mechanical Turk over two batches. An
initial batch of 25 jobs was released for participants and a second batch of 75 was later
released after making sure there were no errors in the initial batch. From which, there were
a total of 101 responses with 98 unique participant identifiers submitted. Each participant
was paid $1 US dollar for their participation.

As part of controlling the quality of the data from the questionnaire, I added code in
the webpage to monitor the number of clicks on each of the three tabs Containing Bug,
Repair A, and Repair B. Furthermore, I stored the loading event of each img element
containing the snapshot of each tab. To control against participants that did not follow
instructions before voting, I filtered the results to use only the votes of participants that
clicked on each of the tabs at least once (the default display of the Containing Bug tab is
automatically counted as one-click) and that the loading event for all three tabs was fired.

RQ4 Methodology – To answer RQ4, I ran Layout DR using the entire set of 31
subjects to extract the DOM data and build the RLG, detect failures using the RLG,
generate patches, and assess the success or failure of a repair. To obtain a reliable estimate
of Layout DR’s running time, I repeated this process 10 times for each subject and
recorded the time taken for Layout DR to run in each instance. This is to minimize the
chance of interference from other underlying operating system operations on the recorded
time. To allow HTML elements of a web page to load and their transitional effects to
settle into their final position, Layout DR’s runtime includes a 400 millisecond added
delay. This delay time is repeated whenever Layout DR resizes the viewport width,
scrolls the web page, applies a patch, or removes the patch. The chosen value for the
delay was determined in preliminary experimentation where I incremented the value until
the output of all web pages were deemed deterministic.

Threats to Validity

The process of identifying the subset of reports that have a real or definite presentation
failures may pose a threat to validity. Since the detection algorithms rely on the DOM,
manually inspecting the web page for the potential failure is a necessary process in order
to find the failures that are significant enough to require a repair. It is critical to identify
this set of real failures in order to study the effect of the patch on altering the visible
problem in the layout. Although the source-viewport repair technique was applied to all
reported failures to measure its ability to repair any DOM issue, I only used the real
failures that are suitable for a human to study what is an acceptance or unacceptable
repair. For independent analysis, I made the snapshots and the manual categorization
available at responsiverepair.github.io/manual/rlf-classifications.html.

Regarding the participants of the human study, multiple threats were considered and

140

5.4. EMPIRICAL EVALUATION

mitigated. First, since I used the crowdsourcing service MTurk.com to conduct the study,
this minimizes any intentional selection bias because the service provides a large pool
of anonymous participants. On the other hand, using any crowdsourcing service could
create a threat that arises if participants care more about meeting a higher throughput
of completed questionnaires instead of giving the questionnaire the time it deserves to
answer the questionnaire genuinely. To mitigate against this, criteria provided by Amazon
Mechanical Turk were set to limit participation to people who have completed at least 500
other questionnaires with 90% approved for payment record. Furthermore, I discarded
any unauthentic votes that occurred without clicking on all options and did not wait for
all images to load.

Another threat surrounding the medium of the human study is the unknown size of the
browser being used to complete the questionnaire. To ensure that a participant is using a
device with a browser big enough size to embody the questions of the questionnaire and
the associated images as originally designed, I set clear instructions that only participants
using a large screen of laptops or desktops are allowed to participate. Moreover, I set rules
within the web page to display an error message for viewports less than 1400 pixels in width
and 768 pixels in height thereby preventing them from proceeding to the questionnaire.
Finally, to prevent any inconsistently in displaying the presentation failure and its repair
between different users who may be using different browsers, I used snapshots of the subject
web page instead of the live page ensuring all participants compare the same layouts.
Although the participant cannot interact with the subject webpage, the images showcase
the entire layout of the web page without any explicit scaling. Moreover, automated
scrolling is used to reach and thus display the area where the presentation failure (or its
repair) is located but the participant is free to scroll through the entire page if they desire
to.

As with many experiments, one threat to validity is the generalizability of the results
to other subjects. Although the number of web pages on the internet is extremely large,
the 31 subjects used in the experiments of this chapter were randomly gathered and have
varying properties. From these properties, the most fundamental are the number of HTML
elements that ranged from 42 to 1,470 and the number of CSS declarations that ranged
from 658 to 21,467 declarations. Furthermore, the motivation or objective of the published
web pages also varied. They included a browser automation tools (Selenium), an audio
editing software (Ardour), and an older versions of an educational platform (Duolingo),
and a lodging service (AirBnb). Although the sample is relatively small, the inherent
diversity in random selection could mitigate against this threat.

One validity of threat to the experiments of this chapter is the proper re-implementation
of ReDeCheck’s failure detection algorithms. Along with the using the algorithms from
Walsh et al. [124], I used the latest version of the tool for fine-grained guidance. Neverthe-
less, some differences are to be expected because I made improvements where I found bugs
with the previous tool and when I reached edge cases using the newer subjects. Further
discrepancies may arise due to the tools using two different browsers. While ReDeCheck
relied on Firefox, the Layout DR tool uses the Chromium browser to detect and re-
pair presentation failures. To reduce this threat, I used automated tests while developing
Layout DR as well as manually inspected all the reported presentation failures.

Finally, there is the threat of properly implementing the repair technique into the
Layout DR tool. To reduce the threat of bugs in the tool, I used unit tests while
developing the tool and manually inspected the results and thereafter made improvements
where needed. Furthermore, I made the tool publicly available for others to use and
replicate the finding of this chapter. All of the subjects, snapshots, and the tool are
available in repositories at layoutdr.github.io.

141

5.4. EMPIRICAL EVALUATION

Table 5.2: The results of Layout DR attempting to repair all 398 presentation
failures detected using patches created from the narrower and wider source-viewport.
The data points are derived from Layout DR’s fully automated assessment process
based on the DOM and an RLG of the patched subject.

Narrower Source-Viewport Wider Source-Viewport
Repaired Not Applicable Failed Repaired Not Applicable Failed

Subject Failures D
efi

ni
te

D
is

pu
ta

bl
e

D
is

m
is

si
bl

e

D
efi

ni
te

D
is

pu
ta

bl
e

D
is

m
is

si
bl

e

D
efi

ni
te

D
is

pu
ta

bl
e

D
is

m
is

si
bl

e

D
efi

ni
te

D
is

pu
ta

bl
e

D
is

m
is

si
bl

e

D
efi

ni
te

D
is

pu
ta

bl
e

D
is

m
is

si
bl

e

D
efi

ni
te

D
is

pu
ta

bl
e

D
is

m
is

si
bl

e

3MinuteJournal 13 2 - 1 2 - 8 - - - 4 - 9 - - - - - -
AccountKiller 44 - - 38 - 2 4 - - - - 2 42 - - - - - -
AirBnb 9 - - 4 - 1 4 - - - - 1 8 - - - - - -
Ardour 19 - - 17 2 - - - - - 2 - 17 - - - - - -
Bottender 9 - - - 5 - 4 - - - 5 - 4 - - - - - -
Bower 3 1 - - - - 2 - - - 1 - 2 - - - - - -
BugMeNot 7 - - - 1 2 4 - - - 1 2 4 - - - - - -
CloudConvert 1 - - 1 - - - - - - - - 1 - - - - - -
ConsumerReports 22 2 1 2 5 - 12 - - - 7 1 14 - - - - - -
CoveredCalendar 7 - - 6 - - 1 - - - - - 7 - - - - - -
DaysOld 1 - - - - - 1 - - - - - 1 - - - - - -
Dictation 2 - - - - - 2 - - - - - 2 - - - - - -
Django 4 - - - 1 - 3 - - - 1 - 3 - - - - - -
DjangoRest 2 1 - 1 - - - - - - 1 - 1 - - - - - -
Duolingo 12 1 - 5 - - 6 - - - 1 - 11 - - - - - -
ElasticSearch 20 1 2 9 1 4 3 - - - 2 6 12 - - - - - -
Honey 14 1 - 3 - - 8 - 1 1 1 1 12 - - - - - -
HotelWiFiTest 1 1 - - - - - - - - 1 - - - - - - - -
MantisBT 15 2 - 6 1 - 6 - - - 3 - 12 - - - - - -
MarkText 94 3 1 35 12 8 31 - - 4 15 9 70 - - - - - -
MidwayMeetup 13 1 1 2 - 2 7 - - - 1 3 9 - - - - - -
Ninite 1 - - - - - 1 - - - - - 1 - - - - - -
OrchardCore 18 - 2 5 5 - 6 - - - 5 2 11 - - - - - -
PDFescape 6 - 1 2 - - 3 - - - - 1 5 - - - - - -
PepFeed 6 1 - 4 - - 1 - - - 1 - 5 - - - - - -
Pocket 8 - - 6 - - 2 - - - - - 8 - - - - - -
Selenium 15 1 - - - - 14 - - - 1 - 14 - - - - - -
TopDocumentary 12 - - 11 - - - - - 1 - - 12 - - - - - -
UserSearch 4 - - - - 1 3 - - - - 1 3 - - - - - -
WhatShouldIReadNext 6 - - 2 - 1 3 - - - - 1 5 - - - - - -
WillMyPhoneWork 10 2 - 3 - - 5 - - - 2 - 8 - - - - - -
Total Failures 398 20 8 163 35 21 144 - 1 6 55 30 313 - - - - - -

191 200 7 398 - -

5.4.2 Results of Experiments

Answer to RQ1 – Table 5.2 gives the results of running Layout DR to detect presen-
tation failures, generate up to two patches for each failure, and to automatically assess the
repair over 31 web pages. The first numerical column discloses the number of presentation
failures detected in each subject totalling 398 reports. The table then separates the repairs
over multiple columns based on where the patch was sourced from. This can be either the
narrower source-viewport corresponding to failmin−1 or the wider source-viewport corre-
sponding to failmax+1 of the reported failure range. Each repair is then further divided
based on the results of the automated assessment feature of the tool as either Repaired,
Not Applicable, or Failed. Finally, for added clarity, I describe each failure report as either
a definite, disputable, or as a dismissible report depending on the severity of its impact on
the visible layout. It is important to note that each failure is repaired in isolation from
other failures and hence the numbers in the table do not measure the compounding effect
of multiple repairs. Nevertheless, a repair listed in the table means the removal of the
failure based on the DOM and the sub-RLG of a patched web page.

The results showed that for over half of the presentation failures, 200 out of 398, the
narrower source-viewport based patches were not applicable. Of which, 112 reports had
320 pixels as the lower bound of the failure range. Since the testing range of the experi-
ments was 320 to 1400 pixels, the tool cannot use 319 pixels as a narrower source-viewport
for repair. For the other 88 non-applicable repairs, the DOM structure at the narrower

142

5.4. EMPIRICAL EVALUATION

source-viewport still contained the failure. In this case, Layout DR automatically knows
not to apply the narrower source-viewport repair because it will not repair the failure.

This left 198 failure reports where the narrower source-viewport repair is deemed
by the tool as applicable. From which, 191 failures were successfully repaired by the
tool bringing the results to a near full success rate. Only 7 failed the tool’s automated
assessment of repair, i.e. the elimination of the failure report from the DOM and the
RLG of the patched subject. I investigated these failures from the Honey, MarkText, and
the TopDocumentary subjects and found that the DOM positions of elements were only
fractions of a pixel off. In other words, the repairs 7 were actually successful apart from
being fractions of a pixel away from its expected repaired position. Nevertheless, this
makes the narrower source-viewport at least 96.46% successful at repairing failures when
it is applicable.

The wider source-viewport based repairs were more straight forward with it being
always an applicable source-viewport and never failed. All 398 failure reports were suc-
cessfully repaired by Layout DR using it as a source-viewport. These can be divided
into 313 dismissible, 30 disputable, and 55 definite failure reports repaired.

Conclusion for RQ1 – Using the automated assessment of repairs method that
utilizes the DOM and RLG, Layout DR demonstrated a 100% success rate using
the wider source-viewport repairs and conservatively had a 96.46% success rate
using the narrower source-viewport for repairs after discounting the 50.25% that
were non-applicable.

Answer to RQ2 (a) – After manually inspecting each repair of the 55 definite failures
in order to determine if the repair is failure-free, the results are described in Table 5.3.
In the table, a check-mark symbol () indicates a repair that is failure-free while a times
symbol (×) contrarily indicates a repair that has copied another presentation failure into
the repair. meanwhile, a dash symbol (-) indicates no repair was attempted by the tool.
The table showcases the findings of the narrower source-viewport based repairs in the
column labelled “Narrower" and that of the wider source-viewport in the column titled
“Wider". Moreover, the “Both" column indicates where both repairs were found to be
failure-free and the “Either" column indicates when at least one repair was failure-free.

Overall, 40 out of 55 repairs had at least one that is failure-free, as in, the repair
did not copy any other failure from the set of definite failures. On a per source-viewport
bases, the narrower had 18 out of 20 that are failure-free while the wider had 38 out of
55 repairs. The current version of Layout DR does not actively avoid source-viewports
where a failure is detected, but there is good reason for future versions to do so. This
is not as simple as checking for cross-over of other failure ranges. Since a report may be
disputable or dismissible, the existence of the failure at the source-viewport does not mean
it cannot be used in a repair. Furthermore, even a definite failure at some viewport in
its failure range may be usable as a source-viewport. This is because the classification or
severity of the failure may change throughout its range as seen in the finding of the first
chapter of this thesis.

Answer to RQ2 (b) – The Table 5.4 lists all the failures introduced by Layout DR
after running the tool twice to simulate a repair over all viewports other than the source-
viewports of 320 and 1400 pixels. Since there were no failures introduced by Layout DR
when using the narrower source-viewport of 320 pixels, the table contains only the two
failures reported from the 31 subjects when using the wider source-viewport repair of 1400
pixels. Looking at the report from the PepFeed subject first, it was an element protrusion

143

5.4. EMPIRICAL EVALUATION

Table 5.3: Listing all 55 definite presentation failures detected by Layout DR, to
identify the repairs that are free from other failures detected by the tool, with ,
and the ones that copied another failure with ×, while the - indicates no repair made
by the tool. The column labelled “Both" showcases where the tool provided both
a narrower and wider source-viewport failure-free repair while the “Either" column
indicates at least one is failure-free.

Failure-Free Repair

ID Web Site Name Type Failure Range Narrower Wider Both Either

8 3MinuteJournal Element Protrusion 992 to 1199
9 3MinuteJournal Element Protrusion 347 to 583 - -

11 3MinuteJournal Viewport Protrusion 320 to 568 - -
12 3MinuteJournal Viewport Protrusion 992 to 1137
11 Ardour Viewport Protrusion 320 to 658 - -
12 Ardour Element Protrusion 659 to 678 - -
1 Bottender Viewport Protrusion 320 to 349 - × - ×
2 Bottender Viewport Protrusion 320 to 426 - × - ×
4 Bottender Viewport Protrusion 320 to 718 - -
7 Bottender Element Protrusion 566 to 608 - × - ×
8 Bottender Viewport Protrusion 320 to 470 - × - ×
1 Bower Viewport Protrusion 681 to 697
2 BugMeNot Element Protrusion 324 to 671 - -
1 ConsumerReports Viewport Protrusion 320 to 372 - -
5 ConsumerReports Viewport Protrusion 320 to 373 - -
6 ConsumerReports Viewport Protrusion 320 to 372 - -
8 ConsumerReports Viewport Protrusion 1025 to 1101
9 ConsumerReports Viewport Protrusion 320 to 372 - -

10 ConsumerReports Viewport Protrusion 320 to 373 - -
21 ConsumerReports Element Protrusion 768 to 1028
4 Django Element Wrapping 768 to 778 - -
2 DjangoRest Viewport Protrusion 767 to 767
2 Duolingo Viewport Protrusion 981 to 1098
3 ElasticSearch Element Collision 768 to 768

15 ElasticSearch Element Protrusion 320 to 554 - -
13 Honey Element Collision 539 to 544
1 HotelWiFiTest Viewport Protrusion 415 to 766

11 MantisBT Element Wrapping 768 to 991
12 MantisBT Element Wrapping 320 to 378 - -
14 MantisBT Element Wrapping 980 to 991 × ×
16 MarkText Element Protrusion 882 to 997 - × - ×
32 MarkText Viewport Protrusion 769 to 1246 × ×
33 MarkText Element Protrusion 522 to 552 × × × ×
34 MarkText Element Protrusion 320 to 515 - × - ×
35 MarkText Element Collision 320 to 419 - × - ×
39 MarkText Viewport Protrusion 769 to 1198 × ×
48 MarkText Element Protrusion 985 to 1090 - × - ×
49 MarkText Element Collision 882 to 1089 - × - ×
50 MarkText Element Protrusion 882 to 908 - × - ×
82 MarkText Viewport Protrusion 320 to 428 - × - ×
86 MarkText Element Protrusion 1039 to 1356 - -
87 MarkText Element Protrusion 320 to 575 - -
89 MarkText Element Protrusion 852 to 860 - × - ×
90 MarkText Element Protrusion 874 to 882 - × - ×
91 MarkText Element Protrusion 896 to 904 - × - ×
10 MidwayMeetup Element Protrusion 768 to 1222
5 OrchardCore Element Protrusion 768 to 1199 - -
8 OrchardCore Element Protrusion 768 to 1199 - -

11 OrchardCore Element Protrusion 768 to 1199 - -
15 OrchardCore Element Protrusion 768 to 1199 - -
17 OrchardCore Element Protrusion 768 to 1199 - -
1 PepFeed Viewport Protrusion 415 to 768

15 Selenium Element Wrapping 901 to 933
3 WillMyPhoneWork Element Collision 990 to 991
4 WillMyPhoneWork Small-Range 990 to 991

Total /(× +) 18/20 38/55 16/20 40/55

144

5.4. EMPIRICAL EVALUATION

where an element protrudes a fraction of a pixel the entire failure range. Hence the report
is not a real failure nor a real DOM issue to be concerned about. This is similar to the
case of the 7 failed repair attempts disclosed in the answer to the first research question.
Only there, all 7 issues were related to the narrower source-viewport repair and here the
issue is associated with the wider source-viewport repair.

The second failure introduced by the repair was is in the Duolingo subject. Contrary
to what was seen previously, the report is of an element protruding its parent by more
than one pixel. My investigation revealed that the height of the element increased in the
viewport width 1399 by 380 pixels when compared to its height from the viewport 1400
pixels wide. This results in a protrusion from the bottom of the expected parent in the
RLG model by a total of 380 pixels. Nevertheless, the protrusion is not visible on the page
and would be categorized as a dismissible report. In other words there is nothing visibly
incorrect with the repair and only a DOM level issue. The complexity of the original CSS
with the imposed CSS from the repair makes it difficult to pinpoint the cause behind the
increase in height for this element in this specific subject. Although the repair appears to
have worked in the rendered page, it still introduced a DOM level issue which may be a
cause for concern. In the future, I plan to do controlled experiments to see the effect of
consecutive iterations over the detection and repair phases.

Table 5.4: The full list of presentation failures introduced by the technique after
using the source-viewport of 1400 to “repair" the entire range of 320 to 1399 pixels
and again using the source-viewport of 320 to repair the range 321 to 1400 pixels.

ID Web Site Name Type Failure Range Source-Viewport

1 Duolingo Element-Protrusion 320 to 1399 1400
1 PepFeed Element-Protrusion 1080 to 1399 1400

Conclusion for RQ2 (a) and (b) – For 72.72% of the definite failure reports,
there was at least one failure-free repair made by Layout DR. Furthermore, the
repair technique followed by the tool did not introduce any real presentation failures
regardless of the source-viewport chosen for the repair but did introduce one DOM
level issue.

Answer to RQ3 – Table 5.5 shows the results from participants voting for their preferred
web page. The votes for the original webpage with the presentation failure are under the
column labelled “Failure" while the votes for a repaired web page either go under the
“Narrower" or “Wider" columns depending on the source-viewport of the repair. The last
column labelled “Prefer Repair" gives the total percentage of votes that went to either
of the repairs made by Layout DR. Overall, 91.87% of votes preferred a Layout DR
repair across all 20 failures when comparing any of the two repaired versions against the
original web page. That is, 678 votes preferred a Layout DR repair from a total of 738
votes.

Among the set of failures used in the study, the report with ID 33 from the MarkText
subject had the lowest number of votes that preferred a repair at 82.23% of votes. The
failure and the repaired versions presented to the participants can be seen in Figure 5.6.
As seen in part (a), this report caught the bottom row of the table that starts with
"Raw Html" protruding the table and missing. Meanwhile, the row and its content are
clearly visible in both of the repairs generated by the tool as seen in parts (b) and (c).
Furthermore, since the narrower source-viewport repair is only scaled to one viewport

145

5.4. EMPIRICAL EVALUATION

Table 5.5: The results from the human preference study where each participant is
forced to choose between either the original web page with the presentation failure,
the narrower source-viewport repaired web page, or the wider source-viewport re-
paired web page.

Scale Value Votes

ID Web Site Name Type Failure Range Narrower Wider Original Narrower Wider Total Prefer Repair

8 3-MinuteJournal element protrusion 992 to 1199 1.001 0.827 3 7 25 35 91.43 %
12 3-MinuteJournal viewport protrusion 992 to 1137 1.001 0.872 2 22 12 36 94.44 %
1 Bower viewport protrusion 681 to 697 1.001 0.976 3 27 2 32 90.62 %
8 ConsumerReports viewport protrusion 1025 to 1101 1.001 0.930 5 33 2 40 87.50 %

21 ConsumerReports element protrusion 768 to 1028 1.001 0.746 2 9 20 31 93.55 %
2 DjangoRest viewport protrusion 767 to 767 1.001 0.999 3 6 29 38 92.11 %
2 Duolingo viewport protrusion 981 to 1098 1.001 0.893 4 8 25 37 89.19 %
3 ElasticSearch element collision 768 to 768 1.001 0.999 6 9 21 36 83.33 %

13 Honey element collision 539 to 544 1.002 0.989 3 11 27 41 92.68 %
1 HotelWifiTest viewport protrusion 415 to 766 1.002 0.541 1 22 10 33 96.97 %

11 MantisBT element wrapping 768 to 991 1.001 0.774 4 10 26 40 90.00 %
14 MantisBT element wrapping 980 to 991 1.001 0.988 4 5 40 49 91.84 %
32 MarkText viewport protrusion 769 to 1246 1.001 0.617 2 20 12 34 94.12 %
33 MarkText element protrusion 522 to 552 1.002 0.944 6 20 8 34 82.35 %
39 MarkText viewport protrusion 769 to 1198 1.001 0.641 0 12 21 33 100.00 %
10 MidwayMeetup element protrusion 768 to 1222 1.001 0.628 1 15 24 40 97.50 %
1 PepFeed viewport protrusion 415 to 768 1.002 0.540 3 20 10 33 90.91 %

15 Selenium element wrapping 901 to 933 1.001 0.965 2 7 27 36 94.44 %
3 WillMyPhoneWork element collision 990 to 991 1.001 0.998 5 14 22 41 87.80 %
4 WillMyPhoneWork small-range 990 to 991 1.001 0.998 1 15 23 39 97.44 %

Total 60 292 386 738 91.87 %

(a) Presentation Fialure. (b) Narrower source-viewport. (c) Wider source-viewport.

Figure 5.6: Three snapshots of the MarkText subject from the human study.

wider, there is no reason to attribute this to the problem of over-scaling. Hence, it is
safer to assume a rushed decision or that an improper comparison was made rather than
assuming the participant preferred an entire row of content missing.

The lowest number of votes, between the alternative repairs proposed by Layout DR,
was 2 votes for the repair from the Bower subject and 2 votes for the repair from the
ConsumerReports subject both corresponding to the wider source-viewport. For these
two cases, over 90% of the votes went to the narrower source-viewport viewports making
it a clear winner. The reason for this low marginal of votes for the wider source-viewport
can be inferred by examining the presentation failure seen in Figure 5.7(a) from the Bower
subject. Here, the letter “r" from the word Bower is cut-off to the right-hand edge of the
page. By looking at the repair with the low votes, seen in part (c), I put forward that the
letter is still unconformably close to the edge of the page while in the narrower repair it is
a safe distance away. More evidence for this is seen in the case from the ConsumerReports
subject in Figures 5.8 (a) and (c). Here the link “Privacy Policy", in part (a), is missing
to the left edge of the page. Meanwhile, in the repaired version seen in part (c), the link
is still too close to the edge for comfort.

146

5.4. EMPIRICAL EVALUATION

(a) Presentation Fialure. (b) Narrower source-viewport. (c) Wider source-viewport.

Figure 5.7: Three snapshots of the Bower subject from the human study.

This trend of the narrower repair winning more votes because the wider repair is
aesthetically imperfect, even though it did repair the issue, can also be seen in the pre-
vious example from the MarkText subject. In this example, the wider repair, seen in
Figure 5.6(c), has the row and its content showing but the aesthetics are not perfected.
More specifically, the lower white padding of the table is missing and therefore not as
aesthetically pleasing as the narrower repair. These findings suggest that either an offset
should be considered when using the wider source-viewport based repairs or the detection
algorithms should be improved to report better ranges that truly represent the problem
aesthetically.

Overall, there were a total of 386 votes that preferred the wider source-viewport repair
and 292 total votes that preferred the narrower source-viewport repair which is only a
56.93% preference. On a per failure report bases, there were 13 out of 20 failure reports
where the majority of votes went to prefer the wider source-viewport repair. That is, the
participants preferred the usage of the wider source-viewport repair for 65% of the failures
used in the study. It is important to note that all the snapshots — of the failure and
both repair options — presented to the participant were from the minimum viewport of
the failure range, failmin , for each failure. This means that the narrower source-viewport
repairs were scaled one viewport up for all the failure reports in the study. On the other
hand, the wider source-viewport had a more significant scaling effect for longer failure
ranges as seen by the scale value presented in Table 5.5.

The scaling effect of the wider source-viewport repairs was the most extreme for three
failures where the scaling of the repairs was about 39% to 46% smaller than the original
layout. These reports were from HotelWiFiTest, PepFeed, and MarkText with report
ID 32. For all three, the participants preferred the narrower source-viewport for good
reason. After examining the web pages, I found the elements and especially the text to
be uncomfortably small. This may support the intuition that scaling should be limited
to sustain readability or comfort level. Although such a scaling limit is expected to vary
from one layout to another, further studies are needed to investigate this effect on multiple
layouts. Along with developing a scaling limit, I plan to study the simultaneous usage
of both the narrower and wider source-viewport to repair a single failure in an effort to
mitigate the limitation of scaling.

Conclusion for RQ3 – The results of the study showed that participants prefer a
Layout DR repair over the original web page with the failure 91.87% of the time.
Furthermore, the participants preferred the wider source-viewport repair over the
narrower source-viewport repair for 65% of the failures in the study.

147

5.4. EMPIRICAL EVALUATION

(a) Presentation Failure.

(b) Narrower source-viewport.

(c) Wider source-viewport.

Figure 5.8: Three snapshots of the ConsumerReports subject from the human study.

148

5.4. EMPIRICAL EVALUATION

Answer to RQ4 – For any of the 31 subjects, Layout DR took anywhere between
8.29 and 57.99 minutes in runtime during the detection phase with an average of 29.40
minutes. This included the time it takes to iterate over all viewports in the testing range,
extract information from the DOM, build the RLG, and run the presentation failure
detection algorithms on the RLG. From the experiments, the shortest runtime belonged
to the BugMeNot subject which has 42 HTML elements. Given the testing range of 320
- 1400 pixels and a time delay of 400 milliseconds that is repeated for every viewport
visited, there is a total of 7.20 minutes of delay per subject. Meaning, that the shortest
runtime only really took about a minute to complete. Nevertheless, the longest runtime
of experiments took about 50 minutes, discounting the delay. This runtime belonged to
the AirBnb subject which has 1470 elements.

Since all the HTML elements of a web page are traversed in order to build the RLG,
the runtime is expected to be correlated to the number of elements in the web page. For
the detection phase and using spearman’s method, this correlation results in the coefficient
ρ of 0.86. For illustration, Figure 5.9(a) plots the runtime of the detection phase against
the number of elements in the web page. As expected, most of the data points follow the
trajectory of the drawn linear regression line with one exception, the points above the line.
All of which belong to the MarkText subject with only 560 elements suggesting that other
variables may have a big influence on the runtime as well.

To repair a reported presentation failure with up to two alternative patches, the tool
took anywhere between 7.98 and 135.69 seconds of runtime averaging 46.74 seconds per
report. This is the total runtime of the second and third phases of the tool combined that
are dedicated to repairing the web page. It includes the time it takes to assess the DOM
for the reported failure, any change of viewports required, creating up to two patches,
applying the patches, and automatically accepting or rejecting the patches based on their
ability to repair the failure. Furthermore, it includes the time it takes to capture a full
snapshot of the page for manual assessment of both the failure and the repair. Once again,
the shortest runtime to repair any given failure belonged to a report from the BugMeNot
subject while the AirBnb subject again recorded the longest runtime during the process
of repairing a reported failure.

Just like the detection phase, a correlation between the runtime of the repair processes
and the number of HTML elements is also expected. This is because the creation of a
patch and its assessment, using the RLG, both involve iterating over all the elements of the
page. Using spearman’s method of correlation, the coefficient ρ was found to be 0.85 this
time which is just as strong of a correlation as found with the runtime of the detection
phase. Figure 5.9 (b) plots the relationship between the runtime of repair against the
number of elements in the page. Clearly, a positive correlation exists as seen by the blue
line in the plot.

To get a better understanding of the runtime devoted to the repair process, I broke
it down into the two key parts of repair. These are the creation of the patch and its
assessment which includes time to take a snapshot of the repaired web page. These
runtimes are showcased in parts (c) and (d) of Figure 5.9 respectively. For any given
patch, the time it took the tool to create it ranged from 0.72 seconds up to 14.29 seconds
of runtime with an average of 5.68 seconds per patch. The assessment portion takes slightly
longer with times ranging from 3.34 seconds up to 36.69 seconds with an average of 13.25
seconds per patch assessment. The correlation of runtime and number of elements was
higher for the duration of creating the patch with a coefficient ρ of 0.92 and was lower
during the assessment of the patch with a ρ equal to 0.84.

149

5.4. EMPIRICAL EVALUATION

20

40

60

0 500 1000 1500

Number of HTML elements

T
im

e
to

 d
et

ec
t (

m
in

ut
es

)

(a) Detect failures in a web page, R2 = 0.49.

50

100

0 500 1000 1500

Number of HTML elements

T
im

e
to

 r
ep

ai
r

(s
ec

on
ds

)

(b) Repair each failure, R2 = 0.61.

5

10

15

0 500 1000 1500

Number of HTML elements

T
im

e
to

 p
at

ch
 (

se
co

nd
s)

(c) Create a single patch, R2 = 0.72.

10

20

30

0 500 1000 1500

Number of HTML elements

T
im

e
to

 a
ss

es
s

(s
ec

on
ds

)

(d) Assess a single patch, R2 = 0.68.

Figure 5.9: The figures compare different aspects of Layout DR runtimes to the
number of HTML elements found in the web page. The runtime to detect all pre-
sentation failures for each web page is shown in (a) and the runtime of completing
all possible repairs for each of the detected failures is in (b). The parts (c) and (d)
are a breakdown of a portion of the runtime shown in (b). They show the time
dedicated to creating a single patch as seen in part (c) and the time dedicated to
assessing the success of a repair in (d) using any given patch.

150

5.4. EMPIRICAL EVALUATION

Conclusion for RQ4 – The runtime of the detection phase of the tool ranged
from eight minutes up to an hour with an average of about half an hour to scan
the page and report presentation failures, if any are found. To repair any of the
failures detected, as in creating up to two working patches, the tool took on average
48 seconds to complete but varied from eight seconds up to two minutes and a half
per reported failure. Noteworthy, the runtime was found to be positively correlated
to the number of elements in the web page.

5.4.3 Discussion

Although the approach followed by Layout DR has demonstrated that it is capable of
repairing any given failure report, it may not be a necessary action in the first place. This
is the case for the 313 dismissible reports and may include 30 more disputable reports.
Nevertheless, virtually no burden is added beyond what is already required post detection
of presentation failures. The patches generated do not have to be used, nor examined,
except after manually confirming the failure reports. If the manual analysis is not ideal,
automated visual classification can be introduced into the tool in order to reduce the
number of reports into a subset that actually require a repair based on their classification.
This would require integrating my contributions of the first two chapters of this thesis into
the tool. Regardless of the solution, the evidence suggests that Layout DR is able to
repair any DOM issue thrown at it by the detection algorithms.

Even though the DOM issue behind the failure report can be repaired using Layout DR,
this does not equate to a full repair of the problem observed in the layout visually. Re-
pairing the DOM issue may only partially move the element towards its intended position
relative to visual cues. For example, if an element protrudes from one parent followed by
a protrusion of another parent. Fixing the protrusion of the second parent only half solves
the real issue that spans multiple parents. Another perspective on this is that the repair is
limited to how good the layout of the source-viewport is. Therefore, both of the detection
and repair approaches implemented in the current version fo Layout DR are not ideal
for a web page that is still under development since it may contain more failures than a
page that is more matured. A better fit is with live web pages since they are likely to have
fewer failures and can benefit from a quick “hot fix". To improve on this, detection needs
to account for the correct DOM structure inferred from all observed viewports. Currently,
the detection algorithms using the RLG mainly rely on a single viewport to assert the
expected DOM structure. Although small-range failures are inferred using two viewports,
it is still not enough nor does it simplify automated repairs using a source-viewport. To
this end, I plan to improve the detection of Layout DR as part of future work.

Choosing a source-viewport is an item for discussion on its own. The Layout DR
tool uses the two bordering viewports of the reported failure range for possible usage
in a patch. Theoretically, the ideal candidate layout is the one that closely resembles
the layout of the viewport with the failure but does not contain the failure. These are
most likely to be found in the viewports nearest to the failure range from either side
as done Layout DR. Moreover, choosing the nearest viewports minimizes the scaling
effect that needs to occur to fit the layout appropriately in each viewport that requires
the patch. These two bordering viewports provide two alternative sources of CSS for
creating two different patches. In the experiments of this chapter, the layout of the wider
source-viewport best resembled the layout of the viewports where the presentation failure
occurred. While the layout of the narrower source-viewport looked different due to new
responsive layout rules being applied in the original page. This allows Layout DR to

151

5.5. CONCLUDING REMARKS

prescribe two, most likely different, layouts for the user to choose from as the final repair.
One alternative approach is to use both layouts simultaneously on the same failure range.
This would further reduce the scaling that needs to occur but I leave this secondary study
for future work.

One critical feature of the approach implemented in Layout DR is to use the CSS
scale() method to scale the layout taken from the source-viewport. An undesired side
effect of this method is that it may cause some text to be blurry for some scaled-down
values. This was the case for some of the repairs from our experiments including the two
failures in the human study from the 3MinuteJournal subject. Although the blurriness
was not that significant, in future work I plan to look at both readability of font-size and
blurriness caused by this method. A fallback for this method is to change the computed
pixels values of all CSS properties directly. In my initial experiments, I found this fallback
approach to be very successful. Another advantage is that it did not require any anchoring
to reposition the elements in the appropriate position within the page. One complication
is that some properties with pixel values should not be scaled. For example, the pixel
values that indicate the cropping coordinates of a large image.

5.5 Concluding Remarks

To assist a web developer in finding possible presentation failures in their responsively
designed web page ensuring its proper layout on a large number of possible devices,
Layout DR re-implemented the automated detection algorithms of the legacy tool Re-
DeCheck. These algorithms are able to detect five types of presentation failures asso-
ciated with responsive web pages. New to Layout DR, is the ability to automatically
repair all five types of failures reported by the detection algorithms. By taking a layout
from a viewport width not associated with the same failure, Layout DR is able to auto-
matically scale it down and apply it to all other viewports where the failure was detected.
For many presentation failures, the tool is able to propose up to two successful repairs
sourced from different viewports. Moreover, the tool automatically assesses all candidate
repairs for successful elimination of the presentation failure by passing a DOM-based as-
sessment and passing another check of the detection algorithms that were used to find the
failure in the first place.

The experiments of this chapter showed that Layout DR is able to produce at least
one patch that successfully and automatically repairs any DOM issues detected using the
algorithms for responsive layout failures. For about half of the reported failures, the tool
was also able to produce an alternative working patch that can be used to repair the issue.
Furthermore, when I presented 20 real presentation failures with two alternative repairs
generated by the tool, 91% of participants in the human study preferred a Layout DR
repair over the original page with the failure. The experiments also found no evidence of
the tool introducing any real presentation failures using the source-viewport technique.
Nevertheless, only 72.72% of the patches used to repair real failures were found to be
free from other failures detected by the tool. Finally, the runtime of the tool was found
to be positively correlated to the number of HTML elements in the page. The tool had
an average runtime of half an hour for the duration of the detection phase and about 48
seconds on average to generate up to two working patches per reported failure. All of
the findings of this chapter encourage more research towards automatically repairing the
layout failures. The specific topics and direction for future research is the focus of the
next chapter along with a summary of the research that composes this thesis.

152

6
Conclusions and Future Research

In this thesis, I aimed to contribute new automated means that support the developer in
testing a responsively designed web page for presentation failures and in resolving them.
More precisely, given a set of failures reported for the web page, I wanted to automate
the manual process of visually investigating the reported presentation failures in order to
filter out the ones worthy of attention and repair. Furthermore, I wanted to also automate
the process of repairing the reported failures by creating patches that the developer can
use to quickly repair the layout. In the previous three chapters, I proposed and evaluated
multiple techniques to achieve these aims. In this chapter, I will begin by summarizing
the research that I undertook for this thesis in Section 6.1 followed by a description of the
known limitations and opportunities for future research in Section 6.2 before making my
final remarks in Section 6.3.

The main contributions that I conceived and evaluated for this thesis were:

1. A technique to automatically classify reports of three types of presentation failures
known to have DOM-based structural issues that are non-observable in the layout
when visually investigated.

2. Automate the classification of two more type of presentation failures and reassess
my approach to automated classification on newer web pages for all five type of
failures.

3. A technique to automatically suggest up to two working repairs for each reported
presentation failure for all five types.

6.1 Summary of Research

In this section, I will summarize the research that I undertook for this thesis. In Chapter
1, I introduced the research problem and aims of this thesis. In Chapter 2, I reviewed
the existing research in the literature. Next, I will summarize the problem from the
initial point of research and continue following the path of research that I took in order
to complete the contributions of this thesis.

153

6.1. SUMMARY OF RESEARCH

6.1.1 Initial Point of Research

Testing responsively designed web pages for presentation failures can be challenging with-
out the assistance of automated tools. Since there is a wide range of screen sizes that
the layout must conform to, the developer must manually check that the web page is
presented appropriately for all screen sizes. With help from ReDeCheck, the layout of
the web page can be tested for consistency across different viewport widths and checked
for the signature of five type of layout failures. Thus, the tool can help the developer
find presentation failures in the layout associated with smaller smartphone screens up
to larger screen sizes connected to workstations. Unfortunately, the tool relies solely on
DOM-based information to detect the failures, thus it may generate reports that are either
non-observable in the layout, to the developer, or simply a false alarm. To benefit from
ReDeCheck, the developer must manually investigate each report to identify the real
failures worthy of repair from other trivial problems or false reports. This is a simple task
to complete once or twice for a handful of reports but if the tool over reports anything
other than a real failure, it can be a time consuming and error-prone task. Furthermore,
as the developer continuously introduces major or minor changes to the layout, more test-
ing is required and thus more filtering of the ReDeCheck reports is needed to prioritize
important issues.

6.1.2 Classifying Non-Observable Failures (Chapter 3)

Even though the ReDeCheck tool helps front-end developers check their responsively de-
signed web pages for presentation failures, the reports generated by the tool contain many
structural issues that do not manifest into a visually observable defect in the presentation
of the layout. These non-observable issues in the layout may not be a high priority for
the developer to repair when compared with the failures where there is both a structural
problem and a visible defect in the presentation of the layout. From the 117 presenta-
tion failures reported by ReDeCheck from the 20 subjects used in the experiments, a
total of 83 reports were non-observable issues after the failures were manually classified
by Walsh et al. [124]. I proposed and empirically evaluated an automated technique to
classify these failure reports relieving the developer from this burden.

The automatic classification technique implemented into the tool Viser, analyses a
region of the web page where a failure is located for an observable defect. This region,
referred to as an area of concern, is calculated using the coordinates of the elements
associated with the detected failure and included in the report. Using multiple snapshots
of the region, the tool uses specialized algorithms that take into consideration the type
of failure reported and alternative possible layout scenarios to evaluate the report on a
graphical level. To achieve this, the tool changes the opacity CSS property of these
elements to reveal the underlying graphical layer in the area of concern and compares
them for colour-based pixel differences. If there is a difference between the layers where
one layer overwrites another or is written out of position, the tool deems the report as
an observable true positive failure. Otherwise, the failure is classified as a non-observable
issue. Prior to graphically analysing the area of concern, the tool checks the structure of
the web page to corroborate the reported failure using the DOM. Thereby, filtering false
positive reports before any graphical analysis is carried out.

Using the baseline manual classification, independently made by Walsh et al. [124], the
results of the empirical study showed that Viser agreed with the baseline classifications
86.3% of the time. With it taking less than a second to classify any of the 117 presentation
failures, it is fit to relieve the developer from having to manually classify the failures. The

154

6.1. SUMMARY OF RESEARCH

study also found that the minimum or narrowest viewport from the range of viewports
where the presentation failure was detected has the highest probability of uncovering an
observable true positive failure and matching a manual classification. By automating the
classification of element collision, element protrusion, and viewport protrusion failures, I
believe that Viser is an essential companion for the automated testing of responsively
designed web pages.

6.1.3 Classifying Observable Failures (Chapter 4)

Although Viser showed encouraging results for automating the classification of three type
of responsive layout failures reported by ReDeCheck, its primary goal was to classify
non-observable issues and thus is not able to classify element wrapping and small-range
failures. To put this limitation into perspective, there were 209 reports of wrapping and
small-range failures from the 326 total failures detected in the 25 subjects used to evaluate
ReDeCheck and Viser. That is, Viser cannot automate the classification of 64% of
the reported failures. Therefore, I proposed and empirically evaluated two automated
techniques to classify these two new failures on the 25 subject web pages.

To completely automate the classification of all five failure types, I implemented two
new techniques into Viser and rebranded the tool as Verve. The first technique extends
the usage of the opacity property and the algorithms already implemented in Viser in
order to classify element wrapping failures. The second technique required developing
a new approach to classy small-range failures because this type of failure presents itself
differently than the other four types. This difference begins as early as the detection
phase of small-range failures which requires the extraction of layouts from at least three
viewports, instead of two like all other failure types, to detect the problem. The newly
developed technique, implemented in Verve, uses snapshots from three viewports that
were originally used to detect the failure in order to classify it. One of these viewports
comes from the failure range and the other two are the narrower and wider bordering
viewports on either side of this range. In comparison, the other four types only required
one viewport from the reported failure range in order to classify the failure. Using multiple
areas of concern captured in the snapshots, Verve compares the distances between the
colour histogram of these images. If the distance is above a predetermined threshold, the
failure is considered a true positive, otherwise, it is a false positive report.

Using the pool of 25 subjects previously used to evaluate Viser and re-utilizing the
same baseline manual classification independently made by Walsh et al. [124], the results
of the empirical study showed that Verve agreed with the baseline classifications 78.6%
of the time for element wrapping failures. Furthermore, when classifying wrapping failure
using the minimum, middle, or maximum viewports from the reported failure range, the
agreement was consistent regardless of the viewport chosen for the classification. For the
results of small-range classification, with the threshold tuned to the best possible value,
the analysis showed that the tool is capable of achieving up to a 98.5% agreement for
small-range failures by configuring Verve to use the Intersection histogram measure and
the horizontal-plus-vertical referencing approach for dissecting the snapshots into smaller
areas of concern.

6.1.4 Reassessing Automated Classifications (Chapter 4)

Even though Verve is now able to classify all failure types produced by ReDeCheck,
its performance on newer web pages is unknown. Since the threshold values used to

155

6.1. SUMMARY OF RESEARCH

classify small-range failures were tuned using the original subjects, testing Verve on
newer subjects is especially important for this failure type. For this purpose, I gathered
20 additional web pages made up from popular responsive example web pages and from
real web pages used by the creator of ReDeCheck to test newer algorithms of the tool.
Prior to the experiments, I manually classified all the failures reported from this additional
set of pages and used it as the baseline to measure Verve’s performance.

From the results of reassessing Verve on the 20 additional subjects, the tool showed
good agreement levels with the baseline manual classifications. More precisely, using the
minimum viewport of each reported failure range for classification, the change in agreement
went from 93.5% to 100% for element collision, 84.6% to 92.2% for element protrusion,
83% to 80% for viewport protrusion, and 78.6% to 64.7% for wrapping failures. For
small-range failures, there were only false positives failure reports from this set. There-
fore, I manually injected synthetic failures into the additional subjects to overcome this
threat. Then, I separately investigated the original reports from the unmodified additional
subject and the new failures reported after injecting the synthetic failures. Since there
were multiple choices for histogram measures and for dissecting the area of concern, no
consistent recommendation could be made without combining all failures including the
25 initial subjects. Using all 45 subjects, Verve achieved 87.5% for small-range failures
while configured to use the Chi-Square measure combined with the horizontal-plus-vertical
referencing approach. This is a decrease compared to the 98.5% agreement over the 25
initial subjects. Impressively, the recommended threshold to use is the original threshold
determined prior to introducing the additional set of subjects.

In a test of the runtime required for Verve to automatically classify any of the 469
failures reported from the 45 subject web pages, the tool took 4 seconds on average to
complete for any of the five type of failures produced by ReDeCheck.

6.1.5 Repairing Presentation Failures (Chapter 5)

With Verve assisting the developer classify and thus filtering out the real presentation
failures, the developer must now manually repair these higher priority failures. To further
aid the developer in this matter, I implemented a tool, named Layout DR, that is able
to automatically create up to two working patches that repair the layout. These quick
fixes, generated by Layout DR, can be applied to the web page to buy the developer
valuable time needed to investigate the root cause of the problem and create a customized
repair.

The idea behind Layout DR stems from ReDeCheck’s successful ability to detect
presentation failures in the layout of certain viewports widths. Moreover, it is able to
determine and report the consecutive viewports where the failure manifests, this is known
as the failure range. For any given failure, Layout DR benefits from this information
by inferring that the narrower and wider viewports bordering the failure range are free
from the reported failure. Thus, the layouts from these two viewports can be used as
alternative sources for a solution to repair the layouts that display the failure. In other
words, Layout DR can borrow code from the narrower source-viewport or the wider
source-viewport and apply it over the viewports reported with the failure in order to
mend the page.

To repair a failure, Layout DR retrieves the entire code used to render the layout of
the bordering source-viewport and adds extra code in order to properly fit the borrowed
layout to the viewport widths in the range of the failure. To avoid overwriting layouts
of viewports outside the failure range, the tool also adds rules that restrict where the

156

6.2. FUTURE RESEARCH

borrowed code is applied using the failure range. With the code injected into the page,
Layout DR automatically verifies that the patch successful eradicated the failure from
the previously associated viewports. For this, the tool uses the original detection algo-
rithms used to find the failure in the first instance to ensure that the same failure is not
reported in the patched web page.

During the empirical evaluation of Layout DR, I employed 21 of the subject web page
used to evaluate ReDeCheck and later Verve plus 10 newly accrued subjects for eval-
uating Layout DR. One of the major findings of the evaluation is that Layout DR
can repair 100% of the reported failures using the wider source-viewport. Similarly, the
narrower source-viewport based repairs had a 96% success rate when the tool determined
the viewport to be valid for use in a repair. Nevertheless, it was only valid for 50% of
all the reported failures. Thus, Layout DR tool is expected to always produce at least
one working patch and up to two patches for half the reported failures. I further investi-
gated whether the tool introduces new failures when a patch is applied and found that the
technique does not introduce true positive failures that can be detected using automated
means. This is true whether the tool is using the narrower source-viewport or the wider
source-viewport.

For a deeper evaluation of Layout DR that goes beyond the tool’s ability to produce
working patches for any failure regardless of whether it should be repaired or not, I manu-
ally narrowed down the 398 reports to 55 definite failures that are observable with minimal
subjectivity. Using this set of definite failures, I manually investigated each repair to find
out if Layout DR copied any other definite failure into a working patch. I found out that
72% of the 55 definite failures had at least one failure-free repair option. Furthermore, I
presented the 20 definite failures that had both repair options to participants in a human
study to determine whether they preferred a repaired version of the page over the original
with the failure. The study showed that a Layout DR repair was preferred over the
web page with the failure 91% of the time. Furthermore, the participants preferred the
wider source-viewport based repair 65% of the time.

In a test of the runtime required for Layout DR to automatically create up to two
working repairs for any of the 398 failures reported from the 31 subject web pages, the
tool took less than one minute on average to complete for any of the five type of failures.

6.2 Future Research

The techniques developed, tools implemented, and the experiments conducted as part
of this thesis had some limitations and open-opportunities for future research. In this
section, I will briefly describe these limitations and suggest ideas to overcome them or
bring general improvement to the results.

6.2.1 Improving Detection of Failures

Because I have re-implemented the detection algorithms of ReDeCheck into Layout DR
in order to resolve known issues with the legacy tool, I gained valuable knowledge about the
approach and its limitations. Based on this experience, I will discuss, next, the limitations
and opportunities for an improved approach to detect presentation failures in responsively
designed web pages.

HTML structure – One of the main features of the ReDeCheck approach is a graph-
based model called the Responsive Layout Graph (RLG) that decouples the HTML docu-

157

6.2. FUTURE RESEARCH

ment structure from the rendered layout. This decoupling reduces the complexity involved
in understanding the HTML and CSS rules and how different browsers, and versions, finally
render the page. To achieve this, the RLG assumes that the tightest element encompassing
another element is its intended container. Though, this simplification of the problem does
come at a cost when dealing with elements that are designed to be out of normal flow in
the page as the user scrolls the page, essentially floating around. An example of this type
of element can be seen in Figure 4.10 from Chapter 4. As seen in the experiments, when
the viewport width is changed while the page is being tested for presentation failures, the
position of the out of flow element is also changed. In consequence, the out of flow element
may leave the falsely assigned container in the RLG model and be incorrectly reported
as a failure. To overcome this problem, I plan, as part of future research, to introduce a
condition in the RLG that assigns out of flow elements only to the root container in the
RLG. This may also require the inclusion of additional rules that take into consideration
the descendants of an out of flow element.

It is worthy to also note that the RLG is not fully decoupled from the HTML structure
because the body element is hard-coded to be the root container of all other elements
in the RLG. This is because the body element is the main display element based on
the DOM structure. Moreover, the RLG assumes that the width of the body element
never exceeds the viewport width which is a problem when testing a responsively designed
web page. When detecting viewport protrusion failures, this may lead to under-estimating
or over-estimating the number of failures if the body element is wider or narrower than
the viewport width, respectively. A simple solution to this problem is to introduce a
pseudo-element as the root container in the RLG that more accurately represents the
viewport width and let us call it the page element. Based on RWD design principles, this
page element should have infinite height and be only as wide as the viewport width being
extracted. I believe this will further improve the detection of responsive layout failures
and I plan to test this approach in the future.

Pixel tolerance – One technical issue that arises when reading the coordinates of an
HTML element, using the DOM, is that it may include decimal points. If the readings are
kept as raw values and one element is overlapping another by a fraction on any given axes,
the tool making the readings must decide whether this is an overlap or not. Regardless
of the choice made, this may or may not reflect how a specific browser renders the two
elements. This seemingly trivial problem only grows in complexity as the tool attempts to
determine the tightest container of an element, siblings within the same container, ances-
tors and descendants, and other relative positions like above-of and right-of. To overcome
this problem, the tools must provide some leeway when making these decisions. Although
this tolerance is necessary using the approach originated by ReDeCheck, changing the
tolerance value can change the output of the tool significantly. Even though every tool
must decide how to handle these fractional values, the problem for ReDeCheck largely
exists because at each viewport, the tool extracts the layout and makes these decisions
solely on the information from a single viewport. This can be due to the fact that the
ReDeCheck extended existing techniques without considering more improvements. One
possible solution to this problem is to infer the relative positions using readings from
multiple, if not all, viewports. This can be achieved through basic heuristics or a more
advanced artificial intelligence approach. Either way, the solution is expected to increase
the stability and quality of the output.

Limited usability – one of the main reasons preventing the wider adoption of automated
means to detect presentation failures, as implemented in the ReDeCheck tool, is the
dynamic nature of modern web pages. These modern pages sometimes rely on JavaScript
code that runs in the browser to automatically and routinely update certain elements in

158

6.2. FUTURE RESEARCH

the page. If these routines change the relative size, relative position, tag type, or the
number of elements that make up the layout, the underlying model used to infer the
failures cannot properly test the layout of the page. In other words, the tool is only built
to test layouts that are static in relative positions, relative sizes, and the overall HTML
structure. One simple way for the developer to support automated testing is to introduce
a unique identifier for each element, manually or automatically, and any JavaScript-based
change must update the identifier as it makes a change to the element. These identifiers
can be used by the testing tool to infer the state of the layout and thus make more
accurate assumptions and thereafter reporting. Further research would need to compare
such manual effort to an alternative and automatic way to detect the state of the page
for usage during the testing. This will not only increase the number of pages that can be
tested for responsive layout failures but should generalize to aid in testing other type of
presentation failures like cross-browser issues.

6.2.2 Improving Classification of Failures

Although Verve’s automated classification of responsive layout failures is expected to
improve the process of testing responsively designed web pages, there are at least five
opportunities for improvement and more research. Next, I will discuss the details of these
improvements and the current limitations motivating them.

Horizontal scrolling – the empirical study of Chapter 3, and later Chapter 4, revealed
that there were a few misclassifications made by the tools Viser and Verve. These
were mostly specific to the viewport protrusion failure type. A limitation of the current
algorithm that classifies this type of failure is that it does not take into consideration the
fact that horizontal scrolling defeats the purpose of a responsive design. Currently, the
algorithm looks for differences in the snapshots to conclude if the failure is observable or
not in the layout but it does not account for differences that require a horizontal scroll.
In other words, the algorithm should check on a graphical level if the content is written
beyond the viewport width size and therefore require a horizontal scroll to be viewed. This
improvement should not be limited to viewport protrusion failures, it should be applied to
all failure types in order to preserve the sanity of the responsive design. To be verified by
future experiments, the newly added condition is expected to raise the agreement between
manual and automated classifications.

Degree of Change – another limitation revealed by the experiments carried out in
Chapter 3 and Chapter 4 is that not all changes caused by the failure are equally prob-
lematic to the presentation of the layout. Unlike a human that is manually classifying
a presentation failure, the current technique implemented in Verve does not make an
exemption for “minor” changes in the layout. Mimicking these subjective exemptions in
Verve to dismiss minor defects in the layout is anticipated to further improve the agree-
ment between manual and automated classification. Based on my investigation of these
subjectively issued exemptions, three main heuristics may help the algorithm in prescrib-
ing these exemptions. The first is to measure the number of pixels changed in the layout
and establish a threshold for a valid exemption. Moreover, it may be more helpful to ac-
count for the number of changed pixels along the x and y axis of the web page. The second
heuristic should account for the general size of elements involved in the failure. Finally,
one heuristic should investigate the degree of change in colours and define a threshold of
a human visible colour change. Although intuitively valid, these improvements need to be
validated experimentally in the future.

Alternative CSS property – the approach implemented in Viser and thereafter Verve
uses the opacity CSS property to make an element transparent in order to “see” the layer

159

6.2. FUTURE RESEARCH

behind it. Although the tool does not gradually change the opacity and instead sets it
to complete transparency, during the experiments I ran into a case where an element was
only partially transparent when a snapshot was taken immediately after modifying the
opacity value. This issue of asynchronicity was resolved by introducing an added delay in
order to wait for an element to be completely transparent before a snapshot is taken. The
alternative visibility property is expected to require the same delay or more. Since
descendant elements can override this property, multiple delays may be needed. Future
work would need to investigate the trade-offs of the visibility property instead.

Classifying other failures and possible detection benefits – Even though Verve demon-
strated the benefits of automatically classifying the ReDeCheck reported failures, it is
limited as a tool to the failure types reported by ReDeCheck. As part of future work,
I plan to adapt Verve to handle failures reported using other DOM-based tools. These
can include cross-browser testing tools, internationalization testing tools, and front-end
state exploration and testing tools like VFDetector [99]. Another future direction is
to explore the viability of using graphical information from different layers, perhaps using
the opacity CSS property, to detect presentation failures. Empowered with knowledge
about the DOM structure and the customized CSS rules of the page, this approach may
be capable of detecting failures without requiring information from multiple viewports,
browsers, or other front-end states. Nevertheless, using more information, say from other
viewports, is expected to increase the chance for success.

Running visual content – One possible limitation of Verve’s classification approach,
especially for small-range failures, is that it expects the page to remain visually consistent.
Since snapshots are used to analyse the failures, a drastic change in the colours (e.g., a
video playing in the page) may increase the chance of making a mistake while the tool is
analysing the failure. To overcome this limitation, I plan to experiment with using multiple
snapshots of the same area of concern. By differencing multiple images of the same area
of concern, the tool can infer a change in colours. The alternative, or in combination, is to
check for known elements like the video html element, JavaScript events, or CSS changes
that may affect the outcome of the classification. Either way, Verve should notify the
user, as part of its classification, of the certainty or confidence level in the output.

6.2.3 Improving Repair of Failures

The Layout DR tool has been shown to successfully automate the repair of responsive
layout failures but there are at least five opportunities for improvement and more re-
search. Next, I will discuss the details of these improvements and the current limitations
motivating them.

Multi-failure pages – Although Layout DR experimentally proved that it can auto-
matically repair one viewport by borrowing or extending the layout from another viewport,
known as the source-viewport, it will also bring with it any other failure already in the
source-viewport. Therefore, the current version of Layout DR does not actively avoid
source-viewports where a failure is detected. Although this is a good feature to have, the
task is not as simple as checking for cross-over of other failure ranges. Since the severity
of the failure changes depending on the viewport, the presence of a failure at the source-
viewport does not mean the viewport cannot be used in a repair. One possible solution
is to integrate Verve into Layout DR in order to answer if the source-viewport can
be used for repair while known to have failures. If the failures are only non-observable
issues, Layout DR can proceed with the repair. The current approach implemented
in Layout DR is more suited for published web pages that are expected to have fewer
presentations failures and would also benefit from a quick fix.

160

6.2. FUTURE RESEARCH

Partial repairs – The approach implemented in Layout DR technically does repairs
a presentation failure but the web page may need further repairs before the visual problem
is fully repaired. This should not be confused as a problem with the technique itself, rather
it is a limitation of using the failure range reported by ReDeCheck. Since ReDeCheck
indicates the starting and ending viewports of a failure using only DOM-based informa-
tion, the range may not reflect the start and end of the problem graphically. As seen in
Figure 5.6(c) of Chapter 5, the source-viewport may not always provide an aesthetically
pleasing point for repair. If a newer tool with superior detection capability is more ac-
curate in determining the real failure range, the problem will cease to exist. Until then,
more research would need to investigate if a simple offset, added to the failure range, is
sufficient to overcome this problem.

Partial repair is also possible when related elements are involved in consecutive failures,
in terms of viewports that is. For example, if an HTML element is involved in an element
protrusion failure and then a descendant element is involved in another element protrusion
failure, repairing the protruding descendant element will only bring the layout into a state
where the ancestor element is still protruding. Therefore, one failure is repaired but it
may seem like it is partly repaired due to another visually related failure. In other words,
the repair can only be as good as the source-viewport. In the future, I plan to experiment
with added conditions that better examine the source-viewport and perhaps reach further
out for a viewport that is better suited for repairing the failure. Again, the integration of
Verve is expected to largely resolve this problem.

Scaling limits – The most vulnerable feature of Layout DR for criticism involves
the chance for extreme scaling. During the evaluation of the tool, there was no research
question that investigated the limitation of scaling a layout, up or down. Intuitively,
there exists some limit on how much a layout can be scaled for readability and aesthetic
appeal. This limit will depend on multiple factors but the most important is the original
readability and aesthetic appeal of the layout prior to scaling. Arguably, scaling is the key
feature that allows tools to automatically repair a web page along with the repositioning
of content in the page. Moreover, it is not expected that an automated repair approach
would introduce new content nor remove any without context. To mitigate the problem of
extreme scaling, an easy solution for Layout DR is to simultaneously apply both repairs
from the narrower and wider source-viewport, when possible, to reduce the scaling effect
by half. Moreover, I plan to study the limits of scaling a layout in general and experiment
with the repositioning of elements in the page as part of the patch. Finally, I also plan on
using a method to prevent font scaling as done by CBRepair [1] or like IFix++ [65] by
leaving it as a last resort.

Fault localizing – One feature making Layout DR undesirable is that it copies over
an entire layout, by traversing the entire DOM, in order to repair a problem limited to a
portion of another layout. Although an ideal version would attempt to localize the failure
in the CSS and HTML to limit the patch to the problematic properties and elements, there
is another alternative that is inspired by the current success of Layout DR. Instead of
fault localization, or in addition to it, one avenue for future research is to reduce the code
of a successful patch to a smaller sized working patch. Since the DOM tree, rooted at
the html element, is used to apply the patch, it would be interesting to learn if iteratively
pruning the tree would yield an acceptable repair. Moreover, I expect that a top-down
pruning approach would be the best approach to take and also speculate that limiting the
pruning to the direct children of the body element would provide a good trade-off between
performance and an acceptable repair. Additional heuristics like which subtree contains
the failing elements, as indicated in the detection phase, may provide good guidance when
pruning. Furthermore, this should improve the performance of the task. Another level of

161

6.3. FINAL REMARKS

systematic reduction that will come at a higher performance cost is at the CSS properties
level for each node in the tree. Finally, I would also like to see the results of bringing a
human, ideally the developer, into the decision loop while the tool is pruning the tree.

A less invasive approach to automate the repair process is to use basic heuristics in
order to resolve the failure. For example, the repair can start by targeting the elements
reported as failing, from the detection phase, for scaling and repositioning. Alternatively,
it can target some ancestors of the reported elements or only a single common ancestor
instead. To better guide the repair, the type of failure reported can add another layer of
insight. Finally, collecting information about the size and relative position of the elements
from one or both bordering viewports, of the failure range, will further aid in the repair.
During experiments that I did not include in this thesis, I probed this idea and found
that it can achieve good results but pails in comparison to the approach that I finally
relied on which borrows the full layout from the bordering viewport. More specifically, I
found that using these heuristics was less methodological, required my personal domain
knowledge, and grew in complexity in order to reach good results. Nevertheless, I plan as
part of future work to revitalize this approach, improve it, and compare it to the successful
approach currently implemented in Layout DR.

Repurposed repairs – Just as the ReDeCheck reported failures are limited to reflect
only the browser being used to test the web page, the Layout DR repairs only reflect
the requirements of a single browser. More so, it is not a good idea to apply the repair on
any other browser since it was not designed or tested for that purpose. In the real world,
it is not uncommon that a developer may use certain features from one browser that are
not available in another. Furthermore, there may be additional differences in how each
browser interprets CSS and HTML standards. Since the patch currently uses absolute
pixel values and uses all the CSS properties available by the browser, any Layout DR
generated patch will require additional code that is able to detect if the browser being
used by the end-user requires the patch. This is one reason why I plan to investigate the
benefits of repurposing the source-viewport based repairs.

Another reason to repurpose the Layout DR repair strategy is that the developer
may not prefer to use the resulting automated patch. Nevertheless, the technique of using
a source-viewport for repair has potential that goes beyond the developer’s needs. In the
future, I see a potential to repurpose the type of repairs created by Layout DR for usage
by the browsers to present a different layout to the end-user. In one use case, an end-user
that is using a smaller screen size can ask the browser to correct the layout, due to any
given problem, to an alternative layout designed for larger screen sizes. This can extend,
in a semi-automated fashion, to the user clicking on the element with the problem so the
browser can try to find a better source-viewport. As part of future research, a human
study would need to investigate the technical and practical viability of using a layout
correcting browser.

6.3 Final Remarks

In this thesis, I have proposed and evaluated techniques that support the developer, of a
responsively designed web page, in testing the layout of the page as it changes to conform
to different screen sizes. Specifically, the main contributions were (1) a technique that can
automatically classify non-observable issues found in three type of presentation failures,
(2a) I extended this technique and created a new one in order to classify two more failure
types, (2b) I reassessed the performance of my automated classification techniques for
all five failure types, and (3) automated the repair of all five failure types. These are in

162

6.3. FINAL REMARKS

addition to a technical contribution, the re-implementation of the ReDeCheck algorithms
with minor improvements into a newer tool named Layout DR. This is to make installing
the tool easier, update known issues with the legacy tool, and to bridge the gap between
the detection of presentation failure and their repair.

In this chapter, I have identified known limitations and many avenues for further
research that I expect to improve the automated detection, classification, and repair of
presentation failures. Although my prototype tools and many of those presented in the
literature that I reviewed for this thesis were largely successful within their research-based
scope, the real-world requires more advancements. I expect that a more universal tool
that incorporates multiple layout testing techniques to be more beneficial in the real-
world. With the Layout DR tool, the developer can be presented with both the problem
and up to two possible solutions. Furthermore, I expect the tool to be even more beneficial
once I complete the integration of Verve’s helpful automated classifications into future
versions of Layout DR. Critically, for developers to adopt Layout DR, future research
should prioritize advancement in the detection of presentation failures that aim to raise
the accuracy of the detection phase and increase the number of subjects that can be tested.
In consequence, this should reduce the need to visually classify the reported failures and
is expected to reflect positively on the results of automated repair.

Although I have Identified some opportunities for further research, the findings from
this thesis concluded that (1) my automated classification approach for the three failure
types associated with non-observable issues, implemented in Viser and Verve, matches
the human-based manual classification with high agreement, (2a) this high agreement
was also achieved by additional approaches, implemented in Verve, to classifying the
other two failures types (2b) furthermore, the high agreement does extend well into newer
subjects for all five failure type, finally (3) my automated repair technique, implemented
in Layout DR, is able to successfully patch any of the five failure types and output up to
two working patches for the developer to use. Ultimately, I see Verve and Layout DR
playing an important role in helping web developers surface, classify, and repair responsive
layout failures. My own contributions implemented in Verve and Layout DR should
aid the developer in prioritizing the defects reported and help efficiently and automatically
deploy fixes for a defective web page.

163

Bibliography

[1] Abdulmajeed Alameer, Paul T. Chiou, and William G. J. Halfond. “Effi-
ciently Repairing Internationalization Presentation Failures by Solving Lay-
out Constraints”. In: Proceedings of the 12th International Conference on
Software Testing, Validation and Verification. 2019, pp. 172–182.

[2] Abdulmajeed Alameer and William G.J. Halfond. “An Empirical Study of
Internationalization Failures in the Web”. In: Proceedings of the 32nd Inter-
national Conference on Software Maintenance and Evolution. 2016.

[3] Abdulmajeed Alameer, Sonal Mahajan, and William G. J. Halfond. “De-
tecting and Localizing Internationalization Presentation Failures in Web Ap-
plications”. In: Proceedings of the 9th International Conference on Software
Testing, Verification and Validation. 2016.

[4] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J Davison. “KAZE
features”. In: European conference on computer vision. Springer. 2012, pp. 214–
227.

[5] Paul Ammann and Jeff Offutt. Introduction to Software Testing. 2nd ed.
Cambridge University Press, 2016.

[6] “Automatic detection of potential layout faults following changes to respon-
sive web pages”. In: Proceedings - 2015 30th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2015 (2016), pp. 709–714.
doi: 10.1109/ASE.2015.31.

[7] Md Aquib Azmain and Kishan Kumar Ganguly. “Automated Repair of Asym-
metric Web Pages during Resolution of Mobile Friendly Problems.” In: ENASE.
2021, pp. 461–468.

[8] BDD Testing and Collaboration Tools for Teams | Cucumber. url: https:
//cucumber.io/ (visited on 04/01/2022).

[9] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
“The oracle problem in software testing: A survey”. In: IEEE transactions
on software engineering 41.5 (2014), pp. 507–525.

[10] T. Berners-Lee and Fischetti M. Weaving the web, the Original Design and
Ultimate Destiny of the World Wide Web by its Inventor. HarperBusiness,
2000. isbn: 0-06-251587-X.

[11] Bing - Mobile Friendliness Test Tool. url: https : / / www . bing . com /
webmaster/tools/mobile-friendliness (visited on 04/01/2022).

164

BIBLIOGRAPHY

[12] Barry W Boehm. “Software engineering: R&D trends and defense needs”. In:
Research directions in software technology (1979).

[13] Bootstrap. url: https://getbootstrap.com/ (visited on 03/23/2022).
[14] Box Model. url: https://www.w3.org/TR/CSS2/box.html (visited on

04/12/2022).
[15] Gary Rost Bradski and Adrian Kaehler. Learning OpenCV: Computer vision

with the OpenCV library. First. O’Reilly Media, Inc., 2008.
[16] Gary Bradski and Adrian Kaehler. Learning OpenCV 3. O’Reilly, 2016.
[17] Browsera. Browsera - Automated Cross Browser Web Application Testing Ser-

vice. url: http://www.browsera.com/ (visited on 05/06/2018).
[18] Browserbite. Browserbite - Automatic cross browser testing. url: http://

browserbite.com/ (visited on 05/06/2018).
[19] Paul Butcher and Jacquelyn Carter. Debug it!: find, repair, and prevent bugs

in your code. Pragmatic Bookshelf, 2009.
[20] CSS Reset - YUI Library. url: https://clarle.github.io/yui3/yui/

docs/cssreset/ (visited on 04/17/2022).
[21] CSS Tools: Reset CSS. url: https://meyerweb.com/eric/tools/css/

reset/ (visited on 04/17/2022).
[22] CSS3 Media Queries: Simple Gotchas and Easy Fixes. url: https://www.

crimsondesigns . com / blog / css3 - media - queries - simple - gotchas -
easy-fixes/ (visited on 05/01/2020).

[23] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. VIPS: a Vision-based
Page Segmentation Algorithm. Tech. rep. MSR-TR-2003-79. 2003, p. 28. url:
https://www.microsoft.com/en-us/research/publication/vips-a-
vision-based-page-segmentation-algorithm/.

[24] Raymond Camden and Brian Rinaldi. Working with Static Sites: Bringing
the Power of Simplicity to Modern Sites. O’Reilly Media, 2017.

[25] John Canny. “A computational approach to edge detection”. In: IEEE Trans-
actions on pattern analysis and machine intelligence 6 (1986), pp. 679–698.

[26] SR Choudhary, Husayn Versee, and Alessandro Orso. “WEBDIFF: Auto-
mated identification of cross-browser issues in web applications”. In: Software
Maintenance (ICSM). 2010, pp. 1 –10. isbn: 9781424486281. doi: 10.1109/
ICSM.2010.5609723. url: http://ieeexplore.ieee.org/xpls/abs{_
}all.jsp?arnumber=5609723.

[27] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. “Cross-
Check: Combining Crawling and Differencing To Better Detect Cross-browser
Incompatibilities in Web Applications”. In: Proceedings of the 5th Interna-
tional Conference on Software Testing, Verification and Validation. 2012.

[28] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. “X-PERT:
Accurate identification of cross-browser issues in web applications”. In: Pro-
ceedings - International Conference on Software Engineering. 2013, pp. 702–
711. isbn: 9781467330763. doi: 10.1109/ICSE.2013.6606616.

165

BIBLIOGRAPHY

[29] Association for Computing Machinery. Inventor of World Wide Web Receives
ACM A.M. Turing Award. url: https://awards.acm.org/about/2016-
turing (visited on 05/06/2018).

[30] Crossbrowsertesting. Cross Browser Testing Tool: 1500+ Real Browsers &
Devices. url: https://crossbrowsertesting.com/ (visited on 05/06/2018).

[31] Dianne Cyr, Milena Head, and Alex Ivanov. “Design Aesthetics Leading to
M-loyalty in Mobile Commerce”. In: Information & Management 43.8 (2006).

[32] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. “Hints on
test data selection: Help for the practising programmer”. In: Computer 11.4
(1978), pp. 34–41.

[33] Desktop vs Mobile vs Tablet Market Share Worldwide. 2022. url: https:
/ / gs . statcounter . com / platform - market - share / desktop - mobile -
tablet#monthly-201202-202202 (visited on 03/25/2022).

[34] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. “A density-
based algorithm for discovering clusters in large spatial databases with noise.”
In: Proceedings of the Second International Conference on Knowledge Discov-
ery and Data Mining. Vol. 96. 34. 1996, pp. 226–231.

[35] Fast and reliable end-to-end testing for modern web apps | Playwright. url:
https://playwright.dev/ (visited on 04/01/2022).

[36] Masha Fisch. Mobile-friendly sites turn visitors into customers. 2012. url:
http://googlemobileads.blogspot.com/2012/09/mobile-friendly-
sites-turn-visitors.html (visited on 03/25/2022).

[37] Fred Glover. “Tabu search—part I”. In: ORSA Journal on computing 1.3
(1989), pp. 190–206.

[38] Google - PageSpeed Insights. url: https : / / developers . google . com /
speed/pagespeed/insights/ (visited on 04/01/2022).

[39] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. “Automated
program repair”. In: Communications of the ACM 62.12 (2019), pp. 56–65.

[40] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. “Deepfix:
Fixing common c language errors by deep learning”. In: Thirty-First AAAI
Conference on Artificial Intelligence. 2017.

[41] HTML Tidy Project Page. url: http://tidy.sourceforge.net/ (visited
on 04/14/2022).

[42] Sylvain Hallé, Nicolas Bergeron, Francis Guerin, and Gabriel Le Breton.
“Testing Web Applications Through Layout Constraints”. In: Proceedings
of the 8th International Conference on Software Testing, Verification and
Validation. 2015.

[43] Maggie Hamill and Katerina Goseva-Popstojanova. “Common trends in soft-
ware fault and failure data”. In: IEEE Transactions on Software Engineering
35.4 (2009), pp. 484–496.

[44] Mark Harman. “Automated patching techniques: the fix is in: technical per-
spective”. In: Communications of the ACM 53.5 (2010), pp. 108–108.

166

BIBLIOGRAPHY

[45] Meimei He, Guoquan Wu, Hongyin Tang, Wei Chen, Jun Wei, Hua Zhong,
and Tao Huang. “X-check: A novel cross-browser testing service based on
record/replay”. In: 2016 IEEE International Conference on Web Services
(ICWS). IEEE. 2016, pp. 123–130.

[46] Robert Hof. Google Research: No Mobile Site = Lost Customers. 2012. url:
https : / / www . forbes . com / sites / roberthof / 2012 / 09 / 25 / google -
research-no-mobile-site-lost-customers/?sh=4cb69c8259d1 (visited
on 03/25/2022).

[47] JQuery. url: https://jquery.com/ (visited on 03/10/2022).
[48] Stéphane Jacquet, Xavier Chamberland-Thibeault, and Sylvain Hallé. “Au-

tomated Repair of Layout Bugs in Web Pages with Linear Programming”. In:
International Conference on Web Engineering. Springer. 2021, pp. 423–439.

[49] JavaScript End to End Testing Framework | cypress.io testing tools. url:
https://www.cypress.io/ (visited on 04/01/2022).

[50] Joseph Kempka, Phil McMinn, and Dirk Sudholt. “Design and analysis of
different alternating variable searches for search-based software testing”. In:
Theoretical Computer Science 605 (2015), pp. 1–20.

[51] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In:
Proceedings of ICNN’95-international conference on neural networks. Vol. 4.
IEEE. 1995, pp. 1942–1948.

[52] Bogdan Korel. “Automated software test data generation”. In: IEEE Trans-
actions on software engineering 16.8 (1990), pp. 870–879.

[53] Thanh Le-Cong, Xuan Bach D Le, Quyet Thang Huynh, and Phi Le Nguyen.
“Usability and Aesthetics: Better Together for Automated Repair of Web
Pages”. In: 2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE). IEEE. 2021, pp. 173–183.

[54] Vladimir I Levenshtein et al. “Binary codes capable of correcting deletions,
insertions, and reversals”. In: Soviet physics doklady. Vol. 10. 8. Soviet Union.
1966, pp. 707–710.

[55] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jor-
dan. “Scalable statistical bug isolation”. In: Acm Sigplan Notices 40.6 (2005),
pp. 15–26.

[56] Fan Long, Peter Amidon, and Martin Rinard. “Automatic inference of code
transforms for patch generation”. In: Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering. 2017, pp. 727–739.

[57] Fan Long and Martin Rinard. “Automatic patch generation by learning cor-
rect code”. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. 2016, pp. 298–312.

[58] Lucia, Ferdian Thung, David Lo, and Lingxiao Jiang. “Are faults localiz-
able?” In: (2012), pp. 74–77.

[59] Rastislav Lukac. Perceptual digital imaging: methods and applications. CRC
Press, 2017.

167

BIBLIOGRAPHY

[60] S. Mahajan, B. Li, P. Behnamghader, and W. G. J. Halfond. “Using Vi-
sual Symptoms for Debugging Presentation Failures in Web Applications”.
In: Proceedings of the 10th International Conference on Software Testing,
Verification and Validation. 2016.

[61] Sonai Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G. J.
Halfond. “Automated Repair of Mobile Friendly Problems in Web Pages”. In:
Proceedings of the 40th International Conference on Software Engineering.
2018.

[62] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Hal-
fond. “Automated Repair of Layout Cross Browser Issues Using Search-Based
Techniques”. In: Proceedings of the International Conference on Software
Testing and Analysis. 2017, pp. 249–260.

[63] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Hal-
fond. “XFix: Automated Tool for Repair of Layout Cross Browser Issues”. In:
Proceedings of the International Conference on Software Testing and Analy-
sis. 2017, pp. 368–371.

[64] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Hal-
fond. “Automated Repair of Internationalization Failures Using Style Simi-
larity Clustering and Search-Based Techniques”. In: Proceedings of the 11th
International Conference on Software Testing, Validation and Verification.
2018.

[65] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Hal-
fond. “Effective automated repair of internationalization presentation fail-
ures in web applications using style similarity clustering and search-based
techniques”. In: Software Testing, Verification and Reliability 31.1-2 (2021),
e1746.

[66] Sonal Mahajan and William G. J. Halfond. “Finding HTML Presentation
Failures using Image Comparison Techniques”. In: Proceedings of the 29th
International Conference on Automated Software Engineering. 2014.

[67] Sonal Mahajan and William G. J. Halfond. “Detection and Localization of
HTML Presentation Failures Using Computer Vision-Based Techniques”. In:
Proceedings of the 8th International Conference on Software Testing, Verifi-
cation and Validation. 2015.

[68] Sonal Mahajan and William G. J. Halfond. “WebSee: A Tool for Debug-
ging HTML Presentation Failures”. In: Proceedings of the 8th International
Conference on Software Testing, Verification and Validation. 2015.

[69] Ethan Marcotte. Responsive Web Design. url: https://alistapart.com/
article/responsive-web-design/ (visited on 02/10/2022).

[70] Ethan Marcotte. Responsive Web Design. A Book Apart, 2011.
[71] Wolfgang Mayer and Markus Stumptner. “Modeling programs with unstruc-

tured control flow for debugging”. In: Australian Joint Conference on Artifi-
cial Intelligence. Springer. 2002, pp. 107–118.

[72] William M. McKeeman. “Differential Testing for Software”. In: DIGITAL
TECHNICAL JOURNAL 10.1 (1998), pp. 100–107.

168

BIBLIOGRAPHY

[73] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. “Angelix: Scalable
multiline program patch synthesis via symbolic analysis”. In: Proceedings of
the 38th international conference on software engineering. 2016, pp. 691–701.

[74] Ali Mesbah and Mukul R Prasad. “Automated Cross-browser Compatibility
Testing”. In: Proceedings of the 33rd International Conference on Software
Engineering. 2011.

[75] E Fagan Michael. “Advances in software inspections”. In: IEEE Transactions
in Software Engineering 12.7 (1986).

[76] James W Mickens, Jeremy Elson, and Jon Howell. “Mugshot: Deterministic
Capture and Replay for JavaScript Applications.” In: NSDI. Vol. 10. 2010,
pp. 159–174.

[77] Mobile-Friendly Test - Google Search Console. url: https : / / search .
google.com/test/mobile-friendly (visited on 04/01/2022).

[78] Mobiletest. MobileTest.me - Test your mobile sites and responsive web de-
signs. url: http://mobiletest.me/ (visited on 05/06/2018).

[79] Mongotest. MogoTest. url: http://mogotest.com/ (visited on 05/06/2018).
[80] Martin Monperrus. The Living Review on Automated Program Repair. Tech.

rep. hal-01956501v3. 2021. url: https://hal.archives- ouvertes.fr/
hal-01956501v3.

[81] Fernando Monteiro. Learning Single-page Web Application Developement).
PACKT Publishing, 2014.

[82] Mozilla. Introduction to the DOM - Web APIs | MDN. url: https : / /
developer.mozilla.org/en-US/docs/Web/API/Document{_}Object{_
}Model/Introduction (visited on 05/08/2018).

[83] Multi-screen overview - Google AdSense Help. url: https : / / support .
google.com/adsense/answer/6051803 (visited on 04/01/2022).

[84] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N
Nguyen. “Auto-locating and fix-propagating for HTML validation errors to
PHP server-side code”. In: 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011). IEEE. 2011, pp. 13–22.

[85] Normalize.css: Make browsers render all elements more consistently. url:
https://necolas.github.io/normalize.css/ (visited on 04/17/2022).

[86] OR-Tools - Google Developers. url: https://developers.google.com/
optimization (visited on 04/12/2022).

[87] OpenCV: Open-Source Computer Vision Library. url: https://opencv.org
(visited on 11/06/2019).

[88] PageGen Repository. url: https://github.com/sylvainhalle/pagegen
(visited on 04/14/2022).

[89] Pavel Panchekha and Emina Torlak. “Automated reasoning for web page
layout”. In: Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Appli-
cations. 2016, pp. 181–194.

169

BIBLIOGRAPHY

[90] Clarissa Peterson. Learning Responsive Web Design: A Beginner’s Guide.
1st ed. O’Reilly Media, 2014.

[91] Puppeteer: Headless Chrome Node.js API. url: https : / / github . com /
puppeteer/puppeteer (visited on 04/01/2022).

[92] Quran - 21:25 (Translated by Abdullah Yusuf Ali). url: https://quran.
com/21/25 (visited on 04/14/2022).

[93] Responsinator. url: https://www.responsinator.com/.
[94] Responsive Design Checker. url: http://responsivedesignchecker.com

(visited on 05/06/2018).
[95] Brian Rinaldi. Static Site Generators: Modern Tools for Static Website De-

velopment). O’Reilly Media, 2015.
[96] David Robins and Jason Holmes. “Aesthetics and Credibility in Web Site

Design”. In: Information Processing & Management 44.1 (2008).
[97] Richard Romero and Adam Berger. “Automatic partitioning of web pages

using clustering”. In: International Conference on Mobile Human-Computer
Interaction. Springer. 2004, pp. 388–393.

[98] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. “The Earth Mover ’
s Distance as a Metric for Image Retrieval”. In: International Journal of
Computer Vision 40.2 (2000), pp. 1–20. issn: 0920-5691. doi: 10.1023/A:
1026543900054. arXiv: 0005074v1 [arXiv:astro-ph]. url: http://www.
springerlink.com/index/W5515K817681125H.pdf.

[99] Yeonhee Ryou and Sukyoung Ryu. “Automatic Detection of Visibility Faults
by Layout Changes in HTML5 Web Pages”. In: Proceedings of the 11th Inter-
national Conference on Software Testing, Validation and Verification. 2018.

[100] Tõnis Saar, Marlon Dumas, Marti Kaljuve, and Nataliia Semenenko. “Cross-
browser testing in browserbite”. In: International Conference on Web Engi-
neering. Springer. 2014, pp. 503–506.

[101] Tõnis Saar, Marlon Dumas, Marti Kaljuve, and Nataliia Semenenko. “Browser-
bite: cross-browser testing via image processing”. In: Software: Practice and
Experience 46.11 (2016), pp. 1459–1477. issn: 00380644. doi: 10.1002/spe.
2387. arXiv: 1008.1900. url: http://doi.wiley.com/10.1002/spe.2387.

[102] Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip, and
Laurie Hendren. “Automated repair of HTML generation errors in PHP ap-
plications using string constraint solving”. In: 2012 34th International Con-
ference on Software Engineering (ICSE). IEEE. 2012, pp. 277–287.

[103] Sass: Syntactically Awesome Style Sheets. url: https://sass-lang.com/
(visited on 04/01/2022).

[104] Screen Resolution Stats Worldwide. 2022. url: https://gs.statcounter.
com / screen - resolution - stats # monthly - 201202 - 202202 (visited on
03/25/2022).

[105] Selenium: Web Browser Automation. url: http://www.seleniumhq.org/
(visited on 07/11/2018).

[106] Selenium. url: https://www.selenium.dev/ (visited on 04/01/2022).

170

BIBLIOGRAPHY

[107] Nataliia Semenenko, Marlon Dumas, and Tonis Saar. “Browserbite: Accurate
Cross-Browser Testing via Machine Learning over Image Features”. In: 2013
IEEE International Conference on Software Maintenance. 2013, pp. 528–
531. isbn: 978-0-7695-4981-1. doi: 10.1109/ICSM.2013.88. url: http:
//ieeexplore.ieee.org/document/6676949/.

[108] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. “Jalangi:
A selective record-replay and dynamic analysis framework for JavaScript”.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. 2013, pp. 488–498.

[109] Dennis Sheppard. Beginning Progressive Web App Development: Creating a
Native App Experience on the Web. Apress, 2017.

[110] Skeleton: Responsive CSS Boilerplate. url: http://getskeleton.com/ (vis-
ited on 03/23/2022).

[111] Ian Sommerville. Software Engineering. 9th ed. Addison-Wesley, 2011.
[112] Higor A de Souza, Marcos L Chaim, and Fabio Kon. “Spectrum-based soft-

ware fault localization: A survey of techniques, advances, and challenges”. In:
arXiv preprint arXiv:1607.04347 (2016).

[113] StaticGen. url: https://www.staticgen.com/about (visited on 11/06/2018).
[114] Michael Tamm. Fighting Layout Bugs. 2009. url: https://code.google.

com/archive/p/fighting-layout-bugs/ (visited on 05/01/2018).
[115] Haruto Tanno and Yuu Adachi. “Support for finding presentation failures by

using computer vision techniques”. In: 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE.
2018, pp. 356–363.

[116] The W3C CSS Validation Service. url: https://jigsaw.w3.org/css-
validator/ (visited on 04/14/2022).

[117] The W3C Markup Validation Service. url: https://validator.w3.org/
(visited on 04/14/2022).

[118] The most advanced responsive front-end framework in the world - Foundation.
url: https://get.foundation (visited on 03/23/2022).

[119] David Thomas and Andrew Hunt. The Pragmatic Programmer: your journey
to mastery. 2nd ed. Addison-Wesley Professional, 2019.

[120] TypeScript: JavaScript With Syntax For Types. url: https://www.typescriptlang.
org/ (visited on 04/01/2022).

[121] W3C. Web Design and Applications Standards. url: https://www.w3.org/
standards/webdesign/ (visited on 05/07/2018).

[122] W3C. World Wide Web Consortium (W3C). url: https://www.w3.org/
Consortium/ (visited on 05/07/2018).

[123] Kathleen Wahlbin. Responsive web design. A Book Apart, 2013. isbn: 9780984442577.
[124] Thomas A Walsh, Gregory M. Kapfhammer, and Phil McMinn. “Automated

Layout Failure Detection for Responsive Web Pages without an Explicit Or-
acle”. In: Proceedings of the International Conference on Software Testing
and Analysis. 2017.

171

BIBLIOGRAPHY

[125] Thomas A Walsh, Gregory M. Kapfhammer, and Phil McMinn. “ReDeCheck:
An Automatic Layout Failure Checking Tool for Responsively Designed Web
Pages”. In: Proceedings of the International Conference on Software Testing
and Analysis – Demonstration Papers. 2017.

[126] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. “Automat-
ically Identifying Potential Regressions in the Layout of Responsive Web
Pages”. In: Software Testing, Verification and Reliability 30.6 (2020).

[127] Thomas A Walsh, Phil McMinn, and Gregory M Kapfhammer. “Automatic
Detection of Potential Layout Faults Following Changes to Responsive Web
Pages”. In: Proceedings of the 30th International Conference on Automated
Software Engineering. 2015.

[128] Thomas Walsh. “Automated Identification of Presentation Failures in Re-
sponsive Web Pages”. PhD thesis. The University of Sheffield, Apr. 2018.

[129] Wenhua Wang, Sreedevi Sampath, Yu Lei, Raghu Kacker, Richard Kuhn, and
James Lawrence. “Using combinatorial testing to build navigation graphs for
dynamic web applications”. In: Software Testing, Verification and Reliability
26.4 (2016).

[130] Mark Weiser. “Program slicing”. In: IEEE Transactions on software engi-
neering 4 (1984), pp. 352–357.

[131] James Q Wilson and George L Kelling. “Broken windows”. In: Atlantic
monthly 249.3 (1982), pp. 29–38.

[132] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. “A
survey on software fault localization”. In: IEEE Transactions on Software
Engineering 42.8 (2016), pp. 707–740.

[133] W Eric Wong and Yu Qi. “BP neural network-based effective fault local-
ization”. In: International Journal of Software Engineering and Knowledge
Engineering 19.04 (2009), pp. 573–597.

[134] Matt Wynne, Aslak Hellesoy, and Steve Tooke. The cucumber book: behaviour-
driven development for testers and developers. Pragmatic Bookshelf, 2017.

[135] Shaopeng Xu, Chenyu Zhou, Zhiwei Gu, Guoquan Wu, Wei Chen, and Jun
Wei. “X-Diag: Automated Debugging Cross-Browser Issues in Web Applica-
tions”. In: 2018 IEEE International Conference on Web Services (ICWS).
IEEE. 2018, pp. 66–73.

[136] Hector Yee, Sumanita Pattanaik, and Donald P. Greenberg. “Spatiotempo-
ral sensitivity and visual attention for efficient rendering of dynamic envi-
ronments”. In: ACM Transactions on Graphics 20.1 (2001), pp. 39–65. issn:
07300301. doi: 10.1145/383745.383748. url: http://portal.acm.org/
citation.cfm?doid=383745.383748.

[137] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and
Rasheed Abubakar Rasheed. “Multiple fault localization of software pro-
grams: A systematic literature review”. In: Information and Software Tech-
nology 124 (2020), p. 106312.

[138] Frank Zammetti. Practical Webix. Apress, 2018, pp. 1–5. isbn: 9781484233832.

172

